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ABSTRACT 

Oscillations are ubiquitous in the brain. A large body of literature has supported that 

brain oscillations are not a by-product of brain activities; in fact, they shape our perception by 

modulating cortical excitability and facilitating neuronal communications. Consequently, our 

visual perception, attention and maybe even consciousness wax and wane across time. 

However, the role of oscillations in these perceptual or cognitive functions is not entirely 

understood. For visual perception and attention, although the relationship between them and 

brain oscillations has been established, it is unclear where and how these brain oscillations 

are generated. As for consciousness, how the oscillations are involved in producing conscious 

perception remains unknown. These are the questions the current thesis attempts to address. 

The thesis starts with brain oscillations in the most basic and best understood brain 

function – visual perception. It has been suggested that visual perception is an oscillatory 

process, sampling the world at the alpha frequency. Perceptual echoes are one demonstration 

of visual sampling. The echo is an impulse response function that oscillates at ~10 Hz in 

response to white-noise stimuli. While the temporal properties are gradually revealed, the 

origin of the echoes remains unclear. The first study set out to study the neural basis of 

perceptual echoes, and we found the echoes originate in the early visual cortex. 

Next, we move on to attention. It has been shown that attention samples the 

environment at theta frequency. A monkey study suggests that the theta oscillation of 

attention may arise from competitive receptive field interactions of V4. To investigate if the 

mechanism can be generalized to humans, we replicate the behavioral experiment in humans. 

Finally, in the last two studies, we examine brain oscillations in consciousness. 

Utilizing binocular rivalry, we first investigate if the perceptual echoes require consciousness. 

The results show that perceptual echoes can be elicited both when the stimulus is in 

consciousness and out of consciousness. Second, we investigate information flow during 

binocular rivalry and show an increased top-down beta and theta activities before perceptual 

switches. 

In conclusion, the brain is a dynamic system in which the oscillations flexibly facilitate 

various brain functions by playing different functional roles.  
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RESUME SUBSTANTIEL 

 

Le cerveau est un système dynamique, et les oscillations y sont omniprésentes. Bien 

qu'elles aient été initialement considérées comme un sous-produit produit par le cerveau, de 

nombreux neuroscientifiques ont réalisé la signification des oscillations et ont essayé d'établir 

le lien entre les oscillations et les fonctions cognitives.  

L'une des théories permettant d'établir ce lien est celle des "cycles perceptifs" 

(VanRullen, 2016). L'idée est que si les activités cérébrales sont périodiques, il est naturel de 

considérer que la rythmicité des activités cérébrales se manifestera dans notre perception, 

conduisant à une perception oscillatoire. Cela peut sembler fou, car notre perception 

consciente semble si lisse, homogène et stable. Cependant, au cours des dernières décennies, 

des recherches considérables ont prouvé que les oscillations cérébrales donnent lieu à des 

"cycles perceptifs", montrant que la perception n'est pas continue; elle est plutôt "discrète" et 

oscillatoire, prenant des "instantanés" du monde comme une caméra. Notre perception stable, 

contre-intuitive, n'est qu'une illusion. Dans les cycles de perception, les oscillations 

cérébrales pourraient jouer un rôle d'"excitateur", en modulant périodiquement l'excitabilité 

des zones sensorielles du cerveau.  

La conscience s'emballe et s'efface aussi comme les cycles de perception. Cependant, 

les oscillations cérébrales peuvent également jouer un autre rôle dans la conscience. La 

conscience est la fonction cognitive la plus complexe qui nécessite l'interaction de différentes 

fonctions cognitives, telles que le contrôle cognitif et la perception visuelle. Ainsi, il peut y 

avoir des communications entre différentes zones du cerveau pendant la perception 

consciente, et les oscillations cérébrales peuvent jouer un rôle de "communicateur". 

 Tous ces rôles d'oscillations permettent au cerveau de fonctionner efficacement. Même 

si la nature oscillatoire du cerveau est largement acceptée et que de plus en plus de 

scientifiques se sont lancés dans la recherche sur les oscillations cérébrales, il reste encore 

beaucoup de mystères. Quel est le mécanisme de génération des oscillations cérébrales qui se 

rapportent à une fonction perceptive ou cognitive spécifique? D'où viennent-elles dans le 
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cerveau? Comment sont-elles impliquées dans la perception consciente? Ce sont les 

principales questions que j'ai cherché à aborder au cours de mon doctorat. 

Cette thèse se concentre sur la façon dont les oscillations neuronales sont impliquées 

dans trois fonctions perceptuelles ou cognitives fondamentales : la perception visuelle, 

l'attention et la conscience. Bien que j'aborde ces trois fonctions séparément, les expériences 

que je rapporte ici sont toutes basées sur des tâches visuelles. 

Oscillations dans la perception visuelle   

Dès la fin du XIXe siècle, il a été proposé que la perception est discrète et que la 

perception visuelle discrète balaie l'environnement extérieur environ 10 fois par seconde 

(Whitlock, 2009).  

L'un des premiers travaux démontrant la relation entre la perception visuelle discrète 

et la phase du rythme alpha est celui de Valera, Toro, John, & Schwartz Valera (1981). Les 

auteurs ont présenté deux flashes à déclenchement asynchrone à différentes phases alpha et 

ont demandé aux sujets de signaler s'ils n'avaient vu qu'un ou deux flashes. Les chercheurs 

ont constaté que les deux flashes qui apparaissaient au creux de la phase alpha étaient perçus 

comme un seul flash alors que les flashes apparaissant au sommet étaient perçus comme 

deux. L'étude suggère que la perception visuelle pourrait dépendre de la phase (c'est-à-dire du 

moment) des oscillations. Bien que la dépendance de la perception à la phase ne soit pas une 

idée nouvelle (see Nunn & Osselton, 1974), elle a fait l'objet de recherches approfondies ces 

dernières années (Busch, Dubois, & VanRullen, 2009 ; Dugué, Marque, & VanRullen, 2011 ; 

Fiebelkorn, Saalmann, & Kastner, 2013 ; Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 

2013), peut-être en raison des progrès de l'électrophysiologie et de la puissance de calcul. 

L'une des preuves les plus solides a été fournie par Busch et al. (2009). Ils ont demandé aux 

sujets de détecter des stimuli proches du seuil d'alerte lors de l'enregistrement de l'EEG, puis 

ont séparé les essais perçus et les essais non perçus en deux groupes. Après avoir calculé la 

cohérence de phase de l'activité EEG pour les deux groupes d'essais, ils ont constaté que, 

avant le début du stimulus, l'alpha et le thêta présentent des concentrations de phase 

différentes à des angles de phase différents dans les deux groupes d'essais. L'effet représente 

16% de la variabilité de la performance de détection, ce qui est impressionnant compte tenu 

de la nature bruyante du signal EEG.  



8 

 

La perception visuelle discrète est également liée à la fréquence alpha. Comme 

mentionné ci-dessus, deux stimuli tombant à une phase spécifique de l'oscillation critique 

peuvent être perçus comme un seul. Logiquement, la phase est associée à la bande de 

fréquence de l'oscillation correspondante; lorsque la fréquence d'une oscillation critique est 

plus lente, les pics sont plus espacés. En d'autres termes, la fréquence pourrait déterminer le 

seuil des deux flashes à être perçus comme un seul. En adoptant un paradigme similaire à 

celui de Varela en 1981, Samaha a and Postle (2015) ont découvert que la fréquence alpha 

individuelle peut prédire le seuil de fusion des deux flashes. Un alpha plus rapide est associé 

à une résolution temporelle plus élevée de la perception visuelle. 

 L'amplitude des oscillations cérébrales est liée à l'excitation et à l'inhibition de l'état 

du cerveau (Pfurtscheller, 2001). Lorsqu'un grand groupe de neurones se synchronise à la 

même fréquence, l'amplitude de cette fréquence augmente. La fluctuation de l'amplitude des 

oscillations en cours a été liée aux potentiels évoqués visuels et à la perception visuelle. Les 

données de plusieurs études suggèrent que l'état cortical (dynamique de l'activité neuronale 

continue) peut expliquer la variabilité de la réponse neuronale au stimulus à venir (Arieli, 

Sterkin, Grinvald, & Aertsen, 1996; Azouz & Gray, 1999; Van Der Togt, Spekreijse, & 

Supèr, 2005). L'augmentation de l'activité neuronale est liée à l'amélioration de la perception 

des stimuli. Ainsi, l'amplitude de l'activité en cours peut moduler la perception des stimuli. 

Une ligne de preuve suggère que la puissance du pré-stimulus alpha pourrait favoriser ou 

aggraver la sensibilité lorsque la puissance est faible ou élevée. Sur la base d'un seul essai, 

l'amplitude du pré-stimulus alpha est inversement corrélée au taux de détection des stimuli 

proches du seuil et du potentiel évoqué visuel (Ergenoglu et al., 2004). Dans le même ordre 

d'idées, on a constaté que l'amplitude alpha du pré-stimulus est en corrélation avec la 

perception consciente (Hanslmayr et al., 2007) et les tâches de discrimination (Roberts et al., 

2014; Van Dijk et al., 2008). Ces résultats indiquent que la fluctuation de l'amplitude alpha 

est liée au niveau d'excitabilité du cortex visuel. Pour fournir une preuve causale de 

l'hypothèse selon laquelle l'amplitude alpha est un indice d'excitabilité corticale, Romei et al. 

ont (2008) induit une perception visuelle illusoire (phosphènes) avec la TMS et ont constaté 

que la probabilité de percevoir les phosphènes est liée à la puissance alpha pré-stimulus. 

Lorsque la puissance est élevée, la probabilité de percevoir les phosphènes est faible. 

Cependant, ces études ont surtout adopté une tâche de détection ; l'augmentation du taux de 

détection pourrait être due à une sensibilité accrue ou à un critère de réponse réduit. Dans ce 

dernier cas, les sujets ont tendance à répondre plus fréquemment. Par conséquent, le taux de 
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détection augmente. iemi y sus colegas (2017) doute l'idée d'une modulation de la sensibilité 

par la puissance alpha. Profitant de la théorie de la détection du signal, ils ont prouvé que la 

fluctuation de la puissance alpha avant le stimulus est associée au critère de détection plutôt 

qu'à la sensibilité. 

Tous les éléments ci-dessus étayent la notion de cycles perceptifs, montrant que la 

perception visuelle est modulée par différentes caractéristiques des oscillations cérébrales. 

Bien que ces preuves montrent que l'état du cerveau avant le stimulus module la perception 

visuelle, aucune d'entre elles ne montre que le système visuel est oscillatoire pendant le 

traitement du stimulus. Peut-on trouver des cycles perceptuels après le stimulus? Et si la 

stimulation est continue plutôt qu'un seul flash? VanRullen et MacDonald (2012) ont 

présenté aux sujets un disque dont la luminance suit les séquences de bruit blanc (BB) 

pendant l'enregistrement de leur signal EEG. Après avoir fait une corrélation croisée entre le 

signal EEG et les séquences de luminance, ils ont constaté que la fonction de réponse 

impulsionnelle de sortie (IRF) au niveau des canaux occipitaux est un rythme alpha qui dure 

jusqu'à ~1 seconde. Ces "échos perceptifs" de longue durée caractérisent non seulement les 

propriétés oscillatoires de la perception visuelle, mais suggèrent également que l'information 

visuelle est transportée dans le système visuel à travers le temps. Peut-être que l'information 

visuelle oscillante persistante est ce que le cerveau utilise pour cacher le traitement visuel 

discret réel et créer une perception lisse illusoire. Plus important encore, puisque les 

séquences BB sont à large bande et que la puissance de toutes les fréquences des séquences 

BB est égale, les échos reflètent les propriétés oscillatoires intrinsèques du système visuel. 

Contrairement à l'activité alpha permanente, qui est souvent liée au processus d'inhibition 

(Jensen et al., 1999; Klimesch, 1999), les échos perceptifs semblent jouer un rôle actif dans le 

traitement visuel.  

Récemment, la dimension spatiale des échos a fait l'objet d'une étude. Les échos 

perceptifs ne sont pas une signature neuronale confinée aux canaux occipitaux ; au contraire, 

ils se déplacent des régions occipitales vers les régions frontales pendant la stimulation du 

réseau hydrographique (Lozano-Soldevilla & VanRullen, 2019). Les ondes progressives 

peuvent être modulées par l'attention. Lorsque l'on est attentif d'un côté du champ visuel, les 

échos émergent de l'hémisphère contra-latéral et se propagent vers les sites frontaux. Une 

autre étude a démontré que les échos et l'activité alpha se déplacent de manière anticipée 

lorsqu'il y a une entrée visuelle. Lorsque les yeux sont fermés, les ondes alpha vont dans la 
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direction opposée (Alamia & VanRullen, 2019). Bien que les études sur les ondes 

progressives montrent que le point de départ des ondes est le canal occipital, l'endroit exact 

où les échos sont générés dans le cerveau reste incertain. Le fait de répondre à cette question 

peut aider à démêler la signification fonctionnelle des échos et à mieux comprendre le 

mécanisme d'échantillonnage de notre système visuel. Jusqu'à présent, les échos n'ont été 

étudiés qu'à l'aide de l'EEG, qui ne peut offrir qu'une estimation grossière et imprécise de leur 

emplacement. Le chapitre 3 traitera de la manière dont nous combinons l'EEG et l'IRMf 

(enregistrées à des moments différents) pour localiser l'origine neuronale des échos 

perceptifs. 

Des oscillations dans l'attention  

Il a été proposé que le centre de l'attention soit indivisible et unique (Posner et al., 

1980; Treisman et Gelade, 1980). Pour traiter plusieurs objets dans une scène, l'attention doit 

se déplacer d'un objet à l'autre, et il a été prouvé que ce déplacement est rythmique 

(Buschman et Miller, 2009; Wolfe et al., 2011). 

Il a été démontré que lors de l'observation libre, chaque saccade se produit ~200 ms, 

dans la gamme de la bande de fréquence thêta (Millan et al., 2008; Engbert & Mergenthaler, 

2005). Cette rythmicité thêta se retrouve même dans les microsaccades lorsque les sujets 

fixent leurs yeux. L'attention fonctionne également de manière dynamique sans mouvements 

oculaires manifestes. Une étude psychophysique (VanRullen et al., 2007) a observé que 

l'attention échantillonne plusieurs éléments de manière séquentielle au niveau du thêta. Dans 

le même ordre d'idées, une étude (Dugué et al., 2015) utilisant une tâche de recherche 

visuelle difficile a montré que l'attention spatiale est allouée à chacun des stimuli 

périodiquement à ~7 Hz.  

Pour examiner l'échantillonnage attentionnel au niveau comportemental, on utilise 

souvent une queue pour "réinitialiser" la phase de l'oscillation de l'attention. Le repère est 

généralement utilisé pour indiquer où les sujets doivent diriger leur attention. Lors de l'étude 

de l'attention oscillatoire, elle sert de référence temporelle; à partir de ce point, l'attention 

commence à se déplacer vers la cible indiquée. La réponse comportementale à la cible doit 

être une fonction d'oscillation de l'intervalle inter-stimulus entre le signal et la cible si 

l'attention est oscillatoire. Deux études (Landau & Fries, 2012; Fiebelkorn et al., 2013) ont 

utilisé un signal pour réinitialiser l'attention et ont exigé des sujets qu'ils s'occupent d'un ou 

deux objets. Ils ont trouvé que l'attention échantillonne chaque objet de manière séquentielle 
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à 4 Hz. Cependant, il y a un écart dans les fréquences rapportées par les études ci-dessus, 

certains trouvant des échantillons d'attention à ~7 Hz, d'autres à 4 Hz. Il se pourrait que dans 

les études qui ont trouvé la fréquence la plus basse, l'attention ait été divisée en plusieurs 

objets (VanRullen 2016).  Une étude (Holcombe et Chen, 2013) appuie directement cette 

interprétation; les sujets devaient suivre un, deux ou trois objets en mouvement sans 

mouvement des yeux. La fréquence temporelle de l'échantillonnage était de 7 Hz lors de la 

poursuite d'un objet, et la fréquence réduite à ~3 Hz lors de la poursuite de trois objets. 

Plusieurs études EEG et MEG ont établi un lien entre cet échantillonnage attentionnel 

et les oscillations cérébrales. Busch et VanRullen (2010) présentent des données qui 

suggèrent que la phase de pré-stimulus 8 Hz est prédictive de la performance de détection des 

cibles dans le lieu fréquenté. Une autre étude (Landau et al., 2015) a démontré que l'activité 

gamma indiquant le traitement d'un objet surveillé est modulée par la phase des oscillations 

de 4 Hz pendant la surveillance continue de deux objets. Cette étude étend également la 

compréhension de l'échantillonnage attentionnel étudié avec une réinitialisation externe en 

montrant que le mécanisme d'échantillonnage est un processus continu. Alors que de 

nombreuses études ont révélé la relation entre les oscillations thêta et l'échantillonnage 

attentionnel, on en sait peu sur la base neuronale et le mécanisme de génération de 

l'oscillation thêta. 

Des oscillations thêta ont été observées dans le V4 et le cortex inférotemporel (IT) par 

plusieurs études (Lee et al., 2005; Rollenhagen et Olson, 2005; Sheinberg et Logothesis ; 

Nakamura et al., 1991). Une étude sur le macaque (Rollenhagen et al., 2005) a montré que le 

rythme thêta du cortex IT pouvait dépendre d'interactions compétitives entre les neurones 

sélectifs pour différents stimuli. L'étude a présenté deux stimuli aux singes, un objet dans la 

fovéa et un flanqueur en périphérie. Lorsque l'objet était présenté en présence du flanqueur ou 

vice versa, une forte oscillation de 5 Hz était déclenchée. Dans la même veine, une étude 

récente sur les singes (Kienitz et al., 2018) a enregistré l'activité neuronale dans V4 et a 

constaté que l'activité thêta émergeait dans l'activité multi-unité (MUA, activité enregistrée à 

partir d'un groupe de neurones) lorsqu'un objet était présenté dans le centre excitateur du 

champ réceptif, et qu'un autre objet était présenté dans l'environnement suppressif. Dans une 

tâche d'attention spatiale de la même étude, ils ont présenté aux singes un disque et des flancs 

de façon séquentielle, ce qui, selon le résultat de la première expérience, devrait évoquer une 

compétition neuronale et donner lieu à une oscillation thêta. Ensuite, la cible est apparue soit 
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dans les flanqueurs, soit dans les objets après un intervalle temporel aléatoire. Les singes ont 

été entraînés à déplacer rapidement leurs yeux vers la cible. Le temps de réaction a oscillé en 

fonction du moment où la cible est apparue, et plus intéressant encore, l'oscillation de réponse 

a été corrélée avec l'oscillation thêta enregistrée dans V4. Cette découverte délimite un 

mécanisme neuronal plausible pour l'échantillonnage attentionnel. Bien que cette conclusion 

soit convaincante, elle soulève également une question. Ce mécanisme s'applique-t-il 

également aux sujets humains? Le chapitre 4 est consacré à cette question.  

Oscillations dans la conscience  

Les oscillations cérébrales servent à la conscience comme un rôle de communication. 

Dans les études sur le masquage, il a été prouvé que la perception consciente est en 

corrélation avec une synchronisation accrue des oscillations. Une étude a montré que la 

synchronisation gamma à longue distance est associée à la perception consciente des mots 

(Melloni et al., 2007). En plus de la synchronisation gamma, l'activité thêta est accrue dans 

les zones frontales lorsque les mots sont retenus en mémoire, ce qui indique que davantage de 

régions du cerveau sont impliquées dans la perception consciente par rapport à la perception 

non consciente. Dans une autre étude, la synchronisation bêta à longue distance a été trouvée 

lorsque les sujets percevaient consciemment les mots cibles (Gaillard et al., 2009).  

La synchronisation des oscillations de la conscience a également été révélée dans des 

études employant des tâches de perception ambiguës. Une preuve a été fournie par des études 

utilisant la rivalité binoculaire. Chez les chats strabisme, le percept dominant évoque une plus 

grande synchronisation gamma que le percept supprimé, alors qu'il n'y a pas de différence 

dans la mise à feu des neurones des deux conditions (Fries et al., 1997), ce qui met en 

évidence la synchronisation des oscillations dans la formation de la perception consciente. 

Dans des études humaines utilisant la rivalité binoculaire, Doesburg et al. (2005) ont 

découvert que la synchronisation gamma augmentait avant que les sujets ne signalent les 

changements de perception, ce qui suggère que la synchronisation gamma est liée à 

l'émergence d'une perception cohérente. La synchronisation gamma liée aux changements de 

perception est également modulée à un taux thêta et cette synchronisation apparaît non 

seulement dans les régions activées, mais aussi entre ces régions (Doesburg et al., 2009). Ces 

résultats suggèrent que l'intégration à grande échelle est cruciale pour une perception 

consciente sans ambiguïté. Une autre source de preuves provient d'autres méthodes de 

perception ambiguë. En utilisant des stimuli audiovisuels, Hipp et al. (2011) démontrent que 
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la force de la synchronisation bêta et gamma à grande échelle est prédictive de la perception 

de stimuli audiovisuels ambigus et de l'intégration des informations auditives et visuelles. 

Les études susmentionnées ont souligné l'importance des oscillations cérébrales dans la 

perception consciente. Parmi ces études, plusieurs études utilisant la rivalité binoculaire ont 

fait état d'intégrations à grande échelle reflétées par la synchronisation des oscillations 

cérébrales dans la perception consciente, confirmant l'opinion selon laquelle l'intégration 

interaréale est essentielle pour la conscience (Engel et Fries; 2016). Une autre preuve de la 

synchronisation provient d'une étude qui combine le marquage de fréquence et la rivalité 

binoculaire (Tononi et al., 1997). Le marquage de fréquence est une méthode qui permet de 

relier les stimuli à l'activité cérébrale correspondante afin de suivre quand et où les stimuli 

sont traités dans le cerveau. Lorsqu'on présente une cible oscillant à une fréquence donnée, 

les neurones qui répondent à cette cible ont tendance à se synchroniser à cette fréquence. 

Tononi et ses collègues (1997) ont montré deux stimuli qui scintillaient chacun à une 

fréquence différente. Ce faisant, ils ont pu suivre l'activité neuronale qui était en relation avec 

le percept dominant et le percept supprimé. Ils ont constaté que par rapport au percept 

dominant, la puissance de la fréquence liée au percept supprimé était de 50 à 85 % inférieure 

dans de nombreux canaux. Puisque la puissance de la fréquence marquée reflète les activités 

neuronales synchronisées en réponse à la cible (Tononi et al., 1998), les résultats suggèrent 

qu'il y a une synchronisation distribuée dans le cerveau pendant la perception consciente.  

Le paradigme du marquage des fréquences est ici similaire à celui de la mesure des 

échos perceptifs ; tous deux relient l'activité cérébrale à la fluctuation des stimuli. Dans 

l'étude du marquage de fréquence, l'activité neuronale se synchronise en réponse aux stimuli 

dominants. En revanche, les résultats des échos perceptifs suggèrent qu'il existe un ensemble 

de neurones se synchronisant à 10 Hz pour permettre au cerveau d'échantillonner 

l'environnement de façon rythmique et active. La synchronisation qui sous-tend les échos 

perceptifs exige-t-elle que le cerveau soit conscient des stimuli? En d'autres termes, dans 

quelle mesure l'échantillonnage visuel à 10 Hz est-il automatique? C'est l'une des questions 

concernant les oscillations de la conscience que nous essayons d'aborder      .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Il a été proposé que la synchronisation se fasse par un traitement descendant et 

ascendant (Engel et al., 2001; Engel et Fries, 2010). Dans le cas de la rivalité binoculaire, 

diverses données suggèrent que la rivalité est résolue à un niveau bas ou haut de la voie 

visuelle, puis se propage aux autres niveaux. Ces résultats indiquent donc qu'il pourrait y 
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avoir un traitement descendant ou ascendant qui est responsable de la transmission du signal 

de résolution. Cela soulève une question: Existe-t-il un flux d'information dirigé mis en 

œuvre par des oscillations contribuant à résoudre la compétition visuelle dans la rivalité 

binoculaire ? C'est la deuxième question liée aux oscillations de la conscience que nous 

voulons aborder. 

Questions et cadre 

De toute évidence, de nombreuses preuves ont révélé la nature dynamique de nos 

fonctions cérébrales. Les oscillations cérébrales se manifestent dans les cycles de perception, 

bien que dans les fonctions cérébrales plus complexes telles que la conscience, les 

oscillations cérébrales soient impliquées d'une manière plus complexe (par exemple, la 

communication interaréale). 

Comme nous pouvons le voir dans la revue de la littérature ci-dessus, la manière dont 

les oscillations cérébrales sont liées à l'échantillonnage visuel et attentionnel a été bien 

étudiée. Certaines études ont approfondi le rôle causal des oscillations cérébrales sur la 

perception visuelle et l'attention. Cependant, on ne sait pas encore d'où viennent ces 

oscillations liées à l'échantillonnage dans le cerveau ni comment elles sont générées. Ainsi, 

ce sont deux questions concernant la perception visuelle et l'attention que la présente thèse 

vise à aborder. Après avoir étudié les oscillations cérébrales dans la perception visuelle et 

l'attention, nous allons un peu plus loin pour étudier le rôle des oscillations cérébrales dans la 

conscience. C'est-à-dire que nous étudions comment les oscillations cérébrales sont 

impliquées lorsque le cerveau perçoit consciemment.  

 En matière de perception visuelle, les échos perceptifs, une démonstration des cycles 

perceptifs, caractérisent notre perception visuelle comme un processus cyclique et récurrent. 

Malgré le fait que de nombreuses propriétés des échos perceptifs ont été étudiées, le 

mécanisme sous-jacent n'est toujours pas clair. Une question importante reste à résoudre : 

quelle partie du cerveau génère ces échos ? Nous avons essayé de répondre à cette question 

au chapitre 3 par une expérience EEG-IRMf. 

Les oscillations de l'attention sont un autre exemple de cycles perceptifs. Les preuves 

électrophysiologiques suggèrent que les oscillations de l'attention sont régies par un rythme 

thêta. Une étude sur les singes a cherché à explorer le mécanisme sous-jacent de ce rythme 

thêta, et ils ont découvert qu'il pourrait être généré par la compétition neuronale en V4 
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(Kienitz et al., 2018). Il est passionnant de constater que cette étude a permis de faire un 

progrès important dans la compréhension du mécanisme de l'oscillation de l'attention. 

Toutefois, il reste à vérifier si cette découverte peut être généralisée aux sujets humains. Pour 

l'examiner, nous avons reproduit l'expérience comportementale de l'étude sur les singes, 

comme nous l'avons vu au chapitre 4. 

Dans une fonction cérébrale plus complexe comme la conscience, l'implication des 

oscillations cérébrales peut être plus compliquée, car la conscience est un processus cérébral 

qui nécessite une intégration à grande échelle de l'activité neuronale. L'intégration est réalisée 

par la synchronisation des oscillations cérébrales. La synchronisation de l'activité neuronale 

peut être reflétée par la puissance des oscillations neuronales. Pour évaluer si la 

synchronisation est essentielle pour l'échantillonnage visuel en perception consciente, nous 

avons adopté une tâche de rivalité binoculaire et examiné les échos perceptifs liés à la 

perception dominante et à la perception supprimée, détaillés au chapitre 5. La 

synchronisation de l'activité neuronale est soumise à un flux d'informations dirigé, tel que le 

traitement descendant et ascendant dans le cerveau. Pour traiter consciemment l'information 

visuelle, le cerveau a besoin d'une communication directe entre le cortex visuel qui envoie 

l'information sensorielle et les zones frontales qui délivrent des signaux modulatoires. 

Cependant, cette preuve fait défaut dans la rivalité binoculaire. Des études antérieures ont 

proposé que la résolution de conflits visuels ambigus dans la rivalité binoculaire nécessite 

une communication entre les zones de haut et de bas niveau. Nous proposons que la 

synchronisation des oscillations soit un candidat potentiel pour cette communication. Dans le 

chapitre 6, nous fournirons les preuves expérimentales correspondantes. 

Toutes les questions auxquelles cette thèse vise à répondre sont résumées ci-dessous: 

1 Quelle est la base neuronale des échos perceptuels? (Chapitre 3)  

2 L'échantillonnage attentionnel découle-t-il du rythme thêta généré par la compétition 

visuelle? (Chapitre 4)  

3 Les oscillations neuronales sont-elles responsables de la communication interzone dans la 

perception consciente? (chapitres 5 et 6)  

La pierre angulaire de la présente thèse est constituée par les oscillations neuronales et 

leur rôle dans la perception visuelle, l'attention et la conscience. Le cadre des études 
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empiriques de la présente thèse suit les niveaux des fonctions perceptuelles ou cognitives du 

cerveau, c'est-à-dire de la fonction la plus ancienne et la plus fondamentale - la perception 

visuelle, à la fonction de niveau supérieur - l'attention et enfin, elle se terminera par la 

fonction la plus complexe - la conscience. 

Dans le chapitre 3, je me concentre sur l'une des oscillations liées à la perception 

visuelle - les échos perceptifs. Plus précisément, l'objectif de l'étude est de localiser la source 

neuronale des échos perceptifs. Afin de comprendre pleinement les échos perceptifs, nous 

devons savoir d'où ils proviennent dans le cerveau. Cependant, la résolution spatiale de l'EEG 

est faible. L'un des moyens possibles d'étudier l'origine neuronale des échos de perception est 

de mener une étude IRMf-EEG pour mettre en relation le signal EEG des échos de perception 

avec les signaux BOLD (même si ceux-ci sont enregistrés à un moment différent). Bien que 

les zones du cerveau qui sont en corrélation avec les échos perceptifs ne soient pas 

nécessairement l'endroit exact où les échos perceptifs sont générés, le résultat peut réduire 

l'emplacement potentiel. La connaissance de l'origine neuronale pourrait permettre de 

comprendre comment les échos perceptifs sont générés et leur rôle fonctionnel.  

