
HAL Id: tel-03269393
https://theses.hal.science/tel-03269393

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design optimization of a gearbox driven tidal stream
turbine

Khalil Touimi

To cite this version:
Khalil Touimi. Design optimization of a gearbox driven tidal stream turbine. Electric power. Univer-
sité de Bretagne occidentale - Brest, 2020. English. �NNT : 2020BRES0029�. �tel-03269393�

https://theses.hal.science/tel-03269393
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

 
 
L'UNIVERSITE  
DE BRETAGNE OCCIDENTALE 
 
 
ECOLE DOCTORALE N° 602  
Sciences pour l'Ingénieur  
Spécialité : Génie électrique 
 

Design Optimization of a Gearbox Driven Tidal Stream Turbine. 
 
 
 
Thèse présentée et soutenue à Brest, le 23 Juin 2020 
Unité de recherche : UMR CNRS 6027 IRDL – Institut de Recherche Dupuy de Lôme 

 

Par 

Khalil TOUIMI 
 

 

 
  

Rapporteurs avant soutenance : 
 
Abdesslem DJERDIR   Professeur, UTBM 
Jean-Philippe LECOINTE   Professeur, Université d’Artois 
 
Composition du Jury :  
 
Président :  
Claude MARCHAND   Professeur, Université Paris-Saclay 
 
Examinateurs :  
Mostapha TARFAOUI    Professeur, ENSTA Bretagne 
Anne BLAVETTE   Chargée de Recherche CNRS, ENS Rennes 
Jean-Frédéric  CHARPENTIER   Maître de Conférences – HDR, Ecole Navale 
Abdesslem DJERDIR   Professeur, UTBM 
Jean-Philippe LECOINTE  Professeur, Université d’Artois 
 
Dir. de thèse :  
Mohamed BENBOUZID   Professeur, Université de Bretagne Occidentale 
 
 
Invité(s) 
Nicolas RUIZ    Ingénieur, Guinard Energies  



To my father, my mother, my wife, and my children

i





Abstract

Abstract: Tidal stream energy is acquiring more and more attention
as a future potential renewable energy source. However, tidal stream
turbines are still in development stages and their technology is not as
mature as wind turbine technology. In addition to the infancy of the
technology, tidal stream turbines have to withstand the harsh subma-
rine environment where they are immersed. These constraints increase
the criticality of tidal stream turbine subsystems and make them less
reliable. Therefore, improving the reliability presents one of the chal-
lenges to make such energy competitive in terms of cost compared to
other types, notably wind and solar energy. Indeed, the tidal stream
turbine reliability and the produced energy cost are mainly a�ected by
the drivetrain and generator configuration choices. In this thesis, the
suitable drivetrain and generator option choice is investigated for tidal
stream turbine specifications. Three main generators and drivetrain
configurations are considered which are, the direct-drive tidal stream
turbine (gearless), the mechanically geared tidal stream turbine (two-
stage and single-stage gearbox driven), and the magnetically geared
one. The design process considers the electromagnetic modeling of the
generator, the converter model, the turbine model, and the tidal current
velocity data (near Ouessant island). The investigation results could be
useful for tidal stream turbine designers and could give them a sight on
the feasibility of each tidal stream turbine type.
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1. Introduction

1.1 Overview

Tidal energy is due to oceanic tides, which are periodic and depends on the gravita-
tional attraction exerted by the moon. Such phenomena creates strong current forces
which can be harnessed and converted to electricity by means of tidal stream turbine
generators. These properties make the tidal stream energy advantageous over wind or
solar energy in terms of predictability and power density. Indeed, many tidal stream
turbines systems were employed last decade. Among them, some industrial tidal
power schemes are cited below:

• In the Race Rocks Demonstration Project, a tidal stream turbine demonstration
was installed at Race Rocks (Canada) in 2006. The project is shut down in
2011 because of the high operating cost.

• Jindo Uldolmok Tidal Power Plant in South Korea in 2009.

• The 1.2 MW SeaGen tidal turbine in Strangford (United Kingdom) in 2008.

• The 500 kW OpneHydro/Naval Group direct-drive tidal stream turbine in
France.

• The 1 MW Andritz/Hammerfest tidal stream turbine in Okney Islands (United
Kingdom).

• The 1 MW Alstom tidal strem turbine in Orkney Islands (United Kingdom).

• The 1 MW voith Hydro tidal stream turbine in the island of Eday (United
Kingdom).

Despite the technological advancement in tidal stream energy production, many
technical and economical issues was encountered, which discourage the investment
in such domain. Indeed, the tidal turbine technology is at its infancy and need more
research and development.

1



Chapter �. Introduction

1.2 Issues and challenges

The tidal current energy production su�ers from many problems which can be sum-
marized in two axes: 1. Cost-e�ectiveness. 2. Bio fooling and environmental issues.
The cost-e�ectiveness issues is related to the techno-economical ones. Whereas, bio
fooling and environmental problems concerns the sea life that can a�ect or be a�ected
by the marine generators.

1.2.1 Cost-e�ectiveness

Tidal energy projects require an expensive initial budget which make such energy
unpopular. Moreover, tidal stream turbines are based on new technologies, where new
drivetrains and generator topologies are employed. Therefore, more investigations
are required to choose the good configuration options to employ. On the other hand,
the cost can be improved by choosing the relevant deployment sites, where further
investigations are needed in this topic. Therefore, cost-e�ectiveness can be improved
by:

• Improving the system availability and reliability.

• Enhancing existing technologies already developed in similar systems such
wind turbines.

• Developing new reliable technologies as magnetic gearing.

1.2.2 Biofouling

Unlike wind turbines, tidal turbines are submarine systems, which su�er from the
biological fouling (biofouling). Biofouling is a biological phenomena that happens
when any structure is placed in high tides levels sites. Such problem reduces the
hydrodynamic e�ciency of blades, which causes high power losses, the need of
regular cleaning, and the the operating cost increase.

1.2.3 Environmental concerns

Tidal stream turbine a�ects the sea wild life with their emitted noise. The rotating
blades kill accidentally swimming sea animals. Even if a safety mechanism is em-
ployed to turn o� the turbine, the sea animals can cause a huge loss of energy during
the cut-out period. In addition to the lubricating oil impact on the sea water animals,
the painting used to prevent the biofouling growth can be harmful to them.
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1.3 Thesis outline

As previously presented, the tidal stream energy production su�ers from many issues.
In this PhD thesis, the availability and reliability of tidal stream turbines is investi-
gated according to their drivetrain configuration and basing mostly on wind turbines
reliability data. Besides that, the cost-e�ectiveness of the mainly employed drivetrain
options in the tidal turbine systems are investigated, where the Ouessant site marine
energy potential is considered. In addition, magnetically gearbox driven generator is
proposed as a promising technology in the field of marine energy production. It is
afterwards designed and optimized considering tidal turbines specifications.

The thesis content is structured in four chapters:

• Chapter 2 deals with the tidal stream turbine availability and performance
according to the drivetrain option. In this context, a review-based comparative
study is performed to investigate the suitable drivetrain option for tidal stream
turbine applications. The study focuses on the presence or not of a gearbox in
the drivetrain and its impacts on the overall system availability and performance.

• Chapter 3 is devoted to the design modeling of the two-stage gearbox driven tidal
stream turbines, the single-stage gearbox driven one, and the direct-driven one.
First, the model of the marine current resources, where the turbine is supposed
to be installed, is taken in consideration. The model allows the calculation of
annual harnessed energy depending on the power rating, the cut-in speed of the
generator, and the hydrodynamic e�ciency of the turning blades. Secondly, an
analytical design model of two types of gearboxes (parallel shaft, planetary) is
developed by considering the tidal stream turbine specifications. Lastly, a two-
dimensional analytical model based on magnetic circuit calculation is adopted
for the permanent magnets generator sizing.

• In chapter 4, the design optimization of the tidal stream turbine is performed.
Indeed, three drivetrain configurations are considered: the single-stage gearbox
driven tidal stream turbine, the two-stage gearbox drive one, and the direct-drive
one. The estimated cost and size of the three designed systems are compared.
Besides, the gearbox ratio impact and cost-e�ectiveness are investigated by
considering di�erent power ratings.

• Chapter 5 deals with the finite element based design optimization of a 500kW
magnetically-geared generator for tidal stream turbine applications. Such gen-
erator topology is proposed in chapter 2 as an alternative solution due to its
technical advantages. Fist, the pseudo-direct drive, which is an outer-stator
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magnetically-geared generator, is introduced as well as its operating principles.
Than, an analytical rough design is developed to be used as an initial sizing
model. The Design optimization methodology is afterwards presented, where
the feasible direction method is adopted as an optimization algorithm.
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2. Tidal Stream Turbine Drivetrain
Configurations

2.1 Background

Tidal stream energy is acquiring more attention as a promising renewable energy
source. Tidal current oscillations are highly predictable unlike solar or wind energy.
Tidal stream turbines, which are analogous to wind turbines, convert the marine
current energy to electrical one. However, tidal stream turbine technology is still in
development stages contrary to wind turbine technology. Besides that, tidal stream
turbines are submerged systems, which increases their criticality due to the submarine
aggressive environment. Therefore, tidal stream turbines are potentially exposed to
high downtimes due to the di�culty to access to the submerged system. For these con-
cerns, tidal stream energy is considered as an expensive one and to make such energy
competitive and largely deployable many improvement need to be addressed. Indeed,
many prototypes were created last decades, where many concepts are competing for
supremacy.

According to the drivetrain and generator topology, tidal stream turbines can be
divided into two mean types:

• Gearbox driven tidal stream turbines with high speed generators.

• Direct drive tidal stream turbines with low speed generators (without a gearbox).

Drivetrain and generator configuration choices present one of the most important
concerns for tidal stream turbine industry (as it is for wind turbine industry), where the
main problematic is: should gearboxes be used or not. Indeed, the tidal stream turbine
configuration choices a�ect the availability and the cost of energy. However, tidal
stream turbine industry is in its early stages and the reliability data of these systems are
rare. Hence, to advance the tidal stream turbine technologies development, knowledge
and know-how acquired last decades on wind turbines could be transferred.
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Since 1991, direct-drive concept appears in wind turbine industry to minimize mainte-
nance problems and avoid mechanical gearbox failures. This option has been adopted
by OpenHydro/Naval Energies in their tidal stream turbine (fig. 2.1).

F����� 2.1: OpenHydro/Naval Energies direct-drive tidal stream tur-
bine [1].

Although direct-drive systems are e�cient and reliable, their high cost and high
weight have hindered their widespread deploy. Besides that, mechanical gearboxes
used in geared tidal stream turbines are a mature standardized technology and their
reliability is improving [3]. Indeed, geared tidal stream turbines have been adopted
in well-known tidal turbine projects (fig. 2.2) [1]. However, the mechanical gearbox
is still a critical subsystem which requires regular maintenance and has a high mean
time to repair especially in the case of submarine systems. It is accordingly clear
that both gearbox driven and direct-drive concepts have pros as well as cons and tidal
stream turbine industry has not yet converged to one recommended topology. This
chapter discusses di�erent drivetrain configurations and compare them qualitatively
basing on wind turbine failures data and statistics.
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F����� 2.2: GE/Alstom geared tidal stream turbine [1].

