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Chapter 1

Introduction

Various problems that applied sciences are encountered with can be modeled in two
general fashions. The first is to take the model with all its descriptive parameters and
features, which makes the subsequent analysis hard and even intractable. The second is to
approximate the model, which leads to computationally feasible methods. This dilemma
is apparent everywhere in mathematical modeling. As a result, numerous approximation
techniques have been proposed, each adapted to a particular problem.

Sampling from probability distributions enters the scope of the mathematical setting
above described. Often, we are faced with complex measures that are impossible to
sample from in exact manner. Thus, the problem requires an approximative approach. In
this manuscript, we focus on one such technique, called the Langevin sampling method,
which have their origins in statistical physics.

This introductory chapter presents the mathematical framework and the historical
development of the Langevin Monte-Carlo type algorithms. It starts with general notions
of Statistics and Optimization and then discusses the exact and the approximate sampling
methods. In the end, we provide a quick overview of the main contributions of the thesis,
which are described in detail in the subsequent chapters.

1.1 High-dimensional Parametric Statistics

In this section, we briefly present the general setting of the parametric statistical inference.
First, we introduce themathematical formulation of the problem and themain assumptions,
required for the subsequent analysis. Next, we discuss the maximum likelihood and
Bayesian estimators. In the third subsection, we present the linear regression problem
with its regularized versions. We conclude the section with logistic regression models in
both, frequentist and Bayesian settings.



1.1.1 General Notions
The general goal of mathematical statistics is to estimate a certain characteristic of the
unknown probability law P n on Rdn, using a dataset Zn = (Z1, . . . ,Zn), which is sampled
from this distribution. The data points Zk are d-dimensional random vectors. In the case
when they are independent of each other, P n can be expressed as a product measure:

P n = L(Z1)⊗ . . .⊗ L(Zn).

Another important assumption about the distribution P n is that it belongs to a parametric
class:

P := {P n
θ : θ ∈ Θ},

where Θ ⊂ Rp is called the set of parameters and it is known in advance. Finally, in most
cases it is convenient for us to have an identifiable model. That is, for different values θ1

and θ2 of the parameter, the corresponding distributions are different from each other:

θ1 6= θ2 =⇒ P n
θ1
6= P n

θ2
.

Thus, the unknown distribution P n is described by one vector which we denote by θ∗
and we call it the true value of the parameter. The latter means, that in order to estimate
the unknown distribution P n, one needs to estimate the true parameter θ∗. Hence, the
estimation problem boils down to finding a function θ̂n(Z1, . . . ,Zn), that is close to θ∗ in
some probabilistic sense.

Now, that we have described the general mathematical setting of the problem, a
question that naturally arises is how to choose “a good” or “the best” estimator θ̂n? To
make a mathematically justified choice one needs to have a criterion or a quantitative
method of comparison between two estimators. This is done using a loss function l, which
is a positive function defined on Θ×Θ. The risk of the estimator θ̂n at point θ is defined
as follows:

R
(
θ̂n,θ

)
:= Eθ

[
l
(
θ̂n(Z1, . . . ,Zn),θ

)]
,

where Eθ means that the expectation is taken over the sample (Z1, . . . ,Zn) ∼ P n
θ . One of

the most common choices for l(θ,θ′) is the quadratic function ‖θ − θ′‖2
2. In this case, the

risk is called quadratic risk or the mean square error (MSE). A simple calculation shows
that there exists no estimator that is universally (i.e., for all parameter values θ) better
in terms of risk. Nevertheless, we can hope for certain asymptotic and/or probabilistic
qualities. We say that the estimator θ̂n is consistent if R(θ̂n,θ)→ 0, when n→∞.

This means that with the growth of n, our estimator (which depends on n) gets closer
to θ∗ in terms of the risk. The latter is a significant feature, as we want to estimate
better with the growth of the sample size n. Another important aspect is the asymptotic
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behavior of the estimator. We call the estimator θ̂n asymptotically normal, if it satisfies
the following condition:

√
n(θ̂n − θ)

L−−−→
n→∞

Np(0,Σ(θ)), for every θ ∈ Θ.

Here Σ is the asymptotic covariance matrix which is a function of the parameter θ, that
depends on the estimator. One may construct different quantitative criteria, based on Σ,
that can be used to compare two estimators θ̂1 and θ̂2 (see e.g. [FK85, Rao]).

1.1.2 Maximum Likelihood and Bayesian Estimators

Suppose now that the distribution P n
θ is absolutely continuous w.r.t. some σ-additive

measure defined on Rdn. Thus, P n
θ can be characterized by its density f(z1, . . . ,zn,θ).

We call likelihood function the map θ → Ln(θ), defined as

Ln(θ) = f(Z1, . . . ,Zn,θ), for ∀θ ∈ Θ,

where (Z1, . . . ,Zn) is the initially observed sample. The maximum likelihood estimator is
defined as a maximizer of Ln:

θ̂
ML

n ∈ arg max
θ

Ln(θ). (MLE)

One needs to bear in mind that the SGD is not always unique. See [LC90] for some simple,
as well as advanced examples of maximum likelihood estimation. The estimator θ̂ML

n can
also be defined as a minimizer of the negative logarithm of the likelihood function Ln.
The latter is defined in the following manner:

ln(θ) := − 1

n
log (Ln(θ)) , (1.1)

and is referred to as the log-likelihood function. If the data points Zk are i.i.d then the
(MLE) takes the following form:

θ̂
ML

n = arg min
θ∈Θ

{
− 1

n

n∑
k=1

log f(Zk,θ)
}
,

where f(z,θ) is the marginal density of Z1. If the log-likelihood is convex w.r.t. θ, then
the minimization problem (1.1) can be solved using the methods of convex optimization
(see Section 1.3). Under mild assumptions, the MLE is proved to be consistent and
asymptotically normal (see [LC70, Dan61]).

Remark 1. The assumption that the unknown distribution belongs to a parametric class
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can be relaxed in the general case. In the recent literature of statistics the true distribution
is supposed to be close to some parametric family in a certain probabilistic sense ([Tsy08])
instead of being represented exactly by some value of the parameter.

In the previous sections, we did not exploit any topological structure of the parameter
space Θ. So far, we have considered the true parameter as an unknown constant vector,
which belonged to Θ. In the Bayesian approach, the space is equipped with a measure
µ, defined on a sigma algebra ΣΘ. This measure is often called prior distribution in
the literature of Bayesian statistics. Again, we are given a dataset Zn = (Z1, . . . ,Zn),
sampled from a distribution P n

θ∗, and we want to infer the unknown parameter θ∗. The
measure µ is chosen according to the concrete problem and earlier experience of the
practitioner, and it allows to universally quantify the quality of an estimator θ̂n. The
latter is accomplished using the integrated risk:

R
(
θ̂n
)

=

∫
Θ

R
(
θ, θ̂n

)
µ(dθ) =

∫
Θ

∫
Rdn

l
(
θ, θ̂n(z1, . . . ,zn)

)
P n
θ (dz1, . . . , dzn)µ(dθ).

The integrated risk takes the role of the estimator’s average error. Therefore, one would
be interested in minimizing this error. The Bayesian estimator is defined as the minimizer
of the integrated risk:

θ̂
B

n ∈ arg min
θ̂n

R(θ̂n).

The minimization here is taken over the class of all measurable functionsM(Rdn,Θ). The
Bayesian estimator depends on the choice of the loss function l. In the case when l is the
quadratic loss, θ̂Bn is given as follows:

θ̂
B

n (z1, . . . ,zn) :=

∫
Θ
θf(z1, . . . ,zn,θ)µ(dθ)∫

Θ
f(z1, . . . ,zn,θ)µ(dθ)

, (1.2)

where pnθ is the density of P n
θ . One may notice that the integral in the denominator

serves as a normalization constant. Thus, f(z1, . . . ,zn,θ)/
∫

Θ
f(z1, . . . ,zn,θ)µ(dθ) can

be interpreted as a density function of a probability distribution defined on (Θ,ΣΘ). It is
often called posterior distribution. We will see later, that the normalizing constant can
be neglected in many approximate integration techniques. The estimator θ̂Bn is often
referred to as posterior mean. When the dimension p of the parameter space is large, the
computation of the integrals appearing in the last display is generally intractable. To
circumvent this problem, one has to resort to approximate calculation methods. One of the
main lines of research in this setting is the Monte-Carlo integration and MCMC algorithms.
A central ingredient of these algorithms is a method of approximate sampling from a
given probability distribution (see Section 1.4.4 below). To complete this subsection,
let us note that the behavior of the Bayesian estimator depends on the choice of the
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loss function l. We refer the reader to [Bro80], for more details on this topic, and to
[Rob96, LC06] for a study on intrinsic losses that present some advantages as compared
to the quadratic loss.

1.1.3 Multivariate linear regression

In this section, we study the linear regression. Before stating the model itself, let us
introduce the notation. We assume that the data points Zk = (Xk, Yk) are composite
vectors. Here,Xk ∈ Rp are called feature vectors, whereas Yk ∈ R are called labels. We
denote by X the design matrix of the data Zn, which is the d × n matrix, having the
featuresXk as its rows. Likewise, Y := (Y1, Y2, . . . , Yn)> is the vector of the labels.

We say that the model is linear, if the labels are a linear transformation of the features
up to a mean-zero additive noise term. Mathematically, it has the following form:

Y = Xθ∗ + ε.

Here, ε is a mean-zero random vector in Rn, that is independent of the design matrix
X. Let us suppose that ε is a Gaussian vector: ε ∼ N (0, σ2In). Then, SGD of θ∗ in this
model is written as

θ̂
ML

n ∈ arg max
θ∈Rp

Ln(θ) = arg max
θ∈Rp

n∑
k=1

exp

(
− 1

2σ2

(
θ>Xk − Yk

)2
)
.

Due to the monotonicity of the exponential function we obtain

θ̂
ML

n = arg min
θ∈Rp

{
1

n

n∑
k=1

(
θ>Xk − Yk

)2

}
.

This problem is also called least square estimation. This is a quadratic minimization
problem, which always has a solution. Moreover, if rank(X) = p, then a closed-form
solution is available and it is called ordinary least square (OLS) estimator:

θ̂
OLS

:=
(
X>X

)−1
X>Y. (OLS)

Therefore we have an explicit formula for the solution and it is efficiently computable
with modern scientific programming languages. We refer the interested reader to [Kol09]
for detailed discussion on this topic, and for the concentration properties of θ̂OLS

n .
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Regularization

In several frequently encountered situations, the OLS does not have a satisfactory
performance from the practitioner’s point of view. It suffers from several major issues.

• Although unbiased, OLS has a large variance. Let us denote by ∆ the Euclidean
distance between the θ̂ML

n and the parameter value θ. Then the expectation and
the variance of ∆2 have the following formula (see [HK70]):

Eθ∗ [∆2] =

p∑
k=1

2σ2

λk
and varθ∗(∆

2) =

p∑
k=1

2σ4

λ2
k

.

Here λ1, . . . , λp are the eigenvalues of X>X. We see that the right-hand side of
the equation explodes when, the eigenvalues are small. This is often the case in
high-dimensional problems.

• Another drawback of the method is the lack of interpretability. OLS does not allow
to differentiate between relevant variables and irrelevant variables. One would be
interested in sparse estimators. The estimator is called sparse, if it has a relatively
small number of non-zero entries. Thus, sparsity would lead to a large number of
vanishing coordinates for the estimator of θ∗. The latter, in its turn, would yield
that the corresponding entries of the feature vector are not useful for predicting the
label.

Common approach to solve this issues is to introduce a regularization term r(·). The
map r : R+ → R+ is a monotonically increasing function. The regularized version of least
square estimation is the following optimization problem:

θ̂n ∈ arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ r(‖θ‖)
}
,

where λ is a positive parameter and ‖ · ‖ is an arbitrary norm on Rp. Adding the term
λr(‖θ‖) we thus penalize the norm of the prediction vector. This simple trick allows to
have smaller norms, which yields to less complex estimated models. The choice of the
norm is based on the complexity notion we are interested in. The regularization is chosen
to reflect our prior knowledge on the desirable model parameters. The most popular
regularized least square methods, Lasso and ridge, are briefly presented below.
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LASSO

In the case when r(a) = a, for all a > 0, and l1-norm is taken, the solution of the following
minimization problem is called a LASSO estimator:

θ̂
LASSO

n := arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ ‖θ‖1

}
. (LASSO)

This is a convex optimization problem that always has a solution. LASSO was proposed by
[Tib96]. The non-smooth behavior of the l1-norm favors sparse minimizers of (LASSO).
There is a close relation between the Lasso and soft thresholding, we refer the reader to
[DJHS92]. This idea is also exploited in another sparse recovery method called Dantzig
selector (see [CT07]). A detailed comparison and a unified analysis of both methods
can be found in [BRT+09]. The complexity of LASSO has been extensively studied,
see [BTW07, vdG07, BRT+09, AH12, vdGL13]. In [DHL17], the authors show that
λ =

√
2 log(p)/n yields to optimal excess risk of order O(rank(X) log(p)/n) for (LASSO).

Here X is the design matrix of the feature vectors. To gain more insight on the above-
mentioned methods, see the survey paper by [Kol09].

Ridge

Ridge regression is the linear regression with the l2-type regularization term:

θ̂
Ridge

n := arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ ‖θ‖2
2

}
. (Ridge)

The solution to (Ridge) has an explicit formula, similar to (OLS). In the case of ridge
regression, however, the design matrix X can have any rank:

θ̂
Ridge

n =
(
X>X + λIn

)−1
X>Y.

Since λ > 0 the inverse of the matrix is always well-defined. The first articles that introduce
this method include [Cro72, Hor62]. As mentioned previously, the regularization induces
certain bias to reduce the variance in the learning problem (bias-variance trade-off). In
this phenomenon, the tuning parameter λ plays a major role. For results on the estimation
of λ, the interested reader is referred to [HK70, Nor82, Wen00, Kib03, ST+99a].
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1.1.4 Logistic regression

So far, we have discussed only the case, where the labels admit real values. Yet, there is a
vast collection of problems when the labels are categorical. These problems are called
classification problems. In this section, we will discuss only the case with two classes, that
is −1 and 1. Hence, our labels are discrete random variables: Yi ∈ {−1, 1}. The logistic
model targets to estimate the conditional distribution of Y knowing the feature vectorX.
The main assumption is that the features can be separated by a hyperplane in Rp, which
is described by its normal θ∗: Y = sign(θ∗>X). The latter yields

L(Y | X) = δ(θ∗>X), (1.3)

where δx is the Dirac measure at point x ∈ Rp. As previously, we would like to perform
maximum likelihood estimation. This model is not dominated; therefore, the maximum
likelihood approach can not be applied. Logistic regression proposes a relaxation of (1.3)
to overcome this issue:

P (Y = y |X = x) =
1

1 + exp(−yθ∗>x)
. (1.4)

We observe that the conditional probability is greater than 1/2 when the signs of y and
θ∗>x coincide and vice-versa. We also notice that, the larger the norm of x, the more
precise is the proposed model about the label. Therefore, the model indeed replicates the
initial assumption. In addition, the relaxed probability is smooth and log-concave (see
Section 1.5.1). Summing up, MLE takes the following form:

θ̂
logit

n = θ̂
MLE

n = arg min
θ∈Rp

1

n

n∑
i=1

log
(
1 + exp

(
− Yiθ>X i

))
.

Logistic regression is widely used in classification problems that appear in many fields
(see [Wri95, HJLS13]).

Bayesian binary logistic regression

In the Bayesian settings, the logistic regression is of particular interest to us, as it includes
all the general concepts that we discuss in this manuscript. Similar to the previous
case, we have independent and identically distributed data points Zk = (Xk, Yk), where
Xk ∈ Rp and labels in Yk ∈ {−1,+1}. Also, the conditional distribution is given as in
(1.4). The Bayesian approach to the logistic model assumes that the parameter space is
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the Euclidean space Rp, and that it is equipped with a Gaussian prior measure µ:

µ := N
(

0,
1

λ
Σ−1
X

)
, where ΣX :=

1

n

n∑
i=1

XiX
>
i .

The hyperparameter λ is a positive number, that is usually specified by the practitioner.
The Bayesian estimator is calculated for the quadratic loss. Using the formula (1.2), we
obtain the following:

θ̂
B

n (Z1, . . . ,Zn) = Cn

∫
Rp
θ exp

(
−

n∑
i=1

Yiθ
>X i −

n∑
i=1

log
{

1 + exp
(
−θ>X i

)}
− λ

2

∥∥∥Σ1/2
X θ

∥∥∥2

2

)
dθ.

Here, Cn is a constant in terms of θ and it depends on Zn. The first two terms in the
exponential correspond to the log-likelihood of the logistic model, whereas the last term
comes from the log-density of the prior and can be seen as a penalty term. An important
remark about the function in the exponent, is that it is concave in terms of θ, and therefore,
the integrand is log-concave (see Section 1.5.1).

We observe here, that the estimator is not computable for rather simple data sets. To
construct an estimator for Y , the classical approaches resort to approximate methods.
Solutions to this problem were proposed by [CD98] and [HH06], who use sampling based
algorithms. See Section 1.4.4 for more details.

1.2 Statistiques paramétriques en grande dimension

Dans cette section, nous présentons brièvement le cadre général de l’inférence statistique
paramétrique. Tout d’abord, nous Tout d’abord, nous introduisons la formulationmathéma-
tique du problème et les principales hypothèses requises pour l’analyse suivante. analyse
ultérieure. Ensuite, nous discutons des estimateurs de maximum de vraisemblance et
bayésiens. Dans la troisième sous-section, nous présentons le problème de régression
linéaire avec ses versions régularisées. Nous concluons la section avec les modèles de
régression logistique dans les deux cadres, fréquentiste et bayésien.

1.2.1 Notions générales

Le but général de la statistique mathématique est d’estimer une certaine caractéristique
de la loi de probabilité inconnue inconnue P n sur Rdn, en utilisant un ensemble de
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données Zn = (Z1, . . . ,Zn), qui est échantillonné à partir de cette distribution. Les
points de données Zk sont des vecteurs aléatoires à d dimensions. Dans le cas où ils sont
indépendants les uns des autres, P n peut être exprimé comme une mesure de produit:

P n = L(Z1)⊗ . . .⊗ L(Zn).

Une autre hypothèse importante concernant la distribution P n est qu’elle appartient à
une classe paramétrique:

P := {P n
θ : θ ∈ Θ},

où le sous-ensemble Θ ⊂ Rp est appelé l’ensemble des paramètres et il est connu à
l’avance. Enfin, dans la plupart des cas, il est pratique pour nous d’avoir un modèle
identifiable. C’est-à-dire que, pour différentes valeurs de θ1 et de θ2, nous avons besoin
d’un modèle de type "textuel". et θ2 du paramètre, les distributions correspondantes sont
différentes les unes des autres:

θ1 6= θ2 =⇒ P n
θ1
6= P n

θ2
.

Ainsi, la distribution inconnue inconnue P n est décrite par un vecteur que nous désignons
par θ∗ et nous l’appelons la valeur réelle du paramètre. Cela signifie que pour estimer
la distribution inconnue P n, on doit estimer le vrai paramètre θ∗. Par conséquent, le
problème de l’estimation se résume à trouver une fonction θ̂n(Z1, . . . ,Zn), qui est proche
de θ∗ dans un certain sens probabiliste.

Maintenant que nous avons décrit le cadre mathématique général du problème, une
question qui se pose naturellement est la suivante comment choisir "un bon" ou "le
meilleur" estimateur θ̂n ? Pour faire un choix mathématiquement justifié, il faut avoir
un critère ou une méthode quantitative de comparaison entre deux estimateurs. Pour ce
faire, on utilise une fonction de perte l, qui est une fonction positive définie sur Θ×Θ.
Le risque de l’estimateur θ̂n au point θ est défini comme suit :

R
(
θ̂n,θ

)
:= Eθ

[
l
(
θ̂n(Z1, . . . ,Zn),θ

)]
,

où Eθ signifie que l’espérance est prise sur l’échantillon (Z1, . . . ,Zn) ∼ P n
θ . L’un des

choix les plus courants pour l(θ,θ′) est la fonction quadratique ‖θ − θ′‖2
2. Dans ce cas, le

risque est appelé risque quadratique ou l’erreur quadratique moyenne (EQM). Un simple
calcul montre qu’il n’existe pas d’estimateur qui soit universellement (c’est-à-dire pour
toutes les valeurs des paramètres θ) meilleur en termes de risque. Néanmoins, nous
pouvons espérer certaines qualités asymptotiques et/ou probabilistes. Nous disons que
l’estimateur θ̂n est cohérent si R(θ̂n,θ)→ 0, lorsque n→∞.

Cela signifie qu’avec la croissance de n, notre estimateur (qui dépend de n) se
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rapproche de θ∗ en termes de du risque. Ce dernier point est une caractéristique
importante, car nous voulons améliorer l’estimation avec la croissance de la taille de
l’échantillon n. taille de l’échantillon n. Un autre aspect important est le comportement
asymptotique de l’estimateur. Nous appelons l’estimateur θ̂n est asymptotiquement normal,
s’il satisfait à la condition suivante :

√
n(θ̂n − θ)

L−−−→
n→∞

Np(0,Σ(θ)), pour tout θ ∈ Θ.

Ici, Σ est la matrice de covariance asymptotique qui est une fonction du paramètre θ,
qui dépend de l’estimateur. On peut construire différents critères quantitatifs, basés sur
Σ, qui peuvent être utilisés pour comparer deux estimateurs θ̂1 et θ̂2 (voir par exemple
[FK85, Rao]).

1.2.2 Estimateurs du maximum de vraisemblance et estimateurs
bayésiens

Supposons maintenant que la distribution P n
θ est absolument continue par rapport à une

certaine mesure additive de σ. définie sur Rdn. Ainsi, P n
θ peut être caractérisé par sa

densité f(z1, . . . ,zn,θ). Nous appelons fonction de vraisemblance la carte θ → Ln(θ),
définie comme suit

Ln(θ) = f(Z1, . . . ,Zn,θ), pour ∀θ ∈ Θ,

où (Z1, . . . ,Zn) est l’échantillon initialement observé. L’estimateur du maximum de
vraisemblance est défini comme un maximisant de Ln :

θ̂
ML

n ∈ arg max
θ

Ln(θ). (1.5)

Il faut garder à l’esprit que le SGD n’est pas toujours unique. Voir [LC90] pour quelques
exemples simples, ainsi que des exemples avancés d’estimation parmaximumde vraisemblance.
L’estimateur θ̂ML

n peut également être défini comme un minimiseur du logarithme négatif
de la fonction de vraisemblance Ln. Cette dernière est définie de la manière suivante :

ln(θ) := − 1

n
log (Ln(θ)) , (1.6)

et est appelée fonction de log-vraisemblance. Si les points de données Zk sont i.i.d. alors
la (1.5) prend la forme suivante :

θ̂
ML

n = arg min
θ∈Θ

{
− 1

n

n∑
k=1

log f(Zk,θ)
}
,
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où f(z,θ) est la densité marginale de Z1. Si la log-vraisemblance est convexe en ce
qui concerne θ, alors le problème de minimisation (1.6) peut être résolu à l’aide des
méthodes d’optimisation convexe (voir Section 1.3). Sous des hypothèses légères, la MLE
s’avère cohérente et asymptotiquement normale (cf. [LC70, Dan61]).
Remark 2. L’hypothèse selon laquelle la distribution inconnue appartient à une classe
paramétrique peut être relâchée dans le cas général. Dans la littérature récente de la
statistique, la vraie distribution est supposée être proche d’une certaine famille paramétrique
dans un certain sens probabiliste ([Tsy08]) au lieu d’être représentée exactement par une
certaine valeur du paramètre.

Dans les sections précédentes, nous n’avons exploité aucune structure topologique de
l’espace des paramètres Θ. Jusqu’à présent, nous avons considéré le vrai paramètre comme
un vecteur constant inconnu, qui appartenait à Θ. Dans l’approche bayésienne, l’espace est
doté d’une mesure µ, définie sur une algèbre sigma ΣΘ. Cette mesure est souvent appelée
distribution distribution préalable dans la littérature des statistiques bayésiennes. Une fois
encore, nous disposons d’un ensemble de données Zn = (Z1, . . . ,Zn), échantillonné à
partir d’une distribution P n

θ∗ , et nous voulons déduire le paramètre inconnu θ∗. paramètre
inconnu θ∗. La mesure µ est choisie en fonction du problème concret et de l’expérience
du praticien. problème concret et de l’expérience antérieure du praticien, et elle permet
de quantifier universellement la qualité d’un estimateur θ̂n. Pour ce faire, on utilise le
risque intégré:

R
(
θ̂n
)

=

∫
Θ

R
(
θ, θ̂n

)
µ(dθ) =

∫
Θ

∫
Rdn

l
(
θ, θ̂n(z1, . . . ,zn)

)
P n
θ (dz1, . . . , dzn)µ(dθ).

Le risque intégré joue le rôle de l’erreur moyenne de l’estimateur. Par conséquent, on
s’intéresse à la minimisation de cette erreur. L’estimateur bayésien est défini comme le
minimiseur du risque intégré :

θ̂
B

n ∈ arg min
θ̂n

R(θ̂n).

Laminimisation est ici effectuée sur la classe de toutes les fonctions mesurablesM(Rdn,Θ).
L’estimateur bayésien dépend du choix de la fonction de perte l. estimateur bayésien
dépend du choix de la fonction de perte l. Dans le cas où l est la perte quadratique, θ̂Bn
est donné comme suit :

θ̂
B

n (z1, . . . ,zn) :=

∫
Θ
θf(z1, . . . ,zn,θ)µ(dθ)∫

Θ
f(z1, . . . ,zn,θ)µ(dθ)

, (1.7)

où pnθ est la densité de P n
θ . On peut remarquer que l’intégrale au dénominateur sert

de constante de normalisation. Ainsi, f(z1, . . . ,zn,θ)/
∫

Θ
f(z1, . . . ,zn,θ)µ(dθ) peut être
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interprété comme une fonction de densité d’une distribution de probabilité définie sur
(Θ,ΣΘ). On l’appelle souvent distribution postérieure. Nous verrons plus tard que la
constante de normalisation peut être négligée dans de nombreuses techniques d’intégration
approximative. L’estimateur θ̂Bn est souvent appelé moyenne postérieure. Lorsque la
dimension p de l’espace des paramètres est grande, le calcul des intégrales apparaissant
dans le dernier affichage est généralement intraitable. Pour contourner ce problème, il
faut recourir à des méthodes de calcul approximatif. L’un des principaux axes de recherche
dans ce domaine est l’intégration de Monte-Carlo et les algorithmes MCMC. Un ingrédient
central de ces algorithmes est une méthode d’échantillonnage approximatif à partir d’une
distribution de probabilité donnée (voir Section 1.4.4 ci-dessous). Pour compléter cette
sous-section, notons que le comportement de l’estimateur bayésien dépend du choix de la
fonction de perte l. Nous renvoyons le lecteur à [Bro80], pour plus de détails sur ce sujet,
et à [Rob96, LC06] pour une étude sur les pertes intrinsèques qui présentent certains
avantages par rapport à la perte quadratique.

1.2.3 Régression linéaire multivariée

Dans cette section, nous étudions la régression linéaire. Avant d’énoncer le modèle lui-
même, introduisons la notation. Nous supposons que les points de donnéesZk = (Xk, Yk)

sont des vecteurs composites. Ici, Xk ∈ Rp sont appelés vecteurs de caractéristiques,
tandis que Yk ∈ R sont appelés étiquettes. Nous désignons par X la matrice de conception
des données Zn, qui est la matrice d× n, ayant pour lignes les caractéristiquesXk. De
même, Y := (Y1, Y2, . . . , Yn)> est le vecteur des étiquettes.

Nous disons que le modèle est linéaire si les étiquettes sont une transformation linéaire
des caractéristiques jusqu’à une moyenne. linéaire des caractéristiques jusqu’à un terme
de bruit additif de moyenne nulle. Mathématiquement, il a la forme suivante :

Y = Xθ∗ + ε.

Ici, ε est un vecteur aléatoire de moyenne nulle dans Rn, qui est indépendant de la matrice
de conception X. Supposons que ε soit un vecteur gaussien : ε ∼ N (0, σ2In). Alors, la
SGD de θ∗ dans ce modèle s’écrit comme suit

θ̂
ML

n ∈ arg max
θ∈Rp

Ln(θ) = arg max
θ∈Rp

n∑
k=1

exp

(
− 1

2σ2

(
θ>Xk − Yk

)2
)
.

En raison de la monotonicité de la fonction exponentielle, on obtient

θ̂
ML

n = arg min
θ∈Rp

{
1

n

n∑
k=1

(
θ>Xk − Yk

)2

}
.
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Ce problème est également appelé "estimation des moindres carrés". Il s’agit d’un problème
de minimisation quadratique, qui a toujours une solution. De plus, si rank(X) = p, alors
une solution à forme fermée est disponible et elle est appelée estimateur des moindres
carrés ordinaires (1.8) estimateur :

θ̂
OLS

:=
(
X>X

)−1
X>Y. (1.8)

Nous avons donc une formule explicite pour la solution solution et elle est calculable
efficacement avec les langages de programmation scientifique modernes. L’estimateur des
moindres carrés peut également être considéré comme une tentative de prédire l’étiquette
Y à l’aide d’une fonction linéaire du vecteur caractéristique Y . Cette interprétation
des MCO est apparente dans le problème de l’apprentissage supervisé. Nous renvoyons
le lecteur intéressé à [Kol09] pour une discussion détaillée sur ce sujet, et pour la
concentration propriétés de concentration de θ̂OLS

n .

Regularisation

Dans plusieurs situations fréquemment rencontrées, le OLS n’a pas une performance
satisfaisante du du point de vue du praticien. Il souffre de plusieurs problèmes majeurs.

• Bien que sans biais, les OLS ont une grande variance. Désignons par ∆ la distance
Euclidienne entre la θ̂ML

n et la valeur du paramètre θ. Ensuite, l’espérance et la
variance de ∆2 ont la formule suivante (voir [HK70]) :

Eθ∗ [∆2] =

p∑
k=1

2σ2

λk
et varθ∗(∆

2) =

p∑
k=1

2σ4

λ2
k

.

Ici, λ1, . . . , λp sont les valeurs propres de X>X. On voit que le côté droit de l’équation
explose lorsque les valeurs propres sont petites. C’est souvent le cas dans les
problèmes à haute dimension.

• Un autre inconvénient de la méthode est le manque d’interprétabilité. Les OLS ne
permettent pas permet pas de différencier les variables pertinentes des variables non
pertinentes. On serait intéressés par les estimateurs épars. L’estimateur est appelé
sparse, s’il a un nombre relativement faible d’entrées non nulles. d’entrées non nulles.
Ainsi, la rareté conduirait à un grand nombre de coordonnées de disparition pour
l’estimateur de θ∗. Ce dernier, à son tour, produirait que les entrées correspondantes
du vecteur de caractéristiques ne sont pas utiles pour prédire l’étiquette.

Une approche courante pour résoudre ce problème consiste à introduire un terme
de régularisation r(·). La carte r : R+ V R+. est une fonction monotone croissante. La
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version régularisée de l’estimation des moindres carrés est le problème d’optimisation
suivant :

θ̂n ∈ arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ r(‖θ‖)
}
,

où λ est un paramètre positif et ‖ · ‖ est une norme arbitraire sur Rp. En ajoutant le terme
λr(‖θ‖) on pénalise ainsi la norme du vecteur de prédiction. Cette astuce simple permet
d’avoir normes plus petites, ce qui permet d’obtenir des modèles estimés moins complexes.
Le choix de la norme est basé sur la notion de complexité qui nous intéresse. de complexité
qui nous intéresse. La régularisation est choisie pour refléter nos connaissances préalables
sur les paramètres souhaitables du modèle. souhaitables du modèle. Les méthodes
de moindres carrés régularisées les plus populaires, Lasso et Ridge, sont brièvement
présentées ci-dessous.

LASSO

Dans le cas où r(a) = a, pour tous les a > 0, et où la norme l1 est prise, la solution du
problème de minimisation suivant est appelée un estimateur LASSO :

θ̂
LASSO

n := arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ ‖θ‖1

}
. (1.9)

Il s’agit d’un problème d’optimisation convexe qui a toujours une solution. LASSO a
été proposé par [Tib96]. Le comportement non lisse de la norme l1 favorise sparse
minimisateurs de (1.9). Il existe une relation étroite entre le Lasso et le seuillage doux,
nous renvoyons le lecteur à [DJHS92]. Cette idée est également exploitée dans une
autre méthode de récupération éparse appelée sélecteur de Dantzig (voir [CT07]). Une
comparaison détaillée comparaison détaillée et une analyse unifiée des deux méthodes
se trouvent dans [BRT+09]. La complexité de LASSO a été largement étudiée, voir
[BTW07, vdG07, BRT+09, AH12, vdGL13]. Dans [DHL17], les auteurs montrent que
λ =

√
2 log(p)/n conduit à un excès de risque optimal d’ordre O(rank(X) log(p)/n) pour

(1.9). Ici, X est la matrice de conception des vecteurs de caractéristiques. Pour en
savoir plus sur les méthodes méthodes susmentionnées, consultez l’article de synthèse de
[Kol09].

Ridge

La régression ridge est la régression linéaire avec le terme de régularisation de type l2 :

θ̂
Ridge

n := arg min
θ∈Rp

{
1

n

n∑
k=1

(θ>Xk − Yk)2 + λ ‖θ‖2
2

}
. (1.10)
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La solution de (1.10) a une formule explicite, similaire à (1.8). Dans le cas de la régression
ridge, cependant, la matrice de conception X peut avoir un rang quelconque :

θ̂
Ridge

n =
(
X>X + λIn

)−1
X>Y.

Puisque λ > 0 l’inverse de la matrice est toujours bien défini. Les premiers articles qui
présentent cetteméthode sont : [Cro72, Hor62]. Comme Commementionné précédemment,
la régularisation induit un certain biais pour réduire la variance du problème d’apprentissage
(compromis biais-variance). d’apprentissage (compromis biais-variance).Dans ce phénom
Dans ce phénomène, le paramètre d’ajustement λ joue un rôle majeur. Pour des résultats
sur l’estimation de λ, le lecteur intéressé est renvoyé à [HK70, Nor82, Wen00, Kib03,
ST+99a].

1.2.4 Régression logistique

Jusqu’à présent, nous n’avons abordé que le cas où les étiquettes admettent des valeurs
réelles. Pourtant, il existe une vaste collection de problèmes lorsque les étiquettes sont
catégoriques. Ces problèmes sont appelés problèmes de classification. Dans cette Dans
cette section, nous n’aborderons que le cas de deux classes, à savoir −1 et 1. Par
conséquent, nos étiquettes sont des variables aléatoires discrètes variables aléatoires
discrètes : Yi ∈ {−1, 1}. Le modèle logistique a pour objectif d’estimer la distribution
conditionnelle de Y en connaissant le vecteur de caractéristiquesX. L’hypothèse principale
est que les caractéristiques peuvent être séparées par un hyperplan en Rp, qui est décrit
par sa normale θ∗ : Y = sign(θ∗>X). Cette dernière donne

L(Y | X) = δ(θ∗>X), (1.11)

où δx est la mesure de Dirac au point x ∈ Rp. Comme précédemment, nous souhaitons
effectuer une estimation par maximum de vraisemblance. Ce modèle n’est pas dominé ;
par conséquent, l’approche du maximum de vraisemblance ne peut pas être appliquée.
Cependant, les méthodes classiques d’optimisation ne peuvent pas traiter les densités
de Dirac. La régression logistique propose une relaxation de (1.11) pour surmonter ce
problème:

P (Y = y |X = x) =
1

1 + exp(−yθ∗>x)
. (1.12)

Nous observons que la probabilité conditionnelle est supérieure à 1/2 lorsque les signes
de y et de θ∗>x coïncident et vice-versa. Nous remarquons également que, plus la norme
de x, plus le modèle proposé est précis quant à l’étiquette. Par conséquent, le modèle
reproduit bien l’hypothèse initiale. initiale. De plus, la probabilité relaxée est lisse et
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log-concave (voir Section 1.5.1). En résumé, MLE prend la forme suivante :

θ̂
logit

n = θ̂
MLE

n = arg min
θ∈Rp

1

n

n∑
i=1

log
(
1 + exp

(
− Yiθ>X i

))
.

La régression logistique est largement utilisée dans les problèmes de classification qui
apparaissent dans de nombreux domaines (voir [Wri95, HJLS13]).

Régression logistique binaire bayésienne

Dans les paramètres bayésiens, la régression logistique présente un intérêt particulier
pour nous, car elle inclut tous les concepts généraux dont nous discutons dans ce
manuscrit. concepts généraux que nous abordons dans ce manuscrit. Comme dans
le cas précédent, nous avons des points de données indépendants et identiquement
distribués Zk = (Xk, Yk), oùXk ∈ Rp et des étiquettes dans Yk ∈ {−1,+1}. De plus, la
distribution conditionnelle est donnée comme dans (1.12). L’approche bayésienne du
modèle logistique suppose que l’espace des paramètres est l’espace euclidien Rp, et qu’il
est doté d’une mesure préalable gaussienne mesure gaussienne µ :

µ := N
(

0,
1

λ
Σ−1
X

)
, where ΣX :=

1

n

n∑
i=1

XiX
>
i .

L’hyperparamètre λ est un nombre positif, qui est généralement spécifié par le praticien.
L’estimateur bayésien est calculé pour la perte quadratique. En utilisant la formule (1.7),
on obtient ce qui suit:

θ̂
B

n (Z1, . . . ,Zn) = Cn

∫
Rp
θ exp

(
−

n∑
i=1

Yiθ
>X i −

n∑
i=1

log
{

1 + exp
(
−θ>X i

)}
− λ

2

∥∥∥Σ1/2
X θ

∥∥∥2

2

)
dθ.

Ici, Cn est une constante en termes de θ et elle dépend de Zn. Les deux premiers termes
de l’exponentielle correspondent à la log-vraisemblance du modèle logistique, tandis que
le dernier terme provient de la log-densité de l’antériorité et peut être considéré comme
un terme de pénalité.

Nous observons ici que l’estimateur n’est pas calculable pour des ensembles de données
plutôt simples. Pour construire un estimateur pour Y , les approches classiques ont recours
à des à des méthodes approximatives. Des solutions à ce problème ont été proposées par
[CD98] et [HH06], qui utilisent des algorithmes basés sur sampling. Voir Section 1.4.4
pour plus de détails.
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1.3 Convex Optimization

As we have seen in the previous section, convex optimization is of vital importance for
the solution of inference problems. In this section, we describe the general mathematical
settings of optimization.

A set C ⊂ Rp is called convex , if it contains all the segments between its two elements:

αx+ (1− α)y ∈ C, for every x,y ∈ C and α ∈ (0, 1).

Examples of convex sets are halfspaces, balls and hypercubes. A function F : C → R,
where C is a convex set, is called convex, if the following condition is satisfied:

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y), for every x,y ∈ C and α ∈ (0, 1).

The concept of the convexity is closely related to the Hessian matrices. Suppose F ∈
C2(Rp). Then F is convex, if and only if its Hessian ∇2F (x) is positive semidefinite for
all x ∈ C. For more details on equivalent formulations of convexity, see [Nes04]. The
general convex optimization problem is formulated as follows:

minimize F (x), (CO)

subject to x ∈ C,

where C is a convex set and F : C → R is a convex function. This general form of the
problem is very useful. Indeed, in the inference problems (linear regression, maximum
likelihood, logistic regression) mentioned above it comes to the minimization of some
convex function on the Euclidean space Rp. The advantage of convexity is the control over
the local behavior. In particular, an important property of the convex functions is that all
the stationary points are global minimizers. Thus, solving (CO) amounts to finding the
zeros of the gradient. This observation forms the intuition of the gradient descent, one of
the principal algorithms of convex optimization.

1.3.1 Gradient Descent

Suppose we have a convex function F : Rp → R, which is continuously differentiable at
any point x ∈ Rp. Then, the following iterative algorithm is called the gradient descent:

xk+1 = xk − hk∇F (xk), (GD)
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where hk is a parameter of the method referred to as the step-size or the learning rate.
The choice of the starting point x0, as well as the step-size are up to the user. The method
was first proposed by [C+47]. In this section, we are going to discuss only the case of
functions with Lipschitz continuous gradients, as it is the one that is studied later in the
manuscript. For non-smooth optimization, we refer the reader to [Bub15] or [Nes04].
The function F is called M -smooth or M -gradient Lipschitz if

‖∇F (x)−∇F (y)‖2 ≤M‖x− y‖2, for every x,y ∈ Rp.

Thus, the gradients of the function have at most linear growth, which induces at most
quadratic growth on the function itself. This idea is formulated in the following proposition.
Proposition 1. Suppose F ∈ C2(Rp). Then F is M -smooth if and only if the following
inequality is satisfied:

∇2F (x) �M Ip, for every x ∈ C,

where A � B means that B − A is a positive semidefinite matrix.

The proof of the proposition can be found in [Nes04, Theorem 2.1.6]. Based on
this result, the theorem below upper bounds the error of convergence of the sequence
F (xk)k∈N to the minimum F (x∗).
Theorem 1. Let F be convex andM -smooth on Rp. Then a gradient descent with a constant
step-size hk = h < 1

M
satisfies

F (xK)− F (x∗) ≤
2 ‖x0 − x∗‖2

2

hK
.

We refer the reader to [Bub15, Theorem 3.3] for the proof. Let us now comment the
results of the theorem:

• We have a polynomial convergence of order O(1/K) for the value error.

• The theorem does not provide guarantees on the distance between xk and the
minimum point x∗.

• The result is dimension-free: the only term in the upper-bound that may depend on
the dimension d is the square distance between the initial point x0 and the optimum
x∗.

• The term ‖x0 − x∗‖2 is the initial distance from the minimum point. We see that
the error grows when x0 is placed further from the optimal point x∗. The result
also implies that the initial conditions are forgotten in polynomial time.
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1.3.2 Strongly convex functions

In the theory of convex optimization, the strong convexity plays a significant role. Let m
be a positive number. The continuously differentiable function F : C → R, where C ⊂ Rp

is a convex set, is called m-strongly convex if

F (x) ≥ F (y) +∇F (y)>(x− y) +
m

2
‖x− y‖2

2, (1.13)

for every x,y ∈ C. The following proposition (see [Nes04, Theorem 2.1.11]) establishes
the link between strong convexity and Hessian matrices for C2 functions.

Proposition 2. Suppose F : C → R is a C2 function, where the domain C is an open convex
set. Then f is m-strongly convex, if and only if the following condition is satisfied:

∇2F (x) � mIp, for every x ∈ C.