Au chapitre 4, je passe à un autre niveau de la fonction cognitive: l'attention. De 

nombreuses études sur l'attention ont révélé que l'attention oscille à la fréquence thêta, et le 

signal EEG en bande thêta est associé à l'échantillonnage de l'attention. Cependant, le 

mécanisme sous-jacent de cette oscillation de l'attention reste inconnu. Une étude sur le singe 

a révélé que la rythmicité thêta pourrait provenir de la compétition neuronale des neurones 

V4 lors de la présentation de stimuli au centre et à l'extérieur d'un champ réceptif des 

neurones V4. Cette rythmicité thêta est en outre corrélée avec la rythmicité comportementale 

lors d'une tâche de recherche visuelle. Cependant, il n'est pas certain que les résultats puissent 

être généralisés à l'homme. L'étude actuelle a pour but de reproduire l'expérience 

comportementale de l'étude sur les singes chez les sujets humains. 

Dans le chapitre 5, j'étudie comment la perception consciente module les échos 

perceptifs. Des études antérieures suggèrent que la synchronisation des oscillations cérébrales 

est essentielle à la perception consciente. L'apparition d'échos perceptifs doit exiger que les 

neurones sous-jacents se synchronisent à 10 Hz. Cette synchronisation aura-t-elle lieu lorsque 

les sujets ne percevront pas consciemment les cibles? D'autre part, les échos perceptifs ne 

sont pas encore bien compris. Des études antérieures ont montré que l'amplitude des échos 

perceptifs est modulée par l'attention. Puisque l'attention est étroitement liée à la conscience, 
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les échos perceptifs nécessitent-ils de la conscience? La rivalité binoculaire offre une grande 

opportunité d'étudier les échos perceptifs dans différentes conditions de conscience 

(dominante et supprimée). Dans l'étude actuelle, deux plaques de gabor dont la luminance 

suit des séquences aléatoires de bruit blanc ont été montrées aux deux yeux des sujets. En 

conséquence, nous avons pu faire une corrélation croisée du signal EEG avec les séquences 

dominantes et les séquences supprimées pour obtenir des échos perceptuels dominants et des 

échos supprimés. Ensuite, nous avons analysé les propriétés de puissance et d'ondes 

progressives de ces échos. En outre, l'étude peut également répondre à une autre question: 

quelle quantité d'informations visuelles peut survivre dans le cerveau si elles ne sont pas 

perçues consciemment? 

Le chapitre 6 continue avec les oscillations neuronales de la conscience. Une question 

non résolue dans la rivalité binoculaire est de savoir à quel niveau la rivalité est résolue. Les 

preuves existantes suggèrent qu'elle pourrait se produire à plusieurs niveaux de la voie 

visuelle, ce qui indique qu'il pourrait y avoir un processus descendant ou ascendant 

contribuant à la résolution de l'ambiguïté visuelle. Comme indiqué précédemment, l'une des 

principales fonctions des oscillations cérébrales est la communication. Ainsi, les oscillations 

neuronales sont de bons candidats pour une communication potentielle à haut et bas niveau. 

Pour étudier cela, nous avons enregistré des signaux EEG pendant que les sujets effectuaient 

une tâche de rivalité binoculaire, puis nous avons analysé la directivité des oscillations 

pendant la rivalité binoculaire en utilisant des ondes progressives et des mesures de causalité 

de Granger.  

Résultats et discussion 

De nombreuses recherches ont montré que le traitement visuel est un processus discret, et 

ce traitement d'échantillonnage discret est généralement associé à des oscillations alpha. 

L'étude des échos perceptifs décrit la propriété temporelle de l'échantillonnage visuel pendant 

un traitement visuel soutenu. Bien que les échos soient un rythme de fréquence alpha, ils 

présentent un profil de réponse différent de celui de l'alpha dans certaines tâches. Afin 

d'étudier dans quelles régions du cerveau les échos perceptifs sont générés, nous avons réalisé 

une expérience EEG-FMRI (chapitre 3). Contrairement aux études EEG/IRMF simultanées, 

dans notre étude, les sujets ont effectué la même tâche lors d'une session EEG et d'une 

session IRMF séparément. Nous avons d'abord mesuré les échos lors de la séance d'EEG, 

puis nous avons utilisé les échos comme modèle pour reconstruire le signal EEG en 
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effectuant une convolution avec les séquences BB lors de la séance d'IRMf. Nous avons 

ensuite utilisé l'EEG reconstruit pour créer des régresseurs pour l'analyse en IRMf. Nous 

avons trouvé une activité étendue dans V1 et V2 qui pourrait être responsable de la 

génération des échos.  

Au chapitre 4, nous avons reproduit l'expérience comportementale d'une étude sur les 

singes, qui visait à déterminer si l'activité thêta est générée par la compétition neuronale dans 

V4 lorsqu'un objet se présente dans le centre excitateur et l'environnement suppressif (Kienitz 

et al., 2018). Avec l'étude sur le singe, notre étude vise à étudier le mécanisme sous-jacent du 

rythme thêta de l'échantillonnage attentionnel. Nous avons obtenu des résultats similaires 

avec l'étude sur le singe; le temps de réaction saccadé fluctue à la fréquence thêta. Les phases 

de l'oscillation du rythme thêta dépendent de l'ordre d'un objet et de deux flancs présentés aux 

sujets, dont on suppose qu'ils provoquent des oscillations thêta dans le cerveau. Nos résultats 

soutiennent l'hypothèse que le rythme thêta de l'échantillonnage attentionnel peut être dérivé 

de la compétition des neurones V4. 

Dans le chapitre 5, nous avons utilisé un paradigme de concurrence binoculaire pour 

étudier les échos perceptifs évoqués par le stimulus dominant ainsi que par le stimulus 

supprimé. Nous avons découvert que l'amplitude alpha des échos était plus importante dans la 

condition dominante que dans la condition supprimée. En outre, chaque condition a montré 

autant d'ondes de fuite par l'analyse des ondes progressives. L'amplitude des ondes alpha était 

plus grande dans la perception consciente, ce qui reflète peut-être le fait que plus de neurones 

sont synchronisés. Cela peut également impliquer que l'échantillonnage visuel en perception 

consciente est plus efficace (par exemple, le traitement est plus exhaustif) en raison du plus 

grand nombre de neurones impliqués. Cependant, les échos perceptifs n'ont pas entièrement 

disparu dans l'état supprimé, ce qui suggère que la génération d'échos perceptifs ne nécessite 

pas nécessairement l'implication de la conscience. Ce résultat démontre en partie l'importance 

de la communication entre les neurones par une meilleure synchronisation dans 

l'échantillonnage visuel perceptif conscient. De façon surprenante, la quantité d'ondes 

progressives était aussi importante dans la condition supprimée que dans les conditions 

dominantes et de contrôle. Selon des recherches antérieures, il y a plus de régions de haut 

niveau impliquées dans la perception consciente (Dehaene and Changeux, 2011), comme les 

lobes frontaux, qui n'apparaissent pas dans nos résultats. D'autres méthodes sont nécessaires 

pour étudier plus avant ce flux d'informations, et la causalité de Granger pourrait être un bon 
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candidat. Notre deuxième étude sur la conscience (chapitre 6) a abordé plus en détail la 

communication entre les régions en perception consciente. 

 Au chapitre 6, nous avons cherché à savoir s'il y a un flux d'informations dans la rivalité 

binoculaire, tel que reflété par les oscillations. Tout d'abord, nous avons montré que 

l'amplitude des oscillations alpha et bêta dans la rivalité binoculaire ainsi que dans la 

condition de contrôle, suit un schéma similaire, c'est-à-dire que l'amplitude ne reflète pas le 

traitement unique qui peut être nécessaire pour résoudre une perception ambiguë dans la 

rivalité binoculaire. La puissance accrue de ces deux oscillations est présente tant qu'il y a 

une perception stable ou claire. Nous avons en outre appliqué la causalité de Granger et 

constaté une augmentation de l'activité bêta descendante avant les commutations perceptives 

dans la rivalité binoculaire. 

Les quatre études de cette thèse traitent du rôle des oscillations dans le cerveau sous 

l'angle de trois fonctions perceptuelles et cognitives : la perception visuelle, l'attention et la 

conscience. En tant qu'"excitateur", les oscillations cérébrales modulent la perception visuelle 

et l'attention de telle sorte que notre cerveau échantillonne les informations visuelles de façon 

rythmique. Les deux premières études (chapitres 3 et 4) visent à étudier l'origine neuronale et 

le mécanisme de génération des oscillations liées à ces échantillonnages visuels et 

attentionnels. Nous avons découvert que les échos perceptifs, les oscillations liées à 

l'échantillonnage visuel, pouvaient provenir des premières zones visuelles ; et les oscillations 

thêta, le modulateur sous-jacent de l'échantillonnage attentionnel, pouvaient provenir de la 

compétition visuelle des neurones V4. En tant que "communicateur", les oscillations 

cérébrales permettent d'échanger des informations entre les zones du cerveau par le biais de 

la synchronisation. Les deux dernières études (chapitres 5 et 6) démontrent que la 

communication et le flux d'informations entre les zones pourraient être associés à la 

perception consciente. Dans l'ensemble, le cerveau est un système dynamique dans lequel les 

oscillations facilitent de manière flexible diverses fonctions cérébrales. 
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1 CHAPTER 1.  LITERATURE REVIEW 

1.1 GENERAL INTRODUCTION 

If you stare at the cube in (Figure 1-1 A) long enough, you will see that it is changing 

periodically. Sometimes the left-lower corner is in the front, but sometimes the right-upper 

corner switches to the front. No matter how hard you try to maintain one perception, the 

switch is unavoidable. As you may notice, it is not that the image is changing; it is your brain 

itself that changes over time. This phenomenon strongly demonstrates that our perception and 

our brain activities are fluctuating.   

 

Figure 1-1 (A) Necker cube. When looking at the cube, the perception of its morphology continuously 

changes, sometimes the inside bottom-left corner comes out to the front. (B) Flickering wheel illusion. 

When fixating at the dot on the left and attend to the wheel on the right, the center of the wheel 

flickers about 10 time a second adapted from (Sokoliuk & VanRullen, 2013). 

 

The brain is a dynamic system, as demonstrated by the Necker cube in Figure 1-1 A. 

And oscillations are one of the main components of brain dynamics. Oscillations are 

ubiquitous in the brain. Although they were initially considered a by-product produced by the 

brain, many neuroscientists realized the significance of the oscillations and tried to establish 
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the link between the oscillations and cognitive functions. One of the theories for establishing 

this link is "perceptual cycles" (VanRullen, 2016). The idea is that if brain activities are 

periodic, it is natural to consider that the rhythmicity of brain activities will manifest in our 

perception, leading to oscillatory perception. It might sound surprising, as our conscious 

perception seems so smooth, seamless and stable. However, in the last decades, considerable 

research has revealed that brain oscillations give rise to "perceptual cycles", showing that 

perception is not continuous; instead, it is "discrete" and oscillatory, taking "snapshots" of the 

world as a camera. Our stable perception, counterintuitively, is just an illusion. Some special 

visual conditions allow you to experience the "oscillatory perception". If you fixate your eyes 

on the black dot in (Figure 1-1 B) and pay attention to the wheel on the right, you can see the 

wheel's center is flickering about ten times a second (Sokoliuk & VanRullen, 2013). In 

perceptual cycles, brain oscillations might play an "exciter" role, periodically modulating the 

excitability of the sensory areas of the brain.  

Consciousness also waxes and wanes like perceptual cycles. However, brain 

oscillations might also play another role in consciousness. Consciousness is probably the 

most complex cognitive function that requires the interaction of different cognitive functions, 

such as cognitive control and visual perception. Thus, there might be communication 

between different brain areas during conscious perception, and brain oscillations can serve as 

a “communicator” role. 

 All these roles of oscillations allow the brain to work effectively. Even though the 

oscillatory nature of the brain is gradually accepted and more and more scientists have dived 

into researching brain oscillations, there are still plenty of mysteries. What is the generation 

mechanism of the brain oscillations that relate to a specific perceptual or cognitive function? 

Where do they come from in the brain? How are they involved in conscious perception? 

These are the main questions I sought to address during my Ph.D. 

The backbone of the current thesis is brain oscillations. Hence, I will start with neural 

oscillations in the literature review. This thesis focuses on how neural oscillations are 

involved in three fundamental perceptual or cognitive functions: visual perception, attention 

and consciousness. Although I discuss these three functions separately, the experiments I 

report here are all based on visual tasks. This is why I introduce the biophysics of visual 

perception, which will also help discuss attention and consciousness. In each section of visual 

perception, attention and consciousness, I will first take a brief detour to describe some 
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background, and then I will go back to the main story – the role of brain oscillations in these 

functions. 

Let us begin with brain oscillations. 

1.2 BRAIN OSCILLATIONS 

Brain oscillations can be measured with various electrophysiology tools such as 

Electroencephalography (EEG). The history of brain oscillations started in 1929 when Hans 

Berger (Berger, 1929) observed an EEG wave that oscillates at ~10 Hz, which is now the 

most well-known brain wave, the alpha rhythm. Since then, more and more brain oscillations 

have been observed and investigated. That said, not all oscillations can be readily seen by 

visual inspection due to the amount of noise in EEG and the mixture of oscillations at 

different frequencies. Alpha is an exception; it is large enough to be easily seen from 

electrodes at occipital areas when subjects close their eyes and relax. While for observing the 

other frequencies, some signal processing methods such as Fourier transform are required. 

1.2.1 Characteristics of oscillations: frequency, amplitude, phase.  

Like any other oscillations, the characteristics of brain oscillations comprise the 

frequency, amplitude and phase. Frequency is the speed of oscillations or the duration of a 

cycle of an oscillation. The unit of frequency is “Hertz” (Hz). Hz describes the number of 

cycles in one second (in Figure 2, if T = 1, the oscillation in the plot is 1Hz). Higher 

frequency means more cycles in one second and faster speed. Amplitude is how strong an 

oscillation is, and power is the square of the amplitude. These two terms are interchangeable 

in the current thesis. Brain oscillations are subject to the 1/f power law (Ouyang et al., 2020); 

that is, frequency is inversely proportional to power (Figure 1-3); low frequency tends to 

have a higher power. Phase depicts the timing or location within a cycle of a wave (Figure 1-

2). For instance, the phase of pi/2 is at the peak of the sine wave in Figure 1-2. 
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Figure 1-2.  One cycle of a sine wave. (By National Institute of Standards and Technology (NIST) -

National Institute of Standards and Technology (NIST) [1], Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=49393371) 

 

1.2.2 The main frequency bands of oscillations in the brain 

Usually, frequencies are grouped into different bands (Figure 1-3) (Buzsáki & 

Draguhn, 2004), which are typically linked with different cognitive functions. Most studies in 

human focus on the delta (2~4 Hz), theta (4~7 Hz), alpha (7~13 Hz), beta (13~30 Hz) and 

gamma (30~100 Hz) bands.  Here, I give a brief introduction to the main frequency bands 

(theta, alpha and beta) that are related to the four studies in the thesis. 
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Figure 1-3 (A) Frequencies are grouped into different bands. (B)  Brain oscillations follow 1/f power 

law. Reproduced from Buzsáki & Draguhn (2004) 

 

Theta oscillations 

Many insightful findings regarding theta oscillations come from the multi-electrode 

recording of rats. The well-known functional role of the theta rhythm recorded in the rat 

hippocampus is the phase coding of the hippocampal place cells; more specifically, the firing 

of place cells is locked to the hippocampal theta phase activity (Wilson & McNaughton, 

1993). The place cells contain information regarding the environment where the rats explore. 

When a rat moves in the place field (area coded by place cells), each place cell tends to fire 

progressively at an earlier and earlier phase of the theta activity. This phenomenon is named 

“theta phase precession” (O’Keefe & Recce, 1993). 

In human intracranial studies, theta oscillations are associated with working and long-

term memory (Kahana et al., 2001; Tesche & Karhu, 2000). In EEG and MEG studies, theta 

oscillations are most prominent at the frontal midline (FM) (Mitchell et al., 2008). The FM 

theta activity has been linked to working memory, as it has been found to increase with 

memory load in working memory tasks (Gevins & Smith, 2000; Jensen & Tesche, 2002; 

René Scheeringa et al., 2009).  The FM theta has also been related to error-processing 

(Michael X Cohen & Van Gaal, 2013). The FM theta activity increases after subjects make 

wrong responses in a go/no-go task in which subjects need to respond quickly when a go 

signal appears and not to respond when there is a no-go signal. 
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In this thesis, the role of theta oscillations in the brain is associated with attentional 

sampling, as discussed in section 1.4.3. 

Alpha oscillations 

Alpha was once considered as an “idle” rhythm whose power increases when subjects 

are relaxing or not doing tasks. However, this notion has been challenged recently. 

Accumulating evidence suggests that alpha is related to “active inhibition.”  

A piece of early evidence against the idling notion of alpha is a study in which subjects 

were required to shift attention between vision and hearing. When attention was directed to 

hearing, the posterior alpha decreased (Adrian, 1944) (Figure 1-4, A). Another line of 

evidence disproving the idling notion is from working memory studies, in which memory 

demand increase is accompanied by alpha increases (Figure 1-4, B) (Jensen et al., 1999; 

Wolfgang Klimesch, 1999). On the other hand, the inhibition hypothesis has gained support 

from working memory and attention studies. In a working memory study, distracting 

information was presented during the retention period during which subjects were required to 

keep the targets in memory (Bonnefond & Jensen, 2012). When doing the task, the subjects 

could anticipate the arrival of the upcoming distractors. The results showed that alpha power 

increased prior to the arrival of the distractors, suggesting alpha power increases in order to 

filter out the distracting information (Figure 1-4, C). In addition to the working memory 

study findings, attention experiments have observed that when subjects attend to the left side, 

the alpha power in the right hemisphere decreases (Worden et al., 2000).  

All in all, the alpha studies mentioned above suggest that alpha is an inhibitor. In the 

current thesis, we can see a different role of alpha. That is, alpha is closely linked with the 

discrete sampling of visual perception, as discussed in section 1.3.2.   
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Figure 1-4 (A) In an attention study by Adrian (1944), subjects were required to attend to visual or 

auditory stimuli. Alpha increased when the subjects attended to the auditory stimuli, decreased when 

they attended to the visual stimuli. (reproduced from Adrian 1944) (B) Time course of alpha power in 

a working memory task (Tuladhar et al., 2007). Alpha systematically decreased as the memory load 

increased. (reproduced from Tuladhar et al., 2007) (C) In a working memory task, distracters were 

presented during the memory retention period. Alpha power increased before the arrival of the 

distracter. (reproduced from Bonnefond & Jensen, 2012) 

 

Beta oscillations 

The role of beta oscillations is elusive. Some studies link beta with the motor system 

(Baker, 2007).  Electrophysiology studies have shown that beta oscillations might be 

responsible for transmitting information between the motor cortex and muscles. (Baker, 2007; 

Kilner et al., 2000; van Elswijk et al., 2010). A review paper holds a different opinion. They 

proposed that beta oscillations are associated with “status-quo”, maintaining the current 

cognitive or sensorimotor state (Engel & Fries, 2010). However, a recent paper proposes that 

beta oscillations are related to reactivating the latent representation (Spitzer & Haegens, 

2017). The key supporting evidence is a transcranial magnetic stimulation (TMS) study in 
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which unattended memory was pushed into an active state by TMS pulses. The reactivated 

item could only be decoded from beta activity, suggesting beta underlies the reactivation 

process.   

 

1.2.3 The functions of brain oscillations   

Now we know what brain oscillations are, and there are different frequency bands 

being associated with specific cognitive functions. One might ask why these oscillations are 

important and how they work to produce or facilitate our perceptual and cognitive functions.  

Neuronal communication 

Effective and flexible neuronal communication is essential for performing complex 

cognitive functions. The Communication-through-coherence (CTC) hypothesis (Fries, 2005, 

2015) has provided a neuronal communication mechanism to account for this efficient and 

flexible signal routing in the brain (Figure 1-5). The fundamental idea is that the oscillation 

phase modulates and aligns the excitability of groups of neurons, therefore creating specific 

moments of the phase cycle that allow these neurons to receive and send the signal to each 

other most effectively. The phase not only modulates the excitability of the output of neurons 

but also their sensitivity for input. Hence, when an output neuron group and an input neuron 

group are phase-coherent, their excitability windows match each other; thereby, information 

can be exchanged efficiently (Figure 1-5) (Fries, 2005, 2015). This hypothesis has received 

support from intracranial recordings and MEG/EEG studies. MEG studies have shown that 

the coherence of oscillations across areas can facilitate behavioral performance (Gross et al., 

2004). Intracranial recording in cats reveals that coherence of gamma band activity, rather 

than the neuronal firing rate, correlates with conscious perception (Fries et al., 1997). In short, 

oscillations can facilitate neuronal communication by aligning the activity of neurons to the 

same phase.  
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Figure 1-5 Illustration of communication through coherence. The spikes of the red and green cells are 

phase-locked such that the information they send to each other can arrive at the peak excitability, 

which allows for effective communication. The green cell and the black cell are not synchronized; 

hence, the information sent from both cells will miss the optimal moment of excitability to arrive.  

Adapted from (Fries, 2005)  

 

Excitability modulation 

Brain oscillations modulate cortical excitability. This hypothesis was first proposed by 

Bishop in 1932 (Bishop, 1932) and was supported by an abundance of empirical evidence 

from intracranial recordings, EEG and MEG studies over the years. In intracranial recordings, 

it has been shown that the oscillations of local field potential are correlated with neuronal 

spike rate (Montemurro et al., 2008). Another study showed that the synaptic activity 

responded differently when a stimulus appeared at different phases of delta oscillation 

(Lakatos et al., 2005). In a concurrent EEG-fMRI study, the researchers presented simple 

visual stimuli to subjects and recorded their EEG and fMRI BOLD signal (the details about 

EEG and fMRI will be introduced in Chapter 2) at the same time, which allowed them to 

investigate the relationship between neural oscillations and BOLD signal in response to the 

stimuli. They focused on the alpha frequency band. Since the timing when visual stimuli 

appeared was random, the stimuli could arrive at different phases of the alpha. They found 
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that the BOLD response is strong when the stimuli appeared at the trough of the alpha 

activity and weak when they were displayed at the peak of the alpha. In short, brain 

oscillations might reflect or modulate the excitability of neurons such that there is a specific 

phase that can facilitate neural processing. As we will see in the oscillations in visual 

perception and attention (sections 1.3.2 and 1.4.3), the oscillatory sampling might stem from 

this excitability mechanism.   

Phase coding of brain oscillation 

It has been hypothesized that another important function of brain oscillation is to carry 

information. Many studies have demonstrated that sensory information is encoded in the 

phase of brain oscillations (Kayser et al., 2009; Montemurro et al., 2008; O’Keefe & Recce, 

1993; Vinck et al., 2010). For example, Kayser et al. (2009) used mutual information analysis 

to quantify the amount of information encoded in power and phase of neural oscillations. 

They found the phase contained more information about the stimuli than the power. 

Furthermore, a working memory study in monkeys shows that neuron spikes carry most of 

the information of memorized objects at specific phases (Siegel et al., 2009). In a facial 

expression categorization experiment, Schyns, Thut, & Gross (2011) analyzed the 

contribution of power, frequency and phase for coding cognitive task information and found 

that phase contains most of the information. They further demonstrate the “multiplexing” 

property of brain oscillations, that is, different frequencies of neural oscillations codes 

different information. 

 

In this section, I have introduced neural oscillations, the characteristics, the functional 

role, as well as the generation mechanism of the oscillations. Now we have the basic 

knowledge about neural oscillations; we can go further to see how the oscillations play a role 

in our visual perception, giving rise to “discrete” perception. 

 

1.3 VISUAL PERCEPTION AND NEURAL OSCILLATIONS 

Despite the obvious familiarity of our vision, we remain in many ways ignorant of how 

it functions. Every day, we wake up, open our eyes; naturally and effortlessly, we start to use 
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our vision. Visual perception is fast. For instance, we can recognize various things quickly, 

identifying our friends in a group of strangers within a second. Our vision works extremely 

fast and seems to require minimal or no effort. Vision is also flexible and robust. No matter 

how we see an object from different angles, for example, seeing a computer from its front, its 

top or even its bottom, we can easily recognize that it is a computer.  By contrast, the most 

powerful computer vision algorithms fails to recognize a picture when only a small amount 

of noise or distortion is added (Akhtar & Mian, 2018). How does visual perception achieve 

this feat? What operates behind the eyes? The main focus of this section is the oscillations in 

visual perception, but it would be helpful first to introduce the neural structure that produces 

visual perception. Therefore, before discussing the oscillatory properties of visual perception, 

I will briefly introduce the visual pathway. 

 

1.3.1 Biophysics of Visual perception  

Retina 

The retina is the “gate” of visual information, which receives light reflected by objects 

in our environment. The retina for humans is like a lens for cameras. The light first arrives in 

a layer of photoreceptor cells called rods and cones, where the light energy is transformed 

into electrochemical energy to be further transmitted into the neural system. The connection 

between the retina and the brain is made up of ganglion cells. Through these cells, electrical 

visual information is delivered mainly via two pathways. Most (90%) of the optic fibers 

project to the geniculostriate pathway, through the relay center in the thalamus - LGN, to the 

striate cortex (Figure 1-6)(Banich & Compton, 2018). This pathway is responsible for our 

conscious perception because the information of fine-grained object features and colors goes 

through this way and finally into our consciousness. The other main pathway starting from 

the retina is the tectopulvinar path, which is in charge of fast motion and coarse visual 

information, enabling humans to react quickly to the environment. Since the tectopulvinar 

path is not relevant to our studies, I mainly talk about the geniculostriate pathway.          

 

Lateral Geniculate Nucleus  
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The Lateral Geniculate Nucleus (LGN) is the connector of the retina and the primary 

cortex. It also has been known as a relay center of the Thalamus. It receives bottom-up input 

from the retina and top-down feedback from the primary visual cortex (Sillito et al., 2006) . 

The LGN has six layers, and each layer receives the signal from a single eye, which means 

the information of two eyes will not merge in LGN. LGN has a retinotopic organization, 

meaning the cells in LGN are spatially mapped with ganglion cells in the retina. As the LGN 

is higher in the hierarchy compared to the retina, the cells in LGN get input from a set of cells 

from the retina. In other words, the receptive field of the cells in LGN is larger than the cells 

in the retina. 

 

Figure 1-6. The visual pathway shown in sagittal (top left) and axial (bottom right) view. The 

pathways that are responsible for the left and right visual fields are depicted in red and blue. The 

visual information of both sides enters the retina, advances along the optic tract, passes LGN and 

arrives at the contra-lateral primary visual cortex. (Figure reproduced from Banich & Compton, 2018)  

 

Primary Visual Cortex  
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Once the visual information has passed the LGN, it arrives at the cortex's first station- 

primary visual cortex, called V1 or “striate cortex” because stripes on the V1 are obvious      

in anatomical slices. V1 processes the signal from LGN and sends the output to the higher 

visual hierarchy.  

V1 is also an area where the information from the two eyes starts to merge. That means 

in V1, both monocular neurons and binocular neurons coexist. As we will see in the Chapter 

on consciousness, at what level the binocular rivalry (alternating perception while two eyes 

are viewing dissimilar images) is resolved is still a mystery. Could it happen at a very early 

stage, such as a monocular level, or at a higher stage, after the monocular information from 

two eyes is combined (Tong et al., 2006)?  

The visual information is processed in a hierarchical fashion in the visual pathway. 

Higher-order areas process more abstract information about visual objects, while the lower-

order areas like V1 and LGN process the physical properties of objects. The neurons in V1 

are tuned for orientation, spatial frequency and contrast. Beyond the primary visual cortex, 

visual information is transmitted to extrastriate areas (V2, V3 and V4). The function of V2, 

V3 are not well understood so far. V2 shares some properties with V1. V2 cells are selective 

for orientation, and motion, color and stereoscopic disparity to some extent (Boynton & 

Hegdé, 2004). V2 cells are also modulated by some more complex patterns, such as 

combinations of orientation (Anzai et al., 2007) and illusory contours (Von der Heydt et al., 

1984). As for V3, V3 neurons are involved in multiple aspects of visual processing, such as 

color, orientation and binocular disparity (Felleman & Van Essen, 1987); V3 neurons are also 

selective for different aspects of stimulus motion, such as speed and direction (Felleman & 

Van Essen, 1987; Gegenfurtner et al., 1997). V4 is rather complex. V4 neurons exhibit a 

wide range of receptive field preferences. V4 might be related to color vision (Zeki, 1983), 

shape (Essen & Zeki, 1978; Mountcastle et al., 1987; Schein et al., 1982) and attention 

(Chelazzi et al., 2011; Moran & Desimone, 1985). 

 

Dorsal and ventral pathway  

The visual information departing from the primary cortex, through extrastriate areas, 

enters two distinct visual pathways, the dorsal pathway (“where stream”) and the ventral 

pathway (“what stream”) (Milner & Goodale, 2008; Mishkin et al., 1983). The dorsal 
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pathway starts from the primary visual cortex and stretches into the parietal lobe. In contrast, 

the ventral pathway goes through the occipitotemporal cortex until the anterior part of the 

inferior temporal gyrus. These two pathways are known for their distinct functional 

characterizations: The dorsal pathway processes the information of object location to guide 

action, while the properties of objects, such as shape, size and orientation, pass through the 

ventral pathway. 

We have just finished going through the spatial arrangement of the visual system; this 

can give us an overview of how visual information flows in the visual system. Next, we will 

start our main topic: the temporal dimension of the visual system - oscillations in visual 

perception. 

 

1.3.2 Oscillations in visual perception  

As early as the late 19th century, it had been proposed that perception is discrete and 

that discrete visual perception scans the external environment approximately 10 times per 

second (Whitlock, 2009). Although many studies have been conducted since then, especially 

in the mid to late 20th century, in an attempt to prove the existence of discrete visual 

perception, those studies could not provide decisive evidence due to technical and 

experimental paradigm limitations. Therefore, I will present here the more recent literature. 

