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A B S T R A C T

Affinity Maturation (AM) is a biological process through which our Immune System
generates potent Antibodies (Abs) against newly encountered pathogens. This process
is also at the base of vaccination, one of the most successful and cost-effective medical
procedures ever developed, responsible for saving millions of lives every year. At its
core AM works by subjecting B-lymphocites to iterative cycles of mutation and selection
for Antigen (Ag) binding, thus generating a Darwinian evolutionary process that leads
to a progressive increase of their binding affinity for the Ag. The mechanisms that gov-
ern AM are very complex, involving non-linear interactions between different cell-types,
and still present many open questions whose answers have the potential of improving
the way we vaccinate. Two important tools have proven invaluable in investigating mat-
uration. On one hand theoretical models by making use of concepts from Statistical
Physics, Stochastic Processes and Population Dynamics provide the link between qual-
itative hypotheses and their quantitative effects. On the other hand Bayesian Inference
can make use of these models to extract complex information from experimental data.
In this work we make use of both tools to study AM.

The first chapter of this manuscript is dedicated to a biological description of AM,
with particular focus on some of the open questions and on the role that theoretical
models played in our understanding of this process.

In the second chaper we study the effect of Ag dosage in vaccination. Experiments
show the existence of an optimal intermediate dosage that maximizes the average affin-
ity of the elicited Ab population. It was suggested that this optimality might be ex-
plained by the role that Ag availability plays in controlling the selection pressure in the
evolution process. Through the work of our collaborators K. Eyer et J. Baudry (ESPCI)
we were able to obtain experimental measurements of Ab affinity distributions elicited
by different immunization protocols in at different Ag dosages. We introduce a model
for AM and make use of Bayesian Inference to fit the relevant parameters on these
experimental data. Upon maximum-likelihood fit the model is able to simultaneously
reproduce all of these distributions. A theoretical analysis of the model shows that this
optimality is indeed generated by a tradeoff between growth rate and maturation speed,
which are both controlled by Ag concentration. Moreover the value of inferred parame-
ters provides information on inner mechanisms of maturation that would otherwise be
hardly accessible, such as the level of permissiveness in selection.

Chapter 3 is devoted to a study of some stochastic effects in maturation. We first in-
troduce a slightly modified version of the model which allows for more deep theoretical
analysis. With this we study the survival probability of a lineage and of the full popu-
lation in conditions of strong selection, in which the population undergoes a bottleneck.
Then we apply the path-integral formulation and retrieve equations for the most-likely
evolutionary trajectories in affinity space for cell lineages. Compared to phylogenies this
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provides a description of lineages evolution in phenotypic rather than genetic space.

Chapter 4 and 5 contain preliminary results and perspectives. In chapter 4 we show
how the observed effect of Ag concentration can emerge from microscopic cellular inter-
actions mechanisms. In chapter 5 we study the effect of Ag concentration and pathogen
mutability on breadth acquisition in single-Ag vaccination. Our model suggests that
increasing the selection pressure by reducing Ag concentration can improve breadth
acquisition. At the same time a critical mutability threshold exist above which single
Ag-maturation is ineffective, indicating that multiple Ag variants must be employed to
confer breadth against highly-mutable pathogens.
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R É S U M É

La maturation d’affinité (MA) est un processus biologique grâce auquel notre système
immunitaire génère de puissants anticorps (Acs) contre les nouveaux pathogènes ren-
contrés. Ce processus est également à la base de la vaccination, l’une des procédures
médicales les plus efficaces jamais mises au point, qui sauves des millions de vies chaque
année. La MA fonctionne en soumettant les lymphocytes B à des cycles itératifs de mu-
tation et de sélection pour la liaison de l’Antigène (Ag), générant ainsi un processus
évolutif Darwinien qui augment progressivement leur affinité pour l’Ag. Les mécan-
ismes qui régulent la MA sont très complexes et présentent encore de nombreuses ques-
tions ouvertes dont les réponses pourraient améliorer la manière dont nous vaccinons.
Deux outils importants se sont révélés inestimables pour étudier la maturation. D’un
côté, les modèles théoriques, qui utilisent des concepts de la physique statistique, des
processus stochastiques et de la dynamique des populations, permettent de faire le lien
entre les hypothèses qualitatives et leurs effets quantitatifs. D’un autre côté, l’inférence
Bayésienne permet d’utiliser ces modèles pour extraire des informations complexes des
données expérimentales. Dans cette thèse nous utilisons ces deux outils pour étudier la
MA.

Le chapitre 1 de ce manuscrit est consacré à une description biologique de la MA, de
certaines questions ouvertes et du rôle que les modèles théoriques ont joué dans notre
compréhension de ce processus.

Dans le chapitre 2, nous étudions l’effet du dosage de l’Ag dans la vaccination. Les ex-
périences montrent l’existence d’un dosage intermédiaire optimal qui maximise l’affinité
des Acs obtenue, qui pourrait s’expliquer par le rôle que joue la disponibilité d’Ag dans
le contrôle de la pression de sélection. Par le travail de nos collaborateurs K. Eyer et
J. Baudry (ESPCI) nous avons pu obtenir des mesures expérimentales des distributions
d’affinité des Acs, résultant de différents protocoles d’immunisation à différents dosages
d’Ag. Nous introduisons un modèle pour la MA et utilisons l’inférence Bayésienne pour
ajuster les paramètres sur ces données expérimentales. Le modèle est ainsi capable de
reproduire simultanément toutes ces distributions. Une analyse théorique montre que
cette optimalité est effectivement générée par un compromis entre le taux de croissance
et la vitesse de maturation, qui sont contrôlés par la concentration d’Ag. En outre, la
valeur des paramètres déduits fournit des informations sur les mécanismes internes de
maturation qui seraient autrement difficilement accessibles, comme le niveau de permis-
sivité dans la sélection.

Le chapitre 3 est consacré à l’étude de certains effets stochastiques dans la MA. Avec
une version modifiée du modèle qui permet une analyse théorique plus approfondie
nous étudions la probabilité de survie d’une lignée de cellules B et de la population
entière dans des conditions de forte sélection. Ensuite, nous appliquons la méthode
des intégrales de chemin et obtenons des équations pour les trajectoires évolutives les
plus probables dans l’espace d’affinité pour les lignées de cellules. Par rapport aux phy-

v



logénies, cela fournit une description de l’évolution dans l’espace phénotypique plutôt
que génétique.

Les chapitres 4 et 5 contiennent des résultats préliminaires et des perspectives. Dans
le chapitre 4, nous montrons comment l’effet observé de la concentration en Ag peut ré-
sulter de mécanismes d’interactions cellulaires. Dans le chapitre 5, nous étudions l’effet
de la concentration d’Ag et de la mutabilité du pathogène sur l’acquisition de protection.
Notre modèle suggère que l’augmentation de la pression de sélection par la réduction
de la concentration d’Ag peut améliorer la protection contre les pathogènes mutables.
En même temps, il existe un seuil critique de mutabilité au-dessus duquel la maturation
d’un seul Ag est inefficace, et multiples variantes d’Ag sont nécessaires pour conférer
protection.
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L I S T O F A B B R E V I AT I O N S

AM Affinity Maturation

GC Germinal Center

GCR Germinal Center Reaction

IS Immune System

Ab Antibody

Ig Immunoglobulin

Ag Antigen

BCR B-Cell Receptor

LZ / DZ (Germinal Center) Light Zone / Dark Zone

SHM Somatic Hyper-Mutation

Tfh cell T-follicular helper cell

FDC Follicular Dendritic Cell

MC Memory Cell

PC Plasma Cell

Ab-SCs Antibody-Secreting Cells

TT Tetanus Toxoid

BNAb Broadly-Neutralizing Antibody

TLR Toll-Like Receptor

MHC Major Histocompatibility Complex

APC Antigen Presenting Cell
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1
T H E B I O L O G Y O F A F F I N I T Y M AT U R AT I O N , O P E N Q U E S T I O N S
A N D T H E C O N T R I B U T I O N O F M O D E L S

1.1 introduction and chapter outline

Affinity Maturation (AM) is a mechanism through which our Adaptive Immune Sys-
tem is able to acquire protection against new pathogens it encounters. This protection
is obtained through the development of Antibodies (Ab), molecules which are capable
of selectively binding a particular pathogen with high affinity, thus helping the Immune
System (IS) to identify and fight it. The mechanisms that make up AM are highly com-
plex, involving the interaction of many different cell types, and many aspects are still
not fully understood.
AM is also at the base of the efficacy of vaccination. This medical procedure, responsible
for saving millions of lives every year, works by artificially eliciting maturation and the
development of protective Abs. In spite of its long and successful history, many aspects
of vaccination still have to be perfected. This procedure was initially developed from
empirical observations, but more recently experimental and theoretical advancements
have led to a deeper understanding of AM, with important consequences on the way
we vaccinate. The continuation of these advancements promises to improve vaccination
techniques and possibly even lead to the solution of currently open problems, such as
developing effective immunization techniques that could confer protection against mu-
table pathogens.

This first introductory chapter contains a short description of the biology of Affin-
ity Maturation, and the mechanisms that our IS employs to develop potent antibodies.
Along with known results we also present open questions and aspects that are currently
under investigation, with special focus on the role that models play in aiding our under-
standing of this process. The chapter is divided in two sections:

The biology of Affinity Maturation : this section contains a succinct biological
description of Affinity Maturation. This description includes the structure and role
of antibodies, the formation and workings of Germinal Centers, and how AM can
be elicited artificially through vaccination.

Open questions and the role of models : recent experimental advancements al-
lowed for the investigation of AM mechanisms at unprecedented level of details,
providing new insight and understanding on this phenomenon. However many
open questions still remain. Together with experiments, theoretical models have
proven to be important tools in the study of AM. In this section we will present
some of these open questions, along with some examples of how models have been
used to deepen our understanding of AM.
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1.2 the biology of affinity maturation

Even though we are unaware of it, we are constantly surrounded by many pathogens for
whom our organism represents an ideal environment to reproduce and thrive. The Im-
mune System (IS) is our line of protection against these entities. It also protects us from
threats coming directly from our organism, for example by eliminating malfunctioning
cells that could turn into tumors. To carry out this task the IS must continually scan
our organism, and distinguish the self from the non-self. It is crucial for this recognition
to be highly specific, since mis-identifying the self as a threat can potentially result in
auto-immune diseases, and conversely not being able to efficiently detect a pathogen
can lead to chronic diseases. In addition to this, certain pathogens can evolve at a fast
rate to escape immune recognition, each new mutant constituting a new challenge for
our IS. To face these challenges the IS comes equipped with mechanism to identify, fight
and remember new pathogens it encountered. The ensemble of these mechanisms consti-
tutes the Adaptive Immune System (AIS).1

Antibodies are one of the main weapons of the AIS. These versatile molecules can de-
velop specific binding affinity for many different Antigens (Ags), and thus can be used
to identify and fight pathogens. Several decades ago it was experimentally observed that
upon encounter of a pathogen, the affinity of Abs in serum for the Ag increases over
time [38]. The mechanism that allows this increase is known as Affinity Maturation (AM).
This process takes place in specific microanatomical structures known as Germinal Cen-
ters (GCs). Here B-lymphocytes, cells responsible for Ab production, are subject to cycles
of mutation and selection for Ag binding that progressively increase the affinity of their
receptors (the membrane-bound form of Abs), in what is essentially a Darwinian evolu-
tionary process. Protection against the pathogen is guaranteed by cells that differentiate
and exit this cycle. These are Plasma Cells, that fight the ongoing infection by secreting
high-affinity antibodies, and Memory Cells, that grant protection against future encoun-
ters. They remain quiescent until the pathogen is encountered again, at which point they
activate and produce Abs. AM is also at the base of the efficacy of vaccination, which ar-
tificially elicits maturation through the administration of a dose of inactivated Ag, thus
conferring protection without the risk associated to pathogenic infection.

The one above is an overly simplified description of Affinity Maturation. When an-
alyzed in details this process appears much more complex, requiring the interactions
of many different cell types and molecules, with many aspects that are not yet well-
understood. In this section we provide a more detailed overview of the main known
phases and mechanisms of AM. This overview aims at summarizing the vast body of
knowledge accumulated on the subject, which is discussed in more depth in many ex-
cellent reviews [149, 34, 13, 90, 37, 147, 132, 148] and books [101, 136].

1 These tasks and strategies are distinct from the one of the Innate Immune System, that comprises fast and
generic defense mechanisms capable of recognizing certain common pathogenic motives. It lacks however
the ability to recognize and remember pathogens that do not carry these motives.
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1.2.1 Structure and function of Antibodies

Recognizing and neutralizing pathogens are extremely hard tasks. Pathogens come in a
wide variety, and the organism must be able to identify and neutralize them, with mini-
mal damage to other cells in the body. Antibodies (Ab), also known as Immunoglobulins
(Ig), represent one of the main weapons of the Adaptive Immune System in this fight.
These molecules are capable of developing binding specificity for toxins and pathogens,
and help the immune system neutralize them. Abs are an important component of hu-
moral immunity. These molecules are secreted by Ab-generating cells and are freely
transported by plasma until they meet their target.
Any molecule capable of stimulating Ab generation is called an Antigen (Ag). Usual anti-
gens are proteins, glycoproteins and polysaccharides of pathogens. The specific region
of these molecules that is recognized and bound by an Ab is called an epitope.
The mechanism in which Abs help to control infections are many and complex [77], but
there are three main recognized mechanisms (see fig. 1 B) through which they are able to
neutralize pathogens. The most direct way is known as neutralization: by binding to their
targets antibodies can prevent them from interacting with the organism. This is impor-
tant for example in protection against viruses or toxins. For larger-size threats such as
bacteria Abs can act by opsonization: they bind molecules on the surface of the pathogen
forming a coating that can then be recognized by phagocytic cells such as macrophages.
These cells have receptors that can bind a part of the Ab and, recognizing the coated
pathogen as a threat, they proceed to ingest and destroy it. The last mechanism of ac-
tion of Abs is complement activation. The Complement System is a set of proteins (more
than 30) than normally circulate in an inactivated form in our plasma. If activated these
proteins can help fight pathogens by attacking the pathogen membrane or sending in-
flammatory signal to other cells of the immune system.

As outlined above, Abs have two functions. On one side they need to bind the Ag
with high specificity. On the other, they need to provide signals to the Immune System
to recruit cells and clear the pathogen. This two-fold role is reflected in their structure.
Simply speaking, in their most abundant class (IgG isotype) antibodies are Y-shaped
molecules, symmetric along the vertical axis, of size approximately 150 kDa (see fig. 1

A). They are composed of four subunits, two light chains and two heavy chains. Each
of these sub-units can be divided in a constant and a variable region. Variable regions
are located around the two tips of the Y-shape, and are involved in binding. Their nu-
cleotide sequence is subject to a lot of mutations, especially in some short domains on
the tip, known as the Complementary Determining Regions or CDRs. The variability of
these regions is directly linked to the binding specificity of the Ab. The constant region
constitutes instead mainly the stem of the Y-shape, and is responsible for signaling and
interaction with the rest of the immune system. Secreted Abs exists in different classes
called isotypes,2 that differ by the heavy chain constant region. Differences in this region
translate in structure and function, with distinct classes being preferentially expressed

2 There are five main isotypes: IgM, IgD, IgG, IgA, IgE.
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Figure 1: A: Schematic representation of the structure of an antibody of IgG isotype. The Ab is
composed of two identical pairs of heavy (blue) and light (green) chains. Each chain
can be divided in a constant (dark) and a variable (light) region. In the variable part
each chain contains three complementary determining regions (CDRs, red). B: Three
main mechanism of action of Abs. Toxins are neutralized by binding to them and
preventing them from reaching their molecular target (left). Abs can recognize Ags on
bacteria surface, creating a coating that can be then recognized by macrophages which
in turn can ingest and destroy bacteria (middle). Finally, Abs can cause the activation of
molecules of the complement system, for example the membrane-attack complex that
can create holes in the bacterium membrane (right).

in distinct tissues, and having distinct mechanisms of action.3

Immunoglobulins are also present in a membrane-bound form on the surface of B
and T lymphocytes. In this case they are known as B or T cell receptors (BCR / TCR).
B-lymphocytes (or B-cells) are cells in the immune system whose main effector role,
once terminally differentiated, is Ab production. Abs and BCRs expressed by a single
B-cell differ only on the constant region, which as discussed above is not involved in
binding, and therefore they will have binding specificity for the same target molecule.
T-lymphocytes (or T-cells) come in many different sub-classes with very different func-
tions. For example, cytotoxic T-cells for example play an important role in tumor sup-
pression and virus control and act by sending apoptotic signals to cells that are infected
or malfunctioning. Regulatory T-cells instead can suppress the activity of other lympho-
cytes and help control the immune response. In this thesis we will mainly be interested
in Helper T-cells, a class of T-cells that helps to orchestrate the immune response, among
other ways by providing signals to Ag-stimulated B-cells. Both BCRs and TCRs upon
binding their cognate Ag activate signaling pathways inside the cell to communicate
the presence of their targets. One major difference between BCRs and TCRs consist in
the fact that TCRs bind targets through presentation by other cells. For binding and
recognition these targets must be loaded on specific molecules called MHC (from Major
Histocompatibility Complex) and exposed on the cell membrane. These molecules come
in two classes, with MHC class I molecules being used for the presentation of self-Ag to
T-cells that express the CD8 marker (e.g. cytotoxic T-cells), while MHC class II molecules
are involved in foreign-Ag presentation to cells with CD4 marker (e.g. Helper T-cells).

3 For example IgA and IgM are polymers composed of multiple Ig monomers. Since each monomer can bind
the target these Abs can act by clumping together pathogens. This is the main action mechanism of IgA
against bacteria in the gut [98].

4



A further difference between BCRs and TCRs is that BCRs target exposed residues on a
pathogen, that are close in structure but not necessarily in sequence. Conversely, prior
to MHC presentation pathogens are often subject to lysis, and presented residues can
also originate from non-exposed parts of the pathogen but are contiguous in sequence.

The wide variety of pathogens that we encounter, each one presenting a different
assortment of targets for recognition, pushes our immune system to develop binding
affinity for a very disparate class of molecules. Since the binding is specific the same
level of diversity is required in the set of Abs and receptors produced. This diversity is
achieved thanks to two main processes. The first is known as V(D)J recombination, the
mechanism through which different gene segments are combined to generate the im-
munoglobulin heavy and light chain. To assemble these chains multiple choices must
be made between different genes at different positions, which combinatorially increase
the variety of possible immunoglobulins that can be created directly from the genome.
This diversity is usually sufficient to generate a basic binding affinity for a pathogen.
However to reach the high affinity required for an efficient Ab response, a second mech-
anism is at play for B-cells, namely Affinity Maturation. It acts by selecting among all the
random mutations the ones that increase affinity for the Ag, as described more in detail
in the next sections.

1.2.2 The Germinal Center Reaction

Affinity Maturation begins with the formation of Germinal Centers (GCs), transitory
microanatomical structures that develop inside of secondary lymphoid organs (such as
lymph nodes or the spleen). In the case of immunization these structures are visible
few days after Ag administration, reaching their mature state after roughly one week
[34]. They have widely varying lifetimes, ranging from 1-2 weeks for soluble protein
boosting to months or longer for certain chronic infections [147]. Their size can vary
considerably [158] and they comprise many different kinds of cells, but the majority
(up to a few thousands [144]) are B-cells. Traditionally GCs were believed to be seeded
by a very small number of founder clones, but recent experiments [144] estimated this
number to be higher, between 50 and 200. Histological imaging of GCs shows a clear
subdivision in two compartments (see fig. 2), termed the Light Zone (LZ) and the Dark
Zone (DZ). The name is related to their appearance, with the DZ being more densely
packed with cells, whose nuclei are stained in blue in histological images. This subdivi-
sion is reflected, albeit in a less marked way [132], also at the level of processes, with
the DZ being the main site of cell division and the LZ being associated to Ag binding
and selection. B-cells iteratively migrate back and forth between these two zones, as can
be observed from imaging experiments [7, 150]. In this way they are subject to repeated
cycles of mutation and selection for Ag binding, effectively undergoing a Darwinian
evolutionary process that is at the base of the increase in affinity.

To understand the way the GC Reaction (GCR) works we can follow the fate of B-
cells during one cycle, starting from cell division in the DZ. GCs B-cells express high
level of Activation-Induced cytidine Deaminase (AID), an enzyme that increases the natural
rate of DNA mutations up to 10−3 per base-pair per generation [66, 89, 18], a rate 106

times higher than the physiological mutation rate of germline genes. This phenomenon,
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Figure 2: intravital multiphoton image of a GC in a mouse. GC B-cells are marked in green,
Follicular Dendritic Cells (FDCs) in red, and naive B-cells not recruited in the GC
reaction in blue. T-cells are not marked. The boundary between the Light and the Dark
Zone (LZ/DZ) is marked with a white dashed line. Image adapted from [150].

termed Somatic Hyper-Mutation (SHM) makes so that with each division each cell accu-
mulates on average about 1 new mutation (mainly point mutations) in the Ig-coding
gene [29]. In some cases these mutations can render the receptor unproductive, which
leads to cell death [86]. In other cases they might produce functional cells but with mod-
ified BCR, introducing a positive or negative change in affinity for the Ag. Importantly,
even cells that are functional if isolated from the rest of the GC will undergo apoptosis
in few hours [76]. This goes to show that in order to survive cells must receive some
form of survival signals (as described below) that will be provided more likely to cells
with higher affinity.
After a variable number of divisions (estimated to two on average [45]) B-cells migrate
to the GC LZ. In this zone a network of Follicular Dendritic Cells (FDCs) [53] is present.
In addition to delivering different chemical signals, these cells are also thought to pro-
vide a reservoir of Ag for B-cells to bind.4 FDCs are in fact able to capture and retain
Ag on their surface for extended periods of time, even of the order of many months
[83, 84]. This unusually long retention time has been explained by recent experimental
observation [52] that once captured on the membrane Ag can be internalized in the cell
in endosomal compartments, in which it is protected from degradation, and can cycli-
cally resurface becoming again available for B-cells to bind. In the LZ GC B-cells form
contacts with FDCs [111], binding the Ag on their surface and trying to extract it with
mechanical forces [137]. This provides a first mechanism of affinity discrimination, since

4 Experimental evidence discussed in [132] and [5] shows that presentation through FDCs is not the only
way for B-cells to access Ag. While large Ags (more than 70 kDa) cannot freely penetrate into GCs and
are mainly available through presentation on FDCs, small soluble Ags like egg white lysozyme (14.4 kDa)
could be available also by direct penetration in the GC. Contrarily to the way B-cells interact to membrane
bound Ag, which has been largely investigated, the response and fate of GC B-cells that interact with
soluble Ag is less well-understood.
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the amount of Ag extracted depends on the affinity of the BCR for the Ag.5

After binding the Ag is internalized, processed and loaded on MHC-II molecules. This
combination of antigenic peptide and MHC molecule is termed a pMHC complex. The
difference in affinity of cells influences the amounts of Ag captured, and therefore also
the density of pMHC complexes displayed on their surface. This density is probed
through the interaction with another class of cells that are present in GCs, namely T-
follicular helper cells (Tfh cells)6, that are mainly localized in the LZ. Even though these
T-cells only represent a minor fraction of the GC cells, they are essential for AM and
in their absence GCs do not form [61]. Tfh cells are highly motile, forming transient
and repeated contacts with B-cells [7, 134]. In these contacts they sense the pMHC den-
sity on B-cells surface, and preferentially deliver survival signals7 to cells with higher
pMHC density [126, 35], with longer contacts being associated to positive selection [134].
Cells that receive these survival signals can either differentiate, as described in the next
section, or migrate back to the GC DZ, where they start a new cycle with divisions.
Experiments estimated the fraction of LZ B-cells that recirculate to the DZ to around
30% [150]. Experiments also showed that the amount of Ag captured and presented to
T-cells influences the amount of SHM and the number of divisions of B-cells [45, 44]. A
schematic depiction of the GCR is provided in fig. 3.

1.2.3 Differentiation into Memory and Plasma Cells

GC B-cells do not possess direct effector functions, to offer protection against pathogens
they must first differentiate. Indeed, along the course of the maturation process GC
B-cells can differentiate into one of two different fates: either to Plasma Cells (PCs) or
Memory Cells (MCs).8 PCs can be further classified as Short-Lived (SLPCs) or Long-Lived
Plasma Cells (LLPCs). The former are Ab factories, responsible for mounting a fast re-
sponse against the pathogen by secreting large amounts of Abs. As the name suggests
they are active only for a limited time, with a lifetime of several days [141]. Conversely,
LLPCs have been shown to live for a long time, being detectable even one year after im-
munization [135], and possibly much longer. They take residency primarily in the bone
marrow and secrete sufficient antibody quantities to confer some level of protection
upon pathogen re-encounter [128]. MCs are instead in a quiescent state, but in case of
a future pathogen encounter they can re-activate and start antibody production, mount-
ing a faster response than when the pathogen was first encountered [156]. Importantly,

5 The complex interlocking of receptors that forms the bond between a lymphocyte and and an Ag-presenting
cell is called an immune synapse. The mechanism of Ag extraction involves mechanical pulling forces, which
can enhance affinity discrimination, and will be discussed further in the next section.

6 These cells, belonging to the class of T-helper cells that express the CD4 marker, are identifiable by their
expression of a transcription factor named BCL-6.

7 The binding of B-cells membrane receptor CD40 by its ligand CD40L expressed on T-cells might play a
major role in the delivery of this signal [152].

8 We point out that Affinity Maturation is not the only source of MCs or PCs. These cells can be generated
even prior to the GC reaction [131]. For example MCs can form also in genetically modified animals that lack
GCs [146], or as a response to T-cell independent Ag [113]. However these cells do not display signature
of maturation, and do not harbor many affinity-enhancing mutations. Ig isotype is correlated with the
origin of these cells, with MCs that are generated in a GC-independent way displaying IgM isotype, while
class-switched cells, i.e. cells that do not display IgM isotype, often originate from GCs.
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Figure 3: Schematic representation of the main steps of the GCR. In the GC dark zone B-cells
undergo proliferation and somatic hypermutation (SHM). They then exit to the light
zone, where they encounter antigen on FDCs, present the antigen to T follicular helper
cells (Tfh cells) and if successfully selected can undergo three main fates: namely, dif-
ferentiation into memory B cells or plasma cells, or re-entry into the GC dark zone to
undergo further cycles of mutation and selection. Figure and caption adapted from [5]

they can also seed new GC reactions and undergo further maturation [87].9 The current
view [5] is that in a response against T-cell dependent Ag, most SLPCs are generated
as a quick response, shortly after Ag administration, directly from naive B-cells that are
able to bind Ag with some basic affinity. MCs and LLPCs are instead, for the most part,
gradually generated through affinity maturation from B-cells that have entered GCs.
Moreover, MCs and LLPCs have been shown to differ in their average affinities. Experi-
ments in [130] demonstrated that lower affinity GC cells tend to enter the MC pool. In
addition to this, in [157] it was shown that GCs undergo a temporal switch, with MCs
being produced mainly at the beginning of maturation, and LLPCs mainly at later times.
Whether cell’s fate depends on affinity or time since the beginning of the GC reaction,
the result is that in the MC pool we find cells with lower affinity but also more broadly
reactive, while cells that belong to the LLPC pool show more maturation and higher
affinity [5].
Together MCs and LLPCs constitute our Immunological Memory: they protect us against
future pathogen encounter. In [5] they are describes at two "walls" of protection (see
fig. 4). LLPCs build up the first protection barrier. They secrete highly selected high-
affinity Abs that are protective against reinfection by pathogens that are homologous to
the one encountered. Some pathogens however are able to circumvent this first barrier,
by developing mutations that decrease their binding affinity for these Abs. This is where
the second MC barrier comes into play. By undergoing less selection these cells are very
diverse and more broadly reactive, and can be reactivated by many virus variants, and

9 Recent experiments aimed at quantifying the recall of MCs in secondary GCs [91] revealed that only a mi-
nority of MCs are successfully recruited in GCs following boost Ag injection. This highlights the importance
of designing immunization strategies that would enhance memory recall.
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Figure 4: Long-lived plasma cells secrete high-affinity Abs (depicted in red) that form a first
’wall’ of defense against reinfection by homologous pathogens. Variant pathogens can
find holes in this wall; however, having escaped the antibodies from the long-lived
plasma cells, the variant pathogens encounter a second wall formed by memory B
cells that were less highly selected and therefore maintain a broader range of antigen
affinities and specificities. The memory B cells are activated by the variant pathogen to
differentiate into long-lived plasma cells or to re-enter GCs. Figure and caption adapted
from [5].

then start Ab production and further affinity maturation.
In this perspective the GC reaction is a process that appears more oriented towards op-
timization of future immunity rather than immediate pathogen clearance [132]. This is
indeed consistent with its central role in vaccination.

1.2.4 Vaccination

The two walls of protection that we described above can be raised without the risks
associated to direct pathogen encounter through vaccination. The modern version of
this procedure is traditionally attributed to Edward Jenner, who in the late 18th century
created the first vaccine on the observation that infection with cowpox, a relatively mild
disease, would confer protection against smallpox, which instead was often fatal. In
fact the word "vaccine" comes from the latin name for cowpox, variolae vaccinae, litterly
"smallpox of the cow". The importance of this procedure cannot be overstated [48, 103].
Vaccination has been used to fight, and in some cases even fully eradicate diseases, as
in the case of smallpox. The World Health Organization estimates that thanks to this
procedure an average of 2-3 million deaths are avoided each year.10. In addition to this,
vaccination is also highly cost-effective, with the benefits deriving from disease protec-
tion greatly outweighing the costs [116].
Vaccination works by artificially eliciting AM through the administration of a solution

10 Source: https://www.who.int/en/news-room/fact-sheets/detail/immunization-coverage
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containing pathogenic Ag and adjuvants. This solution activates an immune response
with consequent formation of GCs and maturation of B-lymphocytes. Adjuvants [12, 30]
are an important vaccine ingredient with two main functions, namely stimulation of the
IS and the retention of Ag for a longer time. Administration of pure Ag without the pres-
ence of an active pathogen is in fact often insufficient to generate an immune response
of enough magnitude to elicit GC formation. Vaccines contain molecules that can stim-
ulate immune cells by activating receptors, linked to innate immune system pathways,
that recognize common pathogenic features.11 The second important role of adjuvants is
Ag retention and release. When injected directly in their soluble form most Ags degrade
quickly, but if instead injected within an adjuvant matrix they are protected and more
gradually released, granting a longer Ag availability to IS cells [82].
In spite of its long history, vaccination is far from being completely mastered and many
challenges remain to be faced. For example, in spite of many recent advancement we
still lack a vaccine for highly-mutable pathogens such as HIV. Since vaccination is based
on AM, our best hope of overcoming these challenges lays in a better understanding
of this process, to be achieved through a combination of theoretical and experimental
advancements.

1.3 open questions and the role of models

In this section we discuss some of the open questions and less-understood aspects of
AM, such as the influence of Ag dosage on the outcome of maturation, the way affinity
discrimination is operated in GC selection, the difference between maturation against
simple or complex Ags, and immunization strategies against highly-mutable pathogens.
Theoretical and computational models have proven to be potent tools to guide our un-
derstanding of AM, and for each of these topics we will present some examples of
models and the insight they provided. Moreover at the end of each subsection we will
briefly indicate some of its relations to our work. To facilitate reading and browsing in
long subsections we added margin notes to indicate the subject discussed.

1.3.1 The role of models in understanding AM

Affinity Maturation is a complex process. If we break it down to its minimal components
we find that it proceeds through many stochastic and often non-linear interactions be-
tween different cellular agents. In such context mathematical models are essential to
provide the link between our qualitative understanding of the sub-processes that consti-
tute maturation, as well as to aid the quantitative interpretation of data [26]. They allow
us to bridge the gap between the hypothesis one wants to test and their expected effect
on experimental observables, a gap that given the complexity of the process can often
lead to counter-intuitive results. This is even more important when one considers that
with modern experimental high-throughput techniques collected data on a given system
can amount to a very large number of measurements, which might be hard to interpret.

11 As a side-effect, the stimulation of these pathways could push B-cells to quickly respond to this danger
signal by differentiating into SLPCs. For example in [4] it was shown that stimulations of these pathways
resulted in a higher Ab response, but also in a lower Ab affinity and maturation level. This suggests that
for vaccines that require a high level of maturation the stimulation of these pathways should be limited [5].
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In this context models can help identify and extract relevant patterns from these large
datasets. These models often employ tools from Statistical Physics which, by being con-
cerned with the study of large system composed of microscopically interacting particles,
offers a natural language to describe these processes.

In the study of AM models have proven their importance since the early days. One
notable example is the seminal work of Perelson et al. [64, 114] in which the authors
introduced a maturation model in which the mutation rate could be controlled, and
by solving the associated control problem showed that optimal maturation required
repeated alternated intervals of high mutation rate, in which the population would di-
versify, and low mutation rates, in which it would mainly evolve by selection, which
lead them to advance the hypothesis of recycling of B-lymphocytes through GC LZ and
DZ. Direct experimental confirmation of this model prediction came only much later,
with visualization of cells movements through intravital microscopy [150].
AM models come in many different kinds and include different ingredients. They have
two main purposes: on one side understanding the mechanism of AM, such as the way
selection acts or the interaction between cells in GCs, and on the other side optimizing
immunization procedures, for example with respect to Ag dosages, or when highly-
mutable pathogens are involved. A nice review of GC models, their ingredients and
purposes can be found in [22]. In the following section we will describe some of these
models alongside the questions they try to answer. Given the wide diversity of existing
models we make no claim of completeness, limiting the discussion to some relevant ex-
amples from both of the above-mentioned categories.

1.3.2 The effect of Antigen dosage

Since B-cells are selected based on their ability to bind the Ag, Ag dosage plays an im-
portant role in controlling the outcome of vaccination. Its effect is however non-trivial
and has yet to be fully understood. Since Ag dosage is a relatively easy variable to con-
trol, this understanding could be directly turned into guidelines on how to optimize
vaccination.

Amongst other effects Ag dosage has an impact on Ab affinity, a fact that was already optimal Ag
dosageobserved in early experimental investigations. In [38] for example the authors carried

out experiments of hapten12 immunization on rabbits. In these experiments rabbits were
immunized with different Ag dosages, and average Ab affinity was measured at differ-
ent times from immunization. The authors observed that the greatest and fastest affinity
increase was observed at the lowest tested Ag dosage. Conversely, at the highest dosage
affinities of Abs remained low. Similar experiments in [46] where two Ag dosages were
tested provided similar results, with the highest average increase in affinity observed for
the low Ag dosage. Here the authors advanced the hypothesis that Ag might act as a
selection factor, and when present in limited amounts would preferentially activate cells

12 Haptens (from the Greek haptein - to fasten) are small organic molecules that do not elicit Ab production
when injected in their unbound form. However when bound to a protein carrier they are able to stimulate
the IS enough for Ab production. The produced Abs in this case can be hapten-specific, carrier-specific or
hapten-carrier specific, depending on their binding specificity [101].
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with higher affinity. They also suggested that a mechanism of tolerance might be at play
when Ag is abundant, preventing cells that bind too strongly from activating. Moreover
experiments described in [47] associated a higher Ag dose with a higher number of mu-
tations and more diversity in the Ab population, and a lower dose with a more focused
selection of high-affinity mutants.
These results can be interpreted with considerations performed in [63], where the au-
thors analyzed the data collected in [38] to quantify the evolution of the mean and
variance of the affinity distribution. They observed that at low Ag dosage the average
affinity tended to increase and variance remained low, and conversely at high dosages
the affinity did not show any strong improvements while the variance remained high.
They suggested that these results can be interpreted by role that Ag availability must
play in controlling the strength of selection for GC B-cells. When Ag is scarce (low
dosage) evolution is in the strong selection regime, with only few high-affinity cells
being successfully selected. Therefore in this case one observes a high affinity increase
along with a reduction in diversity. On the other hand in the weak selection regime (high
dosage) one expects more cells to be able to bind and internalize Ag, which generates a
higher diversity and a smaller affinity increase.
Different early experiments also showed that the injection of a high dose of soluble Ag
when the maturation is ongoing results in the apoptosis of GC B-cells and the termina-
tion of the GCR [133, 118, 51]. In [132] it is suggested that this might be caused by a
form of negative selection, a mechanism of protection against the development of self-
reactivity. According to this hypothesis strong cross-linking of BCRs in GC B-cell would
generate an apoptotic signal, that would indeed negatively select cells that develop affin-
ity for self-Ags that might be encountered in the GC environment.

The problem of optimal dosage for vaccine is discussed in a recent paper by Rhodes
et al. [121]. Here the authors warn against the fact that current methods for Ag dosage
decisions are antiquate and might lead to sub-optimal outcomes. They bring examples
of retrospective dose-ranging studies in which the immunogenicity of fractional doses
of vaccines were tested [25, 120, 49]. These studies found that lower doses were able
to elicit an equivalent or even better response, leading the World Health Organization
to recommend fractional vaccine dosages when vaccine availability is limited.13 Rhodes
and colleagues explain that the sub-optimality of dosages come from a long-standing
assumption in vaccine development according to which the relationship between vac-
cine dosage and organism response is a saturating sigmoidal curve, that is to say a too
low dosage will elicit no response, while a too large dosage will elicit the maximum
response. In reality this relationships seems to have a peak, and experiments suggest
that maximal IS stimulation is obtained at intermediate Ag dosages [122, 1]. This wrong
assumption would therefore lead to vaccine dosages that are higher than the optimal in-
termediate dose. The authors advocate for the need of models capable of understanding
and predicting the effect of Ag dosage for optimal vaccine development.

Another important dimension to consider in terms of Ag availability, other than Agcontrolling Ag
administration

in time
dosage, is time. The amount of Ag available for B-cells to bind is a dynamic quantity that
decreases over time due to different processes such as natural decay and consumption

13 Source: Meeting of the Strategic Advisory Group of Experts on immunization, October 2016 - conclusions
and recommendations. https://apps.who.int/iris/handle/10665/251816
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by B-cells. A more precise control over this quantity can be achieved through tuning
simultaneously the dose of injected Ag and its distribution in time. In [143] for example
the authors test different immunization schemes in which the total amount of injected
Ag is kept constant, but its time-distribution is varied. In the experiments, in addition to
a standard immunization scheme with two bolus14 injections, three other schemes are
tested in which for a week Ag is administered daily at exponentially increasing, constant,
or exponentially decreasing dosages. They found that an exponentially increasing ad-
ministration scheme, mimicking an infection, elicited the highest rate of Ab production.
These results were interpreted with the help of a computational model of the GCR, con-
sisting in a collection of differential equations describing different reactions, and with a
key ingredient being the dynamics of capture and retention of Ag. The model was able
to reproduce the correct hierarchy between the different immunization schemes, and
explained the supremacy of the exponential scheme with the fact that in this scheme
the Ag was better captured and retained. In addition to this the authors also tested the
effect of osmotic pumps, subcutaneous devices that release Ag gradually over a period
of weeks. Again they observed that these devices generated a better response than bolus
immunization.

The potential advantages of slow Ag delivery methods were discussed in a recent
review [28]. Here the authors point out that bolus-injection vaccination, in which the
highest amount of available Ag is delivered when the GCR has not yet been initiated, is
dissimilar to real infections, in which GCs have at their disposal a constant source of Ag
generated by pathogens. They suggest that implementing immunization techniques that
provide sustained Ag availability might greatly improve the outcome of immunization
through different mechanisms. For example, a continuous Ag delivery would provide a
source of non-degraded Ag to GC B-cells. In addition to this, this Ag would also be bet-
ter retained by the fact that higher affinity cells have the time to develop and secrete Abs,
that can bind Ag in immune complexes for a longer time. Continuous Ag delivery also
increases the number of Tfh cells, that in turn can provide a higher number of survival
signals, decrease selection pressure and generate a more diverse B-cell population. This
might be essential when Abs must accumulate many mutations, such as in the case of
Abs able to fight highly-mutable pathogens. Indeed, continuous delivery methods have
been shown to enhance Ab responses against HIV [27].

Even if bolus vaccination is employed, a good control of Ag dosage is crucial when
immunizing against mutable pathogens. In this context the population must be sub-
ject to an optimal selection pressure, low enough to grant population survival, but high
enough for affinity maturation and breadth acquisition. This tradeoff can translate in op-
timal intermediate values of Ag concentration, as showed in [155, 154]. However, since
immunization against mutable pathogen is a wide subject, we postpone more detailed
discussion of these models to section 1.3.5.

To summarize, the amount of available Ag has a strong influence on the outcome of
maturation, and its effect can be partially interpreted by considering its role in control-
ling selection pressure during AM. One consequence of this is the fact that a too high Ag

14 In a bolus injection a dose of vaccine is delivered at once. Here the term is used in opposition to delivery
methods that distribute the administration over longer periods of time.
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dosage generates a sub-optimal immune response. Current immunization techniques do
not usually take these effects into account, and predicting the effect of varying the Ag
dosage on the outcome of immunization is still an open challenge, and one whose solu-
tion could greatly improve our current immunization strategies. Other than controlling
dosage, also controlling its dynamic delivery is important for an optimal immunization.
In this sense continuous delivery methods constitute a promising research direction.
The part of our work presented in chapter 2 is strongly related to the problem of op-
timizing immunization through the control of Ag dosage and injection time. Here we
combine experiments measuring Ab affinity distribution with quantitative mathematical
modeling, to gain insight on the way Ag dosage controls the affinity enhancement.

1.3.3 GC selection and mechanisms of affinity discrimination

The affinity increase in the course of AM requires a mechanism of affinity discrimina-
tion that favors the proliferation of high-affinity B-cells over ones with lower affinity.
Even though many experimental results contributed to exploring these mechanisms, the
way selection operates in GCs is still not completely understood. However, it is gener-
ally accepted that positive selection in GCs can be traced back to two distinct signals
[151, 74, 132]. The first occurs when B-cells bind Ags on FDCs, with the cross-linking of
their BCRs delivering an activation signal to the cell. The second is delivered when they
present Ag exposed on MHC molecules to cognates Tfh cells, which deliver a rescue
signal.

