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CHAPITRE 1

INTRODUCTION

1.1 Résumé long (en français)

Cette thèse s’intéresse à la mathématisation de la notion de langage de programma-

tion, en portant une attention particulière à la notion de substitution.

La recherche dans le domaine des langages de programmation s’appuie tradition-

nellement sur une définition de syntaxe modulo renommage des variables liées, avec

la sémantique opérationnelle associée. Nous nous intéressons à des outils mathéma-

tiques permettant de générer automatiquement la syntaxe et la sémantique à partir de

données élémentaires.

En ce qui concerne la syntaxe, la spécification de structures algébriques avec

variables liées est un enjeu majeur. Deux lignes principales de recherche sont en

concurrence : les ensembles nominaux [GP99] et les algèbres de substitution [FPT99].

Dans cette thèse, nous explorons une variante des algèbres de substitution, proposée

par [HM07 ; HM10], qui s’appuie sur la notion de module sur une monade. Nous abor-

dons également dans cet esprit la mathématisation de la sémantique opérationnelle.

Pour cela, nous introduisons d’abord les monades de réduction, puis leur généralisa-

tion, les monades opérationnelles : elles constituent notre approximation mathéma-

tique de la notion informatique de langage de programmation.

Dans cette thèse, nous nous intéressons à la spécification des objets de la ca-

tégorie des monades (chapitres 3 et 4), de la catégorie des monades de réduction

(chapitre 5), et de la catégorie des monades opérationnelles (chapitre 6), notre objectif

étant de définir un langage formel1, modélisé par un objet d’une catégorie adéquate.

Caractériser un objet d’un certain type (i.e., d’une certaine catégorie C) par une

propriété d’initialité est l’objectif de ce que l’on appelle sémantique initiale ou spécifi-

cation algébrique [JGW78], popularisés par [BM97]. La méthodologie générale de la

1. Ici, le mot “langage” englobe les types de donnée, les langages de programmation et les calculs
logiques, ainsi que les langages pour structures algébriques considérés en algèbre universelle.
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Introduction

sémantique initiale peut être décrite selon les étapes suivantes :

1. Introduire une notion de signature (pour la catégorie C).

2. Construire une notion de modèle associée, s’organisant en une catégorie munie

d’un foncteur vers la catégorie C.

3. Definir l’objet spécifié par la signature comme le modèle initial, s’il existe (la si-

gnature est alors dite effective).

4. Trouver une condition suffisante pour qu’une signature soit effective2.

Les modèles d’une signature constituent le domaine atteint par le principe de récur-

rence, lequel est induit par l’initialité de l’objet spécifié par la signature.

Dans le chapitre 2, nous définissons une notion générale de signature permettant

de caractériser un objet d’une catégorie arbitraire C, avec la notion de modèle asso-

ciée. Une telle signature est donnée par une liste de familles d’arités spécifiant des

opérations ou des équations. Les chapitres suivants en fournissent divers cas particu-

liers, de la spécification de la syntaxe à la spécification de la sémantique, en identifiant

à chaque fois une classe de signatures effectives.

Finalement, nous proposons un protocole fondé sur une signature à trois niveaux

pour spécifier un langage de programmation :

1. spécification des constructions, par exemple une opération binaire + ;

2. spécification des équations, par exemple a + b = b + a (commutativité de l’opéra-

tion binaire +) ;

3. spécification des réductions entre termes, par exemple 0 + a a, par des règles

schématiques.

Les deux premiers points définissent ce que nous appelons la syntaxe du langage

de programmation, tandis que le dernier point concerne la sémantique du langage :

une réduction entre deux termes correspond à un chemin d’exécution du programme

évoluant du premier terme vers le second. A titre d’exemple de langage intégrant les

trois niveaux, nous proposons dans la section 5.6 une spécification du lambda calcul

avec substitution explicite décrit dans [Kes09].

2. Dans la littérature, le mot signature est souvent réservé au cas où une telle condition suffisante
est automatiquement satisfaite.
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Afin de motiver les notions mathématiques mises en jeu, nous examinons dans ce

résumé le langage de programmation fonctionnel le plus simple que l’on puisse envi-

sager : le lambda calcul pur. Dans la section 1.1.1, nous donnons une première pré-

sentation de sa syntaxe, et la dotons d’une opération de substitution. Nous expliquons

ensuite, dans la section 1.1.2, comment la notion mathématique de monade permet

d’en rendre compte, puis, dans la section 1.1.3, comment la notion de morphisme de

modules fournit un moyen d’exprimer une propriété essentielle des constructions de

la syntaxe : la compatibilité à la substitution. Dans la section 1.1.4, nous caractéri-

sons la syntaxe par son principe de récurrence, que nous formulons par une propriété

d’initialité. Nous expliquons dans la section 1.1.5 que préciser cette propriété d’initia-

lité requiert une notion de modèle adéquate, laquelle est déterminée par la signature :

c’est l’occasion de présenter notre définition générale de signature pour spécifier les

objets d’une catégorie arbitraire. Nous examinons ensuite le cas de syntaxes vérifiant

des équations (section 1.1.6), avant d’aborder, dans la section 1.1.7, la spécification de

la sémantique, modélisée dans le cadre des monades de réduction par un ensemble

de réductions entre chaque paire de termes.

1.1.1 Présentation naïve de la syntaxe du lambda calcul

Nous donnons ici une présentation de la syntaxe du lambda calcul, ainsi qu’un aperçu

de quelques difficultés habituellement associées à une telle présentation. On fixe un

ensemble infini V de variables, et l’on caractérise récursivement l’ensemble des termes

ou expressions valides du lambda calcul :

• chaque variable x ∈ V est un terme du lambda calcul,

• si t et u sont des termes, alors t u est un terme, appelé application de t à u ;

• si t est un terme, alors λx.t est un terme, appelé lambda abstraction de t, où x

est une variable qui peut apparaître dans t.

L’expression λx.t correspond à la notation mathématique x 7→ t. Il s’agit de définir une

fonction dépendant de la variable x, le corps de cette fonction étant donné par le terme

t. L’expression f t correspond à la notation mathématique f(t) : c’est l’application de la

fonction f à l’argument t.

En mathématique, le nom de la variable choisie pour définir une fonction est pure-

ment conventionnel : les fonctions x 7→ f(x) et y 7→ f(y) sont identiques. Transposons

15
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cette identification dans le langage du lambda calcul : nous voulons égaliser le terme

λx.t avec le terme λy.t′, où t′ est obtenu à partir du terme t en remplaçant toutes les

occurrences de la variable x par la variable y. Dans cette situation, on dit que x est une

variable liée dans λx.t, et les occurrences de x dans t sont alors qualifiées de liées.

Les occurrences de variables qui ne sont pas liées sont dites libres3.

Ici, les termes λx.t et λy.t′ sont dits α-équivalents. Plus généralement, deux termes

sont α-équivalents si l’on peut renommer les variables liées de l’un pour obtenir l’autre

terme. La définition précise de la relation d’α-équivalence requiert quelques précau-

tions. Par exemple, dans le cas précédent, il est sous-entendu que la variable y n’ap-

parait pas dans t ; autrement, nous identifierions (contre notre gré) les termes λx.y et

λy.y.

La substitution est un autre aspect essentiel de la syntaxe du lambda calcul : étant

donné un terme t, si l’on remplace toutes les occurrences (libres) d’une variable x

par un même terme u, nous obtenons une nouvelle expression valide, que nous no-

tons t{x := u}. L’opération de substitution permet d’exprimer l’intuition mathématique

suivante : le résultat d’une fonction x 7→ t appliquée à un argument u est obtenu en

remplaçant la variable x dans t par u. Cette affirmation se transpose, pour le lambda

calcul, en la β-équation

(λx.t) u = t{x := u}. (1.1)

Cette substitution dite unaire est un cas particulier de l’opération de substitution

parallèle t{x 7→ ux}, qui remplace simultanément toutes les variables d’un terme t par

un terme correspondant.

La substitution ne remplace que les occurrences libres d’une variable, afin de

préserver la propriété suivante : étant donné deux termes λx.t et λy.t′ supposés α-

équivalents, substituer le même terme à la même variable dans chacun d’eux fournit

deux termes α-équivalents. Si la variable concernée est identique à la variable abs-

traite, le terme (λx.t){x := u} est donc tout simplement égal à λx.t : par exemple

(λx.x){x := u} = λx.x est bien α-équivalent à (λy.y){x := u} = λy.y.

3. Une variable peut avoir une occurrence liée et une occurrence libre dans le même terme : par
exemple, x dans (λx.x) x est liée dans λx.x, mais apparaît librement à droite.
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1.1.2 La monade du lambda calcul

Le concept de monade fournit une contrepartie mathématique de la notion intuitive

de syntaxe munie d’une opération de substitution. Nous motivons cette définition par

l’exemple du lambda calcul. Dans le point de vue que nous adoptons ici, les termes

α-équivalents sont considérés comme identiques : ainsi, λx.x = λy.y.

Au lieu de considérer un ensemble unique de termes avec un ensemble de va-

riables V fixé à l’avance, nous définissons des classes de termes qui utilisent les

mêmes variables libres. Notons L(X) l’ensemble des termes dont les variables libres

sont choisies dans l’ensemble X. Remarquons qu’un terme t ∈ L(X) se retrouve éga-

lement dans L(Y ) pour tout inclusion X ⊂ Y : en effet, si les variables libres sont

choisies parmi les éléments d’un ensemble X, elles sont en particulier choisies parmi

les élements de n’importe quel ensemble Y qui contient X.

Toute variable est en particulier un terme valide ; il y a donc une inclusion varX :

X → L(X) pour tout ensemble X. D’autre part, si l’on se donne pour toute variable

x ∈ X un terme ux dont les variables libres sont choisies dans Y , nous obtenons, à

partir de n’importe quel terme t ∈ L(X), un terme t{x 7→ ux} ∈ L(Y ). Cette opération

de substitution parallèle vérifie les propriétés suivantes :

• chaque variable est remplacée par le terme adéquat :

x′{x 7→ ux} = ux′

• la substitution identité est neutre :

t{x 7→ x} = t

• toute succession de substitutions est équivalente à une substitution composée :

t{x 7→ ux}{y 7→ vy} = t{x 7→ ux{y 7→ vy}}

L’inclusion des variables dans les termes et l’opération de substitution parallèle satisfai-

sant les équations ci-dessus définissent une monade sur la catégorie des ensembles.

Cet objet mathématique est au cœur des développements que nous exposons dans

cette thèse.
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1.1.3 Les constructions sont des morphismes de modules

Les concepts mathématiques de modules et de morphismes de modules offrent un

cadre permettant d’exprimer la compatibilité d’une construction de la syntaxe avec

l’opération de substitution. Nous illustrons ceci avec l’application t u du lambda calcul.

La compatibilité de l’application avec la substitution se traduit par la commutation

(t u){x 7→ vx} = t{x 7→ vx} u{x 7→ vx}

Informellement, cette équation signifie qu’il n’y a pas de différence entre effectuer la

substitution avant l’application et effectuer la substitution après l’application, comme

l’exprime le diagramme commutatif suivant :

L(X) × L(X)

(t, u)
application

''L(Y ) × L(Y )

(t{x 7→ vx}, u{x 7→ vx})

ww
substitu

tion

application
''

L(X)

t u

L(Y )

t{x 7→ vx} u{x 7→ vx}

ww substitu
tion

Ce constat s’appuie implicitement sur l’opération de substitution suivante dont bénéfi-

cie la collection d’ensembles (L(X) × L(X))X :

(t, u){x 7→ vx} = (t{x 7→ vx}, u{x 7→ vx})

Cette substitution vérifie les propriétés suivantes :

• la substitution identité est neutre :

(t, u){x 7→ x} = (t, u)

• toute succession de substitutions est équivalente à une seule substitution com-

posée :

(t, u){x 7→ ux}{y 7→ vy} = (t, u){x 7→ ux{y 7→ vy}}
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À ce titre, la collection des ensembles de paires de termes définit un module sur la

monade L, que nous notons L × L.

Les définitions de monade et de module sont similaires ; d’ailleurs toute monade

définit un module sur elle-même. En fait, L × L définit aussi une monade, mais la

substitution associée ne dérive pas de sa structure de module. Étant donné une paire

de termes (t, u) dont les variables libres sont choisies dans X, et pour toute variable

x ∈ X, une paire de termes (vx, wx) dont les variables libres sont choisies dans Y , cette

substitution monadique fournit une paire de termes dont les variables libres sont dans

Y . La substitution donnée par la structure de module ne convient pas, puisqu’elle ne

s’applique que dans le cas où l’on a associé à chaque variable un terme de la monade

L, plutôt qu’une paire de termes.

L’application du lambda calcul induit une collection de fonctions

L(X) × L(X) → L(X)

qui associent à toute paire (t, u) le terme t u. La propriété de commutation avec la

substitution sus-mentionnée en fait un morphisme de modules de L × L vers L, où L

est vu comme un module sur la monade homonyme.

De même, l’abstraction du lambda calcul induit une collection de fonctions

L(X ∐ {⋆}) → L(X)

qui, à tout terme t dont les variables libres sont choisies dans l’ensemble X étendu

avec un nouvel élément ⋆, associe le terme λ ⋆ .t. La famille L(X ∐ {⋆})X est canoni-

quement munie d’une opération de substitution et définit donc un module. La collection

des fonctions d’abstraction induit alors un morphisme de modules, en raison de la

commutation avec la substitution :

(λ ⋆ .t){x 7→ ux} = λ ⋆ .


t





x 7→





⋆ si x = ⋆

ux sinon.








La construction de module que nous rencontrons ici se généralise à n’importe quel

module M sur une monade R : le module dérivé M ′ se définit comme la collection

d’ensembles (M(X ∐ {⋆}))X munie d’une opération de substitution canonique.

Dans cette thèse, nous nous intéressons exclusivement à des langages de pro-
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grammation dont les constructions et les réductions sont compatibles avec la substitu-

tion, d’où notre intérêt pour les notions de module et de morphisme de modules.

1.1.4 Récursion et initialité

La présentation naïve du lambda calcul induit naturellement un principe de récurrence

sur la syntaxe. Supposons, par exemple, que nous voulons calculer l’ensemble des va-

riables libres d’un terme t du lambda calcul. Pour ce faire, nous raisonnons par récur-

rence sur la structure du terme. Si t est une variable x, alors le singleton {x} constitue

l’ensemble de ses variables libres. Si t est une application u v, alors l’ensemble de ses

variables libres est la réunion des variables libres de u et v. Si t est une lambda abs-

traction λx.u, alors n’importe quelle variable libre de u différente de x est une variable

libre de t.

Dans notre cadre, nous adoptons le point de vue de la sémantique initiale : le prin-

cipe de récurrence est alors une conséquence d’une propriété d’initialité. Le lambda

calcul est ainsi caractérisé comme la monade “minimale” munie d’une application et

d’une lambda abstraction, dans un sens que nous allons illustrer par l’exemple du

calcul des variables libres (cet exemple est étudié plus formellement dans la Sec-

tion 3.5.2).

Considérons la monade P qui associe à X l’ensemble P(X) de ses parties : une

variable x ∈ X induit un “terme” {x} ∈ P(X) ; la substitution t{x 7→ ux} est calculée par

la réunion ∪z∈tuz. L’union de deux sous-ensembles fournit une opération binaire pour

P, que nous assimilons à une “opération d’application” par analogie avec l’opération

binaire d’application du lambda calcul. Cette opération associe le sous-ensemble t ∪ u

au couple (t, u). De même, une opération adéquate d’abstraction P(X ∐ {⋆}) → P(X)

est donnée par t 7→ t ∩ X, ou, de manière équivalente, par t 7→ t\{x}. Comme nous

l’expliquerons dans la section suivante, ces constructions font de la monade P un

modèle de la signature du lambda calcul.

La propriété d’initialité du lambda calcul mentionnée s’instancie alors par l’existence

d’une unique famille de fonctions (freeX : L(X) → P(X))X vérifiant les propriétés

suivantes :

• free préserve les variables :

freeX(var(x)) = {x}
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(rappelons que pour la monade P, la variable x est vue comme le sous-ensemble

{x})

• free préserve la substitution :

freeY (t{x 7→ ux}) =
⋃

z∈freeX(t)

freeY (uz)

• free préserve l’application :

free(t u) = free(t) ∪ free(u)

• free préserve l’abstraction :

free(λx.t) = free(t)\{x}

Les deux premiers points caractérisent free comme un morphisme de monades entre L

et P. La section suivante définit la notion de modèle de sorte que L et P, munies leurs

opérations respectives d’application et d’abstraction, sont des modèles de la signature

du lambda calcul. Le morphisme de monades free est alors un morphisme de modèles

de cette signature, grâce aux deux derniers points.

1.1.5 Signatures et modèles (Chapitre 2)

Dans le chapitre 2, nous proposons une notion de signature générale, définie comme

une liste de famille d’arités, pour spécifier les objets d’une catégorie arbitraire C. Une

arité est la donnée d’un diagramme de foncteurs

C
u

//
oo

v //
D .

où u et v sont des sections du foncteur F : D → C, c’est-à-dire, des foncteurs qui,

post-composés avec F , donnent le foncteur identité sur C. Un objet c de C est muni

d’une action de cette arité s’il est muni d’un morphisme h : u(c) → v(c) dont l’image

par le foncteur F est le morphisme identité en c. Notons que si les seuls morphismes

que F envoie sur un morphisme identité sont eux mêmes des morphismes identité,
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alors un objet c est muni d’une action si et seulement si u(c) = v(c). Nous qualifions

d’équationnelle une arité vérifiant cette propriété, qui spécifie donc des équations.

Les objets munis d’une action d’une famille d’arités (fixée à l’avance) forment une

catégorie : les morphismes sont ceux de la catégorie C vérifiant une condition de com-

mutation avec les actions. C’est ainsi qu’est définie la catégorie de modèles d’une

signature composée d’une seule famille d’arités. Par exemple, la catégorie d’algèbres

d’un endofoncteur G : C → C est la catégorie de modèles de la signature composée

d’une seule arité

C
(G,IdC)

//
oo

(IdC,IdC)
// C × C

où le foncteur C × C → C est la deuxième projection.

Comme nous l’avons dit, une signature est une liste de familles d’arités : une pre-

mière famille d’arités pour la catégorie C de base, puis une famille d’arités pour la

catégorie de modèles induite, et ainsi de suite.

Nous illustrons ces définitions pour les signatures monadiques (c’est-à-dire spéci-

fiant des monades) envisagées dans le chapitre 3, qui sont composées d’une unique

arité. Considérons l’exemple de la syntaxe du lambda calcul. Dans la section précé-

dente, nous l’avons caractérisée comme la monade initiale munie d’une application et

d’une abstraction. Plus précisément, en généralisant l’exemple de la monade des par-

ties P étudiée dans la section précédente, nous disons qu’une monade R est munie

d’une application et d’une abstraction si elle est dotée à la fois d’une opération binaire,

c’est-à-dire d’un morphisme de modules appR : R × R → R, et d’un morphisme de mo-

dules absR : R′ → R. De manière équivalente, c’est une monade R avec un morphisme

de modules de (R × R) ∐ R′ vers R, c’est-à-dire, d’une action pour l’arité

Mon
ΣLC //
oo

Θ
//

∫
Mod (1.2)

que nous allons préciser. La catégorie Mon est la catégorie des monades ; la catégorie
∫

Mod rassemble toutes les catégories de modules sur des monades différentes4 : un

objet est une paire d’une monade et d’un module sur cette monade, et un morphisme

entre (R, M) et (S, N) est une paire d’un morphisme de monades f : R → S et d’un

morphisme de modules g : M → f ∗N sur la monade R, où f ∗N est le module sur R

4. En termes catégoriques, la catégorie
∫

Mod est obtenue par la construction de Grothendieck pour
le foncteur qui à toute monade associe sa catégorie de modules.
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obtenu canoniquement à partir de N , en précomposant ses opérations de substitution

par f . Le foncteur
∫

Mod → Mon renvoie la première projection. Une section de ce

foncteur, ou module paramétrique, associe fonctoriellement à toute monade un module

sur elle-même. Par exemple, le module paramétrique Θ associe à toute monade R le

module R (rappelons en effet que toute monade est un module sur elle-même). Par

ailleurs, le module paramétrique ΣLC du lambda calcul associe à toute monade R le

module (R × R) ∐ R′ sur R.

Un module paramétrique quelconque Σ induit une arité de manière similaire à ΣLC

dans l’équation 1.2. Considérons la catégorie de modèles associée à la signature com-

posée de cette unique arité. Un modèle (R, ρ) (parfois noté simplement R) de cette

signature est une monade R munie d’un morphisme de modules ρ : Σ(R) → R. Ainsi,

la monade des parties P et la monade du lambda calcul L induisent des modèles de

ΣLC. En fait, le lambda calcul est le modèle initial : si R est un modèle, alors il existe un

unique morphisme de monades f : L → R qui préserve l’opération binaire et l’abstrac-

tion.

Plus généralement, la monade S spécifiée par la signature induite par un module

paramétrique Σ est munie d’une action σ : Σ(R) → R qui en fait un modèle initial :

étant donné un modèle (R, ρ), il existe un unique morphisme de monades f : S → R

qui préserve la structure de modèle, i.e., vérifiant pour tout t ∈ Σ(R)(X)

f(σ(t)) = ρ(f(t)) (1.3)

Un tel morphisme de monades constitue un morphisme de modèles entre (S, σ) et

(R, ρ). Notons que le membre de droite de l’équation 1.3 nécessite de donner un sens

à l’expression f(t) lorsque t est un élément de Σ(S)X : par fonctorialité de Σ, c’est

tout simplement Σ(f)(t). En effet, tout morphisme de monades f : R → T induit un

morphisme de modules Σ(R) → f ∗Σ(T ) sur la monade R, morphisme que nous notons

abusivement f , ou Σ(f). Dans le cas de l’opération binaire, on a Σ(S)X = S(X)×S(X).

Donc t est une paire (u, v) et l’on définit Σ(f)(u, v) par (f(u), f(v)).

L’effectivité d’une signature induite par un module paramétrique, c’est-à-dire l’exis-

tence du modèle initial associé, n’est pas systématique5. C’est néanmoins le cas de

tout module paramétrique que nous appelons algébrique, qui spécifie une syntaxe

disposant d’un ensemble d’opérations n-aires, dont certaines lient des variables dans

5. La signature du contre-exemple 49 associe à toute monade R le module (P(R(X)))X .
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leurs arguments. La signature du lambda calcul provient d’un module paramétrique ΣLC

algébrique : l’application est une opération binaire classique, tandis que l’abstraction

est une opération unaire liant une seule variable dans son unique argument.

1.1.6 Syntaxes avec équations (chapitres 3 et 4)

La syntaxe d’un langage est parfois définie modulo certaines équations : c’est le cas du

lambda calcul différentiel [ER03a], du pi calcul avec ses règles de congruence struc-

turelle, et du lambda calcul avec substitution explicite décrit par [Kes09]. Dans cette

thèse, nous abordons la spécification de monades correspondant à des syntaxes véri-

fiant ce type d’équations.

Dans le chapitre 3, nous étudions les modules paramétriques que nous appellons

présentables : ce sont, en quelque sorte, des quotients de modules paramétriques

algébriques. Une signature induite par un module paramétrique présentable est éga-

lement qualifiée de présentable. Nous montrons qu’une telle signature est effective

(Théorème 57). Il devient possible de spécifier une opération binaire commutative

(Section 3.8.1). Pour cela, il suffit de remarquer que la donnée d’une telle opération

est équivalente à la donnée d’une opération prenant en argument une paire non or-

donnée de termes. Décrivons maintenant le module paramétrique Σcomm−bin associé :

il s’agit d’un quotient du module paramétrique algébrique Σbin d’une opération binaire

qui associe à toute monade R le module R × R. Plus précisément, à toute monade R,

le module paramétrique Σcomm−bin associe le module (S2R(X)))X , où S2R(X) est l’en-

semble des paires d’éléments de R(X) × R(X) quotienté par la relation (t, u) ∼ (u, t),

c’est-à-dire, l’ensemble des paires non ordonnées. La syntaxe bénéficie alors d’une

opération qui prend en argument un couple non ordonné de termes, comme désiré.

Néanmoins, la classe des signatures présentables paraît limitée. Considérons en

effet l’exemple d’une opération binaire associative : nous ne savons pas en donner une

signature, présentable ou non. Remarquons que nous pouvons malgré cela donner

une définition intuitive de modèle dans ce cas particulier : il s’agit d’une monade R

munie d’une opération binaire b : R × R → R telle que pour tous x, y, z dans R(X)

les expressions b(b(x, y), z) et b(x, b(y, z)) sont égales. En d’autres termes, il s’agit d’un

modèle (R, b) de la signature d’une opération binaire, tel que les deux morphismes de

modules de R × R × R vers R, associant à tout triplet (x, y, z) les deux expressions

envisagées, sont égaux.

24



Introduction

Dans le chapitre 4, nous donnons une définition d’équation généralisant cet

exemple pour les modèles d’une signature monadique quelconque Σ : il s’agit de la

donnée,

• pour chaque modèle R de la signature Σ, de deux morphismes de modules eR, e′
R

de même domaine AR et codomaine BR (dans l’exemple ci-dessus, eR, e′
R : R ×

R ×R → R associent respectivement b(b(t, u), v) et b(t, b(u, v))) à un même triplet

(t, u, v) ∈ R3(X)) ;

• pour tout morphisme de modèles f : R → S, de deux morphismes de modules

Af : AR → AS et Bf : BR → BS tels que les diagrammes suivants commutent :

AR
eR //

Af

��

BR

Bf

��

AS
e′

S

// BS

AR

e′
R //

Af

��

BR

Bf

��

AS
e′

S

// BS

Ces données sont soumises comme d’habitude à une condition additionnelle de fonc-

torialité. On dit qu’un modèle R de la signature Σ vérifie l’équation lorsque eR = e′
R.

En fait, nous donnons une définition équivalente d’équation dans le chapitre 4, en tant

qu’arité équationnelle d’une forme particulière. La vérification de l’équation se refor-

mule en tant qu’une action pour l’arité.

Nous considérons alors les 2-signatures : il s’agit de signatures composées d’une

arité induite par un module paramétrique et d’une famille de ces arités équationnelles.

Un modèle (ou 2-modèle) d’une 2-signature est un modèle R de la signature induite

par le module paramétrique sous-jacent qui vérifie toutes les équations. Nous parlons

de 2-signatures algébriques lors que le module paramétrique est algébrique, et que

les équations sont élémentaires (Définition 104). Techniquement, il s’agit d’équations

dont l’action fonctorielle du domaine envoie des morphismes surjectifs de monades

sur des morphismes surjectifs de foncteurs, et dont le codomaine est de la forme

R 7→ (((R′)′)...)′. Tout exemple de signature présentable que nous considérons dans

le chapitre 3 peut être reformulé en tant que 2-signature algébrique, induisant la même

catégorie de modèles (à isomorphisme près). Nous montrons que toute 2-signature

algébrique est effective (Théorème 107).
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1.1.7 Sémantique (chapitres 5 and 6)

Il est possible de spécifier par une 2-signature la syntaxe du lambda calcul quotientée

par la β-équivalence (1.1) : les termes (λx.t) u et t{x := u} sont ainsi égalisés. Ce-

pendant, cette équation est habituellement orientée, et considérée comme une étape

d’exécution lorsque l’on considère le lambda calcul comme un langage de program-

mation fonctionnel. A ce titre, il est plus adéquat d’intégrer la β-réduction à la séman-

tique du langage, plutôt que d’imposer la β-équation dans la syntaxe. Ceci motive la

notion de monade de réduction, que nous introduisons dans le chapitre 5, étendant

celle de monade, pour rendre compte de la structure additionnelle de réduction. Intui-

tivement, une monade de réduction est une monade R munie, pour chaque paire de

termes (t, u) ∈ R(X), d’un ensemble de réductions entre t et u que l’on note t ◮ u,

et d’une opération de substitution associée : pour toute famille de termes (vx)x∈X avec

vx ∈ R(Y ), pour toute réduction m entre t et u, cette substitution associe une réduc-

tion m{x 7→ vx} entre t{x 7→ vx} et u{x 7→ vx}. Des équations analogues à celles

intervenant dans la définition de module sont requises.

Dans ce contexte, une signature de réduction est une signature d’une forme spé-

cifique pour la catégorie des monades de réductions, déterminée par une 2-signature

pour monades et une famille de règles de réductions. Par exemple, la règle de ré-

duction pour la congruence de l’application du lambda calcul s’exprime informellement

ainsi, en désignant explicitement l’application du lambda calcul par la construction app :

T  T ′ U  U ′

app(T, U) app(T ′, U ′)

Cette règle se décompose en trois paires de termes : les hypothèses (T, T ′) et (U, U ′),

et la conclusion (app(T, U), app(T ′, U ′)), construites à partir des “métavariables” T , T ′,

U et U ′. Ces paires paramétrées induisent des paires de morphismes (h1,1(R), h1,2(R)),

(h2,1(R), h2,2(R)) et (c1(R), c2(R)) de R-modules entre R4 et R pour n’importe quel mo-

dèle R de la signature monadique du lambda calcul. De plus, cette construction est

fonctorielle. Plus précisément, si f : R → S est un morphisme de modèles, alors les
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diagrammes suivants sont commutatifs :

R4

f4

��

hi,j(R)
// R

f
��

S4

hi,j(S)
// S

R4

f4

��

ci(R)
// R

f
��

S4

ci(S)
// S

Ainsi formulée, cette règle de congruence entre dans notre définition de règle de réduc-

tion détaillée en Section 5.3. Une action de cette règle dans une monade de réduction

R munie d’une opération binaire app est la donnée d’une réduction app-cong(mT , mU)

entre app(T, T ′) et app(U, U ′) pour tout (T, T ′, U, U ′) ∈ R4(X), toute réduction mT entre

T et T ′, et toute réduction mU entre U et U ′. Il faut de plus que app-cong commute avec

la substitution, c’est-à-dire que l’équation suivante soit vérifiée :

app-cong(mT , mU){x 7→ vx} = app-cong(mT {x 7→ vx}, mU{x 7→ vx})

Le théorème principal (Théorème 150) du chapitre 5 affirme l’effectivité d’une signa-

ture de réduction composée d’une 2-signature effective et de n’importe quelle famille

de règles de réduction. Détaillons la notion de modèle mise en jeu ici : il s’agit d’une

monade de réduction munie

• d’une structure de modèle de la 2-signature pour la monade sous-jacente,

• d’une action de chaque règle de réduction de la signature.

Le modèle initial est construit à partir du modèle initial de la 2-signature, et la structure

additionnelle de réductions est construite inductivement à partir des règles de réduc-

tion.

En guise d’exemples, nous proposons quelques signatures pour des variantes du

lambda calcul avec β-réduction, puis, dans la section 5.6, une signature pour le lambda

calcul avec substitution explicite, tel que décrit dans [Kes09] par un ensemble de

constructions soumises à une équation syntaxique, auquel s’ajoutent des règles de ré-

duction entre termes. Cette spécification se fait en trois étapes : une 1-signature pour

les opérations du langage, une 2-signature prenant en compte l’équation syntaxique,

et une signature de réduction spécifiant les réductions adéquates.

Dans le chapitre 6, nous généralisons ces développements, et traitons de nouveaux

exemples, comme le lambda calcul en appel par valeurs avec réduction à grands pas :
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la syntaxe est celle du lambda calcul classique, mais dans cette variante, un terme se

réduit en une valeur, c’est-à-dire en une variable ou bien en une lambda abstraction. La

notion de valeur n’est pas stable par substitution arbitraire : par exemple, x{x := y y} =

y y n’est pas une valeur. En revanche, elle est stable par substitution de valeurs : si v et

(wx)x∈X sont des valeurs, alors v{x 7→ wx} est une valeur. Nous pouvons ainsi définir

la monade LCv des valeurs du lambda calcul : elle est munie d’une inclusion dans la

monade L du lambda calcul qui nous permet de considérer cette dernière comme un

module sur LCv.

Dans cette variante du lambda calcul, la β-réduction est formulée ainsi :

t λx.t′ u u′ t′{x := u′} v

t u v

Une autre règle de réduction assure que toute valeur, en tant que terme, se réduit vers

elle-même.

Les réductions sont stables par substitution : si t ∈ L(X) se réduit en une valeur

v ∈ LCv(X) et (ux)x∈X est une famille de valeurs indexée par l’ensemble des variables

libres X, alors t{x 7→ ux} se réduit en v{x 7→ ux}.

La collection des ensembles de réductions entre un terme et une valeur est définie

par induction, en appliquant successivement les règles de réduction envisagées. Elle

est munie d’une opération de substitution adéquate, comme expliqué précédemment.

Remarquons qu’un lambda terme peut être représenté par un arbre binaire dont les

feuilles sont des valeurs et les nœuds correspondent aux applications. Cette représen-

tation induit une bijection : un tel arbre binaire détermine un lambda terme de manière

unique.

(x (λy.t)) z ⇔ z

x λy.t

Ainsi, nous pouvons identifier le module L des lambda termes avec la composition

B · LCv, où B est la monade des arbres binaires : B(X) est l’ensemble des arbres

binaires dont les feuilles sont choisies dans X.

S’inspirant de cet exemple, nous définissons la notion de monade opérationnelle. Il

s’agit :

• d’une monade R (dans notre exemple, R = LCv) ;
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• d’une paire d’endofoncteurs (T1, T2) sur Set (dans notre exemple, T1 = B et T2 =

Id) ;

• d’un ensemble de réductions entre t et u, pour chaque paire (t, u) ∈ T1(R(X)) ×

T2(R(X)) ;

• d’une opération de substitution appropriée sur ces ensembles de réductions.

Nous définissons ensuite les signatures opérationnelles permettant de spécifier ce

type d’objet mathématique : ce sont des cas particuliers de signatures pour la catégo-

rie des monades opérationnelles. Nous démontrons un résultat d’effectivité pour ces

signatures (Théorème 207).