On the other hand, the concept of discrete vision was associated with alpha waves soon after 

their discovery, due to the close frequency of the estimated visual samples and alpha waves 

(Adrian & Yamagiwa, 1935). So far, most studies support this view. The phase, frequency, 

and amplitude of alpha, however, are all related to discrete visual perception - we thus 

discuss these correlations separately. The literature review of section 1.3.2 is inspired by 

(VanRullen, 2016, 2018). 

 

Phase and visual perception 

One of the earliest works demonstrating the relationship between discrete visual 

perception and the alpha rhythm phase is by Valera, Toro, John, & Schwartz (1981). The 

authors presented two flashes with asynchronous onset at different alpha phases and asked 
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the subjects to report if they saw only one flash or two. The researchers found that the two 

flashes that appeared at the trough of alpha were perceived as one flash while the flashes 

appearing at the peak were perceived as two. The study suggests that visual perception might 

depend on the phase (i.e., timing) of oscillations. Although the phase-dependence of 

perception is not a new idea (see  Nunn & Osselton, 1974), it has been extensively researched 

in recent years (Busch et al., 2009; Dugué et al., 2011; Fiebelkorn et al., 2013; Hanslmayr et 

al., 2013), possibly due to the advancement of electrophysiology and computational power. 

One of the strongest lines of evidence was provided by Busch et al., (2009). They required 

subjects to detect near-threshold stimuli while recording EEG and then separated the 

perceived trials and the unperceived trials into two groups. After the phase coherence of EEG 

activity was computed for both trial groups, they found that, before the stimulus onset, the 

alpha and theta exhibit different phase concentrations at different phase angles in the two trial 

groups. The effect accounts for 16% of the variability in detection performance, which is 

impressive considering the noisy nature of the EEG signal.  

 

Frequency and visual perception  

Discrete visual perception is also related to alpha frequency. As mentioned above, two 

stimuli falling at a specific phase of the critical oscillation can be perceived as one. Logically, 

the phase is associated with the frequency band of the corresponding oscillation; when the 

frequency of a critical oscillation is slower, the peaks are further apart. In other words, the 

frequency might determine the threshold of the two flashes to be perceived as one. Adopting 

a similar paradigm as Varela in 1981, Samaha and Postle (2015) found that the individual 

alpha frequency can predict the two-flash fusion threshold. Faster alpha is associated with a 

higher temporal resolution of visual perception. 

 

Amplitude (power) and visual perception 

The amplitude of brain oscillations is related to excitation and inhibition of the brain 

state (Pfurtscheller, 2001). When a large group of neurons synchronizes at the same 

frequency, the amplitude of this frequency increases. The fluctuation of the amplitude of 

ongoing oscillations has been linked to visual evoked potentials and visual perception. Data 
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from several studies suggest that the cortical state (dynamics of the ongoing neural activity) 

can account for the variability of the neuronal response to the forthcoming stimulus (Arieli et 

al., 1996; Azouz & Gray, 1999; Van Der Togt et al., 2005). The increase of neuronal activity 

is related to enhancement of stimulus perception. Thus, the amplitude of the ongoing activity 

can modulate stimulus perception. One line of evidence suggests that prestimulus alpha 

power might promote or worsen sensitivity when power is low or high. On a single-trial 

basis, the prestimulus alpha amplitude is inversely correlated to the detection rate of near-

threshold stimuli and visual evoked potential (Ergenoglu et al., 2004). Along the same line of 

thought, the prestimulus alpha amplitude was found to correlate with conscious perception 

(Hanslmayr et al., 2007) and discrimination tasks (Roberts et al., 2014; Van Dijk et al., 

2008). These findings indicate that the fluctuation of alpha amplitude is linked to the 

excitability level of the visual cortex.  To provide causal evidence for the hypothesis that 

alpha amplitude is an index of cortical excitability, Romei et al. (2008) induced illusory 

visual perception (phosphenes) with TMS and found that the probability of perceiving 

phosphenes is related to prestimulus alpha power. When the power is high, the chance of 

perceiving phosphenes is low.  However, these studies mostly adopted a detection task; the 

detection rate increase could be due to increased sensitivity or decreased response criterion. 

In the latter case, subjects tend to respond more frequently. As a result, the detection rate 

increase. Iemi and colleagues (2017) cast doubt on the idea of alpha power modulating 

sensitivity. Taking advantage of signal detection theory, they proved that the fluctuation of 

prestimulus alpha power is associated with the detection criterion rather than sensitivity. 

 

Perceptual echoes 

All the evidence above supports the notion of perceptual cycles, showing that visual 

perception is modulated by various characteristics of brain oscillations. Although this 

evidence shows that pre-stimulus brain state modulates visual perception, few studies show 

the visual system is oscillatory during stimulus processing.  Can we find perceptual cycles 

post-stimulus? What if the stimulation is continuous rather than a single flash? VanRullen 

and MacDonald (2012) presented to subjects a disc whose luminance follows white-noise 

(WN) sequences while recording their EEG signal. After doing cross-correlation between the 

EEG signal and the luminance sequences, they found that the output impulse response 

function (IRF) at occipital channels is an alpha rhythm that lasts up to ~1 second (Figure 1-
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7). These long-lasting “perceptual echoes” not only characterize the oscillatory properties of 

visual perception but also suggest that visual information is carried in the visual system 

across time. Perhaps the lingering oscillating visual information is what the brain uses to hide 

the actual discrete visual processing and create the illusory smooth perception. More 

importantly, since the WN sequences are broadband and the power for all frequencies in the 

WN sequences are equal, the echoes are reflecting the intrinsic oscillatory properties of the 

visual system. Contrary to the ongoing alpha activity, which is often linked with the 

inhibition process (Jensen et al., 1999; Wolfgang Klimesch, 1999), perceptual echoes seem to 

play an active role in visual processing.  

 

Figure 1-7 Perceptual echoes measurement procedure and the properties of the echoes. (A) A subject 

is viewing a disc whose luminance fluctuates randomly with the EEG signal being recorded. For 

calculating the echoes, the random luminance sequences will be cross-correlated with the 

corresponding EEG signal, and the output coefficients are the echoes. Figure adapted from (Alamia & 

VanRullen, 2019) (B) Frequency spectrum of perceptual echoes averaged across eight subjects 

measured by VanRullen and Macdonald (2012). C) Time-frequency representation of perceptual 

echoes; the echoes last up to 1 second.  D) Topography of the echoes. The echoes are prominent at 

occipital electrodes. Figure adapted from (VanRullen and Macdonald, 2012) 
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The echoes share several features with ongoing alpha oscillations. Not only do the 

amplitude and frequency of the echoes correlate with the ongoing alpha, but they are located 

in similar channels (Fig. 1-7 D). Interestingly, they also exhibit different profiles in a spatial 

attention task. When subjects attend to one of the objects presented in the left and right visual 

fields, the alpha power decreases in the contralateral hemisphere and increases in the 

ipsilateral hemisphere. Conversely, the opposite effect was observed for echoes.  Echo power 

increased in the contralateral hemisphere and decreased in the ipsi-lateral hemisphere because 

subjects attended to the left or right side of the visual field.   

Recently the spatial dimension of the echoes has come under study. Perceptual echoes 

are not a neural signature confined to the occipital channels; instead, they travel from 

occipital regions to frontal regions during WN stimulation (Lozano-Soldevilla & VanRullen, 

2019). The traveling waves can be modulated by attention. When attending to one side of the 

visual field, the echoes emerge from the contra-lateral hemisphere and propagate to the 

frontal sites. Another study demonstrated that the echoes and the alpha activity travel in a 

feedforward fashion when there is visual input. When eyes are closed, the alpha waves go in 

the opposite direction (Figure 1-8) (Alamia & VanRullen, 2019). Although the traveling 

waves studies show that the waves' starting point is occipital channels, the exact location in 

the brain where the echoes are generated remains unclear. Addressing this question could 

help unravel the functional significance of the echoes and further our understanding of the 

sampling mechanism of our visual system. Up to date, the echoes have only been investigated 

using EEG, which can only offer a rough and inaccurate estimation of the echoes’ location. 

Chapter 3 will discuss how we combine EEG and fMRI (recorded at separate times) to locate 

the neural origin of perceptual echoes. 
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Figure 1-8 In Alamia and VanRullen’s predictive coding model paper (2019), They showed that there 

are more forward traveling waves of alpha during visual stimulation and more backward during eyes-

closed. (A) Traveling waves can be seen by stacking perceptual echoes from the mid-line electrodes. 

The waves can be represented as a 2-dimensional image. (B) The direction and the frequency of the 

waves can be quantified by applying 2D Fourier transform on the 2D wave image. (C) and (D) The 

authors found more forward waves than backward waves when there is visual input, and the opposite 

pattern in the eyes-closed condition. Reproduced from (Alamia & VanRullen, 2019) 

 

Thus far, we have learned that our visual perception is subject to periodic brain 

activities, exhibiting a temporal oscillatory property. However, oscillatory processes do not 

only exist in the low-level brain functions. When we explore the world using our “camera” 

(visual perception), the exploratory process controlled by our attention also follows a certain 

rhythm, as we will see below.  

 

1.4 ATTENTION AND NEURAL OSCILLATIONS 

1.4.1 Attention and the paradigms 

Before we dive into the oscillations in attention, let us briefly learn what attention is 

and the research paradigms to study attention and the underlying neural networks.  
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We are using our attention all the time. For instance, when we are looking for our 

friends in a bar, when we are focusing on writing and when our attention is captured by a car 

accident. Attention is a flexible function. It can be “bottom-up”, e.g., captured by a “car 

accident”; it can also be “top-down”, e.g., looking for a friend in the crowd (Connor et al., 

2004). In the first case, attention allows us to notice salient things, such as something that 

signals danger. In the latter, voluntary attention enables us to focus on one thing. Thanks to 

attention, the brain resources can concentrate on one target, and therefore we are not 

swamped by the information surrounding us.  

Attention is one of the most important topics in neuroscience. “Spotlight” is often used 

as a metaphor for attention. When this spotlight is directed to an external or internal object, 

the processing of this object will be enhanced (Moran & Desimone, 1985). For studying 

attention in the laboratory, two classical paradigms are often used, spatial orienting (Posner et 

al., 1980) and visual search (Treisman & Gelade, 1980) (Figure 1-9). In the spatial orienting 

paradigm, a cue is presented to indicate where the attention should be allocated. After the cue 

appears, the target might or might not appear at the cued location. Next, the behavioral 

performance for the trials of the valid cue (target appears at the cued location) and the invalid 

cue (target does not appear at the cued location) are calculated separately. Logically, the 

corresponding behavioral performance should be higher in valid cue trials compared to the 

invalid ones. For example, when subjects are required to detect a near-threshold target that 

could appear at cued and uncued locations, detection rate for the cued location will be higher 

than the uncued location because more attention is directed to the cue. The other paradigm is 

visual search. In visual search paradigms, the target (for example, the green T in Figure B) is 

presented together with a group of distractors (for example, letter L and blue T). The 

searching difficulty depends on the number of distractors and the similarity between the 

target and the distractors. The target is relatively more salient in some conditions than the 

others, for example, when the target color is different from distractors. Figure B is a 

relatively difficult condition, in which the target green T shares both the color and shape with 

the distractors. When doing a visual searching task, subjects need to pay attention to the 

stimuli that share the same feature with the one they are instructed to search. The searching 

difficulty can be measured by how much time they take to search the target or how many 

times they find the wrong target. Various tasks are derived from these two classical 

paradigms. The behavioral response could be overt eye movement; in this case, the saccadic 

reaction time is usually estimated by measuring the duration when the eye leaves the fixation 
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and arrives at the target. The tasks could also be applied to measure covert attention, which is 

directing attention without moving eyes. One way to measure covert attention is to present 

near-threshold targets at the cued location and measure the detection rate.  

 

Figure 1-9 A) The target (X) might appear in the left box or the right. After a trial starts, an arrow 

appears to indicate the possible location where the target might appear. Figure adapted from (Mayer et 

al., 2004) B) An example of visual search paradigm. Searching for the green T is difficult because the 

distractors (green L and blue T) share the same features with the green T. Figure adapted from 

(Buschman & Kastner, 2015).  

 

1.4.2 Attention networks 

Attention involves large-scale neural networks (Chica et al., 2013) (Figure 1-10). When 

performing a visual attention task, a distributed dorsal fronto-parietal network comprising 

superior parietal lobule (SPL), intraparietal sulcus (IPS), the frontal eye field (FEF) and the 

supplementary eye field (SEF), is activated (Kastner & Ungerleider, 2000) together with 

occipital regions. This network has been identified with a variety of visual attention tasks 

(Kastner & Ungerleider, 2000). The fronto-parietal network selectively sends the modulatory 

signal to the low-level sensory areas, enhancing the neural processing to the task-relevant or 
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attended object (Kastner et al., 1999; Moore & Armstrong, 2003). In other words, the fronto-

parietal network conveys top-down signals to bias the stimulus selection to form the neural 

representation in the visual cortex (Beck & Kastner, 2009). In support of the top-down 

modulatory role of the fronto-parietal network, Kastner et al. (1999) found that when subjects 

were expecting a stimulus in peripheral location, the signals in frontal and parietal areas 

increase more than in the visual cortex. The frontal and parietal areas might modulate the 

signal in the visual cortex in the absence of visual stimulation via a top-down process. 

Moreover, a physiology study in monkeys (Moore & Armstrong, 2003) showed that the 

electrical stimulation in FEF enhances the response of the topographically corresponding 

location in V4.  

 

Figure 1-10. The fronto-parietal network associated with attention. TPJ and VFC are temporo-parietal 

junction and ventral frontal cortex respectively. Figure adapted from (Chica et al., 2013). 

 

1.4.3 Oscillations in attention 

It has been proposed that the spotlight of attention is indivisible and unique (Posner & 

Petersen, 1990; Treisman & Gelade, 1980). To process multiple objects in a scene, the 
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spotlight has to move from object to object, and this shifting has been proven to be rhythmic 

(Buschman & Miller, 2007; Wolfe et al., 2011). 

It has been shown that during free viewing, each saccade occurs ~200ms, in the range 

of the theta frequency band (Engbert & Mergenthaler, 2005; Otero-Millan et al., 2008). This 

theta rhythmicity can even be found in microsaccades when subjects are fixating their eyes. 

Attention also operates dynamically without overt eye movements. A psychophysics study 

(VanRullen et al., 2007) observed that attention samples multiple items sequentially at the 

theta range. Along the same line, a study (Dugué et al., 2015) utilizing a difficult visual 

searching task showed that spatial attention is allocated to each of the stimuli periodically at 

~7 Hz.  

For examining the attentional sampling on the behavioral level, a cue is often used to 

“reset” the phase of the attention oscillation. The cue is typically used to indicate where the 

subjects should direct their attention. When studying oscillatory attention, it serves as a time 

reference; from that time point attention starts to shift to the cued target. The behavioral 

response to the target should be an oscillation function of the inter-stimulus-interval between 

the cue and the target if attention is oscillatory. Two studies (Fiebelkorn et al., 2013; Landau 

& Fries, 2012) used a cue to reset attention and required subjects to attend to one or two 

objects. They found that attention samples each object sequentially at 4 Hz. However, there is 

a discrepancy in the frequencies reported by the above studies, some finding attention 

samples at ~7 Hz, some finding 4Hz. It could be that in the studies which found the lower 

frequency, attention was divided into multiple objects (Figure 1-11) (VanRullen, 2016; 

VanRullen & Dubois, 2011). A study (Holcombe & Chen, 2013) lends direct support to this 

interpretation; Subjects were required to track one, two or three moving objects covertly. The 

temporal frequency of sampling was 7 Hz while tracking one object, and the frequency 

reduced to ~3 Hz while tracking three. 
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Figure 1-11 (A) When there is only one object to be attended, attention samples the same object 

rhythmically. (B) When there are more objects that need to be monitored, attention jumps from object 

to object, thus the sampling for each object reduces. Adapted from (VanRullen & Dubois, 2011) 

 

Several EEG and MEG studies have linked this attentional sampling to brain 

oscillations. Busch and VanRullen (2010) present data that suggests the phase of pre-stimulus 

8 Hz is predictive of the detection performance for targets in the attended location. Another 

study (Landau et al., 2015) demonstrated that gamma activity indicative of processing an 

attended object is modulated by the phase of 4 Hz oscillations during continuous monitoring 

of two objects. This study also extends the understanding of the attentional sampling 

investigated with external reset by showing that the sampling mechanism is an ongoing 

process. While many studies have revealed the relationship between theta oscillations and 

attentional sampling, little is known about the neural basis and the generation mechanism of 

the theta oscillation. 

One possible neural source of the attentional theta rhythm is the underpinning fronto-

parietal network of attention. An intracranial recording study by Helfrich et al. (2018) 

showed that the hit rate (detection rate) of subjects in an attention task exhibited a theta 

rhythm. They further demonstrated that the behavioral oscillations were correlated with the 

theta oscillation in electrodes implanted in the attention network (Figure 1-12), indicating the 

attentional sampling at theta frequency might originate from the attention network. 
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Figure 1-12   Dynamical attention network underlying attentional sampling shown by Helfrich et 

al.(2018) (A) They analyzed if phase of the theta oscillation in multiple areas modulated the hit rate. 

The plot describes the phase modulation across the attention network. Left: topographical illustration 

of the areas contributing to rhythmic sampling. Right: frontal regions (top), sensorimotor regions 

(center) and parietal regions (lower) which contributed for rhythmic attentional sampling. (B) The 

brain areas correlated with the behavioral theta rhythm. Frontal and parietal areas have the same 

preferred phase for optimal perception. Figure adapted from (Helfrich et al., 2018) 

 

The attention network is not the sole source for theta oscillations. The theta rhythm has 

also been observed in V4 and inferotemporal cortex (IT) by other studies (Lee et al., 2005; 

Nakamura et al., 1991; Rollenhagen & Olson, 2005; Sheinberg & Logothetis, 1997). A study 

in macaque (Rollenhagen & Olson, 2005) found that the theta rhythm in IT might depend on 

competitive interactions of the neurons selective for different stimuli. The study presented 

two stimuli to the monkeys, an object in the fovea and a flanker in the periphery. When the 

object was presented in the presence of the flanker or vice versa, a strong 5Hz oscillation was 

elicited.  In the same vein, a recent monkey study (Kienitz et al., 2018) recorded neuronal 

activity in V4 and found that theta activity emerged in the multi-unit activity (MUA, activity 

recorded from a group of neurons) when an object was displayed in the excitatory center of 

the receptive field, and another object was presented in the suppressive surround. In a spatial 

attention task of the same study (Figure 1-13), they presented a disk and flankers sequentially 
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to the monkeys, which, according to the result of the first experiment, should evoke neuronal 

competition and give rise to theta oscillation. Then, the target appeared either in the flankers 

or in the objects after a random temporal interval.  The monkeys were trained to saccade to 

the target. The saccadic reaction time oscillated depending on when the target appeared, and 

more interestingly, the response oscillation was correlated with the theta oscillation recorded 

in V4. This finding delineates a plausible neural mechanism for attentional sampling. While 

the finding is compelling, it also raises a question. Does this mechanism also apply to human 

subjects? Chapter 4 is dedicated to addressing this very question.  

 

Figure 1-13 The task and the results of the second experiment in (Kienitz et al., 2018). (A) task design, 

a disk was presented first, then a flanker was added in the presence of the disk. The monkeys needed 

to saccade to the target which could appear either in the flanker or in the center of the disk. (B) Upper: 

time courses of response time (RT). RT to the target in disc is in orange, and RT to the target in 

flanker is in purple. Bottom: time courses of MUA signal. The shaded bar highlights the MUA and 

the RT are phase-locked.  Right: spectra of RT and MUA show that the peak of power is in the theta 

band.  Adapted from (Kienitz et al., 2018).  

 

So far, this section has focused on attention. I have introduced the typical paradigms for 

studying attention, the neural basis of attention, the brain oscillations related to attentional 
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sampling and the possible mechanisms for attentional sampling. One possible mechanism for 

attentional sampling has been proposed by a study in monkeys (Kienitz et al., 2018) showing 

the theta rhythm might result from the neuronal competition of V4 neurons. One related 

question is whether this mechanism can be generalized to human subjects, which is one of the 

questions I focus on in this thesis. The following section will discuss consciousness.    

 

1.5 CONSCIOUSNESS AND NEURAL OSCILLATIONS 

Unraveling the mystery of consciousness is an ultimate goal for many psychologists 

and neuroscientists. Consciousness has different meanings. Consciousness can refer to a 

conscious state, such as out of consciousness (coma, sleep) and conscious (awake). It could 

also mean conscious content or conscious perception, for example whether you are aware of a 

stray dog on the road. In the current thesis, we focus on conscious content (or conscious 

perception). For assessing conscious perception empirically in the laboratory, the current 

commonly accepted method is to measure the “reportability” of the target, for instance, “if 

you are conscious of something, you are able to report it” (Dehaene & Changeux, 2011). In 

this section, I start with the typical paradigms for studying conscious perception, then I will 

review one of the paradigms - binocular rivalry in more detail. After that, I will return to the 

mainline of the thesis: oscillations in consciousness. 

 

1.5.1 Paradigms for studying conscious perception  

How does a bunch of physical matter - the brain - generate subjective experience? To 

answer this question, we need to find which parts of the brain give rise to consciousness, 

which is equivalent to searching for the neural correlates of consciousness (NCC). To 

investigate NCC, the widely accepted strategy is to compare the neural activity of two 

conditions in which one is conscious while the other is not, which is known as “contrastive 

analysis” (Baars, 1993). By adopting contrastive analysis, searching for NCC can be restated 

as a more pragmatic experimental question: what neural activity only appears during 

conscious perception but is absent in non-conscious perception? Many tools can serve to 

answer this question. Two commonly used paradigms are backward masking and ambiguous 

perception. The former manipulates the visibility of the target using backward masks so as to 
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create conditions in which one target can be consciously perceived and the other cannot 

(Ruhnau et al., 2014). The shorter the inter-stimulus interval between the backward mask and 

the target, the less visible the target is. With the masking paradigm, researchers can study 

what neural responses are relevant for conscious perception while keeping conscious and 

non-conscious perception under similar visual conditions. In ambiguous perception 

paradigms, subjects are usually required to see a bistable image such as the Necker cube 

described at the beginning of the introduction. This type of image triggers visual ambiguity 

even if the images stay unchanged. The brain resolves the ambiguity every few seconds and 

leaves only the dominant percept in consciousness and the other suppressed. One promising 

and popular ambiguous perception task widely used tso study consciousness is binocular 

rivalry, since endorsed by Crick and Koch(1998). Binocular rivalry is a fascinating 

phenomenon that has evoked a huge amount of interest for many years. As we used binocular 

rivalry in two of our studies (Chapters 5 and 6), I will briefly review the binocular rivalry 

literature. 

 

1.5.2 Binocular rivalry - a tool for studying neural correlates of consciousness  

When two different images are presented to two different eyes, the perception of the 

two images alternates in consciousness. The image in consciousness is dominant, while the 

other is suppressed. This perception switches every few seconds as if the two image 

representations were competing, hence the term "binocular rivalry" (Fig. 1-14). Dominant 

and suppressed perceptions provide an ideal condition for one to compare the brain activity 

associated with the two perceptions separately, consistent with the principles of comparative 

analysis. It is interesting to note that during binocular rivalry, the physical input is constant, 

hence, the only thing that modulates conscious perception must be brain activity (Crick & 

Koch, 1998, 2003; Rees et al., 2002). 
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Figure 1-14 Illustration of binocular rivalry. One green gabor and one red gabor are displayed to two 

eyes and remain constant, the percept alternates over time, the green gabor is perceived for a short 

period, then the red is perceived. Reproduced from (Clifford, 2009). 

 

What is competing in binocular rivalry? 

The information of an image needs to travel a long way after it has been converted to 

electrical activity at the retina until it is finally consciously perceived. During binocular 

rivalry, the dissimilar monocular visual information from both eyes competes or fuses (during 

transition) at a specific level of the visual pathway. It is tempting to think that visual rivalry 

happens at monocular areas, since the images that subjects see are shown to two eyes 

separately. Previously, there was a debate regarding where binocular rivalry is resolved. One 

group of researchers believed that binocular rivalry is resolved at an early stage of the visual 

pathway, resulting from mutual inhibition between monocular neurons in the primary visual 

cortex (V1) (Blake, 1989) and LGN (Wunderlich et al., 2005). This view receives evidence 

from studies by (Tong & Engel, 2001) and (Polonsky et al., 2000). By using fMRI, they 

found that the neural activity in monocular areas of V1 changes with the perception over time. 

The stronger evidence is provided by (Blake et al., 1980; Lee & Blake, 2004). Blake et al. 

(1980) swapped the stimuli that were in the dominant and the suppressed perception, the 
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suppressed stimulus became dominant. The result suggests that the competition is from 

monocular neurons, regardless of stimulus content.  

However, a contradicting view considers that the competition might arise from the 

neural representation of the two images being viewed, called pattern competition. Supporting 

this view, an ingenious study broke the coherency of two stimuli and replaced them by 

complementary patchworks of intermingled rivalrous images and showed subjects the 

patchwork images (Figure 1-15). The subjects tended to see one of the two coherent images 

by grouping the patchworks that belonged to the same image, even though they were 

presented to different eyes (Kovacs et al., 1996). Furthermore, electrophysiology experiments 

in monkeys show that the proportion of neurons firing with the conscious perception 

increases at higher levels of processing (Logothetis et al., 1996; Logothetis & Schall, 1989). 

 

Figure 1-15 The patchwork images used in Kovacs et al. (1996). The patchworks from the two images 

are complementary since they are cut from two coherent meaningful images as shown on the right. 

When the patchwork images are shown to different eyes of a subject, the subject will see the images 

on the right. Figure adapted from (KOVAcs et al., 1996)  

 

The studies above suggest that the rivalry (or competition) occurs at different visual 

processing levels. To reconcile the two distinct sets of evidence, a hybrid view has emerged 

(Tong et al., 2006), as detailed below.  

 

Model of Binocular rivalry  
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The alternation of the percepts seems unpredictable. It is still unclear what triggers 

perceptual switches in binocular rivalry, and why and where the rivalry is resolved. The most 

common account for this is that the neural representations of the two stimuli compete with 

each other. The neural representation of the dominant stimulus inhibits the neural 

representation of the other. Gradually, the inhibition becomes weaker due to adaption and 

neural noise and eventually the perception switches.  Reciprocal inhibition between the 

neurons that code the information of the two competing percepts has long been proposed as 

the mechanism of binocular rivalry (Fox & Rasche, 1969), developed by many other 

researchers (Arrington, 1993; Kalarickal & Marshall, 2000; Lago-Fernández & Deco, 2002; 

Laing & Chow, 2002; Lehky, 1988; Lumer, 1998; Matsuoka, 1984; Noest et al., 2007; 

Stollenwerk & Bode, 2003; H. R. Wilson, 2003) and integrated in models of binocular rivalry 

as an essential element (e.g., Tong et al., 2006).  

To reconcile the contradicting findings concerning where the resolution of rivalry 

happens, Tong and colleague (2006) proposed a model comprising inhibitory connections, 

lateral excitatory connections and feedback connections. Based on the hybrid view of 

binocular rivalry (i.e., competition can occur in both higher and lower level areas), inhibition 

in binocular rivalry can be divided into two types: competition between monocular neurons 

and pattern-selective competition. Monocular neuronal competition occurs primarily in the 

regions responsible for monocular processing such as LGN and part of V1). Pattern-selective 

competition, on the other hand, occurs mainly in the regions after binocular fusion. To 

account for binocular competition at each level of the visual pathway, the model introduces 

inhibitory connections at different levels (Figure 1-16 A). The authors point out that in this 

model, monocular competition is also involved in pattern selection. When monocular cells 

from both eyes are processing similar stimuli, such as a grating in the same direction, 

monocular neurons will facilitate information fusion via the excitatory connections between 

monocular neurons, but if the visual information is very different, monocular neurons will 

inhibit each other. Excitatory connections promote the integration both in the low-level 

monocular areas and the high-level areas (Figure 1-16 B). The patchwork grouping study by 

KOVAcs et al. (1996) can be explained by these lateral excitatory connections.  In addition, 

to account for top-down effects in binocular rivalry, such as the effect of attention, top-down 

excitatory connections were added to the model (Figure 1-16 C). Different excitatory 

connections are activated depending on the region being affected by attention. For instance, 

when paying attention to the monkey patchworks (Figure 1-15), the top-down connections 
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can facilitate the fusion of information from the neurons representing the monkey to integrate 

the monkey picture. 

 

Figure 1-16 Schematic illustration of a hybrid rivalry model by Tong et al. (2006). Lines with filled 

circles represent inhibitory connections; lines with arrows represent excitatory connections. (a) 

Adapted from (Tong et al., 2006) 
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1.5.3 Oscillations in consciousness  

According to the “contrastive analysis”, the NCC can be investigated by comparing the 

neural activity of conscious perception and non-conscious perception. In visual studies using 

a near-threshold stimulus, subjects are aware of the visual stimuli under specific brain states 

(e.g., subjects’ detection rate is low when pre-stimulus alpha power is high). Thus, in these 

studies, there are trials of both conscious and non-conscious perceptual conditions. This kind 

of study is in accord with the principle of contrastive analysis. The studies in support of 

“discrete perception” reviewed in section 1.3.2 are exactly such studies. To a certain extent, 

these studies demonstrate that oscillations affect consciousness by modulating cortical 

excitability. Oscillatory conscious perception has also been found using the masking 

paradigm (Mathewson et al., 2012); rhythmic stimuli were used to entrain alpha oscillations. 

After the entrainment, a target preceding a mask was presented after random stimulus-onset 

asynchrony. The study found that the visual awareness of the target was phase-locked to the 

entrained oscillation, suggesting that the subjects only consciously perceive the target at a 

specific phase of alpha.  