The binding of Ag on FDCs has the double function of sending an activation signalaffinity
discrimination

through
BCR-Ag

interaction

through BCR cross-linking, but also of capturing and exposing Ag on MHC molecules
proportionally to the cell affinity.
While providing an important signal, BCR binding alone does not seem to be sufficient
to drive B-cells to differentiate to Ab-producing PCs [68]. This fate decision seems to
require an additional signal, that can be provided by either T-cell help or by binding of
Pattern Recognition Receptors such as TLRs [6]. The fact that BCR binding is not sufficient
for differentiation might be a safety mechanism against self-reactivity [71]. In this way
Ag binding is not enough to start the production of Abs, but also additional proofs that
the Ag is foreign is required, such as T-cell help or the detection of pathogenic features
through TLRs. The underlying mechanism might be based on a metabolic clock, set in
motion by BCR signaling, that if not deactivated by the second signal eventually leads
to cell death. This might also explain the experimental observation that injection of a
high dose of soluble Ag, with consequent strong BCR stimulation, causes the death of
GC B-cells [133, 118, 51].
The binding of Ag plays also an important role in affinity discrimination, since the
quantity of Ag internalized is proportional to the BCR affinity. This discrimination is
enhanced by the fact that GC B-cells have an higher affinity threshold for BCR signaling
and Ag gathering when compared to naive B-cells [72, 71] which makes so that differ-
ence in Ag affinity result in greater difference in the amount of Ag internalized. This is
made possible by the characteristic immune synapse structure that GC B-cells form when
in contact with an Antigen Presenting Cell (APC), in which the Ag is localized in cluster
and bonds are tested by exerting mechanical pulling forces [111]. The way in which
these forces can enhance affinity discrimination has been elucidated in an interesting
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Figure 5: model by Knežević et al. studying how mechanical forces can enhance affinity discrim-
ination. A: membrane-membrane interaction between an antigen-presenting cell (APC,
bottom) and a B-cell (top). The two membranes are coated with proteins that are free
to diffuse, and at specific membrane distances they can form bonds with their cog-
nate pair. B: force potential for membrane protein binding. The pairing of BCR and
Ag or LFA and ICAM generates an attractive force, albeit at two different membrane
distances. The presence of glycoprotein instead generates repulsive forces. C: number
of BCR-Ag bound pairs as a function of BCR affinity. Different colors correspond to dif-
ferent intensities of mechanical pulling forces applied on Ag-BCR pairs, according to
the direction of the arrow. A stronger force widens the range of affinity discrimination.
Figure adapted from [67].

model by Knežević et al. [67]. The model reproduces the interaction surface between
a GC B-cell and an APC. On the surface of the two cells different kinds of membrane-
bound molecules can diffuse, which generate repulsive or attractive forces depending
on the local distance between the two membranes (see fig. 5 A and B). Glycoproteins on
the two cell membranes generate a repulsive force, while Ag-BCR pairs or ICAM-LFA
pairs (two conjugate membrane molecules) generate attractive forces. A total energy for
the system can be written, taking into account the elasticity of the B-cell membrane and
the forces generated by these molecules. The authors also add a third contribution, that
account for pulling forces that act on Ag-BCR pairs. By letting the system evolve us-
ing Monte Carlo simulations on the Hamiltonian function thus defined, they observe
that the amount of force exerted strongly influences the dependence of the number
of Ag-BCR pairs that form in the steady state as a function of their affinity. Indeed, the
application of mechanical forces increases the range of affinity discrimination (fig. 5 C).15

The second important affinity discrimination mechanism occurs through the inter- affinity
discrimination
through B-T
cell
interactions

action of B and Tfh cells. Tfh cells can provide a rescue signal to B cells, delivered
preferentially to high affinity B-cells displaying on their surface the highest density of
peptide-MHC complexes. Indeed, as already mentioned, it has been shown that contact-
dependent interactions with Tfh cells are essential for B-cells to be able to recirculate
from DZ to the LZ [150], and that these contacts have variable duration, with long-

15 As a side note, the authors point out that affinity discrimination is also influenced by Ag concentration.
Their model predict optimal discrimination at intermediate Ag dosage, highlighting another possible role
of Ag concentration in GC selection.
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lasting contacts being associated to the delivery of survival signals [7, 134]. However the
question remains of how, in the chaotic and dynamic GC environment T-cells are able
to sense and discriminate between high and low affinity cells. Rather than on a single
interaction, the rescue signal might be progressively accumulated in repeated B-T cell
interactions. In [152] the authors discuss a possible mechanism proposed in [75] that
is based on a positive feedback loop involving the binding of two receptors and their
ligands. These are the pair CD40/CD40L and ICOS/ICOSL. ICOS and CD40L are found
on the T-cell surface, while their counterpart is expressed on B-cells. In conjunction with
BCR signaling, CD40 stimulation16 has been shown to stimulate cell division [80], thus
being an important component of the survival signal. This stimulation could be deliv-
ered as follows. The amount of ICOSL and pMHC present on B-cells controls the surface
size of B-T cell contacts. An extended contact surface coupled with cognate Ag presen-
tation stimulates T-cells to externalize more CD40 to increase the rescue signal to the
B-cell, and reduces the likelihood of T-cells to share contacts with ICOSL-lacking B-cells.
In turn, CD40 signaling upregulates the expression of ICOSL in B-cells [75] (a feature
unique to GC B-cells), making the B-cell more likely to entangle in further T-cell con-
tacts. This creates a positive feedback loop that translates difference in B-cell affinities
in nonlinearly amplified CD40 signaling differences over multiple B-T cell contacts. We
depicted this mechanism in fig. 6.
An additional effect of T-cell help that could contribute to affinity discrimination is dif-
ferential proliferation. In particular cells presenting the highest pMHC density to T-cell
help have been shown to undergo a higher number of divisions and higher SHM [45]
with a mechanism that depends on the amount of T-cell help received [44]. In the model
discussed in [9] it was shown that a selection mechanism based on differential prolifera-
tion would result in quicker diversity loss than if selection was operated mainly through
removal of low-affinity cells. While both selection mechanisms might be at play, in [132]
the authors state that it is unlikely for differential proliferation to be the unique source
of positive selection, because too many divisions without further selection would likely
lead to the accumulation of too many deleterious mutations.

The interaction mechanisms illustrated above shows how important T-cells are for the
rescue and maintenance of the B-cell pool, a fact supported by the observation that
the number of Tfh cells correlates with the number of GC B-cells [124, 149]. How-
ever some experiments suggest that these interactions might be mutual rather than
unidirectional[132], with B-cells being important in Tfh cells recruitment. Results of
[160] show that ICOS stimulation is important for recruitment and maintenance of Tfh
cells, and this stimulation is mainly delivered by ICOSL on bystander B-cells, and in
a non-cognate antigen-independent manner. In this view B-cells form a field in which
T-cells are immersed, which continually supports Tfh cells through ICOSL presentation.

In [132] GC selection is categorized as cell-intrinsic and cell-extrinsic. The former de-cell-intrinsic
and

cell-extrinsic
components in

selection

scribes selection mechanisms whose outcome depend uniquely on the B-cell features
(mainly its affinity), while the latter also includes external factors such as competitions
with other B-cells. These categories loosely match the two kinds of affinity-discrimination

16 Other evidence of the importance of CD40 in the delivery of the survival is the fact that blocking CD40

signaling leads to the dissolution of GCs, and that CD40 stimulation was shown to rescue human GC
B-cells [117, 50, 76].
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Figure 6: schematic depiction of the positive feedback loop for selection proposed in [75]. The
figure represents a contact interaction between a B-cell presenting Ag on MHC-II
molecules and a cognate Tfh cell, with membrane receptors and ligands represented
according to the legend on the top right. If a sufficient amount of pMHC are presented
then the combined engagement of TCR and ICOS stimulates the Tfh cell to externalize
a greater amount of CDL40L. This in turns provide a greater survival signal to the B
cell and upregulates the production of ICOSL, completing the positive loop.

mechanisms we discussed, with Ag-binding selection being by nature more cell-intrinsic,
while selection for T-cell help is more competitive. When comparing these two processes,
selection seems to be dominated by competition rather than by cell-intrinsic factors. One
important experimental observation in this sense is the fact that in absence of high-
affinity competitors, even B-cells with low Ag binding affinity can colonize GCs, but
they fail to do so if higher affinity competitors are present [126]. In [33, 126] for exam-
ples studies on transgenic mice showed that in absence of competition even affinities as
low as 8 µM are sufficient for B-cells to colonize GCs.
Even though the threshold for B-cell activation is low [14], nonetheless in some instances
this threshold might be relevant. For example in cases when Ag availability is very lim-
ited, or when in a subsequent immunization an Ag mutant is administered for which
most of the GC B-cells have low binding affinity. In such cases cell-intrinsic selection
might exert the highest level of selection pressure, causing a fast population decrease
and affinity maturation. Typically, if the maturation is fast enough for some cells to meet
the cell-intrinsic selection threshold then the population size starts to increase again, and
maturation continues under the action of competition. If on the other hand maturation
is not fast enough, then the population might go extinct before the cell-intrinsic thresh-
old is met. This low-population-size state in which extinction is possible was termed
population bottleneck and was included in different maturation models [155, 154, 161].
For example, in [161] the authors argue that the mutation rate and selection pressure in
GCs might have been set by evolution so as to be optimal for maturation. In particular
they suggest that the optimal mutation rate is a result of a tradeoff between avoiding
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too many lethal mutations and accumulating enough beneficial ones, while the optimal
selection strength is chosen so as to maximize maturation speed while at the same time
avoiding population extinction in the bottleneck. They introduce a model for AM in
which B-cell growth rate, which includes contributions from lethal mutations, duplica-
tion and selection, is approximated to a linear function of the cell binding energy for the
Ag, and define the critical affinity as the one at which growth rate is zero. The authors
then write the differential equation that governs the evolution of the average number
of cells of a given affinity under the approximation of infinite population size. This
equation other than the growth rate also includes the contribution of affinity-affecting
mutations. Its solution shows that if the initial affinity of the population is below the
critical threshold then the total population size will initially be subject to an exponential
decrease, followed by a super-exponential increase17 once the population affinity reaches
the critical threshold. The model is then extended to account for the finite size of the
population. In this case population survival in bottleneck conditions depends both on
the population initial size and on the difference between its initial binding energy and
the threshold one, this difference being controlled by Ag availability. The authors nu-
merically solve this extension for different values of mutation rate and initial affinity,
and then compare the affinity increment obtained. In doing so they observe the above
mentioned optimality in mutation rate and initial affinity.

Additional insight on GC selection can be gained by observing negative selection andnegative
selection and

self-reactivity
apoptosis in the GC. Both the DZ and the LZ have been shown to contain apoptotic
B-cells, but with different characteristics [86, 138]. Most of DZ apoptotic cells have ac-
quired mutations that impairs BCR expression, indicating SHM as the major source of
apoptosis. LZ apoptotic cells instead possess functional BCRs, and interestingly these
include both high and low affinity cells. This suggests that cells can be selected out not
only if they fail to bind the Ag (low affinity) but also for other affinity-independent rea-
sons, such as failure to encounter Ag-presenting cells [74]. Indeed, the possibility that
stochastic effects might play a role in GC selection was already advanced in the litera-
ture [90, 144].
Negative selection mechanisms must also be in action to protect against the develop-
ment of self-reactive Abs that could arise as a result of SHM [21, 71]. The processes that
take care of eliminating self-reactive clones are not completely understood. One possi-
ble mechanism might be the already mentioned fact that a too strong BCR stimulation,
such as the one that might be caused by the development of self-affinity, activates apop-
tosis. Another factor contributing might be that T-cells are screened for self-reactivity.
However recent experiments showed that GC selection is tolerant to low levels of self
reactivity. Slightly self-reactive clones can be tolerated in GCs for long enough times for
mutations to remove self-reactivity in favor of foreign affinity, in a process that has been
termed clonal redemption [23, 24].
In this context an interesting model to discuss is the one presented in [69]. Here the au-
thors show how affinity discrimination can be enhanced if selection is based on repeated
productive interactions between B and T cells, and that this mechanism can also protect
against the development of self-reactive B-cells. In the model the authors suppose that

17 This super-exponential increase, which is not biologically plausible, arises as a consequence of the authors
approximation of the growth rate being a linear function of binding energy. In reality for high enough
affinities the growth rate saturates, limiting the population size increase to an exponential increase.
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in the LZ a B-cell will undergo multiple encounters with T-cells, and depending on the
amount of Ag displayed it will have a certain probability for the encounter to be pro-
ductive. The authors show that if selection is operated on the basis of the number of
productive encounters, then this mechanism can exponentially amplify the difference in
affinities into difference of survival probabilities18. The number of Tfh cells (or rather
their encounter probability) also influences this affinity discrimination. When the en-
counter probability is small then affinity difference are further amplified, but the total
survival probability is smaller and selection more stochastic, generating a tradeoff phe-
nomenon by virtue of which optimal selection is operated at an intermediate encounter
probability. The authors also extend the model to account for self-reactivity. In this case
the fact that T-cells are screened against self-reactivity makes so that on average cells pos-
sessing BCRs with some self-reactivity will be less likely to have productive encounters.
This disadvantage will be less marked for cells with a weak self-reactivity but a good
foreign-Ag affinity, and this mechanism allows the presence of weakly self-reactive cells.

Another process that could contribute to selection is Ab-feedback [162]. This term iden- Ab-feedback

tifies the process by which Abs secreted earlier in the response can influence subsequent
B-cell selection, for example by binding Ag on FDCs and preventing B-cells from access-
ing it (Ag masking). This process is thought to accelerate maturation by providing an
additional source of competitive pressure but also to shorten GCR duration and GC
volume [11]. Moreover, it is also a possible mechanism through which different GCs
could interact, by being permeable to Abs from PCs generated elsewhere. Ab-feedback
has also been included in different computational models [155, 162, 11]. By blocking
access to a targeted epitopes, Ab feedback might also constitute an incentive for B-cells
to target new epitopes. As will be discussed in the next section this principle might be
exploited for the generation of BNAbs [93].

Taken together all of these considerations show that selection in the GC is a complex
process and, albeit much experimental progress has been made in identifying some of
the mechanisms at play, it is far from being completely understood. The considerations
discussed above also shaped our modeling approach, and are relevant with respect of
some of our results. For instance, in the AM model that we present in chapter 2 we
include a parameter19 that encodes the effects of stochasticity in selection, and regulates
the probability for a high-affinity cell to fail selection. Inference of this model on data
allows us to probe the relative importance of T-cell help competitive selection versus
BCR Ag-binding selection, our analysis indicating that in our experiments the former
might play the major role. Moreover, in section 3.4 we study how the bottleneck survival
probability is controlled by Ag availability and initial population size, and in section 3.5
we consider how the bottleneck state shapes evolutionary trajectories in affinity space.
Finally, in chapter 4 we discuss preliminary results indicating that the effect of Ag con-
centration in tuning selection strength can be reproduced by a simple interaction model
between B and T cells, in which the role of stimulatory signals from bystander B-cells in
recruiting T-cells is encoded in the dependence of the number of T-cells on the number
of B-cells.

18 The way this amplification is achieved shows similarities with the mechanism of kinetic proofreading [54, 108].
19 Namely b in eq. (7)
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1.3.4 Maturation in the presence of complex Ag, selection permissiveness and homogenization

Most of the early AM experiments were performed by immunizing animals with haptenscomplex Ag
makes GC

selection
permissive

(see section 1.3.2 for the definition). Immune response against these simple molecules is
often characterized by a big affinity increase [38] and limited genetic diversity of the re-
sponding population [59]. However, while remaining easy to study, the response against
haptens might fail to capture relevant aspect of maturation against more complex Ags,
such as the ones present in an infection or in immunization. In a recent review [41]
Finney et al. try to characterize some of these differences. They discuss experiments
of vaccination against complex Ags (Bacillus anthracis and influenza hemaglutinin) per-
formed in [70]. In these experiments it was observed that, as expected, the avidity20 of
GC B-cells gradually increased over time. More surprisingly, when measuring affinity of
B-cells at day 16 after immunization, it was observed that around 75% of cells display-
ing detectable binding affinity had similar and very high avidity, but the remaining 25%
covered a very wide avidity range (> 100 fold) with much lower avidities (see fig. 7A).
Even amongst the same clone, cells spanned a 40-fold interval of avidity values. In ad-
dition to this, a relevant portion of cells displayed no detectable binding affinity. These
observations suggested a more permissive nature of GC selection, and led Finney and
colleagues to formulate a selection model in which the probability of being selected for
a GC B-cell is an increasing function of affinity, while at the same time being non-zero
even for low-affinity cells (see fig. 7 B).

This permissiveness is also related to the level of clonal homogenization, i.e. the re-
duction of diversity in the clonal composition of GCs due to selection forces. As stated
above, such reduction was indeed observed in hapten responses [60]. However the di-
versity loss might be less marked in responses against complex Ags, where more het-
erogeneity is retained. In one famous experiment [144] Tas and colleagues were able
to follow the study the clonality of GCs with a clever genetic color-tagging of different
clones. Their experiment revealed that indeed diversity loss was occurring at different
rates, with some GCs being quickly dominated by a single clone already 9-11 days post
injection, while others remained heterogeneous throughout the study period, and that
maturation can occur also in the absence of homogenization.
In another interesting experiments of immunization [2] Abbot and colleagues study the
effect of precursor frequency and affinity on the competitive potential of GC B-cells.
They created a system in which both the affinity and the frequency of a specific precur-
sor could be controlled. Amongst other results, they measured the dominance of this
precursor in GCs at different times. At physiological frequencies, homogenization was
observed only if the precursor had high affinity. Even in this case clonal dominance was
not complete, with some GCs showing a low occupancy of these high-affinity cells.

One of the possible mechanisms that could generate this permissiveness is bystander
activation [58], i.e. the delivery of activation signals from T-cells to neighboring B-cells in

20 While affinity characterizes the interaction between the Ab and a single Ag molecule, avidity is related to
the cumulative binding strength of an Ab with multiple Ag molecule. Abs with similar affinities can have
different avidities if one binds a single Ag molecule, while another can simultaneously bind multiple such
molecules. One factor that influences avidity is the Ab isotype, since some isotypes such as IgA and IgM
are polymers composed of multiple Ig monomers.

20



pre-immunization
day 8
day 16

A B

BCR affinity

pr
ob
ab
ili
ty
of
be
in
g
se
le
ct
ed

Figure 7: A: experimental distribution of avidities of IgGs from mature B-cells after immuniza-
tion against bacillus anthracis protective antigen (rPA), from experiments performed in
[70]. Distributions corresponds to cells extracted before immunization (gray) or at day
8 (green) or 16 (blue) after immunization. As expected from maturation, the average
avidity increases over time. However even at day 16 a consistent part of the population
(around 25%) is composed of low-avidity B-cells remain. B: GC selection model pro-
posed in [41]. The authors suggest that even low-affinity B-cells might have a non-zero
probability of being positively selected. Figure adapted from [70] and [41].

a non-Ag-specific manner. This could occur because of membrane Ag transfer between
B-cells [119], or simply for physical proximity of specific and non-specific B-cells when
a high amount of T-cell help is available [16]. This mechanism was invoked as a possible
explanation for different experimental observations, in which responder clones follow-
ing vaccinations showed no detectable affinity for the administered Ag. For example in
[56] the authors analyzed data from human influenza vaccination. Using samples col-
lected at multiple time-points they could identify a subset of responder clones. Surpris-
ingly, a large fraction of these responders had no binding affinity for the Ag. Similarly,
after vaccinating mice against Tetanus Toxoid in [39] the authors analyzed IgG-secreting
cells elicited by a recall pure Ag injection. It is reasonable to believe that most of these
fast responding and class-switched cells must have been generated during previous im-
munization. Again, only a minor fraction (around 33%) of cells showed relevant Ag
affinity (Kd < 500 nM). It is however not yet clear the role that bystander activation
might play in GC selection, and more experimental investigation is needed.

The permissive nature of GC selection might be especially important in the fight
against mutable pathogens. The development of broadly-reactive Abs often requires the
accumulation of multiple mutations, during which Abs remain in a low-affinity state.
Not selecting these cells out might be crucial for the development of broadly-binding
Abs [13]. Moreover when facing mutable pathogens, rather than uniquely maximizing
affinity it might be advantageous also to maintain diversity in the responding popula-
tion [132, 58]. Especially given the fact that, as previously discussed, low-affinity cells
preferentially differentiate to join the MC compartment, building up the second "wall of
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defense" [5].

Another interesting experiments that highlight a difference between simple and com-maturation by
precursor
selection

plex Ag immunization is the one performed by Murugan et al. [102]. While usually
in responses against haptens maturation relies mainly on the accumulation of few key
mutations that confer a high affinity increase, in complex Ags maturation might occur
mainly by selection and expansion of high-affinity precursors that were already present
at the beginning of maturation. Using single-cell Ig sequencing Murugan and colleagues
studied the response to immunization against Plasmodium Falciparum, the malaria par-
asite, through the administration of the sporozoites chemoprophylaxis vaccine.21 They
found that while the average affinity was increasing over time, responders did not show
signs of efficient maturation. Cells were harboring many mutations but in most cases
these did not seem to increase the affinity for the Ag.22 Instead, most of the high-affinity
memory cells were originating from unmutated precursors. The affinity increase in this
case was due, rather than to the appearance of advantageous mutations, to the efficient
selection of these rare high-affinity germline B-cells, that even outcompete mutants with
improved affinity, but that developed from lower-affinity precursor.
To interpret these results the authors introduced a very interesting model for AM, in
which different "Ag complexities" could be considered. Ag complexity was encoded the
number of beneficial mutations that were to be acquired for a given total affinity im-
provement, with the underlying assumptions that for simple Ags like haptens even a
single mutation can confer a high affinity increase [8, 17], while for complex Ags the
accumulation of more mutations is needed. In the model for each Ag injection 50 GCs
were simulated, with MCs produced from a GCR having the possibility to seed future
GCs (see fig. 8 A). By visualizing the final affinity distribution of the produced MCs the
authors observed that for complex Ags most of the high-affinity individuals consisted of
unmutated high-affinity precursor (fig. 8 B), that were gradually selected in the course
of maturation, colonizing a higher number of GCs in subsequent injections. To confirm
this they re-executed the simulation removing the possibility for cells to accumulate ben-
eficial or deleterious mutations. This did not create a relevant difference in the final MC
affinity distribution. The situation was different when simpler Ags where considered. In
this case high-affinity cells were mainly generated through accumulation of beneficial
mutations (see fig. 8 C).

Finally, let us discuss the relevance of these considerations with respect to our mod-
eling approach. In our maturation model, later presented in chapter 2, we incorporated
a parameter that encoded selection permissiveness.23 By applying the model on experi-
mental data we unveiled many of the signatures of maturation against complex Ag. As
will be discussed later, together with a high level of permissiveness, we also observed a
varying degree of homogenization, that correlated with the presence of a high-affinity
precursor.

21 We point out that response to this parasite is peculiar, in that vaccination of pathogen-experienced individ-
uals seems to be less effective that for pathogen-naive individual. It is speculated that this might be related
to the atypical MCs produced during infection [159].

22 The absence of correlation between the amount of mutations accumulated and the Ab affinity was also
observed in experiments of TT immunization [43].

23 Namely parameter a in eq. (7)
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Figure 8: A: schematic representation of the AM simulation by Murugan and colleagues [102].
Many GCs are simulated in parallel, with B-cells undergoing cycles of mutation and
selection. When a new Ag injection is administrated cells that differentiated into MCs
can be reactivated and colonize new simulated GCs. B: example of clonal dynamic in a
simulated GC. Notice that for the most expanded clone (red) the number of mutations
does not correlate strongly with affinity, indicating that it was not selected as a result
of accumulated mutations. C: affinity of the MC pool at the end of the immunization
scheme for three different simulated scenario. When a complex Ag is considered (left),
for which affinity increase requires the accumulation of many small mutations, then
maturation occurs mostly by selection of pre-existing high-affinity clones. In fact even
if mutations are turned off (middle) a similar maturation is observed. If a simple Ag
is considered instead (right), for which few key mutations can confer a big affinity in-
crease, then maturation occurs by accumulation of beneficial mutations. Figure adapted
from [102].
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1.3.5 Immunizing against mutable pathogens

One of the most important research frontiers in immunization protocols concerns the de-
velopment of vaccination strategies against highly-mutable pathogens. These pathogens
can escape immune recognition by developing mutations on targeted epitopes, and as
such are extremely hard for our IS to fight and eliminate. Nonetheless, in some rare
cases the IS manages to develop antibodies capable of binding conserved pathogenic
regions which are not affected by mutations, and therefore are able to recognize a broad
variety of virus mutants. These potent Abs, known as Broadly Neutralizing Abs (BNAbs),
are however naturally generated late in the response, and given the diversity of the
viral population at late infection stage are insufficient for total pathogen removal. How-
ever, they can be protective against infection if they can be elicited via an appropriate
immunization strategy. The development of such strategy is therefore one of the main
therapeutical research goals, pursued through experimental efforts often guided by the-
oretical models.

The most notorious example of this kinds of pathogens is the Human ImmunodeficiencyHIV infection
and BNAbs Virus HIV-1, which causes acquired immunodeficiency syndrome (AIDS). To be able to

neutralize this pathogen Ab must bind functional sites on its envelope spike gp160, en-
coded by the ENV gene. Binding of these regions is made hard by different protection
mechanisms [100], the most important of which is the fact that initial responses are usu-
ally directed to spike regions which are highly mutable, a fact that earned the virus the
title of "nature’s master of disguise" [85]. Other possible mechanisms include the shield-
ing of conserved residues, which complicates access and binding.
In a typical immune response against the virus [100], the first effective Abs appear some
months after infection. They are specific for the viral population present in the host,
and exert a sufficient selective pressure to elicit the development of escape mutants. At
this point the IS and viral populations start a process of coevolution, each population
exerting selection pressure on the other in an evolutionary "arms race", whose signa-
ture can be detected in the repertoire evolution [109]. Some years after infection, BNAbs
start to appear in a small percentage of infected individuals (around 1%). These Abs are
effective against a wide variety of viral sub-species. At this point the viral population di-
versity is too great for them to clear the infection, however they could contribute to keep
viral load in check. The study of these Abs revealed that they are typically characterized
by a high level of SHM in framework and CDR regions, and that these mutations are
essential for the Ab affinity [65].
The time needed for appearance of BNAbs and their relatively high mutational load
indicates that their development requires extensive maturation [148] that may transit
through low-affinity states. This suggests that the permissive nature of GC selection
(discussed in section 1.3.4), which allows also low-affinity clones to remain in the GC
for extended periods of time, might be essential for BNAbs development [13].
Moreover the fact that they appear only after that the virus population has developed
sufficient diversity indicates that if immunization strategies exist that can elicit the ap-
pearance of BNAbs, these must make use of multiple virus variants.

This raises many questions, such as how many variants should be used, how should
they be chosen, in what concentration should they be present and in what temporal
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order should be administered. The answer to these questions requires understanding
of how AM occurs in the presence of multiple Ag variants, and how it can be directed
to develop maximum breadth. Many theoretical models have been developed to tackle
these questions. A fundamental ingredient of these models is the way Abs and different
strains of Ag interacts, and how mutations in these two populations influence the bind-
ing affinities. Different modeling choices in this sense are reviewed in [123]. Here we
present some examples of relevant models that tackle the problem of optimizing vacci-
nation.

As a first example, in [155] the authors consider the problem of HIV vaccination, in- Ag variants
administered
sequentially or
in a cocktail
vaccine

troducing a model of AM in the presence of multiple Ag variants, and study the optimal
dosage and time administration of these variants. They represent Ags as string of binary
values {+1,−1}, where −1 corresponds to a mutation. The string is divided in three re-
gions. One region represents conserved residues, that do not mutate between variants.
A second region encodes for variable residues, that instead can freely mutate. A third
region corresponds to shielding residues, and an Ab mutations that increases affinity for
these residues will as a consequence decrease affinity for the binding of constant regions.
Abs are represented as real-valued vectors, with each component indicating the binding
energy for each viral residue. The total binding energy between any Ab and virus is the
sum of these contributions, with an inversion of sign for viral residues that are mutated.
AM proceeds by rounds of duplication, mutation and selection. When an Ab develops
an affinity-affecting mutation the binding energy for one randomly picked viral residue
is varied with an additive contribution, with deleterious mutations being more likely
than beneficial ones. Selection is instead performed in two steps: Ag-binding and com-
petition for T-cell help. The probability of passing these steps depends on Ag availability
and on the cell binding affinity, and for competitive selection also on the affinity of the
rest of the population. They also consider Ab-feedback in their model, in which case
competition includes also Abs produced during the course of the GCR. Moreover, when
multiple Ag variants are administered together two possibilities are considered: cells
either encounter and bind only one Ag variant, or all of the variants together.
With these ingredients the authors compare the outcomes of simulations of three dif-
ferent immunization schemes. In one the wild-type (WT) Ag, containing no mutations,
is administered in a cocktail injection together with two other Ag variants. In a second
scheme a first WT injection is followed by a second injection with a cocktail of two mu-
tants. In a third scheme the WT and the two Ag mutants are administered separately in
three sequential injections. For these three schemes the quality of the resulting immu-
nization is measured both in terms of Ab breadth and of probability of surviving the
population bottleneck. They find that Abs with maximal breadth can be more consis-
tently elicited if Ag variants are sequentially administered, and at an intermediate Ag
dosage. This outcome is interpreted in terms of optimal frustration: when multiple Ag
variants are administered they apply conflicting selection forces to the population, each
one pushing towards maximizing the binding affinity for a particular variant. When this
frustration is too intense, meaning a strong pressure is applied for the simultaneous
binding of all the variants, then the most common outcome is extinction. Conversely
if the frustration is too low, and selection forces do not push the population towards
simultaneous variant binding, then strain-specific Abs are developed. In the model this
optimal frustration is obtained at intermediate Ag concentration, and by temporally sep-
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arating conflicting selection forces via sequential immunization.
Recently, some experimental evidence has been collected in support of this view. For
example in [95] experiments of rabbit immunization with different variants of the HIV-1
ENV spike proteins showed that sequential immunization elicited a more broad serum
neutralizing activity when compared to cocktail immunization.

The principle of intermediate optimal frustration discussed above was also invokedoptimal
frustration and
number of viral

strains in a
vaccine

in [127]. In this paper the authors study the effect of immunization with a cocktail of
different Ag variants, focusing on optimizing the number of variants, their mutational
distance and Ag concentration. In this case affinity of Ags and Abs is modeled using
a shape-space representation (see fig. 9 A). Both Abs and Ags are defined by a vectors
in an 8-dimensional space which encodes for their biochemical properties, in such a
manner that the binding energy of an Ab-Ag pair is proportional to the square norm
of their distance. The dimensions of this space are divided in four conserved dimensions
and four variable dimensions. The position of Ags is constrained to lay on the coordinate
zero in the conserved dimension, while coordinates in the variable ones are randomly
extracted from a gaussian with zero mean and same variance. Abs initial vectors are
instead initially randomly picked so as to lay on an hypersphere centered on the origin.
As in the previous model Abs evolve in iterative rounds of duplication, mutation and
selection. Affinity-affecting mutations are performed by shifting the Ab position in the
shape-space adding a random vector, whose components are randomly extracted from
a gaussian. As a consequence of the high dimensionality of the shape-space mutations
are on average deleterious. Selection operates in two steps, similarly to the previous
model, with one step encoding Ag binding and the other competition for T-cell help. As
in the previous work, survival depends on both Ag concentration and affinity for one
or more Ags. Given that the Ag population is on average centered around the origin
of the space, it follows that breadth acquisition for Abs corresponds to accumulating
mutations that shift them closer to the origin. By simulating maturation with a different
number of Ag variants in the administered cocktail the authors observe the existence of
three regimes. When a few variants are administered the Ab population quickly devel-
ops into few strain-specific Abs with sub-optimal breadth. If on the other hand a big
number of variants are administered conflicting selection forces quickly lead the popu-
lation to extinction. Optimal breadth is obtained at an intermediate number of variants,
corresponding to an intermediate level of frustration in the selection forces (see fig. 9 B
and C). For any fixed number of administered variants a similar optimality is observed
also in concentration. This is a consequence of the role that this parameter plays in
controlling the selection strength. The authors observe that the optimal concentration
depends strongly on the number of variants used, which potentially complicates vacci-
nation. The optimal concentration can be made more robust if the phenotypic distance
between the Ag variants is reduced when their number is increased.
In the article the authors provide an interesting interpretation of the observed optimality,
describing maturation in this context as a dynamical system with two strong attractors.
The first, corresponding to a high level of frustration, leads to population extinction,
while the second, at low frustration level, leads to strain-specific Abs. If the model cor-
rectly captures maturation in the presence of multiple Ag mutants, then the complexity
of eliciting BNAbs through vaccination can be understood in terms of the complexity of
initializing the system on a trajectories that remains as long as possible in an unstable

26



B
re
ad
th

G
C
fr
ac
tio
n

0.20

0.25

0.30

0.35

0.40

0.45

1 2 5 10 20

0.0

0.2

0.4

0.6

0.8

1.0
Antigen Decay
B Cell Apoptosis

conserved
dim

ension

variable
dimension

antigen number

antigen

germline Abs

A B

C

Figure 9: A: simplified depiction of the shape-space representation for Ab-Ag affinity used in
[127]. Affinities are a decreasing function of the distance between an Ag and an Ab in
the space. Administered Ags are constrained to have coordinate zero on the conserved
dimension, while Abs have initially all the same distance from the origin of the space,
corresponding to the position of maximal average breadth. Affinity-affecting mutations
change the position of an Ab by a random shift. B: fraction of GC simulation that
terminate by Ag decay or by B-cell apoptosis. Simulations can terminate in three ways,
either by Ag decay if the simulation times exceeds a maximum threshold, or by Ag
consumption (not shown) if the B-cell population exceeds a maximum threshold, or by
B-cell apoptosis if the population goes extinguished. At small numbers of Ag variants
the frustration is small and most of the simulations terminate by Ag consumption.
At high Ag number instead frustration is high and most of the simulations terminate
in population extinction. Termination by Ag decay, which correspond to long-lasting
maturations, are only obtained at intermediate Ag number and frustration levels. C:
maximal immunization breadth is obtained at intermediate number of Ag variants, i.e.
intermediate levels of frustration. Figure adapted from [127].

equilibrium between these two attractors.

Another possible strategy to push the B-cell population to develop affinity for a con- exploiting
Ab-feedbackserved but sub-dominant epitope was proposed in [94]. Here the author studies the

effect of Ab-feedback in GC reactions and suggests that exploiting epitope-masking of
the immunodominant epitope, achieved by injecting epitope-specific Abs, could direct
maturation towards the sub-dominant epitope. The model employed is part of a family
of agent-based spatial models [94, 92, 20] in which different cell types are embedded
and move in a simulated GC environment. In this environment B-cells can bind Ag de-
posited on FDCs in an affinity-dependent manner, interact with T-cells to receive help,
divide and mutate. A space-shape representation, similar to the one employed in the
previous model, is used to encode Ag-Ab interaction. Only two epitopes are considered
in the model, which are differentiated by their accessibility, the hardly-accessible epitope
being harder for B-cells to encounter. In each Ag encounter B-cells bind preferentially
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the Ag for which they have the highest affinity, which is progressively consumed. If Abs
are present in the GC, either because artificially administered or because secreted from
previously produced PCs, they can bind and mask Ag of the corresponding epitope and
prevent B-cells from binding to it.
Simulations of the model without the presence of Ab feedback or injected Abs shows
that the response focuses mainly on binding the easily accessible epitope. When Ab feed-
back is included Abs produced early in the response contribute to the masking of this
epitope, producing a weak but detectable response against the sub-dominant epitope.24

This response remains weak because the masking starts to operate only late in the course
of the GCR, when high-affinity Abs for the dominant epitopes start to be available. If
instead Abs against the dominant epitope are administered then the response becomes
skewed towards the sub-dominant epitope, in a manner dependent on the concentra-
tion of these Abs, with as a side effect the total magnitude of the response being smaller,
since less total Ag is available for binding. This result leads the author to speculate that
complementing cocktail vaccine with Abs against dominant epitopes might help to fo-
cus the response against less dominant but more conserved epitopes.

Even though not directly conceived for studying vaccination, also models of coevo-coevolution
models and
diversity in

vaccine viral
strains

lution between the HIV population and the IS could provide suggestions on how to
better prompt the IS to produce BNAbs. For example in [79] the authors simulate the
coevolution of virus strains and Abs. In simple terms, viruses and Abs are represented
as strings of characters. A virus presents two epitopes, a conserved and a variable one.
Abs can bind either of the two, with the affinity depending on how well the two strings
match. The fitness of an Ab increases with its average affinity for the viral population,
while conversely viral fitness decreases with the average affinity with which the virus is
recognized by the Ab population. With this setup the authors find that the development
of BNAbs is favored when the viral population is highly diverse. In these conditions Abs
are better pushed to developing affinity for the conserved viral epitope, which leads the
authors to advocate for the use of a cocktail vaccine with many diverse mutants.25

The fact that diversity in the viral population favors the appearance of BNAbs was also
suggested by another coevolution model [110]. Here viruses and Abs are represented as
binary vectors of {+1,−1} values, with viruses possessing a conserved region that is the
same for all viral variants. The binding affinity between a virus and an Ab is expressed
as a dot-product between the vectors, with weights for each component representing
residues accessibilities. Similarly to the previous case the two populations coevolve, with
the fitness of an Ab (virus) depending on how well it recognizes (is recognized by) the
opposite population. The authors write stochastic differential equations that describe
the evolution of the the average binding affinity for the variable and conserved regions,
and show that under some approximation this out-of-equilibrium evolution admits a

24 As stated by the author, the positive effect of slow Ag administration schemes on the development of BNAbs
[27] could be partially explained by the fact that in this case the longer duration of the response makes so
that Ab feedback has the time to shift the response towards sub-dominant more conserved epitopes.

25 The difference between this results and what found in [155] is to be traced back to the different hypotheses
that these models employ. One major difference is the fact that in this model Abs target either the conserved
or the variable viral epitope, while in [155] given the spatial proximity of conserved and variable residues
in HIV the authors assumed that Abs interact with both a conserved and variable epitopes at the same
time.
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stationary solution in which each population adapts to the other at the same rate.26 The
authors then extend the model to account for different Ab lineages, and consider the
probability that the introduction of a new Ab lineage results in fixation of this lineage in
the population. They find that this probability depends both on its relative fitness with
respect to the other lineages, but also on their rate of adaptation to the viral popula-
tion and on the viral population rate of "counter-adaptation". When considering BNAbs
these do not possess a particularly higher fitness than other lineages, but their advantage
resides in the fact that the viral rate of "counter-adaptation" is reduced by the fact that
virus cannot escape binding by developing mutations on the conserved epitope. This
advantage is more marked, and the fixation probability higher, if the viral population is
more diverse, which leads the authors to suggest that the efficacy of an immunization
strategy in conferring breadth might increase if it makes use of many different viral
strains.

We point out that in some cases the results obtained through these models depend
on the assumptions they employ on how maturation plays out when multiple Ags are
present, and in some cases varying these assumptions leads to different results. This
highlights the importance of experimental investigation of maturation mechanisms in
the presence of Ag variants.

We conclude this section by mentioning that chapter 5 of our work contains prelim-
inary results that are related to mutable pathogen immunization. There we investigate
the effect of single-Ag immunization against pathogens with different mutability. Our
model predicts the existence of a critical mutability level above which single-Ag immu-
nization is not beneficial for breadth acquisition.

26 Interestingly, the authors show how this rate of adaptation can be experimentally measured by studying
its effect on antibody neutralizing affinity against time-shifted viral populations. They in fact show that the
rate of adaptation of the two populations, which they describe in terms of fitness flux and transfer flux, can
be measured by comparing the neutralizing power of Abs at any given time against viral populations from
past and future time-points (and symmetrically of viral populations against time-shifted Abs populations).
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2
E F F E C T S O F A G D O S A G E : M O D E L I N G A N D D ATA A N A LY S I S

2.1 introduction and chapter outline

In this chapter we present an application of inference techniques to the study of Affinity
Maturation, with special focus on the effect of Ag dosage.
In the previous chapter we discussed experimental evidence demonstrating that Ag
dosage plays a non-trivial role in AM (see section 1.3.2). In particular experiments show
that optimal maturation is obtained at intermediate values of the dosage [63], and sug-
gest that this phenomenon could be a consequence of the selection pressure exerted by
the availability of Ag. Since B-cells have to bind Ag to survive selection, this pressure
must be stronger when Ag is scarce [46, 112, 143]. The importance of reaching a quantita-
tive understanding of this non-trivial effect of Ag concentration, through modeling and
inference, lies in the hope that this understanding could eventually be used to improve
human vaccination [121].
A second open issue concerning AM is to characterize in a quantitative way the selec-
tion acting in the GC, in particular how permissive it is [13, 90, 148, 58] (see section 1.3.4).
Through mechanisms such as bystander activation [19, 39, 40] GC selection can indeed
allow intermediate and low affinity clones to survive [144]. These phenomena generate a
wider diversity than previously appreciated, especially when considering complex Ags
displaying different epitopes [70]. Permissiveness could for example be useful against
mutable pathogens, where maintaining a pool of general cross-reactive cells might be a
better strategy than only selecting for the best strain-specific binders [41].

