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Pr., Universidad Autónoma de San Luis Potośı
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Résumé Étendu

Le travail de recherche développé dans cette thèse explore l’utilisation du comportement
retardé dans les schémas de contrôle par rétroaction comme élément interne du contrôleur.
Profondément inspiré par les contrôleurs proportionnels-dérivés-intégraux bien connus,
cette thèse propose une structure similaire avec l’ajout d’une action retardée. La première
et la plus importante tâche étant de concevoir un contrôleur qui atteint la stabilité asymp-
totique du système en boucle fermée. La thèse présente une variété de cas d’étude pour
ces schémas de contrôle basés sur le retard, une variété présente dans les deux éléments,
les contrôleurs et les systèmes à contrôler. Différentes configurations de contrôleurs util-
isant des processus proportionnels, intégraux, retardés et même d’intégration retardée
sont proposées et testées. De plus, on étudie son potentiel de contrôle dans différents
scénarios en considérant des classes générales de systèmes dynamiques linéaires, et une
variété d’applications en mécanique, électronique de puissance, robotique et systèmes
photovoltäıques.

Il est important de souligner que toutes les analyses effectuées dans ce travail sont
des analyses linéaires. Plus précisément, nous supposons que les équations décrivant le
schéma de contrôle complet (en considérant le contrôleur et le système à contrôler) sont des
équations différentielles linéaires. Ceci est formellement argumenté en considérant les tech-
niques de linéarisation, les modèles linéarisés ou par hypothèse directe. Nous exploitons
ces structures linéaires pour développer une interprétation basée sur les fréquences, utile
pour comprendre ces systèmes dynamiques de manière élégante et intuitive. En général, il
est bien connu que les solutions des équations différentielles linéaires peuvent être décrites
par une analyse de l’emplacement des racines de ses équations caractéristiques. Plus
précisément, ces racines algébriques indiquent la décroissance exponentielle et la fréquence
de vibration de ces solutions, et plus important encore, l’emplacement de ces racines est
directement lié à la stabilité des solutions.

Cette thèse étudie en détail ces fonctions et ses racines dans le cas où un comportement
retardé est présent. Dans un tel cas, ces fonctions sont des quasi-polynômes, ou des
polynômes à coefficients exponentiels. Pour étudier ces racines, nous nous basons sur
le fait que leur emplacement sur le plan complexe change continuellement au moyen de
variations continues des paramètres des contrôleurs. Nous cherchons à caractériser ce
comportement, à le concevoir, et par conséquent, à pouvoir concevoir la nature de ces
solutions. Dans ce sens, nous utilisons la méthodologie dite de stabilité par croisement
de racines. Enfin, cette thèse développe des observations analytiques et des méthodes
numériques pour choisir les paramètres de ces contrôleurs à base de retard de telle sorte



que le système en boucle fermée soit stable. En particulier, nous visons à étudier la
commande de systèmes linéaires invariants dans le temps à une seule entrée et une seule
sortie. Aussi, son implémentation sur quelques applications : convertisseur de puissance
buck et le pendule inversé rotatif. Une application d’ingénierie réelle avec des résultats
expérimentaux : un système photovoltäıque avec suivi du point de puissance. Et enfin, le
problème classique de la stabilisation d’une châıne d’un nombre quelconque d’oscillateurs
en utilisant un seul bloc de retard.



Extended Abstract

The research work developed in this thesis explores the use of delaying behavior in feed-
back control schemes as an inner element of the controller. Deeply inspired by the well-
known proportional-derivative-integral controllers, this thesis proposes a similar structure
with the addition of a delayed action. Being the first and most important task to design a
controller that achieves asymptotic stability of the closed-loop system. The thesis presents
a variety of cases of study for these delay-based control schemes, a variety present in both
elements, controllers and systems to control. Different controllers’ configurations using
proportional, integral, delaying and even delayed integration processes are proposed and
tested. Also, one studies its control potential in different scenarios by considering general
classes of linear dynamic systems, and a variety of applications from mechanics, power
electronics, robotics and photo-voltaic systems.

It is important to highlight that all analysis carried-out in this work are linear anal-
ysis. More precisely, we assume that the equations describing the full control scheme
(considering controller and system to control) are linear differential equations. This is
formally argued by considering linearization techniques, linearized models or by direct as-
sumption. We exploit such linear structures to develop a frequency-based interpretation
useful to understand these dynamic systems in an elegant and intuitive way. In general,
it is well-known that the solutions of linear differential equations can be described by an
analysis of the location of the roots of its characteristic equations. More precisely, these
algebraic roots denote exponential decay and vibrations frequency of these solutions, and
more importantly, the location of these roots is directly linked to the solutions’ stability.

This thesis studies in detail these functions and its roots in the case in which delayed
behavior is present. In such a case these functions are quasi-polynomials, or polynomials
with exponential coefficients. To study such roots we rely on the fact that its location
on the complex plane changes continuously by means of continuous variations of the
controllers’ parameters. We aim to characterize this behavior, to design on it, and in
consequence, to be able to design these solution’s nature. In this sense, we use the
so-called crossing roots stability methodology. Ultimately, this thesis develops analytical
observations and numeric methods to chose the parameters of these delay-based controllers
such that the closed-loop system is stable. In particular, we aim to study the control of
single-input single-output linear time invariant systems. Also, its implementation on
some applications: buck power converter and the rotatory inverted pendulum. A real
engineering application with experimental results: a match power point tracking photo-
voltaic system. And finally, the classical problem of stabilizing a chain of any number of
oscillators by using a single delay block.





Resumen Extendido

El trabajo de investigación desarrollado en esta tesis explora el uso del comportamiento
retardado como un elemento para diseñar sistemas de control retroalimentados. Es decir,
como un elemento interno del controlador. Inspirado en los controladores proporcionales-
derivativos-integrales, ampliamente conocidos y usados en la actualidad. Esta tesis pro-
pone una estructura conceptual similar añadiendo la acción de tipo retardada. Para este
fin, el primer objetivo y el más importante, es diseñar un controlador que asegure la esta-
bilidad asintótica del sistema de lazo cerrado. Esta tesis presenta una variedad de casos
de estudio para estos esquemas de control basados en retardos, una variedad presente en
ambos elementos, los controladores y los sistemas a controlar. Se proponen y prueban
diferentes configuraciones de controladores utilizando procesos proporcionales, de inte-
gración, de retardo e incluso de integración retardada. Además, se estudia su potencial
de control en diferentes escenarios considerando clases generales de sistemas dinámicos
lineales, y una variedad de aplicaciones desde la mecánica, la electrónica de potencia, la
robótica y los sistemas fotovoltaicos.

Es importante destacar que todos los análisis realizados en este trabajo son análisis
lineales. Más concretamente, se asume que las ecuaciones que describen el esquema de
control completo (considerando el controlador y el sistema a controlar) son ecuaciones
diferenciales lineales. Esto es argumentado formalmente considerando técnicas de lineal-
ización, modelos linealizados alrededor de puntos de operación, o por suposición directa.
De hecho, estas estructuras lineales se aprovechan para desarrollar una interpretación
basada en un enfoque frecuencia, útil para entender estos sistemas dinámicos de una
manera elegante e intuitiva. Es bien sabido que las soluciones de las ecuaciones diferen-
ciales lineales pueden ser descritas cualitativamente por la localización de las ráıces de sus
ecuaciones caracteŕısticas. Estas ráıces algebraicas indican el decaimiento exponencial y
la frecuencia de vibración de estas soluciones. Y lo que es más importante, la ubicación
de estas ráıces está directamente relacionada con su estabilidad.

En esta tesis se estudian con detalle estas funciones y sus ráıces, y debido al carácter
retardado en las ecuaciones diferenciales lineales, se estudian las ráıces de las funciones
cuasi-polinómicas. Para esto, se sabe que la ubicación de estas ráıces en el plano complejo
cambia continuamente mediante variaciones continuas de los parámetros del controlador.
Y se pretende caracterizar este comportamiento para manipularlo, y en consecuencia,
manipular también la naturaleza de estas soluciones. En otras palabras, diseñar el com-
portamiento dinámico global, es decir, para controlarlo. Este proceso es más conocido en
la literatura como teoŕıa de estabilidad de cruce por frontera. En general, esta tesis desar-



rolla observaciones anaĺıticas y métodos numéricos para elegir los parámetros de control de
estos controladores basados en el retardo para que el sistema de lazo cerrado sea estable.
En particular, se estudia el control de sistemas lineales invariantes en el tiempo con una
sola entrada y una sola salida. Su implementación en algunas aplicaciones: convertidor
de potencia buck cd/cd y el péndulo invertido giratorio. Una aplicación real de ingenieŕıa
con resultados experimentales: un sistema fotovoltaico con seguimiento del punto de po-
tencia. Y por último, el problema clásico de estabilizar una cadena de cualquier número
de osciladores utilizando un único bloque de retardo.
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Chapter 1

Introduction

Roughly speaking, we may interpret control schemes design as a conversation between
controller and system, one in which language is nothing but dynamical behavior. In this
sense, we interpret physical systems as differential-integral equations, and use the same
elements for constructing a control scheme. We could easily mention the well-known
PID (Proportional-Integral-Derivative) type controllers, in which one finds these precise
elements. Considering only these three as means to design a control scheme is proved
to be a useful and simple idea. In fact, the impact of each one of them on the overall
closed-loop system has been studied deeply in the literature (see, for instance, [8, 55]).
However, it is important to notice that this simplicity, found then consequently in its
dynamics analysis and design, trades-off with the fact that they may not be sufficiently
enough complex to control some systems, or to to do it at its full potential.

In any other case, one can interact directly with the closed-loop dynamics by varying
the parameters of the system, physical ones or even the controller’s ones. Plenty of litera-
ture has been developed in order to better understand this and to use it for control design
(see, for instance, [2]). For example, consider the derivative action of a PID controller,
usually one regards it as an enabler for damping manipulation. This can be easily ex-
plained by looking at the classical example of a mass-spring-damper system, in which this
relationship between damping and the first derivative related term is found explicitly. It
is interesting to notice that in such a classical example we could interact with the overall
damping of the system in two different ways. One, by varying the proportional gain of
the derivative action, and a second one by directly using different physical dampers, or its
equivalent damping system according to the application. Interestingly enough, sometimes
even parts of the model equations are built in the control law, this is made usually with
the purpose of neglecting some non-desired dynamical behavior, or to take it into account
directly. A common scenario of these is the well-known input/output linearization tech-
nique, in which we assume perfect understanding of the physical system’s non-linearities
using them in the control algorithm to neglect them. We address an illustrative example
of this technique in this thesis document.

Whatever the case, one could argue that the main control design tool is knowledge.
More precisely, a model which presumably contains all the dynamics information of the

1
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system to be controlled, and one which even could forecast its behavior. This is partially
correct, since reality appears to be more granulated than our tools to describe it. And
even if one allows oneself to try it, our best efforts bring up a level of complexity in the
models’ equations not suitable for easy analytical handling. It is worthy to note that
these can be used for complicated and accurate computer simulations. However, through
all control theory literature, it has been shown that a good “trade of” between model and
controller complexities is a success. In general, there is a saying: “all models are wrong
but some are useful”. In fact, even though it is not always the case, usually one is more
interested in depicting the qualitative behavior of the physical system, rather than to get
a perfect description out of it. A really accurate model, may be one so complex that the
tools to analyzing it from a control perspective won’t be enough, or they won’t be able to
do something interesting out of it. Also, and equally important, a sensing system capable
of capturing information as rich in dynamics as possible is desired.

In this regard, this thesis embraces completely the idea of using linear differential
interpretations of already existing models. It is mandatory to enhance that such a choice
has nothing to do with a simplification of the needed analysis, or as a way to make
those easier, as owe could assume. Rather, we exploit its stretch relationship with a
really intuitive and elegant frequency-based interpretation. More precisely, and better
explained in the sequel, the relationship between the characteristic roots location and the
overall dynamic system response. In general, this thesis explores concepts as stability
and closed-loop response manipulation through a detailed study of these roots and its
equations. One statement that is repeatedly mentioned through the whole thesis is that
a linear system is asymptotically stable, if and only if, all of its characteristic roots are
located in the left-half plane of the complex plane. In other words, if and only if, all of
them have negative real part. This is the main reason for this thesis to be basically a deep
study of the behavior of these roots with respect to controllers parameters variations.

For the scope of this thesis, and in fact, as its particular objective, these ideas are used
to study delay-based control schemes. In other words, the use of time-delays as means
to develop a control system. The easiest way of understanding such an idea would be
thinking of it as an extension of the PID type controllers. One in which a time-delayed
action becomes an option in their design, one as valid as the integral or derivative one.
As mentioned before, the general idea of these has always been using dynamical behavior
for shaping dynamical behavior. Such ideas are explained in detail in the following lines,
and deeply throughout this thesis document.

1.1 Time-Delay and Delay-Based Control

Time-delays can be found in almost any field, biology, chemistry, engineering or social
sciences, to mention a few ( as discussed in [56]). Either, this can be inherent to the
system’s nature and/or as a part of an inner communication system. Regarding dynamical
systems, this time delay behavior can be mathematically described for further analysis
through a variety of different interpretations. FDE’s (Functional differential equations),
abstract equations and DDE’s (delay differential equations), to mention a few (see, for
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instance, [66]). In this thesis we focus on the use of DDE’s, these are a class of equations
where the evolution of its solution depends not only on its actual value, but also on all
the information from this instant to a particular moment in the past. As mentioned in
[16], delays may occur due to finite velocities of signal propagation or processing delays
leading to memory effects and, in general, infinite-dimensional systems.

One can think in the time a fluid takes to travel a pipeline, or that one that a remote
control system takes to obtain information (sensing variables) and to send back adjust-
ing commands to a remote location. Evidently, particularly important for teleoperation
systems (see for instance, [3], [20] and [57]). Either the case, not taking it into account in
the control design may be disadvantageous if happens to play a big role on the qualitative
behavior of the system. It is well known that adverse effects as oscillations, instability and
bandwidth sensitivity, among others, are the consequence of the presence of delay in the
control loop (see, for instance, [52, 49]). However, it is worth mentioning that there exist
some situations when the delay may improve the system’s stability as discussed in the
classical example [1, 68], where an oscillator is controlled by one gain-delay “block” with
positive gains and small delay values (a detailed analysis of such an approach can be found
in [54]). This thesis studies exactly this last idea, more precisely, a variety of delay-based
control schemes is presented and discussed. In other words, we study the implications of
adding a delayed nature as a control tool. Moreover, as mentioned before, we have to
state that even though some non-linear formulations are used in the content of this thesis
as means for describing physical systems, this work focuses ultimately on linear analysis.
In this regard, and before discussing particular applications problematics, we have first to
discuss two fundamental linear delay-based control problems: the stabilization of chains
of integrators and oscilators.

One may argue that these problematics serve as theoretical observations for under-
standing the place of linear delay-based control in comparison to other PID alike control
strategies. One main observation of this thesis, as discussed in chapters 4 and 5, it is
that both problematics appear to be suitable to be solved using the purest forms of lin-
ear delay-based control. That is, using only delay “blocks” (gain, delay) without any
additional integral-derivative process usually found in PID controllers. First, as deeply
studied in [53], a chain of integrators can be stabilized only using delay blocks. This result
states that a chain of any number of integrators can be stabilized by a classical control
scheme based on a linear combination of delayed error signals with corresponding propor-
tional gains (delay “blocks”). Second, the idea of stabilizing oscilators using delays is first
introduced in the illustrative example reported in [1], and later on better understood in
[54]. Such works study the stabilization of one oscillator by using only one delay “block”.
Along these lines, it is worthy to recall an interesting observation first introduced in [38],
that one delay block may stabilize not only one but a chain of any number of oscillators.
In general, the idea is that these open (in terms of the possible degree of the system)
problematics can be solved by using relatively simple delay-based control schemes, and
also, that it is the delayed nature the one enabling such capacity. As a first thought, these
should not only be considered for its direct application, that is, stabilizing systems having
such particular dynamics. And neither by doing it using only delay blocks (PID related
terms may be easily added). But in fact, these are important puzzle pieces to understand
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what can one get from using delay-based control, or at what extent using a delayed term
may be advantageous.

Bearing such arguments in mind, the extension of these delay “blocks” to more complex
forms using proportional-integral-derivative elements is evident. In this thesis we refer
to the use of a delayed term using the Greek letter δ. In this way, one may have Pδ
(proportional-delayed) or PIδ (proportional-integral-delayed) controllers, as examples.
Different forms of these delay-based controllers are already been studied theoretically
and experimentally in the literature. In [61] the PIδ controller design is studied for its
application to second-order LTI (Linear Time Invariant) systems. The Pδ controller has
being implemented experimentally in [32] for a haptic-virtual systems, to mention some
cases. To this end and most importantly, in almost every study the main goal is first
to develop a stability analysis to properly design such controllers. That is, to compute
the proper gains and delay values such that the closed-loop system is at least stable.
This thesis studies these time-delay control systems through the use of linear ordinary
differential equations as a means to work with a frequency-based interpretation (similarly
to [21]). In this regard, the most important feature to highlight in comparison to linear
non-delayed systems is directly related to its characteristic equation. More precisely, the
fact that the characteristic equation of a linear non-delayed system has a finite number of
roots (characteristic roots). Being these zeros of the so-called characteristic polynomial.
In contrast, a time-delay system has an infinite number of characteristic roots. Being
these, zeros of the exponential-polynomial transcendentals function better known as quasi-
polynomial. Also known as polynomial with exponential coefficients.

All chapters of this thesis aim to study time-delay systems, some in pure theory, and
some through applications, simulations and experimentation. Nevertheless, they can be
also easily interpreted as detailed studies of different and particular classes of these quasi-
polynomials and its roots. In fact, all results derived related to time-delay systems in this
thesis belong in the same way to quasi-polynomial complex analysis. To better understand
the above mentioned insights, one can study the roots of the simplest quasi-polynomial,
as explicatively depicted in the following proposition.

Proposition 1. Consider the function:

f(s) = 1 + ae−τs, a ∈ R, τ > 0.

The roots of f(s) behaves as:

s =


1
τ

{
− log{ 1

a
}+ i(2n+ 1)π

}
, if a > 0,

1
τ

{
− log{− 1

a
}+ i2nπ

}
, if a < 0,

(1.1)

for all n ∈ N. Additionally, the following can be stated:

if |a| > 1, → <{s} > 0,

if |a| < 1, → <{s} < 0.
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Proof. Assume that there is a root of f(s) = 0 on the complex plane in s = σ+ iω, where
(σ, ω) ∈ R2. One can rewrite this equation as:{

1 + ae−τσ cos(τω)
}
− i
{
ae−τσ sin(τω)

}
= 0.

Given this equation, in order to solve the imaginary part, if a 6= 0 then ω = π
τ
n where

n ∈ N. Now, substituting this in the real part leads us to:

1 + ae−τσ(−1)n = 0.

Subsequently, solving for σ gives the following:

σ = −1

τ
log

{
(−1)n+1

α

}
.

Having found σ and ω one can then explicitly describe s as in (1.1).

From this proposition, one can notice that even this simple case has an infinite number
of complex roots. Interestingly enough, all of them can be located in one half-plane at
the same time. In general, it is important to notice that the distribution of them on the
complex plane is governed by its parameters (coefficient and delay). If possible, the ideal
case would always be to have as much information as the one presented in Proposition 1.
However, deriving analytical observations for higher-order examples becomes extremely
difficult. In fact, there are entire research communities dedicated to develop numeric
methods to understand the location of the zeros of these special functions (see for instance,
[73, 74]). Some of these strategies, and the ones developed in this thesis, are based in the
so-called crossing roots analysis. In the following, we introduce in detail the basis of it.

1.2 Parameter Based Stability Analysis

As mentioned before, and as it is repeatedly done throughout this thesis: all time-delay
systems studied in this thesis are asymptotically stable, if and only if, all the roots of its
characteristic quasi-polynomial are located in the LHP (left-half plane) of the complex
plane. Or that strictly none of them are located in the RHP (right-half plane). Straight-
forwardly, this is the main reason to study the behavior of these roots in relation with its
parameters (time delay values, coefficients).

In this sense, it is important to highlight that the enabling idea behind every result
presented in this thesis is the quasi-polynomials roots continuity property. More precisely,
the fact that the location of such roots vary continuously on the complex plane as the
quasi-polynomial parameters are varied in the same way. To illustrate such property,
consider the polynomial case in the following theorem.
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Theorem 1. As discussed in [45]. Let:

P0(z) = anz
n + an−1z

n−1 + · · ·+ a0 = an

p∏
j=1

(z − zj)mj , an 6= 0,

Pε(z) = anz
n + (an−1 + εn−1)zn−1 + · · ·+ (a0 + ε0),

polynomials with real coefficients and let Dk be a disk centered at zk with radius rk such
that:

0 < rk < min |zk − zj|, j = 1, 2, . . . , k − 1, k + 1, . . . , p.

There exists a positive number ε such that, if |εi| ≤ ε for i = 0, 1, · · · , n − 1, then Pε(z)
has precisely mk roots in the disk Dk.

Roughly speaking, Pε(z) may be interpreted as a slightly different version of polynomial
P0(z). One with perturbed coefficients (through the addition operation). This proposition
states that for every different root of P0(z), considering its multiplicity, there always exists
a disk (region) centered at this root in which Pε(z) has the same number of roots. In
general, for sufficiently small perturbations this describes a continuous behavior. As its
coefficients are varied, the locations at which polynomials banishes on the complex plane
vary in a continuous way. A similar result regarding quasi-polynomial functions can be
found in [48].

As an implication of this strong argument concerning continuity, the main line of
thought chosen in this thesis scope is the so-called crossing roots analysis. Roughly speak-
ing, this consists in understanding as clear as possible the behavior of the characteristic
roots when for a proper choice of parameters these are located exactly on the imaginary
axis, in other words, crossing it. A single choice of parameters with such properties is
usually refereed as a crossing point on the parameters space (parameters vectorial space
domain). Moreover, a continuous set of crossing points on the parameters space is called
a stability crossing curve. Consider the following: a point of a stability crossing curve
on the parameters space implies roots crossing. Then, a continuous parameters variation
crossing through such curve implies the movement of at least a single characteristic root
from one semi-plane to the other (LHP to RHP, or RHP to LHP). For which the crossing
point is the enabler of such a situation.

This particular roots exchange between semi-planes impacts directly on the number
of roots on the RHP of the complex plane. Usually depicted as the stability index. Again,
all time-delay systems studied in this thesis are asymptotically stable, if and only if,
all of its roots are located on the LHP of the complex plane. The same is true if no
roots are located on the RHP, or in other words, if the stability index (or number of
unstable roots) is equal to zero. This argument is the one that puts the term ”stability”
in all the above mentioned concepts related to crossing roots analysis. Now, consider a
set of contiguous parameters choices delimited by stability crossing curves. Therefore, a
continuous parameters variation inside such a set implies no root crossing. Consequently,
such set has the property of having a fixed number of unstable roots or stability index.
With such in mind, such sets are refereed to stability crossing regions which according to
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its fixed stability index may be stable (index equal to zero ) or unstable (index strictly
greater than zero). A set with a stability index equal to zero is understood in this
thesis document as a stability region and it is nothing else than the so-called stability or
stabilizing conditions looked upon from the control theory point of view.

It is interestingly enough to highlight that the position on the imaginary axis at which
roots crossing takes place is related, and consequently, usually refereed to a frequency
value. This due to its direct relationship with the oscillations frequency of the corre-
sponding ordinary differential equations solutions. In fact, if one choses a crossing point
as the system parameters, and this implies a simple root crossing outside of the origin
(no multiplicity in the roots and imaginary part different than zero). Then, these solu-
tions will contain a sustained oscillation at a frequency value equal to the imaginary part
at which the roots crossing takes place. This is partially why crossing roots analysis is
understood as a frequential or frequency-based methodology. And also why throughout
this thesis document such a terminology is used repeatedly. For the sake of clarity, some
of the concepts introduced in this section are better defined in the following lines. As a
simple illustrative example consider the following retarded quasi-polynomial:

∆(s) = P (s) +Q(s)e−τs,

where P (s) and Q(s) are polynomials with real coefficients such that deg {P} > deg {Q}
and τ is a positive delay value.

Remark 1. An important property of the quasi-polynomial ∆ (s) is that its zeros are
continuous functions with respect to their parameters (see, for instance, [49, 15] and
references therein). In this vein, the number of roots in the RHP can change only when
some zeros cross the imaginary axis.

Definition 1 (Frequency Crossing Set). The frequency crossing set Ω ∈ R is the set of
all ω such that:

∆ (iω) = P (iω) +Q(iω)e−iω = 0.

Remark 2. It is clear that if one takes the complex conjugate of ∆(iω), the following
equality holds:

P (−iω) +Q(−iω)eiω = P (iω) +Q(iω)e−iω.

Therefore, in the rest of the document one considers only nonnegative frequencies, i.e.,
Ω ⊂ R+ ∪ {0}.

Definition 2 (Stability Crossing Boundaries). The stability crossing boundaries T is the
set of all parameters for which there exists at least one ω ∈ R+∪{0} such that ∆ (iω) = 0.
Moreover, for a fixed delay value τ ∈ R+, any element k ∈ T is known as a crossing point.

Remark 3. Notice that if the number of parameters is two or three, these boundaries
become curves or surfaces, respectively. This thesis focuses almost entirely in the first
ones, the stability crossing curves.
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Finally, we present a proposition using all concepts introduced above to develop a
crossing roots analysis. The function studied in this result can be obtained from consid-
ering a single integrator as open-loop system and a single delay block as controller.

Proposition 2. Consider the pair of open-loop system and controller:

G(s) =
1

s
, C(s) = Ke−τs,

respectively. Let K > 0, then, the closed-loop system is asymptotically stable if:

τ ∈ [0, τ ∗), where τ ∗ =
π

2K
. (1.4)

Proof. The characteristic equation of the closed-loop system can be computed directly
from G(s)C(s) + 1 = 0 as follows:

∆(s) = s+Ke−τs = 0. (1.5)

Consider first the delay-free scenario τ = 0, then:

∆(s) = s+K = 0,

it is clear that one achieves asymptotic stability iff K > 0, since this single real root
has negative real part. Assume such selection of a gain and recall the roots continuity
property. One can conclude then, that there must exist a τ interval containing τ = 0 for
which no root exchange planes (no root crossing is achieved) and therefore, stability is
maintained. Let us investigate the existence of crossing roots.