2.2 Tidal stream turbines drivetrain availability

Tidal stream turbines and wind turbines systems are analogous, which allows to assess
their reliability and compares qualitatively between the di�erent existing drivetrain
configurations. Although the tidal stream turbine failures data are not available, last
years some failures have been reported. The first turbine failure concerns the 1 MW
OpenHydro direct-drive tidal stream turbine in Canada (Bay of Fundy) in 2009 (fig.
2.1). The problem have been reported after three weeks of the deployment because
of blades failure due to fatigue issues. Another blade fault have been reported at
the Atlantis Resources AK1000 tidal stream turbin in 2010 due to manufacturing
fault [2]. Therefore, to predict such failures and avoid long downtimes a condition
monitoring scheme is needed [2, 28, 29]. However, condition monitoring for tidal
stream turbine should be specific to consider the marine current load variability and
amplitude [4,30]. Indeed, tidal stream turbines input torque is 50% much greater than
wind turbines one for the same rated power due to the high water density compared
to air [31]. Moreover, it has been shown that the shaft speed variations are greater
for tidal stream turbines than for wind turbines even though wind current fluctuations
are greater [31]. Accordingly, the high loading torque fluctuations highly a�ects the
reliability of tidal stream turbine mechanical subsystems especially the gearbox. In
the study [2], tidal turbine components criticality are evaluated according to their Risk
Priority Number (RPN) (see equation (2.1)), which is the multiplication of occurrence
(Occ), severity (Sv), and probability of failure detection (Pf ) [32].
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RPN = OccSvPf (2.1)

F����� 2.3: Tidal turbine sub-assemblies criticality [2].

Figure 2.3 shows that the gearbox has the highest RPN. As for wind turbines fail-
ures survey [3, 33], it has been shown that the gearbox downtime is relatively high
when compared to the other subsystems. Hence, higher gearbox downtimes will be
experienced due to the di�culty to access along with the weather conditions [34].

2.3 Geared vs. gearless tidal turbine : progress on
both sides

2.3.1 Gearbox and geared turbines

Last decades, gearbox failures a�ected the wind turbine industry through downtime
and cost of repair (fig. 2.4). However, geared systems components, especially the
generator, are standardized, available in the market, and cheaper [35]. Moreover,
geared wind turbines are widely deployed during last decades which o�ers a large
theoretical and practical knowledge. Such knowledge presents a great advantage to
accelerate geared tidal turbines development [36]. Gearboxes, as a mature technol-
ogy, are widely used in transport, energy, and process industries. They are vital
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components and their mean time to repair (MTTR) is usually the highest among the
other subsystems.

F����� 2.4: Wind turbine subsystems downtime [3, 4].

The availability of wind turbine gearboxes, based on the National Renewable Energy
Laboratory reliability database, has been improved from 2013 [3]. Such improve-
ments can be qualitatively considered although the logistic delay time and MTTR of
o�shore tidal stream turbines are higher than onshore wind turbines, mainly due to
the di�culty of on-site access. Concerning the gearbox failures rate, it is less than
15%, of which 76% are due to bearing faults, however electrical sub-assemblies faults
are more than 25% [37,38].

Besides that, Energiforsk has led an important project in 2016, entitled "Maintenance
e�ect on present and future wind turbine gearboxes" [5]. In this project, the reliability
of three types of gearboxes under di�erent conditions have been analyzed. The
objective was to improve wind turbine gearboxes reliability by identifying optimal
maintenance schedules and improving gearbox designs. The project studied three
(2 MW) wind turbine gearboxes: A typical 3-stage gearbox (fig. 2.5) [29], an
optimized design of the typical gearbox, and a future gearbox design. The main
obtained results show that the typical gearbox and the optimized one become less
reliable if conditions change (application factors), whereas the future gearbox design
remains una�ected. Accordingly, in addition to condition monitoring, advancements
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in optimization present an important factor to improve gearboxes reliability whatever
the industrial application.

Regarding the development of tidal stream turbine in this field, fig.2.6 illustrates some
important projects dealing with geared systems [1, 6], while fig. 2.7 presents some
commercialized tidal stream gearboxes [7].

F����� 2.5: Typical planetary gearbox [5].

2.3.2 Gearbox issues mitigation

Typical operations and maintenance actions, such as the fine filtration of lubricating
oil and the use of remote condition monitoring, are required to detect incipient faults
and ensure the good functioning of gearboxes particularly in o�shore applications
[39]. Besides that, manufacturers try to prolong the service life of wind turbines
by developing more robust gearbox systems that withstand the varying load torque.
In this context, the Pure Torque concept is proposed by GE/Alstom [8]. In fact, in
addition to the rotational forces, wind turbine rotor transmits side forces to the main
shaft and gearbox due to the high load input. In the Pure Torque design, a cast iron
frame supports the rotor shaft as an extension of the tower structure (fig. 2.8). Hence,
the deflective loads are diverted to the front frame not to the drivetrain. Moreover,
even under extreme load cases, gearbox misalignment and displacements stay steady
with low amplitudes. On the other hand, according to an Alstom study covering 930
wind turbines with rated power from 1.67 MW to 3.0 MW and during 5.5 years,
gearbox failure rate causing replacements was lower one order of magnitude than in
other drivetrain configurations. This concept is chosen to design the o�shore wind
turbine GE/Alstom 6MW Haliade 150 (fig. 2.9) [8, 9, 40, 41].
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F����� 2.6: Geared tidal stream turbines. (a) SeaGen tidal stream
turbine (©Simec Atlantis Energy) [6]. (b) AR1000 tidal stream tur-
bine (©Simec Atlantis Energy) [6]. (c) Oceade tidal stream turbine

(©GE/Alstom) [1].
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F����� 2.7: Industrial tidal stream turbine gearboxes (©Wikov) [7].
(a) 650 kW planetary gearbox with generator of the MCT SeaGen tidal
stream turbine. (b) 1.5 MW planetary gearbox of the MeyGen project.
(c) 500 kW planetary gearbox of the TGL EMEC demonstrator project.
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F����� 2.8: The Pure Torque concept design [8].

F����� 2.9: GE/Alstom 6 MW Haliade 150 o�shore wind turbine [9].

2.3.3 Direct-drive turbines

Direct-drive concept is particularly designed to improve reliability by removing the
gearbox which is considered as a critical component. In this option, the generator is
a low speed and high torque multi-pole one, it has a high diameter, and its mass is
therefore considerably high. With the decreasing prices of permanent magnets, the
direct-drive systems design moves from wounded rotors to permanent magnet ones
which reduces their cost, size, and weight [42]. The direct-drive wind turbines success
(e.g. Enercon and Siemens) has proved the commercial viability of unconventional
drivetrain options. Therefore, direct-drive configuration have been chosen by many
manufacturers for their product [43]. However, the great size and weight due to the
generator present a major disadvantage in particular to tidal stream turbines [44]. In
fig. 2.10, illustrative examples of such generators are presented [10, 11].
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F����� 2.10: Direct-drive wind turbine generators illustration. (a)
Siemens permanent magnet 3 MW, 17 rpm generator [10]. (b) Enercon

E-126 7.5 MW, 13 rpm excited synchronous generator [11].

Concerning tidal stream turbines, the direct-drive concept has been approached in
both academia and in some important industrial projects [45–50]. In these studies,
specific permanent magnet generators topologies have been dealt for tidal stream
turbine applications.

The rim-driven concept is part of direct-drive drivetrain options, which is similar to
OpenHydro concept (fig. 2.1) [51, 52]. In rim-driven topology (figs.2.11 and 2.12),
the generator is inserted in a nacelle in the turbine periphery which is advantageous
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in terms of hydrodynamic e�ciency compared to POD topology [44]. Despite
the encouraging results obtained with this topology, it is still su�ering from the
considerable weight due to the structural large diameter [53]. Some important projects
dealing with direct-drive systems are illustrated in Figure 2.13, [1], [54].

F����� 2.11: Rim-driven concept using a radial flux permanent gen-
erator [12].

F����� 2.12: Rim-driven demonstrator that uses a RFPM generator
[12]
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F����� 2.13: Direct-drive tidal stream turbines. (a) OpenHydro Naval
Energies tidal stream turbine (OpenHydro). (b) Voith Hydro tidal
stream turbine (Voith) [13]. (c) Sabella D10 tidal stream turbine [14]
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2.3.4 Integrated drivetrain options : Multibrid

The Multibrid concept is an integrated drivetrain option which is the intermediate
between the conventional geared concept and the direct-drive one avoiding their
extreme characteristics. In this hybrid solution, the single-stage planetary gearbox
(sometimes two-stages), the medium speed permanent magnet generator, the main
shaft, and the shaft bearing are all integrated in the same housing. In this case both
the generator and the gearbox have approximately the same size which leads to more
balanced drivetrain arrangement. This technology, also known as semi direct-drive,
was first introduced by AREVA Wind (figs. 2.14 and 2.15) [39, 55, 56].

F����� 2.14: View of the Areva Multibrid M5000 wind turbine with
2-stage gearbox (Areva) [15].

F����� 2.15: The Areva Multibrid M5000 5 MW wind turbine nacelle
(Areva) [11].
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A small scale tidal stream turbine system with the same technology have been de-
signed, realized, and tested in the Chinese Zhoushan water channel (fig. 2.16) [16].
In addition to cost and size advantages of Multibrid drivetrain, a recent survey study
in the Chinese wind turbine market shows its high availability and operating reli-
ability [17]. In this context, the Chinese Wind Energy Association (CWEA) have
conducted an investigation on 47 Chinese wind turbine manufacturers, components
suppliers, and developers and results show that the Multibrid wind turbines have the
highest annual availability compared to wind turbines with a doubly-fed induction
generator (DFIG) or a direct-drive permanent magnet synchronous generator (PMSG)
(fig. 2.17).

F����� 2.16: Small scale Multibrid tidal stream turbine [16].

F����� 2.17: Annual availability of three wind turbine types in China
[17]
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2.3.5 Hydraulic transmission

Professor Stephan Salter and his research group at the Endinburgh University for
wave energy conversion applications developed a hydraulic transmission based on
the Digital Displacement technology (fig. 2.18) [18, 57]. Such transmission can
convert a variable low speed high torque input into a constant high speed low torque
output. Now, it is commercialized by Mitsubishi Heavy Industries. In 2014, a 7 MW
o�shore wind turbine demonstration has been planted in Hunterston (Scotland) [58].
Besides that, the authors in [19, 59] investigated the hydraulic transmission where a
small-scale tidal stream turbine has been designed and tested (fig. 2.19). Their main
results show that the hydraulic transmission option is low e�cient compared to the
gearbox transmission.

F����� 2.18: Digital Displacement hydraulic transmission (©Artemis
Intelligent Power Ltd) [18].

F����� 2.19: Tidal stream turbine using a hydraulic transmission
system [19]. (a) Hydraulic system. (b) The turbine.
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2.4 Geared vs. gearless tidal turbine: performances

Mechanical gearboxes consist of a number of gear stages. In general, three-stage
gearboxes are common in the tidal and wind turbine industry but two- and single-
stage gearboxes are acquiring more attention as designers try to reduce weight, size,
and maintenance costs by using lower speed generators. In [60] it was shown that
single-stage gearboxes, with a low gear ratio, can be the most e�cient. Besides
that, the generator design and topology di�ers depending on the chosen drivetrain
configuration and the number of stages if the gearbox exists. The performances of
each configuration are discussed and compared in [35, 61–63].

For instance Tavner et al. [64,65] investigates the reliability of wind turbine generators
and converters. The obtained results show that the direct-drive wounded rotor syn-
chronous generators (WRSG) failure rates are more than the double of those geared
generators. Moreover, converter and electronics failures rate of direct-drive wind
turbines are considerably higher compared to geared ones. Indeed, the paid price to
improve the direct-drive wind turbines reliability, by removing the gearbox, has led
to a decline of electrical parts reliability. However, due to the long downtime of me-
chanical gearboxes compared to electronics and converter components, the gearbox
driven wind turbines were less available. Accordingly, direct-drive WRSG appears
not suitable for tidal stream turbine applications in particular for high power rating.

In another paper [66], a techno-economic study have been carried out to compare
the operational aspects of direct-drive and geared onshore wind turbines. This study
shows that the geared concept remains being preferable from the economical view-
point, and to make direct-drive concept cost competitive, its components costs should
be reduced by 50%.