Building from these premises and taking inspiration from other models in the liter-
ature [155, 154] here we introduce a stochastic model for Affinity Maturation in the
context of vaccination. The model encodes explicitly the role of Ag concentration in
tuning the selection strength. With the use of a new technique they developed [40] our
collaborators were able to obtain experimental measurements of affinity distributions
of Antibody-Secreting Cells (Ab-SCs) generated following different immunization pro-
tocols, in which both Ag dosage and time between injection was varied. This rich infor-
mation is then exploited in our inference procedure. By performing the deterministic
limit of the model we obtain an expression for the probability of a single experimental
observation as a function of model parameters. This expression can be inverted to nu-
merically evaluate the Maximum-Likelihood Estimate of the unknown parameters. The
inferred model can quantitatively reproduce the data, including the existence of an op-
timal Ag dosage. Importantly, this optimality can then be interpreted with a theoretical
analysis of the deterministic limit of the model. We show that at constant levels of Ag
concentration the affinity of the B-cell population in our model tends to evolve as a trav-
eling wave. By formulating this limit as an eigenvalue problem we can derive how this
limit depends on Ag concentration. This analysis reveals that Ag availability controls
the GC population growth and maturation rates, generating a tradeoff phenomenon of
which the observed optimality is a consequence. In addition to this, inference allows
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us to investigate hardly-accessible features of maturation, such as the permissiveness of
GC selection. In accordance with recent advancement in the literature we find that also
in our case GC selection seems to be permissive.

The chapter is organized in the following sections:

Foreword : Bayesian inference : a very short introduction on Bayesian Inference,
illustrating the relation between Bayes Theorem and Maximum Likelihood Esti-
mate.

The experimental dataset : contains a description of the technique used to obtain
the experimental measurements on which our inference is based, and qualitative
observations on the resulting dataset.

Stochastic model of AM to predict affinity distributions : here we intro-
duce a stochastic model for AM, in which the effect of Ag concentration is explic-
itly encoded. The model offers predictions for affinity distributions for comparison
with experiments.

Model deterministic limit : in the limit of infinite size we obtain a deterministic
version of the model, on which our inference technique is based.

Inferring model parameters : using the deterministic model we can define a like-
lihood function for the model parameters. With an implementation of the Parallel
Tempering technique we numerically maximize this likelihood as a function of un-
known model parameters. With the inferred value of model parameters the model
is able to quantitatively reproduce experimental affinity distributions.

Analysis of deterministic model offers insight on the effect of Ag dosage

: we study the asymptotic model behavior at constant Ag concentration, expressing
it in the form of an eigenvalue equation. The solution of this equation shows how
Ag concentration controls both population growth and maturation speed, gener-
ating a tradeoff that is at the base of the observed optimality of intermediate Ag
dosages.

Inference as a tool to investigate AM mechanisms : after fitting the model
to data, the value of inferred parameters provides insight on the inner workings of
GC selection and AM. In particular we discuss the permissiveness of GC selection,
the degree of homogenizing selection and the relative contributions of Ag-binding
and competitive selection.

Conclusion : it contains a summary of the main results of the paper, along with a
discussion on the limitations of the model.

The work discussed in this chapter is the object of a publication [96], from which the
chapter is partially adapted.
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2.2 foreword : bayesian inference

In the preface of his book “Probability theory: the logic of science” [62] E.T. Jaynes states
that inference is concerned with the optimal processing of incomplete information. In real-life
problems often we do not possess enough experimental evidence to answer questions
directly, by means of deductive reasoning. In most of the cases, the best strategy is to
integrate all the available information on the system to get as close to the answer as
possible. Statistical inference is indeed concerned with performing this information inte-
gration within the mathematical framework of probability theory.

Probabilities can be defined as degrees of belief in propositions.1 If x is a proposition
then we indicate with P(x) this degree of belief. Starting from Cox axioms [31] (presented
in a simplified version in [81]) one can show that degrees of belief can be mapped
into probabilities, satisfying the usual probabilities rules. In particular, one of the con-
sequences of these axioms is the chain rule, that states that P(x,y) = P(x|y)P(y). Here
P(x,y) represents the probability that both propositions x and y are true at the same
time, and P(x|y) is the probability that proposition x is true provided that we known
proposition y to be true. From the chain rule we can easily derive the following:

P(y|x) =
P(x|y)P(y)

P(x)
(1)

This simple relation, known as Bayes Theorem, is at the base of all Bayesian inference. It
offers a prescription on how to update the degree of belief in y after new evidence x is
found. The term P(y|x), known as posterior probability, is this updated probability after
evidence is observed. This is proportional to the likelihood of observing the evidence if
y were true, i.e. P(x|y), times the prior probability of y, i.e. P(y). This latter term accounts
for our prior belief before any evidence is observed.

Most importantly, this theorem can be used to solve inverse probability problems. These
consist in inferring the value of hidden variables using the combination of a generative
model for the process in question and of the observation of accessible variables.
To make things more explicit let us suppose we are interested in knowing the value of
some hidden parameter h that controls a process that generates a set of independent
observations D = (d1, . . . ,dN).2 If we know the way this hidden parameter influences
each observation, i.e. we know the direct probability P(dn|h), then Bayes theorem states
that:

logP(h|D) =

N∑
n=1

logP(dn|h) + logP(h) + const (2)

The most likely value of the hidden parameter given the evidence is then given by the
value that maximizes the posterior probability:

h∗ = arg max
h

[
N∑
n=1

logP(dn|h) + logP(h)

]
(3)

1 This is known as the Bayesian or subjectivist approach. Alternatively one can define probabilities as empirical
frequencies of repeated random trials, which is known as the frequentist approach. There is currently an
open debate between these two positions.

2 Note that this can be easily generalized to the case in which h and d are vectors.
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If no prior expectation on the value of h is present then a uniform prior P(h) = const
is conventionally assumed, which reduces the problem to maximizing the likelihood
term containing the sum. In this case the procedure is known as Maximum Likelihood Es-
timation (MLE). If instead a non-uniform prior is assumed then the procedure is termed
Maximum a-posteriori (MAP).3

In this chapter MLE will be used to infer the value of parameters of our maturation
model from the information contained in experimental affinity measurements.

2.3 the experimental dataset

In the previous section we discussed how the informative power of inference depends
crucially on two aspects: the accuracy of the assumptions made when defining the under-
lying model on one side, and the number and quality of the experimental measurements
performed on the other. In our case, the work of our collaborators provided us with very
rich information on the affinity distribution of Ab-SCs elicited by immunization. This
section is dedicated to a short description of the dataset and the measurement technique
they employed. For a more detailed description one can refer to [40].

2.3.1 Experimental technique

The aim of the experiments is to probe the effect of Ag dosage and immunization sched-
ule on the resulting immunization quality, defined as the affinity of the Abs produced in
response to Ag exposure. To do so our collaborators performed the procedure, sketched
in fig. 10. They tested three different immunization schemes (described below) on mice
to immunize them against Tetanus Toxoid (TT). At the end of the procedure each mouse
was sacrificed and cells from the spleen were harvested. IgG Secreting Cells (IgG-SCs)
were isolated, enriched and compartmentalized in picoliter-size droplets using a mi-
crofluidic device. Together with the cell, the droplet also contained paramagnetic beads
coated with an apposite nano-body to bind the IgG light-chain and capture the secreted
antibodies. By applying an external magnetic field the beads can be aligned to form an
elongated chain, termed beadline. In addition to this the droplet also contained TT and
a binder for the IgG constant region, both tagged with a fluorescent label (green for
TT and red for the Fc binder). Secreted Abs, whose concentration increased over time,
captured Ag according to their affinity, and were in turn captured on the beadline. By
measuring the fluorescent signal one can quantify the magnitude of the Ag and Ab re-
location. With an appropriate calibration curve one can relate the ratio of this relocation
as the concentration of secreted Abs increases to the affinity of the secreted Abs. In our
analysis affinities are quantified either in terms of the dissociation constant Kd between
the Ab and the Ag, or of the binding energy ε. These two quantities are related through
the standard conversion ε = logKd, where the dissociation constant is expressed in Mo-
lar units,4 and energies are in units of kB T , where kB is Boltzmann constant and T is the

3 Notice that, since the term in the sum is extensive in the number of observations N, in the limit of a large
number of data the prior becomes irrelevant.

4 Notice that other choices of units would shift energies by a constant amount, and would not affect energy
differences.
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Figure 10: schematic depiction of the experimental technique employed by our collaborators to
perform single-cell affinity measurements. A mouse is subject to an immunization
scheme. At the end the mouse is sacrificed, IgG Secreting Cells are harvested, en-
riched and inserted in droplets with fluorescent markers that are used to measure
the colocalization of the secreted antibodies and antigen. Through this colocalization
the affinity of the antibodies can be determined. This measure is repeated for all the
harvested cells, and the full affinity distribution is obtained.

organism temperature.5 The affinity can be determined in an instrumental sensitivity
window that ranges from 0.1 nM to 500 nM (or equivalently binding energies between
around −23 and −14.5 units of kBT ). Affinities lower than the detection threshold are
not detected, while affinities higher than this threshold can be detected but not precisely
quantified, therefore in our analysis they were set equal to the threshold 0.1 nM. The
experimental apparatus is capable of performing the measurement in parallel on tens
of thousands of droplets, which gives as outcome the full affinity distribution of the
measured IgG-SCs.
Next-generation sequencing techniques allow one to extract the genetic sequence of a
large number of Abs [42], but they do not provide phenotypic information such as
binding affinity. Conversely, conventional experiments to quantify affinities either mea-
sure an average quantity (e.g. average serum affinity), or have limited throughput. The
technique introduced by our collaborators is able to perform affinity measurements of
many hundreds of cells at a time, providing an accurate characterization of the affinity
distribution of the Ab-SCs elicited by immunization. These distribution are then fully
exploited by our inference procedure, described in the following sections.
The experimental apparatus does not reveal the origin of the Ab-SCs analyzed, i.e.
whether they derive from reactivated MCs or LLPCs (see section 1.2.3). However the
fact that they are class-switched (i.e. they are of IgG isotype) suggests that for the most
part they have undergone some prior maturation and do not originate directly from
activate naive cells. The fractions of recalled MC and LLPCs in the Ab-SCs population
will likely depend on the time and conditions at which the population is probed.

5 This choice is standard in biophysics, and it simplifies the expression of Boltzmann factor into e−ε. In
practice 1 kBT ∼ 10−24 kcal.
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2.3.2 Immunization schemes

To investigate the effect of Ag dosage and injection schedule on the outcome of immu-
nization we test three different schemes, depicted on the left column of fig. 11.
The first two schemes are used to study the effect of Ag dosage. Scheme 1 consists of two
injections. The first contains a dose D of Ag (TT) in Complete Freund’s Adjuvant (CFA).
After a 4 weeks interval a second injection is administered at the same Ag dose D, in
Incomplete Freund’s Adjuvant (IFA). Four days after this second injection the mouse is
sacrificed, IgG-SCs from the spleen are harvested and their affinity measured using the
technique described above. This scheme was tested at 5 different values of Ag dosage
D = 0.01, 0.1, 0.5, 1 and 10µg TT. Scheme 2 is identical to scheme 1 up to the second
injection. At this point after an additional 4 weeks delay a boost injection of 1µg pure
TT is administered. The next day the mouse is sacrificed and cells harvested for analysis.
Tested dosages for this scheme are D = 0, 0.01, 0.1, 0.5, 1, 3, and 10µg TT. In the case of
null dosage injections are performed according to the scheme, but they contain only the
adjuvant and no antigen, except for the boost injection which also in this case contains
1µg TT.
Finally, in scheme 3 we study the effect of injection delay. In this scheme mice are sub-
ject to a first injection at a constant Ag dosage of 10µg TT in CFA. At this point, after
a variable time interval ∆T , a second injection of 10µg TT in IFA is administered. Four
weeks later mice are given a boost injection of pure 1µg TT, and the next day cells are
harvested and analyzed. Tested time intervals are ∆T = 1, 2, 4 and 8 weeks.

2.3.3 Qualitative observations: the influence of Ag dosage and injection delay

For each tested mouse our experimental apparatus measures the full affinity distribu-
tions of Ab-SCs (full distributions of pooled data are displayed in later sections in fig. 21).
In fig. 11 we report the average binding energy of these distributions for single mice (or-
ange crosses) and for pooled data from mice tested under the same condition (orange
empty dots). These are reported as a function of the varied quantity, either Ag dosage D
or injection time delay ∆T , depending on the scheme considered. Notice that the number
of mice employed per condition can vary (the number for each condition is reported in
fig. 21).
As a first qualitative observation one notices that in scheme 1 the average affinity seems
to be maximal (i.e. minimum binding energy) at intermediate values of the Ag dosageD.
The same behavior can be observed for scheme 2, even though in this case data are more
noisy. From the results on scheme 3 instead it appears that delaying the second injection
of some weeks is beneficial compared to administering shortly after the first. To interpret
these behaviors we introduce in the next section a model for affinity maturation.

2.4 stochastic model of am to predict affinity distributions

Here we introduce a stochastic model for Affinity Maturation, which takes inspiration
from [155, 154], with the aim of quantitatively explaining the experimental data. The
model describes the evolution of a population of B-cells inside a Germinal Center. These
cells are subject to cycles of duplication, mutation, selection and differentiation, repro-
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Figure 11: schematic depiction of the three immunization schemes considered (left column) and
the effect of the varied quantity (either Ag dosage D or injection delay ∆T ) on the
average binding energy 〈ε〉 of the elicited Ab-SCs population (right column). In each
scheme depiction we indicate the composition of each injection, the delay between
injections and the dosage of Ag. In the corresponding plot on the right, the average
binding energy of measurements from a single mouse is indicated with an orange
cross (number of mice per condition tested can vary, see fig. 21), while the average over
pooled measurements from the same condition are represented as empty dots. Crosses
are linked by a vertical dashed line to convey a measure of individual variability.

37



ducing the biological process described in section 1.2. In our model each cell is charac-
terized solely by the binding affinity of its B-cell Receptor (BCR) for the antigen. The
aim of the model is to follow the evolution of the distribution of affinities of cells in
the population during the maturation process. This is important for comparison with
experimental data, which themselves consists in affinity distributions.
For the sake of readability we limit here the description to the model definition, and
move the discussion about the detailed numerical implementation and choice of param-
eters value from the literature in appendix A.1. All parameters values are also reported
in table 1.

2.4.1 Antigen dynamics

The first model ingredient we describe is the dynamics of Ag concentration C inside of
the simulated GC. In the model the amount of Ag available controls the strength of
selection, and evolves during the GCR under the action of different mechanisms, which
are schematized in fig. 12A.
At the time of injection an amount Cinj of Ag is added to the Ag reservoir. This amount
is related to the injected dosage D by a proportionality constant D = αCinj. We express
α as a mass, which makes concentration dimensionless. The reservoir is constituted by
Ag trapped in the adjuvant matrix, from which it is quickly released at a rate k+ and
becomes available for cells to bind. Due to recycling of Ag from surface of Follicular
Dendritic Cells (FDCs) to endosomal compartments [52, 90] available Ag decays at a
slow rate k−∅, and is consumed by B-cells at a faster rate, k−B NB, proportional to the
number NB of B-cells in the GC. As the amount of Ag is depleted, selection of B-cell is
more and more stringent, and the GC eventually dies out.
The evolution of the reservoir Ag concentration Cres and the available Ag concentration
Cav are regulated by the following pair of equations:

d

dt
Cres(t) = −k+Cres(t) (4)

d

dt
Cav(t) = k

+Cres(t) − (k−∅ + k−BN
B
t ) Cav(t) (5)

Complemented with the initial condition at injection time Cres(t = tinj) = Cinj and
Cav(t = tinj) = 0. An example of this dynamics for an injection of Cinj = 10 is reported
in fig. 12B. Additional details on the numerical implementation of these equations and
the choice of parameters are given in appendix A.1.

2.4.2 GC affinity maturation

Our simulated GCs are initially colonized by a numberNfound of founder clones from the
population of naive responders [144]. Their binding energies ε are independently drawn
from a Gaussian distribution, with mean µnaive and standard deviation σnaive (Histogram
1 in fig. 13). During the initial phase of colonization and expansion these founder clones
duplicate uniformly without mutation to produce a population of Ni B-cells. We do not
model this initial phase other than for Ag consumption (see appendix A.1 for details),
and start our simulation TGC days after Ag injection, when the GC is mature [149, 34].
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A B

Figure 12: A: schematic representation of the Ag dynamics. After injection Ag is stored the adju-
vant matrix, from which is released at a rate k+ and becomes available for B-cells to
bind. Available Ag is either consumed by B-cells at a rate k−BNB proportional to the
population size, or it decays naturally at a rate k−∅. B: example of Ag dynamics. An
injection at Cinj = 10 is administered at t = 0. In this example the population size is
kept constant NB = 2500.

During each evolution round (of duration Tturn hours), all cells are assumed to divide
twice, independently of their affinity6. At division B-cells have probability pmut of de-
veloping mutations through a process known as Somatic Hyper-Mutation. Mutations can
be lethal, neutral, or affinity-affecting with probabilities equal to, respectively, pl, ps, or
pa [161]. In the latter case the binding energy of the cell is added a random contribu-
tion, ε→ ε+∆ε, drawn from a log-normal distribution Kaa(∆ε) (cf. eq. (132)) displayed
in fig. 14A. Most affinity-affecting mutations are deleterious, i.e. correspond to ∆ε > 0.
This makes so that mutations lower the average affinity of the population, but might
also increase the affinity of few individuals (Histogram 2 in fig. 13).
After duplication B-cells are first selected according to their capability to bind Ag ex-
posed on Follicular Dendritic Cells (FDCs) (fig. 13 top right). The probability for a cell
to survive this selection step is a decreasing function of its binding energy ε and in-
creases with the concentration C of Ag on FDCs. It is given by:

PAg(ε) =
Ce−ε

Ce−ε + e−εAg
(6)

where εAg is a threshold binding energy. As a consequence, cells with high binding
energy (larger than εAg + logC) are likely to be removed from the population (compare
histograms 2 and 3 in fig. 13). This survival probability is displayed for three different
values of Ag concentration in fig. 14C.
Following internalization, B-cells load the Ag on MHC molecules on their surface [111,
104, 15]. By probing these molecules T follicular helper cells provide survival signals to
the B-cells with high Ag affinity (fig. 13, “Competition for T-cell help”) [7, 134, 149, 35].
In our model the probability that a B-cell with binding energy ε survives this second
step of selection is given by:

PT(ε, ε̄) = a+ (1− a− b)
Ce−ε

Ce−ε + e−ε̄
, with e−ε̄ = 〈e−ε〉GC (7)

6 This is a simplification since experiments suggests that the number of divisions might correlate with cell
affinity [44]. However, as also discussed in section 2.9.2, this amounts to introducing an effective fitness
difference which can in practice be qualitatively accounted for by the selection terms in the model.
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Where 〈·〉GC indicates the average over the current GC population. The threshold energy
ε̄ depends on the current state of the B-cell population in the GC, as a result of the
competition amongst these cells for getting the survival signal from T-helper cells, see
Histogram 4 in fig. 13. Parameter a represents the probability for any B-cells to be
selected due to stochastic effects (e.g. bystander activation [55]) even with very low
affinity; it is introduced to reproduce the observation that selection in GCs is permissive
in the presence of complex Ags such as the ones found in vaccines [41]. Parameter
b instead represents the probability for a B-cell to fail selection at high affinity. The
introduction of b comes from the experimental observation that part of the population
of apoptotic cells in GCs has high affinity for the antigen [86]; the removal of these cells
could result from stochastic effects [74]. The survival probability is displayed in fig. 14D.
After this step, if the number of cells in the population NB exceeds the threshold value
Nmax each cell is removed with uniform probability 1−Nmax/NB, so that on average
only Nmax cells are left. Imposing a finite carrying capacity to the GC takes into account
limitations on its growth, due to the availability of metabolic resources or the finite
amount of T-cell help.
Clones that successfully survive selection differentiate with probability pdiff in either
Ab-producing Plasma Cells (PCs) or long-lived Memory Cells (MCs), or start a new
evolution cycle with probability 1 − pdiff. The probabilities of differentiation into MC
and PC, respectively, µMC(t) and µPC(t) = 1− µMC(t), depend on the time following
Ag injection t (early vs. late response) [157]. The MC cell fate is more likely at the
beginning of evolution and the PC is more likely towards the end, effectively resulting
in a temporal switch occurring around day 11 after injection [157]. This temporal switch
is implemented by defining the differentiation probability as:

µMC(t) = pdiff
1

1+ exp{t−τdiff
∆τdiff

}
(8)

µPC(t) = pdiff
1

1+ exp{−t−τdiff
∆τdiff

}
(9)

These functions are displayed in fig. 14B. The MC and PC populations (Histograms 5 in
fig. 13) grow at each evolution step, as more and more clones differentiate.

2.4.3 GC reinitialization

In the model Ag depletion will eventually lead the GC reaction to a stop. If a second Ag
injection is performed a new GC is initiated. The population of Nfound founder clones
for the new GC is composed of both new GC B-cells with naive precursors having
sufficient affinity to bind the Ag, and reactivated MCs accumulated during the past
evolution [87, 36, 58]. The probability for a founder cell to be extracted from the MC
pool is pmem = Nmem/(Nmem +Ni), where Nmem is the number of MCs accumulated
up to the time of the second injection. This hypothesis reflects the fact that we expect
more reactivated MCs to colonize the newly-formed GC if more MCs were produced
in the previous maturation. However one could also consider this ratio to be constant.
This second case is discussed in appendix A.2. This initial exchange of MCs is the only
interaction between the two GCs, which evolve independently at later times.
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Figure 13: sketch of the Germinal Center Reaction (inner part) and effects of the main reaction
steps on the distribution of the binding energies (ε, equivalent to the logarithm of the
dissociation constant logKd) of the B-cell population (histograms on the outer part).
A red-to-green color-scale is used to depict the affinity of both B-cell receptors in the
inner part of the scheme and in the outer binding-energy histograms. Upon Ag admin-
istration GCs start to form, seeded by cells from the naive pool having enough affinity
to bind the Ag. If the Ag has already been encountered also reactivated Memory Cells
(MC) created during previous GC reactions can take part in the seeding. At the begin-
ning of the evolution round cells duplicate twice in the GC Dark Zone and, due to
Somatic Hypermutation, have a high probability of developing a mutation affecting
their affinity. Most of the mutations have deleterious effects but, rarely, a mutation can
improve affinity. As a result the initial population (1) grows in size and decreases its
average affinity (2). After duplication cells migrate to the Light Zone, where they try
to bind Ag displayed on the surface of Follicular Dendritic Cells. Failure to bind Ag
eventually triggers apoptosis. The probability for a cell to successfully bind the Ag
depends both on its affinity for the Ag and on the amount of Ag available. Cells with
binding energy higher than a threshold value εAg are stochastically removed (3). The
Ag concentration shifts this threshold by a quantity logC. B-cells able to bind the Ag
will then internalize it and display it on MHC-II complexes for T-cells to recognize,
and then compete to receive T-cell help. We model this competition by stochastic re-
moval of cells with binding energy above a threshold ε̄ that depends on the affinity of
the rest of the population (4). As before Ag concentration shifts this threshold. More-
over to account for the finite total amount of T-cell help available we also enforce a
finite carrying capacity at this step. Surviving cells may then differentiate into either
MC that could seed future GCs or Ab-producing Plasma Cells (PC). MCs and PCs
are collected in the MC/PC populations (5), while the rest of non-differentiated cells
will re-enter the Dark Zone and undergo further cycles of evolution. Eventually Ag
depletion will drive the population to extinction.
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Figure 14: A: log-normal probability distribution for the effect ∆ε of affinity-affecting mutations.
Only 5% of mutations decrease the binding energy, and thus have a positive effect
on affinity. B: probability of MC and PC differentiation (µMC and µPC respectively)
as a function of time from Ag administration. The total differentiation probability is
constant, but a time-switch from MC to PC production occurs around time τdiff. C:
probability for a cell with binding energy ε to survive Ag-binding selection for three
different values of Ag concentration (see legend on the right). Notice how concentra-
tion controls the strength of selection by shifting the threshold binding energy by a
value logC. D: probability for a cell with binding energy ε to survive T-cell help selec-
tion for three different values of Ag concentration (see legend). The threshold value ε̄
depends at each time on the binding energy distribution of the population, and thus
encodes competition.
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2.4.4 Elicited Ab-SCs

Administering a recall Ag injection some time after vaccination generates responders
Ab-Secreting Cells (Ab-SCs), which are the object of affinity measurements in our ex-
periments. These cells comprise both MCs, that can be stimulated to differentiate and
produce Abs upon new Ag encounter [87, 36, 90, 58], and residual PCs formed during
previous maturations; PCs belonging to the long-lived pool are capable of surviving up
to a human lifetime in the absence of division [159, 32]. In our model the affinity distri-
bution of Ab-SCs is assumed to be a weighted mixture of the MC and PC populations,
with fractions equal respectively to g and 1 − g, where the value of g is expected to
depend on the conditions under which the system is probed.
Moreover in our experiments cells are harvested from the spleen, and can in principle
originate from multiple GCs. To account for this phenomenon when comparing results
to experiments we carry out several parallel stochastic simulations of GCs (NGCs = 20).
These GCs are initialized with different populations of founders, and produce differ-
ent Ab-SC populations. Their distribution of affinities, averaged over the GCs, can be
compared to experimental results. We choose not to introduce interactions between the
evolving GCs, due to the lack of experimental quantification of possible GC-crosstalk.

2.4.5 Three model variants

In our analysis we will compare three different variants of the model, which differ only
by the way selection is performed.

• In variant (A) B-cells are selected according to the two-step process consisting of
Ag-binding selection and competitive selection for T-cell help, i.e. eqs. (6) and (7).

• In variant (B) we consider the same two-step selection but without permissiveness,
i.e. we set a = b = 0.

• In variant (C) we neglect Ag-binding selection and consider only competition for
T-cell help, i.e. eq. (7), but allowing for permissiveness.

Notice that these variants contain a different number of model parameters, which must
be taken into account when comparing their respective likelihood. We chose to compare
these variants to investigate how important permissiveness and Ag-binding selection
(excluded respectively in model variants B and C) are to quantitatively fit the data.

2.4.6 Values of model parameters

The values of all but nine model parameters were extracted from existing literature, see
description in appendix A.1 and table 1. The remaining nine parameters, which were
either not precisely known or strongly dependent on our experimental protocol, were
fitted from the experimental data through a Maximum-Likelihood inference procedure
described in section 2.6. This procedure was executed on each of the three model vari-
ants. The nine inferred parameters are:

• the conversion factor α, which allows for conversion between experimental admin-
istered Ag dosage D, measured in micrograms, and the dimensionless adminis-
tered Ag concentration of our model, C = D/α.
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• the Ag consumption rate per B-cell k−B , which controls the GC lifetime and also
the extent of the affinity maturation.

• the mean µnaive and variance σ2naive of the Gaussian binding energy distribution for
the GC seeder clones, elicited directly from the naive population.

• the binding energy threshold εAg for a B-cell to be able to bind Ag with sufficient
affinity to internalize it (cfr eq. (6)). This parameter does not appear in model
variant C, where only competitive selection for T cell help is implemented.

• The T-cell selection characteristic coefficients, a and b, encoding respectively the
baseline probabilities to survive or not survive selection, see eq. (7) and fig. 14D.

• The weight parameters grecall, gimm, representing the MC fraction in the measured
population of IgG-SCs for the two protocols, respectively for schemes 2 and 3 with
measurement one day after boost, and scheme 1 with measurement 4 days after
second injection.

2.4.7 Example of model evolution at high and low Ag dosage

To illustrate the model evolution in fig. 15 we report two examples of simulations, ob-
tained with model variant C on a protocol consisting of a single Ag injection. The sim-
ulations differ only by the administered Ag dosages D = 1 (blue) or 10 (orange) µg of
TT. The founder clones population is the same in the two cases in order to eliminate
differences coming from variations in the affinities of the initial population.

For both simulations, the main phases in the evolution of the GC can be summarized
as follows. At the beginning of GC simulation (day 6 after injection) most of the Ag
has been released from the adjuvant matrix and is available for cells to bind. The GC is
at maximum capacity and the driving contribution to Ag depletion is consumption by
B-cells, which occurs at a rate k−BNmax. This depletion gradually increases selection pres-
sure. This can be understood by inspecting eqs. (6) and (7), in which Ag concentration
C acts by shifting the threshold selection energy of a quantity logC. Eventually this con-
centration reaches a critical value at which selection pressure becomes strong enough to
reduce the population size (despite the duplication step) and eventually drive GCs to
extinction.

By observing the differences between the two simulations one notices that a lower Ag
dosage causes a faster affinity maturation (compare the evolution of average binding
energy in fig. 15B), but at the same time generates a shorter-lived GC reaction (compare
the population size and time of extinctions in fig. 15B). This is evident when observ-
ing binding energy histograms in fig. 15A, in which area reflects population size. The
low-dosage case (blue) features a population that evolves faster when compared to the
high-dosage case (orange), while at the same time it goes extinct sooner. These effects
concur to shape the final MCs and PCs binding energy distribution (fig. 15C). Protec-
tion against future pathogen encounters will be granted by these cells, and as such their
affinity distribution can be used as an indicator to estimate the success and quality of
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Values of model parameters

symbol value meaning source

Tturn 12 h duration of an evolution turn [155]

TGC 6 d time for GC formation after injection [34, 60, 88]

Nmax 2500 GC max population size [37, 144]

Ni 2500 initial GC population size [37, 144]

Nfound 100 number of GC founder clones [144, 90]

pdiff 10% probability of differentiation [155, 94, 114]

τdiff 11 d switch time in MC/PC differentiation [157]

∆τdiff 2 d switching timescale in MC/PC differ-
entiation

[157]

pmut 14% prob. of mutation per division [155, 89, 66]

ps,pl,paa 50%, 30%, 20% probability of a mutation to be
silent/lethal/affinity-affecting

[161, 155, 154]

Kaa(∆ε) cf. eq. (132) distribution of affinity-affecting muta-
tions

[115]

k+ 0.98 d−1 Ag release rate [82]

k−∅ 1.22× 10−2 d−1 Ag decay rate [145]

a 0.12 baseline selection success probability max-likelihood fit

b 0.66 baseline selection failure probability max-likelihood fit

µnaive −14.60 mean binding energy of seeder clones
generated by naive precursors

max-likelihood fit

σnaive 1.66 standard deviation of the seeder
clones binding energy distribution

max-likelihood fit

k−B 2.07× 10−5 d−1 Ag consumption rate per B-cell max-likelihood fit

α 2.3× 10−2 µg concentration to dosage conversion
factor

max-likelihood fit

grecall 0.56 MC fraction in Ab-SC population for
measurement 1 day after boost

max-likelihood fit

gimm 0 MC fraction in Ab-SC population for
measurement 4 days after second in-
jection

max-likelihood fit

εAg −13.59 threshold Ag binding energy (variant
A)

max-likelihood fit

Table 1: List of parameters in the model and of their values. Binding energies are expressed in
units of kBT , and times in days (d) or hours (h). The last nine parameters were inferred
within model variant C, except εAg, whose reported value refers to variant A, which
includes Ag-binding selection.
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the immunization procedure.

The fact that Ag concentration controls both maturation speed and GC lifetime gen-
erates a tradeoff phenomenon, which makes so that in our model the optimal average
binding energy of the MC and PC population is achieved at intermediate Ag dosages.
Intuitively this can be understood by considering the two extreme cases of very low and
very high dosages. In the former case selection pressure will be very high and only few
high-affinity cells will be selected during the maturation round. However the GC will
quickly go extinct and these cells will not have time to expand, maturate and differen-
tiate. In the case of too high dosage instead selection pressure will be very low and a
lot of mediocre or intermediate affinity clones will accumulate. The high-affinity clones
obtained at the end of the evolution process, when Ag gets depleted and selection pres-
sure increases, will be in minority. Only at intermediate dosages a one obtains a good
combination of good maturation speed and sufficient GC lifetime.

In order to turn this intuition in a quantitative explanation in the next section we
introduce a deterministic version of the model.

2.5 model deterministic limit

In this section we introduce the big population size limit of the model, in which the
model evolution becomes deterministic. This limit has a double role in our analysis.
Firstly, it can be used to approximate the average evolution of the system, without the
need to perform several stochastic simulations. This is exploited in the inference tech-
nique described in section 2.6. Secondly, the asymptotic behavior offers insight on the
role of Ag concentration in controlling the population evolution, as shown in section 2.7.

2.5.1 Limit of big population size

When the population size is big enough one can approximate the binding energy dis-
tribution of the population with a continuous distribution. In this case the state of the
population is completely determined by the density function ρ(ε) which is the product
between the population binding energy distribution and the population size. It repre-
sents the density of cells in energy space. This density function evolves under the action
of different operators, each one encoding the effect of one of the stochastic processes
that make up the evolution round.

• Cell duplication is represented by the amplification operator, consisting in a simple
multiplication:

A [ρ](ε) = 2 ρ(ε) (10)

• Mutations are encoded by convolution of the distribution of energies with a muta-
tion kernel:

M [ρ](ε) =

∫
d∆ε Keff(∆ε) ρ(ε−∆ε) (11)
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Figure 15: A: histogram of the B-cell populations binding energy at different times (1,2,4,8,12

weeks after Ag administration) for two simulations of the model at two different
values of administered Ag dosage (1 µg - blue, 10 µg - orange). Ag Dosage D is
converted to Ag concentration C through the inferred proportionality constant α =

D/C = 23ng. Notice that low dosage entails a faster maturation, albeit having a
shorter total duration. B: Evolution of Ag concentration (top), number of B-cells in
germinal center (middle) and average binding energy of the population (bottom) for
the same two simulations as a function of time from Ag administration. Vertical grey
lines corresponds to time points for which the full affinity distribution is displayed in
panel A. C: cumulative final populations of differentiated cells at the end of evolution
(memory cells - top, plasma cells - bottom) for the two simulations. Colors encode Ag
dosage as in panel B and C. Simulations were performed with model variant C and
parameters given in table 1.
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This kernel Keff(∆ε) includes the effect of silent, affinity affecting and lethal muta-
tions, and is defined as:

Keff(∆ε) = pmut paa Kaa(∆ε) + (1− pmut + pmut ps) δ(∆ε) (12)

The first term in the sum accounts for affinity-affecting mutations, that occurs with
probability pmut paa. The second term encodes both silent mutations (probability
pmut ps) and the case of no mutation (probability 1 − pmut). The contribution of
lethal mutations is encoded by the fact that the kernel is not normalized, but rather∫
d∆εKeff(∆ε) = 1− pmut pl.

• Selection for Ag binding and T-cell help are encoded simply by a product with
the respective probabilities (cf. eqs. (6) and (7)), where for the latter the probability
depends on ε̄ which in turns depends on the distribution of binding energies,
making the operator not linear:

SAg [ρ](ε) = PAg(ε)× ρ(ε) (13)

ST [ρ](ε) = PT(ε, ε̄)× ρ(ε) , with e−ε̄ =

∫
dερ(ε) e−ε∫
dερ(ε)

. (14)

• Finally, the carrying capacity (eq. (15)) and the differentiation (eq. (16)) processes
correspond to multiplications:

N [ρ](ε) = min {1,Nmax
B /NB}× ρ(ε) , with NB =

∫
dε ρ(ε) , (15)

D [ρ](ε) = (1− pdiff)× ρ(ε) (16)

The distribution of binding energies at round t then evolves through ρt+1 = E [ρt],
where the complete evolution operator is E = D N ST SAg R, we indicate with R =

M A M A the operator encoding for two rounds of mutations and amplification. The
evolution operator features, in order of application, two rounds of amplification and
mutation, Ag-binding selection, T-cell help selection, carrying capacity and differenti-
ation. Notice that for model variant C, there is no Ag-binding selection, and SAg is
replaced with the identity operator.

2.5.2 Deterministic model reproduces average of stochastic simulations

In fig. 16 we compare the evolution predicted by the model deterministic limit to the
average of 1000 independent stochastic simulations, performed under model variant C
and with parameter values reported in table 1. The two are in good agreement at big
population size, as can be noticed by comparing the evolutions of the population size
(fig. 16A) and average binding energy (fig. 16C). As the size becomes smaller finite-size
effect become more and more important, and the two predictions diverge. This diver-
gence comes mainly from an overestimation of the selection pressure in our theoretical
solution. In fact, the threshold binding energy for T-cell selection ε̄ (see eq. (7)) is sensi-
tive to the high-affinity tail of the population affinity distribution. As the population size
diminishes this tail gets progressively less populated than predicted by the infinite-size
limit, and the value of ε̄ deviates from its theoretical prediction. This slight decrease of
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selection pressure at the end of the GC lifetime increases slightly the survival time (see
fig. 49) and generates a slight slow-down in maturation.
However, as stated in the previous section, the focus of our interest lays in the affinity
distributions of memory and plasma cells, which quantifies the quality of protection
conferred by immunization. The prediction for the average binding energy of the two
populations remains very accurate during the course of evolution (see fig. 16B and D).
This good match is maintained also at the level of full distributions, as discussed later
in section 2.6.5 when comparing stochastic simulations (green histograms) to the predic-
tion of the deterministic model (blue distributions) in fig. 21.

This accuracy is not trivial, especially in the context of fitness waves [107]. In many
systems, stochastic fluctuations may play a major role, e.g. when the evolving population
passes through a bottleneck, and transiently has very low size, before increasing again.
Fluctuations may also acquire crucial importance when the evolution lasts so long that
the leading edge of the fitness wave has time to exponentially amplify and govern the
bulk of the population. This accuracy in our case is due to two main reasons. The first
one is that memory and plasma cells are gradually collected during maturation, with
most of them originating at times of big population size, in which the model is accurate.
Moreover our experimental data are the outcome of many different GC reactions, which
partially averages out fluctuations. This partially justifies the use of the deterministic
limit on the data. The second reason is linked to the limited maturation observed in
our experiments, when compared for example to experiments of immunization against
haptens in which affinity can increase of different orders of magnitude [38]. This lim-
ited maturation has been associated to complex Ags [70] and is linked in our model to
the high level of selection permissiveness, encoded by parameters a and b. This permis-
siveness slows down maturation (see appendix A.4 and section 2.8.1), and with it also
the expansion of stochastic fluctuations from the leading edge to the bulk of the fitness
wave. These fluctuations, which are not captured by the deterministic limit of the model,
would generate a greater discrepancy if permissiveness was lower.

2.6 inferring model parameters

In this section we make use Bayesian inference to extract from experimental data the
most likely value of model parameters, and to compare different model variants through
their respective likelihood. This is made possible by the deterministic model limit, which
offers a computationally inexpensive way of estimating the likelihood function. This
estimation is used in our stochastic likelihood maximization algorithm.

2.6.1 The likelihood function

The deterministic model described in the previous section offers a prediction for the
average evolution of the density function ρ, from which in turn the final distributions
of MCs ϕMC and PCs ϕPC can be extracted. Experimentally measured Ab-SCs are ex-
pected to originate from both population, since they could be both long-lived PCs or
reactivated MCs. In our model the parameter g, introduced in section 2.4.4, controls the
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Figure 16: Comparison between stochastic simulations and deterministic limit of the model (vari-
ant C) for a single injection at dosage D = 1µg TT. All quantities are reported as a
function of days from Ag injection. The black dashed line and blue shaded area rep-
resent the average and standard deviation of the quantities over 1000 independent
stochastic simulations, while the orange line represents the prediction of the deter-
ministic limit of the model. Panels represent the number (A) and the average binding
energy (C) of the GC B-cell population, and the average binding energy of the MC (B)
and PC (D) population.

relative contribution of the two populations in the Ab-SCs. According to its definition,
the expected distribution of Ab-SCs is given by:

ϕAb−SCs(ε) = gϕMC(ε) + (1− g)ϕPC(ε) (17)

We expect g to depend on the measurement protocol employed, and thus define two
parameters gimm and grecall, which refer respectively to the case of measurement 1 day
after boost (scheme 2 and 3) or 4 days after second injection (scheme 1). Finally, for a
good comparison between model prediction and experimental data one needs to take
into account the experimental sensitivity range of our instrument (cf. section 2.3.1). This
is done by restricting and renormalizing the probability distribution in the sensitivity
range −23 = εmin 6 ε 6 εmax = −14.5. Notice that a measurement equal to εmin could
in truth originate from any lower value of the energy, since our apparatus cannot dis-
tinguish energies lower than this threshold (cf. section 2.3.1). This is not properly taken
into account by this renormalization. In our dataset, however, only 4 such measurements
are present, and have a very weak influence on the results.
With this procedure one obtains a prediction for the probability of the binding energy of
Ab-SCs ϕAb−SCs(ε|σ, p) as a function of the immunization scheme details σ (i.e. injected
dosage, injection delay, measurement protocol...) and of the unknown model parameters
p. The likelihood function is then defined as:

logL(p) =
∑
σ∈S

∑
ε→σ

logϕAb−SCs(ε|σ, p) (18)

Where S is the set of all immunization schemes tested in our experiments, which con-
sists of 5 different dosages in scheme 1, plus 7 different dosages in scheme 2, plus 4
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different injection delays in scheme 3. One must also consider that one of the conditions,
at injected dosage D = 10µg TT and injection delay ∆T = 4 weeks is repeated, being
present in both schemes 2 and 3. This leaves us with a total of 15 different conditions.
With ε → σ we indicate the sum over all affinity measurements obtained under condi-
tion σ. Notice that with this definition the total log-likelihood is sensitive to the number
of measurements, which can vary considerably between different conditions. As such
when performing the maximization we favor accuracy over the distributions with the
higher number of measurements.
Using the deterministic model to approximate the average of the stochastic model greatly
reduces the burden of numerically evaluating the likelihood, which would otherwise
require averaging over many stochastic simulations. However at the end of the proce-
dure it is necessary to check that for the inferred parameters values the stochastic and
deterministic versions of the model correctly match. This can be done by comparing
predictions of the two models for the affinity distributions, which is later displayed in
fig. 21.
Decoupling the likelihood of single measurements also constitutes an approximation,
since the fate of cells is coupled by competition. This effect is however attenuated by the
fact that data are pooled from different mice, and even in a single mouse we expect cells
to be generated by different GCRs.