First, it is clear that if s = 0 in (1.5) then K = 0 which by assumption is not possible.
therefore, there is no crossing through the real axis. Second, consider now s = iω:

Ke−iτω = −iω, → K [cos(τω)− i sin(τω)] = −iω,

since ω ∈ R a solution exists iff ω = n π
2τ

, where n ∈ N. That is, in order to both sides of
the equation to be purely imaginary. Considering such ω, and comparing their imaginary
parts of both sides one can derive that:

τ = (−1)n+1n
π

2K
,

where since τ > 0 by assumption of being the value of an amount of time delayed. Then,
more precisely:

τ = n
π

2K
, for n odd.

These are the before mentioned crossing points. It is clear finally that the nearest crossing
point to τ = 0 is the case for n = 1, implying directly the stabilizing interval depicted in
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(1.4).

Additionally and for the sake of clarity let us investigate the so-called crossing direc-
tions. To this end, consider the following derivative using the implicit function theorem:

ds

dτ
= −

∂∆
∂τ
∂∆
∂s

=
sKe−τs

1− τKe−τs ,

now consider the crossing frequencies ω = n π
2τ

.

ds

dτ

∣∣∣∣
s=in π

2τ

=
nK(−1)n+1

1− iτK(−1)n+1
=

nK

1− iτK ,

since n is odd. Finally, in order to investigate the crossing deviation with respect to the
real part σ of the complex variable s we compute:

sgn

{
dσ

dτ

}
= sgn

<

[
ds

dτ

∣∣∣∣
s=in π

2τ

]−1

 = sgn

{
1

K

}
= 1.

Therefore, for any increasing variation of τ around any crossing point, the real part of
the crossing root tends to augment, i.e, to traverse to the RHP of the complex plane.
Implying instability for any interval of τ > τ ∗ = π

2K
.

1.3 Motivational Examples

It is well recognized that low-order controllers are one of the most widely applied strate-
gies to control industrial processes (see, e.g., [8, 55]). Such a “popularity” is mainly due
to their particular distinct features: simplicity and ease of implementation. Among these
controllers, those of PID-type are known to be able to cope with uncertainties, distur-
bances, elimination of steady-state errors and transient response improvement (see, for
instance, [7, 46, 61]). However, the one of the main drawbacks of PID controllers, as
reported in [7], lie in the tuning of the derivative term, which may amplify high-frequency
measurement noise. In fact, as mentioned in [8, 55] the above arguments advise to avoid
the derivative action in most applications. In order to circumvent such a problem, the
Euler approximation of the derivative:

y′ (t) ≈ y (t)− y (t− ε)
ε

, (1.6)

for small ε > 0, seems to be the simplest way to replace the derivative action by using
its delay-difference approximation counterpart ([53]). In the sequel, one presents two
controllers alternatives using delays as design parameters to the classical PD and PI
control schemes. These are studied in detail In Chapter 2. But now, they serve as
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potential examples for the spirit of this thesis. In the sequel one develops three different
illustrative examples regarding these in comparison with its PID counterparts.

On one hand, we study the PDδ controller, which consists in substituting directly the
derivative part of a PD controller by the above mentioned Euler approximation:

C(s) = kp + kδ
1− e−τs

τ
, (1.7)

One of the main benefits in considering such an approximation is that most control
schemes are implemented digitally. As a consequence, a numerical method needs to be
considered in order to achieve a derivative action. In this vein, one of the main features
of the PDδ controller is that is easier to implement on such platforms and its model
approximates more accurately to a derivative action for small delay values.

On the other hand, based on a PI controller, we consider a delay in the error signal
only in the integral action:

C(s) = kp + ki
e−τs

s
, (1.8)

This provides an extra degree of freedom in the tuning of this controller maintaining the
most important feature of the PI controller, which is the null steady state error in the
regulation of zero type systems (open-loop systems with no poles at the origin). We depict
some motivating examples on the use these of delay-based controllers. The main purpose
of these is to enhance some advantages regarding the stability of the closed-loop system
with respect to their low-order controllers counterparts (PD and PI). It is worth noticing
that both examples consider the classical control scheme shown in Fig. 2.1 with a unitary
step as reference input r(t).

First, we consider an example in which a PD does not have the enough impact to sta-
bilize the system. And this shows numerical results in which its delay-based counterpart,
the PDδ controller stabilizes it and can be also interpreted as a derivative-alike action.

Example 1. Consider the following open-loop transfer function:

G(s) =
1

s3 − s2 + 4s− 6
,

with two stable poles s1,2 = 0.17 ± 2.1i and a real unstable one s3 = 1.34. Considering
the use of the well known PD controller, such a case leads to the following characteristic
equation:

∆(s) = s3 − s2 + (kd + 4)s+ (kp − 6) = 0.

Using the Routh-Hurwitz stability criterion is easy to prove that a necessary condition for
closed-loop stability lies in having a positive second-order term. Notice that in this case, the
PD controller does not have the necessary impact on the characteristic equation to achieve
it. In fact, it is only possible to design the zero and first-order terms through this control
scheme. In contrast, in Fig. 1.1, we present some simulation results considering now the
PDδ controller with parameters [kp, kδ]

T = [6.4,−3.4]T with a fixed delay τ = 1s. As can
be seen in this results, this scheme allows us to have closed-loop stability maintaining this
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derivation alike process for this set of parameters. Nevertheless, it is important to point
out that a desired performance is not achieved since the steady state value of the output
is clearly far from the unitary step.

Second, a similar example than the first one but now regarding the PI and PIδ
controller is presented. In this one, the addition of the delay to the PI controller enables
closed-loop stabilization.

Example 2. Consider the following open-loop transfer function:

G(s) =
1

s2 − s+ 3
,

with unstable poles s1,2 = 0.5 ± 1.65i. Considering the use of the PI controller, such a
case leads to the following characteristic equation:

∆(s) = s3 − s2 + (kp + 3)s+ ki = 0.

In a similar fashion that the first example, using the Routh-Hurwitz stability criterion it
arises the necessary condition of having only positive terms in this polynomial in order
to achieve closed-loop stability. Also for this example, the use of the PI controller it is
not enough for this purpose due to its null impact on the second-order negative term of
the characteristic equation. In contrast, in Fig. 1.1, are also presented some simulation
results considering now the PδI controller with parameters [kp, ki]

T = [48.38, 106.6.4]T

with a fixed delay τ = 0.5s. From this results, it is shown how the addition of the delayed
action presented in this controller gives the possibility of achieving stability and even null
steady state error as expected.

Finally, we present the following comparisons. On of the most common applications
of purely PD alike controllers is trajectory tracking, such as the well known control prob-
lem in industrial robots. However, as mentioned in the Introduction, it is in this kind
of implementations in which non-desired high frequency sensors noise can potentially be
amplified by the use of a classical PD controller. Even some filtered schemes have been
proposed in the literature (see, for instance [55]) to circumvent such a scenario. Prob-
ably the most direct example of this is the PDf controller (PD controller with filtered
derivative) shown below:

Cf (s) := Kc

[
1 +

Td

1 + Td
N
s

]
,

where Kc, Td and N are real parameters and can be described as a PD controller with a
low-pas filter in the derivative action with break frequency wo = N

Td
. We show an example

in which we compare three different schemes using the PD, PDf and PDδ controllers
applied to the open-loop system shown in (2.29). Also, we evaluate these considering a
tracking problem under high-frequency noise disturbances due to sensors noise.

Example 3. Consider a low frequency reference signal r(t) = sin(2πfR) with fR = 1Hz
and a high frequency noise signal in the error as e(t) = r(t)− [y(t) + n(t)], where n(t) =
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Figure 1.1: Motivating Examples – Closed-Loop System Responses.

sin(2πfn) with fn = 50Hz. Furthermore, in order to make an equivalent comparison
regarding controllers tuning, we focus on the proportional and derivative gains analogies
inside each topology. That is, using the PDδ controller gains c7 = (700, 80) with τ = 0.04s,
this translates as (kp, kd) = (kp, kδ) for the PD controller and (Kc, Td) = (kp,

kδ
kp

) for

the PDf controller. Finally, for this last one chooses N = Tdω0 for achieving a break
frequency of wo = 2πfo with fo = 40Hz (below the noise signal frequency). The results of
this tests are shown in Fig 1.2a.

Now, with the purpose of making a quantitative comparison we propose the following
performance indicators:

• eA-Amplitude of the ripple in the error signal in steady state due to noisy behavior.

• eM -Maximum peak of the absolute value of the error signal.

• ts-Settling time (Transitory period of time before achieving steady state).

All of these indicators values are shown in Tab. 1.1. Using this information we show in
Fig. 1.2b a radar chart normalized with respect to the worst case for a given indicator.
In other words, if a controller indicator reach the unitary circle this controller has the
worst performance of all. Also, another interesting indicator of this figure is the areas A
of the polygons depicted in this figure for each controller. It is easy to observe that the
ideal scenario concerns to the case in which this area is zero, that is basically no error
signal. In other words, as this area is minimized, a controller fulfills more suitably the
ideal indicators.

From the analysis depicted in Fig. 1.2b and Tab 1.1 one can notice that the controller
better fulfilling this indicators is the PDf controller. However, even thou the correspondent
area of the PDδ controller is larger in this radar chart, it is worth noticing that is the one
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Table 1.1: Performance Indicators Values

Controller eA eM ts A
PD 0.44 0.802 0.1 0.225
PDf 0.35 0.870 0.1 0.129
PDδ 0.38 2.137 0.95 0.507
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Figure 1.2: Comparison Between the PD, PDf and PDδ Controllers.

that achieves the better high frequency noise rejection without implementing any additional
behavior such as the filtered version of the PD controller. This indicates that this it is
worth further studying for achieving an advantageous frequency response.

Finally, we discuss that implementing a continuous derivative action is by itself an in-
teresting problematic. One can achieve continuous derivation using analogue electronics
(for example, operational amplifiers). However, digital processes tend to be more common
nowadays. And the way these solve the derivation problem may be similar and in some
cases exactly the same as the Euler approximation and/or which inspires the PDδ con-
troller. Evidently, a discrete analysis brings up its own interpretation of these dynamics.
But from the continuous analysis point of view, it is not an absurd idea that one could
be studying a continuous finite dimensional system with a derivative process in which the
implementation of it could cause to turn it into a infinite-dimensional one. In this case,
even applying a filter will not change such property. And a delay-based representation of
it may bring useful information regarding its stability.
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1.4 Thesis Content Overview

This thesis studies linear delay-based control schemes inspired by PID control strategies
through well-known crossing roots analysis mentioned above. On one hand, we study
the implementation of these delay-based control schemes through a variety of applica-
tions. Among others, we consider power electronic devices and the Furuta pendulum,
real engineering problems and experimental results: one PV (photo-voltaic) application
and a haptic-virtual system. On the other hand, we are interested in using delay-based
controllers in engineering and to understand their possible advantages. To this end, we
focus on some theoretical examples and some classic problems. On one hand, we develop
numerical methodologies for tunning three different delay-based controllers inspired in
PID controllers: proportional + delay (Pδ), proportional + delayed integral (PδI), and
proportional + delay-based derivative (PDδ) controllers. Interesting examples and dis-
cussions comparing them with their non-delayed counterparts are also addressed. On the
other hand, we aim to solve the classical problem of stabilizing a chain of any number
of oscillators using one-delay block. To be precise, the content of each chapters of this
thesis is described in the following lines. Also, the academic publications resulted from
this work are explicitly highlighted in relationship with each chapter.

Chapter 2: Crossing Roots Analysis: Alternative ”PID Inspired” Delay-
Based Controllers. The application of three delay-based controllers to LTI-SISO (Single-
Input Single Output) systems is studied. These are: the Pδ, PDδ and PδI controllers.
Particularly, we derive two different methodologies for computing proper gains stabilizing
the closed-loop system (the controllers’ tunning) using crossing roots analysis. On one
hand, for the Pδ, we construct an algorithm capable of computing the closed-loop system
stability index. On the other hand, for the PDδ and PδI controllers, we propose a rapid
and practical method to find possible stability regions using the concept of σ-instability
curves. This last idea is one of the main products of the thesis and was published in the
conference paper [29]:

J.-E. Hernández-Diez, C.-F. Méndez-Barrios and S.-I. Niculescu.
Practical Guidelines for Tuning PD and PI Delay-Based Controllers.

In 15th IFAC Workshop on Time Delay Systems. Sinaia, Rumania, 2019

Chapter 3: Delay-Based Control Design: Some Applications. Three differ-
ent illustrative applications of delay-based controllers are studied and discussed. First,
a bilateral control scheme using a Pδ controller in two different applications of haptic
devices:haptic-virtual system and master-slave teleoperation system. The ideas studied
in this chapter can also be found in the following five conference papers: [32] and [27]
being previous to this thesis work1. Experimental results are addressed and discussed as
practical examples of the use of delay-based control schemes. Second, a DC/DC buck
converter using the Pδ and PδI controllers. These results presented in the following
conferences, [34] and [29]:

1, It is important to mention that these ideas are partially presented in Hernández-D1́ez master’s
thesis [31].
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J.-E. Hernández-Diez, C.-F. Méndez-Barrios, S.-I. Niculescu, E.-J González-Galván, G.
Mejia-Rodr1́guez and V. Ramirez-Rivera.

Closed-Loop Stability Analysis of Voltage Mode Buck Using a Proportional-Delayed
Controller.

In 25th Mediterranean Conference on Control and Automation (MED). Valletta, 2017

J.-E. Hernández-Diez, C.-F. Méndez-Barrios, S.-I. Niculescu and V. Ram1́rez-Rivera.
Closed-Loop Stability Analysis of Voltage Mode Buck Using a

Proportional-Delayed-Integral Controller.
In 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). Xi’an,

China, 2019

And third, the analysis of the Furuta pendulum considering a delay in the control
input. The results obtained in this work are depicted in the conference [33]:

J.-E. Hernández-Diez, C.-F. Méndez-Barrios, S.-I. Niculescu, E.-J González-Galván
and A. Loredo.

Delay Margin in Controlling a Furuta Pendulum.
XIX Congreso Mexicano de Robótica. Mazatlán, México, 2017

Chapter 4: Stabilizing Integrators: Photo-voltaic Application. The control
scheme design of a MPPT (Match Power Point Tracking) algorithm for a PV application
is studied by considering a delay-based control strategy. An input-output linearization
technique is used to cope with the system’s non-linearities. Then, the resulted linear
system is a chain of oscillators whose closed-loop stabilization is achieved using a Pδ
controller. A deep analysis of the roots of the characteristic quasi-polynomial is presented,
also the zero dynamics of the system is studied. Several experimental results concerning
set-point changes and solar irradiation disturbances are presented and discussed in detail.
The ideas studied in this chapter can also be found in the following journal paper [36]:

J.-E. Hernández-Diez, C.-F. Méndez-Barrios, S.-I. Niculescu and E. Bárcenas-Bárcenas.
A Current Sensorless Delay–Based Control Scheme for MPPT–Boost Converters in

Photo-voltaic Systems.
In IEEE Access, vol. 8, pp. 174449-174462, 2020.

Chapter 5: Stabilizing Oscillators: Remarks on the Solution of the General
Case. The classical problematic of stabilizing a chain of any number of oscillators using
only one delay block is studied. Explicit stabilizing conditions for the pair gain,delay are
derived. Well-known crossing roots analysis as well the Mikhailov criterion are used to
obtain the main results of the chapter. Lastly, the case in which the oscillators natural
frequencies are equally spaced between one an other is studied and solved in detail. In
the author’s personal opinion, at the moment this document iswritten these are the most
interesting ideas of his research and in this document. The ideas studied in this chapter
can also be found in the following conference paper [35]:
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J.-E. Hernández-Diez, C.-F. Méndez-Barrios and S.-I. Niculescu.
Some Insights on the Asymptotic Stabilization of a Class of SISO Marginally Stable

Systems Using One Delay Block.
IFAC World Congress. Berlin, Germany, 2020.

Chapter 6: Concluding Remarks. Final thoughts on the overall content of the
thesis are addressed. Also, some future work and interesting expanding ideas are exposed.



Chapter 2

Crossing Roots Analysis:

Alternative ”PID Inspired”

Delay-Based Controllers

The content of this chapter studies the application of delay-based controllers using a clas-
sical feedback control scheme for controlling LTI-SISO systems. In general, the stability
of some ”PID inspired” delay-based controllers is studied through well-known crossing
roots stability theory. To such an end, this chapter introduces a variety of analytical
observations regarding the location of the closed-loop characteristic roots. Such results
are later on used to generate algorithms and to propose methods to compute de so-called
“stability index” (i.e number of unstable roots) or to find stability regions in the con-
trollers parameters space. For each case study, illustrative numerical examples of the
application of such methods are carried-out to clarify its reliability. Concluding remarks
regarding the proper situations in which this variety of delay-based control schemes may
be advantageous with respect to their counterparts are addressed.

This chapter is divided in two main sections, each of these studying different delay-
based controllers and design methodologies. However, it is worth to recall that the core
of both sections is based in a similar conceptual background (crossing roots theory and
continuity). Three different controllers configurations are considered:

• Pδ controller (Proportional-Delayed).

• PδI controller (Proportional Delayed-Integral).

• PDδ controller (Proportional Delay-Based Derivative).

First, the Pδ controller is straightforwardly a low-order controller having proportional and
proportional/delayed parts, each with its tunable gain, and one tunable delay. Second,

17
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the PδI is a direct variation of the PI controller, in which the integral part is also delayed,
one could say that the PI is a particular case with delay value set to zero. Third, the PDδ

is understood as a PD controller by substituting the derivative part with its delay-based
counterpart. That is, the Euler’s approximation of the derivative, which is the simplest
version of it (change rate computation between two non-contiguous points).

In general, the main difference between these sections appears in the crossing roots
theory interpretations used in each. On one hand, section 2.1 studies uniquely the Pδ
controller, however, this is the most detailed section in terms of the obtainable information
using the results derived in it. All of these, regarding the characteristic roots behavior
with respect to the controller’s parameters regarding different classes of open-loop systems
and how to handle them. Nevertheless, the main contribution of this chapter is an easily
programmable method for computing not only the stability property but also the stability
index of a particular region in the controllers parameters space. On the other hand,
section 2.2, studies two controllers configurations (PδI and PDδ controllers) and aims to
compute closed-loop stabilizing conditions for both of them. More precisely, introduces a
practical ”quick and easy” method to compute possible necessary and sufficient conditions
without assuring its reliability. However, from a practical sense it is interestingly enough
to be used, numerical examples are depicted and discussed in this regard. The core of
such a method is the use of the so-called σ-stability analysis, not in a usual way, but by
considering positive unstable σ values in order to discriminate stability crossing regions.
Before fully diving into detail, one describes the open-loop system taken into account in
both sections.

Through the overall chapter, consider the class of proper SISO open-loop systems
given by the transfer function:

G(s) :=
P (s)

Q(s)
= cT (sI −A)−1b, (2.1)

where (A, b, cT ) is a state-space representation of the open-loop system. P and Q are
polynomials defined as:

P (s) := pms
m + pm−1s

m−1 + . . .+ p1s+ p0,

Q(s) := qns
n + qn−1s

n−1 + . . .+ q1s+ q0,

where pm 6= 0 and qn 6= 0, that are assumed to satisfy the following:

Assumption 1. Polynomials P and Q satisfy the following conditions:

(i) degQ > degP .

(ii) P (s) and Q(s) are co-prime polynomials.

(iii) |P (iω)| > 0, ∀ω ∈ R.

(iv) If Q(iω∗) = 0, then |Q′(iω∗)| > 0, ω∗ ∈ R.
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C(s, e−τs) G(s)
r(t) y(t)

−

Figure 2.1: Classical Delay-Based Control Scheme

It is clear that Assumption 1-(i) states that the system is causal. If Assumption 1-(ii)
is not fulfilled, this implies that there exist a non constant common factor c(s), such that
P (s) = c(s)P̃ (s) and Q(s) = c(s)Q̃(s). In such a case, choosing c(s) to be of the highest
possible degree, the analysis can be pursued if c(s) is a Hurwitz polynomial, otherwise,
the system will remain unstable independently of the control action. Finally, in order to
simplify the presentation, (iii) and (iv) are made to avoid having multiple roots on the
imaginary axis in P and Q, respectively.

2.1 Stability Index Algorithm: Pδ Controller

Before discussing the technical content of this chapter, it is important to notice that these
ideas were first explored in the author’s master’s thesis [31]. The main reason to considered
them in this chapter is that it exemplifies perfectly the crossing roots theory spirit used
in this thesis for the design of delay-based control schemes. Also, for its contrast with
the complementary σ-instability methodology depicted in the following section. Both
methods are used in the following chapters.

This section develops a methodology for designing a Pδ controller for a LTI systems.
To be more precisely, this is stated in the following problem definition:

Problem 1. Consider the transfer function (2.1) and the Pδ controller:

C(s) = kp + kδe
−τs. (2.4)

. The Pδ controller stabilization problem is defined as the task of finding a proper set of
parameters choice (kp, kδ, τ) such that the closed-loop system is asymptotically stable. In
other words, such a choice of parameters implies that all roots of the closed-loop charac-
teristic equation:

∆ (s; kp, kδ, τ) := P (s)
(
kp + kδe

−τs)+Q(s) = 0, (2.5)

are located in the LHP of the complex plane. Moreover, and in the spirit of this chapter,
the main goal is to find stability regions in the PDδ controller parameters space.

The following remark may be evident, however, it is introduced for the sake of clarity.

Remark 4. The Pδ controller shown in (2.4) is its transfer function representation.
Considering a classical control scheme as the one shown in Fig. 2.1 this implies that the
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control law in continuous time is computed as:

u(t) = kpe(t) + kδe(t− τ),

where e(t) is an error signal.

As mentioned before, all results developed in this chapter have at its core the spirit
of well-known crossing roots theory. In this regard, through the following lines, first,
the controller’s parameters crossing roots conditions are characterized (several cases are
studied). Second, the crossing tendency of these roots is studied (for each particular case).
Third, using these observations (and the propositions developed in the first two sections)
one derives and explains in detail an algorithm for the stability index computation. Forth
and finally, illustrative examples are shown.

2.1.1 Pδ Controller: Crossing Roots Existence

It is mandatory to notice in advance that a special situation arises when the open-loop
transfer function G is even 1. In order to treat properly this case, such is distinguished
in the phrasing of the following results, having one in particular that treats it in detail.
Similarly, the so-called neutral case is also treated separately.

Proposition 3 ([31, 28]-Purely imaginary crossing curves). Assume that G is not an even
function such that degQ > degP , and let τ ∈ R+ be a fixed delay value with Ω := ∪̀Ω`

for ` ∈ N, where the subsets Ω` are defined as:

Ω` :=
{
ω ∈ R+

∣∣ω ∈ (π
τ
(`− 1), π

τ
`
)}

.

Then, ω ∈ Ω is a crossing frequency, if and only if, k(ω) := [kp(ω), kδ(ω)]T , where:

kp(ω) =−<
[
Q(iω)

P (iω)

]
− cot(τω)=

[
Q(iω)

P (iω)

]
,

kδ(ω) = csc(τω) =
[
Q(iω)

P (iω)

]
,

defines a crossing point k(ω) ∈ T .

In the previous result one assumes that G is not an even function. The following result
covers such a case:

Proposition 4 ([31, 28]-Even function special case). Let τ ∈ R+ be a fixed value and
G(s) an even function. Then, the set of all stability crossing curves is composed by the
following set of lines:

1Although G is a complex function, one considers the even functions definition for the real domain,
i.e., G(x) = G(−x), ∀x ∈ R.
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(i)

kp = −G−1 (iω) , ω ∈ R+ ∪ {0},
kδ = 0.

(ii)

kp + (−1)` kδ = −G−1 (iω) , ω =
`π

τ
, ` ∈ N.

Proposition 5 ([31, 28]-Purely real crossing). Let τ ∈ R+ be a fixed value. Then, the
line:

kδ = −kp −
q0

p0

, (2.7)

represents a stability crossing curve. Furthermore, this corresponds to a crossing through
the origin of the complex plane.

When degQ = degP the system is of neutral-type. The behaviour of the neutral root
chain far from the origin (see for instance, [41, 25]) imposes necessary stability conditions
on kp and kd.

Proposition 6 ([31, 28]-Neutral-type condition). Assume that degQ = degP . Then, if
k ∈ R2 is a stabilizing controller, the following condition holds:

|kδ| <
∣∣∣∣kp +

qn
pn

∣∣∣∣ .
Furthermore, this inequality defines a stability crossing curve.

One presents next a summary of the results of this section. Given all stability crossing
points k(ω) and the frequency crossing set Ω, one can define each stability crossing curve
through its continuity, as follows:

T0 :=

{
k ∈ R2

∣∣∣∣kδ = −kp −
q0

p0

}
,

Ti :=
{
k(ω) ∈ R2 |ω ∈ Ωi for i ∈ N

}
.

For the special case of even transfer functions the stability crossing curves also include:

Tp` :=

{
k ∈ R2

∣∣∣∣kδ = (−1)`+1

{
kp +

Q(iω`)

P (iω`)

}}
, for ` ∈ N.

By defining Tp` := ∅ when G is not even, one can describe the set T as:

T =∪
i
Ti ∪̀ Tp` , i ∈ N ∪ {0}, ` ∈ N.

In addition to the crossing roots conditions discussed above, one presents a pair of results
concerning multiple roots. The first one, concerns positive real roots while the second one
gives a necessary condition to characterize multiple pure imaginary roots.
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Proposition 7 ([31, 28]-Unstable curve). Let τ ∈ R+ be a fixed value, and k ∈ R2. Then,
if k is a stabilizing controller the following condition holds:

k 6= k̃(s̃) :=
[
k̃p(s̃), k̃δ(s̃)

]T
,

for all s̃ ∈ R+ such that P (s̃) 6= 0, with k̃p(s̃) and k̃δ(s̃) defined as follows:

k̃p(s̃) : = −Q(s̃)

P (s̃)
− 1

τ

P (s̃)Q′(s̃)− P ′(s̃)Q(s̃)

P 2(s̃)
,

k̃δ(s̃) : =
1

τ

P (s̃)Q′(s̃)− P ′(s̃)Q(s̃)

P 2(s̃)
eτ s̃,

where P ′ and Q′ denote the derivative of P and Q, respectively. Furthermore, if k = k̃(s̃)
for some s̃ ∈ R+, then the characteristic equation of the closed-loop system has at least
two roots in the RHP of the complex plane at s = s̃.

Remark 5. A direct consequence of the previous result is that regions intersecting the
curve described in Proposition 7 are unstable ones. An illustration of this result can be
found in Example 5.