Apart from causing oscillatory conscious perception, brain oscillations also serve 

consciousness in a communication role. In masking studies, conscious perception has been 

proved to correlate with increased synchronization of oscillations. One study showed long-

range gamma synchronization is associated with conscious perception of words (Melloni et 

al., 2007). In addition to the gamma synchronization, theta activity is enhanced in the frontal 

areas when the words are retained in memory, indicating more brain regions are involved in 

conscious perception compared to non-conscious perception. In another study, long-range 

beta synchronization has been found when subjects consciously perceived the target words 

(Gaillard et al., 2009).  

Synchronization of oscillations in consciousness has also been revealed in studies 

employing ambiguous perception tasks. One line of evidence has been provided by studies 

using binocular rivalry. In strabismic cats, the dominant percept evokes more gamma 

synchronization than the suppressed percept, whereas there is no difference in the firing of 

neurons of the two conditions (Fries et al., 1997), highlighting synchronization of oscillations 

in forming conscious perception. In human studies using binocular rivalry, Doesburg and 

colleagues (2005) uncovered that gamma synchrony increased before subjects reported the 

switches of perception, suggesting that the gamma synchrony is related to the emergence of 
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coherent perception. The perceptual switching related gamma synchronization is further 

shown to be modulated at a theta rate and such synchronization appears not only in the 

activated regions but also between these regions (Doesburg et al., 2009). These results 

suggest that large-scale integration is crucial for unambiguous conscious perception. Another 

line of evidence is from other ambiguous perception methods. Using audiovisual stimuli, 

Hipp, Engel and Siegel (2011) demonstrate that the strength of large-scale beta and gamma 

synchrony is predictive of the perception of ambiguous audiovisual stimuli and integration of 

auditory and visual information. 

The above-mentioned studies have stressed the importance of brain oscillations in 

conscious perception. Of these studies, several studies utilizing binocular rivalry reported 

large-scale integrations reflected by synchronization of brain oscillations in conscious 

perception, confirming the view that interareal integration is essential for consciousness 

(Engel & Fries, 2016). Further evidence supporting the synchronization view comes from a 

study which combines frequency tagging and binocular rivalry (Tononi et al., 1998). 

Frequency tagging is a method to link stimuli with the corresponding brain activity in order 

to track when and where the stimuli are processed in the brain. When presenting a target 

oscillating at a given frequency, the neurons that respond to this target tend to synchronize at 

this frequency. Tononi and colleagues (1998) displayed two stimuli that each flickered at a 

different frequency. By doing this, they could track the neural activity that was in relation to 

the dominant and the suppressed percept. They found that compared to the dominant percept, 

the power of the frequency relating with the suppressed percept was 50-85% lower in many 

channels. Since power of the tagged frequency reflects the synchronized neuronal activities in 

response to the target (Tononi et al., 1998), the findings suggest that there is a distributed 

synchronization across the brain during conscious perception.  

The frequency tagging paradigm here is similar to the paradigm for measuring 

perceptual echoes; both of them link the brain activity with the fluctuation of the stimuli. In 

the frequency tagging study, the neural activity synchronizes in response to the dominant 

stimuli. In contrast, the findings of perceptual echoes suggest that there is an ensemble of 

neurons synchronizing at 10 Hz to enable the brain to sample the environment rhythmically 

and actively. Does the synchronization underlying perceptual echoes require the brain to be 

conscious of the stimuli? In other words, how automatic is the 10 Hz visual sampling? This is 

one of the questions regarding the oscillations in consciousness we attempt to address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
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It has been proposed that synchronization is mediated by top-down and bottom-up 

processing (Engel et al., 2001; Engel & Fries, 2010). While in binocular rivalry, various 

evidence suggests that the rivalry is resolved at either a low level or a high level of the visual 

pathway, and then propagates to the other levels. These findings, therefore, indicate that there 

might be a top-down or bottom-up processing that is responsible for conveying the resolving 

signal. This raises a question: Is there a directed information flow implemented by 

oscillations contributing to resolving the visual competition in binocular rivalry? This is the 

second question related to oscillations in consciousness we aim to address. 

 

In the consciousness section, I’ve reviewed the methods to study conscious 

content/conscious perception, binocular rivalry, and oscillations in consciousness. To end the 

review on consciousness, I’ve introduced two questions this thesis attempts to answer: 1) Do 

perceptual echoes require consciousness?  2) is there any directed information flow reflected 

by oscillations responsible for unambiguous conscious perception in binocular rivalry?  

 

1.6  QUESTIONS OF THE THESIS 

Thus far, I have introduced the basics of brain oscillations and the related literature on 

the oscillations in visual perception, attention and consciousness. Evidently, an abundance of 

evidence has revealed the dynamic nature of our brain functions. Brain oscillations manifest 

themselves in perceptual cycles, albeit in the more complex brain functions such as 

consciousness, brain oscillations are involved in a more complex manner (e.g., interareal 

communication). 

As we can see from the literature review above, how the brain oscillations are related to 

visual and attentional sampling has been well investigated. Some studies further investigated 

the causal role of brain oscillations on visual perception and attention. However, where these 

sampling-related oscillations come from in the brain and how they are generated are not yet 

understood. Thus, these are two questions concerning visual perception and attention the 

current thesis aims to address. After investigating the brain oscillations in visual perception 

and attention, we go a step further to study the role of brain oscillations in consciousness. 



55 

 

That is, we study how brain oscillations are involved when the brain is consciously 

perceiving.  

 In visual perception, perceptual echoes, one demonstration of perceptual cycles, 

characterized our visual perception as a cyclic, recurrent process. In spite of the fact that 

many properties of perceptual echoes have been investigated, the underlying mechanism is 

still not clear. One important question that remains to be addressed is which part of the brain 

generates these echoes? We tried to answer this question in Chapter 3 with an EEG-fMRI 

experiment. 

Another example of perceptual cycles is attention oscillations. Electrophysiological 

evidence suggests that attention oscillations are governed by a theta rhythm. A monkey study 

set out to explore the underlying mechanism of this theta rhythm, and they found it might be 

generated by neuronal competition in V4 (Kienitz et al., 2018). It is exciting that this study 

has made an important advance in understanding the mechanism of attention oscillation. 

However, it remains to be tested whether this finding can be generalized to human subjects. 

To examine this, we replicated the behavioral experiment of the monkey study, as discussed 

in Chapter 4. 

In a more complex brain function like consciousness, the involvement of brain 

oscillations can be more complicated, as consciousness is a brain process that requires large-

scale integration of neural activity. The integration is achieved by synchronization of brain 

oscillations. Synchronization of neuronal activity can be reflected by the power of neural 

oscillations. To assess if synchronization is essential for visual sampling in conscious 

perception, we adopted a binocular rivalry task and examined the perceptual echoes related to 

the dominant percept and suppressed percept, detailed in Chapter 5. The synchronization of 

neural activity is subject to directed information flow, such as top-down and bottom-up 

processing in the brain. To process visual information consciously, the brain requires directed 

communication between the visual cortex which sends sensory information and the frontal 

areas which deliver modulatory signals. However, this evidence is lacking in binocular 

rivalry. Previous studies proposed that resolving ambiguous visual conflicts in binocular 

rivalry requires communication between high-level and low-level areas (Leopold & 

Logothetis, 1999). We propose that the synchronization of oscillations is a potential 

candidate for this communication. In Chapter 6, we will provide the corresponding 

experimental evidence. 
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All the questions this thesis aims to answer are summarized below: 

(1) What is the neural basis of perceptual echoes? (Chapter 3)  

(2) Does attentional sampling arise from the theta rhythm generated by visual 

competition? (Chapter 4)  

(3) Are neural oscillations responsible for inter-area communication in conscious 

perception? (Chapters 5 and 6)  

This chapter has given a general introduction and has raised the questions.  It is now 

necessary to introduce the research approaches and the framework of the paper. 
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2 CHAPTER 2. GENERAL APPROACH AND FRAMEWORK 
OF THE THESIS  

2.1 EEG  

Electroencephalography (EEG) was used in three of my studies in this thesis (Chapter 

3, 5, 6). EEG is a non-invasive recording method to record the electrical signal of the brain 

on the scalp (Figure 2-1). Since the EEG signal is recorded on the scalp, it is susceptible to 

the contamination of various noise and artifacts, such as eye blinks and movements, 

heartbeats, facial muscle movement, and the noise coming from the environment. Compared 

with these noises, the brain's electrical activity is tiny. Nevertheless, EEG is an ideal tool to 

study neural oscillations. It allows us to record brain activity in a very fine time scale because 

its temporal resolution is very high. However, the spatial resolution of EEG is very low 

(Figure 2-1).  

In chapter 3 and chapter 5, we used EEG to measure perceptual echoes. In chapter 6, 

we recorded EEG signals and then analyzed the information flow with traveling waves 

analysis and granger causality analysis. 

 



58 

 

Figure 2-1. EEG has very high temporal resolution but low spatial resolution. fMRI is the opposite. 

Adapted from (Pedregosa-Izquierdo, 2015). 

 

2.2 FMRI 

In contrast to EEG, Functional magnetic resonance imaging (fMRI) is a tool to study 

“where” something happens rather than “when” something happens in the brain, due to its 

high spatial resolution but low temporal resolution. fMRI measures the blood-oxygen-level-

dependent (BOLD) signal, which reflects the change of relative level of oxyhemoglobin and 

deoxyhemoglobin. This change is due to the blood releasing oxygen to the neurons that are 

firing (Kahn et al., 2011).   

 

2.3 COMBINATION OF EEG AND FMRI 

To obtain high temporal and spatial resolution concurrently, we will naturally think that 

combining EEG and fMRI could be a good solution. However, this presents a number of 

challenges. There are several ways to combine EEG and fMRI. The most common way is to 

run a concurrent EEG-fMRI experiment, meaning recording EEG and fMRI simultaneously. 

The problem is that the EEG signal will be influenced by MRI significantly. Besides, the 

fMRI signal will also be impaired by EEG caps. Several groups have observed signal loss in 

brain images when recording EEG signal in MRI (Bonmassar et al., 2001; Iannetti et al., 

2005; Krakow et al., 2003; Mullinger et al., 2008; Negishi et al., 2008; Stevens et al., 2007). 

Other than that, fMRI artifacts will lead to false correlation (Greenlee et al., 2016; Huster et 

al., 2012).   

In chapter 3, we attempt to localize the neural basis of perceptual echoes. Therefore, we 

combined EEG and fMRI—recorded at separate times—to obtain high temporal resolution 

and high spatial resolution signals. 
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2.4 FRAMEWORK OF THE THESIS 

The cornerstone of the current thesis is neural oscillations and their role in visual 

perception, attention and consciousness. The framework of the empirical studies in the 

current thesis follows the levels of perceptual or cognitive functions of the brain, that is, from 

the earliest and most basic function – visual perception, to the higher-level function - 

attention and finally, it will end with the most complex function – consciousness. 

In Chapter 3, I focus on one of the oscillations related to visual perception – perceptual 

echoes. More specifically, the goal of the study is to localize the neural source of perceptual 

echoes. In order to fully understand perceptual echoes, we must know where they come from 

in the brain. However, the spatial resolution of EEG is low. One of the feasible ways to study 

the neural origin of perceptual echoes is to run an fMRI-EEG study to relate the EEG signal 

of perceptual echoes with the BOLD signals (even if those are recorded at a different time). 

Although the brain areas that correlate with perceptual echoes might not necessarily be the 

exact location where the perceptual echoes are generated, the result can narrow down the 

potential location. Knowing the neural origin could pave the way for understanding how the 

perceptual echoes are generated and their functional role.  

In Chapter 4, I move on to another level of cognitive function – attention. Many 

attention studies have revealed that attention oscillates at theta frequency, and the theta band 

EEG signal is associated with attentional sampling. However, the underlying mechanism of 

this attention oscillation remains unknown. A monkey study has found that the theta 

rhythmicity might come from the neuronal competition from V4 neurons when presenting 

stimuli in the center and the surround of a V4 neuron receptive field. This theta rhythmicity is 

further correlated with the behavioral rhythmicity during a visual search task. However, it is 

unclear if the results can be generalized to humans. The current study set out to replicate the 

behavioral experiment of the monkey study in human subjects. 

In Chapter 5, I investigate how conscious perception modulates perceptual echoes. 

Previous studies suggest that synchronization of brain oscillations is essential for conscious 

perception. The emergence of perceptual echoes must require underlying neurons to 

synchronize at 10 Hz. Will this synchronization occur when subjects are not consciously 

perceiving the targets? On the other hand, perceptual echoes are not well understood yet. 

Previous studies have shown that the amplitude of perceptual echoes is modulated by 
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attention. Since attention is tightly linked with consciousness, do perceptual echoes require 

consciousness? Binocular rivalry offers a great opportunity to study perceptual echoes in 

different conscious conditions (dominant and suppressed). In the current study, two gabor 

patches whose luminance follows white-noise random sequences were shown to subjects’ 

two eyes. Accordingly, we could cross-correlate the EEG signal with both the dominant 

sequences and the suppressed sequences to obtain dominant perceptual echoes and 

suppressed echoes. Then we analyzed the power and traveling wave properties of these 

echoes. Additionally, the study can also answer another question: how much visual 

information can survive in the brain if it is not consciously perceived? 

Chapter 6 continues with neural oscillations in consciousness. One unsolved question 

in binocular rivalry is at what level the rivalry is resolved. The existing evidence suggests 

that it could happen at multiple levels of the visual pathway, which indicates there might be a 

top-down or bottom-up process contributing to the resolution of visual ambiguity. As stated 

before, one of the main functions of brain oscillations is communication. Thus, neural 

oscillations are good candidates for potential high-low level communication. To investigate 

this, we recorded EEG signals while subjects were performing a binocular rivalry task, then 

we analyzed the directionality of oscillations during binocular rivalry by using traveling 

waves and granger causality measures.  
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3 CHAPTER 3. FMRI SIGNATURES OF PERCEPTUAL ECHOES IN 
EARLY VISUAL CORTEX 

This chapter contains an original manuscript under review: Canhuang Luo*, Sasskia 
Brüers*, Isabelle Berry, Rufin VanRullen and Leila Reddy. " fMRI signatures of 
perceptual echoes in early visual cortex." *Co-first author with Sasskia Brüers. 

 

3.1 ABSTRACT 
 

The visual Impulse Response Function (IRF) can be estimated by cross-correlating 

random luminance sequences with concurrently recorded EEG. It typically contains a strong 

10Hz oscillatory component, suggesting that visual information reverberates in the human 

brain as a “perceptual echo”. The neural origin of these echoes remains unknown. To address 

this question, we recorded EEG and fMRI in two separate sessions. In both sessions, a disk 

whose luminance followed a random (white noise) sequence was presented in the upper left 

quadrant. Individual IRFs were derived from the EEG session. These IRFs were then used as 

“response templates” to reconstruct an estimate of the EEG during the fMRI session, by 

convolution with the corresponding random luminance sequences. The 7-14Hz (alpha) 

envelope of the reconstructed EEG was finally used as an fMRI regressor, to determine 

which brain voxels co-varied with the oscillations elicited by the luminance sequence, i.e., 

the “perceptual echoes”. The reconstructed envelope of EEG alpha was significantly 

correlated with BOLD responses in V1 and V2. Surprisingly, this correlation was visible 

outside, but not within the directly (retinotopically) stimulated region. We tentatively 

interpret this lack of alpha modulation as a BOLD saturation effect, since the overall 

stimulus-induced BOLD response was inversely related, across voxels, to the signal 

variability over time. In conclusion, our results suggest that perceptual echoes originate in 

early visual cortex, driven by widespread activity in V1 and V2, not retinotopically restricted, 

but possibly reflecting the propagation of a travelling alpha wave.  

Keywords: perceptual echo, alpha, EEG, fMRI, oscillation, traveling wave 

 

3.2 INTRODUCTION 
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Visual information is not fleeting, but instead “echoes” in our visual system in an 

oscillatory fashion (VanRullen & Macdonald, 2012). When subjects are presented with 

random luminance sequences (white noise, WN) while concurrently recording the 

electroencephalography (EEG) signal, an impulse response function (IRF) can be calculated 

by cross-correlating the WN sequences with the corresponding EEG. The resulting IRF 

contains a strong ~10Hz component that can last up to one second, suggesting that the brain 

processes and carries visual information over time at ~10Hz. This phenomenon has been 

called the “perceptual echo” (Ilhan & VanRullen, 2012; VanRullen & Macdonald, 2012). 

The IRF is highly correlated with resting-state and ongoing EEG alpha in both amplitude 

and frequency, and both signals are most prominent in posterior regions (VanRullen & 

Macdonald, 2012). Despite the fact that they share the same frequency range and 

topographical location, the alpha-band EEG signal in response to the WN sequences (IRF or 

“perceptual echo”) does not necessarily correspond to the ongoing EEG alpha activity; in fact, 

the two signals can even sometimes be dissociated and there are important functional 

differences between them. Ongoing alpha activity has long been considered to play an 

inhibitory role in sensory areas (Bonnefond & Jensen, 2012; Jensen & Mazaheri, 2010; Kizuk 

& Mathewson, 2017; Klimesch et al., 2002; Sadaghiani & Kleinschmidt, 2016), whilst the 

IRF suggests that the visual system actively processes and retains information over time 

(Ilhan & VanRullen, 2012; VanRullen & MacDonald, 2012). For instance, in a spatial 

attention task, contralateral alpha amplitude decreased when subjects attended to the left or 

right side of the screen, while on the contrary the IRF was enhanced by contralateral attention 

(VanRullen & MacDonald, 2012). 

The IRF has been associated with various visual phenomena. For instance, the IRF is 

thought to play a role in the triple flash illusion: when subjects are presented with two flashes 

in succession, they sometimes report seeing a third flash (Bowen, 1989). This illusion could 

be explained as the superposition of oscillatory impulse response functions to the two visual 

flashes, coming in alignment to create a third (illusory) percept (Bowen, 1989; Gulbinaite et 

al., 2017).  In addition to the temporal dimension of the IRF, recent studies from our group 

have investigated its spatial dimension. Lozano-Soldevilla and VanRullen (2019) showed that 

the IRF propagates from occipital to frontal areas as a travelling wave when WN sequences 

are presented in the upper visual field. Alamia and VanRullen (2019) further demonstrated 

that when there is visual input, both the IRF and the alpha propagate from posterior channels 
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to frontal channels, whereas when subjects close their eyes, the alpha travels in the opposite 

direction. The forward and the backward propagations have been postulated (Alamia & 

VanRullen, 2019) to represent feedforward and feedback signals in the framework of 

predictive coding (Rao & Ballard, 1999). However, despite this progress in understanding the 

spatial propagation of the IRF under different conditions, its neural origins remain unknown. 

One of the above studies (Lozano-Soldevilla & VanRullen 2019) attempted to perform EEG 

source localization of the IRF travelling waves, but the outcome was ambiguous, i.e., 

compatible with both a large-scale propagation across multiple brain regions, or a localized 

propagation within a restricted region, e.g., an occipital sulcus. The aim of the current study 

was to use fMRI to identify the neural source of the IRF. 

We conducted an EEG-fMRI study to localize the neural source of the IRF (Figure 1). 

Instead of concurrently recording EEG and fMRI, which often leads to artifacts and spurious 

correlations (Greenlee et al., 2016; Huster et al., 2012), we recorded EEG and fMRI in two 

separate sessions. In both sessions, a disk whose luminance followed a random (white noise) 

sequence was presented in the upper left quadrant. Subjects (N=20) detected a rare near-

threshold target embedded in the disk. Individual IRFs were derived from the EEG session by 

cross-correlating WN sequences with the corresponding EEG signal. These IRFs were then 

used as “response templates” (Brüers & VanRullen, 2017) to reconstruct an estimate of the 

EEG during the fMRI session by convolution with the random luminance sequences 

presented in the fMRI session. Finally, we used the alpha envelope of the reconstructed EEG 

as fMRI regressors to determine which brain voxels co-vary with the oscillations (i.e., the 

“perceptual echoes”) elicited by the luminance sequence. In a second step, we investigated 

other frequency bands (delta: 2-4 Hz, theta: 4-8 Hz, beta: 14-20 Hz). As described below, we 

found that the reconstructed envelope of EEG alpha (but not other frequencies) was 

significantly correlated with BOLD responses in V1 and V2. 

 

 

3.3 METHOD 
 
3.3.1 Subjects 
 



64 

 

22 subjects (10 females, 1 lefthanded, age range 20-43, mean age 28.73) took part in the 

study after a medical interview, and giving written informed consent. In total 20 subjects 

completed the experiment; two subjects failed to come back for one or both experimental 

sessions after being included. The EEG session was systematically conducted before the 

fMRI session. Of the 20 subjects, 14 subjects finished the two sessions in one week, 4 

subjects in 2 weeks and the remaining 2 subjects in 3 weeks. This study was approved by the 

ethics “Comité de Protection des Personnes Sud-Méditerranée I” (N°2016- A01937-44).  

 

3.3.2 Stimuli 
 

In both the EEG and the fMRI sessions, a disc (subtending 2° of visual angle) whose 

luminance followed a random (white noise) sequence was presented on a black screen, in the 

upper left quadrant, at 5 degrees of visual angle from fixation. We used a smaller visual 

stimulus than in our previous studies (VanRullen & Macdonald, 2012; Ilhan & VanRullen, 

2012; Brüers & VanRullen, 2017; Lozano-Soldevilla & VanRullen, 2019; Alamia & 

VanRullen, 2019) because in pilot experiments we noticed widespread reflections of the 

display light onto the inner surface of the MRI scanner bore, which resulted in diffuse rather 

than localized stimulation. The smaller size of 2 degrees allowed us to minimize this 

reflection artifact. PsychToolbox (Kleiner et al., 2007) for MATLAB (MathWorks, Natick, 

MA) was used to display the WN sequences. Subjects were required to fixate the center of 

the screen during the task and detect a near threshold lighter disk (i.e., a target) surrounded by 

a darker annulus. This target disk lasted 1 frame and was embedded in the white-noise disk. 

The fixation point was 0.1° of visual angle.  

Using a staircase procedure on the first 100 targets presented (i.e., about 30 trials), we 

manipulated the visibility of the targets by changing the contrast between the outer (darker 

annulus) and inner (lighter disk) parts to achieve a contrast at which subjects perceived the 

target on about 50% of trials. The resulting contrast was kept constant for the remainder of 

the session. The perceptual threshold was computed for each session independently using the 

quest function (Pelli & Watson, 1983).  

Because of differences in computer setup, the stimuli presented in the EEG and the fMRI 

recording sessions were not identical in terms of temporal frequency. In the EEG session, the 

CRT monitor had a refresh rate of 160 Hz, giving the WN sequences a flat power spectrum 
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between 0 and 80Hz. During the fMRI session, the projector used had a maximum 

presentation rate of 60 Hz, which meant the WN sequences had a flat power spectrum 

between 0 and 30 Hz (still well above the temporal resolution of the BOLD activity). The 

maximal luminance of the stimulus was 114.7 cd/m2 in the EEG session, and 827.9 cd/m2 in 

the fMRI session. 

 

3.3.3 Experimental protocol 
 

Each subject completed one EEG and one fMRI session (Figure 1, step 1 and 2). The 

EEG session was composed of 8 runs of 48 WN sequences, each sequence lasting 6.25s. The 

fMRI session consisted of 12 runs. Each run was composed of 7 random luminance 

sequences, each lasting 30 seconds, with an inter-trial-interval of 12 seconds.  

 

3.3.4 EEG recording, preprocessing, extraction of IRF and regressors 
 

 During the EEG session, the EEG signal was recorded using a 64-channel BioSemi 

EEG system with 4 extra ocular electrodes monitoring the horizontal and vertical oculograms. 

Signals were digitized at a sampling rate of 1024 Hz.  

 EEG pre-processing was performed using the EEGLAB toolbox (Delorme & Makeig, 

2004) and customized Matlab scripts. Bad channels were interpolated when needed. EEG 

data were down-sampled to 160 Hz to facilitate the cross-correlation with the stimuli. Notch 

filtering (47~53 Hz) was applied to remove artifacts. EEG data were then referenced to the 

average and separated into epochs of -0.25s before to 6.5s after the stimulus onset. Baseline 

correction was performed using the pre-stimulus signal. Furthermore, epochs containing 

ocular and movement related artifacts were rejected. On average 6.97% (SD = 5.57%) of 

epochs have been excluded (on average 353 epochs left) and the worst subject had <20% of 

epochs removed. The IRFs were extracted by doing a cross-correlation between the 

standardized pre-processed EEG epochs and the standardized corresponding WN sequences 

(VanRullen & MacDonald, 2012) (Figure 1, step 1). The IRF was cut from lags -0.2 to 1.5s, 

resulting in 1.7s long IRFs.  
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 The IRFs were then used to reconstruct the EEG signal corresponding to the WN 

sequences in the fMRI session (Figure 1, step 2). First, the IRFs were down-sampled to 60 Hz 

to match the presentation rate of the WN sequences in the scanner. The reconstructed EEG 

was computed by convolving the IRF (from 0 to 1.5s) (from the EEG session) with the exact 

WN sequences used in the fMRI session. Previous experiments have shown that this method 

can provide a reliable estimate of EEG activity in the alpha-band (Brüers & VanRullen, 

2017). Brüers and VanRullen (2017) adopted a 10-fold cross-validation approach. On each 

validation, the IRF was computed from 90% trials and the remaining 10% trials were used to 

reconstruct EEG, which was then correlated with the real EEG. In spite of the noisy nature of 

EEG signals and the single-trial level estimation, the correlation between the reconstructed 

alpha and the real alpha was still compelling (mean r = 0.163, t(19) = 8.21, p = 1.14*10-7, 

95% CI for r: 0.121–0.204). Because signal envelopes were strongly correlated across EEG 

electrodes, we decided to only use one electrode for each subject. For each subject and each 

frequency band, we chose the electrode with maximum IRF power in the “IRF area” for that 

frequency band—defined as the electrode with strongest IRF power, on average across all 

subjects, in the “late” part of the IRF where “echoes” are typically visible (from 250ms to 

1250ms), together with the 8 surrounding electrodes. For example, for the alpha band, the 

“IRF area” was centered on POz, and also included electrodes P1, PO3, O1, Oz, Pz, P2, PO4, 

O2. The central electrodes for the delta, theta and beta bands were Cz, CPz and O1 

respectively.  

 The reconstructed EEG was filtered in 4 frequency bands: delta = 2-4 Hz, theta = 4-8, 

alpha = 7-14 Hz, beta = 14-20 Hz (Figure 1, step 3). The absolute value of the Hilbert 

transformed data was taken as the envelope. This envelope of the reconstructed EEG signal 

was then used as a regressor of the BOLD activity (Figure 1, step 4). Finally, the regressors 

were ‘clipped’ by removing 4s at the beginning and 2s at the end of each trial to remove any 

systematic filtering artefacts, which could have led to spurious correlations. The clipping 

length was longer at the beginning, in order to avoid onset transients at the beginning of the 

envelope and at the beginning of the BOLD response. 
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Figure 1. Data collecting and processing steps. Step 1) In the EEG session, we recorded EEG signals 

and computed the IRF by cross-correlating the EEG and the WN luminance sequences. The IRF time 

frequency transform (on channel POz) averaged across subjects, and the IRF of one representative 

subject are shown on the right of the figure. Step 2) We reconstructed an estimate of EEG signals 

during the fMRI session by convolving this IRF with the WN luminance sequences used in the MRI 

scanner. BOLD fMRI signals were also recorded. Step 3) We filtered the reconstructed EEG into four 

frequency bands. Step 4) Finally, we used the envelopes of the filtered EEG as BOLD regressors for 

the GLM.  

 

 

3.3.5 fMRI recording and preprocessing 
  

In the fMRI session, data were collected in a 3T Philips (Amsterdam, The Netherlands) 

ACHIEVA scanner with a 32-channel head coil. High resolution anatomical images were 

recorded from each subject at the beginning of the scanning: 170 sagittal slices were acquired 
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with a voxel size of 1mm3, a repetition time (TR) of 8.13ms, and a time to echo (TE) of 

3.74ms. Functional images were acquired in the transverse plane using a gradient-echo pulse 

sequence (TE = 35 ms, TR = 2000 ms). 39 slices were acquired (80 * 80 image matrix, 240 * 

240 FOV, with 3 mm3 voxels) to cover the whole brain. Data analysis was performed with 

FreeSurfer and the FreeSurfer Functional Analysis Stream (FS-FAST) 

(http://surfer.nmr.mgh.harvard.edu) and custom Matlab scripts. Pre-processing followed the 

FS-FAST processing stream. All images were motion corrected (using AFNI with standard 

parameters), slice-time corrected, intensity normalized and smoothed with a 3-mm full-width 

at half maximum Gaussian kernel.  

ROI definition 

In a first analysis we used a GLM to define functional regions of interest (ROIs) based 

on voxels that were responsive to the visual stimulus. Two types of functional ROIs were 

defined accordingly: group functional ROIs and individual functional ROIs. The GLMs were 

performed in the Freesurfer average brain space with the contrast of visual stimulation blocks 

versus the inter-trial-intervals for each subject. The GLM fitted the hemo-dynamic response 

(HRF) with a gamma function (delta = 2.25, tau = 1.25) and modeled the drift with an order 1 

polynomial. At the time of the analysis, we used an older version of the FS-FAST software, 

in which this gamma function was the default model for fitting the hemodynamic response. 

Note, however, that we also replicated our main analysis using the canonical HRF, and the 

results did not show any significant difference. For all other parameters of the GLM we used 

the default settings from FS-FAST.  

A group analysis was performed to define significant clusters using this contrast. We 

used a voxel-wise p of 0.001, and a cluster-wise p of 0.0005 to define the visual clusters at 

the group level.  