1.1.8 Formalisation

Les preuves des résultats principaux des chapitres 3 et 4 ont été vérifiées à l’aide de

l’assistant de preuve Coq. Il s’agit d’un logiciel dans lequel il est possible de repro-

duire (ou formaliser ) des définitions mathématiques ainsi que des démonstrations qui,

si elles sont validées par le logiciel, sont en principe incontestables. En pratique, cette

garantie est à nuancer dans la mesure où des défauts d’implémentation permettant de

prouver des énoncés contradictoires sont régulièrement exhibés (et corrigés). D’autre

part, la correspondance entre les énoncés formalisés dans la théorie des types de

Coq et les énoncés mathématiques est une question théorique qui n’est pas évidente.

Mais plus pragmatiquement, il est possible de se tromper dans la formalisation d’une

définition, et le logiciel Coq ne nous est d’aucune aide dans cette étape. Il arrive, par

exemple, qu’on formalise une mauvaise caractérisation d’un certain ensemble, cette

caractérisation se révélant contradictoire par la suite. Cette erreur peut passer inaper-

çue car elle n’empêchera pas de montrer que ses éléments vérifient les propriétés qui

intéressent le mathématicien (en effet, les éléments de l’ensemble vide satisfont n’im-

porte quelle propriété). Le lecteur d’une formalisation peut donc certes se dispenser

d’examiner les démonstrations acceptées par le logiciel, mais il doit vérifier conscien-

cieusement les définitions.

Pour nos développements, nous avons choisi de nous appuyer sur la bibliothèque

UniMath de Coq. Celle-ci présente quelques avantages, malgré un problème de “taille”

(que nous mentionnerons brièvement) :
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i elle comporte un certain nombre de définitions et de résultats que nous avons pu

directement exploiter ;

ii elle utilise un nombre limité de fonctionnalités du langage ;

iii elle intègre l’axiome d’univalence.

Concernant le point i, UniMath propose, entre autres, une implémentation élaborée

de la théorie des catégories et des ensembles quotients.

Le point ii permet de limiter la complexité de la théorie des types en laquelle il

nous faut faire confiance (cependant, le problème de taille dont il est question plus loin

affaiblit grandement cet argument). Il réduit également le risque d’être confronté à des

erreurs d’implémentation de Coq, en se restreignant à des fonctionnalités éprouvées.

L’axiome d’univalence mentionné par le point iii en tant que tel n’est pas utilisé

de manière cruciale. Il a cependant un certain nombre de conséquences utiles, par

exemple l’extensionnalité fonctionnelle (deux fonctions sont égales si elles envoient

chaque élément sur la même image : contrairement à ce qui se passe dans la théo-

rie des ensembles, cet énoncé est indépendant de la théorie des types de Coq), ou

encore l’extensionnalité propositionnelle (deux propositions logiquement équivalentes

sont égales) qui permet de manipuler convenablement la notion de sous-ensemble.

Pour finir, la bibliothèque UniMath présente un important défaut dû à un problème

de “taille”. En effet, elle nécessite une option de compilation qui rend le système contra-

dictoire, en rendant possible l’implémentation d’une variante du paradoxe de Russel.

Cette option est en pratique utilisée dans la définition (imprédicative) des quotients.

Nous avons ignoré l’existence de cette faille logique dans les raisonnements mathé-

matiques que nous avons par la suite formalisés.
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1.2 Long summary

This section is an English translation of the previous one.

This thesis deals with the mathematization of the notion of language of program-

ming, paying particular attention to the notion of substitution.

Research in the field of programming languages traditionally relies on a definition of

syntax modulo renaming of bound variables, with its associated operational semantics.

We are interested in mathematical tools allowing to automatically generate syntax and

semantics from basic data.

As regards the mathematization of syntax, the specification of algebraic structures

with related variables is a major issue. Two main lines of research are in competition:

nominal sets [GP99] and substitution algebras [FPT99]. In this thesis, we explore a

variant of substitution algebras, proposed by [HM07; HM10], which is based on the no-

tion of module over a monad. Following the same spirit, we tackle the mathematization

of operational semantics. To this end, we introduce first the reduction monads, then

their generalization, the operational monads: they are our mathematical approximation

of the notion of programming language.

In this thesis, we look at the specification of objects in the category of monads

(Chapters 3 and 4), the category of reduction monads (Chapter 5), and the category

of operational monads (Chapter 6), our objective being to define a formal language6,

modeled by an object of a relevant category.

The concept of characterising an object of a given type (i.e., of a certain category C)

through an initiality property is standard in computer science, where it is known under

the terms Initial Semantics and Algebraic Specification [JGW78], and has been popu-

larised by the movement of Algebra of Programming [BM97]. The general methodology

of the initial semantics can be described according to the following steps:

1. Introduce a notion of signature (for the category C).

2. Construct a notion of associated model, organizing into a category with a functor

to the category C.

3. Define the object specified by the signature as the initial model, if it exists (the

signature is then called effective).

6. Here, the word “language” encompasses data types, programming languages and logic calculi, as
well as languages for algebraic structures as considered in Universal Algebra.
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4. Find a sufficient condition for a signature to be effective7.

The models of a signature form the domain reached by the principle of recursion, which

is induced by the initiality of the object specified by the signature.

In Chapter 2, we define a general notion of signature to characterize an object of an

arbitrary category C, with its associated category of models. Such a signature is given

by a list of families of arities specifying operations or equations. The remaining chapters

provide various special cases, from the specification of the syntax to the specification

of the semantics. Each time, we identify a class of effective signatures.

Finally, we propose a protocol based on a three-level signature to specify a pro-

gramming language:

1. specification of constructions, for example a binary operation +;

2. specification of equations, for example a + b = b + a (commutativity the binary

operation);

3. specification of reductions between terms, for example 0 + a  a, by schematic

rules.

The first two points define what we call the syntax of the programming language, while

the last point concerns the semantics of language: a reduction between two terms is

a program execution path evolving from the first term to the second. As an example of

language integrating the three levels, we propose in the section 5.6 a specification of

lambda calculus with explicit substitution described in [Kes09].

In order to motivate the mathematical notions involved, we examine in this summary

the simplest functional programming language that can be considered: the pure lambda

calculus. In section 1.2.1, we give a first presentation of its syntax, and endow it with

an operation of substitution. We then explain, in section 1.2.2, how the mathematical

notion of monad can account for it, then, in the section 1.2.3, how the notion of mor-

phism of modules provides a way to express an essential property of the constructions

of the syntax: compatibility with substitution. In the section 1.2.4, we characterize the

syntax by its principle of recursion, which we formulate by a property of initiality. We ex-

plain in section 1.2.5 that specify this property of initiality requires an adequate notion

of model, which is determined by the signature: this is the opportunity to present our

7. In the literature, the word signature is often reserved for the case where such a sufficient condition
is automatically satisfied.
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general definition of signature to specify objects of an arbitrary category. We examine

then the case of syntaxes satisfying equations (section 1.2.6), before approaching, in

section 1.2.7, the specification of semantics, modeled as part of the reduction monads

by a set of reductions between each pair of terms.

1.2.1 Naive presentation of the lambda calculus syntax

We give here a presentation of the syntax of lambda calculus, as well as a overview of

some of the difficulties usually associated with such a presentation. We fix an infinite

set V of variables, and we characterize recursively all of the valid terms or expressions

of the lambda calculus:

• each variable x ∈ V is a term of the lambda calculus,

• if t and u are terms, then t u is a term, called application of t to u ;

• if t is a term, then λx.t is a term, called lambda abstraction of t, where x is a

variable that can appear in t.

The expression λx.t corresponds to the mathematical notation x 7→ t. It is about

defining a function depending on the variable x, the body of this function being given

by the term t. The expression f t corresponds to the mathematical notation f(t): it is

the application of the function f to the argument t.

In mathematics, the name of the variable chosen to define a function is purely con-

ventional: the functions x 7→ f(x) and y 7→ f(y) are identical. Let us transpose this

identification into the language of lambda calculus: we want to equalize the term λx.t

with the term λy.t′, where t′ is obtained from the term t by replacing all occurrences

of the variable x with the variable y. In this situation, we say that x is a variable bound

in λx.t, and the occurrences of x in t are then qualified as bound. Occurrences of

variables that are not bound are said free.8

Here, the terms λx.t and λy.t′ are said α-equivalent. More generally, two terms are

α-equivalents if we can rename the bound variables of one to get the other term. The

precise definition of the α-equivalence requires some precautions. For example, in the

previous case, it is implied that the variable y does not appear in t; otherwise, we would

identify (against our will) the terms λx.y and λy.y.

8. A variable can have a bound instance and a free occurrence in the same term: for example, x in
(λx.x) x is bound in λx.x, but appears freely on the right.
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Substitution is another essential aspect of the syntax of lambda calculus: given a

term t, if we replace all (free) occurrences of a variable x by the same term u, we get

a new valid expression, which we note t{x := u}. The substitution operation allows

to express the following mathematical intuition: the result of a function x 7→ t applied

to an argument u is obtained by replacing the variable x in t by u. This statement is

transposed, for the lambda calculus, in the β-equation

(λx.t) u = t{x := u}. (1.4)

This so-called unary substitution is a special case of the operation of simultaneous

substitution t{x 7→ ux}, which replaces simultaneously each variable of a term t by a

corresponding term.

Substitution only replaces the free occurrences of a variable, so as to preserve the

following property: given two terms λx.t and λy.t′ assumed α-equivalent, replacing the

same variable with the same term yields two α-equivalent terms. If the involved variable

is identical to the abstracted variable, the term (λx.t){x := u} is simply equal to λx.t:

for example (λx.x){x := u} = λx.x is indeed α-equivalent to (λy.y){x := u} = λy.y.

1.2.2 The lambda calculus monad

The concept of monad provides a mathematical counterpart to the intuitive notion of

syntax with a substitution operation. We motivate this definition by the example of the

lambda calculus. In the point of view that we adopt here, the α-equivalent terms are

considered identical: thus, λx.x = λy.y.

Instead of considering a single set of terms with a set V of variables fixed in ad-

vance, we define classes of terms which use the same set of free variables. Let L(X)

be the set of terms whose free variables are selected from the set X. Note that a term

t ∈ L(X) is also found in L(Y ) for any inclusion X ⊂ Y : indeed, if the free variables are

chosen from the elements of a set X, they are also chosen from the elements of any

superset Y of X.

Any variable is in particular a valid term: there is an inclusion varX : X → L(X) for

any set X. On the other hand, if one gives for all variable x ∈ X a term ux whose free

variables are chosen in Y , we get, from any term t ∈ L(X), a term t{x 7→ ux} ∈ L(Y ).

This simultaneous substitution operation satisfies the following properties:
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• each variable is replaced by the appropriate term:

x′{x 7→ ux} = ux′

• identity substitution is neutral:

t{x 7→ x} = t

• any succession of substitutions is equivalent to a composed substitution:

t{x 7→ ux}{y 7→ vy} = t{x 7→ ux{y 7→ vy}}

The inclusion of variables in terms and the simultaneous substitution operation satis-

fying the equations above define a monad on the category of sets. This mathematical

object is at the heart of developments that we expose in this thesis.

1.2.3 Constructions are morphisms of modules

The mathematical concepts of modules and morphisms of modules provide a frame-

work for expressing the compatibility of a construction in the syntax with the substitution

operation. We illustrate this with the t u application of the lambda calculus.

The compatibility of the application with the substitution results in the commutation

(t u){x 7→ vx} = t{x 7→ vx} u{x 7→ vx}

Informally, this equation means that there is no difference between performing the sub-

stitution before the application and performing the substitution after the application, as
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shown in the following commutative diagram:

L(X) × L(X)

(t, u)
application

''L(Y ) × L(Y )

(t{x 7→ vx}, u{x 7→ vx})

ww
substitu

tion

application
''

L(X)

t u

L(Y )

t{x 7→ vx} u{x 7→ vx}

ww substitu
tion

This observation implicitly relies on the following substitution operation of which the

collection of sets (L(X) × L(X))X :

(t, u){x 7→ vx} = (t{x 7→ vx}, u{x 7→ vx})

This substitution verifies the following properties:

• identity substitution is neutral:

(t, u){x 7→ x} = (t, u)

• any succession of substitutions is equivalent to a single compound substitution:

(t, u){x 7→ ux}{y 7→ vy} = (t, u){x 7→ ux{y 7→ vy}}

As such, the collection of sets of terms pairs defines a module over the monad L ,

which we note L × L.

The definitions of monad and module are similar. Every monad defines a module

on itself. In fact, L × L also defines a monad, but the associated substitution does not

derive from its module structure. Given a pair of terms (t, u) whose free variables are

chosen in X, and for any variable x ∈ X, a pair of terms (vx, wx) whose free variables

are chosen in Y , this monadic substitution provides a pair of terms whose free variables

are in Y . The given substitution by the module structure is not appropriate, since it does

not apply to the case where each variable is associated with a term in the monad L,
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rather than a pair of terms.

The application of lambda calculus induces a collection of functions

L(X) × L(X) → L(X)

that associate with any pair (t, u) the term t u. The commutativity property with the

aforementioned substitution makes it a morphism of modules from L × L to L, where

L is seen as a module on the homonymous monad.

Similarly, the abstraction of lambda calculus induces a collection of functions

L(X ∐ {⋆}) → L(X)

which to any term t whose free variables are chosen in the set X extended with a new

⋆ element, associates the term λ ⋆ .t. The family L(X ∐ {⋆})X is canonically equipped

with an operation of substitution and therefore defines a module. The collection of

functions of abstraction then induces a morphism of modules, due to the commutation

with substitution:

(λ ⋆ .t){x 7→ ux} = λ ⋆ .


t





x 7→





⋆ if x = ⋆

ux otherwise.








The module construction that we encounter here generalizes to any module M on

a monad R: the derived module M ′ is defined as the collection of sets (M(X ∐ {⋆}))X

equipped with a canonical substitution operation.

In this thesis, we are interested exclusively in programming languages whose con-

structions and reductions are compatible with substitution, hence our interest in the

notions of module and morphism of modules.

1.2.4 Recursion and initiality

The naive presentation of lambda calculus naturally induces a principle of recursion on

the syntax. Suppose, for example, that we want calculate the set of free variables of a

term t of the lambda calculus. To do this, we reason by recursion on the structure of

the term. If t is a x variable, then the set of its free variables is the singleton {x}. If t is

an application u v, then the set of its free variables is the union of the free variables of
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u and v. If t is a lambda abstraction λx.u, then any free variable of u different from x is

a free variable of t.

In our framework, we adopt the point of view of Initial Semantics: the principle of

recursion is then a consequence of a property of initiality. The lambda calculus is thus

characterized as the "minimal" monad provided with an application and a lambda ab-

straction, in a sense that we will illustrate with the example of computation of free

variables (this example is studied more formally in Section 3.5.2).

Consider the monad P that associates to X its powerset P(X): a variable x ∈ X

induces a "term" {x} ∈ P(X) ; the substitution t{x 7→ ux} is calculated by the meeting

∪z∈tuz. The union of two subsets provides a binary operation for P, which we call an

"application operation" by analogy with the binary application operation of the lambda

calculus. This operation associates the subset t ∪ u to the pair (t, u). Similarly, an ade-

quate abstraction operation P(X ∐ {⋆}) → P(X) is given by t 7→ t ∩ X, or equivalently,

by t 7→ t\{x}. As we will explain in the following section, these constructions make the

monad P a model of the signature of lambda calculus.

The initiality property of the mentioned lambda calculus then instantiates by the

existence of a single family of functions (freeX : L(X) → P(X))X verifying the following

properties:

• free preserves the variables:

freeX(var(x)) = {x}

(remember that for the monad P, the variable x is seen as the subset {x})

• free preserves the substitution:

freeY (t{x 7→ ux}) =
⋃

z∈freeX(t)

freeY (uz)

• free preserves the application:

free(t u) = free(t) ∪ free(u)

• free preserves abstraction:

free(λx.t) = free(t)\{x}

38



Introduction

The first two points characterize free as a morphism of monads between L and P. The

following section defines the notion of model so that L and P, with their respective

operations of application and abstraction, are models of the signature of the lambda

calculus. The morphism of monads free is then a morphism of models of this signature,

thanks to the last two points.

1.2.5 Signatures and models (Chapter 2)

In Chapter 2, we define a general notion of signature, as a list of families of arities, to

characterize an object of an arbitrary category C. An arity is given by a functor diagram

C
u

//
oo

v //
D .

where u and v are sections of the functor F : D → C, that is, functors which, post-

composed with F , yield the identity functor on C. An object c of C is euqipped with an

action of this arity if it is equipped with a morphism h : u(c) → v(c) whose image by F

is the identity morphism in c. Note that if the only morphisms mapped by F to identity

morphisms are themselves identity morphisms, then an object c is equipped with an

action if and only if u(c) = v(c). We call equational such an arity.

Objects equipped with an action of a (fixed) family of arities form a category: mor-

phisms are those of the category C satisfying a commutation condition with the actions.

This is how the category of models of a signature consisting of a single family of arities

is defined. For example, the category of algebras of an endofunctor G : C → C is the

category of models of the signature consisting of a single arity

C
(G,IdC)

//
oo

(IdC,IdC)
// C × C

where the functor C × C → C is the second projection.

As we said, a signature is a list of families of arities: a first family of arities for the

base category C, then a family of arities for the induced category of models, and so on.

We illustrate these definitions with the monadic signatures (that is, signatures spec-

ifying monads) that we consider in Chapter 3, consisting of a single arity. Consider the

example of the syntax of lambda calculus. In the previous section, we characterized it

as the initial monad equipped with an application and an abstraction. More specifically,
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generalizing the example of the powerset monad P studied in the previous section we

say that a monad R is equipped with application and abstraction if it has both a binary

operation, that is to say a morphism of modules appR : R × R → R, and a module

morphism absR : R′ → R. Equivalently, it is a monad R with a morphism of modules

from (R × R) ∐ R′ to R, that is, an action of the arity

Mon
ΣLC //
oo

Θ
//

∫
Mod (1.5)

that we now detail: Mon is the category of monads;
∫

Mod gather all the category of

modules over different monads:9 an object is a pair of a monad et a module over this

monad, and a morphism between (R, M) and (S, N) is a pair of a monad morphism

f : R → S and a module of morphisms g : M → f ∗N over the monad R, where

f ∗N is the module over R built canonically out of N , by precomposing its substitution

operations with f . The functor
∫

Mod → Mon is the first projection. A section of this

functor, or parametric module, maps functorially any monad R to a module over itself.

For example, the parametric module Θ maps a monad R to the module R (recall indeed

that any monad is canonically a module over itself). The parametric module ΣLC of

lambda calculus maps any monad R to the module (R × R) ∐ R′ over R.

A parametric module Σ induces an arity, as does ΣLC in Equation 1.5. Let us con-

sider the category of models associated to the signature consisting of this unique arity.

A model (R, ρ) (sometimes simply noted R) of this signature is then a monad R with a

module morphism ρ : Σ(R) → R. Thus, the powerset monad P and the lambda calcu-

lus monad L induce models of ΣLC. In fact, the lambda calculus is the initial model: if

R is a model, then there is a unique morphism of monads f : L → R which preserves

binary operation and abstraction.

More generally, the monad S specified by a signature induced by a parametric mod-

ule Σ is equipped with an action σ : Σ(R) → R which makes it the initial model: given

a model (R, ρ), there exists a unique morphism of monads f : S → R which preserves

the model structure, i.e., verifying for any t ∈ Σ(R)(X)

f(σ(t)) = ρ(f(t)) (1.6)

9. Categorically speaking, the category
∫

Mod is obtained by performing the Grothendieck construc-
tion for the functor mapping a monad to its category of modules.
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Such a morphism of monads constitutes what a morphism of models between (S, σ)

and (R, ρ). Note that the right-hand side of Equation 1.6 requires making sense of

the expression f(t) when t is an element of Σ(S)X : by functoriality of Σ, this is just

Σ(f). Indeed, any morphism of monads f : R → T induces a morphism of modules

Σ(R) → f ∗Σ(T ) on the monad R, morphism that we denote Σ(f), or just f .

The effectivity of a signature induced by a parametric module, that is, the existence

of the associated initial model, is not systematic.10This is nevertheless the case with

any parametric module that we call algebraic, which specifies a syntax that has a set

of n-ary operations, some of which bind variables in their arguments. The signature

of lambda calculus comes from an algebraic parametric module: the application is a

classic binary operation, while abstraction is a unary operation binding a single variable

in its unique argument.

1.2.6 Syntaxes with equations (Chapters 3 and 4)

The syntax of a language is sometimes defined modulo some equations: this is the

case of the differential lambda calculus [ER03a], of the pi calculus with its struc-

tural congruence rules, and of lambda calculus with explicit substitution as described

in [Kes09]. An example of possible equation for the lambda calculus is given by the the

β-equivalence (λx.t) u = t{x := u} for the lambda calculus, is common practice. In this

thesis, we deal with the specification of monads corresponding to languages satisfying

this kind of syntactic equations.

In Chapter 3, we study the parametric modules that we call presentable: these are,

in a way, quotients of algebraic parametric modules. A signature induced by a pre-

sentable parametric module is also called presentable. We show that such a signature

is effective (Theorem 57). It becomes possible to specify a commutative binary opera-

tion (Section 3.8.1). For that, it suffices to notice that the data of such an operation is

equivalent to the data of an operation taking as argument an unordered pair of terms.

Now let us describe the associated presentable parametric module Σcomm−bin: this is a

quotient of the algebraic parametric module Σbin of a binary operation that associates

to any monad R the module R × R. More specifically, to any monad R, the parametric

module Σcomm−bin associates the module (S2R(X)))X , where S2R(X) is the set of pairs

of elements of R(X) × R(X) quotiented by the relation (t, u) ∼ (u, t), that is, the set of

10. The counterexample 49 is the signature associating to any monad R the module (P(R(X)))X .
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unordered pairs. The syntax then comes with an operation that takes as argument a

non ordered of pair of terms, as desired.

Nevertheless, the class of presentable signatures seems limited. Consider the ex-

ample of an associative binary operation: we do not know how to give a signature,

presentable or not. Note that we can nevertheless give an intuitive definition of model

in this particular case: it is a monad R equipped with a binary operation b : R × R → R

such that for all x, y, z in R(X) the expressions b(b(x, y), z) and b(x, b(y, z)) are equal.

In other words, it is a model (R, b) of the signature of a binary operation, such that the

two morphisms of R-modules from R × R × R to R, associating to any triple (x, y, z) the

two considered expressions are equal.

In Chapter 4, we give a definition of equations generalizing this example for models

of any monadic signature Σ: this is the data,

• for each R model of the signature Σ, of two morphisms of modules eR, e′
R with the

same domain AR and codomain BR (in the example above, eR, e′
R : R×R×R → R

associate respectively b(b(t, u), v) and b(t, b(u, v)) to the same triple (t, u, v) ∈

R3(X));

• for any morphism of f : R → S models, of two morphisms of modules Af : AR →

AS and Bf : BR → BS such that following diagrams commute:

AR
eR //

Af

��

BR

Bf

��

AS
e′

S

// BS

AR

e′
R //

Af

��

BR

Bf

��

AS
e′

S

// BS

These data are submitted as usual to an additional condition of functoriality. It is said

that a model R of the signature Σ satisfies the equation when eR = e′
R. In fact, we

give an equivalent definition of equation in Chapter 4, as particular equational arities.

A monad satisfies the equation if and only it is equipped with an action of the arity.

We then consider 2-signatures: they are signatures consisting of an arity induced

by a parametric module and a family of these equational arities. A model (or 2-model)

of a 2-signature is a model R of the signature induced by the underlying parametric

module that satisfies all the equations. A 2-signature is said algebraic if the underlying

parametric module is, and if the equations are elementary (Definition 104). Technically,

they are equations whose functorial action of the domain sends surjective morphisms
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of monads on surjective morphisms of functors, and whose codomain is of the form

R 7→ (((R′)′)...)′. All the examples of presentable signature that we consider in Chap-

ter 3 can be reformulated as an algebraic 2-signature, inducing the same category

of models (up to isomorphism). We show that any algebraic 2-signature is effective.

(Theorem 107).

1.2.7 Semantics (Chapters 5 and 6)

It is possible to specify by a 2-signature the syntax of the lambda calculus quotiented

by the β-equivalence (1.1): the terms (λx.t) u and t{x := u} are thus equalized. How-

ever, this equation is usually oriented, and considered as an execution step when we

consider lambda calculus as a functional programming language. As such, it is more

appropriate to integrate the β-reduction into the semantics of language, rather than

impose the β-equation in the syntax. This motivates the concept of reduction monad,

which we introduce in the chapter 5, extending that of monad, to account for the ad-

ditional structure of reduction. Intuitively, a reduction monad is a monad R equipped,

for each pair of terms (t, u) ∈ R(X), with a set of reductions between t and u that we

note t ◮ u, and an associated substitution operation: for any family of terms (vx)x∈X

with vx ∈ R(Y ), for any reduction m between t and u, this substitution associates a re-

duction m{x 7→ vx} between t{x 7→ vx} and u{x 7→ vx}. Equations analogous to those

involved in the definition of module are required.

In this context, a reduction signature consists of a signature for monads, that is to

say a 2-signature, and a family of reduction rules. For example, the reduction rule for

the congruence of the application of the lambda calculus is informally expressed as

follows, by explicitly designating the application of the lambda calculated by the app

construction:
T  T ′ U  U ′

app(T, U) app(T ′, U ′)

This rule breaks down into three pairs of terms: the hypotheses (T, T ′) and (U, U ′),

and the conclusion (app(T, U), app(T ′, U ′)), constructed from the “metavariables” T , T ′,

U , and U ′. These parameterized pairs induce pairs of morphisms (h1,1(R), h1,2(R)),

(h2,1(R), h2,2(R)) and (c1(R), c2(R)) of R-modules between R4 and R for any model R

of the monadic signature of lambda calculus. In addition, this construction is functorial.

More precisely, if f : R → S is a morphism of models, then the following diagrams are
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commutative:

R4

f4

��

hi,j(R)
// R

f
��

S4

hi,j(S)
// S

R4

f4

��

ci(R)
// R

f
��

S4

ci(S)
// S

Thus formulated, this rule of congruence fits into our definition of reduction rule de-

tailed in Section 5.3. An action of this rule in a reduction monad R equipped with a

binary operation app is given by a reduction app-cong(mT , mU) between app(T, T ′) and

app(U, U ′), for all (T, T ′, U, U ′) ∈ R4(X), any reduction mT between T and T ′, and any

reduction mU between U and U ′. It is moreover necessary that app-cong commutes with

substitution, that is, the following equation is verified:

app-cong(mT , mU){x 7→ vx} = app-cong(mT {x 7→ vx}, mU{x 7→ vx})

The main theorem (Theorem 150) of Chapter 5 asserts the effectivity of a reduction

signature composed of an effective 2-signature and any family of reduction rules.

Let us detail the involved notion of model here: it is a reduction monad equipped

with

• a model structure of the 2-signature for the underlying monad,

• an action of each reduction rule of the signature.

The initial model is built from the initial model of the 2-signature, and the additional

structure of reductions is built inductively from the reduction rules. Besides some sig-

natures for variants of lambda calculus with β-reduction, we propose in the section 5.6

a signature for the lambda calculus with explicit substitution, as described in [Kes09], as

a set of opertaions subject to a syntactic equation, with the addition of reduction rules

between terms. This specification is done in three steps: a 1-signature for language

operations, a 2-signature taking into account the syntactic equation, and a reduction

signature specifying the relevant reductions.

In Chapter 6, we generalize these developments, and deal with new examples, such

as lambda calculus in call by value with big-step reductions: the syntax is that of lambda

calculus, but in this variant, a term reduces to a value, that is to say in a variable or

a lambda abstraction. The notion of value is not stable by arbitray substitutions: for

example, x{x := y y} = y y is not a value. On the other hand, it is stable by substitution
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of values: v and (wx)x∈X are values, then v{x 7→ wx} is a value. We can thus define

the monad LCv of the values of lambda calculus: it is equipped with an inclusion in the

monad L of lambda calculus that allows us to consider the latter as a module over LCv.

In this variant of lambda calculus, the β-reduction is formulated as:

t λx.t′ u u′ t′{x := u′} v

t u v

Another reduction rule ensures that any value, as a term, reduces to itself.

The reductions are stable by substitution: if t ∈ L(X) reduces to a value v ∈ LCv(X)

and (ux)x∈X is a family of values indexed by the set of free variables X, then t{x 7→ ux}

reduces to v{x 7→ ux}.

The collection of sets of reductions between a term and a value is defined by in-

duction, by successively applying the redution rules. It is equipped with an adequate

substitution operation, as explained previously.

Note that a lambda term can be represented by a binary tree whose leaves are

values and the nodes correspond to applications. This induced representation yields a

bijection: such a binary tree determines a lambda term in a unique way.

(x (λy.t)) z ⇔ z

x λy.t

Thus we can identify the module L of lambda terms with the composition B ·LCv, where

B is the monad of binary trees: B(X) is the set of binary trees whose leaves are chosen

in X.

Inspired by this example, we define the concept of operational monad. It consists of

• a monad R (in our example, R = LCv);

• a pair (T1, T2) of endofunctors on Set (in our for example, T1 = B and T2 = Id);

• a set of reductions between t and u for each pair (t, u) ∈ T1(R(X)) × T2(R(X));

• an appropriate substitution operation on these sets of reductions.

We then define the operational signatures that allow to specify this type of mathemati-

cal object, and prove an initiality result for these signatures (Theorem 207).
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1.2.8 Formalization

Proofs of the main results of chapters 3 and 4 have been verified using the Coq proof

assistant. This is a software in which it is possible to reproduce (or formalize) mathe-

matical definitions as well as proofs which, if validated by the software, are indisputable

in principle. This guarantee must in practice be qualified: software bugs allowing to

prove contradictory statements are regularly found (and corrected). Furthermore, the

correspondance between statements proved in Coq’s type theory and mathematical

statements is a non obvious theoretical question. More pragmatically, it is possible to

make a mistake in the formalization of a definition, and the software Coq does not

help in this step. It happens, for example, that we formalize a wrong characterization

of a given set, this characterization being contradictory. This error may not be noticed

because it does not prevent to show that the elements of this set satisfy some mathe-

matical property, as the elements of the empty set satisfy any property. The reader of

a formalization can thus certainly dispense to check the demonstrations, but he must

pay close attention to the definitions.

For our developments, we chose to rely on the Coq library UniMath. This has some

advantages, despite a "size" issue (which we will briefly mention):

i it contains useful definitions and results for our purpose;

ii it uses a limited amount of language features;

iii it incorporates the axiom of univalence and many of its consequences.

Regarding point i, UniMath proposes, among other things, an implementation of the

theory of categories, and quotients of sets.

Point ii limits the complexity of the type theory in which we must trust, although this

argument is highly questionable in view of the size issue. It also reduces the risk to be

confronted with implementation bugs, by restricting itself to tried and tested features of

Coq.

The axiom of univalence mentioned in point iii as such is not used crucially. It has

the advantage, however, of gathering in this single axiom a number of useful conse-

quences, for example functional extensionality (two functions are equal if they send

each element on the same image), or propositional extensionality (logically equivalent

propositions are equal) which makes it possible to handle the notion of subset.
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Finally, the UniMath library has a major flaw due to a "size" issue. Indeed, it requires

a compilation option that makes the system contradictory, allowing the implementation

of a variant of Russel’s paradox. This option is in practice used in the (impredicative)

definition of quotients. We have ignored the existence of this particular inconsistency in

the system in the proofs that we have formalized. We thus believe that our formalization

does not exploit this logical flaw.
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1.3 Synopsis

We give a synopsis of this thesis before presenting related work.

Chapter 2 concerns an arbitrary category C and presents a general notion of sig-

nature to specify objects of this category. Each of other chapters concerns a single

category C and provides a class of effective signatures specifying objects of this cate-

gory.

In Chapters 3 and 4, we have C = Mon the category of monads on Set. They are

respectively adapted from [Ahr+19a] High-level signatures and initial semantics and

[Ahr+19b] Modular specification of monads through higher-order presentations.

In Chapter 5, C is the category of reduction monads, which model both the syntax

(as a monad) and the semantics of a language. We generalize them in Chapter 6 where

we focus on the category of operational monads.

We suppose a certain familiarity with category theory and basic notions such as

categories, functors, natural transformations, monads.

1.4 Computer-checked formalization

The intricate nature of our main results made it desirable to provide a mechanically

checked proof of these results. We achieved this work for Chapters 3 and 4.

Our computer-checked proof is based on the UniMath library [VAG+], which itself is

based on the proof assistant Coq [CoqDev19]. The main reasons for our choice of proof

assistant are twofold: firstly, the logical basis of the Coq proof assistant, dependent type

theory, is well suited for abstract algebra, in particular, for category theory. Secondly,

a suitable library of category theory, ready for use by us, had already been developed

[AL17].

The formalization can be consulted on https://github.com/UniMath/largecatmodules.

A guide is given in the README.

For the purpose of this thesis, we refer to a fixed version of our library, with the short

hash 50fd617. This version compiles with version 10839ee of UniMath.

Throughout the thesis, statements are annotated with their corresponding identifiers

in the formalization. These identifiers are also hyperlinks to the online documentation

stored at https://initialsemantics.github.io/doc/50fd617/index.html.
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1.5 Related work

1.5.1 General signatures

A general notion of signature as an endofunctor with strength11 (on a monoidal cate-

gory) is suggested in the work on syntax of Fiore and his collaborators, starting with

[FPT99]. This notion is also studied in Matthes and Uustalu [MU04] and Ghani, Uustalu,

and Hamana [GUH06]. Their treatment rests on the technical device of strength that we

avoid here. Any such signature gives rise to a signature in our sense (cf. Proposition 44

for the particular case of specifying monads).