The next result deals with multiple pure imaginary roots characterization:

Proposition 8 ([31, 28]-Multiple pure imaginary roots ). Let τ ∈ R+ be a fixed value,
k ∈ R2 and let Ωm ⊂ Ω be the subset of crossing frequencies with multiplicity m ≥ 2.
Assume that there is no constant a ∈ R+ satisfying the following condition:

={f (iω)}
< {f ′ (iω)} = a, ∀ω ∈ R, (2.12)

where f (iω) := G−1 (iω). Then, the cardinality of Ωm, i.e., |Ωm|, is finite. Furthermore,
if Ωm 6= ∅ and there exist some constant a ∈ R+ fulfilling (2.12), then the cardinality of
Ωm is infinite (but countable) for some m ≥ 2.

2.1.2 Pδ Controller: Crossing Roots Directions

The results presented through Propositions 3-4 allow us to determine the values of kp
and kδ for which crossing roots exist, but do not give any information on their crossing
direction. In order to characterize regions according their number of unstable roots, one
must make a distinction between switches (crossing towards instability) and reversals
(crossing towards stability), and carry out a careful accounting of the unstable roots in
each region.

To determine the roots tendency as the vector k deviates from the curve T , one starts
by introducing some notions. A stability crossing curve Ti for i 6= 0 is generated by k(ω)
for all ω ∈ Ωi, therefore one defines as positive direction of Ti the direction of the curve
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k(ω) that corresponds to increasing ω’s. Fig. 2.2 illustrates a positive direction when ω
increase from π

τ
(i− 1) to π

τ
i.

Figure 2.2: Positive Direction Convention of Ti.

Remark 6. Recall the geometric approach of the basis orientation in R2 from linear
algebra (for further details, see [12]). Let u := [u1, u2]T and v := [v1, v2]T be vectors of
R2, and B be a basis on R2 on the field R, defined as:

B := {u,v} =
{

[u1, u2]T , [v1, v2]T
}
.

B is said to be positively oriented if the shortest path from u to v is in the counterclockwise
direction, and is said to be negatively oriented if the shortest path from u to v is in the
clockwise direction. Then, B is positively oriented if and only if the following condition
holds:

det [u v] = u1v2 − u2v1 > 0. (2.13)

Furthermore, B is negatively oriented if and only if the inequality (2.13) is reversed.

Proposition 9. [31, 28]-Let τ ∈ R+ be a fixed delay, and consider the set of all stability
crossing curves Ti, ∀i ∈ N. Then a pair of roots of (2.5) crosses from the LHP to the RHP
of the complex plane as k traverses a stability crossing curve Ti from left to right with
respect to the positive direction of Ti if i is even. Furthermore, the crossing is reversed if
i is odd.

Observe that Proposition 9 does not give any information about the crossing when
i = 0. The following result fills this gap.

Proposition 10. [31, 28]-Given a fixed delay τ ∈ R+. Then, one root of (2.5) crosses
from the LHP to the RHP of the complex plane through the origin as k crosses T0 from
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left to right if the intersection of k and T0 is located at the left of the point k0 ∈ T0, defined
by:

k0 := [kp0 , kδ0 ]
T =

[
p1q0 − (τq0 + q1)p0

τp2
0

,
p0q1 − q0p1

τp2
0

]T
.

Furthermore, the crossing of the root is from the RHP to the LHP if the intersection is
located at the right of k0.

As in the case of stability crossing curves, additional considerations must be taken
into account when G is an even function. Such a situation is considered below:

Proposition 11. [31, 28]-Let τ ∈ R+ be a fixed delay and G an even function. Then,
as k crosses in any direction from the left side to the right side of T`, ` ∈ N through the
point k̂ := [k̂p, k̂δ]

T ∈ T`, a pair of roots of (2.5) crosses from the LHP to the RHP of the

complex plane, if k̂ satisfies the following conditions:

k̂δ > 0 for ` even, k̂δ < 0 for ` odd.

Furthermore, the crossing of the roots is from the RHP to the LHP if these inequalities
are reversed.

2.1.3 Algorithm Construction

Based on the crossing directions obtained in the previous section, one presents first, a
conceptual example explaining these results and secondly, a novel algorithm aiming at
finding the invariant number of roots η (stability index) of a given region of the parameters
space. As stated in Propositions 9-10, one refers to a positive crossing of k over Ti, if the
direction of k coincides with the positive direction. Otherwise, one says that one has a
negative crossing of k. Moreover, one defines the numbers η, η0 ∈ N+∪{0}, as the number
of roots in the RHP, of the closed-loop system and of the open-loop system, respectively.

Example 4 ([31, 28]-Conceptual example). Let τ ∈ R+ be a fixed value, and consider
the particular case where Q(iω) 6= 0 for all ω ∈ Ω ∪ {0}. Fig. 2.3 shows a possible
scenario for the problem of stabilization of the closed-loop system in the kp-kδ parameters
plane, where, as mentioned above, the arrows of the stability crossing curves Ti indicate
the positive direction of Ti.
In order to analyze the stability of each region in the kp-kδ parameters plane, one computes
first the number η of each region by analyzing the crossing directions as one varies the
controller gains k continuously from A to F , as shown in Fig. 2.3. From (2.5) it can be
seen that at the origin of the kp-kδ parameters plane, the roots of this function are the
same as the roots of the open-loop system, that is, the roots of Q(s). Therefore, η = η0

for k = [0, 0]T , which corresponds to the point A as depicted in Fig. 2.3.
The rest of the analysis concerns to describe how the characteristic roots behave by means
of a continuous controller’s parameters variation from A to F . All controller’s choices
A− F represent a crossing point, how the roots deviate to the LHP of the complex plane
is summarized in Table 2.1, accordingly to Propositions 9 and 10. Each type of crossing
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through Ti is indicated according to the positive direction of Ti for i 6= 0, and to the point
k0 of T0 for i = 0 (see, Proposition 10). Furthermore, η− and η+ denote the numbers of
roots in the RHP of the complex plane in the previous and future region as k crosses Ti.
Observe also from Fig. 2.3, that the only plausible scenario corresponds to the case when

0

0

kp

k
δ

 

 

k0

F

A

B

E

D
T0

C

η = η0 + 2

η = η0 + 1

η = η0

η = η0 + 1

η = η0 − 1

Ti for i 6= 0

Ti with i odd

Ti with i even

Figure 2.3: Conceptual Example of a Stability analysis Using Stability Crossing Curves.

Table 2.1: Crossing Directions Analysis of the Conceptual Example

Type of crossing Position
Point through Ti i related to k0 k−direction η− η+

B left to right even + η0 η0 + 2
C left to right 0 to the right − η0 + 2 η0 + 1
D right to left even − η0 + 1 η0 − 1
E right to left odd + η0 − 1 η0 + 1
F right to left 0 to the left − η0 + 1 η0

η0 ≥ 1, since η cannot be a negative number. Moreover, the only scenario in which one
could have a stability region in the section of the kp − kδ parameters plane, is the one in
which η0 = 1.

Let k∗ := [k∗p, k
∗
δ ]
T denote a point on the kp-kδ parameters plane such that k∗ 6∈ Ti for

i ∈ N ∪ {0}. One proposes a linear path for k from the origin (at which η = η0) to k∗.
The set Ωs denote all ω ∈ Ω for which k(ω) intersects the vector k∗. This set corresponds
to all ω ∈ Ω such that the following equation holds:

k∗pkδ(ω)− k∗δkp(ω) = 0,
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and satisfies at least one of the following conditions:

0 <
kp(ω)

k∗p
< 1, 0 <

kδ(ω)

k∗δ
< 1.

Observe that there can only be one intersection between k∗ and T0. This intersection
exists if and only if (2.7) holds for k = αk∗ where α ∈ (0, 1). This leads to the definition
of the indicative function Iα as follows:

Iα :=


1 if α ∈ (0, 1),

0 if α 6∈ (0, 1),

where α is computed as:

α = −q0

p0

1

k∗p + k∗δ
.

The indicative function Iα establishes the existence of an intersection between k∗ and T0

if and only if Iα = 1. Note that the stability crossing curve Ti for i ∈ N ∪ {0} may cross
at the origin of the parameters space. That situation is related to the possible roots on
the imaginary axis of the open-loop characteristic equation. Such a case must be treated
separately, and for that reason one defines the set Ωt as the set of all ω ∈ R+ ∪{0} where
Q(iω) = 0. Let R∗ ⊂ R2 denote the region where k∗ is located. Finally, using Remark 6,
one constructs the functions ∇ and ∇0 defined as:

∇0(k∗) := sgn
{
kp0k

∗
δ − k∗pkδ0

}
, ∇(k∗, ω) := (−1)d τπωe sgn

{
k∗pk

′
δ(ω)− k′p(ω)k∗δ

}
,

where k′p(ω) and k′δ(ω) stand for the derivatives of kp(ω) and kδ(ω) with respect to ω,
respectively. One has the following result:

Proposition 12 ([31, 28]-Stability index determination algorithm). Let G be a non even
function with degQ > degP , τ ∈ R+ be a fixed value and let k∗ := [k∗p, k

∗
δ ]
T ∈ R∗ ⊂ R2

such that k∗ 6∈ Ti, ∀i ∈ N∪{0}. For f(iω) := G−1(iω) assume that the following condition
holds:

−={f (iω)}+
1

τ
<{f ′ (iω)} 6= 0, ∀ω ∈ Ωs.

If Ωt = ∅, then, ∀k ∈ R∗ the number of roots η on the RHP of the complex plane of (2.5)
can be computed by:

η = η0 + Iα∇0 (k∗) + 2
∑
ω∈Ωs

∇(k∗, ω).

Furthermore, if Ωt 6= ∅, then ∀k ∈ R∗ the number of roots η̃ on the RHP of the complex



2.1. STABILITY INDEX ALGORITHM: Pδ CONTROLLER 27

plane of (2.5) is given by:

η̃ = η +
∑
ω∈Ωt

{
(1−sgn(ω))(∇0(k∗)+1)+2 sgn(ω)(∇(k∗,ω)+1)

2

}
.

Remark 7. It is noteworthy that although Proposition 12 is restricted to non even open-
loop systems and non neutral closed-loop systems, it can be easily extended using the ideas
introduced in Section 2.1.2 and Proposition 6, respectively.

2.1.4 Illustrative Examples

In order to illustrate the effectiveness of the proposed results, one considers several nu-
merical examples.

Example 5 ([31, 28]-Marginally stable fourth-order system). Consider a system with the
following transfer function:

G(s) =
0.038

s4 + 0.1276s3 + 9.3364s2 + 1.1484s+ 3.0276
,

subject to the P -δ controller C(s) = kp + kδe
−τs. The open-loop poles of the system

are located at s = −0.0638 ± 0.5765j and s = ±3j, which means that the system is
marginally stable. In order to illustrate the proposed results, let consider a fixed delay
τ = 5. According to Proposition 3, one has:

kp (ω) =
(
3.35789ω2 − 30.2211

)
ω cot(τω)− 26.3158ω4 + 245.695ω2 − 79.6737,

kδ (ω) = ω
(
30.2211 − 3.35789ω2

)
csc(τω).

Considering (2.14) along with Propositions 3 and 5, one obtains the stability crossing
curves depicted in Fig.2.4 (left). Now, as can be seen in figure 2.4 (right) with the pur-
pose to discriminate unstable regions avoiding unnecessary computations, one plots the
Tu−curve by applying Proposition 7. Next, in order to find the stability regions, one ap-
plies Proposition 12, leading to the result illustrated in Fig. 2.4 (right). To illustrate how
Proposition 12 is applied, let us consider three points k∗1, k∗2 and k∗3 on the parameters
space. The results are summarized in table 2.2.

Table 2.2: Stability Index Algorithm-Marginally Stable Fourth-Order System.

Point kp kδ Iα Ωt Ωs ∇, ω ∈ Ωt,Ωs η0 η
k∗1 400 200 0 {1.3278, 2.5451} {3} {1, 1},{−1} 4
k∗2 350 −25 0 {∅} {3} {0},{1} 0 2
k∗3 500 −200 0 {0.8395, 1.2150, 1.9358} {3} {1,−1, 1},{1} 4
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Figure 2.4: Marginally Stable Fourth-Order System.

Example 6 ([31, 28]-Neutral-type system). Consider a system with the following transfer
function:

G(s) =
s6 − 5s5 + 20s4 − 10s3 + 5s+ 1

s6 + s4 + 4s3 + 7s2 + 9s+ 1
.

One proposes a fixed delay τ = 0.5 for the stabilization of the closed-loop system using a P -
δ controller. It is clear that this system is of neutral type since degQ = degP . Therefore,
in order to characterize all possible stability crossing curves, one must consider the result
shown in Proposition 6 in addition to the Propositions 3 and 5. Notice that all the points
of the kp-kδ parameters plane which do not satisfy the condition proposed in Proposition
6 implies that the closed-loop system is unstable. Fig. 2.5 shows the application of this
result denoted as the neutral type condition.

Finally, in order to characterize each region bounded by the stability crossing curves,
one uses the stability analysis algorithm proposed in Proposition 12 for at least one point
in each region which does not satisfy the neutral type condition. Fig. 2.5 illustrate the
application of this proposition for three points k∗i , with i ∈ {1, 2, 3}. The results of each
analysis are summarized in table 2.3 and illustrated in Fig 2.5.

Table 2.3: Stability Index Algorithm: Neutral-Type System.

Point kp kδ Iα Ωt Ωs ∇0 ∇ η0 η

k̃∗1 2 2 1 {0.9002, 3.1862} −1 {−1,−1} 0

k̃∗2 2 0.5 1 {∅} {0.8357} −1 {−1} 5 2

k̃∗3 1.5 −1.5 0 {0.4982} {−1,−1} 3
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Figure 2.5: Algorithm Example - Neutral type system.

Example 7 ([31, 28]-Even-type system). Consider the following system presented in [52]:

G(s) =
1

s2 + 1
.

This system is an even-type system, these can be easily verified by substituting s = iω
in the transfer function shown above. Therefore, it must be analyzed by using the results
shown in section 2.1.1. One proposes a fixed delay τ = 1 for the stabilization of the
closed-loop system using a P -δ controller.
The construction of the stability crossing curves T0, Tp` and Ti is obtained using Proposi-
tions 5 and 4 and the crossing directions analysis is computed by the Propositions 9 and
11. Fig. 2.6 illustrates the behavior of the roots when k varies continuously from the
point A to the point F . Notice that the starting point A corresponds to the characteristic
equation of the open loop system, and consequently, at this point this equation has two
roots on the imaginary axis. The results of this analysis can be found in table 2.4.

Table 2.4: Stability Analysis: Even Function Example.

Type of crossing Position
Point through Ti i ` related to kδ k−direction η− η+

A left to right odd − 0
B left to right odd < 0 + 0 2
C right to left even − 2 0
D left to right even > 0 + 0 2
E right to left odd > 0 + 2 4
F right to left even > 0 − 4 2
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In order to study the stability of the closed-loop system along the kp-kδ parameters
plane, this type of analysis can be easily extended as shown in Fig. 2.6. Furthermore, one
studies three particular stability regions by analyzing the explicitly the behavior of these
regions as τ is varied from 1 to 3.5 as shown in Fig. 2.7. Bearing in mind Remark 1, all
the points inside this geometric shape stabilize the closed-loop system for any fixed value
τ in the interval [1, 3.5].

Figure 2.6: Stability Analysis - Even Function Example.

Figure 2.7: Stability Region Behavior Through the τ -Axis - Even Function Example.

Example 8 ([31, 28]-Unstable second-order system). In order to illustrate the case ana-
lyzed in Proposition 8, that is, the case where exists an infinite number of multiple crossing
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frequencies (for different gain parameters), let us consider the following second-order sys-
tem:

G(s) =
1

−s2 + s+ 1
. (2.15)

Now, since condition (2.12) is fulfilled, i.e.,

={f (iω)}
< {f ′ (iω)} =

1

2
> 0,

according to Proposition 8, one has that system (2.15) has an infinite but countable cross-
ing frequencies of multiplicity m ≥ 2, if one chooses τ = 2. Then, in order to illustrate

such a phenomenon, ne takes the linear path
−→
k shown in figure 2.8 (left). The rightmost

root-locus is depicted in figure 2.8 (right), where one can appreciate the multiplicity of the
crossing frequency. Finally, others points corresponding to a multiple crossing frequencies
are indicated by the “square points”.
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Figure 2.8: Marginally Stable Fourth-Order System.

2.2 σ-Instability Methodology: PI and PD inspired

Delay-Based Controllers

Consider the classical control scheme shown in Fig. 2.1, where the application of a delay-
based controller C(s, e−τs) is illustrated. Considering such scheme, one formulates the
problematics listed below:
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Problem 2. Find explicit conditions on the parameters (τ, kp, kδ) ∈ R+ × R2, such that
the PDδ controller(1.7):

Cδ(s) = kp + kδ
1− e−τs

τ
,

asymptotically stabilizes the closed-loop system.

Problem 3. Find explicit conditions on the parameters (τ, kp, ki) ∈ R+ × R2, such that
the PδI controller (1.8):

Ci(s) = kp + ki
e−τs

s
,

asymptotically stabilizes the closed-loop system.

2.2.1 σ-Instability: Main Remarks

In this section one presents the spirit of the σ instability methodology. Without any
loss of generality one considers both controllers (Cδ(s) and Ci(s)) as C(s, e−τs) with its
respective gains k ∈ R2 (kδ and ki). Consider the classical control scheme shown in Fig.
2.1. The characteristic equation of this closed-loop scheme rewrites as follows:

∆τ (s) = C(s, e−τs) +G−1(s) = 0. (2.16)

It is well known that, in order to achieve asymptotic stability, all the roots of (2.16) have
to remain in the LHP of the complex plane.

Now, let τ ∈ R+ and σ ∈ R+ ∪ {0} be fixed values, one introduces the following set:

T (σ) :=
{
k ∈ R2 |∆τ (σ + iω) = 0,∀ω ∈ Ω

}
,

with Ω ⊂ R+, which is the set of all ω values such that ∆τ (σ + iω) = 0 for a fixed pair
(τ, σ). Such a set of frequencies is characterized in Propositions 13 and 14 considering
the PDδ and PδI controller, respectively. Roughly speaking, the set T (σ) contains all
gain vectors k such that the characteristic equation of the closed-loop system has at least
one root on a vertical line in σ on the complex plane. In other words, Ω includes all the
frequencies for which the gains k ∈ R2 define some crossing points, that is, points located
in the complex plane on the line <{s} = σ.

With this notation, it is clear that all possible gain vectors k such that the system has
at least one root in the RHP (right-half plane) or in the imaginary axis of the complex
plane can be characterized by:

T̄ + :=
⋃

σ∈R+∪{0}

T (σ).

Therefore, all stabilizing controllers k are contained in the following set:

T̄ − := R2 \ T̄ +.
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It is worthy to notice that one focuses in a particular region of the parameters-space of
k. This process is explained below.

First of all, it is necessary to enhance the importance of the set T (0). This set contains
all possible gain vectors k such that the characteristic equation (2.16) has at least one
root on the imaginary axis. That is the set of all crossing points, in other words, T (0) is
nothing else that the so-called “stability crossing curves” (see, e.g. [52], for the definition).
Bear in mind the fact that any continuous variation of k such that k 6∈ T (0) implies that
no roots exchange through the imaginary axis can be achieved. It is easy to observe
how these stability crossing curves partition the parameters-space in regions in which any
choice of k implies that (2.16) has a finite number of roots on the RHP of the complex
plane.

Second, notice that if some element of T (σ) with σ > 0 is located inside one of this
regions implies that the characteristic equation (2.16) has at least one unstable root in the
RHP of the complex plane. Therefore, this can be labeled as an unstable region. Finally,
any region which is not unstable is a subset of T̄ − and can be labeled as a stability region.

2.2.2 PDδ Controller Design

Consider the control scheme shown in Fig. 2.1, using the PDδ controller shown in (1.7).
The corresponding control law to be applied can be described as:

u(t) = kpe(t) + kδ

(
e(t)− e(t− τ)

τ

)
.

Notice that the delayed action resembles the simplest approximation of a derivative given
by the Euler approximation (1.6) previously discussed in the Introduction. Roughly speak-
ing, for small values of τ this controller approximates to a classical PD controller as:

Cd(s) = kp + kδs ≈ Cδ(s).

In order to study its stability, the characteristic equation of the closed-loop system
can be computed by:

Cδ(s)G(s) + 1 = 0,

which straightforwardly lead us to:

∆δ(s) = kp + kδ

(
1− e−τs

τ

)
+G−1(s) = 0. (2.17)

The following result shown in this section works as a tool for describing the behavior of
the roots of this equation.

Proposition 13. Let τ ∈ R+ and σ ∈ R be fixed values. Then, the characteristic equation
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(2.17) has at least one root in s = σ + iω, iff:

kp =−< (σ,ω)+
(
e−τσcsc(τω)−cot(τω)

)
= (σ,ω) ,

kδ = −τeτσ csc(τω)= (σ, ω) .

with ω ∈ Ωδ where the set Ωδ is defined by:

Ωδ :=
{
ω ∈ R

∣∣∣ω 6= π

τ
n, P (σ + iω) 6= 0

}
,

where n ∈ Z. Furthermore, it has a single root in s = σ iff P (σ) 6= 0 and:

kδ =
τ

e−τσ − 1

(
kp +G−1(σ)

)
, for σ 6= 0, (2.20)

kp = −q0
p0
, kδ ∈ R, for σ = 0. (2.21)

Proof. Consider the characteristic equation (2.17) with s = σ + iω. Taking the real and
imaginary parts gives the following:

< [∆δ(σ + iω)] = 0, = [∆δ(σ + iω)] = 0,

which leads to the system of equations:

1

τ

[
τ 1− e−τσ cos(τω)

0 1− e−τσ sin(τω)

][
kp

kδ

]
= −

[
<(σ, ω)

=(σ, ω)

]
.

By solving this system for kp and kδ one gets directly (2.18). Now, considering s = σ 6= 0
and s = 0 the conditions above lead directly to (2.20) and (2.21), respectively. Finally, the
set Ωδ is constructed to avoid discontinuities in the solutions of the studied equations.

2.2.3 PδI Controller Design

Consider the control scheme shown in Fig. 2.1 using the PδI controller shown in (1.8).
The control law corresponding to this scheme can be described by:

u(t) = kpe(t) + ki

∫ t

0

e(v − τ)dv.

Notice that this is basically a classical PI controller in which the error signal is delayed
a finite constant amount of time τ before integrating it. As mentioned before, the main
reason for adding this delayed action to this controller is to study the behavior of the
closed-loop response as τ is varied. In other words, to have an extra degree of freedom in
the tuning of a PI-alike controller.
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In order to study its stability, the characteristic equation of the closed-loop system
rewrites as:

Ci(s)G(s) + 1 = 0,

which straightforwardly lead us to:

∆i(s) = s
(
kp +G−1(s)

)
+ kie

−τs. (2.22)

The following result summarized in this section works as tools for describing the behavior
of the roots of this equation.

Proposition 14. Let τ ∈ R+ and σ ∈ R be fixed values. Then, the characteristic equation
(2.22) has at least one root in s = σ + iω, iff:

kp = −<(σ,ω)+
ω sin(τω)− σ cos(τω)

σ sin(τω) + ω cos(τω)
=(σ,ω),

ki =
σ2 + ω2

σ sin(τω) + ω cos(τω)
=(σ, ω)eτσ,

with ω ∈ Ωi where the set Ωi is defined by:

Ωi := {ω ∈ R |ω cot(τω) + σ 6= 0, P (σ + iω) 6= 0} ,

where n ∈ Z. Furthermore, it has a single root in s = σ iff P (σ) 66= 0 and:

ki = −σ
(
kp +G−1(σ)

)
eτσ.

Proof. The proof follows similar lines that the proof of Proposition 13 and, for the sake
of brevity it is omitted.

Furthermore, one presents an additional proposition for computing the stabilizing
interval of the delay value given a stabilizing triplet (kp, ki, τ).

Proposition 15. Let (kp, ki, τ
∗) be a stabilizing triplet, then, the closed-loop system is

asymptotically stable for any delay value τ ∈ [τ ∗, τc), where:

τc = min {τ ∈ R |τ(ω∗) > 0, ω∗ ∈ Ωp} , (2.25)

in which τ(ω∗) is computed as:

τ(ω∗) =
1

ω∗

[
arg

{
kiP (iω∗)

iω∗(kpP (iω∗) +Q(iω∗))

}
+ (2n+ 1)π

]
, (2.26)

for n ∈ Z and where the set Ωp is defined as the set of all real roots of the following
equation:

|kiP (iω∗)|2 − ω∗2|kpP (iω∗) +Q(iω∗)|2 = 0. (2.27)
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Proof. By taking into account the fact that the closed-loop system is stable for τ = τ ∗

implies that for τ > τ ∗ sufficiently small all the roots of (2.22) will remain on the LHP
of the complex plane. Moreover, there exists a critical value τ such that (2.22) has at
least one root on the imaginary axis and hence, such a value induces the instability of the
closed-loop system if the delay value increases.

Now, notice that the characteristic equation (2.22) can be rewritten as:

∆τ (s) := s(kpP (s) +Q(s)) + kiP (s)e−τs.

As it can be seen in [50], there exists some value τ such that the quasi-polynomial ∆τ (s)
has at least one root on the imaginary axis at s = iω∗, if and only if, the following
condition: ∣∣∣∣ kiP (iω∗)

iω∗(kpP (iω∗) +Q(iω∗))

∣∣∣∣ = 1, (2.28)

holds for some value ω∗ ∈ R+. Moreover, the correspondent time-delay value can be
computed by (2.26). Furthermore, notice that condition (2.28) can be rewritten easily as
(2.27), which is a polynomial, implying that it has a finite number of solutions. Finally, by
defining Ωp as the set of all real roots of (2.27), the critical delay value can be computed
as in (2.25).

2.2.4 Illustrative Examples

In this section, one describes in detail how the methodology explained in Section 2.2.1
can be applied for two different examples of second-order systems using the PDδ and
PδI controllers, respectively. On one hand, one studies an open-loop unstable system
which suggests the application of a derivative action for its stabilization in closed-loop.
On the other hand, one shows how the addition of the delayed action to the PI controller
can inject damping to the closed-loop response. All graphical and simulation results pre-
sented in this section were derived by using the software “MatLab” in the programmable
environment“Simulink”.

Example 9. Unstable Second-Order System Consider the following transfer function:

G(s) =
1

s2 − 3s+ 5
, (2.29)

which two poles lie on s = 1.5 ± 1.65i. Since it has one root on the RHP of the complex
plane, it is an unstable system. Now, lets consider the application of a PD controller, the
characteristic equation of the closed-loop system can be computed as:

s2 + (kd− 3)s+ kp + 5 = 0.

