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Notation

In this manuscript, the mathematical notation follows general typographical conventions.

Symbol Description

N The set of Natural numbers.

R The set of Real numbers.

α Lower-case letters denote scalars.

xi subscript i denotes the ith entry of vector x.

x Lower-case bold letters denote vectors.

A Upper-case bold letters denote matrices.

A> or x> Matrix (A) or Vector (x) transpose is represented by an exponent >.

× Cross product.

‖A‖F The Frobenius norm of a matrix defined as ‖A‖2 =√∑m
i=1

∑n
j=1 |Ai,j |2.

‖x‖2 The `2-norm of a vector defined as ‖x‖2 =
√∑m

i=1 x
2
i .

‖x‖1 The `1-norm of a vector defined as ‖x‖1 =
∑m
i=1 |xi|.

‖x‖0 The `0 pseudo-norm of a vector defined as ‖x‖0 =
∑m
i=1 1xi 6=0

v ∗ a ∈ R1×T The convolution of two signals a ∈ R1×(T+L−1) and v ∈ R1×L

v ∗ A ∈ RP×T The convolution of each line of A ∈ RP×(T+L−1) with v ∈ R1×L

V ∗̇ A ∈ RP×T The convolution of each line ofA ∈ RP×(T+L−1) with the corresponding
line of V ∈ RP×L

∇x ∈ RT−1 the first-order difference operator such as (∇x)i = xi − xi−1, ∀i ∈
{2, . . . , T}

Γ(x) The Gamma function evaluated on x ∈ R defined as Γ(x) =∫∞
0
xt−1e−xdx.

N (µ,V ) Multivariate normal distribution with mean µ and covariance matrix
V .

Γ0(RT ) The set of convex, proper, lower semi-continuous functions on RT →
R ∪+∞.

vii





General Introduction

Context & Motivations

F unctional magnetic resonance imaging (fMRI) non-invasively records brain activity
by dynamically measuring the blood oxygenation level-dependent (BOLD) contrast. The

latter indirectly measures neural activity through the neurovascular coupling [Ogawa et al.,
1992]. This coupling is usually characterized as a linear and time-invariant system and thus
summarized by its impulse response, the so-called haemodynamic response function
(HRF) [Bandettini et al., 1993, Boynton et al., 1996]. The estimation of this response is of
primary interest for clinicians: a change in the haemodynamic response could be linked to
the pharmacological mechanism of a drug [Do et al., 2020], the effect of normal aging [West
et al., 2019] or the consequence of a neuropathological process [Asemani et al., 2017]. Thus,
the HRF could be considered as a precious biomarker to investigate the neurovascular
function of the brain in healthy or pathological condition. Moreover, its estimation also
links the observed BOLD signal to the underlying neural activity, which can in turn be
used to better understand cognitive processes. Several methods have been designed to
estimate the haemodynamic response function in the context of task-related fMRI (tfMRI).
In this setup, the participant is engaged in an experimental paradigm (EP) during the
imaging session, which typically alternates between rest and task periods [Friston et al.,
1998a, Ciuciu et al., 2003, Lindquist and Wager, 2007, Pedregosa et al., 2015] during which
the participant is submitted to sensorymotor stimuli or more cognitively demanding tasks.
Commonly, supervised HRF estimation methods fit a model to explain the observed BOLD
signal from the EP, namely binary input signal corresponding to stimulus onsets [Ciuciu
et al., 2003, Lindquist and Wager, 2007, Vincent et al., 2010, Pedregosa et al., 2015]. A
limitation of these approaches is that the EP is used as a surrogate for the neural activity.
Therefore these methods cannot be used on resting-state fMRI data (rs-fMRI), where no EP
is available. On the other hand, a long-standing literature on fMRI deconvolution methods
has emerged since the late 90s to uncover the underlying activity-inducing signal at the
fMRI timescale of seconds [Glover, 1999, Gitelman et al., 2003, Hernandez-Garcia and
Ulfarsson, 2011, Khalidov et al., 2011]. Importantly, a foundational work [Karahanoğlu
et al., 2013] has proposed a spatio-temporal model of the underlying activity-inducing signal
including both temporal and spatial sparsity-based regularization. By doing so, the recovered
neural activity profiles are used to characterize functional networks, hence converging to
the original approach proposed by Wu et al. [2013] that reveals functional networks from
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2 General Introduction

deconvolved BOLD signals. Alternatively a recent work [Farouj et al., 2019] has suggested
to simultaneously estimate both the neural activity and the HRF profile with a limited
parameterization. This approach is often referred to as semi-blind deconvolution schemes of
the BOLD signal. Farouj et al. [2019] relies on the hypothesis of a constant block signal for
the neural activity as initially proposed in Karahanoğlu et al. [2013]. However in [Farouj
et al., 2019], the authors are able to infer the haemodynamic parameters to deal with the
magnitude and delay ambiguities between the neural input and the HRF.

Contributions

I n this thesis we propose a novel approach to disentangle the activity-inducing signal (neural
activation signal) from the neurovascular coupling (HRF) for both task-related and resting-

state fMRI (tfMRI and rs-fMRI, respectively). In short, the general idea is to define a model
that is able to separate these two components at the scale of the whole brain, along with a
suitable optimization algorithm as a means to perform parameter estimation in an efficient
way. After an introduction to neuroimaging techniques, in particular to magnetic resonance
imaging (MRI), as well as to the mechanisms underlying the BOLD signal measured in
fMRI (chapter 1), we present, in chapter 2, the state-of-the-art methods that estimate the
HRF or the neural activity signals from fMRI data. In particular, we focus on the seminal
work introduced by Karahanoğlu et al. [2013] that models the neural activation signal as a
piecewise constant block time series. This hypothesis is especially relevant for tfMRI where
the EP has such block structure and potentially the neural signals too, but it also makes
sense in the context of rs-fMRI as a means to regularize the spontaneous neural activity.

This piecewise constant hypothesis on the neural inputs is enforced using 1-dimensional (1D)
Total Variation (TV) regularization which promotes sparsity of the first-order derivative of
the neural signal and thus leads to block-shaped signals. The resolution of such deconvolution
problem with TV regularization can be computationally expensive. After a review and a
benchmark of classical approaches to solve 1D TV-regularized problems (chapter 3), we the-
oretically compare the performances of the analysis vs synthesis approaches in chapter 4,
and show that the analysis algorithms can be much more efficient than their synthesis
counterparts for the problems under study. In this work, we also propose a way to perform
differentiable algorithm unrolling [Gregor and Le Cun, 2010] for proximal gradient
descent (PGD) with TV-regularized optimization problems by either directly computing the
gradient of the TV proximal operator with an analytic formula (LPGD-Taut) or computing
it with a nested unrolled algorithm (LPGD-LISTA). Comparison on real fMRI data shows
promising results for learned optimization algorithm based on this unrolling compared to
iterative algorithms.

In order to study the haemodynamic response over the whole brain, we first propose to
estimate voxelwise HRFs (first part of chapter 5). This univariate method is based on the same
block hypothesis for the neural activity and introduces a simplistic but novel modeling for the
HRF. The haemodynamic response is modeled as a time dilated version of the canonicalHRF
vref(t), whose definition relies on the difference between two Gamma distributions Friston
et al. [1998a]. This parameterization allows us to summarize the HRF with a single dilation
parameter δ. One limitation of this contribution is its massively univariate aspect. Indeed,
as we estimate both the neural input signal and the HRF, the total number of parameters in
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this model is similar to the number of scans which could lead to overfitting. To cope with
this issue, we propose two contributions [Cherkaoui et al., 2019b, 2020a] that extend the
previous model in a multivariate setting in order to capture more efficiently the neurovascular
coupling. In the second part of chapter 5, we introduce K temporal components and
their corresponding spatial maps to encode the neural activity signals and respectively
localize their contribution to the measured BOLD fMRI data. Moreover, in Cherkaoui et al.
[2020a], we extend this model to estimate the neurovascular coupling over the whole brain
as a time dilated HRF for each region from a predefined brain parcellation (chapter 6).
At the subject level, we demonstrate that the estimated neural activity spatial maps
are related to meaningful functional networks. To assess the significance of this
approach at the population level, we statistically demonstrate that a pathology like stroke or
a condition like normal brain aging induce longer haemodynamic delays in certain brain areas
and that this haemodynamic feature may be predictive of the individual status in a machine
learning (classification) task. Moreover, we investigate in chapter 7 the usefulness of our
method in a clinical context. We analyze PET/fMRI imaging data recorded simultaneously
on a PET/MR system installed at the Service Hospitalier Frederic Joliot (CEA/DRF/Joliot,
Orsay) in the context of a protocol called Synchropioid. The latter aims to understand the
pharmacological mechanism of the buprenorphine – an analgesic drug – on the brain in
order to understand and unveil its side effects like some habituation or the need to rapidly
increase the dose to obtain an analgesic effect in some specific patients. Using the PET
data, we aim to respectively localize where the buprenorphine is fixated in the brain and
in which brain regions it is mostly concentrated. Next, from the concomitantly recorded
rs-fMRI data, our objective is to study the effect of the drug on the haemodynamic system,
in particular whether it impacts the HRF profile and to what extent the observed effect,
if any, is consistent with our findings in PET imaging. In short, our preliminary results
on four subjects (two healthy volunteers treated with the analgesic dose vs two healthy
controls) indicate that the buprenorphine is mostly concentrated in the Putamen (subcortical
nucleus) and in the Insula and that these regions are mostly affected by a deceleration of the
neurovascular coupling, observed through longer time-to-peaks in the HRFs.

Thesis Outline

This dissertation is organized as follows:

Chapter 1: Introduction to fMRI proposes an introduction to the neuroscience and their
most common imaging techniques. We focus more specifically on the MRI, next on functional
MRI and finally introduce the neurovascular coupling along with the definition of the HRF.

Chapter 2: How to segregate the vascular and neuronal components in fMRI? introduces
the state-of-the-art approaches to disentangle the vascular coupling from the neural activity
involved in the fMRI signal.

Chapter 3: TV problems minimization with iterative algorithms proposes to summarize
the methods used to solve the optimization problem that involved the Total Variation
regularization, as this regularization is central in our contribution to estimate the HRF.

Chapter 4: TV problems minimization with learned algorithms introduces our novel
approach to solve more efficiently the optimization problem that involved the Total Variation
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regularization based on neural network.

Chapter 5: Contribution to neurovascular disentangling proposed to expose our two
first contributions done to disentangle the vascular coupling from the neurovascular coupling.

Chapter 6: Multivariate joint estimation neural activity HRF exposes our major
contribution to disentangle the vascular coupling from the neurovascular coupling in a
multivariate fashion for the whole brain.

Chapter 7: Clinical application proposes to apply our multivariate disentangling method to
the Synchropioid cohort to investigate the pharmacological mechanism of the buprenorphine.
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Chapter 1

Introduction to fMRI

Chapter Outline

1.1 Introduction to neuroscience . . . . . . . . . . . . . . . . . . 10
1.1.1 Description of the brain . . . . . . . . . . . . . . . . . 10
1.1.2 Neuroscience and the usual neuroimaging modalities. . . . . . . 11

1.2 Principle of Magnetic Resonance Imaging (MRI) . . . . . . . . . . . 13
1.2.1 Signal-to-noise-ratio (SNR) . . . . . . . . . . . . . . . . 14
1.2.2 Polarization using radio-frequency (RF) waves . . . . . . . . . 15
1.2.3 Relaxation . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Weighting contrast . . . . . . . . . . . . . . . . . . . 15
1.2.5 Measuring the FID signal . . . . . . . . . . . . . . . . 16
1.2.6 Spatial encoding . . . . . . . . . . . . . . . . . . . . 17
1.2.7 Image reconstruction . . . . . . . . . . . . . . . . . . 18
1.2.8 MRI in clinical practice . . . . . . . . . . . . . . . . . 19

1.3 Introduction fMRI. . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Principle of Functional MRI (fMRI). . . . . . . . . . . . . 19
1.3.2 Classical fMRI preprocessing . . . . . . . . . . . . . . . 21
1.3.3 fMRI acquisition. . . . . . . . . . . . . . . . . . . . 22

1.4 Neurovascular coupling in fMRI . . . . . . . . . . . . . . . . . 23
1.4.1 Introduction to the neurovascular coupling and its modeling . . . . 23
1.4.2 Clinical application . . . . . . . . . . . . . . . . . . . 25

1.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . 27

I n this chapter we introduce the brain and its structure and give a general introduction to
neuroscience before focusing more specifically on functional Magnetic Resonance Imaging

(fMRI), the imaging technique dedicated to probe brain function both at rest and during
task performance. In regards to the imaging technique, we will first describe the blood
oxygenated level dependent (BOLD) effect at the origin of the signal measured in fMRI,
and then will cover the way the data is collected from an acquisition perspective up to the
classical preprocessing pipeline. Finally, we will focus on the fMRI signal and more specially
on the neuro-vascular coupling involved in the signal generation, how to model it and how
this coupling can be relevant as a biomarker for further statistical analysis.

9



10 Introduction to fMRI

1.1 Introduction to neuroscience

1.1.1 Description of the brain

As the remaining of the on manuscript focus on functional Magnetic Resonance Imaging
(fMRI), its signal (the BOLD contrast) and more specifically on the neurovascular coupling
which is at the core of the fMRI signal generation, we first briefly propose a general
introduction to the brain to provide a meaningful context.

The brain structure

The brain is part of the central nervous system and is composed of three major parts: (i) the
brainstem that makes the junction with the rest of the nervous system, (ii) the cerebellum
that regulates motor movements and coordinates voluntary movements and the neocortex
that is notably responsible for the higher cognitive functions such as the memory, the learning
or the language for example.

In the brain, we can differentiate two major types of cells: the glial cells and the neurons.
Briefly speaking, neurons are responsible for all sensory-motor and cognitive functions while
the glial cells are responsible for supporting and protecting the neurons. The brain contains
about 86 billion neurons. The neurons are connected one another in complex structure, the
neuropil, which defines specific functionality. The population of neurons is densely connected
and mainly located in the gray matter. The main second component of the brain tissues
is the white matter where lie the myelinated fiber bundles of neuronal axons. Myelin is a
lipid-rich substance that insulates axons to allow for a better propagation of electric spikes
and thus connects distant gray matter regions across the whole brain.

This mechanism of distant neuronal connections through the white matter enables efficient
high cognitive functions in the brain.

Introduction to the neuron

The neuron contains a nucleus inside the cell body. Neurons are connected to each other
by extensions at the level of their cell bodies named dendrites and their axon terminals,
namely synaptic endings. The axon is surrounded by myelin sheath and schwann cell which
are at the base of the white matter, see illustration Figure 1.1-1 (b) to observe a schema of
multipolar neuron. There exists a hundred of different types of neurons in the brain with
specific message-carrying abilities, Figure 1.1-1 (a) is an illustration of staining of pyramidal
neurons [Del Río and De Felipe, 1994] in the primate neocortex with which we notice the
long axon and the dendrite connecting the neurons to each others.

The signal spreading across neuron’s membranes from the synapse to the dendrites is
partly electrical and partly chemical. When a neuron is excited on its axon terminals from
others neurons’ dendrites, if the overall voltage exceeds a certain threshold the neuron
itself will in turn produce an electrochemical spike, called action potential, that permits
to propagate the signal to other neurons. By cascading these elementary action potentials
across the vastness of neural connections, the information flow may circulate at high speed in
the whole brain to synchronize distant brain regions and thus underpin cognition functions.
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(a)

Dendrite

Axon

Nucleus

Myelin sheath
Schwann cell

Node of Ranvier Axon Terminal

(b)

Figure 1.1-1 – (a) Multipolar neuron photo in the primate neocortex - (b) Mul-
tipolar neuron illustration. In (a) we display SMI32-stained pyramidal neurons which
allows us to observe the complex connection produce by the axon terminals and dendrites. In
(b) we propose a schematic illustrate of the structure of a neuron from the dendrite attached
to the cell body with its nucleus at its center, to the axon, envelopped with a myelin sheath
produced by the Schwann cell separated by the node of Ranvier, up to the axon terminal.

We briefly focus on the glial cells, as they have a determinant role for the remaining for
our work. As explained, those cells support and protect the neurons to ensure their proper
working. We can distinguish four different types, see Figure 1.1-2:

• Ependymal are responsible for the production of cerebrospinal fluid that surround the
brain and protects it from shocks.

• Astrocytes have numerous different roles. Among them they provide neurons with
nutrients and they serve as intermediaries in neuronal regulation of blood flow.

• Oligodendrocytes provide support and insulation to axons by creating the myelin sheath
(the white matter).

• Microglial are macrophages that actively participate in immune defense of the brain.

In the present work, defining a model to capture the vascular coupling to the neural
activation signals is indirectly interested in astrocytic activity. Therefore, the role of astrocytes
in modulating the cerebral blood flow (CBF) to the metabolic demand of brain activity is of
fundamental importance to provide an appropriate and consistent energy supply to support
brain function.

1.1.2 Neuroscience and the usual neuroimaging modalities

Modern neuroscience studies the brain in healthy or pathological condition to understand
either the cognitive functions (language, consciousness, memory, time perception, etc.) or
diseases’ mechanisms in neurogenerative pathology (e.g. Parkinson, Alzheimer). To this
end, modern neuroscience heavily relies on neuroimaging, both structural and functional to
analyse the brain structure and function. To that aim, several imaging techniques can be
employed (see list in Figure 1.1-3), some of them being more sensitive to the timing of events
in the brain with a millisecond temporal resolution (EEG, MEG), while others (i.e. MRI
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Neuron

Microglial
cell

Oligodendrocyte
Synapse

Axon

Capillary

Axon

Astrocytes

Pia mater

Astrocytes

Astrocyte’s endfoot

Astrocyte

Figure 1.1-2 – Illustration of the different
types of Glial cells. The figure displays the
four different types of glial cells present in the
brain: the pia mater cells, astrocytes (with
theirs endfoot), the oligodendrocytes and the
microglial cells. The neurons are represented
with theirs synapses and axons and the capil-
lary in red. Source: Atlas de neurosciences
humaines de Netter Felten and Shetty [2011].

and fMRI) have a better ability to probe brain structure and localize which brain regions
are engaged during task performance or even at rest due to a millimetric spatial resolution.
Last but not least, nuclear imaging techniques like PET may access molecular sensitivity
to decipher metabolic activity (e.g. ATP synthesis or glucose consumption) that cannot be
reached using non-invasive and non-ionizing techniques such as fMRI.

Figure 1.1-3 – Imaging modalities
represented along the two axes
describing the spatial and tem-
poral resolution. Additionally,
the color indicates the degree
of invasiveness. The most com-
mon imaging techniques in neuros-
cience: the Electroencephalography
(EEG), the Magnetoencephalography
(MEG), the structural Magnetic Res-
onance Imaging(MRI) and the func-
tional Magnetic Resonance Imaging
(fMRI) and the nuclear imaging mod-
alities PET and SPECT, namely
Positron Emission Tomography and
Single Photon Emission Computer-
ized Tomography. Note the of tem-
poral resolution of the fMRI modality
while being non-invasive.

Neuroimaging techniques
• Electroencephalography (EEG) is a time-resolved modality (a millisecond time resolution)

that records in a non-invasive manner the voltage fluctuations, resulting from the neural
activity (i.e. local field potentials as a marker of post-synaptic activity) on the scalp
surface [Logothetis et al., 2001]. An EEG acquisition is obtained by placing an headset
made of 64 to 256 electrodes to record the potential fluctuations in the range of
microvolts (µV).

• Magnetoencephalography (MEG) is a time-resolved modality (a millisecond time resolu-



1.2. Principle of Magnetic Resonance Imaging (MRI) 13

tion) that records in a non-invasive manner the fluctuations in magnetic fields generated
by the neuronal activity in the cortex, resulting from the neural activity on the scalp
surface. A MEG acquisition is obtained by placing the head of the subject inside
a recording large and fixed helmet. As the recorded magnetic fields are of very low
intensity (in the order of 10−13 Tesla), the MEG machine is installed within a Faraday
cage to remove the contribution of external magnetic perturbations due for instance to
the Earth’s magnetic field.

• Positron Emission Tomography (PET) is an imaging technique that localizes a radio-
tracer to quantify various physiological activities such as neurotransmission, metabolic
processes or blood flow. The radiotracer is injected at a tracer dose which corres-
ponds to a small concentration that does not noticeably influence the pharmacology or
pharmacokinetics of the process being imaged. This radiotracer is marked by an iso-
tope (carbon, fluorine, nitrogen, oxygen, etc.) that emits positrons whose annihilation
produces the emission of two photons. The detection of the trajectory of those photons
by external detectors positioned at different orientations in the PET camera localizes
the emission position and therefore the concentration of the radiotracer in the brain.

• Structural Magnetic Resonance Imaging (MRI) is a non-invasive and non-ionizing
imaging technique that images the morphological structure of the brain (gray and
white matter, cerebrospinal fluid, skull, etc.) by manipulating the magnetization of the
hydrogen atoms contained in the water molecules. This process involves a polarization
step which consists in deviating the spins of hydrogen atoms from their equilibrium and
then measuring how fast they return to this equilibrium state. Because the different
tissues present in the brain have different relaxation properties, one may create a
contrast between these tissues and create precise images that reflect the anatomy. The
principle of MR data acquisition and image reconstruction are given in section 1.2.

• Functional Magnetic Resonance Imaging (fMRI) is a non-invasive techniques that
records indirectly the neural activity by taking advantage of the magnetic fluctuations
induced by the level of oxygenation in the blood. Its temporal resolution ranges around
1 to 2 seconds and its spatial resolution is nowadays around 1.5 mm isotropic. This
technique thus captures low frequency activity compared to EEG and MEG. As fMRI
data is at the core of this thesis, we will dedicate section 1.3 to its introduction, from
the origin of the measured signal to the common preprocessing pipeline and the type
of acquisitions one usually meets.

1.2 Principle of Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is a non invasive imaging technique widely used in the medical
field, mainly to probe soft tissues in the human body. The principle of MRI is based on
the spin property of some molecules, such as hydrogen, phosphorus or sodium, was first
described in 1940 [Bloch et al., 1946], which have a non-zero magnetic moment due to their
even number of nucleons (protons and neutrons).

As the water molecules are the most prominent in the human body, one can easily
manipulate the spins of hydrogen atoms embedded in water molecules to create MR images.
In essence, the vast majority of MRI exams typically produce maps of “water density” in
first approximation.
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A MR system actually relies on three major components:

• A large static magnetic field, denoted B0 (e.g. 3 Tesla), which gives the MRI machine
its distinctive aspect, cf. Figure 1.2-4. The role of this static B0 field is to align all
hydrogen atoms present in water molecules with its main direction.

• An organ-specific coil that is used to deliver the radio-frequency waves at the Larmor
frequency (ω0 = γB0 and γ = 42.58MHz/T defines the gyromagnetic ratio for the
hydrogen atom) to generate the resonance phenomenon and collect in return the MR
signal. In the MR field, on refer this radio-frequency wave as the B+

1 (transmit) and
B−1 (receive) fields. For instance, the coil may have a birdcage form in neuroimaging
and can comprise a large number of channels to boost the signal-to-noise-ratio (SNR).
The coil is also tuned for the type of imaging underwent. This means that a coil used
for proton imaging cannot be used for Sodium imaging as the gyromagnetic ratios γ
differ between the two atoms.

• The magnetic field gradients system that allows for the spatial encoding of the MR
signal into the k-space or the spatial frequency domain. This encoding can be done in
2D or in 3D leading to 2D and 3D imaging respectively. Most of MR pulse sequences
rely on 2D imaging for the sake of speed. Hence, 3D volumes are then reconstructed
by stacking multiple 2D slices.

Figure 1.2-4 – MRI scanner of 3T. Ex-
ample of a 3T MRI system installed at
Neurospin (CEA Saclay, France) to perform
structural or functional neuroimaging.

1.2.1 Signal-to-noise-ratio (SNR)

The image resolution in MRI depends on several factors but the larger the SNR, the
higher the resolution one can reach. As B0 contributes to the gain in SNR more than
linearly (SNR ∝ B1.65

0 ), higher image resolution is expected at 7 Tesla compared to 3 and
1.5 Tesla. Currently, the more powerful scanner for clinical usage is at 10.5T in the CMRR
center, Minneapolis (MN, USA). However, the 11.7T Iseult scanner installed at NeuroSpin1

should be available for human exams in 2022 after a 1-year safety check period. As a gain in
image resolution requires longer acquisition times, most often the MR exams are performed
at millimetric resolution to keep scan time compatible with clinical routine. This allows
the physician to maintain a scan time close to a few minutes per imaging contrast. Higher

1see https://www.cea.fr/english/Pages/News/Iseult-MRI-Magnet-Record.aspx
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resolution imaging (e.g. 600µm isotropic) can be performed using dedicated acceleration
techniques, as detailed hereafter.

1.2.2 Polarization using radio-frequency (RF) waves

During the acquisition, the aligned spinning molecules of hydrogen are polarized with a RF
wave (i.e. B+

1 magnetic field delivered through a transmit coil) which produces a tilt of the
spinning molecules. The frequency of the RF wave must be equal to the Larmor frequency
of the hydrogen atoms to tilt them in the plan (say (Oxy)) which is orthogonal to the B0

field direction (Oz).

1.2.3 Relaxation

Once the RF pulse is stopped, the polarized molecules lose their excess of energy by emitting
back a magnetic echo to return to their equilibrium. This process is accompanied with
a double relaxation, the longitudinal relaxation Mz(t) that describes the regrowth of the
magnetization along (Oz) and the transverse relaxation Mxy(t) that describes how fast the
magnetization vanishes in (Oxy). The corresponding dynamics are given by the simplest
form of the Bloch equations:

Mz(t) = M0(1− e−t/T1) (1.1)

Mxy(t) = M0e
−t/T2 (1.2)

The longitudinal relaxation Mz(t) reflects the spin-lattice interaction while the transverse
relaxation Mxy(t) is associated with the local spin-spin coupling. The two key parameters
that quantify these phenomena are called the T1 and T2 parameters and basically represent
63 % of recovery of M0 (the total magnetization at equilibrium) and 63 % of signal decay in
the transverse plan. These parameters vary across tissues and are responsible for the contrasts
in MR images. In short, T1 is typically one order of magnitude larger than T2 in viscous
liquids that correspond to biological samples and they range as follows: T1 ∈ (250, 4000)ms
while T2 ∈ (70, 2000)ms. Note that the upper bounds are reached for water or cerebro-spinal
fluid (CSF). The MRI signal, also called the free induction decay (FID), that is actually
measured corresponds to the transverse relaxation Mxy(t). However, the measuring process,
also termed a pulse sequence (e.g. spin or gradient echo), is performed at steady state and
thus involves both T1 and T2 weighting simultaneously (see details hereafter).

1.2.4 Weighting contrast

The MRI scanner is able to produce multiple brain imaging contrasts depending on the
setting of acquisition parameters (echo time:TE, time of repetition: TR).

The time of repetition (TR) corresponds to the time interval separating two consecutive
applications of RF pulses and thus controls the recovery of Mz(t). As such, it controls
the T1-weighting. A long TR value permits the recovery of M0 in all tissues and is not
discriminant in T1. In contrast, a short TR value (e.g. < 500ms in 2D imaging) segregates
the tissues according to their T1 value. The white matter being associated with a shorter T1
than the grey matter, this explains why white matter is bright in T1-weighted (T1w) images.
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The CSF is dark in T1w images. However, this happens only when the second acquisition
parameter TE, i.e. the echo time, is well calibrated.

Physically, the TE value corresponds to the time point at which the echo is centered and
thus it matches the middle of the readout in k-space. TE controls the T2 weigthing, i.e. how
much the transverse relaxation diminishes and contributes to the measured signal. A short
TE value (e.g. 5ms) does not discriminate different tissues while a longer setting (TE = 30ms)
permits to disentangle the contribution of the white and the grey matter.

To summarize, a pair of short (TE, TR) values is used for T1w imaging as the T2
contribution is unweighted in the measured FID signal while the T1 one is enforced. On the
contrary, a pair of long (TE, TR) parameters is used for T2w imaging as the T1 contribution
is unweighted in the measured FID signal while the T2 one is enforced. Another important
setting that one can meet in clinical routine is proton density (PD) imaging which corresponds
to unweighting the T1 and T2 contributions to better approximate M0 and as such is used
with long TR and short TE.

Figure 1.2-5 – MRI T1 contrast,
T2 contrast and Proton Density
contrast w.r.t repetition time
(TR) and the echo time (TE).
(top-left) the T1 contrast is obtained
with a short TR and a short TE, (top-
right) the T2 contrast is obtained
with a long TR and a long TE and
(bottom-right) the Proton Density
contrast is obtained with a long TR
and a short TE.

1.2.5 Measuring the FID signal

Except for T2w imaging, fast 2D imaging is currently achieved using the gradient echo pulse
sequence. It consists in reversing thegradient on the readout axis to form the echo, in contrast
to the RF spin echo sequence, which relies on a π-refocusing pulse. The gradient echo
sequence is the short name of the the gradient recalled or refocused echo sequence (GRE). In
such setting, the flip angle of the B+

1 RF field, called θ is lower than 90◦.
However, the T2 weighting is no longer preserved. Instead it is replaced by a T2∗

weighting, where T2∗ is shorter than T2 as it reflects the local inhomogeneities induced
by magnetic field gradient irregularities as follows: 1/T2∗ = 1/T2 + ∆B0, where the ∆B0

describes the local fluctuations of the B0 field induced by the magnetic field gradients.
However, the transverse magnetization Mxy(t) which is the actual MRI signal has no longer
a T2 decay but a T2∗ instead. This sequence can be also easily extended to 3D imaging.

After an initial transient state, the steady state of the dynamic equilibrium can be reached.
This means that from TR to TR the value of Mz and Mxy remains the same. Typically, the
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steady-state MRI signal equation reads as follows:

Mxy(TE) = M0 sin θ(1− E1)
1− cos θE1

e−TE/T2∗ (1.3)

where θ is typically set to the Ernst angle:

θE = cos−1E1 (1.4)

with E1 = e−TR/T1 . (1.5)

The MRI signal thus depends on the tissue properties and varies between the gray and
white matter, the fat and cerebro spinal fluid (CSF). In practice, this signal is measured
through a receiver coil (e.g. B−1 magnetic field). In brain imaging, most often the same coil
is used for transmission and reception up to 3 Tesla and is located around the head (birdcage
form). At ultra-high magnetic fields (≥ 7T), specific designs of transmit and receiver coils
with a varying number of channels are available: the larger the number of channels in transmit
mode, the more homogeneous the RF field can be delivered whereas in reception the larger
the number of channels, the better the SNR although the latter is varying in space with a
stronger signal in the outer surface compared to the inner parts of the brain (e.g. subcortical
nuclei).

1.2.6 Spatial encoding

In MRI, spatial encoding of the resonating hydrogen atom’s spins is performed using gradient
magnetic fields (Gx, Gy and Gz), which are applied in the three spatial dimensions to
carry out slice selection (e.g. Gz along the head feet axis), phase (e.g. Gy along the
posterior anterior axis) and frequency (e.g. Gx In 2D imaging, slice selection is applied
during the RF pulse delivery as a means to isolate the resonating spins of a single plan (i.e.
ω0(z) = γ(B0 + Gz · z)). Next, the linear variations of Gx and Gy introduce a one-to-one
mapping between the frequency (centered around the Larmor frequency) and phase of
resonating spins and their spatial location. In practice, the phase encoding gradient Gy
is then applied for a short period of time ∆T as follows: ω0(y) = γ(B0 + Gy · y) with
∆ϕ(y) = γGy · y∆T . Last, the frequency encoding gradient Gx is applied during signal
acquisition (ω0(x) = γ(B0 +Gx · x)), i.e. when opening the analog-to-digital converter for
accumulating a discrete version of the FID signal. Importantly, the manipulation of gradient
profiles (say in 2D Gx and Gy) over time permits to cover a wide range of spatial frequencies
(kxky) which are defined as follows:

kx(t) = γ

2π

∫ t

0

Gx(τ)dτ

ky(t) = γ

2π

∫ t

0

Gy(τ)dτ .

Hence, the area under the gradient waveforms defines the spatial frequencies and this shows
that k = (kx, ky) defines a 2D trajectory in the Fourier domain:

k(t) = γ

2π

∫ t

0

G(τ)dτ.

The time spent to traverse the k-space depends on the type of imaging. If the trajectory
is segmented in multiple shots, the acquisition gets slower as for instance a single line of
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k-space is collected per TR. If one wants to get faster such as for fMRI, we can use single shot
trajectories like zigzag patterns also called Echo Planar Imaging (EPI). In the latter situation,
a single k-space plan can be collected in about 30 ms for conventional image resolution.

As the FID signal is the superimposition of all resonating spins over the whole field of
view (FOV), i.e. across spatial positions r = (rx, ry), the measured signal in MRI s(t) – at
least without taking all sources of artifacts into account (e.g. off-resonance effects due to B0

inhomogeneities) is given by the following noisy discrete time series:

y(ti) = s(ti) + ni(t) ∀ti = i× TR (1.6)

s(t) =
∫
FOV

x(r)e−2ıπk(t)·rdr (1.7)

where n(t) is a 2D Gaussian white noise in the k-space domain and x defines the image of
the organ under investigation. The signal s(t) is nothing but than the Fourier transform of
the original 2D image x corresponding to the tilted slice of the 3D volume.

To sum up, the data in 2D MRI is collected in the 2D Fourier space also called the k-space
and represents the spatial frequencies in the MR image. In conventional fMRI studies, one
usually collects a single volume slice by slice as this allows to speed up the acquisition along
the third dimension using multiband multislice imaging techniques [Moeller et al., 2010].
Other imaging sequences (e.g. 3D GRE EPI) are available for instance at 7 Tesla to reach
higher spatial resolution. However, in that case, the temporal resolution is slower than 1 s.

1.2.7 Image reconstruction

Figure 1.2-6 – k-space of
a brain. (right) displays
the reconstructed image of
a brain seen from the sagit-
tal plane with its associated
k-space in (left). Source:
mriquestions.com

The simplest way to reconstruct an MR image from k-space data simply consists in
computing an inverse fast Fourier transform, see Figure 1.2-6. However, nowadays, in an
attempt to speed up MRI exams, one collects less data in k-space either using parallel
imaging (SENSE or GRAPPA) [Pruessmann et al., 1999, Griswold et al., 2002] or using
compressed sensing techniques [Lustig et al., 2007]. The former consists in regularly under-
sampling the k-space phase encoding steps while the latter performs pseudo-random variable
density under-sampling to maximize the local incoherence between the acquisition space and
the sparsifying transform domain (i.e. spatial wavelets domains in MRI) [Lustig et al., 2007,
Lazarus et al., 2019]. Indeed, the MR images can be well represented in a sparse manner
using wavelet transforms. In this case, the image reconstruction gets more complicated
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as it requires to solve an ill-posed inverse problem using appropriate convex optimization
algorithms [Beck and Teboulle, 2009, Chaâri et al., 2011].

1.2.8 MRI in clinical practice

MRI is currently used for clinical diagnosis of brain tumors and other neurological dis-
orders (e.g. multiple sclerosis) or brain pathology. The radiologists examine several 3D MR
images of the brain structure using different imaging contrasts (T1, T2, FLAIR2 and T2∗)
as the latter provide complementary information on the brain tissue properties. Additionally,
diffusion-weighted MR imaging is used in daily routine as it is very sensitive and specific to
Stroke acute episodes in the first hours. Interestingly, the T2*-weighted imaging contrast is
sensitive to iron concentration. This can be very useful to detect small hemorrhages in tiny
vessels by combining the magnitude and phase information as done in susceptibility weighted
imaging. As such T2*-weighted imaging is sensitive to blood properties. Although its role
for structural imaging is not negligible, it actually occupies a privileged role in functional
MRI, as explained hereafter.

1.3 Introduction fMRI

In this section, we first describe the fMRI signal and its origin, and then we detail the
classical statistical processing steps from the raw fMRI images and the two main kinds of
exams that are used with this imaging technique.

1.3.1 Principle of Functional MRI (fMRI)

In this part, we first describe the effect of the oxygenation of the blood onto the MRI signal
and see that this effect – termed the BOLD effect – allows to indirectly measure fluctuations
in neural activity, which is at the core of fMRI.

BOLD contrast

In Ogawa et al. [1990, 1992], Dr Ogawa demonstrated that the blood volume increased in the
human visual cortex during visual stimulation using BOLD contrast. This first contribution
was at the origin of the fMRI imaging technique.

The main mechanism that underlies the fMRI technique relies on the fluctuation of
oxygenated blood in the brain tissue. When a group of neurons fires together they will
consume oxygen and glucose. To provide a continuous supply, the astrocytes, see Figure 1.1-2,
will regulate the blood flow to ensure that oxygenated blood irrigates the tissue. This
vasodilation mechanism is the ground of the fMRI imaging technique. Upon activation,
oxygen is extracted by the cells, thereby increasing the level of deoxyhaemoglobin in the
blood. This is compensated for by an increase in blood flow in the vicinity of the active cells,
leading to a net increase in oxyhaemoglobin, see Figure 1.3-8. This mechanism induces local
B0 inhomogeneities. As reported in Figure 1.3-7, the oxyhemoglobin (oxygenated blood) has
a diamagnetic property which will produce an increase of the magnetic signal during the echo
time and hence a longer T2* relaxation parameter. On the contrary, the deoxyhemoglobin

2FLuid Attenuated Inversion Recovery pulse sequence that is used to suppress the bright signal in the

CSF as this is a T2 sequence.
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Figure 1.3-7 – Para-magnetic property of the oxygen molecule. The deoxyhemoglobin
(de-oxygenated blood) has a paramagnetic property, in contrary of the oxyhemoglobin. This
magnetic feature is at the origin of the BOLD contrast. Source Huettel, Song & McCarthy,
2004, Functional Magnetic Resonance Imaging

has a paramagnetic property, which in return will decrease the magnetic signal and hence
shorten the T2* effect. This fluctuation of the fMRI signal regarding the oxyhemoglobin
concentration is named the Blood Oxygen Level Dependent (BOLD) contrast.