The authors in [60] investigate the cost of energy and performances of four generator
topologies: the direct-drive permanent magnet generator (DDPMG), the permanent
magnet generator with a single-stage gearbox (PMG1G), the permanent magnet gen-
erator with a two-stage gearbox (PMG2G), the permanent magnet generator with a
three-stage gearbox (PMG3G). The study considers typical 6 MW o�shore wind tur-
bines and the results show that the DDPMGs have significant copper losses (almost
half the total losses) due to the high number of coils in such topology. Besides that,
the availability is high despite the high winding faults.

Concerning the PMG1G configuration, the generator is smaller and lighter compared
to direct-drive one due to its low torque rating. In addition, the single-stage gearbox
is more e�cient than the other gearbox types. The PMG1G converter losses are
relatively similar to DDPMG ones. However, compared to PMG2G and PMG3G, the
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PMG1G is also advantageous due to its balanced gear, iron, and copper losses. Re-
garding the availability the PMG1G is competitive to DDPMG despite the mechanical
failure due to the gearbox.

The PMG2G is considerably smaller than the previous generators, but the additional
gear stage leads to more gear losses and increases the size, weight, and cost of the
gearbox.

Even if the three-stage gearbox driven generator is not recommended for tidal stream
turbine applications, the generator is more compact, more e�cient, and cheaper.
However, the three-stage gearbox have a bigger size and weight and it is more expen-
sive and less reliable.

Concerning the estimated cost of energy, the DDPMG have the lower cost of energy,
However this configuration is more sensitive to permanent magnet prices than PMG1G
one. An increase of permanent magnet prices scenario can make the PMG1G more
advantageous [60].

In Polinder et al. work [35], which precedes the above-cited study, a comparaison
between five generator topologies were presented: a doubly-fed induction generator
with three-stage gearbox (DFIG3G), a direct-drive wounded rotor synchronous gen-
erator (DDSG), a direct-drive permanent magnet generator (DDPMG), a single-stage
gearbox driven permanent magnet generator (PMG1G), and a doubly-fed induction
generator with a single-stage gearbox (DFIG1G). Similar conclusions were attained
where the crucial importance of availability and reliability were highlighted espe-
cially in o�shore conditions. Another study [20] considered the availability of the
following generator topologies: permanent magnet synchronous generator (PMSG),
wounded rotor synchronous generator (WRSG), squirrel cage induction generator
(SCIG), wounded rotor, and brushless doubly-fed induction generator (DFIG). The
comparison results show how promising are single-stage gearboxes even though the
direct-drive PMSGs have the lead (fig. 2.20). In this context, direct-drive concept
remain being chosen by some wind and tidal turbine manufacturers and developers.
Figures 2.21 and 2.22 give an illustrate of recent projects: The coming GE Haliade-X
12 MW wind turbine [21] and the Nova Innovation Ltd D2T2 direct-drive tidal stream
turbine [22].
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F����� 2.20: Drivetrain availability in o�shore wind turbines [20].

F����� 2.21: Haliade-X 12 MW wind turbine (©GE) [21].

F����� 2.22: D2T2 tidal stream turbine (©Nova Innovation) [22].
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2.5 Magnetically-geared tidal stream turbines

2.5.1 Magnetic gears

Magnetic gears, which are analogous to mechanical gears, transmit torque from the
input shaft to the output shaft by magnetic attraction and repulsive forces between
rotating magnets. Contrary to early magnetic gears [67–70], Modern ones have
relatively high torque densities compared to mechanical gearboxes which makes
them a promising alternative to mechanical gears. Moreover, magnetic gears are
based on a contactless transmission of torque which reduces problems related to
mechanical gears, such as vibrations, acoustic noise, the lubrication need, and the
risk of fatigue and jamming failures [22, 71–75]. Magnetic gears can be classified
into three types: the flux-modulated magnetic gear, the harmonic magnetic gear, and
the planetary magnetic gear (fig. 2.23) [76]. the flux-modulated magnetic gear ,
known as the coaxial magnetic gear or the concentric magnetic gear, is the leading
design especially when it is integrated with a permanent magnet machine.

F����� 2.23: Magnetic gears main types (MacGilton et al., 2018).
(a) Planetary magnetic gear. (b) Harmonic magnetic gear. (c) Flux-

modulated magnetic gear.

T���� 2.1: List of some flux modulated magnetic gear prototypes

Reference D Gr Torque density [kNm/m3]

Atallah et al. [77] 120 5.75 72
Shah et al. [78] (two torque input) 120 5.5/6.5 47/56
Rasmussen et al. [79] 120 5.5 92
Gerber and Wang [80] 150 10.5 62
Frank and Toliyat [81] 120 5.5 42

Table 2.1 shows a list of some flux-modulated magnetic gear prototypes with their
diameters D, their gear ratios Gr , and their torque density.
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2.5.2 Magnetically-geared tidal stream turbine

Mechanical gearboxes are used to improve the torque density of the couple gearbox-
generator which makes such systems compact compared to direct-drive ones. Mag-
netic gearboxes have the same role if it is cascaded with generator. However, if the
generator is magnetically and mechanically integrated with the magnetic gearbox
higher torque densities can be achieved. The flux-modulated magnetic gear seems
being the suitable design for this kind of integration due to its simplicity and bal-
anced design. Many designs and prototypes proposed and developed for wind turbine
applications can be suggested and mirrored for tidal stream turbine systems. Some
prototypes of such integrated machines are cited in table 2.2.

T���� 2.2: List of some flux modulated magnetically-geared machine
prototypes

Reference D[mm] Gr Torque density [kNm/m3]

Atallah et al. [82] 178 11.5 in excess of 60 (measured)
Jian et al. [24] 194 7.3 87 (simulated)
Rasmussen et al. [83] 268.5 8.83 92 (measured)
Wang et al. [84] 320 6.6 105 (simulated, only the gear)
Johnson et al.(a) [85] 800 11.33 82.8 (measured)
Johnson et al.(b)(axial flux) [86] 280 4.17 94.4 (measured)

Pseudo direct-drive generator

The pseudo direct-drive generator is an outer stator magnetically-geared generator,
where the coaxial magnetic gear outer rotor is stationary and fixed to the stator internal
bore (fig. 2.24). In this configuration, the modulator is the low speed rotor which
could be connected to the tidal stream turbine low speed shaft. In fact, this prototype is
a promising compact and e�cient alternative solution to avoid the drawbacks of both
gearless and geared configurations [25, 82]. Concerning tidal stream applications,
Magnomatics and Seaplace worked on a project to develop and test a 1/13 scale
pseudo direct-drive tidal stream turbine demonstrator. The generator was short-listed
as one of the best projects.
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F����� 2.24: Scheme and illustration of the pseudo-direct drive gen-
erator [23].

Magnetically-geared inner stator permanent magnet generator

This configuration is similar to the last one, however the stator is implemented inside
the coaxial magnetic gear. This topology seems to be suitable to wind turbines and
can be easily extended tidal stream turbines (fig. 2.25) [24].

F����� 2.25: Magnetic-geared inner stator permanent magnet gener-
ator [24].

Axial flux magnetically-geared generator

This generator consists of an axial flux permanent magnet generator integrated in the
radial bore of an axial flux magnetic gear (fig. 2.26) [86]. As mentioned in table 2.2,
the generator have a torque density of 94.4kNm/m3. Such topology can be chosen
for a rim-driven tidal stream turbine with the possibility of using multiple rotors or
stators [12].
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F����� 2.26: Axial flux magnetically-geared generator [25].

The previous-presented magnetic gear based topologies present an obvious interest
for marine renewable energy harvesting systems, where the high availability is a
challenge. Most of the investigations were on wave energy converters where the
interest of magnetic gears has been raised [36,85]. Concerning tidal stream turbines,
few papers have been reported. In [78], a magnetic gear prototype has been designed
and tested for a contra-rotating tidal stream turbine. Figure 2.27 shows another small-
scale magnetically-geared tidal stream turbine which has been successfully designed
and realized [26].

2.5.3 Challenges

Magnetic gearboxes can replace mechanical ones especially in wind turbine and tidal
turbine industry due to many advantages such as:

• Contactless torque transmission

• High reliability

• Overload protection

• Reduced noise and vibrations

• High e�ciency

However, this technology is still in its infancy where some challenges remain. The
first challenge concerns the design process of magnetically-geared generators. In-
deed, such design consider both the magnetic gear and permanent magnet generator
which have to be well matched, coupled, and satisfy the design specifications. The
mechanical manufacturing, as another challenge, is more complex then it is in conven-
tional electrical generators. Although the generators based on the coaxial magnetic
gear concept are relatively simpler. Besides that, the cost of magnetic gears and gen-
erators derived from them is highly sensitive to permanent magnet material prices.
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Therefore, the feasibility of such technology depends on the permanent magnets cost
and its availability [87].

F����� 2.27: Small scale magnetically-geared tidal stream turbine
[26]. (a) Tidal stream turbine view. (b) Prototype.

2.6 Comparison summary

The comparative study between the four generator structures: three-stage gearbox
driven generator, Multibrid generator, direct-drive generator, magntically geared gen-
erator is summarized in Table 2.3:
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T���� 2.3: Drivetrain technologies comparison

Drivetrain concept Drivetrain technology Pros and cons

3-stage gearbox driven + Standardized technology
+ Commercially available
+ Relatively cheaper
� Low availability
� High mechanical losses

Mechanically geared � No overload protection

Multibrid (2- & 1-stage gearbox) + Compact design
+ High e�ciency
+ High availability
+ Reliable and cheaper gearbox
� Unconventional concept

Direct-drive + Concept simplicity (no gearbox)
+ High availability
+ Commercial viability
� High size and weight
� Relatively expensive

Gearless � High electrical failures rate

magnetically-geared + Compact design
+ High availability
+ High e�ciency
+ Overload protection
� Technology under development
� Dependency to PM prices
� Generator complexity

2.7 Conclusions

This chapter has addressed the critical issues which concerns the drivetrain configura-
tion choices, where a review-based investigation and comparison is proposed basing
mainly on the wind turbine industry data. the comparative results are discussed
below:

• Gearbox technology is mature and widely used in wind turbine industry. such
large use leads to more and more improvements especially in terms of reliability.

• Due to its high reliability, the Multibrid concept (single-stage gearbox driven
generator) is a promising alternative to conventional configurations even if it
is not yet standardized. Further design optimization on such configuration can
accelerate its integration into tidal stream turbines.
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• Direct-drive concept presents an interesting choice. However, such drivetrain
configuration is costly and its manufacture standardization is insu�cient. fur-
thermore, the direct-drive generator is too large and it is subject to high failure
rate.

• Concerning e�ciency, mechanical gearboxes cause additional losses which
can result in big economical losses during the tidal stream turbine service life.
Therefore, in the long term direct-drive generators can be more cost-e�ective
especially if the permanent magnet prices are stable.

• magnetically-geared turbines represents a promising future alternative to usual
geared turbines. Indeed, Magnetic gearboxe advantageous properties as the
contactless torque transmission, the high e�ciency, and the passive overload
protection can replace mechanical gearboxes especially in specific fields where
the reliability is important. However, a large deploy of such topology requires
more investigations on the economical and technical feasibility especially for
o�-shore or submarine turbines.
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3. Grid-connected tidal stream
turbine design

3.1 Introduction

The reliability and performance of di�erent types of drivetrain and generator con-
figurations are presented and compared in chapter 2, where the Multibrid drivetrain
is proposed as a hybrid solution between the direct-drive drivetrain and the conven-
tional mechanical drivetrain with three-stage gearboxes [88]. In this chapter, the tidal
stream turbine system is analytically modeled in order to be optimally designed in the
next chapter 4. The tidal current resource is firstly modeled to estimate the annual
produced energy as well as to size roughly the turbine tip blades diameter. Than,
the grid-connected tidal stream turbine sub-assemblies, which includes the turbine
(blades), the gearbox (if the system is geared), the generator, and the power electronic
converter, are considered (fig. 3.1). Each component is discussed and modeled apart
considering di�erent mechanical drivetrain types: the direct-drive tidal stream tur-
bine, the single-stage gearbox driven tidal stream turbine, and the two-stage gearbox
driven tidal stream turbine.

