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               GENERAL INTRODUCTION 

Context and motivations 

In order to reach a sustainable ecological footprint in a long-term perspective, the 

European Union (EU) has proposed the well-known “20-20-20” targets in 2007. 

Thereafter, European Commission adopted new climate and energy framework by 2030 

[1]. The 2030 targets include a decrease of 40% greenhouse gas (GHG) emissions from 

1990 levels, as well as a higher share for renewable energy and an improvement in 

energy efficiency. These EU actions show the way towards the safe and prosperous 

low-carbon future for the environment and the economy.  

Renewable Energy Sources Integration in Local Energy Communities 

Driven by EU climate actions and climate policy, many sectors have realized that 

opportunities exist for the economy when fighting global warming. For instance, with 

the emerging need of renewable energy sources (RESs), there is an increasing demand 

of technologies and devices for competitiveness and innovation. Sectors have 

developed sustainable buildings (e.g. household with photovoltaic panels), clean 

transports (electric vehicles), energy efficient products/solutions, etc. Meanwhile, by 

favoring renewable energy and energy efficient solutions, the dependence on imported 

energy is also reduced.  

 

More and more renewable energy power plants, like solar and wind, lead to a new trend 

of energy generation approach: distributed generation (DG). Different from the 

traditional centralized power supply from large conventional non-renewable power 

plants, the DG provides electricity that is locally produced and consumed, avoiding 

losses from transmission and distribution of electricity. The emergence of DG shows 

its advantages and prospects in energy communities due to environmental-friendly 

characteristics and better power system efficiency. 

 

With the emergence of RESs and DGs, the production and distribution of electricity is 

progressively moving from a traditional centralized structure to a decentralized 

structure. More and cleaner energy communities, like community microgrids, are 

emerging to bring social, environmental, economic opportunities and challenges in 

local energy production and use. A microgrid aims to construct small electrical systems 

that could manage the electricity balancing locally in sub-sections of the grid. It should 

be designed to improve the energy welfare of consumers: reduce local costs and 

emissions, to improve reliability and to provide an efficient electrical generation to 

local loads without transmission losses. 

 

To well integrate RESs into community microgrids, advanced appliances and 

technologies, such as intelligent energy management systems, secure electrical 
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infrastructure and up-to-date energy storage devices, are required to provide efficiently 

electricity with a high reliability. 

Handling RES Uncertainty with Operating Power Reserve  

RESs, like wind and solar, are highly dependent on meteorology, which induce 

unpredictable variability. Fortunately, RES electricity production is predictable but 

with forecasting errors. Due to this uncertainty, new challenges have occurred in the 

planning and operation of microgrids. RES uncertainty should be properly tackled to 

balance locally demand and supply with limited risks ensuring a secure operating of the 

electrical network. 

 

When an unexpected imbalance between supply and demand appears, system operators 

and automatic controllers use an available generating capacity, the so-called Operating 

Reserve (OR) power, to compensate the power deficit. The OR should be well sized 

and ideally allocated to minimize operational costs while keeping a satisfying security 

level. In a traditional electrical power grid, OR is prescribed to handle generator losses 

and uncertainties from load demand. With more RES, the requirement of OR will be 

largely increased especially during the time period when there is a high variability and 

uncertainty of RES.  

 

Under this context, uncertainties from RESs and load forecasting errors must be 

properly handled by an appropriate and reasonable OR provision and OR allocation. 

Risk-based uncertainty assessment approaches can be adopted. Emphasis should be 

given on studying the trade-off between a secure and an economic operation of power 

systems. 

OR Provision with RESs with the Integration of Energy Storage System 

OR provision has an economic cost (CAPEX and OPEX) as well as an environmental 

cost. Traditionally, the OR is provided by conventional generating units to ensure the 

availability of the power supply in case of emergency. In terms of RESs, their use are 

limited regarding OR provision due to their intermittent generation. However, with the 

emerging of advanced energy storage technologies, the potential and merit of OR 

provision by RESs are interesting to be explored and considered. With the integration 

of energy storage system (ESS), hybrid and active RES are capable of providing more 

ancillary services by a wide range of ESS applications, e.g. electric supply reserve 

capacity, voltage support, primary frequency support, etc.  

 

For the prospect, it is promising to find optimal solutions for providing OR with stored 

renewable energy in ESS as it is a clean technology without CO2 emissions. OR 

allocation should be optimized regarding the availability of RES and the ESS state of 

charges. 
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Day-Ahead Generation Scheduling with Deterministic/Stochastic Optimization 

In an electrical system, the unit commitment and power scheduling plans the operating 

of generating units over a short-term planning horizon in order to satisfy the load 

demand under system operating constraints. From the day-ahead forecasting of the load 

demand (and renewable energy generation if RESs are incorporated), an optimization 

algorithm classically finds the optimal operation set points of all controllable generators 

that minimize the global operational costs. Today, deterministic unit commitment 

(DUC) problems address the short-term scheduling of generators by assuming that all 

predictions regarding consumption and production from intermittent renewable energy 

are fixed and certain.  

 

The high penetration of renewable energy increases power system uncertainty while 

demands on the electrical system reliability are growing. Hence, traditional 

deterministic approaches for UC should evolve to stochastic optimization. Stochastic 

unit commitment (SUC) has been introduced as a promising tool to deal with power 

generation problems involving uncertainties by including uncertainties in the solution 

search. However, the computational efficiency in terms of complexity and execution 

time is always an issue. Meanwhile, the non-convex characteristics of the problem 

formulation (objective function and/or constraints) are also an obstacle during the 

search of a feasible solution. 

 

To overcome the drawbacks of DUC and SUC, advanced approaches should be 

considered and developed. As examples, probability-based DUC is a compensating 

solution to handle the RES uncertainty by applying probability distribution analysis. 

Regarding the SUC, more efficient computing methods are required (tractability), and 

an expressive mathematical formulation should be searched and built to make the 

problem easy to solve (expressiveness). The essential is the trade-off between the 

expressiveness of the approach and the tractability of the model. 

Tackled Problems and Objectives 

The main goal of this thesis is to propose a stochastic optimization methodology for 

optimal generation scheduling decisions in an urban microgrid with the wish to 

minimize operating costs and CO2 emissions. Power and reserve provision must take 

into account the uncertainty due to RES and the demand side forecasting errors, while 

considering the trade-off between security and economic operation. Specifically, the 

following problems are addressed: 

1. Reserve scheduling: With a probabilistic reliability assessment approach, reserve 

requirements should be well quantified and scheduled beforehand to ensure the 

security level and reduce the risks due to load and RESs uncertainties. 

2. Deterministic optimization of the generation scheduling considering probabilistic 

reserve requirement constraints in the presented microgrid. 

3. Development of algorithms and tools for stochastic optimization of the generation 

scheduling: Stochastic security constrained generation scheduling need to be 
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developed to include RESs & load uncertainties in the solution search. Optimal 

generation scheduling decisions need to be made regarding the expected mono-

objective and multi-objective targets. 

4. Contribution of energy storage systems to the provision of power reserve: When 

energy storage system (ESS) is implemented, optimal storage strategies should be 

made regarding the benefit target of the electrical network. e.g. to optimize the 

portion of RES energy for reserve provision, or to minimize the operating/emission 

costs. 

Scientific Roadmap and Thesis Structure 

In Chapter 1, the state of art of RESs in energy community/microgrids is reviewed. 

Energy management system is discussed regarding functions and control architecture. 

The studied microgrid is introduced. It contains hybrid PV active generators composed 

of renewable energy sources and storage units, micro gas turbines and loads. 

Meanwhile, the generation scheduling approaches under uncertainties are reviewed in 

terms of deterministic and stochastic optimization. 

 

In Chapter 2, the sources of uncertainties in energy system are introduced, and PV 

uncertainty/load uncertainty are discussed in detail. Then; the uncertainty analysis of 

the energy system is presented. The correlation between PV generation and 

meteorological factors are investigated, as well as the correlation between load and 

temperature. A neural network-based algorithm is implemented to forecast PV power 

and load demand one day ahead.  

 

In Chapter 3, a review of DUC is firstly presented as well as the interest to have an OR. 

Various criterions to size the OR are summarized regarding deterministic 

considerations (as the N-1 criterion) and probabilistic approaches using an assumed risk. 

Then with the obtained forecast errors of PV and load forecasting in Chapter 2, an OR 

determination method is presented by employing forecast uncertainties assessment. 

Thereafter, a deterministic planning is formulated and solved by a DP algorithm. Then, 

a study of the uncertainty propagation is undertaken in the deterministic UC solving 

with uncertain inputs and the impact onto the used OR is quantified. Finally, mixed-

integer linear programming (MILP) approach is introduced and applied for operational 

planning for the studied microgrid. Obtained results with DP and MILP are compared. 

 

In Chapter 4, following a review of SUC techniques under uncertainty, a robust 

approach is built with a scenario-based optimization. Uncertainties are considered 

through various considered PV production scenarios with their probabilities. Thus 

uncertainties are included in the process of the solution search. The MILP is applied to 

search for optimal solutions with an economic objective, environmental objective, or a 

tradeoff of both of them. 
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In Chapter 5, energy storage applications are introduced. Then two storage control 

strategies are presented for two applications: time-shift of electricity injection from 

renewable energy and provision of ancillary services. Under these two storage control 

strategies, a scenario-based multi-objective stochastic optimization is implemented 

with different optimization criterions: economic, environmental and the both. In 

addition, different OR allocation strategies among ESS and gas turbines are considered 

under different storage control strategies. Finally, the sizing methods of the storage are 

reviewed, followed by an application of a proposed storage sizing approach with a 

probabilistic analysis regarding the consideration of seasons and load types. 

 

In Chapter 6, a user-friendly simulation tool of microgrid central energy management 

system (MCEMS) is developed with MATLAB/GUI (graphical user interface) to 

visualize the operational planning process with different optimization approaches. The 

MCEMS interface facilitates day-ahead energy management and uncertainty analysis 

in microgrid, since it provides a better way of integrating all EMS function modules. 

Interface design visualizes the energy management process in terms of data collection, 

PV generation and load demand forecasting, system uncertainty analysis, OR 

quantification, and operational planning with deterministic/stochastic optimization. 

 

In Chapter 7, conclusions are made with discussions and recommendations for future 

research works are formulated. 

 

The summary of the thesis contents and organization of chapters are illustrated in Table 

G0-1 regarding states of art, scientific developments (in terms of methods and 

algorithms) and applications. 
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CHAPTER 1 CHALLENGES AND OPPORTUNITIES OF 

RENEWABLE ENERGY SOURCES IN LOCAL ENERGY 

COMMUNITIES 

1.1 Introduction 

The capacity deployment of distributed energy resources (DERs) is showing its 

increasing trend with more and more integration of distributed generators (DGs). As a 

result, energy communities have emerged with individual community energy 

requirement [2]. 

 

In the coming decades, traditional centralized electricity supply structure is greatly 

challenged as the households/communities are transformed gradually from electrical 

‘passive consumers’ to ‘prosumers’ (producer + consumer) and finally to active 

“prosumers” providing also ancillary services for the technical management of the 

electrical network. With the rapid increase of renewable energy technologies 

applications, communities have been involved in electricity provision and energy 

projects in many countries. There are diverse motivations, including environmental 

profits for more sustainable and renewable energy [3]; economic profits with social and 

technological innovations, e.g. more options for customer-oriented autonomous energy 

management, more flexible electricity tariffs, or concerns about social equity problems 

[4].  

 

Under this context, the challenges and opportunities arising from these motivations 

should be focused and addressed. First, this chapter presents a current state of the art 

regarding the development of RES and local energy communities. Then, backgrounds 

on energy management systems are introduced with a review of research activities on 

this topic at the laboratory. Fundamentals on generation scheduling in an energy system 

are recalled then bibliographic reviews are given on employed deterministic 

optimization techniques. The problem of uncertainties is introduced and stochastic 

optimization techniques are reviewed. Hence, a synthesis of relevant information paves 

the scientific roadmap, that is developed in next chapters. 

1.2  Renewable Energy Sources 

1.2.1 Context and motivations 

Electricity generation keeps rising in recent decades, satisfying a growing energy need 

in worldwide. According to IEA (International Energy Agency), global electricity 

demand has grown by 4% in 2018 to more than 23 000 TWh, contributing to a growth 

of 20% in total final consumption of energy [5]. Currently, fossil fuels, like coal, natural 

gas and oil, are the main sources of world electricity generation.  
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However, fossil fuel consumption leads to potential energy crisis in the future. With the 

limited non-renewable sources, more sustainable approaches are required. Furthermore, 

fossil fuels bring greenhouse gas (GHG) emissions, which contribute to the global 

warming. An IPCC (Intergovernmental Panel on Climate Change) special report 

showed the impacts of global warming of 1.5 °C on natural and human systems, and 

analyzed the threat of climate change [6].  

 

To address these problems, many countries and regions have taken strong initiatives to 

increase their energy efficiency and renewable energy capacity. There has been a large 

increase in international agreements and national energy action plans. In March 2007, 

the European Union (EU) leaders have set so-called “20-20-20 targets” for the year 

2020, aiming to a reduction of GHG emissions by 20% from 1990 levels, an increase 

of renewable energy's market share to 20%, and a 20% increase in energy efficiency. 

On the basis of 2020 targets, the “2030 climate and energy targets” were adopted by 

the European Council in October 2014, and were revised upwards in 2018. The targets 

for 2030 are [1]: 

• Reduction of GHG emissions by 40% compared with 1990 levels, 

• Increase of renewable energy by 32%, 

• Improvement in energy efficiency by 32.5%. 

In December 2015, the Paris Agreement sets a goal to limit the increase in global 

average temperature to well below 2°C above pre-industrial levels, and to attempt to 

limit the increase to 1.5°C. Implicit in these goals is the need for a low-carbon energy 

sector. All these targets and international agreements are decided to ensure the 

decarbonization in European energy system with net-zero GHG emissions by 2050.  

 

Trigged by these demands and motivations, renewable energy sources (RES) are 

promoted to make more reliable, cost-effective, and environmental-friendly energy 

generation. The growth of RES, like hydropower, wind, solar, geothermal, biopower, 

has accelerated in the last decade. According to the International Renewable Energy 

Agency (IRENA), during 2009-2018, the renewable energy capacity has been doubled, 

with 1221 gigawatts (GW) of renewable energy added to the global electric power 

system [7]. The share of renewables in total generation capacity has increased from 22% 

to 33% over the period 2001-2018. In terms of the growth rate, a long-term growth in 

renewable generation capacity and its contribution to the global energy transition is 

given in Fig. 1-1. The share of renewables in the growth of electricity generation 

capacity (percentage of renewables in net capacity growth) has increased from about 

25% in 2001, passing 50% in 2012 to reach 63% in 2018. On the contrary, as the figure 

shows, the expansion of non-renewable generation capacity has shown a slight sign of 

slowing down.  
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Fig. 1-1 Global growth of renewable/ non-renewable electricity generation capacity 

[8] 

 

Fig. 1-2 shows renewable generation capacity growth. In 2018, solar energy continues 

to dominate as in 2017, with a capacity increase of 94 GW (+24%). It is followed by 

wind energy with an increase of 49 GW (+10%), and hydropower capacity increased 

by 21 GW (+2%). 

 

Fig. 1-2 Global renewable energy sources capacity growth [8] 

 

The EU has made efforts to achieve the 2020 target of increasing share of renewable 

energy as well as reducing the GHG emissions. Fig. 1-3 shows the increasing trend of 

renewable energy in EU, reaching around 18% in 2018. However, the objective of 20% 

is not expected to be reached in 2020 with the current increasing rate.  

 

In terms of GHG emissions in Fig. 1-4, the target has already been reached in 2013 with 

20% of reduction in EU compared with 1990 levels. Whereas, the reduction rate 

becomes showing a stable, even a slight fluctuate trend since 2014. This implies that 

related measures and incentives that implemented were not enough to close the gap to 
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the 2020 goal. Similar trends can be observed in France regarding GHG emissions and 

the integration of renewable generation. Especially GHG emissions are far from 

attaining the goal of reduction. Overall, despite that the impressive growth of 

renewables, the transition to low-carbon European energy system will require more 

efforts not only on expanding renewable capacity, but also on retiring or converting 

more of their existing fossil fuel power plants. 

 

Fig. 1-3 Share of renewable energy in EU and France, base year 1990 [9] 

 

 

Fig. 1-4 GHG emissions in EU and France, base year 1990 [9] 

 

1.2.2 Renewables in power systems: challenges  

The electricity sector is experiencing its most drastic transformation since its creation, 

more than a century ago. Electricity is increasingly relying more on lighter industrial 

sectors, services and digital technologies. Its share in global final consumption is 

approaching 20% and is set to rise further. Policy support and technology cost 

reductions are leading to a rapid growth in variable renewable sources for electricity 

generation. Emissions reduction efforts are thus made by power sectors. Whereas, the 

entire system relating energy and electricity is required to operate differently from the 

past in order to ensure reliable supply. 
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Affordability, reliability and sustainability are closely interlinked in power systems. 

Each of them, and the trade-offs between them, require a comprehensive approach to 

energy policy. For example, wind and solar photovoltaics (PV) bring a major source of 

affordable, low-emissions electricity, but create additional requirements for the reliable 

operation of power systems. Furthermore, managing potential shortfalls in supply is a 

must for suppliers of interconnected global market [10]. The challenges of integrations 

of RES in power systems are summarized as follows. 

 

Firstly, the installations of some RESs are limited by geographic and 

meteorological factors. For instance, the PV capacity is largely dependent on hours of 

daylight and illumination intensity of the region. Hydropower and biomass require large 

spaces for the natural resources’ storage. Hence RESs should be implemented with the 

consideration of nature limits.  

 

Secondly, RESs, e.g. solar and wind, are highly intermittent and partially 

unpredictable, inducing reliability issues on the electrical power production. The 

amount of power that solar and wind can produce depends on the availability of the sun 

and wind. As the sun radiation and wind speed are never constant, therefore the output 

power of a solar energy system or a wind power varies during the day. Because they 

are highly influenced by weather conditions, RESs bring some unpredictable generation 

uncertainties and risks to an on-going unbalancing between power generation and 

power consumption in electrical grids to enable an instantaneous power compensation. 

Hence, high penetration of RESs can result in risk of making the entire power system 

less reliable. The stochastic behavior of RESs leads to an increasing demand for 

flexibility in electrical grids. More flexible technologies of generation, consumption or 

energy storage should be developed to maintain the electricity stability. 

 

Thirdly, power quality problems occur with a high penetration level of RESs. 

Power quality of a power system depends on voltage variations (over-voltage and 

under-voltage), frequency variations and harmonics [11]. Voltage fluctuations are 

especially challenging when RESs are participating. For example, when the PV power 

is injected into the electric system, or a large wind turbine is stopped, the voltage 

fluctuation may beyond the acceptable range. Hence the RESs-based distributed 

generation (DG) plant should be carefully designed to maintain the quality of the 

voltage in distribution and transmission networks [12]. For example, advanced PV 

inverters are needed for long-term dynamic stability and voltage regulation. 

 

1.2.3 Opportunities for a better integration of renewable energy sources 

For a better integration of distributed RESs, opportunities exist for at least three 

stakeholders: the energy source, the electrical network, and the consumer [13]. 
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Energy source opportunities 

The costs of solar PV, wind and battery storage showed its tendency to decline 

continuously. According to IEA, costs of new solar PV have decreased by 70%, wind 

by 25% and battery costs by 40% since 2010 [10]. In 2016, growth in solar PV capacity 

was larger than for any other form of generation. The fast deployment of solar 

photovoltaics (PV), led by China and India, is expected to help solar become the largest 

source of low-carbon capacity by 2040. At that time, the share of all renewables in total 

power generation is expected to reach 40%. In the European Union, renewables account 

for 80% of additional generation capacity. Wind power will become the leading source 

of electricity soon after 2030, due to the strong growth of both onshore and offshore 

projects. 

 

The rise of uncontrolled power generation from solar PV and wind power requires more 

additional power balancing capacities for compensation and so gives great importance 

to the flexible operation of power systems in order to guarantee the electrical grid 

security. Today, conventional power plants are still the main sources of system 

flexibility and ancillary services (ASs). However, new flexible technologies are 

developed, such as centralized storage systems, hybridized storage with 

intermittent renewable energy generators, demand-side response with 

controllable loads and new interconnections for bidirectional power exchanges. 

These technologies need to be further developed and well-integrated in order to provide 

more flexibility and controllability of the power balancing in a more economic and 

environmental-friendly way. 

 

Electrical network opportunities 

The European Union makes efforts to achieve an “Energy Union” through the 

emergences of new local electrical network architectures, e.g. smart grids and 

microgrids, which improve energy efficiency and security. With the distributed 

connection of many low power RESs, more and more energy systems and energy 

communities are developed with a decentralized structure. Those decentralized grids 

are operating to create a more reliable, more sustainable and more resilient electrical 

energy infrastructure. Smart cities, smart grids and microgrids are always favored 

because of their advantages regarding generation, transmission, distribution, operation 

and management technologies (e.g. communication networks). These smart networks 

bring flexibilities for transmission and distribution thanks to their decentralized 

structures. Moreover, with the regulation of distributed system operators, smart 

networks offer opportunities for a better cooperation with varying DGs. 

 

To manage their electrical networks and satisfy technical constraints, distribution 

system operators consider more and more advanced storage devices and control 

strategies in order to control the RMS value of AC voltages, limit currents under rated 
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values of lines and cables or provide ancillary services (ASs) [14]. Long-time or short-

time fluctuations can be handled with the help of energy storage systems, so that 

dynamic power productions from RESs are more easily integrated into the networks. 

Thanks to the lower costs of implementations, battery energy systems have been 

assessed to manage dynamic fluctuations of powers [15].  

 

Consumer level opportunities 

With increased RESs participation, the definition of ‘prosumers’ has emerged, 

referring to ‘energy user who generates renewable energy in its domestic environment, 

then either stores the surplus energy for future use or sells to the interested energy 

buyers’ [16]. It is crucial to coordinate prosumers to perform a sustainable and reliable 

sharing procedure of the local produced electricity to develop smart grids, smart energy 

systems and smart energy communities. For example, developed technologies of 

electric vehicles (EVs) and energy storage systems bring energy flexibility between 

consumers and producers with their conversion ability. Moreover, demand-side 

response enables the use of electricity more intelligently according to adequately with 

production, distribution and transmission constraints. As examples, rather than simply 

generating more electricity to meet short periods of huge demand, hotels might turn 

down their air conditioners for a while, or large factories might delay an energy-

intensive process to another time, in order to reduce peak demands on the energy grid.  

 

Under this context, these opportunities with regard to energy sources, electrical network 

and consumers, should be definitely considered when envisaging a better integration of 

distributed RESs in an electrical network. An advanced smart grid/microgrid structure 

should be developed with more intelligent energy management system (EMS) 

technologies for flexible power for energy transfers as energy storage system (ESS). In 

addition, up-to-date operation and management technologies, e.g. operational planning 

methods under RESs uncertainties, or energy storage control strategies for ancillary 

services provision, should be also properly implemented.  

1.3 Energy Management in Local Energy Communities 

1.3.1 Emergence of energy communities and evolutions 

Historically, to reduce investment costs, electric power systems have been built and 

rely on large central power plants, sending electricity through long distance 

transmission lines to residential or industrial destinations where electricity is actually 

needed. The meshed architecture of transmission networks has also demonstrated their 

interest for rerouting power flows in case of faults. The emergence of distributed 

generation (DG) shows its advantages and prospects in energy communities due to 

environmental-friendly characteristics and better power system efficiency since the 

electricity is locally produced and consumed, avoiding losses from transport and 

distribution of electricity. DG offers opportunities to relief existing pressures on assets 
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and operations for transmission and distribution systems by offering local energy 

provision possibilities [17]. The integration of DERs in energy communities is based 

on renewable energy sources (RES) and micro-sources, e.g. photovoltaic (PV) system, 

wind turbine, internal combustion engines, fuel cells, gas turbines, microturbine using 

combined heat power (CHP) system, electric vehicles, and controllable energy storage 

devices, etc [18]. 

 

Under these circumstances, the concept of ‘prosumer-community’ is defined in [19] as 

an approach to manage and interconnect prosumers in the form of goal-oriented virtual 

communities. Hence organizing and managing prosumers to develop a sustainable and 

reliable energy-sharing process has become crucial to smart grids, energy systems and 

energy communities.  

 

Recently, the definition of clean energy communities has been proposed in [19]: 

‘social and organizational structures formed to achieve specific goals of its members 

primarily in the cleaner energy production, consumption, supply, and distribution, 

although this may also extend to water, waste, transportation, and other local 

resources’. Meanwhile three types of clean energy communities’ forms are classified 

based on how these communities interact with the existing centralized energy systems: 

centralized, distributed, and decentralized clean energy communities. Various forms of 

clean energy communities are illustrated with different business organizations, 

including: 

• Community-scale energy projects [4], [20], 

• Virtual power plants [21], 

• Peer-to-peer (P2P) trading [22], 

• Community microgrids [23], 

• Integrated community energy systems (ICES) [24]. 

 

Energy communities bring social, environmental, and economic opportunities and 

challenges in local energy production and use. [25] reported recent developments in 

the Netherlands, Germany and the UK where local energy initiatives are forming new 

regional clusters that are able to bring renewable energy into the mainstream. Under the 

economic, technological, political and physical constraints, energy communities are 

able to promote local sustainable energy production. Meanwhile, with challenges of 

new type of energy providers, energy communities provide social innovations with 

local, regional, and national networks in a decentralized energy system. There are many 

other existing local energy communities cases in terms of prosumers participation 

benefits [26]–[28].  

 

Despite various difficulties and challenges, a range of successful experiences and 

examples of community-based energy initiatives and community projects have been 

developed originally in some rural area or isolated communities with limited resources. 
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For instance, [29] undertook a comparative analysis from case studies in Central 

America across Panama, Nicaragua and Costa Rica, that offered useful insights on the 

challenges, capability requirements, and future perspectives for further deployment and 

governance of community renewable energy initiatives in the developing countries. [30] 

presented an evolvement of the current national energy policy in Thailand. It provides 

a new perspective on how developing countries could develop their energy capabilities 

in environmentally and socially sustainable ways. 

 

1.3.2 A decentralized energy community case: Local Community Microgrids 

The idea of “microgrid” has emerged with the occurrence of various DERs and the 

increasing demand for their interconnection in a decentralized community. Microgrids 

are proposed to find decentralized solutions that could:  

1) manage the integration of a large amount of DERs, including a cluster of 

interconnected distributed generators: micro-turbines, wind turbines, fuel cells, and 

PVs integrated with storage devices, such as batteries, flywheels and power capacitors 

on low voltage distribution systems [31];  

2) maximize reliability and resistance under inevitable power grid failures, which are 

caused by natural damages, cyber failures, and cascading power failures, etc.  