(a) (b)

Figure 1.3-8 – (a) deoxygenated blood at rest - (b) oxygenated blood following a
local neural activity. The neural activity in the brain changes locally the blood flow and
the oxygen level in the tissue. Source Huettel, Song & McCarthy, 2004, Functional Magnetic
Resonance Imaging

fMRI data

Based on this principle, the MRI scanner records a T2*-weighted volume of the brain at each
time step (volumic TR), each volume being acquired slicewise along the z-axis ( i.e. the
axial axis), see Figure 1.3-9. This results in a four dimensional data set (three dimensions
in space + time) in which each voxel ( i.e. a three dimensional rectangular cuboid on a
regularly spaced three-dimensional grid) fluctuates over time and represents, notably, the
local evolution in oxyhemoglobin concentration as described previously. Usually, the time
between two consecutive volumes, namely the volumic TR (i.e. the slicewise TR multiplied
by the number of slices), is in the range of 1-2 second (s). However, as the MRI acquisition
techniques are getting faster with the recent advances in multiband pulse sequences [Feinberg
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et al., 2010, Smitha et al., 2018], they permit lower TR and thus improved temporal resolution.
Recent large fMRI data sets such as the Human Connectome Project (HCP) [Van Essen
et al., 2013] exhibit TR lower than a second to explore higher frequencies in the BOLD signal,
be less prone to physiological artifacts such as heart beat and breathing and potentially
capture oscillatory neural dynamics (in the delta band) which play an important role in
the coordination of large-scale brain networks [Lewis et al., 2016]. In regards to the spatial
resolution in fMRI, the voxel dimension ranges from 1 to 3mm along each axis. Of course,
a gain in spatial resolution may be achieved at the expense of a lower temporal resolution
due to the traditional trade-off between the two. Improved spatial resolution may help finely
delineate cortical activation as far as the sensitivity of detection is maintained, which in
turn requires a good temporal SNR. The temporal SNR (tSNR) is thus a key property in
fMRI [Triantafyllou et al., 2005], defined voxelwise as the ratio of the average signal across
volumes divided by the corresponding standard deviation.

Figure 1.3-9 – Illustration of the four
dimensions in fMRI. During an fMRI
acquisition, consecutive brain volumes are
collected at a predefined pace defined at
the volumic TR. Source nilearn.github.io

1.3.2 Classical fMRI preprocessing

In this subsection, we describe the classical pipeline to perform the spatio-temporal pre-
processing of fMRI data. Indeed, nuisance signals and artifacts may corrupt the BOLD
signal during acquisition. Firstly, the brain scans are not perfectly aligned one another and
thus should be spatially re-aligned. Secondly, the subject may move in the scanner during
acquisition, which should be compensated for. Thirdly, all slices in a given volume are not
collected simultaneously, indeed, each slice takes approximately 30 to 40ms to be acquired
depending on the selected spatial encoding scheme (e.g. echo planar imaging combined with
parallel imaging). This leads to a significant delay between the first and last slices that must
be compensated for to permit further statistical analysis in which all voxels are supposed
to be collected at the same time point (see Chapter 2). Most often, to meet the timing
constraints of one volume every 1-2s., a high-speed single shot Echo Planar Imaging (EPI)
readout is used to collect fMRI data slicewise. Consequently, the data are prone to local B0

inhomogeneities and thus to off-resonance effects, which introduce geometric distortions and
signal drop out in fMRI data, especially in voxels located at the interfaces between air and
tissues (e.g. nasal cavities, ear canal). To compensate for this kind of artifacts, the most
popular strategy in fMRI is called topup [Jenkinson et al., 2012] and consists in collecting
twice the data corresponding to the same slice, first in the top left/bottom right direction in
the 2D k-space plane and second in the opposite direction (bottom right/top left). By doing
so, the local B0 inhomogeneities accumulated along the readout axis (left/right) are canceled
out. However, this doubles the acquisition time.

The obtained fMRI data could be then registered either to structural MRI data to
perform intra-subject normalization or to a brain template to have a spatially coherent basis
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to perform comparison with multiple subjects. Moreover, to maximize region overlap between
subjects, fMRI data are usually convolved with a three-dimensional Gaussian, resulting in
spatial smoothing of the data. Finally, the nuisance artifacts that could still be present in
the data, could be estimated for future removal (confound regressors estimation).
To summarize the classical preprocessing steps are:

• Alignment : Adjust for movement between scans.

• Head-motion estimation: Correct for movement from the subject.

• Slice-timing correction: Correct for delays between slices.

• Susceptibility distortion: Correct for the presence of artifact (geometric distortions
and signal loss) due to B0 inhomogeneities.

• Coregistration : Overlay structural and functional images.

• Normalisation : Wrap images to fit to a standard template brain for statistical group
analyses.

• Smoothing : Increase signal-to-noise ratio and maximize between-subject overlap of
activations.

• Confound estimation : Estimate the nuisance regressors for future removal.

1.3.3 fMRI acquisition

In this subsection, we briefly describe the different types of acquisition that are currently
used in fMRI to map cognitive functions and investigate ongoing fluctuations of brain activity.
To this endeavour, we will introduce first task-related fMRI (tfMRI) acquisitions and second
resting-state fMRI (rs-fMRI) acquisitions and describe the specificity of each imaging session.

Task fMRI acquisition

Task fMRI (tfMRI) is used when the participant is engaged in an experimental paradigm (EP)
during the imaging session. This means that the subject is submitted to some specific stimuli
or is asked to perform certain tasks while his brain activity is recorded at regular intervals.
resting periods are introduced between stimuli. The stimuli may be grouped in blocks of
approximately 30s (block designs) or instead submitted to the subject in a sparse way (event-
related designs). In the last scenario, the distance in time between consecutive stimuli
determines whether the paradigm is slow (15 to 20s) or fast event-related (3s). Block
designs are known to generate maximal contrast-to-noise ratio (CNR) and thus ease the
detection of evoked activity. In contrast, event-related designs may be useful to estimate the
haemodynamic response function (see chapter 2). Fast event-related designs are particularly
appealing when mixing different types of stimulus (i.e. different experimental conditions) as
they permit to increase the pace between consecutive stimuli and thus preserve a reasonable
CNR compared to their slower counterpart.

The nature of the task submitted to the participant varies depending on the purpose of
investigation. A simple example is the characterisation of the motor cortex, the corresponding
EP for this imaging session could be the finger tapping in which the participant alternates
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between rest period and finger tapping. Such acquisition permits to activate the motor
cortex and, with an adapted estimation procedure, to determine the precise localization of
the subject’s brain regions involved in task performance.

Numerous tasks can be submitted to the participant during the imaging session, from
listening to specific sound patterns to performing a challenging working memory task (e.g.
n-back task). The first main objectives of the tfMRI are to spatially localize the subject’s
brain activity in response to these external stimuli. This is easily achieved using block
designs. However, when we are interested in the rich fluctuations of the BOLD signal to
try to uncover some neural signature in response to some specific stimuli (e.g. priming or
repetition suppression effect), event-related designs are very useful.

This kind of imaging paradigm allows a better understanding of the brain function.
However, as each paradigm is focused on a specific cognitive function and because the time
spent in the MRI scanner is limited, the analysis of fMRI data provides a limited view on
the global functioning of the brain.

Resting-state fMRI acquisition

Rs-fMRI is the type of acquisition where the participant is not engaged in an experimental
paradigm but instead stays still in the scanner, either keeping his eyes open or closed. The
general idea is to record the nominal and awaken brain functioning to better understand its
global functional structure.

Importantly, rs-fMRI reveals functionally connected regions, see Figure 1.3-10, that
are organized into reproducible, well-known and large-scale functional brain resting-state
networks (RSNs), for examples : default mode network (DMN), attention network, executive
control network (ECN), visual network, motor network. Alterations in these RSNs are
thought to precede symptoms and structural changes in neurodegeneration by several years,
and might allow the identification and quantification of preclinical disease stages.

1.4 Neurovascular coupling in fMRI

In the previous section we highlight the dependence of the fMRI signal on the oxygenation
level of the blood, yielding to an indirect observation of the neural activity. In this section,
we focus on the mechanism between neural activation and an observable change in the BOLD
signal. Then we will detail how useful the estimation of this coupling can be in a clinical
context.

1.4.1 Introduction to the neurovascular coupling and its modeling

The neurovascular coupling relies on multiple actors, from the astrocyte cells to smooth muscle
cells notably. The principle aspect of the response is the vasodilation of the surrounding
blood vessels. Once a group of neurons fire together, the glial cells will dilate blood vessels to
supply the neurons in oxygen. As explained previously, this re-oxygenation is then captured
by the MRI scanner through an increased T2∗ decay which produces the BOLD contrast.

A major difficulty related to the BOLD signal is that this oxygenation supply happens a
couple of seconds after the neural firing. If we consider a single spike as a proxy for neural
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Figure 1.3-10 – Illustration of the rs-fMRI analysis. Identification of the voxels timely
correlated to estimate the functional networks present in the brain. Source M. P. van den
Heuvel and H. E. Hulshoff Pol, Exploring the brain network: A review on resting-state fMRI
functional connectivity.

activity, the BOLD signal will peak in average 5s later and then return to its baseline after
approximately 20 to30s seconds.

In order to perform analysis on the BOLD data, this neurovascular coupling was model
as a transfer function which takes as input the neural activation signal and output the
BOLD signal. This function was described through a differential equation system and can
be summarized by its Green function. The latter represents the noise-free response of the
neurovascular system to a spike input, which could model a very brief neural activation,
see Figure 1.4-11. This response is named the Haemodynamic Response Function (HRF).
Numerous models have been proposed to encode the HRF shape in various ways but the
most common is the double Gamma distribution model introduced in Friston et al. [1998a],
see Equation 1.8 where c, α1, α2, β1, β2 are fixed scalars defined by the authors as follows:

v(t) = tα1−1βα1
1 e−β1t

Γ(α1) − c t
α2−1βα2

2 e−β2t

Γ(α2) (1.8)

 

Figure 1.4-11 – Illustration of the Haemodynamic
Response Function (HRF). The yellow line repres-
ents the neural activation in time u and the red line
represents the BOLD response y to this spike input,
namely the HRF. Source Huettel, Song & McCarthy,
2004, Functional Magnetic Resonance Imaging.

Moreover, to obtain the response y(t) from any neural activity signal denoted u(t), the
input is convolved with the HRF v(t). Indeed, as described in Boynton et al. [1996], the
neurovascular coupling exhibits linear and time invariant (LTI) properties and can then be
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faithfully described by a convolution operator:

y(t) =
∫ T

0

v(τ)u(t− τ)dτ = (v ? u)(t) . (1.9)

Consequently, the following properties hold:

• Multiplicative scaling: if the amplitude of the neural activation signal u(t) is multiplied
by a factor λ, then the produced BOLD signal is scaled by λ too: y(λu(t)) = (v ?
(λu))(t) = λy(t).

• Additivity: if the neural activation signal is a sum of multiple spikes (ui(t))i, then
the corresponding BOLD signal is the sum of the responses yi(t) to each signal ui(t):
y(
∑
i ui(t)) = (v ? (

∑
i ui)(t) =

∑
i yi(t).

• Time shift invariance: if the neural activation signal is shifted in time from a specific
delay ∆t, then the associated BOLD signal y(t) is shifted by ∆t too: y(u(t−∆t)) =
(v ? u)(t−∆t) = y(t−∆t).

In the discrete setting, the counterpart of Equation 1.9 reads:

y = v ∗ u with yn =
K−1∑
i=0

viun−i. (1.10)

However, this formulation does not take any noise component into account. A common
assumption is to consider the noise ε as an auto-regressive noise of order 1 (also denoted
as AR(1): ∀n, εn = aεn−1 + νn where a stands for the auto-regressive parameter and ν the
innovation white Gaussian noise of variance σ2), see Equation 1.11 and Figure 1.4-12.

y = v ∗ u+ ε (1.11)

Figure 1.4-12 – Illustration of BOLD signal modeling. The BOLD signal is obtained by
convolving the neural activity signal u (in red) with the Haemodynamic Response Function
v (in blue) and by adding noise ε (in yellow).

1.4.2 Clinical application

In this section, we propose to discuss the opportunity to use the HRF as a biomarker as a
means to investigate brain function in a healthy or a pathological condition.

The Haemodynamic Response Function as a biomarker

As described earlier, the HRF models a complex cascade of events produced notably by the
glial cells. A modification that will affect those cells would induce a change in the HRF shape.
Thus, the latter may provide a valuable biomarker to identify the regions that are impaired
by a neurodegenerative pathology (e.g. Parkinson’s disease), a neurological disorder (e.g.
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epilepsy) or specific drugs (e.g. caffeine). Moreover, depending on its precise representation,
the HRF could be used to identify the change occurred in the BOLD response, whether it
implies a re-scaling of its magnitude or a longer delay in the vascular coupling.

The Synchropioid project

The analgesic derived from opium (opioid analgesics) are largely used nowadays with notably
an ongoing crisis due to their massive usage in the USA3. A specific example of opioid is the
buprenorphine. The buprenorphine is an opioid used as analgesic for post-surgical pain or
neoplasm pain, it is also used to treat opioid use disorder. This molecule produces a variable
analgesic response for each patient along with a tolerance effect which leads to increase the
drug’s dosage to obtain the same analgesic effect. Thanks to the ceiling effect of its µ-agonist
activity, buprenorphine is also used to treat opioid use disorder, with greater safety and less
addictive potential than methadone. Such medication induces a patient-dependent analgesic
effect and various degrees of addiction. The reason for this variability has remained unknown
so far. To uncover the variability sources and potential addiction factors, the Synchropioïd
project has been set up by the Service Hospitalier Frederic Joliot since 2018 to investigate
and characterize the mechanisms of action of the opioid drugs, see Figure 1.4-13. The study
was approved by the biomedical research ethics committee in decembre 2017 (Etude CEA
100- 040; EudraCT 2017-001897-41; CPP 2017-12-02-ter).

EFFET
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Figure 1.4-13 – Illustration of the different steps from the injection to the analgesic
effect of the buprenorphine.. The main steps from the injection of the painkiller to the
analgesic effect on the patient. The Synchropioïd project aims to investigate the receptor
occupation step as well as the neural activity step to better characterize the effect of the
buprenorphine on the neurovascular coupling in the brain along with the neural activity.

More precisely, the project aims to characterize the action of the buprenorphine spatially
and temporally. Buprenorphine is classified as a partial agonist. It has a high affinity, but
low efficacy at the µ-receptor where it yields a partial effect upon binding. It also, however,
possesses κ-receptor antagonist activity making it useful not only as an analgesic, but also in
opioid abuse deterrence, detoxification, and maintenance therapies. The objective is to form
a cohort of 60 subjects (healthy volunteers with no history of substance abuse or addiction)
who will receive a dose of the pain killer while being scanned in a with a fully integrated
3T PET/MR system (GE SIGNA PET/MR scanner)4. This is a hybrid scanner that allows
simultaneous PET and MR scans for patients, see the photo Figure 1.4-14. This novel
type of machines allows for the precise recording of the localization of the painkiller in the
brain using the PET modality while recording the ongoing fluctuations of the BOLD signal

3https://www.theguardian.com/us-news/opioids
4At the time of this manuscript is written, the cohort is not yet fully recruited and the project will be

continuing beyond this PhD thesis.
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using the MRI system during resting-state acquisitions. Half of the participants, defined in
a randomized controlled trial, will receive a placebo dose (control group) while the other
half will receive an analgesic dose (0.2 mg intravenously injected) in order to exhibit the
buprenorphine effect by contrasting the two populations and making statistical comparisons,
as done in clinical trials. The group-comparison of the HRF estimates will permit to uncover
in the brain which regions show analgesic-related changes. The general idea here is to use
the HRF as a biomarker to investigate the analgesic effect of opioid and open new avenues of
research to better control its effects on patients.

Figure 1.4-14 – PET MR scanner. Photo of the PET MR
scanner presents at the Service Hospitalier Frederic Joliot
involved in the Synchropioid protocol.

1.5 Chapter conclusion

We have introduced the background in neuroimaging, through the description of the brain
structure and function and the various neuroimaging techniques used to investigate them.
We have paid attention to the fMRI acquisition setup and described the neurovascular
coupling involved in the origin of the BOLD signal. We have presented the main assumptions
underlying this coupling, basically summarized by the impulse response of a linear and time
invariant system also called the Haemodynamic Response Function (HRF). Additionally, we
have emphasized how its estimation is relevant to investigate brain activity in a healthy or
disease condition. In the following, we will describe how to estimate the HRF from fMRI
data and we will introduce novel and efficient methods to that aim.
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T his chapter introduces state-of-the-art approaches to disentangle the neurovascular
coupling from fMRI data. First, we will detail the General Linear Model (GLM) as it is

the most common method used to identify the brain activity that correlates to a specific
task during the imaging session. Then, we will present the main approaches that have
been proposed in the literature to estimate the HRF from fMRI data collected during task
performance, i.e. along the course of an experimental paradigm. In the third section, we will
introduce methods that estimate the neural activation signals from the observed signal with
a fixed HRF. Finally, we will introduce the most recent methods that allow for a semi-blind

deconvolution of neural activity from an unknown HRF in a paradigm-free setting, meaning
that the knowledge of the experimental paradigm is no longer required to conduct this kind
of analysis and hence such approaches may apply to both task-related and resting-state fMRI
data.

2.1 Introduction to the General Linear Model (GLM)

In this section, we introduce the General Linear Model (GLM) approach. This model de-
scribes the observed task-related fMRI (tfMRI) data with a linear combination of predefined
regressors (i.e. temporal atoms) based of the different experimental conditions performed
by the participant during the imaging session. The original GLM formulation does not

29
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= +

Figure 2.1-1 – General Linear Model illustration. The observed BOLD signal yj is
described as the linear combination such as Xβj with the addition of an auto-correlated
noise [Woolrich et al., 2001] denoted εj , which is usually model as an autoregressive process
of order 1. Note that the components of X follow the LTI model such as Xk = v ∗ uk with
uk being the temporal signature of each conditions.

allow for the estimation of either the HRF or the underlying neural activity signal, however
as it is the most common method used to perform the analysis of tfMRI, we describe it briefly.

The GLM proposes a massively univariate description of the tfMRI data Y ∈ RT×P .
The model makes the hypothesis that voxel’s temporal signal can be recomposed as a
linear combination of K predefined temporal components of length T . Each component
is described by the temporal signature of a specific task (condition) of the experimental
paradigm (EP). This signature is convolved with a canonical HRF v that has a fixed and
constant shape for the whole brain to better explained the observed signal. All these temporal
signatures form the design matrix X ∈ RT×K of the experiment, such as X = (Xk)Kk=1 with
∀k ∈ [1..K] Xk = v ∗uk with uk ∈ RT̃ describing the temporal onsets of the kth condition.
The GLM model is summarized in Equation 2.2 (see also Figure 2.1-1).

For one voxel:

yj =Xβj + εj , (2.1)

with ε ∼ N (0,V )

For P voxels:

Y =Xβ +E, (2.2)

with Y = (yj)Pj=1,β = (βj)Pj=1 and E = (εj)Pj=1

such that ∀j ∈ {1...P} εj ∼ N (0,V ).

Most of approaches propose to minimize a simple quadratic loss as a cost-function
to fit the model parameters to the observed tfMRI data. However, the quadratic loss is
well suited only with the assumption that the noise is Gaussian. As shown by Woolrich
et al. [2001], the noise in fMRI is best modelled by a first-order autoregressive process. In
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order to remove the correlation in the noise, the most common solution is to apply a prior
whitening on the observed data Y . The correlated noise is given by ε ∼ N (0,V ) where
V ∈ RT×T is the symmetric correlation matrix and σ the standard deviation of the noise.
The Cholesky decomposition can be used to find a matrix Q such that V = (Q>Q)−1. One
approach to estimate V is to fit a first GLM on the observed data and consider the residual
Ê = Y −Xβ. Then, we fit, on Ê, a weighted sum of predefined correlation matrices to this
residual to estimate V [Bollmann et al., 2018]. Thus, the GLM decomposition is used on
the prewhitening problem as :

QY = QXβ +Qε, (2.3)

with Qε ∼ N (0, σ2I).

As β belongs to RK×P , each row βk ∈ RP is a spatial map that encodes which voxels
has a signal that is mostly correlated with the kth experimental condition. Indeed, the
computation of a T-statistics based on the vector βk allows us to identify the most significant
entries which in return permit to localize the most activated voxels in response to the
stimulation (e.g. listen to sounds, music or read sentences) associated with the kth condition.

The GLM is impeded by several limitations. First, the haemodynamic response is crudely
modeled for the whole brain. Indeed, despite enhancements proposed by more elaborated
formulations that allow to adapt to some degree the HRF, the GLM assumes a fixed and
common neurovascular coupling for the whole brain. This assumption is known to be false
and thus makes the standard GLM approach too crude to accurately model fMRI data.
Moreover, the LTI model used in the GLM supposes that the conditions ((uk)Kk=1) are used
as a proxy for the neural activity. However, this hypothesis does not take into account
the possible delays in the participant’s responses during task performance. Second, the
simplistic block or Dirac modelling for a stimulus or an action can depart from the true
neural activation signal as this one should be continuous, in particular in time. Overall, the
oversimplistic description of the neural activity impedes the precise modeling of the BOLD
fMRI data.

To cope with these issues, numerous contributions proposed to improve the estimation of
the HRF to better explain the observed data. We will detail these contributions in the next
section.

2.2 HRF estimation with fixed neural activity

In this section, we detail the most common modelling for the HRF and describe how
to estimate the corresponding model parameters from the observed fMRI data. All the
contributions discussed here [Friston et al., 1998a, Aguirre et al., 1998, Friston et al., 1999b,
Dale, 1999, Glover, 1999, Goutte et al., 2000, Ciuciu et al., 2003, Casanova et al., 2008,
Khalidov and Unser, 2006, Lindquist and Wager, 2007, Vakorin et al., 2007, Lindquist et al.,
2009, Khalidov et al., 2011, Pedregosa et al., 2015, Zhang et al., 2013] were proposed in
task-related fMRI context where an Experimental Paradigm (EP) is available as a proxy to
the neural activity signal, following the LTI model described in the previous section.
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2.2.1 HRF modelling

Most of those contributions to estimate the HRF rely on a few HRF models. With the
same HRF model, the estimation process can vary by making the regularization of the HRF
evolve to better capture the true haemodynamic response in a given subject. The main
challenge with HRF modeling is to find an efficient trade-off between a flexible model that is
able to precisely capture the true haemodynamic response in each brain area (reducing the
estimation bias) and a reliable model that limits the overfitting by reducing the number of
degrees of freedom (diminishing the estimation variance). In this subsection, we propose to
list and detail the main HRF models available in the literature.

The Finite Impulse Response (FIR) model. The FIR model [Dale, 1999, Glover,
1999] does not assume any particular shape for the HRF which makes it very flexible but
prone to data overfitting in the presence of noise. Regularization has thus been introduced to
constrain the overall HRF shape in FIR models, for instance by penalizing the second-order
derivative to end up with physiologically plausible smooth HRF estimates [Goutte et al.,
2000, Ciuciu et al., 2003, Casanova et al., 2008].

The linear combination of predefined atoms. Alternatively, to limit the number of
parameters in the model, the HRF v ∈ Rl has been set as a linear combination of predefined
atoms [Aguirre et al., 1998, Friston et al., 1998a, 1999b], such as v = α>B, with α ∈ RR

being the coefficients of decomposition and B = (br)Rr=1 ∈ RR×l the predefined atoms. The
atoms can then be set in order to span all plausible HRFs and hence better capture the
neurovascular coupling.
Two widespread sets of predefined atoms are:

• Physiologically informed pattern set: Friston et al. [1998a] propose to consider the
canonical HRF (the double Gamma distribution model) and its derivatives in time and
with respect to the dispersion parameter. The two last aforementioned atoms allows to
express a potentially delayed (i.e. slower or shorter) and sustained (wider HRF peak)
neurovascular coupling that better fits the observed data. Note that, based on this
double Gamma distribution function some models are limited to the first two atoms,
nevertheless the number of atoms are usually set to three. Note that, each of these
atoms can’t be expressed as a linear combination of the others, however this set does
not strictly define an orthogonal basis.

• B-splines: (or basis spline) is a basis defined from spline functions. A spline is a
function that has minimal support with respect to a given degree, smoothness, and
domain partition. In these approaches [Vakorin et al., 2007, Zhang et al., 2013], the
HRF is defined as a linear combination of splines. In Vakorin et al. [2007] the authors
propose to penalize the `2-norm of the first-order derivative of the splines to obtain a
smooth HRF estimate.

Other alternatives exist in the literature, such as Khalidov and Unser [2006] and Khalidov
et al. [2011] who use wavelets designed to encode the HRF and estimate the neural activity.
This example is detailed in the next subsection as a means to estimate the neural activation
signal.
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The logit model. To limit model overfitting, parametric HRF models have been proposed
as an alternative to complex regularization schemes. Interestingly, the authors of Lindquist
and Wager [2007] propose the inverse logit transform and demonstrate its efficiency over
multiple fMRI data sets [Lindquist et al., 2009]. The inverse logit function L is defined
by ∀x ∈ R L(x) = 1

1+e−x . The proposed model summarizes the HRF with only seven
parameters (two parameters are fixed by the constraint of a finite support):

v(t) = α1L

(
t− T1

D1

)
+ α2L

(
t− T2

D2

)
+ α3L

(
t− T3

D3

)
(2.4)

2.2.2 Fitting the HRF model to the observed fMRI data

In this sub-section, we will detail how to fit the parameters of the HRF model to the observed
BOLD data.

As a first approach, some contributions, as in Lindquist et al. [2009], proposes to consider
the neural activity per voxel as known. This hypothesis is plausible if the most correlated
voxels to a given condition, are identified in the brain and used to estimate the HRF.

However, in the general case, the neural activity per voxel is unknown. One way to cope
with this, is to fit a GLM that embedded the HRF modelling. Considering the fMRI data
pre-withen, we fit the GLM to the observed fMRI data by minimizing a simple quadratic
data-fidelity term. Although, estimating both the HRF’s parameters and the coefficient β
leads to an ill-posed problem. To manage this problem, the authors, in Pedregosa et al. [2015],
propose to introduce a low-rank hypothesis to the GLM, by minimizing the cost-function
defined in :

arg min
αj ,βj ,cj

1
2‖yj −XBvec(αjβ>j )−Xccj‖22 (2.5)

subject to ‖α>j B‖∞ = 1 and 〈αj ,αref〉 > 0

Here, yj ∈ RT refers to the BOLD signal for one voxel. The nuisance phenomenon are
modeled with Xccj where Xc refers to predefined nuisance regressors with their associated
coefficients cj . The signal of interest is captured by the term XBvec(αjβ>j ). The design
matrixXB ∈ RT×RK is defined by successively stacking the regressors obtained by convolving
each of the basis elements with the stimulus onsets of each condition – similarly to the usual
design matrix used in the GLM models. αj refers to the parameters of the HRF, for one
voxel, modeled w.r.t a set of predefined atoms B = (br)Rr=1 ∈ RR×l such as vj = α>j B.
These parameters αj are constrained with the `∞-norm to avoid amplitude indeterminacy
and constrained to have a positive scalar product with fixed user-defined reference HRF
parameters αref to prevent too large deviations from expected HRF shapes. Finally, the βj
denotes the regressor coefficients for the model.

In this work, the authors rely on the assumption that a linear combination of predefined
atoms B for the HRF, such as v = α>j B and enforce a rank-1 constraint on the coefficient
αj for the considered voxel such as vec(αjβ>j ) = [αjβj1,αjβj2, ...,αjβjK ] ∈ RRK×1. By
doing so, the authors provide a method to estimate one HRF per voxel while identifying the
most correlated voxel to each EP in the design matrix.



34 How to segregate the vascular and neuronal components in fMRI?

In this section, we have introduced most common models for the HRF and how their
parameters are estimated from the observed BOLD data. In the following section we will see
how to estimate the neural activity with a fixed and constant neurovascular coupling for the
whole brain.

2.3 Neural activity estimation with fixed HRF

In this section, we give an overview of the different methods proposed to estimate the neural
activity signals in the brain from fMRI data. Importantly, we will detail the fundamental
work [Karahanoğlu et al., 2013] that proposed a block signal modelling for the neural activity.
This hypothesis is critical for our contributions presented in the next chapters.

We introduce the Toeplitz matrix such that ∀u ∈ RT−L+1 Hvu = v ∗ u. One can
estimate the neural activity signal u by minimizing a simple quadratic data-fidelity term as :

arg min
u∈RT−L+1

1
2‖Y −Hvu‖22 (2.6)

SinceHv is not invertible, Equation 2.6 admits multiple minimizer. In order to reduce the
variance of estimation, one can introduce modelling hypothesis on u to make the estimation
problem better conditioned. The neural activity signal models the activity of approximately
105 neurons over time during a TR. If we normalize the signal to 1, we can interpret its value
as the proportion of firing neurons among the population belonging to a voxel. A reasonable
hypothesis would be to have a smooth evolution of this percentage over time. However, in a
BOLD deconvolution context, a flexible smoothness regularization is not sufficient to achieve
robust estimation of the neural activity as the overall problem stays ill-posed.

Agnostic neural activation signals modelling. In Glover [1999], the authors propose
to obtain a proxy for the HRF by taking the observed BOLD response of an event-related
condition. Indeed, as the HRF is the response of the neurovascular coupling to a Dirac
input (impulse event), a direct observation of the BOLD signal after an event will give a
noisy observation of the HRF. With this proxy, they propose to estimate the neural activity
signals, denoted u(t) using the Wiener filter :

u(t) = F−1

(
H∗(ω)M(ω)

|H(ω)|2 + |N(ω)|2

)
(2.7)

with ∗ the complex conjugate, H(ω) the Fourier transform of the HRF, M(ω) the Fourier
transform of the observed BOLD data and N(ω) the Fourier transform of the noise in the
observed data.

This contribution is of special interest since it does not impose any model on the neural
activity signal. However, the described estimation process can only be applied to even-related
task fMRI data for which an estimate of the HRF can be derived beforehand. Moreover, to
perform Wiener filtering, one needs to estimate the term |N(ω)|2. These two limitations
reduce the applicability of this approach.

Sparse hypothesis for the neural activation signals. An attempt to improve regular-
ization of the neural activity model is to consider that the signal is sparse. In other words, we
consider that most of the coefficients of the 1D vector modelling the neural signal are zeros.
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Doing so, the neural activity is summarized into a few time-locked temporal activations
named events.

In Khalidov and Unser [2006], Khalidov et al. [2011] the authors propose to estimate
the neural activation signal by computing it as an output of the Activelet transform of the
observed BOLD data. These wavelets form a dictionary in which the canonical HRF is
sparsely represented. The neural activity signal is estimated by enforcing sparsity to find the
most parsimonious representation for the observed BOLD signal through the minimization
of a LASSO problem.

In Caballero-Gaudes et al. [2011, 2012, 2013] the authors introduce their “paradigm-free
mapping” with which they estimate the neural activation signal by regularizing it notably
with the `1-norm in order to recover a parsimonious activation.

Numerous others approaches propose to estimate the neural activity from the BOLD
signal under this sparse hypothesis by introducing a Bayesian framework [Ciuciu et al., 2010,
Chaari et al., 2012, Bakhous et al., 2012]. As the remaining of the manuscript focuses
on variational approaches, we do not detail those approaches here. Moreover, this sparse
hypothesis is known to poorly capture the true neural activity. Representing neural activity
as a piecewise constant or block signal has been introduced later on in Karahanoğlu et al.
[2013] to improve its representation

Piecewise constant or block signal hypothesis for the neural activation signals.
To the best of our knowledge, the first contribution that has introduced this block signal
hypothesis in the estimation of the neural activity signal is Karahanoğlu et al. [2013].

• Deconvolution with the Total Variation regularization. In Karahanoğlu et al. [2013]
framework, the authors impose sparsity of the first-order derivative of the estim-
ated neural activity signal which estimates a piecewise-constant signal, as described
in Equation 2.8 and illustrated in Figure 2.3-2. This regularization involves a Total
Variation (TV) term which will be detailed later on in subsection 3.1.2. Note that
these authors also impose a spatial smoothness within predefined regions of interest
concerning the denoised BOLD signal.

arg min
X∈RP×T

1
2‖Y −X‖

2
F +RT (X) +RS(X) (2.8)

with RT (X) =
P∑
j=1

λ1j

T∑
t=1

|(∆L(Xp,:)):,t|

and with RS(X) =
T∑
t=1

λ2t‖ ∆Lap(X:,t)‖2,1

with, as previously, P the number of voxels, T the number of scans, Y ∈ RP×T the
observed BOLD signal and X ∈ RP×T the denoised BOLD signal. ∆L = ∆D ◦∆h is
the operator that transforms the BOLD signal into the first order derivative of the
neural activity signal, by first applying the HRF deconvolution operator and then the
discrete differential operator, and finally ∆Lap is the Laplacian operator in 3D.

The considered optimization problem is convex inX and minimized with an alternating
optimization with a Generalized Forward Backward algorithm [Raguet et al., 2013].
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Figure 2.3-2 – Scheme of the alternated minimization procedure described in Karahanoğlu
et al. [2013] to estimate the neural activity ∆h(Xp,:) from the observed BOLD data Y . The
authors propose to estimate it by introducing notably the block signal hypothesis on the
neural activity signal ∆h(Xp,:).

The block signal hypothesis is particularly relevant for task fMRI data collected along
an experimental paradigm with a block design structure as the neural activity signals
may follow the same pattern. However, this model makes sense as well in the context
of resting-state fMRI data as a means to regularize the spontaneous neural activity.

• Deconvolution with the LASSO. In Costantini et al. [2018] the authors propose to
estimate the neural activation signal by fitting a linear model with a quadratic term and
and a `1-norm regularization term. They minimize the convex cost-function defined by:

arg min
z∈RT

1
2P ‖Y −HvLz‖22 + λ‖z‖1 (2.9)

with P the number of voxels, Hv the Toeplitz matrix associated with the predefined
and fixed HRF, and L the discrete integration operator. They propose to minimize
Equation 2.9 with the Least Angle RegreSsion (LARS) algorithm for fast estimation.

While this method might appear as modeling the neural activity as a sparse signal, it is
in fact the synthesis formulation for a block model. Indeed, as z is sparse, the recovered
signal Lz obtained with the integration operator L has a piece-wise constant structure.
While this formulation leads to a simpler optimization procedure, it is usually slower
as we show in chapter 4.

In this section, we have described the most common neural activity signal modeling
along with their estimation method from the observed BOLD signal. However, as these
approaches rely on a constant and fixed HRF shape to deconvolve the observed signal, they
also introduce a bias w.r.t the neurovascular coupling. In the following section, we will
present recent contributions that aim to estimate both the HRF and the neural activity in
an attempt to remove this bias.
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2.4 Joint estimation of the neural activity and the neurovascular

coupling from BOLD signal

A natural question would be to know if one can estimate these two components jointly from
fMRI data. Since we aim at estimating the neural activity without an explicit knowledge
of the HRF, one may refers to this problem as the blind deconvolution. In our case, as we
constrain the structure of the HRF by using a limited set of parameters, we refer to this
problem as the semi-blind deconvolution. We next describe some interesting attempts to
solve this problem.

As previously introduced, the two main assumptions that dominate the neural activity
signal modeling are the sparse signal and the block signal hypothesis. We propose to detail
recent contributions in both case in the perspective of blind deconvolution.

Sparse hypothesis for the neural activation signals. In Wu et al. [2013] the authors
propose to estimate the most prominent peaks in the observed BOLD signal by retaining
only the entries that exceed a certain threshold. With this summary of the fMRI data, they
estimate the haemodynamic delay. Then, they fit the HRF parameters (the response height,
the Full Width at Half Max (FWHM) of the HRF and its Time to Peak (TP)) to match this
delay and in return they deconvolve the observed BOLD signal with this estimated HRF, see
Figure 2.4-3 for illustration. Note that this different steps are not repeated, hence, the HRF
is not corrected from the estimated neural activity and inversely.

Figure 2.4-3 – Estimation process proposed in Wu et al. [2013]. The BOLD signal is
summarized with its most prominent peaks on which the haemodynamic delay is estimated.
An HRF is then fitted to correspond to this estimated delay which in return allows to
deconvolve the observed BOLD signal.

However, as described in the previous section, the sparse hypothesis poorly captures the
neural activity. We once again turn to the block signal hypothesis which allows for a gain in
flexibility and thus in estimation performance.

Block signal hypothesis for the neural activation signals. In Farouj et al. [2019] the
authors propose to minimize Equation 2.10 to estimate both the HRF coefficients defined as
a linear combination of predefined atoms and estimate the neural activation signal similarly
to Karahanoğlu et al. [2013]. They consider the cost-function defined by :
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arg min
α∈R2,xj∈RT

1
2‖yj − xj‖

2
F + λ1‖DH−1

α xj‖1 + λ2‖α−αref‖22 (2.10)

with yj ∈ RT the observed BOLD data and xj ∈ RT the estimated denoised BOLD data
and λ1 and λ2 the regularization parameter. The parameters of the model are estimated by
minimizing Equation 2.10, using a the generalized forward–backward splitting algorithm, as
proposed in Karahanoğlu et al. [2013].

Figure 2.4-4 – Semi-blind deconvolution proposed in Farouj et al. [2019]. The HRF modelling
is based on the linear combination of predefined atoms and the neural activity model
corresponds to the hypothesis of a block signal.