3.2 Renewable resource and turbine modeling

The Renewable resource modeling is necessary to estimate the energetic potential of
a submarine site. The site considered in this thesis is the Fromveur passage near the
Ouessant Island in France (fig. 3.2).

The tidal current velocity data was calculated basing on the tide atlas, which is
collected by the French navy hydro-graphic and oceanographic service [89–91]. The
tidal current velocity amplitude and direction are measured hourly during one year
(8760 hour).
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F����� 3.1: Scheme of a grid-connected single stage permanent mag-
net generator-based tidal stream turbine.
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F����� 3.2: Fromveur passage (near Ouessant island)

The renewable resource models depend on the site velocity data (speed and angle)
and includes the following tidal stream turbine main parameters:

• the cut-in tidal current speed.

• the cut-out tidal current speed.

• the rated tidal turbine power and speed.

• the presence or not of a yaw system.

Indeed, a yaw system is is a component responsible of orienting the tidal stream
turbine along the tidal current direction. However, as the tidal stream turbine is a
submerged system, the yaw system should be avoided. The alternative solution is to
use a bi-directional fixed axis direction tidal turbine. In this case, the turbine axis is
fixed along one direction which assures a maximum of produced energy.

3.2.1 Turbine modeling

The turbine blades are modeled by the power coe�cient Cp(�, �). This coe�cient
depends usually on two parameters which are the blades pitch angle � and the Tip-
Speed Ratio (TSR) �. The TSR is a ratio between the blades tip speed and the tidal
current speed.

� =
⌦r Dturbine

2v
(3.1)

where ⌦r is the rotor rotational speed, Dturbine is the turbine diameter and v is the
marine current speed. The power coe�cient model is based on experimental data
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of small-scale blades designed and tested for tidal stream turbine specifications [92].
The power coe�cient of such blades are interpolated as Figure 3.3 shows [27].

(
Cp(�) = 0.0195�2(1.3172e1.539�0.3958� � 0.0867 cos(5.6931 � 0.4019�)

� 2 [0,11.8]
(3.2)
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F����� 3.3: Power coe�cient interpolation.

3.2.2 Annual energy production

Considering the velocity data, the annual energy production (AEP) is the sum of
the power during each hour �t (the tidal current speed and power are assumed non-
variable) along a year as shown in the following equation.

AEP =
8760’
t=1

PT (t)�t (3.3)

Tidal power PT of a specific site can be calculated as a function of tidal current speed
(velocity amplitude) (v(t)) and the turbine rotor diameter (D) as equation (3.4) shows.

PT (t) =
1
2
⇢Cp(�, �)Atv(t)3 (3.4)
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where At =
1
4⇡D2

turbine is the turbine blade swept area, ⇢ is the sea water density,
Cp(�, �) is the power coe�cient which characterizes the blades hydrodynamic e�-
ciency.

Regarding the energy, it can be calculated otherwise by considering the speed as a
variable in equation (3.4).

AEP =
’

v2[vi,vn]
PT (v)OCC(v)dv + PTr

’
v2[vn,vc]

OCC(v) (3.5)

Where vi is the cut-in tidal current speed (turbine starting speed), vc is the cut-
out tidal current speed, vn is the rated tidal current speed, PTr = PT (vn) is the
rated input shaft power which is considered also as the maximum power clipping
(power limitation), and OCC(v) function presents the tidal current velocity amplitude
distribution. Regarding the power coe�cient which characterizes the blades, the
maximum is assumed to be maintained during the energy harnessing (�opt = 5.9 and
Cpmax = 0.4548). Moreover, the cut-out tidal current speed is taken as the maximum
one (vc = 6.2m/s). Regarding the availability, the tidal turbine is assumed available
during its service life.

3.2.3 bi-directional fixed axis direction tidal turbine

The tidal stream turbine in this case is fixed along an optimal angle (✓opt . Indeed, the
tidal current velocity ⌫(t) at the instant t is composed of an amplitude va(t) and an
associated angle ✓current(t). Therefore the speed along an angle (✓) is the projection
of the velocity on the turbine direction axis.

v(t, ✓) = va(t)cos(✓ � ✓current(t)) (3.6)

Considering equations (3.3) and (3.4), the optimal angle is the one who gives the
maximum of produced energy.

✓opt = argmax
✓2[�⇡,+⇡]

(AEP(✓)) (3.7)

Figure 3.4 illustrate the velocity distribution of the tidal current along polar axis
where the optimal direction is presented ✓opt = 61o.

In Figure 3.5, the speed occurrence rate along the considered axis is presented. The
same figure can be considered as the probability density of tidal speed currents.
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F����� 3.4: Tidal velocity in polar coordinates.

Concerning the energy calculation, the swept area is considered equal to 1m2. In
other words the energy density is calculated instead. Figure 3.6 shows the energy
distribution according the current speed.
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F����� 3.5: Tidal current energy distribution along the optimal direc-
tion.

The AEP depends on the cut-in tidal current speed and the rated one. Otherwise, it
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can be considered as a function of the minimum operating power and the maximum
power clipping. This function is illustrated in Figure 3.7.
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F����� 3.6: Tidal current energy distribution (bi-directional fixed axis
direction tidal turbine).
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F����� 3.7: AEP rate of the bi-directional fixed axis direction tidal
turbine.
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The maximum of harnessed energy is around 15.21MWh/m2. However, by choosing
a cut-in speed of 1m/s the the harnessed energy decreases only by 2.47%. Figure 3.8
presents the AEP when the cut-in speed is equal to 1m/s. Indeed, a power limitation
around 30% of the maximal input power assure 90% of the total energy that can be
harnessed.
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F����� 3.8: Harnessed energy rate versus power limitation rate.
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The size of the tidal stream turbine depends on its power rating, therefore a limi-
tation power around 30% of the maximum power is interesting in terms of energy
production but also to avoid over-sized generators. When the input power exceeds
the power rating, a power limitation strategy is adopted by accelerating the generator
and therefore reducing the blades hydrodynamic e�ciency (Power coe�cient) [27].
Figure 3.9 illustrates the power characteristic of a 500KW tidal stream turbine.

Concerning the turbine rotor diameter (swept area), it is calculated by satisfying the
condition that Pr = 0.3Pmax .

3.2.4 Yaw drive-based tidal turbine

Even if a yaw system is adopted (figure 3.10), results shows relatively similar AEP
compared to the fixed axis direction tidal turbine. Indeed, the AEP increases of 2.47%
if the yaw system is employed. Moreover, a similar slight increase rate of 2.51% is
calculated when the both systems have a cut-in speed equal to 1m/s. Such results
show that the Yaw system in the Ouessant site is not necessary. Furthermore, it can
decrease the availability of the tidal turbine and AER accordingly.

F����� 3.10: Schematic presentation of the yaw drive-based tidal
turbine components.
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3.3 Gearbox modeling

The gearbox is a system who converts the slow shaft rotational speed and high torque
to a high rotational speed and low torque. It is generally characterized by: a rated input
torque, a gear ratio, and a number of stages. The size and cost of the gearbox increases
when one of the three previous parameters do. Concerning the gear train, it exists
two main types: parallel shaft and planetary. In this thesis, two types of gearboxes
are considered. The planetary single stage-gearbox and the two-stage gearbox which
consists of a planetary gearbox connected to a parallel shaft one. The modeling in
this subsection considers each stage apart.

3.3.1 Parallel shaft gearbox

The sizing of a single gear is based on the K-factor formula (eq. (3.8)) [93]. The
k-factor indicates the tooth loads intensity, it can be calculated as the equation below.
However, when the size of the gear is unknown it can be empirically estimated
from [93].

K f =
Wt

FWd
u + 1

u
(3.8)

where Wt = Tp
2000

d is the tangential driving force, d is the gear diameter in millimeters,
FW is the gear face width in millimeters, u is the gear ratio, and Tp is the torque
applied to the gear.

Therefore, the size can be estimated by the following equation

FWd2 =
2000Tp

K f

u + 1
u

(3.9)

The gear weight estimation is given by the following equation

Ggeare = Wc
KagFWd2

36050
(3.10)

where Wc is the weight constant, Kag is the application factor.

The application factor, sometimes know as the service factor, considers external
factors that cause more load to the teeth then in perfect conditions. In fact, an
application factor of 1.0 is chosen when we have a perfectly smooth turbine driving a
perfectly smooth generator always at a constant speed (no frictions and no vibrations).
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Accordingly, by considering the high load fluctuations due to the high marine energy
density [94], an application factor of 1.25 is chosen.

In the case of a parallel shaft gearbox, the estimated weight is the sum of the two
gears weight as the following equation shows

Ggeare = Wc
Kag(FWd2

1 + FWd2
2 )

36050
(3.11)

where d1 and d2 are the pitch diameter of the two parallel gears (fig. 3.11),

A parallel shaft gearbox has a gear ratio u proportional to the the ratio between the
two gears diameters, where u = d1

d2 . Therefore, the precedent equation becomes

Ggeare = Wc
KagFWd2

2 (u2 + 1)
36050

(3.12)

Considering the equations (3.9) and (3.12), the total estimated weight of a parallel
shaft gearbox is:

Ggeare = Wc
Kag

18.025
Tp2

K f
(u2 + u + 1 +

1
u
) (3.13)

F����� 3.11: Illustration of a parallel shaft gear.

3.3.2 Planetary gearbox

The planetary gearbox has a high power density compared to parallel shaft one.
However, its design is more complicated as shown in Figure 3.12. It consists of the
sun, ring, , Z planet gears, and a carrier which is connected to all the planet gears
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axles. The input shaft is connected to the carrier and the output one is connected to
the sun gear. The gear ratio between the carrier and the sun gear is named us.

The sun gear volume is presented below

FWd2
s =

2000Ts

ZK f

usn + 1
usn

(3.14)

where ds is the sun gear diameter, usn = 0.5us � 1 is the speed ratio between the sun
and planet gears and Ts is the sun gear torque, which is considered as the output shaft
torque.

The planet gear volume is:

FWd2
p = FWd2

s u2
sn =

2000Ts

ZK f

usn + 1
usn

u2
sn (3.15)

Concerning the ring gear volume, it depends on its diameter and its thickness. There-
fore, a scaling factor Kr = 0.4 is introduced and it is selected from [93], [95].

Vrg = Kr FWd2
s (

drg

ds
)2 = Kr

2000Ts

ZK f

usn + 1
usn

(us � 1)2 (3.16)

where drg is the ring diameter and drg
ds = us � 1.

Knowing the volume of each part of the planetary gearbox and considering the
equation (3.10), the planetary gearbox weight can be calculated as below:

Ggearp = Wc
TsKag

(18.025)K f


1
Z
+

1
Zusn

+ usn + u2
sn +

Kr

Z
(1 + (usn)�1)(us � 1)2

�
(3.17)

3.3.3 Two-stage gearbox design

The two-stage gearbox configuration consists of a planetary gearbox connected to a
parallel shaft gearbox. The output shaft of the planetary gearbox is connected to the
input one of the parallel shaft one. Therefore, The gear ratio of two-stage gearbox is
u2 = upue, where up is the planetary gearbox ratio and ue is the parallel shaft gearbox
ratio. Concerning the optimal gear ratio combination for a specific u2 gear ratio, only
discrete gear ratios are considered and all possibilities are compared. The optimal
gear ratio combination is the one equivalent to the lowest gearbox weight and cost.
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F����� 3.12: Illustration of a planetary gearbox with 1 planet gear. rs
is the sun gear radius, rp is the planet gear radius, rrg is the ring gear

radius, and rc is the carrier radius

3.3.4 Gearbox cost estimation

The cost estimation of a gearbox can be calculated basing on its total weight as the
following equation presents

Cgear = cgearGgear (3.18)

where Ggear is the gearbox weight and cgear = 6[e/kg] is the gearbox specific
cost [55].