 

A microgrid aims to construct a grid architecture that could manage the electricity 

balancing locally in sub-sections (small power systems) of the main grid. DERs in the 

same sub-section can be associated with each other and are jointly managed as a 

controllable load or generator by the utility grid. The sub-section could also be 

automatically isolated from the utility grid and provides local critical energy services 

even when the utility grid largely fails [32]. The commonly used basic microgrid 

architecture is known as the Consortium for Electric Reliability Technology Solutions 

(CERTS) architecture [33]. 

 

Earlier research studies in microgrids are focused on hardware components, self-

sufficiency or inter-connectability to the main power grid [34][35]. Recently studies 

draw more attention to the operating and control actions of a ‘smart microgrid’. 

The smart microgrid is defined in [36] as: ‘a power distribution network comprising 

multiple electric loads and distributed energy resources, that can operate 

independently or in conjunction with the main grid via one or more common coupling 

points, and can operate all DERs, including load and energy storage components in a 

controlled and coordinated fashion to optimize system performance and operational 

savings while interacting with the main grid in real time’. 

 

Furthermore, as one of the key forms of decentralized clean energy communities, 

community microgrids are motivated by various goals and opportunities in energy 

supply, distribution and consumption. DERs and storage devices have the ability to be 
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intentionally disconnected from the main grid and be operated in isolated mode of the 

microgrid. They are also able to independently balance supply and electric loads in real 

time within the microgrid with little or no energy disruption. [23] defines a community 

microgrid as: ‘A self-contained and self-sufficient local electricity supply system, either 

standalone or connected to a centralized grid of regional or national scale, comprising 

residential and other electric loads, and can be supported by high penetrations of local 

distributed renewables, other distributed energy and demand-side resources.’ In the 

current study, we focus on the energy management and generation scheduling in 

an urban microgrid, i.e. a community microgrid which is composed of residential 

loads, electrical energy storage systems and a high penetration of local distributed 

renewables. 

 

The increased interest on community microgrids is triggered by the potential benefits 

regarding the provision of reliable, secure, efficient, flexible, environmentally friendly, 

and sustainable local electricity from RES. Advantages of the community microgrid are 

summarized as follows: 

a) Local conventional micro-sources ensure the stable operation of sensitive loads in 

any operating condition, thus reliability and security of power distribution system 

are improved. 

b) Environmental problem and energy sustainability problem can be decreased due to 

the increasing penetration of RES in community microgrids. Furthermore, energy 

can be fuel-costless from RES. 

c) Losses in transmission lines are reduced because of local uses of local power 

generation, then the global efficiency is increased. Furthermore, the security risk of 

transmission lines is reduced in terms of aging architecture in centralized power 

grid, or occurrence of extreme weather events. 

d) The power system efficiency increases greatly if CHP are used in the community 

microgrid. Moreover, from a system point of view, fuel costs and carbon emissions 

will be reduced [33]. The interest is to utilize the waste heat from conversion of 

primary fuel to electricity. Generally, more than half of the primary energy 

consumed in power generation is ultimately emitted to the environment. The 

potential gains from using this heat are significant. For example, in Denmark, 

during the year of 1996, CHP plants in industrial facilities met 48 percent of the 

domestic electricity demand and 38 percent of the domestic heat demand, with a 

reduction of CO2 emissions by more than 10% of the total emissions of the country. 

European countries, notably The Netherlands, have made significant progress 

towards developing smaller scale (kW-scale) CHP applications, such as greenhouse 

heating. These kW-scale CHP applications can be implemented in microgrids [37]. 

 

A community microgrid is a modern approach for designing and operating the 

decentralized electric grid with the participation of local stakeholders (e.g. various 

renewable producers). The objectives are to provide an affordable and clean local 
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energy while providing local economic benefits and unparalleled community resilience. 

With participations of solar, wind, energy storage, electrical vehicles within community 

areas, a part of the energy needs is provided by local renewables. The needs are also 

anticipated to provide backup power for the entire community during short outages and 

indefinite backup power for critical facilities like fire stations, hospitals, water 

treatment plants, etc. Fig. 1-5 illustrates an example of a community microgrid. There 

are several basic components:  

• Local conventional micro-sources, to make sure the reliability and security of 

the grid; 

• RES, such as solar PV cells, or wind-driven generators; 

• Energy storage or EVs, which enables the balancing of available power with 

the need; 

• Loads, including critical loads and controllable loads; 

• A central control system, to do monitoring, communication and management 

of the energy flows in the microgrid with the knowledge from weather forecast 

and electricity market. 

 

Fig. 1-5 A conceptual model for community microgrid with local renewables 

 

Significant progress has been made for microgrid technologies in the last decade and is 

expected to continue. The global market for microgrids continues to grow. According 

to a report from Navigant Research [38], total global microgrid capacity is expected to 

grow from 3.5 GW in 2019 to nearly 20 GW in 2028 at a compound annual growth rate 

of 21.4%. The total global market for microgrids in 2019 is estimated at $8.1 billion 

and expected to near $40 billion by 2028. From an implementation point of view, the 

Peninsula Advanced Energy Community in East Palo Alto and Redwood City provided 

an opportunity to develop innovative, replicable approaches for accelerating the 

deployment of a Community Microgrid [39]. Supported by California Energy 

Commission, another microgrid project “Berkeley Energy Assurance Transformation” 

aims to create a microgrid in downtown Berkeley to provide solar power to key city 

facilities for daily use [40]. This project examined the opportunities and challenges of 

designing a system that could allow buildings to share renewable energy during normal 
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operations, and provide clean backup power to critical facilities in the event of a power 

outage.  

 

Associated to the technical energy management, a Virtual Power Plants (VPP) is in 

charge of managing and/or aggregating participants of the community in the electricity 

market: energy market and ancillary market. Applied realizations can concern 

economic relationships between participants for local trading (peer to peer markets, …) 

or between the entire community and a global market platform (pool, bilateral 

contracts, …). VPP will not be detailed here since it is not in the scope of this PhD 

thesis. 

 

1.3.3 Integration of RESs, energy storage and hybrid active generators 

For the microgrid operation, a large-scale deployment of PV generators may cause 

power quality problems on the AC voltage and congestions. Control flexibilities are 

required to enable the operation of a local microgrid as a single controlled unit for the 

main utility grid, meeting the total customers’ needs with local reliability and security. 

Owing to the facts that different renewable energy sources have intermittent and 

stochastic characteristics, three energy management operations can be implemented to 

get the balance right: 

- Import/export with the main utility; in this case, the microgrid will participate in 

the market operation,  

- Switching on/off dispatchable local loads (heat water, …), 

- Charged/discharged local energy storage systems. 

 

Import/export with the main utility implies a participation in the market operation and 

an independency lost. Management of non-critical loads are possible but only in a 

certain range of power magnitude and duration in a day. In order to jump these 

limitations, ESS solutions are searched to increase sustainability of electricity produced 

from RES. 

 

In order to utilize renewable energy optimally without having problems related to 

variability and intermittency of energy, a properly ESS can be designed in sizing and 

control. 

 

Usually a combination of storage technologies, such as supercapacitors, batteries, 

superconducting magnetic energy storage, kinetic energy storage in flywheels, etc, are 

applied to exploit the most technological capabilities at the least cost [41]. The concept 

of hybrid active generators incorporates a combination of various energy storage 

devices and renewable energy based generators, and have the added technological value 

to supply ancillary services [42]. The power, energy, dynamic capacity of the energy 
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storage system depends upon the characteristics of energy compensation being required 

and the type and storage technologies must be selected accordingly [43]. 

 

In earlier research studies at L2EP, a PV-based hybrid active generator including lead-

acid batteries and supercapacitors in a DC-coupled structure has been built in order to 

deliver a prescribed power reference to the grid [44]. As shown in Fig. 1-6, it is 

composed of [42], [45]: 

a) Photovoltaic panels as the main power source; 

b) Batteries, used as a long-term energy storage device, aim to store energy surplus 

and to discharge it during time when the energy is insufficient; 

c) Ultra-capacitors, used as short-term dynamic power storage devices, aim to do the 

fast power regulation and smooth transient PV power fluctuations; 

d) Power electronic converters, used for power generation control by receiving the 

control signals from the central energy management system, aim to convert 

electrical quantities. 

 

Fig. 1-6 Scheme of a PV based active generator in a microgrid [45] 

 

With a proper control system and management system of the inner energies, the whole 

energy flow in the PV based active generator is controlled in order to satisfy power 

references send by the grid operator (Pagref, Qagref). In normal operation of the microgrid, 

exceed local renewable energy generation will charge energy storage devices for later 

uses. Details concerning the local control system of the above PV active generator can 

be found in a past PhD of the L2EP laboratory [45]. 

 

1.3.4 Energy management system 

With the integration of large amounts of DER in the microgrid, efforts are made to 

establish new facilities and structures for grid control to reduce congestion, to minimize 
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the production costs and to maintain the frequency and voltage. As intermittent RESs 

are used, an Energy Management System (EMS) with faster responses is required, 

compared with in a conventional centralized power system. EMS is defined by IEC 

(International Electrotechnical Commission) as “a computer system comprising a 

software platform providing basic support services and a set of applications providing 

the functionality needed for the effective operation of electrical generation and 

transmission facilities so as to assure adequate security of energy supply at minimum 

cost” [46]. As for in a microgrid community, an EMS usually consists of software 

modules to perform decision making strategies and send optimal decisions to each 

generation units, storage, and load units [47].  

 

A conceptual model for an energy management system in a community microgrid is 

illustrated in Fig. 1-7 [48]. On the one hand, EMS receives forecasted and real-time 

information from loads, generations, electricity market. On the other hand, EMS makes 

appropriate decisions and imposes control actions on power flows, consumption levels 

in the grid, controllable loads and dispatchable DERs and etc.  

 

As shown in Fig. 1-7, a microgrid EMS performs variety of functions. For example, 

data monitoring and analyzing functions are involved in energy market prices, 

meteorological factors, etc. Forecasting functions concern power generation of DERs 

and load consumption. The EMS optimization functions involve operational scheduling, 

unit commitment, economic dispatch, etc. These functions help EMS in optimizing MG 

operation, while satisfying the technical constraints. Real-time control functions relate 

to voltage and frequency control. 

 

Fig. 1-7 A conceptual model for an EMS in a microgrid community. 
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Decisions have to be taken at different time periods, thus a microgrid EMS functions 

are usually organized into three timing scales (Fig. 1-8): long-term, medium-term, and 

short-term supervision [45]. as is demonstrated in Table 1-1. 

 

Table 1-1 EMS functions regarding different time scales 

Time scales EMS functions 

Long-term  The hourly (or half-hourly) RES production forecast; 

 The management of non-sensitive loads that can be 

disconnected/shed from electrical grid; 

 The maintenance intervals; 

 The provision of an appropriate level of OR power capacity by 

considering the energy production and the load demand forecast. 

Medium-term  The update of RES production and load demand forecasting; 

 The available storage energy estimation; 

 The correction of power set-points of each controllable power 

source each half hour; 

 The secondary regulation supply for the system AS. 

Short-term  The instantaneous “Balancing and power dispatching” among DG 

units and storage devices is based on the storage capacity and on 

the specific requirements/limitations of each DG unit; 

 The voltage regulation and primary frequency control. 

 

The scheme of a more detailed timing classification of EMS control functions is shown 

in Fig. 1-8. The short-term management functions correspond to the primary control 

and are executed by the local controllers (LCs) located within the generators. The 

medium-term management corresponds to a secondary control and adjusts decisions 

according the evolution of the states of the system, comparing with the expected ones 

(one day ahead). The Unit Commitment and the generation scheduling must be decided 

one day ahead with available forecasts (load demand and RES production) with the 

objective to minimize operating costs. As an anticipation is required, a power margin 

has to be decided to be sure to be able to cover risks. It is carried out by a central 

controller located in a dispatch center for large networks. In a microgrid, this EMS must 

be able to operate in islanding mode by a Microgrid Central Energy Management 

System (MCEMS). 
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Fig. 1-8 Timing classification of control functions in the microgrid [49]. 

 

1.3.5 Experiences in central energy management at L2EP 

This last decade, research works have been done at L2EP to better manage locally 

resources in order to decrease costs and pollutant emissions. 

 

In order to implement these functions, DG must be coordinated either in a grid 

connected mode or in an islanded mode [50].  

 

The long-term and medium-term energy managements of the entire microgrid system 

require a communication network to gather and exchange information and control 

signals [51] with the centralized energy management system. The short-term power 

management is performed quickly by resources and so is achieved locally by sensing 

electrical quantities of a droop control technique [52]. The power management by 

sensing electrical quantities is detailed in [45]. 

 

A brief review of the existing EMS architectures for microgrids is presented in [53]. In 

[45][54] a deterministic EMS for an urban microgrid was proposed. The microgrid is 

composed of advanced PV active generators with embedded storage systems and a gas 

microturbine. With the participation of the presented EMS, an aggregated architecture 

of an urban power system is considered as a mean to facilitate the integration of 

distributed prosumers both in the electrical system and in the market. A scheme of the 

proposed MCEMS for the urban microgrid is shown in Fig. 1-9. 
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Fig. 1-9 Scheme of the Microgrid Central Energy Management System [45]. 

 

In this architecture, the Energy Management System (EMS) is the key mediator 

between residential participants (prosumers and consumers) on one side and the 

markets in addition to the other power system participants on the other side. The EMS 

collects from the distributed system operator (DSO) the requests and signals for 

prosumers. They gather the flexibilities and the contributions provided by prosumers 

and consumers to form grid services, then these services are offered to the different 

power system participants through various markets. 

 

In this electrical system, two types of micro-sources are used: gas microturbines and 

PV based active generators. The MG central controller (MGCC) measures the MG state 

variables and dispatches orders to micro-sources through the communication bus. Local 

controllers (of the microturbines and the PV based active generators) receive power set 

points from the MGCC, as well as send information, e.g. the sensed power production. 

The residential MG can operate in two different modes: the islanded mode and the grid-

connected mode. In the former mode, the local power generators (PV panels and 

microturbines) satisfy all the power demand. In the latter mode, the residential network 

can both provide and consume power from the utility grid. 
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The design of a local EMS, as well as a centralized control strategy for a MG is 

presented and detailed in [45]. As shown in Fig. 1-10, a single prosumer (with a local 

EMS), MGTs and loads are considered in the presented MG. 

 

Fig. 1-10 Scheme of a MG integration of prosumer and micro gas turbines [45]. 

 

In this MG, PV based active generators are used in priority, MGTs are used as backup 

generators. An Energy-box (E-box) is used to follow the energy consumption and gives 

a remote control of facilities to the grid operators. E-boxes include : 

a) A load manager, which enables customers to automatically pre-program 

appliances or to adapt their energy consumption habits according to the electricity 

price. Moreover, it can disconnect controllable loads in order to reduce the stress 

on the utility grid; 

b) An advanced meter, which records consumption; 

c) A local energy management, which supervises PV energy consumption according 

to the grid operator requirement and available PV generation. When there is a 

pessimistic PV generation, batteries can provide the power deficit if required. On 

the other hand, exceed PV energy can be stored in batteries for future use when 

needed. 

 

In previous research works at L2EP, studies concerning advanced PV generators, the 

urban microgrid structure and microgrid managing framework have been carried out. 

As illustrated in Fig. 1-11, Li [50], Lu [45], Kanchev [55] and Yan [49] have carried 

out continued studies concerning advanced PV generators, the urban microgrid 

structure, microgrid managing framework and generation scheduling with deterministic 

optimization methods. 
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Fig. 1-11 Summary of previous research works at L2EP regarding microgrid 

 

The control system and the power management of PV-based hybrid active generators 

is detailed in [44]. [45] discussed the application of PV active generators in the energy 

management of an urban microgrid. [43] and [54] presented a deterministic generation 

scheduling including advanced PV generators with embedded storage units and micro 

gas turbines (MGTs). In [49], to deal with uncertainties from PV generation and load 

demand, a risk-constrained probabilistic method is employed for reserve quantification. 

A deterministic generation planning is undertaken for load/reserve dispatching 

regarding PV AGs and MGTs. 

 

In this PhD, we are going to improve the generation scheduling by considering the 

introduction of RES and load demand uncertainties in the optimization process. In the 

next section, the concept and state of the art of generation scheduling is presented. 

 

1.4  Generation Scheduling 

1.4.1 State of art: Unit Commitment and Generation Scheduling 

Unit commitment and generation scheduling economically schedule generating units 

over a planning horizon in order to satisfy the load demand and other system operating 

constraints [56].  

 

In power systems, the primary objective is to ensure that users demand is met at the 

least cost without having competition in generation and distribution businesses. For 

example, we consider a given load profile which varies from hour to hour, day to day, 

week to week, and a given set of generation units available as shown in Fig. 1-12. 
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Fig. 1-12 Simplified scheme of a power system with generators and load. 

 

It is not economical to run all the units all the time, but when should each unit be started 

and stopped? Selecting the generating unit states to be ON/OFF during any interval of 

the day is known as a unit commitment (UC) problem [57]. In Fig. 1-12, a unit 

commitment problem corresponds to the decision of each switch (square in red) to be 

on or off. Failure to commit enough energy sources to meet the expected load demand 

can lead to an unbalance and expensive actions to cover it, e.g. starting thermal turbines 

instantaneously and abruptly. Taking thermal plants as an example, since there exists 

cold/hot start-up cost, and minimum up/down time, it is necessary to decide the unit 

commitment in advance. 

  

Meanwhile, if units are switched on, then how much power should each unit generate 

at each time step in order to meet the load demand, as well as to attain the expected 

minimum operational costs? This problem is regarded as a problem of generation 

scheduling [58]. Sometimes a solution search of unit commitment is included in the 

generation scheduling problem, and is generally called unit commitment. On the 

example in Fig. 1-12, a generation scheduling problem corresponds to the decision of 

how much power each unit G should be generated at each time step with a minimum 

operational cost. Obviously, the solution is not unique (it is assumed that the generation 

is well sized to supply the peak load). 

 

In order to find the best solution, the studied power system must be modeled with 

equations that will be solved by the computer. The constraints, as well as variables to 

be changed (decision variables) and the objective function must be well formulated. 

Then, electrical engineers classically apply numerical optimization to establish several 

possible choices and identify optimal choices before implementation.  

 

An optimization algorithm consists in adjusting decision variables 𝑋 to minimize the 

objective function (𝑓(𝑥)) while satisfying the constraints (𝑔(𝑥)). For unit commitment 

and generation scheduling problems, the objective function is expressed as a measure 

of the global operational costs that we want to minimize. The decision variables are the 

set points of all controllable generators. The constraints define the variation domain of 

variables and requirements that must be satisfied. The scheme of the UC/generation 

scheduling with optimization algorithm for an energy system is shown in Fig. 1-13. 

G G G 

Load Profile  ? ? ? 
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Fig. 1-13 General scheme of an UC/generation scheduling with optimization algorithm 

 

Current identified difficulties are now exposed as follows: 

 

One versus multi objectives 

The expression of the model and the formulation of the optimization problem are 

essential since optimization algorithms are designed to solve a specific type, and are 

usually not efficient for other types of problems. In many UC and generation scheduling 

problems, a compromise must be sought between several different conflicting 

objectives. As an example, the operational costs decrease under a certain scheduling 

solution decision, while the emission costs are far from the optimum, leading to a non-

friendly solution from environment point of view. For this type of multi-objective 

problems, the problem is usually solved by applying a weighting coefficient on the 

different single objective, or replacing some of the objectives by constraints. 

 

Constraints formulation 

Constraints can be bounds, equations of equalities or inequalities, or non-linear 

relationships among the variables. Constraints are directly complicating the solving 

algorithm, requiring computing resources and delaying the solving time. Therefore, 

sometimes constraints are reduced by adding penalty terms in the objective function.  

 

Continuous and discrete variables 

A part of decision variables is discrete, e.g. the on / off switch of generators. In this 

case, the optimization algorithm contains continuous and discrete variables. While 

discrete solving algorithms exist, they usually generate a sequence of continuous sub-

problems. Hence, a continuous problem formulation is often implemented.  

 

Linear and non-linear formulation 

If the objective function, or constraints, or both of them are non-linear functions, the 

problem solving can be complicated, because convergence may not be attained during 

the solution search. Among all the non-linear functions, quadratic optimization is 

widely developed, which is usually in the form of a quadratic objective function (with 

linear constraints), or a linearized function through linearization methods, e.g. piece-

wise linear approximation, or linear approximation.  
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Generic formulation of an UC 

From the day-ahead forecasting of the load demand (and renewable energy generation 

if RESs are incorporated), an optimization algorithm classically finds the optimal 

operation set points of all controllable generators that minimize the global operational 

costs and satisfying the electrical constraints. These constraints include power balance, 

reserve requirement, upper and lower unit generation limits, minimum up and down 

times limits, unit ramping rate limits over a set of time periods [58]. There are three 

main objectives to achieve:  

• Satisfying load, which is a basic and compulsive requirement, 

• Ensuring the security level, which is usually guaranteed by supplying a power 

reserve, 

• Minimizing operating cost. 

Various kinds of optimization techniques can be applied to solve the optimal UC and 

generation scheduling problems. A good solving algorithm finds a solution closing to 

the optimum, with a reasonable computing time, or has the ability to satisfy constraints. 

These techniques are now shortly described. 

 

1.4.2 Deterministic optimization 

Traditionally, generation scheduling is deterministic. In the determinism, two aspects 

are present regarding the prescribed power reserve and the optimization process.  

In practice, variations between forecasting (of the load demand, the PV production) and 

the real value appear. To ensure the security level, the most critical operational 

scenarios were considered: 

- A maximum PV production with a minimum load demand, 

- A minimum PV production with a maximum load demand. 

 

Usually, the deterministic determination of the power reserve is based on the assumed 

representations of the worst cases rather than exploring all values taken by stochastic 

variables. Hence the power reserve is often quantified for a rare situation and oversized 

in the constraints. 

 

A deterministic optimization uses variables without taking into account the continuous 

and random variations which may take place. The solving process considers that all the 

physical constraints and inputs are fixed and corresponds to a behavior of the system in 

permanent mode according to forecasting. In this work, we call this deterministic 

optimization process: “Classic deterministic optimization”. 

 

Classic deterministic unit commitment (DUC) techniques include a priority list / 

heuristic approach, Lagrangian relaxation (LR), Branch and Bound, Dynamic 
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Programming (DP), Integer Programming (IP), Mixed-Integer Programming (MIP), 

Linear Programming (LP), etc [59]. 

 

Priority list 

In this approach, firstly, priorities of generating units (merit order) are determined 

according to their operational costs. Then units are committed in an order of priority 

until the power balance and security constraints are satisfied [60]. However, solutions 

obtained by these methods were usually far from the optimal, since the start-up cost is 

not necessarily included in the optimization process. Furthermore, this method is 

limited by curse of dimensionality, especially for large-scale problems. 

 

Branch-and-bound method 

In this method, the solution space is organized as a treelike structure. The solution 

search can be represented as a sequence of options in branches. The first part, branching, 

requires several choices to be made so that the choices branch out into the solution 

space. Then bounding refers to setting a bound on the solution, and cutting off branches 

in the solution tree whose solution quality is estimated to be poor [61]. Branch-and-

bound algorithms for DUC are proposed in [62]–[64]. However, they are still regarded 

as time consuming processes because of the successive eliminations of inappropriate 

solutions. 

 

Integer and Mixed-Integer Programming (IP / MIP) 

Due to the characteristics of UC, integer and mixed-integer programming (IP / MIP) 

are often applied in a DUC problem. Because decisions of unit status on / off are 

regarded as values of binary variables during an optimal solution search in IP / MIP. 

MIP are able to solve UC problems with linear/quadratic objective functions, which are 

called Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratic 

Programming (MIQP). The IP / MIP approach solves the unit commitment problem 

through the reduction of the solution search space by rejecting the infeasible subsets 

[65]. Meanwhile, a linear programming UC problem can be solved: 1) by a revised 

simplex technique; 2) by decomposing the whole problem into subproblems with 

Dantzig–Wolfe decomposition principle, then each subproblem is solved using linear 

programming [66]. The applications of IP / MIP / LP for DUC can be found in [67]–

[70]. Still, computational efficiency becomes an issue with the growing size of the 

optimization model. 

 

Lagrangian relaxation (LR) 

The LR technique is based on a dual optimization approach by forming a Lagrange 

function. Through the dual optimization, the LR procedure solves the unit commitment 

problem by “relaxing” (temporarily ignoring) the coupling constraints and solving the 

problem as if they did not exist. Then a dual procedure attempts to reach the constrained 

optimum by maximizing the Lagrangian with respect to the Lagrange multipliers, while 
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minimizing with respect to the other variables in the problem [59]. Applications of LR 

and improved LR algorithm for DUC can be found in [71]–[74]. 

 

Dynamic programming (DP) 

Through DP, DUC is decomposed into multi-stages sub problems. Each stage is a time 

step of the tomorrow planning. Inside each stage (each sub problem), many 

combinations of each on/off MGTs can be considered to provide the requested total 

power. The decision of state is made for each stage by considering the transition cost 

between two adjacent stages. The pedagogic explanation of DP algorithm for DUC is 

detailed in [59]. DP is used in [75]–[77] to solve UC problems in microgrids. The 

limitation of DP is the curse of dimensionality due to the enumeration process. However, 

the advantage of DP is its capability of solving problems with nonlinear functions. For 

instance, the objective function is not only limited to convex linear/quadratic functions, 

but also non-convex quadratic functions. The DP algorithm explanation and application 

with non-convex quadratic functions will discuss in detail later in chapter 3. 

 

Heuristic / Meta-heuristic algorithms 

Many heuristic, or meta-heuristic algorithms are also applied in UC problems, in order 

to find an optimal solution among a large set of feasible solutions with less 

computational efforts. If more than one heuristic method is combined, then the 

algorithm becomes meta-heuristic. Metaheuristic algorithms include Tabu search, 

simulated annealing, genetic algorithm, particles swarm optimization, expert systems, 

fuzzy logic, artificial neural networks, evolutionary algorithms, etc [78]–[80]. A 

bibliographical survey for meta-heuristic techniques is detailed in [66]. 

 

1.4.3 Forecasting of RES and Uncertainties Handling 

In electrical systems, the primary objective is to maintain the security and reliability, 

ensuring that user demands are met at the least cost in generation and distribution 

business. This is more critical for stand-alone power systems and local energy 

communities with distributed energy because a connection to a transmission network 

does not exist or is limited in capacity.  