We also defined three functional ROIs at the individual-subject level, in V1, V2 and in 

extrastriate areas outside of V1 and V2. For each anatomical region, we found the connected 

cluster containing the most significant voxels (lowest p-value), then increased the cluster-

forming p-value threshold gradually until a preset number of voxels was reached. By doing 

this, we obtained a ROI in V1, with approximately 100 voxels (R1-100). Likewise, we 

applied the same method in V2 to define R2-100, and in the areas outside of V1 and V2 to 

define R3-100. (See Figure S1 for the results of corresponding ROIs with 50 and 200 voxels) 
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Analysis of BOLD modulation by alpha envelope in the ROIs 

We next analyzed whether BOLD activity in the ROIs was modulated by the alpha 

envelope. To determine which ROIs co-varied with the alpha envelope of the reconstructed 

EEG, we performed a first-level GLM for each subject in the Freesurfer average brain space. 

The amplitude envelope in the alpha band was used as a parametric regressor and motion 

parameters were included as nuisance regressors. The GLM was performed separately for 

these regressors. The HRF was modeled as a gamma function (delay = 2.25, tau = 1.25) and 

the drift was modeled with an order 2 polynomial. To test the statistical significance of alpha 

modulation in each ROI, we performed a one sample t test using β estimates of all voxels in 

the ROIs defined from the ROI definition analysis above. 

Whole brain analysis of BOLD modulation by the alpha envelope 

A group level GLM was applied to test the correlation between the BOLD activity and 

the reconstructed EEG alpha envelope in the whole brain defined by the FreeSurfer atlas. 

Specifically, a one sample group mean analysis was conducted using the mri_glm-fit 

command (with the –osgm flag) in FreeSurfer to test whether the beta values of each voxel 

from each subject’s GLM were significantly higher than 0 over the group. The runs with high 

variance were de-weighted (with the -wls cesvarpct flag). We used a voxel-wise p of 0.05 as 

the threshold to visualize the voxels that were significantly modulated by the alpha envelope.  

Correlating ROI BOLD activity with voxel-wise response variance 

In subsequent analyses, we investigated the relationship between response variability of 

voxels in V1 and V2 (R1 and R2 included) during visual stimulation and the level of the 

BOLD response in each voxel (this analysis was intended to evaluate the possibility of a 

saturation effect in strongly activated voxels which could have masked alpha-related 

fluctuations). To quantify the variability of each voxel, we calculated the standard deviation 

(SD) of the percent signal change (PSC) within a fixed time window (5 - 28 seconds for each 

trial, same time window as the time window used to define the regressors). For each voxel, 

the preprocessed BOLD time series of each trial was extracted and converted to PSC by 

dividing the BOLD signal by the prestimulus baseline (6 seconds). The SD of the PSC was 

calculated across time per trial and further averaged across trials, runs and subjects. To 

estimate the level of the BOLD response in each voxel, we used the T value of the stimulus-
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on vs. stimulus-off contrast for each voxel. Finally, we calculated the correlation between the 

T value and the SD of the PSC across voxels. 

Correlating the BOLD activity in V1 and V2 with other frequency envelopes 

Finally, we tested if other frequencies significantly correlated with the BOLD in V1 and 

V2. As done for the alpha-band envelope, for each subject we used the delta, theta and beta 

envelopes as parametric regressors and performed separate first level GLMs for each 

regressor. Motion parameters were used as nuisance regressors. The HRF and the drift were 

modeled using the same function as above. We next performed a one sample t-test to test 

whether the β estimates of all the voxels in V1 and V2 from these first level GLMs were 

significantly higher than 0, and a nonparametric permutation test to determine if the β 

estimates of any frequency were higher than those of the other frequencies.  

 

 

3.4 RESULTS 
 

We first determined the voxels that were activated by the stimulus, by contrasting 

stimulus on versus off periods. A group level analysis revealed two clusters of activity in the 

right hemisphere: cluster one (C1, Figure 2, left) was located in the lingual gyrus below the 

calcarine fissure, and extending towards the fusiform gyrus (p<0.05 corrected, MNI 

coordinates: x = 21.9, y = -79, z = -8.3). The second cluster (C2, Figure 2, right) of activity 

was found in the lateral occipital gyrus (p<0.05 corrected, MNI coordinates: x = 41.3, y = -

72.6, z = -0.5). There was no corresponding cluster in the left hemisphere, since the stimulus 

was lateralized to the left. These two clusters C1 and C2 were considered as group functional 

regions-of-interest (ROIs). In addition to these two ROIs, we defined three other group 

functional ROIs by considering the overlap of C1 and C2 with the Freesufer-atlas based 

definitions of V1 and V2: R1 and R2, the intersection of C1 with V1 and V2 respectively, 

and R3, which were the voxels in C1 that were not in V1 or V2. Additionally, Freesufer-atlas 

based V1 and V2 were defined as anatomical ROIs. (Figure 2). Finally, we defined functional 

ROIs at the individual-subject level (with a pre-determined voxel number: 100 voxels) in V1, 

V2 and in extra-striate areas outside of V1 and V2. As some voxels shared the same p-value, 

the selection of the most significant voxels did not always return the exact number of 
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expected voxels. Across subjects, the regions actually contained 103.1+-5.1 voxels (R1, 

mean+-sd), 109.4+-17.7 voxels (R2) and 111.2+-12.2 voxels (R3).  

Since alpha is the main frequency component in the IRF, we first used the 7-14Hz (alpha) 

envelope of the reconstructed EEG as a regressor in the fMRI analysis to determine which 

ROIs co-vary with the perceptual echoes induced by the white-noise luminance sequence. In 

order to test the significance, we conducted a t-test and a permutation test. For the 

permutation test, we created 2000 surrogates by shuffling the alpha envelopes of all the trials 

for each subject and performed the first-level GLM on the shuffled data. P values of the mean 

coefficients were computed from the percentile within the permuted null distributions. In the 

pre-defined group-level functional ROIs (C1, C2, R1, R2 and R3) we found that BOLD 

activity was not significantly modulated by the alpha envelope of the reconstructed EEG 

(Figure 3A, middle). The mean coefficient of R1, R2, R3, C1 and C2 was close to 0, with 

large inter-subject variability (t-test against 0: R1 t(20) = -0.0734, p = 0.9422, R2 t(20) = 

0.3510, p = 0.7295, R3 t(20) = 0.1249, p = 0.9019, C1 t(20) = 0.1748, p = 0.8631, C2 t(20) = 

0.4264, p = 0.6746. Permutation test: R1 p = 0.5400, R2 p = 0.4900, R3 p = 0.5000, C1 p = 

0.4800, C2 p = 0.4300). Likewise, the individual-level functional ROIs were insignificant, 

even though the alpha envelope modulation of R1-100 was visibly higher than in the other 

functional ROIs (Figure 3A, left) (t-test against 0: R1-100 t(20) = 1.1484, p = 0.2650, R2-100 

t(20) = 0.1195, p = 0.9061, R3-100 t(20) = -0.4706, p = 0.6433. Permutation test: R1-100 p = 

0.1400, R2-100 p = 0.5200, R3-100 p = 0.7500). Besides, the individual functional ROIs with 

50 voxels and 200 voxels also did not show significant alpha modulation (Figure S1). 

However, the mean coefficients for V1 and V2 were significantly higher than 0 in both 

hemispheres (Figure 3A, right). The corresponding statistical tests revealed: for Right V1, t-

test against 0: t(20) = 2.3976, p = 0.0269, mean = 0.0072, 95% CI = 0.0009 – 0.0135. 

Permutation test: p = 0.01, 95% CI = -0.0060 – 0.0054; Right V2, t-test against 0: t(20) = 

2.2400, p = 0.0372, mean = 0.0058, 95% CI = 0.0004 - 0.0111. Permutation test: p = 0.02, 

95% CI = -0.0050 – 0.0051; Left V1, t-test against 0: t(20) = 2.7072, p = 0.0140, mean = 

0.0081, 95% CI = 0.0018 – 0.0143. Permutation test: p = 0.01, 95% CI = -0.0056 – 0.0061; 

Left V2, t-test against 0: t(20) = 2.2635, p = 0.0355, mean = 0.0057, 95% CI = 0.0004 - 

0.0110. Permutation test: p = 0.02, 95%, CI = -0.0048 – 0.0047. The t-tests and permutation 

test for V1 and V2 were conducted using all voxels in V1 and V2. In agreement with these 

findings, a whole-brain analysis revealed wide-spread BOLD activity modulation by the 

alpha envelope bilaterally in V1 and V2 (Figure 3B).  
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Figure 2. A) Group level retinotopic activation in early visual areas of the right hemisphere. The light 

purple represents the location of the primary visual area (V1) and the darker purple represents the 

location of the secondary visual area V2, which were extracted with the Freesurfer atlas. Statistical 

analysis at the group level revealed 2 clusters of retinotopic activity in response to the stimulus 

(red/yellow): cluster one (C1) on the left is located below the calcarine sulcus (MNI coordinates: x = 

21.9, Y=-79, Z=-8.3) with partial overlap with V1 and V2, and cluster 2 can be seen in the right panel, 

possibly corresponding to lateral occipital cortex (LOC). R1, R2 and R3 were defined as: R1 = V1 ∩ 

C1, R2 = V2 ∩ C1, R3 = C1 – (V1 ∪ V2). Color bar represents -log10 of p value of F-test against 0. 

B) Distribution of t-values (voxel count) for the contrast between stimulus-periods and fixation-

periods. The functional ROI was defined as t>5 (red shaded area), and only includes right-hemisphere 

voxels (as expected, since the stimulus is located in the left hemifield). In both Left and Right V1-V2 

voxels, there is a significant trend towards negative values: 63% and 55% of voxels (respectively) had 
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negative stimulus responses, and this proportion was significantly larger than 50% (binomial test, 

p<10-10 in both cases). 

 

 

Figure 3. A) Beta weights of modulation of BOLD activity by the alpha envelope of the reconstructed 

EEG in the regions of interest. Bars represent mean ±s.e.m across subjects. No individual-level (left) 

or group-level (middle) functional ROIs were significantly modulated by the perceptual echoes. In 

contrast, BOLD activity in bilateral V1 and V2 (anatomical ROIs) was significantly modulated by the 

alpha component of the reconstructed EEG (right). The black asterisks represent significant difference 

against 0, t-test across subjects (N=20, p < 0.05). The red asterisks indicate the coefficient is 
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significantly higher than the null hypothesis distribution of the surrogates (non-parametric test). B) 

Whole brain analysis of regions correlated to fluctuations in the alpha power envelope in the right and 

left hemispheres. The activations extend well beyond the stimulus responsive regions of interests (C1 

outlined in green) into V1 and V2 (outlined in white). The significant voxels computed from the 

group-level GLM are shown in red/yellow at a threshold of p < 0.05 (-log10(0.05) =1.3). The color 

bar represents -log10 of p value of F-test against 0. Note that no significant negative correlations of 

BOLD with alpha envelope were observed in visual areas (and only few sparsely distributed negative 

correlations over the rest of the brain), hence the color scale only displays positive correlations. 

 

These results indicate that the reconstructed envelope of EEG alpha was significantly 

correlated with BOLD responses in V1 and V2. Surprisingly however, this correlation was 

visible outside, but not within the directly (retinotopically) stimulated region (C1). This 

leaves two important issues to address: first, the absence of alpha modulation in the stimulus-

responsive ROI, where we could have naturally expected it; second, the presence of alpha 

modulation in unstimulated regions of visual cortex, reaching as far as the opposite 

hemisphere. We tentatively interpret the first issue as a consequence of signal saturation, and 

the second as a signature of wide-spread inhibition, as detailed below. 

First, we hypothesized that the lack of alpha modulation in the stimulus-responsive ROI 

(C1) may reflect saturation in these voxels by the continued presence of the visual stimulus. 

As a result of this saturation effect, we hypothesized that these voxels would not be 

susceptible to the smaller and rapid modulations in the luminance of the stimulus. In other 

words, over the group of voxels, we would expect voxels that have high levels of response 

(e.g., those within the retinotopically stimulated regions) to have lower response variability 

(since they would not be modulated by the random changes in stimulus luminance). In 

contrast, voxels that are modulated (possibly indirectly) by the luminance changes but not 

saturated by stimulus presentation, would show larger signal variability, but a lower BOLD 

response. In other words, over the group of voxels, we expected a negative correlation 

between the BOLD response and signal variability of voxels in V1 and V2. To test this 

hypothesis, we analyzed the relationship between the SD of PSC (a measure of signal 

variability) and the T value of the stimulus-on vs. stimulus-off contrast (a measure of BOLD 

response) of each voxel in V1 and V2. The SD of the PSC of each voxel in V1 and V2 (as 

explained in the Methods Section) was averaged across trials, runs and subjects. The results 

showed that the T value was negatively correlated with the SD of PSC (r = -0.1538, p < 0.01). 
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In other words, as predicted, the overall stimulus-induced BOLD response was inversely 

related, across voxels, to the signal variability over time. This is compatible with the notion 

that signal saturation prevented us from observing alpha amplitude fluctuations in the 

retinotopic regions of interest (C1 and C2). 

Second, we turned to the observation of widespread alpha-IRF modulations across V1 

and V2, bilaterally in both hemispheres. One possible interpretation could be that it was 

stimulus-dependent inhibition, rather than excitation, outside of the stimulus-responsive ROI 

that led to the widespread alpha-IRF modulations by routing information. To explore this 

possibility, we first looked into the distribution of stimulus-related BOLD activity across 

early cortex (V1-V2), that is, the contrast between stimulus periods and fixation periods 

(Figure 2B). We found indeed, in addition to a number of voxels with high t-values in the 

right hemisphere (t>5.0, corresponding to our ROI), a general shift of the distribution towards 

negative BOLD activations. This negative trend was significantly present in both left and 

right V1-V2, even though the stimulus was lateralized (63% and 55% voxels in left V1-V2 

and right V1-V2 respectively had negative responses to stimuli, binomial test: p < 10-10 in 

both cases). This is compatible with broadly distributed inhibition outside of the stimulus 

region. Even though such inhibition could happen without any relation to the stimulus 

fluctuations, the fact that the many voxels in the same broad region also show positive 

correlation with the reconstructed EEG envelope hints at a possible functional relation 

between neural inhibition and alpha IRF propagation. The existence of such a relation is 

further supported by two observations: first, there is a weak but significant negative 

correlation across voxels between the t-value of stimulus response and the t-value of the 

alpha IRF modulation (r=-0.018, p<0.04); second, the voxels that were most significantly 

modulated by the alpha IRF (voxels mapped in Figure 3B) tended to have negative t-values 

for stimulus response (54.4% negative values, p=0.0001, binomial test). 

Finally, we asked if activity in V1 and V2 was exclusively modulated by alpha, or if 

other frequency bands also modulated the BOLD signal. We implemented separate GLMs 

with the envelopes of the reconstructed EEG filtered in the delta, theta, alpha and beta bands 

as regressors for the BOLD activity. The results, shown in Figure 4, revealed that the 

coefficients from these other frequency bands were not significantly higher than zero (V1 and 

V2: delta t(20) = 1.1142, p = 0.2791, theta t(20) = 1.0316, p =  0.3152, alpha t(20) = 2.5357, 

p = 0.0202, beta t(20) = -0.1720, p = 0.8653). A nonparametric permutation test was 
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conducted to determine if IRF-dependent BOLD modulations at any frequency were higher 

than for the other frequencies. Surrogates were computed by shuffling the correlation 

coefficients across all frequency bands in single-subject data for each anatomical ROI (left 

V1, left V2, right V1 and right V2), then averaging across subjects and ROIs. The 95% and 

99% CI as well as the p-values were taken from the null distribution composed of these 

surrogates (Permutation test: delta p = 0.6000, theta p = 0.4200, alpha p = 0.0020, beta p = 

0.9800).  

 

Figure 4. Coefficients of the modulation of BOLD activity by the reconstructed EEG envelope 

of delta, theta, alpha and beta band frequencies. The bars represent the mean, and the error bars 

represent the standard error of the mean across subjects. The black asterisk represents significant 

difference against 0, t-test across subjects (N = 20, p < 0.05). The red asterisk indicates the coefficient 

is significantly higher than the 95th percentile of the null hypothesis distribution (non-parametric test 

against other frequencies). This figure shows that the BOLD activity is only modulated by alpha 

envelope. The gray and black dash lines indicate the 95% and 99% CI of the null distribution. 
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3.5 DISCUSSION 
 

In this study, we conducted an EEG-fMRI experiment to investigate the neural 

basis of the IRF. We first measured the IRF of each subject in the EEG session. We then 

reconstructed an estimate of the EEG signal by convolving the IRF with the stimuli 

presented in the fMRI session. The envelopes of reconstructed EEG signals in the theta, 

alpha, beta and gamma bands were taken as regressors for the GLM. We found that the 

envelope of the EEG alpha, but not the other frequencies, was positively correlated with 

BOLD activity in V1 and V2, but surprisingly not with activity in the retinopically 

stimulated regions. We hypothesize that the lack of effect in the retinopically stimulated 

ROIs might be due to a saturation effect by the visual stimulus. 

The activations found in early visual areas (Figure 3) are in line with the 

observation that the IRF is a visual response, strongest in posterior regions (VanRullen & 

MacDonald, 2012). Intriguingly, large-scale activations were found in left V1 and V2, i.e., 

in the hemisphere that was not directly stimulated (Figure 3B). Let us first consider the 

possibility that subjects may have directly perceived the stimuli in their right visual field. 

This could have occurred for example because of unwanted eye movements, or possibly 

because of stimulus illumination reflecting off of the inner walls of the MRI. To avoid 

this second possibility, we had elected to use smaller stimuli than in our previous studies 

(2 degrees vs. 7 degrees in VanRullen & Macdonald, 2012 and subsequent studies). To 

avoid the first possibility, we instructed subjects to fixate in the center of the screen, and 

avoid unnecessary eye movements. The circumscribed stimulus-related activations in 

relatively small sub-regions of V1 and V2 of the right hemifield when contrasting 

stimulus-on and stimulus-off periods (Figure 2) suggest that subjects successfully 

maintained fixation and that the stimulus position was spatially restricted, as intended. If 

subjects had made systematic eye movements or if the stimulus had been reflected at 

distant positions, we would have expected instead a broader pattern of stimulus 

activations, possibly extending to the other hemifield. Hence, the alpha-envelope induced 

activations in the left hemisphere (Figure 3B) appear to be due to IRF propagation across 

hemispheres. This would be consistent with previously reported findings that the IRF 

propagates as a traveling wave (Alamia & VanRullen, 2019; Lozano-Soldevilla & 

VanRullen, 2019). In particular, the study by Lozano-Soldevilla and VanRullen (2019) 

pointed out that the propagation of the IRF to lateralized WN sequences follows 
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retinotopic rules such that it can travel from contra-lateral to ipsi-lateral regions, in 

agreement with the current results.  

It is reasonable to compare our results with those of EEG-fMRI studies of the 

generators of the alpha rhythm, because of the relation between the IRF and the alpha 

rhythm—even though the current understanding of alpha generators is incomplete. The 

EEG alpha power was found to be negatively correlated with BOLD activity in occipital 

cortices in both resting-state studies (de Munck et al., 2007; DiFrancesco et al., 2008; 

Goldman et al., 2002; Gonçalves et al., 2006; Laufs, Kleinschmidt, et al., 2003; Laufs, 

Krakow, et al., 2003; Moosmann et al., 2003) and during task performance (Scheeringa et 

al., 2009; Scheeringa et al., 2016; Zumer et al., 2014). On the contrary, we found the IRF 

envelope to be positively correlated with V1 and V2 BOLD signals. The common neural 

basis (early visual areas) together with the opposite activation profiles (i.e., opposite 

correlations with the BOLD) indicate that the IRF and the EEG alpha rhythm might share 

neural pathways, but serve distinct functional roles in the brain.  

The results of the present study suggest that the IRF in response to left-visual field 

stimuli might have originated from one or multiple starting points in the right early visual 

cortex (V1, V2), from which it spread over much of the early visual cortex. The 

activation at the origin could not be directly measured, presumably because of BOLD 

saturation effects, however its propagation to distant parts of the visual cortex, including 

the opposite hemifield, was readily visible. It is plausible that this propagation of IRF 

oscillations to distant parts of the visual cortex may be associated with stimulus-

dependent inhibition of non-task-related regions, though this conclusion may require 

further confirmation. Our findings are of importance for further studies to locate the 

origin of the IRF more precisely. For example, future studies could specifically record the 

IRF in V1 and V2 using intracranial recordings during different visual tasks, to better 

understand where and when the IRF appears, and how it propagates to other parts of the 

visual cortex.  

In conclusion, our study found BOLD activations whose time course was related to 

the IRF envelope in the early visual cortex. The widely spread activation might be due to 

the propagation of (possibly inhibitory) IRF traveling waves (Lozano-Soldevilla & 

VanRullen, 2019; Alamia & VanRullen, 2019). Our study advances our knowledge of the 

spatial properties of the IRF by narrowing down its neural basis, therefore paving the way 
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for future studies to precisely localize the generator(s) of the IRF and deepen our 

understanding of its functional relevance.  
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Another sampling: from visual perception to 

attention. 

We now know that the echoes might come from early visual areas, which is not 

surprising since alpha or the echoes are mostly observed at the occipital electrodes. Unlike 

visual sampling demonstrated by perceptual echoes, attentional sampling exhibits lower 

oscillatory frequency and might entail more distributed brain areas (see section 1.4.3 

oscillations in attention). Theta oscillations have been observed in multiple regions, such as 

V4, IT, and the attention network. According to the hypothesis of perceptual cycles, these 

theta oscillations may be the source of the theta rhythm of attentional sampling. For 

unraveling the neural mechanism of attentional sampling, it is important to establish the link 

between neural activity and behavioral performance. As mentioned in the introduction, a 

monkey study found that visual competition can lead to theta activity in V4, which correlates 

with the oscillation of saccadic RT. Here we further investigate if the visual competition 

gives rise to attentional sampling at theta band in humans. 
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4 CHAPTER 4. ATTENTION SAMPLING ARISES FROM 
NEURAL COMPETITION 

This chapter contains the original manuscript that appeared as: Chota, S. *, Luo, C. *, 
Crouzet, S. M., Boyer, L., Kienitz, R., Schmid, M. C., & VanRullen, R. (2018). Rhythmic 
fluctuations of saccadic reaction time arising from visual competition. Scientific reports, 
8(1), 1-7. *Co-first author with Samson Chota. 

 

4.1 ABSTRACT 

Recent research indicates that attentional stimulus selection could be a rhythmic 

process. In monkeys, neurons in V4 and IT exhibit rhythmic spiking activity in the theta 

range in response to a stimulus. When two stimuli are presented together, the rhythmic 

neuronal responses to each occur in anti-phase, a result indicative of competitive interactions. 

In addition, it was recently demonstrated that these alternating oscillations in monkey V4 

modulate the speed of saccadic responses to a target flashed on one of the two competing 

stimuli. Here, we replicate a similar behavioral task in humans (7 participants, each 

performed 4000 trials) and report a pattern of results consistent with the monkey findings: 

saccadic response times fluctuate in the theta range (6 Hz), with opposite phase for targets 

flashed on distinct competing stimuli. 

4.2 INTRODUCTION 

Many exploratory actions such as eye movements reveal a specific rhythmicity upon 

closer inspection. During overt saccadic exploration of the visual field, saccades occur 

approximately every 200 ms i.e., at 5 Hz (Hogendoorn, 2016; McLelland et al., 2016; Otero-

Millan et al., 2008). Moreover, even in the absence of eye movements, target detection rates 

have been shown to vary as a function of the cue-target interval at a similar frequency. It has 

been proposed that these behavioral fluctuations emerge from rhythmic attentional processes 

in the theta range (Fiebelkorn et al., 2013; Holcombe & Chen, 2013; Landau & Fries, 2012; 

Song et al., 2014; VanRullen et al., 2007). Spatial covert attention paradigms have suggested 

that multiple objects in the visual field are rhythmically and sequentially sampled and that 

these attentional sampling rhythms are related to brain oscillations in the 4-8 Hz range 

(Busch & VanRullen, 2010; Crouzet & VanRullen, 2017; Dugué, Marque, et al., 2015). In 

addition, causal evidence was provided by Dugu´e, Marque and VanRullen (Dugué et al., 
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2011) who used non-invasive brain stimulation, demonstrating that stimulus processing is 

vulnerable to disturbances via single TMS pulses at constant intervals in the theta range.  

In a recent study, Kienitz et al. linked theta oscillations in macaque V4 to an attentional 

sampling process (Kienitz et al., 2018). V4 has been previously related to attention, e.g. via 

lesion studies (DeWeerd et al., 1999). Furthermore, sporadic theta oscillations have been 

measured in V4 as well as in inferotemporal cortex when the animals were viewing a single 

stimulus (Lee et al., 2005; Nakamura et al., 1991; Sato et al., 1980; Sheinberg & Logothetis, 

1997; Tamura & Tanaka, 2001); when two stimuli were shown together, the competition 

between them resulted in intricate theta-band oscillatory phase relations between the 

corresponding IT neural responses (Rollenhagen & Olson, 2005). Building on these findings, 

Kienitz et al. (Kienitz et al., 2018) showed that the presence of two visual objects, one in the 

excitatory center ("object") and one in the inhibitory surround (“flanker") of a V4 neuron’s 

receptive field (RF), resulted in theta-rhythmic multi-unit-activity (MUA). Furthermore, they 

showed that the saccadic reaction times to targets presented in either of the two stimuli were 

subject to similar fluctuations at 3-6 Hz. Most importantly, the phase of both RT time-series 

and MUA oscillations depended on the order of display onset between the object and flanker 

stimuli. The authors demonstrated that these theta-rhythmic fluctuations emerge from 

competitive receptive field interactions, and could at least partially underlie the rhythmic 

attentional sampling of multiple objects observed in numerous human studies (Busch & 

VanRullen, 2010; Crouzet & VanRullen, 2017; Dugué, McLelland, et al., 2015). 

In the current study, we investigate this question in human subjects, using a behavioral 

spatial attention paradigm directly inspired by this monkey study (Kienitz et al., 2018). A 

central disk object and two bar flankers were presented in the periphery with asynchronous 

sequential onset (500 ms SOA), and remained on the screen while participants maintained 

fixation. After a varying SOA following the second stimulus onset, a target was presented 

either in the central object or the flankers. The subjects were instructed to perform a saccade 

to the target. Reaction times was investigated as a function of the SOA between the second 

stimulus and the target. As found in monkeys, the analysis of RT time-series revealed an 

oscillation at approximately 6 Hz; furthermore the phase of this oscillation was dependent on 

both the initial stimulus order (object- or flanker-first) and on the location of the target 

(object or flanker). 
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4.3 MATERIALS AND METHODS 

4.3.1 Participants 

Seven volunteers (aged 19-25, 3 females, all right-handed) with normal or corrected to 

normal vision participated in the experiment. Informed consent forms were signed before the 

experiment. The experiment was carried out in accordance with the protocol approved by the 

Centre National de la Recherche Scientifque ethical committee and followed the Code of 

Ethics of the World Medical Association (Declaration of Helsinki). 

Stimuli were presented at a distance of 50 cm with a cathode ray monitor (1280×1024 

resolution, 85 Hz refresh rate) using the Psychophysics Toolbox (Brainard, 1997) running in 

MATLAB (MathWorks). Eye movements were recorded and monitored online using an 

EyeLink 1000 Desktop Mount (SR Research). A 9-point calibration was performed before 

each block of trials. Throughout the Methods section we will explicitly note the differences 

with the monkey study by Kienitz et al. (Kienitz et al., 2018). If no mention is provided, task 

parameters at hand were kept identical. Stimuli consisted of a fixation dot (central black dot, 

diameter=0.3°; [0.07° in Kienitz et al. 2018]), the object (a black disk in the lower right part 

of the screen, 2° diameter, positioned 4° right and 2° down from fixation center [in Kienitz et 

al. 2018 the disk was positioned, within the RF of a V4 neuron]) and the flankers (two bars 

above and below the disk, height=1°, width=0.25°, 1° gap between disk and each bar) (Fig. 

1). Stimuli were presented on a gray background.  

After a pseudo-random (400-800 ms [1000 ms in Kienitz et al. 2018]) interval during 

which participants maintained central fixation, the first stimulus of the sequence, either the 

Object or the Flankers, appeared. We introduced a variable delay in this pre-stimulus interval 

to counteract potential attentional effects that could be introduced by the predictability of the 

stimulus onset. The second stimulus (the Flankers if the Object was presented first and vice 

versa) was added to the display 500 ms later [Object was always presented first in Kienitz et 

al. 2018]. After another variable SOA (250 to 1250 ms, in steps of 12 ms [0 to 750 ms, in 

steps of 37.5 ms in Kienitz et al. 2018]) a small target (0.2°diameter white dot) then appeared 

for a single frame (12 ms [8.3 ms in Kienitz et al. 2018]), either in the center of the upper 

flanker or the center of the disk object. In one out of 16 trials ([1 out of 3 in Kienitz et al. 

2018]), no target was presented (catch trials). This reduction in the number in catch trials still 

allowed us to reliably control for non-target related saccades. 
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Figure 1. Experimental Protocol. Trials started with a fixation period during which participants 

maintained fixation for a variable delay between 400 to 800 ms. Following the fixation period the first 

stimulus (object or flanker) was presented for 500 ms after which a second object (flanker if object 

first (OF#) and vice versa (FO#)) was added. After a variable SOA of 250 to 1250 ms (in steps of 12 

ms) a target was presented for 12 ms, either in the center of the object (##O) or in the flanker (##F). 

Participants were instructed to respond to the target with a saccade towards the stimulus in which it 

appeared 

 

For consistency and clarity we will now refer to the four possible (non-catch) trial types 

as the conditions: OFO, OFF, FOO, FOF, where the 1st letter denotes the first stimulus onset 

(O for object, F for flanker), the 2nd letter corresponds to the second stimulus presented 

(identical notation), and the third to the stimulus in which the target appeared (identical 

notation) (See upper part of Fig. 2). 