Fiore and Hur’s equational systems [FH09] yield a notion of signature which gen-

eralize signatures with strength (see [FH09, Section 6.1]). In this article, the authors

provide a notion of equation for an algebra of an endofunctor, yielding a subcategory of

algebras satisfying this equation as a definition of category of models, equipped with a

forgetful functor to the base category. Equational systems yield particular signatures in

our sense (Example 14), but contrary to the work of Fiore and Hur, we don’t provide a

general sufficient condition ensuring an initiality result.

1.5.2 Syntax and monads

In a classical paper, Barr [Bar70] explained the construction of the “free monad” gener-

ated by an endofunctor12. In another classical paper, Kelly and Power [KP93] explained

how any finitary monad can be presented as a coequalizer of free monads13. There,

free monads correspond to our initial models of a signature by an algebraic parametric

module without any binding construction.

Fiore, Plotkin, and Turi [FPT99] develop a notion of substitution monoid. Following

[ACU15], this setting can be rephrased in terms of relative monads and modules over

them [Ahr16]. Accordingly, our present contributions could probably be customised for

this “relative” approach.

Hamana [Ham03] proposes initial algebra semantics for “binding term rewriting sys-

tems”, based on Fiore, Plotkin, and Turi’s presheaf semantics of variable binding and

Lüth and Ghani’s monadic semantics of term rewriting systems [LG97b].

11. A (tensorial) strength for a functor F : V → V is given by a natural transformation βv,w : v ⊗ Fw →
F (v ⊗ w) commuting suitably with the associator and the unitor of the monoidal structure on V .

12. Fiore and Saville [FS17] give an enlightening generalization of the construction by Barr.
13. Their work has been applied to various more general contexts (e.g. [Sta13]).
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The work by Fiore with collaborators [FPT99; FH10; FM10] and the work by Uustalu

with collaborators [MU04; GUH06] share two traits: firstly, the modelling of variable

binding by nested abstract syntax, and, secondly, the reliance on tensorial strengths in

the specification of substitution.

The signatures for monads that we present here is actually closely related to that of

Fiore and collaborators:

• Our notion of equations and that of model for them in Chapter 4 is very close

to the notion of equational systems and that of algebra for them in [FH09]: in

particular, the preservation of epimorphisms, which occurs in their construction

of inductive free algebras for equational systems, appears here in our definition

of elementary equation.

• In [FH10], Fiore and Hur introduce a notion of equation based on syntax with

meta-variables: essentially, a specific syntax, say, T := T (M, X) considered there

depends on two contexts: a meta-context M , and an object-context X. The terms

of the actual syntax are then those terms t ∈ T (∅, X) in an empty meta-context.

An equation for T is, simply speaking, a pair of terms in the same pair of contexts.

Transferring an equation to any model of the underlying algebraic 1-signature

is done by induction on the syntax with meta-variables. The authors show a

monadicity theorem which straightforwardly implies an initiality result very simi-

lar to ours. That monadicity result is furthermore an instance of a more general

theorem by Fiore and Mahmoud [FM10, Theorem 6.2].

• Translations between languages similar to the translation we present in Sec-

tion 5.7 are also studied in [FM10]. It would be interesting to understand formal

connections.

• At this stage, our work only concerns untyped syntax, but we anticipate it will

generalize to the sorted setting as in [FH10] (see also the more general [FH13]).

We should mention several other mathematical approaches to syntax.

Gabbay and Pitts [GP99] employ a different technique for modelling variable bind-

ing, based on nominal sets. This nominal approach to binding syntax has been actively

studied14. We highlight some contributions:

14. The approaches by Fiore and collaborators and Gabbay and Pitts [GP99] are nicely compared by
Power [Pow07], who also comments on some generalization of the former approach.
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• Clouston [Clo10] discusses signatures, structures (a.k.a. models), and equations

over signatures in nominal style.

• Fernández and Gabbay [FG10] study signatures and equational theories as well

as rewrite theories over signatures.

• Kurz and Petrisan [KP10] study closure properties of subcategories of algebras

under quotients, subalgebras, and products. They characterize full subcategories

closed under these operations as those that are definable by equations. They

also show that the signature of the lambda calculus is effective, and study the

subcategory of algebras of that signature specified by the β- and η-equations.

Yet another approach to syntax is based on Lawvere Theories. This is clearly il-

lustrated in the paper [HP07], where Hyland and Power also outline the link with the

language of monads and put in an historical perspective.

Finally, let us mention the classical approach based on Cartesian closed categories

recently revisited and extended by T. Hirschowitz [Hir13].

1.5.3 Semantics

Structural operational semantics (SOS) are tackled by the seminal paper of Turi and

Plotkin [TP97]. It introduced a largely accepted setting, rich of results and examples.

However, this setting does not cover languages with binding constructions. The exten-

sion of this setting to the binding cases has been explored, notably by Staton [Sta08],

but it does not cover lambda calculus. Several first steps towards it have been proposed

[Ahr16; LG97a], where reductions are modeled by preorders. We propose a new one,

based on graphs of reductions, starting with the reduction signatures in Chapter 5.

They allow for the specification of

1. term constructions, including constructions that bind variables, e.g., abstraction;

2. syntactic equalities between terms; and

3. reduction rules, including reduction rules with hypotheses, e.g., congruence rules

for the term constructions.

Ahrens [Ahr16] gives a notion of signature that allows for the specification of syntax

with binding operations, as well as reduction rules on that syntax. The format for re-

duction rules considered there does not allow expressing rules with hypotheses, e.g.,

51



Introduction

the aforementioned congruence rules. Instead, the congruence rules are hard-coded

in [Ahr16], so that the head-β-reduction (and other limited variants) cannot be specified

by that formalism. The constructors are modelled by morphisms of modules between

modules into preordered sets, i.e., by families of preorder-preserving maps.

Signatures for rewriting systems, and initial semantics for them, are given by Hamana

[Ham03] under the name “binding term rewriting system (BTRS)”. Hamana considers

preorder-valued functors. There, signatures for rewrite rules allow for rules without hy-

potheses only, though some rules with hypotheses, in particular, congruence rules,

seem to be hard-coded in Hamana’s framework (see [Ham03, Figure 3]).
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CHAPTER 2

GENERAL SIGNATURES

In this chapter, we give an abstract notion of signature for specifying objects of a cat-

egory C. All the notions of signatures presented in this manuscript are instances of

these. In Chapters 3 and 4, we study the case when C = Mon the category of monads

on sets; in Chapter 5, we focus on the case when C is the category of reduction mon-

ads, and in Chapter 6, we consider the more general category of operational monads.

For each signature S, there is an associated category of models CS equipped with

a forgetful functor US : CS → C. For example, the category of models of the empty

signature is just C. By definition, the object of C specified by a signature S is the image

by US of the initial model, if any.

For each signature S, we define a notion of S-arity, specifying operations or equa-

tions. A family E of such arities induces an extended signature S, E, equipped with a

functor UE from CS,E to CS, factorizing US,E : CS,E → C.

Any signature is constructed inductively in this manner from the empty signature.

2.1 Arities over a category

We first define arities over a category C, fixed in this section. Then, S-arities will be

defined as arities over the category of models of the signature S.

We define what is an action of an arity in an object c ∈ C, and the associated notion

of compatible morphism of C between objects equipped with such an action.

We begin by introducing the general notion of arity over a category in Section 2.1.1,

before considering the particular case of equational arities in Section 2.1.2, allowing to

specify equations.

2.1.1 General arities

Definition 1. An arity over C is a quadruple (D, a, u, v) consisting of:
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• a category D;

• a functor a : D → C;

• two sections u, v : C → D of a : D → C.

Remark 2. We will mainly consider the case where a is a Grothendieck fibration. In

this case, thanks to the Grothendieck construction, an arity over C can be defined as a

pseudo functor a : Co → Cat, and two natural transformations u, v : 1 → a, where 1 is

the terminal functor from C to Cat.

Example 3. Any endofunctor F : C → C induces an arity (D, a, u, v) specifying algebra

structures for this endofunctor, as we will explain in Example 6:

• a : C × C → C is the first projection;

• u = 〈IdC, F 〉 maps an object c to the pair (c, F (c));

• v is the diagonal functor, mapping an object c to (c, c).

Next, we define the notion of action of an arity in an object of C, and the associated

notion of compatible morphism of C.

Definition 4. An action of an arity A = (D, a, u, v) in an object c ∈ ob C is a morphism

h : u(c) → v(c) such that a(h) = idc.

Definition 5. Let A = (D, a, u, v) be an arity over C. Let c1 and c2 be two objects of C

equipped with actions h1 : u(c1) → v(c1) and h2 : u(c2) → v(c2). A morphism f : c1 → c2

is compatible with the actions h1 and h2 if the following diagram commutes:

u(c1)
h1 //

u(f)

��

v(c1)

v(f)

��

u(c2) h2

// v(c2)

Example 6. Let F be an endofunctor on C. In Example 3, we constructed from it an

arity . An action of it in an object c ∈ ob C is a morphism h : F (c) → c. A compatible

morphism between c and c′ equipped with actions h and h′ is a morphism between the

induced algebras of F .
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2.1.2 Equational arities

Definition 7. An arity (D, a, u, v) over C is said equational if for every object c ∈ C,

the category a−1(c) is discrete (that is, any morphism is an identity morphism), where

a−1(c) is the subcategory of objects of D mapped to c and morphisms mapped to idc

by a.

Remark 8. Let (D, a, u, v) be an arity. If a is a Grothendieck fibration, then this arity is

equational if and only if a is a discrete fibration.

Remark 9. An action of an equational arity (D, a, u, v) in an object c ∈ C is always an

identity morphism. Thus, an object c is equipped with an action if and only if uc = vc.

Any morphism is then compatible with actions of an equational arity.

Example 10. An equational system [FH09] induces an equational arity over a category

of algebras. More precisely, an equational system S = (C : Σ ⊲ Γ ⊢ L = R) consists

of endofunctors Σ, Γ : C → C, and functors L, R : Σ -alg → Γ -alg between categories

of algebras preserving the underlying object, that is, such that the following diagram

commutes:

Σ -alg
L //

R
//

""

Γ -alg

||

C

.

Such a structure defines an equational arity (D, a, u, v) over the category Σ -alg as

follows.

• D is the category of objects c ∈ C equipped with an algebra structure for both Σ

and Γ. More formally, D is defined as the pullback

D //

a

��

y
Γ -alg

��

Σ -alg // C

.

• a : D → Σ -alg is induced by the definition of D as a pullback.

• u maps a Σ-algebra c to the underlying object of c equipped with the same Σ-

algebra structure and the Γ-algebra given by L(c).
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• v maps a Σ-algebra c to the underlying object of c equipped with the same Σ-

algebra structure and the Γ-algebra given by R(c).

Then, the category of S-algebras [FH09, Definition 3.4] is retrieved as the category of

objects of Σ -alg equipped with an action of this arity and compatible morphisms. More

concretely, it is the full subcategory of algebras of Σ that have the same image by L

and R.

2.1.3 Family of arities and their models

Definition 11. Let E be a family of arities over C. The category CE of models of E is

defined as follows:

• objects are objects c of C equipped with an action of each arity in E;

• morphisms are those which are compatible with the action of any arity in E.

• composition and identities are the obvious ones.

It is equipped with a forgetful functor UE : CE → C.

2.2 Signatures over a category

Here we define signatures and their models.

Definition 12. A signature over a category C is a finite list E1, . . . , En consisting of

families of arities over categories such that:

• E1 is a family of arities over C.

• each Ei is a family of arities over the category of models of Ei−1, for i > 1.

The empty list is called the empty signature. The category of models CS of a sig-

nature S = E1, . . . , En is defined as the category of models of En, if n > 0, or as C

otherwise. Given a signature S, a S-arity is an arity over the category of models CS.

Each signature S = E1, . . . , En is equipped with a forgetful functor US from its category

of models to C defined as the composition:

CEn UEn
// CEn−1 UEn−1

// . . . // CE1 UE1
// C
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2.3. Pulling back arities and signatures

An action of a signature S = E1, . . . , En in an object c ∈ ob C is an action of E1 in c,

inducing a model m1 of E1, then an action of E2 in c, inducing a model m2 of E2, and

so on.

Example 13. An endofunctor Σ : C → C induces a signature consisting of a single

arity constructed in Example 3: it is easily verified that the category of models of this

signature is the category of algebras of Σ.

Example 14. An equational system C : Σ ⊲ Γ ⊢ L = R yields a signature extending the

one induced by the endofunctor Σ (as explained in Example 13) with a singleton fam-

ily consisting of the equational arity induced by the equational system (Example 10).

The associated category of models coincides with the category of algebras of this

equational system, as defined in [FH09, Definition 3.4]. More concretely, as explained

in Example 10, models are objects of C equipped with a Σ-algebra structure that is

mapped to the same image by L and R, and morphisms are algebra morphisms.

Definition 15. A signature S is said effective if its category of models has an initial

object Ŝ.

In the following chapters, we consider different instances of signatures:

• In Chapter 3, signatures consist of a single arity over the category of monads.

• In Chapter 4, these signatures are extended with a family of equational arities.

• In Chapters 5 and 6, we introduce the category of reduction monads, and then of

their generalization, the operational monads. They are monads with additionnal

structure. Thus, signatures over the category of monads are relevant for spec-

ifying the monadic part: we explain how to make it formal in the next section.

In Chapter 5, we construct arities specifying the additional structure of reduction

monads. Signatures for operational monads of Chapter 6 extend them with arities

for specifying the state functors.

2.3 Pulling back arities and signatures

In this section, we explain how a functor F : B → C can turn any signature S over C

into a pullback signature F ∗S over B. This will be used in Chapters 5 and 6 to upgrade

signatures for monads into signatures for reduction or operational monads. We explain

how it works for arities.
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Part , Chapter 2 – General signatures

2.3.1 Pullback of arities

In this section, we fix a functor F : B → C.

Definition 16. Let A = (D, a, u, v) be an arity over C. The pullback of A along F is the

arity F ∗A = (D′, a′, u′, v′) over B as follows:

• a′ : D′ → B is the pullback of a along F , considering the pullback diagram

D′ d //

y

a′

��

D

a
��

B
F

// C

• u′ and v′ are the universal morphisms from B to D′ factorizing the cones

B
u·F //

idB

��

D

a
��

B
F

// C

B
v·F //

idB

��

D

a
��

B
F

// C

Definition 17. Let E be a family of arities over C. The pullback of E along F is the

family of arities F ∗E over B consists of the pullbacks of arities of E along F .

The process of taking the category of models commutes with pullback:

Proposition 18. Let E be a family of arities over C. Then there is a functor pF,E :

BF ∗E → CE inducing a pullback diagram

BF ∗E
pF,E

//

UF ∗E

��

y
CE

UE

��

B
F

// C

2.3.2 Pullback of signatures

In this section, we fix a functor F : B → C.

Definition 19. The pullback F ∗S of a signature S = E1, . . . , En over C along F is the

signature p∗
1E1, p∗

2E2, . . . , p∗
nEn over B, where the functors pi are defined inductively as

follows:

58



2.3. Pulling back arities and signatures

• p1 : B → C is F ;

• pi : Bp∗
i−1Ei−1 → CEi−1 is ppi−1,Ei−1

for i > 1.

We denote by pF,S : BF ∗S → CS the functor F if n = 0, or ppn,En otherwise.

Again, the process of taking the category of models commutes with pullback:

Proposition 20. Let S be a signature over C. Then we have the following pullback

diagram:

BF ∗S
pF,S

//

UF ∗S

��

y
CS

US

��

B
F

// C

Pullbacks allow to combine multiple signatures over a category C into a single one:

Definition 21. We define the product S1 × · · · × Sn of signatures S1, . . . , Sn over C

as the signature over C defined inductively on n as follows:

• if n = 0, then the resulting signature is the empty signature;

• if n > 0, then the resulting signature is the pullback of S1 × · · · × Sn−1 along

USn : CSn
→ C.
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CHAPTER 3

PRESENTABLE SIGNATURES FOR

MONADS

The present chapter is adapted from [Ahr+19a]. We identify the class of presentable

signatures over the category of monads and we show that they are effective. Monads

account for the syntax of some untyped programming languages with variable binding.

These signatures are fairly more general than those introduced in some of the semi-

nal papers on this topic [FPT99; HHP93; GP99], which are essentially given by a family

of lists of natural numbers indicating the number of variables bound in each subterm of

a syntactic construction (we call them “algebraic signatures” below).

Examples are given in Section 3.8.

This work improves on a previous attempt [HM12] in two main ways: firstly, it gives

a much simpler condition for effectivity; secondly, it provides computer-checked proofs

for all the main statements.

Organisation of the chapter

Section 3.1 gives a succinct account of the notion of module over a monad, which is the

crucial tool underlying our definition of presentables signatures. Signatures and models

are described in Sections 3.2 and 3.3 respectively. In Section 3.4, we give our definition

of a syntax, and we present our first main result, a modularity result about merging

extensions of syntax. In Section 3.5, we show through examples how recursion can be

recovered from initiality. Our notion of presentation of a signature appears in Section

3.6. There, we also state our second main result: presentable signatures generate a

syntax. The proof of that result is given in Section 3.7. Finally, in Section 3.8, we give

examples of presentable signatures.
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Part I, Chapter 3 – Presentable signatures for monads

3.1 Categories of modules over monads

The main mathematical notion underlying our presentable signatures is that of mod-

ule over a monad. In this section, we recall the definition and some basic facts about

modules over a monad in the specific case of the category Set of sets, although most

definitions are generalizable. See [HM10] for a more extensive introduction on this

topic.

3.1.1 Modules over monads

A monad (over Set) is a monoid in the category Set −→ Set of endofunctors of Set, i.e.,

a triple R = (R, µ, η) given by a functor R : Set −→ Set, and two natural transformations

µ : R · R −→ R and η : I −→ R such that the following equations hold:

µ ◦ µR = µ ◦ Rµ, µ ◦ ηR = 1R, µ ◦ Rη = 1R .

Given two monads R = (R, η, µ) and R′ = (R′, η′, µ′), a morphism f : R → R′ of monads

is given by a natural transformation f : R −→ S between the underlying functors such

that

f ◦ η = η′, f ◦ µ = µ′ ◦ (f · f) .

Let R be a monad.

Definition 22 (Modules). A left R-module is given by a functor M : Set −→ Set equipped

with a natural transformation ρM : M · R −→ M , called module substitution, which is

compatible with the monad composition and identity:

ρM ◦ ρMR = ρM ◦ Mµ, ρM ◦ Mη = 1M .

There is an obvious corresponding definition of right R-modules that we do not

need to consider in this thesis. From now on, we will write “R-module” instead of “left

R-module” for brevity.

Example 23. • Every monad R is a module over itself, which we call the tautologi-

cal module.

• For any functor F : Set −→ Set and any R-module M : Set −→ Set, the composi-

tion F · M is an R-module (in the evident way).
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3.1. Categories of modules over monads

• For every set W we denote by W : Set −→ Set the constant functor W := X 7→ W .

Then W is trivially an R-module since W = W · R.

• Let M1, M2 be two R-modules. Then the product functor M1 × M2 is an R-module

(see Proposition 25 for a general statement).

Definition 24 (Linearity). We say that a natural transformation of R-modules τ : M −→

N is linear 1 if it is compatible with module substitution on either side:

τ ◦ ρM = ρN ◦ τR.

We take linear natural transformations as morphisms among modules. It can be easily

verified that we obtain in this way a category Mod(R).

Limits and colimits in the category of modules can be constructed pointwise:

Proposition 25 (LModule_Colims_of_shape, LModule_Lims_of_shape). Mod(R) is com-

plete and cocomplete.

3.1.2 The total category of modules

We already introduced the category Mod(R) of modules with fixed base R. It is often

useful to consider a larger category which collects modules with different bases. To this

end, we need first to introduce the notion of pullback.

Definition 26 (Pullback). Let f : R −→ S be a morphism of monads and M an S-

module. The module substitution M · R
Mf
−→ M · S

ρM

−→ M defines an R-module which

is called pullback of M along f and noted f ∗M .2

Definition 27 (The total module category). We define the total module category
∫ R Mod(R),

or
∫

Mod for short, as follows3:

1. Given a monoidal category C, there is a notion of (left or right) module over a monoid object in C
(see, e.g., [Bra14, Section 4.1] for details). The term “module” comes from the case of rings: indeed,
a ring is just a monoid in the monoidal category of Abelian groups. Similarly, our monads are just the
monoids in the monoidal category of endofunctors on Set, and our modules are just modules over these
monoids. Accordingly, the term “linear(ity)” for morphisms among modules comes from the paradigmatic
case of rings.

2. The term “pullback” is standard in the terminology of Grothendieck fibrations (see Proposition 28).
3. Our notation for the total category is modelled after the category of elements of a presheaf, and,

more generally, after the Grothendieck construction of a pseudofunctor.
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Part I, Chapter 3 – Presentable signatures for monads

• its objects are pairs (R, M) of a monad R and an R-module M ;

• a morphism from (R, M) to (S, N) is a pair (f, m) where f : R −→ S is a morphism

of monads, and m : M −→ f ∗N is a morphism of R-modules.

Composition and identity morphisms are the expected ones. The category
∫

Mod comes

equipped with a forgetful functor to the category of monads, given by the projection

(R, M) 7→ R.

Proposition 28 (cleaving_bmod). The forgetful functor
∫

Mod → Mon is a Grothendieck

fibration with fibre Mod(R) over a monad R. In particular, any monad morphism f :

R −→ S gives rise to a functor

f ∗ : Mod(S) −→ Mod(R)

given on objects by Definition 26.

Proposition 29 (pb_LModule_colim_iso, pb_LModule_lim_iso). For any monad mor-

phism f : R −→ S, the functor f ∗ : Mod(S) −→ Mod(R) preserves limits and colimits.

3.1.3 Derivation

For our purposes, important examples of modules are given by the following general

construction. Let us denote the final object of Set as ∗.

Definition 30 (Derivation). For any R-module M , the derivative of M is the functor

M ′ := X 7→ M(X + ∗). It is an R-module with the substitution ρM ′

: M ′ · R −→ M ′

defined as in the diagram

M(R(X) + ∗)
ρM′

X //

M( [R(iX), ηX+∗◦∗] )

��

M(X + ∗)

M(R(X + ∗))
ρM

X+∗

66
(3.1)

where iX : X −→ X + ∗ and ∗ : ∗ −→ X + ∗ are the canonical injections.

Derivation is a continuous and cocontinuous endofunctor on the category Mod(R)

of modules over a fixed monad R. In particular, derivation can be iterated: we denote

by M (k) the k-th derivative of M .
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Definition 31. Given a list of nonnegative integers (a) = (a1, . . . , an) and a left module

M over a monad R, we denote by M (a) = M (a1,...,an) the module M (a1) × · · · × M (an).

Observe that, when (a) = () is the empty list, M () is the final module ∗.

Definition 32. For every monad R and R-module M we have a natural substitution

morphism σ : M ′ ×R −→ M defined by σX = ρM
X ◦wX , where wX : M(X +∗)×R(X) →

M(R(X)) is the map

wX : (a, b) 7→ M([ηX , b])(a), b : ∗ 7→ b.

Lemma 33 (substitution_laws). The transformation σ is linear.

The substitution σ allows us to interpret the derivative M ′ as the “module M with

one formal parameter added”.

Abstracting over the module turns the substitution morphism into a natural transfor-

mation that is the counit of the following adjunction:

Proposition 34 (deriv_adj). The endofunctor of Mod(R) mapping M to the R-module

M × R is left adjoint to the derivation endofunctor, the counit being the substitution

morphism σ.

3.2 Signatures for monads

In this section, we consider particular signatures over the category of monads consist-

ing of a single arity in the sense of Chapter 2.

The purpose of a signature is to act on monads. An action of a signature Σ in a

monad R is a morphism from the module Σ(R) to the tautological one R. For instance,

in the case of the signature Σ of a binary operation, we have Σ(R) := R2 = R × R.

Hence a signature assigns, to each monad R, a module over R in a functorial way: this

motivates the definition of parametric modules.

Definition 35. A parametric module is a section Σ of the forgetful functor from the

category
∫

Mod to the category Mon, that is, a functor Σ :
∫

Mod → Mon making the
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Part I, Chapter 3 – Presentable signatures for monads

following diagram commute:

Mon
Σ //

∫
Mod

zz

Mon

We give first a basic example:

Example 36. The assignment R 7→ R yields a parametric module, which we denote by

Θ.

Remark 37. Any parametric module Σ defines uniquely a signature over the category

of monads consisting of a single arity (
∫

Mod, U, Σ, Θ), where U :
∫

Mod → Mon is the

canonical forgetful functor. In this Chapter, we only consider such signatures, which we

take as a definition of signature in the formalization. In the following we may use the

same expression to designate both the parametric module and the induced signature.

Now we give some basic examples of parametric modules, inducing signatures.

Example 38. 1. For any functor F : Set −→ Set and any parametric module Σ, the

assignment R 7→ F · Σ(R) yields a parametric module which we denote F · Σ.

2. The assignment R 7→ ∗R, where ∗R denotes the final module over R, yields a

parametric module which we denote by ∗.

3. Given two parametric modules Σ and Υ, the assignment R 7→ Σ(R)×Υ(R) yields

a parametric module which we denote by Σ × Υ. For instance, Θ2 = Θ × Θ is the

parametric module of any (first-order) binary operation, and, more generally, Θn

is the parametric module of n-ary operations.

4. Given two parametric modules Σ and Υ, the assignment R 7→ Σ(R)+Υ(R) yields

a parametric module which we denote by Σ + Υ. For instance, Θ2 + Θ2 yields the

signature of a pair of binary operations.

The last example above explains how we can combine multiple signatures induced

by parametric modules into a single one. Hence we do not need to distinguish be-

tween such arities—used to specify a single syntactic construction—and families of

such arities—used to specify a family of syntactic constructions. Our notion of signa-

tures that we present here allow us to do both (via Proposition 42 for families that are

not necessarily finitely indexed).
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Elementary signatures are of a particularly simple shape:

Definition 39. For each sequence of nonnegative integers s = (s1, . . . , sn), the assign-

ment R 7→ R(s1) × · · · × R(sn) (see Definition 31) is a parametric module, which we

denote by Θ(s), or by Θ′ in the specific case of s = (1). Parametric modules of this form

and their induced signatures are said elementary.

Remark 40. The product of two elementary parametric modules is elementary.

Definition 41. A morphism between two parametric modules Σ1, Σ2 : Mon −→
∫

Mod

is a natural transformation m : Σ1 −→ Σ2 which, post-composed with the projection
∫

Mod −→ Mon, becomes the identity. Parametric modules form a subcategory PMod

of the category of functors from Mon to
∫

Mod.

Limits and colimits of parametric modules can be easily constructed pointwise:

Proposition 42 (Sig_Lims_of_shape, Sig_Colims_of_shape, Sig_isDistributive). The

category of parametric modules is complete and cocomplete. Furthermore, it is dis-

tributive: for any parametric module Σ and family of parametric modules (So)o∈O, the

canonical morphism
∐

o∈O(So × Σ) → (
∐

o∈O So) × Σ is an isomorphism.

Definition 43. An algebraic parametric module is a (possibly infinite) coproduct of ele-

mentary parametric modules. The induced signature is said algebraic.

These signatures are those which appear in [FPT99]. For instance, the algebraic

signature of the lambda-calculus is induced by the parametric module ΣLC = Θ2 + Θ′.

To conclude this section, we explain the connection between signatures with strength

(on the category Set) and our signatures induced by parametric modules.

Signatures with strength were introduced in [MU04] (even though they were not

given an explicit name there). The relevant definitions regarding signatures with strength

are summarized in [AMM18], to which we refer the interested reader.

We recall that a signature with strength [AMM18, Definition 4] is a pair of an end-

ofunctor H : [C, C] → [C, C] together with a strength-like datum. Here, we only con-

sider signatures with strength over the base category C := Set. Given a signature with

strength H, we also refer to the underlying endofunctor on the functor category [Set, Set]

as H : [Set, Set] → [Set, Set].

A morphism of signatures with strength [AMM18, Definition 5] is a natural trans-

formation between the underlying functors that is compatible with the strengths in a
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Part I, Chapter 3 – Presentable signatures for monads

suitable sense. Together with the obvious composition and identity, these objects and

morphisms form a category SigStrength [AMM18].

Any signature with strength H gives rise to a parametric module H̃ [HM12, Sec-

tion 7]. This parametric module associates, to a monad R, an R-module whose un-

derlying functor is H(UR), where UR is the functor underlying the monad R. Similarly,

given two signatures with strength H1 and H2, and a morphism α : H1 → H2 of signa-

tures with strength, we associate to it a morphism of parametric modules α̃ : H̃1 → H̃2.

This morphism sends a monad R to a module morphism α̃(R) : H̃1(R) −→ H̃2(R)

whose underlying natural transformation is given by α(UR), where, as before, UR is

the functor underlying the monad R. These maps assemble into a functor:

Proposition 44 (sigWithStrength_to_sig_functor). The maps sketched above yield

a functor ˜(−) : SigStrength −→ PMod.

3.3 Categories of models

We unfold the definitions of model of a signature and action of a signature (as in-

troduced in the general setting in Chapter 2) to the case of signatures induced by

parametric modules.

Definition 45 (Models and actions). Given a parametric module Σ, the category MonΣ

of models of Σ is defined as the category of models of the induced signature. Objects

are pairs (R, r) of a monad R equipped with an action of Σ in R, that is, with a module

morphism r : Σ(R) → R. A morphism from (R, r) to (S, s) is a morphism of monads

m : R → S compatible with the actions, in the sense that the following diagram of

R-modules commutes:

Σ(R) r //

Σ(m)
��

R

m

��

m∗(Σ(S))
m∗s

// m∗S

Here, the horizontal arrows come from the actions, the left vertical arrow comes from

the functoriality of parametric modules, and m : R −→ m∗S is the morphism of mon-

ads seen as morphism of R-modules. This is equivalent to asking that the square of

underlying natural transformations commutes, i.e., m ◦ r = s ◦ Σ(m).
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Example 46. The usual app : LC2 −→ LC is an action of the elementary signature Θ2 in

the monad LC of syntactic lambda calculus. The usual abs : LC′ −→ LC is an action of

the elementary signature Θ′ in the monad LC. Then [app, abs] : LC2 + LC′ −→ LC is an

action of the algebraic signature of the lambda calculus Θ2 + Θ′ in the monad LC.

In the formalisation, the category of models of a signature Σ is recovered as the

fiber category over Σ of the displayed category [AL17] of models, see rep_disp. We

have also formalized a direct definition (rep_fiber_category) and shown that the two

definitions yield isomorphic categories: catiso_modelcat.

Definition 47 (Pullback). Let f : Υ −→ Σ be a morphism of parametric modules and

(R, r) a model of Σ. The linear morphism Υ(R)
f(R)
−→ Σ(R)

r
−→ R defines an action of

Υ in R. The induced model of Υ is called pullback4 of (R, r) along f and denoted by

f ∗(R, r).

3.4 Syntax

We are primarily interested in parametric modules Σ inducing effective signatures.

3.4.1 Effectivity and parametric modules

Definition 48. We call a parametric module effective if its induced signature is. If Σ is

effective, that is, if MonΣ has an initial object, this object is essentially unique; we call it

the syntax generated by Σ, denoted by Σ̂. By abuse of notation, we also denote by Σ̂

the monad underlying the model Σ̂.

In this work, we aim to identify parametric modules that are effective. This is not

automatic: below, we give a parametric module that is not effective. Afterwards, we

give suitable sufficient criteria for parametric modules to be effective.

Non-example 49. Let P denote the powerset functor and consider the parametric mod-

ule P ·Θ (see Example 38, Item 1): it associates, to any monad R, the module P ·R that

sends a set X to the powerset P(RX) of RX. The induced signature is not effective.

4. Following the terminology introduced in Definition 26, the term “pullback” is justified by Lemma 55.
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Part I, Chapter 3 – Presentable signatures for monads

Instead of giving a direct proof of the fact that P · Θ is not effective, we deduce it

as a simple consequence of a stronger result that we consider interesting in itself: an

analogue of Lambek’s Lemma, given in Lemma 52.

The following preparatory lemma explains how to construct new models of a para-

metric module Σ from old ones:

Lemma 50. Let (R, r) be a model of a parametric module Σ. Let η : Id → R be the

unit of the monad R, and let ρΣ(R) : Σ(R) · R → Σ(R) be the module substitution of the

R-module Σ(R).

• The injection Id → Σ(R) + Id together with the natural transformation

(Σ(R) + Id) · (Σ(R) + Id) ≃ Σ(R) · (Σ(R) + Id) + Σ(R) + Id

Σ(R)[r,η]+_+_

��

Σ(R) · R + Σ(R) + Id

[ρΣ(R),id]+_
��

Σ(R) + Id

give the endofunctor Σ(R) + Id the structure of a monad.

• Moreover, this monad can be given the following Σ-action:

Σ
(
Σ(R) + Id

)Σ([r,η])
// Σ(R) · R

ρΣ(R)
// Σ(R) // Σ(R) + Id (3.2)

• The natural transformation [r, η] : Σ(R) + Id → R is a model morphism, that

is, it commutes suitably with the Σ-actions of Diagram (3.2) in the source and

r : Σ(R) −→ R in the target.

Definition 51. Given a model M of Σ, we denote by M ♯ the Σ-model constructed in

Lemma 50, and by ǫM : M ♯ −→ M the morphism of models defined there.

Lemma 52 (iso_mod_id_model). If Σ is effective, then the morphism of Σ-models

ǫΣ̂ : Σ̂♯ −→ Σ̂

is an isomorphism.
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We go back to considering the signature Σ := P · Θ. Suppose that Σ is effective. From

Lemma 52 it follows that PΣ̂X + X ∼= Σ̂X. In particular, we have an injective map from

PΣ̂X to Σ̂X—contradiction.