Point process analysis. Interestingly, in Tagliazucchi et al. [2010], the authors proposes .
This characterization of the inter-regions interactions leads to recover the HRF for the target
region and allows the deconvolution of the observed BOLD with the estimation neurovascular
coupling for the region. The noteworthy aspect of this method, is that

2.5 Conclusion

In this chapter, we have progressively introduced methods that estimate (i) the vascular
coupling in the context of task fMRI experiments for a given representation of neural activity
through the stimulus onsets, then (ii) inversely and finaly (iii) both components in a semi-

blind deconvolution setting. The main limitations of these works have been outlined. More
specifically, they proceed voxelwise, i.e. in an univariate manner and do not take the spatial
structure into account, whether this structure concerns the vascular coupling or the spread of
neural activity throughout the brain. Including this kind of structure in new methods could
be a significant step forward to capture both components in a more robust way and make
these novel approaches less prone to data overfitting. Extending the methods presented here
the better account for the multivariate nature of the signal is one of the core contribution of
this thesis, that we describe in chapter 5 and chapter 6.

] ] ]
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I n the previous chapter, we have introduced the Total Variation regularization (TV-reg) as
a means to regularize the neural activation signals and make the global estimation better

conditioned. The purpose of this chapter is to introduce the TV-reg in 1-dimension (1D)
in detail. We define and explore the specific characteristics of this regularization, explain
how to minimize a TV regularized problem by introducing several algorithms to that aim
and compare their performances experimentally. A theoretical comparison of the different
formulations of the problem is given in chapter 4.

3.1 Introduction to regularization in optimization

3.1.1 General introduction to regularization

In machine learning or signal processing ill-posed problems often appear such as image recon-
struction, source localization or classification. In order to make the estimation feasible, one
can introduce a prior to promote solutions that satisfies certain properties. A usual solution
in the Bayesian setting is to provide a specific distribution regarding the parameters to
estimate. In a variational context, a solution is to add possibly multiple regularization terms

39
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Figure 3.1-1 – Cost-function evolution w.r.t the regularization parameter λ: In this
simplistic example, we display the cost function level set with different level of regularization
λ ∈ {0.0, 1.0, 10.0, 1000.0}. We can notice that the minimum set evolve from an hyperplan
of dimension 1 (a straight line) when λ = 0 to a singleton for λ > 0.

in the associated optimization problem. Depending on the nature of the introduced regular-
ization, one can add information on the structure of the estimate, its norm, its smoothness, etc.

To give a simple intuition on how additional terms in a cost-function can improve the
conditioning of the problem, let’s consider A ∈ Rm×n with m ≤ n and y ∈ Rm. If we try
to find u ∈ Rn such that y ≈ Au, we might consider the following cost-function F defined
by L(·) = 1

2
‖y −A · ‖22. However, with that simple loss function, we can’t select a unique

solution. Indeed, for any minimizer u and for u0 ∈ Ker
[
A
]
\{0}, we have L(u) = L(u+u0).

The problem is said to be ill-posed as there are infinitely many equivalent solutions. By
adding a regularization term, for example here the `2-norm, such that F (·) = L(·) + λ‖ · ‖22,
we can distinguish these equivalent solutions. Indeed, while the data-fidelity terms are equals
for all u + u0, if u is in Ker

[
A
]⊥, then u has the smallest `2 norm and will be promoted

among all the other equivalent solutions. Thus, the regularization allows to select among all
solutions with equivalent data-fitting term a solution that verifies a certain property – here
a small `2 norm. The unicity of the solution is guaranteed here since L is strongly convex.
This is illustrated on a simplistic example with y ∈ R2 such as y = [4 0]> and A ∈ R2×2

with rank(A) = 1 such as:

A =
[

2 0
0 0

]

Figure 3.1-1 shows that, if we set λ = 0, the set of minimizers of the cost-function F is
the one dimensional vector space defined by Θ = {u ∈ R2 such as u = [2 a]> with a ∈ R}.
However, whenever λ > 0, the solution set reduces to a singleton. Hence, the estimation
problem associated with F is better conditioned. A classical example of regularization is
the `2-norm, `1-norm or the elastic-net [Zou et al., 2004] norm which combines both the
previous ones.

3.1.2 Introduction to the TV regularization

The TV-reg promotes piece-wise constant estimates by penalizing the `1-norm of the first
order derivative of the estimated signal. If we consider a signal u ∈ Rn, the associated TV
regularization is defined by: ‖u‖TV = ‖Du‖1 =

∑n
i=2 |ui − ui−1| with D being the discrete

differential operator such as D ∈ R(n−1)×n and defined by:
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D =
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As the `1-norm promotes sparsity on the first order derivative, namely z = Du, this
pushes z to be a Dirac signal and thus u to be a piece-wise constant signal. Figure 3.1-2
displays two examples where we generate sparse signals Du1 and Du2 and integrate them
to obtain the piece-wise constant signals u1 and u2.
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Figure 3.1-2 – Examples of two piece-wise constant signals: u1, u2, along with their
corresponding Dirac signals Du1, Du2. The sparsity of Du1 is higher than the one of Du2,
i.e. ‖Du1‖0 ≤ ‖Du2‖0

To illustrate the effect of TV-reg, we provide a simple 1D illustration. We consider
the BOLD signal deconvolution problem for a synthetic signal Figure 3.1-3. We generate
a time series z with a support S(z) = 6 which we integrate to obtain a block signal u.
This signal is then convolved with the canonical HRF [Friston et al., 1998a] and we add a
Gaussian noise. We estimate the synthetic source signal û by minimizing the cost function
P (u) = 1

2
‖y − u ∗ v‖22 + λ‖u‖TV , with λ set manually. In Figure 3.1-3, we can see that we

recover most of the variations of the original signal as the minimization of P deconvolves
and denoises the observed signal.

Finally, we can mention that the TV regularization is a useful tool for a large number of
applications. For 1D signals, we already mentioned that it has been used in neuro-imaging for
deconvolution problems [Karahanoğlu et al., 2013]. Recent work also used TV-regularisation
as a detrending step to preprocess oculo-motor recordings [Lalanne et al., 2020]. Most
application of TV-reg are for 2D image processing problems such as denoising [Rudin et al.,
1992, Chambolle, 2004, Darbon and Sigelle, 2006], medical image reconstruction [Tian et al.,
2011] along with many of other applications [Rodríguez, 2013]. In this chapter, we will
consider only the 1D case to focus on the BOLD deconvolution model that we introduced
previously.
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Figure 3.1-3 – Synthetic BOLD deconvolution example with the TV regularization:
We display the estimation of the source signal in orange from the observed signal in blue

which was obtained by convolving the original source signal with the canonical HRF and by
adding a Gaussian noise.
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In the previous chapter, we consider the cost-function F (·) = 1
2
‖v ∗ · − y‖22 + ‖D · ‖1.

By introducing the Toeplitz matrix associated to v, we rewrite F such that F (·) = 1
2
‖Hv ·

−y‖22 + ‖D · ‖1. Moreover to generalize the problem we consider A ∈ Rn×m instead of
Hv. In this manner, we introduce the TV regularized problem which consists in finding the
minimizer of the function P .

min
u∈Rm

[
P (u) = 1

2‖y −Au‖
2
2 + λ‖Du‖1

]
, (3.1)

We can make a couple of remark on P . First, it is a proper and closed function which
means that P is a lower semicontinious function. Moreover, P is coercive which means that
P admits a minimizer. However, it is also convex since the data fidelity term is a quadratic
term, which means that any local minimum will be a global minimum. However, even though
f(·) = 1

2
‖y −A · ‖22 is a smooth function, the use of the `1-norm in the regularization makes

g(·) = λ‖ · ‖TV not differentiable. In the following section we will see how to minimize P
considering those properties.

3.2 Solving a TV regularized problem

In this section, we detail several approaches to solve the TV-reg problem. The formulation
proposed in Equation 3.1 is named the analysis formulation. Other equivalent formulations
are also presented as well has the classical algorithms to minimize them efficiently.

3.2.1 Analysis formulation

Solving the analysis formulation by the book

Considering a cost function defined by F = f + g with f : RT̃ → R+ being convex and
smooth and g : RT̃ → R+ being convex, the most straightforward approach to minimize F
is to consider the proximal gradient descent (PGD) [Rockafellar, 1976]. PGD algorithm
alternates between two steps during each iteration t. The first is called the gradient step and
decreases the cost-function along the descent direction defined by the gradient ∇f(u(t)), such
that ũ(t+1) = u(t) − ρ∇f(u(t)). The step-size ρ can be chosen in [0, 2

L [ with L the Lipschitz
constant of the gradient operator to have theoretical guaranty on the convergence. The
second step is the proximal step, where the regularization term g in the cost-function is taken
into account to provide a feasible point by solving at each iteration the proximal operator of
prox(g, ρ)(.). The proximal operator step consists in solving the problem Equation 3.2 w.r.t

the iterate ũ(t+1).

u(t+1) = arg min
u∈Rm

1
2‖ũ

(t+1) − u‖22 + g(u) , (3.2)

In some cases, the proximal operator admits a closed-form solution. In the case of the
`1-norm, this is the so call soft-thresholding or for a convex set characteristic function, this is
the orthogonal projection on the set. In the case of the TV-reg, the proximal operator step
in Algorithm 1 does not have a closed-form solution. Hence, one needs to solve Equation 3.2
numerically with one of the algorithms exposed in the next paragraphs. However, in the 1D
case, powerful dynamic programming algorithms have been developed to solve it exactly (up
to numerical precision), such as the taut-strings algorithm [Condat, 2013a]. Interestingly,
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this algorithm has a complexity of O
(
T̃
)
in most practical cases, which allows to efficiently

solve the proximal step in Algorithm 1.
Note that the `1-norm can be replace by a smooth function such as the Huber loss in

order to smooth the cost-function. In this case, the function can be minimized with second
order approaches [Byrd et al., 1995].

If we consider our cost-function P in Equation 3.1, here we have f such as f(u) =
1
2
‖y−Au‖22 and ∇f(u(t)) = A>(Au(t)−y); the regularization term g is the aforementioned

TV-reg, such as g(u) = λ‖Du‖1. Hence, for a scaling parameter 1
ρ , the proximal oper-

ator prox(g, ρ)(u) is defined by prox(g, ρ)(·) = arg min
u∈RT̃

[
1
2
‖u− ·‖22 + λ

ρ‖Du‖1
]
. The

corresponding PGD algorithm in the analysis formulation is defined in Algorithm 1.

Algorithm 1: Analysis Proximal gradient descent
Input :BOLD signal y, ε, ρ

1 initialization: u(0) = 0
T̃
, t = 0 ;

2 repeat
3 ũ(t+1) = u(t) − 1

ρA
>(Au(t) − y)

4 u(t+1) = arg min
u∈RT̃

[
1
2
‖ũ(t+1) − u‖22 + λ

ρ‖Du‖1
]

5 until ‖u(t+1) − u(t)‖2 ≤ ε;

algorithm 1 is guaranteed to converge to a solution of Equation 3.1 when the step size is
properly set as the previously mentioned – as the inverse of the Lipschitz constant of the
gradient. Additionally, one can compute at each iteration an optimal decreasing step ρ∗

to have a better descent, with the backtracking line search based on the Armijo-Goldstein
condition [Armijo, 1966] for example. Another way to accelerate the algorithm 1 is to
introduce a momentum term [Nesterov, 2013, Liang and Schönlieb, 2018]. The idea is to
consider the previous update direction u(t) −u(t−1) to update the next iterate u(t+1). To go
further in the acceleration, a restarting scheme can also be added [Kim and Fessler, 2018],
the main objective of those techniques is to cancel the potential rebound of the cost-function
evolution w.r.t the iteration. We will not go into detail but the accelerating and the restarting
scheme will be implemented and their performances will be compared with the classical PGD
algorithm in the next section.

Solving the analysis formulation with primal-dual algorithms

Another type of algorithms to solve cost-functions involving a regularization term g is the
primal-dual algorithm. Here the term dual refers to Lagrangian duality. The idea behinds
duality is to consider that an optimization problem can be seen in two different ways: a
direct minimization of the cost-function or a maximization of a concave lower bound of this
cost-function.

The main benefit of primal-dual algorithms is that both the primal variable u and the
dual variable denoted µ, in our case, are updated simultaneously. To that aim, we introduce a
variable z and re-write the regularization term as a constrain: our main problem Equation 3.1
is equivalent to the minimization problem Equation 3.3.
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min
u∈Rm

[
P (u) = 1

2‖y −Au‖
2
2 + λ‖z‖1

]
,

subject to Du− z = 0 .

(3.3)

We derive the associated Augmented Lagrangian function L Equation 3.4 from Equa-
tion 3.3 to relax the constraint by introducing the dual variable µ ∈ Rm−1

L(u,y, µ) = 1
2‖y −Au‖

2
2 + λ‖z‖1 + µ>(Du− z) + γ

2 ‖Du− z‖
2
2 , (3.4)

L is the Augmented Lagrangian and can be minimized via any primal-dual algorithms.
Here we provide the example of the Alternating Direction Method of Multipliers (ADMM)
introduced in Boyd et al. [2011], see algorithm 2.

Algorithm 2: ADMM
Input :BOLD signal y, ε, ρ

1 initialization: u(0) = 0
T̃
, z(0) = 0

T̃−1
, µ(0) = 0

T̃−1
, t = 0 ;

2 repeat
3 u(t+1) =

(
A>A+ ρD>A

)† (
A>y −D>µ(t) + ρD>z(t)

)
4 ∀i ∈ [1..T̃ ] z

(t+1)
i = 1

ρ (µ(t))i + (Du(t+1))i + λ
γ sign(z(t)

i )
5 µ(t+1) = µ(t) + γ

(
Du(t+1) − z(t+1)

)
6 until ‖Du(t) − z(t)‖2 ≤ ε;

At each iteration we minimize mathcalL w.r.t u, z and then we make a ascent gradient
step concerning µ such as µ(t+1) = µ(t) + γ

(
Du(t+1) − z(t+1)

)
. Note that the update of u

and z can be distributed.

Condat [2013b] proposes an accelerated primal-dual algorithm, by doing a joint gradient
descent in the primal along in the dual. The algorithm and its properties are detailed in
Condat [2013b], we simply report the definition of the algorithm here algorithm 3:

Algorithm 3: Condat-Vu
Input :BOLD signal y, ε, τ , σ, ρ

1 initialization: u(0) = 0
T̃
, z(0) = 0

T̃−1
, t = 0 ;

2 repeat
3 ũ(t+1) = u(t) − τA>(Au(t) − y)− τD>z(t)

4 z̃(t+1) = z(t) + σD(2ũ(t+1) − u(t))− ST σ(z(t) + σD(2ũ(t+1) − u(t)))
5 u(t+1) = ηũ(t+1) + (1− η)u(t)

6 z(t+1) = ηz̃(t+1) + (1− η)z(t)

7 until ‖Du(t) − z(t)‖2 ≤ ε;

In this section, we have briefly introduce primal-dual algorithms which are based on the
concept of Lagrangian duality. In the next section, we will see that there is another possible
definition for the dual and we introduce the Fenchel’s duality.

Solving the dual of analysis formulation

The Fenchel’s duality is a generalization of the Lagrangian duality, thus the intuition of the
approach is same. To obtain the associated dual problem, we define the Fenchel’s transform,
defined by:
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∀u∗ ∈ Rm f∗(u∗) = − inf
u∈Rm

(
f(u)− u∗>u

)
(3.5)

Applying this transformation to our cost function gives us the dual formulation of our
problem, which leads to a problem with a simpler proximal operator associated to the new
regularization term. To prove it, we now derive the dual of Equation 3.1. By defining f
and g, such as f(·) = 1

2
‖A · −y‖22 and g(·) = λ‖ · ‖1 and by denoting p the minimum of

Equation 3.1 w.r.t u, the problem reads:

min
u∈Rm

f(u) + g(Du) (3.6)

With the Fenchel-Rockafellar duality theorem, we derive the dual in Equation 3.7.

min
µ∈Rm

f∗(−D>µ) + g∗(µ) (3.7)

With µ ∈ Rm being the dual variable, we have g∗(µ) = −minu∈Rm g(u)−µ>u. With a
component-wise minimization, we obtain g∗(µ)i = δ|µi|≤λ with δ being the convex indicator.
Thus, we deduce that g∗(µ) = δ‖µ‖∞≤λ. Then, we have f∗(µ) = −minu∈Rm f(u)− µ>u.
By cancelling the gradient we obtain: f∗(µ) = 1

2
‖A†>µ‖22 + µ>A†y, with A† being the

pseudo-inverse of A. Note that, if we set A = I, we obtain the same problem as Chambolle
[2004], Barbero and Sra [2018].

Finally, we obtain the Fenchel dual of the optimization problem Equation 3.1:

min
µ∈Rm−1

1
2‖A

†>D>µ‖22 − µ>DA†y (3.8)

s.t. ‖µ‖∞ ≤ λ

With Equation 3.8, we can derive a projected gradient descent algorithm easily. Indeed
the proximal operator associated to the constraint term µ→ δ{‖µ‖∞≤λ} is simply a projection

such as Pj(µ)i =
µ̃i if |µ̃i| ≤ λ

sign(µ̃i) λ if |µ̃i| > λ

Algorithm 4: Dual Projected gradient descent
Input :BOLD signal y, ε

1 initialization: z(0) = 0
T̃
, t = 0 ;

2 repeat
3 µ̃(t+1) = µ(t) − 1

ρ ((DA†)(DA†)>µ− y>(DA†))

4 µ
(t+1)
i =

µ̃
(t+1)
i if |µ̃(t+1)

i | ≤ λ

sign(µ̃(t+1)
i ) λ if |µ̃(t+1)

i | > λ

5 until ‖(DA†)(DA†)>µ− y>(DA†)‖2 ≤ ε;

As we mention, the proximal operator involved in this algorithm has a closed form
solution and thus is easy to implement. However, the gradient term involved A† the pseudo-
inverse of A. Depending on the rank of the observation matrix its pseudo-inverse could be
ill-conditioned and the Lipschitz constant of the gradient could be too high, thus producing
a too small step size to achieve a fast minimization.
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3.2.2 Synthesis formulation

Finally, in this subsection we detail that the analysis formulation of Equation 3.1 can be
rewritten in the so called synthesis formulation. The general idea is to simplify the regulariz-
ation term with a change of variable. Suppose that we consider a regularization defined by g
such as ∀u ∈ Rm g(u) = ‖Mu‖1 with M ∈ Rm×m being invertible. Then, we could defined
z = Mu ∈ Rm such as g(u) = ‖z‖1. Note that the proximal operator of the `1-norm is
the Soft-Thresholding operator. Thus, with this change of variable we obtain a closed-form
solution for the proximal operator involved in the PGD algorithm.

However, if we consider our cost-function in Equation 3.1 we have M = D, with D
being not invertible. Thus, we should slightly adapt the described scheme in our case. We
introduce L ∈ RT×T and R ∈ RT×T , such as:

L =


1 0 . . . 0

1 1
. . .

...
...

. . . . . . 0
1 . . . 1 1

 R =


0 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1



L is the discrete integration operator and R asserts that ∀ z ∈ RT such as u =
Lz we have ‖Du‖1 = ‖Rz‖1. Indeed, with R, we regularized all the coefficients of z
except the first one, which allow recover u with the integration, such as u = Lz, as desired.
With this adapted change of variable, we now derive the equivalent synthesis formulation in
Equation 3.9:

min
z∈RT

[
PAL,λ(z) = 1

2‖y −ALz‖
2
2 + λ‖Rz‖1

]
, (3.9)

With Equation 3.9, we recover the Least Absolute Shrinkage and Selection Operator
(LASSO) problem formulation, which involves a quadratic fidelity term and a `1-norm. We
can now derive easily a PGD algorithm to minimized it, see algorithm 5:

Algorithm 5: Synthesis Proximal gradient descent (LASSO)
Input :BOLD signal y, ε, ρ

1 initialization: z(0) = 0
T̃
, t = 0 ;

2 repeat
3 z̃(t+1) = z(t) − 1

ρ (AL)>(ALz(t) − y)
4 z(t+1) = ST λ(z̃(t+1))
5 until ‖z(t+1) − z(t)‖22 ≤ ε;

This algorithm is also known as the Iterative Soft-Thresholding Algorithm (ISTA) pro-
posed by Daubechies et al. [2004]. It can be accelerated using a momentum term, as proposed
in Beck and Teboulle [2009] with the algorithm Fast ISTA (FISTA).

Moreover, to minimize the LASSO problem at Equation 3.9, the Least Angle Regression
(LARS) algorithm can be used. LARS algorithm includes iteratively the coefficients of z
to produce an estimate with the smallest support S = {i|zi 6= 0}. At each iteration k the
algorithm selects the line ALi most correlated with the residual y−ALz(k) and updates the
corresponding coefficient z(k)

i with a gradient step. At iteration l, if another lineALj becomes
more correlated with the residual, the algorithm includes the corresponding coefficient z(l)

j

to the active-set, such as Ŝ(l) = {j}
⋃
Ŝ(l−1) = {i, j}, and updates it ( i.e. z

(l)
i and z(l)

j )
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with a gradient step. If a coefficient hits 0 the algorithm removes it from the active-set. This
approaches continues to include coefficients until all the coefficients have been considered.

The LARS algorithm is similar to stepwise regression approaches that include iteratively
coefficients and minimize exactly the cost-function w.r.t the current active-set. The LARS
algorithm was introduced by Efron et al. [2004] and it was first applied to the case of the
LASSO by Harchaoui and Lévy-Leduc [2007].

To recap, in this section, we have listed and detailed most of the different approaches to
solve the TV-reg problem. We have seen that we could derive multiple equivalent formulation
of the same problem which produce different algorithms. A natural question would be to
investigate which algorithm proposes the fastest minimization of our original problem, we
will see this in the next section with an experiment benchmark on synthesis data.

3.3 Performance comparison

To practically explore which algorithms has the best performance we propose to benchmark
each of them in a simple deconvolution problem as exposed in Cherkaoui et al. [2019a].

3.3.1 Material and methods

We consider a source signal u ∈ RT with T = 100 such as ‖Du‖0 = 5 in a first scenario and
‖Du‖0 = 50 in a second scenario. We consider an HRF v ∈ Rl with l = 60 following the
HRF model proposed in Cherkaoui et al. [2019a] with the time dilation parameter δ = 1.
We introduce the Toeplitz matrix H ∈ RT+l−1×T associated to v. We generate a single
synthetic BOLD time serie defined as y = v ∗ u + ε such as y ∈ RT+l−1 and ε ∈ RT+l−1

being a Gaussian noise such as the observed signal as a signal to noise ratio (SNR) of 0.0 dB.

To estimate the source signal u from the observed signal y we propose to solve Equa-
tion 3.10, defined as:

min
u∈RT

[
PH,λ(u) = 1

2‖y −Hu‖
2
2 + λ‖Du‖1

]
, (3.10)

Equation 3.10 is similar to Equation 3.1, the only difference being the observation matrix,
since A = H which provide here a specific structure in this observation operator, note
that in this case the matrix is not invertible. Here we fix arbitrary λ = 1.0. In general the
setting of this hyper-parameter is important since it controls the bias of the estimator defined
by y → arg minu∈RT [PH,λ] (u). However, since our objective in this section is simply an
optimization performance comparison we will set λ arbitrary.

We choose to benchmark the proximal gradient descent with analysis primal formulation,
the Condat-Vu algorithm, the analysis dual formulation, the synthesis primal formulation.
We also consider the LARS algorithm with the synthesis primal formulation. We made
the choice to not include the ADMM algorithm 2 since its performances are known to be
sub-optimal in comparison of the Condat-Vu algorithm 3. Moreover, as it’s know that the
accelerating and restarting scheme can greatly improve the optimization performance of an
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PGD algorithm, we include them in the benchmark.

We fix all the step size to the inverse of the Lipschitz constant of the gradient, except for
the Condat-Vu algorithm. For the later, we manually fix σ = 0.5 after a previous benchmark
and set optimaly τ w.r.t σ according to Condat [2013b].

We propose to introduce the momentum acceleration and the restarting scheme to the
analysis primal PDG algorithm and the synthesis primal PDG algorithm. For the analysis
formulation, we define the momentum, at iteration t+ 1, as θt+1 = 1

1+
√

1+4(θt)2
with θ0 = 1

such as at each iteration u(t+1) = ũ(t+1) + θt−1
θt+1 (ũ(t+1) − u(t)) with ũ(t) being the output of

the proximal operator step of the iteration; we do similarly for the synthesis formulation w.r.t

z(t). Moreover, concerning the restarting scheme, we reset the momentum such as θt+1 = θt

when PH,λ(u(t+1)) > PH,λ(u(t)); we do similarly for the synthesis formulation.
Each algorithm performs 30000 iterations completely and we store at each iteration

the cost-function value PH,λ(u(t)) along with the duration of the iteration without the
cost-function computation duration.

To unsure, fair comparison we initialize each algorithm to the same variable, we choose
µ(0)) = 0T−1, by applying the K.K.T conditions we obtain u = (A>A)†(A>y −D>µ)
such as u(0) = (A>A)†A>y which correspond to u(0) = A†y and z(0) = Du(0). Those
equivalent initializations assert that the cost-function evolution starts at the same value for
each algorithm.

A summary of the parameters of the different algorithms can be found in Table 3.1.

3.3.2 Results

We investigate two scenarios, ‖Du‖0 = 5 and ‖Du‖0 = 50 with Du ∈ R99. In Figure 3.3-4
and Figure 3.3-5, we report the evolution of the cost-function PH,λ(x(t))− PH,λ(u∗) w.r.t

the iterations t and the time in seconds for each algorithms in log-scale for both scenarios.
We exclude the LARS algorithm form the loss comparison but will report later its average
convergence time.

In both case, we observe that the order of performance for each algorithms stays the same.
We notice that only the synthesis primal PGD and APGD did not reach the minimum of the
cost-function whereas all the other algorithms have. We observe that the synthesis formulation
algorithms (PGD, APGD, RAPGD) have the worst performance, as a comparison, the fastest
synthesis formulated algorithm (RAPGD) takes 100 more iterations to converge to the same
cost-function value than the RAPGD analysis primal formulation. The Condat-Vu algorithm
has in-between performance, yet it has similar performance of the RAPGD synthesis primal
formulation algorithm. Moreover, the PGD analysis dual formulation algorithm has one of
the worst performance. In addition, all the analysis primal formulation algorithms (PGD,
APGD, RAPGD) have the best minimization performance, the RAPGD scheme being the
fastest algorithm to reach the minimum for both scenarios. The good performance of the
analysis primal formulation algorithm can be explained by the efficiency of the proximal
operator step in comparison of the synthesis formulation.
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Table 3.1 – Summary of the algorithm’s hyper-parameters used to benchmark their performance.

Algorithm Step size Momentum Restarting Initialization
Analysis primal

Proximal
gradient descent

(Analysis primal PGD)

ρ = ‖H‖F - - u(0) = A†y

Accelerated Analysis primal
Proximal

gradient descent
(Analysis primal APGD)

ρ = ‖H‖F
θt+1 = 1

1+
√

1+4(θt)2

u(t+1) = ũ(t+1) + θt−1
θt+1 (ũ(t+1) − u(t))

a - u(0) = A†y

Restarting
Analysis primal

Proximal
gradient descent

(Analysis primal RAPGD)

ρ = ‖H‖F
θt+1 = 1

1+
√

1+4(θt)2

u(t+1) = ũ(t+1) + θt−1
θt+1 (ũ(t+1) − u(t))

b if PH,λ(u(t+1)) > PH,λ(u(t))

then θt+1 = θt
u(0) = A†y

Condat-Vu
σ = 0.5

1
τ =

‖H‖F
2 + σ‖D‖F
η = 1.0

- -
u(0) = A†y

and
z(0) = Du(0)

Dual
Projected

gradient descent
(Analysis dual PGD)

ρ = ‖H†D‖F - - v(0) = 0T−1

Synthesis
Proximal

gradient descent
(Synthesis primal PGD)

ρ = ‖HL‖F - - z(0) = DA†y

Accelerated Synthesis
Proximal

gradient descent
(Synthesis primal APGD)

ρ = ‖HL‖F
θt+1 = 1

1+
√

1+4(θt)2

z(t+1) = z̃(t+1) + θt−1
θt+1 (z̃(t+1) − z(t))

c - z(0) = DA†y

Restarting
Accelerated Synthesis

Proximal
gradient descent

(Synthesis primal RAPGD)

ρ = ‖HL‖F
θt+1 = 1

1+
√

1+4(θt)2

z(t+1) = z̃(t+1) + θt−1
θt+1 (z̃(t+1) − z(t))

d if PH,λ(x(t+1)) > PH,λ(u(t))

then θt+1 = θt
z(0) = DA†y

LARS algorithm
(LARS-LASSO) - - - z(0) = DA†y

a ũ refers to the output of the proximal operator step
bSee footnote 3.1
c z̃ refers to the output of the proximal operator step
dSee footnote 3.1
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Figure 3.3-4 – (left) Performance comparison w.r.t the iterations, (right) Perform-
ance comparison w.r.t the time. We compare the performance of each algorithms in the
scenario where ‖Du‖0 = 5.
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Figure 3.3-5 – (left) Performance comparison w.r.t the iterations, (right) Perform-
ance comparison w.r.t the time. We compare the performance of each algorithms in the
scenario where ‖Du‖0 = 50.

Additionally, we investigate the time spent for each algorithm (including the LARS
algorithm) to reach the minimum of the cost-function PH,λ(u∗) with a precision of 10−3. We
report the results for λ ∈ {0.001, 1.0, 10.0}. We study the scenario where ‖Du‖0 = 5. Most
of the synthesis formulation algorithm (PGD, APGD) and the dual formulation algorithm
are not reported since they do not reach this precision sufficiently fast. The time spent is
displayed in log-scale for all the scenarios. To achieve fair comparison, we run 10 times each
algorithm. In Figure 3.3-6, we display the average time for each method and represent the
variance with a black line on top of each bar.

In all cases, we notice that the analysis formulation (PGD, APGD, RAPGD) and the
LARS algorithm with the synthesis formulation are the faster than the other methods, the
RAPGD scheme being the fastest algorithm. The Condat-Vu algorithm has in-between
performance and the RAPGD synthesis formulation algorithm has the worst performance
of the reported algorithms. We notice that the higher λ, the faster all the algorithms are
(except the LARS algorithm). This can be explained as the support estimation is easier
in the case where the solution has more 0s. Concerning the LARS algorithm, the level of
regularization does not affect the convergence time.

3.4 Chapter conclusion

We have defined and described what is the TV regularization, how to solve a problem that
involve it and compared experimentally these algorithms. We found that in practice, if one
can implement the Taut-string algorithm in an efficient way then the analysis formulation
with the prox-TV operator achieves the best performance.
However, in the next chapter, we will see that it is possible to further accelerate the resolution
of TV regularized problems, in particular using learned algorithms.
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Figure 3.3-6 – Convergence time comparison. We report for each algorithm the average
time spent to reach a value of the cost function with sub-optimality 10−3. We consider the
scenario where λ ∈ {0.1, 1.0, 10.0}. We notice the higher the TV regularization the faster
the algorithms are. Their relative performance is quite stable, with a clear advantage for the
Analysis methods compared to the other, due to the efficiency of the prox-TV.
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This chapter was presented at an International conference as:

H. Cherkaoui, J. Sulam, and T. Moreau. Learning to solve tv regularised problems with unrolled

algorithms. In 34th Conference and Workshop on Neural Information Processing Systems
(NeurIPS), pages 1–21, 2020b.

T he purpose of this chapter is to introduce our novel approach based on neural networks
to efficiently minimize a cost-function involving the Total Variation (TV) regularization

term nearby a quadratic data consistency term. We propose a theoretical comparison of
multiple equivalent formulations of the considered optimization problem, introduce our novel
method and provide experimental validations to demonstrate its usefulness notably on real
fMRI data.
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4.1 Introduction to TV regularization in 1D

As explained, the TV-regularized problems are typically convex, and so a wide variety of
algorithms are in principle applicable. Since the `1 norm in the TV term is non-smooth,
Proximal Gradient Descent (PGD) is the most popular choice [Rockafellar, 1976]. Yet,
the computation for the corresponding proximal operator (denoted prox-TV) represents a
major difficulty in this case as it does not have a closed-form analytic solution. For 1D
problems, it is possible to rely on dynamic programming to compute prox-TV, such as the
taut string algorithm [Davies and Kovac, 2001, Condat, 2013a]. Another alternative consists
in computing the proximal operator with iterative first order algorithm [Chambolle, 2004,
Beck and Teboulle, 2009, Boyd et al., 2011, Condat, 2013b]. Other algorithms to solve
TV-regularized problems rely on primal dual algorithms [Chambolle and Pock, 2011, Condat,
2013b] or Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011]. These
algorithms typically use one sequence of estimates for each term in the objective and try to
make them as close as possible while minimizing the associated term. While these algorithms
are efficient for denoising problems – where one is mainly concerned with good reconstruction
– they can result in estimate that are not very well regularized if the two sequences are not
close enough.

When on fixed computational budget, iterative optimization methods can become imprac-
tical as they often require many iterations to give a satisfactory estimate. To accelerate the
resolution of these problems with a finite (and small) number of iterations, one can resort to
unrolled and learned optimization algorithms (see Monga et al. 2019 for a review). In their
seminal work, Gregor and Le Cun [2010] proposed the Learned ISTA (LISTA), where the
parameters of an unfolded Iterative Shrinkage-Thresholding Algorithm (ISTA) are learned
with gradient descent and back-propagation. This allows to accelerate the approximate
solution of a Lasso problem [Tibshirani, 1996], with a fixed number of iteration, for signals
from a certain distribution. The core principle behind the success of this approach is that
the network parameters can adaptively leverage the sensing matrix structure [Moreau and
Bruna, 2017] as well as the input distribution [Giryes et al., 2018, Ablin et al., 2019]. Many
extensions of this original idea have been proposed to learn different algorithms [Sprechmann
et al., 2012, 2013, Borgerding et al., 2017] or for different classes of problem [Xin et al.,
2016, Giryes et al., 2018, Sulam et al., 2019]. The motif in most of these adaptations is
that all operations in the learned algorithms are either linear or separable, thus resulting in
sub-differentials that are easy to compute and implement via back-propagation. Algorithm
unrolling is also used in the context of bi-level optimization problems such as hyper-parameter
selection. Here, the unrolled architecture provides a way to compute the derivative of the
inner optimization problem solution compared to another variable such as the regularisation
parameter using back-propagation [Bertrand et al., 2020].

The focus of this chapter is to apply algorithm unrolling to TV-regularized problems in
the 1D case. While one could indeed apply the LISTA approach directly to the synthesis

formulation of these problems, we show in this chapter that using such formulation leads to
slower iterative or learned algorithms compared to their analysis counterparts. The extension
of learnable algorithms to the analysis formulation is not trivial, as the inner proximal
operator does not have an analytical or separable expression. We propose two architectures
that can learn TV-solvers in their analysis form directly based on PGD. The first architecture
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uses an exact algorithm to compute the prox-TV and we derive the formulation of its weak
Jacobian in order to learn the network’s parameters. Our second method rely on a nested
LISTA network in order to approximate the prox-TV itself in a differentiable way. This
latter approach can be linked to inexact proximal gradient methods [Schmidt et al., 2011,
Machart et al., 2012]. These results are backed with numerical experiments on synthetic and
real data. Concurrently to our work, Lecouat et al. [2020] also proposed an approach to
differentiate the solution of TV-regularized problems. While their work can be applied in the
context of 2D signals, they rely on smoothing the regularization term using Moreau-Yosida
regularization, which results in smoother estimates from theirs learned networks. In contrast,
our work allows to compute sharper signals but can only be applied to 1D signals.

4.2 Solving a TV regularized problem

The chapter is organized as follows. In subsection 4.2.1, we describe the different formulations
for TV-regularized problems and their complexity. We also recall central ideas of algorithm
unfolding. subsection 4.2.2 introduces our two approaches for learnable network architectures
based on PGD. Finally, the two proposed methods are evaluated on synthetic and real data
in subsection 4.3.1 and subsection 4.3.2.

Notations For a vector x ∈ Rk, we denote ‖x‖q its `q-norm. For a matrix A ∈ Rm×k, we
denote ‖A‖2 its `2-norm, which corresponds to its largest singular value and A† denotes its
pseudo-inverse. For an ordered subset of indices S ⊂ {1, . . . , k}, xS denote the vector in R|S|

with element (xS)t = xit for it ∈ S. For a matrix A ∈ Rm×k, A:,S denotes the sub-matrix
[A:,i1 , . . . A:,i|S| ] composed with the columns A:,it of index it ∈ S of A. For the rest of the
chapter, we refer to the operators D ∈ Rk−1×k, D̃ ∈ Rk×k, L ∈ Rk×k and R ∈ Rk×k as:

D =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 D̃ =


1 0 . . . 0

−1 1
. . .

...
. . . . . . 0
0 −1 1

 L =


1 0 . . . 0

1 1
. . .

...
...

. . . . . . 0
1 . . . 1 1

 R =


0 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1



4.2.1 Solving TV-regularized problems

We begin by detailing the TV-regularized problem that will be the main focus of our
work. Consider a latent vector u ∈ Rk, a design matrix A ∈ Rm×k and the corresponding
observation x ∈ Rm. The original formulation of the TV-regularized regression problem
is referred to as the analysis formulation [Rudin et al., 1992]. For a given regularization
parameter λ > 0, it reads

min
u∈Rk

P (u) = 1
2‖x−Au‖

2
2 + λ‖u‖TV , (4.1)

where ‖u‖TV = ‖Du‖1, and D ∈ Rk−1×k stands for the first order finite difference operator,
as defined above. The problem in Equation 4.1 can be seen as a special case of a Generalized
Lasso problem [Tibshirani and Taylor, 2011]; one in which the analysis operator is D. Note
that problem P is convex, but the TV -norm is non-smooth. In these cases, a practical
alternative is the PGD, which iterates between a gradient descent step and the prox-TV.
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This algorithm’s iterates read

u(t+1) = proxλ
ρ ‖·‖TV

(
u(t) − 1

ρ
A>(Au(t) − x)

)
, (4.2)

where ρ = ‖A‖22 and the prox-TV is defined as

proxµ‖·‖TV (y) = arg min
u∈Rk

Fy(u) = 1
2‖y − u‖

2
2 + µ‖u‖TV . (4.3)

Problem Equation 4.3 does not have a closed-form solution, and one needs to resort to
iterative techniques to compute it. In our case, as the problem is 1D, the prox-TV problem
can be addressed with a dynamic programming approach, such as the taut-string algorithm
[Condat, 2013a]. This scales as O(k) in all practical situations and is thus much more efficient
than other optimization based iterative algorithms [Rockafellar, 1976, Chambolle, 2004,
Condat, 2013b] for which each iteration is O(k2) at best.