The timing of the target relative to the onset of the second stimulus (so-called stimulus 

onset asynchrony or SOA), was drawn from a uniform distribution with 85 steps from 250 to 

1250 ms (corresponding to the refresh rate of the screen). The SOA tested on each trial was 

optimized online to equalize the number of trials obtained for each of the 85 SOA conditions: 

if a trial was not valid (see below), the same SOA value was more likely to be tested again. 

The luminance of the target was adapted separately for each condition using a QUEST 

procedure (Pelli & Watson, 1983) so that each participant’s detection performance remained 

around 90%. We chose the 90% threshold in order to collect sufficient trials that could be 

entered in our analysis and at the same time require participants to pay attention. Because of 
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the high number of trials, involving multiple sessions over several days, the luminance value 

defined by the QUEST procedure was adapted dynamically, based only on the last 40 trials. 

Participants had to respond to the target by performing a saccade towards it. A saccade 

was considered valid if it landed in one of two 2° square boxes centered respectively on the 

object and upper flanker. Only valid saccades were included for further analysis. Reaction 

times (RT) were defined as the time between target onset and the time at which the eye 

position left a fixation region of 1° radius around the fixation point. Saccade durations were 

defined as the interval between the eye leaving the fixation region and the eye landing on one 

of the two boxes centered on the object or flanker. To encourage participants to respond as 

fast as possible, online RT measurement were used and a message saying “TOO SLOW” was 

displayed if the RT of a given trial was above 2.5*SD from average (the average was 

calculated based only on valid trials (see below)). The experiment was stopped automatically 

when a participant obtained 4000 valid trials (split in blocks of 64). A trial was considered 

valid if (1) a target was presented, (2) the participant made a valid saccade to the correct 

location and (3) the RT was not an outlier (limits corresponding to 2.5*SD, updated online 

after each trial by considering all previous trials, even non-valid ones). 

4.3.2 Data Analysis 

During preprocessing, we removed all trials in which the saccade duration was above 

70 ms, or the luminance value selected by the QUEST was outside the 2.5*SD limits (across 

all luminance values tested). For the RT analysis, we considered only trials in which a target 

was present (15 out of 16 trials) and the saccade was made to the correct location. This 

resulted in the inclusion of 72.67% of all trials on average (±5.62% standard error of mean 

across subjects).  

To increase the number of trials per bin, SOA values were binned in groups of 3 

(resulting in a change of effective sampling frequency from 85 Hz to 28 Hz). We validated in 

a separate re-analysis (not detailed here) that the exact position of the bin limits did not affect 

any of our findings. All the results were analyzed based on the binned SOA values. Single-

trial RT values were then aggregated for each condition and SOA bin, outliers were removed 

(values outside 2.5 SD around average), and averages computed to obtain RT time-series 

(average RT as a function of SOA) for each of the 4 types of sequences (OFO, OFF, FOO, 

FOF) and each subject. 
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We observed a strong negative trend in the RT time-series: early SOAs resulted in 

much slower RTs for most subjects. We attribute the slow RT decrease to the hazard rate 

although an additional forward masking effect could contribute to the early RT’s (200 ms). 

To minimize the influence of these factors, RT time-series were de-trended using a second 

order polynomial (as is commonly done in most previous studies investigating oscillations of 

behavioral measures) 

4.3.3 Frequency Analysis 

RT time-series were analyzed in the frequency domain using both FFT and Hilbert 

methods. The 28 SOA values over a one second window allowed for a Nyquist frequency of 

14 Hz. The complex FFT coefficients were squared to obtain oscillatory power at each 

frequency (Figs 2C,D and 3C,D). 

4.4 RESULTS 

In the current experiment we investigated these fluctuations in a target detection task in 

humans, directly mirroring one part of the monkey study by Kienitz et al. (Kienitz et al., 

2018). We presented a first stimulus, to which a second one was added (Fig. 1). A target was 

then presented in either of the two objects with many possible SOA’s, spanning a 1000 ms 

interval in 12 ms steps. The participant was instructed to make a saccade to the target as fast 

as possible. We analyzed the reaction times as a function of the variable SOA. The dense 

temporal sampling of the target interval allowed us to quantify these behavioral modulations 

using frequency decomposition methods (Fourier and Hilbert transforms). 

4.4.1 Fluctuations in RT time-series 

To investigate rhythmic fluctuations in behavior, we performed a frequency analysis on 

the RT time-series for each condition separately. Although the average time courses (Fig. 2A, 

B) do not show evident oscillations (possibly due to small differences in phase or frequency 

across subjects), the power spectra revealed a dominant oscillation at around 6 Hz for all 

conditions (Fig. 2C, D). To test if the observed peak at this specific frequency could be due to 

chance, we created 2000 surrogates by shuffling the 28 SOA-bin labels within subjects and 

within conditions and recalculating the power spectra. P-values were computed as the 

percentile of the mean power values within the bootstrapping distribution. This allowed us to 

test the null-hypothesis that all frequencies share similar power content. Both main data as 

well as the surrogates were de-trended. For all four conditions the observed spectral peak at 6 
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Hz proved to be significantly higher compared to the surrogate distribution (Fig. 2C, D; 

FOO: p = 0.0045, OFO: p = 0.0012, OFF: p < 0.0005, FOF: p = 0.0255). We observed 

additional significant peaks at 11 Hz (FOO: p = 0.043), 7 Hz (FOF: p = 0.0185), 14 Hz (OFF: 

p = 0.0095) as well as 1 Hz (OFF: p = 0.003; FOF: p = 0.021). As these additional effects 

were not consistent across the four conditions, we did not explore them further. The 6 Hz 

spectral peak, however, was present in all four conditions. Notably, the likelihood of all four 

conditions showing a significant peak at the same frequency would be extremely small under 

the null hypothesis: if the probability of one given frequency exceeding the statistical 

threshold is 0.05, then the likelihood of this event happening 4 successive times at the same 

frequency is 14 (frequencies) x 0.054 (conditions) = 0.0000875, i.e., p < 0.0001. We found 

no significant effect of stimulus sequence on the number of saccades during catch trials. 

 

Figure 2. Analysis of RT fluctuations for each condition. The four conditions are illustrated at the top 

for reference; they vary based on the order of presentation of the stimuli (Object-first or Flanker-first) 

as well as the site of target presentation (Object, Flanker). (A, B) RT time-series averaged across 

subjects (error bars indicate bootstrapped 95% CI) for each of the four conditions, grouped according 

to the site of target presentation (Object in A, Flanker in B). (C, D) Average power spectrum across 

subjects for each of the four conditions (grouped as previously). Dotted lines indicate the 
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bootstrapped 95% confidence interval under the null hypothesis that all frequencies have similar 

power. We observed a significant peak at 6 Hz for all four sequence types. 

 

4.4.2 Opposed sequences reveal anti-phasic RT fluctuations 

The spectral analysis illustrated in Fig. 2 reveals that all 4 experimental conditions 

display significant 6 Hz oscillations in behavioral RT time courses. Do all 4 oscillations share 

the same phase, or does the phase differ depending on task factors? In order to analyze 

potential differences in the phase of the observed oscillations, we subtracted the RT time-

series of conditions that had identical target locations. These conditions differed only in the 

history of object and flanker presentation times. Stimulus competition normally begins when 

the second object appears on the screen; according to the idea of rhythmic attention sampling, 

this competition would initially be biased towards the second object (the last one to appear), 

then attention would move on to sample the first, and rhythmically alternate between them on 

subsequent cycles (Fiebelkorn et al., 2011; Rollenhagen & Olson, 2005; VanRullen, 2013; 

VanRullen & Dubois, 2011). In other words, the phase of attention sampling (and thus the 

phase of behavioral RT oscillations, for a fixed target location) should be opposite for Object-

first and Flanker-first sequences. Such an anti-phasic relationship should be visible as an 

elevated peak in the power spectrum of the difference in the RT time-series. Conversely, if 

oscillations for the two conditions shared the same phase, the subtraction should reduce the 

amplitude of the 6 Hz spectral peak. 

As expected according to the rhythmic attention sampling idea, we observed an 

enhanced spectral peak at 6 Hz for both time-course subtractions (Fig. 3), indicating that the 

experimental conditions shared a frequency-specific oscillatory component, however with 

opposite phase for the two stimulation sequences. For both comparisons, the amplitude of the 

6 Hz peak in the subtraction was higher than that measured in either of the original signals 

(compare values in Fig. 3A, B with those in Fig. 2C, D), which is compatible with an anti-

phase, but not an in-phase relation between the stimulation sequences. The significance of the 

6 Hz peak (FOO minus OFO: p < 0.001, OFF minus FOF: p < 0.001, Bonferroni corrected) 

was confirmed by comparing it to a null hypothesis distribution, calculated by randomizing a 

subset of the target SOAs within subjects and between opposing sequences (FOO and OFO, 

OFF and FOF) 2000 times. The number of reaction times that were taken as the subset was 

determined by the total number of reaction times recorded for that specific SOA during the 
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experiment, resulting in an identical number of trials per SOA in the original and randomized 

datasets. This method revealed an additional significant peak at 3 Hz (p < 0.001) for the FOO 

minus OFO condition, however markedly smaller than the peaks at 6 Hz. 

 

Figure 3. Frequency Analysis of the difference in RT time series between conditions with identical 

target location (FOO vs. OFO in A, OFF vs. FOF in B). Light grey areas indicate the bootstrapped 

99.9% CI (99% in darker grey, 95% CI in darkest grey). Red dots indicate frequencies with 

significantly higher power compared to a null hypothesis distribution calculated by randomizing the 

SOAs within opposing sequences. 

4.5 DISCUSSION 

Our experimental paradigm was based on previous primate studies that investigated the 

oscillatory responses to competing stimuli (Rollenhagen & Olson, 2005; Kienitz et al., 2018). 

The paradigms used in these previous papers were as follows: A sequence of three stimuli 

was presented, Object followed by Flanker, or vice versa, followed by a target that could 

appear either in the Object or in the Flanker (Fig. 1). Firing responses of V4 and IT neurons 

selective for either of the stimuli (Object, Flanker) were recorded. The authors observed that 

firing rates oscillated at 4-5 Hz following stimulus presentation. Furthermore, if the neuron’s 

"preferred" stimulus was presented second, the same oscillation was observed but in anti-

phase (compared to the condition with \preferred" stimulus first). These oscillations were 

present but significantly weaker when only one stimulus was presented (even when it was the 

neuron’s preferred stimulus). Finally, the Kienitz et al. (2018) study further revealed direct 
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behavioral correlates of these oscillations, whereby rhythmic fluctuations of saccadic reaction 

times accompanied the firing rate oscillations. Altogether, these findings imply that the 

competition between visual neurons coding for distinct neighboring objects in the visual 

scene is modulated at around 4-5 Hz. The authors suggested that this modulation of 

competition might reflect a rhythmic attentional sampling mechanism, initiated by the 

sequential presentation of the two competing objects. 

Our experimental paradigm was based on previous primate studies that investigated the 

oscillatory responses to competing stimuli (Rollenhagen & Olson, 2005; Kienitz et al., 2018). 

The paradigms used in these previous papers were as follows: A sequence of three stimuli 

was presented, Object followed by Flanker, or vice versa, followed by a target that could 

appear either in the Object or in the Flanker (Fig. 1). Firing responses of V4 and IT neurons 

selective for either of the stimuli (Object, Flanker) were recorded. The authors observed that 

firing rates oscillated at 4-5 Hz following stimulus presentation. Furthermore, if the neuron’s 

\preferred" stimulus was presented second, the same oscillation was observed but in anti-

phase (compared to the condition with \preferred" stimulus first). These oscillations were 

present but significantly weaker when only one stimulus was presented (even when it was the 

neuron’s preferred stimulus). Finally, the Kienitz et al. (2018) study further revealed direct 

behavioral correlates of these oscillations, whereby rhythmic fluctuations of saccadic reaction 

times accompanied the firing rate oscillations. Altogether, these findings imply that the 

competition between visual neurons coding for distinct neighboring objects in the visual 

scene is modulated at around 4-5 Hz. The authors suggested that this modulation of 

competition might reflect a rhythmic attentional sampling mechanism, initiated by the 

sequential presentation of the two competing objects. 

An increasing number of studies have reported rhythmic fluctuations in perceptual 

performance. In the specific case of spatial attention, when multiple objects are presented on 

the screen, attention seems to alternatingly switch between the attended objects (Dugué et al., 

2011, 2016; Dugué, McLelland, et al., 2015; Fiebelkorn et al., 2013; Landau & Fries, 2012; 

Macdonald et al., 2014; VanRullen, 2013; VanRullen et al., 2007). This alternation is 

assumed to be instantiated by a sequential attentional sampling process that leads to 

behavioral oscillations that are out of phase for the different attentional targets. A crucial 

element in the investigation of attentional processes is the relationship between behavior and 

neuronal processes. While it is difficult to investigate theta oscillations measured from single 
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cells in humans, there are a number of electrophysiological EEG/MEG studies successfully 

relating theta rhythmicity in the human brain to attention. Busch and VanRullen (Busch & 

VanRullen, 2010) investigated pre-stimulus oscillatory activity, by contrasting trials in which 

target detection was successful to unsuccessful trials. They found that the pre-stimulus phase 

in the theta band was predictive of stimulus detection, however only for attended stimuli, 

indicating that attentional sampling operates at around 7 Hz. Landau et al. (Landau et al., 

2015) reported that pre-target gamma-band activity was modulated at 4 Hz when two stimuli 

were presented on the screen. Furthermore this modulation was predictive of task 

performance and provided important evidence for the hypothesis that the presentation of a 

relevant stimulus resets an ongoing attentional mechanism. These findings are especially 

relevant in the context of our study, since it is based on the assumption that the behavioral 

performance fluctuations are a result of a phase reset of an ongoing attentional oscillation by 

the stimulus onsets in the display sequence. 

The above mentioned studies indicate that the pre-stimulus phase of theta oscillations 

can predict performance (Busch & VanRullen, 2010; Dugué, McLelland, et al., 2015; 

Hanslmayr et al., 2013). This raises the question of how ongoing and evoked (phase-reset) 

theta oscillations interact to influence task performance. Insight can be provided by the 

findings of Dugue et al. (Dugu´e et al., 2015): In their EEG experiment on visual search they 

observed pre-stimulus theta phase opposition between successful and unsuccessful search 

trials, together with stronger post-stimulus theta phase-locking as well as higher post-

stimulus theta amplitude for successful compared to unsuccessful trials. This suggests that the 

pre-stimulus theta phase was indicative of both the post-stimulus EEG signal and of task 

performance; to account for this relation between pre- and post-stimulus oscillations, they 

assumed that the presentation of a stimulus only leads to a partial phase reset of ongoing theta 

oscillations. 

While our paradigm, closely resembling Kienitz et al. (Kienitz et al., 2018), was mostly 

concerned with covert attention, it remains unclear how our findings would translate to overt 

attention. Would we observe similar periodic fluctuations when observers are free to explore 

the visual scene? Interestingly eye movements occur approximately every 200-300 ms even 

in absence of a task, i.e. during free exploration (Otero-Millan et al., 2008). This rhythmicity 

is preserved if a target detection task is performed, in which participants can explore the 

visual scene freely (Hogendoorn, 2016). A crucial piece of evidence in the study by 
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Hogendoorn is the fact that the phase of the behavioral oscillation did not change as a result 

of the saccade, indicating that the saccades may have been executed as part of an underlying 

attentional oscillation. One interpretation of these results is thus that a unique theta-rhythmic 

sampling mechanism could underlie both overt and covert forms of spatial attention. 

Kienitz et al. (Kienitz et al., 2018) suggested that center surround interactions between 

neighboring stimuli in V4 might facilitate attentional stimulus selection. The fact that the 

excitatory center of V4-neurons found by Kienitz et al. (2018) showed maximal responses for 

stimuli measuring 2° of visual angle certainly restricts the conclusions that can be drawn in 

terms of larger objects or of wider distances. It is thus an open question how the brain could 

instantiate attentional selection among objects that are further spread across the visual field. 

Would this interaction still arise in V4, or in hierarchically higher areas with larger receptive 

field sizes spanning larger distances? It has been shown that similar behavioral competition 

can result in anti-phase theta-band rhythmic attentional sampling between two stimuli 

presented in opposite hemi fields (Fiebelkorn et al., 2013; Landau & Fries, 2012; VanRullen 

et al., 2007), and that corresponding neural correlates can be observed in visual cortex (based 

on MEG source reconstruction) (Landau et al., 2015). The precise neural source of this large-

scale rhythmic attentional sampling, however, remains to be determined by direct 

electrophysiological experiments. 

Our paradigm used 3 stimuli (one object and 2 flankers) of which 2 (the object and one 

flanker) were behavioral significant. It would therefore be highly interesting to investigate 

how attention behaves if the number of potential target positions is extended beyond 2. 

Similar experiments have been conducted by Holcombe and Chen (Holcombe & Chen, 2013) 

as well as Macdonald et al. (Macdonald et al., 2014). They suggest an attentional sampling 

mechanism with limited capacity, such that multiple objects are sampled less and less 

frequently with increasing numbers of objects. We intend to investigate this matter in future 

experiments. 

In conclusion we provided new evidence for a sequential attentional sampling 

mechanism in the theta range (6 Hz) in humans. Our findings support those of Kienitz et al. 

(Kienitz et al., 2018), and demonstrate similar behavioral patterns in monkeys and humans. 

Our conclusions provide further insight into how the brain resolves potential competition by 

using attentional mechanisms to rhythmically select relevant stimuli. 
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Switching roles: oscillations as a communicator in 

conscious perception 

Using a similar paradigm as Kienitz et al. (2018), the current study reveals theta rhythm 

in human saccadic RT, confirming that attentional sampling might be generated by visual 

competitions. Thus far, we have discussed the oscillations in visual perception and attention. 

The underlying alpha and theta activity require ensembles of neurons synchronizing at the 

same frequency, hence leading to perceptual sampling. Synchronization of neurons can 

facilitate neuronal communication (Fries, 2005, 2015). A more considerable amount of local 

and inter-area communication has been found in conscious perception compared to 

unconscious perception (Melloni et al., 2007). Can we still observe perceptual echoes, a 

potential driver of visual sampling, when subjects are not consciously perceiving the stimuli? 

In the next chapter, we will employ binocular rivalry to answer this question.  

 

 

 

 

 

 

 

 

 

 

 

 



94 

 

5 CHAPTER 5. CONSCIOUS PERCEPTION MODULATES 
PERCEPTUAL ECHOES 

This chapter contains the original manuscript that appeared as: Canhuang, L., VanRullen, 
R., & Alamia, A. (2020). Conscious perception modulates perceptual echoes. bioRxiv. 

 

5.1 ABSTRACT 

Alpha rhythms (~10Hz) in the human brain are classically associated with idling 

activities, being predominantly observed during quiet restfulness with closed eyes. However, 

recent studies demonstrated that alpha (~10Hz) rhythms can directly relate to visual 

stimulation, resulting in oscillations which can last for as long as one second. This alpha 

reverberation, dubbed Perceptual Echoes (PE), suggests that the visual system actively 

samples and processes visual information within the alpha-band frequency. Although PE 

have been linked to various visual functions, their underlying mechanisms and functional role 

are not completely understood. In the current study, we investigated whether conscious 

perception modulates the generation and the amplitude of PE. Specifically, we displayed two 

colored Gabor patches with different orientations on opposite sides of the screen, and using a 

set of dichoptic mirrors we induced a binocular rivalry between the two stimuli. We asked 

participants to continuously report which one of two Gabor patches they consciously 

perceived, while recording their EEG signals. Importantly, the luminance of each patch 

fluctuated randomly over time, generating random sequences from which we estimated two 

impulse-response functions (IRFs) reflecting the perceptual echoes generated by the 

perceived (dominant) and non-perceived (suppressed) stimulus respectively. We found that 

the alpha power of the PE generated by the consciously perceived stimulus was comparable 

with that of the PE generated during monocular vision (control condition), and significantly 

higher than the PE induced by the suppressed stimulus. Moreover, confirming previous 

findings, we found that all PEs propagated as a travelling wave from posterior to frontal brain 

regions, irrespective of conscious perception. All in all, our results demonstrate that 

conscious perception modulates PE, suggesting that the synchronization of neural activity 

plays an important role in visual sampling and conscious perception. 
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5.2 INTRODUCTION 

The alpha rhythms [8-12 Hz] is the most prominent oscillation in the human brain, and 

the first one to be described in human electrophysiological recordings (Berger, 1933). It 

involves most of the cortical regions, but it is most dominant in occipital and parietal areas. 

Its origin can be related to different processes: some studies pointed at the closed-loop 

interaction between cortical and thalamic regions, the latter acting as alpha pacemakers 

(Bollimunta et al., 2011; Lopes da Silva et al., 1973, 1980), but recent evidence indicated 

uniquely cortical mechanisms as responsible for its generation (Halgren et al., 2019). Just like 

distinct sources can produce alpha-band rhythms, similarly these alpha band oscillations are 

likely to serve different functions. On the one hand, alpha oscillations have been shown to 

strongly but negatively correlate with task demand and increasing attention, hence their 

presumed involvement in inhibitory functions (Gazzaley & Nobre, 2012; Jensen & Mazaheri, 

2010; Klimesch, 2012). On the other hand, alpha waves have been related to information 

processing, such as the temporal parsing of sensory information (Klimesch et al., 2007) or the 

perception of visual stimuli (VanRullen, 2016). Regarding the latter, electrophysiological 

recordings demonstrate that visual stimuli reverberate in visual cortical areas around 10Hz, 

producing what has been dubbed as perceptual echoes (VanRullen, 2016; Vanrullen & 

MacDonald, 2012). 

Perceptual echoes (PE) are best observed by cross-correlating a non-periodic 

flickering stimulus, for example a disk whose luminance randomly varies over time, with the 

EEG signals recorded in occipital and parietal regions. The cross-correlation provides an 

Impulse Response Function (IRF) which describes the brain response to each stimulus 

transient. Such response reveals a clear oscillation in the alpha-band whose duration can last 

for as long as one second. A recent study ascribed the mechanisms generating the echoes to 

the interactions between brain regions within a predictive coding framework (Alamia & 

VanRullen, 2019). However, whether PE are a by-product of cortical interactions or serve 

some specific cognitive function remains unclear. Experimental studies demonstrated that PE 

are enhanced when repetitions are embedded in the visual sequence, suggesting that they 

could reflect a role in regularity learning (Chang et al., 2017), whereas other evidence show 

that attended stimuli generate larger echoes than unattended ones, suggesting that attention 

allocation plays a role in modulating PE amplitude (Vanrullen & MacDonald, 2012). In 

addition, PE have been characterized as travelling waves that propagates from occipital to 
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frontal regions, thus including a spatial component that may reflect the hierarchical 

processing of visual information along the visual system (Alamia & VanRullen, 2019; 

Lozano-Soldevilla & VanRullen, 2019). 

All these findings indicate that PE are relevant to different functional roles in visual 

information processing, suggesting that they may reflect some fundamental mechanism in 

cortical processing. In this study we take one step further in this direction by exploring 

whether PE are modulated by conscious perception. In order to address this question, we 

tested a pool of participants within a Binocular Rivalry design, in which two different stimuli 

are shown separately to each eye, generating a rivalry that is resolved with the perception of 

only one of the two stimuli. In this experiment, a green and a red Gabor patch, respectively 

tilted by ±45°, were displayed on the left and right side of the screen. We employed a 

dichoptic mirrors setup to project each stimulus separately to each eye. Importantly, the 

luminance of each stimulus varied over time in a random, non-periodic way, generating two 

flickering luminance sequences. Participants were instructed to continuously report which 

colored Gabor patch was being perceived throughout the experiment, thus defining two 

sequences corresponding to the dominant and suppressed stimuli. Here, we aimed at 

computing the echoes by cross-correlating the EEG recordings with each sequence, in order 

to assess whether the generation and amplitude of PE is modulated by conscious perception. 

5.3 METHODS 

Participants and statistical power analysis. We estimated the number of participants via 

a statistical power analysis based on previously published data investigating PE in binocular 

vision (Brüers & VanRullen, 2017). We determined the effect size as equal to 1.7, computed 

as the mean alpha power difference between the actual echoes and the ones obtained after 

shuffling the temporal sequences (i.e., surrogate echoes, see below). Setting the power level 

to 0.90 and the statistical threshold at 0.05, that effect size requires a number of participants 

equal to 4. However, considering that we based our effect size estimates on binocular vision 

(i.e., both eyes fully perceiving the same stimulus), and we aimed at computing echoes in 

condition of monocular vision and binocular rivalry, we tripled the estimate, including a final 

number of 12 participants (7 female, mean age 26, SE=0.9). All participants had normal or 

corrected-to-normal vision and gave written consent before the first session of the 

experiment, in accordance with the Declaration of Helsinki. This study was carried out in 

accordance with the guidelines for research at the “Centre de Recherche Cerveau et 
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Cognition” and the protocol was approved by the committee “Comité de protection des 

Personnes Sud Méditerranée 1” (ethics approval number N° 2016-A01937-44). 

Experimental procedure. Each participant completed two sessions on two different 

days. One session consisted of 10 blocks, each composed of 10 trials. A trial lasted for 30s 

each. The design consisted of two conditions: in half of the blocks, including the first one, 

participants performed Binocular Rivalry (BR) trials, whereas on every other block they 

performed Physical Alternation (PA) ones. In BR trials, two Gabor patches, each encircled by 

a square frame (visual angle of the patch: 4 degrees, visual angle of the frame: 4.5 degrees), 

were shown separately to each participant’s eyes. Patches were different in color and 

inclination, either red or green, ±45°, the color-inclination associations were kept constant 

throughout each experiment, but randomized between participants. The color and orientation 

of the stimulus served mainly to help identify the perceived stimulus and thereby facilitate 

perceptual reports from the participants, however the main experimental variable was the 

stimulus luminance. The luminance of the Gabor patches changed randomly over time, and 

this random sequence was designed to have the same spectral power at every frequency 

(fig.1A). Importantly, the range in the two colors luminance was carefully calibrated and 

equalized to avoid any perceptual biases. The physical position on the screen of the two 

Gabor patches was switched on each trial (i.e., either the left or the right side). The task was 

to report which patch was perceived by moving a joystick either to the left or the right (e.g., 

one participant instructions were to lean the joystick to the left when green was perceived and 

to the right when red was perceived). The color-side associations were pseudorandomized 

between participants. Importantly, participants were encouraged to account continuously for 

their visual perception, reporting intermediate joystick positions when the perception of both 

patches overlapped. Each trial started by pressing a joystick button, and participants were 

encouraged to rest between trials. Each BR block was followed by a PA one. In PA blocks 

only one Gabor patch was displayed at a time, replaying the exact sequence of Gabor patches 

reported in the previous BR block. The task’s instructions were the same, with the exception 

that participants were no longer performing a binocular rivalry task. The goal of such replays 

was to estimate precisely the reaction time in each trial, and correctly segment the actual 

perception in the BR blocks before computing the echoes. Moreover, PA blocks served as a 

control condition to assess PE in condition of monocular vision, without rivalry. 
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Figure 1 – Experimental design. A) Participants stared at the screen through a set of dichoptic mirrors 

that projected the left and right side of the screen to the left and right eye respectively. Two stimuli, 

placed on the two sides of the screen, were Gabor patches of different color and orientation, either red 

or green with a ± 45° angle. Participants reported which patch they perceived by moving a joystick to 

either side, each one associated to a stimulus (pseudorandomly between participants, consistent across 

blocks and sessions). B) Distribution of percept duration in seconds. On average, participants 

perceived one or the other stimulus for 2 seconds. We discarded percepts below this threshold in all 

analyses. Overall there was no difference in the duration of stimuli placed to the left and to the right 

(Bayesian t-test, BF10 = 0.29, error=0.021%). 
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EEG recording and analysis. Recording and Preprocessing. EEG signals were recorded 

using a 64-channel active BioSemi EEG system (1024Hz sampling rate), and 3 additional 

ocular electrodes were used. The preprocessing was performed in EEGlab (Delorme & 

Makeig, 2004) and consisted first in down-sampling the data to 160Hz followed by a high-

pass (>1Hz) and a notch (47-53Hz) filter. Data were then average re-referenced and 

segmented from 200ms before trial beginning until its end (-200ms to 30,000ms). Each epoch 

was then baseline corrected by subtracting the average between -200ms and stimulus onset. 

 

Figure 2 – Computing perceptual echoes. Two random (independent) temporal sequences of 

luminance were displayed on opposite sides of the screen. Given the dichoptic mirror setup, each 

sequence was perceived by one eye only, producing a binocular rivalry that was resolved with one 

perceived sequence (i.e., dominant, in green) and one non-perceived (i.e., suppressed, in red). We 

computed PE by cross-correlating each sequence and the corresponding EEG signal (POz electrode), 

revealing a reverberation in the alpha-band interval. The same procedure was used to compute the PE 

in the Physical Alternation condition (in black). The bottom-left panel shows for comparison a PE 

computed in case of binocular vision (Brüers & VanRullen, 2018). Note the difference in the y-axis. 