On the other hand, as a starting point, we can identify the following class of effective

parametric modules:

Theorem 53 (algebraic_sig_effective). Algebraic signatures are effective.

This result is proved in a previous work [HM07, Theorems 1 and 2]. The construc-

tion of the syntax proceeds as follows: an algebraic parametric module induces an

endofunctor on the category of endofunctors on Set. Its initial algebra (constructed as

the colimit of the initial chain) is given the structure of a monad with an action of the

algebraic signature, and then a routine verification shows that it is actually initial in the

category of models. The computer-checked proof uses the construction of a monad

from an algebraic signature formalized in [AMM18].

In Section 3.6, we show a more general effectiveness result: Theorem 57 states that

presentable signatures, which form a superclass of algebraic signatures, are effective.

3.4.2 Modularity

In this section, we study the problem of how to merge two syntax extensions. Our an-

swer, a “modularity” result (Theorem 54), was stated already in the preliminary version

[HM12, Section 6], there without proof.

Suppose that we have a pushout square of effective parametric modules,

Σ0
//

��

Σ1

��

Σ2
// Σ
p

Intuitively, the signatures Σ1 and Σ2 specify two extensions of the signature Σ0, and Σ

is the smallest extension containing both these extensions. Modularity means that the

corresponding diagram of models,

Σ̂0
//

��

Σ̂1

��

Σ̂2
// Σ̂
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Part I, Chapter 3 – Presentable signatures for monads

is a pushout as well—but we have to take care to state this in the “right” category. The

right category for this purpose is the following total category
∫ Σ MonΣ of models:

• An object of
∫ Σ MonΣ is a triple (Σ, R, r) where Σ is a parametric module, R is a

monad, and r is an action of Σ in R.

• A morphism in
∫ Σ MonΣ from (Σ1, R1, r1) to (Σ2, R2, r2) consists of a pair (i, m) of

a parametric module morphism i : Σ1 −→ Σ2 and a morphism m of Σ1-models

from (R1, r1) to (R2, i∗(r2)).

• It is easily checked that the obvious composition turns
∫ Σ MonΣ into a category.

Now for each signature Σ, we have an obvious inclusion from the fiber MonΣ into
∫ Σ MonΣ, through which we may see the syntax Σ̂ of any effective signature as an

object in
∫ Σ MonΣ. Furthermore, a morphism i : Σ1 −→ Σ2 of effective parametric mod-

ules yields a morphism i∗ := Σ̂1 −→ Σ̂2 in
∫ Σ MonΣ. Hence our pushout square of

effective parametric modules as described above yields a square in
∫ Σ MonΣ.

Theorem 54 (pushout_in_big_rep). Modularity holds in
∫ Σ MonΣ, in the sense that

given a pushout square of effective parametric modules as above, the associated

square in
∫ Σ MonΣ is a pushout again.

The proof uses, in particular, the following fact:

Lemma 55 (rep_cleaving). The projection π :
∫ Σ MonΣ → PMod is a Grothendieck fi-

bration. In particular, given a morphism f : Υ −→ Σ of parametric modules, the pullback

map defined in Definition 47 extends to a functor

f ∗ : MonΣ −→ MonΥ .

Note that Theorem 54 does not say that a pushout of effective parametric modules

is effective again; it only tells us that if all of the signatures in a pushout square are

effective, then the syntax generated by the pushout is the pushout of the syntaxes. In

general, we do not know whether a colimit (or even a binary coproduct) of effective

parametric modules is effective again.

In Section 3.6 we study presentable parametric modules, which we show to be

effective and closed under colimits.
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3.5 Recursion

We now show through examples how certain forms of recursion can be derived from

initiality.

3.5.1 Example: Translation of intuitionistic logic into linear logic

We start with an elementary example of translation of syntaxes using initiality, namely

the translation of second-order intuitionistic logic into second-order linear logic [Gir87,

page 6]. The syntax of second-order intuitionistic logic can be defined with one unary

operator ¬, three binary operators ∨, ∧ and ⇒, and two binding operators ∀ and ∃. The

associated (algebraic) signature is ΣLJ = Θ + 3 × Θ2 + 2 × Θ′. As for linear logic, there

are four constants ⊤, ⊥, 0, 1, two unary operators ! and ?, five binary operators &, `,

⊗, ⊕, ⊸ and two binding operators ∀ and ∃. The associated (algebraic) signature is

ΣLL = 4 × ∗ + 2 × Θ + 5 × Θ2 + 2 × Θ′.

By universal property of coproduct, a model of ΣLJ is given by a monad R with

module morphisms:

• r¬ : R −→ R

• r∧, r∨, r⇒ : R × R −→ R

• r∀, r∃ : R′ −→ R

and similarly, we can decompose an action of ΣLL into as many components as there

are operators.

The translation will be a morphism of monads between the initial models (i.e. the

syntaxes) o : Σ̂LJ −→ Σ̂LL coming from the initiality of Σ̂LJ , satisfying the expected

equations. Indeed, equipping Σ̂LL with an action r′
α : α(Σ̂LL) −→ Σ̂LL for each operator

α of intuitionistic logic (¬,∨,∧,⇒,∀ and ∃) yields a morphism of monads o : Σ̂LJ −→ Σ̂LL

such that o(rα(t)) = r′
α(α(o)(t)) for each α.

The definition of r′
α is then straightforward to devise, following the recursive clauses
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given on the right:

r′
¬ = r⊸ ◦ (r! × r0) (¬A)o := (!A)⊸ 0

r′
∧ = r& (A ∧ B)o := Ao&Bo

r′
∨ = r⊕ ◦ (r! × r!) (A ∨ B)o :=!Ao⊕!Bo

r′
⇒ = r⊸ ◦ (r! × id) (A ⇒ B)o :=!Ao

⊸ Bo

r′
∃ = r∃ ◦ r! (∃xA)o := ∃x!Ao

r′
∀ = r∀ (∀xA)o := ∀xAo

The induced action of ΣLJ in the monad Σ̂LL yields the desired translation morphism

o : Σ̂LJ → Σ̂LL. Note that variables are automatically preserved by the translation

because o is a monad morphism.

3.5.2 Example: Computing the set of free variables

As above, we denote by PX the powerset of X. Union gives a composition operator

P(PX) → PX defined by u 7→
⋃

s∈u s, which yields a monad structure on P.

We now define an action of the signature of lambda calculus ΣLC in the monad P.

We take the binary union operator ∪ : P × P → P as action of the application signature

Θ×Θ in P; this is a module morphism since binary union distributes over union of sets.

Next, given S ∈ P(X + ∗) we define Maybe−1
X (S) = S ∩ X. This defines a morphism

of modules Maybe−1 : P ′ → P; a small calculation using a distributivity law of binary

intersection over union of sets shows that this natural transformation is indeed linear. It

can hence be used to model the abstraction signature Θ′ in P.

Associated to this model of ΣLC in P we have an initial morphism free : LC → P.

Then, for any t ∈ LC(X), the set free(t) is the set of free variables occurring in t.
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3.5.3 Example: Computing the size of a term

We now consider the problem of computing the “size” of a λ-term, that is, for any set

X, a function sX : LC(X) −→ N such that

sX(x) = 0 (x ∈ X variable)

sX(abs(t)) = 1 + sX+∗(t)

sX(app(t, u)) = 1 + sX(t) + sX(u)

To express this map as a morphism of models, we first need to find a suitable monad

underlying the target model. The first candidate, the constant functor X 7→ N, does

not admit a monad structure; the problem lies in finding a suitable unit for the monad.

(More generally, given a monad R and a set A, the functor X 7→ R(X) × A does not

admit a monad structure whenever A is not a singleton.)

This problem hints at a different approach to the original question: instead of com-

puting the size of a term (which is 0 for a variable), we compute a generalized size gs

which depends on arbitrary (formal) sizes attributed to variables. We have

gs :
∏

X:Set

(
LC(X) → (X → N) → N

)

Here, unsurprisingly, we recognize the continuation monad (see also [JG07] for the use

of continuation for implementing complicated recursion schemes using initiality)

ContN := X 7→ (X → N) → N

with multiplication λf.λg.f(λh.h(g)).

Now we can define gs through initiality by endowing the monad ContN with a struc-

ture of ΣLC-model as follows.

The function α(m, n) = 1 + m + n induces a natural transformation

capp : ContN × ContN −→ ContN

thus an action for the application signature Θ × Θ in the monad ContN.

Next, given a set X and k : X → N, define k̂ : X + {∗} → N by k̂(x) = k(x) for all
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x ∈ X and k̂(∗) = 0. This induces a function

cabs(X) : Cont′
N(X) −→ ContN(X)

t 7→ (k 7→ 1 + t(k̂))

which is the desired action of the abstraction signature Θ′.

Altogether, the transformations capp and cabs form the desired action of ΣLC in ContN

and thus give an initial morphism, i.e., a natural transformation ι : LC → ContN which

respects the ΣLC-model structure. Now let 0X be the function that is constantly zero on

X. Then the sought “size” map s :
∏

X:Set LC(X) → N is given by sX(t) = ιX(t, 0X).

3.5.4 Example: Counting the number of redexes

We now consider an example of recursive computation: a function r such that r(t) is

the number of redexes of the λ-term t of LC(X). Informally, the equations defining r are

r(x) = 0, (x variable)

r(abs(t)) = r(t),

r(app(t, u)) = r(t) + r(u) +





1 if t is an abstraction

0 otherwise.

In order to compute recursively the number of β-redexes in a term, we need to keep

track, not only of the number of redexes in subterms, but also whether the head con-

struction of subterms is the abstraction; in the affirmative case we use the value 1 and

0 otherwise. Hence, we define a ΣLC-action on the monad W := ContN×{0,1}. We denote

by π1, π2 the projections that access the two components of the product N × {0, 1}.

For any set X and function k : X → N × {0, 1}, let us denote by k̂ : X + {∗} →

N × {0, 1} the function which sends x ∈ X to k(x) and ∗ to (0, 0). Now, consider the

function
cabs(X) : W ′(X) −→ W (X)

t 7→ (k 7→ (π1(t(k̂)), 1)).

Then cabs is an action of the abstraction signature Θ′ in W .

Next, we specify an action capp : W × W → W of the application signature Θ × Θ:
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Given a set X, consider the function

capp(X) : W (X) × W (X) −→ W (X)

(t, u) 7→ (k 7→ (π1(t(k)) + π1(u(k)) + π2(t(k)), 0)).

Then capp is an action of the abstraction signature Θ × Θ in W .

Overall we have a ΣLC-action from which we get an initial morphism ι : LC → W .

If 0X is the constant function X → N × {0, 1} returning the pair (0, 0), then π1(ι(0X)) :

LC(X) → N is the desired function r.

3.6 Presentations of signatures and syntaxes

In this section, we identify a superclass of algebraic parametric modules that are still

effective: we call them presentable parametric modules, inducing presentable signa-

tures.

Definition 56. Given a parametric module Σ, a presentation5 of Σ is given by an alge-

braic parametric module Υ and an epimorphism of parametric modules p : Υ −→ Σ. In

that case, we say that Σ is presented by p : Υ −→ Σ.

A parametric module for which a presentation exists is called presentable. The in-

duced signature is then called presentable.

Presentations for a signature are not essentially unique; indeed, signatures can

have many different presentations.

Remark. By definition, any construction which can be encoded through a presentable

signature Σ can alternatively be encoded through any algebraic signature “presenting”

Σ. The former encoding is finer than the latter in the sense that terms which are different

in the latter encoding can be identified by the former. In other words, a certain amount

of semantics is integrated into the syntax.

The main desired property of our presentable signatures is that, thanks to the fol-

lowing theorem, they are effective:

Theorem 57 (PresentableisEffective). Any presentable signature is effective.

5. In algebra, a presentation of a group G is an epimorphism F → G where F is free (together with
a generating set of relations among the generators).
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The proof is discussed in Section 3.7.

Using the axiom of choice, we can prove a stronger statement:

Theorem 58 (is_right_adjoint_functor_of_reps_from_pw_epi_choice). We assume

the axiom of choice. Let Σ be a parametric module, and let p : Υ −→ Σ be a presenta-

tion of Σ. Then the functor p∗ : MonΣ −→ MonΥ has a left adjoint.

In the proof of Theorem 58, the axiom of choice is used to show that endofunctors

on Set preserve epimorphisms.

Theorem 57 follows from Theorem 58 since the left adjoint p! : MonΥ −→ MonΣ

preserves colimits, in particular, initial objects. However, Theorem 57 is proved in Sec-

tion 3.7 without appealing to the axiom of choice: there, only some specific endofunctor

on Set is considered, for which preservation of epimorphisms can be proved without us-

ing the axiom of choice.

Definition 59. We call a syntax presentable if it is generated by a presentable signa-

ture.

Next, we give important examples of presentable signatures:

Theorem 60. The following hold:

1. Any algebraic signature is presentable.

2. Any colimit of presentable parametric modules is presentable.

3. The product of two presentable parametric modules is presentable (in the case

when one of them is Θ, see har_ binprodR_ isPresentable )

Proof. Items 1–2 are easy to prove. For Item 3, if Σ1 and Σ2 are presented by
∐

i Υi

and
∐

j Φj respectively, then Σ1 × Σ2 is presented by
∐

i,j Υi × Φj.

Corollary 61. Any colimit of algebraic parametric modules is effective.

Proof. A colimit of algebraic parametric modules is presentable, by Theorem 60, hence

effective, by Theorem 57
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3.7 Proof of Theorem 57

In this section, we prove Theorem 57. This proof is mechanically checked in our library;

the reader may thus prefer to look at the formalised statements in the library.

Note that the proof of Theorem 57 rests on the more technical Lemma 66 below.

Proposition 62 (epiSig_equiv_pwEpi_SET). Epimorphisms of parametric modules are

exactly pointwise epimorphisms.

Proof. In any category, a morphism f : a → b is an epimorphism if and only if the

following diagram is a pushout diagram ([ML98, Exercise III.4.4]) :

a b

b b

f

f id

id

Using this characterization of epimorphisms, the proof follows from the fact that colimits

are computed pointwise in the category of parametric modules.

Another important ingredient will be the following quotient construction for monads.

Let R be a monad preserving epimorphisms, and let ∼ be a “compatible” family of

relations on (the functor underlying) R, that is, for any X : Set0, ∼X is an equivalence

relation on RX such that, for any f : X → Y , the function R(f) maps related elements

in RX to related elements in RY . Taking the pointwise quotient, we obtain a quotient

π : R → R in the functor category, satisfying the usual universal property. We want to

equip R with a monad structure that upgrades π : R → R into a quotient in the category

of monads. In particular, this means that we need to fill in the square

R · R

π·π
��

µ
// R

π
��

R · R
µ

// R

with a suitable µ : R · R −→ R satisfying the monad laws. But π is epi, and hence so is

π·π = πR◦Rπ since epis are closed under composition and R preserves epimorphisms.

Thus, this is possible when any two elements in RRX that are mapped to the same

element by π · π (the left vertical morphism) are also mapped to the same element by
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π ◦ µ (the top-right composition). It turns out that this is the only extra condition needed

for the upgrade. We summarize the construction in the following lemma:

Lemma 63 (projR_monad). Given a monad R preserving epimorphisms, and a com-

patible relation ∼ on R such that for any set X and x, y ∈ RRX, we have that if

(π · π)X(x) ∼ (π · π)X(y) then π(µ(x)) ∼ π(µ(y)). Then we can construct the quotient

π : R → R in the category of monads, satisfying the usual universal property.

Note that the axiom of choice implies that epimorphisms have sections, and thus

that any endofunctor on Set preserves epimorphisms.

Definition 64. An epi-parametric module is a parametric module Σ that preserves the

epimorphicity in the category of endofunctors on Set: for any monad morphism f :

R −→ S, if U(f) is an epi of functors, then so is U(Σ(f)). Here, we denote by U the

forgetful functor from monads resp. modules to endofunctors.

Example 65 (BindingSigAreEpiSig). All the algebraic parametric modules are epi-

parametric modules.

We are now in a position to state and prove the main technical lemma:

Lemma 66 (push_initiality). Let Υ be effective, such that both Υ̂ and Υ(Υ̂) preserve

epimorphisms (as noted above, this condition is automatically fulfilled if one assumes

the axiom of choice). Let F : Υ → Σ be a morphism of parametric modules. Suppose

that Υ is an epi-parametric module and F is an epimorphism. Then Σ is effective.

Proof sketch. As before, we denote by Υ̂ the initial Υ-model, as well as—by abuse of

notation—its underlying monad. For each set X, we consider the equivalence relation

∼X on Υ̂(X) defined as follows: for all x, y ∈ Υ̂(X) we stipulate that x ∼X y if and only

if iX(x) = iX(y) for each (initial) morphism of Υ-models i : Υ̂ → F ∗S with S a Σ-model

and F ∗S the Υ-model induced by F : Υ → Σ.

By Lemma 63, as Υ̂ preserves epimorphisms, we obtain the quotient monad, which

we call Υ̂/F , and the epimorphic projection π : Υ̂ → Υ̂/F . We now equip Υ̂/F with a

Σ-action, and show that the induced model is initial, in four steps:

(i) We equip Υ̂/F with a Σ-action, i.e., with a morphism of Υ̂/F -modules mΥ̂/F :

Σ(Υ̂/F ) → Υ̂/F . We define u : Υ(Υ̂) → Σ(Υ̂/F ) as u = FΥ̂/F ◦ Υ(π). Then

u is epimorphic, by composition of epimorphisms and by using Proposition 62.
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Let mΥ̂ : Υ(Υ̂) → Υ̂ be the action of the initial model of Υ. We define mΥ̂/F as

the unique morphism making the following diagram commute in the category of

endofunctors on Set:

Υ(Υ̂) Υ̂

Σ(Υ̂/F ) Υ̂/F

mΥ̂

u π

mΥ̂/F

Uniqueness follows from pointwise surjectivity of u. Existence follows from the

compatibility of mΥ̂ with the congruence ∼X . The diagram necessary to turn mΥ̂/F

into a module morphism on Υ̂/F is proved by pre-composing it with the epimor-

phism (Σ(π) ◦ FΥ̂) · π : Υ(Υ̂) · Υ̂ → Σ(Υ̂/F ) · Υ̂/F (this is where the preservation

of epimorphims by Υ(Υ̂) is required) and unfolding the definitions.

(ii) Now, π can be seen as a morphism of Υ-models between Υ̂ and F ∗Υ̂/F , by

naturality of F and using the previous diagram.

It remains to show that (Υ̂/F , mΥ̂/F ) is initial in the category of Σ-models.

(iii) Given a Σ-model (S, ms), the initial morphism of Υ-models iS : Υ̂ → F ∗S induces

a monad morphism ιS : Υ̂/F → S. We need to show that the morphism ι is a

morphism of Σ-models. Pre-composing the involved diagram by the epimorphism

Σ(π)◦FΥ̂ : Υ(Υ̂) → Σ(Υ̂/F ) and unfolding the definitions shows that ιS : Υ̂/F → S

is a morphism of Σ-models.

(iv) We show that ιS is the only morphism Υ̂/F → S. Let g be such a morphism. Then

g ◦ π : Υ̂ → S defines a morphism in the category of Υ-models. Uniqueness of

iS yields g ◦ π = iS, and by uniqueness of the diagram defining ιS it follows that

g = i′
S.

Lemma 67 (algebraic_model_Epi and BindingSig_on_model_isEpi). Let Σ be an al-

gebraic parametric module. Then Σ̂ and Σ(Σ̂) preserve epimorphisms.

Proof. The initial model of an algebraic parametric module Σ is obtained as the initial

chain of the endofunctor R 7→ Id + Σ(R), where Σ denotes (by abuse of notation)

the endofunctor on endofunctors on Set corresponding to the parametric module Σ.
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Then the proof follows from the fact that this endofunctor preserves preservation of

epimorphisms.

Proof of Theorem 57. Let p : Υ → Σ be a presentation of Σ. We need to construct an

initial model for Σ.

As the parametric module Υ is algebraic, it is effective (by Theorem 53) and is an

epi-parametric module (by Example 65). We can thus instantiate Lemma 66 to see that

Σ is effective, thanks to Lemma 67.

3.8 Constructions of presentable signatures

Complex signatures are naturally built as the sum of basic components, generally re-

ferred as “arities” (which in our settings can be captured with a single parametric mod-

ule, see remark after Example 38). Thanks to Theorem 60, Item 2, direct sums (or,

indeed, any colimit) of presentable parametric modules are presentable, hence effec-

tive by Theorem 57.

In this section, we show that, besides algebraic signatures, there are other inter-

esting examples of signatures which are presentable, and which hence can be safely

added to any presentable signature. Safely here means that the resulting signature is

still presentable.

3.8.1 Post-composition with a presentable functor

A functor F : Set → Set is polynomial if it is of the form FX =
∐

n∈N an × Xn for

some sequence (an)n∈N of sets. Note that if F is polynomial, then the signature F · Θ

is algebraic.

Definition 68. Let G : Set → Set be a functor. A presentation of G is a pair consisting

of a polynomial functor F : Set → Set and an epimorphism p : F → G. The functor G is

called presentable if there is a presentation of G.

Proposition 69. Given a presentable functor G, the signature G · Θ is presentable.

Proof. Let p : F → G be a presentation of G; then a presentation of G · Θ is given by

the induced epimorphism F · Θ → G · Θ.
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Proposition 70. Here we assume the axiom of excluded middle. An endofunctor on

Set is presentable if and only if it is finitary (i.e., it preserves filtered colimits).

Proof. This is a corollary of Proposition 5.2 of [AP04], since ω-accessible functors are

exactly the finitary ones.

We now give several examples of presentable signatures obtained from presentable

functors.

Example: Adding a syntactic commutative binary operator, e.g., parallel-or

Consider the functor square : Set → Set mapping a set X to X ×X; it is polynomial. The

associated signature square · Θ encodes a binary operator, such as the application of

the lambda calculus.

Sometimes such binary operators are asked to be commutative; a simple example

of such a commutative binary operator is standard integer addition.

Another example, more specific to formal computer languages, is a “concurrency”

operator P | Q of a process calculus, such as the π-calculus, for which it is natural to

require commutativity as a structural congruence relation: P | Q ≡ Q | P .

Such a commutative binary operator can be specified via the following presentable

signature: we denote by S2 : Set → Set the endofunctor that assigns, to each set

X, the set (X × X)/(x, y) ∼ (y, x) of unordered pairs of elements of X. This functor

is presented by the obvious projection square → S2. By Proposition 69, the signature

S2 · Θ is presentable; it encodes a commutative binary operator.

Example: Adding a maximum operator

Let list : Set → Set be the functor associating, to any set X, the set list(X) of (finite)

lists with entries in X; specifically, it is given on objects as X 7→
∐

n∈N Xn.

We now consider the syntax of a “maximum” operator, acting, e.g., on a list of

natural numbers:

max : list(N) → N

It can be specified via the algebraic signature list · Θ.

However, this signature is “rough” in the sense that it does not take into account

some semantic aspects of a maximum operator, such as invariance under repetition or

permutation of elements in a list.
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For a finer encoding, consider the functor Pfin : Set → Set associating, to a set

X, the set Pfin(X) of its finite subsets. This functor is presented by the epimorphism

list → Pfin.

By Proposition 69, the signature Pfin · Θ is presentable; it encodes the syntax of a

“maximum” operator accounting for invariance under repetition or permutation of ele-

ments in a list.

Example: Adding an application à la Differential LC

Let R be a commutative (semi)ring. To any set S, we can associate the free R-module

R〈S〉; its elements are formal linear combinations
∑

s∈S ass of elements of S with coef-

ficients as from R; with as = 0 almost everywhere. Ignoring the R-module structure on

R〈S〉, this assignment induces a functor R〈_〉 : Set → Set with the obvious action on

morphisms. For simplicity, we restrict our attention to the semiring (N, +, ×).

This functor is presentable: a presentation is given by the polynomial functor list :

Set → Set, and the epimorphism

p : list −→ N〈_〉

pX ([x1, . . . , xn]) := x1 + . . . + xn .

By Proposition 69, this yields a presentable signature, which we call N〈Θ〉.

The Differential Lambda Calculus (DLC) [ER03b] of Ehrhard and Regnier is a lambda

calculus with operations suitable to express differential constructions. The calculus is

parametrized by a semiring R; again we restrict to R = (N, +, ×).

DLC has a binary “application” operator, written (s)t, where s ∈ T is an element of

the inductively defined set T of terms and t ∈ N〈T 〉 is an element of the free (N, +, ×)-

module. This operator is thus specified by the presentable signature Θ × N〈Θ〉.

3.8.2 Example: Adding a syntactic closure operator

Given a quantification construction (e.g., abstraction, universal or existential quantifi-

cation), it is often useful to take the associated closure operation. One well-known

example is the universal closure of a logic formula. Such a closure is invariant under

permutation of the fresh variables. A closure can be syntactically encoded in a rough
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way by iterating the closure with respect to one variable at a time. Here our framework

allows a refined syntactic encoding which we explain below.

Let us start with binding a fixed number k of fresh variables. The elementary signa-

ture Θ(k) already specifies an operation that binds k variables. However, this encoding

does not reflect invariance under variable permutation. To enforce this invariance, it

suffices to quotient the signature Θ(k) with respect to the action of the group Sk of

permutations of the set k, that is, to consider the colimit of the following one-object

diagram:

Θ(k)

Θ(σ)

where σ ranges over the elements of Sk. We denote by S(k)Θ the resulting signature

presented by the projection Θ(k) → S(k)Θ. By universal property of the quotient, a

model of it consists of a monad R with an action m : R(k) → R that satisfies the

required invariance.

Now, we want to specify an operation which binds an arbitrary number of fresh vari-

ables, as expected from a closure operator. One rough solution is to consider the co-

product
∐

k S(k)Θ. However, we encounter a similar inconvenience as for Θ(k). Indeed,

for each k′ > k, each term already encoded by the signature S(k)Θ may be considered

again, encoded (differently) through S(k′)Θ.

Fortunately, a finer encoding is provided by the following simple colimit of pre-

sentable parametric modules. The crucial point here is that, for each k, all natural in-

jections from Θ(k) to Θ(k+1) induce the same canonical injection from S(k)Θ to S(k+1)Θ.

We thus have a natural colimit for the sequence k 7→ S(k)Θ and thus a signature

colimk S(k)Θ which, as a colimit of presentable parametric modules, is presentable

(Theorem 60, Item 2).

Accordingly, we define a total closure on a monad R to be an action of the signature

colimk S(k)Θ in R. It can easily be checked that a model of this signature is a monad R

together with a family of module morphisms (ek : R(k) → R)k∈N compatible in the sense

that for each injection i : k → k′ the following diagram commutes:

R(k)

ek
##

R(i)
// R(k′)

ek′

��

R
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3.8.3 Example: Adding an explicit substitution

Explicit substitution was introduced by Abadi et al. [Aba+90] as a theoretical device to

study the theory of substitution and to describe concrete implementations of substi-

tution algorithms. In this section, we explain how we can extend any presentable sig-

nature with an explicit substitution construction, and we offer some refinements from

a purely syntactic point of view. In fact, we will show three solutions, differing in the

amount of “coherence” which is handled at the syntactic level (e.g., invariance under

permutation and weakening). We follow the approach initiated by Ghani, Uustalu, and

Hamana in [GUH06].

Let R be a monad. We have already considered (see Lemma 33) the (unary) substi-

tution σR : R′×R → R. More generally, we have the sequence of substitution operations

substp : R(p) × Rp −→ R. (3.3)

We say that substp is the p-substitution in R; it simultaneously replaces the p extra

variables in its first argument with the p other arguments, respectively. (Note that subst1

is the original σR.)

We observe that, for fixed p, the group Sp of permutations on p elements has a

natural action on R(p) × Rp, and that substp is invariant under this action.

Thus, if we fix an integer p, there are two ways to internalise substp in the syntax: we

can choose the elementary signature Θ(p) × Θp, which is rough in the sense that the

above invariance is not reflected; and, alternatively, if we want to reflect the permutation

invariance syntactically, we can choose the quotient Qp of the above parametric module

by the action of Sp.

By universal property of the quotient, a model of our quotient Qp is given by a monad

R with an action m : R(p) × Rp → R satisfying the desired invariance.

Before turning to the encoding of the entire series (substp)p∈N, we recall how, as

noticed already in [GUH06], this series enjoys further coherence. In order to explain this

coherence, we start with two natural numbers p and q and the module R(p) × Rq. Pairs

in this module are almost ready for substitution: what is missing is a map u : Ip −→ Iq,

where In denotes the set {1, . . . , p}. But such a map can be used in two ways: letting

u act covariantly on the first factor leads us into R(q) × Rq where we can apply substq;

while letting u act contravariantly on the second factor leads us into R(p) ×Rp where we

can apply substp. The good news is that we obtain the same result. More precisely, the
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following diagram is commutative:

R(p) × Rq R(p)×Ru
//

R(u)×Rq

��

R(p) × Rp

substp

��

R(q) × Rq
substq

// R

(3.4)

Note that in the case where p equals q and u is a permutation, we recover exactly the

invariance by permutation considered earlier.

Abstracting over the numbers p, q and the map u, this exactly means that our series

factors through the coend
∫ p:F R(p) × Rp, where covariant (resp. contravariant) occur-

rences of the bifunctor have been underlined (resp. overlined), and the category F is

the full subcategory of Set whose objects are natural numbers. Thus we have a canon-

ical morphism

isubstR :
∫ p:F

R(p) × Rp −→ R.

Abstracting over R, we obtain the following:

Definition 71. Integrated substitution

isubst :
∫ p:F

Θ(p) × Θp −→ Θ

is the parametric module morphism obtained by abstracting over R the linear mor-

phisms isubstR.

Thus, if we want to internalise the whole sequence (substp)p:N in the syntax, we have

at least three solutions: we can choose the algebraic signature

∐

p:N

Θ(p) × Θp

which is rough in the sense that the above invariance and coherence is not reflected;

we can choose the presentable signature

∐

p:N

Qp,

which reflects the invariance by permutation, but not more; and finally, if we want to
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reflect the whole coherence syntactically, we can choose the presentable signature

∫ p:F

Θ(p) × Θp.

Thus, whenever we have a presentable signature, we can safely extend it by adding

one or the other of the three above signatures, for a (more or less coherent) explicit

substitution.

Ghani, Uustalu, and Hamana already studied this problem in [GUH06]. Our solution

proposed here does not require the consideration of a strength.

3.8.4 Example: Adding a coherent fixed-point operator

In the same spirit as in the previous section, we define, in this section,

• for each n ∈ N, a notion of n-ary fixed-point operator in a monad;

• a notion of coherent fixed-point operator in a monad, which assigns, in a “coher-

ent” way, to each n ∈ N, an n-ary fixed-point operator.

We furthermore explain how to safely extend any presentable syntax with a syntactic

coherent fixed-point operator.

There is one fundamental difference between the integrated substitution of the pre-

vious section and our coherent fixed points: while every monad has a canonical inte-

grated substitution, this is not the case for coherent fixed-point operators.

Let us start with the unary case.

Definition 72. A unary fixed-point operator for a monad R is a module morphism f

from R′ to R that makes the following diagram commute,

R′ R′ × R

R

(idR′ ,f)

f σ

where σ is the substitution morphism defined in Lemma 33.

Accordingly, the signature for a syntactic unary fixpoint operator is Θ′, ignoring the

commutation requirement (which we address later in Section 4.4.4, after extending

signatures induced by parametric modules with equations).
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Let us digress here and examine what the unary fixpoint operators are for the

lambda calculus, more precisely, for the monad LCβη of the lambda-calculus modulo β-

and η-equivalence. How can we relate the above notion to the classical notion of fixed-

point combinator? Terms are built out of two constructions, app : LCβη × LCβη → LCβη

and abs : LC′
βη → LCβη. A fixed-point combinator is a term Y satisfying, for any (possibly

open) term t, the equation

app(t, app(Y, t)) = app(Y, t).

Given such a combinator Y , we define a module morphism Ŷ : LC′
βη → LCβη. It

associates, to any term t depending on an additional variable ∗, the term Ŷ (t) :=

app(Y, abs t). This term satisfies t{∗ := Ŷ (t)} = Ŷ (t), which is precisely the diagram of

Definition 72 for a unary fixed-point operator. Thus, Ŷ is a unary fixed-point operator

for the monad LCβη. Conversely, we have:

Proposition 73. Any fixed-point combinator in LCβη comes from a unique fixed-point

operator.

Proof. We construct a bijection between the subset of LCβη∅ consisting of (closed)

fixed-point combinator on the one hand and the set of module morphisms from LC′
βη to

LCβη satisfying the fixed-point property on the other hand.

A closed lambda term t is mapped to the morphism u 7→ t̂ u := app(t, abs u). We

have already seen that if t is a fixed-point combinator, then t̂ is a fixed-point operator.

For the inverse function, note that a module morphism f from LC′
βη to LCβη induces

a closed term Yf := abs(f1(app(∗, ∗∗))) where f1 : LCβη({∗, ∗∗}) → LCβη({∗}).

A small calculation shows that Y 7→ Ŷ and f 7→ Yf are inverse to each other.

It remains to be proved that if f is a fixed-point operator, then Yf satisfies the fixed-

point combinator equation. Let t ∈ LCβηX, then we have

app(Yf , t) = app(abs fX(app(∗, ∗∗)), t) (3.5)

= fX(app(t, ∗∗)) (3.6)

= app(t, fX(app(t, ∗∗))) (3.7)

= app(t, app(Yf , t)) (3.8)

where (3.5) comes from the definition of Yf (and naturality of f ). Equality (3.6) fol-

lows from β-reduction, Equality 3.7 from the definition of a fixed-point operator. Finally,
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Equality 3.8 comes from the equality app(Yf , t) = fX(app(t, ∗∗)), which is obtained by

chaining the equalities from (3.5) to (3.6). This concludes the construction of the bijec-

tion.