 

Many sources of uncertainties exist in electrical systems, such as faults in electrical 

networks, unexpected load demand variations, and intermittent renewable energy 

generation. One day ahead UC is decided with the help of forecasting of RES generation 

and load demand. Renewable energy, like solar or wind energy, leads an unpredictable 

power generation or a poor prediction of renewable generation as the time horizon is 

increasing [81]. Stochastic characteristics are coming from the unexpected renewable 

source variations (wind speed, irradiation, temperature, …) and from the non-

controllability of the primary resource to master the output generated power. Electricity 

cannot be massively and economically stored using today’s technologies. As a result, it 
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has to be generated and provided for instantaneous consumption. Electricity being a 

flow, the balance between production and consumption in a power system must be 

assured instantaneously. The deviations between the committed (and scheduled) energy 

of a producer on the one hand and what it actually produces on the other hand must be 

compensated by costly regulatory mechanisms, both economically and environmentally. 

So, improving the RES predictability is fully a benefit for the production of renewable 

electricity. 

 

Forecasting errors bring strong uncertainties in the operation of power systems, 

especially in stand-alone microgrids that are extremely dependent upon local renewable 

energy supplies [37], [82]. Forecasting gives the best possible estimate of a 

phenomenon that has not yet happened. However, the prediction with an infinitely 

accuracy is not possible. Hence the modelling of prediction mistakes/errors is regarded 

as an additionally essential information. With the knowledge of the forecast error 

distributions, system operator can adjust decisions according to a risk policy. The 

uncertainty modelling can be also an associated probability with multiple forecast 

scenarios. 

 

1.4.4 Integration of probabilistic approaches in DUC 

In order to protect the system against power unbalancing and unforeseen events like 

generation/transmission line outages or sudden load changes, an operating reserve (OR) 

is determined beforehand. Hence, there is a trend of defining a power reserve according 

to the needs (here, forecasting errors) and to embed this additional reserve power in the 

optimization process. In order to ensure the security of the power system, a risk level is 

usually prescribed before the operation decision of the electrical system. Then, on the 

basis of a probabilistic analysis of forecasting errors, additional reserve power is 

determined and implemented in the DUC as an additional and potential power that 

could be used during the operation. For example, an optimal UC problem is proposed 

in [83] by integer programming approach with a probabilistic reserve determination. A 

state of the art in UC will be presented in chapter 3 (part 3.3.4). 

 

The schemes of DUC with classic (deterministic reserve) and risk-based deterministic 

optimization are illustrated in Fig. 1-14. The difference between those two approaches 

is whether a probabilistic method is performed to calculate the reserve provision. All 

presented deterministic optimization techniques in the previous section can be used, as 

the power balancing constraint can be changed to consider an additional power reserve. 
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Fig. 1-14 DUC schemes of deterministic optimization without and with probabilistic 

reserve quantification 

 

In [84], a probabilistic reserve assessment method is incorporated in a LR-based UC 

technique. Generation scheduling is updated with the reserve assessment to meet a 

given risk index. The optimal value of the risk index is selected with a tradeoff between 

the total UC scheduled energy cost and the expected cost of energy not served. In [85], 

the operating reserve requirement schedule was attained under wind uncertainties by 

solving probabilistic UC problem using LR method. In [49] a risk-constrained reserve 

quantification method was proposed with a probabilistic reliability assessment in a 

DUC problem, in order to deal with uncertainties from solar energy generation and load 

demand in an urban microgrid. 

 

1.4.5 Stochastic optimization 

DUC problems address the scheduling (e.g. day-ahead) of generators [86][87] by 

assuming that all predictions regarding consumption and production from intermittent 

renewable energy are fixed. With an increase of uncertainties in electrical systems, 

deterministic optimization methods become inadequate. In future generation 

scheduling, uncertainties coming from simultaneously the load demand and PV 

production forecast must be simultaneously taken into account. 

 

A SUC takes into account all possible values of inputs/parameters and, so, include 

uncertainties in the solution search. The uncertainty behaviour of variables and their 

interactions that may potentially change the state of the system are represented. This 

modelling enables the determination of possible system’s states and consequences 

when constraints are not satisfied. The uncertainty may have different sources as: 

- Input variables depending on the load demand and electrical production from non-

dispatchable generators (intermittent RES), 

- External variables that influence input variables as meteorological conditions 

- Loss of a hardware in the electrical network due to a fault (line, generator, …). 

In this research work, we focus on the uncertainty coming from the forecasting errors 

of the net demand (the production forecast of RESs is subtracted from the load demand 

forecast). Conventional and controllable generation units are then scheduled to produce 
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the resulting net demand. Handling the uncertainty consists in the quantification of the 

resulting global uncertainty on obtained optimized results (scheduling of conventional 

generators) due to the net demand uncertainty.  

 

Certain existing stochastic modeling and solution approaches have been proposed to 

handle UC problems under various types of uncertainties [81]. No matter what 

stochastic approach is chosen for solving UC, the scheme of the SUC with stochastic 

optimization is illustrated in Fig. 1-15. 

 

Fig. 1-15 Scheme of the SUC with stochastic optimization 

 

Stochastic Unit Commitment 

The idea of SUC is to use a representation of the uncertainty by various possible 

scenario in the UC formulation [88]–[90]. Each considered scenario deviates from the 

forecasted one with a probability. Compared to simply using a fixed risk level with 

corresponding power reserve constraints, stochastic models have certain advantages, 

such as cost saving and reliability improvement [91][92]. 

 

Robust optimization 

In contrast to scenario-based stochastic programming models, robust unit commitment 

(RUC) methods try to incorporate uncertainty without the information of underlying 

probability distributions, and instead with only the range of the uncertainty. In place of 

minimizing the total expected cost as in SUC, RUC minimizes the worst-case cost 

regarding all possible outcomes of the uncertain parameters. Certainly, this type of 

models produces very conservative solutions, but computationally it can avoid 

incorporating a large number of scenarios. In the power system literature, RUC models 

have been used to address uncertainties mainly from nodal net electricity injection [93], 

renewable power availability [94], power systems component contingencies [95], and 

demand-side management [96]. 

 

Chance-constrained optimization (CCO) 

The idea of chance-constrained unit commitment is that certain constraints are only 

satisfied under a preset probability. To avoid the overestimated costs caused by extreme 

worst-case that are unlikely to happen, a trade-off is made between cost and robustness 

by means of setting a probability of the selected solution to be feasible. The CCO 

approaches can be classified into two types:  

1) Individual CCO, the safety level is set for each constraint or each time step 

individually;  
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2) Joint CCO, safety level is set for the system as a whole [97].  

 

Individual CCO was usually applied in UC with different sources of randomness: 

demand fluctuation, thermal units outage, uncertainty of renewables [98]–[100]. 

Despite the computational difficulty, joint CCO is considered in UC with a joint 

probabilistic constraint for the RES uncertainty [101]. However, a drawback of CCO is 

that probabilistic constraints can be nonconvex and hard to evaluate, thus making these 

approaches potentially computationally demanding. 

 

Stochastic dynamic programming 

Similar to the setting of multistage stochastic programming, a finite-horizon, discrete-

time UC problem can be formulated in a stochastic dynamic programming framework. 

To overcome computational complexities and drawbacks of conventional DP model, 

various methods have been developed to obtain an approximate solution of a DP, giving 

rise to the broad class of algorithms referred to as approximate dynamic programming. 

Generally speaking, approximate dynamic programming methods can be classified as 

value function approximation, policy function approximation, and state-space 

approximation [102][103]. 

 

In conclusion, stochastic UC problems require methods to minimize the operating costs 

for different probable uncertainties (or constraints under uncertainties). Therefore, 

introduction of uncertainties in a UC problem adds an extra computational 

complexity in solving methods. This is why we will study and apply a stochastic 

unit commitment. 

1.5 Conclusion 

In this chapter, the large-scale development of RES has been discussed. A brief state of 

the art on the emergence of Local Energy communities is presented with a focus on 

current functions and implementation of energy management systems.  

 

Generation scheduling of generators one day ahead is a fundamental function that 

requires forecasting from RES production and load demand. Electrical system operators 

are concerned about how such a stochastic generation affects the balancing and so the 

security of the electrical network. A bibliographic review is exposed on the different 

optimization techniques and their evolutions to take into account uncertainties from 

forecasting errors. 

 

In order to protect the system against power unbalancing and unforeseen events like 

generation/transmission, operating reserve (OR) must be determined beforehand with 

consideration of RESs and load uncertainties. Traditionally, OR is provided by 

conventional generators. Because of the large penetration of RES, there is a significant 

increase in the requirement for OR. The increase of OR provision costs is always an 

issue to solve.  
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In order to better size the OR, uncertainties are generated thanks to the use of an 

Artificial Neural Network for the forecasting (PV production and load demand). 

Uncertainties are then modeled by probabilistic functions and scenarios for future 

integration into optimization techniques. 
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CHAPTER 2 UNCERTAINTY ANALYSIS FROM 

FORECASTING 

2.1 Introduction 

Optimization of a generation scheduling in a power system implies variables and/or 

parameters that are not known accurately for a variety of reasons, such as tolerance on 

equipment, measurement errors, forecasting errors, etc. A deterministic optimization 

without considering the uncertainties leads to a weak optimal solution that may be far 

away from the real optimum in case of unexpected variation and/or deviation of 

constraints. 

 

As multiple countries around the world experience significant raises in the proportion 

of electricity generated by RESs, an increasing attention is given to uncertainty analysis 

coming from RESs generation / load demand forecasting and uncertainty propagation 

in the energy management of electrical systems.  

 

Uncertainty in RES, especially, introduces additional complexity for energy balancing 

between generation and consumption. For example, for those electrical systems 

implemented with PV or wind generation, uncertainty in their forecasted production 

cannot be avoided due to their intermittent and weather-dependent characteristics. To 

deal with this kind of inherent uncertainty, advanced forecasting techniques would 

increase the accuracy. Whereas, RESs and load demand uncertainties are both inherent 

and inevitable, forecasting errors always remain and it is necessary to do uncertainty 

analysis, i.e. to analyze how these uncertainties influence the UC and energy 

management of power systems. Meanwhile, sensitivity analysis is developed to identify 

the most influential uncertain parameters, and how uncertainties are propagated in the 

electrical system. 

 

In this chapter, the main sources of uncertainties in energy systems are summarized. 

Solar and load demand forecasting uncertainties are examined regarding the factors that 

have great impacts on them. Considering these analyses, forecasting of PV generation 

and load demand are performed with a Back-Propagation Neural Network (BPNN) in 

the following section. Finally, with the aim of handling uncertainty in energy system, 

methodologies for uncertainty investigation are discussed, including uncertainty 

modeling and representation, uncertainty propagation in the optimization algorithm and 

sensitivity analysis. 
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2.2 Uncertainties in power system 

2.2.1 Sources of uncertainties 

Uncertainty is always an issue when we try to predict what might occur in the future. 

A key element for effective treatments of uncertainty is the ability to clearly distinguish 

two types of uncertainty [104]:  

1) The inherent random variability of physical variables, inputs, disturbances and 

sources in a power system, often referred to aleatory or statistical uncertainty. It 

varies randomly with time, or space, or from sample to sample. These data include 

forecasting data, experimental measurements, numerical data, etc. 

2) The epistemic / systemic uncertainty due to the lack of knowledge about the system. 

A mathematical model tries to represent a real situation with approximations due to 

the lack of knowledge or volunteer simplifications. These approximations are made 

to reduce the complexity or to facilitate equation handling.  

 

Due to incomplete observations, a non-exact model is obtained because of the 

description form of equations (static, dynamic, linear, type of non-linearities). 

Moreover, uncertain parameters are used. 

 

The difference between these two types of uncertainties is that, epistemic / systematic 

uncertainty can be reduced by accumulating knowledge and information about the 

system, while inherent random variability cannot be reduced by this way. Both types of 

uncertainties are present in PV power forecasting and load demand forecasting. 

 

Meanwhile, as described in Fig. 2-1, sources of uncertainties in power system are 

divided into two groups in terms of technical nature and economic nature [105].  

 

Fig. 2-1 Uncertainty sources in energy system 
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From a technical aspect, uncertainties are mainly from two kinds of reasons:  

1) Operational uncertainties, e.g. load consumption, RESs generation (like wind and 

PV), or battery / EV charging and discharging.  

2) Network infrastructure uncertainties, e.g. line or generator outages.  

 

From an economic point of view, uncertainties are coming from both microeconomic 

and macroeconomic factors. The former includes electricity price, investment costs 

(CAPEX), operational costs (OPEX), etc. The latter includes economic growth, 

unemployment rate, gross domestic product (GDP), and etc.  

 

In our research work, we focus on handling operational uncertainties regarding data 

forecasting: RES (solar) production forecast uncertainty and load demand forecast 

uncertainty by scheduling a reserve power.  

 

2.2.2 Solar generation uncertainty 

As one of the main sources of renewable energy, solar generation is largely dependent 

on meteorological and geographic factors. To handle the variability and uncertainty of 

PV power, many previous works has made efforts to analyse the solar generation 

characteristics, trying to find solutions for better integration of solar generation with 

the electrical system [106]. Here crucial causes of solar generation uncertainty are 

summarized.  

 

Meteorological factors: PV power output is extremely sensitive to temperature, 

irradiation intensity, and cloud cover. Previously, [107] evaluated the correlation 

between irradiance and PV power, as well as temperature and PV power. Cloud cover 

impacts are detailed in [49], and several types of irradiance conditions during the day 

are classified with different cloud cover situations. Other weather conditions like 

ultraviolet (UV) index and humidity, should also be considered. 

 

Geographic factors: Solar generation is dependent on location of PV panels, like 

longtitude, latitude and altitude of a certain region. Longtitude and latitude impact daily 

illumination time, while altitude impacts the illumination intensity. For those regions 

with higher illumination intensity and longer hours of daylight, the average PV 

generation level is defenitely higher than in other regions.  

 

To determine the most significant meteorological factors that impact the PV generation, 

correlations are analysed between PV generation and meteorological factors. Here in 

the study, the correlation coefficient 𝑟 and the correlation factor 𝑅2 are calculated. 

More explainations regarding definitions and calculations of 𝑟 and 𝑅2 can be found 

in Appendix 2. Historical data of sensed PV are collected from PV generation system 
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Rizomm at the HEI-L2EP laboratory; all meteorological data are obtained from the 

weather forecasting website The Weather Channel [108]. 

 

Fig. 2-2-Fig. 2-5 demonstrates the correlation relationship between sensed PV power 

and UV index, humidity, cloud cover and temperature, respectively. Two univariate 

histograms are shown on the horizontal and vertical axes of the plot, representing the 

distribution of x/y-axis variables. The more similar (or symmetric) the two histograms’ 

shapes are, the higher the correlation is between the two variables. According to the 

correlation coefficient descriptions in [109], these correlation results indicate that, there 

is a high positive correlation between UV index vs. PV power ( 𝑟 = 0.72), and a 

moderate correlation between humidity vs. PV power (𝑟 = −0.56). In contrast, there is 

a relatively low correlation between cloud cover vs. PV power ( 𝑟 = −0.39 ) and 

temperature vs. PV power (𝑟 = 0.35). Moreover, the correlation coefficients of Fig. 2-2 

and Fig. 2-5 imply the positive associations regarding UV Index vs. PV power, as well 

as temperature vs. PV. On the contrary, Fig. 2-3 and Fig. 2-4 indicate the negative 

associations regarding humidity vs. PV power, and cloud cover vs. PV power.  

 

Fig. 2-2 The correlation between UV Index and PV power 
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Fig. 2-3 The correlation between humidity and PV power 

 

 

Fig. 2-4 The correlation between cloud cover and PV power 
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Fig. 2-5 The correlation between temperature and PV power 

 

In conclusion, PV power has a relatively strong association with UV index and 

humidity, they should be considered as inputs of PV power forecasting procedure. The 

cloud cover and temperature are also taken into account because though they show 

relatively weak corrrelations, they will contribute to the better forecasting results. 

 

2.2.3 Load demand uncertainty 

The regional load demand varies with impacts from many factors. Uncertainties may 

derive from meteorological reason, economic reason, time reason, and other 

unpredictable random reasons [110]. 

 

Meteorological factors: Weather conditions (especially the temperature), are essential 

for those temperature-sensitive loads. For example, the function of air conditioning 

system in a building, or utilisation condition of residential heating facilities. 

Furthermore, weather facotrs apply influences on personal, social and industrial 

activities. 

 

Economic factors: Load demand can be significantly affected by macroeconomic 

factors, like economic growth, GDP, and unemployment rates. They relate to, for 

example, local industrial activity level, or household consumption level, which are 

crucial for electricity consumption. Meanwhile, certain microeconomic factors are also 

counted, like electricity price. 

 

Time factors: Load patterns are dependent on time factors including seasonal events, 

national / regional holidays, weekly-daily cycle pattern, etc. The peak load power is 
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pattern is determined by type of the day, i.e. workdays and non-workdays (holidays, 

week-ends). For example, weekly-daily cycle is caused by cycle of workday-weekend. 

Week-ends and national holidays can lower daily load compared with workdays 

because of reduced company and industrial activities. 

 

Other random factors: Load uncertainty may be induced by some random events, e.g. 

unexpected changes of the operation status of industrial equipments. Some other events 

like strikes, can be foreseen, the effect on load varing is unknown, though. 

 

In this study, we focus on the load demand uncertainty deriving from meteorological 

factor and time factor. Load data are collected from website of RTE (Réseau de 

transport d'électricité) France [111]. The used meteorological database are the same as 

in previous section (2.2.2). 

 

Among all the meteorological factors, temperature shows its significant impact on load 

demand because of the existence of temperature-sensitive loads, e.g. residential air 

conditionners, heating installation. Fig. 2-6 demonstrates the correlation relationship 

between sensed temperature and load power. The correlation result indicates that, there 

is a negative correlation between temperature vs. load power (𝑟 = −0.58). As for time 

factors, since the load demand power is greatly time-dependent, the historical load 

demand profile in past days is a useful guideline when forecasting load power. 

 

In conclusion, load demand power has relatively a strong association with temperature 

and short-term historical load profile. Thus, these parameters should be considered as 

inputs of load demand power forecasting procedure. 

 

Fig. 2-6 The correlation between temperature and load power 
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Furthermore, to analyse if there is a possible dependence of PV production and load 

demand, the correlation between them is studied. Fig. 2-7 shows that there is a rahter 

slight correlation (𝑟 = −0.1) in the current study case. Hence the PV production and 

load demand is considered as independent. 

 

Fig. 2-7 The correlation between PV power and load power 
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2) Artificial intelligence techniques, e.g. Artificial neural Networks, nearest 

neighbors;  

3) Numerical weather prediction based on sufficiently accurate meteorological 

knowledge, e.g. Global Forecast System made by U.S. Department of Energy 

Atmospheric Radiation Measurement [117];  

4) Remote sensing methods, e.g. physical satellite models and statistical satellite 

models;  

5) Local sensing methods;  

6) Hybrid systems, i.e. a combination of any two or more of the methods described 

previously.  

 

For a specific forecasting problem, it is essential to choose a proper forecasting 

technique to satisfy the needs in terms of accuracy, interpretability, traceability and 

reproducibility. Characteristics of forecasting are discussed as follows: 

 

1) Forecasting is a stochastic problem by nature. Because of random factors, the output 

of a forecasting process is supposed to be in a probabilistic form, such as a probability 

density function, a prediction interval, some quantile of interest, a forecast under a 

scenario, etc. Current energy management systems cannot yet take probabilistic inputs, 

so the most commonly used forecasting output form is still the future expected value of 

a random variable. 

 

2) Forecast errors are inevitable. Due to the stochastic nature of forecasting, forecasted 

value is never exact. Actual values will locate within a certain range from forecast 

values. 

 

3) Due to forecast errors, there is always a demand to improve the accuracy. Potential 

improvements include reducing the variance or the range of forecasting errors, 

increasing quality of the modelling of errors, etc. Nevertheless, the accuracy will always 

be an issue because of the stochastic nature of forecasting. Efforts should be made to 

handle deviations of real data from predicted data.  

 

The motivation of our research work is not to focus on an improvement of forecasting 

techniques, but to analyze forecast error uncertainty regardless of applied forecasting 

technique. To generate PV power and load forecast data, we have used BP neural 

networks (BPNN) but other forecasting techniques could also be employed as forecast 

error uncertainty analysis is based on generated forecasting errors.  

 

ANNs technology for forecasting exist for decades with numerous applications. A state 

of art can be found in [118]. Features of ANNs are remarkable in terms of forecasting 

applications: 
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1) ANNs are self-adaptive methods and they learn from experiences with training 

process. They capture functional relationships among input and output data and 

while the underlying relationships can be mathematically and physically unknown. 

2) After training with database, ANNs will generalize. They can often correctly infer 

the unseen part of output data (during the learning) even if the input data contain 

noise signals. As forecasting is performed via prediction of unseen future behavior 

from examples of past behavior, it is an ideal application field for neural networks. 

3) ANNs are capable of representing nonlinear functions, which offer more 

capabilities comparing to linear prediction techniques. 

4) It has been shown that an ANN can approximate any continuous function to any 

desired accuracy. So ANNs have more general features than the traditional 

statistical methods.  

 

Fundamentals of BPNN are presented in Appendix 1. In the previous work of L2EP, 

ANN have been studied and designed according to approximation theories, and have 

been applied for learning multi-functional control systems [119]; for modelling 

nonlinear system with variable parameters [120]; and for complex adaptive calculations 

in real time [121]. 

 

In the next section, ANN will be employed to forecast the PV production and load 

demand. On the basis of work in [122], improvements regarding efficiency are made 

with additional inputs.  

 

2.3.2 BPNN application for PV production forecasting 

Meteorologists sample the state of the fluid at a given time and apply the equations of 

fluid dynamics and thermodynamics onto the sampled state of the fluid in order to 

estimate the future state of the fluid. Further analysis and model computation are needed 

to transfer solar, temperature, wind, humidity (, …) forecasts to power production 

forecasts. Alternative methods use meteorological forecasts and past values as inputs 

to estimate directly the power production. In this study, the latter method will be used. 

BPNN forecast model structure 

In this section, BPNN objective is to forecast the hourly PV power generation in 

following 24 hours. As explained in Appendix 1, parameters of the BPNN will be 

determined by training and validating with a training set and a validation set, 

respectively. Then the accuracy of the forecasting capability will be tested with a test 

set. The architecture is determined as follows: 

i. Input layer: 5*24 neurons are set according to the input vector, representing sensed 

PV generation, forecasted temperature, cloud cover, UV index (ultraviolet index) 

and humidity at each time step (during 24 hours). These input factors are chosen 
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because these information have a relatively great impact on solar energy 

availability, as studied in part 2.2.2. 

ii. Hidden layer: 10 neurons are set after testing different numbers. For the hidden 

layer, the best number of neurons will be confirmed after testing different numbers 

of neurons in this layer and comparing the observed performance. If the node 

number is too less, the accuracy of the forecasting will not be enough. On the other 

hand, too large number leads to an increase of the training time and may increase 

the observed error (with the validation set), leading to a poor generalization ability, 

which decreases the adaptive capacity of the neural network for untrained samples.  

iii. Output layer: 24 neurons are used to represent the 24-hourly PV forecast values. 

 

 

Day-ahead Predicted 

Temperature ,…,  

Cloud cover ,…,  

UV index ,…,  

Humidity ,…,  

Time of sunrise/ sunset  Sensed PV Power 

PV Forecast by the ANN 

,…,  

,…,  

D+  
D 

 
Fig. 2-8 PV power forecasting with ANN 

 

Training and validation of BPNN 

The following historical data are set as raw input data to the BPNN:  

 Day-ahead forecasted hourly meteorological data at Lille regarding: temperature, 

cloud cover, time of sunrise, time of sunset, UV index and humidity from 2nd 

October, 2019 to 11th October, 2020. All meteorological data are obtained from the 

weather forecasting website The Weather Channel [108]. Time of sunrise and time 

of sunset are used to give information regarding the time sequence of the PV 

production in the next day. 

 Measured hourly PV generation power from 2nd October, 2019 to 11th October, 

2020. PV data are collected from PV generation system Rizomm at the HEI-L2EP 

laboratory. 

 

Firstly, 50% of the database is used to create the training set, 25% of the database are 

used for the validation set in order to validate model parameters and avoid over-fitting 

(Appendix 1). After BPNN training, 25% of the remaining database are used as test set 
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to test the prediction quality and accuracy of the BPNN architecture. In this study, the 

learning rate is set to 0.04. The maximum number of epochs is set to 200. After training 

the BPNN, the hourly PV power is forecasted for the following day.  

Performance of the proposed BPNN for PV forecast  

To observe the performance of the trained BPNN-based PV forecast model, un-trained 

data in the test set are applied. Fig. 2-9 shows an example of forecast results in a rather 

clear sky day in Lille. Fig. 2-9 (a) shows inputs of the BPNN: Day-ahead forecasted 

temperature, cloud cover, humidity, UV index and day-ahead sensed PV power. Since 

there is no PV generation after daylight, inputs of time of sunrise and sunset are 

considered to distinguish daylight and night, making it possible to increase the accuracy 

of PV forecast performance. Then the BPNN is trained only with data during the day. 

Fig. 2-9 (b) shows results of hourly PV forecast, as well as obtained errors at each time 

step. From the obtained figures, PV forecast errors are no more than 0.17 p.u. in this 

case. 

 
(a) Inputs: Day-ahead forecasted cloud cover and temperature, past sensed PV power 
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(b) Hourly PV power forecast and forecast errors 

Fig. 2-9 PV power forecast results on 27th March, 2020 
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induces pessimistic PV generation. PV forecast curve shows a similar trend with real 

PV. However, there is a sudden increase of PV generation that is not predicted, leading 

to a great increase of error at 17:00. Whereas, since the database of cloudy weather days 

are large in Lille, forecasting in cloudy days can also be obtained with a reasonable 

range of error. In this case, PV forecast errors are no more than 0.07 p.u. 
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 (b) Hourly PV power forecast and forecast errors 

Fig. 2-10 PV power forecast results on 2nd March, 2020 

 

Overall, the BPNN-based PV forecast errors of 𝑛𝑅𝑀𝑆𝐸  and 𝑛𝑀𝐴𝐸  regarding 

training set, validation set and test set are summarized in Table 2-1.  

 

Table 2-1 BPNN based- PV forecast errors 

 𝒏𝑹𝑴𝑺𝑬 (%) 𝒏𝑴𝑨𝑬 (%) 

Training set 6.84 4.08 

Validation set 9.36 5.64 

Test set 12.41 7.59 

In order to observe the errors more visibly at each time step, a box-and-whisker plot is 

created and shown in Fig. 2-11. The distributions of errors have larger variation 

intervals during 11:00-16:00. The ranges of intervals reach the largest value at 13:00, 

corresponding to the largest PV uncertainty during the day. 