3.3.5 Gearbox losses

Concerning losses, they are di�cult to estimate precisely. However, a simple approx-
imation can be obtained by neglecting power dependent losses and considering only
speed dependent ones [96].

pgear = kgPN
nr

nrN
(3.19)

Equation (3.19) estimates gearbox losses for a single stage gearbox where kg is the
speed-dependent losses constant, PN is the rated power of the TST, nr is the rotational
shaft speed, and nrN is the rated rotational shaft speed. In the case of a multiple-stage
gearbox the power losses are added.

43



Chapter �. Grid-connected tidal stream turbine design

3.4 Permanent magnet generator design

A three phase radial flux permanent magnet generator is chosen for the three drive-
train configurations: direct-drive, single-stage gearbox drivetrain, and the two-stage
gearbox drivetrain. Indeed, such generator topology had the lead in the wind turbine
industry as chapter 2 shows.

Figure 3.13 presents the geometric parameters and the structure of a one pair of
poles. As the figure shows, the magnets are surface mounted and the generator
curvature is assumed insignificant. For design purposes, the adopted modeling is
a 2D analytical electromagnetic model based on magnetic circuit calculation [97],
[12]. The objective is to calculate the generator size and cost according to its
electromagnetic specifications.

F����� 3.13: Basic dimensions of one pair of poles [27].

3.4.1 Electromagnetic torque

The average electromagnetic torque is a result from the interaction between the
fundamental electromotive forces and the phase currents (considered sinusoidal) at
the rated operating point [97]. This torque is assumed to be equal to the input
mechanical torque.

< TE M >= 4
p

2AL kb1Bgmax R2
s Le sin(�m

⇡

2
)| cos( )| (3.20)

where AL is the current loading in the stator, Bgmax is the maximum air-gap flux
density under the magnet, kb1 is the first harmonic winding factor,  is the phase shift
between the fundamental of the electromotive force and the current, Rs is the stator
radius, Le is the equivalent core length.
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3.4.2 Air-gap

The following empirical formula presents the mechanical air-gap [98]

hg = 2kDRs (3.21)

Where the coe�cient kD considers the deformations caused by the forces acting on
the rotating rotor.

The additional Carter air-gap hg0 is calculated as [98]

hg0 = (kc � 1)(hg +
hm

µrm
) (3.22)

Where kc is the Carter factor, hm is the magnet height, and µrm = 1 is the magnets
relative permeability.

The carter factor is given as below

8>>><
>>>:

kc =
1

1+� wt
⌧s

� = 2
⇡


tan�1

⇣
wt

2hm

⌘
� hm

wt
ln


1 +

⇣
wt

2hm

⌘2
� � (3.23)

where wt is the teeth opening width, ⌧s is the slot pitch (fig. 3.14).

F����� 3.14: Additional carter air-gap concept

3.4.3 Magnet height

The magnet height model calculation considers inter-polar 2D leakage flow.

hm =
⌧p

2⇡

"
ln (

Bgmax exp �⇡
⌧p
(hg + hg0) � Br

Bgmax exp ⇡
⌧p
(hg + hg0) � Br

)
#

(3.24)
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Where Br is the magnets remanent flux density, Bgmax is the maximum air-gap flux
density, and ⌧p is the pole pitch.

3.4.4 Slot height

The slot height is a function of the current loading AL , the fill factor k f , and the teeth
pitch ratio �t .

hs =
AL

k f J(1 � �t)
(3.25)

3.4.5 Stator and rotor yoke height

The stator yoke height hys is developed in a way to avoid saturation when the magnetic
field is at its maximum. Concerning the rotor yoke, it is approximately equal to the
stator one as approximately the same magnetic field traverse it.

hys = �m
⇡Rs

2p
Bgmax

Bsat
+

1
3

µ0
p

2AL⇡2R2
s

(hm + hg + hg0)Sppmp2Bsat
(3.26)

hyr ⇡ hys (3.27)

where Spp is the number of slots per pole per phase, m is the phases number, and p is
pole pairs number.

3.4.6 Teeth pitch ratio

The teeth pitch ratio �t is developed with the same principle as the stator yoke is
developed. It is calculated to assure a non saturation of the generator when it is
over-fluxed ( = ⇡/2) and the air-gap flow density is at its maximum Bg = Bgmax

along the pole.

�t =
Bgmax

Bsat
+

µ0
p

2AL⇡Rs

(hm + hg + hg0)SppmpBsat
(3.28)

3.4.7 Maximum magnetic field

The maximum magnetic field Hmax has to be less than the PM coercive magnetic
field Hc j in order to avoid an irreversible permanent magnet demagnetization. The
maximum magnetic field is developed considering the case where the rotor flow
density and the stator flow density are opposite to each other. The maximum magnetic
field is introduced in the next chapter as a constraint to the design optimization.
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|Hmax | =
p

2AL⇡Rs

(hm + hg + hg0)Sppmp
+
(hg + hg0)Bgmax

µ0hm
(3.29)

Iron and copper losses

The specific iron losses are estimated by using the Steinmetz formula [99], [100]

pFe = 2pFe0h(
fe
f0
)(
bBFebB0

)2 + 2pFe0e(
fe
f0
)2(

bBFebB0
)2 (3.30)

Where pFe0h = 2W/kg is the specific hysteresis loss, fe is the field frequency in
the iron, pFe0e = 0.5W/kg is the specific eddy current loss in the laminated stator
core for a frequency f0 = 50Hz and a flux density cB0 = 1.5T . The total iron losses
depends on the iron weight of the laminated stator as described below.

PFe = pFeGSiron (3.31)

where GSiron is the total iron weight of the stator.

Concerning copper losses, they are calculated as the following equation

PCu = ⇢CuVSiron (3.32)

where ⇢Cu = 1.677910�8⌦.m is the electrical resistivity of the copper, VSiron is the
iron total volume of the stator.

accordingly, the electric yield is approximately calculated as below

⌘elec = 1 � PCu + PFe

< TE M > ⌦
(3.33)

where ⌦ is the rotational speed of the generator.

Electromotive force

The electromotive force first harmonic can be calculated as the following equation

E1 =
1p
2

kb1Bgmax R2
s Le⌦ (3.34)

When ⌦[rad/s] is the rotational speed of the rotor, B1 is the amplitude of the first
harmonic air gap flux density. B1 is calculated basing on a three level signal which
equal to +Bgmax above a north magnet, equal to �Bgmax above a south magnet, and

47



Chapter �. Grid-connected tidal stream turbine design

equal to 0 between the two magnets. The air-gap flux density is assumed constant
through a radial axis.

B1 =
4
⇡

Bgmaxsin
⇣
�m
⇡

2

⌘
(3.35)

�m = 0.7 is the magnet pitch ratio.

Synchronous inductance

The synchronous inductance Ls is the sum of the magnetizing inductance Lsm and
the leakage inductance Lsl . the leakage inductance includes the end-winding leakage
Lend , the slot leakage Lslot , and the skew leakage which is ignored as the generator is
not skewed [98]. The synchronous inductance calculation is necessary to model the
generator equivalent electric circuit, its power factor, and to evaluate its controllability.
The inductance calculation considers a single layer stator winding with a diametral
pitch and a slot number per pole per phase Spp = 1.

The magnetizing inductance is calculated as below [98]

Lsm =
2mµ0RsLe(kb1Ns)2
⇡p2(hg + hg0)

(3.36)

where Ns is the number of turns of the phase winding.

Regarding the slot leakage inductance, its estimation depends on the slot permeance
coe�cient �s for an open rectangular slot width ws and height hs [101]. The slot is
assumed to be filled uniformly.

�s =
1
3

hs

ws
(3.37)

As the slot are semi-closed, an additional permeance coe�cient �t is introduced

�t =
hb

wt
(3.38)

The slot leakage inductance is therefore presented as below

Lslot = 2pµ0LeN2
s (�t + �s) = 2pµ0LeN2

s

✓
1
3

hs

ws
+

hb

wt

◆
(3.39)

The end-winding leakage inductance estimation is di�cult to estimate. However
a simple approximation based on the sum of the leakage inductance of each coil
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without considering the mutual coupling between coils. The estimation is presented
below [101,102]

8>>>><
>>>>:

Lend =
1
2 pµ0dN2

s ln
⇣

4d
⇠ � 2

⌘
d = ⇡

p

⇣
Rs +

hs
2

⌘
⇠ = 0.447

p
Aslot k f

(3.40)

where d is the end winding diameter, Aslot = hs(1 � �t)⌧s is the slot area, and k f is
the winding fill factor.

The phase synchronous inductance is therefore given as

Ls = Lsm + Lsl = Lsm + Lend + Lslot (3.41)

Equivalent per-phase circuit

The equivalent per-phase circuit is illustrated in fig. 3.15. The stator phase resistance
rs is calculated basing on the coils size. The resistance consists of an end winding
resistance and an active resistance.

rs = ⇢Cu
la + lew
k f Aslot

Ns

(3.42)

where la = LeNs2p is the length of the active conductors per phase and lew =
0.5⌧⇡Nsp presents the end winding conductor length. According to the equivalent

F����� 3.15

electrical circuit the phase voltage can be calculated as below:
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V =
q
(E � rs Icos(�) � XsIsin(�))2 + (XsIcos(�) � rs Isin(�))2 (3.43)

Concerning the power factor FP, it is calculated when the torque is at its maximum
which is equivalent to a phase of � = ⇡.

FP(⌦) = E(⌦) � rs I
V(⌦) (3.44)

3.4.8 Power electronic converter design

To inject power from the generator to the grid, a two level back-to-back Pulse Width
Modulation (PWM) full scale converter is adopted. Its cost is estimated by using
a specific power electronic cost cconv = 40e/kW . Concerning losses rate, they are
considered to be about 3% at the rated power. [103].

3.5 Conclusions

This chapter presents the modeling of the main tidal stream turbines components in
addition to the marine current resources. In this context, the marine current resources
are considered, where the AEP is modeled according to the power limitation and
the cut-in marine current speed. Afterwards, the presence or not of a yaw system is
discussed, where the results shows that a bi-directional fixed axis tidal turbine is more
relevant. Accordingly, the optimal direction is calculated for an optimal harnessing
of energy. than, the power limitation (the rated power) is discussed, where the results
shows that a limitation on power of only 30% leads to a production of 90% of the
total site energy. Considering the limitation rate, the rotor turbine diameter (blades)
equivalent to a specific power rating can be calculated.

Secondly, an analytical design model of two gearbox types (planetary gearbox and
parallel shaft gearbox) is proposed. Such model estimates the gearbox weight and cost
which allows the cost estimation of even multiple-stage gearboxes. Moreover, losses
calculation method of the single-stage gearbox and the two-stage one are presented.

The last part in this chapter focuses on the two-dimensional analytical design mod-
eling of the permanent magnet generator. The main generator size parameters are
considered in this part and expressed according to the physical parameters basing
on Maxwell’s equations. Furthermore, a rough estimation of the power electronic
converters is presented.
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4. Optimal design of a tidal stream
turbine

4.1 Introduction

The objective of this chapter is to optimize the tidal stream turbine design by consid-
ering di�erent drivetrain configurations (direct-drive, single-stage gearbox, two-stage
gearbox). In this context, the design method is highlighted, than the cost function is
presented and reformulated to be usable in the design process. Design constraints and
assumptions are afterwards cited. Lastly, the designed tidal stream turbine with dif-
ferent drivetrain configurations and gearbox specifications are presented, compared,
and discussed.