After this digression, we now turn to the n-ary case.

Definition 74. • A rough n-ary fixed-point operator for a monad R is a module

morphism f : (R(n))n → Rn making the following diagram commute:

(R(n))n
id

(R(n))n ,f ,..,f
//

f

��

(R(n))n × (Rn)n

∼=

Rn (R(n) × Rn)n

(substn)n
oo

where substn is the n-substitution as in Section 3.8.3.

• An n-ary fixed-point operator is just a rough n-ary fixed-point operator which is

furthermore invariant under the natural action of the permutation group Sn.

The type of f above is canonically isomorphic to

(R(n))n + (R(n))n + . . . + (R(n))n → R,

which we abbreviate to6 n × (R(n))n → R.

Accordingly, a natural signature for encoding a syntactic7 rough n-ary fixpoint oper-

ator is n × (Θ(n))n.

Similarly, a natural signature for encoding a syntactic n-ary fixpoint operator is (n ×

(Θ(n))n)/Sn obtained by quotienting the previous parametric module by the action of

Sn.

Now we let n vary and say that a total fixed-point operator on a given monad R

assigns to each n ∈ N an n-ary fixpoint operator on R. Obviously, the natural signature

for the encoding of a syntactic total fixed-point operator is
∐

n(Θ(n))n/Sn. Alternatively,

we may wish to discard those total fixed-point operators that do not satisfy some co-

herence conditions analogous to what we encountered in Section 3.8.3, which we now

introduce.

6. In the following, we similarly write n instead of In in order to make equations more readable.
7. The adjective syntactic means here that we do not deal with the equation.
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Let R be a monad with a sequence of module morphisms fixn : n × (R(n))n → R.

We call this family coherent if, for any p, q ∈ N and u : p → q, the following diagram

commutes:

p × (R(p))q p×(R(p))u

//

u×(R(u))q

��

p × (R(p))p

fixp

��

q × (R(q))q
fixq

// R

(3.9)

These conditions have an interpretation in terms of a coend, just as we already en-

countered in Section 3.8.3. This leads us to the following

Definition 75. Given a monad R, we define a coherent fixed-point operator on R to

be a module morphism from
∫ n:F n × (R(n))n to R where, for every n ∈ N, the n-th

component is a (rough)8 n-ary fixpoint operator.

Now, the natural signature for a syntactic coherent fixed-point operator is
∫ n:F n ×

(Θ(n))n. Thus, given a presentable signature Σ, we can safely extend it with a syntactic

coherent fixed-point operator by adding the presentable signature

∫ n:F

n × (Θ(n))n

to Σ.

8. As in Section 3.8.3, invariance follows from coherence.
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CHAPTER 4

ALGEBRAIC 2-SIGNATURES FOR

MONADS

This chapter is adapted from [Ahr+19b].

The presentable signatures of Chapter 3 allow to specify syntaxes satisfying some

equations by considering colimits of algebraic parametric modules. However, it seems

quite limited: for example, we don’t know how to specify an associative operation by a

presentable signature. This motivates the work of the present chapter: we identify the

class of algebraic 2-signatures which are effective: they are particular signatures over

the category of monads consists of extensions of signatures induced by parametric

modules with a family of equational arities.

It is not clear if any syntax generated by a presentable signature can also be gen-

erated by an algebraic 2-signature, although we do not know of any counter-example.

Conversely, algebraic 2-signatures take into account operations that we do not know

how to specify using a presentable signature, such as an associative operation. Sig-

natures induced by parametric modules and models in the sense of Chapter 3 are

referred to as 1-signatures and 1-models in this chapter.

4.1 Introduction

There is a well-established theory of presentations of monads through generating (first-

order) operations equipped with relations among the corresponding derived operations.

Algebraic 1-signatures can be considered as generating monads by binding operations.

Various algebraic structures generated by binding operations have been considered by

many, going back at least to Fiore, Plotkin, and Turi [FPT99], Gabbay and Pitts [GP99],

and Hofmann [Hof99].

If p : Σ̂ → R is a monad epimorphism, we understand that R is generated by a family
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of operations whose binding arities are given by Σ, subject to suitable identifications.

In particular, for Σ := Θ × Θ + Θ′, Σ̂ may be understood as the monad LC of syntactic

terms of the lambda calculus (see Section 3.2), and we have an obvious epimorphism

p : Σ̂ → LCβη, where LCβη is the monad of lambda-terms modulo β and η. In order to

cover such equations, the approach in the first-order case suggests to identify p as the

coequalizer of a pair of parallel arrows from T to Σ̂ where T is again a “free” monad. Let

us see what comes out when we attempt to find such an encoding for the β-equation

of the monad LCβη. It should say that for each set X, the following two maps from

Σ̂(X + {∗}) × Σ̂(X) to Σ̂(X),

• (t, u) 7→ app(abs(t), u)

• (t, u) 7→ t{∗ 7→ u}

are equal. Here a problem occurs, namely that the above collections of maps, which

can be understood as mere natural transformations, cannot be understood as mor-

phisms of monads. Notably, they do not send variables to variables.

On the other hand, we observe that the members of our equations, which are not

morphisms of monads, commute with substitution, and hence are more than natu-

ral transformations: indeed they are morphisms of modules over Σ̂. Accordingly, a

(second-order) presentation for a monad R could be a diagram

T //

f
//
Σ̂

p
// R (4.1)

where Σ is an algebraic signature, Σ̂ is the associated free monad, T is a module over

Σ̂, f is a pair of morphisms of modules over Σ̂, and p is a monad epimorphism. And

now we are faced with the task of finding a condition meaning something like “p is the

coequalizer of f ”1. To this end, recall that we introduced the category MonΣ “of models

of Σ”, whose objects are monads “equipped with an action of Σ” (Definition 45). Of

course Σ̂ is equipped with such an action which turns it into the initial object. Now, we

define the full subcategory of models satisfying the equation f , and require R to be

the initial object therein. Our definition is suited to the case where the equation f is

parametric in the model: this means that now T and f are functions of the model S,

and f(S) = (u(S), v(S)) is a pair of S-module morphisms from T (S) to S. We say that

1. This cannot be the case stricto sensu since f is a pair of module morphisms while p is a monad
morphism.
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S satisfies the equation f if u(S) = v(S). Generalizing the case of one equation to the

case of a family of equations yields our notion of 2-signature, which is similar to that

introduced by Ahrens [Ahr16] in a slightly different context and is a particular case of

signature over the category of monads.

Now we are ready to formulate our main problem: given a 2-signature (Σ, E), where

E is a family of parametric equations as above, does the subcategory of models of Σ

satisfying the family of equations E admit an initial object?

We answer positively for a large subclass of 2-signatures which we call algebraic

2-signatures (see Theorem 107).

This provides a construction of a monad from an algebraic 2-signature, and we

prove furthermore (see Theorem 102) that this construction is modular, in the sense

that merging two extensions of 2-signatures corresponds to building an amalgamated

sum of initial models. This is analogous to Theorem 54 for 1-signatures.

As expected, our initiality property generates a recursion principle which is a recipe

allowing us to specify a morphism from the presented monad to any given other monad.

We give various examples of monads arising “in nature” that can be specified via an

algebraic 2-signature (see Section 4.4), and we also show through a simple example

how our recursion principle applies (see Section 4.5).

Computer-checked formalization A summary of our formalization regarding 2-

signatures is available at https://initialsemantics.github.io/doc/50fd617/Modules.

SoftEquations.Summary.html.

4.2 2-Signatures and their models

In this section we study 2-signatures and models of 2-signatures. A 2-signature is a

signature over the category of monads consisting of a 1-signature Σ and a family of

particular equational Σ-arities. We first explain which equational Σ-arities are involved.

4.2.1 Equations

Our equations are analogous to those considered by Ahrens in [Ahr16]: they are paral-

lel module morphisms parametrized by the models of the underlying 1-signature. They

are particular equational arities in the sense of Chapter 2. The underlying notion of
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1-model is essentially the same as in [Ahr16], even if, there, such equations are inter-

preted instead as inequalities.

Throughout this subsection, we fix an arbitray signature Σ over the category of

monads, that we instantiate in the examples with particular 1-signatures.

We first give a direct definition as an equational arity (Definition 78), and then

rephrase it to give a more intuitive one as a parallel pair of morphisms (Remark 82).

Definition 76. We define a Σ-module to be a functor T from the category of models

of Σ to the category
∫

Mod commuting with the forgetful functors to the category Mon

of monads,

MonΣ

##

T //
∫

Mod

zz

Mon

Example 77. To each parametric module Ψ is associated, by precomposition with the

projection from MonΣ to Mon, a Σ-module still denoted Ψ. All the Σ-modules occurring

in this work arise in this way from 1-signatures; in other words, they do not depend on

the action of the 1-model. In particular, we have the tautological Σ-module Θ, and,

more generally, for any natural number n ∈ N, a Σ-module Θ(n). Also we have another

fundamental Σ-module (arising in this way from) Σ itself, if Σ is induced by a paremtric

module.

Definition 78. A Σ-equation is a Σ-arity (D, a, u, v) in the sense of Chapter 2, where

• D is the category determined by two Σ-modules Ψ and Φ as follows:

– objects are models R of Σ equipped with a R-module morphism h : Ψ(R) →

Φ(R),

– morphisms between (R, h) and (S, i) are model morphisms f : R → S such

that the following diagram commutes in the category of functors

Ψ(R) h //

Ψ(f)
��

Φ(R)

Φ(f)
��

Ψ(S)
i

// Φ(S)

;

• a : D → MonΣ is the canonical forgetful functor;
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Note that such an arity is always equational (Definition 7).

In the following, we provide an alternative description of a Σ-equation as a parallel

pair of Σ-module morphisms (Remark 82).

Definition 79. Let S and T be Σ-modules. We define a morphism of Σ-modules from

S to T to be a natural transformation from S to T which becomes the identity when

postcomposed with the forgetful functor
∫

Mod → Mon.

Example 80. Each parametric module morphism Ψ → Φ upgrades into a morphism

of Σ-modules. Further in that vein, if Σ is a parametric module, there is a morphism of

Σ-modules τΣ : Σ → Θ. It is given, on a model (R, m) of Σ, by m : Σ(R) → R. (Note

that it does not arise from a morphism of parametric modules.) When the context is

clear, we write simply τ for this morphism, and call it the tautological morphism of

Σ-modules.

Proposition 81. Our Σ-modules and their morphisms, with the obvious composition

and identity, form a category.

Remark 82. A Σ-equation (D, a, u, v) is uniquely determined by a pair of parallel mor-

phisms of Σ-modules e1, e2 : Φ → Ψ:

• D is the category determined by the Σ-modules Φ and Ψ, as in Definition 78;

• a : D → MonΣ is the canonical forgetful functor;

• u maps a model R to (R, e1,R);

• v maps a model R to (R, e2,R).

Notation 83. Thanks to this remark, we allow ourselves to identify Σ-equations with

pairs of parallel Σ-module morphisms e1, e2 : Φ → Ψ in the following, that we denote

e1 = e2.

Example 84 (Commutativity of a binary operation). Here we instantiate our fixed 1-

signature as follows: Σ := Θ × Θ. In this case, we say that τ is the (tautological) binary

operation. Now we can formulate the usual law of commutativity for this binary opera-

tion.

We consider the morphism of 1-signatures swap : Θ2 −→ Θ2 that exchanges the two

components of the direct product. Again by Example 80, we have an induced morphism

of Σ-modules, still denoted swap.
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Then, the Σ-equation for commutativity is given by the two morphisms of Σ-modules

Θ2 swap
// Θ2 τ // Θ

Θ2
τ

// Θ

.

See also Section 4.4.1 where we explain in detail the case of monoids.

For the example of the lambda calculus with β- and η-equality (given in Example 86),

we need to introduce currying:

Definition 85. By abstracting over the base monad R the adjunction in the category

of R-modules of Proposition 34, we can perform currying of morphisms of parametric

modules: given a morphism of parametric modules Σ1 × Θ → Σ2 it produces a new

morphism Σ1 → Σ′
2. By Example 77, currying acts also on morphisms of Σ-modules.

Conversely, given a morphism of parametric modules (resp. Σ-modules) Σ1 → Σ′
2,

we can define the uncurryied map Σ1 × Θ → Σ2.

Example 86 (β- and η-conversions). Here we instantiate our fixed 1-signature as fol-

lows: ΣLC := Θ × Θ + Θ′. This is the 1-signature of the lambda calculus. We break the

tautological Σ-module morphism into its two pieces, namely app := τ ◦ inl : Θ×Θ −→ Θ

and abs := τ ◦ inr : Θ′ −→ Θ. Applying currying to app yields the morphism app1 : Θ −→

Θ′ of ΣLC-modules. The usual β and η relations are implemented in our formalism by

two ΣLC-equations that we call eβ and eη respectively:

eβ :
Θ′ abs // Θ

app1 // Θ′

Θ′
1

// Θ′
and eη :

Θ
app1 // Θ′ abs // Θ

Θ
1

// Θ
.

4.2.2 2-signatures and their models

Definition 87. A 2-parametric module (Σ, E) is a pair of a parametric module Σ and

a family E of Σ-equations. Such a 2-parametric module induces a signature over the

category of monads that we call a 2-signature also denoted (Σ, E): it consists of the

extension of the signature induced by Σ with the family E of equational arities.

Example 88. The 2-signature for a commutative binary operation is (Θ2, τ ◦ swap = τ)

(cf. Example 84).
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Example 89. The 2-signature of the lambda calculus modulo β- and η-equality is

ΥLCβη
= (Θ × Θ + Θ′, {eβ, eη}), where eβ, eη are the ΣLC-equations defined in Exam-

ple 86.

Now, we unfold Definition 12 of the category of models in the case of a 2-signature

(Definition 92).

Definition 90 (satisfies_equation). We say that a model M of a 1-signature Σ satis-

fies the Σ-equation e = (e1, e2) if there is an action of e in M , that is, if e1(M) = e2(M).

If E is a family of Σ-equations, we say that a model M of Σ satisfies E if M satisfies

each Σ-equation in E.

Remark 91. Given a monad R and a 2-signature Υ = (Σ, E), an action of Υ in R is

an action of Σ in R such that the induced 1-model satisfies all the equations in E.

Definition 92 (category_model_equations). For a 2-parametric module (Σ, E), the

category of models Mon(Σ,E) of (Σ, E) is the category of models of the induced 2-

signature. More concretely, it is the full subcategory of the category of models of Σ

whose objects are models of Σ satisfying E, or equivalently, monads equipped with an

action of (Σ, E).

Example 93. A model of the 2-signature ΥLCβη
= (Θ × Θ + Θ′, {eβ, eη}) is given by

a model (R, appR : R × R → R, absR : R′ → R) of the 1-signature ΣLC such that

appR
1 · absR = 1R′ and absR · appR

1 = 1R (see Example 86).

Definition 94. A 2-parametric module (Σ, E) is said to be effective if the induced 2-

signature is, that is, if its category of models Mon(Σ,E) has an initial object, denoted

(̂Σ, E).

In Section 4.2.4, we aim to find sufficient conditions for a 2-parametric module

(Σ, E) to be effective.

4.2.3 Modularity for 2-signatures

In this section, we define the category 2PMod of 2-parametric modules and the cate-

gory 2Mdls of models of 2-signatures, together with functors that relate them with the
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categories PMod and Mdls of parametric modules and 1-models. The situation is sum-

marized in the commutative diagram of functors

2Mdls

UMdls

))

FMdls

ii ⊤

2π

��

Mdls

π

��

2PMod

UPMod

))

FPMod

ii ⊤ PMod

where

• 2π is a Grothendieck fibration;

• π is the Grothendieck fibration defined in Section 3.4.2;

• UPMod is a coreflection and preserves colimits; and

• UMdls is a coreflection.

As a simple consequence of this data, we obtain, in Theorem 102, a modularity re-

sult in the sense of Ghani, Uustalu, and Hamana [GUH06]: it explains how the initial

model of a pushout of 2-parametric modules is the pushout of the initial models of the

summands2.

We start by defining the category 2PMod of 2-parametric modules:

Definition 95 (TwoSig_category). Given 2-parametric modules (Σ1, E1) and (Σ2, E2),

a morphism of 2-parametric modules from (Σ1, E1) to (Σ2, E2) is a morphism of

parametric modules m : Σ1 → Σ2 such that for any model M of Σ2 satisfying E2, the

Σ1-model m∗M satisfies E1.

These morphisms, together with composition and identity inherited from parametric

modules, form the category 2PMod.

We now study the existence of colimits in 2PMod. We know that PMod is cocom-

plete, and we use this knowledge in our study of 2PMod, by relating the two categories:

2. This definition of “modularity” does not seem related to the specific meaning it has in the rewriting
community (see, for example, [Gra12]).
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Let FPMod : PMod → 2PMod be the functor which associates to any parametric

module Σ the empty family of equations, FPMod(Σ) := (Σ, ∅). Call UPMod : 2PMod →

PMod the forgetful functor defined on objects as UPMod(Σ, E) := Σ.

Lemma 96 (TwoSig_OneSig_is_right_adjoint, OneSig_TwoSig_fully_faithful). We

have FPMod ⊣ UPMod. Furthermore, UPMod is a coreflection.

We are interested in specifying new languages by “gluing together” simpler ones.

On the level of 2-parametric modules, this is done by taking the coproduct, or, more

generally, the pushout of 2-parametric modules:

Theorem 97 (TwoSig_PushoutsSET). The category 2PMod has pushouts.

Coproducts are computed by taking the union of the equations and the coprod-

ucts of the underlying parametric modules. Coequalizers are computed by keeping

the equations of the codomain and taking the coequalizer of the underlying parametric

modules. Thus, by decomposing any colimit into coequalizers and coproducts, we have

this more general result:

Proposition 98. The category 2PMod is cocomplete and UPMod preserves colimits.

We now turn to our modularity result, which states that the initial model of a coprod-

uct of two 2-parametric modules is the coproduct of the initial models of the summands.

More generally, the two languages can be amalgamated along a common “core lan-

guage”, by considering a pushout rather than a coproduct.

For a precise statement of that result, we define a “total category of models of 2-

signatures”:

Definition 99. The category
∫ (Σ,E) Mon(Σ,E), or 2Mdls for short, has, as objects, pairs

((Σ, E), M) of a 2-parametric modules (Σ, E) and a model M of (Σ, E).

A morphism from ((Σ1, E1), M1) to ((Σ2, E2), M2) is a pair (m, f) consisting of a

morphism m : (Σ1, E1) → (Σ2, E2) of 2-parametric modules and a morphism f : M1 →

m∗M2 of (Σ1, E1)-models (or, equivalently, of Σ1-models).

This category of models of 2-signatures contains the models of 1-signatures as a

coreflective subcategory. Let FMdls : Mdls → 2Mdls be the functor which associates

to any 1-model (Σ, M) the empty family of equations, FMdls(Σ, M) := (FPMod(Σ), M).

Conversely, the forgetful functor UMdls : 2Mdls → Mdls maps ((Σ, E), M) to (Σ, M).
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Lemma 100 (TwoMod_OneMod_is_right_adjoint, OneMod_TwoMod_fully_faithful). We

have FMdls ⊣ UMdls. Furthermore, UMdls is a coreflection.

The modularity result is a consequence of the following technical result:

Proposition 101 (TwoMod_cleaving). The forgetful functor 2π from 2Mdls to 2PMod is

a Grothendieck fibration.

The modularity result below is analogous to the modularity result for 1-signatures

(Theorem 54):

Theorem 102 (Modularity for 2-signatures, pushout_in_big_rep). Suppose we have a

pushout diagram of effective 2-parametric modules, as on the left below. This pushout

gives rise to a commutative square of morphisms of models in 2Mdls as on the right

below, where we only write the second components, omitting the (morphisms of) para-

metric modules. This square is a pushout square.

Υ0
//

��

Υ1

��

Υ2
// Υ
p

Υ̂0
//

��

Υ̂1

��

Υ̂2
// Υ̂
p

Intuitively, the 2-signatures Υ1 and Υ2 specify two extensions of the 2-signature Υ0,

and Υ is the smallest extension containing both these extensions. By Theorem 102 the

initial model of Υ is the “smallest model containing both the languages generated by

Υ1 and Υ2”.

4.2.4 Initial Semantics for 2-Signatures

We now turn to the problem of constructing the initial model of a 2-signature (Σ, E).

More specifically, we identify sufficient conditions for (Σ, E) to be effective. Our ap-

proach is very straightforward: we seek to construct the initial object (̂Σ, E) by applying

a suitable quotient construction to the initial object Σ̂ of MonΣ.

This leads immediately to our first requirement on (Σ, E), which is that Σ must be an

effective 1-signature. (For instance, we can assume that Σ is an algebraic 1-signature,

see Theorem 53.) This is a very natural hypothesis, since in the case where E is the

empty family of Σ-equations, it is obviously a necessary and sufficient condition.
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Some Σ-equations are never satisfied. In that case, the category Mon(Σ,E) is empty.

For example, given any 1-signature Σ, consider the Σ-equation inl, inr : Θ⇒ Θ+Θ given

by the left and right inclusion. This is obviously an unsatisfiable Σ-equation. We have

to find suitable hypotheses to rule out such unsatisfiable Σ-equations. This motivates

the notion of elementary equations.

Definition 103. Given a 1-signature Σ, a Σ-module S is nice if S sends pointwise

epimorphic Σ-model morphisms to pointwise epimorphic module morphisms.

Definition 104 (elementary_equation). Given a 1-signature Σ, an elementary Σ-

equation is a Σ-equation such that

• the target is a finite derivative of the tautological Σ-module Θ, i.e., of the form Θ(n)

for some n ∈ N, and

• the source is a nice Σ-module.

Example 105. Any algebraic parametric module is nice (Example 65). Thus, any Σ-

equation between an algebraic parametric module and Θ(n), for some natural number

n, is elementary.

Definition 106. A 2-parametric module (Σ, E) is said algebraic if Σ is algebraic and

E is a family of elementary equations. The induced 2-signature is then also called

algebraic.

Theorem 107 (elementary_equations_on_alg_preserve_initiality). Any algebraic

2-signature is effective.

The proof of Theorem 107 is given in Section 4.3.

Example 108. The 2-signature of lambda calculus modulo β and η equations given

in Example 89 is algebraic. Its initial model is precisely the monad LCβη of lambda

calculus modulo βη equations.

The instantiation of the formalized Theorem 107 to this 2-signature is done3 in

LCBetaEta.

Let us mention finally that, using the axiom of choice, we can take a similar quotient

on all the 1-models of Σ:

3. An initiality result for this particular case was also previously discussed and proved formally in the
Coq proof assistant in [HM10].
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Proposition 109 (ModEq_Mod_is_right_adjoint, ModEq_Mod_fully_faithful). Here

we assume the axiom of choice. The forgetful functor from the category Mon(Σ,E) of

2-models of (Σ, E) to the category MonΣ of Σ-models has a left adjoint. Moreover, the

left adjoint is a reflector.

4.3 Proof of Theorem 107

Our main technical result on effectiveness is the following Lemma 110. In Theorem 107,

we give a much simpler criterion that encompasses all the examples we give.

Lemma 110 (elementary_equations_preserve_initiality). Let (Σ, E) be a 2-parametric

module such that:

1. Σ sends epimorphic natural transformations to epimorphic natural transforma-

tions,

2. E is a family of elementary equations,

3. Σ is effective,

4. the initial 1-model of Σ preserves epimorphisms,

5. the image by Σ of the initial 1-model of Σ preserves epimorphisms.

Then, the 2-signature (Σ, E) is effective.

Before tackling the proof of Lemma 110, we discuss how to derive Theorem 107

from it, and we prove some auxiliary results.

The “epimorphism” hypotheses of Lemma 110 are used to transfer structure from

the initial model Σ̂ of the 1-signature Σ onto a suitable quotient. There are different

ways to prove these hypotheses:

• The axiom of choice implies Conditions 4 and 5 since, in this case, any epimor-

phism in Set is split and thus preserved by any functor.

• Condition 5 is a consequence of Condition 4 if Σ sends monads preserving epi-

morphisms to modules preserving epimorphisms.

• If Σ is algebraic, then Conditions 1, 3, 4 and 5 are satisfied (Example 65 and

Lemma 66).
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From the remarks above, we derive the simpler and weaker statement of Theorem 107

that covers all our examples, which are algebraic.

This section is dedicated to the proof of the main technical result, Lemma 110. The

reader inclined to do so may safely skip this section, and rely on the correctness of the

machine-checked proof instead.

The proof of Lemma 110 uses some quotient constructions that we present now:

Proposition 111 (u_monad_def). Given a monad R preserving epimorphisms and a

collection of monad morphisms (fi : R → Si)i∈I , there exists a quotient monad R/(fi)

together with a projection pR : R −→ R/(fi), which is a morphism of monads such that

each fi factors through p.

Proof. The set R/(fi)(X) is computed as the quotient of R(X) with respect to the

relation x ∼ y if and only if fi(x) = fi(y) for each i ∈ I. This is a straightforward

adaptation of Lemma 63.

Note that epimorphism preservation is implied by the axiom of choice, but can be

proven for the monad underlying the initial model Σ̂ of an algebraic 1-signature Σ even

without resorting to the axiom of choice.

The above construction can be transported to Σ-models:

Proposition 112 (u_rep_def). Let Σ be a parametric module sending epimorphic natu-

ral transformations to epimorphic natural transformations, and let R be a Σ-model such

that R and Σ(R) preserve epimorphisms. Let (fi : R → Si)i∈I be a collection of Σ-

model morphisms. Then the monad R/(fi) has a natural structure of Σ-model and the

quotient map pR : R −→ R/(fi) is a morphism of Σ-models. Any morphism fi factors

through pR in the category of Σ-models.

The fact that R and Σ(R) preserve epimorphisms is implied by the axiom of choice.

The proof follows the same line of reasoning as the proof of Proposition 111.

Now we are ready to prove the main technical lemma:

Proof of Lemma 110. Let Σ be an effective parametric module, and let E be a set of

elementary Σ-equations. The plan of the proof is as follows:

1. Start with the initial model (Σ̂, σ), with σ : Σ(Σ̂) → Σ̂.
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2. Construct the quotient model Σ̂/(fi) according to Proposition 112 where (fi : Σ̂ →

Si)i is the collection of all initial Σ-morphisms from Σ̂ to any Σ-model satisfying the

equations. We denote by σ/(fi) : Σ(Σ̂/(fi)) → Σ̂/(fi) the action of the quotient

model.

3. Given a model M of the 2-signature (Σ, E), we obtain a morphism iM : Σ̂/(fi) →

M from Proposition 112. Uniqueness of iM is shown using epimorphicity of the

projection p : Σ̂ → Σ̂/(fi). For this, it suffices to show uniqueness of the composi-

tion iM ◦ p : Σ̂ → M in the category of 1-models of Σ, which follows from initiality

of Σ̂.

4. The verification that
(
Σ̂/(fi), σ/(fi)

)
satisfies the equations is given below. Actu-

ally, it follows the same line of reasoning as in the proof of Proposition 111 that

Σ̂/(fi) satisfies the monad equations.

Let e = (e1, e2) : U → Θ(n) be an elementary equation of E. We want to prove that the

two arrows

e1,Σ̂/(fi)
, e2,Σ̂/(fi)

: U(Σ̂/(fi)) −→ (Σ̂/(fi))
(n)

are equal. As p is an epimorphic natural transformation, U(p) also is by definition of an

elementary equation. It is thus sufficient to prove that

e1,Σ̂/(fi)
◦ U(p) = e2,Σ̂/(fi)

◦ U(p) ,

which, by naturality of e1 and e2, is equivalent to p(n) ◦ e1,Σ̂ = p(n) ◦ e2,Σ̂.

Let x be an element of U(Σ̂) and let us show that p(n)(e1,Σ̂(x)) = p(n)(e2,Σ̂(x)). By

definition of Σ̂/(fi) as a pointwise quotient (see Proposition 111), it is enough to show

that for any j, the equality f
(n)
j (e1,Σ̂(x)) = f

(n)
j (e2,Σ̂(x)) is satisfied. Now, by naturality of

e1 and e2, this equation is equivalent to e1,Sj
(U(fj)(x))) = e2,Sj

(U(fj)(x))) which is true

since Sj satisfies the equation e1 = e2.

4.4 Examples of algebraic 2-signatures

We already illustrated our theory by looking at the paradigmatic case of lambda cal-

culus modulo β- and η-equations (Examples 86 and 108). This section collects further

examples of application of our results.
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In our framework, complex signatures can be built out of simpler ones by taking their

coproducts. Note that the class of algebraic 2-parametric modules encompasses the

algebraic parametric modules and is closed under arbitrary coproducts: the prototypical

examples of algebraic 2-signatures given in this section can be combined with any

other algebraic 2-signature, yielding an effective 2-signature thanks to Theorem 107.

4.4.1 Monoids

We begin with an example of monad for a first-order syntax with equations. Given a

set X, we denote by M(X) the free monoid built over X. This is a classical example

of monad over the category of (small) sets. The monoid structure gives us, for each

set X, two maps mX : M(X) × M(X) −→ M(X) and eX : 1 −→ M(X) given by the

product and the identity respectively. It can be easily verified that m : M2 −→ M and

e : 1 −→ M are M -module morphisms. In other words, (M, ρ) = (M, [m, e]) is a model

of the 1-signature Σ = Θ × Θ + 1.

We break the tautological morphism of Σ-modules (cf. Example 80) into constituent

pieces, defining m := τ ◦ inl : Θ × Θ → Θ and e := τ ◦ inr : 1 → Θ.

Over the 1-signature Σ we specify equations postulating associativity and left and

right unitality as follows:

Θ3 Θ×m
// Θ2 m // Θ

Θ3
m×Θ

// Θ2
m

// Θ

Θ
e×Θ

// Θ2 m // Θ

Θ
1

// Θ

Θ
Θ×e

// Θ2 m // Θ

Θ
1

// Θ

and we denote by E the family consisting of these three Σ-equations. All are elementary

since their codomain is Θ, and their domain a product of Θs.

One checks easily that (M, [m, e]) is the initial model of (Σ, E).

Several other classical (equational) algebraic theories, such as groups and rings,

can be treated similarly, see Section 4.4.3 below. However, at the present state we

cannot model theories with partial construction (e.g., fields).

4.4.2 Colimits of algebraic 2-parametric modules

In this section, we argue that our framework encompasses any colimit of algebraic

2-parametric modules.
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Actually, the class of algebraic 2-parametric modules is not stable under colimits, as

this is not even the case for algebraic parametric modules. However, we can weaken

this statement as follows:

Proposition 113. Given any colimit of algebraic 2-parametric modules, there is an

algebraic 2-signature yielding an isomorphic category of models.

Proof. As the class of algebraic 2-parametric modules is closed under arbitrary co-

products, using the decomposition of colimits into coproducts and coequalizers, any

colimit Ξ of algebraic 2-parametric modules can be expressed as a coequalizer of two

morphisms f, g between some algebraic 2-parametric modules (Σ1, E1) and (Σ2, E2),

(Σ1, E1)
f

//

g
// (Σ2, E2)

p
// Ξ = (Σ3, E2) .

where Σ3 is the coequalizer of the parametric module morphisms f and g. Note that

the set of equations of Ξ is E2, by construction of the coequalizer in the category of

2-parametric modules. Now, consider the algebraic 2-signature Ξ′ = (Σ2, E2 + (4.2))

consisting of the 1-signature Σ2 and the equations of E2 plus the following elementary

equation (see Examples 80 and 105):

Σ1
f

// Σ2
τΣ2

// Θ

Σ1 g
// Σ2

τΣ2

// Θ

. (4.2)

We show that MonΞ and MonΞ′

are isomorphic. A model of Ξ′ is a monad R together

with an R-module morphism r : Σ2(R) → R such that r ◦ fR = r ◦ gR and that the

equations of E2 are satisfied. By universal property of the coequalizer, this is exactly

the same as giving an R-module morphism Σ3(R) → R satisfying the equations of E2,

i.e., giving R an action of Ξ = (Σ3, E2).

It is straightforward to check that this correspondence yields an isomorphism be-

tween the category of models of Ξ and the category of models of Ξ′.

This proposition, together with the following corollary, allow us to recover all the ex-

amples presented in Chapter 3, as colimits of algebraic parametric modules: syntactic

commutative binary operator, maximum operator, application à la differential lambda

calculus, syntactic closure operator, integrated substitution operator, coherent fixpoint

operator.
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Corollary 114. If F is a finitary endofunctor on Set, then there is an algebraic 2-

signature whose category of models is isomorphic to the category of 1-models of the

1-signature F · Θ.

Proof. It is enough to prove that F · Θ is a colimit of algebraic parametric modules.

As F is finitary, it is isomorphic to the coend
∫ n∈F F (n) × _n where F is the full

subcategory of Set of finite ordinals (see, e.g., [VK11, Example 3.19]). As colimits are

computed pointwise, the parametric module F · Θ is the coend
∫ n∈F F (n) × Θn, and as

such, it is a colimit of algebraic 2-parametric modules.

However, we do not know whether we can recover Theorem 57 stating that any

presentable 1-signature is effective.

4.4.3 Algebraic theories

From the categorical point of view, several fundamental algebraic structures in math-

ematics can be conveniently and elegantly described using finitary monads. For in-

stance, the category of monoids can be seen as the category of Eilenberg–Moore al-

gebras of the monad of lists. Other important examples, like groups and rings, can be

treated analogously. A classical reference on the subject is the work of Manes, where

such monads are significantly called finitary algebraic theories [Man76, Definition 3.17].

We want to show that such “algebraic theories” fit in our framework, in the sense

that they can be incorporated into an algebraic 2-signature, with the effect of enriching

the initial model with the operations of the algebraic theory, subject to the axioms of the

algebraic theory.

For a finitary monad T , Corollary 114 says how to encode the 1-signature T · Θ

as an algebraic 2-signature (ΣT , ET ). Models are monads R together with an R-linear

morphism r : T · R → R.