By Hurwitz criterion, it is easy to observe that in order to achieve closed-loop stability
the application of a derivative action is mandatory so every coefficient has the same sign.
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This is the case of a simple PD controller with kp > −5 and kd > 3. To avoid such a
derivative action one proposes the use of the PDδ controller in the following lines.

Considering the open-loop transfer function (2.29) and the PDδ controller shown in
(1.7) the characteristic equation of the closed-loop system can be computed as:

∆δ(s) = s2 − 3s+ 5 + kp + kδ

(
1− e−τs

τ

)
= 0.

Using Proposition 13 with a fixed delay value τ = 0.04s one computes the stability crossing
curves (T (0)) as some curves from the set (σ) with σ > 0. These graphical results are
shown in Fig. 2.9 on the kp − kδ parameters-space. Recall that the stability crossing
curves partition the parameters-space in regions with a fixed number of unstable roots,
that implies that one of these regions could be a stability region with zero unstable roots.
As shown in Fig. 2.9 one uses the curves from the set T (σ) with σ > 0 for discriminating
the unstable region to finally find the stability region.

Finally, in order to test this result one chooses three different controllers, being c1 and
c2 stable and c3 unstable controllers as is depicted in Fig. 2.9. Some simulation results
using these controller parameters are shown in Fig. 2.9 by considering some unitary
step as input reference. Also in this figure, one shows the closed-loop response of a PD
controller using the same gains as the PDδ controller ((kp, kd) = (kp, kδ)). As expected,
these results corroborate the graphical results on figure 2.9.
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Example 10. Closed-loop response manipulation through the delay value Consider the
following open-loop transfer function:

G(s) =
1

s2 + 2s+ 3
, (2.30)

which poles has poles s = −1 ± 1.41i. In this stable open-loop system one is considering
the problem of a controller design such that the steady state error is equal to zero. This
can be easily achieved by a simple PI controller, however, as stated before one aims to
use the delayed action to manipulate the closed-loop response.

Considering the open loop transfer function (2.30) and the PIδ controller shown in
(1.8) the characteristic equation of the closed-loop system can be computed as:

∆δ(s) = s3 + 2s2 + (3 + kp)s+ kie
−τs = 0.

Following the same methodology explained in the last example using a fixed delay τ =
0.5s one finds a stability region as shown in Fig. 2.10. In a similar way, one tests its
reliance with three different controllers, c4 and c5 stable controllers and c5 a unstable
one. Considering again a unitary step as reference input one shows some simulation
results presented in Fig. 2.10 which corroborates this result in comparison to a simple PI
controller τ = 0. From this comparison, one can notice the damping added with controller
c5 relative to the controller c4 and also to the simple PI controller. At last, one shows
another way to tune the delayed action in the PδI controller. Consider the PδI gains
(kp, ki) = (5, 5) with τ = 0, the roots of the characteristic equation are s1,2 = −0.64±2.58i
and s3 = −0.7. Since this is a stable system, one considers Proposition 15 to compute
the stabilizing delay interval τ = (0, τc), obtaining τc = 2.15s. Some simulation results
depicting the continuous variation of the closed-loop response as τ is varied on this interval
are presented in Fig. 2.11. In this figure, one can notice how from τ = 0 to τ = 0.2τc one
is able to inject damping to the closed-loop response. Recall that this task is commonly
achieved by the use of a derivative action which one is avoiding. Also in this figure,
one shows the behavior of the closed-loop response as the other part of the interval is
considered, leading as expected to instability.

2.3 Concluding Remarks

In this chapter one studies three delay-based controllers (Pδ, PδI and PDδ controllers)
and its application to LTI systems. Two different crossing roots based methodologies
for computing stability regions on the parameters space are presented. A stability in-
dex computation algorithm based on computing crossing directions and the σ-instability
method (first developed in this research) based on computing known unstable conditions.
Illustrative examples on the application of these methods and also on the performance of
these delay-based controllers are addressed. In the next chapter, one studies the design
of a variety of control schemes for different applications making use of the these methods
and its basic notions.
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Chapter 3

Delay-Based Control Design:

Applications

Three different delay-based control schemes are presented. First, we show a bilateral
control scheme based on Pδ controllers applied in two different setups: a haptic-virtual
system and a haptic master-slave system. In a similar spirit to a teleoperated system these
are designed to synchronize two robotic devices or a real/physical one and a virtual one.
in order to create a feeling of virtual (or remote) interaction. Experimental results are
shown and discussed. Second, one studies the application of the PδI controller to a Buck
DC/DC converter. This is straightforwardly an output regulation problem. Numerical
results are depicted and interesting remarks concerning the role and impact of the time-
delay value are addressed. Third and lastly, one studies the rotatory inverted pendulum
better known as the Furuta pendulum by considering a time-delay in the control input.
Such a delay is studied as inherent to the control scheme application and/or as an extra
control parameter. Illustrative numerical results are presented.

In all studies found in this chapter one takes a look at the stability of the closed-loop
system and its performance. To this end, one derives an understanding of the location pf
the characteristic quasi-polynomial roots with respect to the controller’s parameters and
delays. All these analysis are developed In the same spirit of Chapter 2 by using crossing
roots theory.

3.1 Haptic Systems: Pδ Bilateral Control Scheme

In this section, one can find the experimental application of the Pδ controller to two
different mechanical applications. Particularly, one discusses some experimental results
on the use of haptic devices (see Fig. 3.7) in two different settings: an haptic-virtual
system and a master-slave teleoperation system. The design methodology used in both
cases is directly related to the ideas shown in Section 2.1 but applied to a bilateral control
scheme. Such a derivation is not shown in this section and for better understanding the
details regarding this particular delay-based control scheme one can do it in [27] and [32].

41
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In these studies one can find a careful analysis carried-out for tunning the parameters
of the Pδ controller in both scenarios, respectively. It is important to mention that
similar bilateral control strategies have been studied in detail in the literature, for haptic
devices applications (virtual and teleoperated) or teleoperation systems in general (see,
for instance, [5, 6]). In the scope of this section, one uses these experimental results
to illustrate the idea of using a delay-based controller instead of a derivative-based one.
Both control schemes are designed to create a bilateral tracking control system. These
kind of tasks are often realized by using a PD controller, avoiding the integral action. As
mentioned in the Introduction, one can imitate this derivative alike effect using delays, a
particular situation of this is the Pδ controller. First, one explains the main ideas behind
this control scheme. The dynamics of a haptic device as the one shown in Fig. 3.7 can
be modeled by considering a Lagrangian formulation [70], as follows:

M (θ) θ̈ + C
(
θ, θ̇
)
θ̇ +B = Fλ,

where M is the inertia matrix, C is the Coriolis matrix, B is a vector associated to the
effect of gravity, Fλ is the torque input vector and θ is the angular position vector. The
derived model is clearly a non-linear one. Inspired by the contributions of [70, 43], a few
assumptions can be taken into account in order to describe the dynamics of the system
as a decoupled LTI model. This is formed by the three mechanical admittances of each
joint in the following form:

P (s) :=
Θ(s)

Λ(s)
=

1

s(ms+ b)
,

where each mechanical admittance P (s) is described by the transfer function from each
torque input Λ(s) to its respectively angular position Θ(s) and depicts the behavior of
each mechanical joint.

3.1.1 Haptic Virtual System

As an experimental application of the P -δ controller, consider the haptic-virtual system
developed in [32]. This experimental setup, shown in Fig. 3.1, consists in a haptic device
working in a virtual environment with the main purpose of providing the human operator
a perfect telepresence on the virtual environment, and a full sense feedback of it. In order
to fulfill this objective, one uses a Pδ controller to achieve a kinematic correspondence
between the haptic and virtual devices, this last one simulated on the virtual environment.
The stability of the closed-loop system is studied using the methodology introduced in
Section 2.1. A fixed delay value τ = 0.1 is proposed for the controller design. The angular
position of the haptic and virtual devices are normalized with respect to the mechanical
stops of each joint and are defined as θh and θv, respectively. Fig. 3.2 shows the stability
region of the closed loop system. In order to observe the qualitative behaviour of the
system response for this particular joint, the system is tested for a fixed kp = 10 and three
particular values of the delay term gain, kδ = −1, kδ = 2.6 and kδ = 4, corresponding to
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Position 

Exogenous Forces 

Haptic 
Device/Controller 

Virtual 
Device/Controller 

Virtual Object Human 

Figure 3.1: Bilateral control scheme.

a stable point, a stable point near some stability crossing curve and an unstable point,
respectively. The results are illustrated in Fig. 3.2, where oscillations of greater amplitude
appear as k approaches the stability crossing curve.

Figure 3.2: Stability regions vs Experimental Behaviour for the Second Joint

The three joints system is tested by choosing the controller gains either in stable and
unstable regions (for further details see [32]). The system response is shown in Fig.3.3.
On Fig.3.3a one observes that choosing the controller gains in the stability region leads
to a stable response with a good bilateral position tracking between the haptic and the
virtual device. Fig.3.3b shows that choosing the controller gains in an unstable region
produces an unstable system response, thus no tracking between both devices is achieved.

Finally, a virtual wall was implemented in the X-Z plane applying a force Fy normal
to the X-Z plane in the increasing direction of the Y axis. The behavior of the wall is
modeled as a simple spring with a Hooke constant kh using the error between the position
of the final effector of the haptic device in the Y axis Yf , and a fixed value Yw, which is
the location of the virtual wall on the Y axis. This implementation is described by the
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Figure 3.3: Total System Response
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Figure 3.4: Total System Response Perceiving a Wall

following equation:

Fy(Yf ) =


0, if Yf > Yw,

Kh(Yw − Yf ), if Yf 5 Yw.
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In the implementation the correspondent torques perturbations Te for each joint produced
by the virtual environment are obtained by using the following equation:

T = JTF,

where T contains each correspondent Te for each joint, F = (0, Fy, 0)T represents the
forces vector applied by the virtual environment modeled as a virtual wall and J is the
jacobian matrix (see, for instance [69]), obtained directly from the direct kinematic model
studied by [70]. The results using kh = 1 and Yw = 0 are shown in Figs. 3.4a and 3.4b,
where it is easy to observe how the haptic device moves freely until second three where
the virtual wall restricts the movement along the Y axis producing the human operator
perception of the virtual wall.

3.1.2 Haptic Teleoperated System

In this case, the main goal of the proposed control scheme is to achieve a kinematic
correspondence between a master and a slave devices. As illustrated in Fig. 3.5, the
main idea is to maintain a perfect bilateral position tracking under the interaction of
the exogenous forces of the human and the remote environment on the master and the
slave device, respectively. The ideal result is to have a complete perception of the remote
environment to the human operator and a complete telepresence of the human operator on
the remote environment (see, for instance, [26]). The bilateral control scheme proposed

Position 

Exogenous Forces 

Master 
Device/Controller 

Slave 
Device/Controller 

Remote 
Environment 

Human 

Figure 3.5: Bilateral Control Scheme (Conceptual).

in this section is shown in Fig. 3.6, where τp is considered as the delay due to signal
processing, Λh and Λe are the exogenous torques related to the human operator and
the remote environment, respectively, PM and PS are the mechanical admittances of the
master and the slave device, respectively; furthermore, a similar notation is used for the
controllers CM and CS and the angular positions ΘM and ΘS. This scheme is a variation of
the one presented in [43] for haptic-virtual systems, however here, one has considered the
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time delays due to signal processing and, instead of using a P-D controller, a Pδ controller
is proposed. In order to illustrate how the proposed controller works, one considers the
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Figure 3.6: Bilateral Control Scheme.

experimental setup consisting in two Phantom Omni haptic devices as the one depicted in
Fig.3.7 (in a master/slave configuration), implemented by means of the Matlab-Simulink
toolkit Phansim. It is also worth mentioning that the angular positions were normalized
with respect to the mechanical stops of each joint. To this end, in this experimental setup
the delay is estimated to be τp = 0.001 seconds. In all following examples, one proposes
a fixed delay value τd = 0.1 seconds in the design of the Pδ controller. Now, using the
stability analysis described in Chapter 2, one choses the controller’s gains K = [kp, kδ]
K = [20, 2]T , K = [20, 1]T and K = [10, 2]T for the joint one, two and three, respectively.
This process is documented in detail in [32].

Furthermore, one proposes an experimental test perceiving a plastic sphere as it is
shown in figure 3.7. This consists in manipulating the master device in order to “feel”
the plastic sphere in a remote environment, where the slave device is located (it is worth
to mention, that it is not necessary that the master and slave are located “close” to
each-other. However, for illustrative purposes only one has chosen the proposed physical
configuration for the visualization of the experiment). The experimental results are illus-
trated in figures 3.8a, 3.8b and 3.9. Furthermore, Fig. 3.9 shows how the control scheme
implemented drives the trajectory of the master device which is also guided by the human
operator, following the path created by the human operator but restricted by the plastic
sphere located in the remote environment, this creates the “feel” sensed by the human
operator.
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Figure 3.7: Experimental setup.
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Figure 3.8: Total System Response Perceiving a Sphere

−60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

−80

−60

−40

−20

0

20

40

Y (mm)

 

X (mm)

 

Z
(m

m
)

Master
Slave

Figure 3.9: Trajectory of the System Under the Perception of a Sphere



3.2. BUCK DC/DC CONVERTER: Pδ AND PδI CONTROLLERS 49

3.2 Buck DC/DC Converter: Pδ and PδI Controllers

This section studies the application of two alternative PID inspired delay-based controller
in a classical feedback control scheme to a switching power electronics device. Particularly,
such a device being a standard dc/dc buck converter and as feedback compensator the
Pδ and PIδ controllers. On one hand, This consisting in a variation of the well-known
PI controller by the addition of a delay in the integral process. The main idea is to study
the potential of the delay nature for being an extra degree of freedom in the controllers
tunning for closed-loop dynamics manipulation. The PδI controller (1.8) is defined as:

C(s) := kp + ki
e−τs

s
,

where k := [kp, ki]
T are the controller gains and τ is a fixed time-delay. The control law

corresponding to this scheme is described by:

ũ(t) = kpe(t) + ki

∫ t

0

e(v − τ)dv,

where e(t) is an error signal. In other words, a PI controller in which the error signal is
delayed a finite constant amount of time τ before integrating it.

3.2.1 DC/DC Buck Converter Dynamics

Figure 3.10 depicts the classical topology of a buck dc/dc converter, where vs and vo are the
supply and output voltages, respectively. This configuration contains four basic elements:
inductor (L), capacitor (C), diode (D) and a controlled switch (Q). A resistive load R
is assumed. Considering a fixed DC voltage supply vs, the main task of this topology is
to adjust the output voltage vo through the switching pattern applied to D . To such
an end, probably the most widely used switching technique is the so-called PWM (Pulse-
Width Modulation). This consists in creating a switching pattern at a fixed frequency
f and being T = 1

f
= ton + toff the full pattern time period, the switch has activated

and non-activated periods ton and toff , respectively. Furthermore, the rate between the
activation and the full pattern periods U := ton

T
(better known as ”duty cycle”) is the

crucial measure to handle in order to manipulate this switching power device. In the
following lines one describes briefly the dynamical model derivation of this circuit. For a
more detailed explanation of such ideas one encourages the reader to further investigate
the didactic material found in [72]. Particularly, the continuous-conduction mode (CCM).

This process consists in the following steps:

• Obtain the equivalent circuit dynamics of the activated (Q: ON, µ = 1) and non-
activated (Q: OFF, µ = 0) states using Kirchhoff’s laws, separately.

• Integrate both in a single model through the variable µ, this is called switched model
(it corresponds to Q: ON, if µ = 1, and to Q: OFF, if µ = 0).

• Assume that all variables have a constant (nominal) value and a fluctuating part
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(”small gain” analysis, see for instance, [62]), i.e.:

vs(t) = Vs + ṽs(t),

vo(t) = Vo + ṽo(t),

io(t) = io + ĩo(t),

u(t) = U + ũ(t).

• Consequently, by considering a PWM switching pattern, a so-called averaged state-
space model is derived as:

ẋ1 = −x2

L
+
Vs + ṽs
L

u,

ẋ2 = −x1

C
− x2

RC
.

These averaged states [x1, x2] := [iL, vo] are defined as:

x1 :=
1

T

∫ t

t−T
iL(h)dh, and x2 :=

1

T

∫ t

t−T
vo(h)dh,

and a new control variable:

u :=
1

T

∫ t

t−T
µ(h)dh

, is defined and it represents the duty cycle (Integrates the switch rate state µ over
the commutation period T ).

• The relations between the nominal values (Vs, Vo, Io, U) are derived from (3.5) by

−+vs

L

C

−

+

voD

iL io

Load

Buck dc/dc Converter

Q

Figure 3.10: Topology of the Buck DC/DC Converter [72].
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setting the derivatives equal to zero leading to:

IL =
Vo
R
, Vo = UVs. (3.6)

• Finally, taking a linear approximation from (3.5) around the nominal conditions,
two transfer functions with respect to the variations in the output voltage ṽo are
defined as:

G1(s) :=
ṽo(s)

ũ(s)
= Vs

1
LC

s2 + 1
RC
s+ 1

LC

, G2(s) :=
ṽo(s)

ṽs(s)
= U

1
LC

s2 + 1
RC
s+ 1

LC

. (3.7)

Remark 8. It is worth mentioning that this averaged model can describe the nature of
the system only if the commutation frequency f is sufficiently large. Also, notice that
the transfer functions presented in (3.7) describe the dynamical behavior of the transient
response of the circuit in relation with nominal conditions. That is, one needs to include
in the control scheme design the nominal conditions presented in (3.6). For a desired
nominal condition Vo, the control scheme has the task of minimizing the fluctuating part
ṽ− o(t)→ 0. Directly, considering a classical feedback control scheme, the error signal is
defined as:

e(t) := 0− ṽo(t) = Vo − vo(t).

In the following sections one develops two different stability analysis for delay-based
controllers: Pδ and PδI controllers. Numerical results are addressed to illustrate the
proposed methods, the parameters considered in such results are depicted in Tab. 3.1.

Table 3.1: Parameters of the System

Symbol Value Unit

R 3 Ω
L 180× 10−5 H
C 40× 10−6 F
Vs 40 V
f 20× 103 Hz

3.2.2 PδI: σ-Instability

Consider the before stated dc/dc buck converter dynamics (3.7) and the PIδ controller
(1.8) shown in the beginning of this section. One aims to study the systems stability
through the closed-loop transfer function:

T (s) =
C(s)G1(s)

C(s)G1(s) + 1
.
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Particularly, the task of computing stability conditions for the gains pair (kp, ki) consid-
ering a fixed delay-value τ . Equivalently, such that the characteristic equation of the
closed-loop system computed as:

C(s)G1(s) + 1 = 0,

has all of its roots on the LHP of the complex plane (see, [49]. This equation rewrites
directly as:

∆(s) :=
LC

Vs
s3 +

L

VsR
s2 +

(
1

Vs
+ kp

)
s+ kie

−τs = 0.

In order to simplify the analysis, from now on consider the following notation:

a :=
LC

Vs
, b :=

L

RVs
, c :=

1

Vs
.

Finally, one obtains the characteristic quasi-polynomial:

∆(s) = as3 + bs2 + (c+ kp) s+ kie
−τs = 0. (3.8)

The following part of this section is dedicated to the deep study of the location of
the roots of this equation. Before diving into full discussion, first consider the following
notation. Let τ ∈ R+ and σ ∈ R+ ∪ {0} be fixed values, one introduces the following set:

T (σ) :=
{
k ∈ R2 |∆(σ + iω) = 0,∀ω ∈ Ω

}
,

with Ω ⊂ R+, some appropriate set of frequencies characterized in Proposition 14.
Roughly speaking, this set contains all gain vectors k := [kp, ki]

T such that the char-
acteristic equation of the closed-loop system (3.8) has at least one root on a vertical line
in σ on the complex plane. In other words, Ω includes all the frequencies for which the
gains k ∈ R2 define some σ-crossing points, that is, points located in the complex plane
on the line <{s} = σ. Using this notation, it is clear that all possible gain vectors k such
that the system has at least one root in the RHP or on the imaginary axis of the complex
plane can be characterized by:

T̄ + :=
⋃

σ∈R+∪{0}

T (σ).

Therefore, all stabilizing controllers k are contained in the following set:

T̄ − := R2 \ T̄ +.

Considering this notation, it is mandatory to enhance the importance of the set T (0).
This set contains all possible gain vectors k such that the characteristic equation (3.8)
has at least one root on the imaginary axis. That is, the set of all crossing points, in
other words, T (0) is nothing else that the so-called “stability crossing curves”. Bear in
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mind the fact that any continuous variation of k such that k 6∈ T (0) implies that no roots
exchange through the imaginary axis can be achieved. It is easy to observe how these
stability crossing curves partition the parameters-space in regions in which any choice
of k implies that (3.8) has a finite number of roots on the RHP of the complex plane.
Furthermore, notice that if some element of T (σ) with σ > 0 is located inside one of this
regions implies that the characteristic equation (3.8) has at least one unstable root in the
RHP of the complex plane. Therefore, this can be labeled as an unstable region. Finally,
any region which is not unstable is a subset of T − and can be labeled as a stability region.

The following results summarized in this section work as tools for describing the be-
havior of the roots of the characteristic equation of the closed-loop system. As mentioned
above, the first result presented in this section characterize the pairs (kp, ki) such that the
characteristic equation of the closed-loop system (3.8) has at least one root on a desired
vertical line (<{s} = σ) of the complex plane. This is useful for two reasons, first, to
construct an approximation of the set T̃ − by discriminating the regions of the parameters
space partitioned by T (0) with some elements of the set T̃ +. Second, assuming that one
found an stability region, to develop a tracking of the rightmost root of the characteristic
equation, as is shown in detail in Section 3.2.3.

Proposition 16. Let τ ∈ R+ and σ ∈ R be fixed values. Then, the characteristic equation
(3.8) has at least one root in s = σ + iω, iff:

kp = −<(σ,ω)+
ω sin(τω)− σ cos(τω)

σ sin(τω) + ω cos(τω)
=(σ,ω),

ki =
σ2 + ω2

σ sin(τω) + ω cos(τω)
=(σ, ω)eτσ,

where the functions < and = stands for the real and imaginary part of G−1
1 (σ + iω):

<
{
G−1

1 (σ + iω)
}

= a(σ2 − ω2) + bσ + c,

=
{
G−1

1 (σ + iω)
}

= 2aσω + bω,

with ω ∈ Ωi where the set Ωi is defined by:

Ωi := {ω ∈ R |ω cot(τω) + σ 6= 0} ,

where n ∈ Z. Furthermore, it has a single root in s = σ iff P (σ) 66= 0 and:

ki = −σ
(
kp +G−1

1 (σ)
)
eτσ.

Furthermore, one presents an additional proposition for computing the stabilizing
interval of the delay value given a stabilizing triplet (kp, ki, τ).

Proposition 17. Let (kp, ki, τ
∗) be a stabilizing triplet, then, the closed-loop system is
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asymptotically stable for any delay value τ ∈ [τ ∗, τc), where:

τc = min {τ ∈ R |τ(ω∗) > 0, ω∗ ∈ Ωp} ,

in which τ(ω∗) is computed as:

τ(ω∗) =
1

ω∗

[
arg

{
ki

iω∗(kp +G−1
1 (iω∗))

}
+(2n+1)π

]
,

for n ∈ Z and where the set Ωp is defined as the set of all real roots of the following
equation:

|ki|2 − ω∗
2|kp +G−1

1 (iω∗)|2 = 0.

3.2.3 PδI: Numerical Results

All results of this section were obtained by means of the “SimPowerSystems” toolbox
in the “Simulink” environment of the software “Matlab”. The parameters used in the
simulation are summarized in Table 3.1. The tests presented in this section are designed
to regulate the output voltage vo(t) to a nominal value of Vo := 20V . Recall that the
control scheme has the task to regulate the variations of the output voltage ṽo(t) to zero in
order to satisfy the following: vo(t)→ Vo. The control law proposed for the achievement
of this objectives is given by:

u(t) = U + ũ(t),

with:

ũ(t) = kpe(t) + ki

∫ t

0

e(v − τ)dv,

where the error signal is defined as:

e(t) = 0− ṽo(t) = Vo − vo(t),

and the nominal value U is obtained directly from (3.6).

Consider a fixed time delay τ = 1.6 × 10−3 in the P − δI controller shown in (1.8)
along with the parameters shown in Fig. 3.1. In order to find the set of gains (kp, ki)
that guaranties the stability of th closed-loop system one partially computes the set T̃ −
described in Section 2.1.1. First, using Proposition 16 one computes the sets T (0), which
as mentioned before partition the parameters space in regions with a constant number
of roots of the characteristic equation (3.8) on the right-half plane of the complex plane.
Second, using this proposition, one also computes some of the sets σ with σ > 0, if a
curve of these sets crosses any partitioned region indicates that any choice of parameters
inside this implies that the characteristic equation has at least a root in the right-half
plane of the complex plane, and therefore, is an unstable region. As can be seen from
Fog. 3.11, using this criteria one is able to discriminate the unstable region and finally
find a stability region for this fixed delay. An expanded view of this stability region is
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shown at the right side of in Fig. 3.11.

Figure 3.11: Stability Analysis in the (kp, ki) Parameters Space

Now, from Fig. 3.11 one chooses the gains pair k∗ = (kp, ki) = (10, 5), a stabilizing
controller for τ = 1.6× 10−3. Using Proposition 17 one computes the critical delay value
τc = 3.1494, which implies that the closed-loop system is stable for any delay value in
the interval (τ, τc). Furthermore, using Proposition 16 one develops what is known as the
σ stability analysis. Using this proposition one computes some curves of the sets T (σ)
with σ < 0, particularly with σ = −1 and σ = −2, this results are shown in Fig. 3.12a.
Notice that here one enhances three different regions R1, R2 and R3. Consider region R2

Since this region is bounded by the curves obtained from the sets T (−1) and T (−2), this
indicates that a variation inside this region implies that no root is crossing through the
vertical lines <{s} = −1 and <{s} = −2. Then, the rightmost root is contained in this
band and therefore, the maximum exponential decay related to σ is bounded for values
of σ ∈ (−2,−1). A similar conclusion can be stated for R1 with σ ∈ (−1, 0) and for R3

with σ ∈ (−2,−3).