2.6.2 Numerical likelihood maximization through Parallel Tempering

The ML procedure requires us to maximize the likelihood as a function of the nine un-
known model parameters p = (µnaive, σnaive, εAg, k−B , α, a, b, grecall, gimm), whose mean-
ing is described in section 2.4.6. We do this with a procedure which makes use of the
full experimental affinity distribution, and is based on an implementation of the Parallel
Tempering technique. This technique, used in the context of molecular dynamics simula-
tions [140], consists in instantiating different copies of a system and letting them evolve
at different temperatures. The copies are allowed to exchange their states with adequate
probabilities so that low-energy states are correctly sampled at low temperatures. This is
particularly advantageous when the energy landscape is rugged, and low-temperature
simulations tend to get stuck in local energy minima, while high-temperature simula-
tion explore the whole space without being able to locate the minima precisely. Allow-
ing for state-exchange between different temperature simulations makes so that high-
temperature simulations can help low-temperature ones exit local minima in the energy
space and converge to the global optimum, as schematized in fig. 17A. In our case, we
consider the space of all possible values of the parameters as our configuration space,
and use the log-likelihood as a proxy for minus the energy.

Our algorithm can be summarized as follows. A number N = 10 of copies of the
parameter set is initialized, with values set to pinit = (µnaive = −14.6, σnaive = 1.6,
εAg = −13.6, k−B = 2× 10−5 d−1, α = 0.025µg, a = b = 0.2, grecall = gimm = 0.5). At each
copy is assigned a simulation temperature T logarithmically evenly spaced between 103

and 10−3. The maximization procedure consists in 10 000 rounds of iterative parame-
ter changes and temperature exchanges. In the parameter change phase of the round a
random additive change ∆p is proposed to the parameter vector p, evaluated according
to the rule specified below. The likelihood difference ∆ logL between the modified and
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the original set of parameters is evaluated, and the change is accepted with probabil-
ity min{exp{∆ logL/T }, 1}, where T is the temperature associated to the parameter set.
After this, in the temperature exchange phase the difference in log-likelihood ∆ logL

and inverse temperature ∆β is evaluated for any two parameters sets with consecutive
temperatures. An exchange of the two parameters sets is then operated with probabil-
ity min{exp{−∆β ∆ logL}, 1}. This is done so that on average high-likelihood parameter
values will drift to low temperature simulations. At the end of the last round the value
of the parameters pbest that maximized the likelihood is returned. The pseudocode that
describes this procedure is reported in algorithm 1.
Proposed parameter changes ∆p are generated as a function of noise level η:

• For µnaive, εAg variation is performed by adding a random number extracted with
uniform probability in the interval [−10 η,+10 η].

• For positive parameters σnaive, α, k−B the variation is performed multiplicatively
by introducing a percentage change of the parameter uniformly extracted in the
interval [−η,η].

• For the fractions grecall, gimm, a and b variations are performed by adding a ran-
dom number uniformly extracted in the interval [−η,+η], after which two addi-
tional constraints are enforced. First, since the variables are fractions, the result
is constrained in the interval [0, 1]. Secondly, for parameters a and b is imposed
a+ b 6 1, which descends from the definition of the survival probability eq. (7).

We make the value of the noise level η depend on the temperature of the system consid-
ered, so that higher-temperature simulations also have a higher level of noise, allowing
them a faster exploration of the parameter space. Conversely, low temperature simula-
tion will perform only a fine-tuning of the parameters, which permits a more precise
convergence to the maximum-likelihood value. In particular we set η to be logarithmi-
cally evenly spaced between 10−2 and 10−1. Moreover, the proposed parameter change
vector ∆p contains a joint change of all parameters for the four higher-temperature simu-
lations (i.e. ∆p has no null components), while changes affect only one randomly chosen
parameter at a time for the rest of the simulations (i.e. ∆p has only one randomly chosen
non-null component). This is again done to allow for a fast exploration of the space on
high-temperature simulations, and a precise convergence to high-likelihood values on
low-temperature ones.

In fig. 17B we report the trajectories in energy space of all the parameter sets for the
inference performed using model variant C, in which 8 parameters are inferred (all but
the threshold binding energy εAg, which is removed in this variant). The energy for
each parameter set is evaluated from the difference in log-likelihood with the best value,
∆E = logL(pbest) − logL(p). Grey dots represent points in which trajectories exchange
their parameters set. This mostly occurs when a high-temperature trajectory detains a
lower energy parameter set than its low-temperature neighboring trajectory. Notice how
trajectories at high temperature explore the space by being able to visit low-likelihood
(high-energy) zones of the parameter space. Conversely, low-temperature trajectories
gradually converge to the value of the parameters that maximizes the likelihood.
In fig. 18 we display the evolution of the parameter set that reaches the highest log-
likelihood during the maximization procedure. Panel A features its log-likelihood and
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Algorithm 1: stochastic likelihood maximization

Given the initial parameters choice pinit;
for i = 1 to 10 do

Initialize copy i with parameter set p0i = pinit ;
Set its temperature to Ti = 10(11−2i)/3;

for t = 1 to 10 000 do
for i = 1 to 10 do

Generate a new randomly mutated parameter set p ′i = pt−1i +∆pi, where
the mutation ∆pi is produced according to the rule specified in the text;

Evaluate the log-likelihood difference induced by the mutation
∆logL = logL(p ′i) − logL(pt−1i ) ;

With probability P = min{exp{∆logL/Ti}, 1} accept the change pti ← p ′i or
else keep pti ← pt−1i ;

for i = 1 to 9 do
Evaluate the likelihood difference ∆logL = logL(pti+1) − logL(pti)
between two adjacent copies of the model;

Evaluate the inverse temperature difference ∆β = 1/Ti+1 − 1/Ti;
With probability P = min{exp{−∆β ∆logL}, 1} perform the state exchange

pti ↔ pti+1;

Find (i∗, t∗) = arg max(i,t){logL(pti)};
return pbest = pt

∗
i∗

temperature as a function of the round of maximization. This parameter set is initially as-
signed to high-temperature simulations, which explore the configuration space causing
big likelihood fluctuations. Through consecutive modifications of the parameters a high-
likelihood configuration is reached, and the parameter set is exchanged through simula-
tions and assigned to a low temperature one. At this point the algorithm behaves almost
as a gradient descent, accepting almost only parameters changes that increase the likeli-
hood. The peak likelihood value is reached at round 9970, when the trajectory was at the
lowest temperature. In panel B the evolution of parameter values is displayed. Notice
how big fluctuations correlate with high-temperature state. Orange shaded areas cover
one standard deviation of the posterior distribution around the maximum-likelihood
estimate (MLE) of the parameters and convey a relative measure of confidence intervals.
More precisely, this is obtained by evaluating the effect of small (±5%) single parameters
variations around the MLE on the posterior distribution, which is displayed in fig. 19.
The fact that this variation is always negative suggests that the algorithm successfully
converged to a likelihood maximum. We perform then a quadratic fit on this variation
(orange dashed lines in the figure) which corresponds to approximating the posterior
with a Gaussian distribution around the ML value. The standard deviation of this Gaus-
sian can be used to estimate how sensitive the likelihood is to the variation of different
parameters.

This likelihood maximization procedure, whose code is freely available at https://

github.com/mmolari/affinity_maturation, is very general and can be easily extended
to the inference of any set of parameters in our model, or to other experimental datasets.
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Figure 17: A: intuitive representation of the advantage of Parallel Tempering. When a Monte
Carlo simulation is run at low temperature (T1) the system reaches a low-energy state
but can get stuck in local energy minima. Conversely at high temperature (T2) the
system is free to explore a larger portion of the space, but is unable to localize the
energy minimum. By allowing the states to exchange their temperature when favor-
able, the high temperature simulation can help the low temperature simulation exit
from a local minimum trap and converge to the global energy minimum. B: Simula-
tion trajectories in energy space as a function of the simulation round for inference on
variant C of the model. The energy difference is defined as ∆E = −(logL− logLmax),
where Lmax is the maximum likelihood recovered by the inference algorithm. Colors
encode different temperatures according to the colorbar on the right. Grey dots mark
points in which trajectories exchange temperatures. To display both large variations
and values equal to zero the energy scale is logarithmic for values of ∆E > 1 and
linear for energies 0 6 ∆E 6 1.
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Figure 18: Convergence of the stochastic likelihood maximization procedure for variant C of the
model. In this variant 8 of the model parameters are inferred (µnaive, σnaive, k−B , α,
a, b, grecall, gimm). A: values of the log-likelihood logL and the temperature T for
the parameter set that reached peak likelihood. B: evolution of the parameter values
during the maximization procedure for the same set (blue lines). Maximum likelihood
(ML) estimates of the parameters are marked as orange dashed lines. Orange shaded
area cover one standard deviation of the posterior distribution around the ML value,
evaluated through a Gaussian approximation of the posterior distribution and the
quadratic fit of the log-likelihood displayed in fig. 19.
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Figure 19: Variations of the posterior distribution around the maximum-likelihood (ML) value
found by the stochastic maximization procedure for model variant C. Plots represent
the likelihood variation ∆ logL of the posterior distribution for a small (±5%) varia-
tion of single parameters around their ML values (vertical black dashed lines). The
peaked shapes of ∆ logL confirm the convergence of the maximization procedure
for all parameters. Orange dashed curves represent quadratic fit of ∆ logL, used to
estimate the orange confidence interval in fig. 18B.
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2.6.3 Comparison between model variants

In table 2 we report the inferred value of model parameters for inference performed
under the three model variants described in section 2.4.5. Variant B, in which selection
is not stochastic or permissive (i.e. parameters a and b in eq. (7) are set equal to zero) is
the one with the lowest likelihood, indicating that these two parameters play an essential
role in matching the model to data, as later discussed in section 2.8.1. Variants A and C
instead have a comparable likelihood, and comparable values of model parameters. The
difference between the two is that in variant C Ag-binding selection (cf. eq. (6)) is not
implemented and parameter εAg is not present. The likelihood of variant A is slightly
higher, but this is to be expected since in this variant one more parameter is present.
A fair comparison between these variants must indeed take into account the different
number of parameters. We therefore resort to the so-called Bayesian Information Criterion
(BIC) [125] and Akaike Information Criterion (AIC) [3]. These criteria take into account the
number of parameters by estimating the volume in the parameter space around the peak
in likelihood. They are defined as:

BIC = k lnn− 2 lnL, AIC = 2k− 2 lnL (19)

Where k is the number of model parameters (9 for variant A, 7 for B and 8 for C) and
n is the total number of experimental measurements (n = 4950 for our experimental
dataset). Values of these estimators for the three variants are reported in table 2. Based
on these values we conclude that the variant to be chosen, with lowest BIC and AIC, is C.
Including Ag-binding selection improves slightly the likelihood, but less than expected
from the introduction of an extra parameter (εAg). On the contrary, the large increase in
BIC when forbidding permissiveness shows that non-zero values for a,b are definitely
needed to fit the data. Variant C will be the one considered for further analysis.

2.6.4 Consistency check through artificial data generation

To test the reliability of our inference algorithm we generated 10 artificial datasets using
our stochastic model and applied to them the inference procedure. We then compared
the inferred values of the parameters with the real value used to generate the data.
To make sure that the amount of experimental measurements for each condition that
we have at our disposal are sufficient to infer the model parameters, when generating
the data we took into account the size and composition of our experimental dataset. In
particular we generate each artificial dataset as follows.
For every experimentally tested conditions (15 conditions in total, consisting in 5 tested
dosages for scheme 1, 7 dosages for scheme 2 and 4 delays for scheme 3, with condi-
tion D = 10µg and ∆T = 4 weeks shared between scheme 2 and 3) we run as many
stochastic simulations as mice tested for that particular condition. For each simulation
we then extract from the responders population a number of cells equal to the one ob-
tained from each mouse. This extraction is done keeping into account the experimental
detection range (see section 2.3.1), therefore we exclude cells having affinity lower that
Kd = 500nM, and set any affinity higher than the high-affinity threshold Kd = 0.1nM
equal to the threshold. Stochastic simulations of each scheme are done in model sce-
nario C, using the standard value of the parameters with one exception: to account for
the fact that each mouse contains multiple GCs we raised the number of founder clones
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inferred parameters value for the three model variants

full model (A) no permissivity (B) no Ag-binding selection (C)

εB −13.59 −13.53

k−B (d−1) 1.16× 10−5 2.95× 10−4 2.07× 10−5

µi −14.59 −15.04 −14.59

σi 1.64 1.15 1.66

grecall 0.65 0.96 0.56

gimm 0.03 0.61 0

a 0.27 0.12

b 0.66 0.66

α (µg) 0.114 0.018 0.023

logL −7400.37 −7459.39 −7400.67

BIC 14 877 14 978 14 869

AIC 14 819 14 933 14 817

Table 2: results of the inference procedure for the three model variants. These variants differ
for the way selection is performed: in variant B selection is not permissive (parameters
a and b are set equal to zero) and in variant C no Ag-binding selection is performed
(parameter εAg absent). The table reports the inferred values of parameters in the three
variants. Empty spaces indicate parameters that are not present in the model variant.
For dimensional parameters units are indicated in brackets. In the last three lines we re-
port the corresponding value of the log-likelihood, along with the Bayesian Information
Criterion (BIC) and Akaike Information Criterion (AIC) estimators used for comparing
the three variants. Both these estimators indicate a slight preference for variant C.
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inference on artificially generated datasets

value in generated data mean of inferred values std of inferred values

µi −14.594 −14.764 0.215

σi 1.661 1.593 0.112

k−B (d−1) 2.07× 10−5 1.82× 10−5 7.06× 10−6

grecall 0.559 0.549 0.11

gimm 0 0.009 0.022

α (µg) 0.023 0.032 0.019

a 0.12 0.125 0.094

b 0.661 0.659 0.008

logL −7400.665 −7347.233 142.319

Table 3: average results of the inference procedure on 10 artificially generated datasets. On the
first column we report the parameters values used to generate the datasets, equal to the
inferred parameter values under model variant C. On the second and third column we
report the mean and standard deviation of the 10 inferred values. Units are indicated in
round brackets for dimensional parameters. These are the dosage conversion factor α,
measured in micrograms of Ag, and the Ag consumption rate k−B , in inverse of days.

in each GC to 2500 instead of 100. This amounts to introducing a greater diversity in
the initial population, which in turns reduces the stochasticity in the evolution outcome
while at the same time leaving the average behavior unchanged (see appendix A.3). This
is similar in spirit to averaging between multiple GCs, as it is the case for the experimen-
tal measurements of cells extracted from the spleen of mice, and at the same time this
greatly reduces the computational burden by requiring only one stochastic simulation
per condition.
This generation procedure was re-executed 10 times, resulting in 10 different datasets.
In fig. 20B we show the binding energy distribution of the 10 generated datasets for
condition D = 0.5µg of Ag in scheme 2 (histograms in gray). The histograms are close
to the prediction of the deterministic model (blue curves), but with some deviations due
to stochastic sampling. The average binding energy of the population for all considered
condition is reported in fig. 20A. Again, the average binding energy of the generated
populations (gray crosses) is close to the prediction of the deterministic model (blue
dot), and as expected the noise is higher for the conditions where a smaller amount
of experimental measurement was performed (compare with number of measurements
displayed in fig. 21).
We then run the inference procedure on each artificially generated dataset, using the
same setup and initial condition as the ones used to infer model parameters on the
real data, under scenario C. The average results of the inference are reported in table 3.
For every model parameter the average inferred value is close to the real value used to
generate the data, demonstrating that the amount of experimental measurements at our
disposal are on average sufficient for a good recovery of the model parameters.
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Average responders binding energy
generated data vs deterministic modelA B

Figure 20: A: average binding energy of responders populations in the 10 artificially generated
datasets (gray) for the 15 experimentally tested conditions, vs the same quantity as
predicted by simulations of the deterministic model. The condition to which the mea-
surement are referred is reported on the y-axis, in the form of the scheme used, the
Ag dosage injected (D) and/or the time delay between injection (T ). B: distribution
of generated binding energies in the 10 generated dataset (gray), compared to the
distribution of binding energies predicted by the deterministic model (blue), for the
condition corresponding to the injection of D = 0.5µg of Ag in scheme 2. Distribu-
tions are limited to the experimental sensitivity range −23 < ε < −14.5.
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2.6.5 Inferred model reproduces data

We conclude this section by showing that upon inference of the unknown model param-
eters the model is able to quantitatively reproduce the data.

In fig. 21 we compare experimental affinity distributions (orange historams) with
the predictions obtained from the model (variant C) using the MLE of the parame-
ters. For each distribution we report the number of measurements included and the
number of mice from which measurements were extracted. Distributions are grouped
in three columns, each one referring to a different immunization scheme. The value of
the scheme variable quantity is reported for each distribution (Ag dosage D in micro-
grams of Ag in pink for scheme 1 and 2, and injection delay ∆T in days for scheme
3). Distributions are normalized considering only the experimental sensitivity window
0.1nM 6 Kd 6 500nM (or equivalently −23.03 > ε > −14.51, see section 2.3.1) delim-
ited in the figure by gray shaded areas. Notice that all of these distributions were used
when maximizing the likelihood.
We compare the distributions to the prediction offered by of our model, both from
stochastic simulations (green histograms, average over 1000 simulations) and from the
deterministic model limit (blue curves). Both represent the binding energy distribution
of Ab-SCs, obtained as described in section 2.4.4 (stochastic model) and section 2.4.4 (de-
terministic limit), and for good comparison with data both are normalized only consid-
ering the experimental sensitivity window. Under all tested immunization schemes we
observe a very good agreement between theory and experiments, and between stochas-
tic and deterministic versions of the model.

The same agreement is maintained when confronting average quantities. In fig. 22 we
compare the average binding energy and high affinity fraction for model and data. The
latter is defined as the fraction of cells that has affinity higher than 50nM, or equiva-
lently binding energy lower than −16.8. As done in fig. 11 experimental measurements
are reported both as average for single mice (orange crosses) and average over all pooled
mice under the same condition (orange empty dots), where the former is used to con-
vey a measure of individual variability. For good comparison with data averages for the
model are evaluated keeping into account the experimental sensitivity range. Results
for the deterministic model are represented as a blue line, while green shaded areas
indicate results for stochastic simulations. In particular the light shade of green covers
one standard deviation around the mean for single GC simulations. Cells extracted from
the spleen can however in principle originate from different GCs. The number of GCs
in a spleen can vary, but around 20 to 50 GCs per spleen section were reported in [158].
Therefore, to quantify the expected variation when cells ensue from different GCs, in a
darker shade we report the standard deviation of the mean of 20 stochastic simulations.

The agreement between the stochastic model and theoretical predictions indicates that,
at least for the quantities considered and for our values of model parameters, the infinite
size limit is a good approximation of the average stochastic evolution.
Most importantly, the agreement between model and data under all schemes shows that
our model can correctly capture the phenomenology observed. In scheme 1 and 2 in
particular both show the existence of an optimal intermediate dosage corresponding to
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maximal affinity of the Ab-secreting cells recalled population. In the next section we will
interpret this observation with an appropriate analysis of the deterministic model.
In scheme 3 we observe that experimental data show a slight increase in affinity for
longer injection delays, and so does our model. This is presumably due to a combination
of two effects. Firstly the fact that higher affinity cells are produced late in the response,
and waiting more before harvesting cells allows for higher affinity cells to be created.
Secondly, giving the first GC time to produce high-affinity MCs is beneficial since then
these cells can then colonize the second GC and continue their maturation even further
there.

2.7 analysis of deterministic model offers insight on the effect of ag

dosage

In the previous section we showed how Bayesian inference allows for the matching of
model and data. Part of the importance of inference resides in the fact that, after this
matching, one can study the model, which is much more easy to access, to gain insight
on phenomena observed in the data.
In this section in particular we tackle the problem of explaining the effect of Ag dosage
on the outcome of maturation. We show that the existence of an intermediate optimal
dosage, which is observed both in model and data (cf. fig. 22), can be interpreted as a
tradeoff between growth rate and maturation speed, both controlled by Ag concentra-
tion. This interpretation, which was intuitively suggested in section 2.4.7, is made here
more precise by studying the asymptotic limit of the deterministic model in condition
of constant Ag concentration.

2.7.1 Asymptotic travelling wave behavior under constant Ag concentration

We begin our analysis by considering the asymptotic behavior of the deterministic model
under condition of constant Ag concentration C. Studying this regime can provide in-
sight on the role of Ag concentration in regulating maturation. The analysis is aided
by two simplifications. First, to be able to observe asymptotic population expansion we
relax the maximum carrying capacity constraint and set Nmax =∞. Second, we consider
the population affinity to be high enough that Ag-binding selection plays no role. No-
tice that this second simplification is not necessary in variant C of the model, in which
Ag-binding selection is absent. We will later discuss the effect of removing these approx-
imations.

As a preliminary observation in fig. 23B we report the evolution of the binding energy
density function ρt(ε) of the population under constant Ag concentration C = 30. Color
encodes the number of rounds t from the beginning of the GC evolution. Notice that
by definition the area under the curve of the density function is equal to the population
size. In fig. 23A and C we display the evolutions of the population size and average bind-
ing energy. From here one notices that, as the number t of evolution rounds increases,
the size of the population increases exponentially with a growth rate φ and the average
binding energy shifts linearly, with velocity u. This leads to the hypothesis that the den-
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Figure 21: Comparison between experimental measurements (orange histograms), stochastic
model (green histograms), and theoretical solution (blue curve) for affinity distribu-
tions of antibody-secreting cells (Ab-SCs) under all the different immunization pro-
tocols (see main text for the description of the schemes). Experimental data (orange
histograms) consists in measurements of affinities of IgG-secreting cells extracted from
mice spleen. The number of mice and single-cell measurements is indicated for each
histogram (black). The experimental sensitivity range (0.1nM 6 Kd 6 500nM, or
equivalently −23.03 > ε > −14.51) is delimited by the gray shaded area. Blue curves
represent the expected binding energy distribution of the Ab-SCs population accord-
ing to our theory under the same model conditions. For a good comparison all the
distributions are normalized so that the area under the curve is unitary for the part in-
side the experimental sensitivity threshold. For every histogram we indicate the value
of the varied immunization scheme parameter, corresponding to dosage D (pink) for
the first two schemes and time delay ∆T (blue) for the third.

63



Variable Injection Delay - Scheme 3Variable Dosage - Scheme 1 Variable Dosage - Scheme 2
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Figure 22: comparison between data and model prediction for the average binding energy (top)
and high affinity fraction (bottom) of the Ab-secreting cell population under the three
different immunization schemes (scheme 1 - left, scheme 2 - center, scheme 3 - right).
The high affinity fraction corresponds to the fraction of measured cells having bind-
ing affinity Kd < 50nM, or equivalently binding energy ε < −16.8 kBT . On the x
axis we report the variable quantity in the scheme, which is administered dosage D
for schemes 1 and 2 and delay between injection ∆T for scheme 3. Green shaded ar-
eas indicate the results of the stochastic model simulations. The light area covers one
standard deviation around the average result for a single simulation, while the dark
area corresponds to the standard deviation for the mean over 20 simulations. This
quantifies the expected variation for populations of cells extracted from a spleen, that
could potentially have been generated by many different GCs. Results are evaluated
over 1000 different stochastic simulations per condition tested. The deterministic solu-
tion of the model, in blue, reproduces well the average over stochastic simulations in
all the considered schemes. Data coming from experimental affinity measurement of
IgG-secreting cells extracted from spleen of immunized mice are reported in orange.
Orange empty dots represent averages over the data pooled from multiple mice im-
munized according to the same scheme, while orange crosses represent averages for
measurements from a single mice. Crosses are connected with a vertical dashed line
in order to convey a measure of individual variability. Notice that the number of mice
per scheme considered can vary, see fig. 21. In order to compare these data with our
model, both for the stochastic simulations and the theoretical solution we take into
account the experimental sensitivity range when evaluating averages.
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Figure 23: analysis of the asymptotic deterministic evolution for the large-size limit of the model,
at constant available concentration C = 30. A: size of the population vs. number of
maturation rounds, showing the exponential increase at rate φ. C: average binding
energy of the B-cell population, decreasing linearly with speed u. B: evolution of
the binding energy density function ρt(ε) shows a traveling-wave behavior. Different
times t are represented with different colors, according to the color-scale on the right.
D: distributions of binding energies, shifted by the time-dependent factor −ut and
rescaled by the exponential factor exp{−φt}. Notice the convergence to the invariant
distribution ρ∗.

sity function evolves asymptotically as a travelling wave with exponentially increasing
size. In particular, if we name ρ∗(ε) the wave profile, this can be made explicit as:

ρt(ε) ' exp{φt}× ρ∗(ε− u t) . (20)

In fig. 23D we plot the same density function, but we apply a shift −ut and an exponen-
tial rescaling of factor exp{−φt}. As expected the resulting function converges to a fixed
shape.

2.7.2 Eigenvalue equation

The traveling-wave behavior can be mathematically established, and the growth rate φ
and maturation speed u computed by solving an appropriate eigenvalue equation.
To do so we start by defining the restricted evolution operator W = D ST R, that encodes
the system evolution in our approximation in which carrying capacity and Ag-binding
selection are neglected. In this approximation the density function evolves as ρt+1 =

W ρt. For the definition of the operators that make up W one can refer to section 2.5.1.
Notice that since these consist only of multiplications and convolutions the restricted
evolution operator is a linear operator. Moreover all of its entries are non-negative.

65



Asymptotically in one round of maturation we expect the density function ρt(ε) to be
shifted by u along the energy axis, and to be multiplied by eφ. By again referring to the
asymptotic form of the density function as ρ∗ we can write this condition as:

eφ ρ∗ = T(−u)W ρ∗ (21)

Where the operator T(x) implements a translation of the density function in energy
space of magnitude x. Equation (21) is an eigenvalue equation for the combined opera-
tor T(−u)W, having eigenvector ρ∗ and eigenvalue eφ. Since this operator has all non-
negative components Perron-Frobenius theorem guarantees that the eigenvector corre-
sponding to the maximum eigenvalue has only non-negative components. Intuitively,
evolution (i.e. repeated application of the operator) will select out this eigenvector since
it is the one with maximal growth rate. When stating that W is a linear operator we over-
looked one fact: selection for T-cell help is competitive and the expression of the survival
probability depends non-trivially on the distribution itself through the value of ε̄ (see
eq. (14)). This however can be simplified considering that the operator is translationally
invariant, which leaves a translational degree of freedom in the determination of ρ∗. We
remove this degree of freedom by operating the choice ε̄ = 0. This gauge-fixing choice
linearizes the operator.

To verify the correctness of our theoretical prediction we solve the eigenvalue problem
at a given Ag concentration C = 10, graphically illustrating the procedure, and show
that the result obtained from the eigenvalue equation matches the asymptotic behavior
of the system. The solution procedure is as follows. Since we do not a priori know the
value of the wave velocity u we solve the eigenvalue eq. (21) for different values of
the shift. We name this shift ∆, and re-write the equation as eφ ρ∗ = T(∆)W ρ∗. The
resulting eigenvectors are plotted in fig. 24A (colors encode different values of ∆). The
corresponding log-eigenvalues, representing the growth rate, are plotted in fig. 24C. In
order for our solution to be consistent it must satisfy the gauge-fixing condition ε̄ = 0.
Therefore for each solution we evaluate ε̄,7 as reported in fig. 24B, and we pick the one
(∆∗) for which this condition is satisfied as the eigenproblem solution.
If our theory is correct, upon repeated application of the restricted evolution operator
we expect the population to asymptotically grow at rate φ∗ and translate with velocity
u = −∆∗, and its binding energy distribution to converge to the shape ρ∗. In fig. 24D
we verify this by plotting the evolution of the normalized affinity distribution of the
population, re-shifted on its mean, upon repeated application of the evolution operator,
and compare it with the eigenproblem solution ρ∗ (black dashed line). Moreover in E
and F we compare the instantaneous growth rate and energy shift with the eigenproblem
solution predictions φ∗ and −∆∗. Color in the three plots encodes the evolution round.
We observe that in all three cases the asymptotic prediction is matched.

2.7.3 Ag concentration determines different maturation regimes

The values of the growth rate φ and maturation speed u, which can be obtained from
the eigenvalue equation previously described, depend themselves on the value of the

7 More precisely, since in our model T-cell help selection acts after duplication and mutations, ε̄ is evaluated
on the density function ρ∗ after application of these operators.
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Figure 24: We check that upon repetition of the evolution operator the system converges at the
eigenvalue equation solution. For a given constant Ag concentration (C = 10 in our
case) we solve the eigenvalue equation eφρ = T(∆)Wρ for various values of the shift
∆. In A we report the maximum eigenvalue eigenfunctions. By virtue of the Perron-
Frobenius theorem these consist of only positive values. Color represents the value
of the shift ∆ for the corresponding solution. In B and C we plot the value of ε̄
after mutation and of the growth rate φ for every solution. The consistency condition
requires us to pick the eigenfunction for whom the value of ε̄ after mutation is zero.
This corresponds to the value ∆∗ represented in vertical red dashed line and the value
of the growth rate φ∗ in horizontal green dashed line. In panel D,E,F we consider
repeated application of the evolution operator to the binding energy distribution at
constant Ag concentration C = 10. Color encodes the number of applications of this
operator. In D and E we report respectively the growth rate and shift of the mean
per evolution turn, and in F the full distribution of binding energies, normalized to
the population size. All the quantities converge to their theoretical expectation given
by the chosen solution of the eigenvalue equation, reported as green and red dashed
lines.
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Ag concentration C through the expression of the T-cell help survival probability eq. (7).
In this equation Ag concentration controls the strength of selection, with more cells sur-
viving when more Ag is available to bind.
To quantify this dependence we evaluate φ and u for different values of the Ag concen-
tration. Since the numerical solution of eigenvalue eq. (21) is computationally expensive,
requiring the instantiation and diagonalization of large matrices, in this case we sim-
ply evaluate φ and u as the asymptotic values of growth rate and maturation speed
obtained upon repeated application of the restricted evolution operator W. Results are
shown in fig. 25. Two special values of the concentration are found. The first, C∗, is the
concentration at which the growth rate φ vanishes, and the second C∗∗ is the one at
which the maturation speed u vanishes. These concentrations delimit different regimes
of maturation:

• At low Ag concentration C < C∗, both φ and u are negative: the strong selection
pressure produces high affinity clones and maturation is fast, but the number of
cells decreases exponentially, leading to a quick extinction of the population.

• At high concentration C > C∗∗, the selection pressure is too weak to compensate
the deleterious drift due to mutations, and binding energies increase on average
at each round (u > 0). The growth rate φ is positive, hence an exponentially
increasing number of poor-quality B-cells are produced.

• In the intermediate range of concentration, C∗ < C < C∗∗, we have both popula-
tion expansion (positive growth rate φ) and affinity maturation (negative matura-
tion speed u). The most efficient maturations are obtained for values of C slightly
exceeding C∗, as u is very close to 0 for values of C tending to C∗∗.

The above analysis provides a detailed picture of the effect of Ag concentration on
population growth and maturation, even when the approximations introduced at the
beginning of this analysis are removed. First, if we forbid the population from expand-
ing indefinitely and enforce the maximum carrying capacity (Nmax) again, the value
of u(C) is not modified, since this constraint has no effect on affinity. It also does not
influences the regime C < C∗ in which the population contracts (φ(C) < 0). How-
ever it prevents the population from expanding indefinitely, thus setting effectively the
maximum asymptotic growth rate to φ(C) = 0 if C > C∗. Second, if we reintroduce Ag-
binding selection we observe no difference in asymptotic behavior when the population
is maturating (C < C∗∗ and u < 0). However for high concentration C > C∗∗ a positive
asymptotic velocity is not possible, since in this case the distribution will eventually
reach the threshold Ag-binding energy εAg and this selection will prevent further affin-
ity decrease. This limits the maximum asymptotic velocity to 0 and maximum growth
rate to φ(C∗∗).
Moreover in reality Ag concentration is not constant but varies during immunization
through consumption and decay (cf. fig. 12). The maturation behaviors observed during
GC evolution (cf. fig. 15) can be understood depending on whether the value C of the
concentration crosses the boundaries C∗∗ or C∗ over time.
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Extinction Maturation Stagnation

Figure 25: Values of the growth rate φ (top) and maturation speed u (bottom) as functions of the
Ag concentration C. The points at which the two quantities are zeros define the two
critical concentration C∗ and C∗∗ (red and purple vertical dashed lines). They split
the asymptotic behavior of the system at constant Ag concentration in three different
regimes: extinction for C < C∗ (φ < 0), maturation for C∗ < C < C∗∗ (φ > 0 and
u < 0) and finally stagnation for C > C∗∗ (φ > 0 but u & 0).
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2.8 inference as a tool to investigate am mechanisms

In the previous section we showed an example of how, after fitting model and data
through bayesian inference, the model can be used to explain phenomena observed in
the data. In particular we focused on understanding the mechanism that generates the
optimal intermediate Ag dosage.
In this section we carry the same approach further by studying other aspect of AM which
would be hard to access experimentally, but can be easily studied in the model. While
these results do not possess the same degree of certainty that experimental evidence
would have, they still offer motivated support to some of the views already presented
in literature. Their resolutive power is founded on the richness of information contained
in our experimental dataset.

2.8.1 Degree of permissiveness in GC selection

The role and magnitude of permissiveness in GC selection is still an open question
[13, 90, 148] (see section 1.3.4). Through phenomena such as bystander activation [55]
and stochastic noise GC selection may also allow intermediate and low affinity clones to
survive, rather than maturing exclusively via selection of the few best clones [74, 144].
These phenomena generate a wider diversity than previously appreciated, especially
when considering complex Ags displaying different epitopes [70]. In [41] for example
the authors try to characterize the GC response to complex Ags such as influenza vac-
cine, as opposed to simple ones such as haptens. While in the latter case a strong ho-
mogenizing selection and affinity maturation is observed, for complex Ags response
is more polyclonal and a consistent part of the GC population (20-30%) is composed
of low-affinity clones. This suggests a more permissive nature of the GC selection, in
which even low-affinity clones have a non-zero probability of receiving T-cell help. This
permissiveness might be important to maintain diversity in the repertoire, which in turn
is useful when facing mutable pathogens [132].
In our model permissiveness is encoded by the two parameters a and b, that regulate
the probability of surviving the competitive selection for receiving T-cell help, see eq. (7)
and fig. 14D. a corresponds to the baseline probability for cells to survive a selection
step, while b is equal to the probability for cells to fail selection even if they have high
affinity. This could be due for example to the limited availability of T-cell help, which
could increase the stochasticity of the selection process [69]. The role of the parameters a
and b in controlling the population evolution is studied in more detail in appendix A.4.
Our maximum likelihood fit of the data yields a = 0.12 and b = 0.66. These values
imply that the probability that a high-affinity cell to survive the second step of selection
is 1− b = 34%, about two and a half times the probability for a low-affinity cell, given
by a = 12%. This observation is in support for the permissive and stochastic nature of
selection, at least in our experimental conditions. In contrast, the non-permissive vari-
ant of our model with base-line levels a = b = 0, referred to as variant B, offers a much
worse fit of the data, even when taking into account the smaller number of parameters
of this variant (see section 2.6.3).
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2.8.2 Maturation with and without loss of clonality

Recent experiments [144, 2, 70] have shown that maturation is accompanied by various
degrees of homogenizing selection, that is, a reduction of clonality, leading in some cases
to strong clonal dominance. We can assess the impact of homogenizing selection in our
model by keeping trace of the offspring of each founder clone in the stochastic evolution
of a single GC for a 4 weeks time-span. The evolution of clonality is reported for two
representative simulations in fig. 26 A,B. The plot report the cumulative composition of
the population as a function of time; the offspring of each founder clone is represented
by a different color, associated to the binding energy of the founder clone according to
the color scale on the right. In the simulation reported in fig. 26A a single clonal family
ensued from a high-affinity clone progressively expands, and constitutes around 70 %
of the total GC population at 4 weeks. Conversely, in fig. 26B no clone dominates the
population, and the GC maintains its polyclonality throughout maturation, with many
good affinity clones sharing substantial fractions of the GC.
To quantify the evolution of homogenization over time we estimated the fraction of the
population constituted by the most expanded clone at each given time, where 100%
would correspond to the GC being completely populated by the offspring of a single
founder clone. In fig. 26C we plot the distribution of this most-expanded-clone fraction
1000 stochastic simulations at four different time-points (1,2,3,4 weeks after injection).
All GCs in our simulations are highly polyclonal at the beginning, with each clone
constituting 1% of the initial population. As time goes on, however, more and more
GCs feature a dominant clone, sometimes with a very high population fraction. The
median of the frequency distribution at week 4 is around 30%, meaning that in half
of the simulated GCs a single clonal family makes up for more than 30% of the total
B-cell population. Finally, in fig. 26 D we plot, for each simulation, the final (week 4)
fraction of the population corresponding to the most-abundant clonal family against its
initial binding energy. As expected homogenization correlates with the presence of a
high-affinity founder precursor.
The absence of strong homogenization is also related in our model to the permissiveness
of selection, which makes so that even low-affinity clones are not immediately removed.

2.8.3 Maturation as combination of beneficial mutations and selection of high-affinity precur-
sors

The presence of various degrees of homogenization is linked to a second question:
whether maturation in our GCs is a consequence of accumulation of beneficial muta-
tions, or rather of selection of high affinity precursors. As discussed in section 1.3.4,
experimental evidence suggests that maturation against complex Ag might rely more
on the latter.
In fig. 48 we verified that in our model the initial choice of founder clones accounts
for a large part of the stochasticity in the maturation outcome, indicating that selective
expansion of high-affinity precursors plays an important role in affinity enhancement.
This, coupled with the fact that the presence of a high-affinity precursor correlates with
homogenizing selection (cf. fig. 26D) indicates that precursor selection plays an impor-
tant role in our model.
To quantify the contribution of accumulation of beneficial mutations in appendix A.4.1
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Figure 26: A: example of homogenizing selection in GC evolution. Population size as a function
of time for each clonal family in stochastic simulations of a single GC. The GC were
initiated with an injected antigen dosage of D = 1µg. The color of the clonal family
reflects the initial binding energy of the founder clone according to the color-scale
on the right. On top we report the fraction of the final population composed by the
most expanded clonal family. In this example the progeny of a single high-affinity
founder clone (dark blue) progressively takes over the GC, and at week 4 constitutes
around 70% of the GC B-cell population. B: example of heterogeneous GC evolution.
Contrary to the previous example, many clonal families coexist, without one domi-
nant clone taking over the GC. C: evolution of the distribution of the most-expanded
clone fraction. We perform 1000 stochastic simulations and evaluate the fraction of
the population constituted by the most-expanded clone at each time (cf. colors in the
legend). Distributions show the percentage of simulations falling in 10 bins splitting
equally the [0,1] interval according to the values of their dominant clone fractions. No-
tice the presence of heterogeneous and homogeneous GCs at week 4. D: scatter plot of
final (week 4) population fraction versus initial binding energy for the most-expanded
clone; the straight line shows the best linear fit (r2 ' 0.49). The presence of a clone
with high initial affinity favors the advent of a homogeneous GC.
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and fig. 51 we measured the distribution of beneficial and deleterious mutations in MCs
and PCs. This analysis shows that indeed selection favors the fixation of beneficial mu-
tations and the disappearance of deleterious ones. Moreover, it shows that on average
cells bear very few mutations, suggesting precursor selection plays a major role in our
simulations. This is in agreement with experiments made in [102], in which the authors
argue that for complex Ags selection of high-affinity precursors plays a bigger role in
maturation than the accumulation of beneficial mutations. Similarly experiments per-
formed in [43] on TT immunization found no relevant correlation between the number
of mutations harbored by and Ab and its affinity, again indicating a major role of pre-
cursors affinity.

2.8.4 The relative contribution of Ag-binding and competitive selection

One of the open questions in the literature is whether selection in the GC is mainly
cell-intrinsic, i.e. based solely on features of the cell such as its affinity, or cell-extrinsic, i.e.
depending on features of other cells and thus competitive [132, 74] (see section 1.3.3). In
our model these two modes of selection are represented respectively by Ag-binding and
T-cell help selection. On the analyzed data our inference procedure supports the statis-
tical prevalence of model variant C, featuring T-cell-based selection only, with respect
to variant A, which included Ag-binding selection. This is compatible with experiments
[129] showing that in absence of competition both high and low affinity cells perform
equally well. Moreover the fact that Ag-binding selection does not seem to be a limiting
step for GC colonization, at least in the range of our experimentally measurable affini-
ties, is in agreement with experiments performed in [126], in which it is shown that in
absence of high affinity competitors even clones with low affinity (as low as Kd ∼ 8µM
or equivalently ε ∼ −11.7) can colonize GCs. This is also in accordance with the fact
that selection in GCs should be relatively permissive [13, 149] in order not to limit the
diversity of the repertoire. Let us emphasize, however, that the difference in the BIC of
the two selection models is rather weak and that our conclusion is contingent on the
data set collected and analyzed here.