The strong-convexity essentially means that the function is lower-bounded by a
quadratic function. In the case, when the constant m in (1.13) is equal to zero, we
recover the convexity condition. The following theorem (see [Nes04, Theorem 2.1.15])
provides us with an upper bound on the convergence in the strongly convex case.

Theorem 2. Suppose F ism-strongly convexM -smooth. We define by (xk)k∈N, the sequence
generated using the algorithm (GD) with a constant step-size h. Then, if 0 < h ≤ 2

m+M
, we

have the following convergence bounds:

‖xk − x∗‖2
2 ≤ (1−mh)k ‖x0 − x∗‖2

2 ;

F (xk)− F (x∗) ≤
M

2
(1−mh)2k ‖x0 − x∗‖2

2 .

Let us comment the results of the theorem.

• We obtain exponential convergence bounds for the distance of each iteration xk
from the optimal point x∗.

• The second inequality shows that the strong convexity improves the polynomial
convergence of the convex case to an exponential convergence of order exp(−mh).

• We observe also that the contraction coefficient becomes zero, when m = 0, which
means that the current result is not applicable in the general convex case.

Readers interested in a more detailed account on convex analysis are referred to [Roc70]
and [Nes04]; see also [Bub15] for a review of the topics of convex optimization which
are relevant to machine learning.
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1.3.3 Stochastic Gradient Descent

As we have seen before in the context of statistics (Section 1.1.1), the function to minimize
is often sum-decomposable:

F (θ) =
1

n

n∑
i=1

gi(θ).

The component functions gi are usually assumed to be “similar”. In this context, the
similarity means to have the same strong convexity and smoothness constants m and M .
Hence, the gradient descent for this function is the following iterative algorithm:

xk+1 = xk − hk∇F (xk) = xk −
hk
n

n∑
i=1

∇gi(xk).

However, the implementation of these steps is computationally expensive when we have
a large dataset. That is when n and p are large. Therefore, a modification of each
iteration that would avoid to do n gradient computations could be appealing. Stochastic
Gradient Descent (introduced by [RM51]) proposes to uniformly sample an index ik from
{1, 2, . . . , n} and approximate the empirical mean of the gradients by replacing with the
term corresponding to ik:

Xk+1 = Xk − hk∇gik(Xk) = Xk − hk
(
∇F (Xk) + ξk

)
, (SGD)

where ξk, in this case, is a mean zero noise vector. In particular, for the sum-decomposable
setting ξk = ∇gik(Xk)−∇F (Xk). The convergence of this stochastic algorithm has been
extensively studied. In particular, if ∑k h

2
k < ∞ and ∑k hk = +∞, then under mild

conditions, SGD converges almost surely to the minimum point ([Bot10]). For a more
thorough review on SGD, we refer the reader to [BB11, BM13, DFB17, GP20].

1.3.4 Gradient Flows

In the previous section, we have presented the basic concepts in convex optimization.
We have discussed iterative algorithms that provide us with convergence of up to an
exponential rate. It turns out that these methods have their continuous alternatives.
Suppose we have a smooth function F . The gradient flow is defined as a curve x(t) in Rp

that starts at a point x(0) = x0. At each time moment t is pointed to the direction of the
fastest minimization of F , that is the negative gradient. It is given as the solution of the
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following Cauchy problem:{
ẋ(t) = −∇F (x(t)), for t > 0,

x(t) = x0.
(GF)

Here the dot is the derivate with respect to time. When the gradient ∇F is Lipschitz
continuous, Cauchy’s theorem guarantees the existence and the uniqueness of the solution.
The next proposition shows that for a convex function F , the solution is also unique, and
moreover, there is a contraction effect. The proof can be found in [San17].
Proposition 3. Suppose that F is convex and let x1 and x2 be two solutions of (GF)
with possibly different starting points. Then the application t 7→ ‖x1(t)− x2(t)‖2 is non-
increasing.

The proof is a simple consequence of a fact, that convex functions have monotonically
non-decreasing gradients. Another important property of the gradient flow is that F (x(t))

is monotonically decreasing and convergent when t→ +∞. Indeed,

Ḟ (x(t)) = ∇F (x(t))>ẋ(t) = −‖∇F (x(t))‖2
2 ≤ 0.

Thus, for lower-bounded functions F , the monotone convergence theorem implies the
convergence of F (x(t)). The next proposition is also based on properties of convexity
and it claims the convergence of F (x(t)) to the minimum of F .
Proposition 4. Suppose F is a convex function. Then the curve x(t) satisfying (GF)
minimizes F , when t→ +∞. Moreover, polynomial convergence is available:

F (x(t))− F (x∗) ≤
1

t
‖x(0)− x∗‖2

2.

Thus, we have a convergence of order O(1/t) for the value error of convex functions.
However, similar to (GD), the convergence of x(t) to x∗ is not guaranteed. In the
general convex case, some additional assumptions are required (see [Loj82]). The next
proposition provides contraction of exponential order for the flow in the strongly convex
case.
Proposition 5. Suppose that F is m-strongly convex and let x1 and x2 be two solutions of
(GF) with possibly different starting points. Then the following inequality is satisfied for all
positive t:

‖x1(t)− x2(t)‖2 ≤ exp (−mt) ‖x1(0)− x2(0)‖2.

An important consequence of this proposition is the convergence to the minimum
point x∗. Indeed, one can easily verify that the constant x(t) ≡ x∗ is a solution to (GF).
For more thorough review on the gradient flows, we refer the reader to [AGS08, San17].
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1.3.5 Relation with the Gradient Descent

Suppose that x(t) is a solution of (GF). Then, it can also be described as the solution of
the following integral equation:

x(t) = x0 −
∫ t

0

∇F (x(s))ds. (1.14)

Under mild assumptions, this function converges to x∗. One could hope for that a "decent"
discrete approximation could also converge to the minimum point, thus providing us with
a feasible computational method of minimization. It turns out, that the simplest approach
works in this case. Let us now discretize the time axis by dividing it into segments of
length h > 0. That is we divide it into intervals of form [kh, (k + 1)h], where k ∈ N. First,
in view of (1.14) we deduce

x(k+1)h = xkh −
∫ (k+1)h

kh

∇F (x(s))ds. (1.15)

In view of (1.15), we construct a sequence yk, which is designed to estimate x(kh), by
replacing each component on both sides of the equation by its approximation:

yk+1 = yk −
∫ (k+1)h

kh

∇F (yk)ds = yk − h∇F (yk).

We approximated the integral on the interval [kh, (k + 1)h], by h∇f(x(kh). The latter, in
its turn, is approximated by hyk. Thus, we recognize the already seen formula of (GD),
which indeed converges exponentially in the strongly convex case. To sum up we see
that the gradient descent is a piecewise-linear interpolation of the gradient flow. We will
observe a similar phenomenon, when discretizing random processes in the problem of
sampling (see Section 1.5).

1.4 Sampling from a probability distribution

In this section, we introduce some classical methods of sampling. We start with the
algorithms of inverse transform and rejection-acceptance. Then we present the problem
of approximate integration and the importance sampling method. We conclude the
section with Metropolis-Hastings algorithm.
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1.4.1 Random variable generation

Generation of random variables has been one of the pivotal questions in computer science
and applied mathematics since the early 20th century. The goal is to describe a method
or an algorithm that constructs random variables which are distributed according to a
certain probability measure π. In certain cases the latter can be unknown or known only
partially.

One of the first problems that was investigated in this area was the generation of i.i.d.
samples from U(0, 1), the uniform distribution on (0, 1), using deterministic sequences.
However, Gödel’s theorem claims that this is unfortunately impossible. The connection
between the two is established using the algorithmic information theory (see e.g. [Cha82,
Cha77, Cha88]). In [VN51], Von Neumann writes the following: “Any one who considers
arithmetical methods for reproducing random digits is, of course, in a state of sin. As has
been pointed out several times, there is no such thing as a random number. There are only
methods of producing random numbers, and a strict arithmetic procedure of course is not
such a method.” Nevertheless, many deterministic algorithms can mimic the statistical
behavior of independently drawn samples of U(0, 1).

A pseudo-random number generator is often an iterative algorithm, that starts at
an initial point v0. At every step, a transformation T is applied to the current value:
vk+1 := T(vk). For all K, the values (v1, v2, . . . , vK) have similar behavior with a uniform
sample (U1, U2, . . . , UK) ∼ U([0, 1]K), when compared using certain set of tests. For
example, one may perform statistical tests such as the Kolmogorov-Smirnov test (see
[Kol33, MJ51]), to compare the empirical CDF of the drawn variables with the actual
CDF of U(0, 1). The practice shows, that most generative methods approximate well the
cumulative distribution function. The independence of the iterates is harder to achieve,
in view of the sequential nature of the algorithm. Several methods use time-series based
analysis, such as ARMA (see [HA01]), others use non-parametric tests (see [LD75]).
Nowadays, all major scientific softwares provide efficient tools for pseudo-random number
generation. In the rest of the manuscript, we will thus assume that we have access to random
samples independently drawn from U(0, 1).

1.4.2 Inverse sampling

Inverse transformation method is one of the easiest sampling methods. Suppose that π is
a probability measure on R and let Fπ : R→ R be its cumulative distribution function.
The generalized inverse of Fπ is defined as below:

F−1
π (y) := inf{x : Fπ(x) ≥ y}.
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The following simple proposition is the key result on which the method is based.

Proposition 6. If U ∼ U(0, 1) then F−1
π (U) ∼ π.

Therefore, using the Proposition 6, we immediately obtain an exact sampling method:
we sample from a uniformly distributed U and then calculate F−1(U). This method can be
used to generate exponential random variables. However, in most cases, the generalized
inverse is computationally infeasible, which renders the algorithm inapplicable. To read
more on inverse sampling, see e.g. [RC13]

1.4.3 Rejection - Acceptance

As mentioned in the previous section, the inverse transform method does not provide
feasible solutions for the laws in high dimension. Moreover, the exact analytic form
of the CDF is often not available (e.g. Bayesian posteriors). Instead, we are provided
with the density function1, which is known up to a constant. The key idea is to use an
auxiliary distribution π̂ that is easier to sample from. In this section, we introduce the
rejection-acceptance method, which is based on the Fundamental Theorem of Simulation.

Theorem 3 (Fundamental Theorem of Simulation). Simulating a random variableX ∼ π

is equivalent to sampling a vector (X, U) ∼ U{(x, u) : u < π(x)}.

We deduce from the theorem, that the auxiliary dimension reduces sampling from
any distribution to a uniform sampling problem in the extended space. However, uniform
sampling from the set given by the theorem can itself be very challenging. One would
approach this problem by generating the variables one by one using conditional law.
However, taken into account the initial settings, this approach is not helpful. Indeed,
sampling from L(X | U) can be as complex as π. Thus, the variables need to be sampled
jointly. Let us state a simple proposition to this matter.

Proposition 7. Suppose we have two sets A and B, such that A ⊂ B ⊂ Rp. Suppose also
that we can generate uniform samplesX from B. Then Algorithm 1 results uniform samples
from A.

This algorithm provides us with a general scheme: if we can sample from a density
π̂ such that π(x) < π̂(x), then we can sample uniformly from the corresponding set
{(x, u), u < π̂(x)}. The latter contains the set {(x, u), u < π(x)}, and therefore, Algorithm 1
can be applied. Based on this idea [VN51] proposed the following algorithm called the
rejection-acceptance algorithm.

1Throughout the manuscript, we will often use the same notation for the probabilistic laws and their
densities.
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Algorithm 1 Sampling from A using samples from B

repeat
SampleX ∼ U(B)

until X /∈ A (rejection)
Y ←X (acceptance)

Proposition 8. Suppose that π(x) < Cπ̂(x) for some distribution π that we are able to
sample from. Then the Algorithm 2 returns samples from the distribution π.

Algorithm 2 Rejection-Acceptance sampling
repeat

SampleX ∼ π̂ and U ∼ U(0, 1)
until U > π(X)/Cπ̂(X) (rejection)
Y ←X (acceptance)

The rejection-acceptance algorithm can be applied for sampling various distributions,
such as N (0, 1), B(α, β), Γ(α, β). However, it lacks of efficiency in the high dimensional
setting. The reason is that the number of iterations required to reach the acceptance
step is a geometric distribution with a parameter that is proportional to 1/C. The
latter, in some cases, is exponentially small in terms of dimension. There are various
modifications of Algorithm 2, such as Envelope Rejection-Acceptance, ARS (see e.g.
[Dev06, Dev86, GW92, GS91]), which overcome this issue. These methods, however, fall
out of the scope of the this manuscript.

1.4.4 Monte-Carlo integration

As seen in the previous chapters, the problems of statistical inference mainly arrive to
two destinations: optimization or integration. In this section, we present Monte-Carlo
integration method, which is based on sampling. Essentially, it consists of estimating the
integral w.r.t. a probability measure with an empirical mean. The Monte-Carlo integration
method was proposed by [MU49]. It found its early applications in physics in the 1950s
[Ula52, VNR46]. See [Ben16, Met87] on the history of the method.

The problem can generally be formulated as the computation of the following integral:

Eπ[g(X)] =

∫
Rp
g(x)π(x)dx.

Suppose π is a probability distribution on Rp and let X1,X2, . . . ,Xn be independent
samples drawn from π. Then, the law of large numbers hints at estimating the above
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integral with the empirical mean of the values:

În :=
1

n

n∑
i=1

g(X i), where X i ∼ π, for all i.

This algorithm is called Monte-Carlo integration method. The estimator În is consistent.
Moreover, using the central limit theorem we deduce that it is asymptotically normal and
we can also show that the convergence is of order O(1/

√
n). The Monte-Carlo integrator

proves to be efficient in most cases, however it can be improved (see [Rip09, BMP+94]).
A modification of the Monte-Carlo algorithm, called importance sampling ([Mar54]),
proposes to sample from a law ν, called instrumental distribution, instead of sampling π.
The importance sampling estimator is thus defined as follows:

Î imp
n :=

1

n

n∑
i=1

g(X i)

ν(X i)
π(X i), where X i ∼ ν, for all i.

The advantage of importance sampling over the Monte-Carlo integration, is the ability
to choose the instrumental distribution. It allows to avoid the possible complex problem
of sampling from π, by replacing the latter with a simpler distribution. The algorithm
has found its early applications in sampling from normal distributions [Tuk56] and in
statistical physics in 1950s (see [HM54, RR55]). It was shown later (see [RK16]), that
the best choice in terms of the variance of Î imp

n , is attained when

ν∗(x) =
|g(x)|π(x)∫

Rp |g(u)|π(u)du
.

However, the result is of a purely theoretical interest, as it requires the knowledge
of the integral we need to calculate in the first place. On the other hand, using an
approximation of the denominator, we get an estimate of ν∗ which has a good performance
(see [VDK83, RC13]). In the end, it is worth to mention that the accept-reject method
and the importance sampling often have comparable behavior. To see more on this matter,
we refer the reader to the following papers [CR98, Liu96].

The importance samplingmethod independently draws from the instrumental distribution
ν. Although, I imp

n
a.s−→ Eπ(g(X)), the convergence can be slow. The latter happens because

of the second order moment of the weights Eν [π2(X i)/ν
2(X i)]. If the moment is large,

then the importance sampling method is not stable and it may diverge in certain cases
(see e.g. [Gew91, Gew89, RC13]). Thus, the choice of the instrumental distribution
requires a scrupulous approach (see [Hes95, OZ00, CMMR12]).
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1.4.5 Metropolis-Hastings algorithm

In this section, we propose another method of integration to approximate Eπ[g(X)].
Contrary to the previous methods, it does not require independent sampling at every step.
Instead, it is based on generating an ergodic Markov-Chain (Xn)n∈N with π as its unique
stationary distribution. The latter ensures the convergence of L(Xn) to π. We want to
stress that iterates of such a Markov chain are random vectors which approximately follow
the law π. The more iterations we do, the closer we get to π, also referred to as the target
distribution. Thus, this type of Markov chains can also be seen as approximate sampling
methods. The MCMC estimator is defined as the empirical mean of the first n elements of
the Markov-Chain (Xn)n∈N:

ÎMCMC
n =

1

n

n∑
i=1

g(X i). (MCMC)

The importance sampling method and the MCMC both satisfy O(1/
√
n) convergence rate.

However, the instrumental distribution ν, that is sampled from at every iteration, can
cause high computational cost, when compared to the MCMC iterates. The advantage of
the MCMC is the Markov chain structure of the algorithm, which implies the dependence
of each iterate on the previous ones. In addition, as mentioned above, the complexity of
the importance largely depends on the proper choice of ν. In particular, it gets harder to
choose the instrumental distribution when the dimension gets large. This phenomenon is
an instance of “the curse of the dimensionality”.

Now, that we have described the general scheme of the MCMC integration, we proceed
to the construction of such a Markov-Chain. The Metropolis-Hastings method was
introduced by Metropolis [MRR+53] and later generalized by Hastings [Has70]. They
describe a general method of calibrating the kernel of the Markov chain, such that π is its
stationary distribution. The algorithm requires mild assumptions on π, which renders it
applicable to a wide class of targets.

We assume that the target distribution is absolutely continuous w.r.t. some σ-additive
measure. To implement the Metropolis-Hastings method, one needs to know its density
function up to a constant factor. Then, an instrumental conditional density ν(· | x) is
defined for all x ∈ Rp. We initialize the chain at X0. For every k ≥ 0, the (k + 1)-th
iteration of the chain starts with drawing a random vector Y from ν(· |Xk). Usually, ν
belongs to some class of distributions that is easy to sample from. Afterwards, the drawn
vector Y is accepted with a probability ρ(Xk,Y ). The function ρ is defined as follows:

ρ(x,y) := min

(
π(y)ν(x | y)

π(x)ν(y | x)
, 1

)
.
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The Metropolis-Hastings method is summarized in Algorithm 3. When the chain is

Algorithm 3 Metropolis-Hastings
Require: initial valueX0

for all k = 1 to k = n do
Sample independently Y ∼ ν(· |Xk) and U ∼ U(0, 1)
if U < ρ(Xk,Y ) then
Xk+1 ← Y

else
Xk+1 ←Xk

end if
end for

irreducible and aperiodic, convergence to the stationary distribution in TV is available
(see e.g. [MT12, RT96b]):

‖L(Xn)− π‖TV −−−→
n→∞

0.

Here, we want to underline the fact that the convergence does not depend on the initial
state X0. Another important remark about the algorithm is that the density π can be
known up to a constant, as it vanishes in the definition of ρ(·, ·). The rejection step,
however, leaves certain samples Y out of the final estimation. Thus, there we “lose” some
part of the drawn vectors. We had a similar issue, while applying the rejection-acceptance
sampling. Nevertheless, the comparison of these methods (see [RC13, Liu96]) shows
that the number of unused samples in proportion is lower for the Metropolis-Hastings
algorithm.

The general form of the algorithm provides us with a powerful procedure, that can
adapted to the problem in hand. Metropolis-Hastings algorithm, with a translation
invariant conditional density ν(y | x) = ν(y − x) is called a Metropolis random walk.
This method is discussed in several works (see e.g. [RT96b, MT+96, Vem05, DCWY18]).
Another popular particular case is the independent Metropolis-Hastings algorithm, which
corresponds to the conditional distribution, that is independent of the current state:
ν(y | x) = ν(y). The convergence of this method was studied by [Tie94], while its
application to the Gibbs sampler can be found in [GR93]. Finally, to accelerate the
algorithm, techniques like Rao-Cramerization (see [GS94, MW00]) are applied.

1.5 Langevin sampling

In this chapter, we introduce the Langevin sampling algorithms, their origins, development
and state-of-the-art complexity results. The goal is to sample from a probability distribution
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π, defined on Rp. The Langevin-type algorithms are based on a discretization of some
stochastic differential equation, called the Langevin dynamics. The important property of
this equation is that its solution has the target π as its invariant distribution. Moreover,
under mild conditions, the solution is a geometrically ergodic continuous-time Markov
process. This hints at using the process for sampling purposes. The idea to use the
Langevin dynamics as a continuous-time simulation method was proposed by [GM94], in
the context of pattern theory. The seminal work [RT96a] established the convergence of
MALA (see the section below), which launched a line of research on the properties of
the Langevin sampling algorithms (e.g. [ST99b, ST99c, RS02, AFMP11, GC11, XSL+14,
Dal17b, Dal17a, DM17, CB18, DK19]). Before getting into details let us state the main
assumptions and establish the notation for the rest of the chapter.

1.5.1 Assumptions and notation

We will assume that the target distribution π, defined on Rp, has a density that is given
by

π(θ) ∝ exp(−f(θ)),

where f is called the potential function. In addition, the potential function is assumed to be
m-strongly convex (unless specified otherwise), differentiable and its gradient is assumed
to be M -Lipschitz continuous See Section 1.3 for the definitions of these conditions.

Complexity and distances

To compare different algorithms, one needs a rigorous mathematical criterion. Suppose
that we have some distance D on the space of probability measuresMq(Rp). The latter is
the space of probability distributions that have finite second order moment. Then, the
mixing-time or the complexity of an iterative algorithm can be measured as

Kε := inf{k | D(L(Xk), π) ≤ ε},

whereXk is the k-th iterate and ε is a positive number. In other words, Kε is the number
of iterations required to get an ε error in terms of the distance D. The complexity defined
in this manner depends on D. Throughout the manuscript, we will encounter repetitively
the following probability measure distances:

• Total variation distance

‖ν − ν ′‖TV := sup
A∈B(Rp)

|ν(A)− ν ′(A)|;
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• Wasserstein-q distance

Wq(ν, ν
′) := inf

{
E[‖θ − θ′‖q2]1/q : θ ∼ ν and θ′ ∼ ν ′

}
; (1.16)

• Kullback divergence

KL(ν | ν ′) =

{ ∫
Rp

dν
dν′

(x) log
(

dν
dν′

(x)
)

dν ′(x), if ν � ν ′,

+∞, otherwise .

The TV distance is very common in the context of Markov processes and it can be found
in the classical literature (e.g. [Ula52, Nel67]). It controls the probabilities, but does
not provide information about the moments. Wasserstein-q distances, also known as the
optimal transport cost, play an important role in the theory of optimal transport (see
[Vil08]). An important property ofWp, is that the minimum is attained on the right-hand
side of (1.16): there exists a distribution Γ defined on Rp × Rp, such that it has ν and ν ′
as its marginals and that

Wp(ν, ν
′) = E(θ,θ′)∼Γ

[
‖θ − θ′‖p2

]1/p
.

Another property of Wp-distances, that is advantageous over TV-distance, is the control
over the moments, which impacts the quality of statistical estimation. Finally, KLmeasures
the information that is lost, when ν is used to approximate ν.

Log-concave measures

Log-concave measures gain more and more attention in statistics, probability and other
branches of mathematics. In this section, we are going to present the definition and the
basic properties of these measures, that are relevant in the problem of sampling.

We consider the probability distributions defined on Rp. We say that π is a log-concave
measure if it has a density, that is proportional to the exponent of a concave function:

π(θ) ∝ exp(−f(θ)), where f : Rp → R ∪ {+∞} is convex.

The function f is called the potential function and it is usually assumed to be upper
semi-continuous. One of the important features of these densities, is that they have sub-
exponential tails (see e.g. [Bor83]). Similarly, we definem-strongly log-concave densities,
for positive values of m. We say that π is m-strongly log-concave if has m-strongly convex
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potential:

π(θ) ∝ exp(−f(θ)), where f : Rp → R ∪ {+∞} is m-strongly convex.

Many classical distribution are log-concave or strongly log-concave. Here is a list of
examples:

• Gaussian vectors with parameters (0,Σ) is σ2-strongly convex, where σ2 is the largest
eigenvalue of the covariance matrix Σ.

• Logistic density, which is defined as πlog(θ) := exp(−θ)/(1 + exp(−θ))2, is log-
concave.

• The Gamma distribution with a degree of freedom α > 1 is log-concave.

• The Beta distribution Bα,β with parameters α > 1 and β > 1 is log-concave.

For more interesting examples, we refer the reader to [DJD88]. Log-concave measures
are widely used in different ares, such as geometry [KLS95], game theory [CN91], and
functional analysis [BBC+08, Bob99]. Different properties of log-concave measures are
extensively studied by many authors. The cornerstone of the interest towards the log-
concave measures in probability theory, are the preservation properties.

Proposition 9 (Preservation). The log-concave measures satisfy the following claims:

i) Affine transformations: Suppose ξ is a p-dimensional random vector with a log-concave
density π and A : Rp → Rq is an injective affine map. Then the q-dimensional vector
Aξ is also log-concave.

ii) Products: Suppose we have two log-concave measures π1 and π2 defined on Rp. Then
π1 ⊗ π2 is a log-concave measure defined on Rp × Rp.

iii) Marginalization: Suppose that π(θ1,θ2) is a log-concave measure on Rp+q. Then the
marginal distribution of the first component defined as π1(θ1) =

∫
Rq π(θ1,θ2)dθ2 is

log-concave as well.

The proof of the first two claims can be found in [DJD88]. The third property has
been proved using different methods (see [Pré73, BL76, BBN+03, SW14]).

We have already seen an example of a log-concave measure in the model of Bayesian
logistic regression. As we have mentioned, the posterior distribution in that setting is
log-concave. We also stressed that approximate integration techniques are required to
estimate the posterior mean θ̂Bn . We will give more insight in the coming sections on how
to take advantage of log-concavity, when encountered with this problem.
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1.5.2 Langevin diffusion

The Langevin diffusion is a stochastic differential equation, that was proposed by [Lan08]
to describe the Brownian motion of a particle with a friction. Later, it was formulated
rigorously by [Doo42] and [Nel67]. The diffusion has the followingmathematical formula:

dLLD
t = −∇f(LLD

t )dt+
√

2dW t, (1.17)

whereW is the standard Wiener process, and f is the potential function on Rp. According
to [Bha78], the diffusion is irreducible, strong Feller and aperiodic. In view of this,
the distribution with density π(·) ∝ exp(−f(·)) is the stationary distribution of the
diffusion (see [IW14, MT93]). Last but not least, for m-strongly log-concave potentials,
an exponential convergence is available in TV [RT96a, Theorem 2.1] and Wasserstein
distances [Vil08, Chapter 2]. In particular, for Wasserstein distances it is expressed as:

W2(ν0Pt, π) ≤ exp(−mt)W2(ν0, π),

where Pt is the transition kernel of the Langevin diffusion and ν0 = L(LLD
0 ) is the initial

distribution. Therefore, we deduce a continuous sampling scheme for smooth and strongly
log-concave distributions π. As in the case of Metropolis-Hastings method, we see that the
knowledge of π up to a constant is sufficient, since the normalization term vanishes in the
gradient of the drift term. We can consider this process as a continuous-time sampling
method. Unfortunately, in practice the implementation is not possible, which yields us to
discretized approximations. One of the main approaches to this problem in the context of
sampling, is called Euler-Maruyama discretization:

ϑk+1 = ϑk − h∇f(ϑk) +
√

2hξk. (LMC)

Here, h is the step-size and (ξk)k∈N is a sequence of standard normal vectors in Rp that
are mutually independent and independent of the initial state ϑ0. This iterative algorithm
is called the Langevin Monte-Carlo (also known as Unadjusted Langevin Algorithm) (see
[Par81]). Thus, we obtain a homogeneous Markov chain. We observe that the LMC
updates resemble to the updates of the gradient descent and we will see several times in
this manuscript how the two methods are connected.

Metropolis Adjusted Langevin Algorithm

Compared to its continuous counterpart, LMC is computationally feasible. However, some
important properties of the Langevin diffusion are not transfered to its discretization.
In particular, the target distribution π is not the stationary distribution of the obtained
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Markov chain. Thus, some bias is generated, when discretizing the diffusion. [RT96a]
propose to insert a Metropolis-Hastings rejection-acceptance step after every iteration of
the LMC. Hence, in this setting, the Markov chain (LMC) plays the role of the instrumental
conditional law ν. In particular, ν(· | x) = N (x− h∇f(x), 2hIp) and

ρMALA(x,y) = min

(
1,

exp(−f(y)− ‖x− y + h∇f(y)‖2
2/4h)

exp(−f(x)− ‖y − x+ h∇f(x)‖2
2/4h)

)
.

The method is described in Algorithm 4 and it is called the Metropolis Adjusted Langevin
Algorithm (MALA). The authors show that for log-concave target measures π, MALA
is uniformly ergodic. For convergence guarantees of MALA, we refer the reader to
[ST99b, ST99c, RS02, SFCM13, DCWY18].

Algorithm 4 MALA
Require: initial value ϑ0

for all k = 0 to k = n− 1 do
Sample independently ξk ∼ N (0, Ip) and U ∼ U(0, 1).
Y k+1 ← ϑk − h∇f(ϑk) +

√
2hξk

ρk ← ρMALA(ϑk,Y k+1)
if U < ρk then
ϑk+1 ← Y k+1

else
ϑk+1 ← θk

end if
end for

1.5.3 Langevin Monte-Carlo

Another contribution of [RT96a] was the analysis of the LMC algorithm. They show that
the unadjusted algorithm is very sensitive to choice of the step-size h. If the step-size
is relatively large, then the Markov chain is not ergodic and even transient. Hence, the
authors underline the importance of the Metropolis adjustment step and recommend not
to use the algorithm without it. However, the efficiency of Metropolis-Hastings methods
reduces in higher dimensions, as the acceptance probability ρk (see Algorithm 4) is
inversely scaled in the dimension. The latter slows down the exploration of the space,
and therefore, it augments the mixing-time.

The main issue of this approach underlies in the firm requirement to have a method
that is consistent. In this settings, it means to have a Markov chain, whose iterates
converge to the target π, in terms of some probabilistic measure distance. This results
large computational complexity, when the target distribution is complex. However, one
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Figure 1.1: Illustration of the concentration around the minimum point. The colored part
under the graphs corresponds to the confidence interval of level 0.95.
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would be interested in having a chain that does not converge to π, but rather converges
to another distribution πh, that has a low mixing-time. This is an example of a bias-
variance trade-off, where the biased algorithm has a significantly lower complexity than
its unbiased counterpart.

This idea was implemented by [Dal17b], and polynomial non-asymptotic bounds on
the convergence error in TV distance were proved for LMC. It was shown that, for a proper
choice of the initial distribution (warm start), the complexity of LMC is of order Õ(κ2p/ε2),
where κ = M/m is the condition number. Later, [DM19] proved that this convergence
rate is available without warm start, both in TV and W2 distances. Overall, these results
revived the interest towards the Langevin sampling methods and many articles have since
been out that study the convergence of the LMC and its variants in different settings (e.g.
[HSR19, DMM19,Wib18, DRD20, CCBJ18, CB18, MCJ+19, SL19]) and their applications
([RRT17, XCZG18, GPP20]).

1.5.4 Relation with optimization

Suppose that we can sample from the distribution π, using (LMC). Then, in view of the
scalability of our algorithm, we can also sample from πτ (·) ∝ exp(−f(·)/τ), where τ is the
temperature parameter (see [Nel67]). When τ → 0, the distribution πτ converges to δx∗ .
Here, x∗ is the minimizer of the potential function f , and δx∗ is the Dirac measure at the
point x∗. Thus, when the temperature parameter is small, samples from πτ concentrate
around x∗ with high probability. See Figure 1.1, for an illustration of this phenomenon,
and Section 2.5, for a detailed explanation.

Let us take a closer look at the formulas of the Langevin Monte-Carlo and the stochastic
gradient descent. In (LMC) the noise term ξk is multiplied by

√
h, while in the (SGD) by h.

In fact, this mismatch yields an entirely different limiting behavior. Indeed, when h→ 0,
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(SGD) tends to the ODE (GF), while the (LMC) converges to the SDE (1.17). Many
authors have explored several variants of the LMC which are inspired from analogous
algorithms in optimization. For instance, see [CFM+18, DBLJ14] for variance reduction
techniques, [Per14, PB14] for proximal methods and [HSR19, PB14] for implicit methods.

The analogy between the SGD and the LMC can also be established by introducing
the stochasticity of the gradient to the algorithm of sampling. We assume the availability
of an oracle, that provides us with noisy gradients. This setting is of use in the case when
the potential function has a sum-decomposable form. Convergence results for this setting
were established in [NDH+17, DK19, SKR19, DDB+20]. See Chapter 2 for more details.

Another relation with the optimization is established through the gradient flows in
Wasserstein spaces (M2(Rp),W2). It turns out, that the Langevin diffusion is the gradient
flow of the functional H : M2(Rp) → R+, with H(ν) := KL(ν, π) (see [JKO98, San17]
for more details). This means that the Langevin Monte-Carlo can be viewed as a gradient
descent method for the functional H. Based on this property convergence rates of the
LMC can be derived (see [Wib18, DMM19]).

Finally, there is a line of research, that studies the efficiency of the LMC and its variants
in the context of optimization. As mentioned previously, the Gaussian noise can be viewed
as a non-vanishing gradient noise. The latter allows the algorithm to escape the local
minima of the non-convex potentials. This setting appears in [RRT17, XCZG18].

1.5.5 Higher-order methods

In this section, we discuss a higher-order Langevin based method, called the Kinetic
Langevin Monte-Carlo (KLMC). It is based on a system of SDEs called Kinetic Langevin
diffusion:

dLKLD
t = V KLD

t dt;

dV KLD
t = −

(
ηV KLD

t +∇f(LKLD
t )

)
dt+

√
2ηW t,

where η is the friction parameter andW is the standard Wiener process. This equation
was originally designed to model the movement of a Brownian particle, when the friction
is large (see [Kra40, Nel67]). The vector LKLD

t describes the position at time t, while
V KLD

t corresponds to its velocity. The Langevin diffusion (overdamped) is the limit
of its rescaled kinetic (underdamped) counterpart L̄t = LKLD

ηt , when η → +∞. The
reason that the KLD is interesting for sampling, is that it has a stationary distribution
P(θ,v) ∝ exp(−f(θ) − ‖v‖2

2/2). Moreover, the process is proved to be ergodic (see
e.g. [Vil08, EGZ19, Tal02, MSH02, DRD20]). In particular, [DRD20] have proved that
the convergence to the stationary measure in Wasserstein-2 distance is of exponential
order, for twice-differentiable and strongly convex potential functions f . Thus, KLD is

36



a continuous sampling scheme and a discretization scheme can make it applicable in
practice. One of the first contributions in this area was made by [CCBJ18]. They propose
the following discretization of KLD which is called the Kinetic Langevin Monte-Carlo:[

vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)∇f (ϑk)

ϑk + ψ1(h)vk − ψ2(h)∇f (ϑk)

]
+
√

2γ

[
ξk+1

ξ′k+1

]
. (KLMC)

Here the random vectors ξk, ξ′k and the auxiliary functionψi satisfy the following conditions:

• the vectors (ξk, ξ
′
k)k are a sequence of i.i.d. 2p-dimensional centered Gaussian

vectors that are independent of initial conditions;

• ψ0(u) = exp(−ηu) and ψj+1 =
∫ u

0
ψj(u)du, for j = 0, 1;

• for every k ∈ N the 2-dimensional vectors ((ξk)1 , (ξ
′
k)1) , ((ξk)2 , (ξ

′
k)2) , . . . , ((ξk)p, (ξ

′
k)p)

are i.i.d. with covariance matrix

C =

∫ h

0

[ψ0(t)ψ1(t)]>[ψ1(t)ψ2(t)]dt.

Despite the complex form of the discretization formula, it has an intuitive interpretation.
To understand the essence of this scheme, one needs to discretize the time axis into
intervals of size h: [kh, (k + 1)h]. Afterwards, an analysis similar to the one for LMC, can
be performed. In addition, for m-strongly convex and M -gradient Lipschitz potentials f ,
[CCBJ18] proved tractable polynomial bounds on the Wasserstein error, depending on the
parameters m,M and η. Later, [DRD20] have shown that these results can be improved
with another discretization scheme, when second-order smoothness of f is available. The
virtue of KLMC is that it has smoother trajectories, which result better approximation
when discretized, as compared to LMC. This phenomenon manifests itself, when we
compare the dependence of mixing-times in dimension p the precision ε of both methods.
Indeed, for m-strongly convex and M -smooth potentials KLMC achieves ε Wasserstein
error in Õ(κ3/2 {κ∨(p/mε2)}1/2), while LMC requires Õ(κ {1∨(p/mε2)}) iterations. Here
Õ is the asymptotic order without the logarithmic terms and κ = M/m is the condition
number. We see, indeed, that KLMC has a much better dependence in p and ε. However, it
falls short in terms of κ. The latter means that these methods are not generally comparable
since the condition number can be large in certain cases.
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1.6 Contributions

Langevin Monte-Carlo is an effective method of sampling from probability distributions
in high dimensions. It is a Markov chain, that is a discretization of a stochastic differential
equation, called the Langevin diffusion (1.17). The main assumption on the target
probability distribution is the absolute continuity w.r.t. some σ-additive measure, with
a log-concave density π(·) ∝ exp(−f(·)). Here, π is the target density, while f is the
potential function. In the case, when f is smooth and strongly convex, the solution of the
Langevin diffusion is a Markov process, which is ergodic and its distribution converges
exponentially to π in the Wasserstein distance. This property hints at the discretization
of the process, which yields to an iterative algorithm, called the Langevin Monte-Carlo
(LMC). The application of LMC to the problem of sampling was studied by [RT96a].
In order to have a Markov chain converging to the target π, the authors propose to
adjust every iteration with a Metropolis-Hastings step (MALA). The convergence of MALA
has been extensively studied by many authors (see e.g. [RT96a, RR98, ST99b, ST99c,
JH00, RS02]). Later, [Dal17b] proved non-asymptotic polynomial error bounds in the
total variation (TV) distance for the Langevin Monte-Carlo, without the adjustment step.
The key idea is to have a biased method, that has a smaller variance, and therefore, an
overall smaller convergence error. Moreover, under certain conditions (warm start), the
convergence rates can be improved. [DM17, DM19] showed that for all initial distributions
this improved convergence error bounds are available in TV and Wasserstein distances.
This has initiated a line of research, which studies various statistical properties of the
Langevin Monte-Carlo and its modifications (see e.g. [DMM19, DM17, DRD20, CB18,
CLGL+20, KD20]).

The rest of the manuscript is dedicated to the study of the Langevin sampling methods.
It consists of three chapters. Chapter 2 studies the discrete the Langevin algorithm with
inaccurate gradients and with higher-order smoothness, while Chapter 3 and 4 focus on
the non-strongly convex case for the discrete and continuous schemes, respectively.

In Chapter 2, we study the convergence of LMC, for M -smooth and m-strongly
convex functions. [DM19] proved that LMC converges to the target distribution π in
Wasserstein distance, with a convergence rate of Õ(p/ε2). We push further their analysis
and generalize the result in two directions. Firstly, we remove the assumption on the
availability of the exact evaluations of the gradient of the log-density. Instead, we assume
that a stochastic estimation of the gradient is available. A unified framework for handling
both deterministic and stochastic approximations is proposed. We subsequently provide
an upper bound on the sampling error of the first-order noisy LMC, that quantifies the
impact of the gradient evaluation inaccuracies. Secondly, we study the effect of the
second-order smoothness of the potential on the convergence analysis. Here, by second-
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order smoothness we mean the Lipschitz continuity of the Hessian of the potential. Upper
bounds on the error of convergence in the Wasserstein distance are established for the
first-order noisy LMC, as well as for the LMCO′. The latter is a second-order discretization
method, that exploits the Hessian of the log-density. We observe that the additional
smoothness on the first-order LMC yields better convergence rates and that the LMC
algorithm is adaptive. Chapter 2 is based on the article “User-friendly guarantees for the
Langevin Monte-Carlo with inaccurate gradient”, which is a joint work with Arnak Dalalyan.
It is published in Stochastic Processes and their Applications.

In the classical literature of Langevin sampling, the potential function is assumed to
be strongly-convex. In practice, however, the density at hand is not strongly log-concave.
Chapter 3 focuses on LMC and KLMC in the general log-concave case. The first part
of the chapter is dedicated to the study of the Langevin sampling algorithms with a
non-strongly convex potential function. To overcome the lack of strong convexity, we
introduce a surrogate potential, by adding a fixed square penalty. We then provide
explicit non-asymptotic bounds on the Wasserstein error of LMC and KLMC with an
explicit dependence on the magnitude of the added penalty. Similar convergence rates
are also established for the potentials that satisfy higher-order smoothness assumptions.
Our results provide some clear guidance for the calibration of the quadratic penalty, which
reduces the sampling error and provides the best known guarantees in the non-strongly
convex setting. The rest of the chapter studies the bounds on the second-order moment of
log-concave densities in two cases: the potential function is strongly-convex, respectively,
inside and outside of some Euclidean ball. Chapter 3 is based on the article “Bounding
the error of the discretized Langevin algorithms for non-strongly log-concave targets”, which
is a joint work with Arnak Dalalyan and Lionel Riou-Durand. The paper is submitted to
the Journal of Machine Learning Research.

In Chapter 4, we introduce a continuous-time process that converges polynomially to
the target distribution π with a non-strongly convex potential. We propose an adjustment
of the Langevin diffusion, termed Penalized Langevin dynamics (PLD). It is defined as a
continuous-time diffusion-type process, with the negative gradient of the potential plus a
vanishing time-dependent penalty (linear in the state variable) as its drift. We provide
explicit bounds on theWasserstein distance between the distribution of the PLD at moment
t and the target distribution. This upper bound provides a precise characterization of
the influence of the penalty on the approximation error. The described bound, after
optimization with respect to the penalty term, also allows to show that the PLD converges
to the target π at rate O(1/

√
T ). Following a similar logic as described in Section 1.5 (see

also [Dal17a]), we consider the gradient flow as the low-temperature limit of the Langevin
dynamics. This motivates the application of the proposed penalization scheme to gradient
flows, from which we deduce new non-asymptotic guarantees for their convergence.

39



Chapter 4 is based on the article “Penalized Langevin dynamics with vanishing penalty for
smooth and log-concave targets”, which is a joint work with Arnak Dalalyan. The paper is
published in Advances in Neural Information Processing Systems 33 (NeurIPS 2020).