Now, for any model (R, m) of T · Θ, we would like to enforce the usual T -algebra

equations on the action m. This is done thanks to the following equations, where τ

denotes the tautological morphism of T · Θ-modules:

Θ
ηT ·Θ

// T · Θ τ // Θ

Θ
1

// Θ

T · T · Θ
µT ·Θ

// T · Θ τ // Θ

T · T · Θ
T τ

// T · Θ τ
// Θ

(4.3)
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The first equation is clearly elementary. The second one is elementary thanks to the

following lemma:

Lemma 115. Let F be a finitary endofunctor on Set. Then F preserves epimorphisms.

Proof. This is a consequence of the axiom of choice, because then any epimorphism

in the category of Set is split, and thus preserved by any functor. Here we provide an

alternative proof which does not rely on the axiom of choice. (However, it may require

the excluded middle, depending on the chosen definition of finitary functor.)

As F is finitary, it is isomorphic to the coend
∫ n∈F F (n)×_n [VK11, Example 3.19]. By

decomposing it as a coequalizer of coproducts, we get an epimorphism α :
∐

n∈N F (n)×

_n → F . Now, let f : X → Y be a surjective function between two sets. We show that

F (f) is epimorphic. By naturality, the following diagram commutes:

∐
n∈N F (n) × Xn F (n)×fn

//

αX

��

∐
n∈N F (n) × Y n

αY

��

F (X)
F (f)

// F (Y )

.

The top-right composite is epimorphic by composition of epimorphisms. Thus, the

bottom-left composite is also epimorphic, hence so is F (f) as the last morphism of

this composition.

In conclusion, we have exhibited the algebraic 2-signature (ΣT , E ′
T ), where E ′

T ex-

tends the family ET with the two elementary equations of Diagram 4.3. This signature

allows to enrich any other algebraic 2-signature with the operations of the algebraic

theory T , subject to the relevant equations.

4.4.4 Fixpoint operator

Here, we show the algebraic 2-signature corresponding to a fixpoint operator. In Sec-

tion 3.8.4, we studied fixpoint operators in the context of 1-signatures. In that setting,

we treated a syntactic fixpoint operator called coherent fixpoint operator, somehow

reminiscent of mutual letrec. We were able to impose many natural equations to this

operator but we were not able to enforce the fixpoint equation. In this section, we show

how a fixpoint operator can be fully specified by an algebraic 2-signature. We restrict
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our discussion to the unary case; the coherent family of multi-ary fixpoint operators

presented in Section 3.8.4, now including the fixpoint equations, can also be specified,

in an analogous way, via an algebraic 2-signature.

Let us start by recalling Definition 72: a unary fixpoint operator for a monad R is

a module morphism f from R′ to R that makes the following diagram commute, where σ

is the substitution morphism defined as the uncurrying (see Definition 85) of the identity

morphism on Θ′:

R′ R′ × R

R

(idR′ ,f)

f σR

In order to rephrase this definition, we introduce the obviously algebraic 2-signature

Υfix consisting of the 1-signature Σfix = Θ′ and the family Efix consisting of the single

following Σfix-equation:

efix :
Θ′ 〈1,τ〉

// Θ′ × Θ σ // Θ

Θ′
τ

// Θ
(4.4)

This allows us to rephrase the previous definition as follows: a unary fixpoint oper-

ator for a monad R is just an action of the 2-signature Υfix in R.

4.5 Recursion

In this section, we explain how a recursion principle can be derived from our initiality

result, and give an example of a morphism—a translation—between monads defined

via the recursion principle.

4.5.1 Principle of recursion

In our context, the recursion principle is a recipe for constructing a morphism from the

monad underlying the initial model of a 2-signature Υ = (Σ, E) to an arbitrary monad

T .

Proposition 116 (Recursion principle). Let S be the monad underlying the initial model

of the 2-signature Υ. To any action a of Υ in T is associated a monad morphism â :
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S → T .

Proof. The action a defines a 2-model M of Υ, and â is the monad morphism underly-

ing the initial morphism to M .

Hence the recipe consists in the following two steps:

1. give T an action of the 1-signature Σ;

2. check that all the equations in E are satisfied for the induced model.

In the next section, we illustrate this principle.

4.5.2 Translation of lambda calculus with fixpoint to lambda cal-

culus

In this section, we consider the 2-signature ΥLCβη,fix
:= ΥLCβη

+ Υfix where the two

components have been introduced above (see Example 93 and Section 4.4.4).

As a coproduct of algebraic 2-parametric modules, ΥLCβη,fix
is itself algebraic, and

thus the initial model exists. The underlying monad LCβη,fix of the initial model can be

understood as the monad of lambda calculus modulo β and η enriched with an explicit

fixpoint operator fix : LC′
βη,fix −→ LCβη,fix. Now we build by recursion a monad morphism

from this monad to the “bare” monad LCβη of lambda calculus modulo β and η.

As explained in Section 4.5.1, we need to define an action of ΥLCβη,fix
in LCβη, that is

to say an action of ΥLCβη
plus an action of Υfix. For the action of ΥLCβη

, we take the one

yielding the initial model.

Now, in order to find an action of Υfix in LCβη, we choose a fixpoint combinator Y

(say the one of Curry) and take the action Ŷ as defined at the end of Section 4.4.4.

In more concrete terms, our translation is a kind of compilation which replaces each

occurrence of the explicit fixpoint operator fix(t) with app(Y, abs t).
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CHAPTER 5

REDUCTION MONADS

AND THEIR SIGNATURES

In this chapter, we study reduction monads, which are essentially the same as monads

relative to the free functor from sets into graphs and signatures over their category. The

statements here are not formalized.

Reduction monads abstract two aspects of the lambda calculus: on the one hand,

in the monadic viewpoint, it is an object equipped with a well-behaved substitution; on

the other hand, in the graphical viewpoint, it is an oriented graph whose vertices are

terms and whose edges witness the reductions between two terms.

We study presentations of reduction monads. To this end, we propose a notion

of reduction signature. They are, in particular, signatures in the sense of Chapter 2

consisting of a signature over the category of monads (for example, a 2-signature, as

introduced in Chapter 4) extended with a family of arities specifying reduction rules.

As usual, such a signature plays the role of a virtual presentation, and specifies

arities for generating operations—possibly subject to equations—together with arities

for generating reduction rules.

The main result of this chapter identifies a class of effective reduction signatures. In

particular, the lambda calculus is naturally specified by such a signature.

5.1 Introduction

The lambda calculus has been a central object in theoretical computer science for

decades. However, the corresponding mathematical structure does not seem to have

been identified once and for all. In particular, two complementary viewpoints on the

(pure untyped) lambda calculus have been widespread: some consider it as a graph

(or a preorder, or a category), while others view it as a monad (on the category of sets).
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The first account incorporates the β-reduction, while the second addresses substitu-

tion but incorporates only the β-equality. Merging these two perspectives led Lüth and

Ghani [LG97b] to consider monads on the category of preordered sets, and Ahrens

[Ahr16] to consider monads relative to the free functor from sets into preorders. In

the present chapter, we propose a variant of their approaches. Here we call reduc-

tion monad a monad relative to the natural injection of sets in graphs, and of course

the lambda-calculus yields such a reduction monad. Our main contribution concerns

the generation of reduction monads by syntactic (possibly binding) operations (possibly

subject to equations) and reduction rules. As is common in similar contexts, we propose

a notion of signature for reduction monads, which we call “reduction signatures”. Each

reduction signature comes equipped with the category of its models: such a model is a

reduction monad “acted upon” by the signature. A reduction signature may be under-

stood as a virtual presentation: when an initial model exists (that is, when the signature

is effective), it inherits a kind of presentation given by the action of the signature. We

identify a natural criterion for a signature to be effective. As should be expected, we

give an effective reduction signature specifying the lambda calculus with its reduction

rules, which yields a new, high-level definition of the (pure untyped) lambda calculus.

5.1.1 Terminology and notations

In this section, we set up some terminology and notations that we use in this chapter.

Signature for monads By signatures for monads, we mean signatures over the cat-

egory of monads. In the examples, they are in particular 2-signatures of Chap-

ter 4, or just 1-signatures of Chapter 3. The letter Σ is usually associated with a

signature for monads.

Models of signature for monads In order to avoid any confusion with the notion of

model of operational signatures that we introduce here, we refer to models of a

signature Σ for monads as Σ-monads.

Substitution Let R be a monad, M be a R-module, t an element of M(X) and f a

function from X to R(Y ). Then, we denote by t{f} ∈ R(Y ) the substitution of all

the variables in t by the corresponding term given by f .

Unary substitution We abbreviate t{x 7→ if x = y then u else x} as t{y := u}.
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5.1.2 Plan of the chapter

In Section 5.2, we define reduction monads. In Section 5.3, we present our take on

reduction rules. This enables us to define a class of signatures over the category of

reduction monads—reduction signatures—in Section 5.4. Section 5.5 is devoted to the

proof of our theorem of effectivity for these signatures, under some natural assump-

tions. Then, in Section 5.6, we give a detailed example of a reduction signature spec-

ifying the lambda calculus with explicit substitutions of [Kes09]. Finally, in Section 5.7,

we explain the recursion principle which, as usual, can be derived from initiality in our

categories of models.

5.2 Reduction monads

Here below, we define the category of reduction monads in Section 5.2.1. We also

consider some examples of reduction monads, in Section 5.2.2.

5.2.1 The category of reduction monads

Definition 117. A reduction monad R is given by:

1. a monad on sets (the monad of terms), that we still denote by R, or by R when

we want to be explicit;

2. an R-module Red(R) (the module of reductions);

3. a morphism of R-modules redR : Red(R) → R × R (source and target of rules).

We set sourceR := π1 ◦ redR : Red(R) → R, and targetR := π2 ◦ redR : Red(R) → R

Notation 118. For a reduction monad R, a set X, and elements s, t ∈ R(X), we think

of the fiber redR(X)−1(s, t) as the set of “reductions from s to t”. We sometimes write

m : s ◮ t : R(X), or even m : s ◮ t when there is no ambiguity, instead of m ∈

redR(X)−1(s, t).

Remark 119. Note that for a given reduction monad R, set X, and s, t : R(X), there

can be multiple reductions from s to t, that is, the fibre s ◮ t is not necessarily a

subsingleton.
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Remark 120. Let R be a reduction monad, X and Y two sets, f : X → R(Y ) a

substitution, and u and v two elements of R(X) related by m : u ◮ v. The module

structure on Red(R) yields a reduction denoted m{f} between u{f} and v{f}.

However, if we are given two substitutions f and g, and for all x ∈ X, a reduction

mx : f(x) ◮ g(x), then it does not follow that there is a reduction between u{f} and

u{g}. This leaves the door open for non-congruent reductions.

Our main examples of reduction monads are given by variants of the lambda calcu-

lus. We have collected these examples in Section 5.2.2.

Definition 121. A morphism of reduction monads from R to S is given by a pair

(f, α) of

1. a monad morphism f : R → S, and

2. a natural transformation α : Red(R) → Red(S)

satisfying the following two conditions:

3. α is an R-module morphism between Red(R) and the pullback module f ∗Red(S)

of Red(S) along f (see Definition 26), and

4. the square

Red(R) α //

redR

��

Red(S)

redS

��

R × R
f×f

// S × S

commutes in the category of functors and natural transformations.

In Section 5.7 we specify morphisms of reduction monads via a recursion principle.

Intuitively, a morphism (f, α) as above maps terms of R to terms of S via f , and

reductions of R to reductions of S via α. Condition 3 states compatibility of the map

of reductions with substitution. Condition 4 states preservation of source and target by

the map of reductions: a reduction m : u ◮ v is mapped by α to a reduction α(m) :

f(u) ◮ f(v).

Proposition 122 (Category of reduction monads). Reduction monads and their mor-

phisms, with the obvious composition and identity, form a category RedMon, equipped

with a forgetful functor to the category of monads.
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It turns out that reduction monads are the same as monads relative to the free

functor from sets to graphs (for the definition of relative monads, see [ACU15, Defini-

tion 2.1]):

Theorem 123. The category of reduction monads is isomorphic to the category of

monads relative to the functor mapping a set to its discrete graph.

Proof. This is obvious after unfolding the definitions.

Remark 124. In the previous theorem, the involved category of graphs has pairs of

parallel functions E
t

//

s //
V as objects: E is the set of edges, V the set of vertices, s

and t maps respectively any edge to its source and target. Adopting the indexed point of

view rather than this fibrational approach, we obtain an equivalent (but not isomorphic)

category: a graph is a set V of vertices, and for each pair of vertices there is a set of

edges between them. Our notion of reduction monads could also be rephrased in this

way, yielding an equivalent (but not isomorphic) category.

5.2.2 Examples of reduction monads

We are interested in reduction monads with underlying monad LC, the monad of syn-

tactic lambda terms specified by the 1-signature ΣLC = Θ × Θ + Θ′.

Example 125 (Lambda calculus with head-β-reduction). Consider the reduction monad

LChead-β given as follows:

1. the underlying monad is LC;

2. Red(R) is the module LC′ × LC;

3. redR(X) is the morphism (u, v) 7→
(
app(abs(u), v), u{∗ := v}

)
.

This reduction monad deserves to be called the reduction monad of the lambda calcu-

lus with head-β-reduction.

Example 126 (Lambda calculus with head-η-expansion). Consider the reduction monad

LChead-η given as follows:

1. the underlying monad is LC;

2. Red(R) is the module LC;
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3. redR(X) is the morphism t 7→
(
t, abs(app(ιt, ∗))

)
, where ι : LC(X) → LC′(X) is the

natural injection (weakening).

This reduction monad deserves to be called the reduction monad of the lambda calcu-

lus with head-η-expansion.

Obviously, to get the analogous reduction rule for the η-contraction, it is enough to

swap, in the previous example, the components of the output of the morphism redR.

Given two reduction monads with the same underlying monad on sets, we define

the amalgamation of the reduction monads as follows:

Definition 127. Given reduction monads R and S with the same underlying monad on

sets, we define the reduction monad R ∐ S as follows:

1. the underlying monad on sets is still R (or, equivalently, S);

2. the R-module Red(R ∐ S) is the coproduct Red(R) ∐ Red(S).

3. the module morphism redR∐S is induced by redR and redS.

This is the pushout, in the category of reduction monads, of uR → R and uR → S, with

the reduction monad uR := (R, 0, !).

Example 128. The reduction monad LChead-β/η := LChead-β ∐LChead-η has, as reductions,

β-reductions and η-expansions at the head of lambda terms.

So far we have only considered reductions at the root of a lambda term. The follow-

ing construction allows us to propagate reductions into subterms.

Definition 129. Let R be a reduction monad over the monad LC on sets. We define the

reduction monad Rcong as follows:

1. the underlying monad is LC;

2. Red(Rcong)(X) is generated by the following constructions:

(a) for m : u ◮ v in Red(R), m is also in Red(Rcong)

(b) for m : u ◮ v : LC(X) in Red(Rcong) and t ∈ LC(X), we have app-cong1(m, t) :

app(u, t) ◮ app(v, t)

(c) for m : u ◮ v : LC(X) in Red(Rcong) and t ∈ LC(X), we have app-cong2(t, m) :

app(t, u) ◮ app(t, v)
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(d) for m : u ◮ v : LC′(X) in Red(Rcong) we have abs-cong(m) : abs(u) ◮ abs(v)

3. redRcong is obvious.

Example 130. A reduction in the reduction monad LCβ/η := (LChead-β/η)cong is “one step”

of β-reduction or η-expansion, anywhere in the source term.

The closure under identity and composition of reductions of a reduction monad is

defined as follows:

Definition 131. Given a reduction monad R, we define the reduction monad R∗ as

follows:

1. the underlying monad on sets is still R;

2. the R-module Red(R∗) is defined as follows. For n ∈ N we define the module

Red(R)n of “n composable reductions”, namely as the limit of the diagram

Red(R)
sourceR

vv

targetR

((

Red(R)
sourceR

vv

targetR

((

. . .
sourceR

ww
R R R

with n copies of Red(R) (and hence n + 1 copies of R). We obtain n + 1 projec-

tions πi : Red(R)n → R, and we call pn := (π0, πn) : Red(R)n → R × R. We set

Red(R∗) :=
∐

n Red(R)n.

3. the module morphism is redR∗ := [pn]n∈N :
∐

n Red(R)n → R × R the universal

morphism induced by the family (pn)n∈N .

Example 132 (The reduction monad of the lambda calculus). The reduction monad of

the lambda calculus is defined to be the reduction monad LC∗
β/η.

In Section 5.4 we introduce signatures that allow for the specification of reduction

monads. The signature specifying the reduction monad of lambda calculus of Exam-

ple 130 is given in Example 152.

5.3 Reduction rules

In this section, we define an abstract notion of reduction rule over a signature for mon-

ads Σ (Section 5.3.2). We first focus, in Section 5.3.1, on the example of the congru-

ence rule for the application construction in the signature ΣLC for the monad of the
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lambda calculus, in order to motivate the definitions. The purpose of a reduction rule

over Σ is to be “validated” in a reduction monad equipped with an action of Σ (this

is what we will call a reduction Σ-monad in Section 5.3.3). We make this notion of

validation precise in Section 5.3.4, as an action of the reduction rule in the reduction

Σ-monad. Finally, we give a protocol for specifying reduction rules in Section 5.3.5 that

we apply in Section 5.3.6 to some examples.

5.3.1 Example: congruence rule for application

We give some intuitions of the definition of reduction rule with the example of the con-

gruence rule for application, given, e.g., in Selinger’s lecture notes [Sel08], as follows:

T  T ′ U  U ′

app(T, U) app(T ′, U ′)

This rule is parameterized by four metavariables: T , T ′, U , and U ′. The conclusion

and the hypotheses are given by pairs of terms built out of these metavariables.

We formalize this rule as follows: for any monad R equipped with an application op-

eration app : R×R → R, we associate a module of metavariables V(R) = R×R×R×R,

one factor for each of the metavariables T , T ′, U , and U ′. Each hypothesis or conclu-

sion is described by a parallel pair of morphisms from V(R) to R: for example, the

conclusion cR : V(R) → R maps a set X and a quadruple (T, T ′, U, U ′) to the pair

(app(T, U), app(T ′, U ′)). These assignments are actually functorial in R, and abstract-

ing over R yields our notion of term-pair over the Σ-module V, as morphisms from

V to Θ × Θ, where Σ is any signature including a single first-order binary operation

app (for example, ΣLC). The three term-pairs, one for each hypothesis and one for the

conclusion, define the desired reduction rule.

Now, we explain in which sense such a rule can be validated in a reduction monad

R: intuitively, it means that for any set X, any quadrupe (T, T ′, U, U ′) ∈ V(R), any

reductions s : T ◮ T ′ and t : U ◮ U ′, there is a reduction app-cong(s, t) : app(T, U) ◮

app(T ′, U ′). Of course, this only makes sense if the monad R underlying the reduction

monad is equipped with an application operation, that is, with an operation of Σapp. We

call such a structure a reduction Σapp-monad.
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5.3.2 Definition of reduction rules

In this subsection, Σ is a signature for monads. We present our notion of reduction rule

over Σ, from which we build reduction signatures in Section 5.4.

We begin with the definition of term-pair, alluded to already in Section 5.3.1:

Definition 133. Given a Σ-module V, a term-pair from V is a pair (n, p) of a natural

number n and a morphism of Σ-modules p : V → Θ(n) × Θ(n).

Many term-pairs are of a particularly simple form, namely a pair of projections,

which intuitively picks two among the available metavariables. Because of their ubiquity,

we introduce the following notation:

Definition 134. Let n1, . . . , np be a list of natural numbers. For i, j ∈ {1, . . . p}, we de-

fine the pair projection πi,j and the projection πi as the following Σ-module morphisms,

for any signature Σ:

πi,j : Θ(n1) × . . . Θ(np) → Θ(ni) × Θ(nj)

πi : Θ(n1) × . . . Θ(np) → Θ(ni)

πi,j,R,X(T1, . . . , Tp) = (Ti, Tj)

πi,R,X(T1, . . . , Tp) = Ti

Some term-pairs, such as the conclusions of the congruence rules for application

and abstraction, are more complicated: intuitively, they are constructed from term con-

structions applied to metavariables.

Example 135 (term-pair of the conclusion of the congruence for application). The term-

pair corresponding to the conclusion app(T, U)  app(T ′, U ′) of congruence for appli-

cation (Section 5.3.1) is given by (0, c), on the ΣLC-module Θ4. Here, we have

c : V → Θ × Θ

cR,X(T, T ′, U, U ′) :=
(

appR,X(T, U), appR,X(T ′, U ′)
)

More schematically:

c : Θ4 app◦π1,3,app◦π2,4
// Θ × Θ

We now give our definition of reduction rule, making precise the intuition developed

in Section 5.3.1.

Definition 136. A reduction rule A = (V , (ni, hi)i∈I , (n, c)) over Σ is given by:
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• Metavariables: a Σ-module V of metavariables, that we sometimes denote by

MVarA;

• Hypotheses: a finite family of term-pairs (ni, hi)i∈I from V;

• Conclusion: a term-pair (n, c) from V.

Example 137 (Reduction rule for congruence of application). The reduction rule Aapp-cong

for congruence of application (Section 5.3.1) is defined as follows:

• Metavariables: V = Θ4 for the four metavariables T , T ′, U , and U ′;

• Hypotheses: Given by two term-pairs (0, h1) and (0, h2):

h1 : Θ4 π1,2
// Θ × Θ h2 : Θ4 π3,4

// Θ × Θ

• Conclusion: Given by the term-pair (0, c) of Example 135.

More examples of reduction rules are given in Section 5.3.6.

5.3.3 Reduction Σ-monads

As already said, the purpose of a reduction rule is to be validated in a reduction monad

R. However, as the hypotheses or the conclusion of the reduction rule may refer to

some operations specified by a signature Σ for monads, this reduction monad R must

be equipped with an action of Σ, hence the following definition:

Definition 138. Let Σ be a signature for monads. The category RedMonΣ of reduction

Σ-monads is the category of models of the pullback of Σ along the forgetful functor

U : RedMon → Mon (see Chapter 2).

In other words, it is defined as the following pullback:

RedMonΣ //

��

y
RedMon

��

MonΣ // Mon

More concretely,
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• a reduction Σ-monad is a reduction monad R equipped with an action ρ of Σ in

R, thus inducing a Σ-monad that we denote also by R, or by R when we want to

be explicit;

• a morphism of reduction Σ-monads R → S is a morphism f : R → S of

reduction monads compatible with the action of Σ, i.e, whose underlying monad

morphism is a Σ-monad morphism.

5.3.4 Action of a reduction rule

Let Σ be a signature for monads. In this section, we introduce the notion of action of

a reduction rule over Σ in a reduction Σ-monad. Intuitively, such an action is a “map

from the hypotheses to the conclusion” of the reduction rule. To make this precise, we

need to first take the product of the hypotheses; this product is, more correctly, a fibred

product.

Definition 139. Let (n, p) be a term-pair from a Σ-module V, and R be a reduction

Σ-monad. We denote by p∗(Red(R)(n)) the pullback of red
(n)
R : Red(R)(n) → R(n) × R(n)

along pR : V(R) → R(n) × R(n):

p∗(Red(R)(n))
y

//

��

Red(R)(n)

red
(n)
R

��

V(R) pR

// R(n) × R(n)

We denote by p∗(red
(n)
R ) : p∗(Red(R)(n)) → V(R) the projection morphism on the left.

Definition 140. Let A = (V , (ni, hi)i∈I , (n, c)) be a reduction rule, and R be a reduction

Σ-monad. The R-module HypA(R) of hypotheses of A is
∏

i∈I/V(R)

h∗
i Red(R)(ni), i.e., the

fiber product of all the R-modules h∗
i Red(R)(ni) along their projection to V(R). It thus

comes with a projection hypA(R) : HypA(R) → V(R)

The R-module ConA(R) of conclusion of A is c∗Red(R)(n), and comes with a pro-

jection conA(R) : ConA(R) → V(R).

Example 141. Let R be a reduction ΣLC-monad. The R-module of conclusion of the

congruence reduction rule for application (Example 137) maps a set X to the set
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of quintuples (T, T ′, U, U ′, m) where (T, T ′, U, U ′) ∈ R4(X) and m is a reduction m :

app(T, U) ◮ app(T ′, U ′).

The R-module of hypotheses of this reduction rule maps a set X to the set of

sextuples (T, T ′, U, U ′, m, n) where (T, T ′, U, U ′) ∈ R4(X), m : T ◮ T ′, and n : U ◮ U ′.

Definition 142. Let A be a reduction rule over Σ. An action of A in a reduction Σ-

monad R is a morphism in the slice category Mod(R)/MVarA(R) between hypA(R) and

conA(R), that is, a morphism of R-modules

τ : HypA(R) → ConA(R)

making the following diagram commute:

HypA(R) τ //

&&

ConA(R)

xx

MVarA(R)

(5.1)

Example 143 (Action of the congruence rule for application). Consider the reduction

rule of the congruence for application of Example 137. Let R be a reduction ΣLC-

monad R. An action in R is a R-module morphism mapping, for each set X, a sex-

tuple (T, T ′, U, U ′, r, s) with r : T ◮ T ′ and s : U ◮ U ′ to a quintuple (A, A′, B, B′, m)

with m : app(A, B) ◮ app(A′, B′). The commutation of the triangle (5.1) ensures that

(A, A′, B, B′) = (T, T ′, U, U ′).

Alternatively (as justified formally by Lemma 157), an action is a morphism mapping

the same sextuple to a reduction m : app(T, U) ◮ app(T ′, U ′).

Remark 144. Any reduction rule A over Σ induces an arity (D, a, u, v) over RedMonΣ

defined as follows:

• a : D → RedMonΣ is the Grothendieck fibration corresponding (through the Grothendieck

construction) to the functor mapping a reduction Σ-monad R to the category

Mod(R)/MVarA(R);

• u maps a reduction Σ-monad R to hypA(R) : HypA(R) → MVarA(R)

• v maps a reduction Σ-monad R to conA(R) : ConA(R) → MVarA(R)

Then, the notion of action of this induced arity (see Chapter 2) coincides with the one

introduced in this section.
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5.3.5 Protocol for specifying reduction rules

In Section 5.3.6, we adopt the following schematic presentation of a reduction rule over

a signature Σ:

s1(T1, . . . , Tq) t1(T1, . . . , Tq) . . . sn(T1, . . . , Tq) tn(T1, . . . , Tq)

s0(T1, . . . , Tq) t0(T1, . . . , Tq)

where si and ti are expressions depending on metavariables T1, . . . , Tq. Each pair

(si, ti) defines a term-pair as follows:

pi : M1 × · · · × Mq → Θ(mi) × Θ(mi)

pi,R,X(T1, . . . , Tq) := (si(T1, . . . , Tq), ti(T1, . . . , Tq)) (5.2)

where the Σ-modules M1, . . . , Mq, and the natural numbers m0, . . . , mn are inferred for

Equation (5.2) to be well defined for all i ∈ {0, . . . , n}.

The induced reduction rule is:

• Metavariables: the Σ-module of metavariables is V = M1 × · · · × Mq;

• Hypotheses: the hypotheses are the term-pairs (mi, pi)i∈{1,...,n};

• Conclusion: the conclusion is the term-pair (m0, p0).

Typically, Mi = Θ(ni) for some natural number ni, as in the examples that we consider

in this section. In practice, there are several choices for building the reduction rule out

of such a schematic presentation, depending on the order in which the metavariables

are picked. This order is irrelevant: the different possible versions of reduction rules are

all equivalent, in the sense that taking one or the other as part of a reduction signature

yields isomorphic category of models.

5.3.6 Examples of reduction rules

This section collects a list of motivating examples of reduction rules.

For the rest of this section, we assume that we have fixed a signature for monads

Σ. Figure 5.1 shows some notable examples of reduction rules. In order, they are:

reflexivity, transitivity, congruence for abs, β-reduction, η-expansion, and expansion of

the fixpoint operator.
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Refl
T  T

T  U U  W
Trans

T  W
T  U

abs-Cong
abs(T ) abs(U)

β-Red
app(abs(T ), U) T{∗ := U}

η-Exp
T  abs(ι(T ))

fix-Exp
fix(T ) T{∗ := fix(T )}

Figure 5.1: Examples of reduction rules.

Rule Signature Metavariables Hypothesis Conclusion
Refl any Θ (0, (id, id))
Trans any Θ × Θ × Θ for (T, U, W ) (0, π1,2), (0, π2,3) (0, π1,3)
abs-Cong ΣLC Θ′ × Θ′ for (T, U) (1, id) (0, abs × abs)
β-Red ΣLC Θ′ × Θ for (T, U) (0, cβ-Red)
η-Exp ΣLC Θ (0, (id, abs ◦ ι))
fix-Exp Σfix Θ′ (0, cfix-Exp)

cβ-Red,R,X(T, U) = (app(abs(T ), U), T{∗ := U})

cfix-Exp,R,X(T ) = (fix(T ), T{∗ := fix(T )})

Figure 5.2: Modules and term pairs relative to the reduction rules of Figure 5.1.

For the example of the fixpoint operator (rule fix-Exp), we consider the 1-signature

Σfix, as described in Section 4.4.4. (without enforcing the fixpoint equation, which is

replaced here by the reduction rule under consideration). A Σfix-monad is a monad R

equipped with an R-module morphism fix : R′ → R.

Figure 5.2 lists the modules and term pairs for hypothesis and conclusion of each

of these reduction rules. There, πi,j designates the pair projection described in Defini-

tion 134.

5.4 Signatures for reduction monads and Initiality

In this section, we define reduction signatures which are particular signatures over the

category of reduction monads (see Section 5.4.1). They consist of a signature for mon-

ads Σ (more precisely, a pullback of such a signature along the forgetful functor from

reduction monads to monads) and a family of arities induced by reduction rules over

Σ (as explained in Remark 144). Our main result, Theorem 150 (see Section 5.4.3),

states that a reduction signature is effective as soon as its underlying signature for
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monads is effective.

5.4.1 Reduction signatures

We define here reduction signatures and their models.

Definition 145. A reduction signature is a signature over the category of reduction

monads, consisting of:

• the pullback of a signature for monads Σ along the forgetful functor from reduction

monads to monads;

• a family of arities induced by reduction rules over Σ (as explained in Remark 144).

A reduction signature is thus determined by a signature for monads Σ and a family of

reduction rules R over Σ. We denote (Σ,R) the induced reduction signature.

We unfold the definition of model for reduction signatures:

Remark 146. Given a reduction monad R and a reduction signature S = (Σ,R), an

action of S in R consists of an action of Σ in its underlying monad R and an action

of each reduction rule of R in R. A model of S is a reduction monad equipped with

an action of S, or equivalently, a reduction Σ-monad equipped with an action of each

reduction rule of R.

5.4.2 Morphisms of models

Here we unfold the definition of morphism between models of a reduction signature: it

relies on the functoriality of the assignments R 7→ HypA(R) and R 7→ ConA(R), for a

given reduction rule A on a signature Σ for monads.

Definition 147. Let Σ be a signature for monads, and A be a reduction rule over

Σ. Definition 140 assigns to each Σ-monad R the R-modules HypA(R) and ConA(R).

These assignments extend to functors HypA, ConA : RedMonΣ →
∫

Mod.
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Proposition 148. Given the same data, the functors HypA and ConA commute with the

forgetful functors to Mon:

RedMonΣ

%%

HypA //

ConA

//

∫
Mod

zz

Mon

Let S = (Σ,R) be a reduction signature. As usual, we denote RedMonS the cat-

egory of models of S. More concretely, a morphism between models R and T of S

is a morphism f of reduction Σ-monads commuting with the action of any reduction

rule, in the sense that for any reduction rule A ∈ R, the following diagram of natural

transformations commutes:

HypA(R) //

HypA(f)

��

ConA(R)

ConA(f)

��

HypA(T ) // ConA(T )

Example 149 (Example 143 continued). Consider the reduction signature consisting of

the signature Σapp of a binary operation app and a single reduction rule of congruence

for application (Example 137).

Let R and T be models for this signature: they are reduction Σapp-monads equipped

with an action ρ and τ , in the alternative sense of Example 143. A Σapp-monad mor-

phism (f, α) between R and T is a model morphism if, for any set X, any sextuple

(A, A′, B, B′, m, n) where (A, A′, B, B′) ∈ R4(X), m : A ◮ A′, and n : B ◮ B′,

the reduction ρ(A, A′, B, B′) : app(A, B) ◮ app(A′, B′) is mapped to the reduction

τ(f(A), f(A′), f(B), f(B′)) by α : Red(R) → Red(T ).

5.4.3 The main result

We state our main result, Theorem 150, which gives a sufficient condition for S to be

effective.

Theorem 150. Let (Σ,R) be a reduction signature. If Σ is effective, then so is (Σ,R).

The proof of this theorem is given in Section 5.5.

Theorem 107 entails the following corollary:
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Corollary 151. Let (Σ,R) be a reduction signature. If Σ is an algebraic 2-signature

(Definition 106), then (Σ,R) is effective.

All the examples of reduction signatures considered here satisfy the condition of

Corollary 151.

Example 152 (Reduction signature for Example 130). The reduction monad of Exam-

ple 130 is generated by the reduction signature SLCβ/η
that is given by the signature ΣLC

together with the following reduction rules (see Section 5.3.6):

• the reduction rule for β-reduction;

• the reduction rule for η-expansion;

• the congruence rule for abstraction;

• two unary congruence rules for application:

T  T ′

app(T, U) app(T ′, U)

U  U ′

app(T, U) app(T, U ′)

Remark 153 (Continuation of Remark 119). Just as our reduction monads are “proof-

relevant” (cf. Remark 119), our notion of reduction signature allows for the specification

of multiple reductions between terms. As a trivial example , duplicating the β-rule in the

signature SLCβ/η
yields two distinct β-reductions in the initial model.