2.8.5 Fractions of PCs and MCs amongst Ab-SCs

Our experimental setup does not allow us to identify whether the IgG-SCs we observe
originate from reactivated MCs or residual PCs generated during previous immuniza-
tions. We therefore compared the experimental measurements with a weighted mixture
of the MC and PC populations predicted by our model. This mixture, which we call the
Ab-SC population, represents the population of cells that respond to antigenic challenge
under particular conditions. We introduced the parameters grecall and gimm, correspond-
ing to the fraction of reactivated MCs in the Ab-SC populations when measurement is
performed one day after boost or four days after the second injection, and fit their value
on the experimental measurements. The result of our inference procedure indicates that,
when the system is probed 1 day after pure TT boost, most of the response consists in
reactivated memory cells (grecall = 56%). This is in agreement with experimental obser-
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vations performed in [39], in which the frequency of IgG-SCs increased from 0.6± 0.1%
to 1.6± 0.2% one day after the boost, indicating that around 64% of IgG-SCs were not
present before the boost. When the measurement is performed 4 days after the second
injection then we predict that the vast majority of responders consist of residual PCs
(gimm = 0%, with a confidence interval extending to 6%, cfr fig. 18B). This is consistent
with experimental data (unpublished), which indicate that the majority of IgG-SCs are
still active 28 days after CFA immunization, and will be secreting at +4 days.
Concerning the biological difference between the MC and PC populations, it has been
observed that MCs show on average less maturation than PCs [58, 130, 131], a feature
that is reproduced in our model (cf. fig. 15C) as a consequence of the temporal switch
we introduced (fig. 14B) and might be important in maintaining diversity in the re-
sponse, especially against highly mutable pathogens, and mitigating original antigenic
sin [139, 99]. The results of our inference are in agreement with the fact that experi-
mentally we observe a higher affinity of the responders if measurement is performed
4 days after the last injection (scheme 1) rather than 1 day after boost (scheme 2,3).
This difference in affinity could also originate from some form of selection acting on
the responder population during the first days of the response, which could selectively
expand high-affinity clones in the time between Ag challenge and measurement. Includ-
ing this selection in the model would result in a different estimate of the fractions grecall

and gimm. However, for simplicity and lack of explicit experimental evidence we did not
include this selection in the model.

2.9 conclusion

2.9.1 Summary and significance

In this chapter we have investigated the relationship between Ag dosage and quality
of immunization outcome. Several studies [149, 63, 38, 46, 112] report the fact that bet-
ter affinity maturation is not always favored by higher doses of Ag, but can instead be
enhanced by lower doses. Similarly, the strength of a response to a vaccine, usually mea-
sured through the count of responding cells, may show a bell-like curve at intermediate
dosages, and understanding the mechanisms underlying this behavior and locating the
optimal Ag dose are of crucial importance [121]. Our works provide quantitative theo-
retical and experimental support to these findings. In particular, the stochastic model
for Affinity Maturation we consider here is capable of explaining and accounting for
the existence of an intermediate optimal Ag dosage, that results in the highest average
affinity of the recalled population. The initial inspiration for our model was provided
by previous studies of maturation [155]. However these studies were oriented towards
the understanding of AM in the presence of multiple Ags, and many model ingredients
are different. For instance amongst the main ones, while not considering the presence of
multiple Ag variants, our model includes a realistic dynamic for Ag concentration, and
a prominent role for stochasticity and permissiveness in GC selection. Together these in-
gredients make the model predictions directly comparable to experimental data, leading
to important results.

First, our model is amenable to detailed mathematical analysis. We show that the
stochastic evolution of the distribution of binding energies can be accurately approxi-
mated by a deterministic dynamics (see fig. 22), which we resolve exactly. Under con-

74



stant Ag concentration, the distribution of binding energies behaves as a traveling wave,
whose speed and growth rate can be recovered by solving an appropriate eigenvalue
equation (21). The dependence of these two quantities on Ag concentration reveals the
role Ag availability plays in controlling the strength of selection, both in the generated
data and models. In particular, high Ag dosage results in low selection pressure and no
maturation, and conversely too low Ag dosage in high selection pressure and popula-
tion extinction. Only intermediate Ag concentration and intermediate selection pressure
ensures both population survival and successful AM.

Secondly, we show that a single set of parameters of our model is able to repro-
duce quantitatively the many distributions of single-cell affinities measured on IgG-SC
extracted from mice immunized against Tetanus Toxoid corresponding to multiple pro-
tocols largely varying in Ag dosages and delays between injections. To determine the
best parameters, we introduce a maximum-likelihood-based inference method. Our in-
ference method fully exploits the results of the experimental technique, developed in
[40], giving access not to the average affinity, as titer measurement would, but to the
complete affinity distribution of the recalled Ab-SC population. This population infor-
mation is crucial for accurate inference of the model parameters and for a meaningful
validation of the model.

Finally, we show how study of the inferred model can provide insights on the internal
processes of affinity maturation, such as on the role of permissiveness, on the degree of
homogenization in GC selection and on the relative contribution of Ag-binding and com-
petitive selection. Inference techniques are powerful instruments in this respect, since
they help us investigate experimentally unaccessible features of the system through
their indirect but measurable effects. Our inference procedure is very flexible and can
readily be applied to new datasets, providing ad hoc estimates of parameters for different
antigens or even different organisms.

2.9.2 Model limitations and discussion

In building the model, we chose to only keep the minimal features that could allow us
to understand the existence of an optimal dosage and be able to reproduce experimental
observations, while still being mathematically tractable. Among the simplifications, the
number of duplications per cell is considered independent of the cell affinity. It has been
however shown that an affinity correlates with GC dark zone dwelling time and number
of divisions [44]. This phenomenon introduces an effective fitness difference, which is
in practice qualitatively accounted for by the selection terms in our model. Neglecting
this differential amplification is also partially justified by the observation that under
non-competitive conditions high and low affinity cells have similar rates of division, but
different rates of cell death [132, 10].
Moreover we consider the distribution of affinity-affecting mutations Kaa(∆ε) (cf. eq. (132))
to be independent of the clone’s affinity, similarly to [155, 154, 161]. In reality, indepen-
dence holds only away from affinity peaks in the Ab sequence space; close to these
peaks, affinity-increasing mutations become rare, and it is expected that Ag affinity of
clones eventually saturate, while the binding energy can take arbitrarily low values in
our model. However, in the regime defined by the values of the parameters inferred on
our experimental data, MCs and PCs generated by our stochastic model accumulate on
average very few mutations in the course of evolution, as showed in appendix A.4.1 and
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fig. 51, with the maximum number of beneficial mutations accumulated being compat-
ible with experimental evidence [43]. In this regime mutations account for only a part
of the maturation, the rest being achieved through selection of high-affinity founder
clones. This is in line with the limited maturation observed in our experiments. In cases
where the saturation effect may become relevant, other approaches to model the effect
of affinity-affecting mutations might be more appropriate, for example the introduction
of a “shape space” representation [127, 153].
The model and results reported here do not include Ab-feedback [155], the phenomenon
by which GC B-cells not only have to compete amongst themselves for Ag acquisition
but also with Abs produced earlier in maturation [13, 90, 162], which could prevent
B-cells from internalizing Ag by binding to it. We did not include Ab-feedback in our
model, however preliminary investigations (not shown) suggest that it would not affect
the existence of an optimal dosage range.
GC lifetimes reported in literature vary considerably, from 1-2 weeks for soluble protein
boosting to several months or longer for certain infections [148, 90]. In alum immuniza-
tions GC lifetimes of 3-4 weeks have been observed [142]. In our simulations a long
lifetime for GCs is observed and for a high dose of Ag they can have an effective life-
time lasting up to 3 months (cf. fig. 49).
The concentration of Ag is crucial in determining the strength of selection and the life-
time of the GC in our model. In reality, Ag dosage value also controls the initiation of
the GC and AM. In particular one could expect that for very low dosages the GC reac-
tion would not be initiated at all. For simplicity we avoid including this phenomenon in
our model, and GC reaction takes place in our simulations even at very low Ag dosages,
with the result that very few, highly affine MC are produced in this regime. To avoid
a discontinuity with respect to the case of null Ag dosage, D = 0, in which we expect
the measured B-cell population to originate directly from naive precursors, we perform
differentiation at the beginning of the simulation round, before mutations and selection
(as described in appendix A.1). This generates a core of low-affinity MCs keeping the
average affinity of the population close to µnaive, even when few additional high-affinity
MCs are added. However, this might be an unnecessary caution, since when looking at
the data we observe that even the lowest tested dosage (D = 0.01µg TT, fig. 21) shows
the hallmark of maturation when compared to the the case of zero dosage (D = 0µg TT,
fig. 21). This signals that in the dosage range considered in our experiments we expect
maturation to occur.
Furthermore, in our model Ag inputs, e.g. resulting from a new injection, cannot enter
a GC while the maturation process is ongoing. Our choice is partly justified by the ob-
servation that injecting an Ag bolus when a GC maturation process is in place mostly
results in disruption of the ongoing GC reaction [149, 118, 133, 51, 150]. We only model
a single “average” GC, whose output is assumed to be representative of the outcome of
AM. In reality, MC and PC populations are generated by many parallel GC reactions,
which could in principle weakly interact via invasion of clones from one GC to another
[90, 148].
Last of all, to test the robustness of some of our hypothesis we performed the infer-
ence procedure under slightly different conditions. In particuar we considered the effect
of increasing the Ag decay rate, of setting pmem to be a constant and not depend on
the number of MCs accumulated during evolution, and also of considering the MC/PC
time-switch to be only partial, with a residual production of MCs all along the evolution.
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We verified that even in these case the model is in good agreement with the data. The
results are reported in appendix A.2.

2.9.3 Outlooks

As shown above our model for AM is simple enough to be amenable to detailed math-
ematical analysis and, yet, is able to accurately reproduce the full affinity distributions
of Ab-SCs generated during the immunization process. This finding suggests several
extensions to the current work. First our model could be used to predict the outcome
of more complex immunization protocols than the ones investigated experimentally in
this work. In particular, it would be interesting to consider the case of continuous de-
livery methods (osmotic pumps, repeated injections...) [143, 27], through which the Ag
concentration can be precisely controlled over time, and make predictions for the opti-
mal delivery process. Secondly, the quantitative fit of the model parameters was made
here possible thanks to the maximum-likelihood algorithm we have introduced, which
is flexible and robust. Our inference procedure, whose code is made available in a public
repository, could be readily applied to to different measurements, as well as to variants
of the present models, with extra parameters corresponding to features of the affinity
maturation process that are hardly experimentally accessible, such as selection permis-
siveness. The combination of quantitative modelling with inference appears as a promis-
ing tool to understand the mechanisms governing the immune response and to guide
the development of strategies to control and direct it.
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3
S T O C H A S T I C E F F E C T S I N M AT U R AT I O N M O D E L : S U RV I VA L ,
L I N E A G E S , C O M P E T I T I O N

3.1 introduction and chapter outline

This chapter is dedicated to theoretical analysis of some aspect of maturation models,
particularly concerning stochastic effects in evolution of B-cell lineages through a popu-
lation bottleneck.

In section 1.3 we showed how theoretical models are invaluable tools to guide our
understanding of AM, offering precious insight on maturation inner mechanisms and
guiding vaccine design. Some of these models [155, 154, 161] present a phenomenol-
ogy termed population bottleneck (see section 1.3.3), in which a high selection pressure
exposes the B-cell population to a high risk of extinction and termination of the GCR.
While a strong selection pressure enhances affinity increase, population extinction is an
undesirable outcome. For optimal maturation one is therefore interested in tuning the
selection pressure, for example by controlling Ag availability, so as to maximize affinity
increase while at the same time avoid extinction. Here we are interested in studying
what controls this extinction probability in B-cell lineages that undergo a population
bottleneck.
Moreover a second question we tackle concerns how the bottleneck selection pressure
shapes the evolutionary trajectory of these lineages in affinity space. This question bears
analogies with what observed in reconstructed B-cell phylogenetic trees. The application
of modern sequencing techniques to experiments of immunization allows for the recon-
struction of the phylogenies of B-cell lineages [57]. If the B-cell population is subject
to strong selection the reconstructed phylogenetic trees bear the signatures of selection
[109, 57]. Inference techniques have been developed to extract the fitness of nodes in
a phylogenetic tree purely from this phylogenetic information [106, 73].1 Since for B-
cells fitness is tightly correlated to Ag affinity, performing such inference can provide
information on the evolution of lineages in affinity space [57]. With this approach a B-
cell phylogenetic tree can show how for a particular lineage the affinity of a progenitor,
driven by the stochastic accumulation of mutations and selection, evolves forward in
time to a progeny with possibly very different affinities. Here we approach the prob-
lem from the opposite direction. We consider a set of cells with similar affinities that
successfully passed the population bottleneck, which in spite of their similar affinities
might have different evolutionary histories, and ask what is the most-likely evolution-
ary trajectory of their progenitors in affinity space through the bottleneck. Rather than
a phylogenetic description, aimed at reconstructing the history of the population in ge-
netic space, our approach provides a description of the evolution in phenotypic space,
showing how different "affinity compartments" in the population are related over time.

1 Or in the case of the phylogeny of influenza virus also with the use of other relevant genetic information
such as the location of mutations in the genome [78].
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The chapter is organized in the following sections, whose description summarizes the
steps of our analysis:

Simplified model for Affinity Maturation under a population bottleneck

: we start by introducing a maturation model similar to the one described in the
previous chapter which we use to simulate maturation in the population bottle-
neck regime. We qualitatively illustrate the effect of this bottleneck on the evolu-
tion of cell lineages and how progenitor affinity influences the outcome of evolu-
tion. Moreover two model limits are performed: the one of big population size, in
which stochastic processes turn into deterministic operators, and the one of con-
tinuous time, in which the population density function evolves under the action of
a drift-diffusion equation.

Maturation speed and growth rate : building from the continuous-time descrip-
tion, in this section we analyze the asymptotic model behavior. We show that
similarly to the model presented in the previous chapter also in this case the den-
sity function asymptotically evolves as a traveling wave. However in this case the
continuous-time limit allows us to derive an explicit expression for the population
growth rate and maturation speed as a function of Ag concentration and other
model parameters.

Probability of survival to bottleneck : with the use of the model we study
the bottleneck survival probability. We first focus on single lineages. Through the
use of a recursive relation we quantify the probability of lineage extinction as a
function of the progenitor binding energy in absence of competition. For lineages
that go extinct we also quantify stochastic properties such as extinction time and
progeny size. Building on these results we then study the bottleneck survival prob-
ability for the full population. In this case competition can be accounted for in an
effective manner, using the combination of the deterministic model limit and a
finite-size correction.

Most-likely evolutionary trajectory : the drift-diffusion equation that describes
evolution in the continuous-time limit admits a path-integral expansion. This ex-
pansion provides an expression for the action of a trajectory in energy space, that
quantifies its probability. Using this result in combination with the method of char-
acteristic trajectories, we derive equations for the most-likely evolutionary trajecto-
ries in affinity space, and compare these prediction with stochastic simulations.

Conclusion and perspectives : here we shortly recapitulate the main results de-
scribed in the chapter, discuss their limitations and possible extensions.

Some of the results presented in this chapter will be the object of a publication, cur-
rently at the draft stage and available on arXiv [97].

3.2 simplified model for affinity maturation under a population bot-
tleneck

In this section we define a simple stochastic model for AM which captures the bottleneck
phenomenology. We then perform two model limits. First, the limit of big population
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size, in which the model becomes deterministic. Second, the limit of continuous time, in
which the evolution of the system is described by a drift-diffusion equation.
This model, which is against inspired to similar models [155, 154, 96], is a slightly mod-
ified and simplified versions of the one utilized in chapter 2. The differences are mo-
tivated by the fact that in this case we are interested in reproducing the bottleneck
phenomenology, and thus set the parameters to have a more stringent selection. In addi-
tion to this, since we are not interested in reproducing experimental data but rather in
obtaining theoretical results, we keep the model simple and consider only minimal in-
gredients. Amongst the main difference are the fact that in this case we do not consider
permissiveness or stochasticity in selection (i.e. remove parameters a and b in eq. (7)),
and we do not keep track of the dynamics of Ag concentration but rather consider it
constant as done in [155]. This is partly justified by the fact that rather than studying
the long-term evolution of the system or the accumulation of MCs and PCs here we are
interested in the evolution under a population bottleneck, which is mainly resolved few
evolution rounds.

3.2.1 model definition

We consider as before the evolution of a population of B-cells inside a Germinal Center.
Over time the population increases its average affinity for the Antigen thanks to repeated
cycles of mutation and selection. Each cell in the population is solely characterized by
its affinity for the Ag, measured in terms of binding energy ε and expressed in units of
kBT .
The simulation starts when the GC is mature. We consider the initial population to be
composed of Ni cells whose binding energy is independently extracted from a Gaus-
sian distribution of naive responders, with mean µi and standard deviation σi. Cells
then undergo iterative rounds of duplication, mutation and selection. These steps are
schematized in fig. 27. At the beginning of the round cells duplicate once. Each daugh-
ter cell can then independently develop an affinity-affecting mutation with probability
paa, which causes its binding energy to change, or a lethal mutation with probability
plet, in which case it is removed from the population. Alternatively, with probability psil,
the cell either does not mutate or develops silent mutations. In both cases its affinity is
unchanged. Affinity-affecting mutations change the binding energy of cells by adding a
random contribution ∆ε to the binding energy, extracted from a Gaussian distribution
with mean µM and standard deviation σM (see fig. 28). Parameters are chosen such that
only a small fraction of the mutations is beneficial, i.e. decreases the binding energy (cf.
appendix B.1).
After mutations cells are selected for Ag binding. Only cells that are able to bind the
Ag with sufficient affinity survive this step of selection. As in the previous chapter (cf.
eq. (6)), the survival probability for a cell with binding energy ε is given by:

PAg(ε) =
Ce−ε

Ce−ε + e−εAg
(22)

Where εAg is a threshold binding energy and C represents the dimensionless concen-
tration of Ag available for cells to bind. This concentration controls the strength of se-
lection, making successful binding more likely when more Ag is available to bind. The
functional dependence of this selection on ε and C is displayed in fig. 28C. As a second
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selection step cells compete to receive a survival signal from T-follicular helper cells. The
survival probability for a cell with binding energy ε is:

PT(ε, ε̄) =
Ce−ε

Ce−ε + e−ε̄
, with e−ε̄ = 〈e−ε〉pop (23)

Where the term 〈e−ε〉pop represents the average of this quantity over the population and
encodes for competition, cf. fig. 28 B and D. The surviving cells then can differentiate
into Plasma or Memory Cells with total probability pdiff. We do not keep track of these
differentiated cells in the simulation. After this step if the population size exceeds the
maximum carrying capacity Nmax cells are randomly removed until the threshold is
met. The surviving cells start then the next round of selection. The standard value for
all model parameters is reported in table 4, and their choice is discussed in appendix B.1.

parameter value description

µi, σi 3, 1.5 mean and variance of the population initial binding
energy distribution

Ni 2500 initial population size

Nmax 2500 maximum carrying capacity

psil, plet, paa 0.75, 0.15, 0.1 effective probability of silent, lethal, affinity-affecting
mutation.

µM, σM 0.3, 0.3 mean and variance of distribution of affinity-
affecting mutations

εAg 0 Ag-binding selection threshold energy

C 5 Ag concentration

pdiff 0.1 differentiation probability

Table 4: standard values of model parameters. Unless otherwise specified these are the values
used in simulations. The choice of their value is discussed in appendix B.1

3.2.2 Qualitative model behavior: bottleneck and lineages

Similarly to other AM models [155, 161], for standard parameter values the population
initially undergoes a bottleneck state. This is caused by the strong selection pressure
initially imposed by Ag-binding selection, which later relaxes if the average population
energy reaches values 〈ε〉pop ∼ εAg. By controlling the selection pressure (cf. eqs. (22)
and (23)) Ag concentration also controls the population survival probability. To illustrate
this in fig. 29 we report the average evolution of 1000 stochastic simulations for three
different values of the concentration C. In all three cases the population size initially
decreases under the combined effect of the two selection steps (fig. 29A). This decrease
lasts for few turns, and is accompanied by a quick increase in average affinity (fig. 29B).
At this point surviving populations are composed of few high-affinity cells on which the
main selection force acting is competitive selection. If this selection pressure is not too
strong then the population can expand and mature. Through a mechanism analogous
to the one studied in section 2.7 Ag concentration controls maturation speed, as can be
seen by comparing the final maturation rate of cases C = 10 and C = 2.7 in fig. 29B. In
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Figure 27: schematic representation of the processes that constitute an evolution round. Initially
all cells in the population duplicate. Each daughter cell can develop affinity-affecting
(paa = 0.1) or lethal (plet = 0.15) mutations. Most of the mutations have a deleterious
effect. Cells are then selected on the base of their ability to bind the Antigen, and
compete to receive T-cell help. Surviving cells have a small probability (pdiff = 0.1)
of differentiating into Memory or Plasma Cells (MC/PC) and exiting the cycle. More-
over if the size of the population at this step exceeds the maximum carrying capacity
(Nmax = 2500) then extra cells are removed randomly. The remaining cells enter then
a new evolution round.

fig. 29C we display the fraction of surviving simulations as a function of time. In the
case C = 1 all simulations end with population extinction. This is due to the fact that at
this value of concentration competitive selection alone is sufficiently strong to prevent
population growth. The intermediate concentration value C = 2.7 is instead sufficient
to sustain population growth. In this case extinction can occur during the bottleneck
state, when population size is small, but if some cells are able to survive the bottleneck
then the population grows back to full size and continues maturation. Finally, at high
concentration C = 10 the bottleneck pressure is not sufficient to significantly endanger
population survival, and all simulations are able to overcome the low-population state
without going extinct. In the next session we will try to quantify how Ag concentration
controls this survival probability.
At the level of clonal families, survival and future expansion of is strongly dependent
in our model on the progenitor affinity. In fig. 30A we display the evolution of lineages
generated by three progenitors with different initial affinity. The lowest-affinity one (red)
goes extinct in few evolution rounds. In the one with intermediate affinity (orange) only
few individuals are able to survive the bottleneck. The high-affinity one (green) instead
expands and eventually takes over the population. In fig. 30B we display genealogies for
the three progenitors, in the form of trees in which each node corresponds to a different
cell. In our analysis we will try to quantify the lineage survival probability as a function
of progenitor affinity.
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Figure 28: A: probability distribution of the energy change ∆ε introduced by affinity-affecting
mutations. Most of the mutations are deleterious. B: example of binding energy his-
togram for a population of B-cells and the corresponding value of ε̄. C: Probability
for a cell of surviving Ag-binding selection, as a function of the energy of the cell ε
and the antigen concentration C. The threshold value εAg is represented with a gray
dashed line. An higher concentration corresponds to an higher survival probability.
D: same as panel C, but for T-cell selection survival probability. Competition is in-
troduced by the fact that in this case the threshold ε̄ depends on the binding energy
distribution of the population, as shown in panel B.
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Figure 29: Average evolution for 1000 different stochastic simulations of the model at three dif-
ferent levels of Ag concentration C = 1, 2.7, 10, color-coded according to the legend
on the right. A: population size N as a function of evolution round. Shaded area cov-
ers one standard deviation for surviving simulations. The minimum population size
on the bottleneck depends strongly on Ag concentration B: same as panel A but for
the average population binding energy 〈ε〉. Notice how for surviving population the
maturation speed depends on Ag concentration. C: Fraction of surviving simulations
as a function of time. At low concentration the bottleneck drives all simulations to
extinction, while at high concentration the population survives with high probability.
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A B

Figure 30: A: example of stochastic lineage evolution through a population bottleneck. For three
different progenitors (red, orange and green) we plot the evolution of the progeny in
energy space, as the population undergoes a bottleneck. Cell density is plotted on the
background as reference (blue, darker shade corresponds to higher number of cells).
The lineage of the red progenitor quickly goes extinct, while the lineage of the orange
progenitor survives the bottleneck but only with few individuals, mainly having low
affinity. The green progenitor lineage conversely survives the population bottleneck
and its progeny populates the bulk of the final distribution. Notice how fate correlates
with the initial progenitor affinity. B: Genealogies for the three progenitors displayed
in panel A. Each node of the tree corresponds to a different cell. Affinity along a
branch is indicated in colors according to the colorscale on the right.

85



3.2.3 Limit of big population size

As a preliminary step to later develop our theory we perform the deterministic limit
of big population size. This is analogous to what done in section 2.5 for the model
presented in the previous chapters, with few differences (mainly in the duplication,
mutation and T-cell help selection operator) due to the differences in model definition.
As observed in the previous chapter, in this limit the population binding energy can be
approximated with a continuous distribution, and the state of the system is completely
determined by the density function ρt(ε). This function expressed the density of cells
having energy ε at evolution round t, so that its integral is equal to the size of the
population, and if normalized it becomes equal to the cells binding energy distribution.
Evolution is expressed in terms of operators acting on this function. In particular:

1. Cell duplication corresponds simply to doubling in size:

A[ρ](ε) = 2× ρ(ε) (24)

2. Mutations are represented as the convolution with a mutation kernel:

K(∆ε) = paa Kaa(∆ε) + psil δ(∆ε) (25)

Where Kaa(∆ε) = N[µM,σM](∆ε) is the distribution of affinity-affecting mutations,
consisting in Gaussian with mean µM and standard deviation σM, and δ(∆ε) is
Dirac delta distribution. Notice that the kernel is not normalized, to account for
the contribution of lethal mutations. It acts on the distribution as:

M[ρ](ε) =

∫
d∆ερ(ε−∆ε)K(∆ε) (26)

3. Ag-binding selection is implemented by in the product of the population function
with the survival probability eq. (22):

SAg[ρ](ε) = PAg(ε) ρ(ε) (27)

4. Similarly, T-cell help selection is given by the product with the survival probability
eq. (23):

ST[ρ](ε) = PT(ε, ε̄) ρ(ε), with e−ε̄ =

∫
dε e−ε ρ(ε)/N (28)

Where N =
∫
dερ(ε) is the current population size.

5. Differentiation consists simply in a product involving the differentiation probabil-
ity:

D[ρ](ε) = (1− pdiff) ρ(ε) (29)

6. Finally, the carrying capacity constraint is implemented again by a product and is
operated only if the size of the population exceeds the maximum limit:

C[ρ](ε) = min{1,Nmax/N} ρ(ε) (30)

Where again N =
∫
dερ(ε) is the current population size.
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3.2.4 Continuous time description

As a second preliminary step for our analysis we also provide a continuous-time de-
scription of the process, starting from the deterministic limit introduced in the previous
section. In this description the density function ρ(t, ε) becomes continuous in the vari-
able t, which we consider expressed in units of evolution rounds. We can describe the
evolution of this function with a PDE. We start by considering duplication, lethal muta-
tions and differentiation, which give an energy-independent growth rate:

λ = ln [2 (1− plet) (1− pdiff)] ∼ 0.42 (31)

Where the numeric value is intended for the standard values of the parameters (see
table 4). A second component of the total growth rate is given by Ag-binding and com-
petitive selection, which introduce energy-dependent terms:

lnPAg(ε) + lnPT (ε, ε̄t) , with e−ε̄t =
∫
dε e−ε

ρ(t, ε)
Nt

and Nt =
∫
dε ρ(t, ε) (32)

Where Nt represents the size of the population at time t. Finally, the growth rate also
contains a term that enforces the finite carrying capacity constraint. This term is non-
null only when the population size reaches the maximum allowed size Nt = Nmax and
in this case is defined through the constraint equation.2

Ω(t) =

0 if Nt < Nmax

defined through d
dtNt 6 0 if Nt = Nmax

(33)

We group the total growth rate term in the following function:

Γ(t, ε) = λ+ lnPAg(ε) + lnPT (ε, ε̄t) +Ω(t) (34)

Even though we do not explicitly indicate it, this function depends on the full state of
the distribution ρ(t, ε) through the definition of ε̄t. This total growth rate includes the
effects of duplication, differentiation, selection and lethal mutations. The missing part,
i.e. silent and affinity-affecting mutations, will add a drift and diffusion term in the
evolution of the density function. The drift and diffusion coefficient are given by the
mean and variance of the distribution of silent and affinity affecting mutations K(∆) (cf.
eq. (25)):

v = 〈∆ε〉M =
paa

paa + psil
µM ∼ 3.5× 10−2 (35)

D = 〈∆ε2〉M − 〈∆ε〉2M =
paa

paa + psil

[
σ2M +

psil

paa + psil
µ2M

]
∼ 2.0× 10−2 (36)

Where again numerical values3 are to be intended as relative to the standard parameter
choice (cf. table 4). Adding all of these contributions together results in the following
drift-diffusion PDE equation that describes the evolution of the density function:

∂tρ = Γρ− v ∂ερ+
D

2
∂2ερ (37)

2 We provide here the definition of Ω(t) for completeness, but subsequent analysis will be carried out for the
most part in the assumption of infinite maximal population size, and will not be influenced by this term.

3 Notice that since both energy and time are expressed in dimensionless units, so are the drift and diffusion
coefficients.
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As a last remark we point out that when comparing this continuous-time description
with discrete time simulations of the model we expect some discrepancies due to dif-
ferent sources. One source is the fact that the deterministic description obtained with
the infinite-size limit poorly captures stochastic finite-size effects. A second source is the
fact that the continuous-time description of mutations as a drift-diffusion process is ac-
curate in the limit in which the mutational effect is small and many evolution steps are
considered. Moreover the fact that the drift and diffusion coefficients depend only on
the first two moments of the mutations distribution makes it accurate for Gaussian-like
distributions of mutational effects, while in our case the mutation kernel (cf. eq. (25)) is
the combination of a Gaussian and a Dirac delta.

3.3 maturation speed and growth rate

As a first step in our analysis, starting from the continuous-time description introduced
above, we study the asymptotic maturation regime in which the population evolves as a
traveling wave. This is similar in spirit to what done in section 2.7. In this case however
the simplicity of the model allows us to recover analytic expressions which explicit the
role of model parameters in controlling population growth rate and maturation speed.
It also shows how the existence of the maturation regime depends on the value of model
parameters.

3.3.1 Traveling-wave asymptotic solution

We are interested in finding traveling-wave solutions for eq. (37), which describe the
asymptotic evolution of the population affinity in our model. These solution will have
the form ρ(t, ε) ∼ ρ∗(ε− ut) exp{φt}, where u represents the wave velocity and φ the
population growth rate. We start by expressing eq. (37) in terms of the logarithm of the
density function ω(t, ε) = log ρ(t, ε):

∂tω = Γ − v ∂εω+
D

2
[(∂εω)2 + ∂2εω] (38)

This formulation admits an approximation, known as the WKB approximation from
Wentzel-Kramers-Brillouin, which is commonly used in quantum mechanics as a semi-
classical slow-varying phase approximation. In our case this approximation consists in
dropping the second derivative, which leaves us with a first-order partial differential
equation:

∂tω = Γ − v ∂εω+
D

2
(∂εω)2 (39)

For the logarithm of the density function the traveling-wave ansatz reads ω(ε, t) ∼

ω∗(ε − ut) + φt. Plugging this into eq. (39) restitutes an equation for the asymptotic
wave shape:

−up∗ +φ = λ+ lnPAg + lnPT +Ω(t) − v p∗ +
D

2
p∗2 (40)

Where for ease of notation we indicate with p∗(x) = ∂xω
∗(x). Since we are interested

in the asymptotic behavior, similarly to what done in section 2.7.1 we neglect both Ag-
binding selection (term lnPAg) and the carrying capacity constraint (term Ω(t)), so as
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to allow for positive values of the asymptotic velocity and growth rate. This results in a
second degree equation for p∗(ε) which admits two solutions:

p∗±(x) =
v− u±

√
(v− u)2 − 2D[λ−φ+ lnPT(x)]

D
(41)

With a slight abuse of notation, considering that for a traveling-wave solution the thresh-
old binding energy for T-selection must evolve as ε̄t = ε̄0 + ut, we indicate with:

PT (x) =
Ce−x

Ce−x + e−ε̄0
(42)

To further ease the notation we will define θ = v− u and γ = λ−φ. In order for the
solution p∗ to be valid on the whole real domain the term under square root in eq. (41)
must be positive for any value of x. Considering that supx lnPT (x) = 0 this condition
translates into the following equation:

θ2 − 2Dγ > 0 (43)

Moreover, considering that ω∗(x) represents the logarithm of a probability distribution
we must have that limx→±∞ω(x) = −∞. At the same time we have that limx→+∞ lnPT (x) =
−∞. This forces us to accept as valid only the solution p∗(x) = p−(x).
The traveling-wave ansatz contains one extra translational degree of freedom that needs
to be fixed with a choice of gauge. We pick the condition ε̄0 = 0, which translates into∫
dερ∗(ε) e−ε = 1. Through a zero-order saddle-point approximation of this integral

one can approximate this condition with ∂εω∗(ε̄0) = p∗(ε̄0) = 1.4 By plugging this into
eq. (41) one obtains:

1 =
θ−

√
θ2 − 2D[γ+ ζ]

D
, with ζ = lnPT(x = ε̄0 = 0) = ln

C

C+ 1
(44)

This equation can be split into the following two conditions:

D− θ 6 0 (45)

θ = γ+ ζ+D/2 (46)

Now we plug eq. (46) we obtained for θ into the condition for γ eq. (43). This results in
the following second degree inequality for γ:

γ2 + 2γ(ζ−
D

2
) + (ζ+

D

2
)2 > 0 (47)

This inequality admits two sets of solutions, either γ > γ+ or γ 6 γ−, with:

γ± =
D

2
− ζ±

√
−2ζD (48)

The existence of these two solutions is always granted since by definition D > 0 and
ζ < 0. However by plugging eq. (46) into condition eq. (45) one can easily verify that
only the solutions γ > γ+ are acceptable. Finally, since amongst all the possible solutions
one can assume that the one with the greatest growth rate will dominate, we select the

4 Notice that the fact that the energy ε and time t are dimensionless introduces here a mixing of otherwise
dimensional constants.
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solution with minimum γ, that is γ = γ+. By replacing the explicit expressions for γ,
θ and ζ into this equality and into eq. (46) one obtains expressions for the population
wave speed and growth rate:

φ(C) = λ−
D

2
+ ln

C

C+ 1
−

√
−2D ln

C

C+ 1
(49)

u(C) = v−D−

√
−2D ln

C

C+ 1
(50)

From these equations we can derive expressions for the critical concentrations through
the defining conditions φ(C∗) = 0, u(C∗∗) = 0:

C∗ =
1

exp{(
√
λ−

√
D/2)2}− 1

if λ >
D

2
(51)

C∗∗ =
1

exp{ (v−D)2

2D }− 1
if v > D (52)

For standard values of the model parameters this gives C∗ ∼ 2.8, C∗∗ ∼ 168. Notice that as
indicated not for any value of the model parameters λ, v, D these critical concentrations
exist. The existence conditions can easily be understood by considering that:

lim
C→∞φ(C) = λ− D2 (53)

lim
C→∞u(C) = v−D (54)

As a side note we point out that this high concentration limit does not correspond to
the regime of amplification and diffusion without selection, in which a traveling-wave
ansatz does not describe well the asymptotic evolution. Rather, since we performed first
the asymptotic limit and then the high-concentration limit, this corresponds to the case
in which the value of ε̄ is determined by pure diffusion, and is situated on the left tail
of the distribution, while selection acts on the bulk of the distribution. This can be better
understood by considering that in the pure amplification, drift and diffusion case, with
Gaussian initial conditions, the evolution of ω(t, ε) is given by:

ω(t, ε) ∝ −
(ε− vt)2

2Dt
+ λt (55)

And the point in which p(t, ε) = 1, which is the definition of ε̄t in the saddle-point
approximation, evolves as: d

dtω(t, ε̄t) = λ− D
2

d
dt ε̄t = v−D

(56)

Moreover, through the explicit expressions for the critical concentrations we can derive
the conditions of existence for the maturation regime. This regime is realized when
φ > 0 and u < 0, which is only possible when two conditions are met. The first condition
is the existence of the critical concentration C∗. The second is the fact that it must be
either C∗∗ = +∞ (i.e. this critical concentration does not exist) or if it exists then it must
be C∗ < C∗∗. This translates into:λ > D/2

v < D or v < D/2−
√
2λD

(57)
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In addition to the previous results from eq. (41) we can also obtain an expression for
p∗(ε), which encodes the asymptotic wave shape:

p∗(ε) = 1+

√
−
2

D
ln

C

C+ 1
−

√
−
2

D
ln

C exp{−ε}
C exp{−ε}+ 1

(58)

We conclude by pointing out that these results were obtained with the help of two ap-
proximations, namely the WKB approximation and the saddle-point expansion p∗(ε̄) =
1. However they have the advantage that they provide an explicit expression with which
to interpret the role of the model parameters in controlling the maturation speed and
population survival.

3.3.2 Dependence of growth rate and maturation speed on model parameters

Similarly to what was found in section 2.7, also in this model Ag concentration C quali-
tatively splits the model maturation in three regimes, depicted in fig. 31. These regimes
are delimited by the two critical concentrations C∗ and C∗∗ (eqs. (51) and (52)). In the
low concentration regime C < C∗ the growth rate is negative, and the population quickly
goes extinct. At high concentration C > C∗∗ the growth rate is positive but so is the wave
velocity, meaning that the selection pressure is not strong enough to compensate the ef-
fect of deleterious mutations. Finally, optimal maturation is obtained at intermediate
concentration C∗ < C < C∗∗, at which both the growth rate is positive and wave velocity
is negative. Notice that the numerical values of C∗ and C∗∗ found here differ from the
ones in section 2.7 (compare fig. 31 and fig. 25). This is due to difference in model defini-
tions and parameters value between the two cases. For example the parameters a and b
(cf. eq. (7)) encoding for permissiveness and stochasticity in selection, are not included
here, and as discussed in appendix A.4 they influence the value of asymptotic growth
rate and maturation speed.
The difference with what done in the previous chapter lays in the fact that in this case
the effect of model parameters is made explicit in analytic expressions. Equations (49)
and (50) for example show how a larger value for the diffusion coefficient results in a
faster maturation, but also in a reduced growth rate. Moreover the expressions for the
critical concentrations, combined with their existence conditions, allowed us to explicit
the conditions for the existence of a maturation regime (cf. eq. (57)). These conditions
indicate that effective maturation (i.e. the existence of a regime in which simultaneously
φ > 0 and u < 0) can be obtained only in a sub-part of the (λ, v,D) parameters space.
Loosely speaking these conditions state that the growth rate λ, encoding for the com-
bined effect of duplication, differentiation and lethal mutations, must be big enough
compared to the diffusion coefficient to allow the existence of a positive growth rate.
Moreover to allow for affinity increase the drift coefficient v must no be too big com-
pared to the diffusion coefficient.

We conclude this section by pointing out some limitations of this analysis. First, this
analysis is based on the infinite-size limit, which removes stochastic effects and makes
analytic treatment possible. However this limit fails to account for finite-size effects5

5 One example is the value of ε̄ = − log〈e−ε〉pop, which depends strongly on the high-affinity tail of the
population and is closer to the mean when the population size is small.
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Figure 31: Value of the population growth rate φ (top) and maturation speed u (bottom) as a
function of Ag concentration C, as predicted by the asymptotic solution of eq. (37) in
the WKB approximation. Asymptotically the population size evolves as N ∼ exp{tφ},
and the average energy of the population as 〈ε〉 ∼ ut. The critical concentrations at
which φ(C∗) = 0 and u(C∗∗) = 0 are indicated with dashed vertical lines. They split
the behavior of the model in three regimes: extinction for C < C∗, maturation for
C∗ < C < C∗∗ and stagnation for C > C∗∗
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and stochasticity, that for evolving populations are important effects. We expect this to
generate a discrepancy between the asymptotic velocity in stochastic simulations, where
the population size is finite, with the prediction of the deterministic limit.
Another limitation of the asymptotic limit is that it relies on the fact that in our model
positive mutations can accumulate indefinitely, with no upper limit to affinity. This is a
consequence of the mutation mechanism in our model, in which affinity-affecting mu-
tations introduce a change ∆ε in binding energy with probability Paa(∆ε) (cf. fig. 28 A)
that do not depend on the current binding energy of the cell developing the mutation. In
reality the probability of developing a beneficial mutation will be in general a decreasing
function of the Ab affinity, eventually reaching zero when the cell is in a local maximum
of the fitness space, thus preventing infinite maturation.
In spite of these approximations we still believe this analysis to be meaningful. It still
represent the "attractor" asymptotic state in a regime in which maturation has not yet
reached a fitness peak, and beneficial mutations can still be accumulated. Even though
the exact values of the asymptotic velocity may quantitatively differ in theory and sim-
ulations, the theory is still useful to show the existence of qualitatively different matura-
tion regimes, and how they depend on model parameters.

3.4 probability of survival to bottleneck

In this next section we study the survival probability of B-cell lineages in a population
bottleneck. This survival probability depends strongly on the affinity of the lineage
progenitor. We also quantify other stochastic properties of lineages that go extinct, such
as the average extinction time and total progeny size at extinction. We then make use of
these results to evaluate the survival probability for the full population, also accounting
for competition in an effective manner.

3.4.1 Lineage extinction probability and extinction time in a population bottleneck

Let us consider a progenitor cell with binding energy ε, present in the population at
the beginning of evolution t = 0. At each evolution round this cell will divide and its
offspring will have some probability of being removed from the population, either due
to selection, differentiation or lethal mutations. In fig. 32A we report an example of lin-
eage evolution for a progenitor with binding energy ε = 1. Color indicates the binding
energy of each cell, according to the color-scale on top. In this example cells accumulate
deleterious mutations until the lineage eventually goes extinct after t = 26 evolution
rounds.