4.2 Design optimization method

The design optimization of an electrical generator is highly non-linear constrained
multivariable problem. The cost function C(X) is presented by the tidal stream
turbine estimated cost. It is is the sum of all the tidal stream turbine subsystems cost
as illustrated below

C(X) = Cg(X) + Cgear + Cconv (4.1)

where Cg(X) is the generator active material cost, Cgear is the gearbox cost, and Cconv

is the converter cost. As it is shown in the previous equation, only the generator
depends on the design variables X , while the gearbox cost and the converter cost can
be calculated basing on the system specifications (previously presented in chapter 3).
The design variables are presented by the vector X = (AL, J,Bgmax, p,Rs), where AL

is the stator current loading, J is the stator current density, Bgmax is the maximum
air-gap flux density under the magnet, p is the pole pairs number, and Rs is the stator
radius.
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The interior-point optimization technique is used to find the optimal design while
satisfying design constraints. D is the set of possible solutions where the design
constraints are satisfied (Figure 4.2).

X⇤ = argmin
G2D

| |C(X)| | (4.2)

Figure 4.1 is a flowchart that describes the design optimization procedure.

F����� 4.1: Flowchart describing the design optimization procedure.

4.2.1 Generator cost

The generator cost is estimated by calculating its active material cost, which de-
pends on the weight/size of each material (copper, iron, electromagnet). Hence, the
generator cost is calculated by its size parameters.

Cg = cCuGCu + cFeGFe + cmGm (4.3)
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�.�. Design optimization method

F����� 4.2: Flowchart describing the optimization algorithm.

where cCu, cFe, cm are the copper, the iron, and the permanent magnet specific costs,
and GCu, GFe, Gm are the copper, the iron, and the permanent magnet weights,
respectively.

In this context, five size independent parameters are chosen by considering the gener-
ator model formulation in the previous chapter 3: the generator equivalent core length
Le, the slot height hs, the magnet height hm, the stator yoke height hys, and the teeth
pitch ratio �t . Those variable are gathered in one vector G = (Le, hs, hm, hys, �t).

Generator model inversion

The generator model can be considered as a multi-input multi-output non-linear
function F(X,G) = G (equation (4.4)). Where the variable vector X presents the
design parameters X = (AL, J,Bgmax, p,Rs). However, this formulation is not adapted
to be used in the optimization cost function C(X). Therefore a formulation of the
generator model as X = F�1(G) is required to find the argument Xn of a given size
vector Gn (Figure 4.3). In this specific context, two methods are adopted. The first
one is based on an iterative inversion which is not heavy in terms of calculation time.
The model equations are sorted according to their number of variables, where the
first equation has the highest one.
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G = F(X,G) ()
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The inversion process stops when two consecutive variable vectors Xk and Xk+1 are
less then a specific error | |Xk � Xk�1 | | < ⇠ [104] (Figure 4.4). In the most cases the
first method works, however when the inversion method doesn’t converge, another
inversion algorithm is adopted. The second method consists on minimizing the
function H(X) = | |F(X,G) � G | | by employing a gradient based algorithm. The
objective of this method is to find the root of the function H for a specific vector G.
The result coincides with the argument of G (Figure 4.4).

F����� 4.3: Illustration of the cost calculation model.

4.2.2 Optimization constraints

The optimization is performed under electromagnetic and mechanical constraints,
which define the set D of possible solutions, where X 2 D.

4.2.3 Pole pair number

The first constraint, which concerns the pole pair number, is related to the maximum
electrical frequency. In fact, a high pole pair number leads to a higher electrical
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F����� 4.4: Illustration of the inversion algorithm.

frequency resulting in high iron losses. To avoid this, the maximum electrical fre-
quency ( fmax) allowed in laminated steel core is limited, which can be considered as
a limitation of the pole pair number.

pmax =
2⇡ fmax

⌦
(4.5)

4.2.4 Slot depth to slot width ratio

The second constraint is related to the ratio of slot depth hs to slot width ws. This
ratio must be in the range of 4 � 10 to avoid excessive mechanical vibrations, [105].
This limitation is expressed as the following inequality constraint

4 <
hs

ws
< 10 (4.6)

4.2.5 Mechanical air-gap

The mechanical air-gap is 2 ‰the stator radius. However, a air-gap less than hgmin =

5mm is not allowed

hg > hgmin (4.7)
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4.2.6 Maximum magnetic field

To prevent demagnetization phenomena, the maximum magnetic field Hmax(X) (see
equation (3.29)) should not be greater than the permanent magnet coercive field Hc j .

|Hmax(X)| < |Hc j | (4.8)

4.2.7 Current density and loading current

To avoid active cooling requirements, the current density J and the loading current A
are limited in the range of 3 � 6 A/mm2 and 40 � 60 k A/m respectively [55].

Jmin < J < Jmax (4.9)

Amin < A < Amax (4.10)

Generator e�ciency

The generator e�ciency is considered to be greater than ⌘min = 0.96.

⌘elec(X) > ⌘min (4.11)

Phase voltage

The generator phase voltage root mean square is fixed to e equal to the converter
voltage Vconvm = 690 V .

V(X) = Vconvm (4.12)

4.3 Design results and discussion

To investigate the cost-e�ectiveness of each drivetrain configuration, the design opti-
mization of the three types of tidal stream turbine is performed. The obtained main
design results for a power rating of 1.5MW are presented in the following table 4.1.
The results consider a specific gear ratio selected beforehand for the two gearboxes:
(3:1) gear ratio for the single stage gearbox and (9:1) gear ratio for the two-stage
gearbox
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T���� 4.1: Optimal design parameters of the tidal stream turbine
system.

Drivetrain configuration D-drive Multibrid (3:1) 2-stage GD (9:1)

Generator (1.5MW)
Generator rated speed [rpm] 47.0 141 423
Generator rated torque [kN.m] 304.48 101.5 33.83
Air gap radius Rs [m] 1.604 1.001 0.665
Equivalent core length Le [m] 6 10.3 18.8
Stator tooth pitch ratio �t 0.55 0.53 0.42
Stator slot height hs [mm] 47 46 46
Stator yoke height hys[mm] 12.1 12.2 12.2
Magnet height hm [mm] 6.8 7.0 6.2
Generator e�ciency ⌘ 0.97 0.98 0.98
Power Factor p f 0.89 0.90 0.93

system weight [Ton]

Iron 6.31 2.07 1.78
Copper 1.59 6.6410�1 3.9710�1

Permanent magnet 17.110�2 5.9910�2 2.4710�2

Gearbox 0 0.67 7.47

Components cost [k e]

Generator 24.04 8.82 4.58
Gearbox 0 4.02 44.82
Converter 60 60 60
Total Cost 84,04 72.84 109.4
Cost per energy [ e/MWh] 73.5 63.70 95.70

As Table 4.1 shows, The direct-drive generator are heavier and larger than the two
geared configurations. However, in terms of cost per energy, it is more advantageous
than the two-stage gearbox driven generator. The two-stage gearbox have the cheapest
generator with good performances. However, that advantage is paid by a heavy and
expensive gearbox. Besides that, the Multibrid tidal stream turbine with a single-stage
gearbox gather the advantages of the two other configurations. The generator is less
expensive and lighter than the direct-drive one and its single-stage gearbox is smaller
and cheaper.

4.3.1 Two-stage gearbox driven generator

The previous results consider only one gear ratio for the gearbox. In this part, the
following gear ratios are considered: (9:1), (12:1), (15:1), (16:1), (20:1), (24,1).
The first stage (connected to the input main shaft) is always a planetary gearbox
and the second one is a parallel shaft one (connected to the generator). the chosen
combinations are : (3:1)x(3:1), (3:1)x(4:1), (3:1)x(5:1), (4:1)x(4:1), (4:1)x(5:1),
(4:1)x(6:1). The generator cost and gearbox cost are investigated in this part according
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to the gearbox ratio variation (fig. 4.5). As the converter cost depends only on the
power, it is not considered in the comparison.
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F����� 4.5: two-stage gearbox and generator cost (1.5 MW)

Figure 4.5 shows that the cost increases when the gearbox ratio does. Concerning
the generator, its cost decreases slightly and after that increases when the gear ratio
is (24:1). As the figure shows, the gearbox cost is much higher than the generator
one. Therefore, the challenge with two-stage gearbox driven generators is more in
the design of the gearbox than it is with the generator when a well designed gearbox
can make a big di�erence.

Concerning the generators, the active materials cost variation according to the gear
ratio are presented in Figure 4.6. The figure shows that copper cost is relatively
similar with a slight decrease from (9:1) to (20:1). However, magnet cost decreases
for high gear ratios. Iron cost increases with the gear ratio (20:1) and (24:1), which
results in a slight increase in the relative generator total cost.

4.3.2 Single-stage gearbox driven generator (Multibrid)

As the previous subsection, this part focuses on the Multibrid generator with a single
stage gearbox. The cost of the generator and gearbox are both investigated when the
gearbox ratio varies. The considered gearbox ratios are : (3,1), (5,1), (7,1), (9,1),
(11,1). In addition, the direct-drive configuration is also added with an equivalent
gear ratio of (1:1) (fig. 4.7).
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F����� 4.6: Active material cost of the two-stage gearbox driven
generator (1.5 MW)

According to the optimal design results, adopting a planetary gearbox with a gear ratio
of (3:1) results in a decrease of around 62% compared to the direct-drive generator cost
which is a great advantage for Multibrid systems. However, for high gear ratios, the
gearbox cost increases much higher than the decrease of the generator cost. Indeed, a
system with a gear ratio of (9:1) is more expensive to the direct drive one. Moreover, a
gear ratio around (3:1) and (5:1) seems promising even if the study does not consider
the generator structure cost and the manufacturing cost. In fact, these two parameters
gives an advantage to the Multibrid systems, which are compact, compared to the
other drivetrain concepts.

The second part focuses only on the generator and presents its active material cost
according to the gear ratio variations (fig. 4.8). It is obvious that the direct-drive
generator have the highest cost. The magnet cost is the highest one among all the
generators and it decreases with the decrease of the generator cost. The copper cost
comes in the second place and the iron cost comes in the third one.
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F����� 4.7: single-stage gearbox and generator cost (1.5 MW)
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F����� 4.8: Active material cost of the Multibrid generator cost (1.5
MW)

4.3.3 Comparison: direct-drive, Multibrid, tow-stage gear drive

Figure 4.9 gives an overview on the gearbox and generator cost of the three configu-
ration by considering multiple gear ratios. The results shows that the direct-drive cost
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is lower than the cost of two-stage gearbox driven systems even if their generators are
much cheaper. Concerning the multibrid configuration, it is advantageous for low
gear ratios, however for high gear ratios its gearbox cost increases with a high rate
contrary to the two-stage gearbox. The (3:1) single-stage gearbox driven generator is
always the optimal one in terms of cost. Concerning the two-stage gearbox it seems
advantageous compared to the Multibrid system when the gear ratio is high than (9:1),
however its gearbox cost is much higher and accordingly the whole system is.
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F����� 4.9: Generator and gearbox cost for three drivetrain configu-
ration (1.5 MW)

Figure 4.10 shows the advantage of the two-stage gearbox when high gear ratios are
adopted, which makes the single-stage planetary gearbox interesting only for low
gear ratios (lower than (11:1)). The figure shows also how the concatenation of two
gearboxes is preferable when high gear ratios are required.

4.3.4 Power rating variation: Multbird Vs. Direct-drive

The Multibrid concept in addition to the direct-drive one seems more suitable to tidal
stream turbine applications according to the previous obtained results. Therefore,
the two configurations are considered in the next subsections. To investigate the
cost-e�ectiveness of the two configurations, not only the gear ratio is varied but also
the power rating. In this case, the total harnessed energy di�ers and the cost per
produced energy can be compared. The preferable power rating is also discussed by
considering the Ouessant site energy potential. Three power ratings are adopted: 0.5
MW, 1.5 MW, and 5 MW. Figure 4.11 presents the estimated gearbox and generator
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F����� 4.10: Generator and gearbox cost for three drivetrain configu-
ration (1.5 MW)

cost for the three power ratings and for di�erent gear ratios including the direct-drive
configuration. The (3:1) single-stage gearbox driven system remains the optimal one
for the three power ratings. Besides that, the cost increases when the gearbox ratio
is more than (3:1), however the gap between the di�erent power ratings systems cost
for a specific gear ratio becomes greater when the gear ratio increases.