1.7 Résumé substantiel

Langevin Monte-Carlo est une méthode efficace d’échantillonnage de lois en grandes
dimensions. Cette chaîne de Markov est obtenue par la discretization de l’équation
stochastique différentielle de Langevin (1.17). L’hypothèse principale c’est que la loi cible
est absolument continue par rapport à une mesure σ-additive et qu’elle a une densité log-
concave π(·) ∝ exp(−f(·)) où π est densité cible et f est la fonction potentielle. Quand f
est régulière et fortement convexe, la solution de cette équation est un processus deMarkov
érgodique et sa loi à l’instant t converge vers π en distance de Wasserstein, quand t tend
vers l’infini. Cette propriété fait réference à la discretization du processus, qui nous donne
un algorithme itératif, appellé Langevin Monte-Carlo (LMC). L’utilisation du LMC dans le
problème d’échantillonnage est étudiée par [RT96a]. Afin d’avoir une chaîne qui converge
vers π, les auteurs proposent d’ajouter une étape deMetropolis-Hastings à chaque itération
de l’algorithme (MALA). La convergence de MALA a été étudié par plusieurs auteurs
(cf. [RT96a, RR98, ST99b, ST99c, JH00, RS02]). Ensuite, [Dal17b] a prouvé des bornes
polynomiales non-asymptotiques sur l’erreur en distance de variation totale pour LMC,
sans modification du pas de Metropolis-Hastings. L’idée c’est d’avoir une méthode biaisé,
mais avec une plus petite variance, et donc avec une erreur de convergence inférieure à
celle de MALA. En plus, [Dal17b] a montré que la convergence peut être améliorée, si
certaines conditions initiales sont disponible (warm start). Plus tard, [DM17, DM19] ont
prouvé que la convergence améliorée, en TV et Wasserstein-2, est atteinte sans warm start.
Ces résultats ont initié une série d’articles étudiant l’échantillonnage par les algorithmes
de Langevin (cf. [DMM19, DM17, DRD20, CB18, CLGL+20]).

Le reste dumanuscrit est dédié à l’étude desméthodes de Langevin pour l’échantillonnage.
Il consiste de trois chapitre, dont Chapter 2 est dédié à l’algorithme de Langevin avec
des gradients non-précis et avec régularité supplémentaire, alors que Chapter 3 et 4
présentent respectivement des résultats pour les schémas discrets et continus quand la
fonction potentielle est faiblement convexe.

Dans le Chapitre 2, on étudie la convergence du LMC dans le cas des fonctions
potentielles m-fortement convexe et M -lisse. [DM19] ont prouvé que le LMC converge
vers la loi π en distance de Wasserstein à une vitesse Õ(p/ε2). Nous développons leur
analyse et proposons des résultats dans deux diréctions. D’abord nous supprimons
l’hypothèse de disponibilité des gradients de log-densité. Nous supposons plutôt que nous
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disposons une approximation stochastique du gradient. Un cadre d’analyse unifié est
proposé pour les approximations stochastiques et déterministes. Nous prouvons des bornes
non-asymptotiques pour le LMC de premier ordre, où la dépendance en bruit des calculs
des gradients est explicitement donnée. Ensuite, nous étudions l’impact de la régularité de
deuxième ordre de la fonction potentielle sur l’analyse de la convergence. Ici, la régularité
signifie que la Hessienne est lipschitzienne. Des bornes supérieures sont obtenues pour
la convergence en distance de Wasserstein pour le LMC et le LMCO′. On observe, en
effet, que la régularité supplémentaire améliore la qualité de l’échantillonnage. Chapitre
Chapter 2 est basé sur l’article “User-friendly guarantees for the Langevin Monte-Carlo with
inaccurate gradient”, qui est un travail réaliśe conjointement avec Arnak Dalalyan. Le
travail a été publié dans Stochastic Processes and their Applications.

Dans la littérature classique de l’echantillonnage de Langevin, la fonction potentielle
est supposée être fortement convexe. Par contre, dans les applications ce n’est pas souvent
le cas. Chapitre 3 considère le cas des densités qui sont log-concaves. La première partie
du chapitre est consacrée à l’étude de LMC et KLMC pour les fonctions potentielles log-
convexes. Afin de revenir au cas fortement convexe, nous proposons un substitut de la
fonction potentielle en ajoutant la pénalité quadratique. Des bornes supérieures sont
prouvées pour l’erreur de convergence de LMC, KLMC et KLMC-2 avec la potentielle
modifiée. Les bornes contiennent aussi la dépendance explicite de la largeur de la pénalité.
Nous décrivons l’analyse complète du choix optimal de la pénalité et des paramètres
des algorithmes, afin d’obtenir la meilleure vitesse de convergence. La deuxième partie
du papier étudie des bornes sur le deuxième moment des densités log-concaves dans
les deux cas suivants: la fonction potentielle est fortement convexe à l’intérieure et
respectivement, à l’exterieure d’une boule Euclidéenne centrée à 0. Le Chapitre 3 est
basé sur l’article “Bounding the error of the discretized Langevin algorithms for non-strongly
log-concave targets”, qui est un travail réalisé conjointement avec Arnak Dalalyan et Lionel
Riou-Durand. Le papier est soumis à Journal of Machine Learning Research.

Dans le Chapitre 4, nous introduisons un processus continu qui converge à une vitesse
polynomiale ves la loi cible π, qui est log-concave. Nous proposons un ajustement de la
diffusion de Langevin, qui s’appelle PLD (Penalized Langevin Dynamics). Il s’agit d’un
processus de type diffusion qui a pour drift l’opposé du gradient de la fonction potentielle.
La pénalisation proposée est linéaire et tend vers 0 quand t→ +∞. Nous donnons des
bornes explicites sur la distance de Wasserstein entre la loi cible et la loi du PLD à l’instant
t. Cette borne décrit explicitement la dépendance de la pénalité. Nous montrons qu’après
avoir optimisé la pénalité, nous obtenons une convergence en O(1/

√
T ). Suivant une

logique similaire à celle de la Section 1.5 (voir aussi [Dal17a]), nous considèrons le flow
du gradient comme une limite de la diffusion de Langevin. Cela nous permet d’appliquer
la même schéma de pénalisation au flow du gradient, duquel on déduit des nouvelles
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garanties non-asymptotiques de la convergence. Le Chapitre 4 est basée sur l’article
“Penalized Langevin dynamics with vanishing penalty for smooth and log-concave targets”,
qui est un travail réaliśe conjointement avec Arnak Dalalyan. Le papier a été publié dans
Advances in Neural Information Processing Systems 33 (NeurIPS 2020).
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Chapter 2

Langevin Monte-Carlo with inaccurate
gradient

Abstract

In this paper, we study the problem of sampling from a given probability density function
that is known to be smooth and strongly log-concave. We analyze several methods of
approximate sampling based on discretizations of the (highly overdamped) Langevin
diffusion and establish guarantees on its error measured in the Wasserstein-2 distance.
Our guarantees improve or extend the state-of-the-art results in three directions. First,
we provide an upper bound on the error of the first-order Langevin Monte Carlo (LMC)
algorithm with optimized varying step-size. This result has the advantage of being
horizon free (we do not need to know in advance the target precision) and to improve by
a logarithmic factor the corresponding result for the constant step-size. Second, we study
the case where accurate evaluations of the gradient of the log-density are unavailable,
but one can have access to approximations of the aforementioned gradient. In such a
situation, we consider both deterministic and stochastic approximations of the gradient
and provide an upper bound on the sampling error of the first-order LMC that quantifies
the impact of the gradient evaluation inaccuracies. Third, we establish upper bounds for
two versions of the second-order LMC, which leverage the Hessian of the log-density. We
provide nonasymptotic guarantees on the sampling error of these second-order LMCs.
These guarantees reveal that the second-order LMC algorithms improve on the first-order
LMC in ill-conditioned settings.
This chapter is based on a joint work with Arnak Dalalyan called “User-friendly guarantees
for the Langevin Monte-Carlo with inaccurate gradient”. It is published in Stochastic
Processes and their Applications.



2.1 Introduction

The problem of sampling a random vector distributed according to a given target distribution
is central in many applications. In the present paper, we consider this problem in the case
of a target distribution having a smooth and log-concave density π and when the sampling
is performed by a version of the Langevin Monte Carlo algorithm (LMC). More precisely,
for a positive integer p, we consider a continuously differentiable function f : Rp → R
satisfying the following assumption: For some positive constants m and M , it holdsf(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ (m/2)‖θ − θ′‖2

2,

‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2,
∀θ,θ′ ∈ Rp, (2.1)

where ∇f stands for the gradient of f and ‖ · ‖2 is the Euclidean norm. The target
distributions considered in this paper are those having a density with respect to the
Lebesgue measure on Rp given by

π(θ) =
e−f(θ)∫

Rp e
−f(u) du

.

We say that the density π(θ) ∝ e−f(θ) is log-concave (resp. strongly log-concave) if the
function f satisfies the first inequality of (2.1) with m = 0 (resp. m > 0).

Most part of this work focused on the analysis of the LMC algorithm, which can be
seen as the analogue in the problem of sampling of the gradient descent algorithm for
optimization. For a sequence of positive parameters h = {hk}k∈N, referred to as the
step-sizes and for an initial point ϑ0,h ∈ Rp that may be deterministic or random, the
iterations of the LMC algorithm are defined by the update rule

ϑk+1,h = ϑk,h − hk+1∇f(ϑk,h) +
√

2hk+1 ξk+1; k = 0, 1, 2, . . . (2.2)

where ξ1, . . . , ξk, . . . is a sequence of mutually independent, and independent of ϑ0,h,
centered Gaussian vectors with covariance matrices equal to identity.

When all the hk ’s are equal to some value h > 0, we will call the sequence in (2.2) the
constant step LMC and will denote it by ϑk+1,h. When f satisfies assumptions (2.1), if h
is small and k is large (so that the product kh is large), the distribution of ϑk,h is known
to be a good approximation to the distribution with density π(θ). An important question
is to quantify the quality of this approximation. An appealing approach to address this
question is by establishing non asymptotic upper bounds on the error of sampling; this
kind of bounds are particularly useful for deriving a stopping rule for the LMC algorithm,
as well as for understanding the computational complexity of sampling methods in high
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dimensional problems. In the present paper we establish such bounds by focusing on
their user-friendliness. The latter means that our bounds are easy to interpret, hold under
conditions that are not difficult to check and lead to simple theoretically grounded choice
of the number of iterations and the step-size.

In the present work, we measure the error of sampling in the Wasserstein-Monge-
Kantorovich distance W2. For two measures µ and ν defined on (Rp,B(Rp)), and for a
real number q ≥ 1, Wq is defined by

Wq(µ, ν) =
(

inf
%∈%(µ,ν)

∫
Rp×Rp

‖θ − θ′‖q2 d%(θ,θ′)
)1/q

,

where the inf is with respect to all joint distributions % having µ and ν as marginal
distributions. For statistical and machine learning applications, we believe that this
distance is more suitable for assessing the quality of approximate sampling schemes than
othermetrics such as the total variation or the Kullback-Leibler divergence. Indeed, bounds
on the Wasserstein distance—unlike the bounds on the total-variation—provide direct
guarantees on the accuracy of approximating the first and the second order moments.

Asymptotic properties of the LMC algorithm, also known as Unadjusted Langevin
Algorithm (ULA), and its Metropolis adjusted version, MALA, have been studied in a
number of papers [RT96a, RR98, ST99b, ST99c, JH00, RS02]. These results do not
emphasize the effect of the dimension on the computational complexity of the algorithm,
which is roughly proportional to the number of iterations. Non asymptotic bounds on the
total variation error of the LMC for log-concave and strongly log-concave distributions
have been established by [Dal17b]. If a warm start is available, the results in [Dal17b]
imply that after O(p/ε2) iterations the LMC algorithm has an error bounded from above
by ε. Furthermore, if we assume that in addition to (2.1) the function f has a Lipschitz
continuous Hessian, then a modified version of the LMC, the LMCwith Ozaki discretization
(LMCO), needs O(p/ε) iterations to achieve a precision level ε. These results were
improved and extended to the Wasserstein distance by [DM17, DM19]. More precisely,
they removed the condition of the warm start and proved that under the Lipschitz
continuity assumption on the Hessian of f , it is not necessary to modify the LMC for
getting the rate O(p/ε). The last result is closely related to an error bound between a
diffusion process and its Euler discretization established by [AJKH14].

On a related note, [BEL18] studied the convergence of the LMC algorithm with
reflection at the boundary of a compact set, which makes it possible to sample from a
compactly supported density (see also [BDMP17]). Extensions to non-smooth densities
were presented in [DMP18, LFC17]. [CB18] obtained guarantees similar to those in
[Dal17b] when the error is measured by the Kullback-Leibler divergence. Very recently,
[CCBJ18] derived non asymptotic guarantees for the kinetic LMC which turned out to
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improve on the previously known results. Langevin dynamics was used in [ARW16,
BDM18] in order to approximate normalizing constants of target distributions. [HZ17]
established tight bounds in Wasserstein distance between the invariant distributions of
two (Langevin) diffusions; the bounds involve mixing rates of the diffusions and the
deviation in their drifts.

The goal of the present work is to push further the study of the LMC and its variants
both by improving the existing guarantees and by extending them in some directions.
Our main contributions can be summarized as follows:

• We state simplified guarantees in Wasserstein distance with improved constants
both for the LMC and the LMCO when the step-size is constant, see Theorem 4 and
Theorem 9.

• We propose a varying-step LMC which avoids a logarithmic factor in the number of
iterations required to achieve a precision level ε, see Theorem 5.

• We extend the previous guarantees to the case where accurate evaluations of the
gradient are unavailable. Thus, at each iteration of the algorithm, the gradient
is computed within an error that has a deterministic and a stochastic component.
Theorem 7 deals with functions f satisfying (2.1), whereas Theorem 8 requires the
additional assumption of the smoothness of the Hessian of f .

• We propose a new second-order sampling algorithm termed LMCO′. It has a per-
iteration computational cost comparable to that of the LMC and enjoys nearly the
same guarantees as the LMCO, when the Hessian of f is Lipschitz continuous, see
Theorem 9.

• We provide a detailed discussion of the relations between, on the one hand, the
sampling methods and guarantees of their convergence and, on the other hand,
optimization methods and guarantees of their convergence (see Section 2.5).

We have to emphasize right away that Theorem 4 is a corrected version of [Dal17a,
Theorem 1], whereas Theorem 7 extends [Dal17a, Theorem 3] to more general noise. In
particular, Theorem 7 removes the unbiasedness and independence conditions. Furthermore,
thanks to a shrewd use of a recursive inequality, the upper bound in Theorem 7 is tighter
than the one in [Dal17a, Theorem 3].

As an illustration of the first two bullets mentioned in the above summary of our
contributions, let us consider the following example. Assume that m = 10, M = 20 and
we have at our disposal an initial sampling distribution ν0 satisfyingW2(ν0, π) = p+(p/m).
The main inequalities in Theorem 4 and Theorem 5 imply that after K iterations, the
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distribution νK obtained by the LMC algorithm satisfies

W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M/m)(hp)1/2 (2.3)

for the constant step LMC and

W2(νK , π) ≤ 3.5M
√
p

m
√
M +m+ (2/3)m(K −K1)

(2.4)

for the varying-step LMC, where K1 is an integer the precise value of which is provided
in Theorem 5. One can compare these inequalities with the corresponding bound in
[DM19]: adapted to the constant-step, it takes the form

W 2
2 (νK , π) ≤2

(
1− mMh

m+M

)K
W 2

2 (ν0, π)

+
Mhp

m
(m+M)

(
h+

m+M

2mM

)(
2 +

M2h

m
+
M2h2

6

)
. (2.5)

For any ε > 0, we can derive from these guarantees the smallest number of iterations, Kε,
for which there is a h > 0 such that the corresponding upper bound is smaller than ε. The
logarithms of these values Kε for varying ε ∈ {0.001, 0.005, 0.02} and p ∈ {25, . . . , 1000}
are plotted in Figure 2.1. We observe that for all the considered values of ε and p, the
number of iterations derived from (2.4) (referred to as Theorem 5) is smaller than those
derived from (2.3) (referred to as Theorem 4) and from (2.5) (referred to as DM bound).
The difference between the varying-step LMC and the constant step LMC becomes more
important when the target precision level ε gets smaller. In average over all values of p,
when ε = 0.001, the number of iterations derived from (2.5) is 4.6 times larger than that
derived from (2.4), and almost 3 times larger than the number of iterations derived from
(2.3).

2.2 Guarantees in the Wasserstein distance with accurate
gradient

The rationale behind the LMC (2.2) is simple: the Markov chain {ϑk,h}k∈N is the Euler
discretization of a continuous-time diffusion process {Lt : t ∈ R+}, known as Langevin
diffusion. The latter is defined by the stochastic differential equation

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0, (2.6)
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Figure 2.1: Plots showing the logarithm of the number of iterations as function of
dimension p for several values of ε. The plotted values are derived from (2.3)-(2.5)
using the data m = 10, M = 20, W 2

2 (ν0, π) = p+ (p/m).

where {W t : t ≥ 0} is a p-dimensional Brownian motion. When f satisfies condition (2.1),
equation (2.6) has a unique strong solution, which is a Markov process. Furthermore,
the process L has π as invariant density [Bha78, Thm. 3.5]. Let νk be the distribution
of the k-th iterate of the LMC algorithm, that is ϑk,h ∼ νk. In what follows, we present
user-friendly guarantees on the closeness of νk and π, when f is strongly convex.

2.2.1 Reminder on guarantees for the constant-step LMC

When the function f is m-strongly convex and M -gradient Lipschitz, upper bounds on
the sampling error measured in Wasserstein distance of the LMC algorithm have been
established in [DM19, Dal17a]. We state below a slightly adapted version of their result,
which will serve as a benchmark for the bounds obtained in this work.

Theorem 4. Assume that h ∈ (0, 2/M) and f satisfies condition (2.1). The following claims
hold:

(a) If h ≤ 2/(m+M) then W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M
m

)(hp)1/2.

(b) If h ≥ 2/(m+M) then W2(νK , π) ≤ (Mh− 1)KW2(ν0, π) +
1.65Mh

2−Mh
(hp)1/2.

We refer the readers interested in the proof of this theorem either to [Dal17a] or to
Section 2.6, where the latter is obtained as a direct consequence of Theorem 7. The factor
1.65 is obtained by upper bounding 7

√
2/6.
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In practice, a relevant approach to getting an accuracy of at most ε is to minimize
the upper bound provided by Theorem 4 with respect to h, for a fixed K. Then, one
can choose the smallest K for which the obtained upper bound is smaller than ε. One
useful observation is that the upper bound of case (b) is an increasing function of h. Its
minimum is always attained at h = 2/(m+M), which means that one can always look
for a step-size in the interval (0, 2/(m+M)] by minimizing the upper bound in (a). This
can be done using standard line-search methods such as the bisection algorithm.

Note that if the initial value ϑ0 = θ0 is deterministic then, using the notation θ∗ =

arg minθ∈Rp f(θ), in view of [DM19, Proposition 1], we have

W2(ν0, π)2 =

∫
Rp
‖θ0 − θ‖2

2π(dθ) ≤ ‖θ0 − θ∗‖2
2 + p/m. (2.7)

Finally, let us remark that if we choose h and K so that

h ≤ 2/(m+M), e−mhKW2(ν0, π) ≤ ε/2, 1.65(M/m)(hp)1/2 ≤ ε/2, (2.8)

then we haveW2(νK , π) ≤ ε. In other words, conditions (2.8) are sufficient for the density
of the output of the LMC algorithm after K iterations to be within the precision ε of
the target density when the precision is measured using the Wasserstein distance. This
readily yields

h ≤ m2ε2

11M2p
∧ 2

m+M
and hK ≥ 1

m
log
(2(‖θ0 − θ∗‖2

2 + p/m)1/2

ε

)
Assuming m,M and ‖θ0 − θ∗‖2

2/p to be constants, we can deduce from the last display
that it suffices K = C(p/ε2) log(p/ε2) number of iterations in order to reach the precision
level ε. This fact has been first established in [Dal17b] for the LMC algorithm with a warm
start and the total-variation distance. It was later improved by [DM17, DM19], where the
authors showed that the same result holds for any starting point and established similar
bounds for the Wasserstein distance. Theorem 4 above can be seen as a user-friendly
version of the corresponding result established by [DM19].

Remark 3. Although (2.7) is relevant for understanding the order of magnitude ofW2(ν0, π),
it has limited applicability since the distance ‖θ0 − θ∗‖ might be hard to evaluate. As
mentioned in [Dal17a], an attractive alternative to that bound is given by the inequality 1

mW2(ν0, π)2 ≤ m‖θ0 − θ∗‖2
2 + p

≤ 2
(
f(θ0)− f(θ∗)

)
+ p.

1The second line follows from strong convexity whereas the third line is a consequence of the fact that
θ∗ is a stationary point of f .
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If f is lower bounded by some known constant, for instance if f ≥ 0, the last inequality
provides the computable upper bound W2(ν0, π)2 ≤

(
2f(θ0) + p

)
/m.

2.2.2 Guarantees under strong convexity for the varying step LMC

The result of previous section provides a guarantee for the constant step LMC. One may
wonder if using a variable step sizes h = {hk}k∈N can improve the convergence. Note that
in [DM19, Theorem 5], guarantees for the variable step LMC are established. However,
they do not lead to a clear message on the choice of the step-sizes. The next result fills
this gap by showing that an appropriate selection of step-sizes improves on the constant
step LMC with an improvement factor logarithmic in p/ε2.

Theorem 5. Let us consider the LMC algorithm with varying step-size hk+1 defined by

hk+1 =
2

M +m+ (2/3)m(k −K1)+

, k = 1, 2, . . . (2.9)

where K1 is the smallest non-negative integer satisfying2

K1 ≥
ln
(
W2(ν0, π)/

√
p
)

+ ln(m/M) + (1/2) ln(M +m)

ln(1 + 2m/M−m)
. (2.10)

If f satisfies (2.1), then for every k ≥ K1, we have

W2(νk, π) ≤ 3.5M
√
p

m
√
M +m+ (2/3)m(k −K1)

. (2.11)

The step size (2.9) has two important advantages as compared to the constant steps.
The first advantage is that it is independent of the target precision level ε. The second
advantage is that we get rid of the logarithmic terms in the number of iterations required
to achieve the precision level ε. Indeed, it suffices K = K1 + (27M2/2m3)(p/ε2) iterations
to get the right hand side of (2.11) smaller than ε, where K1 depends neither on the
dimension p nor on the precision level ε.

Since the choice of hk+1 in (2.9) might appear mysterious, we provide below a quick
explanation of themain computations underpinning this choice. Themain step of the proof
of upper bounds on W2(νk, π), is the following recursive inequality (see Proposition 11 in
Section 2.6)

W2(νk+1, π) ≤ (1−mhk+1)W2(νk, π) + 1.65M
√
p h

3/2
k+1.

2Combining the definition of K1 and the upper bound in (2.7), one easily checks that if ‖θ0 − θ∗‖∞ is
bounded, then K1 is upper bounded by a constant that does not depend on the dimension p.
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Using the notation Bk = 2(m/3)3/2

1.65M
√
p
W2(νk, π), this inequality can be rewritten as

Bk+1 ≤ (1−mhk+1)Bk + 2(mhk+1/3)3/2.

Minimizing the right hand side with respect to hk+1, we find that the minimum is attained
at the stationary point

hk+1 =
3

m
B2
k. (2.12)

With this hk+1, one checks that the sequence Bk satisfies the recursive inequality

B2
k+1 ≤ B2

k(1−B2
k)

2 ≤ B2
k

1 +B2
k

.

The function g(x) = x/(1 + x) being increasing in (0,∞), we get

B2
k+1 ≤

B2
k

1 +B2
k

≤
B2
k−1

1+B2
k−1

1 +
B2
k−1

1+B2
k−1

=
B2
k−1

1 + 2B2
k−1

.

By repetitive application of the same argument, we get

B2
k+1 ≤

B2
K1

1 + (k + 1−K1)B2
K1

.

The integer K1 was chosen so that B2
K1
≤ 2m

3(M+m)
, see (2.26). Inserting this upper bound

in the right hand side of the last display, we get

B2
k+1 ≤

2m

3(M +m) + 2m(k + 1−K1)
.

Finally, replacing in (2.12) B2
k by its upper bound derived from the last display, we get

the suggested value for hk+1.

2.2.3 Extension to mixtures of strongly log-concave densities

We describe here a simple setting in which a suitable version of the LMC algorithm yields
efficient sampling algorithm for a target function which is not log-concave. Indeed, let us
assume that

π(θ) =

∫
H

π1(θ|η) π0(dη),
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where H is an arbitrary measurable space, π0 is a probability distribution on H and π1(·|·)
is a Markov kernel on Rp ×H. This means that π2(dθ, dη) = π1(θ|η) π0(dη)dθ defines a
probability measure on Rp ×H of which π is the first marginal.

Theorem 6. Assume that π1(θ|η) = exp{−fη(θ)} so that for every η ∈ H, fη satisfies
assumption (2.1). Define the mixture LMC (MLMC) algorithm as follows: sample η ∼ π0

and choose an initial value ϑ0 ∼ ν0, then compute

ϑMLMC
k+1 = ϑMLMC

k − hk+1∇fη(ϑMLMC
k ) +

√
2hk+1 ξk+1; k = 0, 1, 2, . . .

where hk is defined by (2.9) and ξ1, . . . , ξk, . . . is a sequence of mutually independent, and
independent of (η,ϑ0), centered Gaussian vectors with covariance matrices equal to identity.
It holds that, for every positive integer k ≥ K1 (see eq. (2.10) for the definition of K1),

W2(νk, π) ≤ 3.5M
√
p

m
√
M +m+ (2/3)m(k −K1)

.

This result extends the applicability of Langevin based techniques to a wider framework
than the one of strongly log-concave distributions. The proof, postponed to Section 2.6, is
a straightforward consequence of Theorem 5.

2.3 Guarantees for the inaccurate gradient version

In some situations, the precise evaluation of the gradient ∇f(θ) is computationally
expensive or practically impossible, but it is possible to obtain noisy evaluations of ∇f
at any point. This is the setting considered in the present section. More precisely, we
assume that at any point ϑk,h ∈ Rp of the LMC algorithm, we can observe the value

Y k,h = ∇f(ϑk,h) + ζk,

where {ζk : k = 0, 1, . . .} is a sequence of random (noise) vectors. The noisy LMC (nLMC)
algorithm is defined as

ϑk+1,h = ϑk,h − hY k,h +
√

2h ξk+1; k = 0, 1, 2, . . . (2.13)

where h > 0 and ξk+1 are as in (2.2). The noise {ζk : k = 0, 1, . . .} is assumed to satisfy
the following condition.

Condition N: for some δ > 0 and σ > 0 and for every k ∈ N,

• (bounded bias) E
[∥∥E(ζk|ϑk,h)

∥∥2

2

]
≤ δ2p,
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• (bounded variance) E[‖ζk − E(ζk|ϑk,h)‖2
2] ≤ σ2p,

• (independence of updates) ξk+1 in (2.13) is independent of (ζ0, . . . , ζk).

We emphasize right away that the random vectors ζk are not assumed to be independent,
as opposed to what is done in [Dal17a]. The next theorem extends the guarantees of
Theorem 4 to the inaccurate-gradient setting and to the nLMC algorithm.

Theorem 7. Let ϑK,h be the K-th iterate of the nLMC algorithm (2.13) and νK be its
distribution. If the function f satisfies condition (2.1) and h ≤ 2/(m+M) then

W2(νK , π) ≤ (1−mh)KW2(ν0, π) + 1.65(M/m)(hp)1/2 (2.14)

+
δ
√
p

m
+

σ2(hp)1/2

1.65M + σ
√
m
.

To the best of our knowledge, the first result providing guarantees for sampling from
a distribution in the scenario when precise evaluations of the log-density or its gradient
are not available has been established in [Dal17a]. Prior to that work, some asymptotic
results has been established in [AFEB16]. The closely related problem of computing an
average value with respect to a distribution, when the gradient of its log-density is known
up to an additive noise, has been studied by [TTV16, VZ15, NDH+17, CDC15]. Note that
these settings are of the same flavor as those of stochastic approximation, an active area
of research in optimization and machine learning.

As compared to the analogous result in [Dal17a], Theorem 7 above has several
advantages. First, it extends the applicability of the result to the case of a biased noise.
In other words, it allows for ζk with nonzero means. Second, it considerably relaxes the
independence assumption on the sequence {ζk}, by replacing it by the independence
of the updates. Third, and perhaps the most important advantage of Theorem 7 is the
improved dependence of the upper bound on σ. Indeed, while the last term in the upper
bound in Theorem 7 is O(σ2), when σ → 0, the corresponding term in [Dal17a, Th. 3] is
only O(σ).

To understand the potential scope of applicability of Theorem 7, let us consider a
generic example in which f(θ) is the average of n functions defined through independent
random variables X1, . . . , Xn:

f(θ) =
1

n

n∑
i=1

`(θ, Xi).

When the gradient of `(θ, Xi) with respect to parameter θ is hard to compute, one can
replace the evaluation of ∇f(ϑk,h) at each step k by that of Yk = ∇θ`(ϑk,h, XNk), where
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Nk is a random variable uniformly distributed in {1, . . . , n} and independent of ϑk,h.
Under suitable assumptions, this random vector satisfies the conditions of Theorem 7 with
δ = 0 and constant σ2. Therefore, if we analyze the upper bound provided by (2.14), we
see that the last term, due to the subsampling, is of the same order of magnitude as the
second term. Thus, using the subsampled gradient in the LMC algorithm does not cause
a significant deterioration of the precision while reducing considerably the computational
burden.

Note that Theorem 7 allows to handle situations in which the approximations of the
gradient are biased. This bias is controlled by the parameter δ. Such a bias can appear
when using deterministic approximations of integrals or differentials. For instance, in
statistical models with latent variables, the gradient of the log-likelihood has often an
integral form. Such integrals can be approximated using quadrature rules, yielding a bias
term, or Monte Carlo methods, yielding a variance term.

In the preliminary version [Dal17a] of this work, we made a mistake by claiming that
the stochastic gradient version of the LMC, introduced in [WT11] and often referred to
as Stochastic Gradient Langevin Dynamics (SGLD), has an error of the same order as
the non-stochastic version of it. This claim is wrong, since when f(θ) =

∑n
i=1 `(θ, Xi)

with a strongly convex function θ 7→ `(θ, x) and iid variables X1, . . . , Xn, we have m
and M proportional to n. Therefore, choosing Yk = n∇θ`(ϑk,h, XNk) as a noisy version
of the gradient (where Nk is a uniformly over {1, . . . , n} distributed random variable
independent of ϑk,h), we get δ = 0 but σ2 proportional to n2. Therefore, the last term
in (2.14) is of order (nhp)1/2 and dominates the other terms. Furthermore, replacing Yk
by Yk = n

s

∑s
j=1∇θ`(ϑk,h, XNj

k
) with iid variables N1

k , . . . , N
s
k does not help, since then

σ2 is of order n2/s and the last term in (2.14) is of order (nhp/s)1/2, which is still larger
than the term (M/m)(hp)1/2. This discussion shows that Theorem 7 applied to SGLD
is of limited interest. For a more in-depth analysis of the SGLD, we refer the reader to
[NDH+17, RRT17, XCZG18].

It is also worth mentioning here that another example of approximate gradient—based
on a quadratic approximation of the log-likelihood of the generalized linear model—has
been considered in [HZ17, Section 5]. It corresponds, in terms of condition N, to a
situation in which the variance σ2 vanishes but the bias δ is non-zero. An important
ingredient of the proof of Theorem 7 is the following simple result, which can be useful
in other contexts as well (for a proof, see Lemma 7 in Section 2.G below).

Lemma 1. Let A, B and C be given non-negative numbers such that A ∈ (0, 1). Assume
that the sequence of non-negative numbers {xk}k=0,1,2,... satisfies the recursive inequality

x2
k+1 ≤ [(1− A)xk + C]2 +B2
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for every integer k ≥ 0. Then, for all integers k ≥ 0,

xk ≤ (1− A)kx0 +
C

A
+

B2

C +
√
AB

.

Thanks to this lemma, the upper bound on the Wasserstein distance provided by
(2.14) is sharper than the one proposed in [Dal17a].

2.4 Guarantees under additional smoothness

When the function f has Lipschitz continuous Hessian, one can get improved rates of
convergence. This has been noted by [Dal17b], where the author proposed to use a
modified version of the LMC algorithm, the LMC with Ozaki discretization, in order to
take advantage of the smoothness of the Hessian. On the other hand, it has been proved
in [AJKH14, AJKH15] that the boundedness of the third order derivative of f (equivalent
to the boundedness of the second-order derivative of the drift of the Langevin diffusion)
implies that the Wasserstein distance between the marginals of the Langevin diffusion and
its Euler discretization are of order h

√
log(1/h). Note however, that in [AJKH15] there is

no evaluation of the impact of the dimension on the quality of the Euler approximation.
This evaluation has been done by [DM19] by showing that the Wasserstein error of the
Euler approximation is of order hp. This raises the following important question: is
it possible to get advantage of the Lipschitz continuity of the Hessian of f in order to
improve the guarantees on the quality of sampling by the standard LMC algorithm. The
answer of this question is affirmative and is stated in the next theorem.

In what follows, for any matrix M, we denote by ‖M‖ and ‖M‖F , respectively, the
spectral norm and the Frobenius norm of M. We write M �M′ or M′ �M′ to indicate
that the matrix M′ −M is positive semi-definite.
Condition F: the function f is twice differentiable and for some positive numbers m,M
and M2,

• (strong convexity) ∇2f(θ) � mIp, for every θ ∈ Rp,

• (bounded second derivative) ∇2f(θ) �MIp, for every θ ∈ Rp,

• (further smoothness) ‖∇2f(θ)−∇2f(θ′)‖ ≤M2‖θ − θ′‖2, for every θ,θ′ ∈ Rp.

Theorem 8. Let ϑK,h be the K-th iterate of the nLMC algorithm (2.13) and νK be its
distribution. Assume that conditions F and N are satisfied. Then, for every h ≤ 2/(m+M), we
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have

W2(νK , π) ≤ (1−mh)KW2(ν0, π) +
M2hp

2m
+

11Mh
√
Mp

5m

+
δ
√
p

m
+

2σ2
√
hp

M2

√
hp+ 2σ

√
m
.

In the last inequality, 11/5 is an upper bound for 0.5 + 2
√

2/3 ≈ 2.133.
When applying the nLMC algorithm to sample from a target density, the user may

usually specify four parameters: the step-size h, the number of iterations K, the tolerated
precision δ of the deterministic approximation and the precision σ of the stochastic
approximation. An attractive feature of Theorem 8 is that the contributions of these four
parameters are well separated, especially if we upper bound the last term by 2σ2/M2. As
a consequence, in order to have an error of order ε in Wasserstein distance, we might
choose: σ at most of order √ε, δ at most of order mε/√p, h of order ε/p and K of
order (p/mε) log(p/ε). Akin to Theorem 5, one can use variable step-sizes to avoid the
logarithmic factor; we leave these computations to the reader.

Note that if we instantiate Theorem 8 to the case of accurate gradient evaluations,
that is when σ = δ = 0, we recover the constant step-size version of [DM19, Theorem 8],
with optimized constants. Indeed, for contant step-size, [DM19, Theorem 8] yields

W2(νK , π) ≤
{

2(1− m̄ h)KW2(ν0, π)2 + 2ph2
(M2

m̄
+

M4

3mm̄2
+
M2

2p

3m̄2
+O(h)

)}1/2

,

(2.15)

where m̄ = mM
m+M

∈ [m/2,m) and the term O(h) can be given explicitly. A visual
comparison of the optimal number of iterations obtained from this bound to that obtained
from Theorem 8 (with δ = σ = 0) is provided in Figure 2.2.

Under the assumption of Lipschitz continuity of the Hessian of f , one may wonder
whether second-order methods that make use of the Hessian in addition to the gradient are
able to outperform the standard LMC algorithm. The most relevant candidate algorithms
for this are the LMC with Ozaki discretization (LMCO) and a variant of it, LMCO′,
a slightly modified version of an algorithm introduced in [Dal17b]. The LMCO is a
recursive algorithm the update rule of which is defined as follows: for every k ≥ 0, we
set Hk = ∇2f(ϑLMCO

k,h ), which is an invertible p× p matrix since f is strongly convex, and
define

Mk =
(
Ip − e−hHk

)
H−1
k , Σk =

(
Ip − e−2hHk

)
H−1
k ,

ϑLMCO
k+1,h = ϑLMCO

k,h −Mk∇f
(
ϑLMCO
k,h

)
+ Σ

1/2
k ξk+1, (2.16)
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Figure 2.2: Plots showing the logarithm of the number of iterations as function of
dimension p for several values of ε. The plotted values are derived from Theorem 8
and (2.15) (referred to as DM bound) using the data m = 10, M = 50, M2 = 1,
W 2

2 (ν0, π) = p+ (p/m), δ = σ = 0.

where {ξk : k ∈ N} is a sequence of independent random vectors distributed according
to the Np(0, Ip) distribution. The LMCO′ algorithm is based on approximating the matrix
exponentials by linear functions, more precisely, for H′k = ∇2f(ϑLMCO′

k,h ),

ϑLMCO′

k+1,h =ϑLMCO′

k,h − h
(
Ip −

1

2
hH′k

)
∇f
(
ϑLMCO′

k,h

)
+
√

2h
(
Ip − hH′k +

1

3
h2(H′k)

2
)1/2

ξk+1. (2.17)

Let us mention right away that the stochastic perturbation present in the last display can
be computed in practice without taking the matrix square-root. Indeed, it suffices to
generate two independent standard Gaussian vectors ηk+1 and η′k+1; then the random
vector (

Ip − (1/2)hH′k
)
ηk+1 + (

√
3/6)hH′kη

′
k+1

has exactly the same distribution as (Ip − hH′k + (1/3)h2(H′k)
2
)1/2

ξk+1.
In the rest of this section, we provide guarantees for methods LMCO and LMCO′. Note

that we consider only the case where the gradient and the Hessian of f are computed
exactly, that is without any approximation.

Theorem 9. Let νLMCO
K and νLMCO′

K be, respectively, the distributions of the K-th iterate of
the LMCO algorithm (2.16) and the LMCO′ algorithm (2.17) with an initial distribution ν0.
Assume that conditions F and N are satisfied. Then, for every h ≤ m/M2,

W2(νLMCO
K , π) ≤ (1− 0.25mh)KW2(ν0, π) +

11.5M2h(p+ 1)

m
. (2.18)

57



If, in addition, h ≤ 3m/4M2, then

W2(νLMCO′

K , π) ≤ (1− 0.25mh)KW2(ν0, π) +
1.3M2h2

√
Mp

m
+

7.3M2h(p+ 1)

m
. (2.19)

A very rough consequence of this theorem is that one has similar theoretical guarantees
for the LMCO and the LMCO′ algorithms, since in most situations the middle term in the
right hand side of (2.19) is smaller than the last term. On the other hand, the per-iteration
cost of the modified algorithm LMCO′ is significantly smaller than the per-iteration cost of
the original LMCO. Indeed, for the LMCO′ there is no need to compute matrix exponentials
neither to invert matrices, one only needs to perform matrix-vector multiplication for
p × p matrices. Note that for many matrices such a multiplication operation might be
very cheap using the fast Fourier transform or other similar techniques. In addition, the
computational complexity of the Hessian-vector product is provably of the same order
as that of evaluating the gradient, see [Gri93]. Therefore, one iteration of the LMCO′
algorithm is not more costly than one iteration of the LMC. At the same time, the error
bound (2.19) for the LMCO′ is smaller than the one for the LMC provided by Theorem 8.
Indeed, the termMh

√
Mp present in the bound of Theorem 8 is generally of larger order

than the term (Mh)2
√
Mp appearing in (2.19).

2.5 Relation with optimization

We have already mentioned that the LMC algorithm is very close to the gradient descent
algorithm for computing the minimum θ∗ of the function f . However, when we compare
the guarantees of Theorem 4 with those available for the optimization problem, we remark
the following striking difference. The approximate computation of θ∗ requires a number
of steps of the order of log(1/ε) to reach the precision ε, whereas, for reaching the same
precision in sampling from π, the LMC algorithm needs a number of iterations proportional
to (p/ε2) log(p/ε). The goal of this section is to explain that this, at first sight disappointing
behavior of the LMC algorithm is, in fact, consistent with the exponential convergence
of the gradient descent. Furthermore, the latter is obtained from the guarantees on the
LMC by letting a temperature parameter go to zero.

The main ingredient for the explanation is that the function f(θ) and the function
fτ (θ) = f(θ)/τ have the same point of minimum θ∗, whatever the real number τ > 0. In
addition, if we define the density function πτ (θ) ∝ exp

(
− fτ (θ)

), then the average value

θ̄τ =

∫
Rp
θ πτ (θ) dθ
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tends to the minimum point θ∗ when τ goes to zero. Furthermore, the distribution πτ (dθ)

tends to the Dirac measure at θ∗. Clearly, fτ satisfies (2.1) with the constants mτ = m/τ

and Mτ = M/τ . Therefore, on the one hand, we can apply to πτ claim (a) of Theorem 4,
which tells us that if we choose h = 1/Mτ = τ/M , then

W2(νK , πτ ) ≤
(

1− m

M

)K
W2(δθ0 , πτ ) + 1.65

(M
m

)(pτ
M

)1/2

. (2.20)

On the other hand, the LMC algorithm with the step-size h = τ/M applied to fτ reads as

ϑk+1,h = ϑk,h −
1

M
∇f(ϑk,h) +

√
2τ

M
ξk+1; k = 0, 1, 2, . . . (2.21)

When the parameter τ goes to zero, the LMC sequence (2.21) tends to the gradient
descent sequence θk. Therefore, the limiting case of (2.20) corresponding to τ → 0

writes as
‖θ(K) − θ∗‖2 ≤

(
1− m

M

)K
‖θ0 − θ∗‖2,

which is a well-known result in Optimization. This clearly shows that Theorem 4 is a
natural extension of the results of convergence from optimization to sampling.

Such an analogy holds true for the Newton method as well. Its counterpart in sampling
is the LMCO algorithm. Indeed, one easily checks that if f is replaced by fτ with τ going to
zero, then, for any fixed step-size h, the matrix Σk in (2.16) tends to zero. This implies that
the stochastic perturbation vanishes. On the other hand, the term Mk,τ∇fτ (ϑLMCO

k,h ) tends
to {∇2f(ϑLMCO

k,h )}−1∇f(ϑLMCO
k,h ), as τ → 0. Thus, the updates of the Newton algorithm

can be seen as the limit case, when τ goes to zero, of the updates of the LMCO.
However, if we replace f by fτ in the upper bounds stated in Theorem 9 and we let τ

go to zero, we do not retrieve the well-known guarantees for the Newton method. The
main reason is that Theorem 9 describes the behavior of the LMCO algorithm in the
regime of small step-sizes h, whereas Newton’s method corresponds to (a limit case of)
the LMCO with a fixed h. Using arguments similar to those employed in the proof of
Theorem 9, one can establish the following result, the proof of which is postponed to
Section 2.6.