 
Fig. 2-11 PV power forecast errors of training data at each time step 
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2.3.3 BPNN application for load forecasting 

BPNN forecast model structure 

In this section, BPNN objective is to forecast hourly load demand power in the 

following 24 hours. The following ANN architecture is chosen (Fig. 2-12): 

- Input layer: 3*24 neurons are set according to the input vector of the studied case 

representing historical load power of D-2, historical load power of D-1, forecasted 

temperature at each time step (during 24 hours).  

- Hidden layer: 10 neurons are set after testing different number of neurons. 

- Output layer: 24 neurons are used to represent the 24 load forecast values. 

 

 

Day-ahead Predicted 

Temperature Historical Load Power 

Load Forecast by the ANN 

,…,  

,…,  

D+

 D 

,…,  

 

Fig. 2-12 Load power forecasting with ANN 

Training and validation of BPNN 

The following historical data are set as raw input data to the BPNN:  

 Day-ahead forecasted hourly temperature data at Lille from 1st September, 2019 to 

11th October, 2020. All data are obtained from the weather forecasting website of 

The Weather Channel [108]. 

 Measured historical hourly load demand power from 1st September, 2019 to 11th 

October, 2020. Load data are collected from website of RTE (Réseau de transport 

d'électricité) France and, after scaled to our urban microgrid (maximum peak load 

is equal to 120 kW), are used as representative load demand variations for learning 

the ANN forecast [111]. 

50% of the database is used to create the training set, 25% of the database are used for 

the validation set, 25% of the database are used as the test set. After training the BPNN, 

the hourly load power is forecasted for the following day. 
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Results of load forecast  

To estimate the performance of the trained BPNN-based load forecast model, un-

trained data in the test set are applied. Fig. 2-13 shows an example of forecast results 

of hourly load forecast and obtained errors at each time step in a workday in March 

2020. Fig. 2-14 shows forecast results during a non-workday in March, 2020. It is 

observed that the average load consumption in workdays is more than in non-workdays. 

As shown in the figure, load forecast errors are no more than 0.08 p.u. and 0.06 p.u. 

respectively. 

 

Fig. 2-13 Load power forecast results on 2nd March, 2020 

 
Fig. 2-14 Load power forecast results on 24th March, 2020 
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Overall, the BPNN-based load forecast errors of 𝑛𝑅𝑀𝑆𝐸  and 𝑛𝑀𝐴𝐸  regarding 

training set, validation set and test set are summarized in Table 2-2.  

 

Table 2-2 BPNN-based load forecast errors 

 𝒏𝑹𝑴𝑺𝑬 (%) 𝒏𝑴𝑨𝑬 (%) 

Training set 3.60 2.77 

Validation set 5.73 4.31 

Test set 8.17 6.48 

As illustrated in Fig. 2-15, the distributions of errors have larger variation intervals 

during 7:00 -12:00 and 15:00 - 19:00, implying the largest load uncertainty time periods 

during the day. 

 

Fig. 2-15 Load power forecast errors of training data at each time step 

 

Based on BPNN PV and load forecast, PV forecast errors and load demand forecast 

errors can be obtained and will be used in the next section for the following research 

works, which concern PV uncertainty and load uncertainty analysis, LOLP-based 

probabilistic analysis and reserve quantification.  

2.4 Uncertainty Analysis in generation scheduling 

2.4.1 Introduction 

Since all forecasts have errors, the uncertainty in forecasted variables induces 

uncertainty on the response of the power system model, the evaluated objective function 

as well as the generation scheduling (chap. 1, part 1.4). The general procedure for the 

uncertainty analysis is mainly composed of: uncertainty characterization in input data, 

modelling the energy system, uncertainty propagation, and sensitivity analysis 

[123][124] (Fig. 2-16). 
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Fig. 2-16 General framework of handling uncertainties in energy system 

 

• STEP 1: Uncertainty characterization and uncertainty modeling with probability 

distributions are introduced in this chapter (section 2.4.2 and 2.4.3). 

• STEP 2: Energy system modeling. The mathematical formulations with objective 

functions and constraints are discussed in the next Chapter 3. 

• STEP 3: Uncertainty propagation, with the aim of examining how uncertain inputs 

are propagated, and the impact they could bring to the output of the studied model. 

Related review of past research works is discussed in this chapter (section 2.4.4). 

• STEP 4: Sensitivity analysis, making it possible to identify among the sources of 

uncertainty, which ones have the greatest impact on system performance. This 

analysis is done after application of the optimization. The state of art is described 

in this chapter (section 2.4.5). 

 

2.4.2 Uncertainty characterization with distribution functions  

The studied uncertainty is the error between the forecasted data and the real ones. The 

idea is simple: we would like to see if modeling and simulating the forecasting errors 

can help to examine and, perhaps, estimate the impact on the generation scheduling. 

So, the representation and mathematical modeling of uncertainties must be 

characterized by considering forecasting errors as random variables.  

 

Through the statistical analysis of a database (containing values of the random 

variable), uncertainty characterization aims to analyze and represent uncertainty by its 

particular statistic features, e.g. describing values with their probability. Probability 

distribution functions are commonly used to model the probability law of the random 

variable [125]. The theoretical introduction of random variables, probability density, 

probability distribution function (pdf), cumulative distribution function (cdf) and 

normal distribution can be found in Appendix 2. 
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Different sources of uncertainties contain different natures and statistical 

characteristics, in consequence, varying types of probability distributions should 

represent them. Uncertainty characterization methods are summarized in [126]. 

According to [126][127], Table 2-3 summarized the mainly used probability 

distributions for uncertainty characterization of solar energy, wind energy and energy 

demands. 

Table 2-3 Probability distributions for uncertainty characterization 

Probability 
distribution 

RESs Energy demands 

Solar energy 
(irradiation) 

Wind energy 
(speed) 

Normal [128]–[133] [134][135] [128][136]–[139] 
Weibull  [129][140]–[145]  
Uniform [134][135] [130][131] [135] 

Beta [140]–[142][146]   
Rayleigh  [136][144][146]  

Lognormal  [147]  
Multiple* [148][149] [148][149] [149] 

* Multiple: The combination of multiple distributions regarding different types of days, 

including beta, normal, Weibull, gamma, triangular, and lognormal distribution.  

 

Sophisticated distributions may improve the uncertainty modelling [150]. Nevertheless, 

most of probability distributions in Table 2-3 are employed to model the RES/load 

uncertainties of parameters (e.g. solar irradiation, wind speed), which are different from 

the forecasting errors uncertainty modeling.  

 

As in all models, a Gaussian or normal distribution is not an exact representation of the 

RES uncertainty but is a mathematical function that can be used easily in practice for 

further studies or mathematical treatments. For our studies, the forecasting errors 

database are observed to follow normal distributions. Thus, normal distributions have 

been used in our work to model forecasting errors of PV power and load demands. For 

example, thanks to real sensed data from the laboratory PV production (L2EP-HEI), 

Fig. 2-17 presents the frequency histogram and probability distribution of PV forecast 

errors at the time step 11:00 one day ahead.  

 

Fig. 2-17 (a) Frequency distribution histogram of the PV forecast errors (b) Normal 

distribution of PV forecast errors at 11:00. 
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Based on the given large population (312 days), the error sample data of PV forecasting 

errors at each time step is assumed to follow the normal distribution. In Fig. 2-17, the 

errors follow a normal distribution with 𝜇𝑃𝑉,𝑡=11:00 = 0.03,𝜎𝑃𝑉,𝑡=11:00 = 0.23. A pdf-

based modelling of forecast errors is applied for each time step in the day.  

 

2.4.3 Uncertainty representation in stochastic optimization 

The previous part was related to the uncertainty modelling of forecasting errors in a 

database. The interest now is to examine the possible influence of the uncertainty onto 

obtained scheduling results. Handling the uncertainty consists in the quantification of 

the resulting global uncertainty on obtained optimized results due to all stochastic 

variables/parameters.  

 

Analytical calculations of pdf (section 2.4.2) of the objective function or decision 

variables are complex because of operations between random variables in the 

optimization algorithm. Issues are to apply three types of simplification [151]: 

a) Linearization enables the representation as a linear combination of random 

variables. The accuracy is kept if the dispersion is small around the value of random 

variable. 

b) Random variables must be independent to enable the use of convolutions for the 

calculation of values and pdf. 

c) Random variables must be modelled by normal distributions to enable the use of 

linear correlations to represent. pdf can be obtained by convolution or orthogonal 

methods (Gram-Schmidt). 

 

Other models have been proposed to represent uncertainties on outputs with scenarios 

but adds an extra computational complexity in solving methods due to repetitive 

computations and final analysis of obtained various output values. Depending on the 

chosen SO methods, the representation and modeling of uncertainty can be quite 

different.  

 

According to [81], uncertainty modeling can be classified into several categories: 

scenario-based modeling, robust modeling, and chance-constrained modeling. It is 

noticeable that these approaches are all depended on the probabilistic analysis and 

calculation of pdfs and cdfs. For example, in scenario-based optimization, uncertainty 

inputs are represented by a certain number of scenarios, each of them indicates a 

realization of a possible uncertain case with a certain possibility of occurrence. These 

scenarios and their possibilities are determined through pdf and cdf analysis. In robust 

optimization, uncertainty input is usually defined within an interval set. Upper bound 

and lower bound of the input are defined by using pdf analysis. The three main 

uncertainty-modeling approaches are summarized as follows. 
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Scenario-based modeling 

The main purpose of scenario-based uncertainty modeling is to generate a certain 

number of scenarios; each scenario implies a realization of the possible uncertainty with 

a prescribed possibility. Probability distribution of uncertainties are thus approximated 

by scenario representation. Two kinds of scenario generation structures are often 

discussed in terms of two stages or multiple stages: 

 

i. A number of parallel scenarios in a two-stage SO problem. Fig. 2-18 demonstrates 

a scenario tree with two stages. In the second stage, four scenarios are generated for 

the representation of uncertainties. The uncertainty is realized with different values 

with different possibilities at each node. For a two-stage SO problem, Monte-Carlo 

simulation is commonly applied to generate scenarios with probability distributions 

from historical data. For example, normal distribution is carried out in [152][153] to 

model forecast errors of the wind speed. Monte-Carlo simulations are implemented 

to generate scenarios for the studied UC problem. 

 

Fig. 2-18 A scenario tree with two stages 

 

ii. A scenario tree in a multi-stage SO problem. In a scenario tree with multi-stage, 

random paths are generated for scenario representation with stochastic processes 

approaches. At each stage, scenarios are generated by taking into account the 

specific uncertainty realization at the current stage. Fig. 2-19 demonstrates a 

scenario tree with four stages, 19 nodes and 12 scenarios. Finally, the number of 

generated scenarios in the model equals the number of nodes in the last stage. Since 

information is obtained at each time step, a decision-making is capable of managing 

the unit commitment, generation dispatching, and reserve requirement. It considers 

status of the current stage and possible uncertainty realization in the future stages. 

Compared with a two-stage structure, the benefit of multi-stage models is that the 

uncertainty realization is represented with higher accuracy and higher reliability 

during the process of decision-making. However, the drawback is the computational 

costs due to the curse of dimensionality, i.e. the dimension of the state variables is 

increasing exponentially. 
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Fig. 2-19 A scenario tree with four stages 

Robust modeling (uncertainty sets) 

Robust modeling is usually realized with uncertainty sets. As an uncertainty input 

modeling method, the uncertainty set is defined with an upper and a lower bound. By 

describing uncertainty within an interval, uncertainty variation range is known and may 

be under control, leading to a robust optimization output. By doing so, robust modeling 

is often used to analyze the worst-case situation in optimization. For example, box 

intervals are implemented in UC models in [154]: 

[max{0, 𝑑̅ + 𝑧𝛼𝜎}, 𝑑̅ + 𝑧𝛽𝜎] 

where 𝑑̅ is the expected value, 𝜎 is the variance of a random variable; 𝑧𝛼 and 𝑧𝛽 are 

the 𝛼- and 𝛽- quantile of the probability distribution (𝛼 < 𝛽). The uncertainty sets can 

represent various kinds of uncertainty inputs, like solar energy generation, or electrical 

loads. More details concerning quantile can be found in Appendix 2. 

Chance-constrained modeling (probabilistic constraints) 

In chance-constrained modeling, one or several probabilistic constraints (or an 

objective function) must be satisfied with a high probability. The problem can be 

defined as [153][101]: 

 
min
𝑥 ∈ 𝑋

𝑓(𝑥) , s. t. ℙ{𝑔(𝑥, 𝝃) ≤ 0} ≥ 1 − 𝜀 (2-1) 

where 𝑓(𝑥) represents the objective function to be minimized; ℙ is the probability of 

a random function. 𝝃 is a random vector, whose probability distribution is known. 𝜀 

is the risk level of the chance-constrained optimization. This formulation will minimize 

the objective function over a deterministic feasible set while 𝑔(𝑥, 𝝃) ≤ 0 should be 

satisfied with a probability of at least 1 − 𝜀. In the sample average approximation 

(SAA) method, true distribution of 𝝃 is usually replaced by an empirical distribution 

corresponding to a Monte-Carlo sample. 

 

The risk must be defined. As a risk-constrained probabilistic technique, Loss of Load 

Probability (LOLP) calculates the probability that a power shortage may occur. LOLP 

is a measure of expectation that the system net demand will exceed the generating 
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capacity during a given time step. The uncertainties coming from RES and load demand 

can be both taken into account: 

 𝐿𝑂𝐿𝑃𝑡 = ℙ[𝐶𝑡 ≤ 𝐷𝑡], ∀𝑡 ∈ 𝒯 (2-2) 

where 𝐶𝑡 is the total power generation capacity of all MGTs at time step t, 𝐷𝑡 is the 

actual net demand at time step t, 𝒯 is the set of time steps. To ensure system reliability, 

constraints restricting LOLP at all time steps can be added to the UC problem, such as 

 𝐿𝑂𝐿𝑃𝑡 ≤ 𝜀 (2-3) 

where 𝜀 is the risk index. 

 

In chance-constrained UC models, with risk measuring indices, certain constraints are 

added to limit the risk in a UC problem in order to maintain the preset security level of 

the system. Previous works in literature applied varying risk measurement methods to 

generate probabilistic constraints, like conditional value at risk [155][156], total profit 

variance [157], expected load not served [158][159], loss of load probability (LOLP) 

[158]–[161], etc. 

 

Except the commonly used methods above, there exist more techniques, like in 

possibilistic methods, fuzzy membership functions are used to model uncertain 

parameter; information gap decision theory (IGDT) is applied if uncertainties cannot 

be modeled using pdf due to a lack of historical information. A state of art regarding 

more uncertainty representation techniques can be found in [162]. 

 

2.4.4 Uncertainty propagation 

Uncertainty propagation (also called uncertainty analysis) enables the quantification of 

the impact of input uncertainties on the performance of the simulated system model, 

and the evaluation of system robustness to uncertainties. We speak about propagation 

because the defined model in STEP 2 (in Fig. 2-16) links the inputs and outputs of the 

system. Thus, uncertainties in the inputs of the system lead to uncertainties in the output 

of the model. The model is therefore used for propagating the uncertainties of the input 

parameters, through the model, onto the outputs. 

 

Uncertainty propagation analysis is commonly performed by means of Monte-Carlo 

simulations, worst-case methods, probability intervals, perturbation-based methods, 

etc. A deterministic model is fed with numbers of random but reasonable uncertain 

sample inputs. Then decision-maker aims to analyze the variability of the obtained 

outputs, trying to investigate their statistical characteristics. The way of uncertainty 

propagation relies on the characteristics of uncertainty modeling [163]: 

 If uncertainty is set deterministic, i.e. within a range between minimum / maximum 

limits, then uncertainty propagation is performed by applying interval computation 

techniques using pdf or cdf;  

 If uncertainty is set probabilistic, then uncertainty propagation is performed through 

Monte-Carlo sampling, Taylor quadratic approximation, etc.  
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Earlier studies have integrated uncertainty propagation to investigate the impact of 

uncertainty from RES availability and energy consumption variability. e.g. In [143] the 

influence of wind uncertainty is examined through uncertainty propagation during the 

microgrid design process. In [137] uncertainty from energy demand is analyzed in 

electrical system design by employing Monte-Carlo simulation. Uncertain solar 

generation and energy consumption are investigated in [164] by means of uncertainty 

propagation analysis for an off-grid system design.  

 

2.4.5 Sensitivity analysis 

With the aim of evaluating how important each uncertain parameter is, sensitivity 

analysis seeks uncertain parameters that contribute most to uncertainty and variability 

of the model output [124]. Sensitivity analysis methods are constituted of local 

sensitivity analysis and global sensitivity analysis. The former quantifies parameter 

uncertainty by changing a single parameter at a time, keeping other uncertainties 

unchanged; while the latter varies all target parameters at a time.  

 

The principal advantages of local sensitivity analysis are its user-friendly 

implementation and its less complicity. However, local sensitivity analysis is not 

‘robust’ enough when handling uncertainties of varying sources [165]. To cover the 

uncertainty from different inputs at a time, global sensitivity analysis is performed to 

investigate various uncertain inputs with more robustness and reliability. Meanwhile, 

the interactions and correlations are also considered between different sources of 

uncertainties, thus covering uncertain parameter space more effectively [165]. The 

common methods and techniques relating global sensitivity analysis are detailed in 

[166]. As for the state of art of local and global sensitivity analysis, available methods 

are reviewed in [167]. Also in [168] global sensitivity analysis methods are 

summarized.  

 

Sensitivity analysis is often used for optimal distributed energy system design, aiming 

at identifying the most essential uncertainty parameters. In the current research, 

sensitivity analysis is beyond the scope of our discussion.  

2.5 Conclusion 

In this chapter, sources of uncertainties in energy systems are firstly introduced. 

Uncertainties within solar generation and load consumption are mainly discussed. 

Those factors that have evident influence on solar energy and load demand are 

analyzed, respectively, like meteorological information (temperature, cloud cover) and 

time factor. A correlation analysis is made to show the relationship between PV power 

and sensed UV index, humidity, cloud cover and temperature.  

 

Then based on these investigations, the discussion is followed by the BPNN-based 

forecasting of PV generation and load demand. By setting the proper input factors, 



 CHAPTER 2  

 64 

model structure and model parameters, 24-hour-ahead PV power and load power are 

predicted through the presented BPNN training with a historical database of day-ahead 

forecasted temperature, cloud cover, UV index, humidity, time of sunrise, time of 

sunset, and measured hourly PV power and hourly load power. Finally, forecast errors 

are obtained by comparing the deviation between forecast and real values, which is used 

to evaluate the performance of the forecasting model. 

 

Forecasting of RESs generation could be tough due to the uncertainty and variability of 

weather conditions. Hence, no matter what forecasting technology is performed, it is 

essential to deal with uncertainties in forecasting PV generation and load consumption, 

for example, for scheduling a reserve provision. Usually, incorporation of RES requires 

more flexible power reserve than conventional generating units when the same security 

level is attained. Besides, as an approach of evaluating the model, forecast errors are 

used for power reserve determination in the next chapter (Chapter 3) with risk-

constrained probabilistic methods.  

 

Furthermore, the procedure of uncertainty analysis for energy system is discussed. The 

methods of uncertainty characterization are presented with relating knowledge of 

probability distributions and probabilistic approaches. In addition, the state of art of 

uncertainty modeling approaches are introduced, like scenario-based modeling, 

uncertainty set based modeling and chance-constrained modeling. Finally, the 

background of uncertainty propagation and sensitivity analysis are reviewed. 

 

The current research aims at solving the UC problem and optimal energy management 

under uncertainties with formulated energy system model. Two approaches are 

developed regarding different types of system model. In the following Chapter 3, 

applications of STEP 1 - STEP 3 (in Fig. 2-16) are presented. Uncertainty propagation 

is analyzed with probabilistic methods in a deterministic UC model with uncertain 

inputs. In Chapter 4, a robust method is built with scenario-based optimization. 

Uncertainty is modeled through considered scenarios, including uncertainties in the 

process of the solution search. 
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CHAPTER 3 DETERMINISTIC UNIT COMMITMENT 

UNDER UNCERTAINTY  

3.1 Introduction 

As discussed previously in Chapter 2, the studied sources of uncertainties are renewable 

energy and load demand forecasting. The large-scale integration of renewable energy 

sources (RESs) such as wind and solar generation in power systems is limited by their 

inner characteristics, mainly, the unpredictable variations of primary energy source and 

uncontrollable power generation. Deviations between forecasted values and real ones 

bring uncertainties in power systems, especially microgrids, and local energy 

community that are extremely dependent upon renewable energy supplies [36], [37], 

[82]. The large-scale development of small-sized variable RESs in urban microgrids 

can increase local high dynamic unbalances if their electrical production is not well 

forecasted. This can create instabilities on the inertia response and primary frequency 

controllers of existing conventional generators [169]. Therefore, scheduling an 

adequate operating reserve (OR) power is one solution to ensure the power system 

security, since it can be used to compensate the unpredictable imbalances between 

unexpected intermittent RES generations and consumptions [170]. 

 

Classically, the OR is provided by conventional and controllable generators. Generally, 

selecting conventional generating unit states (on/off) during any time step of the day is 

known as generation scheduling, namely as unit commitment (UC) problem [57]. From 

day-ahead forecasting of the load demand and renewable generation, UC problem 

classically finds the optimal generation scheduling that minimizes the global operating 

cost. Failure to commit enough energy resources to meet operating conditions can lead 

to expensive actions, for example starting thermal turbines instantaneously and abruptly.  

 

UC problems nowadays require methods to quantify uncertainties according to 

probabilities and to minimize the operating costs for different uncertainties. A 

determination quantification method of the OR is proposed in this chapter and carried 

out through a probabilistic approach by considering forecast uncertainty of PV and load 

demand.  

 

The introduction of uncertainties in UC and energy management problem adds extra 

computational complexity to current methods [171] and so solving algorithms with an 

acceptable accuracy and computation time are essential. In this chapter, UC techniques 

using dynamic programming (DP) and mixed-integer linear programming (MILP) are 

presented for the generation scheduling with consideration of stochastic characteristics 

of the PV energy forecasting errors. The impact of PV generation uncertainties on the 

generation scheduling, on OR powers and on operating costs (after optimization) are 

analyzed.  
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Moreover, the impact of RESs uncertainties on reserve provision is discussed. A 

determination quantification method of the OR is proposed and carried out through a 

probabilistic approach by considering forecast uncertainty of PV and load demand. 

 

The contents of this chapter are as follows. Section 3.2 reviewed the state of art of DUC 

under RES uncertainty. In section 3.3, the operating reserve definition and reserve types 

are introduced. Also, OR criteria are reviewed in terms of deterministic and 

probabilistic approaches with a discussion of the RESs impact on OR provision. Section 

3.4 presents a risk constrained probabilistic method to determine the OR. Section 3.5 

introduces the mathematical formulation of the UC in the presented urban microgrid. 

The studied urban microgrid is presented in section 3.6. The DP application for UC 

procedure is performed in section 3.7. Then the uncertainty propagation is analyzed 

with probabilistic methods in section 3.8. In section 3.9, a MILP approach is applied to 

solve the generation scheduling with a linearized objective function. Comparisons with 

a DP are performed in terms of computation efforts and accuracy. Finally, the 

conclusion is made in section 3.10.  

3.2 State of Art of DUC with OR and Research Tasks 

3.2.1 DUC under uncertainty 

In order to secure the production/consumption balancing of a microgrid under 

uncertainties coming from a large renewable energy-based production, many works 

have explored uncertainties model and used them to quantify a power reserve to cover 

risks on the production consumption balancing. Practical applications taking into 

account reserve allocation and risk assessment methods are discussed in [172]. Usually, 

a probabilistic analysis of forecasting errors of load demand and PV generation is 

performed and then the reserve power is quantified. In [173], an optimal microgrid 

economic operation is applied in the energy management system. Day-ahead power 

forecasting is based on different PV output characteristics under various weather 

conditions. Based on forecast error quantiles, a probabilistic reserve requirement 

quantification method has been presented by [174]. By comparing with other reserve 

rules, this proposed DUC method shows its advantages when dealing with uncertainty 

on wind power. In [175] the reserve is optimized by a constrained unit commitment 

solution search with a loss of load probability. A probabilistic UC problem is solved 

under wind uncertainty in [85] by incorporating a Lagrangian relaxation method with a 

scheduled operating reserve. [176] proposed a probabilistic method for generating 

uncertainties and is based on a point estimate method. Different renewable power 

uncertainty sources, like wind, solar and storage, are included in the optimal energy 

management of the presented microgrid. However, the impact on optimal operational 

costs regarding reserve under PV uncertainties is not yet analyzed. 

3.2.2 Synthesis 

Classic optimization of DUC considers a deterministic quantification of the power 
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reserve (Fig. 3-1) and, then, a risk-based deterministic optimization (MILP and DP in 

this chapter) is applied to determine power references of conventional generators. In 

the next part, fundamentals about operating reserve are recalled and then quantification 

of this reserve with a deterministic criterion is presented. 

 

Then, a risk-based optimization method is proposed to solve the UC problem. In the 

proposed approach, based on the power system model, which is built in step 1, 

additional reserve power is quantified in step 2 with a risk-constrained probabilistic 

method. Then in step 3, a risk-based deterministic optimization is applied for DUC 

scheduling. Concerning the uncertainty propagation, the impact of PV variability is 

analyzed regarding reserve provision and operating costs in step 4. 

 
Fig. 3-1 Scheme of the classic approach and proposed risk-based deterministic 

optimization approach  

3.3 Dealing with Uncertainty: Power Reserve 

3.3.1 Introduction 

Operating reserve (OR) is one of the most principal manners of handling unexpected 

generation outages or load increase, with the aim of responding to imbalance between 

power consumption and generation. The definition of OR is specified in [177]: 

 

“The term operating reserve is defined as the real power capability that can be given 

or taken in the operating timeframe to assist in generation and load balance and 

frequency control.” 

 

Hence, OR is an amount of power that is not used in normal operation but is available 

in case of unexpected unbalancing. The availability of OR has an impact on electrical 

system security and social welfare, since it mitigates the appreciable social and 

economic costs of occasional outages. However, a continuous provision of OR can cost 

a lot because additional generating units must be committed, and some units are 

operated at sub-optimal set points [178]. Power system operators usually set the OR 

under certain criteria to ensure the system security level with a preset tolerable level of 

risk. 

 

Traditionally, an UC procedure ensures that a fixed amount of OR is scheduled by 
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including a constant reserve constraint in the optimization process (Fig. 3-1 a)). A fixed 

amount of reserve requirement during the whole UC procedure can be sub-optimal, 

though. Owning to the variability and uncertainty of RESs, generation and consumption 

of power systems nowadays are becoming difficult to predict. Thus, the amount of 

scheduled OR may exceed the required value during some periods, inducing a less 

economic scheduling process; while in other periods, OR may be insufficient to 

compensate imbalances and frequency fluctuations, leading to potential risks to some 

extent.  