We are interested in quantifying the probability dt(ε) that all of the offspring of a pro-
genitor with binding energy ε will be extinct be extinct by evolution round t.
The expression for t = 1 can easily be written as the probability that both daughter cells
generated during the duplication phase will be removed by the end of the round. As
stated above, this can occur either by lethal mutation, by failing selection or by differ-
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entiation. This probability is more easily expressed as one minus the probability of not
being removed:

d1(ε) =

(
1−

∫
d∆K(∆)PS(ε+∆) (1− pdiff)

)2
(59)

Where the expression for K(∆) is the one given in eq. (25), and PS(ε) is the probability
for a cell with binding energy ε of surviving selection. In a population bottleneck most
of the selection pressure is generated by Ag-binding selection (i.e. ε̄t < εAg), and as a
first approximation we therefore neglect competitive selection for T-cell help and con-
sider simply PS(ε) = PAg(ε) (cf. eq. (22)). This introduces two important simplifications.
Firstly, the expression of PS does not depend on time. Secondly, removing the compet-
itive selection uncouples the fate of all cells in the population. Later when considering
the survival probability for the full population (section 3.4.3) we will extend this theory
to add an effective competitive selection pressure.
The terms for t > 1 can be evaluated using an iterative relation that expresses the prob-
ability of extinction in t rounds as the probability for each daughter cell to either go
extinct in one round, or to survive the first round but to have their respective offspring
go extinct in t− 1 rounds:

dt(ε) =

[√
d1(ε) +

∫
d∆K(∆)PS(ε+∆) (1− pdiff) dt−1(ε+∆)

]2
=

[
1−

∫
d∆K(∆)PS(ε+∆) (1− pdiff) (1− dt−1(ε+∆))

]2
(60)

The idea behind the formula is the following: the probability that all of the offspring
goes extinct in t rounds is the probability that each of the two daughter cells generated
during the duplication phase of the first round independently are removed before the
end of round t. Since division is symmetric this probability must be the same for each
daughter cell, and it is the term in square brackets. Furthermore, the probability of
offspring extinction for each daughter cell can be further decomposed in the probability
that the daughter cell will be removed (by lethal mutation, failure of being selected or
differentiation) in round one (term

√
d1(ε)), or that it will succeed selection, but its

offspring will go extinct in the remaining t− 1 rounds (integral containing dt−1). One
can also provide an interpretation for the simplified form that appears on the second
line. Here the term in square brackets is equal to one minus the probability that the
daughter cell survives, and some of its offspring also survives for other t− 1 rounds.
In fig. 32B we plot the behavior of dt(ε) as a function of evolution round t and binding
energy ε (orange curves, color indicates extinction round t). As suggested by intuition,
the extinction probability is a monotonically increasing function of time.6 As t becomes
bigger the extinction probability must therefore reach an asymptotic value d∞(ε). This
asymptotic function tends to one for high energies, indicating that as expected high-
energy (i.e. low-affinity) cells quickly go extinct, however it does not tend to zero for low
energies. This is because lethal mutations and differentiation still confer a small chance
of extinction, mainly in the first few evolution rounds when the number of offspring is
still small. This small chance of extinction is limε→−∞ d∞(ε) = min{1, [1− 1/α]2}, with
α = (1− plet)(1− pdiff) being the probability for a high-affinity cell to survive the round

6 This property can be easily proven by induction.
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and not be removed by lethal mutations or differentiation.7

The probability that a lineage generated by a progenitor with energy ε goes extinct
exactly at round t can then easily be expressed as rt(ε) = dt(ε) − dt−1(ε). This allows
us to evaluate the mean and variance for the extinction time probabilities (see fig. 32C)
simply from the first two moments of the distribution:

〈t〉ε =

∞∑
t=0

t rt(ε), 〈t2〉ε =

∞∑
t=0

t2 rt(ε), (61)

In fig. 32 B and C We compare these predictions with stochastic simulations effectuated
in the approximation of no competitive selection. In panel B for different values of the
progenitor binding energy we report the mean extinction probability (blue), and as ex-
pected this coincides with the limit t → ∞ of the function dt(ε). Unsurprisingly, both
theory and simulations predict that at lower affinity corresponds higher extinction prob-
ability. In panel C instead we compare the extinction time from the same simulations
(blue, error bars indicate the standard deviation of extinction times for each progenitor
affinity) with the predictions from the theory (orange, shaded area covers one standard
deviations). We again find a very good match, with both showing a peak at intermediate
affinities. This peak has the following interpretation. Low-affinity progenitors (i.e. hav-
ing high binding energy) have a close-to-one probability of extinction, and on average
go extinct in the first few rounds. High-affinity cells on the contrary have a small but
non-zero probability of extinction (see the value of extinction probability in fig. 32). This
comes mainly from affinity-independent terms such as the differentiation probability,
that confer to the lineage a small chance of going extinct on the first selection rounds,
when the population is still small. This is consistent with the fact that lineages that go
extinct have a small size and go extinct in the first few rounds. For affinities close to
ε = 1 we have an intermediate probability of survival, and the maximum value for av-
erage extinction time and progeny size. This can be even better understood if we turn
off mutations, in which case equations can be solved exactly (cf. appendix B.2). In this
case we find a divergence in average extinction time and progeny size at a value of ε for
which every cell on average has one daughter cell that survives selection.8 The presence
of mutations removes this divergence by pushing lineages to one or the other side of
the divide: either to high affinities and therefore to survival or to lower affinities and
therefore extinction.

3.4.2 Lineage size at extinction

A quantity related to extinction time is the total progeny size at extinction. For instance
in the example displayed in fig. 32A the lineage consists of a total of 82 cells. Like ex-
tinction time, this quantity is well-defined only for lineages that go extinct. Similarly to
what done above, we can also derive a recursive formula to quantify the total offspring

7 This last property can be shown by writing eq. (60) as a fixed point equation for t → ∞, and considering
that for ε→ −∞ mutations do not sensibly change the survival probability and can therefore be neglected.
Notice that if α < 1/2 then d∞(ε � 0) = 1, as is to be expected if on average less of one individual in
the offspring will survive. However this is a pathological case: in this regime irrespective of the energy the
population will asymptotically always go extinct d∞(ε) = 1.

8 Notice that in the absence of affinity-affecting mutations generated genealogies belong to the class of Galton-
Watson trees.
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size. However there is a difference: in the case of the extinction time the recursion is
based on the fact that the extinction time for the progeny of the mother cell is a random
variable equal to the maximum of two other random variables, namely the extinction
times of the progeny of the two daughter cells. When considering the offspring size
instead we need to consider the sum of two random variables representing the number
of descendants of each daughter cell. In the latter case recursion includes a convolution,
which is numerically harder to compute. Therefore instead of considering directly the
probabilities ones must resort to using the probability generating functions. The recur-
sive relations can be expressed in term of these functions, and can be used to evaluate
the moments of the probability distribution without having to numerically perform the
convolution.
We name qn(ε) the probability that a progenitor with energy ε generates a total off-
spring of exactly n cells before extinction, not counting the progenitor itself. This prob-
ability can be better expressed if we separate the contribution of the two daughter cells.
Considering genealogies encoded as binary trees (cf. fig. 32A), we call bm(ε) the prob-
ability that along the branch corresponding to one of the daughter cells of a progenitor
with energy ε we find a total of m descendants (including the daughter cell itself) before
extinction. The expression form = 0 is simply given by the probability that the daughter
cell is removed before the end of the round:

b0(ε) = 1−

∫
d∆K(∆)PS(ε+∆) (1− pdiff) =

√
d1(ε) (62)

The recursive relation in this case is composed of two equations. The first is a convolu-
tion that decomposes the probability of having n descendants as a sum over all possible
repartitions of the descendant number along the two branches:

qn(ε) =

n∑
m=0

bm(ε) bn−m(ε) (63)

The second expresses the probability to findm descend along a branch as the probability
that the daughter cell survives and has m− 1 descendants:

bm(ε) =

∫
d∆K(∆)PS(ε+∆) (1− pdiff)qm−1(ε+∆) (64)

We express these relations in terms of the generating functions Q(z, ε) and B(z, ε), de-
fined as:

Q(z, ε) =
∞∑
n=0

qn(ε) z
n, B(z, ε) =

∞∑
m=0

bm(ε) zm (65)

In terms of these functions eqs. (63) and (64) read:

Q(z, ε) = B(z, ε)2 (66)
1

z
[B(z, ε) − b0(ε)] =

∫
d∆K(∆)PS(ε+∆) (1− pdiff)Q(ε+∆, z) (67)

These relations can be used to evaluate the moments of these distributions with two
additional considerations. The first is that

∑∞
n=0 qn(ε) = d∞(ε). This sum does not con-

verge to one since it only considers lineages that eventually go extinct. For the functions
Q and B this translates into:

Q(z = 1, ε) = d∞(ε), B(z = 1, ε) =
√
d∞(ε) (68)
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Secondly, the moments of the distributions can be evaluated from the generating func-
tions as:

〈nk〉ε =
1

d∞(ε)
∞∑
n=0

nk qn(ε) =
1

d∞(ε) (z∂z)
k Q(z, ε)|z=1 (69)

〈mk〉ε =
1√
d∞(ε)

∞∑
m=0

mk bm(ε) =
1√
d∞(ε) (z∂z)

k B(z, ε)|z=1 (70)

Applying the operator z∂z one and two times on eq. (66) restitutes the following relations
between the first two moments:

〈n〉ε = 2〈m〉ε , 〈n2〉ε = 2〈m2〉ε + 2〈m〉2ε (71)

This corresponds simply to the fact that the total number of descendants is the sum of
the descendants along the two branches. Applying the same operator on eq. (67) gives:√

d∞(ε) 〈m〉ε =

∫
d∆K(∆)PS(ε+∆) (1− pdiff)d∞(ε+∆) [2〈m〉ε+∆ + 1] (72)√

d∞(ε) 〈(m− 1)2〉ε =

∫
d∆K(∆)PS(ε+∆) (1− pdiff)d∞(ε+∆)×

×[2〈m2〉ε+∆ + 2〈m〉2ε+∆ + 1]

(73)

These equations can be solved numerically if we express them as fixed-point equations
for the functions 〈m〉ε and 〈m2〉ε:

〈m〉ε =
1√
d∞(ε)

∫
d∆K(∆)PS(ε+∆) (1− pdiff)d∞(ε+∆) [2〈m〉ε+∆ + 1] (74)

〈m2〉ε =
1√
d∞(ε)

∫
d∆K(∆)PS(ε+∆) (1− pdiff)d∞(ε+∆)×
×[2〈m2〉ε+∆ + 2〈m〉2ε+∆ + 4〈m〉ε+∆ + 1]

(75)

The moments for n can then easily be evaluated using eq. (71).

In fig. 32D we compare the theoretical prediction for the first two moments (orange
line represents the mean and shaded area covers one standard deviation) with the cor-
responding quantities from stochastic simulations (blue, error bars cover one standard
deviation). Once more we find a good match. The peak at intermediate affinities can be
explained, as done above for the extinction time, considering the critical nature of this
phenomenon at intermediate values of the binding energy (see appendix B.2).

3.4.3 Probability of bottleneck survival for the full population

Building on the results derived above, we now turn to the problem of quantifying the
average probability of extinction for the whole population.
As a first approximation we do not consider competitive selection, since most of the se-
lection pressure in a bottleneck is given by Ag-binding selection. Given a total ofNi cells
in the initial population, having energies {εk}k=1...Ni the probability that all cells will
be extinct by evolution round t is simply given by the product of extinction probabilities
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Figure 32: A: example of lineage evolution stemming from a progenitor with binding energy
εi = 1, from a stochastic simulation performed at Ag concentration C = 7 in the ap-
proximation of only Ag-binding selection. Each node in the tree represent a cell, its
binding energy ε represented using the colorscale on top. In this example cells pro-
gressively accumulate deleterious mutations until after 26 evolution rounds the pop-
ulation eventually goes extinct. B,C,D: Comparison between stochastic simulations
(blue) and theory (orange) for the probability of extinction (B), lineage extinction time
(C) and average progeny size at extinction (D) as a function of the progenitor energy
εi in absence of competitive selection. For each conditions we consider 5000 differ-
ent stochastic simulations that terminate with extinction at Ag concentration C = 7. B:
stochastic extinction probability (blue dots, error bar indicate the standard error of the
mean) evaluated as the fraction of simulations that terminate with extinction over the
total number of simulations performed. This is compared to the value of dt(ε) as de-
scribed by our theory. This represents the probability that the progeny of a progenitor
with binding energy ε goes extinct by round t, and converges asymptotically (t→∞)
to the total extinction probability. C: mean and standard deviation of extinction time
(blue) over 5000 simulations terminating in extinction. This is compared to the theoret-
ical prediction (orange) for the mean and standard deviation of this quantity, obtained
using the time extinction probability rt(ε). D: same as B but for the progeny size. In
this case the theoretical predictions are obtained using the generating function theory.
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for all cells
∏
k dt(εk). Moreover, since the initial energies are independently extracted

from a Gaussian distribution ϕ(ε) with mean µi and standard deviation σi, the average
extinction probability by round t over all possible extractions of the initial population is
given by:

Pext(t) =

(∫
dε ϕ(ε) dt(ε)

)Ni
(76)

With the help of this formula we evaluate the average survival probability as a func-
tion of Ag concentration C and initial population size Ni, and compare the prediction
with stochastic simulations in which we turn off T-cell selection. The results, reported in
fig. 33B and C (blue), match exactly.

When one adds competitive selection as expected the empirical survival probability
evaluated from simulations decreases slightly (compare blue and orange dotted line in
fig. 33B and C). The theory can be extended to account for T-selection in an effective
manner. In practice, one needs first to extend the theory to include a time-dependence
of the survival probability. At this point competitive selection can be included by in-
troducing an effective coupling between cells in a "mean field" fashion, by estimating
the average evolution of the term ε̄ = − log〈e−ε〉pop contained in the expression for the
T-selection survival probability eq. (23).
Proceeding with order we first extend the theory considering the case in which the sur-
vival probability PS(ε, t) is time-dependent. In this case the probability of extinction
does not depend anymore uniquely on the number of evolution rounds we consider,
but also on the initial time at which the progenitor is considered. We define dt,s(ε) as
the probability that a cell, which at the end of round t has binding energy ε, will have
all of its offspring extinct by the end of round s > t. For any value t > 0 we can write as
before the probability of extinction in one round:

dt,t+1(ε) =

(
1−

∫
d∆K(∆)PS(ε+∆, t) (1− pdiff)

)2
(77)

And for any pair of rounds s > t > 0, with s− t > 1, the following recursive relation,
analogous to eq. (60), holds:

dt,s(ε) =

[
1−

∫
d∆K(∆)PS(ε+∆, t) (1− pdiff) (1− dt+1,s(ε+∆))

]2
(78)

Finally, similarly to eq. (76), the probability that the full population goes extinct by
evolution round t is given by:

Pext(t) =

(∫
dεϕ(ε)d0,t(ε)

)Ni
(79)

Where as before ϕ(ε) is a gaussian distribution with mean µi and standard deviation
σi.
At this point we explicit the time dependence of the survival probability including selec-
tion for T-cell help: PS(ε, t) = PAg(ε)PT(ε, ε̄t) (cf. eq. (23)). Given the stochastic nature
of our model, the variable ε̄t which quantifies selection pressure is in reality a stochastic
variable. However with a crude approximation we can estimate its average evolution
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using the big-population-size limit introduced in section 3.2.3, under which the model
becomes deterministic. This allows us to numerically evaluate the extinction probabil-
ity eq. (79). The resulting estimate however underestimates the real survival probability
(compare red curve and orange dotted line in fig. 33B and C). This mismatch originates
mainly from the fact that in the big-size approximation ε̄ evolves faster than in stochas-
tic simulations (cf. blue and orange line in fig. 33A-left). In turn, this occurs because
the value of ε̄ is strongly dependent on the high-affinity tail of the population, whose
evolution is influenced by finite-size effects.

This discrepancy can however be reduced with a simple finite-size correction. This
correction is based on the consideration that the big-size limit of the model approximate
the population binding energy histogram with a continuous distribution, encoded in
the density function ρt(ε) (cf. section 3.2.3). At the beginning of evolution this function
takes the shape of a normal distribution (i.e. the initial binding energy distribution of
naive responders) with tails extending indefinitely in both directions. However since in
reality the population is finite, consisting of Ni individuals, we do not expect these tails
to be populated. The correction procedure consists in removing these tails, by setting
the initial distribution equal to zero outside a range delimited by two values [ε−, ε+].
These two values are chosen equal to the expected energy of respectively the highest
and lowest affinity individuals of the population. The probability distribution for their
binding energy can be expressed as a function of the naive binding energy distribution
ϕ(ε) (as before a Gaussian with mean µi and variance σ2i ) from which the energy of all
cells is extracted. If we call F(ε) =

∫ε
−∞ dε ′ϕ(ε ′) the cumulative distribution function,

then these distributions can be expressed as:

ϕ+(ε) =
d

dε
[F(ε)]Ni (80)

ϕ−(ε) = −
d

dε
[1− F(ε)]Ni (81)

The values ε± correspond then simply to the means of these distributions.
Removing the tails to the initial distribution causes an initial slow-down in the evo-

lution of ε̄ (cf. green line in fig. 33A-left). This slow-down is eventually lost, but the
agreement remains for a time sufficient for most of the stochastic simulations to go ex-
tinct (cf. fig. 33A-right) which is the relevant timescale to capture bottleneck survival.
By taking the value of ε̄ obtained by combining the big-size approximation with the
cutoff correction, and using it to evaluate the population survival probability, we obtain
a much better agreement of the theory with simulations (compare orange curve and or-
ange dotted line in fig. 33B and C). The remaining discrepancy are partly to be attributed
to the fact that the average evolution of ε̄ is still not exactly captured, and partly to the
fact that with this theory we are only accounting for the coupling in a "mean-field" man-
ner, and do not account for correlations between the stochastic evolution of ε̄ and of the
energies in the population.

3.5 most-likely evolutionary trajectory

In this next section we study the evolutionary trajectories of B-cell lineages under a pop-
ulation bottleneck. The question we ask is the following. Let us imagine we observe a
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Figure 33: Probability of population survival in a bottleneck condition. A: Left: comparison be-
tween the evolution of ε̄ in stochastic simulations (blue, mean and standard deviation
over 5000 simulations) and prediction of our theory without (orange) and with (green)
finite-size correction, consisting in cutting the tails of the initial distribution in proxim-
ity of the expected value for the highest-affinity individual. The correction improves
the prediction for the evolution of ε̄ at short times. Right: fraction of surviving simu-
lations as a function of evolution round. The value of ε̄ is well-approximated during
the time it takes for most of the simulations to go extinct. B: bottleneck survival
probability as a function of antigen concentration C. Comparison between stochas-
tic simulations (dotted line, error bars indicate the standard error of the mean) and
the predictions our theory (full lines). Stochastic simulations are reported both with-
out (blue) and with (orange) T-cell selection. For the theory instead we consider the
case without T-selection (blue), with T-selection (red) and with T-selection plus finite-
size correction (orange). In the absence of T-selection all cells evolve independently,
and the theory and simulations match exactly. The inclusion of T-selection slightly
decreases the survival probability in stochastic simulations. Accounting for this con-
tribution by using the infinite-size estimate for the evolution of ε̄ overestimates the
selection pressure. Adding the finite-size correction results in a much better estimate.
C: same as B, but the survival probability is evaluated as a function of the initial size
of the population Ni.
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cell with binding energy εf at time tf which successfully survived the population bot-
tleneck. What is the most likely evolutionary trajectory in affinity space that its ancestry
followed? Can we estimate the binding energy εi of its progenitor at time ti, before the
population bottleneck?
To answer these questions we apply the path integral formalism on eq. (37). By combin-
ing this formalism with the method of characteristic curves one can find an expression
for the action of trajectories in affinity space, which quantifies the log-probability of tra-
jectories. To verify its validity we compare theoretical maximum-action trajectories with
the average trajectories of lineages from simulations.

3.5.1 Path integral formulation

We start by applying the path integral formalism to the PDE eq. (37) that describes the
evolution of the population density function. The first step consists in performing an
infinitesimal expansion of the equation for a small time-increment δt. In particular, we
want to recover an expression of the form ρ(t+ δ, ε) = exp{δtO} ρ(t, ε), where ρ is the
cell density function, whose evolution is described by the PDE equation, and O is an
operator responsible for its infinitesimal evolution. This expansion reads:

ρ(t+ δt, ε) = ρ(t, ε) + δt ∂tρ(t, ε) + o(δt) =

=

{
1+ δt

[
Γ − v∂ε +

D

2
∂2ε

]}
ρ(t, ε) + o(δt) =

= exp
{
δt

[
Γ − v∂ε +

D

2
∂2ε

]}
ρ(t, ε) + o(δt)

(82)

Where we considered up to first order in δt and used the expansion of the exponen-
tial function for small values of the argument. At this point one can use the Fourier
representation of Dirac delta function to express ρ(ε, t) as:

ρ(t, ε) =
∫
dε ′ ρ(t, ε ′) δ(ε− ε ′) =

∫
dε ′ ρ(t, ε ′)

∫
iR

dε̃

2πi
e−ε̃(ε−ε

′) (83)

Substituting this expression in eq. (82) gives:

ρ(t+ δt, ε) =
∫
dε ′
∫
iR

dε̃

2πi
ρ(t, ε ′) exp

{
δt

[
Γ + vε̃+

D

2
ε̃2 − ε̃

ε− ε ′

δt

]}
+ o(δt) (84)

By repeating iteratively the procedure for many small increments δt, and sending the
increment to zero, one obtains the following path integral expression for the system’s
evolution:

ρ(tf, εf) =
∫
dεi ρ(ti, εi)

∫ (T ,εf)

(ti,εi)
D[ε]

∫
iR

D[ε̃]

2πi
exp
{∫
dt

[
Γ + vε̃+

D

2
ε̃2 − ε̃ ∂tε

]}
(85)

Here ε and ε̃ represent trajectories respectively in energy and response variable. This
formula has the following interpretation. The value of the density function at a given
final energy εf at the final time tf is given by a sum of contributions coming from all
possible trajectories linking an initial point εi at initial time ti to the final point. Not all
trajectories are equal, with their relative weight being determined by the action:

S[ε, ε̃] =
∫
dt

[
Γ(ε, t) + v ε̃+

D

2
ε̃2 − ε̃

dε

dt

]
(86)
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The trajectories that maximize this term are the ones that contribute the most to the
density at final time. These trajectories must satisfy the stationary action equations:δS/δε = 0 =⇒ dε̃/dt = −∂εΓ

δS/δε̃ = 0 =⇒ dε/dt = v+Dε̃
(87)

However these equations lack an interpretation for the value of the response variable ε̃.
This can be obtained through the method of characteristic trajectories.

3.5.2 Method of characteristic trajectories

The method of characteristic trajectories is a standard technique for solving PDEs. It
works by transforming a first-order PDE into a set of ordinary differential equations.
In our case this technique can be applied to eq. (39), which describes the evolution
of ω = log ρ in the WKB approximation. We start by deriving both members of the
equation by the binding energy ε:

∂tp = ∂εΓ − v ∂εp+Dp∂εp (88)

Where we indicate with p(t, ε) = ∂εω(t, ε). The technique consists in defining a trajec-
tory in (ε,p)-space as a pair of functions of time p̂(t), ε̂(t), and constrain these function
to represent the solution of our equation through the relation p(t, ε̂(t)) = p̂(t). The total
time derivative of this relation reads:

dp̂

dt
= ∂tp+

dε̂

dt
∂εp = ∂εΓ + ∂εp

(
−v+Dp+

dε̂

dt

)
(89)

By defining the value of the time derivative of ε̂(t) so that the term in brackets is zero
one is left with the following pair of coupled ODEs:dε̂/dt = v−Dp̂

dp̂/dt = ∂εΓ
(90)

By comparing these equations with the stationary action eq. (87) one notices that the two
are identical up to the identification p̂ = −ε̃. Indeed, one can identify the conjugated
variable as ε̃ = −∂ε log ρ, and the most-likely evolutionary trajectories will satisfy the
equation:

dεt

dt
= v−D∂ε log ρ(t, εt) (91)

To find these trajectories in practice one first evaluates the evolution of ρ(t, ε) using a
simple numerical integration scheme on eq. (37). At this point, for any given value of εf
one can back-propagate the most-likely trajectory in time using eq. (91) up to the initial
point εi at ti.

3.5.3 Action and trajectories in a simplified case: no competition and no silent mutations

At this point the theoretical prediction for the most-likely trajectories can be compared
to stochastic simulations. Before proceeding with the comparison we consider that there

103



are three main reasons why the stochastic simulations and the theoretical prediction
could differ, linked to the way we defined our infinite-size and continuous-time limit
(see discussion at the end of section 3.2.4). The first one is the fact that, as shown in the
previous section, the infinite-size population limit does not capture well the stochas-
tic evolution of the competitive selection pressure, encoded in the threshold energy
ε̄ = − log〈e−ε〉pop (cf. eq. (23)). A second reason is that the mutation kernel (cf. eq. (25))
is not gaussian but is the composition of a Dirac delta and a Gaussian. This is not well-
captured by a drift-diffusion equation such as eq. (37) which works better for Gaussian-
like mutation distributions. Finally the approximation of continuous time is usually
accurate only if we consider a big number of evolution rounds, each one contributing
very little to the total system evolution. Here instead we consider a limited number of
rounds (around 30, consistent with the timescale of the population bottleneck) each one
adding a non-negligible contribution to the system evolution.

Following these considerations, as a first check for our theory we set ourselves in
simplified conditions and remove the first two sources of discrepancies, namely we turn
off competitive selection and silent mutations. This makes the fate of cells uncoupled,
and simplifies the mutation kernel eq. (25) into a pure Gaussian distribution. Under this
conditions we compare the predictions of the theory with stochastic simulations.
We begin by performing 1000 stochastic simulations of the system for a number tf = 30
of rounds. We pool together all cells in the final populations, and split them in different
groups depending on the value of their energy (20 such bins, splitting equally the inter-
val [−10, 5]). The number of cells per bin divided by the bin size and the total number of
simulations gives us an estimate of the average expected cell density for a given value
of the final energy εf. In fig. 34B we compare this value with the prediction ρ(tf, εf)
obtained with eq. (37). The two are in very good agreement.
We then consider the path integral formulation eq. (85). As discussed above this equa-
tion expresses the final density as a sum of contributions corresponding to all possible
trajectories from any initial energy εi to the given final energy εf, with the action quan-
tifying the log-probability of the trajectory. With a very crude approximation we can
simplify this sum considering only the most important contribution, which is given by
the most-likely trajectory εi → εf, i.e. the one that satisfies the stationary action equa-
tions:

log ρ(tf, εf) ∼ S[εi → εf] + log ρ(ti, εi) (92)

To test this we take the prediction for the evolution of ρ(t, ε) obtained above from eq. (37),
and for each of the final energy bins considered above we back-propagate the most-
likely trajectory leading there (i.e. to the energy εf corresponding to the middle of the
bin) using eq. (91). This gives us a prediction for the most likely trajectory εi → εf. In
fig. 34A we compare the sum of the action over these trajectory S[εi → εf] and the initial
log-density log ρ(ti, εi) with the value of the final log-density logρ(tf, εf) evaluate as de-
scribed above from stochastic simulations. The match attests that indeed the most-likely
trajectory can explain most of the density observed.

Lastly, we extend the comparison to trajectories by comparing the theoretical most-
likely trajectories, obtained as described above, with their counterparts evaluated from
stochastic simulations. The latter are obtained by performing the average over all evo-
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Figure 34: Analysis of trajectories probabilities and action in the simplified case of no T-cell
selection and no silent mutations. With respect to the standard case we change the
values of the following parameters: psil = 0, plet = 0.2 , paa = 0.8, µM = 0.1. We
consider a total evolution time of tf = 30, and compare the results of 1000 stochastic
simulations with our theory. A: comparison between the value of the action plus
the logarithm of the initial cell density S+ log ρi along the least-action trajectory as
evaluated from our theory, and the logarithm of the final cell density log ρf, derived
from stochastic simulations. Each dot corresponds to a different value of the final
energy εf. The fact that the result is close to the diagonal (gray dashed line) signifies
that, at least in this simplified case, the theory correctly predicts the final cell density
as a function of the probability of the most-likely trajectory leading to a particular final
energy. B: comparison between the final (tf = 30) cell density ρf, as estimated from
simulations (red dots) or as predicted by the theory (orange line). The good match
between the two attests that in this simplified case the theory can correctly predict the
evolution of the binding energy probability distribution.

lutionary trajectories of cells in the same final energy bin. In fig. 35 we compare the
two, reporting for reference on the background in shades of blue the evolution of ρ(t, ε),
with darker shades corresponding to a higher density. The density initially undergoes a
decrease in the population bottleneck phase, and then expands again. Theory and simu-
lations are in very good agreement, both showing as expected that ancestors of the final
population are located in the high-affinity tail of the initial distribution.

The good match between theory and experiments in these simplified conditions testi-
fies that possible discrepancies must be explained by either of the two removed effects,
namely competitive selection or silent mutations.

3.5.4 Evolutionary trajectories with and without competition

Next we move the comparison from the simplified version of the model to the standard
version, complete with competitive selection and silent mutations. In fig. 36A we dis-
play the same quantities of fig. 35 in this standard case. While maintaining a qualitative
agreement on the fact that trajectories must originate from the high-affinity tail of the
initial distribution, here we find a less good agreement between theory and simulation.
To explain this discrepancy we analyzed the evolution of the competitive selection pres-
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Figure 35: Average evolutionary trajectories, comparison between theory and simulations in
the simplified case in which competitive selection and silent mutations are removed
(psil = 0, plet = 0.2 , paa = 0.8, µM = 0.1). 1000 different simulations were performed.
For each simulation cells in the final population (tf = 30) were pooled according to
their binding energy, by dividing the energy interval (−10, 5) in bins of width 0.25.
For each pool the average evolutionary trajectory of cells was evaluated (red lines).
To minimize noise only trajectories for pools grouping more than 1000 cells are dis-
played. Theoretical prediction are obtained by simulating the evolution of the cell
density function ρ using eq. (37). This evolution is plotted for reference on the back-
ground, with darker color corresponding to higher density. Theoretical trajectories
(orange dashed lines) were then evaluated by evolving the stationary action eq. (91)
back in time starting from the same final condition as simulated average trajectories.

sure, quantified by the threshold energy ε̄ (cf. eq. (23)). This analysis is performed in
appendix B.3. The result is that, similarly to what observed in section 3.4.3, the discrep-
ancy can be explained by the fact that the theoretical infinte-size approximation poorly
captures the evolution of this selection pressure, overestimating its evolution speed and
not capturing its stochastic nature (cf. fig. 53A). This stochasticity depends strongly on
initial conditions, and is greatly reduced if we start all simulations from the same initial
population (cf. fig. 53B). By coupling this with an appropriate finite-size correction on
the initial distribution, described in appendix B.3, we can improve the agreement be-
tween theory and stochastic simulations, also in the presence of competition.
In fig. 36B we compare stochastic trajectories (in red) obtained by performing 1000

stochastic simulations starting from the same initial population (cf. fig. 53C) to the
theoretical counterparts evaluated with this finite-size cutoff correction on the initial
distribution ρ(ti, εi) (see appendix B.3). Both show that all individuals in the final popu-
lation trace back to very few high-affinity ancestors in the initial population, as expected
when the system is subject to strong selection pressure [105].

One interesting difference between the case of fixed or variable initial population
is the fact that in the latter case the trajectories, both in stochastic simulations and in
the theory, stay parallel and lead to very different initial conditions, while in the case
of fixed initial population they all coalesce to the few highest-affinity individuals. This
coalescence must also occur when the initial population is varied, but it is masked by the
variation in energies of the initial population. This shows that the outcome of evolution
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in a bottleneck depends strongly on initial conditions, and the presence of a high-affinity
progenitor can lead to very different outcome. In particular for our values of model
parameters very high-affinity cells in the final population are only found when a high-
affinity progenitor was already present in the initial population.

3.6 conclusion and perspectives

We conclude this chapter by summarizing the main results obtained and drafting some
possible future directions.

In this chapter we focused on the study of the evolution of B-cell lineages that un-
dergo a population bottleneck. We started by introducing a simplified version of the
maturation model presented in the previous chapter, maintaining only minimal ingredi-
ents and setting the value of model parameters so as to impose a strong initial selection
force to the population.
By analyzing the asymptotic limit of the model in the continuous-time description we
derived explicit equations for the value of the asymptotic growth rate and maturation
speed as a function of model parameters. These equations reveal a tradeoff phenomenon
involving Ag concentration analogous to the one described in section 2.7, and have the
advantage of explicitly encoding the effect of different model parameters in controlling
the asymptotic maturation regime. Thanks to this we could also find conditions on the
value of these parameters for the existence of an effective maturation regime.
We moved then to the study of the survival probability of B-cell lineages that undergo
the population bottleneck. Through a recursive relation that links the probability of bot-
tleneck survival of a cell to the one of its daughter cells we were able to retrieve the
dependence of a lineage extinction probability on its progenitor affinity. For lineages
that go extinct we also evaluated the mean and variance of extinction time and progeny
size, revealing a peak in extinction time corresponding to average affinity progenitors.
Lineages stemming from these progenitor spawn in equilibrium between extinction and
survival, and persist in this state until mutations drive the lineage either to survival or
to extinction. Building on these results we then evaluate the survival probability for the
full population as a function of Ag concentration and population size. We also included
the effect of competition in an effective manner, using the deterministic model limit
combined with a finite-size correction. The bottleneck phenomenology was included
in different maturation models [155, 161], which considered as optimal the maturation
regime in which the population was subject to a strong enough selection force to grant
good affinity enhancement, while at the same time not strong enough to cause popula-
tion extinction. Part on the importance of this work is in the fact that in these models
the survival probability was numerically evaluated from stochastic simulations, while
here it is evaluated through our theory.
Finally we tackled the study of evolutionary trajectories of B-cell lineages in affinity
space. With the combination of the path integral formalism and the method of charac-
teristic trajectories we derived an equation for the most likely evolutionary trajectory
of a lineage in affinity space, and compared it with simulations both with and without
competitive selection. Our approach is somewhat complementary to genealogical tra-
jectories, that illustrate the evolution of lineages in genetic space. A phylogenetic tree
uses genetic information to trace back different individuals, usually with different phe-
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Figure 36: Average evolutionary trajectories, comparison between theory and simulations. Plots
were obtained in the same way as fig. 35. A: standard value of model parameters,
including competitive selection for T-cell help. B: standard value of model parameters
and competitive selection, but stochastic simulations were performed using the same
initial populations in all trials. Theoretical predictions are evaluated using the finite-
size correction procedure described in appendix B.3. Notice how in this case all of the
trajectories in the final populations can be traced back to few high-affinity ancestors
in the initial population.
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notypes, to a common ancestor. In our case rather than in genetic space we follow the
evolution of lineages in phenotypic space, with our main variable being Ag binding en-
ergy, which for B-cells is strongly related to fitness. While the two aspects are certainly
related, our trajectories connect "affinity compartments", meaning cells that have poten-
tially different histories but similar affinity, at different times, indicating that for the
most part cells that are located in that compartment must have similar phenotypic his-
tories. It would indeed be interesting to combine genetic information with phenotypic
information to see how the two are related in maturation experiments. Some modern
experimental techniques are indeed capable of collecting both genetic and phenotypic
information at the single-cell level [43], even though in a single experiment phenotypic
information are only collected for cells at the end of the maturation and not at multiple
time-intervals.

These results could be extended in different directions. For instance it would be inter-
esting to investigate how stochasticity and permissiveness in selection could influence
both survival probability and maturation trajectories. Another possible improvement to
our work would be to study the relationship between our trajectory and coalescence
time, quantifying how much in our simulations proximity in phenotypic space also im-
plies genetic coalescence to a common ancestor. Finally, an important research direction
would be the extension of the results obtained in this section to the case of multiple Ags.
This is better discussed in section 5.3.
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4
P E R S P E C T I V E S - M I C R O S C O P I C B - T C E L L I N T E R A C T I O N S

4.1 introduction

In this short chapter we delineate one of the possible future directions of the work we
presented, along with some preliminary results.

Through mathematical analysis of the models presented in chapter 2 and chapter 3 we
showed how Ag concentration controls both population maturation speed and growth
rate. This can be traced back to its role in tuning competitive selection pressure. In the
models we presented this is encoded in the formula for the T-cell selection survival
probability eq. (23). Here the selection threshold energy ε̄ plays the role of an average
population fitness, increasing the pressure as the population evolves. Ag concentration
acts as a chemical potential by applying a shift of magnitude logC to this threshold
energy. This formula, used also in other maturation models [155, 154], has the advan-
tage of effectively accounting for the effect of Ag concentration in competitive selection,
while at the same time remaining sufficiently simple for analytical treatment.

The simplicity of this formula hides however the complexity of the underlying com-
petition mechanisms. A deeper look at the selection process reveals that, as discussed
in section 1.3.3, competition for T-cell help is a dynamical process, involving repeated
interactions between B and T cells [7, 134]. Experiments show that the contact duration
correlates with the affinity of the cell for the Ag [134]. This might be related to the fact
that BCR affinity has been shown to regulate the expression of adhesion molecules [71].
Moreover, B-T cell interactions might have a co-stimulatory role, and signals from B-cells
might be important to maintain the T-cell pool [152]. For example a positive feedback
loop of activation signals between B and T cells involving ICOS and CD40 was proposed
in [152, 75]. Moreover ICOS stimulation by non-specific bystander B-cells might be an
important signal for recruiting and maintaining Tfh cells [132, 160].

From these considerations a natural question ensues: how does the observed effect of
Ag concentration emerges from these repeated microscopic interactions between B and
T cells? Similar questions were already tackled using mathematical models, for example
the model introduced in [69] showed how repeated interactions between B and T cells
can result in improved affinity discrimination. With the aim of trying to bridge the gap
between the observed effect of Ag dosage and the microscopic cellular interactions in
GCs, in this section we introduce a microscopic B-T cell interaction mechanism that we
integrate in the model presented in chapter 3. With the hypothesis that the magnitude of
the T-cell response depends both on the dose of administered Ag and on co-stimulatory
effects delivered by B-cells, the model shows indeed different asymptotic maturation
regimes in which Ag concentration controls both maturation speed and growth rate of
the population. At the same time, the model remains amenable to mathematical analysis.
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4.2 microscopic model for b-t cell interaction

4.2.1 Microscopic mechanism of B-T cell interaction

We consider a population of NT T-cells and NB B-cells which interact through repeated
and short-lived contacts [7, 134]. In particular in our model an unbound T-cell can bind
a free B-cell with uniform probability at a rate ωb, which is the same for all B-cells.
To reproduce the experimental observation that contacts duration correlates with the
amount of Ag displayed on the B-cell, and thus indirectly with its affinity [134], we
assume the unbinding rate to be equal to ωu eε, where again ε is the binding energy
between the Ag and the BCR. For simplicity we only consider one-to-one contacts. In
fig. 37 we provide a schematic depiction of this setup. We call Nfree

T the number of T-cells
which are not bound to a B-cell. Given these definitions we can write a master equation
for the probability p(t, ε) of a B-cell with binding energy ε to be bound to a T-cell at
time t:

dp

dt
(t, ε) = (1− p(t, ε))ωbNfree

T (t) − p(t, ε)ωu eε (93)

The conservation of the total number of T-cells gives a further condition:

NT −N
free
T (t) = NB

∫
dεϕ(ε)p(t, ε) (94)

Where ϕ(ε) is the normalized binding energy distribution of the B-cell population. Dif-
ferentiating both terms w.r.t. time gives us an equation for the evolution of the number
of free T-cells:

dNfree
T

dt
(t) = −Nfree

T (t)ωbNB

∫
dεϕ(ε) (1−p(t, ε)) +ωuNB

∫
dεϕ(ε)p(t, ε) eε (95)

Experiments [134] show that the typical time for binding and unbinding events is of
the order of minutes. On longer timescale, of the order of the GC cycling time (around
12 hours) we can consider this binding probability to be approximately at equilibrium.
Equilibrium convergence times are discussed in appendix C.1, which contains a simple
perturbative analysis of the master equation. The equilibrium value of the probability
peq can easily be recovered from eq. (93):

peq(ε) =
e−ε

e−ε + e−ε̄
with eε̄ =

ωb
ωu

Nfree
T (96)

By expressing Nfree
T as a function of ε̄ and substituting in eq. (94) we obtain an equation

for the equilibrium value of ε̄:

NT −
ωu

ωb
eε̄ = NB

∫
dεϕ(ε)

e−ε

e−ε + e−ε̄
(97)

We embed this interaction mechanism in the deterministic version of the maturation
model presented in section 3.2.3 by assuming that the probability for a B-cell to success-
fully survive selection is proportional to its equilibrium probability of being involved in
a contact with a T-cell. In practice we keep the definitions of all the evolution operators
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obtained in the deterministic limit of big population size, as defined in section 3.2.3,1

but we substitute the probability of surviving competitive selection for T-cell help (cf.
eq. (28)) with PT = peq(ε). Competition in this case is included in eq. (97), which con-
tains the integral over the population binding energy distribution ϕ(ε).2 This equation
also encodes the dependence of ε̄ on the other parameters. On the l.h.s. of the equation
we find the total number of T-cells minus the ones that are free, and on the r.h.s. the
number of B cells that are in a contact. If we divide both sides of the equation by NB
both side will display the fraction of B-cells that is currently undergoing binding:

NT
NB

−
ωu

ωb

eε̄

NB
=

∫
dεϕ(ε)

e−ε

e−ε + e−ε̄
(98)

At a fixed population size NB, the main parameter controlling the value of ε̄ is the
number of T-cells NT . Rather than a true number of cells it should be interpreted as the
total amount of help signals available. To provide some intuition in fig. 38A we plot the
r.h.s and l.h.s. of the equation as a function of ε̄. The r.h.s. is a sigmoid function that
interpolates between 0 and 1, its flex point being at values of ε̄ close to the mean of
the distribution ϕ(ε). The l.h.s is a negative exponential which converges to NT/NB for
small values of ε̄. The equilibrium value of ε̄ is the one at which the two curves inter-
sect. Its y-axis value is the fraction of B-cells currently involved in binding, and under
our assumptions also the fraction surviving selection at every round. By increasing the
amount of T-cells available the value of ε̄ increases, and so does the number of cells
that survive selection. In this sense ε̄ controls the selection pressure, as evident from the
similarity between the current expression for the survival probability eq. (96) and the
original form of the T-cell survival probability in our model eq. (23).
A second quantity controlling the value of ε̄ is the ratio between the binding and un-
binding rates. By moving these terms to the exponent one notices that changing the ratio
of the binding and unbinding rates is equivalent to applying an horizontal shift to the
orange curve equal to − logωu/ωb. These rates however should both have critical times
of the order of minutes, and the logarithm of their ratio should be small and not impact
much the solution, compared for example to the term logNB which imparts the same
translation and can vary of orders of magnitude. For simplicity in numerical simulations
we set ωu/ωb = 1.