Proposition 10. Let νLMCO
K be the distributions of the K-th iterate of the LMCO algorithm

(2.16) with an initial distribution ν0. Assume that condition F is satisfied. Then, for every
h > 0 and K ∈ N,

W2(νLMCO
K , π) ≤ 2m

M2

(
wK exp(vKw

−2K

K )
)2K (2.22)
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with

wK =
M2W2K+1(ν0, π)

2m
+

1

2
e−mh, and vK =

2M2M
3/2
√

2p+ 2K

m3
+ e−mh.

If we replace in the right hand side of (2.22) the quantitiesm,M andM2, respectively,
by mτ = m/τ , Mτ = M/τ and M2,τ = M2/τ , and we let τ go to zero, then it is clear that
the term vK vanishes. On the other hand, if ν0 is the Dirac mass at some point θ0, then
wK converges to M2‖θ0 − θ∗‖2/(2m). Therefore, for Newton’s algorithm as a limiting
case of (2.22) we get

‖θNewton
K − θ∗‖2 ≤

2m

M2

(
M2‖θ0 − θ∗‖2

2m

)2K

.

The latter provides the so called quadratic rate of convergence, which is a well-known
result that can be found in many textbooks; see, for instance, [CZ13, Theorem 9.1].

A particularly promising remark made in Section 2.2.3 is that all the results established
for the problem of approximate sampling from a log-concave distribution can be carried
over the distributions that can bewritten as amixture of (strongly) log-concave distributions.
The only required condition is to be able to sample from the mixing distribution. This
provides a well identified class of (posterior) distributions for which the problem of finding
the mode is difficult (because of nonconvexity) whereas the sampling problem can be
solved efficiently.

There are certainly other interesting connections to uncover between sampling and
optimization. In particular, in [MCJ+19], it was shown that in the case of mixture
distributions, sampling algorithms scale linearly with the model dimension, as opposed
to those of optimization, which have exponential scaling. One can think of lower bounds
for sampling or finding a sampling counterpart of Nesterov acceleration. Some recent
advances on the gradient flow [WWJ16] might be useful for achieving these goals.

2.6 Conclusion

We have presented easy-to-use finite-sample guarantees for sampling from a strongly
log-concave density using the Langevin Monte-Carlo algorithm with a fixed step-size and
extended it to the case where the gradient of the log-density can be evaluated up to some
error term. Our results cover both deterministic and random error terms. We have also
demonstrated that if the log-density f has a Lipschitz continuous second-order derivative,
then one can choose a larger step-size and obtain improved convergence rate.
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We have also uncovered some analogies between sampling and optimization. The
underlying principle is that an optimization algorithm may be seen as a limit case of
a sampling algorithm. Therefore, the results characterizing the convergence of the
optimization schemes should have their counterparts for sampling strategies. We have
described these analogues for the steepest gradient descent and for the Newton algorithm.
However, while in the optimization the relevant characteristics of the problem are the
dimension p, the desired accuracy ε and the condition numberM/m, the problem sampling
involves an additional characteristic which is the scale given by the strong-convexity
constant m. Indeed, if we increase m by keeping the condition number M/m constant,
the number of iterations for the LMC to reach the precision ε will decrease. In this
respect, we have shown that the LMC with Ozaki discretization, termed LMCO, has a
better dependence on the overall scale of f than the original LMC algorithm. However,
the weakness of the LMCO is the high computational cost of each iteration. Therefore, we
have proposed a new algorithm, LMCO′, that improves the LMC in terms of its dependence
on the scale and each iteration of LMCO′ is computationally much cheaper than each
iteration of the LMCO.

Another interesting finding is that, in the case of accurate gradient evaluations (i.e.,
when there is no error in the gradient computation), a suitably chosen variable step-size
leads to logarithmic improvement in the convergence rate of the LMC algorithm.

Interesting directions for future research are establishing lower bounds in the spirit
of those existing in optimization, obtaining user-friendly guarantees for computing the
posterior mean or for sampling from a non-smooth density. Some of these problems have
already been tackled in several papers mentioned in previous sections, but we believe
that the techniques developed in the present work might be helpful for revisiting and
deepening the existing results.
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Appendix to Chapter 2

The basis of the proofs of all the theorems stated in previous sections is a recursive
inequality that upper bounds the error at the step k + 1, W2(νk+1, π), by an expression
involving the error of the previous step, W2(νk, π). To this end, we use the fact that
for a suitably chosen Langevin diffusion, L, in stationary regime, we have W2(νk, π)2 =

E[‖ϑk−Lkh‖2
2] andW2(νk+1, π)2 ≤ E[‖ϑk+1−L(k+1)h‖2

2]. The goal is then to upper bound
the latter by an expression that involves the former and some suitably controlled remainder
terms. This leads to a recursive inequality and the last step of the proof is to unfold
the recursion. Since different chains ϑk,h are considered in this paper, we get different
recursive inequalities. Lemma 7 and Lemma 8 are the new technical tools that are used
for solving the encountered recursive inequalities. The remainder terms appearing in
the recursive inequalities are evaluated by using stochastic calculus and the smoothness
properties of f . The main building blocks for these evaluations are Lemma 3, Lemma 4
and Lemma 6, the latter being used only in the results assuming the Hessian-Lipschitz
condition.

We will also make repeated use of the Minkowski inequality and its integral version{
E

[(∫ b

a

Xt dt

)p]}1/p

≤
∫ b

a

{
E
[
|Xt|p

]}1/p
dt, ∀p ∈ N∗, (2.23)

where X is a random process almost all paths of which are integrable over the interval
[a, b]. Furthermore, for any random vectorX, we define the norm ‖X‖L2 = (E[‖X‖2

2])1/2.
The next result is the central ingredient of the proofs of Theorems 4, 5 and 7. Readers

interested only in the proof of Theorems 4 and 5, are invited—in the next proof—to
consider the random vectors ζk as equal to 0 and Y k,h as equal to ∇f(ϑk,h). This implies,
in particular, that σ = δ = 0.

Proposition 11. Let us introduce %k+1 = max(1−mhk+1,Mhk+1 − 1) (since h ∈ (0, 2/M),
this value % satisfies 0 < % < 1). If f satisfies (2.1) and hk+1 ≤ 2/M , then

W2(νk+1, π)2 ≤
{
%k+1W2(νk, π) + αM(h3

k+1p)
1/2 + hk+1δ

√
p
}2

+ σ2h2
k+1p,
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with α = 7
√

2/6 ≤ 1.65.

Proof. To simplify notation, and since there is no risk of confusion, we will write h instead
of hk+1. The main steps of the proof are the following. We use a synchronous coupling
for approximating the distribution of the LMC sequence by that of a continuous-time
Langevin diffusion. We then take advantage of the strong convexity of f for showing
that, for h small enough, the error at round k + 1 is upper bounded, up to a additive
remainder term, by the error at round k multiplied by a factor strictly smaller than one,
see Lemma 2. The smoothness of the gradient of f ensures that the aforementioned
remainder term is small, see Lemma 3 and Lemma 4 below.

Let L0 be a random vector drawn from π such that W2(νk, π) = ‖L0 − ϑk,h‖L2 and
E[ζk|ϑk,h,L0] = E[ζk|ϑk,h]. LetW be a p-dimensional Brownian Motion independent of
(ϑk,h,L0, ζk), such thatW h =

√
h ξk+1. We define the stochastic process L so that

Lt = L0 −
∫ t

0

∇f(Ls) ds+
√

2W t, ∀ t > 0. (2.24)

It is clear that this equation implies that

Lh = L0 −
∫ h

0

∇f(Ls) ds+
√

2W h

= L0 −
∫ h

0

∇f(Ls) ds+
√

2h ξk+1.

Furthermore, {Lt : t ≥ 0} is a diffusion process having π as the stationary distribution.
Since the initial value L0 is drawn from π, we have Lt ∼ π for every t ≥ 0.

Let us denote ∆k = L0 − ϑk,h and ∆k+1 = Lh − ϑk+1,h. We have

∆k+1 = ∆k + hY k,h −
∫ h

0

∇f(Lt) dt

= ∆k − h
(
∇f(ϑk,h + ∆k)−∇f(ϑk,h)︸ ︷︷ ︸

:=U

)
+ hζk

−
∫ h

0

(
∇f(Lt)−∇f(L0)

)
dt︸ ︷︷ ︸

:=V

. (2.25)

Using the equalities E[ζk|∆k,U ,V ] = E[ζk|ϑk,h,L0,W ] = E[ζk|ϑk,h,L0] = E[ζk|ϑk,h],
we get

‖∆k+1‖2
L2

=
∥∥∆k − hU − V + hE[ζk|ϑk,h]

∥∥2

L2
+ h2

∥∥ζk − E[ζk|ϑk,h]
∥∥2

L2

≤
{
‖∆k − hU‖L2 + hδ

√
p+ ‖V ‖L2

}2
+ σ2h2p.
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We need now three technical lemmas. Lemma 2 and Lemma 3 are borrowed from
[Dal17a], whereas Lemma 4 is an improved version of [Dal17a, Lemma 3]. For the sake
of self-containedness, we provide proofs of these lemmas in Section 2.G.

Lemma 2. Let f be m-strongly convex and the gradient of f be Lipschitz with constant M .
If h < 2/M , then the mapping (Ip − h∇f) is a contraction in the sense that∥∥x− y − h(∇f(x)−∇f(y)

)∥∥
2
≤
{

(1−mh) ∨ (Mh− 1)
}
‖x− y‖2,

for all x,y ∈ Rp. In particular, using notations in (2.25), it holds that ‖∆k − hU‖2 ≤
%‖∆k‖2.

Lemma 3. If the function f is continuously differentiable and the gradient of f is Lipschitz
with constant M , then

∫
Rp ‖∇f(x)‖2

2 π(x) dx ≤Mp.

Lemma 4. If the function f and its gradient is Lipschitz with constantM , L is the Langevin
diffusion (2.24) and V (a) =

∫ a+h

a

(
∇f(Lt)−∇f(La)

)
dt for some a ≥ 0, then

‖V (a)‖L2 ≤
1

2

(
h4M3p

)1/2
+

2

3
(2h3p)1/2M.

Using Lemma 2 and Lemma 4 above, as well as the inequalityW2(νk+1, π)2 ≤ E[‖∆k+1‖2
2],

we get the recursion

W2(νk+1, π)2 ≤
{
%W2(νk, π) + (1/2)

(
h4M3p

)1/2
+ (2/3)(2h3p)1/2M + hδ

√
p
}2

+ σ2h2p

(a)

≤
{
%W2(νk, π) + (1/2)

(
2h3M2p

)1/2
+ (2/3)(2h3p)1/2M + hδ

√
p
}2

+ σ2h2p

(b)

≤
{
%W2(νk, π) + αM

(
h3p
)1/2

+ hδ
√
p
}2

+ σ2h2p,

where in (a) we have used the condition h ≤ 2/M whereas in (b) we have put α =

7
√

2/6 ≤ 1.65.

2.A Proof of Theorem 4

Using Proposition 11 with σ = δ = 0, we get W2(νk+1, π) ≤ %W2(νk, π) + ‖V ‖L2 for all
k ∈ N. In view of Lemma 4, this yields

W2(νk+1, π) ≤ %W2(νk, π) + αM(h3p)1/2.
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Using this inequality repeatedly for k + 1, k, k − 1, . . . , 1, we get

W2(νk+1, π) ≤ %k+1 W2(ν0, π) + αM(h3p)1/2(1 + %+ . . .+ %k)

≤ %k+1 W2(ν0, π) + αM(h3p)1/2(1− %)−1.

This completes the proof.

2.B Proof of Theorem 5

Recall that α = 7
√

2/6 ≤ 1.65. Theorem 4 implies that using the step-size hk = 2/(M+m)

for k = 1, . . . , K1, we get

W2(νK1 , π) ≤
(

1 +
2m

M −m
)−K1

W2(ν0, π) +
αM

m

( 2p

m+M

)1/2

≤ 3.5M

m

( p

M +m

)1/2

. (2.26)

Starting from this iteration K1, we use a decreasing step-size

hk+1 =
2

M +m+ (2/3)m(k −K1)
.

Let us show by induction over k that

W2(νk, π) ≤ 3.5M

m

(
p

M +m+ (2/3)m(k −K1)

)1/2

, ∀ k ≥ K1. (2.27)

For k = K1, this inequality is true in view of (2.26). Assume now that (2.27) is true for
some k. For k + 1, we have

W2(νk+1, π) ≤ (1−mhk+1)W2(νk, π) + αM
√
p h

3/2
k+1

≤ (1−mhk+1)
3.5M

√
p (hk+1/2)1/2

m
+ αM

√
p h

3/2
k+1

≤ (1− 1

3
mhk+1)

3.5M
√
p (hk+1/2)1/2

m
.

One can check that

(1− 1

3
mhk+1)(hk+1/2)1/2 =

√
3 [m+ 3M + 2m(k −K1)]

[3m+ 3M + 2m(k −K1)]3/2
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≤
√

3 [m+ 3M + 2m(k −K1)]1/2

3m+ 3M + 2m(k −K1)

≤
√

3

[3m+ 3M + 2m(k + 1−K1)]1/2
.

This completes the proof of the theorem.

2.C Proof of Theorem 6

Let us denote by νk(·|x) the conditional distribution of ϑMLMC
k given η = x. In view of

Theorem 5, we have

W2

(
νk(·|x), π1(·|x)

)
≤ 3.5M

√
p

m
√
M +m+ (2/3)m(k −K1)

, ∀x ∈ H.

This readily yields∫
H

W2

(
νk(·|x), π1(·|x)

)
π0(dx) ≤ 3.5M

√
p

m
√
M +m+ (2/3)m(k −K1)

.

The last step is to apply the convexity of the Wasserstein distance, which means that for
any probability measure π0, we have∫
H

W2

(
νk(·|x), π1(·|x)

)
π0(dx) ≥ W2

(∫
H

νk(·|x) π0(dx),

∫
H

π1(·|x)π0(dx)

)
= W2(νk, π).

2.D Proof of Theorem 7

As explained in Section 2.3, the main new ingredient of the proof is Lemma 1, that has to
be combined with Proposition 11. We postpone the proof of Lemma 1 to Section 2.G and
do it in a more general form (see Lemma 7).

In view of Proposition 11, we have

W2(νk+1, π)2 ≤
{

(1−mh)W2(νk, π) + αM(h3p)1/2 + hδ
√
p
}2

+ σ2h2p.

We apply now Lemma 1 with A = mh, B = σh
√
p and C = αM(h3p)1/2 + hδ

√
p, which

implies that W2(νk, π) is less than or equal to

(1−mh)kW2(ν0, π) +
αM(hp)1/2 + δ

√
p

m
+

σ2h
√
p

αMh1/2 + δ + (mh)1/2 σ
.
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This completes the proof of the theorem.

2.E Proof of Theorem 8

Using the same construction and the same definitions as in the proof of Proposition 11,
for ∆k = L0 − ϑk,h, we have

∆k+1 −∆k = hY k,h −
∫
Ik

∇f(Lt) dt

= −h
(
∇f(ϑk,h + ∆k)−∇f(ϑk,h)︸ ︷︷ ︸

:=U

)
−
√

2

∫ h

0

∫ t

0

∇2f(Ls)dW s dt︸ ︷︷ ︸
:=S

+hζk

−
∫ h

0

(
∇f(Lt)−∇f(L0)−

√
2

∫ t

0

∇2f(Ls)dW s

)
dt︸ ︷︷ ︸

:=V̄

.

Using the following equalities of conditional expectationsE[ζk|∆k,U , V̄ ] = E[ζk|ϑk,h,L0,W ] =

E[ζk|ϑk,h,L0] = E[ζk|ϑk,h] and E[Sh|ϑk,h,L0] = 0, we get

‖∆k+1‖2
L2
≤
∥∥∆k − hU − V̄ −

√
2Sh + hE[ζk|ϑk,h]

∥∥2

L2
+ σ2h2p

≤
{(
‖∆k − hU‖2

L2
+ 2‖Sh‖2

L2

)1/2
+ hδ

√
p+ ‖V̄ ‖L2

}2
+ σ2h2p.

In addition, we have

‖Sh‖2
L2

=
∥∥∥∫ h

0

(h− s)∇2f(Ls) dW s

∥∥∥2

L2

=

∫ h

0

(h− s)2E[‖∇2f(Ls)‖2
F ] ds ≤ (1/3)M2h3p.

Setting xk = ‖∆k‖L2 = W2(νk, π) and using Lemma 2, this yields

x2
k+1 ≤

{(
(1−mh)2x2

k + (2/3)M2h3p
)1/2

+ hδ
√
p+ ‖V̄ ‖L2

}2
+ σ2h2p.

Let us define A = mh, F = (2/3)M2h3p, G = σ2h2p and3

C = hδ
√
p+ 0.5M2h

2p+ 0.5M3/2h2√p.

3In view of Lemma 6 in Section 2.G, we have hδ√p+ ‖V̄ ‖L2 ≤ C.
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Then
x2
k+1 ≤

{(
(1− A)2x2

k + F
)1/2

+ C
}2

+G.

One can deduce from this inequality that x2
k+1 ≤

(
(1 − A)xk + C

)2
+ F + G + 2C

√
F .

Therefore, using (2.46) of Lemma 7 below, we get

xk ≤ (1− A)kx0 +
C

A
+

F +G+ 2C
√
F

C +
(
A(F +G+ 2C

√
F )
)1/2

≤ (1− A)kx0 + (C/A) + 2(F/A)1/2 +
G

C +
√
AG

.

Replacing A,C, F and G by their respective expressions, we get the claim of the theorem.

2.F Proof of Theorem 9

To ease notation, throughout this proof, we will write νk and ν ′k instead of νLMCO
k and

νLMCO′

k , respectively.
LetD0 ∼ νk and L0 ∼ π be two random variables such that ‖D0−L0‖2

L2
= W2(νk, π).

LetW be a p-dimensional Brownian motion independent of (D0,L0). We define L to be
the Langevin diffusion process (2.24) driven byW and starting at L0, whereasD is the
process starting atD0 and satisfying the stochastic differential equation

dDt = −[∇f(D0) +∇2f(D0)(Dt −D0)] dt+
√

2 dW t, t ≥ 0. (2.28)

This is an Ornstein-Uhlenbeck process. It can be expressed explicitly as a function ofD0

andW . The corresponding expression implies thatDh ∼ νk+1 and, hence,W2(νk+1, π) ≤
‖Dh −Lh‖2

L2
.

An important ingredient of our proof is the following version of the Gronwall lemma,
the proof of which is postponed to Section 2.G.

Lemma 5. Let α : [0, T ]× Ω→ Rp be a continuous semi-martingale and H : [0, T ]× Ω→
Rp×p be a random process with continuous paths in the space of all symmetric p× p matrices
such that HsHt = HtHs for every s, t ∈ [0, T ]. If x : [0, T ]× Ω→ Rp is a semi-martingale
satisfying the identity

xt = αt −
∫ t

0

Hsxs ds, ∀t ∈ [0, T ], (2.29)
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then, for every t ∈ [0, T ],

xt = exp
{
−
∫ t

0

Hs ds
}
α0 +

∫ t

0

exp
{
−
∫ t

s

Hu du
}
dαs. (2.30)

We denoteX t = Lt −L0 − (Dt −D0), whereDt is the random process defined in
(2.28) and Lt is the Langevin diffusion driven by the same Wiener processW and with
initial condition L0 ∼ π. It is clear that

X t = −
∫ t

0

∇f(Ls) ds+

∫ t

0

[∇f(D0) +∇2f(D0)(Ds −D0)] ds

= −
∫ t

0

{
∇f(Ls)−∇f(D0)−∇2f(D0)(Ls −L0)

}
ds−

∫ t

0

∇2f(D0)Xs ds.

Using Lemma 5, we get

X t = −
∫ t

0

e−s∇
2f(D0)

{
∇f(Ls)−∇f(D0)−∇2f(D0)(Ls −L0)

}
ds

=

∫ t

0

e−s∇
2f(D0) ds[∇f(D0)−∇f(L0)]

−
∫ t

0

e−s∇
2f(D0)

{
∇f(Ls)−∇f(L0)−∇2f(L0)(Ls −L0)

}
ds

−
∫ t

0

e−s∇
2f(D0)[∇2f(D0)−∇2f(L0)]

∫ s

0

∇f(Lu) du ds

+
√

2

∫ t

0

e−s∇
2f(D0)[∇2f(D0)−∇2f(L0)]W s ds. (2.31)

Let us set ∆t = Lt −Dt. We haveX t = ∆t −∆0 = At −Bt − Ct + St, where At, Bt, Ct
and St stand for the four integrals in (2.31). We now evaluate these terms separately. For
the first one, using the notation H0 = ∇2f(D0) and the identity ∇f(L0) −∇f(D0) =∫ 1

0
∇2f(D0 + x∆0) dx∆0, we get

‖∆0 + At‖2 ≤ ‖∆0 − t
(
∇f(L0)−∇f(D0)

)
‖2

+

∫ t

0

‖I− e−sH0‖ ds
∥∥∇f(L0)−∇f(D0)

∥∥
2

≤ (1−mt+ 0.5M2t2)‖∆0‖2. (2.32)

For the term Bt with t ≤ h ≤ m/M2 ≤ 1/M , we can apply (2.44) to infer that

‖Bt‖2
L2
≤ 0.88M2t

2(p2 + 2p)1/2. (2.33)

As forCt, in view of the inequality ‖∇2f(L0)−∇2f(D0)‖ ≤M2‖∆0‖2∧M ≤
√
MM2‖∆0‖2,
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we have

‖Ct‖2 ≤
√
MM2‖∆0‖2

∫ t

0

∫ s

0

‖∇f(Lu)‖2 du ds

≤ µ‖∆0‖2 + (4µ)−1MM2

(∫ t

0

(t− u)‖∇f(Lu)‖2 du

)2

.

On the other hand, the fact that E[‖∇f(Lu)‖4
2] ≤M2(p2 + 2p) yields(∫ t

0

(t− u)(E[‖∇f(Lu)‖4
2])1/4 du

)2

≤ Mt4(p2 + 2p)1/2

4
. (2.34)

This implies the inequality

‖Ct‖L2 ≤ µW2(νk, π) + (16µ)−1M2M2t
4(p+ 1). (2.35)

Finally, using the integration by parts formula for semi-martingales, one can easily write
St as a stochastic integral with respect to W and derive from that representation the
inequality

‖St‖2
L2
≤ 2E

[ ∫ t

0

∥∥∥∥∫ t

u

e−sH0 ds
(
∇2f(L0)−∇2f(D0)

)∥∥∥∥2

F

du

]
≤ 2pE[(M2‖∆0‖2 ∧M)2]

∫ t

0

(t− u)2 du ≤ (2/3)M2Mpt3‖∆0‖2
L2
. (2.36)

Putting all these pieces together, taking the expectation, using the Minkowski inequality,
the equality E[(∆0 + Ah)

>Sh] = 0 and the inequality
√
a2 + b ≤ a+ b/(2a), we get

‖∆h‖2
L2

= ‖∆0 + Ah −Bh − Ch + Sh‖2
L2

≤
(
‖∆0 + Ah‖2

L2
+ ‖Sh‖2

L2

)1/2
+ ‖Bh‖2

L2
+ ‖Ch‖2

L2

≤
(
1−mh+ 0.5M2h2 + µ

)
‖∆0‖2

L2
+

M2Mph3

3(1−mh+ 0.5M2h2)

+ 0.88M2h
2(p2 + 2p)1/2 +

M2M2h
4

16µ
(p+ 1). (2.37)

Let µ be any real number smaller than 0.5h(m− 0.5M2h); Eq. (2.37) and the inequality
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p2 + 2p ≤ (p+ 1)2 yield

W2(νk+1, π) ≤ (1− µ)W2(νk, π) +
M2Mph3

3(1− 2µ)
+ 0.88M2h

2(p+ 1)

+
M2M2h

4

16µ
(p+ 1).

Since h ≤ m/M2, we can choose µ = 0.25mh so that 1− 2µ = 1− 0.5mh ≥ 0.5 and

W2(νk+1, π) ≤ (1− 0.25mh)W2(νk, π) +
2M2Mph3

3
+ 0.88M2h

2(p+ 1)

+
M2M2h

3

4m
(p+ 1)

≤ (1− 0.25mh)W2(νk, π) + 1.8M2h
2(p+ 1).

This recursion implies the inequality

W2(νk, π) ≤ (1− 0.25mh)kW2(ν0, π) +
1.8M2h(p+ 1)

0.25m

= (1− 0.25mh)kW2(ν0, π) +
7.2M2h(p+ 1)

m
.

This completes the proof of claim (2.18) of the theorem.
To establish inequality (2.19), we follow the same steps as in the proof of (2.18), with

a slightly different choice of the processD. More precisely, we defineD by

Dt −D0 = −(tIp − 0.5t2∇2f(D0))∇f(D0) +
√

2

∫ t

0

(I− (t− u)∇2f(D0)) dW u.

One can check that the conditional distribution of Dh given D0 = x coincides with
the conditional distribution of ϑLMCO′

k+1,h given ϑLMCO′

k,h = x. Therefore, if D0 ∼ ν ′k, then
Dh ∼ ν ′k+1 and, consequently, W2(ν ′k+1, π)2 ≤ E[‖Dh −Lh‖2

2].
To ease notation, we set H0 = ∇2f(D0). The processD satisfies the SDE

dDt = −
[
(Ip − t∇2f(D0))∇f(D0) +

√
2 H0W t

]
dt+

√
2 dW t,

which implies that

dDt =−
[
∇f(D0) +∇2f(D0)(Dt −D0)

]
dt+

√
2 dW t

− 0.5t2H2
0∇f(D0) dt−

√
2 H2

0

∫ t

0

(t− u) dW u dt.

Proceeding in the same way as for getting (2.31), we arrive at the decompositionX t =
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∆t−∆0 = At−Bt−Ct+St−Et−Ft, where At, Bt, Ct and St stand for the four integrals
in (2.31) whereas Et and Ft are

Et = 0.5

∫ t

0

e−sH0s2 dsH2
0∇f(D0)

Ft =
√

2 H2
0

∫ t

0

e−sH0

∫ s

0

(s− u) dW u ds.

Using the properties of the stochastic integral, we get

E[‖Fh‖2
2] = 2E

[∥∥∥H2
0

∫ h

0

e−sH0

∫ s

0

(s− u) dW u ds
∥∥∥2

2

]
= 2E

[∥∥∥ ∫ h

0

∫ h

u

H2
0e
−sH0(s− u) ds dW u

∥∥∥2

2

]
= 2

∫ h

0

∥∥∥∫ h

u

H2
0e
−sH0(s− u) ds

∥∥∥2

F
du

≤ 2M4p

∫ h

0

(∫ h

u

(s− u) ds
)2

du =
M4h5p

10
. (2.38)

On the other hand,

‖Eh‖2 ≤ 0.5M2

∫ h

0

s2 ds‖∇f(D0)‖2 ≤
M2h3

6

(
‖∇f(L0)‖2 +M‖∆0‖2

)
,

which, in view of Lemma 3, implies that

‖Eh‖2
L2
≤ M2h3

6

(√
Mp+MW2(ν ′k, π)

)
. (2.39)

Proceeding as in (2.37) and using (2.34), we get

‖∆h‖L2
= ‖∆0 + Ah −Bh − Ch + Sh − Eh − Fh‖L2

≤ ‖∆0 + Ah + Sh − Fh‖L2 + ‖Bh‖L2 + ‖Ch‖L2 + ‖Eh‖L2

≤ (‖∆0 + Ah‖2
L2

+ ‖Sh − Fh‖2
L2

)1/2 + ‖Bh‖L2 + ‖Ch‖L2 + ‖Eh‖L2 . (2.40)

Using the last but one estimate in (2.36), in conjunction with (2.38), we get inequalities

‖Sh‖2
L2
≤ (2/3)M2Mh3pW2(ν ′k, π)

|E[S>h Fh]| ≤ (1/
√

15)M2M2h
4pW2(ν ′k, π),

72



which, for h ≤ 3m/(4M2), imply that ‖Sh − Fh‖2
L2

is less than or equal to

(2/3)M2Mh3pW2(ν ′k, π) + (2/
√

15)M2M2h
4pW2(ν ′k, π) + (1/10)M4h5p

≤ 1.06M2Mh3pW2(ν ′k, π) + 0.1M4h5p.

Injecting this bound, (2.32), (2.33), (2.35) and (2.39) in (2.40), we arrive at

‖∆h‖L2
≤
{[

(1−mh+ 0.5M2h2)2W2(ν ′k, π)2 + 1.06M2Mh3pW2(ν ′k, π) + 0.1M4h5p
}1/2

+ 0.88M2h
2(p+ 1) +

(
µ+

M3h3

6

)
W2(ν ′k, π) +

M2M2h
4(p+ 1)

16µ
+
M5/2h3√p

6
.

In view of the inequality
√
a2 + b+ c ≤

√
a2 + c+ (b/2a), the last display leads to

W2(ν ′k+1, π) ≤
{[

(1−mh+ 0.5M2h2)2W2(ν ′k, π)2 + 0.1M4h5p
}1/2

+
0.53M2Mh3p

1−mh+ 0.5M2h2
+ 0.88M2h

2(p+ 1) +
(
µ+

M3h3

6

)
W2(ν ′k, π)

+
M2M2h

4(p+ 1)

16µ
+
M5/2h3√p

6
.

For h ≤ 3m/(4M2) and µ = 0.25mh, we can use the inequality 1−mh+0.5M2h2 ≥ 17/32

and simplify the last display as follows:

W2(ν ′k+1, π) ≤
{[

(1−mh+ 0.5M2h2)2W2(ν ′k, π)2 + 0.1M4h5p
}1/2

+
0.3975M2h

2(p+ 1)

1−mh+ 0.5M2h2
+ 0.88M2h

2(p+ 1) +
(
µ+

M3h3

6

)
W2(ν ′k, π)

+
3M2h

2(p+ 1)

16
+
M5/2h3√p

6

≤
{

(1−mh+ 0.5M2h2)2W2(ν ′k, π)2 + 0.1M4h5p
}1/2

+
(

0.25mh+
M3h3

6

)
W2(ν ′k, π) + 1.82M2h

2(p+ 1) +
M5/2h3√p

6
.

We apply Lemma 9 to the sequence xk = W2(ν ′k, π) with A = mh − 0.5M2h2 and D =

0.25mh+M3h3/6. For h ≤ 3m/(4M2) we have A−D = 0.75mh− 0.5M2h2− (Mh)3/6 ≥
0.25mh and A+D ≤ 1.25mh− (3/8)M2h2 ≤ 0.727. This yields

W2(ν ′k+1, π) ≤ (1− 0.25mh)kW2(ν ′0, π) +
7.28M2h(p+ 1)

m
+

2M5/2h2√p
3m

+
2
√

0.1M2h2√p√
1.273m

≤ (1− 0.25mh)kW2(ν ′0, π) +
7.28M2h(p+ 1)

m
+

1.23M5/2h2√p
m

.

This completes the proof of (2.19) and that of the theorem.
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Proof of Proposition 10. Let us denote Mk =
∫ h

0
e−sHk ds

∫ 1

0
∇2f(Dkh + x∆k) dx. From

(2.31), we have ∆k+1 = ∆k + Ak,h +Gk,h with

Ak,h =

∫ h

0

e−sHk ds
(
∇f(Dkh)−∇f(Lkh)

)
= −Mk∆k,

Gk,h =

∫ h

0

e−sHk
(
∇f(Lkh)−∇f(Ls) + Hk(Ls −Lkh)

)
ds.

Using the fact that∥∥∥∥∫ 1

0

∇2f(Dkh + x∆k) dx−Hk

∥∥∥∥ ≤ ∫ 1

0

∥∥∇2f(Dkh + x∆k)−Hk

∥∥ dx ≤ M2

2
‖∆k‖2,

we get ‖∆k + Ak,h‖2 = ‖(I−Mk)∆k‖2 ≤ M2

2m
‖∆k‖2

2 + e−mh‖∆k‖2. This further leads to
the recursive inequality

‖∆k+1‖2 ≤
M2

2m
‖∆k‖2

2 + e−mh‖∆k‖2 + ‖Gk,h‖2.

In view of the Minkowski inequality, this yields

(E[‖∆k+1‖q2])1/q ≤ M2

2m
E[‖∆k‖2q

2 ]1/q + e−mhE[‖∆k‖2q
2 ]1/2q + E[‖Gk,h‖q2]1/q. (2.41)

We choose some K ∈ N and define the sequence {x0, . . . , xK} by setting x2K+1−k

k =

E[‖∆k‖2K+1−k
2 ]. Choosing in (2.41) q = 2K−k, we get

xk+1 ≤
M2

2m
x2
k + e−mhxk + E[‖Gk,h‖2K−k

2 ]2
k−K

, k = 0, 1, . . . , K − 1.

We are in a position to apply Lemma 8 to the sequence {xk}k=0,...,K . This yields

xK ≤
2m

M2

(
M2x0

2m
+

1

2
e−mh

)2K

exp

{
2K

M2 maxk E[‖Gk,h‖2K

2 ]2
−K

+me−mh

m(M2x0
2m

+ 1
2
e−mh)2K

}
, (2.42)

where maxk is a short notation for maxk=0,1,...,K−1. It suffices now to upper bound the
moments of ‖Gk,h‖2. We have

E[‖Gk,h‖q2]1/q ≤M

∫ h

0

e−sm
(
E[‖Lkh+s −Lkh‖q2]

)1/q
ds

≤M

∫ h

0

e−sm
{(

E[‖
∫ s

0

∇f(Lkh+u) du‖q2]
)1/q

+
√

2
(
E[‖W s‖q2]

)1/q
}
ds

≤M

∫ h

0

e−sms ds
(
E[‖∇f(L0)‖q2]

)1/q
+M

√
2p+ q − 2

∫ s

0

e−sm
√
s ds.
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Thus,

E[‖Gk,h‖q2]1/q ≤ M

m2

(
E[‖∇f(L0)‖q2]

)1/q
+

M

2m3/2

√
(2p+ q − 2)π.

On the other hand, by integration by parts, for every q ∈ 2N, we have

E[‖∇f(L0)‖q2] = −
∫
Rp
‖∇f(x)‖q−2

2 ∇f(x)>dπ(x)

=

p∑
`=1

∫
Rp
∂`

(
‖∇f(x)‖q−2

2 ∂`f(x)
)
π(x) dx

≤M(p+ q − 2)E[‖∇f(L0)‖q−2
2 ].

This yields (E[‖∇f(L0)‖q2])1/q ≤
√
M(p+ 0.5q − 1). Combining all these estimates, we

arrive at
E[‖Gk,h‖q2]1/q ≤ 1.6M3/2

√
2p+ q − 2

m2
.

Combining this inequality with (2.42) and replacing xK by (E[‖∆K‖2
2])1/2, we get

(E[‖∆K‖2
2])1/2 ≤ 2m

M2

(
M2x0

2m
+

1

2
e−mh

)2K

exp

{
2K

1.6M2M
3/2
√

2p+ 2K−1 − 2 +m3e−mh

m3(M2x0
2m

+ 1
2
e−mh)2K

}
.

This completes the proof of the proposition.

2.G Proofs of the lemmas

Here we provide the proofs of Lemma 2, Lemma 3 and Lemma 4.

Proof of Lemma 2. We start by recalling the following inequality [Nes04, Theorem 2.12],
true for any m-strongly convex and M -gradient Lipschitz function f :

(y − x)> (∇f(y)−∇f(x)) ≥ mM

m+M
‖y − x‖2

2 +
1

m+M
‖∇f(y)−∇f(x)‖2

2 ,

for all vectors x and y from Rp. This yields

‖y − x− h(∇f(y)−∇f(x))‖2
2

= ‖y − x‖2
2 − 2h(y − x)>(∇f(y)−∇f(x)) + h2‖∇f(y)−∇f(x)‖2

2

≤
(

1− 2hmM

m+M

)
‖y − x‖2

2 + h

(
h− 2

m+M

)
‖∇f(y)−∇f(x)‖2

2.
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Since f is m-strongly convex, we have ([Nes04], Theorem 2.1.9)

‖∇f(y)−∇f(x)‖2 ≥ m‖y − x‖2.

In the case h ≤ 2
m+M

, applying the previous result to the second summand, we get

‖y − x− h(∇f(y)−∇f(x))‖2
2 ≤ (1− hm)2‖y − x‖2.

In the case when h ≥ 2
m+M

, we use the Lipschitz continuity of ∇f , which leads to

‖y − x− h(∇f(y)−∇f(x))‖2
2 ≤ (hM − 1)2‖y − x‖2.

Summing up, for all h ∈ (0, 2/M) we have shown

‖y − x− h(∇f(y)−∇f(x))‖2
2 ≤

{
(1− hm)2 ∨ (hM − 1)2

}
‖y − x‖2.

This completes the proof.

Proof of Lemma 3. We start the proof with the case p = 1. The function x 7→ f ′(x)

being Lipschitz continuous is almost surely differentiable. Furthermore, it is clear that
|f ′′(x)| ≤ M for every x for which this second derivative exists. The result of [Rud87,
Theorem 7.20] implies that

f ′(x)− f ′(0) =

∫ x

0

f ′′(y) dy.

Therefore, using the relation f ′(x) π(x) = −π′(x), we get∫
R
f ′(x)2 π(x) dx = f ′(0)

∫
R
f ′(x) π(x) dx+

∫
R

(∫ x

0

f ′′(y) dy
)
f ′(x) π(x) dx

= −f ′(0)

∫
R
π′(x) dx−

∫
R

(∫ x

0

f ′′(y) dy
)
π′(x) dx

= −
∫ ∞

0

∫ x

0

f ′′(y) π′(x) dy dx+

∫ 0

−∞

∫ 0

x

f ′′(y) π′(x) dy dx.

In view of Fubini’s theorem, we arrive at∫
R
f ′(x)2 π(x) dx =

∫ ∞
0

f ′′(y) π(y) dy +

∫ 0

−∞
f ′′(y) π(y) dy ≤M. (2.43)

Now let us return to the multidimensional case:∫
Rp
‖∇f(x)‖2

2 π(x) dx =

p∑
k=1

∫
Rp

(
∂f

∂xk
(x)

)2

π(x) dx.
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We will show that each of the summands is less than M , thus the sum is less than Mp.
Let us prove it for k = 1. The proof is similar for the case k > 1. Using Fubini’s theorem,
we have∫
Rp

(
∂f

∂x1

(x)

)2

π(x) dx =

∫
R
. . .

∫
R

(
∂f

∂x1

(x1, x2, . . . , xp)

)2

π(x1, x2, . . . , xp) dx1dx2 . . . dxp.

Let us fix the (p − 1)-tuple (x2, x3, . . . , xp) and define functions g and η as g(t) =

f(t, x2, . . . , xp) and η(t) = π(t, x2, . . . , xp), respectively. It is easy to verify that η is an
integrable log-concave function, with g as its potential. The latter is also differentiable
and its derivative is Lipschitz-continuous with constant M . Thus we have∫

R

(
∂f

∂x1

(x1, x2, . . . , xp)

)2

π(x1, x2, . . . , xp) dx1 =

∫
R

(g′(t))
2
η(t)dt.

From the definition one can verify that ∫R η(t)dt = π1(x2, . . . , xp), where π1 is the marginal
distribution of all the coordinates except the first. Therefore,∫

R
g′(t)2η(t)dt = π1(x2, . . . , xp)

∫
R
g′(t)2 η(t)

π1(x2, . . . , xp)
dt ≤Mπ1(x2, . . . , xp).

The last inequality is true due to (2.43). Returning to our initial integral, we obtain∫
Rp

(
∂f

∂x1

(x)

)2

π(x) dx ≤M

∫
Rp−1

π1(x2, . . . , xp)dx2 . . . dxp = M.

This completes the proof.

Proof of Lemma 4. Since the process L is stationary, V (a) has the same distribution as
V (0). For this reason, it suffices to prove the claim of the lemma for a = 0 only. Using the
Cauchy-Schwarz inequality and the Lipschitz continuity of f , we get

‖V (0)‖L2 =
∥∥∥∫ h

0

(
∇f(Lt)−∇f(L0)

)
dt
∥∥∥
L2

≤
∫ h

0

∥∥∇f(Lt)−∇f(L0)
∥∥
L2
dt

≤M

∫ h

0

∥∥Lt −L0

∥∥
L2
dt.

Combining this inequality with the definition of Lt, we arrive at

‖V (0)‖L2 ≤M

∫ h

0

∥∥− ∫ t

0

∇f(Ls) ds+
√

2W t

∥∥
L2
dt.
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Therefore,

‖V (0)‖L2 ≤M

∫ h

0

∥∥∫ t

0

∇f(Ls) ds
∥∥
L2
dt+M

∫ h

0

∥∥√2W t

∥∥
L2
dt

≤M

∫ h

0

∫ t

0

‖∇f(Ls)‖L2 ds dt+M

∫ h

0

√
2pt dt.

In view of the stationarity of Lt, we have ‖∇f(Ls)‖L2 = ‖∇f(L0)‖L2, which leads to

‖V (0)‖L2 ≤ (1/2)Mh2
∥∥∇f(L0)

∥∥
L2

+ (2/3)M
√

2p h3/2.

To complete the proof, it suffices to apply Lemma 3.

Lemma 6. Let us denote

Ṽ =

∫ h

0

(
∇f(Lt)−∇f(L0)−∇2f(L0)(Lt −L0)

)
dt,

V̄ =

∫ h

0

{
∇f(Lt)−∇f(L0)−

√
2

∫ t

0

∇2f(Ls)dW s

}
dt,

with f satisfying Condition F and h ≤ 1/M , then

(E[‖Ṽ ‖2
2])1/2 ≤ 0.877M2h

2(p2 + 2p)1/2, (2.44)
‖V̄ ‖L2 ≤ (1/2)(M3/2√p+M2p)h

2. (2.45)

Proof. We first note that we have

‖Ṽ ‖2 ≤
∫ h

0

‖
∫ 1

0

(
∇2f(L0 + x(Lt −L0))−∇2f(L0)

)
dx(Lt −L0)‖2 dt

≤ 0.5M2

∫ h

0

‖Lt −L0‖2
2 dt.