Otherwise, Figure 4.12 presents the total cost per MWh of the three power ratings.
Indeed, The produced energy is estimated for each tidal stream turbine and taken
as a reference. The obtained results shows that the direct-drive configuration cost
per MWh is less sensitive to the power rating variation. Whereas, the Multirid
configuration cost per MWh sensitivity increases with the increase of its gear ratio.
Regarding the power rating choice, the 500kW seems advantageous especially if the
considered system have a high gearbox ratio. Moreover, the 1.5MWh power rating is
advantageous for gear ratios lower than (7:1). Concerning the 5MWh power rating
systems, the estimations show that the cost per MWh is competitive in the case of
low gear ratios, however the cost is not interesting for high gear ratios. In addition, a
high power rating needs larger rotor turbines (blades). Indeed, a 5MW rated power
requires a turbine rotor diameter of 18.8m which should be considered as a constraint
according to the site deepness.

Table 4.2 presents the main parameters used to calculate the annual energy produced
and the cost of each component.
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F����� 4.11: Generator and gearbox estimated cost.

T���� 4.2: Modeling parameters of the tidal stream turbine system.

Tidal stream turbine

Rated power PN [MW] 0.5 1.5 5
Rated rotor speed nrN [rpm] 80.3 47.0 25.8
Rotor diameter D [m] 6 10.3 18.8
Cut it tidal current speed vi [m/s] 1.0
Cut out tidal current speed vc [m/s] 6.2
Maximum power coe�cient Cpmax 0.455
Optimum tip speed ratio �opt 5.90
Sea water density ⇢ [kg/m3] 995.6

Single stage planetary gearbox

Gearbox application factor Kag 1.25
K-factor K f [N/mm2] 2.76
Gearbox weight constant Wc 0.3
Planet gears number Z 6
Gearbox specific cost cgear [ e/kg] 6

PMG system

Specific cost of electrical steel cFe [ e/mT] 449.77
Specific cost of copper cCu [ e/mT] 4259.18
Specific cost of NdFeB magnet cm [ e/mT] 84538.60
Specific cost of power electronics cconv [ e/kW] 40
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F����� 4.12: TST total estimated cost per MWh.

4.3.5 Optimal drivetrain configuration

The previous obtained results shows that the (3:1) single-stage gearbox driven tidal
stream turbine is the optimal topology even if it di�ers slightly with the (5:1) single-
stage geared one. It is also shown how the Multibrid concept in general presents a
promising hybrid solution for tidal stream turbine applications. Such configuration
can be an alternative to direct-drive one.

Figure 4.13 presents four poles of the designed (3:1) geared generator and Figure 4.14
shows a front and lateral view of the same designed generator at the rating power of
1.5MW . The two figures give a vision of the designed generator structure and size.

F����� 4.13: View of the designed (3:1) geared generator at the power
rating of 1.5 MW.
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F����� 4.14: Front and lateral view of the designed (3:1) geared
generator at the power rating of 1.5 MW.

The results can be slightly changed if more accurate cost estimations are adopted by
considering other factors as: the generator structure and manufacturing costs and the
foundations cost. Furthermore, a more accurate gearbox design can also a�ect the
estimation results. However, the Multibrid concept potential as an alternative to usual
designs remains. this comparative study results could be useful for TST designers
and could give them a sight on the Multibrid concept relevance.

4.4 Conclusions

In this chapter, an investigation on the cost-e�ectiveness of di�erent drivetrain config-
uration is performed. Firstly the design optimization process is described, where the
analytical models presented in the previous chapter are reformulated to be properly
used. Secondly, the optimal design results of typical drivetrain configurations, which
are the direct-dive configuration, the Multibrid one, and the two-stage geared one, are
presented for a power rating of 1.5MW . The last part concerns a comparison between
the three drivetrain configuration according to the gear ratio variations, where the
optimal gear ratio is investigated. The comparison considers the gearbox cost, the
generator cost, the total cost, and the cost per produced energy. The main conclusions
are the following:

• The optimization results clearly shows that the Multibrid concept is a promising
one for tidal stream turbine applications when compared to direct-drive or two-
stage geared configuration.
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• Among Multibrid systems, the ones with low gear ratios seems preferable,
where the (3:1) gear ratio is the optimal one.

• The costs per produced energy rises with the increase of the gear ratio. The
generator is one of the most costly components in direct-drive tidal stream
turbines, which means that further developments on such components make
the direct-drive concept more competitive. The two-stage gearbox design
improvements present a challenge to allow tidal stream turbines with such
gearbox more attractive.

• The cost per produced energy of 500kW and 1.5MW tidal stream turbines
seems more advantageous if compared to the cost of 5MW ones especially for
high gear ratios.

• The cost per produced energy of the direct-drive configuration is less sensitive
to power rating changes compared to geared ones.
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5. Design optimization of a
magnetically-geared tidal turbine
generator

5.1 Introduction

The objective of this chapter is to propose a design of a magnetically-geared tidal
stream turbine. Firstly, the chosen magnetically-geared machine topology is intro-
duced, where its operating principles are presented. Afterwards, the design method-
ology is highlighted, where a design optimization, based on finite element method,
is performed for a 500kW pseudo-direct drive generator. The optimization focuses
on maximizing the torque density under certain constraints as matching between the
magnetic gearbox with the generator stator. The magnetically-geared generator de-
sign results are discussed and compared to the other drivetrain concepts: direct-drive
one and mechanical geared ones.

5.2 Overview on the pseudo-direct drive generator

magnetically-geared generators (MGGs) are permanent magnet generators integrated
with a magnetic gearbox which results in a compact machine. Many types of MGG
exist and they di�er according to the magnetic gearbox type and stator topology (see
chapter 2). This chapter is devoted to the outer-stator magnetically-geared generator,
where its gearbox is a flux modulated magnetic gear. such topology is also known by
Pseudo-Direct Drive (PDD) ones [77] (figs. 5.1 and 5.2).

5.2.1 Pseudo-direct drive components

The pseudo-direct drive generator consists of:
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F����� 5.1: Layout of a flux modulated magnetic gearbox.

• A laminated outer stator with copper windings, where its inner bore is integrated
with a stationary permanent magnet rotor called the ring gear (outer rotor of
the magnetic gear).

• A sun gear (inner permanent magnet rotor) which is the high speed rotor.

• A modulator rotor which consists of ferromagnetic slots and rotates at a low
speed and it is connected to the low speed shaft. the modulator assures the
coupling between the sun gear and the ring gear.

Flux-modulated magnetic gear operating principles

Flux-modulated magnetic gearing is based on the ferromagnetic pole-pieces (modula-
tor) which modulates the magnetic field created by the inner and the outer permanent
magnet gears. Indeed, without a modulator there will be no coupling between the
two rotors since the number of their poles is di�erent. The coupling between the two
rotors is maximized when the ferromagnetic pole pieces qm presents the sum of the
outer rotor pole pairs number pr and the inner rotor ones ps.

qm = ps + pr (5.1)

The torque on each rotor depends on the load angle �g, which can be expressed as
below [106]
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F����� 5.2: Layout of an outer-stator magnetically-geared generator.

�g = ps✓s + pr✓r � qm✓m (5.2)

where ✓s, ✓r , and ✓m presents the angular position of inner rotor, the outer rotor, and
the modulator respectively. Hence, the torque on the modulator can be presented as

Tm = Tm0 sin(�g) (5.3)

where Tm0 presents the stall torque which can be considered as the maximum trans-
ferable torque. In the case of an overload, the modulator will slip. For an operating
point equivalent to a specific load angle �g, the derivative of equitation (5.2) leads to
the following expression.

ps!s + pr!r � qm!m = 0 (5.4)

5.2.2 Gear ratio

In the case of a pseudo-direct drive generator, the outer rotor is stationary and
integrated with the stator !r = 0. The gear ratio is therefore presented by the ratio
between the high speed rotor and low speed one (modulator).

ug =
!s

!r
=

qm

ps
= 1 +

pr

ps
(5.5)
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Concerning the torque transmission, the input torque is transmitted to both the sun
gear Ts and the stator Ti (eq. (5.6)).

Tm = �ug(Ts + Ti) (5.6)

5.2.3 Adaptation between the generator and the gearbox

The design of a MGG have to consider both the stator and the magnetic gearbox in
a way to avoid an over-sizing of one of them. Furthermore, if the stator rated torque
is equivalent to the modulator stall torque, the magnetic gears will be vulnerable to
splitting. In this case, a slight increase in the input torque lead to instability in the
gearbox. Hence, a safety margin should be taken to avoid such phenomenon. In the
other hand, if the rated torque is too low comparing to the modulator stall torque,
a great part of energy will be transmitted to the sun gear. In this case, the MGG
works as a torque divider which is not the objective. For this reason, a split ratio �i

is introduced to illustrate the rate of transmitted torque [107,108].

�s = ug
|Tir |
|Tmr |

= 1 � ug
|Tsr |
|Tmr |

(5.7)

Tir , Tsr and Tmr are respectively the rated stator torque, the sun gear stall torque, and
the modulator stall torque. Their calculation is done from a single point finite element
simulation under rated operating conditions. A split ratio greater than 0.8 is usually
preferable.

5.3 Design optimization methodology

The design of the PDD generator is based on the finite element modeling using
FEMM as a software of simulation. Concerning the optimization process, a gradient-
based algorithm (Feasible direction method) is adopted. Basing on the finite element
modeling, the torque density, as a cost function, is evaluated for an initial size G0.
Afterwards, the algorithm approximates the cost function by a first-order function to
choose another size G1 which have a higher torque density and so on. the process is
repeated until an optimal design is found.

G⇤ = max
G2D

(⌧v(G)) (5.8)

The design methodology is described by Figure 5.3.
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�.�. Design optimization methodology

F����� 5.3: Layout of an outer-stator magnetically-geared generator.

The main pseudo-direct drive generator design parameters are presented by Figure
5.4.

F����� 5.4: Basic dimensions of a one pole pair.
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Chapter �. Design optimization of a magnetically-geared tidal turbine generator

5.3.1 Fixed design parameters

In addition to the following fixed parameters, the design considers the tidal stream
turbine specifications that have been previously used in Chapter 4.

Power rating

Even if the MGGs are still in their infancy, where usually low power prototypes are
studied, a high power rating is considered in this study. Indeed, the objective is to
propose a design procedure of such generator, optimize it, and afterwards estimates its
cost to be compared to other generator types. As previously mentioned, the designed
MGG have a power rating of 500kW .

Pole pairs and stator tooth number

Pole pairs number of each rotor, in addition to the stator tooth number, are chosen
before the design process. Such parameters a�ect the operating frequency, the cogging
torque, the stall torque, and the gear ratio. Indeed, a cogging factor, which indicate
the cogging torque amplitude, was presented in [109].

⌧cog =
2psqm

LCM(2ps,qm)
(5.9)

where LCM is the low common multiple. Moreovere, according to [110, 111] frac-
tional gear ratios seems preferable to reduce the cogging torque. In this context, the
sun gear pole pairs number is chosen equal to ps = 4, the ring gear ones are equal
to pr = 31, accordingly the pole pieces qm = 35, and the gear ratio is ug = 8.75.
Concerning the tooth number, it is accordingly Nt = 6ps = 24 as the winding is an
overlap one.

Operating electrical frequency

the operating electrical frequency is calculated as below

f0 =
qm!m

2⇡
=

qmnrn
60

(5.10)

where nrn[rpm] is the rated input shaft rotor speed (table 4.1).