Finally, using the controllers parameters described above k∗ = (10, 5) and τ = 1.6 ×
10−3 one tests the closed-loop control scheme. This result are shown in Fig. 3.12b, in
which one depicts a comparison between a normal PI controller (τ = 0) and the delayed
control scheme proposed. For this particular set-up it is of interest enhance how the
closed-loop response can be manipulated by adding this delayed action. Both responses
regulate to 20V as expected, however, the addition of the time delay to the control scheme
allow us to reduce the ripple of the output of the system.
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(a) σ Stability Analysis in the (kp, ki) Parame-
ters Space
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(b) Closed-Loop Response with τ = 0 and τ =
1.6× 10−3.

Figure 3.12: Analysis and Closed-Loop Response

3.2.4 Pδ: Crossing Roots Analysis

One is interested in finding the stability regions in the (kp, kδ) parameters space consid-
ering a fixed delay-value τ . To this end, consider the open-loop transfer function G1(s)
(3.7), along with the Pδ controller:

C(s) = kp + kδe
−τs,

leading to the closed-loop characteristic equation:

∆(s) :=
LC

Vs
s2 +

L

VsR
s+

1

Vs
+ kp + kδe

−τs = 0.

In order to simplify the analysis, in the remaining part of this section one adopt the
following notation:

a :=
LC

Vs
, b :=

L

RVs
, c :=

1

Vs
.

In this way, one can rewrite the characteristic equation as:

∆(s) = as2 + bs+ c+ kp + kδe
−τs = 0. (3.13)

First, one analyzes the stability of the closed-loop system considering any possible
fixed delay value τ ∈ R+, this particular result is shown as follows:

Proposition 18. Let a, b, c ∈ R+, then, the buck dc/dc converter is asymptotically sta-
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ble independent of the delay value τ ∈ R+, if the controller gains satisfy the following
conditions:

k2
δ <

b2

4a2

(
4akp + 4ac− b2

)
,

kδ > −kp − c,

kp >
b2

4a
− c.

Proof. Consider the characteristic equation of the closed-loop system (3.13) with s = jω,
then:

(−aω2 + c+ kp + kδ cos(τω)) + j(bω − kδ sin(τω)) = 0.

Now, (3.13) has at least one root on the imaginary axis, if and only if, there exists
some ω ∈ R+ ∪ {0} such that the real and imaginary part of the above equation are
simultaneously equal to zero, i.e.,

kp + kδ cos(τω)− aω2 + c = 0,

bω − kδ sin(τω) = 0.

Then, equations (3.17) and (3.18) lead directly to the following expressions:

kδ cos(τω) = −kp + aω2 − c,
kδ sin(τω) = bω,

Using the fact that sin2(τω) + cos2(τω) = 1 provides the following equation:

a2ω̃2 + (b2 − 2a(c+ kp))ω̃ + (c+ kp)
2 − k2

δ = 0,

where ω̃ := ω2. It is clear that there is no real solution of ω if ω̃ ∈ Ω̃, where:

Ω̃ := R− ∪ C \ R.

First, observe that ω̃ ∈ C \ R, if and only if, the following condition holds:

(b2 − 2a(c+ kp))
2 − 4a2((c+ kp)

2 − k2
δ ) < 0, (3.19)

which is nothing else than condition (3.14). Second, notice that ω̃ ∈ R−, if and only if,
(3.19) does not hold, and the following conditions hold simultaneously:

b2 − 2a(c+ kp) > 0, (c+ kp)
2 − k2

δ > 0. (3.20)

Now, since the roots of ∆(s) are continuous with respect to its parameters variations the
roots of ∆(s) cross from the LHP to the RHP (or from the RHP to the LHP) through the
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imaginary axis, if and only if, there exists some ω ∈ R. Therefore, (3.19) or (3.20) implies
that each root of the characteristic equation (3.13) remains in an specific semi-plane of the
complex-plane independently of the delay value τ , respectively. In this vein, analyzing the
delay-free scenario, i.e., taking τ = 0 in (3.13) leads to a simple second-order polynomial,
which is a Hurwitz polynomial, if and only if, (3.15) holds.

Finally, since for the asymptotic stability (3.20) and (3.15) cannot be satisfied simulta-
neously, one concludes that the closed-loop system will be asymptotically stable, if (3.14)
and (3.15) are satisfied. Furthermore, the extra condition (3.16) is addressed in order to
obtain a real solution for kδ in the quadratic inequality (3.14).

The purpose of this proposition is to give stability conditions independent of the
time delay value. This gives a flexibility for choosing the delay value according to the
performance required in its application. Also, to have an auxiliary degree of tunning
for a further robustness analysis. Furthermore, having selected this parameter is highly
recommended to analyze the stability of the closed-loop system for the desired fixed value,
this analysis is also presented and is shown in detail in the following lines.

Now, in order to perform a stability analysis for a specific delay value in the controller
design, one first needs to construct the stability crossing boundaries. Then, it is useful to
characterize the behavior of the roots movement as a parameter variation crosses some of
these boundaries. This section focuses on analyzing such a behavior.

Proposition 19. Let τ ∈ R+ be a fixed value and σ, ω ∈ R. Then, ∆(s) has a root at
s = σ + jω, if and only if the controller gains k(σ, ω) := [kp, kδ]

T , are given as:{
kp(σ, ω) = a(ω2 − σ)− (2aσ + b)ω cot(τω)− bσ − c,
kδ(σ, ω) = (2aσ + b)ωeτσ csc(τω), if ω 6= 0,

.

kδ = eτσ
[
−kp −

(
aσ2 + bσ + c

)]
, if ω = 0.

Proof. The proof follows straightforwardly by setting s = σ + jω in (3.13), and solving
with respect to kp and kδ.

The stability crossing curves are characterized in the following result.

Proposition 20. Let τ ∈ R+ be a fixed delay value and Ω := ∪̀Ω`∪{0} for ` ∈ N,

where the subsets Ω` are defined as:

Ω` :=
{
ω ∈ R+

∣∣ω ∈ (π
τ
(`− 1), π

τ
`
)}

.

Then, ω ∈ Ω \ {0} is a crossing frequency if and only if k(ω) := [kp(ω), kδ(ω)]T , where:

kp(ω) =aω2 − c− bω cot(τω),

kδ(ω) =bω csc(τω),
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defines a crossing point k(ω) ∈ T . Moreover, the line:

kδ = −kp − c,

defines a stability crossing curve at ω = 0.

Proof. The proof follows by setting σ = 0 in Proposition 19.

Given all stability crossing points k(ω) and the frequency crossing set Ω, one defines
each stability crossing curve through its continuity as follows:

T0 :=
{
k ∈ R2 |kδ = −kp − c

}
,

T` :=
{
k(ω) ∈ R2 |ω ∈ Ω` for ` ∈ N

}
.

Finally, one describes the set T as:

T = ∪̀ T`, ` ∈ N ∪ {0}.

It is clear that if kδ(ω) 6= 0 for ω ∈ Ω` and ` ∈ N, then the stability crossing curves
T` does not crosses the kp−axis. Furthermore, the only curve that crosses the kp−axis,
precisely at kp = 0 is T0, which is the line defined in (3.21). Now, notice that since the
physical parameters L, C and R are positive, then a, b, c ∈ R+. Now, observing the sign
of kδ(ω), one can conclude that a stability crossing curve T` with ` even or ` odd is located
above or below the kp−axis, respectively. Finally, bearing in mind the above facts, it is
useful to introduce the following sets:

B` :=


∣∣∣k̃δ < kδ; ∀k ∈ Ti for ` ∈ 2N

k̃ ∈ R2
∣∣∣k̃δ > kδ; ∀k ∈ T` for ` ∈ 2N + 1∣∣∣k̃δ < −k̃p − c for ` = 0

.

Hence, the sets B` are the collection of all points below and above the curves T` for ` odd
and ` even, respectively, and the set B0 is the set of all points below the stability crossing
curve T0. Finally, one has the following proposition:

Proposition 21. Given a fixed delay τ ∈ R+, there always exists an open connected
stability region H defined by:

H :=
⋂
`∈N

B`
⋂
B0.

Furthermore, H is unbounded.

Proof. Consider the characteristic equation (3.13). Then, setting kδ = 0 leads to the
following polynomial:

as2 + bs+ c+ kp = 0.
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Thus, clearly the roots of this polynomial will be located in the LHP of the complex plane,
if and only if kp > −c. In other words, if k ∈ L, where

L := {k ∈ R2
∣∣ kδ = 0 and kp > −c},

then the closed-loop system will be asymptotically stable. Now, from the definition of the
set H, it is clear to see that L ⊂ H. Hence, from the continuity of the roots of ∆ with
respect to its parameters (kp, kδ τ), and since L is unbounded, the latter inclusion implies
that H is an open, connected and unbounded stability set.

In order to compute a stability index which is the number of roots in the RHP for a
given parametrical region it is of interest to determine the roots tendency as the vector k
deviates from the curve T . The following results are the main tools applied in this section
to achieve such a task.

Proposition 22. A pair of roots of the characteristic equation (3.13) moves from the
LHP to the RHP as k crosses a stability crossing curve k(ω) with ω 6= 0 in the increasing
direction of kχ for χ ∈ {p, δ} if:

Cχ , b(τω cot(τω)− 1) cos(ηχτω) + ηχ(bτ + 2a)ω sin(τω) > 0,

where the indicative function ηχ is defined as:

ηχ :=

{
0, if χ = p,

1, if χ = δ.

Furthermore, the crossing is from the RHP to the LHP if the inequality is reversed.

Proof. Let s ∈ C, be a solution of (3.13), i.e.,

∆ (s; kp, kδ, τ) = 0.

Now, according to the Implicit Function Theorem (see, for instance, [24]), one knows that:

ds

dkp
= −

∂∆
∂kp

∂∆
∂s

,
ds

dkδ
= −

∂∆
∂kδ
∂∆
∂s

,

where:
∂∆

∂s
= 2as+ b− τkδe−τs,

∂∆

∂kp
= 1,

∂∆

∂kδ
= e−τs.

In order to characterize the tendency of the roots at the imaginary axis, one considers
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s = jω. Then. considering the kp−direction, one has:

ds

dkp
=− 1

τas2 + (bτ + 2a)s+ τ(c+ kp) + b
,

⇒ R
{[

ds

dkp

]−1
}

= τaω2 − τ(c+ kp(ω))− b,

⇒ sgn

(
R
{
ds

dkp

})
= sgn(b(τω cot(τω)− 1)),

Notice that this latter expression is nothing else than Cp. Finally, similar steps can be
applied to derive Cδ.

Observe that Proposition 9 does not give any information about the crossing when
ω = 0. The following result fills this gap.

Proposition 23. Given a fixed delay τ ∈ R+. Then, one root of (3.13) crosses from the
LHP to the RHP of the complex plane through the origin as k crosses T0 from left to right
if the intersection of k and T0 is located at the left of the point k0 ∈ T0, defined by:

k0 := [kp0 , kδ0 ]
T =

1

τ
[−τb− c, b]T .

Furthermore, the crossing of the root is from the RHP to the LHP if the intersection is
located at the right of k0.

Proof. The proof follows the same ideas used in proof of Proposition 22 setting s = 0.
Let s = 0 and define

S(kδ) := <
[
ds
dkp

∣∣∣
s=0

]
≡ <

[
ds
dkδ

∣∣∣
s=0

]
= 1

b−τkδ
.

Thus, as k crosses in any direction from left to right of T0, one root of (3.13) crosses from
the LHP to the RHP of the complex plane through the origin if S(kδ) > 0, which implies
that kδ > kδ0 . Furthermore, the crossing is from the RHP to the LHP if S(kδ) < 0,
equivalent to kδ > kδ0 . Finally, by simple algebraic manipulations, one can see that the
condition kδ > kδ0 implies that kp < kp0 , as stated in Proposition 23.

3.2.5 Pδ : σ-Stability and Fragility

In this section one proposes two auxiliary results to deal with the problems of σ-stability
and fragility of a given controller. These results will be useful in the design of a controller
that satisfies a given performance (exponential decay rate) as well as some robustness
against parametrical uncertainties.

To this end, let us first state the σ-stability problem: Let σ ∈ R−, the σ-stability
problem can be described as the task of determining a controller k such that the real part
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of the rightmost roots of the characteristic equation (3.13) is located at the left of σ. Let
Tσ denote the set of all k such that (3.13) has at least one root on the vertical line of the
complex plane defined as Lσ := σ + jω for all ω ∈ R. This vertical line is defined as the
σ-axis. In order to introduce similar results to those presented in Section 2.1.1 one has
the following:

Corollary 1. Let ω ∈ Ω, and let τ ∈ R+, σ ∈ R− be fixed values. Then, the set Tσ can
be computed as:

Tσ = Tσ ∪ Tσ,0,
with

Tσ,0 =
{
k ∈ R2 |k = k(σ, 0)

}
,

Tσ =
{
k ∈ R2 |k = k(σ, ω)

}
.

Consider now the fragility problem, which consists of computing the maximum con-
troller parameters deviation d of a given stabilizing controller k̄ := [k̄p, k̄δ]

T , such that
the closed-loop system remains stable, as long as the controller parameters k satisfy the
inequality: √

(kp − k̄p)2 + (kδ − k̄δ)2 < d.

In order to address this problem, let k(ω) = [kp(ω), kδ(ω)]T as given in Proposition 20.
Bearing in mind this notation and let us introduce the function ξ : R+ → R+ defined as:

ξ(ω) :=
√

(kp(ω)− k̄p)2 + (kδ(ω)− k̄δ)2, (3.24)

one introduces the following proposition.

Proposition 24. Let k̄ be a stabilizing controller. Then, the maximum parameter devi-
ation d of k̄, such that the closed-loop system remains stable, is given by:

d := min

{
d̃,

1√
2

∣∣k̄p + k̄δ + c
∣∣} ,

with d̃ defined as:
d̃ := min

ω∈Ωf
{ξ(ω)},

where Ωf denote the set of all roots of f(ω):

f(ω) :=

〈
k(ω)− k̄, d

dω
k(ω)

〉
. (3.25)

Proof. By assumption k̄ is located inside some stability region delimited by some appro-
priate stability crossing curves, thus, the closed-loop system is unstable if the controller
k̄ has a parameter deviation such that it crosses for at least one of its boundaries. There-
fore, the goal consists in computing the minimal distances between k̄ and the different
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boundaries of the stability region. In order to compute the minimal distance between a
point k̄ and the stability crossing curves with ω 6= 0, one needs to identify the points
k(ω) at which the tangent vectors to the curve are orthogonal to k(ω) − k̄. In other
words, to find points at which ω is a root of (3.25). Observe that the boundaries of the
stability crossing curve related to ω = 0 are described by the line (3.21). Thus, in order
to compute the minimal distance to this line, substitute (3.21) in (3.24), which leads to

ξ(0) =

√
(kp − k̄p)2 +

(
kp +

q0

p0

+ k̄δ

)2

.

Hence, the gain kp at which ξ(0) attains its minimum, is given by the solution of the
following equation:

dξ2(0)

dkp
= 4kp + 2

(
k̄p − k̄δ +

q0

p0

)
= 0.

Then, straightforward computations reveals that this value is given by 1√
2

∣∣k̄p + k̄δ + c
∣∣,

which concludes the proof.

3.2.6 Pδ: Numerical Results

All results of this section were obtained by means of the “SimPowerSystems” toolbox
in the “Simulink” environment of the software “Matlab”. The parameters used in the
simulation are summarized in Table 3.1. The tests presented in this section are designed
to regulate the output voltage vo(t) to a nominal value of Vo := 20. Recall that the control
scheme has the task to regulate the variations of the output voltage ṽo(t) to zero in order
to satisfy the following: vo(t)→ Vo. The control law proposed for the achievement of this
objectives is given by:

u(t) = U + ũ(t),

with:
ũ(t) := kpe(t) + kδe(t− τ),

where the error signal is defined as:

e(t) := 0− ṽo(t) = Vo − vo(t),

and the nominal value U can be obtained directly from (3.6).
Consider the controller’s delay value τ = 5× 10−5s for the P − δ controller (9) along

with the parameters given in Table 3.1. Figure 3.13a, first depicts the delay-independent
stability region obtained directly from Proposition 18. Second, it illustrates the stability
region for the given fixed value τ obtained by means of Proposition 21 and computed by
applying Proposition 20.

Making use of these results, the P − δ controller is set as k = [50, 1]T . Three different
values of τ are proposed in order to verify the independent stability condition. The results
of the regulation of vo(t) for this test are depicted in Fig. 3.13b.
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(a) Stability Region for τ = 5× 10−5s. (b) Closed-Loop System Response.

Figure 3.13: Stability Analysis

In order to show how the stability region for the fixed value τ = 5× 10−5 behaves, a
large view of this region is depicted in Fig. 3.14a.

In the following, let us consider the stability index η (number of roots in the RHP) for
different regions delimited by the stability crossing boundaries. To this end, Fig. 3.14b
presents the results of applying Propositions 22 and 23, where the colors “red”, “green”,
“blue” and “black” stands for Cp > 0, Cδ > 0, CpCδ > 0 and (Cp < 0)&(Cδ < 0) = ’true’,
respectively.

(a) Stability Region for τ = 5× 10−5. (b) Stability Index Analysis.

Figure 3.14: Stability Index

Finally, one applies the auxiliary results shown in Section 3.2.5. First one uses a σ-
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(a) σ-Stability Region. (b) Fragility Analysis.

Figure 3.15: σ Stability

Stability Analysis varying σ from 0 to −4×103, the results are summarized in Fig. 3.15a.
From this figure, one denotes the finding of a stability region that ensures that all roots
of the characteristic equation of the closed-loop system has real part σ < −4 × 103. In
other words, that the exponential decay rate of the closed-loop system response is smaller
than 4× 103. Second, one tests the fragility for three different controllers, the results are
summarized in Table 3.2 and illustrated in Fig. 3.15b.

Table 3.2: Fragility Analysis

k Ωf do df d
k1 {38110, 63023, 252843} 1.1431 1.6192 1.4319
k2 {60765, 251703, 314353} 15.574 3.7049 3.7049
k3 {120762, 253594, 31548} 23.3522 5.1322 5.1322

3.3 Furuta Pendulum: Input Delay

First, one of the most interesting aspects of this study is the manipulation of the closed-
loop response by adding a delayed action in the control scheme, experimental tests must be
developed to analyze the potential advantages for this converter. Second, one would like to
enhance the fact that the stability region shown in Section 3.2.3 appears to be unbounded.
In terms of the differential equation related to this system this is perfectly accurate.
However, in a real scenario this type of switching circuits have an extra constraint, the
control law must be bounded (u(t) ∈ [0, 1]). An open problem for this system is to find
the subregion inside the stability region such that this constraint is considered.
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In mechanical systems, one of the classical problems of automatic control is the stabi-
lization of the inverted pendulum on its unstable equilibrium point at the upright position.
In this work one studies this task in the case of the so-called Furuta pendulum (see Fig.
3.16), also known as the rotatory inverted pendulum. In order to achieve this task, one
proposes the use of some standard Linear Quadratic Regulation (LQR) controller. Some
insights concerning this control law for three underactuated systems (inverted pendulum
on a cart, inverted wedge and ball and beam system) can be found in [59]. Furthermore,
one considers a time-delay in the state feedback loop which can be inherent to the system
due to data processing, or even designed for performance requirements.

It is worth noticing that even in the simple case of the inverted pendulum, the presence
of delays in the input may induce some unexpected properties as, for instance a triple
root at the origin (see, for instance [11] and the references therein). In order to consider
this scenario in the control scheme design, one uses the results shown in [42] for the
inverted pendulum and cart system. This shows a simple method on how to compute
the critical delay value in the state feedback loop in which the closed-loop system loses
stability. Moreover, one explores the behavior of the stability conditions by considering an
auxiliary pair of gains for the position regulation of both angles of the Furuta pendulum.
Numerical simulations were conducted in Matlab-Simulink to illustrate how sensitive the
tuning of these parameters can be. The main contribution of the section is to construct
some appropriate tuning rules able to enlarge the delay margins. Illustrative examples
confirm such an approach.

This section is organized as follows. Section 3.3.1 concerns to the Furuta pendulum
modelling and the LQR control design for the stabilization in the delay-free scenario.
Section 3.3.2 shows a simple method for computing the critical time-delay value in the
state feedback loop at which the closed-loop system loses stability. Also, the stability
boundaries for two auxiliary gains and the time-delay are characterized. Finally, section
3.3.3 shows some numerical results obtained using“Matlab”.

Furthermore, one invites the reader to visit the website refereed in Section 3.3.3, where
illustrative support material for the understanding of the results discussed in this section
is depicted.

3.3.1 Prerequisites: Pendulum Dynamics and LQR Control

This section includes the basics of the design of an LQR based control scheme in the
delay-free scenario for the Furuta pendulum stabilization problem. It covers the Furuta
pendulum modelling and the LQR controller gain tuning. As discussed in the sequel,
one introduces the Furuta pendulum nonlinear model and a linear representation valid
uniquely around an operating point of interest.

Figure 3.16 depicts the representation of the Furuta pendulum, also known as the
rotatory inverted pendulum. This mechanical system has two degrees of freedom and two
rotatory joints. It consists in three essential components: a motor and two bars known as
arm and pendulum. The motor’s shaft is fixed at one end of the arm inducing a rotatory
movement of this bar. The pendulum is placed at the opposite end to the motor’s shaft
with a rotatory joint which provides a free rotatory movement in a normal plane to the



3.3. FURUTA PENDULUM: INPUT DELAY 67

arm. As shown in the schematic representation illustrated in Fig. 3.16, θ0 and θ1 are the
arm and pendulum angular positions, respectively. θ0 is measured with respect of the X-
axis and θ1 with respect to the upright position. T concerns to the torque applied to the
arm and it is provided by the motor. I0 and J1 stands for the motor-arm and pendulum
inertia values and L0 and l1 represent the arm length and the pendulum’s center of mass
location, respectively. Finally, m1 represents the mass of the pendulum, while g denotes
the gravitational acceleration.

Figure 3.16: Furuta Pendulum Diagram ([30]).

As detailed in [30] (see also, [18] and [19]), the Lagrangian formulation of the Furuta
pendulum consists in the following:

M(q)q̈ + C(q, q̇)q̇ + g(q) = F,

where:

M(q) :=

[
I0 +m1(L2

0 + l21 sin2 θ1) m1l1L0 cos θ1

m1l1L0 cos θ1 J1 +m1l
2
1

]
,

C(q, q̇) :=

[
c11 c12

c21 0

]
, g(q) :=

[
0

−m1l1g sin θ1

]
,
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c11 :=
1

2
m1l

2
1q̇2 sin(2q2),

c12 := −m1l1L0q̇2 sin q2 +
1

2
m1l

2
1q̇1 sin(2q2),

c21 := −1

2
m1l

2
1q̇1 sin(2q2),

F :=

[
T
0

]
, q :=

[
q1

q2

]
=

[
θ0

θ1

]
.

In this work one focuses on the control problem of stabilization and regulation of the
solution pair (θ0(t), θ1(t)) around an operating point. Inspired by [30], one considers the
corresponding system’s linearization:

ẋ = Ax+Bu, (3.26)

where the state of the system x and the control variable u are defined as:

x :=


x1

x2

x3

x4

 =


θ0

θ̇0

θ1

θ̇1

 , u := T .

The constant matrices A and B are given by:

A =


0 1 0 0

0 0 α 0

0 0 0 1

0 0 β 0

 , B =


0

γ

0

ε

 ,

where:

α :=
−gm2

1l
2
1L0

I0(J1 +m1l21) + J1m1L2
0

, β :=
(I0 +m1L

2
0)m1l1g

I0(J1 +m1l21) + J1m1L2
0

,

γ :=
J1 +m1l

2
1

I0(J1 +m1l21) + J1m1L2
0

, ε :=
−m1l1L0

I0(J1 +m1l21) + J1m1L2
0

.

Notice that this system is valid for any operation close to the unstable equilibrium
point: [

θ∗0 θ̇∗0 θ∗1 θ̇∗1

]T
=
[
0 0 0 0

]
,

(that is, the pendulum is located at the upright position).

As mentioned above, in order to stabilize the linear system (3.26) through a state
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feedback control law one uses a similar approach to the one presented in [42]. This is
known as the standard LQR control problem. The technique consists in computing the
optimal solution for the linear quadratic cost functional:

J = inf
u(t)∈L2(0,∞)

∫ ∞
0

[
x(t)TQx(t) + ru(t)2

]
dt. (3.27)

In this expression, the weights Q ≥ 0 and r ≥ 0 are chosen with the purpose of reducing
the states x and the cost of the control u. Qualitatively, if Q is a diagonal matrix, the
position of the greater value of this matrix represents the most important state to be
reduced. In the same manner, as r is chosen with a greater value, in such a way that the
energy provided by the control law u must be lower.

The solution to the functional (3.27) is the state feedback control law:

u(t) = −K∗x(t) = r−1BTPx(t),

where:
K∗ = [ka, kb, kc, kd] = −r−1BTP,

and P is the unique symmetric positive-defined solution to the Riccati equation:

ATP + PA− PBr−1BTP +Q = 0.

3.3.2 Controllers Tunning: Delay Margin and Auxiliary Gains

This section contains two stability analysis by considering a time-delay in the state feed-
back loop. First, one computes the critical delay value in the feedback loop for a proper
choice of K∗. Second, one proposes two auxiliary gains which will give us two degrees of
freedom (2-DOF), allowing to improve the system’s response.

First, it is well known that in a closed-loop system, if the control law is implemented by
means of a digital platform, then, there always be present a time-delay due to the compu-
tational data processing. In this regard, the delay is a consequence of sensor with built-in
data processing. In this section one aims to characterize this behavior by considering a
time-delay in the control law.

Having designed the vector gain K∗ as shown in the previous section, one proposes
the following:

u(t) = −K∗x(t− τ), (3.28)

where τ > 0 is a fixed delay value. Furthermore, one may notice that τ can be defined as
τ := τp + τd where the time-delay values τp and τd refers to the data processing and, to a
control design parameter, respectively.

Remark 9. It is well known that the stability of the closed-loop system is directly related to
the location of the roots of the characteristic equation (see, [49], for further details). More
precisely, the closed-loop system is stable if and only if all the roots of the characteristic
equation are located in the LHP (Left-Half Plane) of the complex plane.
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Since for τ = 0 the closed-loop system is locally asymptotically stable around the
origin, therefore, all of the roots of the characteristic equation given by:

∆0(s) := det {sI − (A−BK∗)} = 0,

have negative real parts. In other words, all of its roots remain in the LHP of the complex
plane for a proper choice of K∗. Now, by taking into account the control law (3.28), the
characteristic equation of the closed-loop system can be expressed as:

∆τ (s) = det
{
sI − (A−BK∗e−τs)

}
= 0,

or more compactly as:
∆τ (s) = P (s) +Q(s)e−τs, (3.29)

where:

P (s) = s4 − βs2,

Q(s) = (kbγ + kdε)s
3 + (kaγ + kcε)s

2

+ kb(αε− βγ)s+ ka(αε− βγ).