 

Under this context, the compromise between increasing the OR provision and reducing 

the risk level of unbalancing is targeted in earlier researches. Furthermore, considerable 

approaches are promoted to handle optimal OR quantification, like probabilistic 

approaches, and inclusion of OR constraints in stochastic optimizations. In the next 

section, frequency control reserve types are discussed. The OR criterion in terms of 

deterministic and probabilistic approaches are introduced.  

3.3.2 Frequency control reserve types  

A power reserve is required to handle generation-load mismatches, which may occur 

due to a difference between the actual PV/wind power and their forecast, or as an effect 

of a generator/load loss. Such mismatches between load and generation induce 

frequency deviations. Through the sensing and surveillance of the frequency, automatic 

generation control may be activated to inject more power. The following Fig. 3-2 shows 

the system frequency as well as the primary, secondary and tertiary frequency controls 

when an unexpected loss of a generator occurs [179]. Each type of frequency control 

has its own performances in terms of power supply (delay, response time, supply 

duration, …) and uses technical requirements for power supply. 
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Fig. 3-2 Sequential actions of primary, secondary, and tertiary frequency controls 

following the sudden loss of generation [179]. 

 

Following the sudden loss of generation, reserve resources (generators, storage, …) that 

provide primary frequency control actions, immediately increase power output within 

30 seconds or less. Once the frequency decline is arrested, the continuous delivery of 

primary power reserve stabilizes the electrical system but with a lower frequency prior 

to the loss of generation. This is labeled the “rebound period”. 

 

Once the variation of frequency stopped, the secondary frequency control reserve 

brings the frequency back to its reference value (60Hz in Fig. 3-2). For this purpose, 

automatic generation control actions are made. Secondary frequency control actions do 

not trigger until 30 seconds (or more) following the loss of generation, and can take 

about 5 to 15 minutes (or more) to restore the frequency to the scheduled value. 

 

Finally, the goal of tertiary frequency control actions is to restore the power reserve that 

have been used to provide primary and secondary frequency control. So that the power 

system can respond to a subsequent loss-of-generation event. The manual deployment 

of tertiary frequency control represents the final stage of the “recovery period” and 

release the deployed primary/secondary control reserves [180]. 

 

Each type of frequency control has own performances in terms of power supply (delay, 

response time, supply duration, …) and uses technical requirements for power supply. 
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The large-scale development of small-sized variable RES in local energy communities 

increases local high dynamic unbalancing between the local consumption and local 

generation. Power unbalancing can create instabilities on the inertia response and 

primary frequency controllers of existing conventional generators [169].  

 

Since many conventional generators such as coal-fired and nuclear units have limited 

flexibilities regarding ramping rates and minimum on/off times, novel power generation 

facilities with high dynamic for power generation are developed, such as microturbines 

in chapter 3 and 4 and also storage system in chapter 5. Then, novel power system 

operational methods are required to schedule generating units more efficiently in order 

to accommodate the large and fast fluctuations in renewable generation outputs while 

maintaining power system reliability. 

 

All reserves are not the same and how they can be brought on (ramp rate) is important 

according the system operating needs. In this thesis, the OR is defined as the real power 

that can be called for the imbalance between power generation and load demand 

(primary and secondary reserve). Assuming an ideal primary frequency control reserves 

compensating for any fast power deviation, we focus on the steady state behavior of the 

automatic generation control actions, namely the secondary power reserves. This 

automatic generation control output is distributed to certain committed generators, 

whose setpoints are changed by a certain percentage of the active power to be 

compensated. 

 

The balance between OR requirement increase and OR provision costs is always an 

issue to solve. OR power should be carefully sized and dispatched on controllable 

generators in order to reduce the operating costs of electrical systems, and, the most 

important, to keep a satisfying security level. 

 

3.3.3 Deterministic criterion for OR sizing 

The traditional criteria to provide fixed OR requirements is the N-1 criterion. It ensures 

that the power system could sustain the outage of any electrical network equipment 

with no need of load shedding [59]. Formally, in case of tripping of the largest 

committed generating unit, available OR must be enough to provide the required power 

and to restore the balancing stability. Traditionally, OR for the electrical system is sized 

as the capacity of the largest generating unit.  

 𝑟(𝑡) = max[𝛿𝑚(𝑡)𝑝𝑚] , ∀𝑡 ∈ 𝒯,𝑚 ∈ ℳ (3-1) 

𝛿𝑚  is the commitment of generator m at time step t, 𝛿𝑚(𝑡) ∈ {0,1} . 𝑝𝑚  is the 

maximum power generation limits of generator m. 

 

In a power system, many generators can provide a part of this OR. So, for M generators 

that provide OR, the N-1 criterion can be formulated as: 
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 ∑ 𝑟𝑚(𝑡)
𝑀

𝑚=1

≥ 𝑟(𝑡), ∀𝑡 ∈ 𝒯 (3-2) 

where 𝑟𝑚(𝑡) is the allocated reserve power from generator m at time step t, 𝑟(𝑡) is 

the operating reserve requirements for the entire electrical system. 

 

The N-1 criterion is used by many power system operators. In the past, the cost of 

keeping reserves was part of the overhead; nowadays the entity supplying the reserve 

should (and in the future “would”) be compensated. Thus defining the amounts of 

different reserve margins becomes a critical task and this is why the grid codes in 

reserves vary from region to region. 

 

Southern zone of PJM Interconnection in America [181] assumes that the outage of 

more than one generator is unlikely to happen. Moreover, UC scheduling outcome 

considering this N-1 criterion is far beyond the economic optimum. Similarly, another 

deterministic criterion is used by system operators in Australia, Ontario and New 

Zealand [182] and consider the planned power 𝑝𝑚(𝑡) for each time step: 

 𝑟(𝑡) = max[𝛿𝑚(𝑡)𝑝𝑚(𝑡)] , ∀𝑡 ∈ 𝒯,𝑚 ∈ ℳ (3-3) 

where 𝑝𝑚(𝑡)  is the power generation set point of generator m at time step t. The 

reserve requirement is changing at each time step and corresponds to the output of the 

most heavily loaded generator at the current time step. Under this criterion, the reserve 

provision is less than with the N-1 criterion, the disconnection of a single generator is 

not allowed, otherwise the safety cannot be assured. 

 

Meanwhile, reserve requirement can be calculated with consideration of a fraction of 

the peak load. For example, in Canada, electric utilities like Yukon Electrical and NWT 

Power Corp. (Northwest Territories Power Corporation), determine the amount of 

reserve by considering [183]: 

 𝑟(𝑡) = max[𝛿𝑚(𝑡)𝑝𝑚] + 𝑎% ∗ 𝑙𝑝𝑒𝑎𝑘 , ∀𝑡 ∈ 𝒯,𝑚 ∈ ℳ (3-4) 

where 𝑙𝑝𝑒𝑎𝑘  is the peak load within a given period, a is a certain percentage that is 

decided regarding the peak load power. Usually a is set 10% (or 5% if peak load power 

is large).  

 

In Europe, reserve requirement is defined by ENTSO-E, i.e. European Network of 

Transmission System Operators for Electricity, regarding a proportion of the peak load 

in the region within a given period 𝑙𝑝𝑒𝑎𝑘_𝑖𝑛_𝑟𝑒𝑔𝑖𝑜𝑛 [184]: 

 𝑟(𝑡) = √𝑏 ∗ 𝑙𝑝𝑒𝑎𝑘_𝑖𝑛_𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑐2 + 𝑐, ∀𝑡 ∈ 𝒯,𝑚 ∈ ℳ (3-5) 

where b and c should be determined empirically. In general, 𝑏 is set no more than 10 

MW, 𝑐 no more than 150 MW. 

 

According to [178][183], Table 3-1 summarizes deterministic reserve requirement 
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criterion in some power systems of Europe, North America and Oceania. 

 

Table 3-1 Deterministic reserve criterion of power system operators in different 

regions 

 System Criterion of 𝒓(𝒕) 

Europe ENTSO-E/UCTE 
√𝑏 ∗ 𝑙𝑝𝑒𝑎𝑘_𝑖𝑛_𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑐2 + 𝑐 

France ENTSO-E policy, with a minimum value of 500 MW 

Belgium ENTSO-E policy with a minimum value of 460 MW 

The Netherlands ENTSO-E policy with a minimum value of 300 MW 

Spain 
[3 ∗ √𝑙𝑝𝑒𝑎𝑘 , 6 ∗ √𝑙𝑝𝑒𝑎𝑘] 

North 

America 

Yukon Electrical (Canada) max[𝛿𝑚(𝑡)𝑝𝑚] + 10% ∗ 𝑙𝑝𝑒𝑎𝑘 

Manitoba Hydro (Canada) 

80% ∗ max[𝛿𝑚(𝑡)𝑝𝑚] + 20% ∗ ∑ 𝑝𝑚

𝑀

𝑚=1

 

Southern zone of PJM 

(America) 

max[𝛿𝑚(𝑡)𝑝𝑚] 

Western zone of PJM 

(America) 

1.5% ∗ 𝑙𝑝𝑒𝑎𝑘  

Oceania Australia and 

New Zealand 

max[𝛿𝑚(𝑡)𝑝𝑚(𝑡)] 

 

These reserve criteria are varying extensively, because they are determined with 

consideration of system size and practical experiences of their owner. All techniques 

considering a deterministic criterion to size OR suffer from the same problem. As the 

generated power of RES cannot be controlled to a prescribed power reference because 

of the variation of the renewable primary energy, RES generation are considered as a 

tripping generating unit. Hence, a large amount of OR is required from conventional 

(and polluting) generators that will probably not be used as RES will generate. The 

oversizing of the OR is leading to economic losses and power system hazard. 

3.3.4 Probabilistic criterion with consideration of RESs uncertainties 

With the aim of well balancing the reserve provision and economic costs, and dealing 

with the rising uncertainty in RES, probabilistic OR criterion have been developed and 

widely discussed in earlier research projects.  

 

A pioneering probabilistic approach for the reserve provision was proposed in [185] by 

considering uncertainties from conventional generators probabilities of forced outage 

of generators. By doing so, the predefined UC risk level is defined and reached with 

varying OR provision, taking into account the varying load demand level, load forecast 

errors and generating capacity of units. However, this approach may lead to a 
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suboptimal solution, since it does not optimize the OR provision regarding the operating 

costs of each individual generator. Instead, it just increases the committed generating 

capacity in order to reach the security target relating to UC risk level. Later in [83] by 

applying IP (integer programming) for a UC problem, the relationship between OR 

provision and relating risk level was discussed to have a reasonable description of 

security and reliability of generation scheduling. Also the expected outage costs due to 

the increase of marginal costs of OR were described in [186] to define the marginal 

utility of OR. 

 

In [84], the amount of reserve was firstly optimized in the presented UC. The risk index 

is calculated during the scheduling, then OR is adjusted at certain time steps in case that 

the target risk index is not reached. [187] proposed an approach to balance the operating 

cost of the power system and the expected cost of energy not served due to load 

curtailments. Most applied probabilistic methods calculate the reserve requirement 

relating with a pre-defined reference risk level, then a compromise is made between the 

economic cost and system security level. More precisely, [188] has presented an 

approach for operating reserve evaluation in an electrical market. The interruption costs 

of the system is represented as a loss of load cost (LOLC). [189] described a method to 

calculate the optimal reserve capacity by minimizing the sum of the reserve costs and 

the expected interruption costs, which are represented as the interrupted energy 

assessment rates (IEAR). IEAR links the customer interruption costs and the adequacy 

indices normally used for planning and operating purposes. [190] has made efforts to 

weigh the cost and benefit of spinning reserve during UC process in an electrical market. 

The benefit is a function of the reducing expected energy not supplied (EENS), and the 

value of lost load (VOLL) is calculated with socioeconomic costs. 

 

[182] proposed a function that approximates the reserve requirements to obtain the 

targeted loss of load probability (LOLP), with the aim to quantify the risk taking into 

account the individual system parameters of the considered function. The OR 

requirements are quantified by a function of preset 𝐿𝑂𝐿𝑃𝑝𝑟𝑒𝑠𝑒𝑡 , and are added as a 

linear constraint at each time step during the optimization: 

 𝑟(𝑡) = 𝑓(𝐿𝑂𝐿𝑃𝑝𝑟𝑒𝑠𝑒𝑡), ∀𝑡 ∈ 𝒯 (3-6) 

In [159] reserve requirement is determined by two types of reliability indicators: 

expected load not served (ELNS) and LOLP. By setting OR requirements, upper bounds 

of ELNS and LOLP are defined regarding a max number of unavailability units, to attain 

the system security target at each time step: 

 𝐸𝐿𝑁𝑆(𝑡) ≤ 𝐸𝐿𝑁𝑆𝑈𝐵 , ∀𝑡 ∈ 𝒯 (3-7) 

 𝐿𝑂𝐿𝑃(𝑡) ≤ 𝐿𝑂𝐿𝑃𝑈𝐵 , ∀𝑡 ∈ 𝒯 (3-8) 

where upper bounds 𝐿𝑂𝐿𝑃𝑈𝐵 and 𝐸𝐿𝑁𝑆𝑈𝐵 are hybrid metrics that are included in the 

presented reliability-constrained algorithm of market clearing. However, until now, the 

considered uncertainties are coming from load demand, load forecast errors and failure 

of conventional generating units, while the uncertainties from RESs are not yet included 
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in these works.  

 

To handle the uncertainties from a high penetration of intermittent RES, e.g. solar and 

wind generation, the impact of RESs are evaluated with the aim of determining 

probabilistic OR in many research works. The OR does not linearly increase regarding 

RES penetration ratio, instead, OR is dependent on varying factors like size of the 

electrical system, scheduling strategy, forecast accuracy of RESs and the load, etc.  

 

A considerable number of inspiring researches have been working on wind power 

integration, which advanced the art of analyzing impact of RES uncertainties on reserve 

calculation [191]–[193]. In [194], the prediction uncertainty arising from intermittent 

generation of wind forecast is assessed. By considering wind forecast uncertainties, 

efforts are made in [193] as an extended work of [190] to represent uncertainties by 

Gaussian distributions. EENS and VOLL are evaluated to make decision of UC 

scheduling and reserve provision.  

 

By modeling wind uncertainty with generated scenarios, reference [195] performed a 

two-stage stochastic programming to optimize the reserve level as well as the reserve 

cost. Expected cost is minimized by considering the VOLL and the energy / reserve 

bids. Though the generation of scenarios is not detailed. In [170], with probabilistic 

forecasts of wind and load demand, the OR is defined through the risk index EENS 

considering different preset reserve level, with the objective of attaining the acceptable 

risk, as well as avoiding the unreasonable costs. 

 

To take into account the forecast uncertainty from load, PV and wind, [196] described 

an approach of scenario generation, then the reserve requirement is assessed in order to 

cope with uncertainty dynamics in the presented microgrid. Non-parametric probability 

density approach (empirical cumulative distribution function) is used to model the 

uncertainty from variables. While the operating reserve quantification is discussed, the 

reserve allocation is not included in the paper. 

 

The issues of this bibliographic study are the following: 

• At each time step, the RES uncertainty must be modelled (with normal probability 

distribution as explained in section 2.4.2). 

• The LOLP is a fundamental risk index to size the required OR for the power system 

• The system OR must be allocated among conventional generators according their 

economic and technical characteristics. 

• In this chapter, to handle the RES uncertainty, the determination and allocation of 

probabilistic OR are implemented by applying a risk-constrained probabilistic 

method, which is detailed in the following section. 

 

To handle the RES uncertainty, we propose to determine and allocate the probabilistic 

OR by applying a risk-constrained probabilistic method, which is detailed in the 
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following section. 

 

3.4 Reserve Quantification with a Risk-Constrained Probabilistic 

Method 

3.4.1 Analysis and modelling of the uncertainty 

As discussed before, OR power is essential to ensure the power balance between the 

intermittent RES generation and load demand in case of mismatch. To achieve an 

optimal generation planning with the consideration of reserve allocation, reserve 

requirements for all the electrical system must be first quantified in advance. As 

uncertainties in energy forecasting vary in the day, an appropriate level of minimum 

power reserve must be determined at each time step, it is necessary to prescribe a risk 

index that quantify the desired level of system security. The task is to quantify the OR 

power in advance (one day-ahead) by carrying out risk-constrained probabilistic 

techniques. 

 

Previously in Chapter 2, the PV power and load power are forecasted one day-ahead at 

each time step. According to the forecast errors within PV and load demand forecasting 

uncertainties, the probabilistic reliability can be assessed by an index as the Loss of 

Load Probability (LOLP). LOLP is the probability that a power shortage may occur. It 

is a measure of expectation that the load demand may exceed generating capacity of an 

electrical system during a given time step. Meanwhile, the “Expected Energy Not 

Served (EENS)” index measures the magnitude of not served net demand: 

 

In the studied microgrid, uncertainties coming from PV power forecasting errors and 

load forecasting errors are both taken into account. As shown in Fig. 3-3, according to 

the frequency distribution histogram, PV and load forecasting errors can be modelled 

with a normal distribution. 

 

 
Fig. 3-3 pdf of net demand forecast errors from historic database of PV and load 

demand forecasting errors. 
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A pdf (probability distribution function) of past PV forecast errors 𝑝𝑑𝑓𝑝𝑣,𝜀,𝑡 and load 

demand forecast errors 𝑝𝑑𝑓𝑙𝑜𝑎𝑑,𝜀,𝑡  are calculated at each time step for all days of past 

years. According to the frequency distribution histogram, both PV and load forecast 

errors are observed to follow normal distributions at each time step. Assuming that PV 

forecast errors follow a normal distribution 𝑁(𝜇𝑝𝑣(𝑡), 𝜎𝑝𝑣(𝑡)) , load demand errors 

follow 𝑁(𝜇𝑙𝑜𝑎𝑑(𝑡), 𝜎𝑙𝑜𝑎𝑑(𝑡)) . As both forecasting errors (random variables) are 

independent, the mean value and the standard deviation of the net demand 𝜇(𝑡) and 

𝜎(𝑡) can be calculated as follows [107]: 

𝜇(𝑡) = 𝜇𝑙𝑜𝑎𝑑(𝑡) − 𝜇𝑝𝑣(𝑡) 

𝜎(𝑡) = √(𝜎𝑝𝑣(𝑡))
2 + (𝜎𝑙𝑜𝑎𝑑(𝑡))

2 

as the mean of net demand is the difference between load demand and PV generation; 

the standard deviation of net demand should be calculated by considering the deviation 

of both PV generation and load demand. Then pdf of net demand forecast errors 

𝑝𝑑𝑓𝐷,𝜀,𝑡 , and cdf (cumulative distribution function) of net demand forecast errors 

𝑐𝑑𝑓𝐷,𝜀,𝑡 can be obtained.  

 

Here the presented problem is statistically discrete, since the probability distribution of 

the net demand deviation at the same time step everyday (e.g. every day at 11:00) is 

discrete. Fig. 3-4 illustrates the calculation of the reserve requirement with a risk index 

𝜺 of LOLP at 11:00.  

 

 

Fig. 3-4 Reserve calculation based on the net demand deviation ∆𝐷 with a risk index 

𝜀 of LOLP at 11:00. 

∆𝑫(𝒕) is the net demand deviation from the forecasted value. On the pdf curve of the 

net demand, the negative net demand deviation ∆𝑫(𝒕) (area in grey) represents the 

exceed generation. The positive net demand deviation represents the power losses, 

which may be caused by an unexpected increase in demand or an overestimation of PV 

generation capacity, so that the system load exceeds the available generating capacity. 

To reduce the risk of a power deficit, a reserve power (area in dark green) must be 

planned according to a prescribed risk index 𝜀 of LOLP (area in red). An acceptable 

risk (𝜀) corresponds then to the area in red on this pdf and the reserve power (𝑟 (𝑡)) to 

cover this risk appears on the characteristic. 
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By considering ∆𝐷(𝑡), the net demand deviation from the forecasted value at time step 

t, the risk is assessed if the required reserve satisfies the equality found from the 

integration of the normal distribution area (Fig. 3-4): 

 

𝑳𝑶𝑳𝑷𝒕: 𝜀 = ℙ[𝑟 (𝑡) ≤ ∆𝐷(𝑡)] = 1 − ∫ 𝑝𝑑𝑓(𝑥)
𝑟 (𝑡)

−∞

𝑑𝑥

= 1 − ∫
1

𝜎(𝑡)√2𝜋
𝑒
−
1
2(
𝑥−𝜇(𝑡)
𝜎𝑡

)
2𝑟 (𝑡)

−∞

𝑑𝑥

= 1 − 𝜙(𝑟(𝑡)|𝜇(𝑡), 𝜎(𝑡))  ∀𝑡 ∈ 𝒯 

(3-9) 

𝜇𝑡 and 𝜎𝑡 are the mean value and the standard deviation of the error on the net demand, 

𝜙(𝑟 𝑡|𝜇𝑡 , 𝜎𝑡) is the cumulative distribution function considering a reserve requirement 

𝑟 𝑡. The index EENS at each time step, it can be represented as: 

 
𝑬𝑬𝑵𝑺𝒕: [1 − ℙ[ 𝑟 (𝑡) ≥ ∆𝐷(𝑡]] × (∆𝐷(𝑡) − 𝑟 (𝑡)) = 𝜀 × (∆𝐷(𝑡) − 𝑟 (𝑡)) 

∀𝑡 ∈ 𝒯 

(3-10) 

Where ∆𝐷(𝑡) − 𝑟 (𝑡) is the missed power during the time step t under certain amount 

of reserve 𝑟 (𝑡).  

3.4.2 Quantification of the power reserve 

In order to assess the electrical system security level, the system operator sets a 

prescribed risk index: 𝜀 . Hence, the required reserve is obtained by the inverse 

cumulative distribution function 𝜙−1(1 − 𝜀|𝜇(𝑡), 𝜎(𝑡)) (Fig. 3-5). 

 

Fig. 3-5 Risk-constrained probabilistic method for reserve determination from past 

data. 
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In this way, 𝑟(𝑡) is set as the reserve requirement when 𝐿𝑂𝐿𝑃(𝑡) ≤ 𝜀 is satisfied. i.e. 

𝑟(𝑡) is used to cover the loss of load and makes 𝐿𝑂𝐿𝑃(𝑡) be equal or less than the 

given risk index. As example, Fig. 3-6 shows the characteristic of the risk according to 

the power reserve at 11:00 time step.  

 

Fig. 3-6 Risk characteristic regarding reserve at 11:00 in Villeneuve d’Ascq (Lille, 

France) the 23th of June, 2020 

A 𝜀 = 5 % risk requires a 21.5 kW reserve to obtain the wished security level 

𝐿𝑂𝐿𝑃11:00 ≤ 5%. Because of a reserve provision of 21.5 kW, 𝐸𝐸𝑁𝑆11:00 is decreased 

to 0.31 kW.  

 

By calculating the reserve requirement under a risk level (𝜀), the LOLP curve can be 

obtained at each time step during the day. Meanwhile, the required power reserve varies 

under different risk level, e.g. if the risk level varies from 1% to 10% of LOLP, the 

required reserve will decrease gradually. Fig. 3-7 illustrates the variation of reserve 

requirement during the day under different risk levels.  

 

Fig. 3-7 Half-hourly reserve requirement with 𝜀 of LOLP in Villeneuve d’Ascq 

(Lille, France) the 23th of June, 2020 
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It is observed that the required reserve increases in the morning and reaches the 

maximum value around noon, followed by a decrease tendency during the afternoon. 

This variation indicates that, there is a considerable need of reserve around noon to 

handle the PV generation uncertainty.  

 

In an electrical system, the effective (obtained) OR is the difference between the sum 

of the maximum generation limits of all committed generators and the sum of all 

generation setpoints (power reference) of committed generators at each time step. In 

this thesis, efforts are made to calculate and observe both the scheduled (day-ahead) 

OR and effective OR scheduling based on the capacity of MGTs at each time step during 

the day.  

3.5 Risk-Based UC Formulation 

3.5.1 General scheme 

Previously in Chapter 2, the PV power and load demand have been properly forecasted 

with collected data. In this Chapter (section 3.4), an uncertainty analysis of the 

forecasting errors is performed in order to determine the OR with a risk constrained 

probability method. By doing so, the net demand 𝐷(𝑡) and reserve requirement 𝑟(𝑡) 

are well prepared for unit commitment scheduling procedure as inputs. In this section, 

the risk-based unit commitment formulation is presented with the targeted objective 

function and implementations of optimization algorithms (DP and MILP) (Fig. 3-8).  

 

 
Fig. 3-8 General scheme of risk-based UC problem formulation 

 

Unit commitment involves an optimal operational planning and reserve dispatching, 

aiming at the optimal solution of generating power 𝑝𝑚(𝑡)  and 𝛿𝑚(𝑡)  of each 

controllable generating unit. 

 

The required OR as well as the missed energy from passive renewables must be 

provided by controllable energy sources. Among a set of M controllable generating 

units, UC problem is a problem of mathematical optimization that must decide whether 

a controllable generating unit is used to produce energy and how much power (𝑝𝑚) each 

unit is producing at any time step to match the demand and the required reserve power 
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(Fig. 3-9).  

 

 

r(t) 

Constraints 
 

• Reserve limits 
• MGT limits 
• Power Balancing 

Criteria 
Objective Function  

Technological 
features 

DP / MILP 

Optimization 

Planned references 

 of MGTs 

J 

m(t) 

pm(t) 

Electrical System 
Modeling 

 

Loads 
 

PV 

Economic Cost 
 

MGT 
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Fig. 3-9 Structure of the UC formulation 

 

3.5.2 UC objective function 

In the presented case, micro gas turbines (MGTs) are considered here as conventional 

generators. The objective is to determine the binary commitment orders, 𝛿𝑚(𝑡), and 

MGT power references, 𝑝𝑚(𝑡), in order to minimize the operating cost of M MGTs 

during T time steps, one day-ahead considering OR provision. 𝑝𝑚(𝑡)  denotes the 

quantity of electricity generated by MGT m at time step t. The UC problem can be 

formulated as: 

 𝐦𝐢𝐧
𝜟,𝒑,𝒓

∑∑{𝛿𝑚(𝑡)𝑐𝑚(𝑝𝑚(𝑡)) + 𝑢𝑚(𝑡)𝑐𝑚
𝑢 + 𝑑𝑚(𝑡)𝑐𝑚

𝑑 }

𝑀

𝑚=1

𝑇

𝑡=1

 (3-11) 

                    s.t. (3-12)-(3-15), (Δ, p, r)ϵ ℱ 

where 𝑚 ∈ ℳ is the set of MGTs and 𝑡 ∈ 𝒯 is the set of time steps. 