Example 154 (Reduction signature of lambda calculus with a fixpoint operator). The

signature SLCfix
specifying the reduction monad LCfix of the lambda calculus with a fix-

point operator extends the signature SLCβ/η
of Example 152 with:

• a new operation fix : Θ′ → Θ (thus extending the signature for monads ΣLC);

• the reduction rule for the fixpoint reduction (cf. Section 5.3.6);

• a congruence rule for fix:
T  T ′

fix(T ) fix(T ′)
.
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5.5 Proof of Theorem 150

This section details the proof of Theorem 150.

Let S = (Σ, (Ai)i∈I)) be a reduction signature. We denote by UΣ the forgetful functor

from the category of reduction Σ-monads to the category of Σ-monads.

In Section 5.5.1, we first reduce to the case of reduction rules (V , (nj, hj)j∈J , (n, c))

for which n = 0, that we call normalized. Then, in Section 5.5.2, we give an alternative

definition of the category of models that we make use of in the proof of effectivity, in

Section 5.5.3.

5.5.1 Normalizing reduction rules

Definition 155. A reduction rule (V , (nj, hj)j∈J , (n, c)) is said to be normalized if n = 0.

Lemma 156. Let A = (V , (nj, hj)j∈J , (n, c)) be a reduction rule over Σ. Then there

exists a normalized reduction rule A′ over Σ such that the induced notion of action is

equivalent, in the sense that:

• for a reduction Σ-monad R, there is a bijection between actions of A in R and

actions of A′ in R;

• a morphism between reduction Σ-monads equipped with an action of A preserves

the action (in the sense of Section 5.4.2) if and only if it preserves the correspond-

ing action of A′ through the bijection.

Before tackling the proof, we give an alternative definition of action and model mor-

phism:

Lemma 157. Let A = (V , (ni, hi)i∈I , (n, c)) be a reduction rule over Σ. By universal

property of the pullback ConA(R) = c∗Red(R)(n), an action can be alternatively be de-

fined as an R-module morphism σ : HypA(R) → Red(R)(n) making the following diagram

commute

HypA(R)

��

σ // Red(R)(n)

redR
(n)

��

V(R) c
// R(n) × R(n)

. (5.3)
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Lemma 158. Using this alternative definition of action, a morphism between models R

and T of a reduction signature S = (Σ,R) is a morphism f of reduction Σ-monads mak-

ing the following diagram commute, for any reduction rule A = (V , (ni, li, ri)i∈I , (n, l, r))

of R:

HypA(R) //

HypA(f)

��

Red(R)(n)

Red(f)(n)

��

HypA(T ) // Red(T )(n)

We now prove Lemma 156 using these alternative definitions:

Proof of Lemma 156. The reduction rule A′ = (V ′, (nj, h′
j)j∈J , (0, c′)) is defined as fol-

lows:

• Metavariables: V ′ = V × Θn

• Hypotheses: For each j ∈ J , h′
j : V ′ → Θ(nj) × Θ(nj) is defined as the composition

of π1 : V × Θn → V with hj : V → Θ(nj) × Θ(nj).

• Conclusion: The morphism c′ : V × Θn → Θ × Θ is the nth uncurrying (see Defini-

tion 85) of c : V → Θ(n) × Θ(n).

Now, consider an action for the reduction rule A in a reduction Σ-monad R: it is an R-

module morphism τ : HypA(R) → Red(R)(n) such that the following square commutes:

HypA(R)

��

τ // Red(R)(n)

red
(n)
R

��

V(R) c
// R(n) × R(n)

.

Equivalently, through the adjunction mentioned above, it is given by an R-module mor-

phism τ ∗ : HypR × Rm → M such that the following diagram commutes:

HypA(R) × Rn

��

τ∗
// Red(R)

redR

��

V(R) × Rn
c∗

// R × R

This is exactly the definition of an action of A′. It is then straightforward to check that

one action is preserved by a reduction monad morphism if and only if the other one

is.
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Corollary 159. For each reduction signature, there exists a reduction signature yield-

ing an isomorphic category of models and whose underlying reduction rules are all

normalized.

Proof. Just replace each reduction rule with the one given by Lemma 156.

Thanks to this lemma, we assume in the following that all the reduction rules of the

given signature S are normalized.

5.5.2 Models as vertical algebras

In this section, we give an alternative definition for the category of models of S that is

convenient in the proof of effectivity.

First we rephrase the notion of action of a reduction rule as an algebra structure

for a suitably chosen endofunctor. Indeed, an action of a normalized reduction rule

A = (V , (nj, hj)j∈J , (0, c)) in a reduction Σ-monad R is given by a R-module morphism

τ : HypA(R) → Red(R) such that the following square commutes:

HypA(R)

��

τ // Red(R)

redR

��

V(R) p
// R × R

We can rephrase this commutation by stating that this morphism τ is a morphism in

the slice category Mod(R)/R2 from an object that we denote by FA|R(Red(R), redR), to

(Red(R), redR). Here, we use the notation R to refer explicitly to the underlying monad

of R. Actually, the domain is functorial in its argument, and thus the action τ can be

thought of as an algebra structure on (Red(R), redR):

Lemma 160. Given any Σ-monad R, the assignment (M, p : M → R×R) 7→ FA|R(M, c)

yields an endofunctor FA|R on Mod(R)/R2. An action of A in a reduction Σ-monad R

is exactly the same as an algebra structure for this endofunctor on (Red(R), redR) ∈

Mod(R)/R2.

Furthermore, the assignment R 7→ FA|R(Red(R), redR) yields an endofunctor FA on

the category of reduction Σ-monads. This functor preserves the underlying Σ-monad,

in the sense that UΣ · FA = UΣ.
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Proof. This is a consequence of the functoriality of HypA, as noticed in Section 5.4.2.

Now, we give our alternative definition of the category of models:

Proposition 161. Let FS : RedMonΣ → RedMonΣ be the coproduct
∐

i FAi
. Then, the

category of models of S is isomorphic to the category of vertical algebras of FS

defined as follows:

• an object is an algebra r : FS(R) → R such that r is mapped to the identity by UΣ

• morphisms are the usual FS-algebra morphisms.

We adopt this definition in the following. We show now a property of the category of

models that will prove useful in the proof of effectivity:

Lemma 162. The forgetful functor from the category of models of S to the category of

Σ-monads is a fibration.

The proof relies on some additional lemmas, in particular the following one, that we

will specialize by taking p = UΣ (requiring to show that UΣ : RedMonΣ → MonΣ is a

fibration) and F = FS :

Lemma 163. Let p : E → B be a fibration and F an endofunctor on E satisfying

p · F = p. Then the category of vertical algebras of F is fibered over B.

Proof. Let r : F (R) → R be an algebra over X ∈ B. Let a : Y → X be a morphism in B.

Let a : a∗R → R be the associated cartesian morphism in E. We define the reindexing

of r along a as follows: the base object is a∗R, and the algebra structure ρ : F (a∗R) → R

is given by the unique morphism which factors F (a∗R)
F (a)

// F (R) r // R through the

cartesian morphism a : a∗R → R. Thus, the square

F (a∗R)
F (a)

//

ρ

��

F (R)

r

��

a∗R
a

// R

commutes, so a is a morphism of algebras between ρ and r. Next, we prove that it

is a cartesian morphism: let s : F (S) → S be a vertical algebra over an object Z of

B, and v : s → r be a morphism of algebras such that there exists b : Z → Y such
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that p(v) = Z b // Y a // X . We need to show that there exists a unique algebra

morphism w : s → ρ such that v = a ◦ w and p(w) = b.

F (S)
F (v)

**
F (w) $$

s

��

F (a∗R)
F (a)

//

ρ

��

F (R)

r

��

S
v

**

w
%%

a∗R
a

// R

Z
p(v)

**
b

%%
Y a

// X

Uniqueness follows from the fact that a is cartesian for the fibration p : E → B. More-

over, as a is cartesian, we get a morphism w : S → a∗R. We turn it into an algebra

morphism by showing that the following square commutes:

F (S)
F (w)

//

s

��

F (a∗R)

ρ

��

S w
// a∗R

As a is cartesian and both w and F (w) are sent to b by p, it is enough to show equalities

of both morphisms after postcomposing with a. The fact that v is an algebra morphism

allows us to conclude.

We want to apply this lemma for proving Lemma 162. We thus need to show that

UΣ : RedMonΣ → MonΣ is a fibration:

Lemma 164. The forgetful functors RedMon → Mon and UΣ : RedMonΣ → MonΣ are

fibrations.
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Proof. We have the two following pullbacks:

RedMonΣ //

UΣ

��

y
RedMon //

��

y
V (

∫
Mod)

cod

��

MonΣ // Mon
Θ×Θ

//
∫

Mod

where V (
∫

Mod) is the full subcategory of arrows of
∫

Mod which are vertical (that is,

they are mapped to the identity monad morphism by the functor from
∫

Mod to Mon),

and cod maps such an arrow to its codomain. By Propositions 25 and 29, the category
∫

Mod has fibred finite limits , so that cod is a fibration ([See00, Exercise 9.4.2 (i)]).

Now, Proposition 8.1.15 of [Bor94] states that a pullback of a fibration is a fibration.

Thus, the middle functor RedMon → Mon is a fibration, and then, UΣ : RedMonΣ → MonΣ

also is.

Finally, gathering all these lemmas yields a proof that the category of models of S

is indeed fibered over the category of Σ-monads:

Proof of Lemma 162. Apply Lemma 163 with the fibration p = UΣ (Lemma 164) and

F = FS .

5.5.3 Effectivity

In this section, we prove that S has an initial model, provided that there exists an initial

Σ-monad. The category of models of S is fibered over the category of Σ-monads. A

promising candidate for the initial model is the initial object, if it exists, in the fiber

category over the initial Σ-monad:

Lemma 165. Let p : E → B be a fibration, b0 be an initial object in B and e0 be an

object over b0 that is initial in the fiber category over b0. Then e0 is initial in E.

In the following, we thus construct the initial object in a fiber category over a given

Σ-monad R. This fiber category can be characterized as a category of algebras:

Lemma 166. The fiber category over a given Σ-monad R through the fibration from

models of S (Lemma 162) is the category of algebras of the endofunctor FS|R =
∐

i FAi|R on the slice category Mod(R)/R2.
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Thus, our task is to construct the initial algebra of some specific endofunctor.

Adámek’s theorem [Adá74] provides a sufficient condition for the existence of an

initial algebra:

Lemma 167 (Adámek). Let F be a finitary endofunctor on a cocomplete category C.

Then the category of algebras of F has an initial object.

This initial object can be computed as a colimit of a chain, but we do not rely here

on the exact underlying construction.

The first requirement to apply this lemma is that the base category is cocomplete,

and this is indeed the case:

Lemma 168. The category Mod(R)/R2 is cocomplete for any monad R.

Proof. The category of modules Mod(R) over a given monad R is cocomplete by

Proposition 25, so any of its slice categories is, by the dual of [ML98, Exercise V.1.1],

in particular Mod(R)/R2.

Let us show that the finitarity requirement of Lemma 167 is also satisfied for the

case of a signature with a single reduction rule:

Lemma 169. Let A = (V , (ni, hi)i∈I , (0, c)) be a normalized reduction rule over Σ, and

R be a Σ-monad. Then, FA|R is finitary.

Proof. In this proof, we denote by F the endofunctor FA|R on Mod(R)/R2, by π : D/d →

D the projection for a general slice category, and by α : π → d the natural transforma-

tion from π to the functor constant at d induced by the underlying morphism of a slice

object: αp : π(p) → d. Note that π creates colimits, by the dual of [ML98, Exercise

V.1.1].

Given a filtered diagram we want to show that the image by F of the colimiting

cocone is colimiting. As π creates colimits, this is enough to show that the image by

π · F of the colimiting cocone is colimiting. Thus, it is enough to prove that π · F :

Mod(R)/R2 → Mod(R) is finitary.

Given any q ∈ Mod(R)/R2 the module π(F (q)) is HypA(R), which can be computed
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as the limit of the following finite diagram:

V(R)

hi′,R &&

hi,R

xx
++R(ni) × R(ni) R(ni′ ) × R(ni′ ) . . .

π(q)(ni)

α
(ni)
q

OO

π(q)(ni′ )

α
(ni′ )
q

OO

Let J : C → Mod(R)/R2 be a filtered diagram. As π preserves colimits (since it

creates them), π(F (colim J)) is the limit of the following diagram:

V(R)

hi′,R ''

hi,R

xx
++R(ni) × R(ni) R(ni′ ) × R(ni′ ) . . .

colim π(J)(ni)

α
(ni)

colim J

OO

colim π(J)(ni′ )

α
(ni′ )

colim J

OO

Now, as limits and colimits are computed pointwise in the category of modules, and as

finite limits commute with filtered colimits in Set ([ML98, Section IX.2, Theorem 1]), we

have that π(F (colim J)), as the limit of such a diagram, is canonically isomorphic to the

colimit of π · F · J .

Now, consider a signature S with a family of reduction rules (Ai)i. The functor that

we are concerned with is FS|R =
∐

i FAi|R, for a given Σ-monad R:

Lemma 170. For any Σ-monad R, the functor FS|R =
∐

i FAi|R is finitary.

Proof. This is a coproduct of finitary functors (by Lemma 169), and so is finitary as

colimits commute with colimits, by [ML98, Equation V.2.2].

Now we are ready to tackle the proof of our main result:

Proof of Theorem 150. We assume that Σ is effective; let R be the initial Σ-monad. We

want to show that S has an initial model. We apply Lemma 165 with p the fibration from

models to Σ-monads (Lemma 162): we are left with providing an initial object in the fiber
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category over R. By Lemma 166, this boils down to constructing an initial algebra for

the endofunctor FS|R on the category Mod(R)/R2. We apply Lemma 167: Mod(R)/R2

is indeed cocomplete by Lemma 168, and FS|R is finitary by Lemma 170).

5.6 Example: Lambda calculus with explicit substitu-

tions

Here, we give a signature specifying the reduction monad of the lambda calculus with

explicit substitutions as described in [Kes09]. One feature of this example is that it

involves operations subject to some equations, and on top of this syntax with equations,

a “graph of reductions”.

In Section 5.6.1, we present the underlying signature for monads, and in Sec-

tion 5.6.2, we list the reduction rules of the signature.

5.6.1 Signature for the monad of the lambda calculus with explicit

substitutions

We give here the signature for the monad of the lambda calculus with explicit substitu-

tions: first the syntactic operations, and then the equation that the explicit substitution

must satisfy.

Operations

The lambda calculus with explicit substitutions extends the lambda calculus with an

explicit unary substitution operator t[x/u]. Here, the variable x is assumed not to occur

freely in u. In our setting, it is specified as an operation esubstX : LC′(X) × LC(X) →

LC(X). It is thus specified by the signature induced by the parametric module Θ′×Θ. An

action of this signature in a monad R yields a map esubstX : R(X+{∗})×R(X) → R(X)

for each set X, where esubstX(t, u) is meant to model the explicit substitution t[∗/u].

Definition 171. The signature ΥLCex
for the monad of the lambda calculus with explicit

substitutions without equations is the coproduct of Θ′ × Θ and ΣLC.
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Equation

The syntax of lambda calculus with explicit substitutions of [Kes09] is subject to the

equation (see [Kes09, Figure 1, “Equations”])

t[x/u][y/v] = t[y/v][x/u] if y /∈ fv(u) and x /∈ fv(v) . (5.4)

We rephrase it as an equality between two parallel ΥLCex
-module morphisms from Θ′′ ×

Θ × Θ, modelling the metavariables t, u, and v, to Θ:

Θ′′ × Θ × Θ
Θ′′×ι×Θ

// Θ′′ × Θ′ × Θ
esubst′×Θ

// Θ′ × Θ esubst // Θ

Θ′′ × Θ × Θ
Θ′′×Θ×ι

// Θ′′ × Θ × Θ′

〈esubst∨◦π1,3,π2〉
// Θ′ × Θ

esubst
// Θ

(5.5)

Here, ι denotes the inclusion Θ → Θ′, and esubst∨ is the composition of esubst′ with

swap : Θ′′ → Θ′′ swapping the two fresh variables.

Now we are ready to define the signature of the lambda calculus monad with explicit

substitutions:

Definition 172. The signature ΣLCex
of the lambda calculus monad with explicit substi-

tutions consists of ΥLCex
and the single ΣLCex

-equation stating the equality between the

two morphisms of Equation 5.5.

Lemma 173. The signature ΣLCex
for monads is effective

Proof. This is a direct consequence of Corollary 151.

5.6.2 Reduction rules for lambda calculus with explicit substitu-

tions

The reduction signature for the lambda calculus with explicit substitutions consists of

two components: the first one is the signature for monads ΣLCex
of Definition 172; the

second one is the list of reduction rules that we enumerate here, taken from [Kes09,

Figure 1, “Rules”]. Except for congruence, none of them involve hypotheses.

First, let us state the congruence rules (that are implicit in [Kes09]):

T  T ′

app(T, U) app(T ′, U)

U  U ′

app(T, U) app(T, U ′)

T  T ′

abs(T ) abs(T ′)
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β-red
(λx.t)u t[x/u]

x /∈ fv(t)
Gc

t[x/u] t

var[]
x[x/u] u

app[]
(t u)[x/v] t[x/v] u[x/v]

abs[]
(λy.t)[x/v] λy.t[x/v]

x /∈ fv(v) y ∈ fv(u)
[][]

t[x/u][y/v] t[y/v][x/u[y/v]]

Figure 5.3: Reduction rules of lambda calculus with explicit substitutions.

T  T ′

esubst(T, U) esubst(T ′, U)

U  U ′

esubst(T, U) esubst(T, U ′)

They are translated into reduction rules through the protocol described in Section 5.3.5.

Figure 5.3 gives Kesner’s rules. Five out of six of Kesner’s rules translate straight-

forwardly, see Figure 5.4. Note how the explicit weakening ι : Θ → Θ′ accounts for the

side condition x /∈ fv(t) of the Gc-rule in Figure 5.3.

Expressing the side condition y ∈ fv(u) of the [][]-rule of Figure 5.3 requires the

definition of the ΣLCex
-module Θ∗ such that LCex∗ is the submodule of LCex

′ of terms that

really depend on the fresh variable.

We propose an approach based on the informal intuitive idea of defining inductively

the submodule R∗ of R′ depending on the fresh variable ∗ as follows, for a given ΣLCex
-

monad R:

• η(∗) ∈ R∗(X), for any set X;

• (application)

– if t ∈ R(X) and u ∈ R∗(X), then app(ι(t), u) ∈ R∗(X)

– if t ∈ R∗(X) and u ∈ R(X), then app(t, ι(u)) ∈ R∗(X)

– if t ∈ R∗(X) and u ∈ R∗(X), then app(t, u) ∈ R∗(X)

• if t ∈ R∗(X + {x}), then λx.t ∈ R∗(X);

• (explicit substitution)

– if t ∈ R(X + {x}) and u ∈ R∗(X), then ι(t)[x/u] ∈ R∗(X);

– if t ∈ R∗(X + {x}) and u ∈ R(X), then t[x/ι(u)] ∈ R∗(X);
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β-red
app(abs(T ), U) esubst(T, U)

Gc
esubst(ι(T ), U) T

app[]
esubst(app(T, U), V ) app(esubst(T, V ), esubst(U, V ))

var[]
esubst(∗, T ) T

abs[]
esubst(abs′(T ), V ) abs(esubst∨(T, ι(V )))

[][]
esubst(esubst′(T, κ(U)), V ) esubst(esubst∨(T, ι(V )), esubst(κ(U), V ))

κ : Θ∗ → Θ′

esubst∨ : Θ′′ × Θ′ → Θ′

where Θ∗ is the 1-hole context ΣLCex
-submodule of Θ′ (Definition 174), and esubst∨ is

defined as the composition

Θ′′ × Θ′swap×Θ′

// Θ′′ × Θ′ esubst // Θ′

Here, swap exchanges the fresh variables:

swapX,R : R((X + {∗1}) + {∗2}) → R((X + {∗1}) + {∗2})(t)

swapX,R : t 7→ t{∗1 := ∗2; ∗2 := ∗1}

Figure 5.4: Reduction rules of Figure 5.3 reformulated in our setting.
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– if t ∈ R∗(X + {x}) and u ∈ R∗(X), then t[x/u] ∈ R∗(X).

Guided by this intuition, we now formally define a ΣLCex
-module Θ∗ equipped with a

morphism κ : Θ∗ → Θ′.

The previous informal inductive definition is translated as an initial algebra for an

endofunctor on the category of ΣLCex
-modules, which is cocomplete (colimits are com-

puted pointwise). This endofunctor maps a ΣLCex
-module M to the coproduct of the

following ΣLCex
-modules:

• the terminal ΣLCex
-module 1, playing the rôle of the fresh variable;

• the coproduct M × Θ + Θ × M + M × M , one summand for each case of the

application;

• the derived module M ′ for abstraction;

• the coproduct M ′ × Θ + Θ′ × M + M ′ × M , one summand for each case of the

explicit substitution.

This functor is finitary, so the initial algebra exists thanks to Adámek’s theorem (al-

ready cited, as Theorem 167). Unfortunately, the resulting ΣLCex
-module does not yield

the module that we are expecting in the case of the monad LCex: it does not satisfy

Equation 5.5, and thus contains more terms than necessary. To obtain the desired

ΣLCex
-module, we equip Θ′ with its canonical algebra structure, inducing a morphism

from the initial algebra, and we define Θ∗ as the image of this morphism, thus equipped

with an inclusion κ : Θ∗ → Θ′.

Definition 174. We define the ΣLCex
-module of “one-hole contexts” to be Θ∗, equipped

with an inclusion κ : Θ∗ → Θ′.

Remark 175. Such a definition can be worked out for any algebraic signature for mon-

ads.

Now we define the signature of the reduction monad of lambda calculus with explicit

substitutions:

Definition 176. The reduction signature SLCex
of the lambda calculus reduction monad

with explicit substitutions consists of the signature ΣLCex
of Definition 172 and all the

reduction rules specified in this section.

143



Part II, Chapter 5 – Reduction monads and their signatures

Lemma 177. The reduction signature SLCex
is effective.

Proof. Apply Theorem 150. The underlying signature for monads is effective by Lemma 173.

5.7 Recursion

In this section, we derive, for any effective reduction signature S, a recursion principle

from initiality. In Section 5.7.1, we state this recursion principle, then we give an exam-

ple of application in Section 5.7.2, by translating lambda calculus with a fixpoint oper-

ator to lambda calculus. In Section 5.7.2, we apply this principle to translate lambda

calculus with explicit substitutions into lambda calculus with unary congruent substi-

tution. Then, in Section 5.7.4, we translate this latter variant of lambda calculus into

lambda calculus closed under identity and composition of reductions.

5.7.1 Recursion principle for effective signatures

The recursion principle associated to an effective signature provides a way to construct

a morphism from the reduction monad underlying the initial model of that signature to

a given reduction monad.

Proposition 178 (Recursion principle). Let S be an effective reduction signature, and

R be the reduction monad underlying the initial model. Let T be a reduction monad.

Any action τ of S in T induces a reduction monad morphism τ̂ : R → T .

Proof. The action τ defines a model M of S. By initiality, there is a unique model mor-

phism from the initial model to M , and τ̂ is the reduction monad morphism underlying

it.

In the next sections, we illustrate this principle.

5.7.2 Translation of lambda calculus with fixpoint to lambda cal-

culus

In this section, we consider the signature SLCfix
of Example 154 for the lambda calculus

with an explicit fixpoint operator. We build, by recursion, a reduction monad morphism
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from the initial model LCfix of this signature to LC∗
β/η, the “closure under identity and

composition of reductions” (Definition 131) of the initial model LCβ/η of the signature

SLCβ/η
(Example 152).

As explained in Section 5.7.1, we need to define an action of SLCfix
in LC∗

β/η. Note

that SLCfix
is an extension of SLCβ/η

(Example 154). First, we focus on the core SLCβ/η

part: we show that the reduction monad LC∗
β/η inherits the canonical action of SLCβ/η

in

LCβ/η.

Lemma 179. There is an action1 of SLCβ/η
in LC∗

β/η.

Proof. The challenge is to give an action of reduction rules with hypotheses: now the

input reductions of the rule may be actually sequences of reductions. This concerns

congruence for application and abstraction. We take the example of abstraction: sup-

pose we have a sequence of reductions r1 . . . rn going from t0 to tn. We want to pro-

vide a reduction between abs(t0) and abs(tn). For each i, we have a reduction between

abs(ti−1) and abs(ti). By composing the corresponding sequence, we obtain the desired

reduction.

The action for the extra parts of SLCfix
requires the following:

• an operation fix : LC∗
β/η

′ → LC∗
β/η: for this, we choose a fixpoint combinator Y and

set fixX(t) = app(Y, abs(t)), in accordance with Section 3.8.4;

• an action of the reduction rule

fix(T ) T{∗ := fix(T )}

A fixpoint combinator Y is a closed term with the property that for any other term

t, the term app(Y, t) β-reduces in some steps to app(t, app(Y, t)). We denote by

r ∈ Red(LC∗
β/η)({∗}) a reduction between app(Y, ∗) and app(∗, app(Y, ∗)). Then,

r induces an LCβ/η-module morphism r̂ : LCβ/η → Red(LC∗
β/η) by mapping an

element t ∈ LCβ/η(X) to r{∗ := t}. We define the action of this reduction rule as

the composition of the following reductions:

app(Y, abs(t)) r̂(abs(t)) app(abs(t), app(Y, abs(t))) β t{∗ := app(Y, abs(t))}

1. A formalized proof in Agda of this statement is available at https://github.com/amblafont/

unary-subst-LCstar/blob/master/fiberlambda.agda.

145



Part II, Chapter 5 – Reduction monads and their signatures

• an action of the congruence rule

T  T ′

fix(T ) fix(T ′)

that can be defined in the obvious way using the congruences of application and

abstraction.

In more concrete terms, our translation is a kind of compilation which replaces each

occurrence of the explicit fixpoint operator fix(t) with app(Y, abs(t)), and each fixpoint

reduction with a composite of β-reductions.

5.7.3 Translation of lambda calculus with explicit substitutions

into lambda calculus with congruent unary substitution

Here, we consider the reduction signature SLCex
= (ΣLCex

,RLCex
) introduced in Defini-

tion 176. The underlying monad of the initial model LCex is the monad of lambda calcu-

lus with an application and abstraction operation, and an explicit substitution operator

LCex
′ × LCex → LCex satisfying Equation 5.5, for R = LCex. The associated reduction

monad has all the rules specified in Section 5.6.

We build, by recursion, a reduction monad morphism from the initial model LCex of

this signature to LC1-cong, a variant of the lambda calculus specified by the signature

SLCβ/η
(Example 152) extended with the congruence for unary substitution:

T  T ′

U{∗ := T} U{∗ := T ′}

Note that this reduction rule accounts for the reflexivity rule, and makes congruences

for application (but not congruence for abstraction) redundant:

Reflexivity Any U ∈ LC(X) can be weakened into ι(U) ∈ LC′(X). Then, consider any

reduction m : T ◮ T ′ . The action of the reduction rule above yields a reduction

between ι(U){∗ := T} = U and ι(U){∗ := T ′} = U . By choosing adequatly m

(for example, take the beta-reduction between app(abs(∗), abs(∗)) and abs(∗)), this

yields an action of the reflexivity reduction rule.

Congruence Consider the left congruence rule (the cases of the right one and the

congruence for abstraction are similar): from any reduction m : T ◮ T ′, we want
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a reduction between app(T, U) and app(T ′, U), for T, T ′, U ∈ LC(X). We get it by

applying the action of unary congruent substitution to m for the term app(∗, U).

One checks that this indeed defines an action for the left congruence reduction

rule of application.

As explained in Section 5.7.1, we need to define an action of SLCex
in LC1-cong:

• the operations of application and abstraction are those of LC1-cong as the initial

ΣLC-monad (recall that the underlying monad of LC1-cong is just LC);

• the explicit substitution operation LC1-cong
′ × LC1-cong → LC1-cong is defined using

the monadic substitution, mapping a pair (t, u) ∈ LC1-cong(X + {∗}) × LC1-cong(X)

to the monadic substitution t{∗ := u};

• Equation 5.5 for the underlying monad is satisfied thanks to the usual monadic

equations;

• the action of the congruence rules for application and abstraction are induced by

the action of the congruence rule for unary substitution, as explained above;

• LC1-cong has already an action for β-reduction;

• all the actions for the remaining reduction rules involving explicit substitution (ex-

cept the congruences for explicit substitution that are discussed below) are given

by an action of the reflexivity reduction rule;

• the non-obvious actions are the ones of the congruence rules for explicit substi-

tution:

T  T ′

T [x/U ] T ′[x/U ]

U  U ′

T [x/U ] T [x/U ′]

The left one is obtained from the substitution of the module of reductions (see

Remark 120). The right one is exactly given by the action of the congruence rule

for unary substitution.

Finally, by the recursion principle, we get a reduction monad morphism from LCex

to LC1-cong. This translation replaces the explicit substitution operator t[x/u] with the

corresponding monadic substitution t{x := u}, and all the reductions are translated to

reflexivity except for the ones for the β-reduction and congruences.
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5.7.4 Translation of lambda calculus with congruent unary substi-

tution into lambda calculus

In the previous section, we translated lambda calculus with explicit substitution into

lambda calculus with congruent unary substitution. In this section, we translate this

variant of lambda calculus into LC∗
β/η (introduced in Section 5.7.2), the closure under

identity and composition of reductions the initial model LCβ/η of the signature SLCβ/η

(Example 152).

As per Section 5.7.1, we need to define an action in LC∗
β/η of the signature SLCβ/η

extended with the reduction rule:

T  T ′

U{∗ := T} U{∗ := T ′}
(5.6)

Thanks to Lemma 179, we have an action of SLCβη
in LC∗

β/η. Thus, the main challenge

consists in equipping LC∗
β/η with an action of the rule (5.6).

Proposition 180. The reduction monad LC∗
β/η can be equipped2 with an action of the

rule (5.6).

Proof. We will write r : R → LC × LC in place of redLC∗

β/η
: Red(LC∗

β/η) → LC × LC.

Such an action is equivalently given (see Lemma 160) by a morphism α : LC′ ×R →

R such that the following diagram commutes, where qX(t, m) =
(
t{∗ := source(m)}, t{∗ :=

target(m)}
)
.

LC′ × R
α //

q **

R

rvv

LC × LC

(5.7)

We first construct the collection of functions (αX)X with αX : LC′(X)×R(X) → R(X)

and then shows the two required properties, i.e., that it commutes with substitution

(thus inducing a LC-module morphism), and that it satisfies Equation 5.7.

The construction of the collection of functions (without naturality conditions) is worked

out in the functor category [Set0, Set], where Set0 is the discretized category of sets (this

base category allows us to get rid of naturality conditions). This is done by recursion

on the first argument. More formally, we exploit some initiality property of LC′ · j, where

j : Set0 → Set is the inclusion of the discretized category of sets into sets. Indeed, LC′ ·j

2. A formalized proof in Agda of this statement is available at https://github.com/amblafont/

unary-subst-LCstar/blob/master/fiberlambda.agda.
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is the initial algebra of the endofunctor

Ψ : [Set0, Set] → [Set0, Set] F 7→ j + 1 + F × F + F ′

where F ′ is the functor mapping a set X to F (X + 1).

The two properties that we want to show about the collection of functions (αX)X are

then done by induction on the first argument, again exploiting initiality of LC′ · j, as we

explain below. The proof goes as follows:

1. construct (by initiality) a morphism from LC′ ·j to the exponential of R ·j with itself,

that is, to the functor RR : Set0 → Set defined on objects by X 7→ R(X)R(X);

2. show that the induced morphism from LC′ · j × R · j → R · j yields a LC-module

morphism α : LC′ × R → R;

3. show the commutation required by Equation 5.7.

Note how working in the functor category [Set0, Set] allows us to define the functor

RR as above, without worrying about the functorial action on morphisms. Below we

sometimes omit the explicit precomposition with j in order to simplify the notation. Now

we perform the steps explained above.

1. As we argued before, LC′ · j is the initial algebra of Ψ, so our task consists in

equipping RR with an algebra structure for Ψ, that we split into the following four

components, using the universal properties of the coproduct and the exponential

in the category [Set0, Set]:

(a) The morphism j × R → R corresponds to the case of variables. We expect

that the resulting module morphism α : LC′ × R → R satisfies αX(η(x), m) =

reflX(x) for any x ∈ X, where refl : LC → R maps a term to the reflexive

reduction on itself and η : Id → LC′ is the unit of the monad LC. Accordingly,

we define the morphism j × R → R as mapping a pair (x, m) ∈ X × R(X) to

reflX(η(x)).

(b) The morphism R → R corresponds to the case of the fresh variable ∗. We

expect that αX(∗, m) = m. Accordingly, the required morphism is taken as

the identity on R.
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(c) The morphism (R × R)R → RR corresponds to the case of an applica-

tion. We expect that αX(app(t, u), m) = app-cong(αX(t, m), αX(u, m)), where

app-cong : R×R → R is the action of the reduction rule of congruence for ap-

plication defined as app-cong(m1, m2) = trans(app-cong1(m1), app-cong2(m2)),

where trans denotes an action of the transitivity reduction rule with which we

can equip LC∗
β/η (by concatenating sequences of reductions). Accordingly,

the morphism is defined as app-congR.

(d) The morphism R′R′

→ RR corresponds to the case of an abstraction. We

expect that αX(abs(t), m) = abs-congX(αX+1(t, RιX(m))), where ι : Id → Id′

is the canonical inclusion. Accordingly, we take abs-congRι as the the required

morphism.

By initiality, we get an algebra morphism from LC · j to RR, which by uncurrying

yields a morphism α : LC′ · j × R → R.