In view of (2.23), this implies that (E[‖Ṽ ‖2
2])1/2 ≤ 0.5M2

∫ h
0

(E[‖Lt −L0‖4
2])1/2 dt. Using

the triangle inequality and integration by parts (precise details of the computations are
omitted in the interest of saving space), we arrive at

E[‖Lt −L0‖4
2] ≤ E[‖

∫ t

0

∇f(Ls)‖4
2] + 4E[‖W t‖4

2]

+ 12

(
E[‖

∫ t

0

∇f(Ls)‖4
2]E[‖

√
2W t‖4

2]

)1/2

≤ t4M2p(2 + p) + 12t3Mp(2 + p) + 4t2p(2 + p)

= p(2 + p)t2(t2M2 + 12tM + 4).
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Integrating this inequality, we get

(E[‖Ṽ ‖2
2])1/2 ≤ 0.5M2(p2 + 2p)1/2

∫ h

0

t(t2M2 + 12tM + 4)1/2 dt

≤ 0.5M2(p2 + 2p)1/2

M2

∫ Mh

0

t(t2 + 12t+ 4)1/2 dt

≤ 0.5M2h
2(p2 + 2p)1/2 sup

x∈(0,2]

1

x2

∫ x

0

t(t2 + 12t+ 4)1/2 dt

=
0.5M2h

2(p2 + 2p)1/2

4

∫ 2

0

t(t2 + 12t+ 4)1/2 dt

≤ 1.16M2h
2(p2 + 2p)1/2.

This completes the proof of (2.44). To prove (2.45), we first assume that f is three times
continuously differentiable and apply the Ito formula:

∇f(Lt)−∇f(L0) =

∫ t

0

∇2f(Ls) dLs +

∫ t

0

∆[∇f(Ls)] ds.

Let us check that ‖∆[∇f(x)]‖2 = ‖∇[∆f(x)]‖2 ≤ M2p for every x ∈ Rp. Indeed, let us
introduce the function g : Rp → R defined by g(x) = ∆f(x) = tr[∇2f(x)]. The third
item of condition F implies that |g(x + tu) − g(x)| ≤ pM2|t| for every t ∈ R and every
unit vector u ∈ Rp. Therefore, letting t go to zero, we get |u>∇g(x)| ≤ pM2 for every
unit vector u. Choosing u proportional to ∇g(x), we get the inequality ‖∇g(x)‖2 =

‖∇[∆f(x)]‖2 ≤ pM2. This leads to

‖V̄ ‖L2 ≤
∫ h

0

∫ t

0

∥∥∇2f(Ls)∇f(Ls)−∆[∇f(Ls)]
∥∥
L2 ds dt

≤
∫ h

0

∫ t

0

(
M
∥∥∇f(Ls)

∥∥
L2 +M2p

)
ds dt

= (1/2)(M3/2√p+M2p)h
2.

This completes the proof of the lemma in the case of three times continuously differentiable
functions f . If f is two-times differentiable with a second-order derivative satisfying
the Lipschitz condition, then we can choose an arbitrarily small δ > 0 and apply the
previous result to the smoothed function fδ = f ∗ ϕδ. Here, ϕδ denotes the density of
the Gaussian distribution Np(0, δ2Ip) and “∗” is the convolution operator. The formula
∇2fδ = (∇2f) ∗ ϕδ implies that fδ satisfies the required smoothness assumptions with the
same constants M and M2 as the function f . Thus, defining V̄ δ in the same way as V̄
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with fδ instead of f , we get

‖V̄ δ‖L2 ≤ (1/2)(M3/2√p+M2p)h
2.

On the other hand, setting gδ = f − fδ, we get

‖V̄ δ − V̄ ‖L2 ≤
∫ h

0

∥∥∥∇gδ(Lt)−∇gδ(L0)−
√

2

∫ t

0

∇2gδ(Ls)dW s

∥∥∥
L2
dt

≤
∫ h

0

∥∥∇gδ(Lt)−∇gδ(L0)
∥∥
L2 dt

+
√

2p

∫ h

0

(∫ t

0

E‖∇2gδ(Ls)‖2ds

)1/2

dt.

Using the Lipschitz continuity of ∇f and ∇2f , one easily checks that

‖∇gδ(x)‖2 ≤
∫
Rp
‖∇f(x− y)−∇f(x)‖2ϕδ(y) dy

≤M

∫
Rp
‖y‖2ϕδ(y) dy ≤Mδ

√
p,

‖∇2gδ(x)‖ ≤
∫
Rp
‖∇2f(x− y)−∇2f(x)‖ϕδ(y) dy

≤M2

∫
Rp
‖y‖2ϕδ(y) dy ≤M2δ

√
p.

This implies that the limit, when δ tends to zero, of ‖V̄ δ − V̄ ‖L2 is equal to zero. As a
consequence,

‖V̄ ‖L2 ≤ lim
δ→0

(
‖V̄ δ‖L2 + ‖V̄ δ − V̄ ‖L2

)
≤ (1/2)(M3/2√p+M2p)h

2 + lim
δ→0
‖V̄ δ − V̄ ‖L2

≤ (1/2)(M3/2√p+M2p)h
2.

This completes the proof of the lemma.

Lemma 7. Let A, B and C be given non-negative numbers such that A ∈ (0, 1). Assume
that the sequence of non-negative numbers {xk}k∈N satisfies the recursive inequality

x2
k+1 ≤ [(1− A)xk + C]2 +B2

for every integer k ≥ 0. Let us denote E and D respectively by

E =
(1− A)C +

{
C2 + (2A− A2)B2

}1/2

2A− A2
≥ (1− A)C

A(2− A)
+

B√
A(2− A)
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and

D =
{

[(1− A)E + C]2 +B2
}1/2 − (1− A)E ≤ C +

B2A

C +
√
A(2− A)B

.

Then

xk ≤ (1− A)kx0 +
D

A
≤ (1− A)kx0 +

C

A
+

B2

C +
√
A(2− A)B

(2.46)

for all integers k ≥ 0.

Proof. We will repeatedly use the fact that D = EA. Let us introduce the sequence yk
defined as follows: y0 = x0 + E and

yk+1 = (1− A)yk +D, k = 0, 1, 2, . . .

We will first show that yk ≥ xk ∨ E for every k ≥ 0. This can be done by mathematical
induction. For k = 0, this claim directly follows from the definition of y0. Assume that for
some k, we have xk ≤ yk and yk ≥ E. Then, for k + 1, we have

xk+1 ≤
(
[(1− A)xk + C]2 +B2

)1/2

≤
(
[(1− A)yk + C]2 +B2

)1/2

= (1− A)yk +
(
[(1− A)yk + C]2 +B2

)1/2 − (1− A)yk

≤ (1− A)yk +
(
[(1− A)E + C]2 +B2

)1/2 − (1− A)E = yk+1

and, since D = EA, yk+1 = (1−A)yk +D ≥ (1−A)E+EA = E. Thus, we have checked
that the sequence xk is dominated by the sequence yk. It remains to establish an upper
bound on yk. This is an easy task since yk satisfies a first-order linear recurrence relation.
We get

yk = (1− A)k−1y1 +
k−2∑
j=0

(1− A)jD

= (1− A)k−1
(
x1 +

D

A

)
+
D

A

(
1− (1− A)k−1

)
= (1− A)k−1x1 +

D

A
.

This completes the proof of (2.46).

Proof of Lemma 5. Let us introduce theRp-valued random process vt = − exp
{ ∫ t

0
Hu du

} ∫ t
0

Hsxs ds.
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The time derivative of this process satisfies

v′t = − exp
{∫ t

0

Hu du
}

Htαt.

This implies that vt = −
∫ t

0
exp

{ ∫ s
0

Hu du
}
Hsαs ds. Using the definition of vt, we

can check that ∫ t
0

Hsxs ds = − exp
{
−
∫ t

0
Hu du

}
vt =

∫ t
0

exp
{
−
∫ t
s

Hu du
}
Hsαs ds.

Substituting this in (2.29), we get

xt = αt −
∫ t

0

exp
{
−
∫ t

s

Hu du
}
Hsαs ds. (2.47)

On the other hand—using the notation Mt = exp
{ ∫ t

0
Hu du

} and the integration by
parts formula for semi-martingales—the second integral on the right hand side of (2.30)
can be modified as follows:∫ t

0

exp
{
−
∫ t

s

Hu du
}
dαs = M−1

t

∫ t

0

Msdαs

= M−1
t

(
Mtαt −M0α0 −

∫ t

0

dMsαs

)
= αt − exp

{
−
∫ t

0

Hu du
}
α0

−
∫ t

0

exp
{
−
∫ t

s

Hu du
}

Hsαs ds.

Combining this equation with (2.47), we get the claim of the lemma.

Lemma 8. Let A and B be given positive numbers and {Ck}k∈N be a given sequence of real
numbers. Assume that the sequence {xk}k∈N satisfies the recursive inequality

xk+1 ≤ Ax2
k + 2Bxk + Ck, ∀k ∈ N.

Then, for all k ∈ N,

xk ≤
1

A

(
Ax0 +B

)2k
exp

{ k−1∑
j=0

2k−1−j ACj +B(1−B)

(Ax0 +B)2j+1

}
.

Proof. Let us introduce the sequences {yk}k∈N and {zk}k∈N defined by the relations y0 =

x0,

yk+1 = Ay2
k + 2Byk + Ck
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and

zk = (Ax0 +B)2k exp

{ k−1∑
j=0

2k−1−j ACj +B(1−B)

(Ax0 +B)2j+1

}
.

Using mathematical induction, one easily shows that inequalities

xk ≤ yk and (Ax0 +B)2k ≤ Ayk +B ≤ zk

hold for every k ∈ N. As a consequence, we get

xk ≤
Axk +B

A
≤ Ayk +B

A
≤ zk
A
.

This completes the proof of the lemma.

Lemma 9. Let A,B,C,D be positive numbers satisfying D < A < 1 and {xk}k∈N be a
sequence of positive numbers satisfying the inequality

xk+1 ≤
(
(1− A)2x2

k +B2
)1/2

+ C +Dxk.

Then, for every k ≥ 0, we have

xk ≤ (1− A+D)kx0 +
C

A−D +
B√

(A−D)(2− A−D)
.

Proof. We start by setting

E =
B√

(A−D)(2− A−D)
, F = C + (A−D)E

and by defining a new sequence {yk}k∈N by y0 = x0 + E and

yk+1 = (1− A+D)yk + F.

Our goal is to prove that yk ≥ xk ∨ E for every k. This claim is clearly true for k = 0. Let
us assume that it is true for the value k and prove its validity for k+ 1. Since the function
x 7→

√
x2 + a2 − x is decreasing, we have

xk+1 ≤
√

(1− A)2y2
k +B2 + C +Dyk

≤ (1− A+D)yk + C +
√

(1− A)2y2
k +B2 − (1− A)yk

≤ (1− A+D)yk + C +
√

(1− A)2E2 +B2 − (1− A)E = yk+1.

83



On the other hand,

yk+1 ≥ (1− A+D)yk + (A−D)E

≥ (1− A+D)E + (A−D)E = E.

This implies, in particular, that xk ≤ yk for every k ∈ N. Since {yk} satisfies a first-order
linear recursion, we get yk = (1− A+D)ky0 + F (1− (1− A+D)k)/(A−D).
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Chapter 3

Langevin Monte-Carlo with convex
potentials

Abstract

In this paper, we provide non-asymptotic upper bounds on the error of sampling from a
target density using three schemes of discretized Langevin diffusions. The first scheme
is the Langevin Monte Carlo (LMC) algorithm, the Euler discretization of the Langevin
diffusion. The second and the third schemes are, respectively, the kinetic Langevin Monte
Carlo (KLMC) for differentiable potentials and the kinetic Langevin Monte Carlo for
twice-differentiable potentials (KLMC2). The main focus is on the target densities that are
smooth and log-concave on Rp, but not necessarily strongly log-concave. Bounds on the
computational complexity are obtained under two types of smoothness assumption:
the potential has a Lipschitz-continuous gradient and the potential has a Lipschitz-
continuous Hessian matrix. The error of sampling is measured by Wasserstein-q distances.
We advocate for the use of a new dimension-adapted scaling in the definition of the
computational complexity, when Wasserstein-q distances are considered. The obtained
results show that the number of iterations to achieve a scaled-error smaller than a
prescribed value depends only polynomially in the dimension.
This chapter is based on a joint work with Arnak Dalalyan and Lionel Riou-Durand
entitled “Bounding the error of discretized Langevin algorithms for non-strongly log-
concave targets”. It is submitted to Journal of Machine Learning Research.



3.1 Introduction

The two most popular techniques for defining estimators or predictors in statistics and
machine learning are the M estimation, also known as empirical risk minimization, and
the Bayesian method (leading to posterior mean, posterior median, etc.). In practice,
it is necessary to devise a numerical method for computing an approximation of these
estimators. Optimization algorithms are used for approximating an M -estimator, while
Monte Carlo algorithms are employed for approximating Bayesian estimators. In statistical
learning theory, over past decades, a concentrated effort was made for getting non
asymptotic guarantees on the error of an optimization algorithm. For smooth optimization,
sharp results were obtained in the case of strongly convex and convex cases [Bub15],
the case of non-convex smooth optimization being much more delicate [JK17]. As for
Monte Carlo algorithms, past three years or so witnessed considerable progress on theory
of sampling from strongly log-concave densities. Some results for non strongly convex
densities were obtained as well. However, to the best of our knowledge, there is no
paper providing a systematic account on the error bounds for sampling from non strongly
concave densities. The main goal of this paper is to fill this gap.

A good starting point for accomplishing the aforementioned task is perhaps a result
from [DMM19] for the sampling error measured by the Kullback-Leibler divergence.
The result is established for the Langevin Monte Carlo (LMC) algorithm, which is the
“sampling analogue” of the gradient descent. Let π : Rp → [0,+∞) be a probability
density function (with respect to Lebesgue’s measure) given by

π(θ) =
e−f(θ)∫

Rp e
−f(v)dv

.

for a potential function f . The goal of sampling is to generate a random vector in Rp

having a distribution close to the target distribution defined by π. In the sequel, we will
make repeated use of the moments µk(π) = Eϑ∼π[‖ϑ‖k2], where ‖v‖q = (

∑
j |vj|q)1/q is

the usual `q-norm for any q ≥ 1. When there is no risk of confusion, we will write µk
instead of µk(π).

To define the LMC algorithm, we need a sequence of positive parameters h = {hk}k∈N,
referred to as the step-sizes and an initial point ϑ0,h ∈ Rp that may be deterministic or
random. The successive iterations of the LMC algorithm are given by the update rule

ϑk+1,h = ϑk,h − hk+1∇f(ϑk,h) +
√

2hk+1 ξk+1; k = 0, 1, 2, . . . (3.1)

where ξ1, . . . , ξk, . . . is a sequence of independent, and independent of ϑ0,h, centered
Gaussian vectors with identity covariance matrices. Let νK denote the distribution of the
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K-th iterate of the LMC algorithm, assuming that all the step-sizes are equal (hk = h

for every k ∈ N) and the initial point is ϑ0,h = 0p. We will also define the distribution
ν̄K = (1/K)

∑K
k=1 νk, obtained by choosing uniformly at random one of the elements

of the sequence {ϑ1,h, . . . ,ϑK,h}. It is proved in [DMM19, Cor. 7] that if the gradient
∇f is Lipschitz continuous with the Lipschitz constant M , then for every K ∈ N, the
Kullback-Leibler divergence between ν̄K and π satisfies

DKL(ν̄K‖π) ≤ µ2(π)

2Kh
+Mph, DKL(ν̄opt

K ‖π) ≤
√

2Mpµ2(π)

K
.

Note that the second inequality above is obtained from the first one by using the step-
size hopt = (2KMp/µ2(π))−1/2 obtained by minimizing the right hand side of the first
inequality. Therefore, if we assume that the second order moment µ2 of π satisfies the
condition Mµ2 ≤ κpβ, for some dimension-free positive constants β and κ, we get

DKL(ν̄opt
K ‖π) ≤

√
2κp1+β

K
.

A natural measure of complexity of the LMC with averaging is, for every ε > 0, the number
of gradient evaluations that is sufficient for getting a sampling error bounded from above
by ε. From the last display, taking into account the Pinsker inequality, dTV(ν̄K , π) ≤√
DKL(ν̄K , π)/2 and the fact that each iterate of the LMC requires one evaluation of

the gradient of f , we obtain the following result. The number of gradient evaluations
KLMCa,TV(p, ε) sufficient for the total-variation-error of the LMC with averaging (hereafter,
LMCa) to be smaller than ε is

KLMCa,TV(p, ε) =
κp1+β

2ε4
.

The main goal of the present work is to provide this type of bounds on the complexity
of various versions of the Langevin algorithm under different measures of the quality of
sampling. The most important feature that we wish to uncover is the explicit dependence
of the complexity K(ε) on the dimension p, the inverse-target-precision 1/ε and the
parameter κ. We will focus only on those measures of quality of sampling that can be
directly used for evaluating the quality of approximating expectations.

3.2 Further precisions on the analyzed methods

Since our main motivation for considering the sampling problem comes from applications
in statistics and machine learning, we will focus on the Monge-Kantorovich-Wasserstein
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Figure 3.1: Illustration of Langevin dynamics. The blue lines represent different paths of
a Langevin process. We see that the histogram of the state at time t = 30 is close to the
target density (the dark blue line).

distances Wq defined by

Wq(ν, ν
′) = inf

{
E[‖ϑ− ϑ′‖q2]1/q : ϑ ∼ ν and ϑ′ ∼ ν ′

}
, q ≥ 1.

The infimum above is over all the couplings between ν and ν ′. In view of the Hölder
inequality, the mapping q 7→ Wq(ν, ν

′) is increasing for every pair (ν, ν ′).
Our main contributions are upper bounds on quantities of the formWq(νK , π)where π

is a log-concave target distribution and νK is the distribution of the Kth iterate of various
discretization schemes of Langevin diffusions. More precisely, we consider two types of
Langevin processes: the kinetic Langevin diffusion and the vanilla Langevin diffusion.
The latter is the highly overdamped version of the former, see [Nel67]. The Langevin
diffusion, having π as invariant distribution, is defined as a solution1 to the stochastic
differential equation

dLLD
t = −∇f(LLD

t ) dt+
√

2 dW t, t ≥ 0, (3.2)

whereW is a p-dimensional standard Brownian motion independent of the initial value
L0. An illustration of this process is given in Figure 3.1. The LMC algorithm presented in
(3.1) is merely the Euler-Maruyama discretization of the process L. The kinetic Langevin
diffusion {LKLD

t : t ≥ 0}, also known as the second-order Langevin process, is defined by

d

[
V t

LKLD
t

]
=

[
−(γV t +∇f(LKLD

t ))

V t

]
dt+

√
2γ

[
Ip

0p×p

]
dW t, t ≥ 0, (3.3)

1Under the conditions imposed on the function f throughout this paper, namely the convexity and
the Lipschitzness of the gradient, all the considered stochastic differential equations have unique strong
solutions. Furthermore, all conditions (see, for instance, [Pav14]) ensuring that π and p∗ are invariant
densities of, respectively, processes (3.2) and (3.3) are fulfilled.
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where γ > 0 is the friction coefficient. The process V t is often called the velocity
process since the second row in (3.3) implies that V t is the time derivative of LKLD

t .
The continuous-time Markov process (LKLD

t ,V t) is positive recurrent and has a unique
invariant distribution, which has the following density with respect to the Lebesgue
measure on R2p:

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2
‖v‖2

2

}
, θ ∈ Rp, v ∈ Rp.

If (L,V ) is a pair of random vectors drawn from the joint density p∗, then L and V are
independent, L is distributed according to the target π, whereas V is a standard Gaussian
vector. Therefore, at equilibrium, the random variable LKLD

t has the target distribution π.
Time-discretized versions of Langevin diffusion processes (3.2) and (3.3) are used

for (approxi-mate) sampling from π. In order to guarantee that the discretization error
is not too large, as well as that the process {Lt} converges fast enough to its invariant
distribution, we need to impose some assumptions on f . In the present work, we will
assume that either Conditions 1, 2 or Conditions 1, 2, 3 presented below are satisfied.

Condition 1. The function f is continuously differentiable on Rp and its gradient ∇f is
M -Lipschitz for some M > 0: ‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2 for all θ,θ′ ∈ Rp.

From now on, we will always assume that the Langevin (vanilla or kinetic) diffusion
under consideration has the initial point L0 = 0. Some of the conditions presented
below implicitly require that this initialization is not too far away from the “center” of
the target distribution π. In many statistical problems where π is the Bayesian posterior,
one can come close to these assumptions by shifting the distribution using a simple initial
estimator.

Condition 2. The function f is convex on Rp. Furthermore, for some positive constants D
and β, we have µ2(π) = Eϑ∼π[‖ϑ‖2

2] ≤ Dpβ.

Under Condition 2, the centered second moment of π scales polynomially with the
dimension with power β > 0, while the flatness of the distribution is controlled by the
parameter D > 0. Remarkably, Condition 2 implies that all the moments {µq(π)}q≥1

scale polynomially with p, provided that ‖Eϑ∼π[ϑ]‖2 also does. This fact is a consequence
of Borell’s lemma [GBVV14, Theorem 2.4.6], which states that for any q ≥ 1, there is
a numerical constant Bq that depends only on q such that µq(π)1/q ≤ Bqµ2(π)1/2. An
attempt to provide optimized constants in this inequality is stated in Lemma 14.

In the sequel, we show that the smoothness and the flatness of π have a combined
impact on the sampling error considered. It turns out that the important parameter with
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respect to the hardness of the sampling problem is the product

κ := MD.

For m-strongly convex functions f , Condition 2 is satisfied with D = 1/m and β = 1,
according to Brascamp-Lieb inequality [BL76]. In this case the parameter κ = M/m

is known as the condition number. We will show that Condition 2 is also satisfied for
functions f that are convex everywhere and strongly convex inside a ball, as well as for
functions f that are convex everywhere and strongly convex only outside a ball.

In the next assumption, we use notation ‖M‖ for the spectral norm (the largest
singular value) of a matrix M.
Condition 3. The function f is twice differentiable in Rp with a M2-Lipschitz Hessian ∇2f

for some M2 > 0: ‖∇2f(θ)−∇2f(θ′)‖ ≤M2‖θ − θ′‖2 for all θ,θ′ ∈ Rp.

Condition 3 ensures further smoothness of the potential f . When it holds, the Lipschitz
continuity of the Hessian and the flatness of π also have a combined impact on the sampling
error. A second important parameter with respect to the hardness of the sampling problem
in such a case is the product

κ2 := M
2/3
2 D.

The case of an m-strongly convex function f has been studied in several recent papers.
As a matter of fact, global strong convexity implies exponentially fast mixing of processes
(3.2) and (3.3), with dimension-free rates e−mt and e−mt/(M+m)1/2, respectively. When
only simple convexity is assumed, such results do not hold in general. Therefore, the
strategy we adopt here consists in sampling from a distribution that is provably close to
the target, but has the advantage of being strongly log-concave.

More precisely, for some small positive α, the surrogate potential is defined by fα(θ) :=

f(θ) + α‖θ‖2
2/2. Therefore, the corresponding surrogate distribution has the density

πα(θ) :=
e−fα(θ)∫

Rp e
−fα(v)dv

.

We stress the fact that the quadratic penalty α‖θ‖2
2/2 added to the potential f is centered

at the origin. This is closely related to the fact that the diffusion is assumed to have the
origin as initial point, and also to the fact that the origin is assumed here to be a good
guess of the “center” of π. The parameter α, together with the step-size h, is considered
as a tuning parameter of the algorithms to be calibrated. Large values of α will result in
fast convergence to πα but a poor approximation of π by πα. On the other hand, smaller
values of α will lead to a small approximation error but also slow convergence. The next
result quantifies the approximation of π by πα, for different distances.
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Proposition 12. For any α ≥ 0 and q ∈ [1,+∞), there is a numerical constant Cq depending
only on q such that

dTV(π, πα) ≤ αµ2(π)

W q
q (π, πα) ≤ Cqαµ2(π)(q+2)/2.

Here the constant Cq can be bounded for every q. In particular, C1 ≤ 22 and C2 ≤ 111.

This result allows us to control the bias induced by replacing the target distribution
by the surrogate one and paves the way for choosing the “optimal” α by minimizing an
upper bound on the sampling error. We draw the attention of the reader to the fact that,
for Wq distance, the dependence on α of the upper bound is α1/q, which slows down
when q increases (recall that α is a small parameter). This explains a deterioration with
increasing q of the complexity bounds presented in forthcoming sections. In the rest of
the paper, we define the constant

Cq = inf{C : W q
q (π, πα) ≤ Cαµ2(π)(q+2)/2, ∀π log-concave}. (3.4)

This constant will repeatedly appear in the statements of the theorems.

3.3 How tomeasure the complexity of a sampling scheme?

We have already introduced the notation KAlg,Crit(p, ε), the number of iterations that
guarantee that algorithm Alg has an error—measured by criterion Crit—smaller than ε.
If we choose a criterion, this quantity can be used to compare two methods, the iterates
of which have comparable computational complexity. For example, LMC and KLMC being
discretized versions of the Langevin process (3.2) and the kinetic Langevin process (3.3),
respectively, are such that one iteration requires one evaluation of ∇f and generation
of one realization of a Gaussian vector of dimension p or 2p. Thus, the iterations are
of comparable computational complexity and, therefore, it is natural to prefer LMC if
2KLMC,Crit(p, ε) ≤ KKLMC,Crit(p, ε) and to prefer KLMC if the opposite inequality is true.

A delicate question that has not really been discussed in literature is a notion of
complexity that allows to compare the quality of a given sampling method for two
different criteria. To be more precise, assume that we are interested in the LMC algorithm
and wish to figure out whether it is “more difficult” to perform approximate sampling for
the TV-distance or for theWasserstein distance. It is a well-known fact that the TV-distance
induces the uniform strong convergence of measures whereas the Wasserstein distances
induce the weak convergence. Therefore, at least intuitively, approximate sampling for the
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TV-distance should be harder than approximate sampling for the Wasserstein distance2.
However, under Condition 1 and m-strong convexity of f , the available results for the
LMC provide the same order of magnitude, p/ε2, both for KLMC,TV [Dal17b, DM19] and
KLMC,W2 [DM19, DT09]. The point we want to put forward is that the origin of this
discrepancy between the intuitions and mathematical results is the inappropriate scaling
of the target accuracy in the definition of KLMC,W2.

To further justify the importance of choosing the right scaling of the target accuracy,
let us make the following observation. The total-variation distance serves to approximate
probabilities, which are adimensional and scale-free quantities belonging to the interval
[0, 1]. The Wasserstein distances are useful for approximating moments3 which depend
on both the dimension and the scale. For this reason, we suggest the following definition
of the analogue of K in the case of Wasserstein distances:

KAlg,Wq(p, ε) = min{k ∈ N : Wq(ν
Alg
k , π) ≤ ε

√
µ2(π), ∀π ∈P}, (3.5)

where Alg is a Markov Chain Monte Carlo or another method of sampling, k is generally
the number of calls to the oracle and P is a class of target distributions. Examples of
oracle call are the evaluation of the gradient of the potential at a given point or the
computation of the product of the Hessian of f at a given point and a given vector. Note
also that

√
µ2(π) is the W2 distance between the Dirac mass at the origin and the target

distribution.
Definition (3.5), as opposed to those used in prior work, has the advantage of being

scale invariant and reflecting the fact that we deal with objects that might be large if
the dimension is large. Note that the idea of scaling the error in order to make the
complexity measure scale-invariant has been recently used in [TSV18] as well. Indeed, in
the context of m-strongly log-concave distributions, [TSV18] propose to find the smallest
k such that W2(νAlgk , π) ≤ ε/

√
m. This is close to our proposal, since in the case of

m-strongly log-concave distributions, it follows from the Brascamp-Lieb inequality that
supπ

√
µ2(π) =

√
p/m (the sup is attained for Gaussian distributions).

3.4 Overview of main contributions

In this work, we analyze three methods, LMC, KLMC [CCBJ18] and KLMC2 [DRD20],
applied to the strong-convexified potential fα(θ) = f(θ)+(α/2)‖θ‖2

2 in order to cope with
2We underline here that the aforementioned hardness argument is based only on the topological

argument, since it is not possible, in general, to upper bound the Wasserstein distance Wq, for q ≥ 1 by the
TV-distance or a function of it.

3Recall that by the triangle inequality, one has (Eϑ∼ν [‖ϑ‖q2])1/q − (Eϑ∼π[‖ϑ‖q2])1/q ≤Wq(ν, π).
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the lack of strong convexity. We briefly recall these algorithms and present a summary of
the main contributions of this work.

3.4.1 Considered Markov chain Monte-Carlo methods

We first recall the definition of the Langevin Monte Carlo algorithms. For the LMC
algorithm introduced in (3.1), we will only use the constant step-size form, the update
rule of which is given by

ϑk+1 = (1− αh)ϑk − h∇f(ϑk) +
√

2h ξk+1; k = 0, 1, 2, . . . (α-LMC)

where ξ1, . . . , ξk, . . . is a sequence of mutually independent, independent of ϑ0, centered
Gaussian vectors with covariance matrices equal to identity. We will refer to this version
of the LMC algorithm as α-LMC.

We now recall the definition of the first and second-order Kinetic Langevin Monte
Carlo algorithms. We suppose that, for some initial distribution ν0 chosen by the user,
both KLMC and KLMC2 algorithms start from (v0,ϑ0) ∼ N (0p, Ip)⊗ ν0. Before stating
the update rules, we specify the structure of the random perturbation generated at each
step. In what follows, {(ξ(1)

k , ξ
(2)
k , ξ

(3)
k , ξ

(4)
k ) : k ∈ N} will stand for a sequence of iid

4p-dimensional centered Gaussian vectors, independent of the initial condition (v0,ϑ0).
To specify the covariance structure of these Gaussian variables, we define two sequences

of functions (ψk) and (ϕk) as follows. For every t > 0, let ψ0(t) = e−γt, then for every
k ∈ N, define ψk+1(t) =

∫ t
0
ψk(s) ds and ϕk+1(t) =

∫ t
0
e−γ(t−s)ψk(s) ds. Now, let us denote

by ξk,j for the j-th component of the vector ξk (a scalar), and assume that for any fixed
k, the 4-dimensional random vectors {(ξ(1)

k,j , ξ
(2)
k,j , ξ

(3)
k,j , ξ

(4)
k,j ) : 1 ≤ j ≤ p} are iid with the

covariance matrix

Ch,γ =

∫ h

0

[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)]>[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)] dt.

The KLMC algorithm, introduced by [CCBJ18], is a sampler derived from a suitable time-
discretization of the kinetic diffusion. When applied to the strong-convexified potential
fα, for a step-size h > 0, its update rule reads as follows[

vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)(∇f(ϑk) + αϑk)

ϑk + ψ1(h)vk − ψ2(h)(∇f(ϑk) + αϑk)

]
+
√

2γ

[
ξ

(1)
k+1

ξ
(2)
k+1

]
. (α-KLMC)

Roughly speaking, this formula is obtained from (3.3) by replacing the function t 7→
∇f(Lt) by a piecewise constant approximation. Such an approximation is made possible
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by the fact that f is gradient-Lipschitz.
It is natural to expect that further smoothness of f may allow one to improve upon the

aforementioned piecewise constant approximation. This is done by the KLMC2 algorithm,
introduced by [DRD20], which takes advantage of the existence and smoothness of
the Hessian of f in order to use a local-linear approximation. At any iteration k ∈ N
with a current value ϑk, define the gradient gk,α = ∇f(ϑk) + αϑk and the Hessian
Hk,α = ∇2f(ϑk) + αIp. When applied to the modified strongly convex potential fα, for
h > 0, the update rule of the KLMC2 algorithm is[

vk+1

ϑk+1

]
=

[
ψ0(h)vk − ψ1(h)gk,α − ϕ2(h)Hk,αvk

ϑk + ψ1(h)vk − ψ2(h)gk,α − ϕ3(h)Hk,αvk

]
+
√

2γ

[
ξ

(1)
k+1 −Hk,αξ

(3)
k+1

ξ
(2)
k+1 −Hk,αξ

(4)
k+1

]
.

(α-KLMC2)

Notice that if we apply KLMC2 with Hk,α = 0, we recover the KLMC algorithm. These two
algorithms, derived from the kinetic Langevin diffusion, will be referred to as α-KLMC
and α-KLMC2.

3.4.2 Summary of the obtained complexity bounds

Without going into details here, we mention in the tables below the order of magnitude
of the number of iterations required by different algorithms for getting an error bounded
by ε for various metrics. For improved legibility, we do not include logarithmic factors
and report the order of magnitude of K�,�(p, ε) in the case when the parameter β in
Condition 2 is fixed to a particular value. We present hereafter the case where β = 1,
which is of particular interest as discussed in Section 3.8. In this table, κ̃ = κ2 + κp−1/3.

β = 1 LMCa α-LMC α-KLMC α-KLMC2
Cond. 1-2 1-2 1-3 1-2 1-3
W2 − κp2/ε6 (κ1.5

2 p0.5 + κ1.5)p2/ε5 κ1.5p2/ε5 κ0.5κ2
1.5p2/ε4

W1 − κp2/ε4 (κ1.5
2 p0.5 + κ1.5)p2/ε3 κ1.5p2/ε3 κ0.5κ2

1.5p2/ε2

dTV p2/ε4 4 p3/ε4 � − − −

The results indicated by 4 describe the behavior of the Langevin Monte Carlo with
averaging established in [DMM19]. To date, these results have the best known dependence
(under conditions 1 and 2 only) on p. The results indicated by � summarize the behavior
of the Langevin Monte Carlo established in [Dal17b]. All the remaining cells of the table
are filled in by the results obtained in the present work. One can observe that the results
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for W1 are strictly better than those for W2. Similar hierarchy was already reported in
[MMS18, Remark 1.9]. It is also worth mentioning here, that using Metropolis-Hastings
adjustment of the LMC (termed MALA), [DCWY18] obtained the complexity

KMALA,TV(p, ε) = O

(
p3κ3/2

ε3/2
log3/2

(
pκ/ε

))
.

It is still an open question whether this type of result can be proved for Wasserstein
distances.

We would also like to comment on the relation between the third and the fourth
columns of the table, corresponding to the α-LMC algorithm under different sets of
assumptions. The result for the more constrained Hessian-Lipschitz case is not always
better than the result when only gradient Lipschitzness is assumed. For instance, for
W2, the latter is better than the former when κ . (κ1.5

2 p0.5 + κ1.5)ε, which is equivalent
to M . (M2p

1/2 +M3/2)D1/2ε. At a very high level, this reflects the fact that when the
condition number is large, the Hessian-Lipschitzness does not help to get an improved
result.

3.4.3 The general approach based on a log-strongly-concave surrogate

We have already mentioned that the strategy we adopt here is the one described in
[Dal17b], consisting of replacing the potential of the target density by a strongly convex
surrogate. Prior to instantiating this approach to various sampling algorithms under
various conditions and errormeasuring distances, we provide here amore formal description
of it. In the remaining dist is a general distance on the set of all probability measures.

We will denote by νAlgk,α the distribution of the random vector obtained after performing
k iterations of the algorithm Alg with the surrogate potential fα(θ) = f(θ)+α‖θ‖2

2/2. Our
first goal is to establish an upper bound on the distance between the sampling distribution
νAlgk,α and the target π. The methods we analyze here depend on the step-size h, as they
are discretizations of continuous-time diffusion processes. Thus, the obtained bound will
depend on h. This bound should be so that one can make it arbitrarily small by choosing
small α and h and a large value of k. In a second stage, the goal is to exploit the obtained
error-bounds in order to assess the order of magnitude of the computational complexity
K, defined in Section 3.3, as a function of p, ε and the condition number κ.

To achieve this goal, we first use the triangle inequality

dist(νAlgk,α, π) ≤ dist(νAlgk,α, πα) + dist(πα, π).

Then, the second term of the right hand side of the last displayed equation is bounded
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using Proposition 12. Finally, the distance between the sampling density νAlgk,α and the
surrogate πα is bounded using the prior work on sampling for log-strongly-concave
distributions. Optimizing over α leads to the best bounds on precision and complexity.

3.5 Prior work

Mathematical analysis of MCMC methods defined as discretizations of diffusion processes
is an active area of research since several decades. Important early references are [RT96a,
RR98, RS02, DMR04] and the references therein. Although those papers do cover the
multidimensional case, the guarantees they provide do not make explicit the dependence
on the dimension. In a series of work analyzing ball walk and hit-and-run MCMCs,
[LV06a, LV06b] put forward the importance of characterizing the dependence of the
number of iterations on the dimension of the state space.

More recently, [Dal17b] advocated for analyzing MCMCs obtained from continuous
time diffusion processes by decomposing the error into two terms: a non-stationarity error
of the continuous-time process and a discretization error. A large number of works applied
this kind of approach in various settings. [BEL18, DM17, DM19, DMP18] improved the
results obtained by Dalalyan and extended them in many directions including non-
smooth potentials and variable step-sizes. While previous work studied the sampling
error measured by the total variation andWaserstein distances, [CB18] proved that similar
results hold for the Kulback-Leibler divergence. [CCBJ18, CCA+18, DRD20] investigated
the case of a kinetic Langevin diffusion, showing that it leads to improved dependence
on the dimension. A promising line of related research, initiated by [Wib18, Ber18], is
to consider the sampling distributions as a gradient flow in a space of measures. The
benefits of this approach were demonstrated in [DMM19, MCC+19].

Motivated by applications in Statistics and Machine Learning, many recent papers
developed theoretical guarantees for stochastic versions of algorithms, based on noisy
gradients, see [BFFN19, CFM+18, DK19, Dal17a, ZXG19, RRT17] and the references
therein. A related topic is non-asymptotic guarantees for the Hamiltonian Monte Carlo
(HMC). There is a growing literature on this in recent years, see [MS17, TSV18, CV19,
MS19] and the references therein.

In all these results, the dependence of the number of iterations on the inverse precision
is polynomial. [DCWY18, CDWY20, MV19a] proved that one can reduce this dependence
to logarithmic by using Metropolis adjusted versions of the algorithms.
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3.6 Precision and computational complexity of the LMC

In this section, we present non-asymptotic upper bounds in the non-strongly convex case
for the suitably adapted LMC algorithm for Wasserstein and bounded-Lipschitz error
measures under two sets of assumptions: Conditions 1-2 and Conditions 1-3. To refer to
these settings, we will call them “Gradient-Lipschitz” and “Hessian-Lipschitz”, respectively.
The main goal is to provide a formal justification of the rates included in columns 2 and
3 of the table presented in Section 3.4.2. To ease notation, and since there is no risk of
confusion, we write µ2 instead µ2(π).

3.6.1 The Gradient-Lipschitz setting

First we consider the Gradient-Lipschitz setting and give explicit conditions on the
parameters α, h and K to have a theoretical guarantee on the sampling error, measured
in the Wasserstein distance, of the LMC algorithm.

Theorem 10. Suppose that the potential function f is convex and satisfies Condition 1. Let
q ∈ [1, 2]. Then, for every α ≤M/20 and h ≤ 1/(M + α), we have

Wq(ν
α-LMC
K , π) ≤ √µ2(1− αh)K/2︸ ︷︷ ︸

error due to the
time finiteness

+ (2.1hMp/α)1/2︸ ︷︷ ︸
discretization error

+
(
Cqαµ

(q+2)/2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

,

where Cq is a dimension free constant given by (3.4).

The proof of this result is postponed to the end of this section. Let us consider its
consequences in the cases q = 1 and q = 2 presented in the table of Section 3.4.2. The
general strategy is to choose the value of α by minimizing the sum of the discretization
error and the error caused by the lack of strong convexity. Then, the parameter h is
chosen so that the sum of the two aforementioned errors is smaller than 99% of the target
precision ε√µ2. Finally, the number of iterations K is selected in such a way that the
error due to the time finiteness is also smaller than 1% of the target precision.

Implementing this strategy for q = 1 and q = 2, we get the optimized value of α and
the corresponding value of h,

q = 1 q = 2

α =
(2.1hMp)1/3

(44)2/3µ2

h =
ε3

322Mp
α =

(2.1hMp)1/2

(111)1/2µ2

h =
ε4

3900Mp
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These values of α and h satisfy the conditions imposed in Theorem 10. They imply
that the computational complexity of the method, for ν0 = δ0 (the Dirac mass at the
origin), is given by

Kα-LMC,W1(p, ε) ≤
2

αh
log
(100W2(ν0, πα)

ε
√
µ2

)
≤ 4.3× 104M

µ2p

ε4
log(100/ε)

Kα-LMC,W2(p, ε) ≤
2

αh
log
(100W2(ν0, πα)

ε
√
µ2

)
≤ 3.6× 106M

µ2p

ε6
log(100/ε).

In both inequalities, the second passage is due to the monotone behaviour of the function
γ 7→ µ2(πγ). This property is formulated in the Lemma 10. Combining Condition 2,
Mµ2(π) ≤ κpβ with the last display, we check thatKα-LMC,W1(p, ε) ≤ Cκ(p1+β/ε4) log(100/ε)

and Kα-LMC,W2(p, ε) ≤ Cκ(p1+β/ε6) log(100/ε). For β = 1, this matches well with the rates
reported in the table of Section 3.4.2. Unfortunately, the numerical constant C, just like
the factors 4.3 × 104 and 2 × 107 in the last display, is way too large to be useful for
practical purposes. Getting similar bounds with better numerical constants is an open
question. The same remark applies to all the results presented in the subsequent sections.

Proof of Theorem 10. To ease notation, we write νK instead of να-LMC
K . The triangle

inequality and the monotony of Wq with respect to q imply that

Wq(νK , π) ≤ W2(νK , πα) +Wq(πα, π).

Recall that πα is α-strongly log-concave and have fα as its potential function. By definition,
fα has also a Lipschitz continuous gradient with the Lipschitz constant at leastM + α. As
we assume the condition h ≤ 1/(M + α) is satisfied, we can apply [DMM19, Theorem 9].
It implies that

W2(νK , πα) ≤ (1− αh)K/2W2(ν0, πα) + (2h(M + α)p/α)1/2

≤ (1− αh)K/2W2(ν0, πα) + (2.1hMp/α)1/2 .

The latter is true due to the fact that α ≤M/20. The remaining term is bounded using
Proposition 12. We obtain

Wq(νK , π) ≤ (1− αh)K/2W2(ν0, πα) + (2.1hMp/α)1/2 +Wq(πα, π)

≤
√
µ2(πα)(1− αh)K/2 + (2.1hMp/α)1/2 +

(
Cqαµ

(q+2)/2
2

)1/q

.

Thus, applying Lemma 10, we conclude the proof.
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3.6.2 The Hessian-Lipschitz setting

It has been noticed by [DM19], see also [DK19, Theorem 5], that if the potential f has a
Lipschitz-continuous Hessian matrix, then the LMC algorithm, without any modification, is
more accurate than in the Gradient-Lipschitz setting. These improvements were obtained
under the condition of strong convexity of the potential, showing that the computational
complexity drops down from p/ε2 to p/ε. The goal of this section is to understand how
this additional smoothness assumption impacts the computational complexity of the
α-LMC algorithm.
Theorem 11. Suppose that the potential function f satisfies conditions 1 and 3. Let q ∈ [1, 2].
For every α ≤M/20 and h ≤ 1/(M + α), we have

Wq(ν
α-LMC
K , π) ≤ √µ2(1− αh)K︸ ︷︷ ︸

error due to the
time finiteness

+
M2hp

2α
+

2.8M3/2hp1/2

α︸ ︷︷ ︸
discretization error

+
(
Cqαµ

(q+2)/2
2

)
︸ ︷︷ ︸
error due to the lack
of strong-convexity

1/q,

where Cq is a dimension free constant given by (3.4).