 

𝑐𝑚(𝑝𝑚(𝑡)) is a nonlinear operational cost function of MGT m, which indicates the fuel 

cost for producing 𝑝𝑚(𝑡)  during the time step t. 𝑐𝑚
𝑢 /𝑐𝑚

𝑑   is the start-up/shutdown 

penalties on the cost. In this study, a start-up penalty is considered equal to the 

consumed fuel cost during a 5 min operation at full load. Shutdown penalty is 

considered equal to a 2.5 min operation at full load [77]. ℱ  is the set of feasible 

solutions, i.e. the set of decision variables comprising feasible scheduling decisions of 

commitment 𝛿𝑚(𝑡) and power generation 𝑝𝑚(𝑡) for each MGT m at time step t.  

 

Binary decision variables are defined as 𝛿𝑚(𝑡) and refers to the state of the MGT m at 

time step t. 𝑢𝑚(𝑡) = 1 refers to a MGT m, which is starting up at the beginning of a 

time step t, 𝑑𝑚(𝑡) = 1 refers to a MGT m, which is shut down at the beginning of a 

time step t: 
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 𝑢𝑚(𝑡) = {
𝛿𝑚(𝑡), for 𝑡 = 1(initial time step)

1,       for 𝑡 ≥ 2 if 𝛿𝑚(𝑡) − 𝛿𝑚(𝑡 − 1) ≥ 1
 (3-12) 

 𝑑𝑚(𝑡) = {
0, 𝑓𝑜𝑟 𝑡 = 1(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝)

1,       𝑓𝑜𝑟 𝑡 ≥ 2 𝑖𝑓 𝛿𝑚(𝑡 − 1) − 𝛿𝑚(𝑡) ≥ 1
 (3-13) 

3.5.3 UC constraints 

Power balancing and reserve provision 

A power balance between the generation power and the sum of net demand forecast and 

reserve power should be maintained during the operation. The total amount of 

conventional generation at time step t must meet the net demand forecast 𝐷(𝑡) for all 

time steps: 

 ∑ 𝑝𝑚(𝑡)

𝑀

𝑚=1

= 𝐷(𝑡) + 𝑟(𝑡), ∀𝑡 ∈ 𝒯 (3-14) 

The net demand forecast 𝐷(𝑡) is the difference between the load demand forecast and 

photovoltaic (PV) generation forecast at time step t.  

 

To deal with the uncertainties in the generation scheduling, power reserve requirements 

for the power system 𝑟(𝑡)  are considered during time step t in UC constraints 

[197][92]. The required reserve requirement must be properly allocated onto 

conventional units. 

 

The power reserve has a cost even when it is not used. Especially in small power 

systems, the cost of reserve is high. Hence it is important to have OR optimal 

dispatching techniques taking into consideration all conventional unit constraints. 

Generator limits 

The power generation limits between the minimum power (𝑝𝑚) and rated power (𝑝
𝑚

) 

of each generator m are expressed as: 

 𝑝𝑚  𝛿𝑚(𝑡) ≤ 𝑝𝑚(𝑡) ≤ 𝑝
𝑚
𝛿𝑚(𝑡)，∀𝑚 ∈ ℳ，∀𝑡 ∈ 𝒯 (3-15) 

3.5.4 MILP and DP methods for solving UC problems 

Since UC problem is a complex mixed-integer programming problem, various solving 

methods can be used to obtain the optimal generation scheduling, e.g. priority list, DP, 

and Lagrangian relaxation (LR) approach (as discussed previously in Chapter 1, section 

1.4.2).  

 

Currently, the most commonly applied technique is the mixed-integer linear 

programming (MILP). [175] proposes a loss of load constrained UC problem by 

optimizing probabilistic spinning reserve corresponding to unit outage events, but 
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uncertainties of load and RES forecasting are not considered. A MILP-based multiple 

time resolution (time steps of 5 min, 15 min & 30 min, and 60 min).  

 

UC method is presented in [56] for applications with a high renewable penetration. 

However, if the optimization problem implies a nonlinear/non-convex objective 

function or nonlinear operating constraints, relaxation techniques and linear 

approximation methods are needed to obtain linear continuous and integer variables. 

As example, in order to obtain costs of consumed fuel for generating a certain amount 

of electricity, the cost function is approximated as a convex quadratic or piecewise 

linear function of the generator energy output [198]. [78] presented a mixed-integer 

linear formulation for the unit commitment problem of thermal units for large-scale 

cases, the production cost and startup cost are approximated by a piecewise linear 

function and a stair-wise function, respectively.  

 

Compared with MILP, a dynamic programming method has less limits regarding the 

convexity and linearity of the UC problem. For example, [199] presented a dynamic 

programming algorithm to coordinate the wind and thermal generation scheduling 

problem for the operation of an isolated hybrid power system. But, in the literature, 

long calculation times and computing efforts are reported. 

 

So, regarding the solving of the DUC, we are going to apply MILP and DP in order to 

compare their performances in the search of the solution. The interest is to see if MILP 

can accelerate the solution search while keeping an accurate accuracy in the found 

solution. 

3.6 Presentation of the Urban Microgrid 

In previous research works at L2EP, studies concerning an advanced PV generator has 

been built. The control system and the power management of the PV-based hybrid 

active generators is detailed in [44]. [45] has integrated the PV active generator in the 

energy management of an urban microgrid including prosumers and consumers. [43] 

and [54] presented an energy management system with a deterministic unit commitment 

of micro gas turbines (MGTs) for this urban microgrid. According to these studies, we 

are going to use the same urban microgrid to analyze the impact of PV power 

uncertainties on the operating reserve and operating costs. This urban network has been 

introduced in [49][55].  

 

As illustrated in Fig. 3-10, the studied urban MG includes 120 kW residential rated 

loads, a set of 20 PV generators (installed on the house’s roof) with 180 kW rated power 

(9 kW each), and three Combined Heat and Power (CHP) based MGTs (𝑀 = 3).  
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Fig. 3-10 Description of the studied energy community 

 

Micro CHP (Micro Combined Heat & Power) enable the simultaneous production of 

heat and electricity in individual homes. As other DGs, small CHP units benefit the 

operation of local distribution systems due to its close location to the electrical loads: 

reduction of network power losses, deferral of network capacity expansion, 

improvement of supply reliability, etc.  

 

In chapter 5, storage will be associated to PV generation in order to consider PV active 

generators (PV AGs) and receive power references. All generators and electrical loads 

are connected locally in a residential district, thus voltage drops as well as line losses 

are ignored. To simplify the study, the uncertainty from local line outages is ignored. 

Since PV generators are closely located in the current urban network, received solar 

irradiation is assumed to be the same for each PV generator. 

 

MGT and houses with PV generators have local controllers, which receive local 

operating setting points from the central supervisor, implement power transfers with the 

electrical network and send local sensed quantities [33]. A central microgrid energy 

manager is responsible of the microgrid system operation management through the 

calculation of the optimal power dispatching to each local controller. To facilitate the 

energy management and system optimization, a user-friendly EMS and operational 

planning tool has been developed in [49][172]. The designed energy management 

system is based on the MATLAB/GUI (Graphical User Interface). It is focusing on the 

system uncertainty analysis and the management of generators with DP-based 

optimization criteria. An extension of this tool with stochastic unit commitment will be 

presented in chapter 6. 
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MGTs are used as secondary sources (backup sources) when there is a power deficit of 

primary sources (RESs). Since gas turbines consume fossil fuel and emit pollutant gases, 

it is necessary to study its characters to optimize the system operation in order to 

minimize gas emissions and the fuel cost in this community. The three MGTs have 

minimum and maximum power limits as follows: 

𝑀𝐺𝑇1: 𝑃1 = 30kW,𝑃1 = 60kW; 

𝑀𝐺𝑇2: 𝑃2 = 15kW, 𝑃2 = 30kW; 

𝑀𝐺𝑇3: 𝑃3 = 15kW, 𝑃3 = 30kW. 

The operational cost of the gas turbine (objective function) is assessed by considering 

their partial load efficiency characteristic [77]. Each operational cost function 𝑐𝑚(𝑡) is 

fitted by a quadratic function between the maximum and minimum generation limit of 

each MGT. Fig. 3-11 shows approximate quadratic operational cost functions of three 

MGTs. Cost function of MGT1 is non-convex, leading to the non-convexity and 

nonlinear characteristics of the objective function in equation (3-11).  

 

 

Fig. 3-11 The quadratic curve fitting of the cost functions of studied three MGTs. 

 

Similarly, to reduce the CO2-equivalent emissions, emission costs are also modeled and 

are expressed as fitted quadratic /linear functions. Discussions about the emissions of 

MGTs will be characterized in Chapter 4 for optimizations with environmental criteria. 

 

Owing to the stochastic characteristic of the solar energy production and load demand, 

predictions for both generation and consumption are essential for the optimal 

scheduling. As shown in Chapter 2, an artificial neural network is applied for the 

prediction. A day-ahead approximated PV power prediction profile is obtained from the 

meteorological information, the parameters of PV panels and the historic database of 

PV power production. Based on historic electrical power consumption, the profile of 

the electricity consumption is estimated one day ahead. Methods for load forecasting 
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are based on meteorological information and historic consumption data [111]. The 

profiles of half-hourly forecasted daily PV generation and electricity consumption in 

the studied case are given in Fig. 3-12. Under this situation, the forecasted daily PV 

energy is 539 kWh; the forecasted daily load demand energy is 1082 kWh.  

 

Fig. 3-12 Half-hourly forecasted daily PV generation, and electricity consumption 

 

In the presented urban microgrid, the produced PV electricity can be directly consumed 

in homes. This is called “PV self-consumption” [200]. The higher the PV self-

consumption rate is, the more efficient and profitable the solar installation is. Two kinds 

of methods are commonly used to increase the self-consumption: energy storage and 

demand-side management. Meanwhile, “PV self-production rate” is defined as the 

share of PV electricity over the total home’s electricity demand. The higher the PV self-

production rate is, the more independent the microgrid is. 

 

By comparing the average daily available PV energy and daily load demand energy 

during the year, the PV self-consumption rate could be about 50% in this case. And the 

PV self-production rate could be about 25%. If no storage is used, a part of the available 

PV energy for supplying the load demand will be lost (Power supply > Load demand) 

and so is decreasing the PV self-consumption rate and the PV self-production rate. But 

this unused PV power can be valued as operating reserve and will be studied in part 

3.7.2 according to different risk criteria (N-1 criteria, LOLP). In chapter 5, storage will 

be considered with different control strategies to save this lost PV production.  

3.7 Generation Scheduling with DP  

To deal with the non-convex characteristic, a dynamic programming algorithm is 

chosen and the principle is first recalled. Then, the applications to our studied urban 

microgrids is presented. The presented DP algorithm is implemented under MATLAB 

R2018b. The used computer has 8 GB of installed RAM and a 2.70 GHz processor. 

This algorithm will be used later to analyze the propagation of the uncertainty onto 

results and also discussed regarding MILP. 
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3.7.1 Mathematical Formulation of the Dynamic Programming 

Dynamic programming algorithm has been invented to find successive allocation of 

resources (multi-stage allocation) over a time horizon. The characteristic of tackled 

problems is the coupling between the future state of the system and past decisions taken 

during previous time intervals. In our scheduling problem, we have to decide the 

commitment of generators and their power references every half of an hour for 

tomorrow. 

 

From the UC problem formulation (3-11), a recursive equation is expressed following 

the approach of Bellman [201]. Then, an optimization procedure will be implemented 

to solve it. For any MGTs state, the operational cost is expressed as the sum of: 

→ The cost of electricity production during the time step [t-1, t]: 

 ∑ 𝛿𝑚(𝑡)𝑐𝑚(𝑝𝑚(𝑡))

𝑀

𝑚=1

 (3-16) 

→ The cost during the previous time steps 𝐹(𝑡 − 1) added with the transition cost 

due to the start or stop of generators: 

 𝑇𝑟(𝑡 − 1, 𝑡) = 𝐹(𝑡 − 1) + ∑{𝑢𝑚(𝑡)𝑐𝑚
𝑢 + 𝑑𝑚(𝑡)𝑐𝑚

𝑑 }

𝑀

𝑚=1

 (3-17) 

The time is discretized in time steps. At the time step t, the UC formulation can be 

expressed in the form of the recursive dynamic programming equation: 

 𝐹(𝑡) = ∑ 𝛿𝑚(𝑡)𝑐𝑚(𝑝𝑚(𝑡))

𝑀

𝑚=1

+ 𝑇𝑟(𝑡 − 1, 𝑡) (3-18) 

The objective function to be minimized is then an accumulated cost over all considered 

time steps. The DP technique decomposes the optimization problem into a multi-stage 

decision problem that can be solved successively. The DP formulation consists in 48 

stages that represent the 48 time steps corresponding to each half of an hour of 

tomorrow [55].  

 

According to the Bellman’s principle, the solving of the optimization problem consists 

in considering a simpler problem from the considered time step (stage) until the final 

one. For each time step, the minimum cost (3-18) is found. The flow chart of the 

recursive DP algorithm is shown in Fig. 3-13. 
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Fig. 3-13 The flow chart of the presented recursive DP algorithm. 

 

Considering three MGTs, i.e., 𝑀 = 3 , the combinations of on/off states for all the 

MGTs are 23 states at each time step t (each stage). Each state is a unique combination 

of committed and non-committed units. Potentially feasible states are the states where 

the power capacity of all committed MGT units is enough to supply the load demand 

and reserve.  

 

At each time step, all the possible states are checked. For each realizable state, the 

generation output 𝑝𝑚(𝑡) for each committed generator is calculated with a quadratic 

programming algorithm to find the optimal operational cost with quadratic optimization 

functions. For the implementation, we have used the function “quadprog” (quadratic 

programming) function from the MATLAB optimization toolbox. By doing so, the 

generation scheduling is found for each possible state with a minimized total production 

costs at the current stage (time step). 

 

Meanwhile, for each potentially feasible state, the program considers all feasible states 

from the previous stage (time step) and checks if the transition to the current state (in 

current time step t) is possible. If the transition to a current state (in current half-hour) 

is not possible from any of the states in previous half-hour, then the current state is 

regarded as infeasible. If the transition is possible, transition costs are calculated. Then, 

for each possible combination, the corresponding operational cost in (3-16) is 

calculated by taking into account the transition cost at the previous half-hour 

𝑇𝑟(𝑡 − 1, 𝑡) and UC constraints. The DP procedure consists in selecting the possible 

combination corresponding to the minimum operational cost in each time step. 

 

Finally, the total cost is the sum of the transition cost and the total operational cost at 
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the state in previous time step (stage). This procedure is repeated for all states. Total 

costs are then sorted and saved and the sequence of power references is found. 

 

The UC by a DP is going to be applied by considering first the reserve power prescribed 

by a deterministic N-1 criterion and then by a probabilistic criterion (5% LOLP). 

 

3.7.2 N-1 criterion based deterministic optimization 

Study case with no PV generation 

First as a reference case, we consider no PV generation and so MGTs are committed 

during the whole day to ensure the generation capacity and provide the OR regarding 

uncertainties from the load demand (Fig. 3-14). 

 

Fig. 3-14 Generation planning without PV 

The daily cost is 213$ for the generation planning in Fig. 3-14. Concerning the 

evolution of operational cost, the half-hour operational costs are displayed in Fig. 3-15. 

 
Fig. 3-15 Operational cost at each time step without PV generation 

The obtained and effective OR is regarded as the difference between the total power 

ratings and the set point of committed generators at each time step. To highlight that 

the quantity of the power reserve is oversized with the N-1 criterion, we have also 

represented in Fig. 3-16 the required reserve from only the load uncertainty, with 

exactly a 5% LOLP. A large gap between effective daily reserve and required daily 

reserve is observed, which implies a unreasonable scheduling of OR at each time step. 

The effective daily reserve is 553.5 kWh (with a ratio of required reserve to effective 

reserve 25%).  
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Fig. 3-16 Obtained effective reserve without PV generation 

Study case with PV generation 

In this case, as presented in section 3.3.3, the power reserve is calculated according to 

the largest loss of PV production. As the PV generation is regarded as a tripping 

generation unit (no PV generation), then MGTs are committed during the whole day to 

ensure the generation capacity. The N-1 criterion is implemented as follows: 

1) The UC and generation scheduling are calculated by considering only the load 

demand (no PV generation as the previous case). 

2) According to the PV production forecast, the power set point of MGTs is reduced to 

satisfy the power balancing constraint. 

3) If one (or many) MGT power reference is under their minimum power, the MGT 

power reference is increased to be equal to their minimum power. In consequence, the 

PV production is reduced to satisfy the power balancing constraint and a part of PV 

generation is lost. 

 

With this criterion, all MGTs are committed by considering no PV generation, their 

power set points are reduced (to the minimum value if necessary) and so they are always 

able to produce the power for the load demand in case of the loss of the entire PV power 

(Fig. 3-17). As example, at 10h00, PV generation is 44 kW, load demand is 22 kW, 

minimum power of the committed generator MGT1 is 30kW. Hence PV generation 

must be limited to 0 kW, the reference power of the committed generator MGT1 is 22 

kW (under its minimum). The OR from the PV is 44 kW; the OR from MGT1 is 38 kW 

(60 kW-22 kW); the effective OR is 82 kW (44 kW + 38 kW). 

 
Fig. 3-17 Generation planning under N-1 criterion 

 

The daily cost of the MGTs planning (Fig. 3-17) is 205$ (a little bite less than without 
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PV) and the half-hour operational costs are displayed in Fig. 3-18. 

 
Fig. 3-18 Operational cost at each time step under N-1 criterion 

With this strategy, a large part of the PV power is lost (operating under the MPPT point) 

because: 

- all committed MGTs must remain committed with their minimum power reference 

and 

- the PV power exceeds the load demand during the day (Fig. 3-12). 

With N-1 strategy, the daily PV self-consumption rate of PV generation is 17% and the 

PV self-production is 9%.  

 

The lost PV power can be used as operating reserve because the PV production can be 

increased if necessary (more load demand as forecasted, faults on a MGT, …). So, the 

effective reserve is now the addition of the scheduled lost PV power and power margin 

of committed MGTs. Fig. 3-19 shows the effective reserve under the N-1 criterion. The 

effective daily reserve is 1000.3 kWh (with a ratio of required reserve to effective 

reserve 43%), including 446.8 kWh from PV AGs and 553.5 kWh from MGTs (Fig. 

3-19 (a)). To highlight that the provision of the power reserve is unreasonable with the 

N-1 criterion, we have represented on Fig. 3-19 (b) the required reserve from the net 

demand uncertainty. The gap between effective daily reserve and required daily reserve 

is large from 9:30 to 15:00, which induce an oversized reserve quantification; while 

from 15:30 to 19:00, the obtained effective reserve is possibly less than reserve 

requirement, which implies a possible risk of power deficit, though N-1 criterion is 

applied for OR provision. 
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(b) Comparison of effective reserve and reserve requirement 

Fig. 3-19 Obtained effective reserve under N-1 criterion 

 

From these results, we can conclude that it is not rational to schedule OR by N-1 

criterion, since it is rare to lose all predicted PV power. In case of forecasting error, just 

a part of the predicted PV power is usually lost. Moreover, the N-1 criterion leads to a 

sub-optimal decision as the PV production uncertainty is unknown and not quantified. 

The obtained reserve can be over scheduled during one period, while a deficit of reserve 

may occur during another period. It is the reason why determinist methods for OR 

calculation are gradually replaced by probabilistic methods with a desired security level.  

3.7.3 Risk-based deterministic optimization 

In this part, the required OR to cover a 5% LOLP risk is considered (as presented in 

3.5). The same DP algorithm to solve the generation planning problem gives the unit 

commitment result shown in Fig. 3-20. Comparing to Fig. 3-14, the scheduling of 

MGTs has largely decreased during the period from 8:30 until 17:00 because of 

available PV generation. 

 

Fig. 3-20 Optimal day-ahead generation scheduling with risk-based deterministic 

optimization. 

 

All MGTs are switched off between 13:00 and 15:00. With this LOLP risk strategy, the 

PV self-consumption rate of PV generation is 67% and the PV self-production is 25%. 

The PV production must be limited (operating under the MPPT point) as it is sometimes 

more than the load. By this way, as the PV production can be increased if necessary, the 

shaded power constitutes an OR that is available. Then, the positive effective OR is 

provided both by the PV limitation (rpv(t)) and by the difference between the maximum 

generation limits of committed MGTs and their output power at each time step. The 
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available reserve power from the PV limitation is integrated in the optimization 

formulation, the general balancing constraint formulation (3-14) is adapted as: 

 ∑ 𝑝𝑚(𝑡)

𝑀

𝑚=1

= 𝐷(𝑡) + 𝑟(𝑡) − 𝑟𝑎𝑔(𝑡), ∀𝑡 ∈ 𝒯 (3-19) 

where 𝑟𝑎𝑔(𝑡) is reserve power from PV AGs. The comparison between the positive 

effective reserve and the required reserve (with a 5% LOLP risk) is illustrated in Fig. 

3-21. It is observed that the obtained available effective reserve is equal or superior to 

the reserve requirement. The required daily reserve is 426.5 kWh; the effective daily 

reserve is 762.5 kWh, which gives rise to a ratio of required reserve to effective reserve 

56%. Compared with the N-1 criterion, here the reserve scheduling is more reasonable 

with a higher reserve utilization rate. 

 

Fig. 3-21 Positive effective reserve and reserve requirement 

 

Obtained effective OR considering forecasted data (in Fig. 3-12) is shown in Fig. 3-22, 

where red lines indicate the amount of positive effective OR at each time step, and 

yellow lines represent the negative effective OR.  

 

Fig. 3-22 Effective OR 

The negative effective OR is obtained by the power difference between the minimum 

generation limits of committed MGTs and their output power at each time step. In this 

way, the negative OR allows the reduction of MGTs’ generation under the situation of 

less consumption than expected, or over PV production. Both positive and negative 

effective OR power capacities ensure a certain level of security when there is more or 

less scheduled production or consumption. 
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Half-hourly operational costs can be calculated from the calculated fuel consumption 

of the MGTs with the day-ahead planned operating point as well as their minimum and 

maximum values (Fig. 3-23). Generator set points vary according to varying intervals 

of reserve power at each time step. The maximum cost is reached if the largest amount 

of positive effective OR is used; while the minimum cost is obtained when all negative 

effective OR is consumed. The daily cost of the MGTs planning is 179$. 

 

Fig. 3-23 Expected, maximum and minimum operational costs 

 

3.8 Uncertainty Propagation Analysis with Probabilistic Methods 

3.8.1 Characterization of PV forecast errors by confident intervals 

Previously, the unit commitment has been calculated with the more expected PV 

generation forecast and by setting a 5 % risk on the net-demand unbalancing. However, 

in practice, PV generation and load demand are not reliable and a probabilistic level is 

associated to consider predicted data. In this part, the impact of PV power forecasting 

uncertainty on the unit commitment, generation scheduling including OR is studied.  

 

From the past historical data, the real PV generation (in each half of an hour time step) 

is considered as varying around the forecasted PV power according to a probabilistic 

characteristic of PV forecasting errors. As a commonly used probabilistic forecasting 

method, quantiles / percentiles are used to characterize a certain probabilistic level of 

the forecasting errors [81]. The qth quantile is defined as the value where the production 

probability less than this value is q %. 

 

Based on the given large population, the error sample data of PV forecasting errors at 

each time step t is assumed to follow a normal distribution (section 2.4.2). pdf of 

forecast errors is obtained at each time step. 

 

In order to obtain and observe a graphical summary of PV power forecasting errors at 

each time step t, a box plot is shown in Fig. 3-24. Each box implies the distribution 

characteristics of the majority of PV forecast errors during each time step [202]. The 

central mark indicates the median, and the bottom and top edges of the box indicate the 

25th and 75th quantiles, respectively. Their absolute values are below 0.23 per unit (p.u.). 
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Fig. 3-24 The box plot of PV power forecasting errors at each time step. 

 

Meanwhile, the PV power probabilistic forecasting is shown in Fig. 3-25. By applying 

pdf analysis of PV forecast errors at each time step, several probabilistic intervals are 

generated with PV prediction and different security level (50%, 75% and 99%). As 

shown in Fig. 3-25, a larger interval implies higher confidence level (CL) regarding the 

security. The 2.5th and 97.5th quantiles of the PV forecasting errors are applied here to 

obtain the upper bound and lower bound of the PV generation forecast. By doing so, a 

95 % forecast interval is defined for each time step (Fig. 3-25). 

 

Fig. 3-25 Forecasted PV power according to the 95 % forecast interval. 

 

3.8.2 Effect of PV uncertainty on the effective operating reserve 

Considering the expected lower bound of PV generation, the most pessimistic PV 

forecast is obtained, and then a worst-case optimization can be considered. By applying 

the expected PV lower bound of generation, the optimal dispatching of each MGT at 

each time step is rescheduled in Fig. 3-26. Due to the decreased PV power, more 

generators are committed compared with Fig. 3-20 to compensate for the power deficit. 
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Fig. 3-26 Optimal dispatching of each MGT corresponding to expected worst forecast 

of PV generation. 

 

The effective OR is recalculated by taking into account power deviations of the PV 

generation forecast (Fig. 3-27). If less PV power is obtained than expected, two 

possibilities are considered and processed respectively:  

- If the pre-allocated OR power is unable to handle the half-hourly PV uncertainty, 

then more MGTs will be committed to provide more effective OR power to compensate 

the lacking PV power. For example, during time period 10:30-11:00 and 13:00-14:00, 

the reserve increases comparing to OR power with exact forecasting (Fig. 3-22), 

because more MGTs are committed (MGT 2 and MGT 3) to provide additional positive 

reserves.  

- If the pre-allocated OR power is enough to handle the half-hourly PV uncertainty, 

then the effective OR is consumed to compensate the PV deficit, e.g. effective OR 

decreases at 9:30-10:00 comparing to Fig. 3-22, because positive OR is consumed to 

compensate the pessimistic PV. 

 

Meanwhile, with the consideration of the lower bound of PV generation, the positive 

effective reserve and required reserve are illustrated again in Fig. 3-28. Comparing to 

Fig. 3-21, there is less available reserve power during the period 9:00-17:30. Due to the 

reduce of PV power, the reserve power is consumed to compensate the PV power 

deficit. 

 
Fig. 3-27 Effective OR corresponding to the expected worst case of PV generation. 
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Fig. 3-28 Positive effective reserve and reserve requirement 

 

The effective reserve in each time step varies according to the committed MGTs as well 

as the PV generation. After analysis results following the propagation of some PV 

generation scenarios, it is observed that the effective reserve can be approximated by a 

normal distribution. For example, the pdf of the effective reserve at 13:00 is shown in 

Fig. 3-29 with a mean 𝜇𝐸𝑅,𝑡=13:00 = 73 and a standard deviation 𝜎𝐸𝑅,𝑡=13:00 = 15. 