 

Perceptual Echoes. PE are computed by cross-correlating the luminance sequences 

with the corresponding EEG signal. As reported in previous studies, PE are stronger in 

occipital and parietal regions (VanRullen, 2016; Vanrullen & MacDonald, 2012), hence we 

focused our analysis on signals recorded in POz (note that similar results are obtained when 
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using the electrodes Oz and Pz). First, the reaction time (RT) for each response was estimated 

from the PA condition, as we knew the exact time when the stimuli were presented to the 

subjects. We used these RT estimates to infer the exact timing of the perceptual switch during 

the BR condition, that is we shifted backward the responses in BR to account for the reaction 

times. Next, we segmented the EEG signals and the corresponding sequences according to 

participants’ perceptions. In order to identify the temporal segments in which participants 

reported a full perception (either left or right), we normalized joystick responses between -1 

(left) and 1 (right), and we included all the sequences in which the response was above a 

threshold set to ±0.95 and longer than 2 seconds to ensure the sequences were long enough 

for the reliable estimation of PE (figure 1B). In BR blocks, for each segment we cross-

correlated the EEG signal with the sequence of the perceived patch (i.e., dominant) and the 

non-perceived patch (i.e., suppressed). In PA blocks, we crosscorrelated the EEG signal with 

the one sequence shown. In both conditions, the crosscorrelation was computed on lags 

between -0.5 and 2 seconds. The module of the PE spectra was computed with a Fast Fourier 

transform over the delays between 0.25 and 1 second. From each spectra we extracted the 

average power in the alpha-band [8-12Hz]. To estimate a baseline for comparison, we 

computed the same power spectra in surrogate echoes, obtained by cross-correlating the EEG 

signals with the luminance sequences after having shuffled their temporal order. Lastly, we 

compared the amount of alpha power in the echoes between conditions (dominant, 

suppressed and physical alternation) by means of a Bayesian ANOVA having CONDITION 

as a fixed factor and subject as a random term. For dependent variable we considered the 

amount of alpha power computed in decibel [dB] as: 

 

Regarding the time-frequency analysis we computed the power-spectra using a wavelet 

transformation (1-40 Hz, in log-space frequency steps with 1-20 cycles) of each IRF (i.e., the 

result of cross-correlating each luminance sequence and the temporally-aligned EEG signal). 

We applied a baseline correction by subtracting the average activity 200 ms prior to 0 lags, 

and we extracted the mean value in the alpha range [8-12Hz] in the time-window between 

250ms and 850ms. As previously, we computed a Bayesian ANOVA to compare the alpha 

power spectra between each condition. 
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Regarding the time-frequency analysis we computed the power-spectra using a wavelet 

transformation (1-40 Hz, in log-space frequency steps with 1-20 cycles) of each IRF (i.e., the 

result of cross-correlating each luminance sequence and the temporally-aligned EEG signal). 

We applied a baseline correction by subtracting the average activity 200ms prior to 0 lags, 

and we extracted the mean value in the alpha range [8-12Hz] in the time-window between 

250ms and 850ms. As previously, we computed a Bayesian ANOVA to compare the alpha 

power spectra between each condition. 

Travelling waves analysis. We eventually assessed how PE propagate through cortex 

as a travelling wave. As in our previous studies (Alamia & VanRullen, 2019; Pang et al., 

2020) we computed the echoes in seven midline electrodes (Oz, POz, Pz, CPz, Cz, FCz, Fz), 

and we created 2D maps by stacking signals from those electrodes (see figure 4A). From the 

2D map we computed a 2D-FFT, in which the power of the upper left quadrant represents the 

amount of waves travelling in a forward direction (FW - from occipital to frontal electrodes) 

whereas the lower left quadrant quantifies the amount of waves travelling backward (BW - 

from frontal to occipital). Note that the same values can be found in the right quadrants, since 

the 2D-FFT is symmetric around the origin. Since we investigated the propagation of the 

alpha-band echoes, we extracted the maximum values within the alpha range [8-12Hz]. In 

order to quantify the amount of waves above chance level, we computed a surrogate 

distribution of values by shuffling the electrodes order before quantifying the 2D-FFT 

(obtaining FWss and BWss for forward and backward waves respectively). Similarly to the 

previous analyses, we computed the amount of waves in decibel [dB] for FW and BW waves 

according to the following formula: 

 

Statistical analyses. All statistical tests were performed within the Bayesian 

framework, assessing the likelihood of a model given the data. This analysis produces a 

Bayes Factor (BF), which quantifies the ratio between models testing the alternative over the 

null hypothesis. Throughout the paper, all BFs comply with this convention – i.e., the 

probability of the alternative hypothesis over the null hypothesis, usually indicated as BF10. 

In practice, a large BF (~BF>3) provides evidence in favor of the alternative hypothesis, 

whereas low BF (~BF<0.3) suggests a lack of effect (Bernardo & Smith, 2009; Masson, 

2011). All analyses were performed in JASP (Love et al., 2015; Team, 2018). 
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5.4 RESULTS 

Echoes. The main goal of this study was to determine whether PE are influenced by 

conscious perception. First, we estimated the averaged alpha-band power of the PE generated 

by the dominant and suppressed stimuli, along with those measured during the physical 

alternation (PA) task. Each PE was obtained by crosscorrelating the EEG recording (POz 

electrode) with the corresponding luminance sequence (Fig 2). In order to quantify the power 

in the alpha range in each condition (figure 3A) we computed the corresponding surrogate 

values after shuffling the temporal order of the sequence, thus expressing the PE alpha 

amplitude as a ratio measured in dB (see Methods for details). The graph in figure 3B reveals 

a significant difference between conditions, as confirmed by a Bayesian ANOVA 

(CONDITION factor: BF10 = 9.442, error=0.411%). A post-hoc Bayesian t-test comparison 

confirms a significant difference between dominant and suppressed echoes (BF10 = 23.926, 

error < 0.001%). Moreover, echoes generated in the PA conditions were larger than the one 

generated by the suppressed sequence (BF10 = 3.276, error < 0.001%), but we observed no 

difference between PE generated by the dominant sequence and in the PA conditions (BF10 

= 0.159, error < 0.001%). Interestingly though, both dominant and suppressed echoes proved 

to be significantly larger than zero (Bayesian one sample t-test, both dominant and 

suppressed BF10>> 100, error < 0.001%), suggesting that PE can be elicited also without 

conscious perception. Not surprisingly, we also found significant echoes in the Physical 

Alternation conditions, i.e. when only one Gabor was displayed (BF10 >> 100, error < 

0.001%), confirming the results of a recent study (Schwenk et al., 2020) showing that PE, 

although strongly reduced, can still be observed in conditions of monocular vision. 
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Figure 3 –Echoes and time-frequency results. A) The figure shows the power spectra of the PE 

obtained in the dominant (green), suppressed (red) and PA (black) condition. The dashed line is the 

spectra obtained in the surrogate echoes, i.e. computed after having shuffle the temporal order of the 

luminance sequence. We focused the analysis in the alpha range (shaded in each panel). B) The 

difference in the power spectra in the alpha range expressed in dB. The plot reveals a significant 

difference between suppressed and both dominant and PA conditions, revealing that conscious 

perception increases the amplitude of the PE. However, all the conditions have PE larger than chance. 

C) Time-frequency spectrogram for each condition (color-code as in A). Dominant and PA show a 

larger amplitude than in suppressed, as confirmed by the plot in D) comparing the amplitude in the 

time-frequency region of interest (black box) in each condition. 

 

Time-Frequency. In order to assess the temporal dynamics of the PE in each condition 

(i.e., dominant, suppressed and physical alternation) we performed a timefrequency analysis 

on the echoes. In line with our previous results, figure 3C reveals a stronger effect in the 

alpha band in the dominant and PA conditions compared to the suppressed condition. We 

confirmed this result by computing per each subject the average power within the temporal 

window [250ms – 850ms], in the alpha range [8Hz – 12Hz]. As in the previous analysis, a 

Bayesian ANOVA confirmed a significant difference between the three conditions 

(CONDITION factor: BF10 = 54.22, error=0.011%), as well as the post-hoc Bayesian t-test 

which positively confirms a difference between dominant and suppressed (BF10 >> 100, 

error < 0.001%) and PA and suppressed (BF10 = 13.15, error < 0.001%), with mild evidence 

in favor of no difference between dominant and PA (BF10 = 0.414, error = 0.022%). 

Moreover, all the conditions proved significantly larger than zero, even though much larger 

Bayes Factors were observed in the dominant and PA conditions (dominant and PA: 

BF10 >>100, error < 0.001%; suppressed BF10 = 5.769, error < 0.001%). Overall the time-

frequency analysis confirmed the previous results, indicating that PE elicited in the dominant 

and PA conditions are larger than in the suppressed condition. 

Travelling waves. Eventually we investigated whether PE elicited during binocular 

rivalry propagate through cortex as forward travelling waves (i.e., from occipital to frontal 

regions), as recently showed in the case of binocular vision (Alamia & VanRullen, 2019; 

Lozano-Soldevilla & VanRullen, 2019). We quantified the amount of forward and backward 

waves as shown in figure 4 obtaining for each participant a value in dB for each condition 

(see methods for details). Interestingly, a Bayesian ANOVA performed with factors 
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DIRECTION (FW and BW) and CONDITION (dominant, suppressed and PA) revealed a 

significant difference between FW and BW waves (BF10 = 3.963, error = 0.001%) but 

neither a difference between conditions (BF10 = 0.100, error = 0.007%), nor an interaction 

(BF10 = 0.097, error = 0.012%). A Bayesian t-test comparing the amount of FW waves 

against zero confirmed that PE propagates from occipital to frontal regions when elicit by 

dominant (BF10 = 6.783, error < 0.001%), suppressed (BF10 = 18.907, error < 0.001%) and 

monocular sequences (PA, BF10 = 3.655, error = 0.001%). 

 

Figure 4 –Travelling waves results. A) We first obtain 2D maps stacking the PEs recorded over the 7 

midline electrodes. The color code indicates the PE amplitude. From the 2DFFT we computed the 

amount of FW and BW waves in each condition as the maximum amplitude value in the 

corresponding quadrant (restricted to alpha-band frequencies). B) The results –expressed in dB, i.e. 

corrected using the surrogate, see methods- show that PE travel as FW waves in all conditions, 

irrespective of the conscious perception of the stimulus. 
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5.5 DISCUSSION 

Previous studies showed that visual information reverberates in posterior brain regions 

in the alpha-band frequency range, as observed by cross-correlating white noise luminance 

sequence with EEG recordings (VanRullen, 2016; Vanrullen & MacDonald, 2012). Such 

reverberation, dubbed as Perceptual Echoes (PE), proved in several studies to be related to 

various cognitive functions, such as attention (Vanrullen & MacDonald, 2012) and statistical 

learning (Chang et al., 2017). In this study we investigated whether PE can be modulated by 

conscious visual perception using a binocular rivalry design. Our results indicate that PE can 

be generated by both consciously perceived and suppressed stimuli, but the former elicit 

larger PE than the latter, and of comparable amplitude as the PE generated during monocular 

vision. Moreover, we reported that the PE generated by both conscious and unconscious 

visual perception propagates as a travelling wave from occipital to frontal regions, possibly 

reflecting bottom-up processing in the visual system (Alamia & VanRullen, 2019; Lozano-

Soldevilla & VanRullen, 2019; Pang et al., 2020).  

Similar to the finding that PEs are enhanced by attention (Vanrullen & MacDonald, 

2012), we found that PEs generated by the consciously perceived sequence (i.e., the dominant 

stimulus) contain larger alpha power. If on the one hand previous studies demonstrated that 

binocular rivalry might be modulated by attentional mechanisms (Zhang et al., 2011), on the 

other hand the alpha power enhancement we observed in the PE in the dominant condition is 

unlikely to be due to selective attentional processes, as participants were not instructed to pay 

attention specifically to one of the two stimuli. Yet, we can de facto assume that the 

attentional focus is driven to the stimulus perceived as conscious, thus increasing the PE 

alpha power as compared to the suppressed one. Interestingly, previous studies reported 

opposite effects of attention on alpha power: while attention decreases stimulus non-specific 

alpha power, it nonetheless increases the spectral (alpha-band) power of PE (Thut et al., 

2006; VanRullen & MacDonald, 2012; Worden et al., 2000). It could be interesting then to 

test the hypothesis that conscious perception plays a similar role in the modulation of alpha 

power. One possible experimental approach would be to lateralize the suppressed and 

dominant stimulus, thus assessing whether conscious perception modulates the alpha power 

in each occipital hemisphere similarly to attention. Further experiments will shed light on this 

interesting hypothesis. 
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The enhancement of PE alpha power in the dominant condition together with the 

previous finding that attention enhances PE are reminiscent of the application of frequency-

tagging in binocular rivalry. Previous studies revealed that both conscious perception and 

attention allocation increase the spectral power corresponding to the steady state visually 

evoked potential (SSVEP) (Ding et al., 2006; Srinivasan et al., 1999; Tononi et al., 1998). 

Even though SSVEP showed similar effects as PE in binocular rivalry and attention tasks, 

their underlying mechanisms are likely different. SSVEP is a passive brain response to a 

rhythmic stimulation, reflecting the spectral characteristics of the generating stimulus, 

whereas PEs are characterized by a clear 10 Hz oscillation without a corresponding 10Hz 

peak in the visual stimulus, possibly reflecting computational cortical mechanisms (Alamia 

&VanRullen, 2019). Despite the functional differences, it is tempting to speculate that in both 

SSVEP and PE, conscious perception modulates the amount of synchronized activity in brain 

regions: the higher alpha power in dominant PE might be associated with a larger 

synchronization of local neural activity, which might be akin to the increase in the power of 

the SSVEP related to conscious perception. 

Besides their oscillatory temporal dynamics, PE elicited in conditions of binocular 

vision have been described in view of their spatial component, characterized as a travelling 

wave propagating from occipital to frontal regions (Alamia & VanRullen, 2019; Lozano-

Soldevilla & VanRullen, 2019). In this study we replicate a similar pattern of results, as we 

observed the same amount of forward travelling waves in both dominant and suppressed 

conditions, as well as during the physical alternation task (i.e., monocular vision). 

Surprisingly, the difference in PE amplitude observed between dominant and suppressed 

conditions was not reflected in the waves’ directional power, as waves seem to propagate 

from lower to higher brain regions with the same strength irrespective of conscious 

perception. Possibly, the relatively poor spatial resolution of EEG recordings prevents us 

from accurately comparing the two conditions, and different experimental techniques will be 

required to reveal different directional strengths in the propagation of dominant and 

suppressed travelling waves. However, one could speculate that PE generated by the 

consciously perceived sequence (i.e. dominant) propagate further in the visual hierarchy, 

reaching frontal regions which are supposedly involved in conscious perception (Koch et al., 

2016; Miller, 2011), whereas the oscillatory waves of PE generated by the suppressed 

sequence vanish at an earlier stage of visual processing. Further studies will be needed to 

fully address this hypothesis. 
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Several previous studies investigated conscious perception in light of the Predictive 

Coding framework (Hohwy et al., 2008; Lamme, 2015; Seth et al., 2012; Weilnhammer et al., 

2017). Predictive Coding (PC) is an influential scheme in cognitive neuroscience that 

describes the brain as a hierarchical system, in which higher regions generate predictions 

about the activity of lower ones, and the difference between predictions and actual activities 

(i.e. the prediction error) is used to update the upcoming predictions (Huang & Rao, 2011). Is 

it possible to combine within the same framework predictive coding, conscious perception 

and PE? In a previous study we demonstrated that a simple model simulating the interaction 

between brain regions and based on PC principles can account for the generation and 

propagation of PE as travelling waves (Alamia & VanRullen, 2019), under the assumption of 

plausible biological constraints (i.e., communication delays and time constants). 

Interestingly, additional experimental evidence supporting the tie between conscious 

perception, predictive coding and travelling waves was recently reported in another study 

investigating how psychedelic drugs altered travelling waves, supposedly by relaxing the 

weighting of top-down predictions, thereby releasing the bottom-up flow of information 

carried by sensory input (Alamia et al., 2020). On the other hand, other studies have 

characterized conscious perception within a PC framework as the consequence of prediction-

error minimization (Friston, 2013; Hohwy, 2012; Hohwy et al., 2008; Strauss et al., 2015): 

this compelling hypothesis advocates that predictions are generated to efficiently explain and 

interpret the causes underlying our sensory information, thus generating our conscious 

perception of the world (Panichello et al., 2013). All in all, the result that PE are influenced 

by conscious perception –as we demonstrated in this study-, leads to the compelling 

speculation that Predictive Coding is pivotal in the generation of both PE and conscious 

experiences. 

In conclusion, the current study investigated PE by employing binocular rivalry, and 

revealed that these are modulated by conscious perception, but consciousness is not necessary 

to elicit them. In addition, PE evoked by both consciously and unconsciously perceived 

stimuli propagate from occipital to frontal regions as a travelling wave, irrespective of the 

conscious modulation. 
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Communication with directionality: top-down 

processing in conscious perception  

We can see that there is stronger alpha power in perceptual echoes when subjects are 

consciously perceiving the stimuli, indicating more neurons synchronizing to allow visual 

sampling in conscious perception. The inter-area communication can have directions, 

meaning that the information is going from one location to the other. This is the main way the 

higher-level areas (e.g., frontal areas) and the lower-level areas (e.g., occipital areas) of the 

brain exchange information in complex cognitive functions such as attention (Connor et al., 

2004) and consciousness (Dehaene et al., 2006). Next, we move further to discuss how the 

directed communication conducted by oscillations is involved in conscious perception. 
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6 CHAPTER 6. TOP-DOWN BETA AND THETA 
OSCILLATIONS DRIVE PERCEPTUAL SWITCHES IN 
BINOCULAR RIVALRY 

This chapter contains an original manuscript in preparation: Canhuang Luo, Rufin VanRullen 

and Andrea Alamia. "Top-down beta and theta oscillations drive perceptual switches in 

binocular rivalry" 

 

6.1 ABSTRACT 
The interplay between higher and lower brain areas is an essential prerequisite for conscious 

perception. In binocular rivalry, the resolution of ambiguous perception may occur at a 

particular stage in the visual pathway to the frontal cortex. Thus, the existence of a flow of 

information from the frontal areas to the visual areas (or vice versa) has been hypothesized. 

However, the mechanisms involved in the communication between frontal areas and sensory 

areas remained mostly unknown. Here, we investigate whether neural oscillations reflected 

the information flow involved in the binocular rivalry perceptual switches by performing 

Granger causality analysis in the EEG signals of human participants performing a binocular 

rivalry task. Our results revealed an increase in the top-down beta activity preceding the 

perceptual switches, demonstrating this frequency band’s crucial role in the communication 

from higher to lower brain regions during conscious perception. Our study provides the first 

empirical evidence that oscillatory top-down processing is involved in the resolution of visual 

ambiguity, giving rise to conscious perception. 

 

6.2 INTRODUCTION 
Several studies indicated that conscious perception arises from the communication between 

different brain regions (Crick & Koch, 1990; Dehaene et al., 2006; Dehaene & Changeux, 

2011; Engel et al., 2001; Engel & Fries, 2016; Lamme, 2006; Newman & Baars, 1993; 

Tononi & Edelman, 1998; Tononi & Koch, 2008). In particular, experimental evidence 

suggests that conscious perception elicits neural activity involving both occipital and frontal 

regions, whereas unconsciously perceived visual stimuli activate only occipitotemporal areas 

(Dehaene et al., 2001). Similar results from a visual masking experiment (Gaillard et al., 
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2009) compared masked (unconscious perceived) with unmasked (consciously perceived) 

stimuli, demonstrating how the latter evoked more long-range synchronization across 

hemispheres than the former, as well as increased feedforward activity from occipital visual 

areas to the frontal ones. Yet, one could ask what mechanisms support communication 

between different brain regions, specifically during conscious perception. Synchronization of 

oscillatory signals has been proposed to be responsible for this large-scale integration. 

Indeed, synchrony in a distributed network of neurons is affected by bottom-up and top-down 

influences (Engel et al., 2001; Engel & Fries, 2016). Considering that both play a crucial role 

in conscious perception (Dehaene et al., 2006; Grossberg, 1999; Lamme, 2006; Lamme & 

Roelfsema, 2000), we investigated whether we could associate each component to a different 

oscillatory band, contrasting ambiguous perception and unambiguous perception in a 

binocular rivalry design. In binocular rivalry, visual ambiguity arises when each eye views a 

different image. At any given moment, the two images’ representations compete to gain 

access to visual consciousness, leading to one dominant and one suppressed percept, which 

alternate every a few seconds (Levelt, 1965). At which hierarchical level the brain resolves 

such rivalry remains debated in the literature. Some evidence shows that the lower levels of 

the visual pathway settle the rivalry (Blake, 1989; Polonsky et al., 2000; Wunderlich et al., 

2005). In contrast, other studies point at the higher regions as responsible for determining 

what’s consciously perceived. Lastly, some studies investigated specifically the information 

flow between areas, suggesting that top-down influences are responsible for settling the 

rivalry, supposedly influencing low-level regions (Dijkstra et al., 2016). 

 

All in all, how different oscillatory components relate to the information flow in binocular 

rivalry remains unclear. Here, we aimed at investigating the oscillatory components involved 

in the information integration between the high-level and low-level regions in resolving 

visual ambiguity during binocular rivalry, under the assumption that these reflect the top-

down and bottom-up communication between brain regions. We analyzed the EEG signals of 

human participants performing a binocular rivalry task by achieving spectral Granger 

causality analyses. We were able to identify top-down beta-band oscillatory components 

preceding the switch in perception, suggesting their crucial role in conscious perception.  
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6.3 METHODS 

6.3.1 Participants 
19 subjects (10 males, all right-handed, age range 20~32, mean age 25.84 (±SE 0.7184)) with 

normal or corrected-to-normal vision participated in the experiments after giving written 

informed consent, in accordance with the Declaration of Helsinki. Of the 19 subjects, 12 

subjects attended a different set of stimuli (see below), and their data were analyzed in a 

separate and independent study (Luo et al., 2020), which investigated a different scientific 

question using other analytical methods. This study complies with the guidelines for research 

at the “Centre de Recherche Cerveau et Cognition,” and the protocol was approved by the 

committee “Comité de protection des Personnes Sud Méditerranéel” (ethics approval number 

N° 2016-A01937-44). 

 

6.3.2 Stimuli and presentation  
Throughout the experiment, participants attended two Gabor patches. Each one was encircled 

in a white square frame (visual angle of the patch: 4 degrees, visual angle of the frame: 4.5 

degrees) and presented on the screen’s left and right side. Each patch had a different color 

(either green or red) and orientations (±45°). A fixation dot was presented under each frame, 

and the two patches were projected to each eye separately through a system of dichoptic 

mirrors. The luminance of the green and red colors was calibrated to have the same 

luminance to prevent potential perceptual bias. For 12 of the 19 participants, the stimuli’ 

luminance was randomized over time following white-noise sequences. The other 7 subjects 

performed a task in which the stimuli’ luminance was kept constant through all the 

experiment. Stimuli were presented using the Psychtoolbox package for Matlab (Kleiner et al., 

2007). 

 

The experiment was composed of 20 blocks of 10 trials, each one lasting 30s. Each 

participant performed two sessions with the same number of blocks on two different days. 

Half of the blocks were binocular rivalry (BR) blocks in each session, and the other half was 

physical alternation (PA) ones. PA blocks served as a control condition since only one patch 

was presented at any moment, thus preventing visual rivalry.  
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Each session started with a BR block in which two Gabor patches with different color-

inclination associations were presented. The color-inclination associations (green/45° and 

red/-45°, or vice versa) were consistent throughout the experiment and randomized across 

subjects. Additionally, each patch’s locations (e.g., green/45°) were alternated on every trial 

to prevent the association between one stimulus and the dominant eye.  

 

The subjects were instructed to report which patch they perceived by leaning a joystick to the 

left or right. The response-patch associations (i.e., left or right position when perceiving one 

or the other patch) were counterbalanced across subjects. Participants were also encouraged 

to report their continuous perception changes and lean the joystick to intermediate positions 

when seeing the two patches fusing. Each BR block was followed by a PA block, in which 

stimuli were replayed monocularly according to subjects’ behavioral responses in the 

preceding BR block. Importantly, given that in PA blocks we replied the same sequences 

(both luminance and color/orientation) as the one reported by the participants in the past 

block, we were able to estimate the subject’s response time (RT), since we know precisely 

when the stimuli were presented, and when participants initiated the joystick movement. Such 

an evaluation of the RT was further used to estimate the actual perceptual switch timing.  

 

In each block, subjects pressed a joystick button to start each trial, and they were instructed to 

fixate the fixation dot throughout the task. Each subject completed two BR blocks as training 

before the beginning of the experiment to familiarize them with the task and the mirrors 

dichoptic system.  

 



113 

 

 

 Figure 1, A) task procedure. Two Gabor patches were presented to the subjects’ two eyes (on the 

right). Subjects used a joystick to indicate which patch he/she was perceiving. Subjects’ response 

was recorded as time series of joystick positions (on the left). In this example, the subject was 

perceiving the red Gabor, and he/she leaned the joystick to the right. B) statistical description of the 

subjects’ responses. Left, the percept probability as a function of percept duration for all the subjects. 

Right, the inset is the average percept duration of the left image and the right. The two durations are 

not significantly different. 
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6.3.3 EEG acquisition and analysis  
Acquisition and pre-processing. Subjects were seated in a dim room while EEG signals were 

recorded at a sampling rate of 1024 Hz via a 64 channel Biosemi system. EOG was 

monitored with three extra electrodes. EEG signals were pre-processed in MATLAB 

(MathWorks)using EEGlab (Delorme & Makeig, 2004) and additional customized scripts. 

EEG data from each channel were high-pass filtered at 1 Hz before being downsampled to 

160 Hz, and then notch filtered at 47~53 Hz. We then applied an average re-referenced before 

segmenting in epochs from -200ms to 30000ms around the stimulus onset (i.e., beginning of 

each trial). We finally applied a baseline correction by subtracting the mean signal between -

200ms and 0ms before stimulus onset  

 

Time-frequency analysis. We computed time-frequency power spectra using a Morlet wavelet 

decomposition, in the range from 2 to 70 Hz, increasing incrementally from 3 to 20 cycles. 

The spectra were further segmented into 6000ms epochs centered on the perceptual switches. 

The averaged alpha and beta bands’ power waves were estimated in the frequency ranges 

7~13 Hz and 20 ~ 30Hz.  

 

Spectral Granger causality.  We focused on the information flow between the frontal and the 

occipital areas, and we analyzed the spectral Granger causality of the EEG signals between 

the frontal (FC1, FCz, and FC2) and occipital electrodes (O1, O2 and Oz) using the MVGC 

toolbox (Barnett & Seth, 2014). Granger causality is used to estimate how much the activity 

of one region influence the activity of another region. The size of the influence is called 

granger gain or granger prediction, which is a ratio measured by comparing the error 

variances of a univariate autoregression in which the current value is predicted from past 

values of the same region (e.g., frontal predict frontal) with the error variances of a bivariate 

autoregression in which the current value is predicted from past values of the same region 

together with the other region (e.g., frontal and occipital predict frontal). Before calculating 

the Granger causality, the frontal and occipital electrodes’ EEG signals were averaged within 

the frontal and occipital regions respectively to reduce noise in the signal. Similar results 

were obtained by using only one electrode per area. Additionally, to rule out the potential 

influence of volume conduction, we applied a Laplacian spatial filter (also known as density 

source analysis) (Srinivasan et al., 2007; Winter et al., 2007) on the EEG signal to filter out 
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the global signal shared by the electrodes. Furthermore, to ensure the EEG data’s stationarity, 

we first estimated the stationarity of each trial using KPSS model of the MVGC package and 

discarded the trials with significant nonstationarity (p=0.01). We used an auto-regression 

order equal to 16 (corresponding to 100 ms due to the 160 Hz sampling rate we used). We 

applied the Granger causality analysis on 6000 ms segmented EEG data using a sliding 

window of 1000 ms with a step size of 37.5ms (6 time points, each represents 6.25 ms due to 

the 160 Hz sampling rate). Each segment was de-trended and z-scored to further reduce the 

nonstationarity. The granger analysis generates two time-frequency maps of Granger gain 

(top-down: frontal to occipital electrodes, and bottom-up: occipital to frontal electrodes) for 

each condition (BR and PA). Next, we ran a non-parametric method to test the difference 

between BR and PA. First, we computed the difference between BR and PA and averaged the 

difference across subjects. Second, we calculated surrogates data by pooling the two 

conditions’ trials and randomly re-distributing them into two groups. The randomized trials 

were used to perform the same Granger analysis on the surrogate conditions. We iterated the 

surrogate analysis over 5000 iterations. For each data point in the Granger gain time-

frequency map, we computed the percentile (i.e., the p-value) by comparing the actual value 

with the surrogate distribution. Lastly, we applied FDR correction to correct for multi-

comparison. 

 

6.4 RESULTS 
Time-frequency analysis. At first, we performed a time-frequency analysis to investigate the 

changes in the power of specific frequency bands related to the perceptual switch. The results 

(Figure 2A) reveal a clear pattern in two frequency bands, alpha (7~13 Hz) and beta (20~30 

Hz), that is constant power during stable perception followed by a decrease after the 

perceptual switches. To closely assess these two frequency bands’ temporal dynamics, we 

extracted the signals averaging within each frequency band. The resulting time course shows 

an apparent decrease in power following the switches in both frontal (upper row of figure 2B) 

and occipital electrodes (lower row). Figure 2C further confirms a significant difference 

between stable perception (-2000 to -1000 ms) and perceptual switches (-250 to 750 ms) in 

alpha and beta power, in both BR and PA conditions. All in all the time-frequency analysis 

reveals similar pattern of results irrespective of the frequency band and the perceptual 

condition (before or during the switch). We then performed a spectral Granger analysis to 
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investigate how the information flow propagates between the frontal and occipital regions in 

each frequency band. 

 

 

 Figure 2 Time-frequency results of binocular rivalry. (A) The time frequency representation around 

perceptual switches (time 0) from the average of the frontal channels (FC1, FCz, and FC2) and the 

occipital channels (O1, O2 and Oz) for the BR and PA conditions. Red lines indicate the range of 

frequency used to plot the time course for figure (B). (B) The time courses of alpha (7~13 Hz) and 

beta (20~30 Hz) power from frontal and occipital channels for the BR and PA. The shaded areas 

represent the data extracted for the bar plots in figure (C). (C) Comparison between the power of 

alpha and beta bands during stable perception (-2000 to -1000 ms) and during perceptual switches (-

250 to 750 ms). Asterisks indicate that the power is significantly higher than 0. 