With a generic matrix A ∈ Rm×k, the PGD algorithm is known to have a sublinear
convergence rate [Combettes and Bauschke, 2011]. More precisely, for any initialization u(0)

and solution u∗, the iterates satisfy

P (u(t))− P (u∗) ≤ ρ

2t‖u
(0) − u∗‖22, (4.4)

where u∗ is a solution of the problem in Equation 4.1. Note that the constant ρ can have
a significant effect. Indeed, it is clear from Equation 4.4 that doubling ρ leads to consider
doubling the number of iterations.

Synthesis formulation

An alternative formulation for TV-regularized problems relies on removing the analysis
operator D from the `1-norm and translating it into a synthesis expression [Elad et al., 2007].
Removing D from the non-smooth term simplifies the expression of the proximal operator by
making it separable, as in the Lasso. The operator D is not directly invertible but keeping
the first value of the vector u allows for perfect reconstruction. This motivates the definition
of the operator D̃ ∈ Rk×k, and its inverse L ∈ Rk×k, as defined previously. Naturally, L is
the discrete integration operator. Considering the change of variable z = D̃u, and using the
operator R ∈ Rk×k, the problem in Equation 4.1 is equivalent to

min
z∈Rk

S(z) = 1
2‖x−ALz‖

2
2 + λ‖Rz‖1. (4.5)

Note that for any z ∈ Rk, S(z) = P (Lz). There is thus an exact equivalence between
solutions from the synthesis and the analysis formulation, and the solution for the analysis
can be obtained with u∗ = Lz∗. The benefit of this formulation is that the problem above
now reduces to a Lasso problem [Tibshirani, 1996]. In this case, the PGD algorithm is
reduced to the ISTA with a closed-form proximal operator (the soft-thresholding). Note
that this simple formulation is only possible in 1D where the first order derivative space is
unconstrained. In larger dimensions, the derivative must be constrained to verify the Fubini’s
formula that enforces the symmetry of integration over dimensions. While it is also possible
to derive synthesis formulation in higher dimension [Elad et al., 2007], this does not lead to
simplistic proximal operator.
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For this synthesis formulation, with a generic matrix A ∈ Rm×k, the PGD algorithm has
also a sublinear convergence rate [Beck and Teboulle, 2009] such that

P (u(t))− P (u∗) ≤ 2ρ̃
t
‖u(0) − u∗‖22, (4.6)

with ρ̃ = ‖AL‖22.

Proof. The convergence rate of ISTA for the synthesis formulation reads

S(z(t))− S(z∗) ≤ ρ̃

2t‖z
(0) − z∗‖22 . (4.7)

We use S(z(t)) = P (Lz(t)) = P (u(t)) to get the correct left-hand side term. For the right
hand side, we use z(0) = D̃u(0), and z∗ = D̃u∗, which gives ‖z(0)− z∗‖22 = ‖D̃(u(0)−u∗)‖22 ≤
4‖u(0) − u∗‖22. The last majoration comes from the fact that ‖D̃‖22 ≤ 4, as shown per
Lemma 4.2.1. This yields

P (u(t))− P (u∗) ≤ 2ρ̃
t
‖u(0) − u∗‖22 . (4.8)

Lemma 4.2.1. [Singular values of L] The singular values of L ∈ Rk×k are given by

σl = 1
2 cos

(
πl

2k+1

) , ∀l ∈ {1, . . . , k} .

Thus, ‖L‖2 = 2k+1
π + o(1).

Proof. As L is invertible, so is L>L. To compute the singular values σl of L, we will compute
the eigenvalues µl of (L>L)−1 and use the relation

σl = 1
√
µl

(4.9)

With simple computations, we obtain

Mk = (L>L)−1 = L−1(L>)−1 = D̃D̃> =



1 −1 0 . . .

−1 2 −1 0 . . .

. . . . . . . . .
0 −1 2 −1

−1 2


(4.10)

This matrix is tri-diagonal with a quasi-toepliz structure. Its characteristic polynomial Pk(µ)
is given by:

Pk(µ) = |µ Id−Mk| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− 1 1 0 . . .

1 µ− 2 1 0 . . .

. . . . . . . . .
0 1 µ− 2 1

0 1 µ− 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.11)

= (µ− 1)Qk−1(µ)−Qk−2(µ) (4.12)
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where Equation 4.12 is obtained by developing the determinant relatively to the first line
and Qk(µ) is the characteristic polynomial of matrix M̃k equal to Mk except for the the top
left coefficient which is replaced by 2

M̃k =



2 −1 0 . . .

−1 2 −1 0 . . .

. . . . . . . . .
0 −1 2 −1

0 −1 2


(4.13)

Using the same development as Equation 4.12, one can show that Qk verifies the recurrence
relationship

Qk(µ) = (µ− 2)Qk−1(µ)−Qk−2(µ); Q1(µ) = 2− µ, Q0(µ) = 1 . (4.14)

Using this with Equation 4.12 yields

Pk(µ) = Qk(µ) +Qk−1(µ) (4.15)

With the change of variable ν = µ−2
2

and denoting Uk(ν) = Qk(2 + 2ν), the recursion
becomes

Uk(ν) = 2νUk−1(ν)− Uk−2(ν); U1(ν) = 2ν, U0(µ) = 1 . (4.16)

This recursion defines the Chebyshev polynomials of the second kind [Chebyshev, 1853]
which verifies the following relation

∀θ ∈ [0, 2π], Uk(cos(θ)) sin(θ) = sin((k + 1)θ) . (4.17)

Translating this relationship to Qk gives

∀θ ∈ [0, 2π], Qk(2 + 2 cos(θ)) sin(θ) = sin((k + 1)θ) . (4.18)

Using this in Equation 4.15 shows that for θ ∈ [0, 2π[ Pk verify

Pk(2 + 2 cos(θ) sin(θ) = sin((k + 1)θ) + sin(kθ) . (4.19)

The equation
sin((k + 1)θ) + sin(kθ) = 0 , (4.20)

has l solution in [0, 2π[ that are given by θl = 2πl
2k+1

for l ∈ {1, . . . n}. As for all l, sin(θl) 6= 0,
the values µl = 2 + 2 cos(θl) = 4 cos2( πl

2k+1
) are the roots of Pk and therefor the eigenvalues

of Mk. Using Equation 4.9 yields the expected value for σl.
The singular value of L is thus obtain for l = k and we get

‖L‖2 = σk = 1
2 cos

(
πk

2k+1

) = 1
2 cos

(
π
2

(1− 1
2k+1

)
) , (4.21)

= 1
2 sin

(
π
2

1
2k+1

) = 2k + 1
π

+ o(1) . (4.22)

Where the last approximation comes from 1
sin(x)

= 1/x+ o(1) when x is close to 0.
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While the rate of this algorithm is the same as in the analysis formulation – in O( 1
t ) –

the constant ρ̃ related to the operator norm differs. We now present two results that will
characterize the value of ρ̃.

Proposition 4.2.2. [Lower bound for the ratio
‖AL‖2

2
‖A‖2

2
expectation] Let A be a random

matrix in Rm×k with i.i.d normally distributed entries. The expectation of ‖AL‖22/‖A‖22 is

asymptotically lower bounded when k tends to ∞ by

E
[
‖AL‖22
‖A‖22

]
≥ 2k + 1

4π2
+ o(1)

Proof. Finding the norm of AL can be written as

‖AL‖22 = max
x∈Rk

xL>A>ALx; st‖x‖2 = 1 (4.23)

From Lemma 4.2.1, we can write L = W>ΣV with V , W two unitary matrices and Σ a
diagonal matrix with Σl,l = σl for all l ∈ {1, .., k}.

First, we consider the case where A>A is a rank one matrix with A>A = ‖A‖22u1u
>
1 , with

vector u1 uniformly sampled from the `2-ball and fixed ‖A‖2. In this case, as W is unitary,
w1 = Wu1 is also a vector uniformly sampled from the sphere. Also as V is unitary, it is
possible to re-parametrize Equation 4.23 by y = V x such that

max
y∈Rk

‖A‖22y>Σw1w
>
1 Σy; st‖y‖2 = 1 (4.24)

This problem can be maximized by taking y = Σu1
‖Σu1‖2

, which gives

‖AL‖22 = ‖A‖22‖Σw1‖22 (4.25)

Then, we compute the expectation of ‖Σw1‖22 with respect with w1, a random vector sampled
in the `2 unit ball,

Ew1 [‖Σw1‖22] =
k∑
l=1

σ2
l E[u2

1,i] =
k∑
l=1

1
4 cos2 πl

2k+1

1
k

= 1
2π

k∑
l=1

π

2k
1

cos2 πl
2k+1

. (4.26)

Here, we made use of the fact that for a random vector u1 on the sphere in dimension k,
E[u1,i] = 1

k In the last part of the equation, we recognize a Riemann sum for the interval
[0, π

2
[. However, x 7→ 1

cos2(x)
is not integrable on this interval. As the function is positive and

monotone, we can still use the integral to highlight the asymptotic behavior of the series.
For k large enough, we consider the integral∫ π

2−
π

2k+1

0

1
cos2(x)dx =

[
sin(x)
cos(x)

]π
2−

π
2k+1

0

=
cos π

2k+1

sin π
2k+1

= 2k + 1
π

+ o(1) (4.27)

Thus, for k large enough, we obtain

Ew1

[
‖Σw1‖22

]
= 1

2π

(
2k + 1
π

+ o(1)
)

(4.28)

Thus, we get

E
[
‖AL‖22
‖A‖22

]
=
(
k + 1

2

π2
+ o(1)

)
(4.29)

This concludes the case where A>A is of rank-1 with uniformly distributed eigenvector.
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101

103

105
‖A
L
‖2 2
/‖
A
‖2 2

Mean E
[
‖AL‖22
‖A‖22

]
Proposition 2.1 Conjecture 2.2 Figure 4.2-1 – Evolution of E

[
‖AL‖2

2
‖A‖2

2

]
w.r.t

the dimension k for random matrices A
with i.i.d normally distributed entries

. In light blue is the confidence interval
[0.1, 0.9] computed with the quantiles. We
observe that it scales as O(k2) and that
our conjectured bound seems tight.

In the case where A>A is larger rank, it is lower bounded by ‖A‖22u1u
>
1 where u1 is its

eigenvector associated to its largest eigenvalue, since it is psd. Since A>A is a Whishart
matrix, its eigenvectors are uniformly distributed on the sphere [Silverstein, 1989]. We can
thus use the same lower bound as previously for the whole matrix.

The full proof can be found in Proposition 4.2.1. The lower bound is constructed by using
ATA � ‖A‖22u1u

>
1 for a unit vector u1 and computing explicitely the expectation for rank

one matrices. To assess the tightness of this bound, we evaluated numerically E
[
‖AL‖2

2
‖A‖2

2

]
on a

set of 1000 matrices sampled with i.i.d normally distributed entries. The results are displayed
w.r.t the dimension k in Figure 4.2-1. It is clear that the lower bound from Proposition 4.2.2
is not tight. This is expected as we consider only the leading eigenvector of A to derive it in
the proof. The following conjecture gives a tighter bound.

Conjecture 4.2.3 (Expectation for the ratio ‖AL‖
2
2

‖A‖2
2
). Under the same conditions as in

Proposition 4.2.2, the expectation of ‖AL‖22/‖A‖22 is given by

E
[
‖AL‖22
‖A‖22

]
= (2k + 1)2

16π2
+ o(1) .

We believe this conjecture can potentially be proven with analogous developments as
those in Proposition 4.2.2, but integrating over all dimensions. However, a main difficulty
lies in the fact that integration over all eigenvectors have to be carried out jointly as they
are not independent. This is subject of current ongoing work.

Finally, we can expect that ρ̃/ρ scales as Θ(k2). This leads to the observation that ρ̃
2
� ρ

in large enough dimension. As a result, the analysis formulation should be much more
efficient in terms of iterations than the synthesis formulation – as long as the prox-TVcan be
dealt with efficiently.

Unrolled iterative algorithms

As shown by Gregor and Le Cun [2010], ISTA is equivalent to a recurrent neural network
(RNN) with a particular structure. This observation can be generalized to PGD algorithms
for any penalized least squares problem of the form

u∗(x) = arg min
u

L(x, u) = 1
2‖x−Bu‖

2
2 + λg(u) , (4.30)

where g is proper and convex, as depicted in Figure 4.2-2. By unrolling this architecture
with T layers, we obtain a network φΘ(T )(x) = u(T ) – illustrated in Figure 4.2-3 – with
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parameters Θ(T ) = {W (t)
x ,W

(t)
u , µ(t)}Tt=1, defined by the following recursion

u(0) = B†x ; u(t) = proxµ(t)g(W (t)
x x+W (t)

u u(t−1)) . (4.31)

As underlined by Equation 4.4, a good estimate u(0) is crucial in order to have a fast
convergence toward u∗(x). However, this chosen initialization is mitigated by the first layer
of the network which learns to set a good initial guess for u(1). For a network with T layers,
one recovers exactly the T -th iteration of PGD if the weights are chosen constant equal to

W (t)
x = 1

ρ
B>, W (t)

u = (Id−1
ρ
B>B) , µ(t) = λ

ρ
, with ρ = ‖B‖22 . (4.32)

In practice, this choice of parameters are used as initialization for a posterior training
stage. In many practical applications, one is interested in minimizing the loss Equation 4.30
for a fixed B and a particular distribution over the space of x, P. As a result, the goal
of this training stage is to find parameters Θ(T ) that minimize the risk, or expected loss,
E[L(x, φΘ(T )(x))] over P. Since one does not have access to this distribution, and following
an empirical risk minimization approach with a given training set {x1, . . . xN} (assumed
sampled i.i.d from P), the network is trained by minimizing

min
Θ(T )

1
N

N∑
i=1

L(xi, φΘ(T )(xi)) . (4.33)

Note that when T → +∞, the presented initialization in Equation 4.32 gives a global
minimizer of the loss for all xi, as the network converges to exact PGD. When T is fixed,
however, the output of the network is not a minimizer of Equation 4.30 in general. Minimizing
this empirical risk can therefore find a weight configuration that reduces the sub-optimality
of the network relative to Equation 4.30 over the input distribution used to train the network.
In such a way, the network learns an algorithm to approximate the solution of Equation 4.30
for a particular class or distributions of signals. It is important to note here that while
this procedure can accelerate the resolution the problem, the learned algorithm will only
be valid for inputs xi coming from the same input distribution P as the training samples.
The algorithm might not converge for samples which are too different from the training set,
unlike the iterative algorithm which is guaranteed to converge for any sample.

This network architecture design can be directly applied to TV regularized problems if
the synthesis formulation Equation 4.5 is used. Indeed, in this case PGD reduces to the
ISTA algorithm, with B = AL and proxµg = st(·, µ) becomes simply a soft-thresholding
operator (which is only applied on the coordinates {2, . . . k}, following the definition of R).
However, as discussed in Proposition 4.2.2, the conditioning of the synthesis problem makes
the estimation of the solution slow, increasing the number of network layers needed to get
a good estimate of the solution. In the next section, we will extend these learning-based
ideas directly to the analysis formulation by deriving a way to obtain exact and approximate
expressions for the sub-differential of the non-separable prox-TV.

4.2.2 Back-propagating through TV proximal operator

Our two approaches to define learnable networks based on PGD for TV-regularized problems
in the analysis formulation differ on the computation of the prox-TV and its derivatives.
Our first approach consists in directly computing the weak derivatives of the exact proximal
operator while the second one uses a differentiable approximation.
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Figure 4.2-3 – LPGD - Unfolded network for Learned PGD
with T = 3

Figure 4.2-4 –Algorithm Unrolling - Neural network representation of iterative algorithms.
The parameters Θ(t) = {W (t)

x ,W
(t)
u , µ(t)} can be learned by minimizing the loss Equation 4.33

to approximate good solution of Equation 4.30 on average.

Derivative of prox-TV

While there is no analytic solution to the prox-TV, it can be computed exactly (numerically)
for 1D problems using the taut-string algorithm [Condat, 2013a]. This operator can thus be
applied at each layer of the network, reproducing the architecture described in Figure 4.2-3.
We define the LPGD-Taut network φΘ(T )(x) with the following recursion formula

φΘ(T )(x) = proxµ(T )‖·‖TV

(
W (T )
x x+W (T )

u φΘ(T−1)(x)
)

(4.34)

To be able to learn the parameters through gradient descent, one needs to compute the
derivatives of Equation 4.33 w.r.t the parameters Θ(T ). Denoting h = W

(t)
x x+W (t)

u φΘ(t−1)(x)
and u = proxµ(t)‖·‖TV (h), the application of the chain rule (as implemented efficiently by
automatic differentiation) results in

∂L
∂h

= Jx(h, µ(t))> ∂L
∂u

, and ∂L
∂µ(t)

= Jµ(h, µ(t))> ∂L
∂u

, (4.35)

where Jx(h, µ) ∈ Rk×k and Jµ(h, µ) ∈ Rk×1 denotes the weak Jacobian of the output of the
proximal operator u with respect to the first and second input respectively. We now give the
analytic formulation of these weak Jacobians in the following proposition.

Proposition 4.2.4. [Weak Jacobian of prox-TV] Let x ∈ Rk and u = proxµ‖·‖TV (x), and
denote by S the support of z = D̃u. Then, the weak Jacobian Jx and Jµ of the prox-TV

relative to x and µ can be computed as

Jx(x, µ) = L:,S(L>:,SL:,S)−1L>:,S and Jµ(x, µ) = −L:,S(L>:,SL:,S)−1 sign(Du)S

First, we recall Lemma 4.2.5 to weakly derive the soft-thresholding.

Lemma 4.2.5 (Weak derivative of the soft-thresholding; Deledalle et al. 2014). The soft-

thresholding operator ST : R × R+ 7→ R defined by ST(t, τ) = sign(t)(|t| − τ)+ is weakly

differentiable with weak derivatives

∂st

∂t
(t, τ) = 1{|t|>τ} , and

∂st

∂τ
(t, τ) = − sign(t) · 1{|t|>τ} ,

where

1{|t|>τ} =

1, if |t| > τ,

0, otherwise.
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A very important remark here is to notice that if one denote z = st(t, τ), one can rewrite
these weak derivatives as

∂st

∂t
(t, τ) = 1{|z|>0} , and ∂st

∂τ
(t, τ) = − sign(z) · 1{|z|>0} . (4.36)

Indeed, when |t| > τ , |z| = |t| − τ > 0 and conversely, |z| = 0 when |t| < τ . Moreover, when
|t| > τ , we have sign(t) = sign(z) and thus the two expressions for ∂st

∂τ match.
Using this Lemma 4.2.5, we now give the proof of Proposition 4.2.4.

Proof. The proof is inspired from the proof from Bertrand et al. [2020, Proposition 1]. We
denote u(x, µ) = proxµ‖·‖TV (x), hence u(x, µ) is defined by

u(x, µ) = arg min
û

1
2‖x− û‖

2
2 + µ‖û‖TV (4.37)

Equivalently, as we have seen previously in Equation 4.5, using the change of variable û = Lẑ

and minimizing over ẑ gives

min
ẑ

1
2‖x− Lẑ‖2 + µ‖Rẑ‖1 . (4.38)

We denote by z(x, µ) the minimizer of the previous equation. Thus, the solution u(x, µ) of
the original problem Equation 4.37 can be recovered using u(, µ) = Lz(x, µ). Iterative PGD
can be used to solve Equation 4.38 and z(x,mu) is a fixed point of the iterative procedure.
That is to say the solution z verifiesz1(x, µ) = z1(x, µ)− 1

ρ (L>(Lz(x, µ)− x))1 ,

zi(x, µ) = st
(
zi(x, µ)− 1

ρ (L>(Lz(x, µ)− x))i, µρ
)

for i = 2 . . . k .
(4.39)

Using the result from Lemma 4.2.5, we can differentiate Equation 4.39 and obtain the
following equation for the weak Jacobian Ĵx(x, µ) = ∂z

∂x (x, µ) of z(x, µ) relative to x

Ĵx(x, µ) =


1

1{|z2(x,µ)|>0}
...

1{|zk(x,µ)|>0}

�
[
(Id−1

ρ
L>L)Ĵx(x, µ) + 1

ρ
L> Id

]
. (4.40)

Identifying the non-zero coefficient in the indicator vectors yields{
Ĵx,Sc(x, µ) = 0
Ĵx,S(x, µ) = (Id− 1

ρL
>
:,SL:,S)Ĵx,S(x, µ) + 1

ρL
>
:,S .

(4.41)

As, L is invertible, so is L>:,SL:,S for any support S and solving the second equations yields
the following

Ĵx,S = (L>:,SL:,S)−1L>:,S (4.42)

Using u = Lz and the chain rules yields the expecting result for the weak Jacobian
relative to x, noticing that as Ĵx,Sc = 0, LĴx = L:,S Ĵx,S .

Similarly, concerning, Ĵµ(x, µ), we use the result from Lemma 4.2.5 an differentiale
Equation 4.39 and obtain Ĵµ(x, µ) = ∂z

∂µ (x, µ) of z(x, µ) relative to µ
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Ĵµ(x, µ) =


1

1{|z2(x,µ)|>0}
...

1{|zk(x,µ)|>0}

�
[
(Id−1

ρ
L>L)Ĵµ(x, µ)

]
+ 1
ρ


1

− sign(z2(x, µ))1{|z2(x,µ)|>0}
...

− sign(zk(x, µ))1{|zk(x,µ)|>0}

 .

(4.43)
Identifying the non-zero coefficient in the indicator vectors yields

{
Ĵµ,Sc(x, µ) = 0
Ĵµ,S(x, µ) = Ĵµ,Sc(x, µ)− 1

ρL
>
:,SL:,S Ĵµ,Sc(x, µ)− 1

ρ sign(zS(x, µ)) .
(4.44)

As previous, solving the second equation yields the following

Ĵµ,S = −(L>:,SL:,S)−1 sign(zS(x, µ)) (4.45)

Using u = Lz and the chain rules yields the expecting result for the weak Jacobian
relative to µ, noticing that as Ĵµ,Sc = 0.

The proof of this proposition can be found in Equation 4.2.2. Note that the dependency
in the inputs is only through S and sign(Du), where u is a short-hand for proxµ‖·‖TV (x). As
a result, computing these weak Jacobians can be done efficiently by simply storing sign(Du)
as a mask, as it would be done for a RELU or the soft-thresholding activations, and requiring
just 2(k − 1) bits. With these expressions, it is thus possible to compute gradient relatively
to all parameters in the network, and employ them via back-propagation.

4.2.3 Unrolled prox-TV

As an alternative to the previous approach, we propose to use the LISTA network to
approximate the prox-TV Equation 4.3. The prox-TV can be reformulated with a synthesis
approach resulting in a Lasso i.e.

z∗ = arg min
z

1
2‖h− Lz‖

2
2 + µ‖Rz‖1 (4.46)

The proximal operator solution can then be retrieved with proxµ‖·‖TV (h) = Lz∗. This
problem can be solved using ISTA, and approximated efficiently with a LISTA network Gregor
and Le Cun [2010]. For the resulting architecture – dubbed LPGD-LISTA – proxµ‖·‖TV (h)
is replaced by a nested LISTA network with a fixed number of layers Tin defined recursively
with z(0) = Dh and

z(`+1) = st

(
W (`,t)
z z(`) +W

(`,t)
h ΦΘ(t) ,

µ(`,t)

ρ

)
. (4.47)

Here, W (`,t)
z ,W

(`,t)
h , µ(`,t) are the weights of the nested LISTA network for layer `. They

are initialized with weights chosen as in Equation 4.32 to ensure that the initial state
approximates the prox-TV. Note that the weigths of each of these inner layers are also
learned through back-propagation during training.
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The choice of this architecture provides a differentiable (approximate) proximal operator.
Indeed, the LISTA network is composed only of linear and soft-thresholding layers – standard
tools for deep-learning libraries. The gradient of the network’s parameters can thus be
computed using classic automatic differentiation. Moreover, if the inner network is not
trained, the gradient computed with this method will converge toward the gradient computed
using Proposition 4.2.4 as Tin goes to ∞, see the next Proposition 4.2.6.

Proposition 4.2.6. Linear convergence of the weak Jacobian We consider the mapping

z(Tin) :, µRk × R+ 7→ Rk defined where z(Tin)(x) is defined by recursion

z(t)(x, µ) = ST (z(t−1)(x, µ)− 1
‖L‖22

L>(Lz(t−1)(x, µ)− x), µ

‖L‖22
. (4.48)

Then the weak Jx = L∂z
(Tin)

∂x and Jµ = L∂z
(Tin)

∂µ of this mapping relative to the inputs x

and µ converges linearly toward the weak Jacobian Jx and Jµ of proxµ‖·‖TV (x) defined in

Proposition 4.2.4.

This mapping defined in Equation 4.48 corresponds to the inner network in LPGD-LISTA
when the weights of the network have not been learned.

Proof. As L is invertible, problem Equation 4.38 is strongly convex and have a unique
solution. We can thus apply the result from Bertrand et al. [2020, Proposition 2] which
shows the linear convergence of the weak Jacobian Ĵx = ∂z(Tin)

∂x and Ĵµ = ∂z(Tin)

∂µ for ISTA
toward Ĵx and Ĵµ of the synthesis formulation of the prox. Using the linear relationship
between the analysis and the synthesis formulations yields the expected result.

Thus, in this untrained setting with infinitely many inner layers, the network is equivalent
to LPGD-Taut as the output of the layer also converges toward the exact proximal operator.

Connections to inexact PGD A drawback of approximating the prox-TV via an iterative
procedure is, precisely, that it is not exact. This optimization error results from a trade-off
between computational cost and convergence rate. Using results from Machart et al. [2012],
one can compute the scaling of T and Tin to reach an error level of δ with an untrained
network.

Proposition 4.2.7. [Scaling of T and Tin w.r.t the error level δ] Let δ the error defined

such as Px(u(T ))− Px(u∗) ≤ δ.
We suppose there exists some constants C0 ≥ ‖u(0)−u∗‖2 and C1 ≥ max` ‖u(`)−proxµ

ρ
(u(`))‖2

Then, T the number of layers for the global network and Tin the inner number of layers for

the prox-TV scale are given by

Tin =
ln 1

δ + ln 6
√

2ρC1

ln 1
1−γ

and T = 2ρC2
0

δ

with ρ defined as in Equation 4.2

Proof. As discussed by Machart et al. [2012], the global convergence rate of inexact PGD
with Tin inner iteration is given by

Px(u(T ))− Px(u∗) ≤

ρ

2T

‖u(0) − u∗‖2 + 3
T∑
`=1

√
2(1− γ)Tin‖u(`−1) − proxµ

ρ
(u(`−1))‖22

ρ

2
, (4.49)
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where γ is the condition number for L i.e.
cos( π

2k+1 )
sin( π

2k+1 ) .

We are looking for minimal parameters T and Tin such that the error bound in Equa-
tion 4.49 is bellow a certain error level δ.

We consider the case where there exists some constants C0 ≥ ‖u(0) − u∗‖2 and C1 ≥
max` ‖u(`) − proxµ

ρ
(u(`))‖2 upper bounding how far the initialization can be compared to

the result of the global problem and the sub-problems respectively.
We denote α1 = 3

√
2
ρC1. The right hand side of Equation 4.49 can be upper bounded by as

ρ

2T

‖u(0) − u∗‖2 + 3
T∑
`=1

√
2(1− γ)Tin‖u(`−1) − proxµ

ρ
(u(`−1))‖22

ρ

2

≤ ρ

2T

(
C0 + α1T (1− γ)Tin/2

)2

(4.50)

Then, we are looking for T, Tin such that this upper bound is lower than δ, i.e.

ρ

2T

(
C0 + α1T (1− γ)Tin/2

)2

≤ δ (4.51)

⇔
(
C0 + α1T (1− γ)Tin/2

)2

− 2δ
ρ
T ≤ 0 (4.52)

⇔

(
C0 + α1T (1− γ)Tin/2 −

√
2δ
ρ

√
T

)(
B + α1T (1− γ)Tin/2 +

√
2δ
ρ

√
T

)
︸ ︷︷ ︸

≥0

≤ 0 (4.53)

⇔C0 + α1T (1− γ)Tin/2 −

√
2δ
ρ

√
T ≤ 0 (4.54)

(4.55)

Denoting α2 =
√

2δ
ρ and X =

√
T , we get the following function of X and Tin

f(X,Tin) = α1(1− γ)Tin/2X2 − α2X + C0 (4.56)

The inequality f(X,Tin) ≤ 0 has a solution if and only if α2
2 − 4C0α1(1− γ)Tin/2 ≥ 0 i.e.

Tin ≥ 2
ln α2

2
4α1C0

ln 1− γ

Taking the minimal value for Tin i.e. Tin = 2
ln

α2
2

4α1C0
ln 1−γ = ln 1

δ+ln 6
√

2ρC1

ln 1
1−γ

yields

f(X,Tin) = α2
2

4C0

X2 − α2X + C0 = α2
2

4C0

(X − 2C0

α2

)2

for X = 2C0
α2

=
√

2ρC0√
δ

i.e. T = 2ρC2
0

δ .

Proposition 4.2.7 shows that without learning, T should scale as O( 1
t ) and Tin should be

larger than O(ln
(

1
δ

)
). This scaling gives potential guidelines to set these parameters, as one

can expect that learning the parameters of the network would reduce these requirement.
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4.3 Performance comparison

All experiments are performed in Python using PyTorch [Paszke et al., 2019]. We used
the implementation1 of Barbero and Sra [2018] to compute TV proximal operator using
taut-string algorithm. The code to reproduce the figures is available online2.

In all experiments, we initialize u0 = A†x. Moreover, we employed a normalized λreg as a
penalty parameter: we first compute the value of λmax (which is the minimal value for which
z = 0 is solution of Equation 4.5) and we refer to λ as the ratio so that λreg = λλmax, with
λ ∈ [0, 1].

Definition of λmax The definition of λmax is the smallest value for the regularisation para-
meter λ such that the solution of the TV -regularized problem is constant. This corresponds
to the definition of λmax in the Lasso, which is the smallest regularisation parameter such
that 0 is solution. We here derive its analytic value which is used to rescale all experiments.
This is important to define an equiregularisation set for the training and testing samples, to
have a coherent and generalizable training.

Proposition 4.3.1. The value of λmax for the TV-regularized problem is

λmax = ‖A>(Ac1− x)‖∞

where c =
∑p
i=1 Sixi∑p
i=1 S

2
i

and Si =
∑k
j=1Ai,j.

Proof. We first derive the constant solution of the `2-regression problem associated to
Equation 4.1. For c ∈ R, we consider a constant vector c1. The best constant solution for
the `2-regression problem is obtained by solving

min
c∈R

fx(c) = 1
2‖x− cA1‖22 . (4.57)

The first order optimality condition in c reads

∇fx(c) =
n∑
i=1

(
k∑
j=1

Ai,j)(c
k∑
j=1

Ai,j − xi) =
n∑
i=1

Si(cSi − xi) = 0 , (4.58)

and thus c =
∑p
i=1 Sixi∑p
i=1 S

2
i

.

Then, we look at the conditions on λ to ensure that the constant solution c1 is solution
of the regularized problem. The first order conditions on the regularized problem reads

0 ∈ ∂Px(c1) = A>(Ac1− x) + λ∂‖Dc1‖1 (4.59)

Next, we develop the previous equality:

∀j ∈ {2, . . . k}, A>j (Ac1− x) ∈ λ∂(‖Dc1‖1)j = [−λ, λ] since Dc1 = 0 (4.60)

Thus, the constrains are all satisfied for λ ≥ λmax, with λmax = ‖A>(Ac1− x)‖∞ and
as c is solution for the unregularized problem reduced to a constant, c1 is solution of the
TV-regularized problem for all λ ≥ λmax.

1Available at https://github.com/albarji/proxTV
2Available at https://github.com/hcherkaoui/carpet.
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As the computational complexity of all compared algorithms is the same except for the
proximal operator, we compare them in term of iterations.

Optimization algorithm for training In our experiments, all networks are trained using
Gradient Descent (GD) with back-tracking line search. The gradients are computed using
automatic differentiation in Pytorch [Paszke et al., 2019] for most layers and the weak
Jacobian proposed in section 4.2.2 for the back-propagation through the prox-TV. The
learning is stopped once a step-size of ηlimit = 10−20 is reached in the back-tracking step.
For LPGD-LISTA, the weights of the inner LISTA computing the prox-TV are trained jointly
with the parameters of the outer unrolled PGD.

Weight initialization All layers for an unrolled algorithm are initialized using the values
of weights in Equation 4.32 that ensure the output of the layer with T layers corresponds to
the output of T iterations of the original algorithm. To further stabilize the training, we use
a layer-wise approach. When training a network with T1 + T2 layers after having trained a
network with T1 layers, the first T1 layers in the new network are initialized with the weights
of the one trained previously, and the remaining layers are initialized using weights value
from Equation 4.32. This ensures that the initial value of the loss for the new network is
smaller than the one from the shallower one if the unrolled algorithm is monotonous (as it is
the case for PGD).

4.3.1 Simulation

We generate n = 2000 times series and used half for training and other half for testing
and comparing the different algorithms. We train all the network’s parameters jointly –
those to approximate the gradient for each iteration along with those to define the inner
proximal operator. We set the length of the source signals (ui)ni=1 ∈ Rn×k to k = 8 with
a support of |S| = 2 non-zero coefficients (larger dimensions will be showcased in the real
data application). We generate A ∈ Rm×k as a Gaussian matrix with m = 5, obtaining then
(ui)ni=1 ∈ Rn×p. Moreover, we add Gaussian noise to measurements xi = Aui with a signal
to noise ratio (SNR) of 1.0.

We compare our proposed methods, LPGD-Taut network and the LPGD-LISTA with
Tin = 50 inner layers to PGD and Accelerated PGD with the analysis formulation. For
completeness, we also add the FISTA algorithm for the synthesis formulation in order to
illustrate Proposition 4.2.2 along with its learned version.

Figure 4.3-5 presents the risk (or expected function value, P ) of each algorithm as a
function of the number of layers or, equivalently, iterations. For the learned algorithms, the
curves in t display the performances of a network with t layer trained specifically. We observe
that all the synthesis formulation algorithms are slower than their analysis counterparts,
empirically validating Proposition 4.2.2. Moreover, both of the proposed methods accelerate
the resolution of Equation 4.1 in a low iteration regime. However, when the regularization
parameter is high (λ = 0.8), we observe that the performance of the LPGD-LISTA tends to
plateau. It is possible that such a high level of sparsity require more than 50 layers for the
inner network (which computes the prox-TV). According to section 4.2.3, the error associated
with this proximity step hinders the global convergence, making the loss function decrease
slowly. Increasing the number of inner layers would alleviate this issue, though at the expense
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Figure 4.3-5 – Performance comparison for different regularisation levels (left) λ = 0.1,
(right) λ = 0.8. We see that synthesis formulations are outperformed by the analysis counter
part. Both our methods are able to accelerate the resolution of Equation 4.1, at least in the
first iterations.
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Figure 4.3-6 – Proximal operator error comparison for different regularisation levels
(left) λ = 0.1, (right) λ = 0.8. We see that learn the trained unrolled prox-TV barely improve
the performance. More interestingly, in a high sparsity context, after a certain point, the
error sharply increase.

of increased computational burden for both training and runtime. For LPGD-Taut, while the
Taut-string algorithm ensures that the recovered support is exact for the proximal step, the
overall support can be badly estimated in the first iterations. This can lead to un-informative
gradients as they greatly depend on the support of the solution in this case, and explain the
reduced performances of the network in the high sparsity setting.

Inexact prox-TV With the same data (xi)ni=1 ∈ Rn×m, we empirically investigate the
error of the prox-TV ε

(t)
k = Fu(t)(z(t))− Fu(t)(z∗) and evaluate it for c with different number

of layers (T ∈ [20, 50]). We also investigate the case where the parameter of the nested
LISTA in LPGD-LISTA are trained compared to their initialization in untrained version.

Figure 4.3-6 depicts the error εk for each layer. We see that learning the parameters of
the unrolled prox-TV in LPGD-LISTA barely improves the performance. More interestingly,
we observe that in a high sparsity setting the error sharply increases after a certain number
of layers. This is likely cause by the high sparsity of the estimates, the small numbers of
iterations of the inner network (between 20 and 50) are insufficient to obtain an accurate
solution to the proximal operator. This is in accordance with inexact PGD theory which
predict that such algorithm has no exact convergence guarantees [Schmidt et al., 2011].
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4.3.2 fMRI data deconvolution

Functional magnetic resonance imaging (fMRI) is a non-invasive method for recording the
brain activity by dynamically measuring blood oxygenation level-dependent (BOLD) contrast,
denoted here x. The latter reflects the local changes in the deoxyhemoglobin concentration
in the brain Ogawa et al. [1992] and thus indirectly measures neural activity through the
neurovascular coupling. This coupling is usually modelled as a linear and time-invariant
system and characterized by its impulse response, the so-called haemodynamic response
function (HRF), denoted here h. Recent developments propose to estimate either the neural
activity signal independently [Karahanoğlu et al., 2013, Cherkaoui et al., 2019b] or jointly
with the HRF [Cherkaoui et al., 2019a, Farouj et al., 2019]. Estimating the neural activity
signal with a fixed HRF is akin to a deconvolution problem regularized with TV-norm,

min
u∈Rk

P (u) = 1
2‖h ∗ u− x‖

2
2 + λ‖u‖TV (4.61)

To demonstrate the usefulness of our approach with real data, where the training set
has not the exact same distribution than the testing set, we compare the LPGD-Taut to
Accelerated PGD for the analysis formulation on this deconvolution problem. We choose two
subjects from the UK Bio Bank (UKBB) dataset [Sudlow et al., 2015], perform the usual
fMRI processing and reduce the dimension of the problem to retain only 8000 time-series of
250 time-frames, corresponding to a record of 3 minute 03 seconds. We train the LPGD
taut-string network solver on the first subject and Figure 4.3-9 reports the performance of
the two algorithms on the second subject for λ = 0.1.