The fitted pdf curved is obtained for each time step according to the corresponding 

histogram. 

 
Fig. 3-29 Effective reserve at 13:00 

 

Meanwhile, operational costs fluctuate according to generation and reserve scheduling, 

as shown in Fig. 3-30. For example, during 6:00-8:00, the operational cost stays the 

same as expected because the scheduling of the MGTs is unchanged. On the other hand, 

the operational cost increases during 8:30-17:00 when the scheduling is changed and 

there is additional MGTs turned on. The red dash line and the yellow dot line indicate 

variation intervals regarding cost. At each time step, the maximum cost is attained by 

providing the largest amount of positive OR power, and the minimum cost is reached 

by providing all of negative OR power.  
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Fig. 3-30 Expected, maximum and minimum operational costs considering expected 

worst case of PV generation. 

 

Reserves and daily operational costs under PV uncertainties are shown in Table 3-2. 

When the uncertainties of PV forecast are not considered (results are marked in bold). 

Expected reserves and daily costs are obtained and are based on the deterministic 

generation scheduling.  

 

Table 3-2 Reserves and daily operational costs under PV uncertainties. 

PV scenario 
Net Demand 

(kWh) 

PV 

(kWh) 

Reserve (kWh) Daily Cost ($) 

Positive OR Negative OR Max. Cost Cost Min. Cost 

Lower bound 1230 279 712 490 236 211 164 

Expected 1017 539 763 401 202 179 141 

Upper bound 833 938 842 336 176 159 128 

 

Furthermore, the results for both best (upper bound) and worst forecast (lower bound) 

of PV generation are presented respectively. When the PV uncertainties are considered 

according to the forecast intervals, the expected operational cost of the deterministic 

generation scheduling is no longer able to be achieved, instead, the variation intervals 

of maximum and minimum costs are re-calculated. The maximum cost is obtained when 

considering lower bound of PV generation. The minimum cost is attained when PV 

generation reaches upper bound of forecast interval. Meanwhile OR are re-calculated 

after the generation re-scheduling.  

3.9 From DP to MILP  

3.9.1 Interests 

Until now, with approximate quadratic operational cost functions of MGTs, a DP 

algorithm is implemented for optimal day-ahead generation scheduling with risk-based 

deterministic optimization. However, the optimization problem with a quadratic 

objective function can be computationally costly. or even difficult to solve when a non-

convex quadratic function is included. For a multi-objective function incorporating two 

or more cost functions (operational cost, emission cost, …), the computational cost is 

even higher. 

6h 8h 11h 14h 17h 20h 23h 2h 5h

Time (half hour)

0

2

4

6

8

10

M
ax

.M
in

.C
O

S
T

($
)

Max. Cost($)

Cost($)

Min. Cost($)



 CHAPTER 3  

 99 

 

To reduce the computational cost, as well as handle the non-convexity within the 

solution search, linearization of objective functions or constraints are usually employed. 

Among all the linear optimization methods, the mixed-integer linear programming 

(MILP) is one of the most common approaches to deal with UC/operational scheduling 

in electrical systems. The commitments of each controllable generating unit can be well 

represented with binary decision variables in MILP. 

 

In this study, in order to carry on the following multi-objective optimization in Chapter 

4 and Chapter 5, MILP is implemented to solve the presented generation scheduling 

problems. Cost functions are approximated as linear functions to increase the 

computational efficiency and ensure the feasibility of the optimization algorithm. Fig. 

3-31 shows approximated linear functions of the operational cost functions of MGTs 

𝑐𝑚(𝑝𝑚(𝑡)). The dash line represents the cost functions before linearization. The solid 

lines indicate the rated power generation intervals of three MGTs, i.e. minimum and 

maximum generation limits are between 30kW - 60kW for MGT1, 15kW - 30kW for 

MGT1 and MGT2.  

 

 
Fig. 3-31 Linearization of the nonconvex cost function of studied three MGTs 

 

MILPs are usually solved by branch-and-cut algorithms, i.e. branch-and-bound 

algorithm combined with cutting planes. Hence during the search in the problem tree, 

optimality can be reached by proximity and convergence process in a finite time [78]. 

More explanations and details of branch-and-cut algorithm can be found in 

APPENDIX 3. The optimization tool is YALMIP [203] and IBM ILOG CPLEX 

Optimization Solver [204] with MATLAB R2018b. The comparison of both algorithms 

is shown in Table 3-3. The comparison proves that DP offers more opportunity of type 

of the objective function (linear, quadratic), while MILP is superior to DP in terms of 

computational efficiency. 
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Table 3-3 The comparison of DP and MILP  

 DP MILP 

Objective Function Type Quadratic Linear 

Computational Time (s) 4.39 2.53 

Optimal operational cost ($) 179 180 

 

In section 3.9.2, generation scheduling results with risk-based deterministic 

optimization by MILP are presented and will be compared with stochastic optimization 

results in chapter 4 and 5. 

3.9.2 Risk-based deterministic optimization with MILP 

The profiles of the half-hourly electricity consumption forecast, and half-hourly 

forecasted daily PV generation for the corresponding day are given in Fig. 3-12. Fig. 

3-32 shows obtained power set points of generators. Comparing to the scheduling result 

of DP algorithm in Fig. 3-20, the generation planning is almost the same, except for the 

time step 22:30, where MGT 2 is committed instead of MGT 3. The difference may due 

to the linearized cost functions using in MILP. 

 

Fig. 3-32 Generation planning under deterministic optimization and scheduled PV 

power 

 

Required reserve is integrated into the risk-based deterministic optimization operational 

planning. Fig. 3-33 (a) shows that the effective reserve is enough and more than 

required reserve. The pre-set security level is obtained. Fig. 3-33 (a) is the same as the 

results with DP algorithm (Fig. 3-21), since they hold the same generation scheduling 

result (except for the time step 22:30 as noticed previously). 

 

Fig. 3-33 (b) shows reserve power allocation in slow generator and fast generators. 

Reserve power provided by the slow unit (MGT 1) is marked in red, and yellow bars 

indicate that the reserve power is provided by fast units (MGT 2, MGT 3). Blue bars 

imply the reserve power from PV generation (exactly by PV production limitation, see 

part 3.7.3). The discussion in terms of fast/slow units will presented in the following 

Chapter 4. Fig. 3-33 (b) is shown in order to compare with results in scenario-based 

stochastic optimization. The merit of fast units regarding reserve provision will be 

highlighted. 
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(a) Obtained effective reserve with a LOLP ≤ 5%  

 
(b) Obtained effective reserve from slow and fast generators (with a LOLP ≤ 5%) 

Fig. 3-33 Reserve requirement and obtained effective reserve with a risk-based 

optimization 

 

In Chapter 4, a scenario-based two-stage stochastic optimization is presented. The two-

stage structure includes: 

• A risk-based deterministic optimization in the 1st stage (as illustrated in 3.7.2); 

• A scenario-based optimization in the 2nd stage. Scenarios are built with different 

possibility of occurrences to represent the possible uncertainty during the solution 

search.  

 

The obtained results in section 3.7.2 are regarded as the 1st stage optimization (risk-

based) in Chapter 4. In the following Chapter 4 and Chapter 5, MILP will be applied as 

the approach to solve the generation planning problem with multi-objective stochastic 

optimization. 

3.10  Conclusion 

In this chapter, to handle RESs uncertainties that may occur during the UC procedure 

in the local microgrid community, the definition of operating reserve is introduced. 

Concerning the OR provision and determination, deterministic OR criterion and 

probabilistic OR criteria under RESs uncertainties are discussed in detail.  

 

The main contribution of this chapter are as follows: 

1) The deterministic day-ahead commitment of generators and half-hourly OR powers 

are decided by taking into account PV generation uncertainties and load 

uncertainties with a prescribed risk level: Loss of Load Probability (LOLP) 

2) Based on nonlinear operational cost functions of generators, a DP algorithm is 
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carried out to find solutions of the non-convex mixed-integer nonlinear 

programming (MINLP) UC problem. Operating cost functions of conventional 

generators are approximated as either non-convex or convex quadratic functions, 

then a suitable objective function is expressed with a combination of quadratic 

operational cost functions. 

3) In order to increase the computational efficiency, a MILP approach is employed 

with a linear approximation of operating cost functions. The obtained results will 

be used as the 1st stage optimization (risk-based) of the scenario-based stochastic 

optimization results in Chapter 4. 

4) The impacts of PV power forecasting uncertainty on operational costs are analyzed. 

By considering distributed energy resources and a 95 % confidence level, a certain 

forecast interval is determined with a set of quantiles for every half-hourly 

forecasted PV generation. The effect of the PV uncertainty is analyzed under the 

situation of exceed or missed PV power in each half-hour. With forecast intervals, 

operating reserves (OR) can be recalculated by considering a certain level of 

security. Meanwhile, the generation scheduling is updated in order to respond to 

system demand conditions, and the impact of PV power uncertainty on the 

operational cost is analyzed. The maximum and the minimum costs regarding the 

PV uncertainty are then obtained. 

 

Nevertheless, DP and MILP are risk-based deterministic optimization methods in the 

sense that future events are known: PV production and load demand forecasts are used 

in the optimization process. The obtained power references are the optimal trajectory 

(sequence of 48 stages with power references) corresponding to the minimization of the 

objective function in a deterministic situation (forecasted data with an operating power 

margin). In the following Chapter 4, research works will be oriented to integrate directly 

the uncertainty coming from forecasting errors inside the optimization algorithm in 

order to obtain a stochastic analysis of predicted operational costs. 
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CHAPTER 4 ANTICIPATING UNCERTAINTY WITH A 

SCENARIO-BASED STOCHASTIC OPTIMIZATION 

4.1 Introduction 

Classically, with day-ahead forecasting data from load demand and renewable 

generation, the generation scheduling can minimize the power system operating cost at 

each time step of the next day [59]. However, uncertainties in the generation induces 

inevitable deviations between the scheduled generation decision one day ahead and the 

real one in the day. The increasing of intermittent RES requires more and more 

generation scheduling under uncertainty. 

 

The first needs are to represent uncertainties in the UC problem formulation and to 

consider them in the proposed generation scheduling one day ahead. Thus, optimization 

problems should include uncertain variables that enable a generation scheduler to have 

a complete knowledge of the system behavior and, therefore be prepared for undesirable 

variations of RES production. The unit commitment problem under uncertainties has 

been extensively studied for more than decades through various considered study cases. 

In this chapter, a review of the literature in the field of stochastic optimization is 

presented in order to identify interesting published contributions, to define main 

features of an optimal generation scheduling under forecast uncertainties and to 

highlight remaining challenges. 

 

The idea of SUC is to utilize a representation of uncertainties with different scenarios 

in the UC formulation. Compared with simply using reserve constraints (as in chapter 

3), SUC have certain advantages, such as reliability improvement as probable 

uncertainties in the future are taken into account [91][92]. Based on the needs, a 

scenario-based stochastic optimization structure is proposed for the operational 

planning of controllable generators in an urban microgrid under varying and uncertain 

renewable energy generation. The effect of photovoltaic (PV) power generation 

uncertainty on operating decisions is examined by considering expected possible 

uncertainties with scenarios. The optimization structure is organized in two stages.  

 

In a first stage, a deterministic optimization within a Mixed-Integer Linear 

Programming (MILP) method generates the unit commitment of controllable 

generators with the day-ahead PV and load demand prediction and the OR requirement. 

As previously in chapter 3, a method for forecasting uncertainty is used to model the 

net demand prediction error taking into account the uncertainty coming from the 

prediction tool. Based on distributions of forecasting errors, a LOLP-based risk 

assessment method is proposed to determine an appropriate amount of operating reserve 

(OR) for each time step of the next day.  
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In a second stage, a scenario-based problem is proposed to implement a stochastic 

operational planning with consideration of probable forecasting uncertainties. Issues of 

the second stage are the commitment of enough flexible generators to face probable 

deviations from predictions.  

 

Different objective functions are considered in terms of economic operating cost 

(mono-objective), CO2 equivalent emission (mono-objective) and the combination of 

these two (multi-objective of cost and emission) The significance of the proposed 

methodology is illustrated with results obtained from a studied urban microgrid system. 

 

This chapter is organized as follows. Section 4.2 expresses the needs for uncertainty 

handling in generation scheduling one day ahead. Section 4.3 presented the state of art 

of SUC methods under RES uncertainty and then explains the explored ways in this 

research work. Section 4.4. describes the mathematical formulation of the scenario-

based stochastic operational planning with MILP. Section 4.5 discusses the obtained 

results of operational planning with a scenario-based optimization in the presented 

urban microgrid. Section 4.6 presents the conclusions. 

4.2 Needs for Uncertainties Modelling in Operating Planning 

4.2.1 Anticipating uncertainty with scenarios 

Anticipating the future is the best way to tackle its uncertainties 

The best situation for deciding a generation scheduling is to do it while taking into 

account uncertainty of PV production/load demand. In the previous chapter, a decision 

under risk is proposed and is based on the knowledge of probabilities of forecasting 

errors. While the well-scheduling of reserve requirements (by risk-constrained 

probabilistic method) is one solution for limiting a risk and ensuring a security level to 

some extent, setting the future set points of generators in these conditions is not 

sufficient because the outcome of the decision is not known. Day ahead approaches that 

predict a single output (generation scheduling solution) and do not model the 

uncertainty in the future actions, will surely fail to achieve the optimal objective 

function with real RES production and load demand. On the contrary, approaches that 

are capable of predicting all the possible outputs are preferable. Foresight is the 

assessment of what might happen or be needed in the future. It is needed in order to be 

prepared for the future from a risk perspective. It is a means to be adaptable and robust 

in the face of scenarios that might knock off another generation planning. 

Foresight is different from prediction 

Foresight scans and anticipates possible futures. Foresight must guide the appropriate 

participation of generators in the face of uncertainty arises. The practice of foresight 

and anticipation strengthens the generator scheduling not as certainties but as 
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possibilities. It builds on the anticipation of a variety of future scenarios. Through 

implementing foresight and anticipation, the generation scheduling can more 

effectively prepare the use of generators with the future uncertainties at the present 

moment. 

Scenario based scheduling 

Underestimating the realization of the uncertainty can lead to generation scheduling 

strategies that neither defend against the threats nor take advantage of the opportunities 

of RES. Although we cannot know the future, a range of possible futures can be known 

that can enhance our understanding of possible risks and anticipated solutions. 

Anticipation and preparation for possible future situations are possible if we consider 

various scenarios of forecasting. Considered scenarios do not present one future but 

several alternatives (Fig. 4-1).  

 

Fig. 4-1 Comparison of forecast based planning and foresight-based planning 

 

A scenario-based planning helps making generation scheduling better including 

uncertainty. At its core, a scenario is a view of how the future might unfold. And that 

is challenging DUC. Starting points are key uncertainties to be used to define scenarios 

in the future. Considering exploratory scenarios helps the exploration of commitment 

changes and new generation scheduling. This gives the microgrid operator a way to 

create a flexible, futures ready strategy that allows for an agile response in case of RES 

change. The general method can be described by three steps (Fig. 4-2): 

- A limited number of scenarios must be defined to describe distinct, plausible futures 

(Vision). 

- The generating scheduling is evaluated against each of the scenarios and assess how 

robust each of actions are.  

- By looking at the spectrum of possible outcomes for each uncertainty, the decision 

is built. 
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Fig. 4-2 Foresight framework with scenario-based scheduling 

 

Foresight is the assessment of what might happen or be needed in the future. Foresight 

is a means to be adaptable and robust in the face of scenarios that might knock off 

another generation planning. 

4.2.2 From risk-based DUC to SUC 

Foresight techniques can help microgrid operator to anticipate RES production change, 

so that they can plan effectively in uncertain conditions, prioritize conventional 

generators and stay ahead the security of the electrical network. Previously in the 

chapter 3, a risk-based quantification of the reserve with a probabilistic method is 

considered before the optimization solving of the UC problem under a prescribed risk. 

In this chapter, instead of focusing on the analysis of uncertainty on database (of past 

realized operating points), efforts are made to solve the UC problem under uncertainty. 

The uncertainty must be modelled in the solution search and so a scenario-based 

stochastic optimization method is proposed (Fig. 4-3 ). 

 

Fig. 4-3 Scheme of the proposed stochastic optimization approach in Chapter 4 and its 

comparison with deterministic optimization 
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4.3 Stochastic Optimization methods for UC 

4.3.1 State of the art 

In unit commitment applications, the formulation of an optimization under uncertainty 

concerns the analysis of power references (decision variables) and the optimal cost 

(minimized objective function) for different scenarios and associated probabilities 

(renewable production, load demand, net demand). Performances are depending on 

deterministic variables and uncertain variables. Usually, the deterministic variables are 

the mean value of the random variables. For a standard UC problem, deterministic 

variables are the mean values of the forecasting error during a time step. 

 

To study and analyse uncertainties in energy systems, three approaches are presented 

and classified in [127]: probabilistic methods, possibilistic methods and the 

combination of those two. These methods are used to analyse two types of uncertainties 

[151]: 

a) Quantitative uncertainty: uncertainty that is quantifiable in numerical terms by a 

mathematical function with deterministic parameters. This uncertainty refers to the 

power production of the stochastic generator in a given location. This uncertainty can 

be quantified in numerical terms by statistical analysis of data. This type of uncertainty 

is modelled using a probabilistic approach. 

b) Qualitative uncertainty: uncertainty that is initially expressed in vague, non-

numerical (usually verbal) terms such as "approximately equal to" or "a small 

percentage". This uncertainty relates to, for example, the type of energy source (solar 

or wind energy) and the place of production. The network designer can have a degree 

of certainty about the type of source to be installed. This type of uncertainty is modelled 

using a possibilistic approach. 

 

For probabilistic approaches, probability density functions (pdf) are commonly 

introduced to model uncertainty characteristics and are associated to the three methods: 

point estimate method, Monte Carlo simulation method, and scenario-based analysis 

method. SUC is using a scenario-based uncertainty representation to deal with 

generation planning involving uncertainties [81], [88]–[90].  

 

As for in possibilistic methods and hybrid probabilistic-possibilistic approaches, some 

of input uncertain parameters are modelled as fuzzy membership functions since these 

uncertainties cannot be represented by pdf-based probabilistic methods. Theses 

modelled uncertain parameters include electricity price [205], loads [206], etc.  

 

Previously, [207] presents a MILP method for a day-ahead SUC problem incorporating 

solar uncertainty, taking into account reserve constraints of the microgrids as an reserve 

trading with the main-grid. [208] formulates a MILP model that includes a conditional 

value for risk assessment of RES and load uncertainties when solving SUC problem in 
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isolated systems. As one of the most commonly used method in UC problems, MILP 

shows its advantages regarding compatibility. Commitments of generators are ideally 

regarded as integer decision variables in MILP. In our study, with the previous 

discussion about MILP in chapter 3, MILP is employed as the ultimate method to solve 

the optimization problem regarding operational planning and scheduling in the studied 

urban microgrid. 

 

A two-stage unit commitment strategy has been formulated with wind uncertainty and 

considering different locations; and impacts of RES on operating costs and generation 

capacity are evaluated in [209]. Once the commitment decisions of slow generators are 

made in the first stage, they are unalterable in the second stage. While for each fast 

generator, the commitment and the generating point are adjustable in the second stage. 

However, the overall method is not adapted for urban networks or microgrids because 

considered transmission constraints complicates the selection of scenario, and 

specificities of small power systems are not taken into account.  

 

As discussed previously in Chapter 1 (1.4.3), besides scenario-based approaches, robust 

optimization and chance-constrained optimization have also been applied to handle 

generation scheduling problems under various uncertainties [97]. e.g. [210] presents a 

formulation for a security-constrained SUC by considering non-spinning reserves with 

the integration of wind generation. In [211], a robust interval uncertainty method and a 

scenario-based method are detailed and compared. The results conclude that the 

performance of interval-based approach is greatly dependent on interval choices, while 

the computational cost is low. Whereas the scenario-based method leads to solutions 

with higher accuracy, but with higher computational complexity. A great challenge of 

SUC with scenario-based approach is the speed up of problem solving. It will be tackled 

in this proposed work through the determination of a limited number of scenario and 

the refined exploitation of fast generators to counter pass probable uncertainties. 

 

To deal with forecast uncertainties and allocate reserve properly, many research works 

combine probabilistic methods with DUC, or apply SUC that includes reserve 

constraints [212]. On the other hand, compared to deterministic reserve determination, 

SUC has certain advantages, such as the operational cost saving for a prescribed 

reliability index [91], [92]. An interesting approach for modelling system operations 

considering load forecasting uncertainties is proposed in [92]. Unit commitment 

decisions are taken by considering time horizons varying from hours to days before the 

real operations, and the economic dispatch is performed by considering time horizons 

from minutes to hours ahead. However, the quantification and pre-allocation of the 

reserve power one day-ahead in a SUC is still a problem since efficiency and reliability 

when solving such a problem is greatly dependent on the number of scenarios. To 

overcome these disadvantages, [213] merges a probabilistic reserve constraint 

technique and a SUC approach with a limited number of scenarios to overcome the 
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problem of computational cost. By considering also the additional stochasticity from 

RES, [208] proposes a conditional value of risk during the SUC procedure to deal with 

RES uncertainties. Whereas, the separated commitment of slow and fast generators 

according to the uncertainty modelling would be an improvement. 

 

Compared with traditional generation systems, urban microgrids have their specific 

characteristics and higher demands from citizens. Hence, some advanced control 

algorithms have been developed to achieve multi-objective optimization criteria. Due 

to the complexity of the optimisation problem and given the economic/environmental 

benefits that are achieved, attention has been paid to the improvement of optimisation 

algorithms. Table 4-1 summarized some of deterministic/stochastic-based approaches 

for operational planning in microgrids. The summary indicates that efforts are made by 

researchers to include load and RESs uncertainties during the planning and scheduling 

through varying stochastic approaches. However, RES utilisation is not considered in 

most cases during the optimization. [214] has made efforts to maximize the utilization 

rate of solar energy by optimizing the storage usage during the scheduling procedure.  

 

In our case, with a proposed storage control strategy of ESS in the microgrid (in Chapter 

5), the RES utilisation is considered as one of the optimization objectives during the 

operational planning. The RES utilisation rate regarding reserve provision is optimized, 

with the objective of providing the reserve by stored solar energy, and maintaining the 

security level with the minimum costs. The implementation of ESS and the discussion 

relating storage control strategies are detailed in Chapter 5. 
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4.3.2 Issues and Contributions 

The literature review shows that both SUC and risk-based DUC have certain advantages 

regarding reserve determination. They should be properly adapted and combined. In 

this study, a co-optimization framework is studied for a local energy community with 

PV generation and Combined Heat and Power (CHP) generation that are used for 

electrical energy compensation and emergency generation (power reserve, section 

3.3.2). A stochastic optimization framework for day-ahead unit commitment is 

proposed to include PV inherent uncertainty.  

 

Some challenges are identified: 

- Building scenarios that could represent the future uncertainty. 

- Under each possible scenario, it is essential to model uncertainty sources, as well 

as to handle them through measures to reduce impacts coming from uncertainties. 

- According to generator technologies, fast generators should be preferred for the 

provision of the uncertain power reserve. Since slow generators are less flexible and 

more expensive to be committed for reserve provision use. 

- A great complexity is coming from the timing coupling in the decided generation 

scheduling one day ahead and the impacts on the observed system state (economic 

costs, emission cost, risk level, …) after the disclosure of uncertainties in the future. 

 

Based on the literature review, the proposed operational planning scheme in this work 

is organized in two stages, but with different tasks regarding the uncertainty handling.  

 

The first stage calculates ad hoc requirements on reserve supply from an uncertainty 

analysis of past forecasting PV errors and then performs a deterministic optimization 

and unit commitments of all controllable generators with a Mixed-Integer Programming 

(MIP) method (as detailed in chapter 3). The second stage is a stochastic operational 

planning to foresight the operation of generators in case of future uncertainties. It is 

used to bring enough flexibility through the commitment decision of fast generators, in 

case that future values would deviate from forecasting values, leading to a possible 

deviation from the targeted optimum previously calculated. So, a second optimization 

is run with an anticipation of the uncertainty by considering various predicted scenarios 

and their corresponding probabilities. In this second step, the commitment of slow 

generators is not changed, only their power references may change. The commitment 

and power references of fast generators can also be changed. The proposed method 

deals with the uncertainty in forecast errors with the optimal operational planning of 

controllable micro gas turbines, so that minimal cost of the operation or/and CO2 

emissions one day ahead can be achieved. 
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4.4 Scenario-Based Stochastic Optimization Algorithm 

4.4.1 Scenario-based optimization methodology 

The main difficulty lies in the need of making decisions about the unit commitment 

before knowing how and when uncertainties will affect the electrical system. This 

complexity is broken by defining two stages, where the second-stage is the one that 

deals with the uncertainty (Fig. 4-4). At each stage, the optimization problem is solved 

and find optimal solution in expectation are found [226][227]:  

 

 

Fig. 4-4 A two-stage scenario based stochastic optimization. 

 

The first stage is executed before the uncertain event realization. It is related to the 

optimal scheduling of generation capacity with the knowledge of the forecasted 

scenario and the reserve power requirement (as in chapter 3).  

 

The second stage is based on a number of reasonable operating conditions that may 

arise in the future and so considers a probable uncertainty realization. The possible 

operating conditions are called scenarios. Here, uncertain PV production forecasting 

errors are represented by future scenarios rather than by their distributions. It is 

unreliable to cover a full range of uncertainties so, a finite set of scenarios 𝒲  is 

considered. After the occurrence of forecasting uncertainties in each scenario , a 

second optimal dispatch is computed to find stochastic decision variables (power 

references of generators and commitment of fast generators), which depend on the set 

of scenarios 𝒲. 

 

Intuitively, stochastic decision variables will also depend on the commitment decision 

of slow generators previously made in the first-stage. Fig. 4-5 shows the sequence of 

the two-stage stochastic programming for the reserve and energy optimization. After 

the first-stage, the optimal dispatch of conventional units takes into account the 

scheduled power reserve. Once these values are known, the algorithm of the second-

stage problem calculates, after the disclosure of uncertainties in each scenario and the 

activation of reserve. 
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Fig. 4-5 Sequence of the two-stage stochastic programming for the reserve and energy 

optimization 

 

4.4.2 First stage: Deterministic operational planning  

For the first stage we propose an implementation of the risk-based optimization (chapter 

3) with a LOLP criteria to calculate the OR. It enables the decision of the commitment 

of slow generators.  