Remark 10. As mentioned by [49], this type of function (∆τ (s)) is known as a quasi-
polynomial, one of its main differences with respect to a common polynomial, is that it
has an infinite number of roots. Furthermore, the roots of ∆τ (s) move continuously with
respect to variations of its parameters (coefficients, delay) and there is always a finite
number of roots at the right side of any vertical line of the complex plane.

The appropriate computation of the critical delay value at which the closed-loop sys-
tem loses stability is given below:

Proposition 25. The closed-loop system is asymptotically stable for any delay value
τ ∈ [0, τc), where:

τc = min {τ ∗ ∈ R |τ ∗(ω∗) > 0, ω∗ ∈ Ωp} . (3.30)

where:

τ ∗(ω∗) =
1

ω∗

[
arg

{
Q(iω∗)

P (iω∗)

}
+ 2nπ

]
, n ∈ Z, (3.31)

and where the set Ωp is defined as the set of all real roots of the following equation:

|Q(iω∗)|2 − |P (iω∗)|2 = 0. (3.32)

Proof. By taking into account Remark 10, and the fact that the closed-loop system is
stable for τ = 0 implies that for τ > 0 sufficiently small all the roots of (3.29) will remain
on the LHP of the complex plane. Moreover, there is a critical value τ such that (3.29) has
at least one root on the imaginary axis and hence, such a value induces to the closed-loop
system to lose stability.



3.3. FURUTA PENDULUM: INPUT DELAY 71

As can be seen in [50], there exists a value τ such that the quasi-polynomial ∆τ (s)
has a root on the imaginary axis in s = iω∗, if and only if, the following condition:∣∣∣∣Q(iω∗)

P (iω∗)

∣∣∣∣ = 1, (3.33)

holds for some value ω∗ ∈ R+. Moreover, the correspondent time-delay value can be
computed by (3.31). Furthermore, notice that the condition (3.33) can be rewritten
easily as (3.32), which is a polynomial, implying that it has a finite number of solutions.
Finally, by defining Ωp as the set of all real roots of (3.32), the critical delay value can be
computed as in (3.30).

Second, one shows a method for computing the margin delay in order to maintain
stability in the closed-loop system. In this section, one proposes a 2-DOF controller,
which will be shown to be useful when the inherent delay in the system is larger than the
critical delay computed above.

Let K∗ be a stabilizing gain for the delay-free scenario, computed using the results
shown above. One considers as our new state feedback gain:

K = K∗ + [k1, 0, k2, 0] , (3.34)

where k1, k2 ∈ R are compensating gains in both positions (θ0, θ1) feedback loop. Con-
sidering this extended controller, the characteristic function of the closed-loop system is
given by:

∆∗τ (s) = P (s) +
(
Q(s) + (αk1 + εk2)s2 + k1(αε− βγ)

)
e−τs.

Remark 11. It is worth noticing that the proposed state feedback gain (3.34) has a partic-
ular structure which provides two degrees of freedom in the positions regulation problem.
One is interested in such a structure, since the appropriate regulation of position implies
the regulation of velocity to the origin.

Now, one introduces some notation: let ρ(ω) := αε−γ(ω2 +β) and, R(ω) and I(ω) be
the real and imaginary part of Q(iω), respectively. Furthermore, it is worth noticing that
P (iω) ∈ R, for all real ω. Having explained this approach, the following result characterize
the triplet (k1, k2, τ) at which the system has at least one root on the imaginary axis.

Proposition 26. Let K∗ be a stabilizing gain of the delay-free scenario and let ρ, I and
R be as defined previously. Then, the characteristic function ∆∗τ (s) has at least two roots
on the imaginary axis at s = ±iω, if and only if:

τδ =
1

ω
sin−1

{
− I(ω)

P (iω)

}
, ∀ω ∈ Ωd, (3.35)

where:

Ωd :=

{
ω ∈ R

∣∣∣∣∣∣∣∣ I(ω)

P (iω)

∣∣∣∣ ≤ 1

}
,
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and the gains k1 and k2 belong to the family of lines:

k2 =
1

εω2
{ρ(ω)k1 +R(ω)− I(ω) cot(τω)} , (3.36)

for any ω ∈ Ωd. Furthermore, it has a single root at the origin, if and only if:

k1 = −ka. (3.37)

Proof. Consider the characteristic function ∆∗τ (s), by setting s = iω the following equa-
tions system is obtained:

<{∆∗τ (s)} = 0, ={∆∗τ (s)} = 0, (3.38)

by trying to solve this system for k1 and k2, the following is computed:[
ρ(ω) cos(τω) −εω2 cos(τω)

−ρ(ω) sin(τω) εω2 sin(τω)

][
k1

k2

]
= r(ω), (3.39)

where r(ω) is a vector-valued function which can be easily deduced and for the sake of
brevity is omitted. It is clear to see that the determinant of the matrix related to equation
(3.39) is equal to zero and, therefore, does not have a unique solution.

However, one can rewrite (3.38) as:

`(ω) cos(τω) + I(ω) sin(τω) + P (iω) = 0,

`(ω) sin(τω) + I(ω) cos(τω) = 0,

where:
`(ω) = ρ(ω)k1 − εω2k2 +R(ω).

By solving the system of equations formed by (3.40) and (3.41) for `(ω), and consequently
comparing the obtained expressions the following condition must be fulfilled:

P (iω) sin(τω) + I(ω) = 0. (3.42)

On one hand, any pair (τ, ω̂) satisfying condition (3.42) also induces to equations
(3.40) and (3.41) to be equivalent. On the other hand, for every ω̂ ∈ R there exist an
infinite set of pairs (k1, k2) along the line (3.41), which also solves (3.40).

The proof ends by solving τ and k2 from (3.42) and (3.41) and obtaining conditions
(3.35) and (3.36), respectively. Furthermore, condition (3.37) can be verified simply by
solving k1 from ∆∗τ (0) = 0 and the set Ωd is defined to consider only real solutions of
(3.35).
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3.3.3 Numerical Results

For further details on the examples proposed in the sequel, one refers to the website 1.
Such a material is composed by a variety of animations of the Furuta Pendulum system
and system response signals behavior. The support material is listed below:

A.1 Free Motion Behavior of the Furuta Pendulum with initial conditions:[
θ0(0), θ̇0(0), θ1(0), θ̇1(0)

]T
=
[π

4
, 0,

π

4
, 0
]T
.

A.2 Controlled Motion with a delay value τ = 0.

A.3 Controlled Motion with a delay value τ = 0.5τc.

A.4 Controlled Motion with a delay value τ = 0.9τc.

A.5 Unstable Response of the Furuta Pendulum with a delay value τ = τc.

A.6 Smooth Time Delay Variation of the System Transient Response from τ = 0 to
τ = τc.

The parameters used in these simulations are taken from the experimental test bench
studied in [30] and are summarized in Tab. 3.3. The initial conditions settled for the
following numerical results are chosen near the origin as:[

θ0(0), θ̇0(0), θ1(0), θ̇1(0)
]T

=
[ π

10
, 0,

π

9
, 0
]T
.

Table 3.3: Parameters

Symbol Value Unit

g 9.81 m
s2

l1 129× 10−3 m
L0 155× 10−3 m
m1 22.18× 10−3 Kg
J1 184.50× 10−6 Kg.m2

I0 238.49× 106 Kf.m2

As stated in section 3.3.2, in order to compute the state feedback gain K∗ one needs

1https://furutablind.wixsite.com/furuta
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to chose the weights Q and r. One set r = 1 and:

Q = 1× 10−4


1 0 0 0

0 0.01 0 0

0 0 1 0

0 0 0 0.01

 ,

with the purpose of giving more importance to the convergence of the states θ0 and θ1

than to the angular velocities or the control effort. More precisely, one sets the position
correspondent values in Q one hundred times larger than the ones set for the angular
velocities. Given this parameters, the state feedback gain is computed as:

K∗ = − [0.0100, 0.0049, 0.1755, 0.0161]T .

Now, the proposed strategy is to find the critical delay in the state feedback loop such
that the closed-loop system becomes unstable. Having calculated the gain value K∗ and
according to Proposition 25, one uses equation (3.32) to compute the set Ωp. This consists
in one element ω∗ = 30.88. Second, one calculates the critical delay value τc = 0.0344s
from expression (3.30).

One shows the results obtained under these considerations. Fig. 3.17 exhibits the
closed-loop system response under different time-delay values below the critical condition:
τ = 0, 0.5τc, 0.9τc. The results are illustrated from the nonlinear and linear model point
of view. As can be seen in Fig. 3.17, as the time-delay value tends to approximate to
the critical value τc, the system response tends to have a more oscillatory behavior in
both models. This can be explained from the linear model perspective since as τ → τc,
the rightmost root of the characteristic equation (3.29) approaches the imaginary axis.
Illustrative animations of the Furuta Pendulum for this particular cases can be found in
A.2, A.3 and A.4. Furthermore, A.6 corresponds to the continuous change in the transient
response as τ → τc.

Moreover, in Fig. 3.18, one presents an unstable response of the closed-loop system
by setting τ = τc. At this value, the characteristic equation of the closed-loop system has
at least one pair of roots on the imaginary axis. One of the main features of this test is
that the nonlinear model clearly loses stability against the linear model which behaves
more similar to a marginally stable system. The behavior of the Furuta Pendulum in this
conditions is illustrated in A-5.

Finally, one uses the result shown in Proposition 26 to compute the stability boundaries
for the auxiliary gains k1 and k2. The results are depicted in Fig. 3.19 (left), notice that
since K∗ is a stabilizing gain for the delay-free scenario then, the origin of this figure
illustrated by A is a stable point. Moreover, by remark 10 any variation of the parameters
(k1, k2, τ) around the origin without crossing any stability boundary is stable. Therefore,
the region around the origin delimited by the stability boundaries is a stable region. The
point B depicts the parameters setting (0, 0, τc) which corresponds to the boundary of the
previous analysis. As expected, this point lays on the stability boundaries. Furthermore,
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the line from A to B corresponds to the test illustrated in Figs. 3.17 and 3.18.
In order to verify this result, in Fig. 3.19 (right) one explores the region in which

k1 = 0.005 illustrating the critical delay τc. Furthermore, considering a larger delay
τ = 0.04, one tests this regions by setting the (k2, τ) pair parameters p1, p2 and p3 in the
closed-loop system with initial conditions:[

θ0(0), θ̇0(0), θ1(0), θ̇1(0)
]T

=
[ π

20
, 0,

π

20
, 0
]T
.

The results are shown in Fig. 3.20, where is clear to see that the system has a stable
response when p1 and p2 are chosen and an unstable response for p3.

3.4 Concluding Remarks

In this chapter one studies the control scheme design of a variety of applications by using
delay-based controllers. First, experimental results of a virtual and a teleoperated bilateral
control schemes using Pδ controllers are presented. Second, a delay-based control scheme
design for a power dc/dc converter of type buck is studied. One carries-out the stability
analysis for two controllers, the Pδ and PδI controller using the results addressed in the
last chapter. Finally, one studies a LQR control scheme for the Furuta pendulum by
considering input delay. Also, one explores the potential of this delay design for closed-
loop response manipulation. Numerical results illustrating the control design and the
performance of these delay-based schemes are addressed for all this applications. In the
following chapter, similarly at this, one studies a photo-voltaic application, however, the
detail and discussion are clearly deeper and one presents a variety of experimental results.
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Figure 3.17: Closed-Loop System Response Under Different Delay Values.
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Figure 3.18: Closed-Loop System Unstable Response Under a Critical Delay.
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Figure 3.19: Stability Boundaries: (left) (k1, k2, τ), (right) (0.005, k2, τ).
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Chapter 4

Stabilizing Integrators:

Photo-voltaic Application

Renewable energies have been one of the main areas of interest by governments and
organizations of almost all countries, since these type of energy sources are considered
the cleanest for the environment. As it has been stated in [64], among the alternatives of
renewable energies, photovoltaic (PV) systems has experienced significant growth in recent
years, close to 60% in Europe. In fact, as discussed in [14, 40], these systems are being
integrated to the electrical grid more commonly than in past years.

Based on the above observations, it becomes evident that higher precision and safety
requirements will be demanded by the power grid companies as this tendency continues
to expand. In order to provide such features, power electronics attends directly the high
efficiency power conversion problem. In PV systems, it is well known that one of the
main solutions to this problem is the application of MPPT techniques [9]. In this sense,
the most important task relies on the proper control scheme designed to be applied to a
power electronics device.

The main idea behind MPPT techniques consists in finding the Maximum Power Point
(MPP) by adjusting the impedance perceived by the PVM (Photovoltaic Module). This
process consists in two dependent tasks. First, a control scheme is proposed to regulate
the PV voltage at the MPP. Second, an algorithm to compute the optimal reference must
be designed. In order to solve such control problems, this work uses a topology based on
a boost dc/dc converter. As a first approach to the development of an MPPT strategy,
our main contribution is focused on the PV voltage regulation problem. As discussed in
[37, 67], a variety of benefits can be achieved by using MPPT techniques in conjunction
with closed–loop control strategies, such as efficiency improvement and low frequency
disturbances rejection in the load terminals.

It is worth mentioning that there exist several works that have considered a similar
topology but using different control methods. Some of these works are summarized in
Table 4.1. From this table, one can note a variety of control techniques with different
needs for its implementation. One may notice the following observations: (i) all solutions
require at least two sensors; (ii) moreover, at least a current sensor is needed; (iii) not all

79
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solutions are evaluated under transient conditions. By contrast, the delay-based control
scheme proposed in this work requires: (i’) only one voltage sensor and consequently,
(ii’) no current sensors are needed; (iii’) also, experimental results considering abrupt
irradiance disturbances are presented.

We would like briefly to emphasize some of the advantages of not requiring a current
measurement. One of the main benefits is that current sensors are often large and of
expensive implementation in the control system. By contrast, we are aware that current
measurement is commonly available on MPPT systems since MPPT algorithms such as
P&O regularly need it. However, this can be avoided by using the fractional method (see,
for instance, [44]) and moreover, it can be also estimated; such is the case in [47], in which
a model-based predictive control principle is used to predict the states of the PV system.

The method proposed in the sequel is inspired by the ideas developed by the authors
in [17, 53] and [72]. On one hand, the work made in [17] proposes the use of a buck dc/dc
converter using feedback linearization and a low-order controller of PID type. Among low-
order controllers, those of PID-type have shown a well-known suitable performance coping
with parametrical uncertainties and undesired disturbances, also, to achieve elimination
of steady-state errors and transient response manipulation (see, for instance, [7, 61]).
However, as reported in [7, 4], one of the main drawbacks of PID controllers is related
to the tuning of the derivative action which may amplify additive high-frequency noise in
measurements.

As seen in the sequel, the feedback linearized system using a boost dc/dc converter has
a relative degree two, that roughly speaking, consists in a chain of two integrators. Thus,
one of the main contributions of this chapter is to propose a delay–based control scheme
in conjunction with explicit analytical tools that allows designing non-fragile stabilizing
controller for these types of systems. In the remaining part of the chapter, this scheme
will be called Pδ controller.

In this vein, a more complex behavior is proposed through the delay–based feedback
loop. In contrast with the obtained second-order open-loop transfer function, a delayed
system has an infinite number of characteristic roots. On one hand, due to the fact that
these roots are deeply related to the behavior of the output of the system, we are dealing
with a more diverse system in terms of dynamical behavior. On the other hand, this mere
fact complicates the overall stability analysis, since the classical Routh-Hurwitz criterion
of linear systems is no longer applicable. Nevertheless, as stated in [29], besides the fact
that including a delay will induce a more complex behavior, it is important to point out
that the delay phenomenon can also promote the system’s stability, where classical PID
controllers fail to stabilize the closed-loop system.

Encouraged by the previous observations, in this work we propose the use of PIδ
controllers instead of standard of PID type in order to achieve two technical objectives.
First, as seen in the experimental results section, to decrease the number of sensors needed
for the implementation to only one voltage sensor. Second, as mentioned in [32] and
references therein, to reduce the processing effort in the application of such a controller in
comparison to one of PID type. This is due to the fact that delaying a signal is numerically
simpler than derivating it, in which some numerical procedure or algorithm is required.
Moreover, we propose the adding of an integral action by designing a PIδ controller to
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Table 4.1: Comparative Table of Control Techniques for PV MPPT Systems Using a
Boost dc/dc Converter

References Number of Control Strategy Settling Time Evaluation Under
Sensors Transient Conditions

[10] 2–(vpv, ipv) Sliding Mode 0.2ms X
[71] 2–(vpv, iL) Adaptive 14.3ms ×
[60] 3–(vpv, ipv, iL) Double Integral Sliding Mode 150ms ×
[22] 2–(vpv, ipv) Sliding Mode 0.5ms X
[63] 3–(vpv, ipv, iL) Adaptive Passivity 300ms ×
[13] 4–(vpv, ipv, iL, vo) Backstepping Sliding Mode 50ms X
[39] 4–(vpv, ipv, iL, vo) Sliding Mode 1ms X

achieve steady state error equal to zero in its experimental application and to cope with
parametric uncertainties.

The main contributions of this section can be summarized as follows:

C1: We present a control scheme for the proper regulation of the PV voltage of a PVM
by using a boost dc/dc converter and a delay–based controller guaranteeing internal
stability;

C2: A tunning methodology for a PIδ controller is described. In fact, this methodology
provides necessary and sufficient conditions for the stabilization of the closed-loop
system;

C3: Experimental tests for this delay–based control scheme are addressed using a 350
W boost dc/dc prototype and a solar array simulator. Particularly, we test the
closed-loop scheme under set-point changes and solar irradiation disturbances.

The experimental test bench used for the validation of this control scheme consists in
a standalone PV system with a battery bank as load. The main goal is to validate a
scenario with a fixed dc bus, in this case emulated by a battery bank. Such a scenario
can be found also on grid-connected PV power systems. Moreover, this can be applied in
the same manner to an MPPT distributed system in which such a voltage output is not
fixed. Also, notice that even without a constant output voltage only voltage sensors are
required, and still no current sensors are needed.

The remaining chapter is organized as follows: Section 4.1 discusses the modeling of
the boost dc/dc converter on an MPPT system. Section 4.2 describes the control scheme
proposed and some important remarks are addressed, such as the stability of the zero
dynamics. Section 4.3 concerns to the presentation of the necessary results to develop
a stability analysis of such delayed control scheme through a frequency-based approach
(see also the ideas proposed by Neimark [51], related to D-partition curves). Section 4.4
shows an illustrative example on how such results can be applied in order to tune the PIδ
controller. Finally, several experimental tests using a solar array simulator in order to
verify the performance of the control strategy are proposed.



82CHAPTER 4. STABILIZING INTEGRATORS: PHOTO-VOLTAIC APPLICATION
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Figure 4.1: MPPT System Considering a Boost DC/DC Converter

4.1 PV Boost DC/DC Converter Dynamics

This section describes the open-loop system considered along this work, as well as some
assumptions that will be taken into account in order to perform its closed–loop stability
analysis. The methodology presented in the sequel follows similar steps to those proposed
in [17], but applied to the analysis of a boost dc/dc converter and using a delay-based
controller.

The topology consisting of the equivalent electrical circuit of the boost dc/dc power
converter, a PV module and a load element is illustrated in Fig. 4.1.

From this figure, we derive the average model, which is described by the following
equation:

ẋ = f(x) + g(x)u, y = h(x) = x1, (4.1)

with

f(x) :=

−
1
Cpv

x2 + 1
Cpv

ipv
1
L
x1 − 1

L
x3

1
C
x2 − 1

C
io

, g(x) :=

 0
1
L
x3

− 1
C
x2

,
where the state vector is defined by x = [x1, x2, x3]T := [vpv, iL, vo]

T , vpv represents the
input voltage in the terminals of the capacitor Cpv, iL denotes the current through the
inductor L and vo is the output voltage in terminals of the capacitor C. In addition, ipv
denotes the PV current generated by the PV module, io is the load current and u ∈ [0, 1]
defines the limited control variable (duty cycle for the switch Q).

Remark 12. It is worth recalling that our main goal in the closed–loop scheme, is the
proper regulation of the PVM voltage vpv. This constant reference defined as v∗pv is obtained
by an external MPP tracking algorithm. However, we are focusing on the regulation
problem.

In the remaining part of the chapter, we consider the following assumptions:

Assumption 2. The voltage reference v∗pv is considered as a piecewise constant signal.
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Assumption 3. The current ipv is considered as a very low–frequency signal.

Assumption 4. The inductance value of the boost converter is as low as possible, i.e.,
0 < L� 1.

The ideal voltage reference v∗pv is located at the maximum power point vmpp. We
consider Assumption 2 since the MPP is a slow time–varying signal which mainly changes
by effects of the ambient temperature. In a similar manner, we consider Assumption 3
since, ideally, ipv must be of a direct current type and it changes with respect to solar
irradiation disturbances. Finally, as can be seen in the sequel, Assumption 4 is nothing
else than a design consideration helpful for the control scheme design. Furthermore, as
can be seen from (4.1), the input capacitor voltage vpv is chosen as the output of the
system. It is worth mentioning that similar assumptions have been considered in [17] and
[72].

4.2 Global Control Scheme

This section presents the proposed control scheme for the regulation problem of the PV
system. The procedure consists in two basic steps. First, a feedback linearization control
scheme is designed to obtain an input-output linear mapping. Second, we propose a
delayed controller in order to stabilize the resulting dynamics.

By computing the derivatives of the output y = x1, one gets:

Cpvẏ = −x2 + ipv,

LCpvÿ = −x1 + x3 − x3u+ L
d

dt
(ipv) .

Since the control signal u appears up to the second derivative, the system has a relative
degree ρ = 2 in an open and not connected set β = {x ∈ R3 |x3 6= 0}. Thus, by con-
sidering Assumptions 3 and 4 into (4.3) one neglects the photo-voltaic current derivative
related term. And, by simply substitution one can corroborate that:

u =

(
1− x1

x3

)
− 1

x3

v, (4.4)

reduces the input-output mapping to:

LCpvÿ = v, (4.5)

where v is considered as an auxiliary control law.

4.2.1 PIδ Control Strategy

As mentioned in the Introduction, the main focus of this work concerns the design of a
PIδ controller for the regulation of the output of system (4.5). In this vein, considering
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the constant voltage reference v∗pv, we propose the following auxiliary control law as:

v(t) = kp
(
v∗pv − y(t)

)
+ kδ

(
v∗pv − y(t− τ)

)
+ ki

∫ t

0

(
vpv − y(w)

)
dw. (4.6)

Hence, we can rewrite the system (4.5) in terms of the output error e(t) := y(t)− v∗pv, as
follows:

LCpvë(t) + ki

t∫
0

e(u)du+ kpe(t) + kδe(t− τ) = 0,

where τ is a fixed delay value. It is worth mentioning that the form of the system (4.5)
suggests the use of a proportional-derivative controller to achieve asymptotic stabilization.
Nevertheless, as we will detail in Section 4.3, the delay-based controller can asymptotically
stabilize the closed-loop system by a proper choice of the controller parameters (kp, kδ, τ).
This implies that as t →∞, then, e(t) → 0 and therefore y → v∗pv. In addition, in order
to improve the system’s performance, we have included the integral term in (4.6) with the
aim to cope with the parametric uncertainties. The analytical procedure to tuning such
a PIδ−controller (kp, ki, kδ, τ) will be explained in detail in the Section 4.3.

4.2.2 Zero Dynamics

As mentioned previously, the system (4.1) has a relative degree ρ = 2. As it is well known
in the literature (see, for instance [65]), there exists a zero dynamics which has to be
properly analyzed in order to be able to consider the linear mapping (4.5). This section
covers in detail the characterization of such dynamics.

First, as mentioned in [65], we need to find a diffeomorfism, also described as the
change of coordinates:

z =

ε1ε2
η

 = T (x) =

 h(x)〈
∇h,f

〉
ϕ(x)

 , (4.7)

with inverse:
x = T−1(z).

Next, in order to express the dynamics of the change of coordinates (4.7) in the normal
form, the function ϕ(x) must satisfy the following condition:〈

∇ϕ, g
〉

= 0. (4.8)

Hence, following (4.8) we get:

Cx3
∂ϕ

∂x2

= Lx2
∂ϕ

∂x3

. (4.9)

It is clear to see, that a solution of the partial differential equation (4.9) can be easily
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computed by assuming a solution ϕ satisfying:

∂ϕ

∂x2

= 2Lx2,
∂ϕ

∂x3

= 2Cx3.

The above consideration leads to the solution:

ϕ(x) = Lx2
2 + Cx2

3. (4.10)

Hence, this diffeomorfism and its inverse are given by:

z = T (x) =

 x1

− 1
Cpv

x2 + 1
Cpv

ipv

Lx2
2 + Cx2

3

 , (4.11)

x = T−1(z) =


ε1

−Cpvε2 + ipv√
1
C

(
η − L (Cpvε2 − ipv)2)

 .
Now, in order to model a battery bank as load, let us consider io = γ(x3), where γ

has the property that sgn(γ) = sgn(x3) for all x3 ∈ R. Let ε := [ε1, ε2]T , by computing
the time derivative of z and considering (4.5) and (4.11), the dynamics of z can be split
into a linear system:

ε̇ =

[
0 1

0 0

]
ε+

[
0

1

]
1

LCpv
v (4.12)

in conjunction with a nonlinear one:

η̇ = −2γ(x3(η))x3(η) + 2ε1(Cpvε2 − ipv).

Finally, in order to characterize the zero dynamics of the system we assume that as
t→∞, then ε→ [0, 0]T and:

x3(η)→
√

1

C
η − L

C
i2pv. (4.13)

Considering the above results, the zero dynamics of the system is given as:

η̇ = −2γ(x3(η))x3(η).

In order to verify the stability of such dynamics, we propose the classical Lyapunov
function:

V (η) :=
1

2
η2.



86CHAPTER 4. STABILIZING INTEGRATORS: PHOTO-VOLTAIC APPLICATION

Computing its time derivative yields:

V̇ = −2γ(x3(η))x3(η)η.

Now, according to (4.10) and (4.13) we observe that η ≥ 0 and x3(η) ≥ 0, respectively.
Hence, γ ≥ 0 implying that V̇ ≤ 0. This last condition allows concluding the stability of
the zero dynamics.

4.3 PIδ Controller Design

As mentioned above, the proposed auxiliary control law consists in the use of a PIδ
controller. The most important contribution of this section lies in the development of
the necessary tools to implement an appropriate tunning of the controller parameters
(kp, ki, kδ) with a delay value τ .