For this experiment, we investigate the 6 min long rs-fMRI acquisition (TR=0.735 s)
from the UK Bio Bank dataset [Sudlow et al., 2015]. The following pre-processing steps were
applied on the images: motion correction, grand-mean intensity normalisation, high-pass
temporal filtering, Echo planar imaging unwarping, Gradient Distortion Correction unwarping
and structured artefacts removal by Independant Components Analysis. More details on the
processing pipeline can found in Alfaro-Almagro et al. [2018].

On top of this preprocessing, we perform a standard fMRI preprocessing proposed in the
python package Nilearn3. This standard pipeline includes to detrend the data, standardize
it and filter high and low frequencies to reduce the presence of noise.

The performance is reported relatively to the number of iteration as the computational
complexity of each iteration or layer for both methods is equivalent. It is clear that LPGD-
Taut converges faster than the Accelerated PGD even on real data. In particular, acceleration
is higher when the regularization parameter λ is smaller. As mentioned previously, this
acceleration is likely to be caused by the better learning capacity of the network in a low
sparsity context.

4.4 Conclusion

This chapter studies the optimization of TV-regularized problems via learned PGD. We
demonstrated, both analytically and numerically, that it is better to address these problems in
their original analysis formulation rather than resorting to the simpler (alas slower) synthesis
version. We then proposed two different algorithms that allow for the efficient computation

3https://nilearn.github.io
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Figure 4.3-9 – Performance comparison (λ = 0.1 left - λ = 0.8 right) between our
analytic prox-TV derivative method and the PGD in the analysis formulation for the HRF
deconvolution problem with fMRI data. Our proposed method outperform the FISTA
algorithm in the analysis formulation. We notice a slight degradation of the acceleration in
this high sparsity context.

and derivation of the required prox-TV, exactly or approximately. Our experiments on
synthetic and real data demonstrate that our learned networks for prox-TV provide a
significant advantage in terms of convergence speed.

Finally, the principles presented in this chapter could be generalized and deployed to
other optimization problems, involving not only the TV-norm but more general analysis-type
priors. In particular, this chapter only focused on 1D TV problems because the equivalence
between Lasso and TV is not exact in higher dimension. In this case, we believe that a dual
formulation [Chambolle, 2004] is a key ingredient to tackle this problem and derive similar
learnable algorithms.
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T his chapter proposes two contributions to the estimation of the HRF from fMRI data.
We first propose a univariate semi-blind deconvolution approach to estimate a HRF

voxelwise along with the associated neural activity. However, as this model is greedy in terms
of parameters, we then propose a multivariate approach to deconvolve the neural activity
using a fixed HRF shape. This is of course an intermediate step to ease the developments
toward a multivariate the semi-blind deconvolution of fMRI data, which will be presented
in the next chapter. This intermediate approach makes sense for a regional analysis of
task-fMRI data, as illustrated in this chapter.

5.1 Sparsity-based blind deconvolution of neural activation signal in

fMRI

5.1.1 Introduction

As explained in the chapter 1, fMRI non-invasively records brain activity by dynamically
measuring the blood oxygenation level-dependent (BOLD) contrast. The latter reflects the
local changes in the deoxyhemoglobin concentration in the brain [Ogawa et al., 1992] and
thus indirectly measures neural activity through the neurovascular coupling. This coupling
is usually characterized as a linear and time-invariant system and thus summarized by its
impulse response, the so called haemodynamic response function (HRF) [Bandettini et al.,
1993, Boynton et al., 1996]. Its estimation links the observed signal to the underlying neural
activity, which can in turn be used to understand cognitive processes in the healthy brain or
to predict neurological diseases. Some recent work proposes to estimate such a surrogate
by estimating a block signal using a fixed HRF [Karahanoğlu et al., 2013]. In doing so, the
recovered neural activity signal is used to define functional networks in which the population
of neurons have been activated together at the same time. However, as the HRF is not
allowed to vary across brain regions, this method potentially produces a biased estimate of
the deconvolved neural activity signal.

Following the ideas developed in the dictionary learning literature [Olshausen and Field,
1997], we propose, for each BOLD time series, namely each voxel, to jointly estimate the
neural activation signal and the HRF with properly selected constraints. The resulting
optimization problem is non-convex but an approximated solution can be computed using
alternate minimization, and we propose efficient procedures to perform each step. This
algorithm aims at reducing the bias introduced with arbitrarily fixed HRF or EP, by learning
the HRF for each voxel and a neural activity signal that can fluctuate and depart from the
EP. Unlike previous contributions [Sreenivasan et al., 2015, Makni et al., 2005] to make the
inversion well-posed, we regularize the neural activity signature with a sparse prior on the
first-order derivative and the HRF is parameterized by a single unknown scalar. On real task
fMRI datasets, we show that we are able to recover similar effects to state-of-the-art HRF
estimation approaches without the knowledge of the EP.

In the following, subsection 5.1.2 introduces our model for the BOLD signal and our
algorithm to estimate the HRF. Then, our technique is evaluated against state-of-the-art
algorithm in subsection 5.1.3. Conclusions and future work are discussed in subsection 5.1.4.
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5.1.2 HRF estimation with neural activation sparse model

In this section, we present our modeling of the BOLD signal and derive an efficient algorithm
to estimate its parameters.

D ∈ RT̃×T̃ refers to the modified first-order differences operator and L ∈ RT̃×T̃ to the
discrete integration operator:

L =


1 0 . . .

1 1 0 . . .

1 1 1 0 . . .
...

. . . . . . . . . . . .

 D =


1 0 . . .

1 −1 0 . . .

0
. . . . . . . . . . . .

...
. . . 0 1 −1



Linear and time-invariant modeling

A common model for the voxelwise BOLD signal y(t) is the linear and time-invariant
model (LTI) [Boynton et al., 1996], where the signal is considered as the result of the
convolution of a neural activation signal, denoted u(t), with an HRF, here denoted h(t):
y(t) = v(t) ∗ u(t) + ε(t) where ε(t) is an additive noise term. Typically, the HRF v(t) has
a restricted support in time and quantifies the neurovascular coupling in a specific brain
region. The activation signal u(t) captures the periods during which this particular region is
involved in task performance.

In practice fMRI data are collected at a discrete sampling rate, called the time of
repetition (TR), which typically varies between 1 and 2 s. Vector y ∈ RT̃ thus refers to the
BOLD signal measured in each voxel of the brain along T̃ consecutive scans. The discretized
LTI model reads: y = v ∗ u + ε with y, ε ∈ RT and v ∈ Rm, m being the number of
time-points for the HRF, typically smaller than T and spanning over about 20 s.

In task fMRI data, the activation signal is usually represented by the piecewise constant
time course associated with the experimental design. A common way to enforce such structure
in u is to consider its first derivative z = Du to be sparse. To make the computations easier,
we inject this prior information in the LTI model and re-parameterize it using u and u = Lz:

y = v ∗Lz + ε . (5.1)

To constrain v to be physiologically plausible, we choose to restrict our model to parametric
HRF shapes vα. A classical choice is to select vα as a the linear combination of d atoms∑d
i=1 αibi, where (bi)i∈[1..d] are some well define HRF atoms [Lindquist and Wager, 2007,

Pedregosa et al., 2015, Friston et al., 1998a]. Here instead, we propose to use a reference
HRF denoted href [Friston et al., 1998a] and dilate the time such as vα is the discretization
of vα(t) = vref(αt). The main advantage of this choice is to vary the full width at half-
maximum (FWHM) of the HRF and its time-to-peak (TP) with only one parameter. The
model in Equation 5.1 has an ambiguity in magnitude, as if v is multiplied by β and u is
scaled down by the same factor, our model remains the same. To fix this scale ambiguity, we
set ‖vref‖∞ = 1.
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Semi-blind-deconvolution as a joint optimization problem

If the additive noise in Equation 5.1 is considered to be Gaussian, the parameter of the HRF
α and the derivative of the neural activation signal u can be jointly estimated by solving

arg min
α∈R,z∈RT̃

1
2 ‖vα ∗Lz − y‖

2
2 + λ‖z‖1 ,

subject to αmin 6 α 6 αmax .

(5.2)

This optimization problem is not jointly convex in α and z. For a fixed α, it is convex
in z and for a fixed z, convexity in α is not guaranteed as it depends on the analytical
model of vref. However, this 1-dimensional optimization problem can be solved easily as α
is constrained to lie in [αmin, αmax]. We minimize Equation 5.2 using a block-coordinate
descent approach, where we alternate the minimization between z and α. algorithm 6 details
the steps of this procedure.

Algorithm 6: Semi-blind deconvolution scheme of the BOLD signal.
Input :BOLD signal y, stopping rule ν

1 initialization: α(0), z(0) = 0, k = 1 ;
2 repeat
3 Deconvolution of the BOLD signal for hα(k−1) :

z(k) = arg min
z∈RT̃

1
2 ‖vα(k−1) ∗Lz − y‖22 + λ‖z‖1

4 Estimate the HRF parameter with fixed u(k):

α(k) = arg min
α∈R

1
2

∥∥∥vα ∗Lz(k) − y
∥∥∥2

2

subject to αmin 6 α 6 αmax

5 until ‖α(k) − α(k−1)‖2/‖α(k)‖2 < ν;

For the estimation of z with fixed α, the accelerated proximal gradient descent al-
gorithm [Beck and Teboulle, 2009] was used as it provides fast convergence to the optimal
solution. Other algorithms such as coordinate descent methods [Friedman et al., 2007,
Moreau et al., 2018], can also be considered. However they do not improve the results as the
problem is convex and can only speed up the convergence. For updating α, we resorted to the
limited memory BFGS algorithm [Byrd et al., 1995] implemented by Jones et al. [2001–]. We
early-stopped the main loop and each sub-problem too once the iterates stabilized themselves.
In practice less than 50 iterations of the main loop were needed to converge.

Owing to the global non-convexity, this approach converges to a local minimizer of
Eq. (5.2), which may be suboptimal for our semi-blind deconvolution objective. To limit the
impact of the initialization selection, we tested multiple random initializations. However,
we found experimentally that initializing α to αmax – i.e. initializing vα to the HRF with
the tighter FWHM – and z to 0 is enough to ensure the convergence to reliable estimates.
Multiple random initializations on α did not improve the quality of the solution.

5.1.3 Numerical Experiments

In this section, we validated our approach both on simulated and real task fMRI data. They
were collected during different task performance in order to exhibit a learning effect on the
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HRF and compare our method to a state-of-the-art approach [Pedregosa et al., 2015]. All
experiments were performed in Python and our implementation along with the code for
experimental validation is freely available online1 in order to support reproducible research.

Results on synthetic data

Artificial time series. We randomly generated 100 neural activation signals u∗ of 5
blocks, with an average duration of 12 s each and a standard deviation of 1 s. We choose
a TR of 0.75s and a scan duration of 3 min to mimic the Human Connectome Project
(HCP) protocol. We defined a common HRF shape v∗ for all these artificial voxels. Last, we
investigated 6 different scenarios with signal-to-noise-ratio (SNR) ranging from 1 to 20 dB.
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Figure 5.1-1 – Evolution with respect to
the SNR of the `2 relative error defined as
the mean across voxels of ‖û−u∗‖2/‖u∗‖2
for the neural activation signal and as
‖v

α̂
− v∗‖2/‖v∗‖2 for the HRF.

Results. We tested our semi-blind deconvolution approach to recover the pair (α̂, ẑ) from
each measured time series and then deduce the HRF v

α̂
and the neural activation signal

û = Lẑ. As shown in Figure 5.1-1, in low SNR cases we did not perfectly recover both
signals. In contrast, as the SNR increases the error of our estimator is significantly reduced
by a factor of 3 on the most challenging problem (estimation of u). A visual inpection of the
different estimates confirms that our approach behaved accurately according to our model.

Results on real data
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Figure 5.1-2 – Voxel selec-
tion procedure for the val-
idation of the semi-blind
deconvolution method on
HCP data. The voxels are
selected based on their cor-
relation level with the EP.

HCP Data. Our validation was performed on the HCP dataset Van Essen et al. [2013]
which comprises fMRI recordings of participants performing different motor tasks. The
tasks were adapted from the protocol developed in Yeo et al. [2011]. We choose this
dataset as it presented both a good temporal and spatial resolution. A short time of
repetition (TR=0.720 s) was actually used to collect interleaved simultaneous multislice
echo-planar images with a Multi-Band factor of 8 and a spatial resolution of 2x2x2mm. Each
fMRI run lasted 3min34s in total during which T̃ = 284 scans were acquired.

The fMRI data were already preprocessed using a classical pipeline including realignment,
coregistration, spatial normalization and smoothing (5 mm isotropic). The EP was divided

1https://github.com/CherkaouiHamza/pybold
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Figure 5.1-4 – HRF estimates computed for two different tasks in one participant to the
HCP protocol. In (green) the canonical SPM HRF, in (blue) the reference HRFs estimated
using Pedregosa et al. [2015] and in (red) the HRFs estimated using the proposed semi-blind
deconvolution technique.

in two sets of motor tasks, with 15 s fixation blocks at the beginning, in the middle of the
acquistion and at the end of the recording. Each task set was composed of 5 blocks of 12 s
each, preceded by a 3 s cue indicating the task to be performed by the participant. The
latter corresponded to moving the tongue, tapping the left or right finger or squeezing the
left or right toes. In what follows, we only consider one participant even though our results
are reproducible across individuals.
Voxel Selection. Each fMRI run comprises a huge data set consisting of 230, 314
voxels (i.e. time series) recorded along 284 time points. As our method is so far univariate,
it estimates an activation signal and HRF in each voxel independently. Hence, an important
aspect in the validation consisted in selecting activated voxels for which these estimates are
meaningful. Following the work by Pedregosa et al. [2015], we used a General Linear Model
(GLM) that also embeds a supervised voxelwise HRF estimation to regress the convolution
of the known EP with the HRF estimate on the measured BOLD signal. From all voxel
candidates, we extracted the 100 mostly correlated which are associated with the highest
coefficients in the GLM. This process is illustrated in Figure 5.1-2.
Results. Figure 5.1-3 presents the neural activation signals u estimated with our method
for the left hand motor task in one participant. The estimated neural activation signals
retrieved the two well defined blocks, suggesting that the model proposes coherent blocks for
the neural activation signals with a timing close to that of the EP. Interestingly, one can
observe that the measured BOLD signals are postponed in time as compared to the recovered
neural activation signals, which is consistent with the sluggishness of the haemodynamic
response.

Figure 5.1-4 displays the HRF estimates for two tasks performed by the same participant
using the method proposed in Pedregosa et al. [2015] and ours in the semi-blind deconvolution
scheme. The HRF estimates were averaged across the 100 selected voxels. For the visual
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fixation task lasting 20 s in total, both methods recover a similar HRF shape. This was
expected as the BOLD signal in response to the visual task elicits the strongest activity for
both methods. The HRF curves depart from the canonical HRF as all the selected voxels
did not confine to the primary visual system but were instead spread between motor and
visual regions.

For the left hand motor task lasting 24 s in total, the HRF shape recovered by the two
approaches differ. The early initial dip found by Pedregosa et al. [2015] is questionable as such
depletion may physiologically occur only in the first second after stimulation [Frau-Pascual
et al., 2015]. The HRF estimates obtained through semi-blind deconvolution appear more
plausible even though the time-to-peak is quite large too. This difference is explained by
the capacity of our model to cope with the latencies between the EP and the neural activity
signal. Moreover, the HRF estimates obtained using Pedregosa et al. [2015] are close to each
other. In contrast, Figure 5.1-4 shows that our HRF estimate significantly differs from the
one in response to the left hand task. This suggests a task-dependent shape for the HRF
as previously demonstrated in the literature [Ciuciu et al., 2003]. Moreover, when we used
other tasks available in the HCP dataset we still noticed this coherent task-dependent or
learning effect: for instance, the right and left hand tasks provide similar HRFs to the right

and left foot tasks, respectively.

5.1.4 Interim summary

In this section, we recovered coherent HRF estimates in voxels correlated with a specific task
without the explicit knowledge of the experimental paradigm. To do so, we simultaneously
estimated a neural activation signal, which may depart from the EP in terms of timing. We
observed a clear dependence between the HRF shape and the different tasks involved in the
EP. The `1 norm regularization parameter λ gathers the statistical relevance of our model and
is set by hand so far. Future developments, such as a more robust deconvolution technique
with a concomitant Lasso or the squared root Lasso could be explored. The dependence on
the reference HRF should be investigated too.

However, the described method remains purely univariate and could be extended to a
multivariate setting. To limit the number of unknown neural activation signals and take
advantage of the spatial structure of the signal, we propose in the next section to aggregate
the data with rank-1 constraints [Dupré La Tour et al., 2018].

5.2 fMRI BOLD signal decomposition using a multivariate low-rank

model

5.2.1 Introduction

The classical data analysis approach proposes to decompose the BOLD signal using multiple
predefined regressors. Each regressor is a time series that models the given temporal
signature of an experimental stimulus or task, named condition, convolved with a canonical
HRF [Friston et al., 1999a]. Those time-courses are concatenated into a so-called design
matrix, and fitted to the observed BOLD data. The estimated coefficients provide the
encoding localization of each condition in the brain [Friston et al., 1999a]. The main
limitation of this massively univariate approach is twofold: first, it treats one voxel at a time



82 Contribution to neurovascular disentangling

using the same model; second, it requires the prior knowledge of the experimental paradigm.
For these reasons, unsupervised multivariate methods have been introduced in the literature
to deal with paradigm-free fMRI datasets such as resting-state recordings. The most famous
are likely the principal component analysis (PCA) [Viviani et al., 2005] and the independent
component analysis (ICA; Beckmann and Smith 2004, Varoquaux et al. 2010). However,
these techniques directly work on the measured BOLD time series and do not deconvolve
them to highlight neural activities. An alternative consists in disentangling the neurovascular
coupling by deconvolving the BOLD signal using a well chosen HRF [Karahanoğlu et al.,
2013, Caballero-Gaudes et al., 2012, Cherkaoui et al., 2019a] and thus recovering voxel-wise
neural activation signals. Those approaches provide as many components as the number of
voxels. Those components are then used to explore the underlying structure in the data by
quantifying either how they cluster together or their functional connectivity.

Goals and contributions

This section presents a new algorithm that aims to offer a rich decomposition of the BOLD
signal using low-rank sparse decomposition. Following the ideas developed in the dictionary
learning literature [Olshausen and Field, 1997, Moreau et al., 2018], our approach consists in
modeling the observed BOLD signal as a linear combination of a limited number of temporal
atoms whose first-order derivative is sparse. In that purpose, we introduce spatio-temporal
maps which take the neurovascular coupling (temporal aspect) and the localization of
activations (spatialization) into account. Then, we jointly estimate those temporal atoms and
the associated maps with properly selected constraints. The resulting optimization problem is
non-convex but an approximated solution can be computed using an alternate minimization
algorithm with an efficient procedure to be performed at each step. Section 5.2.2 introduces
our modeling of the BOLD signal and presents our estimation algorithm. Next, our technique
is evaluated against state-of-the-art algorithm in Section 5.2.3. Conclusions and future work
are discussed in Section 5.2.4.

5.2.2 Low rank decomposition of the BOLD signal

In this section, we present our modeling of the BOLD signal and derive an efficient algorithm
to estimate its parameters.

Linear and time-invariant modeling

A common model for the multivariate (P voxels, T scans) BOLD data Y ∈ RP×T with
Y = (yj)j∈{1..P} is the linear and time-invariant model (LTI) Boynton et al. [1996], where
for each voxel, the measured time series, denoted yj ∈ R1×T , is the convolution of a neural
activation signal, denoted ũj ∈ R1×T̃ with a given HRF, here denoted v ∈ R1×L, such that
yj = v ∗ ũj + ej where ej ∈ R1×T refers to an additive white Gaussian noise Ciuciu
et al. [2003]. Typically, the HRF v has a restricted support in time and quantifies the
neurovascular coupling in a specific region of the brain. For the sake of simplicity, the same
HRF shape is usually considered for the whole brain and we choose the canonical SPMs
double gamma function HRF, as mention in Lindquist et al. [2009]. This model extends as
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Figure 5.2-5 – Illustration of the low-rank BOLD signal model (the colors are there for
illustrative purposes).

follows:

Y = v ∗̇ Ũ +E (5.3)

with E = (ej)j∈{1..P} ∈ RP×T and Ã = (ũj)j∈{1..P} ∈ RP×T . The activation signals Ũ
capture, in an univariate manner, the periods of time during which some voxels are involved
in task performance (or in spontaneous BOLD signal fluctuations). In this univariate model,
P independent neural activation signals (ũj)j ∈ {1..P} are learned, one for each voxel. In
our work, we propose to learn K temporal activations (uk)k∈{1..K} and their associated
spatial maps uk ∈ RP×1, as we aim to recover K distinctive functional networks with a
specific temporal fingerprint. This can be modeled by replacing each vector ũj in Eq. (5.3)
with a linear combination of the activations (uk)k∈{1..K}. A classical assumption for these
temporal activation signals is to consider them piecewise constant as in Caballero-Gaudes
et al. [2012], Karahanoğlu et al. [2013], Cherkaoui et al. [2019a]. To that aim, we model
them as uk = Lzk, where zk is sparse. The spatial configuration wk ∈ RP×1 encodes which
voxels are linked to a given temporal activation Lzk ∈ R1×T̃ . In our work, we propose a
fixed HRF v and define the rank-1 spatio-temporal maps wkv> ∈ RP×V as the convolution
kernel with the neural activity, as depicted in Fig. 5.2-5. Learning the HRF will be deferred
to future work. Our forward model for BOLD fMRI data thus reads:

Y =
K∑
k=1

(Lzk)∗̇(wkv>) +E . (5.4)

Optimization problem

The spatial maps (wk)k∈{1..K} and the neural activation signal (zk)k∈{1..K}, from Eq. (5.4),
can be jointly estimated by solving the following constrained minimization problem:

J((uk)k, (zk)k) = 1
2

∥∥∥∥∥Y −
K∑
k=1

(Lzk)∗̇(wkv>)

∥∥∥∥∥
2

F

+λ
K∑
k=1

‖zk‖1

subject to ‖wk‖1 = η and wkj ≥ 0 (5.5)

To be consistent with Caballero-Gaudes et al. [2012], Karahanoğlu et al. [2013], Cherkaoui
et al. [2019a], we enforce the temporal atoms (zk)k∈{1..K} to be sparse in order to constrain
(Lzk)k∈{1..K} to be piecewise constant signals. Indeed, most of experimental paradims in
fMRI propose to model task-related evoked activity using block signals. Moreover, to limit
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the indetermination in the convolution we impose the non-negativity in the entries of the
spatial maps (wk)k∈{1..K}. Last, to deal with the scale ambiguity – the fact that any solution
pair (ŵk, ẑk) is known up to a multiplicative constant – we set ∀k ∈ {1..K} ‖wk‖1 = η,
with η ∈ R+ being a parameter of our method that fixes the magnitude of each spatial
maps. This optimization problem is biconvex in (wk)k∈{1..K} and (zk)k∈{1..K}, meaning
that it is convex in each variable but not jointly convex. We minimize Eq. (5.5) using a
block-coordinate descent algorithm, where we alternate the minimization between the two
convex problems in (wk)k∈{1..K} and in (zk)k∈{1..K}. Algorithm 7 details these two steps.

Algorithm 7: Low rank decomposition of the BOLD signal.
Input :BOLD signal Y , ε

1 initialization: z(0)
k = 0

T̃
, w(0)

k = w
(init)
k , i = 1 ;

2 repeat
3 Estimate the temporal atoms z(i)

k with fixed w(i−1)
k :

arg min
(zk)k

1
2

∥∥∥∥∥Y −
K∑
k=1

(Lzk)∗̇(w(i−1)
k v>)

∥∥∥∥∥
2

F

+ λ

K∑
k=1

‖zk‖1

4 Estimate the spatial maps w(i)
k with fixed z(i)

k :

arg min
(wk)k

1
2

∥∥∥∥∥Y −
K∑
k=1

(Lz(i)
k )∗̇(wkv>)

∥∥∥∥∥
2

F

subject to ‖wk‖1 = η and wkj ≥ 0

5 until J((z
(i−1)
k

)k,(w
(i−1)
k

)k)−J((z
(i)
k

)k,(w
(i)
k

)k)

J((z
(i−1)
k

)k,(w
(i−1)
k

)k)
≤ ε;

We minimize each step with an accelerated forward-backward algorithm Beck and Teboulle
[2009] with Armijo backtracking line search Armijo [1966]. Recall that for v ∈ R1×L,
a ∈ R1×T̃ and x ∈ R1×T ∇z( 1

2
‖y − v ∗ a‖22) = −v� ∗ (y − v ∗ a) with the time flipped HRF

v�j = v
T̃−j , thus our gradient steps read:

∇z`Fwk(zk) = −L>
(

(w`v>)�∗̇
(
Y −

K∑
k=1

(Lzk)∗̇(wkv>)
))
,

∇w`Fzk(wk) = −v
(

(Lz`)�∗̇
(
Y −

K∑
k=1

(Lzk)∗̇(wkv>)
))
.

The computation of ∇z`Fwk(zk) is optimized by pre-computing −L>(w`v>)�∗̇Y and
L>(w`v>)�∗̇(wkv>)L while that of∇w`Fzk(wk) is accelerated by pre-computing−v(Lz`)�∗̇Y
and v(Lz`)�∗̇v>(Lzk), as those quantities remain constant during these respective steps.

The proximal operator of gz((zk)k) = λ
∑K
k=1 ‖zk‖1 is the soft-thresholding defined

coordinate-wise as sign(z)(|z| − λ)+. For the constraint gw((wk)k) = I‖wk‖1=η + Iwkj≥0 on
the spatial maps, the corresponding proximal operator is given by prox gw(wk) = [(wkj −
µ)+]1≤j≤P with µ is defined as

∑P
j=1 max{0, wkj − µ} = η and an efficient implementation

can be found in Condat [2016].
We early-stopped the main loop when each main iteration does not decrease sufficiently

the cost function. In practice less than 50 iterations of the main loop were needed to converge.
Owing to the global non-convexity, this approach converges to a local minimizer of

Eq. (5.5), which may be sub-optimal for our estimation objective. To initialize the spatial
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Figure 5.2-6 – (a) In black the observed BOLD signal within the associated activation region
normalized by their `∞ norm, in blue the true temporal atoms, in orange the recovered
temporal atoms. (b) The yellow-purple maps define the spatial ground truth and estimates.
The standard deviation across voxels is encoded by transparency around mean curves.

maps (wk)k=1...K , we draw each entry as a centered Gaussian variable with variance 1. To
limit the impact of the initialization selection, we run multiple times the minimization.

5.2.3 Numerical experiments

In this section, we validate our approach on simulation and illustrate its application to real
fMRI data. All experiments were performed in Python and our implementation, as well as
the scripts for experimental validation2, are freely available online.

Results on synthetic data

Artificial BOLD time series. We randomly generated P = 100 BOLD signals Y .
Each time series yj was defined as the linear combination of two temporal atoms (z1, z2)
comprising two blocks each whose duration was fixed to 10 s and the magnitude was randomly
drawn from a Gaussian distribution centered on 1.0. The weights are defined in two spatial
maps(w1,w2) with a single non-zero pixel in each map. To simulate a realistic scenario,
we chose a TR of 1.0 s and a total scan duration of 1min40s (T = 100 scans). We added a
centered Gaussian noise such that the generated synthetic data has a signal-to-noise ratio of
1.0 dB, defined by

SNR = 10 log10

(
‖
∑K
k=1(Lzk)∗̇(wkv>)‖22

‖E‖22

)
.

Results. For this experiment, we chose K = 2 and set the regularization parameter λ to
0.4λmax, where λmax is the minimal value for which 0 is solution of Eq. (5.5) and we fix the
`1-norm for each map to be equal to η = 10.0. Fig. 5.2-6(a) displays the estimated temporal
atoms (Lẑ1,Lẑ2) in orange, along with the observed BOLD signals in black and the true
signals in blue. Fig. 5.2-6(b) shows the corresponding spatial map estimates (ŵ1, ŵ2) besides
the ground truth. The temporal atom estimates recovered well the true signals. The block
offsets are correctly temporally aligned but the rising and falling slopes of each block are
not perfectly vertical. This indicates that their temporal derivative (ẑ1, ẑ2) are not perfectly
sparse. The spatial maps are adequately recovered as the activated regions are well localized
and the map estimates are sparse.
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Figure 5.2-7 – Localization in the right

Precentral Gyrus region of the two
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comparison between TA and LRD meth-
ods.

Results on real fMRI data

Comparison to Total Activation approach. We qualitatively compare our BOLD
low-rank decomposition (LRD) to the state-of-the-art method, called Total Activation
(TA) Karahanoğlu et al. [2013]. In this approach, the authors propose to deconvolve the
BOLD signal by minimizing a convex cost function that involved a sparse temporal constraint
and a total variation spatial constraint. Their univariate approach allows to recover, a
voxel-specific piecewise constant signal that models the neural activation signal as in our
method. The main difference between the two methods is that our multivariate technique
allows to recover a much easier-to-interpret decomposition of this neural activation signal.
To reduce the computational cost of TA for this experiment, we only considered the temporal
regularization.
HCP task fMRI data. Our validation was performed on the Human Connectom Project
(HCP) dataset Van Essen et al. [2013] which comprises fMRI recordings of participants
performing different motor tasks. The tasks were adapted from the protocol developed
in Yeo et al. [2011]. We chose this dataset as it presented both a good temporal and spatial
resolution. A short time of repetition (TR=720 ms) was actually used to collect interleaved
simultaneous multislice echo-planar images with a Multi-Band factor of 8 and a spatial
resolution of 2x2x2mm. Each fMRI run lasted 3min34s in total during which T = 284 scans
were acquired. The fMRI data were already preprocessed using a classical pipeline including
realignment, coregistration, spatial normalization and smoothing (5 mm isotropic). The
experimental paradigm (EP) was divided in two sets of motor tasks, with 15 s fixation blocks
at the beginning, in the middle and at the end of the recording. Each set was composed of 5
conditions, each modeled by a blocks of 12 s, preceded by a 3 s cue indicating the task to be
performed by the participant. The former corresponded to moving the tongue, tapping the
left or right finger or squeezing the left or right toes. In what follows, we only consider one
participant even though our results are reproducible across individuals.
Voxel selection. We aim to qualitatively compare the recovery of the neural activation
signals for these two techniques (LRD and TA) in each voxel. Each fMRI run comprises a
huge data set consisting of 230, 314 voxels (time-courses). Thus, we only display results for
a specific region the right Precentral Gyrus, corresponding to a subsample of 960 voxels in
which we chose to display two voxels (see Fig. 5.2-7) illustrating the two methodologies.
Results. For this experiment, we chose K = 8 as 8 experimental conditions were involved
in the paradigm. As those approach are unsupervised models with no ground truth, we
set the regularization parameter for LRD and TA by hand such that λTA = 0.02λmax and
λLRD = 0.07λmax. Last, we set the `1-norm for each map of LRD to be equal to η = 10.0.
Fig. 5.2-8 illustrates the behavior of the LRD and TA deconvolution methods in these two
voxels. In voxel-1, the low-rank neural activation signal (shown in blue) appears similar to

2https://github.com/CherkaouiHamza/seven



5.2. fMRI BOLD signal decomposition using a multivariate low-rank model87

0 01m36s 03m12s
Time

2

0

5

B
O

LD

BOLD signal

0 01m36s 03m12s
Time

0.2

0.0

1.0

A
ct

iv
a
ti

o
n

 [
%

]

Neural activation signals

TA decomposition

Low-rank decomposition

0 01m36s 03m12s
Time

3

0

3

B
O

LD

BOLD signal

0 01m36s 03m12s
Time

1.00

0.00

1.00

A
ct

iv
a
ti

o
n

 [
%

]

Neural activation signals

TA decomposition

Low-rank decomposition

Figure 5.2-8 – In black the BOLD signal, in red the neural activation signal obtained using
TA and in blue the neural activation signal obtained using our LRD approach.
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Figure 5.2-9 – The different conditions from the experimental paradigm are represented in
background: blue for left hand, red for right hand, green for left foot and yellow for right foot.
Each condition lasts 12 s. On the foreground, the estimated temporal atom.

the TA one. Both approaches mainly capture the same dynamics in the measured BOLD
signal in this voxel. However, in voxel-2, some high frequency components (short-duration
activity) that are retrieved in the TA neural activation signal are not captured by our LRD
method. This suggests that our model is less sensitive than TA in this voxel. As our temporal
atoms are learned across voxels, this is a direct consequence of reducing the number of degrees
of freedom in the temporal domain in LRD in contrast to TA. Fig. 5.2-9 and Fig. 5.2-10
depict respectively the temporal activities and the spatial maps associated to 2 of the 8
temporal atoms estimated with our LRD approach. Atom #7 is mainly composed of two
blocks locked to the offsets of the condition left hand and its spatial map is sparse, with a very
well localized region of activation. This suggests that our model has learned the experimental
condition that elicits brain activity in this region. In contrast, atom #8 embodies a slightly
rising slope between two constant periods, which illustrates its link to the low frequency
fluctuations in the fMRI data. The second map displays smoother and wider activation areas
in the right Precentral Gyrus, suggesting that this model is also capable of modeling trend
effects, not related to the conditions.

5.2.4 Summary

This section presents a new low-rank decomposition modeling of the BOLD signal and a
corresponding algorithm to perform both the deconvolution in time and the mapping in
space. Although such low-rank modeling was already introduced in the dictionary learning
literature [Dupré La Tour et al., 2018], we adapted its formulation to fMRI data following
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Figure 5.2-10 – The spatial maps associated with each atom. We have limited our analysis
to the right Precentral Gyrus region (delimited in black). Values of estimated maps are color
coded.

ideas from the TA approach. In the validation on real fMRI data, we showed that our method
provides a similar decomposition than TA. However, our multivariate model exhibited
meaningful components that compose the BOLD signal along with their corresponding
spatial maps. Nevertheless, the proposed algorithm relies on a fixed and constant HRF shape,
in the next chapter, we will investigate how to estimate the HRF with this framework.

5.3 Conclusion

In this chapter, we have introduced two novels approaches for BOLD signal processing. The
first one is dedicated to disentangle the neurovascular coupling voxelwise by introducing a
simplistic but efficient single parameter HRF model and by constraining the neural activation
to be a block signal. Since this model is univariate, it is greedy in the number of parameters
required to fit the data and thus prone to overfitting. To cope with this issue, we have
proposed a second approach that captures the neural activity with K temporal components
and their associated spatial maps. This model relies on a fixed and constant HRF shape
over the whole brain. In the next chapter, we merge these two models to estimate multiple
HRFs across the whole brain using a multivariate semi-blind deconvolution approach.
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T his chapter presents our multivariate approach to disentangle the vascular coupling and
neural activity from fMRI data. This approach allows for regionwise HRF estimation

in a multivariate manner and summarize neural activity over the whole brain using spatio-
temporal atoms. In what follows, we will detail the joint modeling and the associated
algorithm to perform parameter estimation from the observed BOLD data. Next, we will
show numerical results in a single subject before running group-level analyses to demonstrate
the relevance of our approach.
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6.1 Introduction

This chapter extends preliminary contributions [Cherkaoui et al., 2019b] and offers a new
algorithm that aims to fit a rich multivariate decomposition of the BOLD data using a
semi-blind deconvolution and low-rank sparse decomposition. The model distinguishes
two major parts in the BOLD signal: the neurovascular coupling and the neural activity
signal. One of its main features is to tackle the intra-subject haemodynamic variability by
introducing regionwise HRF profiles over a brain parcellation, encoding the spatial variations
of the neurovascular coupling. Also, in regard to neural activity, we follow ideas developed
in the convolutional dictionary learning literature to develop a low-rank approximation
of a signal [Grosse et al., 2007, Dupré La Tour et al., 2018]. We thus model the neural
activation signals as a combination of a limited number of piece-wise constant temporal
profiles associated with spatial maps that capture the magnitude of functional networks. As
such, the neural input signals are represented with their own spatial representation that
departs from the neurovascular parcellation. We of course present a scalable optimization
algorithm that is able to fit all parameters of interest in the whole brain in a reasonable
computing time.

The rest of the chapter is organized as follows. Section 6.2 introduces our modeling of the
BOLD data and presents our semi-blind blind deconvolution algorithm. Next, our technique
is validated on simulated data and on real rs-fMRI data at the individual level in Section 6.3.
In Section 6.4 we illustrate the proposed framework at the population level on the large
UK Biobank database. Two main applications were targeted, namely the neurovascular
discrimination of patients with stroke episodes as compared to healthy controls and the
prediction of brain age. Conclusion and outlook are synthesized in Section 6.5.

6.2 Multivariate low-rank decomposition of the BOLD signal

In this section, we present our modeling of the BOLD signal and derive an efficient algorithm
to estimate its parameters.

6.2.1 Linear and time-invariant modeling

Univariate modeling

A common model for the multivariate (P voxels, T scans) BOLD data Y ∈ RP×T with
Y = (yj)Pj=1 is the linear and time-invariant model (LTI) [Boynton et al., 1996]. This model
is illustrated in Fig. 6.2-1. For each voxel, the measured time series, denoted by yj ∈ R1×T ,
is the convolution of a neural activation signal ãj ∈ R1×T̃ , with a given HRF, v ∈ R1×L and
ej ∈ R1×T refers to an additive white Gaussian noise, which leads to:

yj = v ∗ ãj + ej . (6.1)

Although the noise that contaminates the BOLD effect is serially correlated in time [Woolrich
et al., 2001], we assume here that the fMRI data has been pre-whitened. If not, an auto-
regressive (AR) modeling for the noise is possible [Penny et al., 2003, Makni et al., 2008]
at the expense of an increased computational burden, necessary for identifying the AR
parameters.
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Figure 6.2-1 – Illustration of the
voxelwise BOLD signal modeling:
a is a time series encoding the
neural activation signal, v being
the haemodynamic response func-
tion (HRF) and e the additive Gaus-
sian noise. The measured fMRI sig-
nal is denoted y and obtained via
a ∗ v + e.