The last model specification concerns the determination of the parameter NT , which
as discussed above quantifies the magnitude of the total T-cell help potentially available
to cells. The effect of Ag concentration C can be encoded in this term, in particular one
could suppose that a higher amount of Ag available for B cells to bind and display
would entail also a higher total number of survival signals. Moreover, as discussed in
section 1.3.3, non-Ag-specific interactions with bystander B cells might be important
for Tfh cell recruitment and maintenance [132, 160]. B cells might constitute a field in
which T cells are immersed and that continually provide signals that supports the Tfh
phenotype. This might make the total number of survival signals available depend on

1 We also keep the same value for all model parameters, as reported in table 4.
2 This quantity relates to the population binding energy density function ρ(ε), employed in the previous

chapter, as ρ(ε) = NBϕ(ε).
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Figure 37: schematic representation of the microscopic interaction model between B and T cells.
B-cells (blue) collect Ag in an amount that depends on the affinity of their BCR for
the Ag (see colorbar on the right). Ag is then internalized, processed and displayed in
the form of peptide-MHC complexes (pMHC). Tfh cells (orange) that are not involved
in binding can randomly encounter a free B-cell at a constant rate ωb forming a
contact in which TCRs on the Tfh cell surface bind pMHC molecules on the B cell.
We reproduce the experimental observation that the contact duration depends on the
affinity of the B-cell by setting the unbinding rate to ωu eε, where ε is the cell BCR
binding energy. In this way cells with higher affinity have longer contact duration.

the number of B cells present. To explore different scenarios we consider three different
possibilities:

NT = αT Cf(NB) ,


case A (independent) : f(NB) = 1

case B (linear) : f(NB) =
NB
N0B

case C (mixed) : f(NB) =
NB

NB+N
0
B

(99)

In all three possibilities we consider the number of T cells to be proportional to the Ag
concentration C through a proportionality constant αT . This proportionality constant
can be interpreted as the typical number of T cells at Ag concentration C = 1. We
choose αT = 1000. The difference between the three cases is the dependence of NT on
the number of B cells NB. In case A we do not include any such dependence. Case B

features instead a linear dependence, so that the number of T cells is also proportional
to the number of B cells. For good comparison with the other cases we normalize this
number by N0B, which represents a typical B cell population size. We take N0B = 1000.
This case however could lead potentially to an infinite amount of survival signals, if
the B cell population continues to expand. In reality this increase must eventually stop,
therefore in case C we interpolate between the two previous cases, considering a function
that increases almost linearly for small values of NB and saturates for big values, with
the transition between the two regimes occurring at NB ∼ NB0 = 1000. In fig. 38B we
compare the dependence of NT on the number of B cells in the three different cases.

114



A B

Figure 38: A: graphical solution of eq. (98). We plot both sides of the equation (r.h.s. in blue
and l.h.s. in orange) as a function of ε̄. The value of ε̄ that solves the equation is
the one at the intersection between the curves. This was obtained with NB = 2NT ,
ωu/ωb = 1 and considering the binding energy distribution ϕ(ε) to be a Gaussian
with zero mean and unit variance. B: dependence of the number of T cells NT on the
number of B cells NB in the three cases described in the text.

4.2.2 Maturation in the independent case

We start by studying maturation in case A, in which the magnitude of T-cell help avail-
able only depends on Ag concentration NT = αTC. We aim here at performing an
analysis similar to the one presented in section 3.3, understanding the way in which
Ag concentration affects the population growth rate and maturation speed. Similarly to
what done there, in order to observe asymptotic growth and maturation we therefore
neglect the carrying capacity constraint and Ag-binding selection, only considering du-
plication, mutations and competitive selection for T-cell help.

In fig. 39 we report the evolution of the system for different values of the Ag concen-
tration C (see color-scale on the lower part). In panels A and B we display the evolution
of respectively the population size and average binding energy. Remarkably, irrespective
of the value of C, the population quickly converges to a fixed size, and matures at the
same rate. The final size depends linearly on the Ag concentration.
The key to understand this behavior resides in the value of ε̄ and its displacement from

the mean of the distribution 〈ε〉. It is easy to argument that the value of ε̄ must be close
to the population mean. In fact, if the value were much higher than the mean ε̄ � 〈ε〉
(equivalent to a low selection pressure regime) then the integral on the r.h.s. of eq. (97)
would approximate to 1:

ε̄� 〈ε〉 =⇒ NT −
ωu

ωb
eε̄ ∼ NB (100)

From which, neglecting the binding rates, we have ε̄ ∼ log(NT −NB). At this point we
find an inconsistency: the low selection pressure that we assumed would generate an
exponential increase of the population size, until eventually NB ∼ NT , which invalidates
our hypothesis. This can also be visualized from the graphical solution fig. 38A. Con-
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Figure 39: Population size (A), average binding energy (B) and displacement of ε̄ from the aver-
age binding energy (C) as a function of the evolution round, and for different values
of the Ag concentration C according to the colorscale on the bottom. Simulations are
performed under model variant A.

sider that the sigmoid transition is in proximity of the distribution mean. Having a low
selection pressure ε̄� 〈ε〉 is therefore only possible if NT > NB. However the exponen-
tial increase of the population in the absence of selection pressure eventually invalidates
this assumption.
In a similar way, the selection pressure cannot be too high, or equivalently ε̄ � 〈ε〉.
In this case in fact the r.h.s. of eq. (97) approximates to zero.3 At the same time the
strong selection pressure also implies ε̄ � 0,4 which also removes the second term on
the l.h.s. of the equation. This leaves us only with the term NT which by definition is
non-infinitesimal, which again invalidates the assumption. More simply, the same in-
tuition can be obtained from the graphical solution. The case ε̄ � 〈ε〉 can be realized
only if NB � NT . However this is not compatible with the fact that the strong selection
pressure will exponentially decrease the population size, eventually invalidating the as-
sumption.

From these considerations we deduce that the value of ε̄ must be close to the mean of
the population binding energy distribution ε̄ ∼ 〈ε〉 (i.e. their difference must be compa-
rable to the distribution standard deviation). This imparts a sufficient selection pressure
to decrease the population average binding energy, and with it the value of ε̄. This will
eventually make the second term on the l.h.s. of eq. (97) negligible, reducing it to:

αT C ∼ NB

∫
dεϕ(ε)

e−ε

e−ε + e−ε̄
(101)

From the definition of T-cell selection the term on the r.h.s. of this equation equals the
number of B cells that successfully survive selection at every round. This number is
proportional to the Ag concentration C. This both explains the fixed size observed in
simulations and the fact that this size is proportional to Ag concentration. In particular,

3 More precisely, if we take ϕ(ε) to be a Gaussian with mean µ and variance σ2 then the r.h.s. can be
approximated with NB exp{ε̄− µ+ σ2/2}.

4 This derives simply from the assumption ε̄ � 〈ε〉 and the consideration that the strong selection pressure
will progressively lower the distribution binding energy.
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since after T-cell help selection we perform differentiation, the asymptotic population
size is equal to N∗B = αT C (1− pdiff).
In practice when setting NT = αT C our mechanisms asymptotically behaves as a simple
population size control, tuning the selection pressure so as to allow for the survival of
the same fixed number of B-cells. This pressure collaterally also generates the population
maturation. The fact that all the evolution operators are invariant under population size
rescaling makes so that changing the concentration will impact the asymptotic size of
the population, but not the maturation speed or the asymptotic form of ϕ(ε).
As stated before, the maturation speed is a consequence of the pressure imparted by the
population constraint. Using this knowledge the maturation rate can be derived using
an eigenvalue equation similar in spirit to eq. (21), but using the operators defined in
section 3.2.3. The idea behind the equation is that asymptotically the binding energy
density function ρ(ε) (equal to the product between the binding energy distribution
ϕ(ε) and the population size NB) must evolve as a traveling wave under the action of
the evolution operator. This ansatz reads in general:

eφ ρ = T(−∆)D ST M A ρ (102)

Where as for eq. (21) T(x) represents the operator that imparts a translation of magnitude
x to the density function. As stated above, in this case the T-cell help selection operator
acts by multiplying the density function by the survival probability eq. (96). All the
operators are invariant under translation, adding a translational degree of freedom to
the determination of the egigenfunction ρ(ε). We fix this degree of freedom by imposing
ε̄ = 0 in eq. (96). The values of ∆ and φ represent respectively the asymptotic shift and
growth rate of the population in a single evolution round. In fig. 40A we report the
relationship between these quantities obtained by a numerical solution of eq. (102) for
different values of the shift ∆. As stated above, in case A the microscopic selection
mechanism asymptotically acts as a population control, fixing the population size to a
finite value N∗B. As a consequence, the only acceptable asymptotic value of the growth
rate is φ = 0. This collaterally fixes the maturation speed to the corresponding value ∆∗.
To verify this result in fig. 40B we compare the instantaneous maturation speed of model
simulations performed at different value of the Ag concentration C (see colorscale) with
the theoretical asymptotic prediction. For all values of C the maturation speed converges
to its theoretical expectation.

In conclusion, in model variant A (i.e. when the amount of available T-cell help is inde-
pendent from the population size) we observed how including this selection mechanism
in our model fixes the asymptotic population size to a value N∗B, proportional to the Ag
concentration. If one were to include in the model a dynamics for Ag concentration then
the population would eventually go extinct as a consequence of Ag depletion. However
in this case the value of C does not impact the maturation speed, that is locked to a
constant value ∆∗ by the fixed population size constraint.

4.2.3 Maturation in the linear case

In model variant B we add a linear dependence between the number of available T cell
help signals and the size of the B-cell population NT = αT CNB/N

0
B. This modification

changes the phenomenology of the model. In fig. 41 we plot the evolution of the sys-
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Figure 40: A: relationship between asymptotic growth rate φ and maturation speed ∆ obtained
from the numerical solution of eigenvalue eq. (102) for different values of the shift ∆.
In model variant A the microscopic selection mechanism imposes a fixed population
size, locking the value of the growth rate to φ = 0. This also locks the value of the mat-
uration speed to ∆∗. B: evolution of the instantaneous maturation speed, defined as
the displacement of the average binding energy of the population ∆t = 〈ε〉t − 〈ε〉t−1,
for simulations performed at different values of Ag concentration C (see colorscale
on the right). For all values of C the maturation speed converges to the value ∆∗

predicted by the theory.

tem for simulations performed at different values of the Ag concentration C. As in the
previous case, to observe asymptotic growth and maturation we remove the carrying ca-
pacity constraint and Ag-binding selection. Looking at panels A and B, which represent
the evolution of the population size and average binding energy, we distinguish three
kinds of behaviors. At high values of the Ag concentration all simulations follow the
same trajectory, with positive growth rate and constant drift in the positive direction of
the energy axis, i.e. a constant decrease affinity. At intermediate values of C we find a
constant growth rate (positive or negative) and a constant drift in energy space. Finally,
for small values of C, after an initial transition phase the population undergoes a super-
exponential decrease in size.
Also in this case the different regimes can be understood by looking at the position of
the threshold selection energy ε̄ relative to the mean of the binding energy distribution
〈ε〉, reported in fig. 41C. To understand the high concentration regime we set ourselves
in the low-selection-pressure regime ε̄ � 〈ε〉, in which the value of ε̄ can be approxi-
mated as in eq. (100). By substituting here the expression for the number of T cells we
obtain:

ε̄ ∼ log{NB(1−α ′TC)} (103)

For simplicity of notation we absorbed the term N0B in the constant αT , writing α ′T =

αT/N
0
B. From this expression we identify a critical concentration C†† such that α ′TC

†† =

1. For values of concentration C > C†† this approximation is consistent, since in the
weak selection regime the population will increase exponentially at a rate φmax =

log[2(1 − plet)(1 − pdiff)] and drift under the effect of mutations at a speed ∆max =

µM paa/(paa + psil) < φmax.5 This would increment over time the relative distance be-
tween the selection energy ε̄ and the average binding energy of the population 〈ε〉, at a

5 For the standard values of model parameters reported in table 4 it is φmax ∼ 0.42 and ∆max ∼ 3.5× 10−2.
These are the population growth rate and drift velocity in absence of selection.
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constant rate independent of the Ag concentration C, which in turn would make com-
petitive selection more and more weak. These observations are consistent with what
observed in simulations (cf. fig. 42).
At intermediate values of Ag concentration the population asymptotically evolves ac-
cording to the traveling-wave ansatz, with the population size increasing at an exponen-
tial rate φ and the average binding energy translating with velocity ∆. In this regime the
threshold binding energy for competition is close to the mean of the population ε̄ ∼ 〈ε〉,
and the integral on the r.h.s of eq. (98) takes non-infinitesimal values in the interval [0, 1].
Under model variant B this equation reads:

α ′TC−
ωu

ωb
exp{ε̄− logNB} =

∫
dεϕ(ε)

e−ε

e−ε + e−ε̄
(104)

Notice that under these hypothesis the term ε̄− logNB must decrease at every round
by a quantity ∆−φ. If ∆−φ < 0 then this term becomes asymptotically negligible, and
the previous equation rewrites into eq. (101) (with the substitution αT → α ′T ). Similarly
to what done for this equation one can numerically derive the relation between ∆ and φ
by solving the eigenvalue eq. (102) for different values of the shift. The eigenfunctions
can then be used, in combination with eq. (101), to derive the corresponding value of Ag
concentration, de facto obtaining the functions ∆(C) and φ(C). These functions allows
us to derive a second critical concentration C†, which is defined by ∆(C†) = φ(C†). For
values of concentration C† < C < C†† the system asymptotically evolves as a traveling
wave. Values of C < C† instead result in ∆(C) > φ(C), invalidating our hypothesis and
leading to a different evolution regime.
To understand this third low-concentration regime we set ourselves in the hypothesis of
high selection pressure ε̄ � 〈ε〉. In this case, if we approximate the population binding
energy distribution ϕ(ε) with a Gaussian having mean µ and standard deviation σ then
the integral on the r.h.s. of eq. (104) can be approximated to:

α ′TC−
ωu

ωb
exp{ε̄− logNB} ∼ exp{ε̄− µ+ σ2/2} (105)

In this case the term on the r.h.s can be neglected by hypothesis. Since the first term on
the l.h.s. is non-infinitesimal at the leading order it must be ε̄ ∼ logNB. Moreover in the
high-selection-pressure regime a round of selection causes a population decrease of the
order ∆ logNB = ε̄− 〈ε〉. As a consequence the variation in the value of ε̄ between two
evolution rounds must be of the order ∆ε̄t ∼ ε̄t−1 − 〈ε〉t−1. This mechanism is at the
base of the super-exponential decrease in the population size, and non-linear decrease
of ε̄− 〈ε〉, for values of Ag concentration C < C†.

In fig. 42 we recapitulate the previous considerations by drawing a phase diagram
for the behavior of the population asymptotic growth rate φ and maturation velocity
∆ as a function of Ag concentration C. This diagram explains the behavior observed in
simulations. The two critical concentrations C† and C†† separates three different evolu-
tion regimes in which the population, in order of increasing concentration, undergoes
super-exponential decrease, evolves according to the traveling-wave ansatz, or diffuses
uniquely under the effect of mutations. In the first case the values of ∆ and φ are not well-
defined. From this diagram two additional critical concentration values can be identified.
The first, defined by the relation φ(C∗) = 0, divides concentration intervals in which the
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A B C

Figure 41: Population size (A), average binding energy (B) and displacement of ε̄ from the aver-
age binding energy (C) as a function of the evolution round, and for different values
of the Ag concentration C according to the colorscale on the bottom. Simulations are
performed under model variant B.

population is either increasing or decreasing, separating the regime of extinction and
maturation. The second, defined by ∆(C∗∗) = 0, separates the regime of maturation,
in which selection pressure is high enough to grant affinity increase, to the regime of
stagnation and affinity decrease, in which the system evolves mainly under the effect
of mutations. The concentrations C∗ and C∗∗ plays the same role of the analogous criti-
cal concentrations described in section 2.7, separating the behavior of the model in three
difference regimes of extinction, maturation or stagnation. The difference with what pre-
sented in previous chapters lays in the fact that in this case this behavior arises naturally
as consequence of our microscopic selection model, rather than by making the selection
pressure explicitly depend on Ag concentration (cf. eq. (7)).

As a last observation we point out that if one were to re-include Ag-binding selection,
adding a fixed-threshold selection pressure, then asymptotic positive values of the shift
∆ would be impossible. This would set ∆(C) = 0 and φ(C) = φ(C∗∗) for values C > C∗∗.

4.2.4 Maturation in the mixed case

Model variant C is an interpolation between the two variants previously described. The
value of NT is linearly dependent on the number of B-cells when the population size
is small, but saturates to a constant value as the size of the population increases. As a
consequence also the behaviors we observe in simulations can be interpreted with what
previously observed. In fig. 43 we report the evolution of simulations, performed in the
absence of Ag-binding selection and carrying capacity, at different values of Ag concen-
tration C. For values of C < C∗ simulations behave qualitatively as in model variant B,
with a super-exponential decrease in population size at low concentration C < C†, and
a traveling-wave behavior for C† < C < C∗, with Ag concentration influencing growth
rate and maturation speed. Conversely, for values of C > C† the population size sat-
urates and maturation proceeds at a constant velocity ∆(C∗). These behaviors can be
easily understood by the fact that when the population is exponentially decreasing then
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Figure 42: phase-diagram of the asymptotic maturation regimes as a function of the rescaled
Ag concentration α ′T C. The diagram reports the values of the asymptotic population
growth rate φ, and shift in average binding energy ∆ for an evolution round. For
values of C < C† these values are not well-defined, since the population undergoes
super-exponential decrease. For values C† < C < C†† the population binding energy
distribution evolves as a traveling-wave, and the function ∆(C) and φ(C) are numer-
ically obtained by solving the eigenvalue eq. (102). Finally, for values C > C†† the
population asymptotically evolves uniquely under the action of mutations, amplifica-
tion and differentiation, which effectively constitute a drift and diffusion process, with
drift velocity ∆max and growth rate φmax which do not depend on Ag concentration.
The values at which φ(C∗) = 0 and ∆(C∗∗) = 0 identify two critical concentrations
that separates regimes of extinction (the population size is quickly decreasing), matu-
ration (population size increase and affinity increase), and stagnation (population size
increase but affinity decrease).
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A B C

Figure 43: Population size (A), average binding energy (B) and displacement of ε̄ from the aver-
age binding energy (C) as a function of the evolution round, and for different values
of the Ag concentration C according to the colorscale on the bottom. Simulations are
performed under model variant C.

NT effectively becomes a linear function of NB, as in model variant B. When the con-
centration is high enough to support population survival instead the value of NT will
not increase indefinitely but rather saturate to a finite value, at which point the model
behavior is analogous to the one of model variant A.
The merit of this last variant is that our microscopic selection mechanism both im-

plements a dependence of the growth rate and maturation speed on Ag concentration,
while at the same time providing a mechanism for population size control that removes
the need for explicitly adding a finite carrying capacity to the model. The presence
of these effects is explained in our case by the fact that for small population size the
availability of survival signals increases with population size (a fact supported by the
hypothesis of a co-stimulatory role of B-T cell signals [152]), but this availability eventu-
ally saturates at big population size.

4.3 conclusion and perspectives

In this short chapter we introduced a microscopic model for B-T cell interaction and inte-
grated it with the maturation model presented in the previous chapter. We did this with
the aim of understanding how the effect that Ag concentration plays in controlling mat-
uration, namely influencing maturation speed and population growth rate, can emerge
from the microscopic interactions between the cellular agents of the GC. In particular
we found that a feedback loop by which the number of available Tfh help signals is pro-
portional to the B-cell population is sufficient to explain this effect. This hypothesis is
justified by experimental observations on how stimulations by non-cognate B-cells help
maintain the T-cell pool [132, 160]. Moreover this same mechanism also removes the
need for an artificial enforcement of the carrying capacity if one assumes that the total
number of survival signals available eventually saturates at a maximum. In addition to
this the model remains analytically tractable, allowing us to draw an asymptotic phase
diagram.
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These preliminary results could be continued in different directions. For example it
would be interesting to study stochastic effects, that when considering microscopic inter-
actions between cellular agents might play a major role. With some model modifications
they might account for the experimental observation of selection permissiveness, that
was otherwise artificially introduced in the model we employed in chapter 2. In addi-
tion to this one could study the model evolution when the hypothesis of equilibrium in
the binding-unbinding process (cf. eq. (93)) is dropped.
This bridging of different scales, from microscopic interaction between cells to macro-
scopic effects on population maturation, is in our opinion an important research area,
that could assist experiments in improving our understanding of AM mechanisms. One
interesting direction in this sense might be to study how the ICOS/CD40 signaling feed-
back mechanism described in [152, 76] (see section 1.3.3 and fig. 6) would affect affinity
discrimination and maturation if included in a model similar to ours.
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5
P E R S P E C T I V E S - B R E A D T H A C Q U I S I T I O N I N S I N G L E A G
I M M U N I Z AT I O N

5.1 introduction

In this last short chapter we present some preliminary results concerning the study of
breadth acquisition, pathogen mutability and Ag concentration.

As discussed in section 1.3.5, one of the main frontiers in vaccination research is repre-
sented by developing immunization techniques capable of conferring protection against
highly-mutable pathogens. Acquiring such protection is made difficult by the fact that
when facing these pathogens the IS naturally tends to focus the Ab response on easily
accessible but mutable residues. The pathogen can then easily escape recognition by
developing mutations on these residues. Acquiring protection is nonetheless possible,
as testified by the existence of Broadly-Neutralizing Abs (BNAbs). These Abs target less-
accessible but conserved part of the pathogen, and have therefore high affinity for many
different pathogen variants.
For HIV infections in rare cases BNAbs are also naturally developed by patients some
years after infection. At this point the viral population features a wide diversity of mu-
tants. This suggests that the presence of many Ag mutated variants must also be an
essential component of vaccines directed at artificially eliciting these Abs.

Starting from these considerations we study the effect of single Ag immunization
on breadth acquisition. In particular we consider a B-cell population that undergoes
maturation to bind the wild-type Ag. At the same time we keep track of the population
affinity for a mutant Ag, that is not administered. Even though the population is not
directly selected for binding this mutant, the natural correlation of the binding energies
of Abs for these two Ag variants allow the acquisition of some affinity for the mutant
through selection for the wild-type. The pathogen mutability, which can be interpreted
as a measure of how conserved the targeted epitope is between variants, is a parameter
of the model and it controls the magnitude of this correlation. It also controls how
correlated the effect of affinity-affecting mutations is on the binding energy of an Ab for
the two Ag variants. This is because mutations on residues that bind conserved parts of
the epitopes are expected to have similar effects, while for variable residues they could
have uncorrelated effects.
We study the effect of Ag concentration and pathogen mutability on the acquisition of
affinity for the mutant, and find that low Ag concentration can help breadth acquisition
by increasing selection pressure. Our theory also indicates the existence of a critical level
of mutability above which wild-type immunization is insufficient for breadth acquisition.
In this cases additional selection pressure is necessary, which could be obtained by the
administration of multiple Ag variants.
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5.2 breadth acquisition in single-ag vaccination

5.2.1 Model extension to multiple antigens

Let us consider a population of B-cells and two different Ags, which we will label Ag1

and Ag2. Each B-cell will have a different binding energy for the two Ag variants ε1 and
ε2. We can consider these two values to be random variables that take different values
for each B-cell. Given the similarity between the two Ag variants these two random
variables will be correlated. In particular we consider that they can be decomposed in
two parts, relative to the binding of the conserved and variable part of the Ag:

ε1 ∼ εc + εv1, ε2 ∼ εc + εv2 (106)

Where the binding energy for the conserved part εc is the same for the two Ag variants,
while the energy for the variable part εv1/v2 is different. As a first approximation we
can suppose these three random variables to be independent. Moreover since we are not
interested in energy values but only in energy differences after a round of maturation
for simplicity we set the means of all three random variables to zero. The important
quantities in this case are the variances σ2c, σ2v1, σ2v2. These variances are a proxy for the
energy difference between good and bad binders for each of the regions in question. If
we suppose σv1 = σv2 = σv then the correlation matrix between ε1 and ε2 has elements:

Var[ε1] = Var[ε2] = σ2c + σ
2
v = σ

2, Cov[ε1, ε2] = σ2c = ασ
2 (107)

Where we define σ2 = σ2c + σ
2
v as the variance of the total binding energy, and α =

σ2c/(σ
2
c + σ

2
v) the relative contribution of the conserved part to the total binding energy

variance. This quantity is key in our model extension. A value α ∼ 1 would correspond
to the conserved region controlling most of the binding energy, which results in ε1 ∼ ε2.
Conversely, in case α ∼ 0 most of the binding energy difference between cells is given
by the binding of the variable region, which makes the two binding energies ε1 and
ε2 nearly independent. As such α can be interpreted as a measure of how many of
the binding residues are conserved in the two considered Ag variants, and by extension
also as a measure of pathogen variability. Intuitively one could think of the total binding
energies ε1 and ε2 to be a sum of L� 1 random variables, representing the contribution
of multiple residues, each one with the same variance σ2/L. The same covariance matrix
is obtained if one consider that α is the fraction of random variables shared between ε1
and ε2. In this interpretation α represents the fraction of conserved sites amongst all the
binding residues.
In the approximation that εc, εv1 and εv2 are normally distributed then the expression
of the conditional probability reads:

P(ε2|ε1) = N[αε1,σ
√
1−α2](ε2) (108)

Where N[µ,σ] indicates a Gaussian distribution with mean µ and variance σ2. As ex-
pected the case α = 1 reduces to ε2 = ε1, while for α = 0 the two variables are indepen-
dent P(ε2|ε1) = P(ε2).
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After these preliminary considerations we extend the deterministic model described
in section 3.2.3 to the case of two Ags, and maintaining the values of parameters spec-
ified in table 4. In particular we consider the case of immunization against an antigen,
that we will call w for wild-type. While the population of B-cells matures under the effect
of mutations and selection for binding this Ag, we study the evolution of the population
binding energy for a second Ag mutant, which we label m, not administered in the vac-
cine. The idea is that the affinity for the mutant is a measure of immunization breadth.
Indeed, the population will be able to bind a generic non-encountered mutant, which
it was not directly selected to bind, only if it retains sufficiently good binding affinity
for the conserved part of the Ag. If this happens then it has a good chance of being
protected against future encounters with many different Ag mutants.
The density function ρ depends in this case on the two binding energies. As before this
function is the product between the population size NB and its binding energy distribu-
tion ϕ:

ρ(εw, εm) = NBϕ(εw, εm) (109)

Amplification and differentiation operators are simple to extend, consisting in simple
multiplications:

A[ρ] = 2 ρ, D[ρ] = (1− pdiff) ρ (110)

Since only one Ag is encountered, competitive selection for T-cell help has a natural
extension, depending only one the value of εw and not on εm:

ST [ρ](εw, εm) =
Ce−εw

Ce−εw + e−ε̄w
ρ(εw, εm), with e−ε̄w = 〈e−εw〉 (111)

The average 〈e−ε̄w〉 is to be considered on the whole population, i.e. on the distribution
ϕ(εw, εm). Encoding mutations instead requires a non-trivial extension. While lethal
and silent mutations have the simple effect of killing the cell or not changing the bind-
ing energy, affinity-affecting mutations can instead occur in two separate ways. If they
change a region that binds a conserved part of the Ag then they introduce the same
effect on the two binding energies. If on the other hand they occur on the variable part
they can then have two potentially different effect on the two binding energy. The prob-
ability of a mutation occurring on one of the two parts depends on their relative size.
Following the above discussed analogy, which identifies the parameter α as the fraction
of conserved sites, we set the probability of a mutation occurring on the conserved part
equal to α. As a consequence the probability for an affinity-affecting mutation to have
an additive effect (∆w,∆m) on the two energies is:

Kaa(∆w,∆m) = αδ(∆w −∆m)Kaa(∆w) + (1−α)Kaa(∆w)Kaa(∆m) (112)

Where δ represents Dirac delta function and Kaa(∆) is the single-Ag affinity-affecting
mutations effect distribution, that appears in eq. (25), and consists of a Gaussian with
mean µM and standard deviation σM. The total mutation kernel is a combination of
silent, lethal and affinity-affecting mutations (occurring with probabilities psil,pl,paa),
as is defined as:

K(∆w,∆m) = paa Kaa(∆w,∆m) + psil δ(∆w) δ(∆m) (113)
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Lethal mutations are accounted for in the fact that this kernel is not normalized, its
integral being equal to 1− pl. Finally, the mutation operator acts as:

M[ρ](εw, εm) =

∫
d∆w

∫
d∆m K(∆w,∆m) ρ(εw −∆w, εm −∆m) (114)

As a last remark we point out that if marginalized over the mutant energy, then we
are left with operators that are identical to the ones described in section 3.2.3. This is
consistent with the fact that the mutant Ag is not administered, and evolution must
proceed independently from it. Indeed, the marginalized evolution is identical to the
one described in the single Ag case.

5.2.2 Effect of one maturation round on breadth

We use this model extension to study the change in average affinity for the mutant Ag,
when vaccinating against the wild-type.
As for the case of single Ag we perform our analysis in the asymptotic regime, in which
evolution is driven by amplification, mutation, competitive selection and differentia-
tion. As before, this is done to observe both asymptotic expansion and maturation in
both positive and negative energy direction. In the single Ag case, similarly to what
observed in section 2.7, under the action of these operators the density function asymp-
totically evolves as a traveling wave with exponentially increasing or decreasing size
ρt(εw) ∼ exp{φt} ρ̃(εw − uw t), where ρ̃ is the asymptotic form of the wave function.
The growth rate φ and the wave velocity uw depend on the value of Ag concentration,
and as shown in section 2.7.2 can be recovered with an appropriate eigenvalue equation
eφρ = T(−uw)D ST M A ρ, where T(∆) is the operator that implements a translation of
the density function of magnitude ∆. In short, since the marginalized evolution is iden-
tical to the single-Ag case, asymptotically the marginal density function ρ(εw) must
evolve as a traveling wave with speed uw(C) and growth rate φ(C). We indicate with
ϕ̃(εw) the normalized asymptotic binding energy distribution. Since evolution is invari-
ant for translation we set its mean equal to zero. In fig. 44 A and B we display the value
of φ and uw as a function of Ag concentration. As in section 2.7, these functions define
two critical concentrations φ(C∗) = 0 and uw(C∗∗) = 0.1 Efficient maturation can occur
only for values of C∗ < C < C∗∗, for which we have both positive growth rate and
negative maturation speed.

In our analysis we will consider a single evolution round, which evolves our density
function from an initial state ρi(εw, εm) to a final state ρf(εw, εm), according to:

ρf(εw, εm) = D ST M A ρi(εw, εm) (115)

The aim of our analysis is to quantify the average binding energy increase or decrease
for the mutant Ag conferred by this evolution round:

um = 〈εm〉f − 〈εm〉i (116)

1 Notice that since the model used here is different from the one employed in section 2.7 the numerical values
of the critical concentrations is different, and is more similar to the one found in section 3.3 with the use of
the WKB approximation.
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We start by defining the initial state ρi(εw, εm). We can decompose the density function
in the product between the population size and its binding energy distribution, and use
Bayes rule to separate the probability distribution into a product between the marginal
and conditional distributions:

ρi(εw, εm) = Niϕ(εw)ϕ(εm|εw) (117)

We consider the marginal distribution to have converged to the asymptotic state and set
ϕ(εw) = ϕ̃(εw). Moreover based on the above considerations (cf. eq. (108)) we set the
conditional distribution equal to:

ϕ(εm|εw) = N[αεw,σw
√
1−α2](εm) (118)

Where as above N[µ,σ] represents a Gaussian with mean µ and standard deviation σ,
and σw is the standard deviation of the distribution ϕ̃(εw).

Having given these definitions, we can now proceed with the evaluations of 〈εm〉i
and 〈εm〉f. The former is simply given by:

〈εm〉i =
∫
dεw dεm ϕ̃(εw)ϕ(εm|εw) εm = α

∫
dεw ϕ̃(εw) εw = 0 (119)

Which derives from the fact that, as discussed above, we removed the translational de-
gree of freedom in the eigenvalue equation solution by setting the mean of ϕ̃(εw) equal
to zero. Calculations for 〈εm〉f are less straightforward. Its expression reads:

〈εm〉f =
1

Nf

∫
dεw dεm ρf(εw, εm) εm =

=
2(1− pdiff)

Nf

∫
dεw dεm

Ce−εw

Ce−εw + e−ε̄w∫
d∆w d∆m K(∆w,∆m) ρi(εw −∆w, εm −∆m) εm (120)

Where we made explicit the operators expression in the definition of ρf eq. (115). As a
first step we decompose the initial density function using eq. (117), and then perform
the integration over εm:∫

dεm ϕ(εm −∆m|εw −∆w) εm = ∆m +α(εw −∆w) (121)

Where we made use of eq. (118) for the definition of the conditional probability. This
reduces the expression for 〈εm〉f to:

〈εm〉f = 2(1− pdiff)
Ni
Nf

∫
dεw

Ce−εw

Ce−εw + e−ε̄w∫
d∆w d∆m K(∆w,∆m) ϕ̃(εw −∆w) [∆m + α (εw −∆w)] (122)

We now perform integration over ∆m. Using the expressions for the mutation kernel
eqs. (112) and (113) we can write:∫

d∆m K(∆w,∆m) [∆m +α (εw −∆w)] =

= αεw [psil δ(∆w) + paa Kaa(∆w)]︸ ︷︷ ︸
1©

+paa (1−α)µM Kaa(∆w)︸ ︷︷ ︸
2©

(123)
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Where as a reminder µM > 0 is the mean of the mutation kernel Kaa, representing the
average effect of mutations. Now we evaluate separately the two contributions coming
from the terms 1© and 2© in the previous equation. For term 1© we have:

1©→ α
Ni
Nf
2(1− pdiff)

∫
dεw εw

Ce−εw

Ce−εw + e−ε̄w∫
d∆w [psil δ(∆w) + paa Kaa(∆w)] ϕ̃(εw −∆w) (124)

Now we point out that the term in the integrals are the exact expression of the mutation
and selection operators in the single-Ag case, that act on the marginalized distribution.
Since this distribution is in the asymptotic state we know that their combined effect,
together with the amplification and selection operators, is a simple translation of uw
and amplification of eφ:

2(1− pdiff)
Ce−εw

Ce−εw + e−ε̄w

∫
d∆w [psil δ(∆w) + paa Kaa(∆w)] ϕ̃(εw −∆w) =

= eφ ϕ̃(εw − uw) (125)

This reduces term 1© to simply:

1©→ α
Nie

φ

Nf

∫
dεw εw ϕ̃(εw − uw) = αuw (126)

Where we used the fact that since the marginal evolution is the same it must be Nf =

Nie
φ, and the fact the mean of ϕ̃ is zero. Now we turn to the evaluation of term 2©:

2©→ (1−α)µM

{
Ni
Nf
2(1− pdiff)

∫
dεw

Ce−εw

Ce−εw + e−ε̄w∫
d∆w [paa Kaa(∆w)] ϕ̃(εw −∆w)

}
(127)

The term in curly brackets represents a fraction. This can be understood by considering
that if we were to add psil δ(∆w) to the term in square brackets then using eq. (125)
it would become equal to

∫
dεϕ̃(εw − uw) = 1. Without this missing term the quan-

tity corresponds to the fraction of cells in the final population that have undergone an
affinity-affecting mutation in this round. We name this fraction faa, which allows us to
write the final form for the final average binding energy:

〈εm〉f = αuw(C) + (1−α)µM faa(C) (128)

Notice that faa depends on Ag concentration through the asymptotic form ϕ̃ Before pro-
ceeding with the analysis of this result we try to provide more intuition into the meaning
of the fraction faa. This quantity depends on the probability of affinity-affecting muta-
tions paa (e.g. if paa/(paa + psil) = 1 then faa = 1) however, because of selection, it is not
equal to it. Interestingly, this term originates from a particular kind of coupling in the
mutation fate between the two energies εw and εm. These energies are coupled in two
ways. The first is that mutations are either silent or affinity-affecting for both energies.
The second is that affinity-affecting mutations have a probability α to have the same
effect on both energies. The term faa is linked to the first kind of coupling.
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To demonstrate this one can consider the case in which this first coupling type is re-
moved. That is to say, cells will have a probability α of developing a mutation that has
the same effect on the two energies (silent or affinity-affecting), and a probability 1− α
of developing independent mutations (silent or affinity-affecting, independently on each
cell). This is obtained by redefining the mutation kernel (cf. eq. (113)) as:

K(∆w,∆m) = (1− pl) [αK1(∆w) δ(∆w −∆m) + (1−α)K1(∆w)K1(∆m)] ,

with K1(∆) =
paa

paa + psil
Kaa(∆) +

psil

paa + psil
δ(∆)

(129)

Notice that if ∆m is marginalized out then the remaining kernel is again the same of the
single-Ag case. Using this new definition one can perform the same calculations done
above, obtaining this time:

〈εm〉f = αuw(C) + (1−α)µM f∗aa (130)

With f∗aa = paa/(paa + psil), which in this case does not depend on concentration. In
fig. 44C we plot the dependence of faa on concentration and compare it with f∗aa. Notice
how for any value of Ag concentration it is faa(C) < f

∗
aa. Since µM > 0 (mutations are on

average deleterious) a smaller value of this fraction is beneficial, since it decreases the
final average mutation energy 〈εm〉. This occurs because, as stated above, in the first case
the fate of energies is more correlated, and maturation on the mutant energy leverages
on indirect selection through this correlation.
Moreover, the second term in both eq. (128) and eq. (130) represents the effect of the
affinity-affecting mutations on εm that are not subject to selection, not even in an indirect
way. These are by definition all of the mutations that have independent effects on the
two energies. In the second case, since silent and affinity-affecting mutations can occur
independently, the probability of an independent affinity-affecting mutation is simply
the probability of a mutation on the variable part (i.e. 1−α) times the relative probability
of an affinity-affecting mutation rather than a silent one (i.e. f∗aa), resulting in the second
term in eq. (130). This quantity does not depend on Ag concentration. On the other
hand in the original case such mutations are a fraction 1 − α of all affinity-affecting
mutations (i.e. faa(C)). Since affinity-affecting mutations here always affect both energy
components, the fraction of surviving cells depends here on the strength of selection.
However, in the limit of weak selection C→∞, in which all cells survive, the two must
be equal, so that faa(C→∞)→ f∗aa (cf. fig. 44 C).

5.2.3 Effect of Ag concentration and Ag mutability on breadth acquisition

In the previous section we showed how in our setting a single evolution round modifies
the average binding energy for the mutant Ag of a quantity:

um(C,α) = 〈εm〉f − 〈εm〉i = αuw(C) + (1−α)µM faa(C) (131)

This quantity depends both on Ag concentration C, which controls the strength of se-
lection, and on the conserved fraction α, which controls the correlation of the effect of
mutations on the two binding energies. This fraction quantifies how much of the bind-
ing energy depends on residues that are conserved amongst virus variants, and thus is
also a measure of virus mutability
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B
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Figure 44: values of the asymptotic growth rate φ (A), maturation speed uw (B) and fraction faa
of surviving cells in an evolution round that during the round have accumulated an
affinity-affecting mutation (C). These values depend on Ag concentration C. Values
at which φ(C∗) = 0 and uw(C

∗∗) = 0. Define two critical concentrations. Efficient
affinity maturation occurs only for values of C∗ < C < C∗∗ at which both growth rate
is positive and maturation speed is negative. Values of the fraction faa are compared to
f∗aa = paa/(paa + psil), which is the value that such fraction would take if no selection
was acting on the population.
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In fig. 45 we display the value of um as a function of these two quantities. For some val-
ues of α and C the value of um is negative (blue region in the diagram), meaning that
even though the mutant Ag is not administered, in these regimes the population is still
developing affinity for it. This occurs because, even though selection (whose strength
is controlled by C) only acts on εw, mutations on the two energies are correlated (with
the correlations depending on parameter α). As a result, both increasing the selection
strength (i.e. decreasing C) and increasing the mutation correlation (i.e. increasing α)
increases affinity maturation for the mutant.
We can inspect eq. (131) in the two extreme regimes α = 1 and α = 0. The first corre-
sponds to the two Ags being identical. Therefore maturation is the same in both direc-
tions um = uw. In the second case the effect of affinity-affecting mutations is always
uncorrelated. Since selection has no correlation to build affinity on, deleterious muta-
tions dominate making um > 0.
When analyzing fig. 45 one must take into account the limit on maturation imposed
by the values of φ(C) and uw(C) (cf. fig. 44 A and B). The joint requirement of a pos-
itive growth rate φ > 0 to sustain the population, and a negative velocity uw < 0 to
guarantee affinity increase makes so that maturation can only occur for intermediate
concentration values C∗ < C < C∗∗. With this considerations in mind it is natural to
identify a critical value of the conserved fraction α∗ such that um(C∗,α∗) = 0. This
value separates the region C∗ < C < C∗∗ of the diagram in two subparts, defining two
classes of Ags. For Ags with a high enough conserved fraction (α > α∗) increasing the
selection strength by lowering Ag concentration C can lead to the acquisition of affin-
ity for the non-administered mutant. For this Ags administering the wild-type in an
optimal immunization strategy is sufficient to acquire some protection against mutants.
For highly mutable pathogens instead (α < α∗) even a high selection pressure is not
sufficient to retain enough affinity-enhancing mutations on the conserved region to con-
trast the accumulation of deleterious mutations. For these Ags, our theory indicates that
development of protection against a generic mutant cannot be achieved by simple wild-
type immunization. Additional selection pressure is required, that could be obtained by
administering multiple Ag mutants, as done for example in [155, 127].