The proposed approach relies in two steps. First, assuming ki = 0 we aim to find
at least one stability region in the parameters space (kp, kδ) with a fixed delay value τ .
Second, in order to tune the integral gain ki, we take into account a stabilizing controller
pair (k∗p, k

∗
δ ), and we establish a similar method to find a stability region on the parameters

space (kδ, ki). Such a procedure will be explained in detail in the sequel.

Consider the system (4.5) together with the proposed control law (4.6). Hence, the
closed–loop transfer function of the linearized system is given as:

Gcl(s) =
(kp + kδe

−τs)s+ ki
LCpvs3 + (kp + kδe−τs)s+ ki

. (4.14)

Thus, the closed–loop characteristic equation is given by the following quasi-polynomial:

∆̃ (s; kp, kδ, ki, τ) = LCpvs
3 + (kp + kδe

−τs)s+ ki = 0. (4.15)

Notice that by considering only a proportional-delay controller (i.e., ki = 0) in (4.14) the
characteristic equation behaves as:

∆ (s; kp, kδτ) = LCpvs
2 + kp + kδe

−τs = 0. (4.16)

Remark 13. It is well known that the stability of a linear system free of delay, is directly
related to the location of the roots of its characteristic equation. More precisely, the system
is asymptotically stable, if and only if, all roots of its characteristic equation lie on the
left-half plane of the complex plane. This argument is also true for delayed linear systems
(see, for instance, [49]). However, unlike the free delay case, in time-delay systems,
it is well known that the quasi-polynomial (4.16) (or (4.15)) has an infinite number of
roots that depend continuously on the parameter (kp, kδ, τ) (or (kp, kδ, ki, τ)). Hence, the
corresponding closed-loop system will be asymptotically stable if and only if the rightmost
characteristic root is located in C−.
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4.3.1 Crossing Roots Existence

Now, with the purpose of developing a stability analysis, we first derive the stability
crossing boundaries. In other words, we characterize the controller parameters choice
(kp, kδ, ki) such that the quasi-polynomial (4.16) has at least one root on the imaginary
axis (at s = ±iω) of the complex plane.

Proposition 27. Let τ ∈ R+ be a fixed delay value. Then, the characteristic equation
(4.16) of the closed–loop system ∆ has at least one pair of roots on the imaginary axis (at
s = ±iω), if and only if, the controller gains k(ω) := [kp, kδ]

T , are given as:

kδ=(−1)n
(
−kp +

LCpvπ
2

τ 2
n2

)
, for ω =

nπ

τ
,

kp=LCpvω
2 & kδ = 0, for ω ∈

(
(n− 1)π

τ
,
nπ

τ

)
,

for all n ∈ Z+. Furthermore, it has a single root at the origin (ω = 0) if and only if:

kδ = −kp and kp 6= 0. (4.19)

Proof. As a first step let us consider the characteristic equation (4.16) at s = iω, yielding
to

−LCpvω2 + kp + kδ cos(τω)− ikδ sin(τω) = 0. (4.20)

Clearly (4.20) holds whenever n ∈ Z and ω = nπ
τ

, or when kδ ≡ 0. Thus, considering such
situations in (4.20) we derive (4.17) and (4.18), respectively. Finally, by setting s = 0 in
(4.20) and following similar arguments than those presented above, leads to (4.19).

Remark 14. It is clear to see from the structure of ∆ or ∆̃, that in the absence of the
delay term, the closed-loop system will be oscillatory (if kp > 0) or even unstable (if
kp < 0). Such an observation is congruent with the derived experimental results (see, for
instance, the behavior of controller c3, in section 4.4.2).

Proposition 28. Let τ ∈ R+ and k∗p ∈ R be fixed values. The characteristic equation of
the closed–loop system has a pair of roots on the imaginary axis (s = iω), if and only if
the controller gains k̃(ω) = [k̃δ(ω), k̃i(ω)]T , are given as:

k̃δ(ω) =
LCpvω

2 − k∗p
cos(τω)

,

k̃i(ω) = −ω tan(τω)(LCpvω
2 − k∗p),

for all ω ∈ R+ such that ω 6= (2n+1)π
2τ

with n ∈ Z+ ∪{0}. Furthermore, it has a single root
at the origin (ω = 0) iff:

ki = 0 and kδ 6= −k∗p. (4.23)
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Proof. Consider the characteristic equation (4.15) with s = iω,

(kδω sin(τω) + ki) + i
(
kδω cos(τω) + k∗pω − LCpvω3

)
= 0. (4.24)

It is clear to see that (4.24) is fulfilled, as long as the following equation holds:[
ω sin (τω) 1

ω cos (τω) 0

][
kδ

ki

]
=

[
0

LCpvω
3 − k∗pω

]
.

Thus, assuming that ω 6= (2n+1)π
2τ

, ∀n ∈ Z+ ∪{0} we derive (4.21) and (4.22). In a similar

way, by setting s = 0 in ∆̃ leads to (4.23).

Based on the previous results, for a fixed delay value τ ∗ ∈ R+ the stability crossing
curves for a Pδ controller k = [kp, kδ]

T are characterized by means of the following
manifolds:

T `n :=

{
k ∈ R2

∣∣∣∣kδ = (−1)n
(
−kp +

LCpvπ
2

τ 2
n2

)}
,

T pn :=
{
k ∈ R2

∣∣∣k =
[
LCpvω

2, 0
]T
, ω ∈

(π
τ

(n− 1),
π

τ
n
)}

,

where n ∈ Z+. The curve characterizing a real simple crossing is given by:

To :=
{
k ∈ R2 |kδ + kp = 0 and kp 6= 0

}
.

For the PIδ controller, consider k̃ := [kδ, ki]
T and let τ ∗ ∈ R+ and k∗p ∈ R be fixed values.

Then, the stability crossing curves are defined as:

T̃ mn :=

{̃
k ∈ R2

∣∣∣∣k̃ = k̃(ω), ω∈
(
(sgnn)(2n− 1)π

2τ
,
(2n+ 1)π

2τ

)}
,

for n ∈ Z+ ∪ {0}, and the curve characterizing a real simple crossing is given by

T̃o :=
{
k̃ ∈ R2

∣∣ki = 0 and kδ 6= −k∗p
}
.

Thus, the stability crossing curves can be described as

T =∪
n
T `n ∪

n
T pn ∪To,

T̃ =∪
n
T̃ mn ∪ T̃o,

for the Pδ and PIδ controllers, respectively.
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4.3.2 Crossing Roots Directions

In order to compute a stability index, which is the number of roots in the RHP for a
given parametrical region, it is of interest to characterize the behavior of the roots as a
function of the corresponding parameter, when a parameter deviates from any boundary.
The following results are the main tools to achieve such a task.

Proposition 29. Let τ ∈ R+ be a fixed delay value. Then, as k crosses in any direction
from left to right of: T `n , n ∈ Z+ traversing the point k̂ = [k̂p, k̂δ]

T ∈ T `n , one pair of roots
of the characteristic equation (4.16) moves from the LHP to the RHP of the complex plane
if k̂ satisfies the following conditions:

k̂δ > 0 for n even, k̂δ < 0 for n odd. (4.25)

Furthermore, the crossing of the roots is from the RHP to the LHP if these inequalities
are reversed.

Proof. Consider the characteristic equation (4.16). Now, by the Implicit Function Theo-
rem (see, for instance, [24]), we have:

ds

dkp
= −

∂∆
∂kp

∂∆
∂s

,
ds

dkδ
= −

∂∆
∂kδ
∂∆
∂s

,

where:

∂∆

∂s
= 2LCpvs− τkδe−τs,

∂∆

∂kp
= 1,

∂∆

∂kδ
= e−τs.

Then, by taking s = inπ
τ
, for n ∈ Z+ yields

[
ds

dkp

]−1
∣∣∣∣∣
s=inπ

τ

= τkδ(−1)n − i2πnLCpv
τ

.

Since, τ ∈ R+ and ds
dkδ

= ds
dkp
e−τs, we can conclude:

sgn

{
<
{
ds

dkp

∣∣∣∣
s=inπ

τ

}}
= sgn {(−1)nkδ} .

sgn

{
<
{
ds

dkδ

∣∣∣∣
s=inπ

τ

}}
= sgn {kδ} .

Therefore, the proof follows straightforwardly by simply observing that (4.28)-(4.29) imply
(4.25).
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Proposition 30. Let τ ∈ R+ be a fixed delay value. Then, one pair of roots of the
characteristic equation (4.16) moves from the LHP to the RHP of the complex plane as
k crosses the curve T pn in the increasing direction of kδ if n is odd. Furthermore, the
crossing is from the RHP to the LHP if n is even.

Proof. Consider the characteristic equation (4.16). Making use of the Implicit Function
Theorem and following similar arguments than those presented in the proof of Proposition
29, one gets: [

ds

dkδ

]−1

= τkδ − 2LCpvse
τs.

Now, by considering the set of stability crossing curves T pn , s = iω for ω ∈ In :=(
π
τ
(n− 1), π

τ
n
)

and k = [LCpvω
2, 0]

T
, yields

D(ω) := <
{[

ds

dkδ

]−1
}

= 2LCpvω sin(τω).

The proof ends by noting that D > 0 for all ω ∈ In with n odd and D < 0 for all ω ∈ In
with n even.

Proposition 31. Let τ ∈ R+. Then, a simple root of the characteristic equation (4.16)
moves from the LHP to the RHP through the origin as k crosses from left to right the
stability crossing curve To if kδ > 0. Furthermore, the crossing is from the RHP to the
LHP if the inequality is reversed.

Proof. By setting s = 0, the proof follows the same lines as the proof of Proposition
29.

Proposition 32. Let τ ∈ R+ and k∗p be fixed values. Then, a simple root of the charac-

teristic equation (4.15) moves from the LHP to the RHP through the origin as k̃ crosses
the kδ-axis in the increasing direction of ki if kδ < −k∗p. Furthermore, the crossing is from
the RHP to the LHP if the inequality is reversed.

Proof. The proof follows similar ideas to those presented in the proof of Proposition 29
but setting s = 0 and computing ds

dki
.

4.4 Experimental Implementation

In this section, we illustrate the application of the previously discussed results. More
precisely, the design of a stabilizing controller for the PV boost dc/dc converter system.
First, by means of the stability crossing curves, we present the tuning methodology of
the PIδ controller. Second, we consider some experimental results in order to evaluate
the performance of the control strategy. The standalone PV system consists of a boost
dc/dc converter, five 12 V lead-acid batteries with a capacity of 80 Ah as load and a
solar array simulator as PVM. A series connection has been considered for the battery
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Figure 4.2: Experimental Test Bench - Main Components

Table 4.2: Passive Elements of the Boost dc/dc Converter

Parameters Value Unity
Cpv 352× 10−6 F
L 4.77× 10−3 H
C 144× 10−6 F

bank which establishes a dc bus voltage of 60 V. The parameters values of the passive
elements of the boost dc/dc converter are summarized in Table 4.2. These values were
chosen by considering a continuous mode operation at a rated power of 350 W and the
power converter PWM stage operating at a switching frequency of fc = 10 KHz (see, for
instance, [62]). The control algorithm was implemented on a DS1104 dSpace board at
sampling frequency fs = 40 KHz. However, the measurements presented in this section
were obtained using the following Tektronix equipment: an ac/dc current probe (A622),
a high voltage differential probe (P5200) and a digital signal oscilloscope TDS2024B.
Finally, the active elements, the power diode D and the power switch Q are STTH30R04W
and IRFP250N, respectively. The main components are illustrated in Fig. 4.2.

4.4.1 PIδ Controller Tuning

Let us consider the system (4.12) in closed-loop with the Pδ−controller, where the fixed
delay value has been chosen equal to τ = 2 × 10−3s. By means of Proposition 27, we
construct the stability crossing curves depicted in Fig. 4.3a. In addition, also in this
figure for each stability boundary, the crossing directions for which at least a root moves
from the LHP to the RHP are indicated by arrows. These crossing directions are derived
by applying Propositions 29, 30 and 31.

Using the crossing directions of T pn presented in Proposition 29, we can find easily the
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(a) kp − kδ Parameters Space Analysis (b) kδ − ki Parameters Space Analysis

Figure 4.3: Stability Regions.

segments at which the roots will cross to the LHP. Giving as a result the two stability
regions illustrated in Fig. 4.3b.

As a next step, let us consider the tuning of the ki term. To this end, let us consider
first the stabilizing Pδ−controller c1, where (kp, kδ) = (2,−1). Then, taking k∗p = 2
in Proposition 28 yields the stability crossing curves depicted in Fig.4.3b. As in the
previous step, by means of Proposition 32 we compute the crossing directions, allowing
us to derive the stability region illustrated in Fig. 4.3b. Based in the stability regions
presented in Fig. 4.3, we consider the four different controllers summarized in Table 4.3
and illustrated in Fig. 4.3a. From this figure, it is easy to see that two of these controllers
are stabilizing controllers (c1, c2), whereas the others not (c3, c4). It is worth to mention
that the integral term of each stabilizing controller is designed individually following the
procedure presented above. Furthermore, the unstable ones are just a variation of c1 in
which the gain related to the delayed action is perturbed.

Remark 15. One must notice that the methodology for tunning the PIδ controller pre-
sented in this chapter requires two individual processes. First, one looks for a stability
region for the Pδ controller given a fixed delay value (two parameters gains variations
(kp, kδ) are taken into account ). After, one choses from this region a particular propor-
tional gain value kp = k∗p. Second, one looks for a stability region for the PIδ controller
given fixed delay and proportional gain values (two parameters gains variations (kδ, ki) are
taken into account). It is evident that fixing such delay and gain values in each process en-
ables a two-dimensional parametric analysis which as demonstrated in this chapter is easy
to carry-out and to interpret. However, one must highlight that each time that one fixes a
parameter, one is compromising all other possibilities for it. Which even could end-up in
not finding any stability regions, or not those with a better control performance. This is
directly a limitation of this method, and to diminish it, one should repeat recursively this
two step process using different parametric choices.
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Figure 4.4: Characteristic Current-Voltage Curve Set in the Solar Array Simulator

Table 4.3: PIδ Controllers Parameters

ci kp ki kδ τ [s]
c1 2 500 −1 2× 10−3

c2 10 600 2 2× 10−3

c3 2 500 0 2× 10−3

c4 2 500 1 2× 10−3

4.4.2 Experimental Tests

For the experimental tests, the characteristic current-voltage curve set in the solar array
simulator was programmed with 180 W in standard conditions as shown in Fig. 4.4.
From this figure, it is worth to notice that the MPP is located at vmpp = 30 V, impp = 6 A
and Pmpp = 180 W. As mentioned in the test bench description, we consider a battery
bank as load of the MPPT system. This common scenario is known as an isolated PV
system, at which the main goal is to keep the battery bank completely charged using the
energy gathered by the PV modules. Observe that since the auxiliary control la v only
needs the PV voltage x1 = vpv, one may notice that the total control law (4.4) will also
require the output voltage x3 = vo. However, in this experimental results we consider
this as a constant voltage of 60V since in general this will be the common case. It is
worth mentioning that even though this voltage is varying slowly as batteries are being
charged, for control purposes, such a voltage can be considered as constant. This, since
the numerical uncertainties will be coped by means of the integral action. In conclusion,
for the experiments shown in this section only the PV voltage vpv sensor was needed.

Experiment 1 (1 V and 5 V set-point changes). For the stabilizing controllers c1 and c2,
let us test their behavior in two different scenarios: 1 V and 5 V set-point changes. One
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of the most common MPPT techniques “perturb and observe” (P&O) consists in varying
the PV voltage reference in consistent steps changes, by observing the PV power in order
to locate the MPP. These tests are designed to test the closed-loop system reliance on an
online MPPT tracking system which attends such behavior. The results are summarized
in Figs. 4.5, where from these figures we can notice that there always exists an abrupt
transitory state in which the settling time measured goes from 9 ms to 10.9 ms, where these
experiments have been implemented for 1 V and 5 V set-point changes. Furthermore, it
is shown in every test that the control effort remains in the operation interval u ∈ [0, 1]
with this delayed strategy, even for the 5 V set-point changes. This is the ideal scenario
in which the closed-loop system must remain. Now, from the comparative table shown
in the introduction (Table 4.1), we can observe that the settling times documented for
these experiments goes from 0.2 ms to 300 ms. In addition, we would like to highlight the
fact that all these strategies need at least two sensors, while as discussed above, in the
experimental test bench shown in this work, only the PV voltage sensor is required.

Experiment 2 (Irradiance disturbances). As a second experimental test, let us evaluate
the system under transient conditions. To this end, the test consists in setting a con-
stant voltage reference v∗pv = 30 V, while an irradiance disturbance which oscillates from
100 W/m2 to 1000 W/m2 is applied by the solar array simulator. We consider this as an
abrupt scenario, irradiance variation through the day or even shading caused by clouds
movement can be considered as slower scenarios which would be easier to handle for the
control system. The obtained results are shown in Fig. 4.7 for the controllers c1 and c2.
Moreover, from these figures, we can observe a stable regulation with expected transient
scenarios enhanced. Hence, despite any disturbance, the PV voltage tends to the voltage
reference v∗pv = 30 V.

Experiment 3 (Unstable controllers). Finally, to complete the tests we consider the two
unstable controllers for a constant regulation with v∗pv = 30 V and without any transient
condition. In this vein, as expected, Fig. 4.7 illustrates the unstable responses. One may
notice from Table 4.3 that the experiment shown in Fig. 4.7a has a lack of the delayed
action, illustrating that the proposed controller needs the “gain-delay block” in order to
have an asymptotically stable behavior. In a similar fashion, it is interesting to observe
how the design analysis suggests the use of a negative gain kδ (for c1), in which if we
switch the sign to this gain, results in an unstable behavior, as can be appreciated from
Fig. 4.7b.

4.5 Concluding Remarks

In this chapter we describe in detail the control scheme design of a MPPT-PV system
using a power dc/dc boost converter and a PδI controller. The system is controlled by
applying an input-output linearization technique obtaining a linear system. This last one
is composed by a double integrator and is controlled by using the PδI controller. One uses
crossing roots theory to develop a methodology for designing the controller’s parameters
in the same spirit as the second chapter of this thesis. Experimental results concerning
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Figure 4.5: Experiment 1. Set-Point Variations
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Figure 4.6: Experiment 2. Irradiance Disturbances
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Figure 4.7: Experiment 3. Unstable Controllers
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set-point changes simulating a P&O method and irradiance disturbances are presented
and discussed. In this chapter one shows how a chain of two integrators can be stabilized
using delays. In the next one, one studies the potential of delays for stabilizing chains of
oscillators.





Chapter 5

Stabilizing Oscillators: Remarks on

the Solution of the General Case

The content of this chapter is a deep study of what one the classical problems in linear
delay-based control: the stabilization of a chain of any number of oscillators by a single
delay “block” (gain,delay) as controller. Considering a classical feedback control scheme,
this is nothing else than using as control law a delayed error signal multiplied by a propor-
tional gain. Being this proportional scaling factor and the time the error signal is delayed
the only tunable controller parameters. According with the analysis shown further in this
chapter, the proper and subtle selection of this gain-delay pair values can stabilize any
chain of oscillators. The mere fact that such a simple control scheme can always make the
enough impact to achieve such a task, makes this problem not only a really elegant one,
but one worthy to study. In fact, one would say that it is an interesting puzzle piece to
better understand the particular advantages that linear delay-based control can brought
up to classical control theory.

Deeply inspired by the remarks presented in these works, this chapter presents an
”in detail” analysis of the characteristic quasi-polynomial of the closed-loop system. Such
being focused on the behavior of its roots by means of variations of the controller parame-
ters (gain, delay). More precisely, this chapter develops first a similar analysis concerning
stability crossing conditions and the roots further deviations from the imaginary axis.
Giving as a result necessary conditions for the time-delay value. Later, such insights are
used in conjunction with the so-called Mikhailov criterion to further compute stabilizing
explicit conditions on the delay block parameters. Such a criterion is directly related to
the well-known Cauchy’s argument principle.

99
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5.1 Open-Loop System and Controller Nature

Consider the class of strictly proper single-input single-output (SISO) open-loop systems
given by the transfer function:

G(s) =
Y (s)

U(s)
=

1

Q(s)
, (5.1)

which characteristic polynomial Q(s) is defined by:

Q(s) := (s2 + ω2
1)(s2 + ω2

2) . . . (s2 + ω2
N) =

N∏
m=1

(s2 + ω2
m), (5.2)

where all values ωm > 0 for all m ∈M := {1, 2, . . . , N} and are defined accordingly to an
ascending distribution as shown below:

0 < ω1 < ω2 < · · · < ωN .

Such a system is one that has no zeros and whose open-loop poles are located exactly
on the imaginary axis. More precisely, Q(s) = 0 iff s = ±iωm for some m ∈ M . In
other words, this depicts a class of the so-called marginally stable systems. One can
easily observe from the characteristic equation (5.2) that each term of this product is a
second-order polynomial with no linear term. From a mechanical interpretation, one can
understand each of these as an ”undamped” characteristic polynomial. One would expect
an undamped response from each of those, and for total response a combination of these
due to its cascade configuration. Such a behavior is partially discussed in the following
remark.

Remark 16. In order to better understand such an open-loop system one may study its
impulse response. To such end, consider U(s) = 1 (the Laplace transform of an impulse),
the output of the system is given directly by:

Y (s) =
1

(s2 + ω2
1)(s2 + ω2

2) . . . (s2 + ω2
N)
.

Using well-known partial fractions decomposition one can rewrite such an expression as:

Y (s) =
A1s+B1

(s2 + ω2
1)

+
A2s+B2

(s2 + ω2
2)

+ · · ·+ ANs+BN

(s2 + ω2
N)

,

where all coefficients (Am, Bm) are real ordered pairs for all m ∈ M . This can be easily
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rewritten as follows:

Y (s) =

[
A1

s

(s2 + ω2
1)

+
B1

ω1

ω1

(s2 + ω2
1)

]
+

[
A2

s

(s2 + ω2
2)

+
B2

ω2

ω2

(s2 + ω2
2)

]
+ . . .

· · ·+
[
AN

s

(s2 + ω2
N)

+
BN

ωN

ωN
(s2 + ω2

N)

]
,

which structure is easily associated to the well-known Laplace transformations:

L{cos(ωt)} =
s

s2 + ω2
, L{sin(ωt)} =

ω

s2 + ω2
, , for ω ∈ R.

Then, it is evidently that the output response of the system y(t) = L−1 {Y (s)} is computed
directly as:

y(t) = A1 cos(ω1t) +
B1

ω1

sin(ω1t) + A2 cos(ω2t) +
B2

ω2

sin(ω2t) + . . .

· · ·+ AN cos(ωN t) +
BN

ωN
sin(ωN t).

Such response is a purely oscillating one. More precisely, it is a linear combination of
pure oscillations at each frequency value ωm, directly related to each pair of pure imaginary
open-loop poles. In a way, a dynamical that starts vibrating indefinitely in response at the
slightest contact.

Having discussed in detail the chain of oscillators dynamical nature, it is now intro-
duced the proposed delay-based control scheme. The one delay ”block” controller:

C(s) = Ke−τs, (5.7)

where K ∈ R and τ is a positive fixed delay value. In the classical feedback control scheme
considered in this study this is nothing else than the application of the control law:

u(t) = Ke(t− τ),

where e(t) is an error signal. Recall that the main task to achieve by this chapter is to
study the potential of this delay-based controller to guarantee closed-loop stability. This
is stated formally in the following lines.

Problem 4. Consider the open-loop system showed in (5.1) and the linear controller
depicted in (5.7). These are the so-called chain of any oscillators and the one delay
”block” controller, respectively. One aims to find explicit conditions on the controller
parameters pair (K, τ) such that the closed-loop system is asymptotically stable. In other
words, to find the proper parametric setting such that the characteristic equation of the
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closed-loop system C(s)G(s) + 1 = 0, computed explicitly as:

∆(s) = Ke−τs +Q(s) = 0, (5.8)

has all of its zeros on the left-half plane (LHP) of the complex plane.

5.2 Time-Delay Stabilizing Conditions

This section derives useful conditions on the time delay value to study the stability of
quasi-polynomial (5.8). Such an analysis is based in a simple idea brought up by studying
the quasi-polynomial roots movement due to variations of K around its origin. More
precisely, consider equation (5.8) with K = 0, then, ∆(s) = Q(s) is a fixed degree
polynomial with exactly 2N purely imaginary roots. One could say that such roots are
at the edge of stability, since the slight movement of one of them passing to the RHP of
the complex plane implies directly instability. In the same lines, one could think that it
may exists a particular continuous path of the ordered pair (K, τ) (starting from K = 0
and some value τ) which my imply a movement of all 2N purely imaginary roots to the
LHP of the complex plane. Such an idea is taken into consideration in the sequel.

In general, the analysis presented in this section studies the particular controller para-
metric settings in which at least one root of the characteristic quasi-polynomial (5.8) is
located on the imaginary axis. Subsequently, its behavior as such choices of parameters
variate continuously. Both analysis are presented in the following sections. However, for
a better understanding of the results shown it is important to bare in mind that Q(iω) is
a real valued function and Q′(iω) is a purely imaginary function with null real part. This
is explained in the following remark:

Remark 17. If s = iω then:

Q(iω) =
N∏
m=1

(ω2
m − ω2),

from this expression it is evident that Q(iω) is a real valued function of ω. Second, the
derivative Q′(s) can be computed as:

Q′(s) = 2s
N∑
m=1

∏
6̀=m

(s2 + ω2
` ), ` ∈ {1, 2, . . . , N} ,

straightforwardly:

Q′(iω) = i2ω
N∑
m=1

∏
`6=m

(ω2
` − ω2), ` ∈ {1, 2, . . . , N} , (5.9)



5.2. TIME-DELAY STABILIZING CONDITIONS 103

from this, it can be observed that Q′(iω) is a purely complex function of ω with null real
part.

5.2.1 Crossing Roots Existence

Consider s = iω in (5.8) and solve for K as follows:

K = −Q(iω)

[
cos(τω) + i sin(τω)

]
, (5.10)

there exists a real solution of K for this last expression only in two different approaches.
On one hand, if ω = ωm then Q(iω) = 0, and therefore K = 0. This is nothing else than
the open-loop crossing roots. In fact, it is evident that if K = 0 then ∆(s) = Q(s), and
therefore the characteristic equation has only these N roots. On the other hand, given that
Q(iω) is a real valued function of ω, a real solution of K 6= 0 exists, iff ω = ω̃n(τ) := nπ

τ

for some n ∈ Z. We defined these as the closed-loop crossing roots. Such arguments are
formalized in the following proposition:

Proposition 33. Let τ be a positive fixed delay value. Then, the characteristic equation
of the closed-loop system (5.8) has at least a root on the imaginary axis s = iω, iff:

− K = 0, being ω = ωm for any m ∈ {1, 2, . . . , N},

− K = K(τ, n), being ω = nπ
τ

for some n ∈ Z,

where:
K(τ, n) = (−1)n+1Q

(
n
π

τ

)
. (5.11)

Proof. The proof is straightforward noting that if ω = ω̃n(τ) in equation (5.10) then (5.11)
follows directly.