Typically, the HRF v has a restricted support in time of about 20 s. The challenge with
HRF modeling is to find a fair trade-off between a flexible model that is able to capture the
true haemodynamic response in each brain area and a reliable one that limits overfitting by
reducing the number of degrees of freedom (diminishing the variance). Since our approach
estimates the neural activity along with the HRF, reducing the number of degrees of freedom
is critical to avoid the aforementioned overfitting. In this chapter, we assumeM different HRF
with vm being the HRF corresponding to the mth region Θm. Numerous approaches have
been proposed to model this haemodynamic response vm. The Finite Impulse Response (FIR)
[Dale, 1999, Glover, 1999] model does not assume any particular shape for the HRF which
make it very flexible but prone to data overfitting in the presence of noise. Regularization
has thus been introduced to constrain the overall HRF shape in FIR models and limit their
tendency to overfitting, see for instance penalization over the second-order derivative to end
up with physiologically plausible smooth HRF estimates [Ciuciu et al., 2003, Casanova et al.,
2008]. Alternatively, the HRF has been modeled as a linear decomposition of predefined
atoms such as B-splines [Zhang et al., 2007, Vakorin et al., 2007], wavelets [Khalidov et al.,
2011], a sensitivity-selected set [Woolrich et al., 2004] or more physiologically informed
patterns such as the canonical HRF and its derivatives in time and with respect to the
dispersion parameter [Friston et al., 1998a]. All these methods intend to capture fluctuations
in haemodynamic delay or shape with the minimum number of parameters. Last, to constrain
even more the parameter values and reduce variance estimates, parametric models such as
the inverse logit transform [Lindquist and Wager, 2007] have been proposed and successfully
tested when benchmarking over multiple fMRI data sets [Lindquist et al., 2009]. In this
work, we propose the time dilation HRF model [Cherkaoui et al., 2019a], which captures
the haemodynamic delay by dilating a reference HRF pattern: v = vref (δt) where vref
is a reference temporal profile, here the canonical HRF. This approach is efficient while
simple as it encodes delay fluctuations through a single scalar parameter δ (one degree of
freedom). One limitation of this choice is that it leads to the simultaneously variation of
the full width-at-half-maximum (FWHM) of the HRF and its time-to-peak (TTP) (see also
Fig. 6.2-2). Our voxelwise model reads as follows:

yj = vδ ∗ ãj + ej . (6.2)

Multivariate modeling

To better account for the spatial structure of the neurovascular system and the intrinsic
organization of functional networks, we extend this model to the multivariate setting. Our
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Figure 6.2-2 – Illustration of two haemo-
dynamic response functions (HRF) de-
noted h1, h2 with the full-width-at-half-
maximum (FWHM) and the time-to-peak
(TTP) (of h1) depicted. Here we illus-
trate these two HRFs with different dila-
tion parameters (δ1, δ2) such as δ2 ≤
δ1, leading to TTP(h1) < TTP(h2) and
FWHM(h1) < FWHM(h2).

FWHM

TTP

t

multivariate model reads as follows:

Y = vδ ∗ Ã+E , (6.3)

where Ã = (ãj)Pj=1 ∈ RP×T̃ and E = (ej)Pj=1 ∈ RP×T . One limitation of this straightforward
approach is that it constrains the haemodynamic response to be the same across the whole
brain. As the HRF shape depends on the neurovascular coupling, its features vary in space
over different brain areas and between individuals [Handwerker et al., 2004, Badillo et al.,
2013]. This suggests that, for a given subject, the HRF should be modeled locally in the brain.
An appropriate approach for doing so is to rely on existing brain parcellation [Varoquaux
and Craddock, 2013]. Ideally to accurately fit the real haemodynamic response function in
a subject, we would favor a large number of regions. However, the larger this number, the
smaller the number of voxels per region, which could impair the stability of HRF estimation.
For that reason, each region should at least consist of a few hundred voxels. In this work,
we rely on the Havard-Oxford probabilistic brain atlas [Desikan et al., 2006]. We threshold
the probabilities to obtain a fine brain parcellation that offers enough flexibility to adapt
to the true haemodynamic system. In what follows, we mathematically introduce a brain
parcellation with M regions with (Θm)Mm=1 ∈ {0, 1}p 1 if the ith voxel belongs to the mth

region and 0 if not. This allows us to extend Eq. (6.3) as follows:

Y =
(

M∑
m=1

Θ>mvδm

)
∗̇ Ã+E , (6.4)

The activation signals Ã capture for each voxel the periods of time during which any voxel
is involved either in task performance or in spontaneous BOLD signal fluctuations. This
model remains univariate as P independent neural activation signals (ãj)Pj=1 ∈ RP×T̃ are
estimated.
In our work, we rather introduce a low-rank constraint and learn bothK temporal atoms (with
K � P ) and corresponding spatial maps. These maps encode various functional networks,
each of them being summarized by specific neural activation profile. Mathematically, this
can be modeled by replacing each vector ãj in Eq. (6.4) with a linear combination of neural
activation patterns U = (uk)Kk=1 ∈ RK×T̃ , with uk ∈ R1×T̃ , modulated in space by the
spatial maps W = (wk)Kk=1 ∈ RK×P , with wk ∈ R1×P , such that: Ã =

∑K
k=1w

>
k uk. In

other words, the spatial configuration wk encodes which voxels are linked to a given neural
activation profile uk ∈ R1×T̃ . Note that a voxel may belong to different functional networks.
This is coherent with the fact that a voxel contains about one hundred thousands neurons
for a typical spatial resolution (1.5 mm isotropic), and thus the underlying neural activation
signals are combined with possibly different temporal fingerprints. Finally, our forward model
for BOLD fMRI data is given by Eq. 6.5 (see also Fig. 6.2-3):
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Figure 6.2-3 – Illustration of the low-rank multivariate BOLD signal model (the colors are
here for illustrative purposes). Y stands for the observed BOLD data, vm the mth HRF, Θm

represents the predefined brain parcellation,W = (wk)Kk=1 defines the K spatial components
and U = (uk)Kk=1 the corresponding “neural” activation signals. Last, E represents the
additive white Gaussian noise.

Y =
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

w>k uk

)
+E . (6.5)

6.2.2 Prior information and regularizing constraints

The number of unknown parameters U ∈ RK×T̃ , W ∈ RK×P and δ ∈ R1×M is lower than
the number of available data Y . Indeed, the observed fMRI data has P voxels of T scans while
the proposed model has to inferK temporal components of T̃ entries, K spatial components of
P voxels each, and M HRF dilation parameters. Hence, the number of unknown parameters
to be set is M + (K × P ) + (K × T̃ ). Importantly, if the number of scans T is large enough
and if we adequately choose M and K, then we get P × T �M + (K × P ) + (K × T̃ ).

The forward model described in Eq. (6.5) is trilinear as it depends on both unknown
spatial (W ) and temporal (U) inputs and unknown convolution filters (vδm). This means
that any timing variation in neural activation signals U can be symmetrically compensated
by the opposite variation in the haemodynamic filter vδm or that any sign or scale variation
inW can be compensated by the inverse variation in U or vδm . To overcome these sign, scale
and time-shift ambiguities, we introduce some regularizing constraints in the computation of
the parameter estimates. First, to avoid any sign ambiguity in the convolution between the
neural input signals and the haemodynamic filter, the HRF filter has a constant and positive
maximal amplitude (see Fig. 6.2-2). Second, as there is an interplay between the spatial
and temporal components in the input signals, we also impose a non-negativity constraint
over the entries of each spatial map wk, i.e. ∀j, k wkj ≥ 0. By doing this, we only allow
the deactivation of a functional network to be encoded in the corresponding wk. Third,
to deal with the scale ambiguity, we impose ‖wk‖1 = η,∀k = 1, . . . ,K, where η ∈ R+ is a
user-defined parameter that sets the magnitude of each spatial map. As our HRF model has a
constant maximal amplitude, only the neural activity signals U capture the observed BOLD
signal fluctuations. Forth, to deal with the time-shift ambiguity, we constrain the dilation
parameter δ in the HRF model to be in [0.5, 2.0]. This should also permit the recovery
ofphysiologically plausible haemodynamic delays. Complementary to these constraints, akin
to [Caballero-Gaudes et al., 2012, Karahanoğlu et al., 2013, Cherkaoui et al., 2019b] we
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will also assume the neural activation signals U to be temporally piecewise constant or
equivalently assume their first-order derivative ∇uk,∀k to be sparse. Practically speaking,
we add a total variation (TV) regularization term to our model.

6.2.3 Optimization problem

In this section, we derive an algorithm for estimating the dilation parameters δ = (δm)Mm=1,
the spatial mapsW and the neural activation signals U from the model depicted in Eq. (6.5)
and the aforementioned regularizing constraints. The estimates for these parameters can be
obtained by solving the following constrained minimization problem:

arg min
(W ,U ,δ)

1
2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

w>k uk

)∥∥∥∥∥
2

F

+ λ

K∑
k=1

‖∇uk‖1 ,

subject to ∀k, ‖wk‖1 = η, ∀j, ukj ≥ 0, ∀m, δm ∈ [0.5, 2.0] .

(6.6)

The Gaussian noise hypothesis leads to a quadratic data fidelity term, to measure how well we
reconstruct the observed fMRI signals. Moreover, in alignment with with Caballero-Gaudes
et al. [2012], Karahanoğlu et al. [2013], Cherkaoui et al. [2019a], we enforce the first-order
derivative of the temporal atoms (∇uk)Kk=1 to be sparse in order to constrain each uk to
a piecewise constant signal. For that purpose, we use a TV regularization term, which
corresponds to the `1 norm of the gradient in time ∇uk. Importantly, this modeling of the
neural activation signals allows us to fully adapt to task-fMRI and rs-fMRI experiments and
to perform paradigm-free fMRI data analyses. In the first case, as the task-related BOLD
signal is classically modeled as the convolution of an input block signal, representing the
experimental paradigm (the onsets of the stimulus trials) with a HRF filter, we can recover
neural activation signals close to the experimental paradigm. The neural activation profiles
being inferred from the data, we can estimate both input signals corresponding to block
and event-related designs, the only difference between the two being the length of activation
blocks, which in the latter case can be restricted to a single time point. More interestingly,
the proposed framework is even more appealing for processing rs-fMRI data and uncover
spontaneous and time-varying fluctuations of brain activity as the the block duration may
change from one instance to the next.

Moving to the technical aspects for solving the constrained optimization problem (6.6),
it is worth mentioning that it is not globally convex. However, when W and δ are fixed,
problem (6.6) becomes convex in U and similarly when U and δ are fixed, it becomes convex
in W . Our minimization strategy of Eq. (6.6) thus relies on a block-coordinate descent
algorithm, where we alternate the minimization between the two convex problems in W
and U followed by the non-convex one involving V . Also, the non-negativity constraints
are activated when solving for the spatial maps W and the boundary constraints over δ are
handled in parallel for each m, i.e. each HRF pattern when solving for V . Algorithm 8
details these three main steps.



6.2. Multivariate low-rank decomposition of the BOLD signal 95

Algorithm 8: Multivariate deconvolution and low-rank decomposition of the
BOLD signal.
Input :BOLD signal Y , ε

1 initialization: ∀k,u(0)
k = 0

T̃
, w(0)

k = w
(init)
k , δ(0) = δ(init), i = 1 ;

2 repeat
3 Estimate the temporal atoms U (i) with fixed W (i−1) and δ(i−1):

(u(i)
k )k = argmin

(uk)k

1
2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mv
(i−1)
δm

)
∗̇

(
K∑
k=1

w
(i−1)
k

>
uk

)∥∥∥∥∥
2

F

+λ
K∑
k=1

‖∇uk‖1 .

4 Estimate the spatial maps W (i) with fixed U (i) and δ(i−1):

(w(i)
k )k = argmin

(wk)k

1
2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mv
(i−1)
δm

)
∗̇

(
K∑
k=1

w>k u
(i)
k

)∥∥∥∥∥
2

F

,

subject to {∀k, ‖wk‖1 = η and ∀j, wkj ≥ 0} .

Estimate the HRFs δ(i) with fixed W (i) and U (i):

(v(i)
m )m = argmin

(δm)m

1
2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

w
(i−1)
k

>
u

(i)
k

)∥∥∥∥∥
2

F

,

subject to δm ∈ [0.5, 2.0] .

5 until J((u
(i−1)
k

)k,(w
(i−1)
k

)k,(v
(i−1)
m )m)−J((u

(i)
k

)k,(w
(i)
k

)k,(v
(i)
m )m)

J((u
(i−1)
k

)k,(w
(i−1)
k

)k,(v
(i−1)
δm

)m)
≤ ε;

In regard to the (uk)Kk=1 step, we performed the minimization using an adaptive-restart
accelerated forward-backward algorithm [O’Donoghue and Candes, 2015]. In regards to the
(wk)Kk=1 step, we first benchmark various algorithms in the dictionary learning literature
and selected the most efficient, namely the one used to update the dictionary in Mairal
et al. [2009]. Last, for the minimization with respect to (δm)Mm=1 we used the accelerated
forward-backward algorithm [Combettes and Pesquet, 2009] after checking that it leads
to a correct estimation of δ. The reader can found all details of the gradient computation
w.r.t (uk)Kk=1 and (wk)Kk=1 in Cherkaoui et al. [2019b], for the gradient w.r.t δ, we detail
the gradient derivation of our cost-function from Eq. (6.6) – denoted J hereafter – w.r.t δ.
Let us define Ã = (ãj)Pj=1 ∈ RP×T̃ such as Ã =

∑K
k=1w

>
k uk. Moreover, we introduce θm

the set of indices of voxels belonging to the mth region of the brain parcellation.

J(δ) =
M∑
m=1

∑
j∈θm

1
2 ‖vδm ∗ aj − yj‖

2

2
+ CW ,U

with CW ,U a constant that does not depend on δ. We aim to compute the gradient of J
relative to the value of the parameters δ:

∇δJ(δ) =
[
∂J(δ)
∂δ1

, ...,
∂J(δ)
∂δM

]>
∈ RM (6.7)
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To this end, we proceed componentwise:

∂J(δ)
∂δm

= 1
2
∑
j∈θm

∂ ‖vδm ∗ aj − yj‖
2

2

∂δm

=
∑
j∈θm

(
∂(vδm ∗ aj)

∂δm

)>
(vδm ∗ aj − yj)

=
(
∂vδm
∂δm

)>∑
j∈θm

a>j ∗ (vδm ∗ aj − yj)


=
(
∂vδm
∂δm

)>vδm ∗ ∑
j∈θm

a>j ∗ aj −
∑
j∈θm

a>j ∗ yj


︸ ︷︷ ︸

∇vδm J

. (6.8)

Note that
∑
j∈θm a

>
j ∗ aj and

∑
j∈θm a

>
j ∗ yj do not depend on δm, thus they can be pre-

computed beforehand. The remaining step is to compute ∂vδm
∂δm

. We remind here that vδm is
the discretization of the continuous function ∀t ∈ R+, vδm(t) = v(δmt). Thus:

∀t ∈ R+,
∂

∂δ
v(δt) = tv′(δt)

with v′ the first-order derivative of function v. Now, taking the definition of v(·) from
[Friston et al., 1998b], we get:

∀t ∈ R+, v(t) = ta−1e−t

Γ(a) − c t
b−1e−t

Γ(b)

where a, b and c are constants which are given in [Friston et al., 1998b]. A straightforward
computation gives us for t ∈ R+:

v′(t) =
(
a− 1
t
− 1
)
ta−1e−δt

Γ(a) − c
(
b− 1
t
− 1
)
tb−1e−δt

Γ(b) (6.9)

∂

∂δ
v(δt) = tv′(δt) =

(
a− 1
δ
− t
)

(δt)a−1e−δt

Γ(a) − c
(
b− 1
δ
− t
)

(δt)b−1e−δt

Γ(b) (6.10)

The value of ∂vδm∂δm
can thus be computed by taking the discrete time points corresponding

to the sampling rate of the BOLD signal and the length of the considered HRF. By replacing
its value in the computation of ∂J(δ)

∂δm
from Eq. (6.8), we obtain a closed form expression for

the gradient of J w.r.t the HRF dilation parameter δ i.e. ∇δJ(δ).
For each step, we implemented the corresponding gradient (i.e. forward move) in an

efficient manner to limit multiple computations over the iterations.
Critical steps for the efficiency of this algorithm are the computation of proximal operators

for the non-smooth regularizers. In regards to the neural activation patterns (U step), as the
minimization is sequentially performed over the K components, we only need to compute the
proximal operator of the TV norm, i.e. gu(uk) = λ‖∇uk‖1. This remains a challenging issue
as this operator is not closed form. A seminal contribution has been done in the literature for
TV minimization [Chambolle, 2004]. Here, we rather used the Taut-String algorithm proposed
by [Barbero and Sra, 2018] for which we use an efficient Python implementation available in an
open source package1. In regards to the constraints on the spatial maps (W ), we also proceed

1https://pypi.org/project/prox_tv/
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separately on the K components: the proximity operator of gw(wk) = 1‖wk‖1=η + 1wkj≥0

where 1 stands for the indicator function2, is given by:

prox gw(wk) = [(wkj − µ)+]1≤j≤P (6.11)

where µ is defined as
∑P
j=1 max{0, wkj − µ} = η and an efficient implementation has been

proposed by Condat [2016]. We propose to set λ as a fraction of λmax which is the minimal
value of λ for which 0 is solution of Eq. (6.6). For the rest of the chapter, we will refer to λ
as the fraction of λmax, such as λ = λfλmax, with λf ∈ [0, 1].

Algorithm 8 converges to a local minimizer Eq. (6.6) when each main iteration does not
decrease sufficiently the cost function. In practice less than 50 iterations of the main loop
are needed to converge. To initialize the spatial maps (wk)Kk=1, we apply an Independent
Component Analysis (ICA), implemented in scikit-learn [Pedregosa et al., 2011], on the
BOLD signals Y and retain the produced spatial maps, we initialize the (uk)k=1...K to zero
and each entry of (δm)m∈{1..M} to 1.

6.3 Model Validation

We first validate the proposed approach on numerical simulations to illustrate the gain
achieved by jointly estimating the neural activity profile and the HRF shape compared to
a single deconvolution scheme. Next, we will demonstrate the usefulness of the proposed
framework on real rs-fMRI data at the individual level. In particular, we will highlight the
impact of the hyper-parameter selection on the decomposition, describe the interpretation of
its component and its stability. The usefulness of our method in the context of large cohorts
will be investigated in Section 6.4.

6.3.1 Numerical simulations

Synthetic data

We generated two temporal Dirac signals of length T̃ = 500 with a fixed sparsity level. Each
generated Dirac signal is composed of randomly drawn signed spikes, with location chosen
uniformly in time and intensity drawn from a Gaussian distribution N (0, 1). To produce the
corresponding block signals Z – shown in blue in Fig. 6.3-4[right panels] – we integrated over
time these signals and convolved them with a predefined HRF vδ to yield two corresponding
pure BOLD time series. The chosen HRF has length L = 25 and is shown in blue in Fig. 6.3-
4[left panel]. For the sake of simplicity, we considered a single HRF profile (M = 1) in this
synthetic setting, so the haemodynamic properties were supposed constant in space. We then
assigned these BOLD signals to spatial locations. Hence, we defined K = 2 corresponding 2D
maps W = (wk)2

k=1 (10× 10, i.e. P = 100). Each spatial map has a single activating region
consisting of 4 pixels. Each active pixel has a randomly drawn non-negative magnitude, the
other ones being set to zero. Then, we normalized each map by its `1-norm. Finally we
added Gaussian random noise to produce observed, i.e. noisy BOLD signals Y of length
T = T̃ +L−1 = 524 scans (TR = 1s) with a signal-to-noise-ratio (SNR) of −1 dB. The mean
synthetic BOLD signals are reported in black traces in Fig. 6.3-4(a)-(b) for both activated

2This function is zero-valued inside the constraint set and equals infinity elsewhere.
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regions (in bottom panels) while standard deviation across activated voxels is encoded by
transparency around these mean curves.

Numerical results

In a first step, we only estimated the pair (U ,W ) from the synthetic fMRI time series Y
and kept the HRF profile v constant. The results are reported in Fig. 6.3-4(a). The HRF
shape used in this deconvolution process is shown in green in Fig. 6.3-4(a) and actually
differs from the true shape used for simulating the data. Because of this discrepancy in terms
of haemodynamic delay and peak magnitude, the neural activation signals are not properly
recovered (orange traces in Fig. 6.3-4(a)). The magnitude of the estimates Û is much
larger than the true one. This is partly due to compensate for the smaller magnitude of the
HRF (green trace in Fig. 6.3-4(a)) used for deconvolving the BOLD signals. Consequently,
the residual mean square errors (RMSEs) computed on the neural activation signals are
pretty large. However, we noticed that in both spatial maps, the non-negative magnitudes
Ŵ are very well estimated. This is a direct consequence of using non-overlapping activating
regions for the two neural traces.

In a second step, on the same data set Y we jointly estimated (U ,W ) and v using our
full semi-blind deconvolution scheme. We kept the same initialization for the HRF shape
for the sake of consistency. The results are reported in Fig. 6.3-4(b). The HRF estimate v̂
is shown in orange (dashed line) and actually matches the true curve. Consequently, the
neural activation signals Û are properly estimated both in time and in magnitude and the
corresponding RMSEs are one order of magnitude smaller than those reported in the previous
simulated results (see Fig. 6.3-4(a)). This second synthetic setting did not impact the spatial
maps, which are still well estimated.

These results on synthetic data confirmed the good expected behavior of the proposed
method. From a computational viewpoint, the estimation with constant HRF ran in 0.5s
while the full estimation took 1s approximately on a machine with 15 GB of RAM and an
Intel processor i7-7600U (2 physical cores, 2.80 GHz).

6.3.2 Single-subject analysis on rs-fMRI data

Data set and parameter setting

To illustrate the proposed semi-blind deconvolution algorithm, we analyzed a single subject
extracted from the UKBB resting-state fMRI data set. More investigation on a larger cohort
of this data set will be presented in Section 6.4. The rs-fMRI data was 6 min10s long
with TR = 0.735s. The first ten seconds were discarded (dummy scans) so that we end up
with T = 490 scans (6min). The data was collected on a 3T Skyra Siemens MAGNETOM
MR system at an isotropic resolution of 2.4 × 2.4 × 2.4 mm3 using the multi-band GRE
sequence (mb = 8).3. Standard pre-statistics processing steps were applied: motion correction
using MCFLIRT Jenkinson et al. [2002]; grand-mean intensity normalisation of the entire
4D data set by a single multiplicative factor; high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting); EPI unwarping; gradient distortion correction unwarping.
Finally, structured artefacts are removed by ICA processing, see the documentation4 for a

3Acquisition details can be found at https://www.fmrib.ox.ac.uk/ukbiobank/protocol/.
4Preprocessing details can be found at https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf
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Figure 6.3-4 – Top (a): deconvolution with fixed HRF. The top row shows the two
true spatial maps and their accurate estimates. The bottom row shows on the left the true
HRF shape and the filter used for deconvolution. In the middle and on the right hand side,
the true and estimated neural temporal profiles are depicted in blue and orange, respectively
for the two activating regions (first atom for map 1, second atom for map 2). The average
BOLD time series over the four activating pixels is shown in black and the gray shading
is used to report on the variability across activating pixels. Bottom (b): Semi-blind
deconvolution with learned HRF. The top row shows the two true spatial maps and
their accurate estimates. The bottom row shows on the left the true HRF shape, the initial
filter used and the final HRF estimate for semi-blind deconvolution. In the middle and on
the right hand side, the true and estimated neural temporal profiles are depicted in blue and
orange, respectively for the two activating regions (first atom for map 1, second atom for
map 2). The average BOLD time series over the four activating pixels is shown in black and
the gray shading is used to report on the variability of BOLD signals across activating pixels.

full description.
In this subsection, we manually set the temporal regularization parameter to λf =

0.8 (remember λf ∈ [0, 1]). This setting achieves a bias-variance trade-off between two
extreme situations, namely data overfitting (λf = 0) on one hand and entirely sparse neural
activation signals (λf = 1 as λ = λmax) on the other hand. The question of the unsupervised
tuning of λf is critical. It could be driven either from a statistical viewpoint (e.g. using
the maximum likelihood criterion) that characterizes how likely the measured time series
may be observed or using an external task and its corresponding metric such as classification
performance (e.g. accuracy in prediction). Because the former approach does not admit a
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closed form solution, we explored in the next subsection the impact of changing the temporal
regularization (i.e. amount of sparsity in the activation neural signals) on the spatial map of
haemodynamic delays. The spatial consistency we reported across regularization levels gave
us confidence on the haemodynamic parameter estimates to be further used in subsequent
classification tasks (see Section 6.4). In this setting, we implemented a cross-validation step
with a leave-one-out loop to tune λmax in an unsupervised way.

In regard to the number of spatio-temporal atoms K, we set it using the explained
variance (or R2-score) as target metric in a preliminary study. For this set of parameters,
the model estimation took around 1 minute on a machine with 15 GB of RAM and an Intel
processor i7-7600U (2 physical cores, 2.80 GHz).

Results

Model selection - setting the temporal regularization parameter λf : A well known
limitation of regularization methods based on the l1-norm such as TV is that large coefficients
– here in (uk)Kk=1 – are shrunken toward zero [Tibshirani, 1996]. Thus, the magnitude of the
estimated neural activation signals (uk)Kk=1 is biased. Moreover, this bias is tightly linked
to the choice of the regularization parameter λf . Indeed, the larger this parameter is, the
more (uk)Kk=1 are shrunken toward zero. To quantify this effect on our model, we applied
the spatio-temporal decomposition with M = 96 ROI and K = 20 and various temporal
regularization level λf on the cohort of S = 459 subjects sampled from the UK Biobank
resting-stage fMRI dataset used in Section 6.4.2. Fig. 6.3-5 reports the grand average of the
dilatation parameters

δ̄ = 1
MS

S∑
s=1

M∑
m=1

δ̂sm

and its variance with respect to the regularization parameter λf . We observed that the
HRF dilation parameters decrease with the temporal regularization level – and thus the
corresponding time-to-peaks increase with λf . This results from the fact that the model
with large regularization parameters only accounts for sharp transition in the BOLD signal
mean value, which are well approximated with fast HRF.

This previous result entails that the haemodynamic delay estimated by our model (6.6)
may be biased. However, because there is a single temporal regularization parameter, we
expect that this bias impacts the whole brain uniformly. To assess this shared effect on the
estimated parameter, we observe the relative variations of δm. Fig. 6.3-6 displays the value
of δ̄m(λf ) relative to δ̄(λf ) for S = 459 subjects with three temporal regularization values
λf ∈ {0.001, 0.5, 0.9} on the MNI template. Precisely, for each regularization parameter and
for each ROI m, we compute δ̄m/δ̄ where δ̄m = 1

S

∑S
s=1 δ̂

s
m is the average value of the dilation

parameter across subjects. While the magnitudes change when the regularization changes,
as seen in Fig. 6.3-5, the spatial structure of dilatation parameters in the brain is globally
preserved. Indeed, the normalized maps look very similar for any choice of regularization
parameter, showing that the relative variation between each area of the brain are preserve
while changing the hyper-parameter. Thus, we can state that the haemodynamic response
from the middle temporal gyrus is faster than the response from the frontal orbital cortex, as
described in Fig. 6.3-9. This means that while the numerical value of the time-to-peak for a
given area may not be reflect the actual haemodynamic delay in the brain, the estimated
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Figure 6.3-5 – Evolution of the group-level grand average haemodynamic dilation
parameter δ̄ as a function of the temporal regularization level λf ∈ [0, 1]. The
solid blue line reflects the decreasing evolution of δ̄ when λf → 1, where the value of δ̄ was
spatially averaged over theM = 96 parcels and across S = 459 subjects from the UK Biobank
database. The transparent blue shadow represents the standard deviation around the mean
parameter δ̄. In short, the larger λf , the smaller δ̄ and thus the larger the mean TTP.
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Figure 6.3-6 – Group-level mean of haemodynamic dilation parameter maps nor-
malized by the grand average δ̄ = 1

MS

∑S
s=1

∑M
m=1 δ̂

s
m as a function of temporal

regularization (λf ∈ [0, 1]). From top to bottom, axial slices showing the group-level
values of the ratio between δ̄m = 1

S

∑S
s=1 δ̂

s
m and δ̄ in each parcel m for increasing values

of λf ∈ {0.001, 0.45, 0.9}. The spatial structure of the maps of haemodynamic dilation
parameter remain remarkably stable for various λf .

coefficients reflect the spatial variations of the delay between the different areas of the brain.
Moreover, these variations are stable with the choice of temporal regularization. Hence,
choosing a potentially suboptimal value for λf is of limited impact when the primary interest
is investigating abnormalities in the neuro-vascular coupling.

Model selection - setting the number of spatio-temporal components K: The
first question we addressed on real rs-fMRI data was to optimally set the number of spatio-
temporal atoms K and to find the best compromise between model complexity and model
accuracy. For this purpose, we looked at two complementary criteria. The first one is standard
and corresponds to the R2 score that quantifies the variance explained by model (6.5) over
the total sum of squares whereas the second one is given by the determinant of the correlation
matrix between the neural activation signals.
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Figure 6.3-7 – Model selection: compromise between model complexity and ac-
curacy. (a): Evolution of the R2 score as a function of the number of spatio-temporal
atoms K in model (6.5) ranging from 2 to 50. (b): Evolution of the determinant of the
correlation matrix ΣK between neural activation signals as a function of K ranging in the
same interval as mentioned earlier.

The R2-score is defined as follows: R2 = 1− SSres
SStot

where SStot quantifies the variance of the
data Y and SSres the variance of the residuals after fitting model (6.5) by minimizing the
cost function described in Eq. (6.6). The R2-score may vary from −∞ in pathological cases
to 1 for a perfectly matching model. A good model is normally associated with R2 > 0 and
means that the L2 norm of the residual is lower than the variance of the data. We therefore
ran multiple model fitting for K in a range of {2, 3, 4, . . . , 10, 15, 20, . . . , 50}. The results are
shown in Fig. 6.3-7(a) and illcrustrate that the model accuracy first increases as a function of
K up to reaching a plateau around R2 ' 0.55 for K = 20. So adding more spatio-temporal
components no longer improves its ability to capture variability in the data while it becomes
more complex.
The second information measure we used to help us select K was based on the determinant
of the correlation matrix ΣK = (E[(uk −mk)(u` −m`)T /σ2

kσ
2
` ])k,` between the temporal

atoms (uk)Kk=1. The quantities σ2
k and σ2

` define the variance of the neural activation signals
uk and u`. As ΣK is semi-positive definite with entries between 0 and 1, its eigenvalues are
positive or null and so its determinant varies between 0 and 1: det ΣK = 1 when matrix ΣK

defines a basis, which means that all atoms are orthogonal and decorrelated like in a PCA
decomposition. In contrast, det ΣK = 0 when matrix ΣK is not of full rank so at least one
atom could be obtained as a linear combination from the others. Therefore, as before we ran
multiple model fitting for K in a range of {2, 3, 4, . . . , 10, 15, 20, . . . , 50} and we plotted in
Fig. 6.3-7(b) the evolution of the determinant of ΣK as a function of K. The results show
us that beyond K ≥ 20, we get a correlation matrix with det ΣK ≤ 10−10 which tends to
zero. According to this criterion, from the we should therefore not exceed 20 temporal atoms.
Thus, from the R2-score criterion and this det ΣK criterion, in our following experiments we
will keep K = 20.

Analysis of spatial decomposition Fig. 6.3-8 shows the spatial maps of this spatio-
temporal decomposition for this individual and Tab. 6.1 summarizes the list of main regions
and functional networks retrieved in this setting.
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It is worth mentioning that the sensory networks (visual, auditory and motor) are quite
well retrieved by a single or multiple components, respectively located respectively in the
occipital (components 10, 16 and 19), temporal (component 7) and motor (components 6, 15
and 18) cortices. The maps associated with the motor network are split and lateralized (6
and 18 on the right hemisphere while 15 in the left). The different areas of the visual
system are split too between the primary visual cortex (component 10) and the extrastriate
cortex (components 16, 19). The language system has also been identified by a single
component. Part of the well known intrinsic resting-state networks (RSN; Menon 2015)
have been captured: (i) the right and left-lateralized fronto-parietal resting-state networks
spatially similar to the bilateral dorsal attention network are captured by component 1 and 4,
respectively while the left and right lateral frontoparietal central executive networks appear
in component 9. The default mode network (DMN), which deactivates during demanding
cognitive tasks is represented in component 2 and 20: the angular gyrus (AG) appear in both
components while the posterior cingulate cortex (PCC) is captured only by component 20 and
the medial prefrontal cortex (mPF) by component 2. However, we found that component 9
actually mixes the left AG in the DMN with a left-lateralized fronto-parietal network that
perfectly matches the CEN [Menon, 2015]. In contrast, we did not clearly retrieve neither the
salience network – usually anchored in anterior insula and dorsal anterior cingulate cortex –
nor the right CEN.

Spatio-temporal decomposition To fully illustrate our method on real rs-fMRI data,
we show the whole set of output features (neural activation signals, spatial maps, HRF
shapes) in Fig. 6.3-9. We also depict a voxel-based denoised BOLD signal reconstructed a
the convolution between the neural input and the HRF estimate. Fig. 6.3-9(a) represents
together a neural activation signal in the primary visual cortex and the corresponding spatial
map (component 10 in the above mentioned decomposition). The proposed axial views allow
us to identify the primary visual cortex and the calcarine fissure. Fig. 6.3-9(b) depicts similar
features in the DMN (component 2) and the Pearson correlation coefficient with the neural
time course in the visual cortex. Its negative value confirms a negative correlation between
the task-positive and the DMN network. Both time courses actually present alternating
periods of positive and negative activity but they are almost uncorrelated. Fig. 6.3-9(c)-(d)
illustrate the fastest and slowest HRF time courses estimated in the regions of interest
depicted in red. The fastest haemodynamic response (FWHMf = 5.1s) was found in the
middle temporal gyrus while the slowest (FWHMs = 8.0s) is located in the frontal orbital
cortex. Fig. 6.3-9(e) finally shows how well our approach is able to fit the rs-fMRI time
course measured in voxel marked by the black cross in Fig. 6.3-9(c). The neural activation
signal is piecewise constant and ahead in time compared to the BOLD time series. Once
convolved with the HRF profile, the denoised BOLD signal appears as a smoother version of
the measured BOLD time course: its magnitude is smaller and its fluctuations in time are
slower. This is a direct consequence of the temporal regularization used to recover sparse
input signals.

Analysis of correlation structure Next, to go beyond the spatial analysis, Fig. 6.3-10
depicts the correlation matrix between the corresponding neural activation signals. It is then
insightful to notice that the correlation between the multiple components in a given network
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Figure 6.3-8 – Spatial decomposition of rs-fMRI data for K = 20. From top to bottom
and left to right, the twenty labeled spatial maps are shown using the three orthogonal
views (coronal on the left, sagittal in the middle and axial on the right). The labeling is
arbitrary and the coordinates are given in the MNI space.
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Table 6.1 – Taxonomy of brain regions and functional networks involved in the spatio-
temporal decomposition (6.5) with K = 20. We only refer to the main regions in each
component. dAN: dorsal Attention Network; DMN=Default Mode Network; IPS=Intra-
Parietal Sulcus; FEF: Frontal Eye Fields; CEN: Central Executive Network; R and L stand
for left and right hemispheres. The region in bold font matches the location of the cross in
Fig. 6.3-8 and have been identified from the AAL template.

Network # Comp. Brain areas

Visual
10 R calcarine fissure and surrounding cortex
16 superior occipital gyrus
19 Inferior occipital gyrus

Auditory 7 R superior temporal gyrus

Motor
6 R post-central
15 L precentral gyrus
18 R precentral gyrus

DMN
2 R superior frontal gyrus, dorsolateral, mPF, AG
9 L angular gyrus
20 R precuneus

dAN
1 R inferior parietal, L inferior parietal, R FEF, R inferior frontal

gyrus
4 L inferior parietal, L FEF, L inferior frontal gyrus

Language 14 L middle temporal gyrus, Broca’s area

CEN 9 left fronto-parietal

Unclassified

3 R middle frontal gyrus
5 L inferior frontal gyrus, orbital part
8 L supramarginal gyrus, R supramarginal gyrus
11 L Rolandic Operculum
12 R inferior frontal gyrus, triangular part
13 R middle frontal gyrus
17 R middle frontal gyrus, L middle frontal gyrus

are quite strong. For the visual network we observed a correlation coefficient varying between
0.35 and 0.69, the largest value being reached for areas located both in the extrastriate cortex.
The same conclusion holds in the motor network with a correlation level varying between 0.5
and 0.65. In regard to the DMN, component 2 plays the role of a hub as it correlates with
components 9 and 20 pretty strongly5 between 0.27 and 0.4. However, component 9 is almost
decorrelated from component 20 as it mixes regions in the dAN and the DMN. Overall, this
analysis shows that the proposed approach does not separate RSN in single components.
However, it still achieves a meaningful decomposition. For illustrative purposes, the spatial
decomposition for K ∈ {5, 8, 10, 15, 30, 40, 50} and the corresponding correlation matrices
between the temporal atoms are reported in the Supplementary Material. Interestingly, these
results show that some RSNs are either not recovered or mixed together for small K ≤ 15
whereas for large values of K ∈ {25, 30, . . . , 50} each RSN is split in multiple components.
Increasing the number of components extends the range of variation of the correlation
coefficients in both positive and negative senses. This confirms that our approach does not
have statistical independence guaranties like PCA and ICA do when decomposing the neural
activity.