As a final remark, we point out that these results were obtained by considering a
single evolution round, in which the marginal distribution ϕ(εw) is considered to be
in the asymptotic state, while the conditional distribution ϕ(εm|εw) is initialized with
some reasonable assumptions on the correlation between the two binding energies in
the population. Notice that while the marginal distribution ϕ(εw) is stable, evolving
in the asymptotic state as a traveling wave, the other marginal distribution ϕ(εm) will
not reach a similar stable asymptotic state without adding an explicit form of selection.
Instead, the repeated application of the evolution operator will over time increase the
variance, and reduce the correlation between the two energies. It would be interesting
to extend the theory to the study of the population evolution when both energies are
subject to selection, as for example is the case when immunizing with a mixture of
different Ag mutants.
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Figure 45: value of the average binding energy difference um = 〈εm〉f − 〈εm〉i provided by an
evolution round for the mutant Ag, not administered in immunization. This quantity
depends on the value of Ag concentration C and on the Ag conserved fraction α.
The line um = 0 (black) separates region of the diagram in which evolution causes
an affinity increase (blue) or an affinity-decrease (red) for this Ag. We report on the
diagram two lines identifying the two critical concentrations C∗ (green) and C∗∗ (or-
ange). Efficient affinity maturation for the wild-type Ag can only occur for values of
C between these two extremes. This defines a critical conserved fraction α∗ for which
um ∗ (C∗,α∗) = 0, which splits the diagram in two parts. For Ags which have a high
conserved fraction α > α∗ (i.e. small mutation rate) lowering the Ag concentration
C has a beneficial effect on breadth acquisition. Affinity for a mutant Ag can be ac-
quired from immunization with the wild-type, provided that selection pressure is
strong enough. For highly mutable pathogen instead (α < α∗) there is no favorable
region of the diagram in which maturation for the mutant can occur. Breadth acquisi-
tion for these Ags cannot occur from simple vaccination with a wild-type, and requires
instead additional selection pressure (e.g. vaccination with multiple Ag mutants).
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5.3 conclusion and perspectives

Our theory suggests that for pathogens with limited mutability some level of breadth
can be acquired also through wild-type immunization. In this case raising the selection
pressure by lowering Ag concentration can favor breadth acquisition. This strategy is
however no longer viable for highly-mutable pathogens. For these pathogens breadth
acquisition requires applying additional selection pressure by administering multiple
Ag mutants.

A natural continuation to our theory would be to repeat these calculations when mul-
tiple mutants are administered, studying how Ag concentration asymptotically controls
breadth acquisition. How selection occurs in the presence of multiple Ag variants is how-
ever not experimentally known, and depends on how cells encounter the Ag and on the
relative concentration of different mutants. If they manage to simultaneously encounter
multiple Ag variants cells might be positively selected if they manage to have a good
affinity for at least a single Ag variant. Alternatively, if they stochastically encounter
different variants in different evolution rounds, they might be required to have a good
affinity for most of the variants in order to remain in the GC for multiple rounds. These
different scenarios, considered in [155], generate very different outcomes and are hard
to discriminate experimentally.
These scenarios could however be investigated using inference, with an approach simi-
lar to the one we used in chapter 2 of this work. One could define a maturation model
for immunization with multiple Ag variants which includes both scenarios, and which
produces a likelihood function that could quantify the probability of experimental mea-
surements as a function of model parameters. Our likelihood maximization procedure
could then be used to infer model parameters under both scenarios, and the resulting
maximum likelihood values could be compared. Likelihood differences could be used
to determine the prevalence of a scenario on the other.

Another possible extension of our work to multiple Ag variants involves the calcula-
tion of bottleneck survival probability. Once defined how selection works when multiple
variants are administered one could repeat the calculations of section 3.4 in the presence
of multiple variants. Adding one Ag variant is equivalent in this case to raising of one
unit the dimension of the extinction probability functions dt(ε1, ε2, . . .) (cf. eq. (60)) and
of the evolution operators. Unless other simplifications are applied, this could limit the
total number of variants for which functions can be numerically evaluated. A similar ex-
tension could also be conceived for the theory of evolutionary trajectories discussed in
section 3.5. In this case one-dimensional trajectories would be embedded in the higher-
dimensional space (ε1, ε2, . . .) of binding energies for multiple variants, and applying
selection forces for different variants would change the total probability of a trajectory
and deviate its path. With an expression for the action of trajectories one could for exam-
ple study wether sequential application of different selection forces for different variants,
which deviate each time the trajectory direction, results in a higher final trajectory prob-
ability than if simultaneous selection pressure for all variants is applied.
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A
A P P E N D I X - C H A P T E R 2

a.1 numerical model implementation and parameters choice

Mature GCs usually appear 5-7 days after Ag administration. During this time a popu-
lation of up to hundreds of different founder clones colonizes the GC and expands to
a total size of a few thousand B-cells. The first mutations in the repertoire are observed
around day 6 [60, 88]. Early GCs are highly polyclonal and contain 50 to 200 clones
according to [144]. In agreement with these experimental findings at the time of Ag in-
jection we pick a population ofNfound = 100 founder clones. The affinities of these clones
are extracted independently from an initial gaussian distribution whose mean and vari-
ance are chosen via the maximum-likelihood procedure described in section 2.6 and it
matches the experimental distribution of germline responders (i.e. splenic IgG-SCs that
are observed 1 day after boost of pure Ag, cf. fig. 21 in scheme 2 and Ag dosage D = 0).
During the time of GC formation the founder clones expand uniformly without mutat-
ing. We chose to start our simulation at TGC = 6 days after Ag injection. At this point
the GCs are almost fully formed [34]. The simulation starts with the GC at its maximal
size, set to Ni = Nmax = 2500 clones. The maximal size is in agreement with [37] which
reports around 3000 cells per GC, or [144] in which GCs are said to contain up to a few
thousands B-cells. However we stress that GCs are heterogeneous in size [158].

From here the model proceeds in evolution rounds. Similarly to [155] we set the dura-
tion of a round to Tturn = 12h. This number is consistent with timing of cell migration
[150, 90]. We neglect the fact that high affinity cells are found to dwell longer in the
GC dark zone [45] undergoing additional divisions. In addition to this the fact that the
average cell-cycle time is 12 hours or longer [7] indicates that 12h is probably a lower
limit for the round duration.

As described in the main text, each round consists in cell division with somatic hyper-
mutation, selection for Ag binding, selection for T-cell help, differentiation, and if nec-
essary enforcement of a maximum carrying capacity. In our simulations before starting
the first round we perform only once differentiation. This is done in order to recover the
good average energy limit at low Ag concentrations. In fact when Ag dosage is small
the population quickly goes extinct, while at the same time maturating very quickly.
Performing differentiation first provides a nucleus of low-affinity germline-like clones
whose binding energy controls the average binding energy of the MC population, even
if few high affinity clones are added later. Notice that this does not change the asymp-
totic behavior of the model, since it would be equivalent to simply changing the order
of operations in the round.

Proceeding with the standard turn order then the first operation performed is cell
division and somatic hypermutation. During a round we consider cells to divide twice
[90]. In GC dark zone cells up-regulate their expression of Activation-Induced Cytidine
Deaminase. This enzyme increases the DNA mutation rate, inducing mutations in the
region coding for the BCR and possibly changing the affinity for the Ag. Mutation rate
has been estimated to an average of 10−3 mutations per base pair per division [89, 66].
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Similarly to [155] in which the total binding energy consisted in the sum of contributions
from 46 different residues, we consider Nres = 50 residues to contribute to the binding
energy. The probability that upon division at least one mutation occurs in any of the
150 bp coding for these residues can be estimated as pmut = 1− (1− 10−3)150 ∼ 0.14. As
done in [155, 161, 154] at every division and for each daughter cell independently we
consider a psil = .5 probability of developing a silent mutation, in which case the binding
energy of the daughter cell remains unchanged, a probability plet = .3 of undergoing
a lethal mutation, in which case the cell is removed, and finally a probability paa = .2
of developing an affinity-affecting mutation. These change the binding energy of the
daughter cell by adding a variation ε→ ε+∆ε. As done in [154] the variation follows a
lognormal distribution Kaa(∆ε) defined as:

Kaa(∆ε) = Lognorm[µ = 1.9,σ = 0.5](∆ε+ 3) (132)

where:

Lognorm[µ,σ](x) =

 1

xσ
√
2π

exp
{
−

(lnx−µ)2

2σ2

}
x > 0

0 x 6 0
(133)

The parameters of the distribution, which are the same used in [154], are chosen so that
only 5% of the mutations confer an increase in affinity, while the vast majority causes an
affinity decrease. As a result of this process after the two mutations the population size
increases almost 4-fold in size (two duplications but some cells are eliminated due to
lethal mutations) and the average affinity decreases slightly due to the mainly negative
effect of mutations (cf. fig. 13 histograms 1 to 2).

After duplication we implement selection. In order to avoid apoptosis cells must bind
and internalize a sufficient amount of Ag. The amount of Ag internalized depends both
on the affinity of the BCR and on the availability of Ag on the surface of the FDC
[111, 67, 15]. We model this process by expressing the probability of survival of a cell
with BCR having binding energy ε as described in the main text eq. (6). The value of
the threshold binding energy has been obtained via maximum likelihood fit of the data,
which yields for example εAg = −13.59 for variant A. This selection is not in present
variant C of the model.

At the second step of selection, the one leading maturation in our model, B-cells com-
pete to receive a survival signal from T-cells. T-cells in GCs are motile and continuously
scan the surface of B-cells, sensing the density of pMHC-II complexes [134]. Cells with
the highest pMHC-II density receive survival signal preferentially [35, 149]. We again ex-
press the probability of survival through eq. (7). The parameters a and b in this equation
represent, respectively, the probability of survival at very high energy and the deficit in
probability of survival at very low binding energy. Their effect is better discussed in
appendix A.4. The formula interpolates smoothly between these two values, as depicted
in fig. 14D. The threshold binding energy ε̄ depends on the population’s binding energy
distribution, introducing competition between the cells.

Cells that are able to survive selection can either re-enter the dark zone and start a
new round of evolution or differentiate into Ab-producing PCs or quiescent MCs that
can be reactivated upon future Ag injection. There is evidence that MC/PC output un-
dergoes a temporal switch: MCs are preferentially produced early in the response [157].
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Moreover there seems to be an affinity bias in differentiation [131]. Even though exper-
iments show that affinity plays a role in deciding fate [130] simply by implementing a
time-switch in the MC/PC differentiation probability (respectively µMC, µPC, cf. eqs. (8)
and (9) and fig. 14B) we effectively recover both of these observations. The parameters
of these functions (τdiff = 11d, ∆τdiff = 2d) are chosen so as to be compatible with [157].
Notice that the sum of the two is constant µMC(t) + µPC(t) = pdiff = 10%, compatible
with seminal studies [114] that estimated that around 90% of the cells recirculate in the
dark zone. In the model we consider for simplicity a complete switch, meaning that for
t � τdiff the probability of generating MCs decreases asymptotically to zero. However
in appendix A.2 we discuss the more realistic case of a partial switch, in which there is
a residual probability of MC production even for t� τdiff.

If new Ag is administered we consider a new GCR to start. The new GC is colonized
partly by new B-cells coming from the naive pool and partly by reactivated MCs [58].
We allow only MCs that have already been generated at time of the second injection
to colonize the new GC. This is done by picking a set of Ni = 2500 cells from the
naive pool, with binding energies extracted from the same initial Gaussian distribution,
and adding to them all the MCs generated up to the time of second injection. The
founder clones of the new GC will consist of Nfound = 100 cells randomly extracted
from this cumulative population. Notice that the probability of extracting a MC from the
cumulative population is an increasing function of the number NMC of MCs extracted
at time of injection: p = NMC/(Ni +NMC). In appendix A.2 we discuss instead the case
in which the probability of extracting a seeder clone from the memory pool is set to a
constant p = 0.3.

The concentration of Ag evolves as explained in the main text according to the differ-
ential eqs. (4) and (5). These equations account for Ag release, decay and consumption.
The release rate was evaluated considering a half-life of 17h for Ag in CFA [82], which
gives a value for the release rate of k+ = ln 2/τ1/2 ∼ 0.98d−1. Ag on FDCs can be
maintained for a long time, up to a year [53], through a mechanism of endocytosis and
recycling of immune complexes [52]. To reproduce this long clearance time we take Ag
lifetime to be 8.1 weeks, as measured in popliteal lymph nodes of mice [145]. This results
in a Ag decay rate of k−∅ = ln 2/τ1/2 ∼ 0.012 d−1. The case of a faster Ag-decay is dis-
cussed in appendix A.2. Finally, the consumption rate per B-cell k−B = 2.07× 10−5 d−1
(variant C, see main text) is obtained via the maximum likelihood fit procedure de-
scribed in section 2.6. This quantity controls both the GC lifetime and the extent of AM
at the end of evolution. For the range of Ag dosages considered simulated GCs have
an effective lifetime that vary between 1-2 weeks and 3 months (see fig. 49), compatible
with lifetimes of real GCs [148]. Equations (4) and (5) are continuous in time. To include
them in our discrete timestep model we perform an update of the values of the reservoir
and available concentrations Cav(t), Cres(t) at each round t = 0, 1, . . . after selection for
T-cell help and before differentiation. The Ag removal rate is given by the cumulative ef-
fect of decay and consumption: k−t = k−∅ +NBt k

−
B , and changes at each evolution round

due to its dependence on the number of B-cells NBt at this stage of the round. The values
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of the concentrations at the next round t+ 1 are obtained by evolving the corresponding
quantities at round t for a time T = 12h equivalent to the duration of the round:

Cres(t+ 1) = Cres(t) e
−k+T (134)

Cav(t+ 1) = Cav(t) e
−k−t T +Cres(t)

k+

k+ − k−t

(
e−k

−
t T − e−k

+T
)

(135)

At times smaller than the GC formation time TGC = 6 d we do not account for GC evo-
lution but we account for the evolution of concentration. This is done as in the previous
equations but in this case the total consumption rate is evaluated considering an ex-
ponentially increasing number of cells, that starting from one at the time of injection
exponentially grows to Nmax at the time of GC formation. In particular concentration
update at the end of round t = 0, 1, . . . , 11 is done considering the following number of
B-cells consuming Ag:

NBt = Nmax
t×Tturn/TGC for t < 12 = TGC/Tturn (136)

In our simulations GC evolution stops either naturally when Ag depletion leads to pop-
ulation extinction, or when the total simulation time is elapsed and cells are harvested,
in which case the simulation is stopped irrespective of the population size and only cells
produced up to that point are considered. The total simulation time depends on the im-
munization scheme considered and is set to match the time elapsed between injection
and experimental measurement.

a.2 small variations of the standard model

In order to test the relative importance of different model parameters we performed the
inference procedure using three different variants for selection, described in section 2.4.5.
Variant A corresponds to the inference of all 9 inferred model parameters (µnaive, σnaive,
k−B , α, a, b, grecall, gimm, εAg). Variant B corresponds to the case in which stochasticity and
permissiveness parameters a and b are set to zero and only the remaining 7 parameters
are inferred. In variant C instead Ag-binding selection is neglected, and all 8 parame-
ters with the exclusion of εAg are inferred. The resulting maximum likelihood estimate
(MLE) of the parameters, along with the corresponding value of the likelihood, which
was presented in table 2, is also reported for the three cases in fig. 46. As described in
section 2.6.3, the result of the inference procedure show that the removal of Ag-binding
selection (variant A vs C, 9 vs 8 parameters) causes only a very modest decrease in
log-likelihood, while the removal of stochasticity in T-cell help selection (variant A vs
B, 9 vs 7 parameters) generates a consistent log-likelihood decrease. Both the Bayesian
Information Criterion (BIC) [125] and Akaike Information Criterion (AIC) [3] suggest
variant C as the preferred variant.

Moreover, to show that the model is robust under minor modifications of the hypothe-
ses we consider three minor variations of model variant C, and show that they generate
similar MLE predictions for the model parameters. First, we test the effect of introduc-
ing a residual asymptotic rate of MC/PC production. This case is labelled soft MC/PC
timeswitch. For simplicity in the model we introduced a complete time-switch between
MC and PC production in GCs, and therefore eventually almost only PCs are produced
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for t� τdiff (see eqs. (8) and (9) and fig. 14B). In this modification instead we introduce
a residual rate of MC/PC production µres = 10% modifying eqs. (8) and (9) as:

µMC(t) = pdiff

[
µres + (1− µres)

1

1+ exp{+t−τdiff
∆τdiff

}

]
(137)

µPC(t) = pdiff

[
µres + (1− µres)

1

1+ exp{−t−τdiff
∆τdiff

}

]
(138)

This makes so that the fraction of MCs in the differentiated population interpolates
between ∼ 90% at small times and ∼ 10% at big times, granting some residual production
of MCs at all times. Applying the inference procedure on this more realistic version
of the model results in a better final likelihood than the standard (variant C) version.
The inferred values of the parameters are on average similar to the ones obtained with
the standard version of the model, with the difference of grecall and gimm. While the
inequality grecall > gimm still holds, the MLE for these parameter is higher than in the
standard case. This can be expected since these parameters control the fraction of MCs
in the elicited Ab-SC population, and in this version of the model the MC population
contains differentiated cells that would have belonged to the PC compartment in the
standard version.

A further modification involves the fraction of seeder clones extracted from the MC
population when colonizing a GC. At the second injection some of the seeder clones for
the new GC are extracted from the MC population generated following the first injection.
The probability of extracting a seeder clone from the MC pool and not from the initial
germline distribution depends in the standard version of the model on the number of
accumulated memory cells Nmem as pmem = Nmem/(Nmem +Ni) (see appendix A.1 for
details). This should account for the fact that intuitively if more MCs were produced in
the previous maturation then also more should be recalled. However one could more
simply suppose this probability to be constant. We test this case by setting pmem = 0.3.
This change generates only a very small likelihood decrease with respect to the standard
version of the model, while the MLE for all parameters is almost unchanged.

Finally, we also test the effect of increasing the rate of Ag decay, multiplying it by a
factor three (case labelled faster Ag decay). This results in a slight increase in the maxi-
mum likelihood, and the values of all the model parameters are again compatible with
the one of the standard version of the model, with the exception of the Ag consumption
rate k−B which decreases to compensate the faster decay rate.

a.3 initial conditions and stochasticity

Recent experiments estimated the number of different clones in early GC to be between
50 and 200 [144]. In our stochastic model we consider the population of founder clones
to be composed of 100 cells. The limited number of founders controls the diversity of
the initial population and increases the stochasticity in evolution. However, it does not
strongly influence the average outcome. To verify this we compare 1000 stochastic sim-
ulations of the standard model (single Ag injection of D = 1µg of Ag, model variant
C) with a modified version in which the number of founder clones was set equal to
the number of cells in the initial population (2500 cells). Results are reported in fig. 47.
We observe that limiting the initial population diversity increases stochasticity in evolu-

141



Figure 46: result of the inference procedure on six different variations of the model, as de-
scribed in appendix A.2. The top plot displays the final maximum value of the log-
likelihood obtained with the inference procedure (black). The rest of the plots feature
the maximum-likelihood estimate of all of the inferred parameters (blue). Horizon-
tal grey dashed lines mark parameters that are absent in the variant of the model
considered.
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tion, but does not impact much the average evolution trajectory and outcome. This is
especially evident when observing MC/PC population evolution (panels B and D). The
final average binding energies of these populations are very similar, but the standard
deviation around the mean is halved in for the initial population with more founders.
This fact was exploited in the artificial dataset generation, as described in section 2.6.4.

This observation raises the question of how much the outcome of evolution is con-
trolled by the particular initial choice of the founder clones. In fig. 48 we quantify this
by comparing 1000 stochastic GC evolutions of the standard model (injected Ag dosage
D = 1µg, model scenario C), in which the founder population was re-extracted ev-
ery time, with a modified version in which the founder population was kept the same
amongst all stochastic trials. In the latter case we observe a considerable reduction in
stochasticity, indicating that the outcome depends strongly on the initial founder clones
choice. This is also in line with the observations made in section 2.8.2 and fig. 26D, where
we show that the presence of a high-affinity founder clone correlates with a stronger ho-
mogenizing selection. This also suggests that in our model maturation occurs mainly
by selection of high-affinity precursors, rather than by accumulation of beneficial muta-
tions, a fact that is confirmed also by the limited number of mutations accumulated (see
fig. 51).

Finally we estimate the lifetime of GCs in our model by evaluating the average and
standard deviation of lifetimes of 1000 independent GC simulations for different values
of injected Ag dosage. Since in the simulations GCs can also have a more or less long
period of small population size prior to extinction (fig. 15A) we also evaluate an “effec-
tive” lifetime, considering the GC effectively extinguished when its size reaches 1% of
its original size. These lifetimes, reported in fig. 49, depend on the amount of Ag admin-
istered and can vary between few weeks to some months. As discussed in section 2.5.2
the deterministic model slightly overestimates selection pressure at small population
sizes. This overestimation also leads the theory to slightly underestimate the lifetime of
stochastic simulations (compare theory and simulations in fig. 49).

a.4 role of a,b parameters

Parameters a and b in eq. (7) represent respectively the probability for a B-cell to pass
or to fail a selection step irrespective from their affinity. Parameter a can be related to
the “permissiveness” of selection, quantifying how likely is for a cell to be positively
selected even if its affinity is small. Parameter b conversely encodes the stochasticity in
selection, by virtue of which even high affinity cells are not granted survival (e.g. if they
don’t manage to encounter enough T-cells). For simplicity we define these parameters
as constants, but one could imagine that their value may change over time, for example
it may be related to the availability of T-cell help. Here we investigate the effect of these
parameters on the asymptotic wave-like behavior of the system, discussed in section 2.7.
This asymptotic behavior is characterized by two quantities: the asymptotic growth rate
φ(C) and the asymptotic maturation speed u(C), as defined in the main text eq. 20.
These quantities are functions of the Ag concentration C. In fig. 50 we report how these
functions change when the parameters a and b are progressively increased. In these
tests we consider only the effect of one parameter at a time and we set the value of the
other to its standard value a = 0.12, b = 0.66. By making the selection more permissive
and allowing for survival of even low-affinity cells, parameter a has a double effect
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Figure 47: effect of increasing the number of founder clones in the population. We compare 1000

stochastic simulations of the standard version of the model (blue) with a modified
version in which every cell in the initial population (2500 cells total) originates from
a different founder clone, and has therefore a different affinity (orange). Solid lines
represent average trajectories and the shaded area covers one standard deviation from
the mean. The plots represent the number of GC B-cell (A), their average binding
energy (C), and the average binding energy of MC (B) and PC (D) population as a
function of time from Ag injection.
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Figure 48: stochastic contribution of the initial founder clones population. We compare 1000

stochastic simulations of the standard version of the model (blue) with a modified
version in which GCs are initialzied with the same 100 founder clones (orange). We
observe that the initial choice of founder clones plays an important role in evolution
and explains most of the variation observed in the outcome. The plots represent the
number of GC B-cell (A), their average binding energy (C), and the average binding
energy of MC (B) and PC (D) population as a function of time from Ag injection.
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Figure 49: average lifetime and effective lifetime of GCs as a function of administered Ag dosage.
The latter corresponds to the time at which the GC decays to 1% of its initial size. We
compare the average over 1000 stochastic simulations (blue and green plots, shaded
area corresponds to one standard deviation from the mean) to the theoretical predic-
tion (orange and red lines). Due to finite-size effects, the theory in general slightly
underestimates the lifetime of the GC.

on the asymptotic behavior: on the one hand it decreases the asymptotic wave velocity
and slows down maturation (fig. 50E), and on the other hand it increases the growth
rate of the population (fig. 50C). On the contrary, increasing parameter b corresponds
to increasing the chance that high-affinity cells are selected out of the population. This
both decreases the growth rate (fig. 50D) and also the maturation speed (fig. 50F).

The selection process in affinity maturation has both a purifying and promoting effect.
On the one hand it must negatively select clones that accumulated negative mutations,
purifying the population from low-fitness individuals. On the other hand it must also
grant the survival and amplification of the clones that developed affinity-improving mu-
tations. These two properties of selection are weakened by parameters a and b in our
model, since they respectively grant survival of low-affinity clones and can cause the
removal of high-affinity ones. According to our inference procedure parameters a and
b together seem to account for 78% of the selection probability, making so that affinity
can make the survival probability vary of only about 22%. This slows down maturation
considerably, since it removes any deterrent against accumulating deleterious mutations.
The fact that the inference procedure indicated a high value for these parameters sug-
gests that selection in GCs may be permissive, at least for complex Ags, as suggested in
[102].

a.4.1 Number of accumulated mutations

To quantify the number and impact of mutation events in our simulations we execute
1000 stochastic simulations of a single GC, at an injected Ag dosage of D = 1µg. In each
simulation and for each cell we keep track of the number of beneficial and deleterious
mutations that each cell accumulates during the course of evolution on the residues we
consider (Nres = 50, see appendix A.1). Results are reported in fig. 51. In the top row we
display the average number of cells for any value of beneficial and deleterious mutations
number and at different times: 10, 30 and 50 days after Ag injection. To have an idea of
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Figure 50: effect of parameters a, b on the model asymptotic behavior. On the top row we plot
the corresponding T-cell selection survival probability (setting for simplicity ε̄ = 0 and
C = 1) respectively in the case b = 0.66 and a varying from 0 to 0.3 (A) and a = 0.12, b
varying from 0 to 0.6 (B). Values of the parameters a and b are color-coded as showed
in the legend. In C and E we show the effect of varying a on the asymptotic growth
rate φ and evolution speed u (we set as before b = 0.66). Notice how increasing a both
slows down evolution and increases the growth rate. In D and F we report the same
quantities for variation of the parameter b (while a = 0.12). Increasing b decreases
both the growth rate and the maturation speed.
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the population size and maturation state at these timepoints one can refer to fig. 16, in
which stochastic simulations are performed under the same conditions. In our simula-
tions after the first days of maturation deleterious mutations start to appear (see fig. 51,
t = 10). These are the first mutations to appear since they are much more likely than
beneficial mutations (95% vs 5%, see fig. 14 A). However during the course of evolution
these are gradually removed by selection, until eventually beneficial mutations, despite
being much rarer, start to dominate (see fig. 51, t = 50).
In the bottom row of fig. 51 we display in the same way the number of mutations in
the MC and PC population. The former is composed of cells that differentiate early (cf.
fig. 14B and eqs. (8) and (9)) and therefore bear less mutations than the PC popula-
tion. However, in both cases the vast majority of cells harbor very few mutations, with
the average number of mutations per cell being 0.13 for MCs and 0.54 for PCs. The
accumulation of more than 4-5 beneficial mutations in a single cell is very rare. These
numbers are compatible with experiments performed in a recent work [43], in which
mice were immunized against Tetanus Toxoid following a protocol similar to the one
used in our experiments. The analysis of high-affinity binders showed an average of 6

non-synonymous mutations on the antibody heavy-chain variable region VH and 3 mu-
tations in the light-chain variable region VL.
Our model neglects saturation of beneficial mutations, i.e. the phenomenon by which
beneficial mutations cannot be accumulated indefinitely but become rarer as the cell
approaches maximum possible affinity. This is partly justified here by the observation
that, at least for the inferred value of model parameters, few beneficial mutations are
found to accumulate in our simulations. Even when considering clones with the highest
number of beneficial mutations, the number of mutations accumulated in our model is
compatible with experiments [43].
As a final remark, notice that even though MCs are not as strongly skewed towards
beneficial mutations as PCs, their average affinity is higher than the one of the starting
population (cf.fig. 16B). This is because amongst the founder clones selection will expand
the ones having higher affinity (cf.fig. 26), which will then be overly-represented in the
MC population. This shows that in our model maturation is achieved only partially by
accumulation of beneficial mutations, the rest being obtained through selective expan-
sion of high-affinity precursors, as also showed in section 2.8.2, and confirmed by the
strong dependence of the maturation outcome on the initial founder clones population
(see fig. 48).
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Figure 51: Distribution of beneficial and deleterious mutations over 1000 stochastic germinal cen-
ter simulations at injected Ag dosage D = 1µg. Color represents the average number
of cells that have developed the specified number of beneficial and deleterious mu-
tations for any examined population, according to the color-scale on the right. Top:
distribution of mutation numbers in the GC population taken at different times (re-
spectively, 10, 30 or 50 days after Ag injection from left to right). Notice that not all of
the populations have the same total size. Bottom: distribution of mutation numbers
for the final MC and PC distributions. The average number of total mutations accu-
mulated is 0.13 for MCs and 0.54 for PCs. This number has to be compared to the
total number of residues considered (Nres = 50).
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b.1 parameters choice

We pick the standard values of the parameters so as to be compatible with the literature,
albeit with some more freedom granted by the fact that here we are more interested in
a theoretical analysis, rather than in reproducing data.
Mature GCs have a B-cells population consisting of a few thousands cell [60, 88]. We
therefore set the initial and maximum size of the population equal to Ni = Nmax = 2500.
This is in agreement with [37] which reports around 3000 cells per GC, or [144] in which
GCs are said to contain up to a few thousands B-cells. However we stress that GCs
are heterogeneous in size [158]. In [155] and [96] the duration of a turn of evolution is
set to 12h. Here the authors consider two cell divisions per round. This is consistent
with timing of cell migration [150, 90]. For simplicity we rescale the round so that the
duration is set to Tround = 6h, and consider a single cell division per round. Time in our
model will be rescaled by this standard quantity, so that the variable t has no dimension.
Similarly, also the binding energy ε will be adimensional, expressed in standard units
of kBT .
In [154, 161] mutations occur at a rate of 0.5 per sequence per division, and are silent,
lethal or affinity affecting with probabilities of respectively 0.5, 0.3, 0.2. This fixes our
effective mutation probabilities to psil = 0.75,plet = 0.15,paa = 0.1. To reproduce the
fact that most of the mutations are deleterious we pick for simplicity µM = σM. This
fixes the amount of beneficial mutations to ∼ 16%, which is somewhat higher but still
compatible with other models [161, 155, 96] in which this fraction is set to 5%. Moreover
we set µM = 0.3 so as to set the mean effect of beneficial mutations to 〈∆ε〉beneficial ∼

−0.15. This value is slightly smaller than 〈∆ε〉beneficial ∼ −0.53 used in [96], but this
is compensated by the higher rate of beneficial mutations in our model. The shape of
the initial population is set to a gaussian with standard deviation σi = 1.5, which is
compatible with experimental data [96]. Since evolution of the population is invariant
for shifts of the energy space we set εAg = 0. Under this choice of gauge the zero in the
energy space is the threshold energy for Ag-binding selection. Moreover we pick µi = 3
so that the difference µi − εAg = 2 σi and on average only around 2% of cells from the
initial population meet this threshold. Finally, The differentiation probability is set to
pdiff = 0.1 [96, 155].

b.2 critical tree size and extinction time in the absence of mutations

In sections 3.4.1 and 3.4.2, and fig. 32 C and D we observed how extinction times and
lineage sizes present a peak at intermediate values of the binding energy. In these sec-
tions we gave an intuitive explanation for this phenomenon, based on the observation
that low-affinity cells quickly go extinct while high-affinity cells will survive the bottle-
neck most of the time, only going extinct if random affinity-independents events (e.g.
differentiation or lethal mutations) kill the population when it is still small. Only at
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intermediate affinities (close to εAg) we observe extinction events at long time and big
population size.
For ease of notations we call γ(ε) = (1− plet) (1− pdiff)PS(ε) the total round survival
probability for a cell with energy ε. In this case the infinite-time extinction probability
d∞(ε) can be found by rewriting eq. (60) in the limit t→∞:

√
d∞(ε) =

1 if γ(ε) 6 1/2
1−γ(ε)
γ(ε) if γ(ε) > 1/2

(139)

As expected, lineages will always go extinct if the average number of surviving offspring
at division is not greater than one (i.e. 2γ(ε) 6 1). In fig. 52A d∞ is plotted as a function
of γ.
Similarly, by rewriting eqs. (72) and (73) in the case of no mutations, we can also find an
explicit expression for the mean and variance of the offspring size for a progenitor with
binding energy ε:

〈n〉ε =


2γ(ε)
1−2γ(ε) if γ(ε) < 1/2
2−2γ(ε)
2γ(ε)−1 if γ(ε) > 1/2

(140)

〈n2〉ε − 〈n〉2ε = 〈n〉ε(〈n〉ε + 1)(〈n〉ε/2+ 1) (141)

The mean and variance are reported in fig. 52C. Both of these quantities diverge for the
critical value γ = 1/2. Having an explicit expression for the average extinction time is
harder, but one can verify that in the particular case γ = 1/2 the extinction time prob-
ability distribution behaves as a power law P(t|γ = 0.5) ∼ 4t−2 + o(t−2), with infinite
mean and variance. This can be proven by inserting the ansatz dt ∼ 1− αt−1 + o(t2) in
eq. (60), together with the simplified form of the mutation kernel and the assumption
that γ = 1/2. In this case one find that the only admissible solution is α = 4 which,
considering that P(t) = dt − dt−1, proves the statement.
This criticality is confirmed by the following consideration: in absence of mutations our
model is a Galton-Watson process, and in the particular case γ = 1/2 the generated
genealogies are critical Galton-Watson trees.
Interestingly, the divergence is removed when we add affinity-affecting mutations to
the system. This happens because mutations will drive lineages away from the critical
line, either to higher affinities (and thus to survival) or to lower affinities, and thus to
extinction.

b.3 stochastic evolution of the competitive selection pressure and

finite-size correction for evolutionary trajectories

In section 3.5.4 we perform the comparison between average stochastic trajectories with
their theoretical prediction obtained from the path integral formulation. Although the
two agree qualitatively, stochastic trajectories still show some degree of deviation from
their theoretical counterpart (cf. fig. 36A).
The main reason behind this discrepancy lays in the fact that, similarly to what observed
in section 3.4.3, the theoretical model poorly captures the evolution of the competitive
selection pressure, encoded in the threshold binding energy ε̄ = − log〈e−ε〉pop. In par-
ticular, the big population size approximation overestimates the size of the high-affinity
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Figure 52: Value of the extinction probability d∞ (A), average extinction time 〈t〉 (B) and average
progeny size 〈n〉 (C) as a function of the survival probability γ(ε) = PS(ε)(1−plet)(1−

pdiff) in the approximation of no affinity-affecting mutations. In B and C shaded area
covers one standard deviation. Notice how extinction times and genealogy sizes di-
verge at γ = 0.5.

tail of the binding energy distribution, to which the value of ε̄ is sensitive, thus over-
estimating its evolution speed. Moreover in this limit evolution becomes deterministic,
and does not capture the stochastic nature of ε̄. To prove both these points in fig. 53A
we perform 10 000 simulations of the standard stochastic model and display the density
of ε̄ trajectories in time-energy space (shade of green, according to the colorscale on the
right), together with the average trajectory (black dashed line). Comparing this to the
theoretical prediction for the evolution of ε̄ (blue line) we see that indeed the maturation
speed of the population is overestimated by the theory. Moreover, the average trajectory
is only a limited representation for the wide spectrum of different stochastic trajectories
observed.

To reduce the discrepancy between theory and simulations we perform two modifica-
tions. First, we initialize all stochastic simulations using the same initial population (see
fig. 53D). This greatly reduces the stochastic variation of ε̄ trajectories (cf. fig. 53B), mak-
ing the average stochastic evolution a much better approximation for the ensemble of
stochastic trajectories. Second, with an approach similar to the one used in section 3.4.3,
we can introduce a finite-size correction on the initial density function ρ(ti, εi). This
correction, consisting on a cutoff on the high-affinity tail of the distribution, accounts
for the finite nature of the cell density function in stochastic simulations. In this case
however instead of employing a hard cutoff, which would introduce instabilities in the
numerical solution of eq. (37), we use a sigmoid cutoff, which leaves the function and all
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of its derivatives continuous. In practice, we correct the initial density function ρ(ti, εi)
by multiplying it by the cutoff function ζ(εi):

ρcoff(ti, εi) = ζ(εi) ρ(ti, εi) , with ζ(ε) =
exp
{
ε−εcoff
σcoff

}
exp
{
ε−εcoff
σcoff

}
+ 1

(142)

The cutoff parameter εcoff is set equal to the minimum energy in the stochastic popula-
tion (εmin ∼ −1.4 in our case) and the parameter σcoff, controlling the sharpness of the
cutoff, is set equal to 0.1. This needs to be small enough to ensure a sharp cutoff, while
at the same time not causing instabilities in the numerical integration. The initial den-
sity function with and without cutoff is displayed in fig. 53C. If we modify the theory
by adding this correction to the initial distribution we obtain a theoretical prediction for
the trajectory of ε̄ that better approximates the average evolution observed in stochastic
simulations (cf. orange and black line in fig. 53B). As a result, also theoretical predic-
tions for the most-likley evolutionary trajectories better match the ones obtained from
stochastic simulations (see fig. 36B).
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Figure 53: A: number of trajectories for ε̄ = − log〈e−ε〉pop over 10 000 different stochastic simu-
lations per energy-time bin (green, see colorscale on the right). The average stochastic
trajectory is plotted as a black dotted line. In the prediction for the evolution of the
same quantity obtained using FP eq. (37) (blue line) the evolution speed is overesti-
mated. B: same as A but the initial population is always the same over all of the 10000

stochastic simulations. In this case the evolution is much less stochastic, which attests
the importance of initial conditions in the model evolution. Moreover by applying
a cutoff correction on the initial distribution we can improve the prediction of the
deterministic model on the evolution of ε̄ (orange line). C: effect of the finite-size cor-
rection procedure (orange) on the cell density of the initial population ρi, compared
to the case without correction (blue). The correction acts by exponentially decreas-
ing the density of the tail in correspondence of the energy value εmin ∼ −1.4 of the
highest-affinity cell in the population. D: normalized histogram (gray) of the initial
population used in the simulations displayed in B and for the cutoff procedure in C.
Black ticks on the bottom correspond to single cell. The lowest-energy cell has energy
εmin ∼ −1.4. The histogram is compared to the Gaussian distribution from which the
energy of each cell in the initial population is extracted (blue).
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c.1 pertubative analysis of binding probability master equation

Here we perform a simple perturbative analysis of eq. (93) to estimate the equilibrium
convergence times.
We consider therefore a small perturbation to the equilibrium solution p(t, ε) ∼ peq(ε) +

δp(t, ε). The perturbation in binding probability is linked to the perturbation in number
of free T-cells by eq. (94):

δNfree
T (t) = −NB

∫
dεϕ(ε) δp(t, ε) (143)

By using this relation and linearizing eq. (93) w.r.t. the perturbation we obtain:

dδp

dt
(t, ε) = −δp(t, ε)

[
ωu(e

ε + eε̄)
]
+ δNfree

T (t)ωb (1− peq(ε)) (144)

The first term gives us a local relaxation time τ = 1/(ωu(e
ε + eε̄)), which is maximum

at small energies and behaves like τ ∼ e−ε̄. If we consider ε̄ to be somehow linked
with the average binding energy of the population, we see that our model converges
exponentially slower to equilibrium the smaller is this average energy. In this regime
the hypothesis of equilibrium will eventually fail. Intuitively according to our model
this would corresponds to the regime in which the average unbinding time for T-cells
become exponentially big and in a single round of selection a single T-cell will only have
the time to bind randomly to a single B-cell, and not sample the whole population. In
this regime the probability of being bound becomes uniform and T-cell selection will
not be able to discriminate between good and bad binders, since all binders are on
average good. In this limit our model is not realistic, however we consider this limit to
correspond to a successful AM.
The second term in the r.h.s. represents instead a global adjustment of the fluctuations
which acts in the same positive or negative direction for all energies, against the global
perturbation effect. By combining the two previous equations one can explicit the time-
derivative of this perturbation as:

dδNfree
T

dt
(t) = −δNfree

T (t)ωb (N
free
T +Nfree

B ) + NBωu

∫
dεϕ(ε) δp(ε, t) eε (145)

Again we have two terms. The first gives a relaxation time of order τ ∼ 1/ωb(N
free
T +

Nfree
B ), which is a decreasing function of the equilibrium number of free B and T cells.

In general this time will be small when the population size is big. It becomes small only
if the size of both B and T cell populations become small, but in this case one could
consider the population to be close to extinction. The second term instead derives from
the first term of the equation for δp. It represent an average of the perturbation times
the exponent of the binding energy ε, and again it acts against the global perturbation,
therefore shortening convergence time.
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MOTS CLÉS

Physique Statistique, Biophysique, Immunologie, Inférence Bayésienne, Maturation d’Affinité

RÉSUMÉ

La Maturation d’Affinité (MA) est le processus biologique grâce auquel notre système immunitaire génère de puissants
anticorps contre les nouveaux agents pathogènes rencontrés. Ce processus est également à la base de la vaccination,
l’une des procédures médicales les plus efficaces jamais mises au point, qui permet de sauver des millions de vies
chaque année. La MA présentent encore de nombreuses questions ouvertes, dont les réponses peuvent améliorer la
manière dont nous vaccinons. Les mécanismes à la base de la MA sont extrêmement complexes, avec des interactions
non linéaires entre nombreux cellules différentes. Dans ce contexte, les modèles théoriques et l’inférence Bayésienne
sont des outils précieux pour relier les hypothèses qualitatives aux descriptions quantitatives et extraire informations des
données expérimentales. Dans ce manuscrit, nous utilisons ces outils pour aborder certaines questions ouvertes, comme
l’effet du dosage de l’antigène sur la qualité de la vaccination.

ABSTRACT

Affinity Maturation (AM) is the biological process through which our Immune System generates potent Antibodies (Abs)
against newly encountered pathogens. This process is also at the base of vaccination, one of the most successful and
cost-effective medical procedures ever developed, responsible for saving millions of lives every year. AM still present many
open questions, whose answers have the potential of improving the way we vaccinate. The mechanisms at the base of AM
are extremely complex, involving non-linear interactions between many different cellular agents. In this context theoretical
models and Bayesian Inference are invaluable tools, respectively to link qualitative hypothesis to quantitative descriptions
and to extract information from experimental data. In this manuscript we make use of these tools to tackle some of the
open questions, such as the non-trivial effect of Ag dosage on the outcome of vaccination.
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