In order to provide more insight on the complexity bounds implied by the latter
result, let us instantiate it for q = 1 and q = 2. Optimizing the sum of the two last error
terms with respect to α, then choosing this sum to be equal to 0.99ε

√
µ2, we arrive at the

following values

q = 1 q = 2

α =

(
hQp

44µ
3/2
2

)1/2

h =
ε2

45µ
1/2
2 Qp

α =
(hQp)2/3

(111µ2
2)1/3

h =
ε3

387µ
1/2
2 Qp

HereQ is defined as (M2+5.6M3/2p−1/2). These values of α and h satisfy the conditions
imposed in Theorem 11. They imply that the computational complexity of the method,
for ν0 = δ0 (the Dirac mass at the origin), is given by

Kα-LMC,W1(p, ε) ≤
2

αh
log
(100W2(ν0, πα)

ε
√
µ2

)
≤ 2× 103µ

3/2
2 Q(p/ε3) log(100/ε)

Kα-LMC,W2(p, ε) ≤
2

αh
log
(100W2(ν0, πα)

ε
√
µ2

)
≤ 9.9× 104µ

3/2
2 Q(p/ε5) log(100/ε).

Combining Condition 2 and the last display, we check that

Kα-LMC,W1(p, ε) ≤ Cε−3(κ
3/2
2 p(2+3β)/2 + κ3/2p(1+3β)/2) log(100/ε),

Kα-LMC,W2(p, ε) ≤ Cε−5(κ
3/2
2 p(2+3β)/2 + κ3/2p(1+3β)/2) log(100/ε).
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The latter is true, since by definition κ2 is equal to M2/3
2 D. For β = 1, this matches well

with the rates reported in the table of Section 3.4.2.

Proof. Theorem 11 We repeat the same steps as in the proof of Theorem 10, except
that instead of [DMM19, Theorem 9] we use [DK19, Theorem 5]. To ease notation,
we write νK instead of να-LMC

K . One easily checks that πα is α-strongly log-concave with
potential function fα. Furthermore, the latter is (M + α)-gradient-Lipschitz and M2-
Hessian-Lipschitz. Therefore, for h ≤ 2/(M + α), Theorem 5 from [DK19] implies that

W2(νK , πα) ≤ (1− αh)KW2(ν0, πα) +
M2hp

2α
+

13(M + α)3/2hp1/2

5α

≤ (1− αh)KW2(ν0, πα) +
M2hp

2α
+

2.8M3/2hp1/2

α
.

where the second inequality follows from the fact that α ≤M/20. The triangle inequality
and the monotony of Wq with respect to q yield Wq(νK , π) ≤ W2(νK , πα) + Wq(πα, π),
which leads to

Wq(νK , π) ≤
√
µ2(πα)(1− αh)K +

M2hp

2α
+

2.8M3/2hp1/2

α
+Wq(π, πα).

Replacing the last term above by its upper bound provided by Proposition 12 and applying
Lemma 10, we get the claimed result.

3.7 Precision and computational complexity of KLMC and
KLMC2

Several recent studies showed that for some classes of targets, including the strongly log-
concave densities, the sampling error of discretizations of the kinetic Langevin diffusion
scales better with the large dimension than discretizations of the Langevin diffusion.
However, the dependence of the available bounds on the condition number is better for the
Langevin diffusion. In this section we show a similar behavior in the case of non-strongly
log-concave densities. This is done by providing quantitative upper bounds on the error
of sampling using the kinetic Langevin process.

Theorem 12. Suppose that the potential function f satisfies Condition 1. Let q ∈ [1, 2].
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Then for every α ≤M/20, γ ≥
√
M + 2α and h ≤ α/(4γ(M + α)), we have

Wq(ν
α-KLMC
K , π) ≤

√
2µ2

(
1− 3αh

4γ

)K
︸ ︷︷ ︸
error due to the time finiteness

+ 1.5Mp1/2(h/α)︸ ︷︷ ︸
discretization error

+
(
Cqαµ

(q+2)/2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

.

where Cq is a dimension free constant given by (3.4).

The proof of this result is postponed to the end of this section. The contraction rate is
an increasing function of γ, therefore we choose its lowest possible value achieved for
γ =
√
M + 2α. Then the strategy is the same as for the previous section, that is to choose

the value of α by minimizing the sum of the discretization error and the error caused
by the lack of strong convexity. Then, the parameter h is chosen so that the sum of the
two aforementioned errors is smaller than 99% of the target precision ε√µ2. The number
of iterations K is selected in such a way that the error due to the time finiteness is also
smaller than 1% of the target precision.

Implementing this strategy for q = 1 and q = 2, we get the optimized value of α and
the corresponding value of h,

q = 1 q = 2

α =
(1.5hMp1/2)1/2

(22µ
3/2
2 )1/2

h =
ε2

143M(µ2p)1/2
α =

(3hMp1/2)2/3

(111µ2
2)1/3

h =
ε4

1200M(µ2p)1/2

These values of α and h satisfy the conditions imposed in Theorem 12. They imply
that the computational complexity of the method, for ν0 = δ0 (the Dirac mass at the
origin), is given by

Kα-KLMC,W1(p, ε) ≤
4γ

3αh
log
(150

ε

)
≤ 9.2× 103(Mµ2)3/2(p1/2/ε3) log(150/ε)

Kα-KLMC,W2(p, ε) ≤
4γ

3αh
log
(150

ε

)
≤ 4.4× 105(Mµ2)3/2(p1/2/ε5) log(150/ε).

Recall that Condition 2 implies Mµ2 ≤ κpβ. Combining this inequality with the last
display, we check that

Kα-KLMC,Wq(p, ε) ≤ Cκ3/2(p(1+3β)/2/ε2q+1) log(150/ε), q = 1, 2.

For β = 1, this matches well with the rates reported in the table of Section 3.4.2.

Proof. Theorem 12 To ease notation, we write νK instead of να-KLMC
K . The triangle
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inequality and the monotony of Wq with respect to q imply that

Wq(νK , π) ≤ W2(νK , πα) +Wq(πα, π).

Recall that πα is α-strongly log-concave and have fα as its potential function. By definition,
fα has also a Lipschitz continuous gradient with the Lipschitz constant at leastM + α. As
we assume the conditions α ≤M/20, γ ≥ √M + 2α and h ≤ α/(4γ(M +α)) are satisfied,
we can apply [DRD20, Theorem 2]. It implies that

W2(νK , πα) ≤
√

2(1− 3αh/(4γ))KW2(ν0, πα) +
√

2(M + α)p1/2(h/α)

≤
√

2µ2(πα)(1− 3αh/(4γ))K + 1.5Mp1/2(h/α).

The latter is true thanks to the fact that α ≤M/20. Thus, Lemma 10 yields

Wq(νK , π) ≤
√

2µ2(π)(1− 3αh/(4γ))K + 1.5Mp1/2(h/α) +Wq(πα, π).

The remaining term is bounded using Proposition 12.

The rest of this section is devoted to the results for the KLMC2 algorithm, which
assumes that accurate evaluations of the Hessian of the potential function f can be
performed at each given point.

Theorem 13. Suppose that the potential function f satisfies conditions 1 and 3. Let q ∈ [1, 2]

and Q = (M2 +M3/2p−1/2). Then for every α, h, γ > 0 such that

α ≤ M

20
, γ ≥

√
M + 2α, h ≤ α

5γ(M + α)

∨ α

4M2

√
5p

we have

Wq(ν
α-KLMC2
K , π) ≤

√
2µ2

(
1− αh

4γ

)K
︸ ︷︷ ︸

error due to the
time finiteness

+
2h2Qp

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
︸ ︷︷ ︸

discretization error

+
(
Cqαµ

(q+2)/2
2

)1/q

︸ ︷︷ ︸
error due to the lack
of strong-convexity

,

where Cq is a dimension free constant given by (3.4).

The proof of this result is postponed to the end of this section. The contraction rate
is an increasing function of γ, therefore we choose its lowest possible value achieved
for γ =

√
M + 2α. In this case the strategy for finding h and α is slightly different from

the previous ones. Here we first choose the parameter h so that the two terms of the
discretization error are respectively bounded by 1% and 2% of the target precision ε√µ2.
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This yields the following choice for the time step h:

h = α

(
160M2

2 log

(
160

ε
√
Mµ2

)∨ 100αQp

ε
√
µ2

)−1/2

.

The parameter α is then chosen so that the error due to the lack of strong convexity is
lower than 96% of the target precision. Implementing this strategy for q = 1 and q = 2,
we get the following value for α

q = 1 q = 2

α =
ε

23µ2

α =
ε2

116µ2

Finally, the number of iterations K is selected in such a way that the error due to the time
finiteness is also smaller than 1% of the target precision. This yields, that

K =
4γ

αh
log
(142

ε

)
is sufficient to reach the target precision. The values of γ, α and h imply that the
computational complexity of the method is given by

Kα-KLMC2,W1(p, ε) = 2.2× 104 M
1/2M2µ

2
2

ε2

{
1.6 log

( 160

ε
√
Mµ2

)∨ Qp

23M2
2µ

3/2
2

}1/2

log
(142

ε

)
Kα-KLMC2,W2(p, ε) = 5.4× 106 M

1/2M2µ
2
2

ε4

{
1.6 log

( 160

ε
√
Mµ2

)∨ εQp

116M2
2µ

3/2
2

}1/2

log
(142

ε

)
.

Since according to Condition 2 µ2 ≤ Dpβ, the last display implies that up to logarithmic
factorsKα-KLMC2,W1(p, ε) scales as κ1/2κ

3/2
2 p2β/ε2 andKα-KLMC2,W2(p, ε) scales as κ1/2κ

3/2
2 p2β/ε4.

For β = 1, this matches well with the rates reported in the table of Section 3.4.2.

Proof. Theorem 13 To ease notation, we write νK instead of να-KLMC2
K . As already checked

in the proof of Theorem 11 the distribution πα is α-strongly log-concave with potential
function fα. Furthermore, the latter is (M + α)-gradient-Lipschitz and M2-Hessian-
Lipschitz. We apply [DRD20, Theorem 3] which ensures that, if the parameters α, γ, h > 0

are such that

α ≤ M

20
, γ ≥

√
M + 2α, h ≤ α

5γ(M + α)

∧ α

4M2

√
5p
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then the distribution of the KLMC2 sampler after k iterates satisfies

W2(νk, πα) ≤
√

2µ2(πα)

(
1− αh

4γ

)k
+

2h2M2p

α
+
h2(M + α)3/2

√
2p

α

+
8h(M + α)

α
exp

{
− α2

160M2
2h

2

}
≤
√

2µ2(πα)

(
1− αh

4γ

)K
+

2h2(M2p+M3/2p1/2)

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
,

where the second inequality follows from the fact that α ≤M/20 and h ≤ α/(5γ(M +α)).
The triangle inequality and the monotony of Wq with respect to q yields Wq(νK , π) ≤
W2(νK , πα) +Wq(πα, π), which leads to

Wq(νK , π) ≤
√

2µ2(πα)

(
1− αh

4γ

)K
+

2h2Qp

α
+

1.6√
M

exp

{
− (α/h)2

160M2
2

}
+Wq(π, πα).

Replacing the last term above by its upper bound provided by Proposition 12 and applying
Lemma 10, we conclude the proof of the theorem.

3.8 Bounding moments

From the user’s perspective, the choice of α and h requires the computation of the second
moment of the distribution π. In most cases, this moment is an intractable integral.
However, when some additional information on π is available, this moment can be
replaced in some cases by a tractable upper bound. In this section, we provide upper
bounds on the moments

µ∗a :=

∫
Rp
‖θ − θ∗‖a2 π(θ) dθ, a > 0,

centered at the minimizer of the potential θ∗ ∈ argminθ∈Rpf(θ). The knowledge of the
second moment is enough to compute the mixing times presented in Section 3.6 and
Section 3.7. However, providing bounds on general moments may be of interest in order
to get sharp numerical constants. For instance, the proof of Proposition 12 shows that
results for the W1 and W2 metrics essentially rely on some bounds over the third and
fourth moments of π, which could be better understood in some specific contexts.

In this section, we investigate two particular classes of convex functions: (a) those
which are m-strongly convex inside a ball of radius R around the mode θ∗, and (b) those
which are m-strongly convex outside a ball of radius R around the mode θ∗. We provide
user-friendly bounds on µ∗a with relatively small constants. If m and R are dimension
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free, we show that µ∗a scales as (p log p)a, respectively (p log p)a/2. Within a poly-log factor,
the scaling with the dimension is sharp, and matches Condition 2 with β = 2 for the class
(a) and with β = 1 for the class (b).
Proposition 13. Assume that for some positive numbers m and R, we have ∇2f(θ) � mIp

for every θ ∈ Rp such that ‖θ − θ∗‖2 ≤ R. Then, for every a > 0, we have

µ∗a ≤ A ∨B +
2a+1

(mR)aΓ(p/2)

where4

A =

{
3

mR

(
(p+ a) log(p+ a) + p log+

(
2M

m2R2

))}a
and

B =
( p
m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2

.

Remark 4. If the assumptions of Proposition 13 are satisfied, then

µ∗a = Õ

(( p

mR

)a∨( p
m

)a/2)
.

In the bound of Proposition 13, the term A is the dominating one when p/m is large
as compared to R2, while B is the dominating term when R2 is of a higher order of
magnitude than p/m. The residual term 2a+1/((mR)aΓ(p/2)) goes to zero whenever p or
R tend to infinity. If m and R are assumed to be dimension free constants, then µ∗a scales
as (p log p)a. This rate is optimal within a poly-log factor, which is proven in Lemma 13.
Note that when R goes to infinity we recover exactly the bound of the strongly convex
case proven in Lemma 11.

We now switch to bounding the moments of π under the condition that f is convex
everywhere and strongly convex outside the ball of radius R around θ∗.
Proposition 14. Assume that for some positive m and R, we have ∇2f(θ) � mIp for every
θ ∈ Rp such that ‖θ − θ∗‖2 > R. If p ≥ 3, then, for every a > 0, we have

µ∗a ≤
(

1 +
2

Γ(p/2)

){
(4R)

∨(
4(p+ a)

m
log
(pM
m

))1/2}a
.

Remark 5. Under the assumptions of Proposition 14, we obtain

µ∗a = Õ
(
Ra ∨ (p/m)a/2

)
.

In the bound of Proposition 14, ifm and R are assumed to be dimension free constants,
4We denote by log+ x the positive part of log x, log+ x = max(0, log x).
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then µ∗a scales as (p log p)a/2. This rate is improved in Proposition 15 below to pa/2, which
is optimal. However, the bound of Proposition 14 is sharper when R is large.

Proposition 15. Assume that for some positive m and R, we have ∇2f(θ) � mIp for every
θ ∈ Rp such that ‖θ − θ∗‖2 > R. Then for every a > 0 we have

µ∗a ≤ emR
2/2
( p
m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2

.

Note that when R approaches zero, this bound matches the one of the strongly convex
case; see, for instance, Lemma 11. To close this section, let us note that in the setting
considered in propositions 15 and 14, it is quite likely that an approach based on reflection
coupling [MMS18, CCA+18] would give a sharper upper bound than those obtained by
adding a quadratic penalty to the potential.
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Appendix to Chapter 3

This chapter contains proofs of the propositions stated in previous sections as well as
those of some technical lemmas used in the proofs of the propositions.

3.A Proof of Proposition 13

Note that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, for the map m(r) := m1(0,R)(r). We start
by computing the map m̃(r) := 2

∫ 1

0
m(ry)(1− y)dy. By definition, we get

m̃(r) = 2

∫ 1

0

m1(0,R)(ry)(1− y)dy

= 2m

∫ 1∧R/r

0

(1− y)dy

= m1r<R +m

(
2R

r
− R2

r2

)
1r≥R.

Let A ≥ R and a > 0. We assume without loss of generality that θ∗ = 0p. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We split the integral into two parts:∫

Rp
‖θ‖a2 π(θ) dθ =

∫
BA

‖θ‖a2 π(θ) dθ +

∫
BcA

‖θ‖a2 π(θ) dθ.

Let us bound the second summand. Since A ≥ R, for any r > A, we have m̃(r)r2/2 =

mRr −mR2/2. Applying Lemma 12 yields∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)
emR

2/2

∫ +∞

A

rp+a−1e−mRrdr.

We now use the following inequality on the incomplete Gamma function from [NP00],
(see also [BC+09]). Let B > 1, and q ≥ 1. Then, for all x ≥ (B/(B − 1))(q − 1), we have∫ +∞

x

yq−1e−ydy ≤ Bxq−1e−x. (3.6)
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We apply this inequality for B = 2 and q = p+ a. For A ≥ 2(p+ a− 1)/(mR), we have
the following: ∫ +∞

A

rp+a−1e−mRrdr =

(
1

mR

)a+p ∫ +∞

mRA

yp+a−1e−ydy

≤
(

2

mR

)a+p(
mRA

2

)p+a−1

e−mRA.

Now, we make use of the fact that mRA ≥ mRA/2. The latter yields∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2a+1

(mR)aΓ(p/2)

(
2M

m2R2

)p/2(
mRA

2

)p+a−1

e−mRA/2.

The last bound ensures that the inequality∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2a+1

(mR)aΓ(p/2)
(3.7)

is fulfilled whenever ϕ(x) := x− c log(x)− b ≥ 0, where

x =
mRA

2
, c = p+ a− 1, b =

p

2
log

(
2M

m2R2

)
.

We now establish for which values of x (or equivalently, A) we have ϕ(x) ≥ 0. Taylor’s
expansion around yc := 1.5(c+ 1) log(c+ 1) yields

ϕ
(
yc + 3b+

)
= ϕ(yc) + ϕ′(y)× 3b+

for some y ≥ yc. The latter implies that

ϕ′(y) = 1− c

y
≥ 1− c

yc
≥ 1/3.

Hence, ϕ(yc+3b+

)
≥ ϕ(yc)+ b+ ≥ yc− c log yc+ b+− b ≥ 0. Since the map ϕ is increasing

on [c,+∞) and yc + 3b+ ≥ c, we conclude that (3.7) is fulfilled for any

A ≥ A∗ :=
3

mR

(
(p+ a) log(p+ a) + p log+

(
2M

m2R2

))
.

Recall that A ≥ R by assumption, this brings two cases to consider. The first is the case
when R < A∗. Therefore for A = A∗ we have∫

BA

‖θ‖a2 π(θ) dθ ≤ Aa.
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The second case to consider is R ≥ A∗. Hence for A = R, the map f(θ) = − log π(θ) is
m-strongly convex on the ball BA = BR. Thus Lemma 11 yields∫

BA

‖θ‖a2 π(θ) dθ ≤
( p
m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2

.

Since inequality (3.7) is fulfilled in both cases, the claim of Proposition 13 follows.

3.B Proof of Proposition 14

Note that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, where m(·) is defined as below:

m(r) = m1(R,+∞)(r).

We begin by computing the map m̃(r) := 2
∫ 1

0
m(ry)(1− y)dy. Using the definition of m̃,

we have:

m̃(r) = 2

∫ 1

0

m1(R,+∞)(ry)(1− y)dy

= 2m1r>R

∫ 1

R/r

(1− y)dy

= m (1−R/r)2
1r>R.

Let A ≥ 4R and a > 0. We assume without loss of generality that θ∗ = 0p. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We will use the following bound:∫

Rp
‖θ‖a2 π(θ) dθ ≤ Aa +

∫
(BA)c

‖θ‖a2 π(θ) dθ.

For the second term, Lemma 12 yields∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)

∫ +∞

A

rp+a−1e−mr
2/8dr.

This is true due to the fact that, for every r ≥ A ≥ 4R, we have m̃(r) ≥ m/2. We now use
inequality (3.6) with B = 2, q = (p+ a)/2 and mA2/4 ≥ (p+ a)− 1/2:∫ +∞

A

rp+a−1e−mr
2/8dr = 2−1

(
4

m

)(p+a)/2 ∫ +∞

mA2/4

y(p+a)/2−1e−ydy.
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Thus the following is satisfied∫ +∞

A

rp+a−1e−mr
2/8dr ≤

(
4

m

)(p+a)/2(
mA2

4

)(p+a)/2−1

e−mA
2/4

≤ Aa
(

4

m

)p/2(
mA2

4

)p/2−1

e−mA
2/4.

This yields ∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2Aa

Γ(p/2)

(
2M

m

)p/2(
mA2

4

)p/2−1

e−mA
2/4.

The last bound ensures that the inequality∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ 2Aa

Γ(p/2)
(3.8)

is fulfilled whenever ϕ(x) := x− c log(x)− b ≥ 0, where

x =
mA2

4
, c =

p

2
− 1, b =

p

2
log

(
2M

m

)
> 0.

Taylor’s expansion around yc := 2(c+ 1) log(c+ 1) yields

ϕ(yc + 2b) = ϕ(yc) + ϕ
′
(y)× 2b

for some y ≥ yc. The latter implies that

ϕ
′
(y) = 1− c

y
≥ 1− c

yc
≥ 1/3.

We get ϕ(yc + 2b) ≥ yc − c log(yc) + b− b ≥ 0. Since the map ϕ is increasing on [c,+∞)

and yc + 2b ≥ c, we conclude that (3.8) is fulfilled for any

A2 ≥ 4

m
(p log(p/2) + p log(2M/m)) =

4p

m
log

(
pM

m

)
.

Finally, we chooseA such that this inequality and the two additional assumptions: A ≥ 2R

and mA2/4 ≥ (p+ a)− 1/2 hold. If p ≥ 3 we can choose

A = (4R)
∨(

4(p+ a)

m
log

(
pM

m

))1/2

.

This yields the claim of Proposition 14.
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3.C Proof of Proposition 15

Define f = − log π and for any θ ∈ Rp:

f̄(θ) := f(θ) +
m

2
(‖θ‖2 −R)2

1‖θ‖2≤R.

For any θ ∈ Rp, we have f̄(θ) ≤ f(θ) +mR2/2 , this yields∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ emR

2/2

∫
Rp
‖θ − θ∗‖a2e−f̄(θ)dθ.

Now we define the normalising constant

C̄ :=

∫
Rp
e−f̄(θ)dθ

and the corresponding probability density π̄(θ) := e−f̄(θ)/C̄. The constant C̄ ≤ 1 since
f(θ) ≤ f̄(θ) for every θ ∈ Rp. Therefore we have∫

Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ emR

2/2

∫
Rp
‖θ − θ∗‖a2 π̄(θ) dθ.

By construction the density π̄ is m-strongly log-concave. We apply Lemma 11 on this last
term and get the claim of Proposition 15.

3.D Proof of Proposition 12

Without loss of generality we may assume that ∫Rp exp(−f(θ)) dθ = 1. We first derive
upper and lower bounds for the normalizing constant of πα, that is

cα :=

∫
Rp
π(θ)e−α‖θ‖

2
2/2dθ.

To do so, we introduce the following denotation:

rα :=
2

α
log

1

cα
.

One can verify that cα ≤ 1. To get a lower bound, we note that cα is an expectation with
respect to the density π, hence it can be lower bounded using Jensen’s inequality, applied
to the convex map x 7→ e−x. These two facts yield

exp{−αµ2/2} ≤ cα ≤ 1.
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Therefore, by definition of rα we have

0 ≤ rα ≤ µ2 (3.9)

For any fixed θ ∈ Rp, we now split the Euclidean distance between π(θ) and πα(θ)

between its positive and negative parts:

|π(θ)− πα(θ)| = π(θ)
[
1− e−(α/2)(‖θ‖22−rα)

]
1‖θ‖22>rα︸ ︷︷ ︸

:=(π−πα)+(θ)

+π(θ)
[
e−(α/2)(rα−‖θ‖22) − 1

]
1‖θ‖22<rα︸ ︷︷ ︸

:=(π−πα)−(θ)

.

In order to bound the positive part, we make use of the inequality 1− e−x ≤ x for x > 0.
Therefore:

(π − πα)+(θ) ≤ α

2
π(θ)(‖θ‖2

2 − rα)1‖θ‖22>rα . (3.10)

The total variation distance between densities π and πα is twice the integral of the positive
part, therefore by definition

dTV(πα, π) = 2

∫
Rp

(π − πα)+(θ) dθ.

Which yields the following

dTV(πα, π) ≤ α

∫
Rp
π(θ)(‖θ‖2

2 − rα)1‖θ‖22>rαdθ ≤ α

∫
Rp
‖θ‖2

2π(θ) dθ.

where the first inequality follows from (3.10), and the second inequality follows from
(3.9). This yields the first claim of the proposition.

The proof of the bound for Wasserstein distances is inspired from [Vil08] (Theorem
6.15, page 115). We consider the following coupling between π and πα, defined by
keeping fixed the mass shared by π and πα while distributing the rest of the mass with a
product measure. Letting C := (π − πα)+(Rp) = (π − πα)−(Rp), we define

γ(dθ, dθ
′
) := (π ∧ πα)(dθ)δ

θ
′
=θ

+
1

C
(π − πα)+(dθ)(π − πα)−(dθ

′
).

The joint distribution γ defines a coupling of π and πα. Therefore for any q ≥ 1, by
definition of the Wasserstein distance we get

W q
q (µ, ν) ≤

∫
Rp×Rp

‖θ − θ′‖q2γ(dθ, dθ
′
)

=
1

C

∫
Rp×Rp

‖θ − θ′‖q2(π − πα)+(dθ)(π − πα)−(dθ
′
)
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Thus,

W q
q (µ, ν) ≤ 1

C

∫
Rp×Rp

(‖θ‖2 +
√
rα)

q
(π − πα)+(dθ)(π − πα)−(dθ

′
)

=

∫
Rp

(‖θ‖2 +
√
rα)

q
(π − πα)+(dθ)

where the second inequality follows from the fact that (π − πα)+(dθ), respectively (π −
πα)−(dθ

′
), have positive mass only outside, respectively inside, the ball {‖θ′‖2 ≤

√
rα}.

Therefore for any fixed θ outside the ball, the maximum distance between θ and θ′ is
obtained on the boundary of the ball in the opposite direction of θ. We now define the
quantity

Jq,α(π) :=
1

2

∫
‖θ‖22>rα

(‖θ‖2 +
√
rα)

q (‖θ‖2
2 − rα

)
π(dθ),

and remark that inequality (3.10) yields

W q
q (µ, ν) ≤ αJq,α(π).

The claim of the proposition follows from the fact that there is a numerical constant Cq
that only depends on q such that

Jq,α(π) ≤ Cqµ
(q+2)/2
2 .

This is a combined consequence of (3.9) and Lemma 14. More precisely, (3.9) ensures
that Jq,α(π) can be controlled only by the moments of π. On the other hand, Borell’s
lemma [GBVV14, Theorem 2.4.6] shows that Lq-norms of log-concave distributions are
all equivalent, in the sense that for any q ≥ 1 there is a constant Bq that only depends on
q such that µ1/q

q ≤ Bqµ
1/2
2 . Our version of this result is stated in Lemma 14. It is (to the

best of our knowledge) the first attempt to provide optimized constants. We compute
hereafter the values of Cq for q = 1 and q = 2. We have

J1,α(π) ≤ 1

2

∫
Rp

(‖θ‖2 +
√
µ2) ‖θ‖2

2π(dθ)

= (µ3 + µ
3/2
2 )/2

≤ 22µ
3/2
2
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and

J2,α(π) =
1

2

∫
‖θ‖22>rα

(‖θ‖2 +
√
rα)

2 (‖θ‖2
2 − rα

)
π(dθ)

≤ 1

2

∫
‖θ‖22>rα

(
‖θ‖4

2 + 2‖θ‖3
2

√
rα
)
π(dθ).

Thus,

J2,α(π) = (µ4 + 2µ3µ
1/2
2 )/2

≤ 262µ2
2.

In both calculations, inequality (3.9) is used to bound rα, while the last inequality follows
from Lemma 14. It turns out that in the particular case q = 2, the constant C2 can be
improved using the following transport inequality [GL10, Corollary 7.2].

Suppose that µ is a probability measure on Rp that admits a m-strongly log-concave
density with respect to Lebesgue measure, then for any probability measure ν on Rp we
have

W 2
2 (ν, µ) ≤ (2/m)DKL(ν||µ).

Applied to µ = πα and ν = π we get

W 2
2 (π, πα) ≤ (2/α)DKL(π||πα).

The computation of the Kullback-Leibler divergence yields

DKL(π||πα) =

∫
Rp
π(θ)(α/2)(‖θ‖2

2 − rα) dθ

= αµ2/2 + log cα.

Using the inequality e−x ≤ 1− x+ x2/2 for x > 0 yields the following upper bound for
cα:

cα =

∫
Rp
π(θ)e−(α/2)‖θ‖22dθ ≤ 1− αµ2/2 + α2µ4/8.

Since log(1 + x) ≤ x for x > −1 we get

DKL(π||πα) ≤ α2µ4/8.

Combining this inequality with the bound on µ4 from Lemma 14, we get

W 2
2 (π, πα) ≤ αµ4/4 ≤ 111αµ2

2.
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This shows that for q = 2 the constant can be improved to C2 = 111. Therefore we get
the claim of the proposition.

3.E Technical lemmas

Lemma 10. Suppose that π has a finite fourth-order moment. Then γ 7→ µ2(πγ) is
continuously differentiable and non-increasing, when γ ∈ [0,+∞).

Proof. For k ∈ N ∪ {0}, define

hk(γ) =

∫
Rp
‖θ‖k2 exp

(
−f(θ)− γ‖θ‖2

2/2
)
dθ.

If π ∈ Pk(Rp) then the function hk is continuous on [0; +∞). Indeed, if the sequence
{γn}n converges γ0, when n → +∞, then the function ‖θ‖k2 exp (−f(θ)− (1/2)γn‖θ‖2

2)

is upper-bounded by ‖θ‖k2 exp (−f(θ)). Thus in view of the dominated convergence
theorem, we can interchange the limit and the integral. Since, by definition,

µk(πγ) =
hk(γ)

h0(γ)
,

we get the continuity of µ2(πγ) and µ4(πγ). Let us now prove that hk(t) is continuously
differentiable, when π ∈ Pk+2(Rp). The integrand function in the definition of hk is
a continuously differentiable function with respect to t. In addition, its derivative is
continuous and is as well integrable on Rp, as we supposed that π has the (k + 2)-th
moment. Therefore, Leibniz integral rule yields the following

h′k(γ) = −1

2

∫
Rp
‖θ‖k+2

2 exp
(
−f(θ)− γ‖θ‖2

2/2
)
dθ = −1

2
hk+2(t).

The latter yields the smoothness of hk. Finally, in order to prove the monotony of µ2(πγ),
we will simply calculate its derivative

(µ2(πγ))
′ = − 1

2h0(γ)
h4(γ)− h′0(γ)

h0(γ)2
h2(γ)

= −1

2
µ4(πγ) +

h2
2(γ)

2h0(γ)2

=
1

2

(
µ2

2(πγ)− µ4(πγ)
)
.

Since the latter is always negative, this completes the proof of the lemma.
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Lemma 11. Let a > 0 and m > 0. Assume f = − log π is m-strongly convex. Then∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤

( p
m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2

.

Proof. [DM19] proved the following bound on the second moment, centered on the mode∫
Rp
‖θ − θ∗‖2

2 π(θ) dθ ≤ p

m
.

The monotony of the La-norm directly yields the claim of the Lemma for a ≤ 2.
Now, let a > 2. In this proof we will use the following result from [Har04]. Assume

that X ∼ Np(µ,Σ) with density ϕ and Y with density ϕ · ψ where ψ is a log-concave
function. Then for any convex map g : Rp 7→ R we have

E[g(Y − E[Y ])] ≤ E[g(X − E[X])].

Since f = − log π is m-strongly convex, the particular choice µ = 0p and Σ = mIp yields
the log-concavity of π/ϕ. Applied to the convex map g : θ 7→ ‖θ‖a2, the inequality of
[Har04] yields

Eπ[‖θ − Eπ[θ]‖a2] ≤ E[‖X‖a2] =
( p
m

)a/2 Γ((p+ a)/2)

Γ(p/2)(p/2)a/2

using known moments of the chi-square distribution.
For any y > 0 the map x 7→ x−yΓ(x+ y)/Γ(x) goes to 1 when x goes to infinity. For

convenience, we use an explicit bound from [QL+12, Theorem 4.3], that is

∀y ≥ 1, x−yΓ(x+ y)/Γ(x) ≤ (1 + y/x)y−1 .

When applied to x = p/2 and y = a/2 > 1, this yields

Eπ[‖θ − Eπ[θ]‖a2] ≤
( p
m

)a/2
(1 + a/p)a/2−1 . (3.11)

We now bound the distance between the mean and the mode

‖Eπ[θ]− θ∗‖2 ≤ Eπ[‖θ − θ∗‖2] ≤ (p/m)1/2. (3.12)

For any x, y ≥ 0 we have (x+ y)a ≤ 2a−1(xa + ya), this yields∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ 2a−1 (E[‖θ − Eπ[θ]‖a2] + ‖Eπ[θ]− θ∗‖a2)
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Using bounds (3.11) and (3.12) in the last expression yields the claim of the lemma for
a > 2.
Lemma 12. Assume there exists a measurable map m : [0,+∞) 7→ [0,M ] such that for
any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip. Let a > 0 and A > 0. Define the ball BA := {θ ∈ Rp :

‖θ − θ∗‖2 ≤ A}. We have∫
(BA)c

‖θ − θ∗‖a2 π(θ) dθ ≤ 2(M/2)p/2

Γ(p/2)

∫ +∞

A

rp+a−1e−m̃(r)r2/2dr

where
m̃(r) = 2

∫ 1

0

m(ry)(1− y)dy.

Proof. Without loss of generality, we assume that θ∗ = 0p and f(0p) = 0. Therefore, the
density π is such that π(θ) = e−θ/C where

C =

∫
Rp
e−f(θ)dθ ≥

∫
Rp
e−M‖θ‖

2
2/2dθ

by the fact that ∇2f(θ) �MIp for every θ ∈ Rp.
Now, for any r > 0 and any θ ∈ Rp such that ‖θ‖2 = r, Taylor’s expansion around the

minimum 0p yields

f(θ)− f(0p) = θ>
(∫ 1

0

∫ 1

0

∇2f(stθ)sdtds

)
θ

≥ ‖θ‖2
2

∫ 1

0

∫ 1

0

m(st‖θ‖2
2)sdtds

= r2

∫ 1

0

∫ s

0

m(yr)dyds

=
r2

2
× 2

∫ 1

0

m(yr)(1− y)dy︸ ︷︷ ︸
=m̃(r)

We combine this fact with the lower bound on C to get∫
(BA)c

‖θ‖a2 π(θ) dθ ≤ C−1

∫
‖θ‖2≥A

‖θ‖a2e−f(θ)dθ

≤
(∫

Rp
e−M‖θ‖

2
2/2dθ

)−1 ∫
‖θ‖2≥A

‖θ‖a2e−m̃(‖θ‖2)‖θ‖22/2dθ

=
2(M/2)p/2

Γ(p/2)

∫ +∞

A

ra+p−1e−m̃(r)r2/2dr

where the first equality comes from a change of variables in polar coordinates, where the
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volume of the sphere cancels out in the ratio.
Lemma 13. Assume that π(θ) ∝ e−f(θ), where

f(θ) = 0.5‖θ‖2
21‖θ‖2≤1 + ‖θ‖21‖θ‖2>1.

Then for any a > 0 and any p ≥ 2 ∨ (a− 1)∫
Rp
‖θ‖a2 π(θ) dθ ≥ (0.1)Γ(p+ a)/Γ(p) ∼

p→+∞
0.1pa.

This proves that, under assumptions of Proposition 13 (here withm = R = 1), the dependence
pa is not improvable.

Proof. Remark first that f(θ) = ϕ(‖θ‖2) where

ϕ(r) := 0.5r21r≤1 + r1r>1.

We compute explicitly the moment by a change of variable in polar coordinates∫
Rp
‖θ‖a2 π(θ) dθ =

(∫ +∞

0

rp−1e−ϕ(r)dr

)−1 ∫ +∞

0

rp+a−1e−ϕ(r)dr

=
Γ(p+ a) +

∫ 1

0
rp+a−1(e−r

2/2 − e−r)dr
Γ(p) +

∫ 1

0
rp−1(e−r2/2 − e−r)dr

.

Using the fact that (0.2)r ≤ e−r
2/2 − e−r ≤ r for 0 < r < 1 yields∫

Rp
‖θ‖a2 π(θ) dθ ≥ Γ(p+ a) + 0.2/(p+ a+ 1)

Γ(p) + 1/(p+ 1)

≥ Γ(p+ a) + 0.1/(p+ 1)

Γ(p) + 1/(p+ 1)

≥ (0.1)Γ(p+ a)/Γ(p)

where the second inequality follows from the fact that a ≤ p+ 1 by assumption, while the
last inequality follows from the fact that Γ(.) is an increasing function on [2,+∞). This
proves the claim of the Lemma.
Lemma 14. Let Γ(k, x) be the upper incomplete Gamma function. Let k > 2 be a real
number, then µk ≤ Akµ

k/2
2 where Ak = minλ>2,γ>1Ak(λ, γ) with

Ak(λ, γ) =

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
kΓ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
. (3.13)

Proof. Let λ > 1 be fixed throughout the proof and define A = {x ∈ Rp : ‖x‖2
2 ≤ λµ2}.
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From Markov’s inequality we have

π(A) ≥ 1− Eπ[‖ϑ‖2
2]

λµ2

= 1− 1

λ
.

The setA being symmetric, Proposition 2.14 from [Led01] implies the following inequality:

1− π(tA) ≤ π(A)

(
1− π(A)

π(A)

)(t+1)/2

,

for every real number t larger than 1. Since the right-hand side is a decreasing function
of π(A), we obtain the following bound on π(tA{):

π(tA{) ≤ 1

λ · (λ− 1)(t−1)/2
.

Let us introduce the random variable η as ‖ϑ‖2/
√
µ2, where ϑ ∼ π . It is clear that (3.13)

is equivalent to

E[ηk] ≤
√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
kΓ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
.

Since η > 0 almost surely,

E[ηk] =

∫
R
P(η > t)dt = k

∫
R
tk−1P(η > t)dt.

Thus, the proof of the lemma reduces to bound the tail of η. The definition of η yields

P(η > t) = P(‖ϑ‖2 > t
√
µ2) = π

(
t√
λ
· A{

)
≤ 1

λ · (λ− 1)(t−
√
λ)/2
√
λ
,

when t >
√
λ. We choose γ > 1 and apply this inequality to t > √γλ. For the other

values of t, that is when t < √γλ, we apply Markov’s inequality to get P(η > t) ≤ 1 ∧ t−2.
Combining these two bounds, we arrive at

E[ηk] ≤ k

∫ ∞
√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+

∫ √γλ
0

ktk−1(1 ∧ t−2)dt

= k

∫ ∞
√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+

k(γλ)k/2−1 − 2

k − 2
.

The first integral of the last sum can be calculated using the upper incomplete gamma
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Figure 3.2: Shapes of the surfaces defined by the functions A3(·, ·) and A4(·, ·), see
Lemma 14.

function Γ(k, z). Indeed, the change of variable z = t log(λ− 1)/(2
√
λ) yields∫ ∞

√
γλ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt =

√
λ− 1

λ

∫ ∞
√
γλ

tk−1 exp

(
− log(λ− 1)

t

2
√
λ

)
dt

=

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k ∫ ∞
γ1/2 log(λ−1)

2

zk−1e−z dz

=

√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,
γ1/2 log(λ− 1)

2

)
.

Finally, we obtain

E[ηk] ≤ k ·
√
λ− 1

λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,
γ1/2 log(λ− 1)

2

)
+
k(γλ)k/2−1 − 2

k − 2
.

This concludes the proof.

Remark 6. We plotted5 in Figure 3.2 the plots of the function Ak for k = 3 and k = 4.
Numerically, we find that the optimal choice for (λ, γ) is approximately λ = 15.89 and
γ = 4.4 for k = 3 and λ = 14.97 and γ = 4.8 for k = 4. This leads to the numerical bounds

Ak ≤

40.40, k = 3

441.43, k = 4
.

These constants are by no means optimal, but we are not aware of any better bound available
in the literature. Inequalities of type E[‖X‖k2] ≤ AkE[‖X‖2

2]k/2 are often referred to as the
5The R notebook for generating this figure can be found here https://rpubs.com/adalalyan/

Khintchine_constant
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Kintchine inequality [Khi23]. According to [CG18], [Bob99, Corollary 4.3] implies that
A4 ≤ 49 for one-dimensionalX with log-concave density. Getting such a small constant in
the multidimensional case would be of interest for applications to MCMC sampling.
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Chapter 4

Penalized Langevin Dynamics

Abstract

We study the problem of sampling from a probability distribution on Rp defined via a
convex and smooth potential function. We first consider two continuous-time diffusion-
type processes, termed Penalized Langevin dynamics (PLD) and Penalized Kinetic Langevin
dynamics (PKLD), the drift of which is the negative gradient of the potential plus a linear
penalty that vanishes when time goes to infinity. An upper bound on the Wasserstein-2
distance between the distribution of the PLD at time t and the target is established. This
upper bound highlights the influence of the speed of decay of the penalty on the accuracy
of approximation. As a consequence, considering the low-temperature limit we infer a
new non-asymptotic guarantee of convergence of the penalized gradient flow for the
optimization problem.
This chapter is based on a joint paper with Arnak Dalalyan called “Penalized Langevin
dynamics with vanishing penalty for smooth and log-concave targets”. It is accepted to
Advances in Neural Information Processing Systems (NeurIPS 2020).

4.1 Introduction

The problem of sampling from a probability distribution received a great deal of attention
in machine learning literature. Gradient based MCMC methods such as the Langevin
MC, the underdamped Langevin Monte Carlo, the Hamiltonian Monte Carlo and their
Metropolis adjusted counterparts were shown to have attractive features both in practice
and in theory. In particular, thanks to a large number of recent results, the case of
smooth and strongly log-concave densities is now fairly well understood. In this case,
non-asymptotic theoretical guarantees for various distances on probability distributions



have been established, showing that the number of gradient evaluations necessary to
achieve an error upper bounded by ε is a low order polynomial of the dimension, the
condition number and the inverse precision 1/ε. The dependence on the latter is even
logarithmic for Metropolis adjusted methods.