5no statistical test performed at the individual level

https://journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0088690.s001
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Figure 6.3-9 – Single subject results from rs-fMRI semi-blind deconvolution ana-
lysis.. Top Row (a): Neural activation signal û10 (left) and corresponding spatial
map (axial views) ŵ10 (right), mostly involving activated voxels in the visual cortex. Second
row (b): Neural activation signal û2 (left) and corresponding spatial map (axial views)
ŵ2 (right), mostly involving activated voxels in the default mode network (DMN). Third
row, left (c): Fastest haemodynamic region. Fastest HRF estimate v̂δf (left) located in
the middle temporal gyrus as shown on the parcel mask Θf (right). Third row, right (d):
Slowest haemodynamic region. Slowest HRF estimate v̂δs (left) located in the frontal
orbital cortex as shown on the parcel mask Θs (right). (Bottom row (e): Voxelwise
time courses. Estimate of the neural activation signal (in blue), superimposed on the
denoised BOLD signal (in orange) computed as the convolution with the local HRF estimate.
The observed BOLD time course in shown in black.

6.3.3 Haemodynamic estimation stability over time

The shape of the HRF is controlled by the neurovascular coupling including both neural
and non neural factors such as glial cell activity, cerebral energy metabolism, and the
cerebral vasculature. Abnormalities in the local vascular system or cell communication
due to pathological state or changes in cerebral blood flow upon psychoactive drugs could
influence this haemodynamic response. As we expect the HRF estimate to be stable if
none of those events took place, we propose to study the intra-subject stability of HRF
estimates over time, namely between consecutive time periods. For doing so, we compare
the intra-subject variability of the HRF whole brain dilation parameter vector δ to the
inter-subject variability of the same quantity. We thus introduce two reference `2 distances,
namely the within-subject distance WS(δs1, δs2) = ‖δs1 − δs2‖22 where (δsi )i correspond to the
vectors of spatially aggregated HRF dilation parameters that were estimated over two periods



6.3. Model Validation 107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

-0.024

0.45 0.38

0.27 0.19 0.59

-0.026 0.64 0.41 0.48

0.39 0.2 0.28 0.28 0.28

-0.31 -0.19 0.0045 0.24 0.1 -0.2

0.14 0.41 0.42 0.27 0.58 0.44 0.041

-0.26 0.4 0.29 0.52 0.45 -0.1 0.28 0.29

0.21 -0.08 -0.15 -0.34 -0.33 0.16 0.054 -0.046 -0.28

-0.040.000650.14 0.22 0.26 0.071 0.44 0.37 0.2 -0.088

-0.071-0.098 -0.15 -0.42 -0.21 -0.083 0.26 0.2 -0.14 0.59 0.25

0.43 0.35 0.59 0.29 0.041 0.19 -0.12 -0.12 0.044 0.096 -0.21 -0.28

-0.081 0.22 0.074 0.13 0.14 0.073 0.33 -0.0033 0.19 0.41 -0.19 0.29 0.21

0.16 0.21 0.39 0.4 0.49 0.65 0.29 0.42 0.14 0.02 0.46 0.064 0.15 0.15

0.54 -0.084 0.07 0.049 -0.31 0.02 0.081 -0.19 -0.12 0.62 0.0025 0.26 0.42 0.27 -0.035

0.27 0.31 0.13 -0.17 0.16 0.42 -0.03 0.21 -0.34 0.41 0.17 0.35 0.24 0.11 0.42 0.21

0.28 0.33 0.44 0.46 0.4 0.52 0.37 0.54 0.32 0.29 0.37 0.14 0.32 0.36 0.6 0.33 0.42

0.61 0.024 0.13 0.15 -0.034 0.14 -0.0066-0.13 -0.091 0.35 0.0037-0.015 0.38 0.12 0.085 0.69 0.38 0.35

0.28 0.27 0.029 -0.13 -0.26 0.21 -0.23 0.22 -0.074 0.51 0.015 0.4 0.19 0.06 -0.063 0.46 0.31 0.28 0.18

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.3-10 – Correlation matrix between neural activation signals for K = 20.
Triangular inferior view of the semi-definite positive matrix ΣK for K = 20. All entries vary
between −1 and +1 as they reflect correlation coefficients.

of time T1 and T2 in the same individual s. Similarly, for any pair of subjects (s1, s2) and a
given period T , we measure the between-subject distance between (δsiT )i vectors as follows:
BS(δs1

T , δ
s2
T ) = ‖δs1

T − δ
s2
T ‖22. The goal is then to compare the within- and between-subject

distances across individuals and show that the intra-subject variability is significantly lower
than the inter-subject one over a sufficiently large population.

Data set and numerical analysis

We selected 100 healthy subjects from the Human Connectome Project (HCP) data set [Van
Essen et al., 2013] at random. We used this data set because of the availability of a 12 min
long rs-fMRI run with a short time of repetition (TR = 0.72 s), see Glasser et al. [2013] for a
full description of the acquisition parameters and the pre-statistics processing steps. In this
rs-fMRI run for each individual, we extracted two segments of 4 minutes each, denoted as T1

and T2 hereafter, the first and last parts of the recording. We then applied the proposed
multivariate spatio-temporal decomposition to each segment using K = 8 spatio-temporal
atoms (uk,wk)Kk=1 and a brain atlas Θ = (Θm)Mm=1 [Desikan et al., 2006] composed of
M = 96 regions of interest (ROIs). This haemodynamic brain parcellation thus yields 96
HRF dilation parameters δ = (δm)Mm=1 for each individual. In practice, in the definition of
WS(·, ·) and BS(·, ·), the true vectors δsiTj (i = 1, . . . , 100, j = 1, 2) have been replaced by
their estimates δ̂siTj computed by solving Eq. (6.6) for the two 4-min rs fMRI data sets (T1
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and T2). To make sure that our conclusions hold for a large scale of temporal regularization
parameters, we spanned the range λf ∈ [0, 1] and repeated the same procedure over 10
discrete values of λf within this interval.

Results

In Fig. 6.3-11, the box plot in blue shows the within-subject distance WS(δ̂siT1
, δ̂siT2

) between
the two 4 min rs-fMRI segments for all individuals and across 5 values of λf covering the
whole interval [0, 1]. The orange and green box plots in Fig. 6.3-11 depict the between-subject
distances computed over the first and second segments respectively, namely BS(δ̂siT1

, δ̂
sj
T1

) and
BS(δ̂siT2

, δ̂
sj
T2

) with i 6= j. We observed that the within-subject (i.e. inter-segment) variability
is systematically lower than the between-subject variability and that all metrics remain
stable across regularization levels. To go further, we performed a statistical analysis (paired
t-test) by comparing the mean of the WS and BS distributions and we obtained significant
p-values (p < 10−8) showing that the within-subject haemodynamic variability is significantly
lower than the between-subject fluctuations. In contrast, the statistical inter-individual
comparison between the two segments is not significant (p ' 10−2). These results are valid for
all tested regularization levels indicating a minor impact of the regularization parameter onto
the haemodynamic parameter estimate. In sum, this analysis demonstrates that the whole
brain characterization of the vascular system remains stable in a given individual between
two periods shortly spaced in time, compared to the same analysis between individuals and
so that the haemodynamic response discriminates each subject from the others.
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Figure 6.3-11 – Within-subject vs between-subject analysis of the haemodynamic
variability. The box plots show respectively in blue, orange and green the distribu-
tion of WS(δ̂siT1

, δ̂siT2
) for all subjects (i = 1, . . . , 100), BS(δ̂siT1

, δ̂
sj
T1

) and BS(δ̂siT2
, δ̂
sj
T2

) with
i 6= j. These distributions are assessed for 5 levels of temporal regularization (λf ∈
{10−3, 0.22, 0.45, 0.67, 0.9}) and remain stable. Statistical analysis (paired t-test) was con-
ducted to assess the significance of the difference between the mean of the within- and
between-subject `22 norm distributions. Significant differences are marked with a ∗.
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6.4 Clinical validation at the population level

In the previous section, the numerical experiments were devoted to demonstrate the meaning-
fulness and reliability of the proposed multivariate spatio-temporal within-subject decomposi-
tion of fMRI data, especially in resting-state experiments. In this section, our main objective
is to showcase the application of this approach to clinical diagnosis. For this purpose, we
leverage the functional features (haemodynamic delays, neural activation signals, etc.) output
by our approach to first characterize patients with history of stroke compared to healthy
controls and then to discriminate middle-age vs elderly subjects. In both analyses, we again
used the 6-min long rs-fMRI data from the UK Biobank database.

6.4.1 Characterization of patients with an history of stroke

Stroke is a medical condition in which the blood supply to is interrupted or reduced in a brain
area, resulting in ischemic brain tissue and neuronal damage. This pathology is considered
as a major health issue nowadays [England, 2018]. In this field, multiple studies [Min et al.,
2018] have proposed approaches to better estimate the stroke risk for patients. However, in
these attempts a major issue is the precise estimation of the brain damage that occurs in
the neurovascular system during and after a stroke episode. To that purpose, we tested our
approach to characterize the effect of stroke on the haemodynamic response in the brain.

We considered 24 patients of both genders and various ages who suffered from a stroke
in the past from the UK Biobank database. For comparison purposes, we selected 24
healthy controls matched in age and gender from the same database. We applied the same
decomposition (K = 20,M = 96, same λf ) to each patient and healthy control. Fig. 6.4-12(a)
and Fig. 6.4-12(b) show respectively the corresponding normalized maps of haemodynamic
dilation parameters (δm)96

m=1 in a healthy control and stroke patient, respectively. The
normalization has been done by dividing all dilation parameter values by their within-subject
average, namely δ̄HC and δ̄SP respectively. We first observed that the dilation parameters
were larger in average in the healthy condition compared to stroke (δ̄HC > δ̄SP). This
corresponds to shorter and more homogeneous TTPs in the brain in the healthy condition.
The shortest TTP found in the healthy control was actually located in the primary visual
cortex (axial slice, z=−2, left hemisphere), a result consistent with the literature on fastest
haemodynamic responses often detected in visual areas [Handwerker et al., 2004, Badillo et al.,
2013]. In contrast, Fig. 6.4-12(b) illustrates that the haemodynamic dilation parameters
δSP are smaller (so the TTPs longer) in the stroke patient Also, we found less variability in
the healthy subject since the difference between the maximum and minimum TTPs were
smaller (∆HC

TTP = 1.25 s) compared to the stroke patient (∆SP
TTP = 2.25 s). Importantly,

Fig. 6.4-12(a) illustrates the relative symmetry of haemodynamic territories that exists in
normal subjects between both hemispheres [Raemaekers et al., 2018].

On the contrary, Fig. 6.4-12(b) reveals a wider asymmetry between the two hemispheres
in the stroke patient. Interestingly, in this patient we noticed the presence of larger TTPs in
the middle left precentral gyrus and left motor cortex (resp. z=44 and z=60), namely the
brain regions supposedly impacted by the stroke episode.

To go one step further, we quantified the spatial asymmetry of the haemodynamic structure
within each individual. To this end, we computed the inter-hemispheric haemodynamic `2
distance (IHD) between the HRF dilation parameter vectors estimated over the left and
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right hemispheres in laterally matched brain regions, respectively denoted δL and δR. This
intra-subject distance is defined as follows:

IHD(δsR, δsL) = ‖δsL − δsR‖2, ∀s = 1, . . . , 24.

A zero-valued distance thus reflects a perfect symmetry of the estimated haemodynamic
responses. In contrast, we expect to uncover asymmetry between haemodynamic territories
respectively located in the ischemic and normal hemispheres.

By pulling down the values of IHD across all individuals within each group (HC vs
SP), we estimated the IHD distributions for the two populations of interest, as shown in
Fig. 6.4-12(c). In the latter graph, we illustrate how different the two cohorts are in terms
of neurovascular asymmetry. The group of 24 stroke patients exhibit larger haemodynamic
differences between the ischemic and normal hemispheres. We statistically assessed such
difference between the two distributions using a two-sample Kolmogorov-Smirnov test and
found a significant p-value (p = 3.8 10−4). This quantification thus confirmed preliminary
visual assessment. We report this p-value with a temporal regularization defined such as
λf = 0.001. However, we obtain similar p-value results when using the 5 others levels of
temporal regularization (λf ∈ [0.001, 0.9]).

In summary, this analysis has shown that the proposed framework is instrumental in
discriminating healthy subjects from stroke patients, both at the individual and group-levels,
using haemodynamic features and an neurovascular asymmetry index, which allowed us to
localize pathological haemodynamic delays.

6.4.2 Middle-age vs elderly subjects classification

In the previous part, we performed group-level statistical analysis in the classical way. In
this part, we intend to assess the prediction power of the proposed framework in order to
classify middle-age vs elderly subjects using standard machine learning tools [Pedregosa
et al., 2011]. The reason for choosing this classification task between middle-age and elderly
individuals lies first in the fact that multiple studies have pointed out the modification of the
haemodynamic system with healthy aging [Ances et al., 2009, Li et al., 2018, West et al.,
2019] and second in a regain of interest in the literature for brain age analysis using multiple
neuroimaging techniques [Engemann et al., 2020]. We thus intend to assess whether our
approach is able to capture the effect of aging and if so, whether the haemodynamic features
reflect more brain aging compared to the neural activity signals.

For that purpose, we still relied on the UK Biobank database as in the previous experiments
as the short TR (TR=0.735 s) in the rs-fMRI data set (6 min long) provides a suitable
setting to investigate the HRF evolution with aging. Here, we selected 459 healthy subjects
of both genders and divided them in two balanced groups: the middle-age (MA: 40− 44 yo)
and elderly (E: 64− 70 yo) groups. We applied the decomposition (6.6) to each subject using
5 levels of temporal regularization (λf ∈ [0.001, 0.9]), K = 20 temporal components and we
used the same brain parcellation of M = 96 ROIs as before to segregate the HRFs in space.

First, we analyzed the haemodynamic differences between the two populations by com-
puting a two-sample t-test on the distributions of dilation parameters. We used the temporal
regularization parameter λf = 0.675 which is the one selected through cross validation for
our classification model in the subsequent paragraph. The results were first quantified with
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Figure 6.4-12 – Haemodynamic discrimination between stroke patients (SP) and
Healthy Controls (HC). Top (a)- Middle (b): Normalized haemodynamic dilation
parameter maps in a healthy control ans stroke patient (St), respectively. The maps
have been respectively normalized by the within-subject mean value (δ̄s = 1

M

∑96
m=1 δ̂

s
m)

computed for each subject s = HC, St. shortest TTP is reached in the visual cortex.
Larger haemodynamic dilation parameters maps and thus shorter TTPs are retrieved in
healthy condition (δ̄HC = 0.87 > δ̄SP = 0.77). Stronger fluctuations around the mean
are observed in the pathological condition as we reported a larger difference between the
maximum and the minimum TTP (∆SP

TTP = 2.25 s) for the stroke patient than for the Healthy
Controls (∆HC

TTP = 1.25 s). Bottom (c): Histograms of the normalized inter-hemispheric
haemodynamic distance (IHD) between dilation parameters computed over the left and
right hemispheres (i.e. δ̂L and δ̂R, respectively) in HC (blue) and SP (red), respectively.
The significant reported p-value (p = 3.8 10−4), which is associated with a two-sample
Kolmogorov-Smirnov test between the two distributions, demonstrates that the neurovascular
asymmetry in SP is significantly different and actually more spread compared to HC.

t-scores to compare the dilation parameters in each region. The results are presented in
Fig. 6.4-13(a) and illustrate large differences between the two populations. More specific-
ally, higher dilation parameters or shorter TTP were retrieved in middle-age subjects as
the t-scores were mostly positive for the comparison δ̄MA

m > δ̄E
m. This is notably visible

in the Willis Polygon, temporal cortices, angular gyri, the medial prefrontal cortices and
the superior frontal cortices. To assess the statistical significance, we also computed the
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Figure 6.4-13 – Statistical analysis of the haemodynamic differences between
middle-age (MA) and elderly (E) subjects. (a): T-scores associated with the two-
sample t-test between the distributions of haemodynamic dilation parameters in middle-age
(MA) and elderly (E) subjects (null hypothesis H0 : δ̄MA

m = δ̄E
m, ∀m = 1, . . . ,M). Note that

most of the T-values are positive meaning that δ̄MA
m > δ̄E

m most often. (b): Thresholded
statistical map (− log10 pval) associated with a two-sample t-test performed to assess the
mean difference in terms of haemodynamic dilation parameter between the middle-age and
elderly subjects. The p-values were Bonferonni corrected for multiple comparisons performed
across all ROIs (M = 96). The map (axial slices) was thresholded at a significance level of
α = 0.05 corresponding to pval = 1.65 on the color bar.

log-transformed p-values, i.e. − log10 pval (shown in Fig. 6.4-13(b)), after correcting for
multiple comparisons using the Bonferroni correction across the M = 96 ROIs. We noticed
first that a large majority of significant brain regions appear bilaterally indicating larger
haemodynamic dilation parameters or shorter TTPs in younger individuals. Second, the
negative t-values reported in the cerebellum are not statistically significant after correcting
for multiple comparisons.

Then, in an attempt to be exhaustive we constructed three different logistic regression (LR)
models based either on the individual (i) neural activity signals, (ii) HRF shapes and (iii)
haemodynamic dilation parameters. We did not consider the spatial activity maps as input
features in these models as they do not permit to perform dimension reduction. We trained
these LR models using the Scikit-Learn software [Pedregosa et al., 2011] to predict the age label
for each subject (1 for the elderly people, 0 for middle-aged people). A `2-norm regularization
was used in the estimation of the LR model parameters with an hyper-parameter β > 0. We
grid-searched the temporal regularization parameter λf and the classifier hyper-parameter β,
see Fig. 6.4-14, for the stability of the setting. We assess the impact of the choice of λf on the
prediction results from Section 6.4.2. Fig. 6.4-14 reports the accuracy score for the logistic
regression relatively to the choice of regularization parameter β for the classification model
and the temporal regularization parameter λf for our deconvolution model. The accuracy is
almost not impacted by the choice of parameter λf , for any value of β. This observation
confirms that the choice of λf is not critical when studying the relative spatial structure
of the haemodynamic delay and that our model can be used in practical cases to evaluate
abnormalities in the haemodynamic response.

We chose the accuracy as the classification metric and cross-validated the score to provide
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Figure 6.4-14 – Evolution of the accuracy score w.r.t the logistic regression regularization
parameter β and the temporal regularization parameter λf . The accuracy score is not
impacted by the hyper-parameter λf , as moving this parameter mainly impact the magnitude
of the estimated delays and not its spatial structure.

an estimation of the generalization error with a 10 times repeated stratified 4-fold split.
Fig. 6.4-15(a) shows that the haemodynamic properties have an improved prediction power

to discriminate the age compared to the neural activation signals (i.e. temporal components).
The latter actually reaches an average accuracy score of 0.557, whereas the mean accuracy
associated with the HRF shape and haemodynamic dilation parameter estimates respectively
goes up to 0.741 and 0.743. Also, the distribution of accuracy scores across trials is more
concentrated for the HRF dilation parameters compared to the whole HRF shape. This is
likely due to the dimension reduction operated to extract this parameter which fluctuates less
than the complete profile of the haemodynamic response. This analysis thus demonstrates
that our decomposition is able to capture the brain age based on neurovascular information.
However, due to the large between-subject variability even within each class of age the neural
activation signals do not define a good feature for the brain age prediction. Complementary
to that, Fig. 6.4-15(b) illustrates the progression of the mean accuracy score with the number
of individuals involved in the LR model and clearly depicts that a plateau is reached around
459 subjects (the total size of the sampled cohort) both for the haemodynamic dilation
parameter. Also, one can see the rapid progression of the mean accuracy with the number
of individuals for the LR model based on haemodynamic properties compared to the one
constructed from the neural activation signals.

Overall, this experiment has permitted to demonstrate that haemodynamic features are a
good biomarker of the normal aging, as already reported in the literature [Grady and Garrett,
2014, West et al., 2019]. Moreover, it highlighted that the inter-hemispheric asymmetry
in neurovascular coupling brings key information to discriminate middle-age from elderly
people.

6.5 Conclusion

In this chapter, we have presented a semi-blind deconvolution approach to jointly estimate
the haemodynamic response function and the neural activity signals across the whole brain.
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Figure 6.4-15 – Accuracy score for classifying middle-age vs. elderly subjects (459
individuals sampled from the UK Biobank database). (a): The prediction was
performed by pulling individual features either based on (i) the estimated neural activation
signals (ûk)20

k=1, (ii) HRF shape estimates (v̂δm)96
m=1 or (iii) the haemodynamic dilation

parameters (δ̂)96
m=1. From top to bottom, the distribution of the classification scores is shown

from for the predictive features (i)-(iii), respectively. The best accuracy scores (average 0.74)
are reached using the haemodynamic parameters and the smallest variability in the prediction
using specifically the dilation parameter estimates. (b): Learning curve of accuracy scores
as a function of the number of individuals (middle-age vs elderly subjects) used for the
training stage both for the haemodynamic dilation parameter (blue curve) and the temporal
components (orange curve). As a plateau is reached for 459 people, we presented the
corresponding performances in panel (a).

As the proposed methodology is paradigm-free, it enables the analysis of resting-state fMRI
data in an semi-supervised manner as the regularization parameters (K,λf ) may be tuned
using a trade-off between model accuracy and complexity. Beyond the model validation on
synthetic and real fMRI data, we have demonstrated the interest of the proposed approach
in two applications in neuroscience. Both aimed at characterizing cerebral haemodynamic
delays in specific populations, namely stroke patients and elderly people by contrasting
them with healthy and younger controls. Most importantly, we proposed an haemodynamic
asymmetry index to lateralize the stroke episode while confirming the presence of a prolonged
haemodynamic delay in these patients. We also demonstrated that haemodynamic properties
are predictable of brain age. Finally, this new framework opens the door to new research
avenues for functional connectivity analysis based on the neural input signals instead of the
BOLD signal themselves. In contrast to existing methods [Wu et al., 2013], our approach
would be less biased by a constant haemodynamic response shape across the whole brain.
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T his chapter proposes to apply our neurovascular decoupling method to the Synchropioid
cohort as a means to investigate the pharmacological mechanism associated with the

buprenorphine. We will detail here the acquisition protocol running for the Synchropioid
project, the statistical analysis we deployed and finally preliminary results.

7.1 Analysis of the Synchropioid cohort

As described in section 1.4.2, to understand and better cope with the side-effects of the
buprenorphine in a patient, the Synchropioid project investigates the pharmacological
mechanism associated with this molecule in healthy volunteers. In this chapter, we propose
to assess whether the method developed in chapter 6 allows us to uncover the effect of the
buprenorphine on the neurovascular coupling and in particular on the HRF properties.

7.1.1 Synchropioid experimental protocol

The participants received a [C11]buprenorphine of 10.0 µg injection during the acquisition
while laying still in the 3T PET/MR scanner. The control subjects received an additional
dose of NaCl at 0.9% while the other volunteers received an intravenous dose of buprenorphine
of 0.2 mg. Up to the present time, 16 healthy volunteers participated in this experimental
protocol, 10 participants had gone through a PET imaging session and only 4 subjects
benefited from a high temporal resolution rs-fMRI acquisition. Within those four subjects,
the control group has an average age of 25.5 years with a standard deviation (std) of 2.0 years
and the group with an analgesic dose has an average age of 22.5 years with a std of 5.0 years.
For these four participants, the overall acquisition contains five rs-fMRI imaging runs. The
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third and fifth runs are of particular interest as they have been collected approximately
40min and 75min after injection (AI) using an multi-band acquisition sequence [Moeller et al.,
2010], allowing us to get high temporally resolved fMRI data (TR=0.8s), see Figure 7.1-1.
These fMRI acquisitions last 14 min during which a total of 1065 T2∗-weighted scans was
accumulated.

Moreover, the TEP protocol ran for 90min of acquisition along which arterial sampling
was performed whenever possible as a means to measure the pharmacokinetic properties
of the buprenorphine. The [C11]buprenorphine has a radioactivity of 4MBq/Kg for a total
of 400MBq at maximum. In practice, the four participants of interest received in average
276.6MBq during the PET acquisition.

Structural 
MRI

T1-3D

B0 
map

PET acquisition (90 min)

0 30 60 90

PET

MRI
Rs-fMRI 

N°1
Rs-fMRI 

N°2
Rev 

Blips 

Injection
 [11C]buprenorphine (Bup)
+ Bup 0.2 mg OR NaCl 0.9% t

Figure 7.1-1 – Description of the Synchropioid acquisition setup: We display the
steps of interest in the protocol. We have simultaneously collected PET and rs-fMRI data.
The PET imaging session lasts 90min while the fMRI imaging session features multiple
consecutive runs. We have a structural MRI and a B0 field map acquisition along with the
re-blips acquisitions that allow us to correct for the distortion due to the B0 inhomogeneities.
In addition, we collect two temporally resolved rs-fMRI acquisitions (the third and the fifth
runs referenced to as rs-fMRI N◦1 and N◦2 hereafter), respectively at approximately 40min
and 75min after injection.

7.1.2 Description of the statistical analysis

Here we focus on the analysis of rs-fMRI data to investigate the effect of the buprenorphine
on the neurovascular coupling. We rely on the fMRIPrep [Esteban et al., 2019] tool to
perform the classical preprocessing steps (see subsection 1.3.2 for more details). We analyse
the four available subjects (two controls and two participants with an analgesic dose). We
applied the multivariate decomposition introduced in chapter 6 to each subject and more
specifically to the two rs-fMRI imaging sessions outlined in Figure 7.1-1. We used three levels
of temporal regularization λf ∈ {0.001, 0.1, 0.9} and K = 20. For visualization purpose, we
back-projected the HRF dilation parameter estimates δ associated with each regularization
level onto the MNI template and reported as well the histogram of δ in the each subject.
As described in chapter 6, our approach introduces an estimation bias but accurately
captures the spatial contrast of the haemodynamic response. Thus, after inspecting the three
decomposition results (not shown here), we confirm that they all draw to the same findings
and conclusions. Consequently, in what follows, we only report the results for λ = 0.001.

To localize the distribution of [C11]-buprenorphine binding in the brain form PET data,
we computed the Standardized Uptake Value (SUV) normalized in Regions of Interest (ROI)
between the 60 and 90min AI. The SUV spatially summarizes the activity concentration of
[C11]buprenorphine in tissue normalized by the total injected radioactivity. We consider this
timing window to take the temporal stability of the pharmacokinetic at stake into account.
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The objective of this preliminary analysis was first to localize which brain regions elicit
the most concentrated fixation of buprenorphine and second to characterize potential effects
of buprenorphine on the haemodynamic response function.

7.1.3 Preliminary results

In order to compare our results obtained in rs-fMRI with the regional distribution of
[C11]buprenorphine uptake which mainly reflects the distribution of µ-opioid receptors, we
analyzed the PET data collected in four volunteers who received a placebo dose. Those
participants did not benefit from the fine temporal resolution for the rs-fMRI imaging
session, hence only their PET data have been processed. The SUV were calculated for
all volumes on interest in each volunteer. To compare the intersubject spatial distribution
of the radiotracer, SUVr were thereafter calculated by normalizing SUV values by the
radioactivity in the Occipital cortex, considered as a suitable reference region for µ-opioid
receptors [Hiller and Fan, 1996]. In Figure 7.1-2, we show that the strongest fixation appears
in the insula (−40/40, 16,−2), the putamen (−30/30, 0, 0), the thalamus (−10/10,−18, 4),
the frontal cortex and the cingulate cortex. As buprenorphine is a µ-receptor agonist and
κ-receptor antagonist with a highly stronger affinity for mu opioid, findings of these uptakes
in cortical and sub-cortical regions are consistent with previous literature on the distribution
of mu opioid receptor in the human brain [Henriksen and Willoch, 2008, Lee et al., 2013,
Kantonen et al., 2019].

Figure 7.1-2 – Spatial distribution of [C11]buprenorphine uptake in a brain (axial
slices) of a representative volunteer from the placebo group: we display the SUVr,
i.e. the SUV normalized by the radioactivity in the occipital cortex, to locate the fixa-
tion of the buprenorphine in the brain. We observe that the fixation is maximal in the
insula (−40/40, 16,−2), the putamen (subcortical nucleus) (−30/30, 0, 0), the thalamus (sub-
cortical nucleus) (−10/10,−18, 4), the frontal cortex and the cingulate cortex.

Moreover, to quantify the buprenorphine fixation in some Regions of Interest (ROI),
we report in Figure 7.1-3 the SUVr in the regions that features visually a high level of
concentration of buprenorphine in Figure 7.1-2. We notice an increase of approximately 10%
to 50%, the highest increase (≈ 50%) being located in the Putamen followed by the Insula
that features an increase of ≈ 40%.

In Figure 7.1-4, for each subject we spatially display the HRF dilation parameters δ
back-projected onto the MNI template along with its histogram (rightmost column) for rs-
fMRI N◦1 that intervenes approximately 40min After Injection (AI). Similar results obtained
for rs-fMRI N◦2 that intervenes approximately 75min after AI are shown in Figure 7.1-5. In
the histograms, we report in black dashed line the grand mean dilation parameter, averaged
over the whole brain and across all participants for the two imaging sessions (rs-fMRI N◦1−2).
We also show in orange solid line each subject-specific mean dilation parameter averaged over
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Figure 7.1-3 – buprenorphine fixation within ROI: we show the SUVr in the ROIs that
feature a high level of buprenorphine concentration in Figure 7.1-2. We notice the highest
fixation in the putamen with an increase of ≈ 50%, followed by the insula that features an
increase of ≈ 40%.

the whole brain. The two control subjects (sub-02 and sub-03) are depicted with blue boxes
while the participants (sub-01 and sub-04) that received an analgesic dose are highlighted
with orange boxes.

Although the number of individuals is very limited, we distinguish a clear separation
between the effects of placebo and the analgesic buprenorphine dose on the haemodynamic
responses. We report a delayed haemodynamic response function (i.e. a larger haemodynamic
delay corresponding to a smaller dilation parameter δ) in participants who received an anal-
gesic dose as compared to the control subjects. This finding is consistent with the existing
literature that assessed the effect of opiate substances in cerebral blood flow [Adriaens et al.,
2014]. Also, the spatial maps of haemodynamic delays globally depict rather symmetrical hae-
modynamic responses. However, the strongest effects (i.e. slowest haemodynamic responses
in dark blue) are observed in the brain regions (insula and putamen) that correspond to the
highest SUVr values in PET imaging, as shown in Figure 7.1-2. Although preliminary, this
novel result outlines the spatially localized effect of the buprenorphine on the haemodynamic
response thanks to the combination of simultaneous PET and fMRI imaging.

In Figure 7.1-5, we noticed that the spatial symmetry of haemodynamic responses is
preserved during the second imaging session (rs-fMRI N◦2). Consistently with the results
obtained during rs-fMRI N◦1, we again observed the largest slowing down effect of the
haemodynamic response in the insula. However, in sub-01 we observed the transient effect of
buprenorphine as he almost recovered similar haemodynamic responses (i.e. larger dilation
parameters δ) in comparison to the control subjects, especially sub-03. In contrast, sub-04
still shows lower dilation parameters, so slower haemodynamic profiles. Therefore, one can
anticipate a certain vascular variability among the participants that received an analgesic
dose. This is probably due to the pharmacokinetic of the molecule that may fluctuate from
one subject to another and should be studied in-depth by cross-correlating these findings
with the analysis of PET data using arterial samples.

Last, Figure 7.1-6 depicts the evolution of the haemodynamic dilation parameters δ
for each participant between the two imaging sessions (rs-fMRI N◦1 and rs-fMRI N◦2).
This graph permits to realize that a given rs-fMRI run did not happen at the same time
points across individuals. Next, we noticed that, in average, the control subjects show



7.1. Analysis of the Synchropioid cohort 119

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-60

sub-01

L R

z=-60

sub-02

L R

z=-60

sub-03

L R

z=-60

sub-04

Figure 7.1-4 – Maps of HRF dilation parameters for rs-fMRI N◦1. (approximately
40min AI): From top to bottom, we show for each subject, from feet to head (i.e. from left to
right column), axial slices of HRF dilation parameters δ along with its histogram (rightmost
column). On the latter, we report in black dashed line the grand average dilation parameter,
computed over the whole brain and across the four participants for the two imaging sessions.
We also display subject-specific whole brain mean of dilation parameters in orange solid line
for this first imaging session. The control subjects are named with blue-colored boxes (sub-02
and sub-03) while the participants that received an analgesic dose of buprenorphine are
named with orange-colored boxes (sub-01 and sub-04). The two groups are clearly separated
one another based on their haemodynamic response spatial maps. The volunteers with an
analgesic dose of buprenorphine show in average slower haemodynamic responses (i.e. smaller
δ values in dark blue) as compared to the control subjects.

faster haemodynamic responses. In the control group, we found pretty consistent values of
haemodynamic dilation parameters with a slight vertical shift of the distribution (i.e. larger
dilation parameters measured) for sub-02 during the second run as compared to sub-03,
which remained very stable across the two imaging sessions. In the group submitted to the
analgesic dose of buprenorphine, we observed a discrepancy between the two individuals:
Sub-01 recovered faster haemodynamic responses during the second run, getting even closer
to sub-03. In contrast, sub-04 shows consistent and low values of haemodynamic dilation
parameters, reflecting a slower vascular coupling. This observed variability in time and across
individuals, illustrates the complexity of the mechanism that underlies the pharmacological
effect of buprenorphine on the neurovascular coupling. In echo to this result, it would be
interesting to cross-correlate individually this HRFs estimated with blood and/or PET data
such as the blood concentration of buprenorphine, the rate constant K1 – that represents the
unidirectional transport of the tracer from blood to brain – or the rate of [C11]buprenorphine
uptake that are indicative to the opioid receptor availability.



120 Clinical application

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

0 10 20 30 40
0.55

0.60

0.65

0.70

0.75

0.80

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60
0.55

0.61

0.68

0.74

0.81

L R

z=-60

sub-01

L R

z=-60

sub-02

L R

z=-60

sub-03

L R

z=-60

sub-04

Figure 7.1-5 – Maps of HRF dilation parameters for rs-fMRI N◦2. (approximately
75min AI): From top to bottom, we show for each subject, from feet to head (i.e. from left to
right column), axial slices of HRF dilation parameters δ along with its histogram (rightmost
column). On the latter, we report in black dashed line the grand average dilation parameter,
computed over the whole brain and across the four participants for the two imaging sessions.
We also display subject-specific whole brain mean of dilation parameters in orange solid
line for this second imaging session. The control subjects are named with blue-colored
boxes (sub-02 and sub-03), the others with orange-colored boxes (sub-01 and sub-04). We
notice that during rs-fMRI N◦2 sub-01 recovers similar neurovascular responses as compared
to the control group whereas sub-04 who even slowed down from his first session.
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~1h15min A.I.

sub-01

sub-04

sub-02

sub-03

Figure 7.1-6 – Evolution of the haemody-
namic responses in each participant. We
display the evolution of the distribution (box-
plot showing the median value in solid line
and the first and third quartiles as boundar-
ies) of HRF dilation parameters between the
two imaging sessions (rs-fMRI N◦1 or run-1
and rs-fMRI N◦2 or run-2). The volunteers
who received an analgesic dose globally have
slower haemodynamic responses. In addition,
sub-01 recovered similar neurovascular profiles
to those observed in the control group, illus-
trating a subject-dependent effect of the same
buprenorphine dose across individuals.
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7.2 Summary

In this chapter, we analyzed the preliminary conjoint PET/fMRI data set collect in the
course of the Synchropioid project at the Service Hospitalier Frederic Joliot. In particular,
we applied our multivariate semi-blind deconvolution algorithm to temporally resolved fMRI
data collected along two consecutive imaging runs in four individuals and we paid attention
to the analysis of haemodynamic features. The analysis of neural signatures is left to future
work. Importantly, we found out clear haemodynamic differences between the control and test
groups, the former received a placebo while the latter the analgesic dose of buprenorphine.
On these preliminary data, we showed that the buprenorphine has a global slowing down
effect on haemodynamic features, most significantly in the insula where the fixation of the
molecule is the highest. However, as the first rs-fMRI imaging session we analysed took
place approximately 40min AI, we do not have a baseline BOLD activity for each subject.
Getting this baseline could help us to better characterize the effect of the molecule over time.
Moreover, this temporal evolution could be set in perspective with the pharmacokinetic of the
drug to better understand the inter-subject variability. Of course, these preliminary results
need to be confirmed on a larger cohort which is currently under construction. Last but
not least, more classical fMRI data analysis will be performed (e.g. functional connectivity
analysis) to measure complementary effects of the buprenorphine on brain function.
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General Conclusions and

Perspectives

Contributions

In the thesis, we have developed new methods and tools to efficiently disentangle the neuronal
and vascular activity components in the BOLD fMRI data, both in the context of resting-state
or task related experiments. In particular, we have put strong efforts in the scalability of the
proposed methods as a means to run whole brain analysis in a few minutes per individual.