2. Upgrading α into a module morphism from LC′ × R to R consists in showing

compatibility with substitution in the following sense: for any map f : X → LC(Y ),

for any pair (t, m) ∈ LC′(X) × R(X), the equality αX(t, m){f} = αY (t{f}, m{f})

is satisfied. This is shown by induction on t ∈ LC′(X). The case of variables

requires a preliminary step: for t = η(x), the equation amounts to refl(f(x)) =

α(LCi(f(x)), m), which is not straightforward. We hence first prove by induction

on t ∈ LC(X) that α(LCi(t), m) = refl(t). We do not detail these straightforward

inductions, but rather explain the general methodology to perform induction on

LC′ (the case of LC is similar). Suppose given, for each t ∈ LC′(X), a predicate

PX(t). Then, one can form the functor LC′
|P : Set0 → Set mapping a set X to the

subset of LC′(X) satisfying the predicate PX . It follows that LC′
|P embeds into LC,

and if LC′
|P inherits the algebra structure for Ψ through this embedding, then by

initiality we get a section of the embedding, which exactly translates the fact that

any term t ∈ LC′(X) satisfies the property.

3. It remains to show the commutation of Diagram 5.7. Again, an induction on the

first argument (thus exploiting initiality of LC′ · j) is enough to conclude.
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CHAPTER 6

OPERATIONAL MONADS

AND THEIR SIGNATURES

In this chapter, we consider operational monads, extending the notion of reduction

monad of Chapter 5. Our goal is to deal with programming languages whose terms

may not form a monad, or whose reductions are not stable under substitution of terms.

Consider the example of the call-by-value lambda calculus: variables can be replaced

with values only, rather than any term. Yet, we are interested in reductions between

terms rather than values. In this situation, there is a monad of values, and terms form

a module over this monad. Although terms form the monad of lambda calculus, reduc-

tions are not stable under its monadic substitution: they are stable under the monadic

substitution of values.

To be more precise, we limit ourselves to languages whose terms form a free

module over a monad R, that is, a module of the shape T · R for some endofunctor

T : Set → Set. This is indeed the case of the call-by-value lambda calculus: each term

can be decomposed uniquely as a binary tree whose leaves are values. For this specific

example, R is the monad of values of the lambda calculus, and T is the endofunctor of

binary trees with leaves in its argument.

We also generalize to the case of heterogeneous reductions. This allows us to cover

the call-by-value lambda calculus with big-step operational semantics, where terms

reduce to values.

We adopt the same terminology and notation as in Chapter 5. We are quicker here,

as all the definitions and proofs are straightforward generalizations.

Plan of the chapter

In Section 6.1, we define operational monads, a generalization of the reduction mon-

ads of Chapter 5. In Section 6.2, we adapt the definition of reduction rules to the new
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setting. This enables us to define signatures for operational monads—operational sig-

natures—in Section 6.3, that are particular signatures over the category of operational

monads. Then, in Section 6.4, we give some examples of operational signatures.

6.1 Operational monads

We define operational monads in Section 6.1.1, and then consider some examples of

operational monads, in Section 6.1.2.

6.1.1 Operational monads

Before defining operational monads, we need the intermediate notion of T -reduction

monads, when T is a pair of endofunctors on Set.

Definition 181. Let T = (T1, T2) be a pair of endofunctors on Set. A T -reduction

monad R is given by:

1. a monad on sets (the monad of terms), that we still denote by R, or by R when

we want to be explicit;

2. an R-module Red(R) (the module of reductions);

3. a morphism of R-modules redR : Red(R) → (T1 · R) × (T2 · R) (source and target

of rules).

We set sourceR := π1 ◦ redR : Red(R) → T1 · R, and targetR := π2 ◦ redR : Red(R) →

T2 · R.

Notation 182. For a T -reduction monad R, a set X, and elements s ∈ T1(R(X)),

t ∈ T2(R(X)), we think of the fiber redR(X)−1(s, t) as the set of “reductions from s to t”.

We sometimes write m : s ◮ t : T (R(X)), or even m : s ◮ t when there is no ambiguity,

instead of m ∈ redR(X)−1(s, t).

Remark 183. We recover Chapter 5 by taking T = (IdSet, IdSet).

Definition 184. Let T = (T1, T2) be a pair of endofunctors on Set. A morphism of

T -reduction monads from R to S is given by a pair (f, α) of
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1. a monad morphism f : R → S, and

2. a natural transformation α : Red(R) → Red(S)

satisfying the following two conditions:

3. α is an R-module morphism between Red(R) and f ∗Red(S), and

4. the square

Red(R) α //

redR

��

Red(S)

redS

��

(T1 · R) × (T2 · R)
T1f×T2f

// (T1 · S) × (T2 · S)

commutes in the category of natural transformations.

Proposition 185 (Category of T -reduction monads). Let T = (T1, T2) be a pair of

endofunctors on Set. Then, T -reduction monads and their morphisms, with the obvious

composition and identity, form a category T -RedMon, equipped with a forgetful functor

to the category of monads.

We get an analogue of Theorem 123:

Theorem 186. Let T = (T1, T2) be a pair of endofunctors on Set. The category of

T -reduction monads is isomorphic to the category of monads relative to the functor

mapping a set to its discrete T -graph, where the category of T -graphs is the comma

category Set/(T1 × T2).

Definition 187. An operational monad is a pair (T, R) where R is a T -reduction

monad. The pair T = (T1, T2) of endofunctors on Set is called the pair of state functors

of the operational monad.

Operational monads may be organized into a category:

Definition 188 (Morphism of operational monads). A morphism between operational

monads ((T1, T2), R) and ((T ′
1, T ′

2), R′) is a triple (α1, α2, f) consisting of

• a natural transformation α1 : T1 → T ′
1;

• a natural transformation α2 : T2 → T ′
2;
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• a (T ′
1, T ′

2)-reduction monad morphism f between (α1, α2)!R and R′, where the

(T ′
1, T ′

2)-reduction monad (α1, α2)!R is defined as follows:

– the underlying monad is R;

– Red((α1, α2)!R) is defined as Red(R);

– red(α1,α2)!R is defined as the composition

Red(R)
redR // (T1 · R) × (T2 · R)

(α1·R)×(α2·R)
// (T ′

1 · R) × (T ′
2 · R) .

Proposition 189 (Category of operational monads). Operational monads and their

morphisms with the obvious composition and identity morphisms form a category OpMon.

6.1.2 Examples of operational monads

Any example of reduction monad R of Chapter 5 yields an operational monad whose

state functors are the identity endofunctors.

Example 190 (Call-by-value lambda calculus). In call-by-value, reductions between

terms are not stable under substitution of variables with terms in general. However, they

are stable under substitution of variables with values. A value is either a variable or a

lambda abstraction of an arbitrary term. Note that values are stable under substitution:

they induce a monad LCv = Id + LC′ equipped with a monad morphism i : LCv → LC.

Now, reductions are between terms rather than between values, so we need to

devise a functor B : Set → Set such that B · LCv is isomorphic to LC: then, the call-

by-value lambda calculus is a (B, B)-reduction monad. Note that a lambda term can

always be decomposed as a binary tree whose leaves are values, that is variables or

lambda abstractions: each node of this tree is an application. Hence, we choose B to

be the functor underlying the monad of binary trees specified by the 1-signature Θ×Θ:

then, there is an isomorphism α : LC → B · LCv in the category of LCv-modules (LC is

indeed equipped with a structure of LCv-module thanks to the inclusion i of LCv in LC

as a monad morphism). The operational monad of call-by-value lambda calculus is the

pair ((B, B), LCv) where the (B, B)-reduction monad LCv is defined as follows:

1. the underlying monad is LCv = Id + LC′;

2. redLCv : Red(LCv) → (B·LCv)×(B·LCv) is generated by the following constructions:
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(a) for t ∈ LC′(X) and u ∈ LCv(X), we have β(t, u) : α(app(abs(t), i(u))) ◮

α(t){∗ := u};

(b) for m : α(u) ◮ α(v) : B(LCv(X)) in Red(LCv) and t ∈ LC(X), we have

app-cong1(m, t) : α(app(u, t)) ◮ α(app(v, t));

(c) for m : α(u) ◮ α(v) : B(LCv(X)) in Red(LCv) and t ∈ LC(X), we have

app-cong2(t, m) : α(app(t, u)) ◮ α(app(t, v));

(d) for m : α(u) ◮ α(v) : B(LC′
v(X)) in Red(LCv) we have abs-cong(m) : α(abs(u)) ◮

α(abs(v)).

We call this operational monad the operational monad of the call-by-value lambda cal-

culus. A signature for it is given in Section 6.4.1.

Example 191 (Big-step call-by-value lambda calculus). In the call-by-value lambda

calculus with big-step operational semantics, reductions happen between a term and

a value. The underlying monad is LCv, and the pair of state functors is (B, Id), where

B is defined in Example 190. We denote absv : LC′ → LCv the inclusion of lambda

abstractions into values. The module of reductions is defined inductively as follows:

• for each value v ∈ LCv(X), the induced term α(i(v)) reduces to v;

• given a reduction mt : α(t) ◮ absv(t′), a reduction mu : α(u) ◮ u′, and a reduction

m : α(t′){∗ := u′} ◮ v, we get a reduction β(mt, mu, m) : α(app(t, u)) ◮ v.

We specify more formally this operational monad in Section 6.4.2.

Example 192. Let us recall the following simple variant of π-calculus. The syntax for

processes is given by

P, Q ::= 0 | (P |Q) | !P | νa.P | a〈b〉.P | a(b).P,

where a and b range over a fixed, countable set of channel names. In νa.P , the channel

name a is bound, and in a(b).P , the channel name b is bound. Processes will be consid-

ered equivalent up to structural congruence, the smallest equivalence relation ≡ stable

under context and such that 0|P ≡ P , P |(Q|R) ≡ (P |Q)|R, (νa.P )|Q ≡ νa.(P |Q) when

a does not occur free in Q, and !P ≡ P |!P . Reduction is then given by the following
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inductive rules, the last one enforcing the quotient by structural congruence.

a〈b〉.P |a(c).Q P |(Q{c := b})

P  Q

P |R Q|R

P  Q

νa.P  νa.Q

P ≡ P ′ P ′
 Q′ Q′ ≡ Q

P  Q

In π-calculus all we substitute is channel names, so the monad is just the identity.

There is no need for process variables: no binding of process variable is involved, nor

substitution of variables with processes.

The state functor T maps any X ∈ Set to the set of processes with free channel

names in X, considered equivalent up to structural congruence. Finally, let Red(R)(X)

denote the set of reductions between (equivalence classes of) processes in T (X).

We specify more formally this operational monad in Section 6.4.3.

6.2 S-reduction rules

This section is a straightforward generalization of the notion of reduction rules of Sec-

tion 5.3 to the setting of operational monads, when S is a pair of signatures over the

category of endofunctors on Set (in the sense of Chapter 2): S-reduction rules are de-

fined in Section 6.2.1, and the associated notion of action in a S-reduction monad is

explained in Section 6.2.2, after introducing S-reduction Σ-monads in Section 6.2.2,

when Σ is a signature for monads.

6.2.1 Definition of S-reduction rules

In this subsection, Σ is a signature for monads, and S = (S1, S2) is a pair of signatures

over the category of endofunctors on Set. We present our notion of S-reduction rule

over Σ, from which we build operational signatures in Section 6.3.

We need first to generalize the notion of Σ-module from Definition 76 to that of

(Σ, S)-module:

Definition 193. We define a (Σ, S)-module to be a functor T from the product of the

three categories of models of Σ, S1, and S2 to the category
∫

Mod commuting with the
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forgetful functors to the category Mon of monads,

MonΣ × [Set, Set]S1 × [Set, Set]S2

**

T //
∫

Mod

zz

Mon

Example 194. To each Σ-module Ψ is associated, by precomposition with the projec-

tion to MonΣ, a (Σ, S)-module still denoted Ψ.

Definition 195. Let S and T be (Σ, S)-modules. We define a morphism of (Σ, S)-

modules from S to T to be a natural transformation from S to T which becomes the

identity when postcomposed with the forgetful functor
∫

Mod → Mon.

Then we define S-term-pairs:

Definition 196. Given a Σ-module V, a S-term-pair from V is a pair (n, p) of a natural

number n and a morphism of (Σ, S)-modules p : V → (T1 · Θ(n)) × (T2 · Θ(n)), where

(Ti · Θ(n)) is the (Σ, S)-module mapping a triple (R, T1, T2) to the R-module Ti · R.

We now give our definition of S-reduction rule.

Definition 197. A S-reduction rule A = (V , (ni, hi)i∈I , (n, c)) over Σ is given by:

• Metavariables: a Σ-module V of metavariables, that we sometimes denote by

MVarA;

• Hypotheses: a finite family of S-term-pairs (ni, hi)i∈I from V;

• Conclusion: a S-term-pair (n, c) from V.

6.2.2 S-Reduction Σ-monads

Similarly to Chapter 5, the purpose of a S-reduction rule is to be validated in a S-

reduction monad R, that is, an operational monad whose underlying state functors are

models of S. Here again, as the hypotheses or the conclusion of the S-reduction rule

may refer to some operations specified by a signature Σ for monads, this S-reduction

monad R must be equipped with an action of Σ, hence the following definition.
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Definition 198. Let Σ be a signature for monads, and S = (S1, S2) be a pair of sig-

natures over the category of endofunctors on Set. The category S-RedMonΣ of S-

reduction Σ-monads is the category of models of the product of the following sig-

natures:

• the pullback of Σ along the forgetful functor from operational monads to monads;

• the pullback of S1 along the functor mapping an operational monad to its first state

functor;

• the pullback of S2 along the functor mapping an operational monad to its second

state functor.

In other words, it is the following pullback.

S-RedMonΣ //

��

y
OpMon

��

MonΣ × [Set, Set]S1 × [Set, Set]S2 // Mon × [Set, Set]2

More concretely,

• a S-reduction Σ-monad is an operational monad (R, T1, T2) equipped with

– an action ρ of Σ in R, thus inducing a Σ-monad that we denote also by R, or

by R when we want to be explicit;

– an action of Si in Ti for i ∈ {1, 2}, inducing a model of Si that we denote also

by Ti;

• a morphism of S-reduction Σ-monads R → S is a morphism f : R → S of

operational monads compatible with the actions of Σ, S1, and S2, i.e, whose un-

derlying monad morphism is a Σ-monad morphism and whose underlying natural

transformations between state functors are model morphisms.

6.2.3 Action of a S-reduction rule

Let Σ be a signature for monads and S = (S1, S2) be a pair of signatures over the

category of endofunctors on Set. In this section, we introduce the notion of action of a

S-reduction rule over Σ in a S-reduction Σ-monad. Intuitively, such an action is a “map
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from the hypotheses to the conclusion” of the S-reduction rule. To make this precise,

we need to first take the product of the hypotheses; this product is, more correctly, a

fibred product.

Definition 199. Let (n, p) be a S-term-pair from a Σ-module V, and R be a S-reduction

Σ-monad. We denote by p∗(Red(R)(n)) the pullback of red
(n)
R : Red(R)(n) → (T1 · R(n)) ×

(T2 · R(n)) along pR : V(R) → (T1 · R(n)) × (T2 · R(n)):

p∗(Red(R)(n))
y

//

��

Red(R)(n)

red
(n)
R

��

V(R) pR

// (T1 · R(n)) × (T2 · R(n))

.

We denote by p∗(red
(n)
R ) : p∗(Red(R)(n)) → V(R) the projection morphism on the left.

Definition 200. Let A = (V , (ni, hi)i∈I , (n, c)) be a S-reduction rule, and R be a S-

reduction Σ-monad.

The R-module HypA(R) of hypotheses of A is
∏

i∈I/V(R)

h∗
i Red(R)(ni) the fiber prod-

uct of all the R-modules h∗
i RedR(ni) along their projection to V(R). It thus comes with a

projection hypA(R) : HypA(R) → V(R).

The R-module ConA(R) of conclusion of A is c∗Red(R)(n). It comes with a projec-

tion conA(R) : ConA(R) → V(R).

Definition 201. Let A be a S-reduction rule over Σ. An action of A in a S-reduction

Σ-monad R is a morphism, in the slice category Mod(R)/MVarA(R), between hypA(R)

and conA(R), that is, a morphism of R-modules

τ : HypA(R) → ConA(R)

making the following diagram commute:

HypA(R) τ //

&&

ConA(R)

xx

MVarA(R)

. (6.1)

Remark 202. Any S-reduction rule A over Σ defines an arity (D, a, u, v) over the cate-

gory of S-reduction Σ-monads (in the sense of Chapter 2) as follows:
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• a : D → S-RedMonΣ is the fibration corresponding (through the Grothendieck con-

struction) to the functor mapping a S-reduction Σ-monad R to Mod(R)/MVarA(R).

• u maps a S-reduction Σ-monad to hypA(R) : HypA(R) → MVarA(R);

• v maps a S-reduction Σ-monad to conA(R) : ConA(R) → MVarA(R).

This arity yields the same notion of action.

6.3 Signatures for operational monads and Initiality

In this section, we define the notion of operational signature, as particular signatures

over the category of operational monads. They consist of three parts:

• a specification of the pair T of state functors, as a pair of signatures S = (S1, S2)

over the category of endofunctors on Set,

• a signature for the monad underlying R,

• and a family of S-reduction rules over Σ.

In Section 6.3.4, we review Fiore and Hur’s notion of equational system [FH09] that

yield effective signatures for specifying endofunctors. In Sections 6.3.1 and 6.3.3, we

describe the category of models associated to each operational signature. Our main

result, Theorem 207, states that an operational signature is effective as soon as its

underlying signatures for monads and for endofunctors are effective.

6.3.1 Operational signatures

We define here operational signatures and their models.

Definition 203. An operational signature is a signature over the category of opera-

tional monads consisting of:

• the product signature of

– the pullback of a signature Σ for monads along the forgetful functor from

operational monads to monads;
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– the pullback of a signature S1 for endofunctors along the functor mapping an

operational monad to its first state functor;

– the pullback of a signature S2 for endofunctors along the functor mapping an

operational monad to its second state functor.

• a family of arities induced by (S1, S2)-reduction rules over Σ, as explained in Re-

mark 202.

An operational signature is thus determined by two signatures for endofunctors S1 and

S2, a signature for monads Σ, and a family of reduction rules R over Σ. We denote

(S1, S2, Σ,R) the induced operational signature.

Examples are given in Section 6.4.

We unfold the definition of model for operational signatures:

Remark 204. Let O = (S1, S2, Σ,R) be an operational signature. Let S := (Ŝ1, Ŝ2). A

model of O is a S-reduction Σ-monad equipped with an action of each reduction rule

of R.

6.3.2 Morphisms of models

Here we unfold the definition of morphism between models of a operational signature:

it relies on the functoriality of the assignments R 7→ HypA(R) and R 7→ ConA(R), for a

given reduction rule A on a signature Σ for monads.

Definition 205. Let S be a pair of signatures over the category of endofunctors on Set.

Let Σ be a signature for monads, and A be a S-reduction rule over Σ. Definition 200

assigns to each S-reduction Σ-monad R the R-modules HypA(R) and ConA(R). These

assignments extend to functors HypA, ConA : S-RedMonΣ →
∫

Mod.

Proposition 206. Given the same data, the functors HypA and ConA commute with the

forgetful functors to Mon:

S-RedMonΣ

&&

HypA //

ConA

//

∫
Mod

zz

Mon

161



Part II, Chapter 6 – Operational monads and their signatures

Now, a morphism between models R and S of a signature O = (S1, S2, Σ,R) is a

morphism f of S-reduction Σ-monads commuting with the action of any S-reduction

rule, in the sense that for any S-reduction rule A ∈ R, the following diagram of natural

transformations commutes:

HypA(R) //

HypA(f)

��

ConA(R)

ConA(f)
��

HypA(S) // ConA(S)

6.3.3 The main result

We state our main result, Theorem 207, which gives a sufficient condition for an oper-

ational signature to be effective.

Theorem 207. Let O = (S1, S2, Σ,R) be an operational signature. If S1, S2, and Σ are

effective, then so is O.

Proof. This is a close adaptation of the proof detailed in Section 5.5. Therefore, we

only sketch the main arguments.

Consider the two following pullbacks, the left one defining OpMonΣ,S:

OpMonΣ,S //

��

y
OpMon //

��

y

V (
∫

Mod)

cod

��

MonΣ × [Set, Set]S1 × [Set, Set]S2 // Mon × [Set, Set]2
(R,T1,T2) 7→(T1·R,T2·R)

//
∫

Mod

Then, the left vertical arrow is a fibration by the same argument detailed in Lemma 164.

Moreover, the category of models of O is isomorphic to the category of vertical algebras

of an endofunctor FO on OpMonΣ,S, by the same argument as in Proposition 161. Then,

this category of models is fibered over MonΣ × [Set, Set]S1 × [Set, Set]S2 by Lemma 163,

and the fiber category over (R, T1, T2) is the category of algebras of the restriction of

FO as a finitary endofunctor on Mod(R)/(T1 · R × T2 · R), following an argument similar

to that of Lemmas 166 and 169.

Now, we apply Lemma 165: we only need to show that the fiber category over

(Σ̂, Ŝ1, Ŝ2) has an initial object, that is, we must construct an initial algebra for a finitary

endofunctor thanks to the previous remark. Adámek’s theorem (Lemma 167) allows to

conclude.
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6.3. Signatures for operational monads and Initiality

We already know a class of effective signatures for monads: they are the alge-

braic 2-signatures (Theorem 107). In the next section, we introduce a similar notion

of algebraic signature for endofunctors based on equational systems whose effectivity

is ensured by [FH09]. This will allow us to state Corollary 220, as a consequence of

Theorem 207, that we will use for our examples.

6.3.4 Specifying the state functors

We choose to rely on Fiore and Hur’s notion of equational system [FH09]. Thanks to

Example 14, they can be considered as signatures in the sense of Chapter 2.

A first definition of signature for endofunctors on Set that we can think of is an

endofunctor on [Set, Set] whose algebras are the models of the signature.

Definition 208. A 1-signature for endofunctor (or just 1-signature in this subsection)

is a signature over the category of endofunctors on Set consisting of a single arity

induced by an endofunctor Σ on Set, as described in Example 3. A 1-signature is thus

uniquely determined by an endofunctor Σ on [Set, Set], and for this reason we identify

1-signatures with endofunctors on the category [Set, Set] in the following.

Proposition 209. The category of endofunctors on [Set, Set] is complete and cocom-

plete: limits and colimits are computed pointwise.

Notation 210. The following is reminiscent of 1-signatures for monads:

• Θ is the identity endofunctor Id on the category of endofunctors on Set;

• if Σ is a 1-signature for endofunctors, we denote by Σ(n) its nth derivative, where

Σ(n)(F ) := Σ(F )(n) mapping a set X to the set Σ(F )(X + n), for any endofunctor

F ;

• Σ′ := Σ(1), for any 1-signature Σ for endofunctors;

• if F is an endofunctor on Set, the constant 1-signature mapping any functor to F

is denoted by F ;

• if Σ =
∐

i∈I Θ(nj1
) × · · · × Θ(nji

) is an algebraic parametric module, we denote Σ

the 1-signature for endofunctors defined by the same formula.
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The clash of notations with parametric modules is justified by the fact that given any

monad R and algebraic parametric module Σ for monads, the functor underlying the

image of R by Σ is the image of the functor underlying R by Σ. More formally:

Proposition 211. Let Σ be an algebraic parametric module. Then, the following dia-

gram commutes:

Mon
Σ //

��

∫
Mod

��

[Set, Set]
Σ

// [Set, Set]

We now introduce algebraic 1-signatures for endofunctors, which satisfy an initiality

theorem:

Definition 212. A 1-signature Σ for endofunctors is said algebraic if it is a coproduct

of endofunctors of the shape IdSet
(i1) × · · · × IdSet

(in) × Θ(j1) × · · · × Θ(jm).

Example 213. If Σ is an algebraic 1-signature for monads, then Σ is an algebraic 1-

signature for endofunctors.

Proposition 214. Any algebraic 1-signature Σ for endofunctors is effective.

Proof. This follows from Adámek’s theorem (Lemma 167), as the endofunctor underly-

ing an algebraic 1-signature is finitary.

Actually, the functor underlying the initial model of an algebraic 1-signature for mon-

ads is specified by an appropriate algebraic 1-signature for endofunctors:

Proposition 215. Let Σ be an algebraic 1-signature for monads. Then the functors

underlying Σ̂ and ̂Σ + IdSet are isomorphic.

Next, we would like to specify equations. To this end, we use equational systems

[FH09], that we rephrase using our terminology. We focus on equations of the shape

uR = vR : Ψ(R) → R, where

• R is an algebra of a an endofunctor Σ (that is, R is a monad of the induced

1-signature by Σ);

• Ψ(R) is an endofunctor on Set;

• uR and vR are parallel natural transformations between Ψ(R) and R.
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6.3. Signatures for operational monads and Initiality

The assignment R 7→ (Ψ(R), uR, vR) is required to be functorial.

Definition 216. Let Σ be an endofunctor on [Set, Set]. A Σ-equation is an equational

Σ-arity induced by an equational system [Set, Set] : Σ ⊲ Γ ⊢ L = R as described in

Example 10.

It is uniquely determined by a triple (Γ, u, v) consisting of:

• an endofunctor Γ on [Set, Set];

• a pair of parallel natural transformations u, v from Γ to Θ;

Thus we denote by (Γ, u, v) the induced Σ-equation. It is said algebraic if Γ is.

Definition 217. A 2-signature for endofunctors is a signature over the category of

endofunctors consisting of a 1-signature Σ and a family of Σ-equations. It is said alge-

braic if Σ is and E consist of algebraic Σ-equations.

The associated category of models is the full subcategory of models R of Σ satis-

fying uR = vR for each (Ψ, u, v) ∈ E.

Proposition 218. Any algebraic 2-signature for endofunctors is effective.

Proof. A first step consists in combining all the equations of the 2-signature into a

single one, using coproducts. Then, the result follows from [FH09, Theorem 4.7].

Example 219. Recalling Example 192, we would like to specify the state functor T :

Set → Set, such that T (A) denotes the set of π-calculus processes up to structural con-

gruence with free channels in A. For this, let us consider the endofunctor on [Set, Set]

defined for all X ∈ [Set, Set] and γ ∈ Set by

Σ(X)(γ) = 1 + X(γ)2 + X(γ) + X(γ + 1) + γ2 × X(γ) + γ × X(γ + 1)

P, Q ::= 0 | (P |Q) | !P | νa.P | a〈b〉.P | a(b).P

(Σ = 1 + Θ2 + Θ + Θ′ + Id2 × Θ + Id × Θ′)

(with corresponding pieces of syntax below each term of the sum, and using the nota-

tions of Definition 212 for the last line). As an example of Σ-equation (Ψ, u, v), commu-

tativity of parallel composition would have Ψ(X)(γ) = X(γ)2. The first natural transfor-

mation u : Ψ → Θ maps any Σ -alg, say ρ : ΣX → X, to the natural transformation with

component uX,ρ,γ : Ψ(X)(γ) = X(γ)2 → X(γ) at γ given by parallel composition, i.e.,

the composite

X(γ)2 � � (inj2)γ
// Σ(X)(γ)

ργ
// X(γ) ,
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and vX,ρ,γ given by swapping, and then parallel composition. All equations may be

treated similarly, forming a signature S for endofunctors which is algebraic, whose initial

algebra is the desired T .

Proposition 218 and Theorem 207 entail the following corollary of Theorem 207.

Corollary 220. Let O = (S1, S2, Σ,R) be an operational signature. If S1 and S2 are

algebraic 2-signatures for endofunctors and Σ is an algebraic 2-signature for monads,

then O is effective.

All the examples of operational signatures considered here satisfy the algebraicity

condition of Corollary 220.

6.4 Examples of operational signatures

We give examples of operational signatures for the call-by-value lambda calculus in

Section 6.4.1, for the big-step operational semantics variant in Section 6.4.2, and for

the π-calculus in Section 6.4.3. The reduction rules are given following the schematic

presentation described in Section 5.3.5. These signatures all satisfy the hypotheses of

Corollary 220, and thus are effective.

6.4.1 Call-by-value lambda calculus

We give an operational signature for the operational monad ((B, B), LCv) of the call-

by-value lambda calculus from Example 190. Recall that B is the monad of binary

trees underlying the initial model of the 1-signature Θ × Θ. By Proposition 215, the

corresponding algebraic signature for endofunctor is S = (Θ × Θ + IdSet, ∅). A model T

of S comes equipped with a binary operation app : T × T → T and a variable operation

v : IdSet → T . We denote by jT : B → T the initial morphism.

Now, we give a signature for the monad LCv of values of the lambda calculus. A

value is either a variable or an abstracted lambda term, and we argued in Example 190

that a lambda term can be specified as a binary tree whose leaves are values. Thus, we

choose the 1-signature B ·Θ′ to specify the monad of values. Note that this is algebraic

as B is polynomial: we have

B · Θ′ =
∐

n∈N

Bn × (Θ′)n,
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where Bn is the set of binary trees with n leaves. A model of this signature is a monad

R with a module morphism absR : B · R′ → R.

We give now the family R of reduction rules:

app(v(abs(T )), v(U))) j(T ){∗ := U}
j(T ) j(T ′)

v(abs(T )) v(abs(T ′))

T  T ′

app(T, U) app(T ′, U)

U  U ′

app(T, U ′) app(T, U ′)
.

To conclude, the operational signature is (S, S, B · Θ′,R).

6.4.2 Call-by-value lambda calculus with big-step operational se-

mantics

We give a signature for the operational monad ((B, Id), LCv) of the call-by-value lambda

calculus with big-step operational semantics (Example 191). The first state functor B

is specified by S as in Section 6.4.1, whereas the second one Id is specified by the

algebraic 1-signature for functors IdSet: a model M is an endofunctor with a natural

transformation w : IdSet → M

The underlying signature for monads is the same as the one of the call-by-value

lambda calculus (Section 6.4.1). Now, we give the family R of reduction rules, using

the same notations as in Section 6.4.1:

v(T ) w(T )

T  w(abs(T ′)) U  w(U ′) j(T ′){∗ := U ′} V

app(T, U)) V
.

To conclude, the operational signature is (S, IdSet, B · Θ′,R), where S is defined in

Section 6.4.1.

6.4.3 π-calculus

We give an operational signature for the operational monad ((T, T ), Id) of the π-calculus

described in Example 192. In Example 219, we gave an algebraic signature S for spec-

ifying the endofunctor T . A model M of S comes equipped with the following natural

transformations:
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• par : M × M → M mapping (P, Q) to P |Q;

• out : Id × Id × M → M mapping (a, b, P ) to a〈b〉.P ;

• in : Id × M ′ → M mapping (a, P ) ∈ X × M(X + {∗}) to a(∗).P ;

• abs : M ′ → M mapping P ∈ M(X + {∗}) to ν ∗ .P .

Note that the monad IdSet is the initial model of the empty signature 0.

The family R of reduction rules over 0 consists of the following:

Original rule As a S-reduction rule

a〈b〉.P |a(c).Q P |(Q{c := b}) par(out(a, b, j1(P )), in(a, j1(Q))) par(j2(P ), j2(T [id, b](Q))))

P  Q

P |R Q|R

P  Q

par(P, j1(R)) par(Q, j2(R))

P  Q

νa.P  νa.Q

P  Q

abs(P ) abs(Q)

where:

• ji : T → Mi is the initial S-model morphism to the underlying state functor Mi of

a S-reduction Σ-monad, for i ∈ {1, 2};

• T [id, b] is the function T [id, b] : T (R(X) + 1) → T (R(X)), for b : 1 → R(X) the

function selecting b ∈ R(X).

To conclude, the operational signature is (S, IdSet, 0,R).
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CONCLUSION

In this thesis, we have studied different notions of signatures that are all particular

instances of the general definition that we give in Chapter 2.

In Chapters 3 and 4, we have presented notions of signatures for monads and their

models. More precisely, in Chapter 3, we have defined the class of presentable signa-

tures, which are quotients of traditional algebraic signatures. Presentable signatures

are closed under various operations, including colimits. One of the main results of this

chapter says that any presentable signature is effective. Despite the fact that the con-

structions in Section 3.7 make heavy use of quotients, there is no need to appeal to

the axiom of choice. While a previous version of the formalisation did use the axiom

of choice to show that certain functors preserve epimorphisms, we managed subse-

quently to prove this without using the axiom of choice. This analysis, and subsequent

reworking, of the proof was significantly helped by the formalisation.

One difference to other work on Initial Semantics, e.g., [MU04; GU03; Fio08; FM10],

is that we do not rely on the notion of strength. However, a signature endofunctor

with strength as used in the aforementioned articles can be translated to a high-level

signature as presented in this work (Proposition 44).

In Chapter 4, we extend the notion of signature for monads to take into account

more general equations. This yields the definition of a 2-signature, as a pair of a 1-

signature Σ (that is, a signature in the sense of Chapter 3) and a set of Σ-equations

that must be satisfied.

Finally, in Chapter 5, we have introduced the notions of reduction monad and re-

duction signature: they are meant to model syntax with a notion of reduction. For each

such signature, we define a category of models, equipped with a forgetful functor to the

category of reduction monads. We say that a reduction signature is effective if its asso-

ciated category of models has an initial object; in this case, we say that the reduction

monad underlying the initial object is generated by the signature. We identify a simple

sufficient condition for a reduction signature to be effective. Chapter 6 generalizes the

notion of reduction monad to that of operational monad, and adapts the statement of

Chapter 5 accordingly. These two chapters is a first step towards a theory for the al-
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gebraic specification of programming languages and their semantics. In future work,

we aim at generalizing our notion of signature to encompass richer languages and

to present a notion of signature that allows for the specification of equalities between

reductions (cf. Remark 153).

We anticipate that our work extends to simply-typed languages, by changing the

base category Set to a presheaf category SetT , where T is the set of simple types that

we are interested in.
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