The main focus of this paper is on the problem of sampling from densities1

π(θ) ∝ exp(−f(θ)), θ ∈ Rp,

corresponding to a (weakly) convex potential function f : Rp → R. In the sequel, a twice
differentiable function f : Rp → R is said to satisfy (m,M)-SCGL condition (m-strongly
convex and M -gradient Lipschitz), for some M ≥ m ≥ 0, if the following inequality is
satisfied:

mIp � ∇2f(θ) �MIp, ∀θ ∈ Rp.

Here, for two square matrices A and B, the relation A � B means that B−A is positive
semidefinite.

In this work, we wish to define a class of continuous-time processes, such that for
every element {Lt : t ≥ 0} of the class, the distribution of L at time t is close to the
target distribution π. When the potential function f satisfies (m,M)-SCGL condition
with m ≥ 0, it is well-known that the vanilla Langevin dynamics LLD, defined as the
solution of

dLLD
t = −∇f(LLD

t )dt+
√

2 dW t, (LD)

whereW t is a standard Wiener process independent ofLLD
0 , has π as invariant distribution

[Bha78]. Furthermore, when m > 0, the distribution νLD
t of LLD

t converges in Wasserstein
distance (see below for a definition) exponentially fast to π [Vil08], that is

W2(νLD
t , π) ≤ e−mtW2(νLD

0 , π). (4.1)

A remarkable feature of this result is that it is dimension free. Another class of continuous
time processes that has similar properties is the kinetic Langevin dynamics. It is defined
as a system of two SDEs:

dLKLD
t = V KLD

t dt; (KLD)
dV KLD

t = −
(
ηV KLD

t +∇f(LKLD
t )

)
dt+

√
2ηW t,

where η is called the coefficient of friction. Important feature of this diffusion process
is that it has an invariant distribution P(θ,v) ∝ exp(−f(θ)− ‖v‖2

2/2) (see [Pav14]). In
addition, the ergodicity of the process is also well studied by many authors (see, e.g.

1We will use the same notation for the probability density functions and corresponding distributions.
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[CCBJ18, EGZ19]). Recently [DRD20] have proved the following result.
Proposition 16 (Theorem 1 [DRD20]). Suppose (L,V ) ∼ νt and (L̂, V̂ ) ∼ ν̂t are two
solutions of (KLD), with initial distributions ν0 = νL0 ⊗ νV0 and ν̂0 = ν̂L0 ⊗ νV0 , respectively.
The latter means that at time moment 0 the vectors V 0 and V̂ 0 have the same distribution.
Then, if f satisfies (m,M)-SCGL, then we have an exponential contraction in Wasserstein
distance:

W2 (νt, ν̂t) ≤ αe−βtW2 (ν0, ν̂0) .

Here α and β are time-independent constants depending on the parameters m,M, η.

In the strongly convex case β is positive thus the result provides us with exponential
convergence of the continuous-time diffusion. However, in the case when m = 0 the
constant β that appears in the exponential, can be negative. Thus, we cannot make use
of this inequality, when is non-strongly convex. Summing up, we have seen two methods
that perform rapid convergence in Wasserstein distance when the potential function is
strongly convex and that for both of them the convergence in the non-strongly convex
case is left open.

It was established by [Bob99] that log-concave distributions satisfy the Poincaré
inequality with the Poincaré constant CP that might depend on the dimension. According
to [CLGL+20], the exponentially fast convergence of (LD) to zero holds true with m

replaced by 1/CP, when m = 0. In [KLS95], the authors conjectured that there is a
universal constant CKLS > 0 such that for any log-concave distribution π on Rp, CP ≤
CKLS‖EX∼π[XX>]‖op, where ‖A‖op stands for the operator norm of the matrix A. Despite
important efforts made in recent years (see [AGB15, CG18, Che20]), this conjecture is
still unproved. Note also that the Poincaré constant is, in general, hard to approximate
and to estimate [PVBL+19]. One approach to getting more tractable convergence bounds
could be to find a tractable upper bound on the Poincaré constant of a distribution defined
by a potential satisfying (m,M)-SCGL condition with m = 0. We develop here another
approach, consisting in modifying the Langevin dynamics, so that the new dynamics has
still a limiting distribution equal to π but for which we can get a tractable upper bound. A
natural way of defining this new dynamics is to add to the potential f a strongly-convex
penalty with a strong-convexity constant that vanishes when time goes to infinity. For
a quadratic penalty function, this leads to the process LPLD termed penalized Langevin
dynamics and defined by2

dLPLD
t = −

(
∇f(LPLD

t ) + α(t)LPLD
t

)
dt+

√
2 dW t, (PLD)

where α : [0,∞)→ [0,∞) is a time-dependent penalty factor tending to zero as t→∞.
2If a good initial guess θ0 of the minimum point of f is available, it might be better to replace the

penalty term by α(t)(· − θ0).
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The main result of this work is an upper bound on W2(νPLD
t , π) that is valid for every

continuously differentiable and decreasing penalty factor α. Optimizing over α, we show
that the choice α(t) ∼ 1/(2t), when t→∞, leads to a simple upper bound of the order
1/
√
t.
Similarly for (KLD) we modify the drift term −∇f(x) by adding a linear time-

dependent penalty term −α(t)x. The Penalized Kinetic Langevin Dynamics (PKLD)
is a stochastic process which is defined as the solution of the following system of stochastic
differential equations:

dLPKLD
t = V PKLD

t dt; (PKLD)
dV PKLD

t = −(ηV PKLD
t +∇f(LPKLD

t ) + α(t)LPKLD
t ) +

√
2ηW t.

Interestingly, using a suitably parametrized temperature-dependent potential function
fτ (·) = f(·)/τ and a penalty factor, one can get an upper bound for the penalized gradient
flow

ẊPGF
t = −

(
∇f(XPGF

t ) + α0(t)XPGF
t

)
, t ≥ 0, (PGF)

by passing to the low-temperature limit. This bound implies that ‖XPGF
t − x∗‖2 can

be of the order O(1/t1−q), where x∗ is a minimizer of the potential f and q ∈ [0, 1] is
a parameter appearing in an additional condition imposed on f . To the best of our
knowledge, the obtained bound is new, most previous results being valid for the objective
function itself, not for the minimum point.

The rest of the paper is organized as follows. We start by stating the bound on the
error of the PLD in Section 4.2. We also instantiate the bound to the penalty factors that
are inversely proportional to time. In Section 4.3, we discuss the connections with the
optimization problem, assessing the error of the PGF. Section 4.4 is devoted to relation
to prior work. The proof of the main result, up to some technical lemmas, is presented in
Section 4.A. Missing proofs are deferred to the supplementary material.

To complete this introduction, we introduce some notations. We consider theWasserstein-
2 distance

W2(ν, ν ′) = inf
{

E[‖ϑ− ϑ′‖2
2]1/2 : ϑ ∼ ν and ϑ′ ∼ ν ′

}
,

where the minimum is over all joint distributions having ν and ν ′ as the first and the
second marginal distributions. For any γ > 0, we define the probability density function
πγ(θ) ∝ exp(−f(θ)− γ‖θ‖2

2), where ‖θ‖2 is the Euclidean norm. We also define µk(π) =

EX∼π[‖X‖k2], the moment of order k of π.
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4.2 Convergence of penalized Langevin dynamics

In this section we explain our approach and state the main result. Without loss of
generality, we will assume that the initial point for the PLD is the origin, LPLD

0 = 0. Note
that if a good guess θ0 of a minimizer of f is available, it is recommended to initialize PLD
at θ0. Our framework covers this case, since it suffices to apply our results to the translated
function f̃(·) = f(θ0 + ·). Under the condition LPLD

0 = 0, the Wasserstein-2 distance at
the starting point coincides with the second-order moment, W2(νPLD

0 , π) =
√
µ2(π).

When α(t) = α is a strictly positive constant, the distribution νPLD
T , for a large value of

T , is close to the biased target πα. Furthermore, in view of (4.1), the distance between
these two distributions is smaller than a prescribed error level ε > 0 as soon as T ≥
(1/α) log(

√
µ2(π)/ε). On the other hand, one can choose α small enough such that the

biasW2(πα, π) is smaller than ε. The discrete counterpart of this approach has been used in
many recent works [Dal17b, DRDK19, CDWY18]. The approach we develop here extends
these work to the case of time-dependent α and has the advantage of being asymptotically
unbiased, when t → ∞. In other words, it allows to choose α independently of ε and
make the error smaller than ε by running PLD over a sufficiently large time period.

Theorem 14. Suppose that π is a probability distribution with a potential function f that
satisfies (m,M)-SCGL condition, where m ≥ 0 and M > 0. Let α : [0,+∞) → R be a
non-increasing differentiable function, such that m + α(t) > 0 for every t ≥ 0. Then, for
every positive number t and for β(t) =

∫ t
0
(m+ α(u)) du, we have

W2(νPLD
t , π) ≤

√
µ2(π) e−β(t) + 11µ2(π)

{
e−β(t)

∫ t

0

|α′(s)|eβ(s)√
m+ α(s)

ds+
α(t)√
m+ α(t)

}
. (4.2)

The proof being postponed to Section 4.A, the rest of this section is devoted to
discussing the stated theorem and its consequences for some specific choices of the
penalty factor. One can notice right away that in the case of a positive m, we can choose
α to be zero, thereby obtaining the classical exponential convergence rate [Vil08]. In the
rest of the discussion, we assume that m = 0.

The numerical constant 11 can certainly be improved. It is closely related to the fact
that for a log-concave distribution ν, we have µ4(ν) ≤ C4µ

2
2(ν) for a universal constant

C4. proved to satisfy C4 ≤ 442 [DRDK19, Remark 3]. Improved bounds on C4 will
automatically yield improved numerical constant in Theorem 14. We also note that the
Lipschitz constantM does not appear in inequality (4.2). Our proof, however, requires the
finiteness of M . We believe that it is possible to relax the gradient-Lipschitz assumption
by requiring from ∇f to be only locally Lipschitz-continuous. One can check that if we
replace the penalty factor α by a larger function, the first term of the upper bound in
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(4.2), proportional to exp{−
∫ t

0
α(s) ds}, becomes smaller. On the other hand, the second

term increases when α increases 3 One can thus use inequality (4.2) for choosing the
penalty factor α that offers a trade-off between the error of approximating the biased
density πα(t) by the PLD and the error of approximating the target π by the biased density
πα(t).

To “optimize” the upper bound with respect to α, let us for the moment ignore the
first term in the curly parentheses in (4.2). In that case our functional of interest has
two components, where one of them is increasing with respect to α, while the other is
decreasing. (Here the monotony must be understood with a certain precaution, as in
our case the mathematical concept is not well-defined.) These considerations suggest to
choose the “optimal" α by balancing these two terms:√

µ2(π) e−β(t) = 11
√
α(t)µ2(π). (4.3)

Taking the square of both sides, cancelling out some terms and using that α(t) = β′(t),
we check that (4.3) is equivalent to

121µ2(π)β′(t)e2β(t) = 1.

Solving this differential equation we get the following expression for β(·) and the
corresponding expression for α(·):

β∗(t) =
1

2
log

(
2t

121µ2(π)
+ 1

)
and α∗(t) =

1

2t+ 121µ2(π)
.

It is easy to check that this choice of α ensures that the first and the last terms in the
right hand side of (4.2) are of the order 1/

√
t. Interestingly, the middle term in (4.2)

turns out to be of the same order, up to a logarithmic factor. The precise statement of
the consequence of Theorem 14 obtained by choosing α(t) = 1/(2t+ A) for some A > 0

reads as follows.

Proposition 17. If the potential function satisfies the (m,M)-SCGL condition with m = 0,
then the error of PLD with α(t) = 1/(A+ 2t), measured by the Wasserstein-2 distance,
satisfies

W2(νPLD
t , π) ≤

√
Aµ2(π) + 11µ2(π)

(
1 + log (1 + (2/A)t)

)
√
A+ 2t

.

3This is clear for the last term, proportional to
√
α(t), whereas the corresponding claim for the first

term in the curly parentheses less trivial.
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Figure 4.1: One random path of the TPLD, for τ = 1 (left), τ = 0.5 (middle) and τ = 0.1
(right).

In particular, for A = 2µ2(π), we get

W2(νPLD
t , π) ≤ 10µ2(π)

{
1 + log

(
1 + (t/µ2(π))

)}√
µ2(π) + t

.

To complete this section, we present a quick argument showing that the right hand
side of (4.2) cannot converge to zero faster than the rate 1/

√
t. Suppose that for a specific

choice of α, the right hand side of (4.2) is o(1/t1/2). Then the last term is necessarily
o(1/t1/2), which implies that α(t) = o(1/t) when t → +∞. Thus, for some c > 0,
α(t) ≤ 1/(4t) for every t ≥ c. This means that β(t) ≤ cα(0) + (1/4) log(t/c). Hence,

exp(−β(t)) ≥ (c/t)1/4 exp(−cα(0)).

This proves that the upper bound on the error of the PLD established in Theorem 14 may
not tend to zero at a faster rate than 1/

√
t, as t goes to infinity. This argument also shows

that the optimizer α(·) of the upper bound is asymptotically equivalent to 1/(2t) when
t→∞.

4.2.1 Penalized Kinetic Langevin Dynamics

We define by νPKLD
t the distribution of the couple (LPKLD

t ,V PKLD
t ). Also by Pγ we denote

the probability distribution on R2p, which has a density

Pγ : (θ,v)→ exp(−f(θ)− ‖v‖2
2/2− γ‖θ‖2

2/2).

We notice that by definition P = P0.

Theorem 15. Suppose that π is a probability distribution with a potential function f that
satisfies (m,M)-SCGL condition, where m ≥ 0 and M > 0. Let α : [0,+∞) → R be a
non-increasing differentiable function, such that m+ α(t) > 0 for every t ≥ 0. We define the
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function β as below:

β(t) :=

∫ t

0

2ηα(u)du.

Then, for every t > 0, we have

W2(νPKLDt ,P) ≤
√
µ2(P) e−β(t) + 11µ2(P)

{
e−β(t)

∫ t

0

|α′(s)|eβ(s)√
m+ α(s)

ds+
α(t)√
m+ α(t)

}
.

Remark. The proof is postponed to the Section 4.B. It is based on a linear transformation
of the vector (LPKLD

t ,V PKLD
t ), which was introduced in the proof of [DRD20][Theorem

1]. However, Theorem 15 is valid for any initial distribution νPKLD0 , while as to have a
similar bound using the results from [DRD20] one needs to take V 0 to be a standard
normal vector independent from LPKLD

0 .
At the first glance it may seem surprising that we get almost the same upper bound

on Wasserstein error for (PKLD) and (PLD). However, this is the case also for strongly
convex potentials. As a consequence of [DRD20][Theorem 1], the authors deduce the
following inequality:

W2

(
νLt , ν̂

L
t

)
≤
(

2M −m
M −m

)1/2

exp
{
−
(√

M −
√
M −m

)
t
}
W2 (ν0, ν̂0) .

Here νt and ν̂t are the distributions of two solutions of (PKLD) that (as mentioned in the
remark above) have the same initial marginal distribution of the velocity component.
Assuming that M = O(1) and ignoring the multiplier in front, we have that

W2

(
νLt , ν̂

L
t

)
. exp {−mt}W2 (ν0, ν̂0) .

The right-hand side coincides with the upper bound described in (4.1). In view of the
analysis done for Theorem 14, we deduce that the optimal choice of α is of order O(1/t).
The latter yields O(1/t1/2) convergence in Wasserstein distance for (PKLD).
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4.3 The counterpart in optimization: penalized gradient
flow

In this section we draw the parallel between PLD and the penalized gradient flows,
henceforth referred to as PGF, for a non-strongly convex function f . In the case of
strongly convex functions, the gradient flow XGF

t defined by the differential equation
ẊGF

t = −∇f(XGF
t ), converges exponentially fast to the minimum x∗ of f , without the

need to add a quadratic penalty. In contrast with this, for general non-strongly convex
case functions f , only the convergence of the function f(XGF

t ) to f(x∗) at the rate 1/t

can be established. The goal of this sections is to understand the convergence of the flow
to the minimum point when a vanishing quadratic penalty is added to the cost function
f ; when does this flow converge, what is the impact of the penalty factor and what
kind of rate can be achieved. To answers these questions, we assume in this section that
(0,M)-SCGL holds true. We also assume that f has a unique minimum point denoted by
x∗.

In the analysis performed in the previous section, we can replace the function f(·) by
the function fτ (·) = f(·)/τ . The function fτ has x∗ as its point of minimum, whatever
the real number τ > 0. Moreover, if we define the tempered density function πτ (θ) ∝
exp (−fτ (θ)), the distribution πτ tends to δx∗, the Dirac mass at x∗. Clearly, fτ satisfies
(0,M/τ)-SCGL condition. Thus, according to Theorem 14, the process Lτt , defined as

Lτt = Lτ0 −
1

τ

∫ t

0

(
∇f(Lτs) + α(s/τ)Lτs

)
ds+

√
2W t,

converges to πτ in Wasserstein distance, if α(·) is a continuously differentiable and non-
increasing function. We now introduce the tempered penalized Langevin dynamics
(TPLD), as a time-scaled version of Lτ : XTPLD

t = Lτtτ for every τ > 0. One can check that
this process satisfies the stochastic differential equation

dXTPLD
t = −

(
∇f(XTPLD

t ) + α(t)XTPLD
t

)
dt+

√
2τ dW̄ t, (TPLD)

where W̄ t = τ−1/2W τt is a standard Wiener process. To illustrate the behaviour of this
process, Figure 4.1 shows one realization of TPLD for different values of τ , with the left
plot corresponding to PLD. All the results of the previous section continue to hold for this
tempered dynamics. In particular, the analog of the second claim of Proposition 17 in the
case of the tempered diffusion takes the following form.

Proposition 18. If the potential function satisfies the (0,M)-SCGL condition, then the
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error of TPLD with α(t) = 1/(2µ2(πτ ) + 2t) satisfies

W2(νTPLD
t , πτ ) ≤ 10µ2(πτ )

{
1 + log

(
1 + (t/µ2(πτ ))

)}√
τ(µ2(πτ ) + t)

, ∀t ≥ 0.

As mentioned above, for small τ , πτ is close to the Dirac mass at the minimum point
x∗. The last result tells us that we can approximate πτ arbitrarily well, by running the
TPLD over a large time-period. But we can not replace τ by zero in this result, since the
denominator of the right hand side vanishes and the result becomes vacuous. We show
below that this can be repaired if an additional assumption is introduced.

Taking τ = 0 in (TPLD), we get the penalized gradient flow (PGF):

dXPGF
t = −

(
∇f(XPGF

u ) + α(u)XPGF
u

)
du, t ≥ 0, XPGF

0 = 0.

Here we recognize the analog of PLD in the setting of the gradient flows. On the other
hand, the Euclidean distance on Rp is equal to the Wasserstein distance between Dirac
measures. This leads us to think that our approach for obtaining non-asymptotic error
bounds for PLD is applicable to the penalized gradient flow. This turns out to be true,
modulo the introduction of the following assumption.

Assumption A(D, q): The minimum point xγ of the (strongly convex and coercive)
function fγ(·) = f(·) + γ‖ · ‖2

2/2 satisfies

‖xγ − xγ̃‖2 ≤
D

γ̃q
(γ̃ − γ)‖x∗‖2, ∀γ < γ̃,

for some D > 0 and q ∈ [0, 1].
Since xγ a stationary point of fγ, we have ∇f(xγ) = −γxγ. From this relation and

[Nes04, Theorem 2.1.12], one can deduce that (a) if f satisfies (m,M)-SCGL condition
withm > 0 then A(1/m, 0) holds and (b) if f satisfies (0,M)-SCGL condition then A(1, 1)

holds.

Theorem 16. Assume that α : [0,∞) → [0,∞) is a continuously differentiable and non-
increasing function. Let β(t) =

∫ t
0
α(s) ds be the antiderivative of α. If f satisfies A(D, q)

and (0,M)-SCGL, then

‖XPGF
t − x∗‖2 ≤ ‖x∗‖2

(
e−β(t) + D

∫ t

0

|α′(s)|
αq(s)

eβ(s)−β(t)ds+ Dα1−q(t)

)
. (4.4)

The proof can be found in Section 4.G of the supplementary material. When q = 1/2,
this result is the optimization counterpart of the inequality shown in Theorem 14. Once
again, it is appealing to optimize the right hand side of (4.4) in order to choose the
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Figure 4.2: Left: The gradient flow (orange) and the penalized gradient flow (blue).
Middle and Right: the mapping t 7→ ‖XPGF

t − x∗‖2. In both plots we used the function
f(x, y) = |x− 5|3 + 2|y − 6|3.

“best” penalty factor. Using arguments similar to those of previous section, i.e., balancing
the first and the last terms on the right hand side of (4.4), we get that the “optimal”
convergence of PGF is achieved when

α∗(t) =
(1− q)

t+ D1/(1−q)(1− q)
and β∗(t) = (1− q) log

(
t

D1/(1−q)(1− q)
+ 1

)
.

This leads us to make the recommendation of choosing α(t) = (1− q)/(t+A), for some
positive A. If q = 1, this amounts to considering the non-penalized gradient flow and
(4.4) boils down to the fact that the distance from the gradient flow of a convex function
to its minimum decreases. While for q < 1, for the foregoing choice of the penalty factor,
we get the error bound

‖XPGF
t − x∗‖2 ≤

A1−q + D + D log(1 + (t/A))

(t+ A)1−q ‖x∗‖2. (4.5)

To complete this section, we make some remarks on assumption A(D, q). First, one can
relax this assumption by requiring that the desired inequality holds for sufficiently small
values of γ̃ only. In this form, it can be easily seen that larger values of q correspond to
weaker assumption. Second, even if the function f is not strongly convex, it may satisfy
A(D, 0). An example is the function f(x) =

√
(x− x∗)2 + b2. The second derivative of this

function is equal to b2/((x− x∗)2 + b2)3/2. This implies that f satisfies (0, 1/b)-SCGL. We
show in the supplementary material that it satisfies A(D, 0) for some finite value of D > 0.
This is not really surprising, given that this function is strongly convex on any compact set.
Another instructive example is the function f(x) = |x− x∗|a with a ≥ 2. On compact sets,
this function satisfies4 A(D, (a− 2)/(a− 1)). Therefore, the error bound (4.5) implies
that PGF converges to the minimum of f at the rate 1/t1/(a−1), which is faster than the
rate derived from the standard O(1/t) bound for the non-penalized gradient flow. This

4See supplementary material.
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behaviour is depicted in Figure 4.2.

4.4 Prior work and outlook

The relation of our results to some prior work has already been highlighted in previous
sections. This section provides some complementary bibliographic remarks on recent
advances on Langevin diffusions, gradient flows and their discrete counterparts.

Convergence of Langevin dynamics in continuous time has received a lot of attention in
probability, see [CG09, CGR10, BGG12] and the references therein. An interesting known
fact, for instance, is that the Langevin dynamics satisfies5 W2(νLD

t,x, ν
LD
t,y) ≤ e−mt‖x− y‖2 if

and only if f is m-strongly convex. More recently, many papers in statistics and machine
learning literature established non-asymptotic error bounds for discretized algorithms,
mainly focusing on the convex case, see [? DM17, HKRC18, BEL18, SL19] in addition
to previously cited papers. The non-convex case was emphasized in [CCA+18, MMS18,
EMS18, MV19b].

The kinetic version of Langevin dynamics was proposed by [Kra40] in order to describe
the motion of a particle with positionLKLD

t and velocityV KLD in a chemical reaction. It was
shown by [Nel67] that (LD) is a limit version of the rescaled kinetic diffusion L̄t := LKLD

ηt ,
when η →∞. The process, in particular its behavior when the time t tends to infinity, has
been studied by many (see e.g. [Bro97, Vil09, MM16, EGZ19, Nel67, MSH02]). Recently,
with the rise of interest towards the Langevin sampling schemes, various discretized
versions of (PKLD) have been studied, see [CCBJ18, SZTG20, EGZ19, Mon20, SL19].

In the optimization setting, the results on the convergence of the gradient flow for
convex objectives have been known for a long time. More recently, [SBC16] derived a
continuous-time second-order differential equation characterizing the Nesterov acceleration.
Continuous-time Accelerated Mirror Descent was studied in [KBB15]. An approach based
on Bregman-Lagrangian functional for continuous-time momentum and other methods
was developed in [WWJ16,WRJ16]. Further results on related topics, relevant to machine
learning, were obtained in [ZMSJ18, SRBd17, FRV18]. An overview of results on gradient
flow beyond the Euclidean space setting can be found in [AGS08, San17].

On a related note, several studies took advantage of the fact that the distribution of
the Langevin dynamics is a gradient flow in the space of measures [CB18, Ber18, DMM19,
Wib18], in order to establish error bounds for sampling algorithms. The relation with
MMD was studied by [AKSG19].

5Here, νLD
t,x is the distribution at time t of the LD starting at x, and the inequality is assumed to hold for

any x,y ∈ Rp and any t ∈ R.
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The results presented in the present work can be generalized in various directions.
In particular, it would be interesting to relax the smoothness assumption, following an
argument from, e.g., [DMP18, CDJB19, MFWB19, SKR19], to develop a similar theory for
the kinetic Langevin dynamics [EGZ19, CCBJ18, DRD20, MCJ+19] or to consider the case
of a Lévy process driven stochastic differential equation in the spirit of [SZTG20, LMW19].

4.5 Conclusion

We put forward a family of time-inhomogeneous diffusion processes that converge to a pre-
specified target distribution and, therefore, can be used for approximate sampling. These
processes are defined as penalized Langevin dynamics with a penalty that vanishes when
time goes to infinity. The penalty allows to ensure strong convexity, which helps to handle
situations where the original log-density is not strongly convex. We established a simple
non-asymptotic error bound showing that the rate of convergence in the Wasserstein-2
distance is o(1/√t). We have also discussed analogous results for the penalized gradient
flow. The important next step to investigate in future works is the analysis of discretized
versions of the penalized Langevin dynamics.

135



Appendix to Chapter 4

4.A Proof of Theorem 14

Recall that for every γ ∈ R, πγ is the probability distribution with density proportional to
exp(−f(θ)− γ‖θ‖2

2/2). The triangle inequality for the Wasserstein distance yields

W2(νPLD
t , π) ≤ W2(νPLD

t , πα(t)) +W2(πα(t), π), (4.6)

for every t > 0. We will bound these two terms separately, but let us start by stating
two technical lemmas. The first one is a consequence of the well-known transportation
cost inequality (see [GL10, Corollary 7.2]), whereas the second one establishes the
smoothness and the monotony with respect to γ of the second-order moment of πγ. The
proofs of these lemmas are postponed to Section 4.C.

Lemma 15. Let π be a probability density function such that the potential f = − log(π)

satisfies the (m,+∞)-SCGL condition. Let γ̃ ≥ γ be real numbers, such that m + γ ≥ 0.
Then

W2(πγ̃, πγ) ≤
11(γ̃ − γ)√
m+ γ̃

µ2(πγ).

Lemma 16. Suppose that π has a finite fourth-order moment. Then γ 7→ µ2(πγ) is
continuously differentiable and non-increasing, when γ ∈ [0,+∞).

If we apply Lemma 15 with γ = 0 and γ̃ = α(t), then we obtain

W2(πα(t), π) ≤ 11α(t)√
m+ α(t)

µ2(π). (4.7)

This provides the desired upper bound on the second term of the right hand side of (4.6).
To bound the first term, W2(νPLD

t , πα(t)), we aim at obtaining a Gronwall-type inequality
for the function

φ(t) := W2(νPLD
t , πα(t)).

To this end, we consider an auxiliary stochastic process {L̃u : u ≥ t}, defined as a solution
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of the following stochastic differential equation

dL̃u = −
(
∇f(L̃u) + α(t)L̃u

)
du+

√
2dW u,

with the starting point L̃t = LPLD
t . This is in fact the Langevin diffusion corresponding to

the potential f(·) + α(t)‖ · ‖2
2/2. Therefore, πα(t) is the invariant distribution of L̃, and it

is (m+ α(t))-strongly log-concave. Let Qt,δ be the distribution of the random vector L̃t+δ.
The triangle inequality yields

φ(t+ δ) ≤ W2

(
νPLD
t+δ ,Qt,δ

)
+W2

(
Qt,δ, πα(t)

)
+W2

(
πα(t), πα(t+δ)

)
.

Recalling the definition of πα(t) andQt,δ, we therefore find ourselves in the case of classical
Langevin diffusion. Hence, one can apply (4.1) to get the bound

W2(Qt,δ, πα(t)) ≤ exp
(
− δ(m+ α(t))

)
W2(νPLD

t , πα(t)) = exp (−δ(m+ α(t)))φ(t).

Applying Lemma 15 to πα(t) and πα(t+δ), we get

W2

(
πα(t), πα(t+δ)

)
≤ 11(α(t)− α(t+ δ))√

m+ α(t)
µ2(πα(t+δ)).

Thus we obtain a bound for φ(t+ δ), that depends linearly on φ(t):

φ(t+ δ) ≤ W2

(
νPLD
t+δ ,Qt,δ

)
+ e−δ(m+α(t))φ(t) +

11(α(t)− α(t+ δ))√
m+ α(t)

µ2(πα(t+δ)). (4.8)

Let us subtract φ(t) from both sides of (4.8) and divide by δ:

φ(t+ δ)− φ(t)

δ
≤ 1

δ
·W2

(
νPLD
t+δ ,Qt,δ

)
+

exp (−δ(m+ α(t)))− 1

δ
· φ(t)

+
11(α(t)− α(t+ δ))

δ
√
m+ α(t)

µ2(πα(t+δ)). (4.9)

The next lemma provides an upper bound onW2

(
νPLD
t+δ ,Qt,δ

) showing that it is o(δ), when
δ → 0.

Lemma 17. For every t, δ > 0, and for every integrable function α : [t, t+ δ]→ [0,∞),

W2

(
νPLD
t+δ ,Qt,δ

)
≤
(
φ(t) + µ

1/2
2 (π)

)
exp

{
Mδ +

∫ δ

0

α(t+ u) du

}∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ds.

When δ tends to 0, according to Lemma 17, the first term of the right-hand side of (4.9)
vanishes. Thus, after passing to the limit, we are left with the following Gronwall-type
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inequality:
φ′(t) ≤ −(m+ α(t))φ(t)− 11α′(t)√

m+ α(t)
· µ2(πα(t)). (4.10)

Here we tacitly used the fact that µ2(πα(t+δ))→ µ2(πα(t)), whenever δ → 0, which is due
to the continuity of α(t) and Lemma 16. Recalling that the function β(t) is given by
β(t) =

∫ t
0

(
m+ α(s)

)
ds, one can rewrite (4.10) as

(
φ(t)eβ(t)

)′ ≤ − 11α′(t)eβ(t)√
m+ α(t)

µ2(πα(t)) ≤ −
11α′(t)eβ(t)√
m+ α(t)

µ2(π).

Therefore we infer the following bound on φ(t):

φ(t) ≤ φ(0)e−β(t) − 11µ2(π)

∫ t

0

α′(s)√
m+ α(s)

eβ(s)−β(t)ds.

Combining this bound with (4.6) and (4.7), we obtain the inequality

W2(νPLD
t , π) ≤ W2(ν0, πα(0))e

−β(t) − 11µ2(π)

∫ t

0

α′(s)eβ(s)−β(t)√
m+ α(s)

ds+
11α(t)µ2(π)√
m+ α(t)

.

Lemma 16 yields W2(ν0, πα(0)) =
√
µ2(πα(0)) ≤

√
µ2(π). This completes the proof of

Theorem 14, since the derivative of α is negative.

4.B Proof of Theorem 15
The triangle inequality for the Wasserstein distance yields

W2(νPKLDt ,P) ≤ W2(νPKLDt ,Pα(t)) +W2(Pα(t),P), (4.11)

for every t > 0. Lemma 15 yields the following bound on the second term:

W2(Pα(t),P) = W2(πα(t), π) ≤ 11α(t)√
m+ α(t)

µ2(π). (4.12)

To bound the term W2(νPKLDt ,Pα(t)) we will consider it as a function of time:

φ(t) := W2(νPKLDt ,Pα(t)).

The method to bound φ(t) is similar to the method introduced for the proof of Theorem 14.
We first bound φ(t+ δ) and then obtain a Gronwall-type bound on the derivative of φ. In
the end we apply Gronwall inequality and deduce the proof of the theorem.
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For every t we fix the drift penalty in PKLD and introduce the following the SDE:

dLu = V udu; (t-KLD)

dV u = −
(
ηV u +∇f(Lu) + α(t)Lu

)
du+

√
2ηdW u,

where u ≥ t and W is the same Brownian motion as in PKLD. Let (L̃u, Ṽ u)u≥0 and
(L′u,V

′
u)u≥0 be the solutions of (t-KLD) with following initial conditions:(

L̃0, Ṽ 0

)
=
(
LPKLD
t ,V PKLD

t

) and (L′0,V
′
0) ∼ Pα(t).

In addition we assume that the Wasserstein distance of Pα(t) and Qt,δ is attained for the
vectors (L̃0, Ṽ 0

) and (L′0,V
′
0):∥∥∥∥∥
[
L̃0 −L′0
Ṽ 0 −L′0

]∥∥∥∥∥
L2

= W2(Pα(t),Qt,δ).

Here we denote by Qt,δ, the probability distribution L(L̃δ, Ṽ δ). The triangle inequality
for Wasserstein distance yields

φ(t+ δ) ≤ W2

(
νPKLDt+δ ,Qt,δ

)
+W2

(
Qt,δ,Pα(t)

)
+W2

(
Pα(t),Pα(t+δ)

)
. (4.13)

Equation t-KLD is in fact the kinetic Langevin diffusion, which has Pα(t) as its invariant
distribution. Therefore (L′u,V

′
u) ∼ Pα(t) for all u, which implies the following inequality:

W2

(
Qt,δ,Pα(t)

)
≤
∥∥∥∥∥
[
L̃t+δ −L′t+δ
Ṽ t+δ − V ′t+δ

]∥∥∥∥∥
L2

.

To bound the right-hand side we introduce the following lemma.

Lemma 18. Let (L1,V 1) and (L2,V 2) be two solutions of (t-KLD). Then for every v ∈
(0, η/2)∥∥∥∥∥

[
L1
u −L2

u

V 1
u − V 2

u

]∥∥∥∥∥
L2

≤ 2η exp

{
(−α(t)) ∨

(
M + α(t)− η2

)
· u
η

}∥∥∥∥∥
[
L1

0 −L2
0

V 1
0 − V 2

0

]∥∥∥∥∥
L2

.

The proof of the lemma can be found in the Section 4.F.1. Thus

W2(Qt,δ,Pα(t)) ≤ 2η exp

{
(−α(t)) ∨

(
M + α(t)− η2

)δ
η

}
W2(Qt,0,Pα(t)).

Since L̃0 = LPKLD
t , we getW2(Qt,0, πα(t)) = φ(t). Due to the assumption of the theorem
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η >
√
M , which means that the argument in the exponential function is negative for all t.

In particular, since α(t)→ 0 for large values of t, we get that 2α(t) < η2 −M . Summing
up we get the following inequality:

lim sup
δ→0

1

δ

(
W2(QL

t,δ, πα(t))− φ(t)
)
≤ −2ηα(t)φ(t). (4.14)

The next lemma provides an upper bound on W2

(
νPKLD
t+δ ,Qt,δ

) showing that it is o(δ),
when δ → 0.

Lemma 19. For every t, δ > 0, and for every integrable function α : [t, t+ δ]→ [0,∞),

W2

(
νPKLD
t+δ ,Qt,δ

)
≤
(
cφ(t) + µ

1/2
2 (Pα(t))

)
exp

{∫ δ

0

G(t+ u) du

}∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ds,

where G(t+ u) := max(η + 1,M + α(t+ s)) and c is a constant that does not depend on t
and δ.

Finally, the last term of (4.13) is bounded using Lemma 15:

W2(Pα(t+δ),Pα(t)) = W2(πα(t+δ), πα(t)) ≤
11(α(t)− α(t+ δ))√

m+ α(t)
µ2(πα(t+δ)).

Thus
lim sup
δ→0

1

δ
W2(Pα(t+δ),Pα(t)) ≤

11|α′(t)|√
m+ α(t)

µ2(πα(t)). (4.15)

Combining (4.13), (4.14), Lemma 19 and (4.15) we get the following equality:

φ′(t) = lim
δ→0

1

δ

(
φ(t+ δ)− φ(t)

)
≤ −2ηα(t)φ(t)− 11α′(t)√

m+ α(t)
· µ2(πα(t)).

Recalling that the function β(t) is the antiderivative of 2ηα(t),

β(t) =

∫ t

0

(
√
M + α(u)−

√
M −m)

(
2M −m+ α(u)

M −m

)1/2

du,

we deduce
(
φ(t)eβ(t)

)′ ≤ − 11α′(t)eβ(t)√
m+ α(t)

µ2(πα(t)) ≤
11|α′(t)|eβ(t)√
m+ α(t)

µ2(π).
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The latter is true due to Lemma 16. Therefore we infer the following bound on φ(t):

φ(t) ≤ φ(0)e−β(t) + 11µ2(π)

∫ t

0

|α′(s)|√
m+ α(s)

eβ(s)−β(t)ds.

Combining this bound with (4.11) and (4.12), we obtain the inequality

W2(νPKLDt ,P) ≤ W2(νPKLD0 ,Pα(0))e
−β(t) + 11µ2(P)

∫ t

0

|α′(s)|eβ(s)−β(t)√
m+ α(s)

ds+
11α(t)µ2(P)√
m+ α(t)

.

This completes the proof.

4.C Proofs of the lemmas used in Theorem 14

4.C.1 Proof of Lemma 15

We denote by DKL(πγ||πγ̃) the Kullback-Leibler divergence between the distributions πγ
and πγ̃. Since πγ̃ is (m+ γ̃)-strongly log-concave, the transportation cost inequality [GL10,
Corollary 7.2] yields

W 2
2 (πγ̃, πγ) ≤

2

m+ γ̃
DKL(πγ||πγ̃). (4.16)

Let us denote by cγ the logarithm of the normalizing constant for πγ so that πγ(θ) =

exp(−f(θ)− (1/2)γ‖θ‖2
2 + cγ). Similarly, we denote by cγ̃ the logarithm of the normalizing

constant of πγ̃. This readily yields

DKL(πγ||πγ̃) =

∫
Rp
πγ(θ) log

(
πγ(θ)

πγ̃(θ)

)
dθ

=

∫
Rp
πγ(θ)

(
1/2(γ̃ − γ)‖θ‖2

2 + cγ − cγ̃
)
dθ

= 1/2(γ̃ − γ)µ2(πγ) + cγ − cγ̃.

Using the inequality e−x ≤ 1− x+ (1/2)x2 for all x > 0 implies the following upper bound
on cγ − cγ̃:

cγ − cγ̃ = log

(∫
Rp
πγ(θ) exp

(
1/2(γ − γ̃)‖θ‖2

2

)
dθ

)
≤ log

(
1 + 1/2(γ − γ̃)µ2(πγ) + 1/8(γ − γ̃)2µ4(πγ)

)
.
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Since log(1 + x) ≤ x for x > −1 we get

DKL(πγ||πγ̃) ≤ 1/8(γ − γ̃)2µ4(πγ).

Since m+ γ ≥ 0, the distribution πγ is log-concave. Thus, in view of [DRDK19, Remark
3], we have the inequality µ4(πγ) ≤ 442µ2

2(πγ). Finally, combining these bounds with
(4.16), we get

W2(πγ̃, πγ) ≤
√

2

m+ γ̃
× (γ̃ − γ)µ

1/2
4 (πγ)√
8

≤ 11µ2(πγ)√
m+ γ̃

(γ̃ − γ).

This completes the proof of the lemma.

4.C.2 Proof of Lemma 16

For k ∈ N ∪ {0}, define

hk(γ) =

∫
Rp
‖θ‖k2 exp

(
−f(θ)− γ‖θ‖2

2/2
)
dθ.

If π ∈ Pk(Rp) then the function hk is continuous on [0; +∞). Indeed, if the sequence
{γn}n converges γ0, when n → +∞, then the function ‖θ‖k2 exp (−f(θ)− (1/2)γn‖θ‖2

2)

is upper-bounded by ‖θ‖k2 exp (−f(θ)). Thus in view of the dominated convergence
theorem, we can interchange the limit and the integral. Since, by definition,

µk(πγ) =
hk(γ)

h0(γ)
,

we get the continuity of µ2(πγ) and µ4(πγ). Let us now prove that hk(t) is continuously
differentiable, when π ∈ Pk+2(Rp). The integrand function in the definition of hk is
a continuously differentiable function with respect to t. In addition, its derivative is
continuous and is as well integrable on Rp, as we supposed that π has the (k + 2)-th
moment. Therefore, Leibniz integral rule yields the following

h′k(γ) = −1

2

∫
Rp
‖θ‖k+2

2 exp
(
−f(θ)− γ‖θ‖2

2/2
)
dθ = −1

2
hk+2(t).

The latter yields the smoothness of hk. Finally, in order to prove the monotony of µ2(πγ),
we will simply calculate its derivative

(µ2(πγ))
′ = − 1

2h0(γ)
h4(γ)− h′0(γ)

h0(γ)2
h2(γ)

=
1

2

(
µ2

2(πγ)− µ4(πγ)
)
.
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Since the latter is always negative, this completes the proof of the lemma.

4.C.3 Proof of Lemma 17

From the definition of Wasserstein distance, we have

W2

(
νPLD
t+δ ,Qt,δ

)
≤ ‖L̃t+δ −LPLD

t+δ‖L2 .

In view of the definition of the process L̃, we can write

L̃t+δ −LPLD
t+δ =

∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s) + α(s)LPLD
s − α(t)L̃s

)
ds.

Therefore we have

‖L̃t+δ −LPLD
t+δ‖L2 ≤

∥∥∥∥∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s)
)
ds︸ ︷︷ ︸

:=T1

∥∥∥∥
L2

+

∥∥∥∥∫ t+δ

t

(
α(s)LPLD

s − α(t)L̃s

)
ds︸ ︷︷ ︸

:=T2

∥∥∥∥
L2

.

Now let us analyze these two terms separately. We start with T1:

‖T1‖L2 =

∥∥∥∥∫ t+δ

t

(
∇f(LPLD

s )−∇f(L̃s)
)
ds

∥∥∥∥
L2

≤
∫ t+δ

t

∥∥∥∇f(LPLD
s )−∇f(L̃s)

∥∥∥
L2

ds

≤M

∫ t+δ

t

‖LPLD
s − L̃s‖L2ds.