 

Spectral Granger causality analysis. Next, we investigated whether alpha and beta bands 

influence the connectivity between frontal and occipital regions using spectral Granger 

causality analysis. Remarkably, we found (1) large Granger gain values in both top-down and 

bottom-up time-frequency maps in the alpha band. (2) Apparent Granger gain in the top-

down beta band. Both the alpha and the beta activities were observed in the BR and the PA 

conditions. (3) Considerable top-down theta activity in the BR (as shown in Figure 3 (A)). In 

Figure 3 (A), it appears that there are more top-down activities in the higher beta frequency 

band (28~33 Hz) in both conditions relative to the bottom-up activities, whereas the alpha 

frequency (7~13 Hz) exhibits an opposite profile.  
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Interestingly, the comparison between the two conditions revealed a significantly larger 

amount of top-down beta activity (26~29 Hz) and theta activity (3~6 Hz) in the BR condition 

than the PA one, at around -1.2 seconds and -2 ~ -0.8 second respectively before the 

perceptual switches (Figure 3, B). Additionally, our results reveal generally more bottom-up 

and top-down granger gain in the PA compared to the BR condition, specifically more 

bottom-up activity in the beta band (18~24 Hz) before the switches, and consistently more 

bottom-up and top-down activities before and after the switches in the alpha band, suggesting 

the involvement of different mechanisms in the two conditions. 

 

 Figure 3 Granger causality results. A) The bottom-up and top-down granger gain for BR and PA 

conditions, respectively. B) The significant difference between BR and PA. The color bar represents 

-log10(p). Multi-comparison corrected with FDR. 

 

6.5 DISCUSSION 
 

In this study, we investigated how neural activity in different regions influence each other as 

reflected by oscillatory synchronization in various frequency bands during a binocular rivalry 
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task. Our results reveal high top-down beta-band and bottom-up alpha-band activities in both 

conditions, as demonstrated by Granger causality analysis (Figures 3, A) and confirmed by 

the time-frequency analysis (Figure 2). More interestingly, we found an increase in the top-

down beta and theta Granger gain preceding the perceptual switches in the BR condition, 

suggesting that the generation of conscious perception might rely on top-down interareal 

synchronization in these specific frequency bands (Figure 3, B).  

 

Our time-frequency results confirmed the decrease in alpha and beta power following 

perceptual switches, consistently with previous studies of bistable perception (Nakatani & 

van Leeuwen, 2006; Piantoni et al., 2010, 2017; Strüber & Herrmann, 2002). A similar study 

involving binocular rivalry by Piantoni et al. (2010) suggests that beta oscillations correlate 

with the probability of perceiving rivalrous visual stimuli. Extending their findings, we found 

that such a pattern of alpha and beta power not only appeared in the BR condition but also in 

the PA condition, suggesting that high beta power is not solely present in bistable visual tasks 

but occurs as long as stable perception emerges.   

 

Consistent with the time-frequency analysis, our spectral Granger causality analysis revealed 

the main results mostly concentrated in the alpha and beta frequency bands in both conditions, 

as well as theta band in the BR condition. The bottom-up alpha activity during visual 

stimulation is consistent with previous results investigating oscillatory traveling waves 

(Alamia & VanRullen, 2019; Pang et al., 2020). Interestingly, in both BR and PA conditions, 

the Granger analysis (Figure 3, A) reveals higher bottom-up alpha activity than the top-down 

one. In contrast, the beta activity showed an opposite profile. These findings agree with the 

hypothesis that forward sensory information is reflected in alpha-band activity (Pang et al., 

2020), whereas beta-band activity may be related to top-down attention-related tasks (Bastos 

et al., 2015; Buschman & Miller, 2007). Altogether, these results suggest that conscious 

perception relies on recurrent processes implemented by beta-band top-down and alpha-band 

bottom-up activities. 

 

The current study’s main goal was to investigate the information flow that might be involved 

in resolving ambiguous visual perception. By contrasting the Granger gain in BR and PA 
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conditions, we found increased top-down beta and theta activity up to 1 second before 

perceptual switches in BR and generally less bottom-up activity at alpha and beta frequency 

bands in BR compared to PA. Regarding the beta activity, however, the functional role of 

beta oscillations is still debated. Yet, a few hypotheses have tentatively provided to account 

for the functional role of beta oscillations. On the one hand, Engel and Fries (2010) 

hypothesize that beta activity might be related to maintaining the current sensorimotor or 

cognitive functions, signaling the so-called “status quo.” On the same lines, Spitzer and 

Haegens (Spitzer & Haegens, 2017) further proposed that beta oscillations might be 

responsible for reactivating the endogenous representations via network dynamics,  e.g., 

reactivate the representation of the unattended stimulus that was kept in memory. The key 

ingredient for these two accounts is based on the top-down role reflected by the beta activity 

(Bastos et al., 2015; Buschman & Miller, 2007). Additionally, experimental evidence on non-

human primates confirmed this interpretation. Specifically, Buschman and Miller (2007) 

trained monkeys to perform a targeted search, in which the target was either very salient or 

confound between a few distractors. Interestingly, the authors found larger synchrony 

between frontal and parietal areas in the beta-band frequency in the condition involving more 

top-down attentional processes. In line with these results, our findings further suggest that 

beta-band activity might play an essential role in conveying top-down information, as well 

during conscious perception.   

 

As for the theta activity, a recent binocular rivalry study (Drew et al., 2019) has found 

evidence regarding the role of frontal areas in resolving the rivalry. The authors found an 

increase in the theta activity before the perceptual switches, accompanied by a decrease in 

alpha activity, interpreting the results in the light of cognitive control (Cavanagh & Frank, 

2014). Interestingly, we obtain similar results by normalizing the time-frequency maps. 

However, we analyzed un-normalized EEG power spectra in the time-frequency analysis to 

compare the results with those in Piantoni et al. (2010) and assess which frequencies have 

relatively stronger power, which can not be seen after normalization, during the task. 

Although the study by Drew et al. (2019) suggests that the frontal theta, which has been 

associated with cognitive control and conflict detection, might be related to perceptual 

switches, they did not discuss whether there might be information flow conveying this 

cognitive control signal to the lower areas. Our result of top-down theta activity further 
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suggests that the modulatory signal of cognitive control from the frontal areas might 

propagate to the visual areas, and thus partake in resolving visual ambiguity.    

 

In contemporary theories of consciousness, such as the Global Workspace Theory (Baars, 

1997) and Integrated Information Theory (Tononi, 2004), communication between brain 

areas is fundamental for conscious perception. Different hypotheses have been proposed to 

account for the communication between brain regions, including oscillatory components as in 

the Communication Through Coherence theory (Engel & Fries, 2016). In this framework, 

long-range synchronization can be mediated by top-down and bottom-up oscillatory 

processes (Engel et al., 2001; Engel & Fries, 2016), both supposedly involved in conscious 

perception (Dehaene et al., 2006; Lamme & Roelfsema, 2000). Our results provide 

experimental evidence in favor of this hypothesis, suggesting that binocular rivalry resolution 

requires top-down modulation from frontal areas (Leopold & Logothetis, 1999; Sterzer et al., 

2009), a task achieved by beta and theta band  activities.  
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7 CHAPTER 7.  GENERAL DISCUSSION 
In chapters 3, 4, 5 and 6, I discussed neural oscillations in visual perception, attention, 

and consciousness, respectively, and provided answers to the questions raised in the 

introduction. For visual perception and attention, I focus on where (chapter 3) and how 

(chapter 4) the neural oscillations associated with these functions are generated. For 

consciousness, I study how the neural oscillations are functionally involved in conscious 

perception (chapters 5 and 6). Specifically, this thesis addresses the following three questions 

related to neural oscillations. 

  

1) What’s the neural basis of perceptual echoes? (Chapter 3)  

2) What underlying mechanism gives rise to theta oscillations that modulate attentional 

sampling? (Chapter 4)  

3) Are neural oscillations responsible for inter-area communication in conscious 

perception? (Chapters 5 and 6)  

 

7.1 WHAT’S THE NEURAL BASIS OF PERCEPTUAL ECHOES? 
To investigate in what regions of the brain perceptual echoes are generated, we 

conducted an EEG-fMRI experiment. Unlike concurrent EEG-fMRI studies, the subjects 

completed the same task in an EEG session and an fMRI session separately in our study. We 

first measured the echoes in the EEG session; then, we used the echoes as a template to 

reconstruct the EEG signal by doing convolution with the WN sequences in the fMRI session. 

We further used the reconstructed EEG to create regressors for fMRI analysis and found 

wide-spread activity in V1 and V2 that might be the neural basis of the echoes. In our 

findings, the unstimulated hemisphere was also correlated with the echoes, which could be 

explained by traveling waves (Alamia & VanRullen, 2019). However, it means the precise 

origin of the echoes might be a small part of the activated V1 and V2 even though our result 

could indeed serve to narrow down the location of the echoes. In the future, intracranial 

recordings from V1 and V2 can be used to locate where echoes are generated and moved to 

other locations. 

Given the close relationship between ongoing alpha and the echoes, one might wonder if 

they share a similar neural basis. Researchers have been identifying the generator of alpha 
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oscillations since decades ago, yet it is still not conclusive. Previous studies have revealed 

that both the thalamus and visual cortex are possible sources of alpha oscillations (Clayton et 

al., 2018). For supporting thalamus to be the alpha generator, some studies found that alpha 

oscillations were diminished after lesions of the thalamus (Goldman et al., 2002; Liu et al., 

2012), and some observed correlation between BOLD signal and alpha oscillations. 

Furthermore, electrophysiological studies in cats observed coherence of alpha activity 

between the thalamus and the visual cortex (Chatila et al., 1993; Lőrincz et al., 2009). On the 

other hand, some studies show that alpha oscillations could be generated from cortex 

activities. In vivo studies found pyramidal neurons in deep layers of cortex might be the 

pacemakers of alpha oscillations (Silva et al., 1991). Other studies reported alpha oscillations 

in all the layers (Bollimunta et al., 2008), possibly with stronger alpha activity in the deep 

layers (Buffalo et al., 2011; Van Kerkoerle et al., 2014) or the superficial layers (Haegens et 

al., 2015). Stronger alpha coherence between cortical areas than between cortex and thalamus 

indicates that cortex might be an independent generator of alpha oscillations (Silva et al., 

1973). In resting-state studies, all have found a negative correlation between EEG alpha 

power and BOLD activity in the occipital cortex (de Munck et al., 2007; DiFrancesco et al., 

2008; Goldman et al., 2002; Gonçalves et al., 2006; Laufs, Kleinschmidt, et al., 2003; Laufs, 

Krakow, et al., 2003; Moosmann et al., 2003) and during the task performance (Scheeringa et 

al., 2009, 2016; Zumer et al., 2014). In contrast, we found that the IRF envelope was 

positively correlated with V1 and V2 BOLD signals. The common neural basis (early visual 

areas) and the opposite activation profile (i.e., opposite correlation with BOLD) suggest that 

IRF and EEG alpha rhythms may share neural pathways, but play different functional roles in 

the brain. 

Based on the previous results of a spatial attention task (VanRullen & MacDonald, 2012) 

and our findings of the echoes during binocular rivalry in Chapter 5, the echoes are not a 

localized function that is only restricted to V1 and V2. In the case of attentional engagement 

as well as conscious perception, the echoes are larger. It could be argued that while the 

regions that primarily generate echoes are the visual areas, higher-level regions, such as the 

prefrontal lobe, may influence how strong the echoes are in a top-down processing manner. It 

would be interesting to further investigate how top-down processing affects the echoes, for 

example, by analyzing how the connectivity of the frontal signal and occipital signal 

modulates the echoes.  
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In addition to helping future studies narrow down the neural origin that may produce 

echoes, the current study has a number of other implications. The function of the echoes is 

currently unclear. Now when studying the function of the echoes, we can take V1 and V2 

into account. For example, a previous study linked echoes to sequence learning. Chang et al. 

(2017) presented subjects with repeated luminance sequences and found that the amplitude of 

the echoes increased with the repetition of the stimulus sequence, suggesting that echoes may 

carry information about such sequences. When they next presented that sequence in reverse 

order, the size of the echoes dropped to the same size as the echoes evoked by the new 

stimulus sequence. More interestingly, when they re-presented that learned sequence, the size 

of the echoes reverted back to the level they were at after several repetitions of the previous 

sequence. During this experiment, the subjects were not aware of the sequence of luminance 

changes, in line with the findings of another study (Turk-Browne et al., 2009), suggesting 

that possibly this learning only requires the involvement of the visual area and that the visual 

area retains the sequence information. This is supported by our finding that the echoes may 

have been generated in early visual areas.  

In the general introduction, I used the echoes as one of the demonstrations for discrete 

visual perception. Since we found that V1 and V2 might be the neural basis of perceptual 

echoes, can we consider that visual sampling or discrete visual perception might originate 

from V1 and V2? Before answering this question, maybe we should answer another crucial 

question first: Is the discrete visual perception revealed by perceptual echoes the same as that 

demonstrated by the other studies in section “Oscillations in visual perception”? In fact, the 

studies that I listed in the visual perception section of the introduction, although they are in 

support of the notion - discrete visual perception, have discrepancies between each other.  For 

instance, some studies reported higher frequency (~10Hz) (e.g., Dugué et al., 2011; Romei et 

al., 2008), while others found relatively lower frequency (~7Hz) (e.g., Busch et al., 2009; 

Hanslmayr et al., 2013). This frequency difference might be due to various reasons, such as 

task and individual difference and so forth. To tentatively answer the questions just 

mentioned, we can also examine the topographic maps and fMRI results of some studies. 

Several studies reported that occipital areas are involved in visual sampling (Dugué et al., 

2011; Romei et al., 2008; Samaha & Postle, 2015). Whereas in some studies, the effect is 

revealed in the frontal areas (Busch et al., 2009) and connectivity between left lateral 

occipital cortex and right intraparietal sulcus in a concurrent EEG-fMRI study (Hanslmayr et 

al., 2013). It seems that when the effect is around 10Hz, it is more likely to be found at 
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occipital areas, which might have the possibility of sharing the neural basis with perceptual 

echoes. As we cannot be certain what led to the difference of frequencies and the effect 

locations in the brain in the previous studies, we cannot answer the question raised at the 

beginning of this paragraph that whether discrete visual perception originates from V1 and 

V2. 

 

7.2 DOES ATTENTIONAL SAMPLING ARISE FROM THE THETA RHYTHM 
GENERATED BY VISUAL COMPETITION? 
Chapter 5 replicated the behavioral experiment of a monkey study, which investigated 

whether the theta activity is generated from the neuronal competition in V4 when one object 

is presented in the excitatory center and one in the suppressive surrounding (Kienitz et al., 

2018). Together with the monkey study, our study aims to investigate the underlying 

mechanism of the theta rhythm of attentional sampling. We obtained similar results with the 

monkey study; saccadic reaction time fluctuated at theta frequency. The phases of the RT 

oscillation depend on the order of an object and two flankers presented to the subjects, which 

were assumed to elicit theta oscillations in the brain. Our results support the hypothesis that 

the theta rhythm of attentional sampling may be derived from the competition of V4 neurons, 

hence establishing a link between the theta rhythm in neural activity and behavioral 

oscillations, demonstrating that the attention-related theta activity in V4 could be a general 

mechanism for attentional sampling across species. 

In our experiment, attention sampling was modulated by the order that the stimuli were 

presented, meaning that this attentional sampling is a bottom-up modulation by external 

stimulus. It is reminiscent of the studies using phase resetting to capture subjects’ attention 

using an external event.  There are a number of experiments using phase resetting (Fiebelkorn 

et al., 2013; Hogendoorn, 2016; Landau et al., 2015; Landau & Fries, 2012). For example, 

Landau and Fries (2012) resetted subjects’ ongoing attention using a flash stimulus. Attention 

can be a top-down process, and the attentional network is the basis of this process. Many 

studies of attentional oscillations have focused on top-down attention, such as sustained 

attention. A recent study showed that the process of sustained attention also oscillates at the 

theta band (Helfrich et al., 2018). They reported that multiple regions of the attentional 

network exhibited theta oscillations during the task and that these oscillations were correlated 

with behavioral oscillations, suggesting that attentional oscillations may arise from the 
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attentional network. How do the theta oscillations of V4 and the attentional network 

coordinate? There are several possibilities. One possibility is that the theta activity of the 

attentional network dominates when top-down processing is taking place, such that this theta 

rhythm modulates the behavioral response. It could be that when external stimuli attract 

attention, a V4 theta activity is elicited, and this theta propagates to the attentional network, 

thus resetting the phase of the theta oscillations in the attention-relevant areas. It could also 

be that in the monkey study and the current study, the theta phase was determined in the 

attentional network then fed back to V4. These are only speculations that remain to be tested 

since we cannot know where the theta activity originates from both the monkey study and our 

study. Regardless of which possibility is true, it would be of importance to investigate 

whether there is a connectivity between the attentional network and V4 in attentional 

sampling. Yet, so far, there is no evidence on the synchronization of attention-related theta 

activities between the sensory areas and the attention network during attentional sampling 

(Fiebelkorn & Kastner, 2019). However, in the short-term memory context, theta 

connectivity has been found between frontal and visual cortices (Liebe et al., 2012), 

implicating there is a possibility that the synchronization exists for attentional sampling. 

While the current study and the monkey study can explain how the theta rhythm is 

elicited when two stimuli are in close spatial proximity, these two studies did not cover some 

other conditions, leaving several unsolved questions. For example, what if three or four 

stimuli are presented? What if the stimuli are presented further apart?  The receptive field 

size of V4 neurons is shown to be a function of eccentricity in V4 (Pinon et al., 1998). The 

receptive field size of some V4 neurons can span more than 15 visual degrees. It is possible 

that the theta activity could be derived from these neurons when stimuli are further apart. 

When more stimuli are presented, there might be multiple theta activities evoked in V4, 

mutual inhibiting or mixing such that giving rise to a lower frequency attentional sampling. 

Nevertheless, these are only pure speculations. The questions raised here call for more 

investigation in the future.  

Saccades may be controlled by the FEF region, which is part of the attentional network. 

In our experiment, the subjects were responding by saccades. It has been reported that 

saccades follow a theta rhythm during free viewing (Engbert & Mergenthaler, 2005; Otero-

Millan et al., 2008). How does our brain coordinate saccades and covert attention via theta 

activity? A recent model of rhythmic attention proposed by Fiebelkorn et al. (2018, 2019) 

characterized two attentional states alternating at theta band based on the interaction between 
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FEF and LIP of the attention network. One state represents increased perceptual sensitivity, 

reflected by high beta and gamma activity in FEF and LIP at the “good” theta phase. This 

state is associated with increase of sensory processing and suppression of eye movement, 

since beta activity has been related to movement suppression (Gregoriou et al., 2012; 

Pogosyan et al., 2009; Zhang et al., 2008) and gamma activity is linked to enhanced sensory 

processing (Fries, 2009; Fries et al., 2001; Landau et al., 2015; Womelsdorf et al., 2006). In 

contrast, the other state, defined by increased alpha activity in LIP at the “poor” theta phase, 

is related to reduced perceptual sensitivity. This state is associated with impaired visual 

processing at the currently attended location, which, combined with low beta inhibition, 

periodically create time windows for the shift of attention. These time windows could be the 

moments that our subjects started to saccade if the theta activity in LIP synchronized with the 

theta activity in V4.  

 

Figure 7-1 Fiebelkorn et la., (2018, 2019)’s model describes two attentional states organized by theta 

oscillations in FEF and LIP. One state, which occurs at the “good” phase of theta oscillations, is 

associated with enhancement of perceptual sensitivity. It is defined by increased gamma activity 

(better sensory processing) in LIP and increased beta activity (suppression of movement) in FEF. The 

second state, which is at the “poor” phase of theta activity, is linked to attenuation of sensory 

processing and higher likelihood of attention shifting. This state is characterized by increased alpha in 

LIP. 
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7.3 ARE NEURAL OSCILLATIONS RESPONSIBLE FOR INTER-AREA 
COMMUNICATION IN CONSCIOUS PERCEPTION?  

According to the CTC (communication through coherence) theory (Fries, 2005, 2015), 

an essential function of neural oscillations is communication, which creates optimal 

information transmission windows for neuronal coordination via synchronization of different 

regions. Communication between different brain regions is believed to be an essential 

component in conscious perception; hence in Chapters 5 and 6 we focused on the 

communication role played by neural oscillations in conscious perception. 

We employed a binocular rivalry paradigm in Chapter 5 to investigate the perceptual 

echoes evoked by the dominant percept and suppressed percept. The alpha power of the 

echoes was greater in the dominant condition compared to the suppressed, possibly reflecting 

the fact that more neurons were synchronized during conscious perception. It may also imply 

that visual sampling in conscious perception is more efficient (e.g., the processing is more 

exhaustive) due to the larger number of neurons involved. This result partly demonstrates the 

importance of neurons communicating with each other through more synchronization in 

conscious perceptual visual sampling. Notably, perceptual echoes did not disappear entirely 

in the suppressed condition, suggesting that the generation of perceptual echoes does not 

necessarily require the involvement of consciousness. Surprisingly, the amount of traveling 

waves was as large in the suppressed condition as in the dominant and control conditions.  

According to past research, conscious percepts should reach further to the higher-level 

regions such as the frontal cortex compared with the unconscious ones (Dehaene & 

Changeux, 2011), which did not appear in our results. Other methods could shed light on 

such information flow, and granger causality is a good candidate. To this end, we conducted 

an additional granger causality analysis between the echoes of Oz (occipital electrode) and of 

Fz (frontal electrode) using the same dataset as chapter 5. The analysis revealed similar 

forward granger gain (Oz -> Fz) between dominant and suppressed conditions and showed 

significantly stronger granger gain in the physical alternation (Figure 7-2b). Presumably, the 

echoes of the suppressed stimuli travel as far as the echoes of the dominant stimuli. Our 

second study on consciousness (Chapter 6) discussed more about communication across 

regions in conscious perception. 
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Figure 7-2 Granger causality result of the echoes between frontal and occipital electrodes. Compared 

with the dominant (DOM) and suppressed (SUP) condition of binocular rivalry, physical alternation 

(PA) shows higher bottom-up granger gain (right plot). The DOM and SUP conditions have similar 

top-down and bottom-up granger gain. The asterisks represent significant differences (p < 0.05). 

 

In Chapter 6, we investigated whether there is information flow in binocular rivalry as 

reflected by oscillations. First, we showed that the amplitude of alpha and beta oscillations in 

the binocular rivalry and the physical alternation condition follows a similar pattern, i.e., the 

amplitude does not reflect the unique processing that may be required to solve ambiguous 

perception in binocular rivalry. The increased power of these two oscillations is present as 

long as there is a stable or clear perception. We further applied granger causality analysis and 

found an increased top-down beta activity prior to perceptual switches in binocular rivalry. 

In the BR condition, top-down beta and theta activities were larger, while in the PA 

condition, bottom-up beta and alpha activities were more considerable. Note that Granger 

causality is not really measuring the causal effect, but instead a prediction (Cohen, 2014). 

When the signal from the frontal areas predicts the signal from the occipital area, we assume 

that there is top-down processing. As I stated in the introduction, the specific functionality of 

beta oscillations is currently unclear. The beta activity we found is consistent with the 

findings of some previous studies, albeit not in the same task context. For example, in an 

attention study, the voluntary attention condition (top-down) has stronger beta 

synchronization than the bottom-up condition (Buschman & Miller, 2007). In another 

attention experiment, researchers also found top-down beta activity (Bastos et al., 2015). Our 

results show top-down beta activity occurs before the perceptual switches, which possibly 
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reflects the fact that the suppressed percept is being “activated”. Several working memory 

experiments have shown that content-specific beta activity (i.e., stimulus information can be 

decoded from the beta activity) emerges when unattended memory representations begin to 

be attended (Rose et al., 2016; Spitzer et al., 2014; Spitzer & Blankenburg, 2011). This 

suggests the possibility that beta oscillations are associated with “reactivation” of the latent 

representations (Spitzer & Haegens, 2017). Since top-down theta and beta activities co-

occurred before the perceptual switches in our results, a question arises: do they represent 

two different processes, or do they coordinate to perform one cognitive task? Analyzing the 

correlation between them could partially answer this question. On the other hand, the 

widespread bottom-up processing in the PA condition may be because, in this condition, the 

subjects were passively receiving visual information, and the visual input was clear. Another 

possibility is that there may be a push-pull mechanism that leads to more bottom-up 

processing in the absence of top-down processing. Consistent with this result, more 

substantial bottom-up granger gain in PA can also be found in our additional granger 

causality analysis using perceptual echoes (Figure 7-2). 

It is unclear in which region the resolution of binocular rivalry starts. A recent MEG 

study (Dijkstra et al., 2016) has revealed top-down processing prior to perceptual switches 

during binocular rivalry. This study decoded signals from each region and submitted the 

decoded results to a Granger causality analysis, and they found a flow of information from 

the temporal areas to the occipital areas that precedes the perceptual switches. Although also 

supporting top-down processing, our study differs in that 1) we found information flow from 

the frontal to the occipital areas and 2) our analysis is based on oscillations. For the first 

difference, we chose to analyze the frontal and occipital electrodes primarily because we 

drew on past literature. Several studies have indicated that the frontal cortex is associated 

with perceptual switches in bistable vision tasks (Leopold & Logothetis, 1999; Sterzer & 

Kleinschmidt, 2007; Weilnhammer et al., 2013), and the occipital areas are related to visual 

information processing in the tasks (Haynes & Rees, 2005b). Regarding the second 

difference, there is theoretical support for the idea that different brain regions communicate 

via oscillations (CTC) and that this communication can be achieved through synchronization 

of oscillations that are subject to top-down or bottom-up processing (Engel & Fries, 2016; 

Fries, 2005, 2015). According to our findings, this processing may serve as the information 

flow that is required for perceptual switches in binocular rivalry.  
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A growing number of models or theories consider that the brain is an active processor or 

interpreter which actively interprets, infers and predicts sensory input (Aitchison & Lengyel, 

2017; Huang & Rao, 2011; Rauss et al., 2011). These models or theories highlight the 

importance of neural networks that include frontal, parietal and sensory areas in sensory 

information processing (Summerfield et al., 2006), consistent with the view positing 

frontoparietal networks as the hub of cognitive control (Zanto & Gazzaley, 2013). The same 

holds in conscious perception (Weilnhammer et al., 2017; Whyte, 2019). Several imaging 

studies have pointed out that the frontal and parietal areas are associated with perceptual 

switches during binocular rivalry or other bistable visual tasks (Britz et al., 2009; 

Kleinschmidt et al., 2002; Lumer et al., 1998; Sterzer et al., 2002; Sterzer & Kleinschmidt, 

2007). Importantly, the connectivity between frontoparietal areas may be vital for resolving 

ambiguous perceptions. Enhanced synchronization has been observed between the frontal and 

parietal cortex prior to perceptual switches when viewing the Necker cube (Nakatani & van 

Leeuwen, 2006). Furthermore, an fMRI study (Weilnhammer et al., 2013) using a dynamic 

causal model found greater activation in frontoparietal regions during perceptual switches of 

seeing a rotating Lissajous figure, and this activation was associated with a top-down 

connectivity from the frontal to the occipital areas, implying that higher-level areas might 

initiate the perceptual switches. Whereas these studies are convincing, fMRI may fail to 

detect subtle neural activities due to its low temporal resolution. This is where our study 

provides more evidence for top-down on a finer temporal scale.  

What information does the top-down process convey during bistable perception? And 

from where to where? A recent meta-analysis paper summarized all the fMRI and TMS 

studies of bistable perception that entail the frontoparietal regions. Of the frontoparietal 

regions, the inferior frontal cortex (IFC) is the most observed area that probably plays a 

critical role in directing perceptual switches. IFC is associated with sensory decision making 

(Heekeren et al., 2004) and inhibitory control (Aron et al., 2014), and it is sensitive to the 

fidelity of sensory information (Haynes & Rees, 2005a; Heekeren et al., 2004; Sunaert et al., 

2000). From the predictive coding point of view, perceptual switches arise due to risen 

perceptual errors (Hohwy, 2007). This view has received evidence from an fMRI study that 

used the Bayesian predictive model to compute the time course of perceptual errors, which is 

correlated with the neural signal time-courses of IFC (Weilnhammer et al., 2017). During 

perceptual switches, IFC might serve to detect and send feedback information that could 

contribute to perceptual switches. The involvement of IFC in resolving ambiguous perception 



131 

 

has been further supported by a most recent study, in which the perceptual switches 

decreased when IFC was disrupted by TMS stimulation (Weilnhammer et al., 2020). Future 

studies are needed to record electrophysiology signals from IFC and visual areas to verify 

whether the top-down beta activity we found is sent from IFC to the visual areas. 

Chapter 6 emphasizes that inter-area communication, as reflected by oscillations, is 

essential for conscious perception. However, this has only been found under one paradigm. 

More validations are needed to verify whether this result can be generalized across various 

conscious perceptions, for example, using a different bistable paradigm and a backward 

masking paradigm. More importantly, to establish the causal role of top-down activity in 

resolving ambiguous perception, studies using brain stimulation are required.  

In short, we have demonstrated the communication role of oscillations in conscious 

perception through two studies. The first study mainly suggests that visual sampling in 

conscious perception may involve more neurons synchronizing in the alpha band. 

Complementarily, the second study shows that there is interareal directed communication in 

conscious perception.  

7.4 CONCLUSION 
The four studies in this thesis discuss the role of oscillations in the brain from the 

perspective of three perceptual and cognitive functions: visual perception, attention and 

consciousness.  Brain oscillations could act as an “exciter”, modulating visual perception and 

attention in such a way that our brain samples visual information rhythmically. The first two 

studies (chapters 3 and 4) set out to investigate the neural origin and the generation 

mechanism of the oscillations related to these visual and attentional samplings. We found that 

the perceptual echoes, the visual sampling related oscillations, might originate from early 

visual areas; and the theta oscillations, the underlying attentional samplings modulator, might 

arise from the visual competition of V4 neurons. Brain oscillations could also operate as a 

“communicator”, allowing exchanging information between brain areas via synchronization. 

The last two studies (chapters 5 and 6) demonstrate that inter-area communication and 

information flow reflected by oscillations might be associated with conscious perception. All 

in all, the brain is a dynamic system in which the oscillations flexibly facilitate various brain 

functions. 
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