From this last proposition, it is important to emphasize the fact that there are two
different scenarios concerning root crossing (s = iω) in the characteristic equation (5.8).
Particularly, the roots cross the imaginary axis through ω = ωm or ω = ω̃n. Being this
notation referring to the open- and closed-loop crossing roots frequencies, respectively.
Considering this observation, its most important aspect is described in the following
remark.

Remark 18. As being well documented in the literature (see for instance [52]), the roots
of a quasi-polynomial move continuously against continuous variation of its parameters
(gain, coefficients). Let τ > 0 be a fixed delay value, and since K = 0 or K = K(τ, n)
implies root crossing, then, these values partition the number line of K in intervals in
which no roots crossing is possible. Therefore, in intervals of K in which the characteristic
equation has a constant number of roots at the right-half plane (RHP) of the complex plane
(unstable roots).
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5.2.2 Crossing Roots Directions

In this section we aim to characterize the crossing roots deviation tendency of characteris-
tic equation (5.8). To such an end, we compute the following derivative using the implicit
function theorem: [

ds

dK

]−1

= τK −Q′(s)eτs. (5.12)

In the following two propositions we describe both scenarios described above regarding
the close- and open-loop crossing roots, respectively.

Proposition 34. Let τ be a fixed delay value and n ∈ Z. If K variates increasingly
(decreasingly) around K = K(τ, n), then, at least a root moves to the RHP of the complex
plane iff K(τ, n) > 0(< 0).

Proof. Consider the closed-loop crossing roots, that is s = iω̃n(τ) and K = K(τ, n).
Let us analyze such a scenario in the derivative presented in (5.12), also notice that
eiτ ω̃n(τ) = (−1)n, the following is obtained:

[
ds

dK

]−1
∣∣∣∣∣
s=iω̃n

= τK(τ, n) + (−1)n+1Q′(iω̃n).

Recall that Q′(iω) is a purely complex function of ω with null real part, then its crossing
direction is computed as:

R̃(τ, n) := <
{[

ds

dK

]−1
∣∣∣∣∣
s=iω̃n

}
= τK(τ, n).

It is important to state that since τ > 0, then, sgn
{
R̃(τ, n)

}
= sgn {K(τ, n)}. This

expression implies directly the arguments stated in this proposition.

It is important to enhance the implications of the proposition shown above with respect
to Remark 18. Compute all values of K(τ, n) for all n ∈ Z arranged in such a way that:

· · · < K−2 < K−1 < 0 < K+
1 < K+

2 < . . . ,

where the super-index is used to observe the sign of such values on the number line of K.
As mentioned in Remark 18, these values partition the number line of K in intervals in
which the characteristic equation has a constant numbers of roots located on the RHP of
the complex plane. Assume now that for K ∈ (0, K+

1 ) the characteristic equation has r
roots on the RHP. By applying Proposition 34, we can state that as K crosses increasingly
through any value K+

j at least a root crosses to the RHP. Therefore, no stabilizing interval
exists for K > K+

1 . A similar argument implying the same for K < K−1 can be easily
deduced. In general, using this approach, it appears that the only possible stabilizing
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intervals are those concerning the behavior of the open-loop crossing roots (K = 0). In
order to have a clear understanding of these we present the following Proposition.

Proposition 35. Let τ be a fixed delay value and m ∈ {1, 2, . . . ,N}. If K variates
increasingly around K = 0, then, the pair of open-loop crossing roots s = ±iωm move to
the LHP (RHP) of the complex plane iff:

(−1)m−1 sin(τωm) < 0 (> 0).

Proof. Consider the open-loop crossing roots, that is s = iωm when K = 0. Let us analyze
such a scenario in the derivative presented in (5.12), the following is obtained:

[
ds

dK

]−1
∣∣∣∣∣
s=iωm

= −Q′(iωm)

[
cos(τωm) + i sin(τωm)

]
.

Since Q′(iω) is a purely complex function with null real part, then its crossing direction
can be computed as:

Rm := <
{[

ds

dK

]−1
∣∣∣∣∣
s=iωm

}
= −iQ(iωm) sin(τωm),

which by recalling (5.9) can be rewritten as:

Rm = 2ωm sin(τωm)
∏
`6=m

(ω2
` − ω2

m),

where ` ∈ {1, 2, . . . , N}. At this point, it is important to notice the following:∏
` 6=m

(ω2
` − ω2

m) = (ω2
1 − ω2

m)(ω2
2 − ω2

m) . . .

. . . (ω2
m−1 − ω2

m)(ω2
m+1 − ω2

m) . . . (ω2
N − ω2

m),

also recall that ωm+1 > ωm, then:

sgn

{∏
6̀=m

(ω2
` − ω2

m)

}
= (−1)m−1.

Therefore, the sign of Rm can be expressed as:

sgn {Rm} = (−1)m−1 sgn {sin(τωm)} ,

this last expression implies directly the arguments stated in this Proposition.
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Bearing in mind Proposition 35 shown above, it is clear that if there exists a fixed
value τ such that:

(−1)m−1 sin(τωm) < 0, ∀m ∈M, (5.13)

then, all open-loop crossing roots cross to the LHP of the complex plane as K is varied
increasingly from zero. Such conditions may imply closed-loop asymptotic stability for a
positive interval of K. In the next section we assume such conditions on the parameter τ
to develop a vectorial analysis in the sense of the criterion presented in [53]. It is worthy
to mention that since the parameter τ is assumed to be chosen in advance and for the
sake of clarity, we drop its notation on the closed-roots frequencies ω̃n(τ).

5.3 Vectorial Interpretation and Main Results

The results shown in this section are based in an argument based stability criterion (similar
to the well-known Nyquist criterion and Cauchy’s argument principle). To such an end, it
is important to consider the following result concerning the Mikhailov stability criterion
(see for instance [58, 23]) for retarded quasi-polynomials. In the following one presents a
simpler version of such a result by considering one delay only.

Theorem 2. Mikhailov Stability Criterion. Consider the retarded quasi-polynomial with
single delay:

∆r(s) = P (s) +Q(s)e−τs,

where τ > 0 and k := deg {P (s)} > deg {Q(s)}. The characteristic quasi-polynomial has
all of its zeros located on the LHP of the complex plane (i.e. the corresponding system is
asymptotically stable) iff:

θ arg
ω∈[0,∞)

{∆r(iω)} = k
π

2
.

In this notation, θ
ω∈I

arg {F (ω)} stands for the accumulative argument of complex function

F (ω) while ω varies increasingly inside interval I.

In particular, the following remark states the case studied in this chapter.

Remark 19. Consider the particular retarded quasi-polynomial (5.8) studied in this work.
It is evident that Theorem 2 implies that the closed-loop systems achieves asymptotic
stability iff:

θ arg
ω∈[0,∞)

{∆(iω)} = Nπ.

Before going into deep detail of the main results of this chapter it is important to
observe the behavior of ∆(iω) in its complex vector form. As show in Fig. 5.1a the
vectorial interpretation of ∆(iω) consists in the addition of a purely real vector Q(iω)
with the complex vector Ke−iτω. One one hand, Ke−iτω is a rotatory vector which
describes a path on a circle with radium K centered on Q(iω) with a clockwise direction.
More precisely, let n ∈ Z and K > 0, as illustrated in Fig. 5.1b, Ke−iτω has the following
behavior:
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• It rests on the real axis with positive direction for any value ω = ω̃2n (even closed-
loop cross frequencies).

• It moves in a clockwise direction through the lower half-plane of the complex plane
for ω ∈ (ω̃2n, ω̃2n+1).

• It rests on the real axis with negative direction for any value ω = ω̃2n+1 (odd closed-
loop cross frequencies).

• It moves in a clockwise direction through the upper half plane of the complex plane
for ω ∈ (ω̃2n+1, ω̃2n+2).

On the other hand, notice thatQ(iω) is a polynomial on ω of degree 2N which changes sign
as ω variates through the open-loop crossing frequencies ωm. More precisely, let ω0 := 0,
if ω ∈ (ωm, ωm+1), then sgn {Q(iω)} = (−1)m and let ω ≥ ωN then sgn {Q(iω)} = (−1)N .

5.3.1 General Case

In this section, we establish stabilizing conditions on the gain K such that τ satisfies
conditions shown in (5.13). In other words, such a value of τ implies that the following
inequalities hold simultaneously:

sin(τωm) < 0, for odd m, sin(τωm) > 0, for even m.

Subsequently, there exist natural numbers nm odd (even) if m is odd (even) such that:

nmπ < τωm < (nm + 1)π, nm =
⌊
ωm

τ

π

⌋
,

straightforwardly, it is clear that:

nm
π

τ
< ωm < (nm + 1)

π

τ
→ ω̃nm < ωm < ω̃nm+1. (5.14)

It is worthy to notice that this last arguments show a particular interlacing condition
between the open- and closed-loop crossing roots frequencies. Such an observation is
heavily used in the proof of the following Proposition. Also notice that (5.14) can be
rewritten as follows:

nm < ωm
τ

π
< (nm + 1),

then, by means of the definition of the floor and ceiling functions, it is clear that the
computation of such bounding integers can be done as:

nm =
⌊
ωm

τ

π

⌋
, nm + 1 =

⌈
ωm

τ

π

⌉
. (5.15)
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Proposition 36. Consider the open-loop system (5.1) with N distinct single roots on the
imaginary axis and the one delay block controller (5.7). Let τ > 0 be a fixed delay value
such that:

(−1)m−1 sin(τωm) < 0, ∀m {1, 2, . . . , N} , (5.16)

and K be a positive real gain. Then, the closed-loop system is asymptotically stable iff:

K <
∣∣∣Q(i ⌊ωm τ

π

⌋ π
τ

)∣∣∣ , and K <
∣∣∣Q(i ⌈ωm τ

π

⌉ π
τ

)∣∣∣ ,
for all m.

Proof. The proof of this proposition is based in the geometric vectorial analysis presented
in Fig. 5.1 by means of the Mikhailov stability criterion. As stated in Theorem 2, this
result establish that asymptotic stability is achieved iff the complex vector ∆(iω) has an
accumulative phase of Nπ as ω ∈ [0,∞). For the sake of clarity, in this proof we focus
on the sufficiency of the conditions presented in this proposition. To such an end, assume
that K < |Q(iω̃n)| for all n ∈ Z.

Consider the intervals ω ∈ (ωm, ωm+1) for any m ∈ {0, 1, . . . , N − 1}, recall that
ω0 := 0. Consider first m even, then sgn {Q(iω)} = 1 and Q(iω) is a positive real
vector. As illustrated in Fig. 5.1c, since Ke−iτω is a rotatory vector with a clockwise
direction, ∆(iω) has a tendency to encircle the origin with a clockwise direction (negative
accumulated phase). More precisely, it achieves it if K > |Q(iω̃n)| for some odd n. Second,
consider m odd, then sgn {Q(iω)} = −1 and Q(iω) is a negative real vector. Similarly,
as illustrated in Fig. 5.1e, ∆(iω) encircles the origin with a clockwise direction (negative
accumulated phase) if K > |Q(iω̃n)| for some even n. Finally, consider ω ∈ (ωN ,∞) then
sgn {Q(iω)} = (−1N), depending on the number N this match any of the two scenarios
presented above. In general, since K < |Q(iω̃n)| for any n then ∆(iω) does not encircle
the origin if ω ∈ (ωm, ωm+1) for m ∈ {0, 1, . . . , N − 1} or ω ∈ (ωN ,∞).

We now study the behavior of ∆(iω) as ω varies through the open-loop crossing fre-
quencies ωm. To such an end, we analyze the intervals ω ∈ [ω̃nm , ω̃nm+1]. First consider
m odd, for this case nm is an odd number and as illustrated in Fig. 5.1e, Q(iω) changes
sign from positive to negative and Ke−iτω rotates in a clockwise direction through the
upper half-plane. Since K < |Q(iω̃nm)| and K < |Q(iω̃nm+1)|, this behavior starts in the
positive real axis and traverses the upper half-plane describing a path accumulating its
phase in π radians. Second, consider m even, for this case nm is an even number and as
illustrated in Fig. 5.1f, Q(iω) changes sign from negative to positive and Ke−iτω rotates
in a clockwise direction through the lower half-plane. Similarly, this behavior starts in
the negative real axis and traverses the lower half-plane describing a path accumulating
its phase in π radians. In general, we can state that:

θ arg ∆(iω)
ω∈[ω̃nm ,ω̃nm+1]

= π,
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and bearing in mind the above observations, then:

θ arg ∆(iω)
ω∈[0,∞)

=
N∑
m=1

[
θ arg ∆(iω)
ω∈[ω̃nm ,ω̃nm+1]

]
= Nπ,

if K < |Q(iω̃n)| for all n ∈ N ∪ {0}, which implies asymptotic stability according to the
Mikhailov Theorem.

The following section of this proof describes how conditions assumed on K can be
simplified through a deeper analysis of the real valued function Q(iω). Notice that Q(iω)
is a polynomial with N distinct real roots. Using Rolle’s theorem it is easy to deduct that
its derivative with respect to ω has only real roots, precisely 2N − 1. Also, each of these
are distributed in such a way that there is only one between every pair of consecutive
roots of Q(iω). More precisely, in each interval (ωm, ωm+1), (−ωm+1,−ωm) for m ∈
{1, 2, . . . , N − 1} and (−ω1, ω1), this last one is precisely ω = 0.

First, given that the derivative of Q(iω) does not have roots for ω ≥ ωN and since
ω̃nN+1 > ωN then, its modulus |Q(iω)| is a strictly increasing function for ω ≥ ω̃nN+1.
Therefore |Q(iω̃nN+1)| < |Q(iω̃n)| for any n > nN + 1. Second, consider the interval
[0, ω1], in this case Q(iω) has a root in ω = ω1 and its derivative has only one root in
ω = 0 in which achieves its maximum. Then, over this interval its modulus is a strictly
decreasing function. Therefore, given that ωn1 ∈ (0, ω1), |Q(iω̃n1)| < |Q(iω̃n)| for any
positive n < n1.

Third, consider any interval [ω̃nm+1, ω̃nm+1 ] which is a subset of (ωm, ωm+1). In other
words, such an interval contains all closed-loop crossing frequencies between any two
consecutive open-loop crossing frequencies. As mentioned before, the derivative of Q(iω)
has only one root in (ωm, ωm+1), and subsequently it has at least one in [ω̃nm+1, ω̃nm+1 ].
It can be easily deducted that its modulus achieves its minimum at some of its extreme
points. Therefore, |Q(iω̃nm+1)| < |Q(iω̃n)| or

∣∣Q(iω̃nm+1)
∣∣ < |Q(iω̃n)| for any integer

n ∈ (nm + 1, nm+1).

Bearing in mind the above observations, we can simplify our stabilizing conditions on
K as K < |Q(iω̃n)| for all n ∈ n1, n2, . . . , nN and n ∈ n1 + 1, n2 + 1, . . . , nN + 1. Finally,
such numbers can be computed straightforwardly using the floor and ceiling functions as
described in (5.15) and as proposed in this proposition.

5.3.2 Equidistant Distribution

Consider the particular case of an equidistant distribution of the open-loop crossing roots.
More precisely, such a case implies that ωm = mωb for some base frequency ωb ∈ R. For
such a scenario its characteristic polynomial Q(s) can be explicitly described as:

Q(s) =
N∏
m=1

(
s2 +m2ω2

b

)
.
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Figure 5.1: Accumulative Argument Analysis of the Complex Vector ∆(iω).
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In the following proposition we state stabilizing conditions on the controller parameters.

Proposition 37. Consider the open-loop system (5.1) with N distinct single roots on the
imaginary axis such that ωm = mωb, where ωb > 0. Also, the one delay block controller
(5.7). Let τ be a fixed delay value:

τ ∈
(

(2j − 1)
π

ωb
,
(2j − 1)N + 1

N

π

ωb

)
,

for some j ∈ N, and K be a positive real gain. Then, the closed-loop system is asymptot-
ically stable iff:

K <
∣∣∣d(inπ

τ

)∣∣∣ , and K <
∣∣∣d(i (n+ 1)

π

τ

)∣∣∣ ,
where n = m(2j − 1) for all m ∈ {1, 2, . . . , N}
Proof. The proof of this result makes use of Proposition 36. First, in order to construct
a solution τ for conditions (5.16) we propose the following distribution of the values
ωm=mωb:

mπ < τmωb < (m+ 1)π, ∀m ∈ {1, 2, . . . , N} (5.17)

It is clear that a solution τ for these inequalities can be computed as:

π

ωb
< τ <

m+ 1

m

π

ωb
, ∀m ∈ {1, 2, . . . , N} , (5.18)

since m ≤ N it follows directly:

1

m
≥ 1

N
→ 1 +

1

m
≥ 1 +

1

N
→ m+ 1

m
≥ N + 1

N
,

then, the intersection of all intervals solving (5.18) can be computed explicitly as:

π

ωb
< τ <

N + 1

N

π

ωb
.

Similarly, multiplying inequalities (5.17) by any odd number yields the following

(2j − 1)mπ < τmωb < ((2j − 1)m+ 1) π, j ∈ N, (5.19)

which are also valid conditions for (5.16). Using the same steps as before we compute the
stabilizing τ intervals:

π

ωb
(2j − 1) < τ <

(2j − 1)N + 1

N

π

ωb
. (5.20)

The following step is to compute the proper stabilizing value of K defined through
Proposition 36. To such end, first notice that if τ is chosen from (5.20), then inequality
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(5.19) holds and can be rewritten as:

(2j − 1)m <
τmωb
π

< (2j − 1)m+ 1, j ∈ N,

where m ∈ {1, 2, . . . , N}. Bearing in mind this inequality it is evident that:⌊
ωm

τ

π

⌋
=

⌊mωbτ
π

⌋
= (2j − 1)m,⌈

ωm
τ

π

⌉
=

⌈mωbτ
π

⌉
= (2j − 1)m+ 1,

which in according Proposition 36 implies conditions stated in this proposition.

5.4 Illustrative Example - Equidistant Distribution

In this section, we present an illustrative example concerning the result shown in Propo-
sition 37 regarding an equidistant distribution of the open-loop crossing roots. For the
sake of clarity, consider ωb = π and N = 3, in other words, a sixth-order open-loop system
with poles located exactly in s = ±iπ,±i2π,±i3π. Using this proposition, we construct
the stability regions shown in Fig 5.2a, particularly for j = 1, 2, 3, 4. Let us take a look
at the case j = 2 correspondent to the stability region shown in Fig. 5.2b. According to
Proposition 37, its stabilizing interval of τ is directly computed as τ ∈ (3, 3N+1

N
) = (3, 10

3
).

Consider now a value of such an interval τ = 3.31 ∈ (3, 3.333), this is enough information
for computing the stabilizing gain interval K ∈ (0, 4460). In order to test this numerical
result, one considers a parametrical variation concerning this information. We test this
scenario using the MatLab package DDEBifTools which allows us to find a numerical
solution of the roots of the characteristic quasipolynomial. The results are presented in
Fig. 5.2c which illustrates the movement of the characteristic roots as the controller pa-
rameters are varied. In this figure, it is shown how starting in K = 0 the roots lie on the
imaginary axis, and as K increases, they move to the LHP of the complex plane (implying
stability) tending to cross again through the imaginary axis at the end of such a variation.
In conclusion, such parameters choices shows that the characteristic roots remain in the
LHP of the complex plane implying asymptotic stability of the closed-loop system.

5.5 Concluding Remarks

In this chapter one studies the classical problem of stabilizing a chain of oscillators using a
single delay block. In other words, such an open-loop system has only poles that are purely
imaginary. First, one studies deeply this problem by using crossing roots theory. Second,
using some insights from this first stage, one complements the analysis using the Mikhailov
criterion. This is an analysis based on the well-known argument principal. Explicit
conditions for the delay and gain are derived. Finally, numerical results concerning the
case in which the open-loop roots are evenly distributed are addressed.
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(a) Stability Regions (b) Parametrical Variation
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Figure 5.2: Illustrative Example.





Chapter 6

Concluding Remarks

This thesis considers the use of delay-based controllers to stabilize closed-loop control
schemes applied to SISO-LTI systems. In this regard, we could say that every aspect of
this thesis revolves towards one single task: the proper selection of the controllers’ param-
eters of delay-based control schemes to achieve asymptotic stability.This fact is directly
related to the location of the characteristic roots of the closed-system. As a consequence,
this document is also a detailed study of some classes and particular examples of the so-
called quasi-polynomial functions (linear DDE’s characteristic functions). More precisely,
we study the location of the roots of these functions with respect to its parameters (co-
efficients, delay). In the following we address some concluding remarks and future work
ideas for each chapter.

In Chapter 2 we introduce two different methods to find stability conditions on the
controller’s parameters of three delay-based controllers: the Pδ, PDδ and PδI controllers.
To such end, two methods based on crossing roots stability theory are used: stability index
computation through direct crossing roots counting and the σ-instability analysis, first
presented in this research. Some future work ideas are presented below:

• σ-stability analysis: to find the minimum number of curves needed to discriminate
all possible unstable regions. And therefore, to achieve necessary and sufficient
conditions.

• To develop a deeper understanding in the role of the delay in these delay-based
controllers. For example, computing performance indicators in terms of the delay
and gain related values, at least for first and second-order transfer functions.

• To include at least partially the modulus and phase information together with the
founded stability regions for Bode-alike frequential analysis.

• Delay-based control design: to develop a user friendly toolbox containing all meth-
ods studied in this chapter to design control schemes based on the Pδ, PDδ and
PδI controllers.

In Chapter 3 we present a variety of applications using delay-based control schemes
designed by using similar approaches to the ones introduced in Chapter 2. Particularly,
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the experimentation results of some bilateral teleoperation (and virtual) haptic systems.
The design of a voltage regulation control scheme for a buck dc/dc converter using two
delay-based controllers: PδI and Pδ controllers. Finally, the study of a classical control
problem, the stabilization of the Furuta pendulum, done by a LQR strategy considering
input-delay. Some future work ideas are presented below:

• Power electronics applications: to study the implications of having a delay nature in
the control scheme on commutation frequency related phenomena. More precisely,
how does it affect the voltage and current ripples.

• Furuta pendulum: to extend the control law from different gains and one single
delay to using different delays for each variable in the state feedback.

In Chapter 4 we explore a real engineering application using a delay-based controller.
More precisely, this chapter studies the design of a MPPT-PV system using a buck dc/dc
converter and a PδI controller (with an output/input linearization technique). A method-
ology for computing the controller’s parameters stability regions and the zero dynamics
analysis are addressed. Furthermore, and most importantly, experimental results with
such delay-based setup are shown and discussed. Some future work ideas are presented
below:

• MPPT system: To include an algorithm for the computation of the MPP (control
reference) directly on the controller scheme’s dynamics.

• Power electronics: To develop a methodology for computing stability regions imply-
ing not only stability, but also a bounded control effort (duty cycle d(t) ∈ [0, 1]))
given initial conditions. In other words, to considered the bounded input nature of
these PWM controlled system.

Lastly, in Chapter 5 we aim to solve the classical delay-based control problem of
stabilizing a chain of oscillators using one single delay-block. To such end, we make
use of crossing roots stability theory with the Mikhailov criterion (stretchy based on
the principle argument theorem) to find explicit conditions on the gain and delay values
assuring closed-loop asymptotic stability. Also, a simple corollary for the case in which
the oscillators’s frequencies are multiples of a single base frequency value is presented with
numerical examples. Some future work ideas are presented below:

• To study the necessity property for such stabilizing conditions.

• To consider negative gain values.

Finally, in our personal opinion, we would like to say that the strongest feature of this
thesis is its diversity. Throughout this document one is introduced to the presentation
and development of analytical statements, numeric methods, applications examples, real
engineering problematics, control design methodologies and experimentation. In general,
we allow us to believe that this thesis is successful in building a motivation for the serious
study of delay-based control schemes.
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Bárcenas. A current sensorless delay–based control scheme for mppt–boost con-
verters in photovoltaic systems. IEEE Access, 8:174449–174462, 2020. doi: 10.1109/
ACCESS.2020.3024566.

[37] R. Khanna, Q. Zhang, W. E. Stanchina, G. F. Reed, and Z.-H. Mao. Maximum
power point tracking using model reference adaptive control. IEEE Transactions on
Power Electronics, 29(3):1490–1499, 2014.

[38] V. Kharitonov, S.-I. Niculescu, J. Moreno, and W. Michiels. Static output feedback
stabilization: Necessary conditions for multiple delay controllers. IEEE Transactions
On Automatic Control, 50(1):82–86, 2005.

[39] A. Kihal, F. Krim, A. Laib, B. Talbi, and H. Afghoul. An improved mppt scheme
employing adaptive integral derivative sliding mode control for photovoltaic systems
under fast irradiation changes. ISA Transactions, 1(87):297–306, 2019.

[40] M. Killi and S. Samanta. Modified perturb and observe mppt algorithm for drift
avoidance in photovoltaic systems. IEEE Transactions on Industrial Electronics, 62
(9):5549–5559, 2015.

[41] A. M. Krall. On the real parts of zeros of exponential polynomials. Bulletin of the
American Mathematical Society, 70(2):291–292, 1964.

[42] M. Landry, S. A. Campbell, M. Morris, and A. C. O. Dynamics of an inverted pen-
dulum with delayed feedback control. SIAM Journal on Applied Dynamical Systems,
4(2):333–351, 2005.

[43] B. Liacu, A. T. Koru, H. Ozbay, S.-I. Niculescu, and C. Andriot. Optimizing low-
order controllers for haptic systems under delayed feedback. Control Engineering
Practice, 21:655–668, 2013.

[44] S. Lyden and M. E. Haque. Maximum power tracking techniques for photovoltaic
systems: A comprehensive review and comparative analysis. Renewable & Sustainable
Energy Reviews, 52:1504–1518, 2015.

[45] M. Marden. Geometry of polynomials. American Mathematical Society, 1949.

[46] C.-F. Méndez-Barrios, S.-I. Niculescu, I.-C. Morărescu, and K. Gu. On the fragility
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