Separating vascular and neuronal components in fMRI BOLD signals. Both
neural and non-neural factors such as glial cell activity, cerebral energy metabolism and the
cerebral vasculature contribute independently and synergistically to the fMRI BOLD signal. A
mis-estimation of individual and regional HRFs may lead to interpret haemodynamic changes
as neural variations, which could have considerable implications for the interpretability and
reliability of findings in fMRI studies. Previous literature supports the hypothesis that HRF
variability introduces some bias in fMRI data analysis [Rangaprakash et al., 2017, 2018,
Yan et al., 2018]. Deconvolution-based approaches such as the one presented here allow
the discrimination of cerebrovascular components from neural activity and minimize the
confound of HRF variability in the exploration of brain physiology, functional connectivity and
cognitive processes. In this work, we have developed a new algorithm that performs the joint
estimation of the HRF and neural activation signal as a semi-blind deconvolution multivariate
problem in a paradigm-free setting. Synthetic and real resting-state fMRI data allowed us to
demonstrate that this approach is able to faithfully capture the individual’s haemodynamic
response function and intrinsic functional networks with low intra-subject variability and
relative minimal impact of hyper-parameters on the reliability of HRF estimation. To go
one step further in terms of validation, we spent a significant amount of time in assessing
to what extent these methodological developments have a practical impact in terms of
detection of pathology or classification of individuals (e.g. middle aged vs elderly). Further
demonstrations using well defined research protocols could be envisaged to refine the tool
for its use in clinical applications, especially if our intention is also to use it in the context
of neurological disorders (e.g. epilepsy) where abnormal neural activity manifests through
interictal spikes between consecutive seizures [Bénar et al., 2006, Zijlmans et al., 2007].
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Fast minimization of Total Variation regularized problem. Our approach takes
advantage of the Total Variation (TV) regularization to constrain the estimation of the K
neural activation temporal atoms. To achieve a fast minimization, we have proposed a novel
approach based on a neural network. We unrolled the Proximal Gradient Descent in the
analysis formulation of our problem and specified two solutions to compute the proximal
operator of the TV penalty term: (i) we defined a sub-network to approximate the operator or
(ii) we solved it numerically and provided the formulation for its gradient. We demonstrated
the higher performance of our approach on simulations and real fMRI data in the context of
the BOLD deconvolution.

Whole brain analysis of haemodynamic properties. Generally, supervised HRF
estimation methods explain the observed BOLD signal by focusing on a set of brain areas (e.g.
visual, auditory and sensorimotor cortices) that are typically involved in a specific activation
paradigm [Goutte et al., 2000, Marrelec et al., 2003, Handwerker et al., 2004, Lindquist and
Wager, 2007, Vincent et al., 2010, Pedregosa et al., 2015]. To the best of our knowledge, the
proposed approach is the first being able to perform whole brain analysis of haemodynamic
properties using resting-state fMRI data in a paradigm-free manner. It is worth mentioning
that we used a common brain parcellation – the Havard-Oxford probabilistic atlas [Desikan
et al., 2006] – across all individuals, to ensure the feasibility of group-level analyses and
facilitate between-group comparisons. As such, the major findings we reported on the
asymmetries in haemodynamic features between stroke patients and healthy controls, on
one hand and the differences related to normal aging on the other hand, are dependent on
this atlas and could slightly differ with another parcellation. This question is left for future
research.

Interest for analyzing normal aging. Regional variability in the HRF is partly dictated
by the size of surrounding blood vessels [Handwerker et al., 2004, Havlicek and Uludağ,
2020]. Vascular aging is known to cause progressive deterioration in the cellular structure of
the blood vessel wall, with the development of arteriole tortuosity and reduction in capillary
density that undoubtedly impact both resting-state cerebral blood flow and the ability to
adjust it during neuronal activity. In that context, as concordant with various imaging
studies on aging [Bangen et al., 2009], our algorithm has proven its sensitivity to classify
middle-age vs elderly subjects on the basis of HRF parameters. Indeed, using recent rs-fMRI
data findings obtained on the large-scale CamCAN task-fMRI data set [Shafto et al., 2014]
our study confirmed a clear reductive process of the neurovascular coupling in elderly people
in multiple brain areas (occipital, temporal and frontal regions). Beyond the age-related
statistical comparison, we also validated on a large cohort (459 subjects) the estimated
haemodynamic features as potential predictors of brain age in a supervised classification
task. This confirms that these neural signatures are much more variable across individuals
and even groups.

Interest for monitoring patients after a stroke episode. Our approach, using the
proposed haemodynamic asymmetry index, has also proven its utility to detect at the
individual level on a single with a history of stroke, very slow haemodynamic delays in a
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restricted brain territory probably related to local ischemic tissue consecutive to stroke. This
finding is perfectly consistent with the literature [Altamura et al., 2009] showing that the
delay in peak latency that arises as patients advance from the acute to the subacute stroke
phase is related to the deterioration of cerebral haemodynamics. Consequently, remodeling
the fMRI haemodynamic response function in stroke patients may optimize the detection
of BOLD signal changes. MRI is of course one of the most powerful diagnostic tools in
contemporary clinical medicine. However, in the acute episode of stroke, diffusion-weighted
MRI and perfusion imaging (e.g. ASL) remain the reference imaging modalities to perform
the diagnosis in a noninvasive way. In the post-acute period, rs-fMRI acquisition equipped
with the proposed method would be extremely valuable to predict the potential recovery of
brain function as it no longer requires the patient involvement in an experimental paradigm.

Interest for analyzing the effect of a drug on patients. Glial cell activity, cerebral
energy metabolism and the cerebral vasculature affect the neurovascular coupling. The
presence of a specific drug in the brain would certainly interfere with their activity. Hence
the HRF shape of the HRF would be also impacted and this change could be captured
by the proposed methodology in this thesis. To this end, we preliminary demonstrated
using PET imaging that the buprenorphine, an opioid used as analgesic, is detected and
fixated in the brain (most significantly in the Insula) in subjects who received an analgesic
dose. Concomitantly, based on the rs-fMRI data collected durint the PET imaging protocol
we provided evidence for a local increase in the haemodynamic time-to-peak both in the
Putamen (subcortical nucleus) and the Insula in the same individuals. We thus exhibited that
the buprenorphine slows down the haemodynamic system in these participants. However,
we also pointed out a certain inter-subject variability that should be further studied in the
future and correlated both with the pharmacokinetic of the drug through the analysis of
arterial blood samples and the subject behavior/response to painful stimuli (keep your hand
in an ice cube bag).

Limitations & Perspectives

Limitations. Some limitations of our tool do exist. First, there are free parameters in the
proposed modeling (K, λf , M) that need to be set in an appropriate manner. We explored
two model selection criteria for setting K, namely the R2 score and the determinant of
the correlation matrix between the neural activation signals. Based on these metrics, we
found a fair compromise between accuracy and model complexity for K = 20. We thus
constantly used this value hereafter in the individual decomposition. Of course, other model
selection approaches might be envisaged to optimize K and λf using for instance a (widely)
Bayesian information criterion (BIC) [Neath and Cavanaugh, 2012, Watanabe, 2013], or
the log-likelihood in the standard classical framework. The selected model would thus be
the one associated with the lowest BIC value or largest log-likelihood. More recently, the
concept of bi-level optimization [Bennett et al., 2006] has emerged to set hyper-parameters.
In this case, an upper-level cost function (e.g. a supervised training score on the features
of the decomposition) has to be minimized with respect to the unknown hyper-parameters
while staying intrinsically connected to the lower-level problem, namely the multivariate
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decomposition. Because of the extra-computation cost required by these approaches, such
aspects were left aside but future work could be devoted to address these key points to
automate the processing.

Second, the proposed regional analysis is conditioned by the parcellation atlas (and the
value of M). It would be interesting to deepen this research by testing the reproducibility
of the tool with some atlas variations and the creation of an atlas using subject-specific
assessment of the cerebral vasculature.

Third, to recover more structured spatial maps, an advanced regularization model based
on TV-elastic net [de Pierrefeu et al., 2017] or structured sparsity [Jenatton et al., 2012,
Baldassarre et al., 2012] could be used in space while keeping the same algorithmic structure.
Our other contribution for solving the TV proximity operator [Cherkaoui et al., 2020b] could
be combined and directly plugged into the current multivariate decomposition algorithm.

Fourth, as in standard multivariate data-driven methods, the inter-subject comparison of
spatial maps is currently difficult in the proposed formulation. In the same spirit as group-
ICA [Calhoun et al., 2009], canonical ICA [Varoquaux et al., 2010] or multi-subject dictionary
learning [Varoquaux et al., 2011], the current within-subject decomposition could be extended
to the group-level to become more stable. One possibility would be to impose the same
spatial maps across all individuals like in Calhoun et al. [2009] while another more flexible
approach would permit spatial variations around a group-level spatial template [Varoquaux
et al., 2011]. In this context, the neural activation signals could remain subject-specific with
large fluctuations both in timings and magnitudes. This kind of extension would permit
to easily perform group-level analyses not only on the HRF parameters but also on the
spatio-temporal decomposition.

Fifth, we experimentally observed both on numerical simulations and real fMRI data (ADHD
cohort [Milham et al., 2012]) that a TR larger than 1s may be detrimental to a precise
estimation of the haemodynamic dilation parameter. For that reason, all analyses were
performed on fMRI acquisitions with short TR. This type of data is usually collected using
simultaneous multi-slice imaging [Feinberg and Setsompop, 2013, Hesamoddin et al., 2019]
to keep this parameter below 1s.

Sixth, because the proposed HRF model relies solely on a time dilation parameter, its
magnitude is fixed and the fluctuations of the BOLD signal across the brain are thus captured
through the neural activity atoms (uk)Kk=1 on one hand and the spatial maps (wk)Kk=1) on the
other hand. However, the norm of the spatial maps being constrained, the real BOLD signal
amplitude is captured by the neural activation signals. A recent work Tsvetanov et al. [2019]
has shown that the amplitude of resting-state activity fluctuations is crucial to predict brain
age in healthy subjects. One possible enhancement of the current model would be to add a
magnitude parameter to each HRF. In that case, we should fix the scale ambiguity issue by
setting the amplitude of the temporal atoms (zk)Kk=1. This modification would significantly
increase the computational complexity due to the calculation of the proximal operator
associated with the new regularization term gu((uk)k) = λ

∑K
k=1

(
‖∇uk‖1 + I‖uk‖∞=α

)
.

Last, thus far we have used the canonical HRF as the reference shape in vref . This setting
could be easily updated to perform investigations in specific populations (e.g. newborns)
where the true haemodynamic response function is known to deviate from the canonical
shape [Arichi et al., 2012].
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Perspectives for applications. Such findings bring new opportunities for the exploration
of brain plasticity and pathogenesis in humans. In this way, even older adults in relatively
good health may have undetected, clinically silent vascular pathology and ischemic brain
changes such as silent stroke [D’Esposito et al., 2003]. As this could affect the neurovascular
coupling, it is of critical interest to assess the cerebrovascular function and to consider
vascular risk factors in the pathogenesis or exacerbation of age-related degenerative diseases
like Alzheimer. The current challenge for diagnostic imaging techniques is to find metrics that
capture relevant information or biomarkers. Such works on haemodynamic deconvolution,
which are not yet used routinely, might help uncover these biomarkers.

This present study constitutes a proof of concept in terms of interest and feasibility of
the proposed approach. However, many other applications on clinically well-characterized
populations could be undertaken to improve and demonstrate its robustness. Aside from
stroke and neurological vascular diseases, vascular risk factors are associated with an increased
risk of epilepsy and could represent a sizable proportion of cryptogenic cases of epilepsy [Ogaki
et al., 2020]. Although abnormal neural activities generating interictal epileptiform discharges
provoke haemodynamic changes and BOLD activation [Bénar et al., 2006, Zijlmans et al.,
2007], standard MRI scans fail to visualize epileptic source precisely. Some authors have
shown that standard HRF in the general linear model (GLM) framework can introduce errors
on the spatial extent and localization of activated brain regions. Modeling the haemodynamic
response function should provide some flexibility in the GLM definition and improve the
sensitivity of fMRI data to epileptogenic areas [Storti et al., 2013]. This improvement is
particularly valuable in epileptic patients with drug-resistant focal seizures, where resection
of the epileptogenic brain area remains the best therapeutic outcome. In that context,
approaches that employ haemodynamic deconvolution – as presented in this thesis – promise
a more faithful investigation of the cerebral pathology as far as we are able to collect data very
quickly (short TR). This demonstrates the need once again of technological breakthroughs
in fMRI data acquisition that should come up soon [Chaithya et al., 2020] if one wants to
preserve good spatial resolution with short TR.
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Appendix A

Résumé en français

Abstract in French

Sujet : Estimation efficace cerveau entier de la réponse hémodynamique et déconvolution
semi-aveugle de la réponse neurale via la régularisation par variation totale, à partir de
donnée d’IRM fonctionnelle.

L’Imagerie par Résonance Magnétique fonctionnelle (IRMf) enregistre de manière non-invasive
l’activité cérébrale en mesurant l’évolution du niveau d’oxygénation du sang. C’est le contrast
BOLD. Ce dernier mesure de manière indirecte l’activité cérébrale au travers du couplage
neurovasculaire [Ogawa et al., 1992]. Ce couplage est caractérisé par un système linéaire
et invariant dans le temps, résumé par sa réponse impulsionnelle dénommée la Fonction de
Réponse Hémodynamique (FRH) [Bandettini et al., 1993, Boynton et al., 1996]. L’estimation
de cette fonction est particulièrement intéressante : un changement de cette FRH peut
être lié au mécanisme pharmacologique d’une drogue, l’effet de l’âge sur l’organisme ou les
conséquences d’une pathologie cérébrale. De plus, son estimation permet aussi de relier le
signal BOLD observé à l’activité cérébrale (i.e. neurale) sous-jacente qui permet ainsi de
mieux comprendre les mécanismes cognitifs en jeu.

De nombreuses méthodes ont proposé d’estimer cette fonction de réponse dans le cadre
de données IRMf acquises au cours d’un protocole d’activation cérébrale (IRMf-t, i.e. de
tâche). Dans ce contexte, le sujet volontaire est soumis durant l’acquisition à un Paradigme
Expérimental (PE) qui alterne entre des phases de repos et de stimulation sensorielle,
motrice ou cognitive [Friston et al., 1998a, Ciuciu et al., 2003, Lindquist and Wager, 2007,
Pedregosa et al., 2015]. Généralement, les méthodes supervisées d’estimation de la FRH
proposent d’adapter les paramètres d’un modèle prédéfini afin d’expliquer le signal BOLD
observé associé au PE [Ciuciu et al., 2003, Lindquist and Wager, 2007, Vincent et al., 2010,
Pedregosa et al., 2015]. Plusieurs limitations sont à souligner parmi les méthodes existantes.
Premièrement, le PE est ici utilisé comme un substitut à l’activité cérébrale (i.e. neurale). Un
biais peut ainsi être introduit dû, par exemple, à un potentiel retard entre la réponse neurale
du sujet et la description temporelle des tâches dans le PE. De plus, ce type d’approches
ne peut être utilisé dans le cas d’IRMf-r où aucun PE n’est défini a priori. Il s’agit en effet
dans ce type d’acquisitions de suivre les flucutations spontanées de l’activité cérébrale. De
manière complémentaire, on retrouve depuis les années 90 une littérature riche concernant les
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techniques de déconvolution du signal BOLD afin d’estimer le signal d’activation cérébrale
sous-jacent à une échelle temporelle proche de la seconde [Glover, 1999, Gitelman et al.,
2003, Hernandez-Garcia and Ulfarsson, 2011, Khalidov et al., 2011]. Une contribution clef,
qui est à la base de ces travaux de thèse, est le travail de Karahanoğlu et al. [2013]. Ce
dernier propose une modélisation spatio-temporelle de l’activité cérébrale en introduisant
une régularisation qui promeut la parcimonie aussi bien temporelle que spatiale sur ce signal
estimé. En procédant ainsi, les signaux d’activité cérébrale obtenus permettent de définir
des réseaux fonctionnels, et en ce sens, se rapprochent de la méthode proposée par Wu
et al. [2013]. Récemment, des travaux du même groupe sont venus prolonger ces précédentes
contributions, tel que [Farouj et al., 2019] qui estime conjointement le profil de la FRH et
l’activité cérébrale à l’aide d’une paramétrisation limitée. Ce type d’approche est souvent
appelé schéma de déconvolution semi-aveugle du signal BOLD. Farouj et al. [2019] se base
sur l’hypothèse d’un signal d’activité cérébrale constant par morceau ou dit “par bloc”,
hypothèse préalablement introduite dans Karahanoğlu et al. [2013] mais est aussi capable
d’estimer le paramètre du profil hémodynamique afin de lever l’ambiguïté d’amplitude et
d’invariance temporelle entre le signal d’activation neurale et le filtre hémodynamique (i.e. la
FRH).

En s’inspirant nous aussi des travaux réalisés par Karahanoğlu et al. [2013], nous proposons
une nouvelle approche pour distinguer le signal d’activité neurale du couplage neurovas-
culaire (FRH) aussi bien pour l’IRMf de repos (IRMf-r) que celui dit de tâche (IRMf-t).
En somme, l’objectif principal est de définir un modèle permettant de capturer le couplage

neurovasculaire et l’activité cérébrale à l’échelle du cerveau tout entier, et de produire un
algorithme d’optimisation rapide permettant l’estimation des différents paramètres en jeu
sur d’importants volumes de données.

Notre modélisation de l’activité cérébrale se base aussi sur un signal constant par morceau
ou dit “par bloc”, noté u ∈ RT̃ . De plus, nous notons par v ∈ RL la FRH. Avec le modèle
linéaire et invariant dans le temps du couplage neurovasculaire adopté [Bandettini et al.,
1993, Boynton et al., 1996], nous modélisons le signal BOLD observé y ∈ RT comme suit :

y = v ∗ u+ ε , (A.1)

où ε ∈ RT correspond au bruit observé au sein du signal BOLD. Ce modèle est illustré
par Figure A-1.

Il est à noter qu’avec Équation A.1, on ne considère le signal BOLD que dans un voxel,
on parle alors de modèle univarié. Ainsi, dans le cas d’une analyse cerveau entier, avec P
voxels, il faudrait considérer Y ∈ RP×T tel que Y = (yj)Pj=1. Une des contributions majeures
de cette thèse, que nous décrivons plus loin, se propose d’étendre ce modèle de manière
multivariée afin d’étudier le cerveau entier mais en utilisant un modèle dont le nombre de
paramètres reste raisonnable, i.e. ne croît pas linéairement avec le nombre de voxels.

Figure A-1 – Illustration de la modélisation du signal BOLD. Le signal BOLD est
obtenu par convolution du signal neural (en rouge) avec la Fonction de Réponse Hémodyna-
mique (en bleue) et en rajoutant du bruit (en jaune).
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L’hypothèse d’un signal constant par morceau ou dit “par bloc” pour l’activité neurale
u est classiquement imposée grâce à la régularisation par Variation Totale (TV) en 1-
dimension (1D). Cette régularisation promeut la parcimonie de la dérivée première du signal
z = Du, tel que ‖u‖TV = ‖Du‖1 =

∑n
i=2 |ui−ui−1|, ce qui force le signal u à être constant

par morceaux. Ici, D est l’opérateur de différentiation discret, défini comme D ∈ R(n−1)×n

avec :

D =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1



arg min
u∈RT̃

1
2‖y − v ∗ u‖

2
2 + λ‖Du‖1 , (A.2)

avec λ ∈ R+ le paramètre de régularisation TV.
La résolution d’un problème de déconvolution avec une régularisation TV (Équation A.2)

peut être coûteuse en temps de calcul. Ainsi, nous avons comparé théoriquement les différentes
formulations associées au problème Équation A.2 et démontré que l’algorithme issu de la
formulation à l’analyse est plus efficace que la formulation à la synthèse. En effet, une
comparaison des taux de convergence des différentes formulations, ρ̃ pour la formulation à la
synthèse et ρ pour la formulation à l’analyse, démontre que le ratio ρ̃

ρ évolue au moins en
Θ(k). De plus, nous proposons la conjecture qu’elle évolue en Θ(k2) suite aux simulations
expérimentales réalisées. Ainsi, en retenant la formulation à l’analyse, nous proposons de
“dérouler” de manière différentiable les algorithmes de descente de gradient proximal (PGD)
associés au problème d’optimisation avec régularisation TV. “Dérouler” un algorithme
signifie définir un réseau de neurones artificiels dont chaque couche est équivalente à une
itération de l’algorithme sélectionné. La différentiation à travers l’opérateur proximal TV
peut être obtenue soit en calculant directement le gradient via une formule analytique, soit
en le calculant via un second algorithme interne “déroulé”. Des expérimentations sur des
simulations numérique et une comparaison sur des données réelles d’IRMf (voir Figure A-4)
donnent des résultats prometteurs concernant les algorithmes “déroulés” en comparaison aux
algorithmes itératifs classiques. Ces travaux sur les algorithmes déroulés sont décrits dans le
chapitre 4 et ont fait l’objet d’une publication [Cherkaoui et al., 2020b].

Afin d’étudier la réponse hémodynamique dans tout le cerveau, nous proposons, en plus
de l’hypothèse d’un signal “bloc” concernant l’activité neurale, une modélisation originale
et synthétique de la FRH v. La réponse hémodynamique est définie par dilatation de la
FRH canonique vref, tel que vδ(t) = vref(δt). Cette paramétrisation permet de résumer la
FRH avec un seul paramètre scalaire. Dans la section 5.1 du chapitre 5 nous détaillons notre
première contribution mettant en œuvre pour modéliser l’activation neurale l’hypothèse du
signal “bloc”, ainsi que le modèle de FRH par dilatation, afin d’estimer de façon univariée
chacune de ces composantes à partir du signal BOLD. Cette contribution a fait l’objet d’une
publication [Cherkaoui et al., 2019a]. Afin de réduire la variance d’estimation de ce modèle,
nous proposons de considérer le signal BOLD cerveau entier de manière multivariée, nous
obtenons alors :

Y = vδ ∗ U +E , (A.3)
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Figure A-3 – λf = 0.8λmax

Figure A-4 – Comparaison des performances pour (λf = 0.1 gauche - λf = 0.8
droite) entre l’algorithme “déroulé” avec notre formule analytique de la dérivé du prox-TV
et l’algorithme itératif de PGD pourla formulation à l’analyse dans le cas du problème de
déconvolution du signal BOLD à FRH fixée et connue. Notre méthode présente de meilleures
performances que l’algorithme itératif. On constate une légère dégradation des performances
dans un contexte où la parcimonie est plus élevée.

avec U = (uj)Pj=1 ∈ RP×T̃ , E = (εj)Pj=1 ∈ RP×T et ∗ la convolution ligne à ligne
telle que vδ ∗ U = [vδ ∗ u1, ...,vδ ∗ uP ]>. Une limitation directe de ce modèle est qu’il
ne considère qu’une seule FRH pour tout le cerveau. Or, les caractéristiques du couplage
hémodynamique varient suivant la région du cerveau ou l’individu considéré [Handwerker
et al., 2004, Badillo et al., 2013]. Cet aspect pousse à estimer localement la FRH dans le
cerveau. Une approche adaptée est de se baser sur une parcellisation pré-éxistante du cerveau
en régions fonctionnellement homogènes [Varoquaux and Craddock, 2013]. Idéalement, le
nombre de régions définies devraient être grand, cependant, plus on augmente le nombre
de régions, plus le nombre de voxels par région est faible, ce qui peut fragiliser la stabilité
de l’estimation de la FRH. Pour cette raison, nous considérons des parcellisations d’une
centaine de régions telle que l’atlas probabiliste d’Havard-Oxford [Desikan et al., 2006]
avec lequel nous seuillons les probabilités liées aux régions pour obtenir une parcellisation.
Nous introduisons donc mathématiquement la parcellisation (Θm)Mm=1 à M région telle que
Θm ∈ {0, 1}p avec Θmi = 1 si le i-ième voxel appartient à la m-ième région et 0 sinon. En
introduisant (Θm)Mm=1 dans Équation A.3, on obtient :

Y =
(

M∑
m=1

Θ>mvδm

)
∗̇ U +E , (A.4)

Ici, U = (uj)Pj=1 capture de manière univariée l’activité cérébrale pour chaque voxel j. Afin
de réduire le nombre de paramètres du modèle et de rendre leur estimation plus robuste, nous
introduisons une contrainte de rang faible en introduisant K cartes spatio-temporelles avec
K � P . Chaque carte encode la signature temporelle uk ∈ R1×T̃ d’un réseau fonctionnel
(ou l’activité neurale associée) ainsi que sa localisation dans le cerveau wk ∈ R1×P de telle
sorte que U =

∑K
k=1w

>
k uk. Finalement notre modèle est défini par :

Y =
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑
k=1

w>k uk

)
+E . (A.5)

Ce modèle multivarié a d’abord fais l’objet d’un développement avec une FRH fixée pour
le cerveau entier qui est décrit dans la section 5.2 du chapitre 5 et a fait l’objet d’une
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publication [Cherkaoui et al., 2019b]. Puis, l’extension comprenant l’estimation de plusieurs
FRHs pour le cerveau entier, permettant ainsi la deconvolution semi-aveugle du signal BOLD
est établi et décrit dans chapitre 6 et a fait l’objet d’une publication [Cherkaoui et al.,
2020a]. Afin de démontrer la pertinence de notre approche en terme d’analyse intra-sujet,
nous décomposons les données IRMf-r d’un sujet issu de la cohorte UK BioBank [Sudlow
et al., 2015]. Figure A-5 permet d’identifier deux réseaux fonctionnels connus (le cortex
visuel (a)-droite ainsi que le réseau du mode par défaut (b)-droite). Nous observons aussi une
certaine variabilité concernant la réponse vasculaire au sein de ce sujet comme en témoigne
la différence entre la FRH la plus rapide (c) localisée dans le gyrus temporal médian et celle
la plus lente (d) localisée dans le cortex orbitofrontal.

Visual cortex

Default Mode Network

(a)

(b)

(c) (d)

(e)

0 02m38s 05m16s
Time

−238.7

0.0

74.4

S
ig

n
a
l 
ch

a
n
g
e

0 02m38s 05m16s

Time

−238.7

0.0

74.4

S
ig

n
a
l 
ch

a
n
g
e

0 22s 44s
Time

0.00

0.05

0.10

0.15

S
ig

n
a
l 
ch

a
n
g
e

0 22s 44s
Time

0.00

0.05

0.10

0.15

S
ig

n
a
l 
ch

a
n
g
e

L R

z=-60

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60

L R

z=-60

L R

z=-42

L R

z=-25

L R

z=-8

L R

z=8

L R

z=25

L R

z=42

L R

z=60

0 02m38s 05m16s
Time

−2

−1

0

1

2

S
ig

n
a
l 
ch

a
n
g
e

Estimated neural activity Denoised BOLD data Observed BOLD data

L R

y=-72 x=-13

L R

z=7

L R

y=21 x=-6

L R

z=-16

Pearson correlation = - 0.28

Figure A-5 – Résultat de la décomposition par déconvolution semi-aveugle pro-
posée à partir des données d’IRMf-r d’un seul sujet. Rangée supérieure (a) :
Activation neurale û10 (gauche) ainsi que la carte spatiale correspondante (vue axiale)
ŵ10 (droite), qui implique principalement une activation dans le cortex visuel. Rangée
centrale (b) : Activation neurale û2 (gauche) ainsi que la carte spatiale correspondate (vue
axiale) ŵ2 (droite), qui implique principalement une activation du réseau du mode par
défaut (DMN). Troisième rangée, gauche (c) : Région à la réponse hémodynamic
la plus rapide. FRH la plus rapide estimée v̂δf (gauche) localisée dans le gyrus temporal
médian comme illustré par le masque de la région associée Θf (droite). Troisième rangée,
droite (d) : Région à la réponse hémodynamique la plus lente. FRH la plus lente
estimée v̂δs (gauche) localisée dans le cortex orbitofrontal comme illustré par le masque de
la région associée Θs (droite). (Rangée inférieure (e) : Séries temporelles associées
au voxel. Signal d’activation neurale estimé (en bleu), signal BOLD débruité (en orange)
calculé comme la convolution avec la FRH de la région concernée. Le signal BOLD observé
est illustré en noir.

De plus nous illustrons la pertinence de notre décomposition en terme d’analyse de
groupe en démontrons statistiquement qu’une pathologie telle que l’accident vasculaire
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cérébral (AVC) et la dégradation vasculaire due à l’âge induisent un retard hémodynamique
plus important au sein de certaine régions cérébrales et que ces caractéristiques peuvent être
utilisés pour prédire l’état de santé de l’individu au moyen de l’apprentissage automatique
(tâche de classification). En effet, comme le montre Figure A-6 nous parvenons à différencier
les sujets dit d’âge moyen de ceux dit âgés seulement à partir du coefficient de dilatation des
FRHs δ associées à chaque individu.

0.4  0.5   0.6    0.7   0.8  0.9   1.0

Accuracy (average on 10 trials)

Temporal
components

HRF shape

HRF dilation
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Middle-age / elderly subjects
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Figure A-6 – Score de classification des
sujets d’âge moyen et ceux dit âgés (459
individus tirés aléatoirement à partir de
la base de données UK Biobank). (a) :
La prédiction est réalisée en tirant de la dé-
composition par déconvolution semi-aveugle les
caractéristiques suivantes (i) les K signatures
temporelles estimées (ûk)20

k=1, (ii) la forme des
FRH estimées (v̂δm)96

m=1 ou (iii) les M coeffi-
cients de dilatation hémodynamique (δ̂)96

m=1.
De haut en bas, les distributions des scores de
classifications sont montrées pour les caracté-
ristiques (i)-(iii), respectivement. Les meilleurs
scores de précision (accuracy) (en moyenne
0.74) sont atteints en utilisant les caractéris-
tiques hémodynamiques et la variance de pré-
diction la plus faible est atteint lorsqu’on utilise
les paramètres de dilatation.

De plus, afin de démontrer l’utilité clinique d’un tel outil nous nous sommes intéressés au
projet Synchropioïd. Ce projet vise à étudier les mécanismes pharmacologiques des opiacés
(buprenorphine) afin de mieux comprendre et réduire les actuels effets secondaires notamment
liés à l’habituation à ce type de molécules. Le protocole expérimental vise à définir une
cohorte de 60 sujets dont 30 contrôles. Les sujets contrôles reçoivent une dose traceuse de la
buprenorphine afin que sa fixation dans le cerveau puisse être observée grâce au scanner PET.
Les 30 autres sujets reçoivent en plus une dose analgésique de buprenorphine. Conjointement
et simultanément au scanneur PET les sujets bénéficie d’un IRMf de repos afin d’identifier les
potentielles modifications de leur activité cérébrale, i.e. hémodynamique. Ainsi, nous avons
estimé les FRH de quatre sujets de la cohorte (deux contrôles et deux sujets ayant reçu une
dose analgésique) et reportons dans la Figure A-7 l’évolutions des distributions du paramètre
de dilatation des FRH (δ) pour chaque sujet. Nous notons que les sujets ayant reçu une
dose analgésique ont une réponse hémodynamique plus lente. De plus, une inspection plus
approfondie de la localisation de la fixation de buprénorphine et des ralentissements les plus
prononcés en terme de réponse hémodynamique montre qu’elles sont cohérentes spatialement
et localisées au niveau du Putamen et de l’Insula.

Ainsi, grâce à cette thèse, nous avons proposé une avancée significative concernant
l’estimation de la FRH dans tout le cerveau à partir de données d’IRMf de repos ou
d’activation et ouvrons ainsi la voie à de nouvelles opportunités en recherche clinique, qui
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Figure A-7 – Évolution de la réponse hé-
modynamique des sujets. Nous montrons
l’évolution des distributions de paramètres de
dilatation temporelle des FRHs pour chaque
sujet entre les deux sessions d’imagerie. On re-
marque que les volontaires ayant reçu une dose
analgésique ont en moyenne une réponse hémo-
dynamique plus lente. De plus, on remarque
que le sujet 1 retrouve un couplage neurovas-
culaire similaire aux sujets contrôles lors de la
deuxième session d’imagerie.

pourrait bénéficier ainsi d’une estimation plus précise de la réponse hémodynamique.
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Titre: Estimation efficace de la réponse hémodynamique cerveau-entier par déconvolu-
tion semi-aveugle, via la régularisation par variation totale, à partir de données d’IRM
fonctionnelle

Mots clés: FRH, IRMf, modèles multivariés, estimation, apprentissage de dictionnaire, patholo-
gies cérébrales

Résumé: L’Imagerie par Résonance Magné-
tique fonctionnelle (IRMf) enregistre de manière
non-invasive l’activité cérébrale en mesurant
l’évolution du niveau d’oxygénation du sang
(contrast BOLD). Ce dernier mesure de manière
indirecte l’activité cérébrale au travers du cou-
plage neurovasculaire. Ce couplage est car-
actérisé par la Fonction de Réponse Hémody-
namique (FRH). L’estimation de cette réponse
est d’un intéret particulier: un changement
de cette réponse hémodynamique peut être lié
au mécanisme pharmacologique d’une drogue,
l’effet de l’âge sur l’organisme ou les con-
séquences d’une pathologie cérébrale. De plus,
son estimation permet aussi de relier le signal
BOLD observé à l’activité cérébrale, i.e. neu-
rale sous-jacente ce qui permet ainsi de mieux
comprendre les mécanismes cognitifs en jeu.
Nous proposons une nouvelle approche pour dis-
tinguer le signal d’activité neurale du couplage
neurovasculaire (FRH) aussi bien pour des don-
nées d’IRMf de repos (IRMf-r) que d’IRMf de
tâche (IRMf-t). L’activité neurale est mod-
élisée par un signal constant par morceau ou
dit "par bloc". Cette hypothèse est imposée
grâce à la régularisation par variation totale
(TV) en 1-dimension (1D). La résolution d’un
tel problème de déconvolution par régularisa-
tion TV peut être couteux en temps de calcul.
Ainsi nous proposons de comparer théorique-
ment les différentes formulations associées au
problème et démontrons que l’algorithme issu
de la formulation à l’analyse est plus efficace
que celui associé à la formulation à la syn-
thèse. Dans ce travail, nous proposons aussi
de dérouler de manière différentiable les algo-
rithmes de descente de gradient proximal asso-
ciés au problème d’optimisation avec régulari-

sation TV, en calculant directement le gradient
de l’opérateur proximal TV via une formule an-
alytique ou en le calculant via un algorithme
interne déroulé. Une comparaison sur données
réelles d’IRMf donne des résultats prometeurs
concernant les algorithmes déroulés en compara-
ison aux algorithmes itératifs. Afin d’étudier
la réponse hémodynamique sur l’ensemble du
cerveau, nous proposons, en plus de l’hypothèse
d’un signal bloc concernant l’activité neurale,
une modélisation originale et synthétique de la
FRH. La réponse hémodynamique est définie
par dilatation de la FRH canonique. Cette
paramétrisation permet de résumer la FRH avec
un seul paramètre scalaire par région appar-
tenant à une parcellisation prédéfinie. De plus,
nous introduisons des composantes temporelles
et leur carte spatiale correspondante pour en-
coder l’activité cérébrale et localiser la contri-
bution de chaque composante dans le cerveau.
Afin d’illustrer la pertinence de notre approche
en terme d’analyse de cohorte, nous démon-
trons statistiquement qu’une pathologie telle
que l’accident vasculaire cérébrale et la dégra-
dation vasculaire due à l’âge induisent un re-
tard hémodynamique au sein de certaine régions
cérébrales et que ces caractéristiques peuvent
être utilisées pour prédire l’état de santé d’un
individu au moyen de méthodes d’apprentissage
automatique (tâche de classification). Ainsi,
grâce à cette thèse, nous proposons une avancée
significative concernant l’estimation de la FRH
sur l’ensemble du cerveau qui s’applique à la fois
aux données d’IRMf de repos et de tâche de par
la déconvolution semi-aveugle de l’activité neu-
rale. Nous ouvrons ainsi de nouvelles perspec-
tives pour l’usage de l’IRMf en recherche clin-
ique au travers de cette caractérisation hémo-
dynamique fiable.



Title: Efficient whole brain estimation of the haemodynamic response function for TV-
regularized semi-blind deconvolution of neural activity in fMRI

Keywords: HRF, fMRI, multivariate modeling, estimation, dictionary learning, cerebral pathol-
ogy

Abstract: Functional magnetic resonance
imaging (fMRI) non-invasively records brain
activity by dynamically measuring the blood
oxygenation level-dependent (BOLD) contrast.
The latter indirectly measures neural activity
through the neurovascular coupling. This cou-
pling is characterized by the so-called haemody-
namic response function (HRF). The estimation
of the latter is of a primary interest: a change
in the haemodynamic response could be linked
to the pharmacological mechanism of a drug,
the effect of normal aging or the consequence
of a neuropathological process. Moreover, its
estimation also links the observed BOLD sig-
nal to the underlying neural activity, which can
in turn be used to better understand the cog-
nitive processes involved in task performance.
We propose a novel approach to disentangle the
neural activation signal from the neurovascular
coupling for both task-related and resting-state
fMRI (tfMRI and rs-fMRI, respectively). We
model the neural activation as a piecewise con-
stant block signal, this hypothesis is enforced
using 1-dimensional (1D) Total Variation (TV)
regularization which promotes sparsity of the
first-order derivative of neural activity signals
and thus leads to block-shaped signals. The
resolution of such deconvolution problem with
TV regularization can be computationally ex-
pensive. We propose to theoretically compare
the performances of the analysis vs synthesis for-
mulations and show that the analysis one can
be much more efficient than its synthesis coun-
terpart. In this work, we also propose a mean
to perform differentiable algorithm unrolling
for proximal gradient descent (PGD) with TV-

regularized optimization problems by either di-
rectly computing the TV proximal operator gra-
dient with an analytic formula or computing it
with a nested unrolled algorithm. Comparison
on real fMRI data shows promising results for
learned optimization algorithm based on this
unrolling mechanism as compared to iterative
algorithms. In order to study the haemody-
namic response over the whole brain, we stick to
the same block structure hypothesis for the neu-
ral activity signal and introduce a simplistic but
novel modeling for the HRF. The latter is now
modeled as a dilated version of the canonical
HRF. This parameterization allows us to cap-
ture regionwise variations through a scalar di-
lation parameter. We introduce temporal com-
ponents and their corresponding spatial map to
encode the neural activity and localize their re-
spective contribution in the brain. Moreover, we
introduce the neurovascular coupling over the
whole brain by estimating a temporally dilated
HRF for each region from a predefined brain
parcellation. To illustrate the significance of
this approach at the population level, we statis-
tically demonstrate that a pathology like stroke
or a condition like normal aging induce longer
haemodynamic delays in some brain areas and
that this haemodynamic feature may be predic-
tive of the individual status in a machine learn-
ing (classification) task. In this thesis we thus
made a significant step forward towards efficient
whole brain estimation of the HRF in both the
rs- and tfMRI contexts and opened a new re-
search avenue in clinical neuroscience through
this reliable haemodynamic characterization.
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