Mechanical air-gap

Mechanical air-gaps are not considered during the design process. They are assumed
to be equal and For high stator diameters they presents 1 ‰of the diameter. However,
when the air-gap is below 5mm, it is instead fixed at this value.
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5.3.2 Initial sizing

A initial sizing of the MGG is performed for a power rating of 500kW under rated
operating conditions. In this context, other parameters are chosen or roughly estimated
only for this purpose.

Stator sizing

The PDD generator size is roughly estimated to be used as an initial design. In
this context, some assumptions are introduced to simplify the process. Indeed, the
magnetic gearbox is considered as a regular surface mounted permanent magnet rotor.
Accordingly, the torque density ⌧v is approximately estimated by reformulating the
electromagnetic torque estimation (equation (3.20) and (3.25)):

⌧v =
Tir

⇡LeR2
s
=

4
p

2
⇡

AL Bgmax sin(�m2
⇡

2
) (5.11)

where Tir is the rated stator torque, k f is the winding fill factor, �m2 is the ring
permanent magnet pitch ratio and the initial torque density is chosen ⌧v = 40kNm/m3.

the second estimation concerns the stack length ratio which is presented by the
following equation

✏ =
Le

2Rs
= p�0.56

i (5.12)

where pi is the stator pole pairs number. Considering the two first equations and
equation (5.7), the stator diameter or radius can be estimated as below

Rs =
3

s✓
Tir

2⇡✏⌧v

◆
(5.13)

where Tir =
�Tmr

ug and the modulator rated torque is Tm0 = 59.46kNm which is also
the rated input shaft torque. Additional assumptions are cited below:

• The current density J = 2.5A/mm2.

• The current loading A = 30k A.m.

• The stator slot height hs is accordingly calculated basing on eq. (3.25) devel-
oped in chapter 3.

• The split factor is chosen equal to � = 0.8.

• The tooth pitch ratio �t , it is fixed at 0.5.

• The stator height yoke hys is equal to the teeth width hys = �t Rs✓t
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Chapter �. Design optimization of a magnetically-geared tidal turbine generator

Rotors sizing

Concerning the magnetic gearbox initial sizing, the following assumptions are con-
sidered:

• The two gears magnets heights and the pole pieces height are assumed to be
equal hm1 = hm2 = hmod .

• The magnets height are assumed to be the half of the sun gear pole pitch
0.5Rs✓m2.

• The pole pitch ratio of both the sun gear and the ring gear are fixed at �bm1 =

�m2 = 0.8. However, the modulator pole pieces pitch ratio are fixed at �mod =

0.5.

• The rotor yoke heights hy1 and hy2 are considered equal to the half of their
associated rotor pole pitch hy1 = 0.5Rs✓m1 and hy2 = 0.5Rs✓m2.

5.3.3 Finite element modeling

The finite element modeling is employed during the optimization process using
the tool FEMM. two-dimensional Finite element method is used to solve Maxwell
equations, which allows the calculation of the magnetic field potential vector in each
element. The torque density can be afterwards calculated. Indeed, the stall torque
is calculated by using Maxwell stress tensor by only one finite element simulation
under rated operating conditions.

5.3.4 Constraints

The optimization process considers a set of possible solutions. This set is described
by the following constraints:

• The split factor should be greater or equal to 0.8 (� > 0.8). Indeed, this
condition can be reformulated to presents a constraint on the stator rated torque
(Tmr

ug > Tir >
0.8Tmr

ug ).

• The current density have to be less than 6A/mm2 to avoid the stator overheating.

• To limit the set of possible solutions, every size variable is kept in a limited
range.
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�.�. Design results

5.4 Design results

The design optimization is performed by using the tool FEMM. The stall torque of
the optimized system is calculated according to the modulator angular position. The
following figure 5.5 shows its curve in addition to the calculated steady torque of the
sun gear.
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F����� 5.5: The PDD calculated stall torque

The obtained optimal design is summarized in the following table 5.1. The Multibrid
design parameters and the direct-drive ones are added for comparison.

According to the obtained results, the PDD generator design has an external radius
comparable to the Multibrid one, however its estimated cost is almost the same as
the direct-drive one. Even if the PDD is not designed in the same way as the direct
drive and the Multibrid generator, the comparison shows that the Multibrid system is
always the best option. Indeed, the design of the PDD needs more investigations when
high power are employed. The saturation phenomena is one of the problems that the
magnetically-geared generators su�er from. Concerning the generator e�ciency, only
iron and copper losses are considered to estimate it. Figure 5.6 shows the flux density
of the designed system under full load operating conditions (rated stator current).
Such design can be improved by adding a bridge to the modulator, by avoiding
corners in the design where the flux density can be saturated. More constraints can
be added to improve the design optimization.
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Chapter �. Design optimization of a magnetically-geared tidal turbine generator

T���� 5.1: Optimal designed parameters of the tidal stream turbine
system.

Drivetrain configuration PDD D-drive Multibrid (3:1)

Generator size (500kW)
Generator rated speed [rpm] 80.3 80.3 240.9
Generator rated torque [kN.m] 59.46 59.46 19.82
External radius Re [m] 0.5596 0.9143 0.6945
Air gap radius Rs [m] 0.5596 0.7420 0.6259
Equivalent core length Le [m] 0.4586 0.5010 0.6115
Stator tooth pitch ratio �t 0.71 0.77 0.52
Stator slot height hs [mm] 64.9 104.6 32
Stator yoke height hys[mm] 131.8 84.7 37.0
Ring magnet height hm2 [mm] 17.0 16 (Rotor) 4 (Rotor)
Modulator pole pieces height hmod [mm] 22.7 - -
Sun gear magnet height hm1 [mm] 28.4
Modulator pole pieces height hmod [mm] 22.7 - -
Ring gear rotor yoke height hy2 [mm] 102.1 - -
Sun gear rotor yoke height hy1 [mm] 70.3 - -
Ring gear pole pitch ratio �m2 0.91 - -
Sun gear pole pitch ratio �m1 0.78 - -
Modulator pole pieces pitch ratio �m1 0.53 - -
Torque split factor � 0.95 - -
Generator e�ciency 0.966 0.954 0.959

system weight [Ton] and cost [k e]

Iron 5.23 1.06 0.655
Copper 0.908 0.540 0.225
Permanent magnet 0.385 0.340 0.105
Generator weight 6.523 1.94 1.06
Gearbox weight 0 0 0.392
Generator cost 38.8 37.82 10.59
Gearbox cost 0 0 2.35

5.5 Conclusions

Chapter 5 deals with the optimal design of a magnetically-geared generator for tidal
turbine applications. Indeed, such topology is proposed in chapter 3 as a promising
alternative to conventional generators. In this context, the pseudo-direct drive genera-
tor is introduced as a chosen topology, where its operating principles are highlighted.
The design optimization was preceded by an initial rough design of the stator and the
rotor separately in order to decrease the number of iterations while the searching of
the optimum. The optimization cost function is presented by the torque density, where
the objective is the compactness of the generator and not the cost. The results show
that the size of the PDD generator is relatively similar to the Multibrid one. However,
its cost is high and it is close to the direct-drive generator one. Further improve-
ments can be performed on the optimization process as including more constraints
and considering the generator cost.
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F����� 5.6: Flux density and field lines under full load operating
conditions
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Conclusion and Perspectives

This PhD thesis has addressed the impact of drivetrain configuration choices on the
tidal stream turbine reliability, performance, and cost. In this context a review-based
comparison is performed between di�erent drivetrain configurations to investigate
the appropriate drivetrain configuration for tidal stream turbine applications. For this
purpose, the critical drivetrain issues are highlighted basing mostly on wind turbine
statistics due to the similarities between wind turbines and tidal stream turbines.
The comparison main results show that the gearbox remain being competitive and
widely used in wind and marine turbine industry despite its high criticality. Besides
that, unconventional geared drivetrains as the Multibrid concept has proven its high
availability which makes such configuration highly recommended to be employed
for tidal stream applications. However, more investigations on such design should be
performed to accelerate its standardization. On the other hand, direct-drive generators
presents an interesting alternative to geared systems, especially the permanent magnet
ones, due to their high availability. However, such generators operate under high
torque and low speed conditions, which makes them large and expensive. Indeed, each
drivetrain configuration has its challenges to be more reliable and cost-e�ective. The
direct-drive concept requires more improvements on the generator sizing. Whereas,
gearbox driven systems need more improvements on their gearbox to reduce its weight,
cost and losses.

In the second chapter, the design models of three types of tidal stream turbines
are presented: the two-stage gearbox driven tidal stream turbines, the single-stage
gearbox driven one, and the direct-driven one. In addition, the model of the site
resource energy is considered, where it is shown that employing a yaw system is
not relevant. In this context, a bi-directional axis tidal stream turbine is chosen as
option. secondly, it is shown that a power rating of only 30% of the maximum power
is su�cient to harness 90% of the total site energy per year. thirdly, the size model of
two types of gear stages are proposed (the parallel shaft and the planetary gearbox)
for the use in tidal stream turbine applications. Moreover, the generator design is
performed with a two-dimensional analytical model, in addition to the rough modeling
of the power electronic converter.
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Conclusion and Perspectives

The third chapter focuses on the design optimization of the permanent magnet gener-
ator basing on the size model proposed in chapter 3. The objective is to investigate the
cost-e�ectiveness of each considered drivetrain configuration. The cost-e�ectiveness
of the gear ratio variation for the same drivetrain configuration is also investigated.
Moreover, three power ratings are considered to compare their produced energy in
regards to their cost and drivetrain choice. According to the obtained results, the
Multibrid concept presents a promising choice when compared to direct-drive and
two-stage geared configuration. In addition, a gear ratio of (3:1) is the optimal choice
for Multibrid systems, even if (5:1) gear ratio seems also acceptable. Concerning
the direct-drive generator, it is shown that the generator presents a great part of its
total cost, which requires more investigations to improve its design. On the other
hand, the two-stage geared tidal stream turbines have a problem with the gearbox size
and cost, which also need more improvements. The estimated cost per produced en-
ergy shows similar results for low gear ratios including the direct-drive configuration.
However, for high gear ratios the 500kW generators are advantageous. Direct-drive
configuration have less sensitivity to power rating changes compared to geared ones.

The forth chapter introduces the magnetically-geared generators design for tidal tur-
bines specifications, where the outer-stator magnetically-geared generator topology
is chosen to be designed. The Design is based on two-dimensional finite elements
analysis and the feasible direction method is adopted as an optimization algorithm.
The objective is to maximize the generator toque density while assuring the initial
specifications especially the stator rated torque. An initial sizing model is proposed
to limit the set of possible solutions and to improve the design process e�ciency.
The design results show that the PDD generator despite having a low external size,
its weight and cost are higher if compared to the Multibrid system. However, it have
relatively similar cost comparing to the direct-drive option.

Considering the attained results in this PhD thesis, further future researches can be
performed on four axis and they are summarized as bellow:

• The reliability and availability estimation of tidal stream turbine systems is
needed as the available reliability data on such turbines is rare. In this context,
e�cient estimations models can be developed basing on wind turbine reliability
data and adapt it for tidal turbines. Such models can be used to estimate more
accurately the cost of produced energy as well as the operation and maintenance
cost. Otherwise, maintenance cost limitation can be added as a constraint while
designing the system.

• The single-stage gearbox is a promising component that can be integrated with
permanent magnet generator. Further investigations are required to design the
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two components more accurately, especially the gearbox sizing.

• magnetically-geared generators are in the development phase, such technology
requires more investigation on the economical and technical feasibility for the
use in tidal stream turbine systems. Moreover, the operating point of such
generators need to be investigated especially during the power limitation phase.

• The power electronic converters can be considered in the system design process
(architecture, control, reliability and availability, cost, impact on the grid if
connected to it).
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