These are due to the Minkowskii inequality and the Lipschitz continuity of the gradient.
In order to bound the second term T2, we will add and subtract the term α(t + s)L̃t+s.
Similar to the case above, we get the following upper bound:

‖T2‖L2 ≤
∫ t+δ

t

α(s)
∥∥LPLD

s − L̃s
∥∥
L2
ds+

∫ t+δ

t

∣∣α(s)− α(t)
∣∣ ∥∥L̃s∥∥L2

ds

=

∫ δ

0

α(t+ s)
∥∥LPLD

t+s − L̃t+s
∥∥
L2
ds+

∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ∥∥L̃t+s∥∥L2

ds.

Recall that L̃t+s is the solution of Langevin SDE with an (m + α(t))-strongly convex
potential function, and Qt,s is its distribution on Rp. Thus, the triangle inequality yields∥∥L̃t+s∥∥L2

= W2(Qt,s, δ0) ≤ W2(Qt,s, πα(t)) +W2(πα(t), δ0)
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and applying the strong-convexity of fα(t) we have
∥∥L̃t+s∥∥L2

≤ W2(νPLD
t , πα(t)) exp(−ms− α(t)s) +

√
µ2(πα(t)) ≤ Vt

Summing up, we have

∥∥LPLD
t+δ − L̃t+δ

∥∥
L2
≤
∫ δ

0

(
M + α(t+ s)

)
‖LPLD

t+s − L̃t+s‖L2ds+ α̃t(δ)Vt,

where α̃t(δ) is an auxiliary function defined as

α̃t(δ) :=

∫ δ

0

|α(t+ s)− α(t)| ds.

Now let us define Φ(s) = ‖LPLD
t+s − L̃t+s‖L2. The last inequality can be rewritten as

Φ(δ) ≤
∫ δ

0

(
M + α(t+ s)

)
Φ(s) ds+ α̃t(δ)Vt.

The (integral form of the) Gronwall inequality, lemma 21, implies that

Φ(δ) ≤ Vt

∫ δ

0

α̃t(s)
(
M + α(t+ s)

)
e
∫ δ
s (M+α(t+u)) du ds+ α̃t(δ)Vt

= Vt

∫ δ

0

α̃′t(s) e
∫ δ
s (M+α(t+u)) du ds

≤ Vt α̃t(δ) exp

{
Mδ +

∫ δ

0

α(t+ u) du

}
.

This completes the proof.

4.C.4 Different forms of the Gronwall inequality

In this section, we provide two forms of the Gronwall inequality that are used in the
present work. For the sake of the self-containedness, the proofs of these inequalities are
also provided.

Lemma 20 (Differential form). Let A : [a, b]→ R and B : [a, b]→ R be two functions. If
the function Φ : [a, b]→ R satisfies the recursive differential inequality

Φ′(x) ≤ A(x)Φ(x) +B(x), ∀x ∈ [a, b], (4.17)
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then it also satisfies the inequality

Φ(x) ≤ Φ(a) exp

{∫ x

a

A(z) dz

}
+

∫ x

a

B(s) exp

{∫ x

s

A(z) dz

}
ds, ∀x ∈ [a, b].

Proof. To ease notation, we set E(x) = exp{−
∫ x
a
A(z) dz}. By multiplying both sides of

(4.17) by E(x), we get(
Φ(x)E(x)

)′
≤ B(x)E(x), ∀x ∈ [a, b].

Integrating this inequality, we arrive at

Φ(x)E(x) ≤ Φ(a)E(a) +

∫ x

a

B(s)E(s) ds.

Dividing both sides of this inequality by E(x) > 0 and taking into account that E(a) = 1,
we get the claim of the lemma.

Lemma 21 (Integral form). Let A : [a, b]→ [0,+∞) and B : [a, b]→ R be two functions.
If the function Φ : [a, b]→ R satisfies the recursive integral inequality

Φ(x) ≤
∫ x

a

A(s)Φ(s) ds+B(x), ∀x ∈ [a, b],

then it also satisfies the inequality

Φ(x) ≤
∫ x

a

A(s)B(s) exp

{∫ x

s

A(z) dz

}
ds+B(x), ∀x ∈ [a, b]. (4.18)

Proof. We set

Ψ(x) = exp

{
−
∫ x

a

A(z) dz

}∫ x

a

A(s)Φ(s) ds.

We have

Ψ′(x) = −A(x)Ψ(x) + exp

{
−
∫ x

a

A(z) dz

}
A(x)Φ(x)

≤ −A(x)Ψ(x) + exp

{
−
∫ x

a

A(z) dz

}
A(x)

(∫ x

a

A(s)Φ(s) ds+B(x)
)

= −A(x)Ψ(x) + A(x)Ψ(x) + A(x)B(x) exp

{
−
∫ x

a

A(z) dz

}
.

Therefore,
Ψ(x) ≤ Ψ(a) +

∫ x

a

A(s)B(s) exp

{
−
∫ s

a

A(z) dz

}
ds.
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Replacing Ψ by its expression and using the fact that Ψ(a) = 0, we get

exp

{
−
∫ x

a

A(z) dz

}∫ x

a

A(s)Φ(s) ds ≤
∫ x

a

A(s)B(s) exp

{
−
∫ s

a

A(z) dz

}
ds.

This implies that∫ x

a

A(s)Φ(s) ds ≤
∫ x

a

A(s)B(s) exp

{∫ x

s

A(z) dz

}
ds.

Combining this inequality with (4.18), we get the claim of the lemma.

4.D Proof of Proposition 17

For the penalty factor α(t) = 1/(A+ 2t), we get β(t) =
∫ t

0
α(s) ds = (1/2) log

(
1 + (2/A)t

).
This implies that

√
µ2(π) e−β(t) + 11µ2(π)

√
α(t) =

√
Aµ2(π) + 11µ2(π)√

A+ 2t
.

Finally, the middle term in the right hand side of (4.2) takes the form

11µ2(π)

∫ t

0

|α′(s)|√
α(s)

eβ(s)−β(t)ds =
11µ2(π)√
A+ 2t

∫ t

0

2

A+ 2s
ds

=
11µ2(π)√
A+ 2t

log (1 + (2/A)t).

Combining these relations, we get the claim of the proposition.

4.E (Weakly) convex potentials: what is known and what
we can hope for

Many recent papers investigated the case of strongly convex potential; this case is now
rather well understood. Let us briefly summarize here some facts and conjectures that
can shed some light on the broader case of weakly convex potential. This might help to
understand what can be expected to be proved in the framework studied in this work.

The ergodicity properties of the Langevin process are closely related to such notions of
functional analysis as the spectral gap, the Poincaré and the log-Sobolev inequalities. Thus,
the generator of a Markov semi-group associated with an m-strongly convex potential
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has a spectral-gap CSG at least equal to m. This property was exploited by [Dal17b]
to derive guarantees on the LMC algorithm. It is known that the spectral gap exists
if and only if the invariant density satisfies the Poincaré inequality. Furthermore, the
spectral gap is equal to the inverse of the Poincaré constant CP. Furthermore, distributions
associated to m-strongly convex potentials satisfy the log-Sobolev inequality with the
constant CLS ≤ 1/m. This property was used by [? ] to extend the guarantees to the
Wasserstein-2 distance.

Note that the log-Sobolev inequality is stronger than the Poincaré inequality and
CP ≤ CLS. For m-strongly convex potentials, we have C−1

SG = CP ≤ CLS ≤ 1/m. Results
in [Dal17b? ] imply that in order to get a Wasserstein distance smaller than ε

√
p/m,

it suffices to perform a number of LMC iterations proportional to (M/m)2ε−2, up to
logarithmic factors. A formal proof of the fact that the same result holds for the densities
satisfying the log-Sobolev inequality with constant 1/m (but which are not necessarily
m-strongly log-concave) was given in [VW19].

On the other hand, it was established by [Bob99] that any log-concave distribution
satisfies the Poincaré inequality. However, the Poincaré constant might depend on the
dimension. In [KLS95], the authors conjectured that there is a universal constant CKLS > 0

such that for any log-concave distribution π on Rp,

CP ≤ CKLS‖Eπ[XX>]‖op := CKLSµop(π). (KLS)

Despite important efforts made in recent years (see [AGB15, CG18]), this conjecture
is still unproved. Finally, in the recent paper [CLGL+20], Corollary 4 establishes that
W2(µLD

t , π) ≤
√

2CPχ2(ν0||π) e−t/CP. While the exponential in t convergence to zero is a
very appealing property of this result, it comes with two shortcomings. To the previously
mentioned difficulty of assessing the Poincaré constant, one has to add the challenging
problem of finding a meaningful upper bound on the χ2-divergence between the initial
distribution and the target.

What can we hope for in the light of the previous discussion? As shown in [Dal17b,
Lemma 5], for f satisfying (m,M)-SCGL, choosing ν0 = N (x∗,M

−1Ip) yields χ2(ν0‖π) ≤
(M/m)p/2. In the case m = 0, it might be possible to replace m by 1/CP in this result. If in
addition, we admit inequality KLS, then we get

W 2
2 (µLD

t , π) ≤ 2CP (MCP)p/2e−2t/CP

≤ 2CKLSµop(π)
(
MCKLSµop(π)

)p/2
e−2t/CKLSµop(π).

This is, probably, the best upper bound one could hope for in the general log-concave
setting by Langevin diffusion based algorithms. We see that it has three drawbacks as
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compared to our result stated in Proposition 17. First, it requires the knowledge of a
minimizer x∗. Second, it involves the Lipschitz constant M of the gradient. Third, it is
heavily based on CKLS, which might be very large.

4.F Proofs of the lemmas used in Theorem 15

4.F.1 Proof of Lemma 18

We define an auxiliary random vector (ψt, zt) in R2p in the following manner:(
ψt

zt

)
=

(
λ+Ip Ip

−λ−Ip −Ip

)
︸ ︷︷ ︸

:=A

·
(
L1
t −L2

t

V 1
t − V 2

t

)
,

where λ+ and λ− are two positive numbers such that λ+ + λ− = η and λ+ > λ−. Taylor’s
theorem in its integral form yields

∇f
(
L1
t

)
−∇f

(
L2
t

)
= Ht

(
L1
t −L2

t

)
withHt ,

∫ 1

0
∇2f

(
L1
t − x

(
L1
t −L2

t

))
dx. Since (L1,V 1) and (L2,V 2

) satisfy the (t-KLD),
combining with the equality above we obtain

d

dt
ψt = −η

(
V 1

t − V 2
t

)
−
(
∇f

(
L1
t

)
−∇f

(
L2
t

))
+ λ+

(
V 1

t − V 2
t

)
=

(λ+ − η) (λ−ψt + λ+zt)

λ− − λ+

− Ht (ψt + zt)

λ+ − λ−

=

(
λ2
−I−Ht

)
ψt + (λ−λ+I−Ht) zt

λ+ − λ−

In the above inequalities, we have used that λ+ − η = −λ−. Similar computations yield

d

dt
zt = η

(
V 1

t − V 2
t

)
+
(
∇f

(
L1
t

)
−∇f

(
L2
t

))
− λ−

(
V 1

t − V 2
t

)
=

(η − λ−) (λ−ψt + λ+zt)

λ− − λ+

+
Ht (ψt + zt)

λ+ − λ−

=
(Ht − λ−λ+I)ψt +

(
Ht − λ2

+I
)
zt

λ+ − λ−
.
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From these equations, we deduce that

d

dt

∥∥∥∥∥
[
ψt

zt

]∥∥∥∥∥
2

2

= 2ψ>t
dψt
dt

+ 2z>t
dzt
dt

=
2

λ+ − λ−
{
ψ>t
(
λ2
−I−Ht

)
ψt + z>t

(
Ht − λ2

+I
)
zt
}

≤ 2

λ+ − λ−
{(
λ2
− −m− α(t)

)
‖ψt‖2

2 +
(
M + α(t)− λ2

+

)
‖zt‖2

2

}
≤ 2

{(
λ2
− −m− α(t)

)
∨
(
M + α(t)− λ2

+

)}
λ+ − λ−

∥∥∥∥∥
[
ψt

zt

]∥∥∥∥∥
2

2

Thus applying Grownwall inequality, we have the following:∥∥∥∥∥
[
ψt

zt

]∥∥∥∥∥
2

≤ exp

{(
λ2
− −m− α(t)

)
∨
(
M + α(t)− λ2

+

)
λ+ − λ−

t

}∥∥∥∥∥
[
ψ0

z0

]∥∥∥∥∥
2

, ∀t ≥ 0.

On the other hand ∥∥∥∥∥
[
L1
t −L2

t

V 1
t − V 2

t

]∥∥∥∥∥
L2

≤ ‖A‖2

∥∥∥∥∥
[
ψt

zt

]∥∥∥∥∥
2

,

which yields the following inequality:∥∥∥∥∥
[
L1
t −L2

t

V 1
t − V 2

t

]∥∥∥∥∥
L2

≤ ‖A‖2‖A−1‖2 exp

{(
λ2
− − α(t)

)
∨
(
M + α(t)− λ2

+

)
λ+ − λ−

t

}∥∥∥∥∥
[
L1

0 −L2
0

V 1
0 − V 2

0

]∥∥∥∥∥
L2

.

The next technical lemmas gives an upper bound for ‖A‖2‖A−1‖2.

Lemma 22. For every λ+ > λ− > 0, such that λ+ + λ− > 2 the following inequality is true∥∥∥∥∥
(
λ+Ip Ip

−λ−Ip −Ip

)∥∥∥∥∥
2

×

∥∥∥∥∥∥
(
λ+Ip Ip

−λ−Ip −Ip

)−1
∥∥∥∥∥∥

2

≤ 2(λ+ + λ−)2

λ+ − λ−
.

This lemma yields the inequality below:∥∥∥∥∥
[
L1
t −L2

t

V 1
t − V 2

t

]∥∥∥∥∥
L2

≤ 2η2

η − 2λ−
exp

{(
λ2
− −m− α(t)

)
∨ (M + α(t)− (η − λ−)2)

η − 2λ−
t

}∥∥∥∥∥
[
L1

0 −L2
0

V 1
0 − V 2

0

]∥∥∥∥∥
L2

.

The right-hand side of the inequality is an increasing function of λ−, as λ− ∈ [0, η/2).
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Therefore∥∥∥∥∥
[
L1
t −L2

t

V 1
t − V 2

t

]∥∥∥∥∥
L2

≤ 2η exp

{
(−m− α(t)) ∨

(
M + α(t)− η2

) t
η

}∥∥∥∥∥
[
L1

0 −L2
0

V 1
0 − V 2

0

]∥∥∥∥∥
L2

.

4.F.2 Proof of Lemma 19

Proof. From the definition of Wassertein distance and triangle inequality, we have

W2

(
νPKLD
t+δ ,Qt,δ

)
≤ ‖Lt+δ − L̃t+δ‖L2 + ‖V t+δ − Ṽ t+δ‖L2 := Φ(δ).

Since the processes (L,V ) and (L̃, Ṽ ) have the same Gaussian noise, then using the
formulas (PKLD) and (t-KLD), we obtain

Φ(δ) ≤ (η + 1)

∥∥∥∥∫ δ

0

[
V t+s − Ṽ t+s

]
ds

∥∥∥∥
L2

+

∥∥∥∥∫ δ

0

[
∇f(Lt+s)−∇f(L̃t+s) + α(t+ s)Lt+s − α(t)L̃t+s

]
ds

∥∥∥∥
L2

.

Since the gradient of f isM -Lipschitz continuous, adding and substracting α(t+s)L̃t+s

in the integral we get the following inequality:
Φ(δ) ≤ (η + 1)

∫ δ

0

∥∥∥V t+s − Ṽ t+s

∥∥∥
L2

ds+

∫ δ

0

(M + α(t+ s))
∥∥∥Lt+s − L̃t+s∥∥∥

L2

ds

+

∫ δ

0

|α(t+ s)− α(t)|
∥∥∥L̃t+s∥∥∥

L2

ds.

Thus,

Φ(δ) ≤
∫ δ

0

max
(
η + 1,M + α(t+ s)

)
Φ(s)ds+

∫ δ

0

|α(t+ s)− α(t)|
∥∥∥L̃t+s∥∥∥

L2

ds.

Let us show now, that ‖Lt+s‖L2
is bounded by a constant that does not depend on

s. In order to do that we express the L2-norm of the random vector as the Wasserstein
distance between Dirac measure and its distribution:∥∥∥L̃t+s∥∥∥

L2

≤
∥∥∥(L̃t+s, Ṽ t+s)

∥∥∥
L2

= W2(Qt,s, δ0) ≤ W2(Qt,s,Pα(t)) +W2(Pα(t), δ0).

As we know from [DRD20][Theorem 1], the Wasserstein error at the moment s is bounded
by the initial error at moment 0: W2(Qt,s,Pα(t)) ≤ c×W2(Qt,0,Pα(t)). Here c is a constant
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that depends neither on t nor on s. Therefore∥∥∥L̃t+s∥∥∥
L2

≤ cW2(Qt,0,Pα(t)) +W2(Pα(t), δ0)

= cW2(νPKLD
t ,Pα(t)) +

(
µ2(Pα(t))

)1/2
.

We define the right hand side of the last inequality as Vt. Summing up, we get the
following recurrent inequality for the function Φ(δ):

Φ(δ) ≤
∫ δ

0

max
(
η + 1,M + α(t+ s)

)
Φ(s)ds+ Vt

∫ δ

0

|α(t+ s)− α(t)|ds.

Finally, applying Gronwall’s inverse inequality we conclude the proof.

4.F.3 Proof of Lemma 22

We need to prove that

‖A‖ ‖A−1‖ ≤ 2(λ+ + λ−)2

λ+ − λ−
, where A =

(
λ+Ip Ip

−λ−Ip −Ip

)
.

Let us first notice that applying a simple permutation of rows and columns the matrix A
becomes a block matrix. Indeed,

‖A‖ =

∥∥∥∥∥∥∥∥∥∥∥


B 02 . . . 02

02 B

... . . . ...
02 . . . B



∥∥∥∥∥∥∥∥∥∥∥
, where B =

(
λ+ 1

−λ− −1

)
.

Therefore ‖A‖ ≤ ‖B‖. Similarly one can check that ‖A−1‖ ≤ ‖B−1‖. Let us bound these
two norms separately. In order to find the eigenvalues of BTB we have to solve the
following quadratic equation:

(x− 2)
(
x− (λ2

+ + λ2
−)
)
x = (λ+ + λ−)2.

We see that for the value of x0 = 2(λ+ + λ−)2 the quadratic function is larger than the
right-hand side. In addition we notice that x0 is larger than both roots of the left-hand
side, thus the solution x bounded by x0. The latter yields that ‖B‖ ≤

√
2(λ+ + λ−).
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Similarly one can verify that ‖B−1‖ ≤
√

2(λ++λ−)/(λ+−λ−). Therefore

‖A‖‖A−1‖ ≤ ‖B‖‖B−1‖ ≤ 2(λ+ + λ−)2

(λ+ − λ−)
.

This concludes the proof.

4.G Penalized Gradient Flow

4.G.1 Proof of Theorem 16

We recall that for every γ ∈ R, is given by fγ(·) := f(·) + γ‖ · ‖2
2/2. We define x(γ) the

minimum point of fγ. In particular, x0 = x∗. The triangle inequality yields

‖XPGF
t − x∗‖2 ≤ ‖XPGF

t − xα(t)‖2 + ‖xα(t) − x0‖2 (4.19)

for every t > 0. We will bound these two terms separately. A(A, q) for γ = 0 and γ̃ = α(t)

yields the following bound on the second term:

‖xα(t) − x0‖2 ≤ Dα(t)1−q.

To bound the first term of (4.19), we aim at obtaining a Gronwall-type inequality for the
function

φ(t) := ‖XPGF
t − xα(t)‖2.

To this end, we consider an auxiliary stochastic process {X̃u : u ≥ t}, defined as a solution
of the following differential equation

dX̃u = −
(
∇f(X̃u) + α(t)X̃u

)
du,

with the starting point X̃ t = X t. This is in fact the gradient flow corresponding to the
strongly-convex potential fα(t). The triangle inequality yields

φ(t+ δ) ≤
∥∥∥XPGF

t+δ − X̃ t+δ

∥∥∥
2

+
∥∥∥X̃ t+δ − xα(t)

∥∥∥
2

+
∥∥xα(t) − xα(t+δ)

∥∥
2
.

From the linear convergence of the gradient flow of an α(t)-strongly convex function, we
get the following:∥∥∥XPGF

t+δ − xα(t)

∥∥∥
2
≤ exp

(
− δα(t)

) ∥∥∥X̃ t − xα(t)

∥∥∥
2

= exp (−δα(t))φ(t).
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In order to bound the distance between xα(t) and xα(t+δ), we use again A(A, q) condition,
thus ∥∥xα(t) − xα(t+δ)

∥∥
2
≤ D

αq(t)
(α(t)− α(t+ δ))‖x∗‖2.

Thus we obtain a bound for φ(t+ δ), that depends linearly on φ(t):

φ(t+ δ) ≤
∥∥∥XPGF

t+δ − X̃ t+δ

∥∥∥
2

+ e−δα(t)φ(t) +
D

αq(t)
(α(t)− α(t+ δ))‖x∗‖2. (4.20)

Let us subtract φ(t) from both sides of (4.20) and divide by δ:

φ(t+ δ)− φ(t)

δ
≤ 1

δ
·
∥∥∥XPGF

t+δ − X̃ t+δ

∥∥∥
2

+
exp (−δα(t))− 1

δ
· φ(t) (4.21)

+
D(α(t)− α(t+ δ))

δαq(t)
‖x∗‖2.

The next lemma provides an upper bound on
∥∥∥XPGF

t+δ − X̃ t+δ

∥∥∥
2
showing that it is o(δ),

when δ → 0.

Lemma 23. Suppose f satisfies (m,M)-SCGL with m = 0. Then for every t, δ > 0, and for
every integrable function α : [t, t+ δ]→ [0,∞),

‖X̃ t+δ −XPGF
t+δ ‖2 ≤

(
φ(t) + ‖xα(t)‖2

)
exp

{
Mδ +

∫ δ

0

α(t+ u) du

}∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ds.

The proof can be found in the Section 4.G.2. When δ tends to 0, according to Lemma 23,
the first term of the right-hand side of (4.21) vanishes. Thus, after passing to the limit,
we are left with the following Gronwall-type inequality:

φ′(t) ≤ −α(t)φ(t)− Dα′(t)

αq(t)
· ‖x∗‖2. (4.22)

Here we tacitly used the fact that ‖xα(t+δ)‖2 ≤ ‖x0‖2. Recalling that the function β(t) is
given by β(t) =

∫ t
0
α(s)ds, one can rewrite (4.22) as

(
φ(t)eβ(t)

)′ ≤ −Dα′(t)eβ(t)

αq(t)
‖x∗‖2.

Therefore we infer the following bound on φ(t):

φ(t) ≤ φ(0)e−β(t) − D‖x∗‖2

∫ t

0

α′(s)

αq(s)
eβ(s)−β(t)ds.
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Combining this bound with (4.7), we obtain the inequality

‖XPGF
t −x0‖2 ≤ ‖XPGF

0 −x(α(0))‖2e
−β(t)−D‖x∗‖2

∫ t

0

α′(s)

αq(s)
eβ(s)−β(t)ds+D‖x∗‖2α(t)1−q.

Since the process starts at point 0, ‖XPGF
0 −x(α(0))‖2 = ‖xα(0)‖2. The next lemma bounds

‖xα(0)‖2.

Lemma 24. The function γ 7→ ‖x(γ)‖2 is a non-increasing continuous function on the
interval [0,∞).

Therefore, ‖xα(0)‖2 ≤ ‖x0‖2 = ‖x∗‖2, which completes the proof of Theorem 16.

4.G.2 Proof of Lemma 23

From the definition of X̃, we can write

X̃ t+δ −XPGF
t+δ =

∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s) + α(s)XPGF
s − α(t)X̃s

)
ds.

Therefore we have

‖X̃ t+δ−XPGF
t+δ ‖2 ≤

∥∥∥∥∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s)
)
ds︸ ︷︷ ︸

:=T1

∥∥∥∥
2

+

∥∥∥∥∫ t+δ

t

(
α(s)XPGF

s − α(t)X̃s

)
ds︸ ︷︷ ︸

:=T2

∥∥∥∥
2

.

Now let us analyze these two terms separately. We start with T1:

‖T1‖2 =

∥∥∥∥∫ t+δ

t

(
∇f(XPGF

s )−∇f(X̃s)
)
ds

∥∥∥∥
2

≤
∫ t+δ

t

∥∥∥∇f(XPGF
s )−∇f(X̃s)

∥∥∥
2
ds

≤M

∫ t+δ

t

‖XPGF
s − X̃s‖2ds.

These are due to the Minkowskii inequality and the Lipschitz continuity of the gradient.
In order to bound the second term T2, we will add and subtract the term α(t+ s)X̃ t+s.
Similar to the case above, we get the following upper bound:

‖T2‖2 ≤
∫ t+δ

t

α(s)
∥∥XPGF

s − X̃s

∥∥
2
ds+

∫ t+δ

t

∣∣α(s)− α(t)
∣∣ ∥∥X̃s

∥∥
2
ds

=

∫ δ

0

α(t+ s)
∥∥XPGF

t+s − X̃ t+s

∥∥
2
ds+

∫ δ

0

∣∣α(t+ s)− α(t)
∣∣ ∥∥X̃ t+s

∥∥
2
ds.
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Recall that X̃ t+s is the gradient flow of an (m+ α(t))-strongly convex potential function.
Thus, the triangle inequality yields∥∥X̃ t+s

∥∥
2
≤
∥∥X̃ t+s − x(t)

∥∥
2

+ ‖x(t)‖2

≤
∥∥X̃ t − x(t)

∥∥
2

exp(−ms− α(t)s) + ‖x(t)‖2

≤
∥∥XPGF

t − x(t)
∥∥

2
+ ‖x(t)‖2 := Vt.

Summing up, we have

∥∥XPGF
t+δ − X̃ t+δ

∥∥
2
≤
∫ δ

0

(
M + α(t+ s)

)
‖XPGF

t+s − X̃ t+s‖2ds+ α̃t(δ)Vt,

where α̃t(δ) is an auxiliary function defined as

α̃t(δ) :=

∫ δ

0

|α(t+ s)− α(t)| ds.

Now let us define Φ(s) = ‖XPGF
t+s − X̃ t+s‖L2. The last inequality can be rewritten as

Φ(δ) ≤
∫ δ

0

(
M + α(t+ s)

)
Φ(s) ds+ α̃t(δ)Vt.

The (integral form of the) Gronwall inequality implies that

Φ(δ) ≤ Vt

∫ δ

0

α̃t(s)
(
M + α(t+ s)

)
e
∫ δ
s (M+α(t+u)) du ds+ α̃t(δ)Vt

= Vt

∫ δ

0

α̃′t(s) e
∫ δ
s (M+α(t+u)) du ds

≤ Vt α̃t(δ) exp

{
Mδ +

∫ δ

0

α(t+ u) du

}
.

This completes the proof.

4.G.3 Proof of Lemma 24

Suppose that γ1 < γ2. Let us show that ‖x(γ1)‖2 > ‖x(γ2)‖2. Let us consider the function
fγ2. We have that

fγ2(x(γ2)) ≤ fγ2(x(γ1)) = f(x(γ1)) + γ2‖x(γ1)‖2/2.
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The definition of fγ1 yields

fγ2(x(γ2)) ≤ fγ1(x(γ1)) + (γ2 − γ1)‖x(γ1)‖2/2

≤ fγ1(x(γ2)) + (γ2 − γ1)‖x(γ1)‖2/2

≤ fγ2(x(γ2)) + (γ2 − γ1)
(
‖x(γ1)‖2 − ‖x(γ2)‖2

)
/2.

Here the second passage is valid, as x(γ1) is the minimum point of fγ1 . Since γ2 > γ1, the
difference ‖x(γ1)‖2 − ‖x(γ2)‖2 is positive. Thus the monotony is proved.
To prove the continuity of the function we take a sequence γn that tends to γ0 and show
that xγn → xγ0 . Assumption A(D, q) yields

‖xγn − xγ0‖2 ≤
D

max(γn, γ0)q
|γn − γ0|‖x∗‖2, ∀n ∈ N.

Since q < 1, the ratio of |γn − γ0| and max(γn, γ0)q tends to zero, when n → 0. This
concludes the proof.

4.H Examples of functions satisfying condition A(D, q)

In this section we consider several functions that are convex but not strongly convex and
satisfy A(D, q) condition presented in Section 4.3.

4.H.1 Locally strongly convex functions

We prove that locally strongly convex functions satisfy A(D, 0). Recalling Lemma 24
we get that ‖xγ‖2 ≤ ‖x∗‖2. Thus the we can consider the function only on B(0, ‖x∗‖2).
Since f is locally strongly convex, there exists m∗ such that it is m∗-strongly convex in
the ball B(0, ‖x∗‖2). The latter means, that fγ̃ is (m∗ + γ̃)-strongly convex. Therefore
[Nes04][Theorem 2.1.9] yields the following:

‖xγ − xγ̃‖2 ≤
1

m∗ + γ̃
‖∇fγ̃(xγ)−∇fγ̃(xγ̃)‖2.

Using the optimality condition for differentiable functions one gets ∇fγ̃(xγ) = (γ̃ − γ)xγ

for all γ ≥ 0. Therefore, for every 0 ≤ γ < γ̃, we obtain

‖xγ − xγ̃‖2 ≤
1

m∗ + γ̃
‖(γ̃ − γ)xγ‖2 ≤

γ̃ − γ
m∗
‖xγ‖2.

The latter is true due to Lemma 24. Thus f satisfies A(1/m∗, 0).
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4.H.2 Cubic function f(x) = ‖x− x∗‖3
2

In this sectionwe show that the cubic function satisfiesA(1/
√

3‖x∗‖2, 1/2). It is straightforward
to verify that the function f is convex. fγ is strongly convex and the optimality condition
for xγ yields the following equality:

∇f(xγ) + γxγ = 3‖xγ − x∗‖2(xγ − x∗) + γxγ = 0. (4.23)

In the case when x∗ = 0, the penalized minimum point xγ equals 0, for every γ, thus
we suppose in the following that x∗ 6= 0. Since the norm is scalar, (4.23) yields that the
vectors xγ − x∗ and xγ are co-linear. Therefore there exists a real number λγ such that
xγ = λγx∗. Lemma 24 implies that |λγ| ≤ 1, thus the following quadratic equality is true:

−3‖x∗‖2(λγ − 1)2x∗ + γλγx∗ = 0. (4.24)

As said in the beginning, x∗ 6= 0, therefore it its coefficient that is equal to zero. Solving
the quadratic equation with respect to λγ, we get the following formula:

λγ = 1− γ

γ/2 +
√

3γ‖x∗‖2 + γ2/4
.

According to Lemma 24, for every γ̃ > γ, we have |λγ| > |λγ̃|. On the other hand, from
(4.24) one deduces that λγ > 0, for every γ > 0. Thus, inserting the found value for λγ,
we obtain the following inequality:

‖xγ − xγ̃‖2 = ‖x∗‖2

(
γ̃

γ̃/2 +
√

3γ̃‖x∗‖2 + γ̃2/4
− γ

γ/2 +
√

3γ‖x∗‖2 + γ2/4

)

≤ (γ̃ − γ)‖x∗‖2

γ̃/2 +
√

3γ̃‖x∗‖2 + γ̃2/4
≤ (γ̃ − γ)‖x∗‖2√

3γ̃‖x∗‖2

.

Therefore f satisfies A(1/
√

3‖x∗‖2, 1/2).

4.H.3 Power function f(x) = ‖x− x∗‖a2

For a ≥ 2, we consider the function f(x) = ‖x − x∗‖a2. We show here that f satisfies
A((1/a‖x∗‖a−2

2 )1/(a−1), (a−2)/(a−1)). Since fγ is a differentiable strongly-convex function, we
get the following equation for xγ:

a‖xγ − x∗‖a−2
2 (xγ − x∗) + γxγ = 0. (4.25)
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Similar to the previous case, we notice that xγ − x∗ and xγ are co-linear. Thus, there
exists λγ such that xγ = (1 − λγ)x∗. Since x∗ is assumed to be non-zero, in order to
calculate xγ, one needs to solve the following equation:

|λγ|a−2λγ =
γ(1− λγ)
a‖x∗‖a−2

. (4.26)

Thus the p-dimensional equation (4.25) reduces to equation (4.26) involving a one-
dimensional unknown. Lemma 24 yields λγ̃ > λγ > 0 for every γ̃ > γ ≥ 0. In addition,
from (4.26), we have that λγ ≤ 1 for every γ > 0. It is straightforward to verify that for
every γ ≥ 0, (4.26) has exactly one solution satisfying these conditions.

Lemma 25. Let α ≥ 1. If (λs : s ∈ (0, 1)) satisfies λαs = s(1− λs) for every s ∈ (0, 1), then

|λs − λs′ | ≤
|s− s′|

(s ∨ s′)(α−1)/α
, ∀s′, s ∈ (0, 1).

Proof. Without loss of generality, we assume that s′ ≤ s. Computing the derivative of
both sides of the identity λαs = s(1− λs), we get

λ′s =
1− λs

αλα−1
s + s

≥ 0.

This implies that λs′ ≤ λs. In addition,

λs − λs′ ≤
λαs − λαs′
λα−1
s

=
s(1− λs)− s′(1− λs′)

λα−1
s

=
(s− s′)(1− λs′)

λα−1
s

− s(λs − λs′)
λα−1
s

.

Rearranging the terms, we arrive at

λs − λs′ ≤
(s− s′)(1− λs′)
λα−1
s

(
1 + s

λα−1
s

)
=

(s− s′)(1− λs′)
λα−1
s + s

In the last fraction, the numerator is bounded by s− s′, while the denominator satisfies

λα−1
s + s = (s(1− λs))(α−1)/α + s

≥ (s(1− s1/α))(α−1)/α + s

≥ s(α−1)/α(1− s1/α) + s = s(α−1)/α.
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This completes the proof of the lemma.

Applying this lemma to (4.26), we get

λγ̃ − λγ ≤
γ̃ − γ

a‖x∗‖a−2
2 (γ̃/a‖x∗‖a−2

2 )(a−2)/(a−1)
=

γ̃ − γ
a1/(a−1)‖x∗‖(a−2)/(a−1)

2 γ̃(a−2)/(a−1)
,

for all γ, γ̃ satisfying 0 ≤ γ ≤ γ̃ ≤ a‖x∗‖a−2
2 . In conclusion, we get

‖xγ̃ − xγ‖2 ≤
γ̃ − γ

a1/(a−1)‖x∗‖(a−2)/(a−1)
2 γ̃(a−2)/(a−1)

‖x∗‖2

≤ γ̃ − γ
γ̃(a−2)/(a−1)

(‖x∗‖2/a)1/(a−1).

This concludes the proof.
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Chapter 5

Summary and Perspectives

5.1 Summary of the Thesis

In this thesis, we studied various versions of Langevin sampling from log-concave and
strongly log-concave targets.

Our first contribution consists of three main parts. First, we proposed a framework of
analysis of convergence of the LMC with inexact gradients. The framework includes both
the deterministic and stochastic biases of the gradient evaluations. We proved explicit
non-asymptotic bounds on the Wasserstein error for the noisy LMC with strongly convex
and gradient-Lipschitz potentials, as well as the case of second-order smooth potentials.
Then, we proved that the LMC with a varying step-size can achieve faster convergence
rate when compared to the constant step-sized LMC. In particular, it allows to get rid of
the logarithmic multiplier in the rate. In the end, we proposed a second-order method
LMCO′, which performs as many iterations as LMCO, while the computational complexity
of each of its iterations is of order p.

In our second contribution, we focused on the non-strongly log-concave targets. We
introduced a fixed-time quadratic penalization to the potential function. The penalization
is then applied to LMC, KLMC and KLMC-2 algorithms. Non-asymptotic bounds are
proved forW1,W2 and total-variation errors, with explicit dependence on the penalization
magnitude. In this chapter we also justified the importance of scaling the error depending
on the choice of the probability measure distance. In the end, we proved several bounds
on the second-order moment for log-concave distributions in two particular cases. First,
the distribution was assumed to be strongly log-concave inside some Euclidean ball, then
it was assumed to be so outside some Euclidean ball.

In the third contribution, we study again the general log-concave case. This time we
focused on the continuous-time sampling schemes. In particular, we proposed a linear



penalization to the drift term in the Langevin diffusion, and we called the resulting SDE
“Penalized Langevin Dynamics” (PLD). We proved a bound on the mixing-time of PLD in
W2 distance with explicit dependence on the penalization term. We then showed that
optimizing over the penalization yields polynomial convergence. Similarly, we introduced
Penalized Kinetic Langevin Dynamics (PKLD), by performing the same trick on KLD.
Polynomial convergence rates are proved also for PKLD. In the end, we extend our results
to the problem of convex optimization, exploiting its connection to the sampling problem.

5.2 Perspectives

This work has left several open questions and it can be extended. Here is a non-exhaustive
list of possible future work.

• In Chapter 4 we have studied the continuous time sampling scheme. However,
it is not implementable on a computer; thus, a discrete method is required. As
mentioned previously, there are several discretization methods for Langevin-type
processes. Of particular interest in this case is the mid-point discretization scheme,
proposed by [SL19]. The latter method is proved to have a better dependence on the
condition number κ, when compared to the classical Euler-Maruyama discretization
scheme (see [DRD20] and [CCBJ18]). Therefore, applying the mid-point method
to the PLD may yield to an iterative algorithm with tractable convergence bounds.

• As we have seen, the LMC is a biased sampling method. It does not converge to
the target distribution π. Metropolis Adjusted Langevin Algorithm (MALA) solves
this issue by correcting each iteration using a rejection-acceptance procedure (see
[CDWY20]). For the kinetic method, however, this method is not well studied. It
would be interesting to study how the Metropolis-Hastings correction step can be
adapted to the case of kinetic Langevin algorithm.

• In [DMM19], the LMC is analyzed from the perspective of convex optimization
on the space (P2(Rp),W2). It is based on the seminal paper by [JKO98], which
essentially interprets the Fokker-Planck equation as a gradient flux of a functional. A
clever application of this theory by [DMM19] has given the best known convergence
for the standard LMC. Despite the efficiency of the technique, it has not been used
yet in other settings of the sampling problem. An extension of this result for the
mid-point discretization method or kinetic Langevin algorithm could potentially
improve the state-of-the-art.
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Titre: L’échantillonnage avec Langevin Monté-Carlo

Mots clés: échantillonbage, chaines de Markov, statistiques, Langevin Monte-Carlo,
optimisation, probabilités

Résumé: L’échantillonnage des lois
aléatoire est un problème de grande
importance en statistiques et en
machine learning. Les approches
générales sur ce sujet sont souvent
divisées en deux catégories: fréquentiste
vs bayésienne. L’approche fréquentiste
correspond à la minimisation du risque
empirique, c’est-à-dire à l’estimation
du maximum de la vraisemblance
qui est un problème d’optimisation,
tandis que l’approche bayésienne
revient à intégrer la loi postérieure.
Cette dernière approche nécessite
souvent des méthodes approximatives
car l’intégrale n’est généralement
pas tractable. Dans ce manuscrit,
nous allons étudier la méthode de
Langevin, basée sur la discrétisation
de l’EDS de Langevin. La première
partie de l’introduction pose le cadre
mathématique et l’intérêt d’étudier
la question de l’échantillonnage.
La suite de l’introduction s’attache
à la présentation des méthodes
d’échantillonnage.
Le premier article concerne les bornes
non-asymptotiques sur la convergence
en distance de Wasserstein de
Langevin Monte-Carlo pour les fonctions
potentielles régulières et fortement
convexes. Nous établissons d’abord
des bornes explicites pour LMC avec

des step-sizes variantes. Puis nous
étudions la convergence pour des
fonctions potentielles avec des gradients
stochastiques. Enfin, deux types de
discrétisation sont présentés, pour les
fonctions potentielles plus régulières.
Dans le deuxième article nous abordons
le problème d’échantillonnage de loi
log-concave (pas fortement) en utilisant
LMC, KLMC et KLMC2. Nous proposons
une pénalisation quadratique constante
de la fonction potentielle. Puis nous
prouvons des bornes non-asymptotiques
sur l’erreur de Wasserstein de ces
méthodes pour le choix de pénalisation
optimale. Enfin, nous soulignons
l’importance du choix de l’échelle
pour le mesurage des complexités des
différentes méthodes.
La troisième contribution principale est
concentrée sur la convergence de la
diffusion de Langevin dans le cas log-
concave. Une pénalisation variable
dans le temps est proposée pour la
fonction de potentiel. Nous prouvons des
bornes explicites pour cette méthode
nommée Penalized Langevin Dynamics.
À la fin, le lien entre les algorithmes de
Langevin et l’optimisation convexe est
établi, ce qui nous permet de prouver
des bornes similaires pour le gradient
flow.



Title: Sampling with the Langevin Monte-Carlo

Keywords: sampling, Langevin Monte-Carlo, Markov chains, optimization,
probability, statistics

Abstract: Sampling from probability
distributions is a problem of significant
importance in Statistics and Machine
Learning. The approaches for the
latter can be roughly classified into two
main categories, that is the frequentist
and the Bayesian. The first is the
MLE or ERM which boils down to
optimization, while the other requires the
integration of the posterior distribution.
Approximate sampling methods are
hence applied to estimate the integral.
In this manuscript, we focus mainly on
Langevin sampling which is based on
discretizations of Langevin SDEs. The
first half of the introductory part presents
the general mathematical framework of
statistics and optimization, while the rest
aims at the historical background and
mathematical development of sampling
algorithms.
The first main contribution provides non-
asymptotic bounds on convergence
LMC in Wasserstein error. We first prove
the bounds for LMC with the time-varying
step. Then we establish bounds in the
case when the gradient is available

with a noise. In the end, we study
the convergence of two versions of
discretization, when the Hessian of the
potential is regular.
In the second main contribution, we
study the sampling from log-concave
(non-strongly) distributions using LMC,
KLMC, and KLMC with higher-order
discretization. We propose a constant
square penalty for the potential function.
We then prove non-asymptotic bounds
in Wasserstein distances and provide
the optimal choice of the penalization
parameter. In the end, we highlight
the importance of scaling the error for
different error measures.
The third main contribution focuses on
the convergence properties of convex
Langevin diffusions. We propose to
penalize the drift with a linear term
that vanishes over time. Explicit
bounds on the convergence error in
Wasserstein distance are proposed for
the Penalized Langevin Dynamics and
Penalized Kinetic Langevin Dynamics.
Also, similar bounds are proved for the
Gradient Flow of convex functions.
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