 

Previously Fig. 3-31 showed approximated linear functions of the operating cost 

functions of MGTs 𝑐𝑚(𝑝𝑚(𝑡)). A start-up and shutdown penalty are considered on the 

operating costs (𝑐𝑚
𝑢 𝑢𝑚(𝑡) and 𝑐𝑚

𝑑 𝑑𝑚(𝑡), respectively). As discussed previously in 

Chapter 3, the economic cost-based mono-objective function for the operational 

planning in the first-stage is formulated as follows regarding: 

 𝐽1 = min
𝜟,𝒑,𝒓

∑∑{𝛿𝑚(𝑡)𝑐𝑚(𝑝𝑚(𝑡)) + 𝑢𝑚(𝑡)𝑐𝑚
𝑢 + 𝑑𝑚(𝑡)𝑐𝑚

𝑑 }

𝑀

𝑚=1

𝑇

𝑡=1

 (4-1) 

        subject to: 

 ∑ 𝑝𝑚(𝑡)
𝑀
𝑚=1 = 𝐷(𝑡) + 𝑟(𝑡), ∀𝑡 ∈ 𝒯  (4-2) 

 𝑝𝑚  𝛿𝑚(𝑡) ≤ 𝑝𝑚(𝑡) ≤ 𝑝𝑚𝛿𝑚(𝑡)，∀𝑚 ∈ ℳ，∀𝑡 ∈ 𝒯  (4-3) 

       (𝛥, 𝑝, 𝑟)ϵ ℱ 

 

Following the rising of the environmental concerns in cities, objectives of the 

generation scheduling are evolving and consider now the minimization of the emissions. 

Micro Gas turbines have undesirable impacts on the environment, through the 

greenhouse gases emitted. For this reason, in Chapter 4 and Chapter 5, the CO2 

equivalent emission costs of each Micro Gas Turbine (MGT) m are modelled. CO2 

equivalent emission costs are estimated regarding the greenhouse gas emissions (CO2, 
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CO and NOx). The emissions of CO and NOx are converted to CO2 equivalent emissions 

according to [228]: 1g of NOx is considered equivalent to 298g of CO2; 1g of CO 

equivalent to 3g of CO2. The following Fig. 4-6 shows approximated linear functions 

of the CO2-equivalent emission cost functions 𝑐𝑒𝑚(𝑝𝑚(𝑡)). 

 
Fig. 4-6 Linearization of the nonconvex emission cost function of studied three MGTs 

 

𝑐𝑒𝑚
𝑢 𝑢𝑚(𝑡) and 𝑐𝑒𝑚

𝑑 𝑑𝑚(𝑡) are the start-up and shutdown penalty on the CO2 equivalent 

emission costs. The start-up penalty is assumed equal to the operating costs / emission 

costs during a 5 minutes full load operation. The shut-down penalty is assumed equal 

to the costs of a full load operation during 2.5 minutes [77]. The uncertainty coming 

from RES production implies uncertainty in the total emissions. The emission-based 

mono-objective function for the operational planning in the first-stage is formulated by 

considering the CO2 equivalent emission cost: 

 𝐽1 = min
𝛥,𝑝,𝑟

∑∑{𝛿𝑚(𝑡)𝑐𝑒𝑚(𝑝𝑚(𝑡)) + 𝑢𝑚(𝑡)𝑐𝑒𝑚
𝑢 + 𝑑𝑚(𝑡)𝑐𝑒𝑚

𝑑 }

𝑀

𝑚=1

𝑇

𝑡=1

 (4-4) 

 

When it comes to a cost and emission-based multi-objective function, it is negligible 

that the unit of each objective function 𝑐𝑚 and 𝑐𝑒𝑚 is not the same, i.e. $ and kg. 

Therefore, a normalization must be applied in order to make sense the target 

optimization function 𝐽1. Here the value of each function is normalized into a range of 

[0,1] by adding parameters 𝛼𝑐, 𝛼𝑐𝑒. 𝛼𝑐 and 𝛼𝑐𝑒 satisfy the following functions: 

 𝛼𝑐𝑐𝑚(𝑝𝑚(𝑡)) =
𝑐𝑚(𝑝𝑚(𝑡)) − 𝑚𝑖𝑛 [𝑐𝑚(𝑝𝑚(𝑡)]

𝑚𝑎𝑥[𝑐𝑚(𝑝𝑚(𝑡))] − 𝑚𝑖𝑛 [𝑐𝑚(𝑝𝑚(𝑡)]
 (4-5) 

 𝛼𝑐𝑒𝑐𝑒𝑚(𝑝𝑚(𝑡)) =
𝑐𝑒𝑚(𝑝𝑚(𝑡)) −𝑚𝑖𝑛 [𝑐𝑒𝑚(𝑝𝑚(𝑡)]

𝑚𝑎𝑥[𝑐𝑒𝑚(𝑝𝑚(𝑡))] − 𝑚𝑖𝑛 [𝑐𝑒𝑚(𝑝𝑚(𝑡)]
 (4-6) 

By doing so, all objective functions are measured in the same unit. Thus, a multi-

objective optimization is finally formulated as the sum of the two functions: 

 
𝐽1 = min

𝛥,𝑝,𝑟
∑∑{𝛿𝑚(𝑡)[𝛼𝑐𝑐𝑚(𝑝𝑚(𝑡)) + 𝛼𝑐𝑒𝑐𝑒𝑚(𝑝𝑚(𝑡))]

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝑢𝑚(𝑡)[𝑐𝑚
𝑢 + 𝑐𝑒𝑚

𝑢 ] + 𝑑𝑚(𝑡)[𝑐𝑚
𝑑 + 𝑐𝑒𝑚

𝑑 ]} 

(4-7) 
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4.4.3 Building of scenarios for the representation of uncertainty 

The challenge of building scenarios for the SUC problem is to generate several 

representative events that properly guide the SUC optimization in the second stage. The 

set of scenarios 𝒲 must take into account all the possible net demand events over the 

generation scheduling period (the following 24h) with the consideration of different PV 

generation scenarios.  

 

Previously in Chapter 2, an artificial neural network (ANN) has been applied to forecast 

load demand and PV generation. Our method to build future scenarios assumes that 

past experiences (regarding uncertainties coming from forecasting errors) are 

applicable to consider and create future scenarios. These scenarios will be then 

considered to see consequences on the reserve and then decide about the best generation 

scheduling on day ahead (Fig. 4-7). 

 

Fig. 4-7 Handling uncertainties with the knowledge of past and future 

 

According to probabilistic characteristics of forecast errors, scenarios are generated 

with different PV generation predictions at each time step. The probability distribution 

of the PV forecast error at each time step t is approximated as a standard normal 

distribution function [229] and is used to describe the different values of the random 

variable (forecasting error). For a fixed standard deviation (SD), an occurrence 

probability can be calculated [230]. As shown in Fig. 4-8, 68.2% of samples fall within 

an interval of ±1 SD around the mean, while 95.4% of samples are within an interval of 

± 2 SD, and 99.7% of samples are within ±3 SD from the mean. 

 
Fig. 4-8 Scenario generation based on pdf of PV forecast error at time step t 

 

By considering three standard deviations around the mean, six scenarios can be built 

with the PV forecasting time series ( 𝑝𝑣̂(𝑡) ). The occurrence probability of each 

scenario 𝜋𝜔 is deduced from the area of corresponding portion under the pdf curve. 

For example, the probability of scenario 3 (s3) is 𝜋3 = 34.1% regarding the area under 
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the pdf curve in the interval and so the expected PV production in scenario 3 is obtained 

following: 

 𝑠3: 𝑝𝑣3̂(𝑡) =  𝑝𝑣̂(𝑡) + 𝜇𝑝𝑣,𝜀(𝑡) −
1

2
𝜎𝑝𝑣,𝜀(𝑡) (4-8) 

𝜇𝑝𝑣,𝜀(𝑡) and 𝜎𝑝𝑣,𝜀(𝑡) are the mean value and standard deviation of PV forecast error at 

time step t, respectively. For each scenario, the expected net demand 𝐷𝜔(𝑡) and the 

expected operating reserve requirements 𝑟 𝜔(𝑡)  are re-calculated. Hence, the 

knowledge of forecasting errors from past experiences enables the determination of a 

set of scenarios with their probabilities. 

4.4.4 Second stage: Stochastic operational planning 

Interest of the second optimization is to find a unit commitment scheduling of fast 

generators and a power rescheduling of all controllable generators, while taking into 

account probable scenarios. 

Reserve quantification for each scenario 

The expected operating reserve requirements 𝑟 𝜔(𝑡)  must be rescheduled and the 

operating cost is re-calculated. Hence, the dispatching adjusts the previous scheduled 

power (in the first stage), according to the varying reserve requirement in each scenario. 

According to a specific scenario, the difference between the PV generation value in 

current scenario and the predicted PV power ∆𝑝𝑣𝜔(𝑡) can be one value among six 

possibilities: {𝜇𝑝𝑣,𝜀(𝑡) ± 0.5𝜎𝑝𝑣,𝜀(𝑡), 𝜇𝑝𝑣,𝜀(𝑡) ± 1.5𝜎𝑝𝑣,𝜀(𝑡), 𝜇𝑝𝑣,𝜀(𝑡) ± 2.5𝜎𝑝𝑣,𝜀(𝑡)} . 

By taking into account uncertainties coming from these new scenarios, the system 

reserve power requirement 𝑟 𝜔(𝑡) is deduced by considering two components: 

 𝑟 𝜔(𝑡) = ∆𝑝𝑣𝜔(𝑡) + 𝜙
−1(1 − 𝜀|𝜇𝑡 , 𝜎𝑡) (4-9) 

a) Reserve requirement for PV generation ( ∆𝑝𝑣𝜔(𝑡) ), which is the difference between 

the predicted PV generation value 𝑝𝑣̂(𝑡)  and PV generation value in current 

scenario. If the average value regarding upper and lower bound of PV generation is 

considered as the PV generation under scenario ω, ∆𝑝𝑣𝜔(𝑡) could be one value 

among 6 possibilities: {𝜇𝑝𝑣,𝜀,𝑡 ± 0.5𝜎𝑝𝑣,𝜀,𝑡 , 𝜇𝑝𝑣,𝜀,𝑡 ± 1.5𝜎𝑝𝑣,𝜀,𝑡 , 𝜇𝑝𝑣,𝜀,𝑡 ± 2.5𝜎𝑝𝑣,𝜀,𝑡} 

b) Reserve requirement for net demand ( 𝜙−1(1 − 𝜀|𝜇𝑡 , 𝜎𝑡) ), which is quantified by 

carrying out risk-constrained probabilistic techniques as presented in Chapter 3, i.e. 

pdf and cdf of net demand deviation at each time step are calculated according to a 

reliability index based reserve assessment for each time step and for the following 

day. ( 𝜇𝑡 and 𝜎𝑡 are the mean value and the standard deviation of the forecasting 

error on the net demand, 𝜙(𝑟 𝑡|𝜇𝑡 , 𝜎𝑡)  is the cumulative distribution function 

considering a reserve requirement 𝑟 𝑡 . The net demand for each scenario is the 

expected load demand minus the forecasted production of PV power. 
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Net demand constraints 

The following constraints are related to the balance of expected generation and 

expected consumption under each scenario, as well as the generation limits of 

generators. All of them are indexed by the scenario index 𝜔: 

 ∑ 𝑝𝑚,𝜔(𝑡) 

𝑀

𝑚=1

= 𝐷𝜔(𝑡) + 𝑟 𝜔(𝑡), ∀𝑡 ∈ 𝒯, ∀𝜔 ∈ 𝒲 (4-10) 

MGTs limits constraints 

By taking into account a certain quantity of OR provided by generator m, the maximum 

and minimum generation limits of generator m are considered: 

 𝑝𝑚  𝛿𝑚,𝜔(𝑡)  ≤ 𝑝𝑚,𝜔(𝑡)  ≤ 𝑝
𝑚
𝛿𝑚,𝜔(𝑡)，∀𝑚 ∈ ℳ (4-11) 

All slow generators which are committed in the 1st stage must remain committed: 

 𝛿𝑚,𝜔(𝑡) = 𝛿𝑚(𝑡), ∀𝑚 ∈ ℳ𝑆𝐿𝑂𝑊 (4-12) 

∀𝑡 ∈ 𝒯,∀𝜔 ∈ 𝒲  
Here 𝑝𝑚,𝜔(𝑡), 𝑟𝑚,𝜔(𝑡) and 𝛿𝑚,𝜔(𝑡) are all scenario-dependent variables. 

 

Stochastic optimization 

The optimization process must minimize the cost of the deterministic operational 

planning decisions of the first-stage (commitment of slow generators and the scheduled 

reserves) and the expected cost of the second-stage decisions (including reserve 

provision called upon regarding each possible scenario). The trade-off that needs to be 

considered in the reserve dispatching is the flexibility of fast units versus their higher 

operating costs (due to their higher marginal fuel costs). 

 

Usually in an electrical system, fast generators can change commitment within one time 

step and have similar start up and turnoff costs to those of slow units. The unit 

commitment of slow generators in the first stage is kept in the second stage but their 

references may change. Only fast generators are committed in the second stage 

optimization (∀𝑚 ∈ 𝑀𝐹𝐴𝑆𝑇). CHP have constraints in response times and minimum 

electrical power generation regarding heat power generation, because heat is in the form 

of hot water. In this study, with the largest rated power and more heat to consume, MGT 

1 is a slow-start generator and its commitment cannot be rescheduled in the second 

stage, but their references may change. MGT 2 and MGT 3 are flexible generators (fast-

start generators with a short time response) and their power reference can 

be rescheduled during the second stage (Fig. 4-9). 
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Fig. 4-9 Re-scheduling of fast generators in the second optimization stage with 

scenarios 

 

The cost-based mono-objective function of the operational planning in the second-stage 

is formulated to take into account the occurrence probability (𝜋𝜔) of each scenario 𝜔: 

 𝐽2 = min
𝛥,𝑝,𝑟

∑𝜋𝜔

Ω

𝜔=1

∑∑{𝛿𝑚,𝜔(𝑡)𝑐𝑚(𝑝𝑚,𝜔(𝑡)) + 𝑢𝑚,𝜔(𝑡)𝑐𝑚
𝑢 + 𝑑𝑚,𝜔(𝑡)𝑐𝑚

𝑑 }

𝑀

𝑚=1

𝑇

𝑡=1

 (4-13) 

   subject to (4-10),(4-11),(4-12), (𝛥, 𝑝, 𝑟)ϵ ℱ, ∀𝑚 ∈ ℳ 

where ∑ 𝜋𝜔
Ω
𝜔=1 = 1 . ℱ  is the set of scheduling decision variables 𝛿𝑚,𝜔(𝑡)  and 

𝑝𝑚,𝜔(𝑡). 

 

Thus, this expected cost is directly affected by the uncertainty of the PV forecasting, 

which is modelled through scenarios and their probabilities. Similarly, the emission-

based mono-objective function for the operational planning in the second-stage is 

formulated by considering the CO2 equivalent emission cost: 

 

𝐽2 = min
𝛥,𝑝,𝑟

∑𝜋𝜔

Ω

𝜔=1

∑∑{𝛿𝑚,𝜔(𝑡)𝑐𝑒𝑚(𝑝𝑚,𝜔(𝑡)) + 𝑢𝑚,𝜔(𝑡)𝑐𝑒𝑚
𝑢

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝑑𝑚,𝜔(𝑡)𝑐𝑒𝑚
𝑑 } 

(4-14) 

The cost & emission-based multi-objective function is formulated as the sum of the two 

above functions over the whole set of scenarios: 

 

𝐽2 = min
𝛥,𝑝,𝑟

∑𝜋𝜔

Ω

𝜔=1

∑∑{𝛿𝑚,𝜔(𝑡)[𝛼𝑐𝑐𝑚(𝑝𝑚,𝜔(𝑡)) + 𝛼𝑐𝑒𝑐𝑒𝑚(𝑝𝑚,𝜔(𝑡))]

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝑢𝑚,𝜔(𝑡)[𝑐𝑚
𝑢 + 𝑐𝑒𝑚

𝑢 ] + 𝑑𝑚,𝜔(𝑡)[𝑐𝑚
𝑑 + 𝑐𝑒𝑚

𝑑 ]} 

(4-15) 
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4.5 Application for the Operational Planning with the Scenario-

Based Stochastic Optimization 

4.5.1 Building of scenarios 

Based on the probabilistic distributions of the PV generation errors at each time step, 

six additional scenarios with their corresponding probabilities are considered for the 

next day to take into account the unexpected variation of PV generation, as explained 

in section 4.4.3 (Fig. 4-10). Different levels of grey from dark to light indicates the 

possibility of occurrence from high to low, which implies 40%, 80%, 99% of 

probability intervals. To highlight effect of the RES uncertainty, the load demand 

forecast is considered as the same as in Chapter 3 without uncertainties (Fig. 4-11). 

 

Fig. 4-10 Expected PV generation under six probable scenarios 

 

 

Fig. 4-11 Forecasted load demand 

 

4.5.2 Analysis of OR and generation scheduling 

After a multi-objective stochastic optimization with the different expected PV 

generation scenarios and forecasted load demand, the generation scheduling is obtained 

to minimize both the operating cost and CO2-equivalent emission cost (Fig. 4-12). The 

commitment of the slow generator MGT 1 is the same as in the first stage, whereas the 

strategic planning of fast generators (MGT 2 and MGT 3) has changed (in comparison 
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with the first stage, Fig. 3-32) in order to be able to compensate possible PV production 

uncertainties and according to non-linear characteristics of generators.  

 

Fig. 4-12 Generation scheduling under stochastic optimization 

 

Required reserve for each scenario is different and is calculated according to: 

- The deterministic load reserve, which is allocated at the first-stage;  

- The stochastic PV reserve (obtained by PV production limitation), which is re-

scheduled and is based on expected PV generation under each scenario. As example, 

reserve requirement in the worst case regarding the net demand deviation (scenario 

1), and effective reserve after stochastic optimization are shown in Fig. 4-13. Even 

in the worst-case situation (scenario 1), the effective reserve is capable of covering 

all reserve requirement at each time step. 

 

By comparing the reserve under stochastic optimization (Fig. 4-13 (a)) with the one 

under deterministic algorithm (Fig. 3-33), the reserve requirement has been more 

precisely calculated and re-scheduled regarding each scenario, as well as obtaining the 

wished high security level. Meanwhile, compared with Fig. 3-33 (b), Fig. 4-13 (b) 

illustrates that more reserve power is provided thanks to the commitment availability 

of fast generators. The daily reserve energy from the slow generator is 431 kWh in both 

deterministic and stochastic unit commitment. As for reserve from fast generators, the 

daily reserve energy has increased to 406 kWh with scenario-based stochastic 

optimization, compared with 331 kWh of reserve energy in deterministic case, i.e. the 

daily reserve energy from fast generators has increased about 23%. 

 

(a) The reserve requirement for scenario 1(worst case) and obtained effective reserve 
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(b) Obtained effective reserve from slow and fast generators 

Fig. 4-13 The reserve requirement for scenario 1(worst case) and effective reserve 

under stochastic optimization 

 

4.5.3 Impacts of the second stage optimization on the cost minimization 

The scenario-based optimization is implemented with three objective functions 

respectively: 1) cost-based mono-objective; 2) CO2 equivalent emission-based mono-

objective; and 3) multi-objective of cost and emission. Here multi-objective 

optimization is taken as an example to analyze the costs and emissions at each time step 

under six scenario S1-S6, and results are shown in Fig. 4-14. As illustrated in figures, 

at each time step, costs and emissions may fluctuate because of PV generation 

variations around the forecast value. Fig. 4-14 (a) shows impacts of PV uncertainties 

onto fuel costs and CO2 equivalent emissions by considering only the 1st stage 

optimization. In this way, PV deviation ∆𝑝𝑣𝜔(𝑡) must be compromised by effective 

reserve, which is considered as an additional cost for scenario 𝜔.  

 

Fig. 4-14 (b) shows fuel costs and CO2 equivalent emission after the 2nd stage 

optimization. Costs and emissions are optimized because the reserve is properly 

scheduled during the 2nd stage optimization regarding uncertainties under each scenario. 

Table 4-2 compares fuel costs and CO2 equivalent emissions before and after the 2nd 

stage optimization. It is concluded that both the fuel costs and CO2-equivalent emission 

costs are largely decreased with a scenario-based optimization. 
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(b) After the 2nd stage optimization 

Fig. 4-14 The fuel costs and CO2-equivalent emission costs under 6 scenarios at each 

time step 

 

Table 4-2 Fuel costs and CO2 equivalent emission costs results 

2nd Stage Optimization   S1 S2 S3 S4 S5 S6 

No Cost ($) 272 251 230 209 189 168 

Emission (kg) 1136 1110 1088 1059 1033 1008 

Yes Cost ($) 188 173 166 158 153 147 

Emission (kg) 1058 962 923 878 868 859 

 

The fuel cost and CO2-equivalent emission cost vary according to the committed MGTs 

as well as considered PV generation. After analysis results following the propagation 

of some PV generation scenarios, data from the fuel cost and CO2-equivalent emission 

cost can be approximated by a normal distribution. For example, the pdf of the fuel cost 

at 17:00 is shown in Fig. 4-15 with a mean 𝜇𝑐𝑜𝑠𝑡,𝑡=17:00 = 8 and a standard deviation 

𝜎𝑐𝑜𝑠𝑡,𝑡=17:00 = 0.1 , as well as the pdf of the CO2-equivalent emission cost with 

𝜇𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑡=17:00 = 46, 𝜎𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑡=17:00 = 0.4 . The fitted pdf curved is obtained for 

each time step according to the corresponding histogram. This associated probability 

with each result is an added information if we compare with results in chapter 3. 

 

Fig. 4-15 Fuel cost and CO2-equivalent emission cost at 17:00 
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4.5.4 Impacts of the chosen risk criteria 

Criteria for the system security induce different costs. Meanwhile, when the LOLP 

assessment is considered in the reserve determination during operational planning, 

different outcomes are obtained under deterministic and scenario-based stochastic 

optimization algorithm. Table 4-3 shows the day-ahead operational planning results 

under different risk criterions. Results of the deterministic UC and the risk-based 

optimization (1st stage) from Chapter 3 are reported in Table 4-3. After the application 

of scenario-based stochastic multi-objective optimization, expected optimal operating 

cost / emission cost with LOLP in 1st Stage and 2nd Stage are reduced by up to around 

15%, compared to the N-1 criterion deterministic case. The total energy of the day-

ahead reserve requirement and effective reserve are also compared. 

 

Table 4-3 Comparison of results under different risk criterions 

 

Deterministic Optimization Stochastic Optimization 

Without Criterion N-1 Criterion 
LOLP ≤ 𝟓% Criterion 

1st Stage 2nd Stage 

Cost ($) CO2 (kg) Cost ($) CO2 (kg) 
𝐽1-based 

Cost ($) 

𝐽1-based 

CO2 (kg) 

𝐽2-based 

Cost ($) 

𝐽2-based 

CO2 (kg) 

Multi-objective 

(cost & emission) 
149 832 213 1174 181 1017 180 1047 

Mono-objective  

(cost) 
147 868 211 1221 180 1034 180 1079 

Mono-objective 

(emission) 
157 818 220 1164 191 1001 188 1035 

Reserve requirement 

(kWh) 
\ \ 426 500 

Effective reserve 

(kWh) 
403 554 763 838 

4.5.5 Impacts of the RES self-production rate 

Fig. 4-16 shows the cost and emission under different PV self-production rates. In the 

studied case, the maximum PV self-production rate is 28% if the PV energy surplus is 

not stored during the day. With the increase of PV self-production rate, the difference 

between costs of deterministic N-1 criterion and costs of LOLP criterion (based on 1st 

stage and 2nd stage optimization) gradually increases. Similarly, CO2 equivalent 

emissions have tendency to decrease with the LOLP criterion, compared with the N-1 

criterion. As the self-production rate grows, comparing to 2nd stage emission, 1st stage 

is more environmentally friendly. The operating costs are similar with a slightly 

difference. As for the risk level, 2nd stage planning results provide a higher level of 

power security because there is more effective reserve power in case of power losses. 

As shown in Table 4-3, more effective reserve (available reserve) is obtained under 2nd 

stage than in 1st stage.  
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Fig. 4-16 Cost curves and emission curves regarding self-production rate  

 

4.6 Conclusion 

In this chapter, the state of art in SUC is reviewed. SUC advantages of handling RESs 

and load uncertainties are highlighted compared with DUC methods. Then optimization 

methods for operational planning in electrical systems and microgrids are summarized. 

Furthermore, an optimization framework is presented to address the problem of the 

optimal operational scheduling of microgrids. A two-stage optimization algorithm of 

generation scheduling is presented for an urban microgrid with optimal reserve 

dispatching.  

 

In a first stage, half-hourly OR are decided with a prescribed LOLP-based risk level, 

applied on the pdf of the past net demand forecast errors. Then, a deterministic unit 

commitment gives the generation scheduling and includes PV and load forecasting in 

addition to OR that are calculated from past uncertainties realizations. Secondly, a 

stochastic day-ahead operational planning is implemented. The PV uncertainty is then 

considered according to different scenarios and their probabilities of occurrence at each 

half-hour. For each scenario, OR can be recalculated by considering the same level of 

security. Based on the presented PV scenario and by maintaining the commitment of 

slow generators, stochastic operational planning considers possible commitment of 

additional fast generators if necessary and adapts power set-points of all generators. 

 

Results are presented for scenario-based stochastic algorithm, according to three 

different objective functions: 1) economic operating cost-based mono-objective; 2) 

CO2 equivalent emission-based mono-objective; and 3) multi-objective of cost and 

emission. Three cases regarding reserve scheduling are compared: N-1 criterion, 

optimization with probabilistic analysis (1st stage) and optimization with scenarios 

regarding probabilities of occurrence (2nd stage). Around 15% of both economic 
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operating costs and environmental costs are saved, compared to the deterministic 

generation planning (chapter 3) while ensuring the targeted security level. Moreover, a 

probability (pdf) can be obtained for each established result. As shown, this framework 

enables the analysis of the impact of RES penetration ratio on costs and emissions. 

 

In the following Chapter 5, research works will be oriented to the integration of storage 

systems as an alternative for fast power reserve provision in replacement of fast 

generators and for CO2 abatement. 
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CHAPTER 5 PARTICIPATION OF STORAGE FOR 

OPERATING RESERVE PROVISION  

5.1 Introduction  

Until now, ancillary services, like the operating reserve (OR), are mainly provided by 

conventional generators because their primary energy (oil, gas, …) is stored and so their 

availability is ensured. However, this way of reserve power provision is fuel-consuming, 

leading to a significant OPEX and emission cost. Recently, more clean and advanced 

technologies are explored to provide OR. 

 

By dynamically degrading their conversion process (pitch control for wind generators, 

operating under MPPT for PV generators, …), RESs have shown their potential to 

provide OR by increasing their power generation if necessary. But, in consequence, a 

significant part of renewable energy is lost. As example, in chapter 4, the self-

consumption rate of PV generation is about 50%, i.e. only half of PV generation is 

consumed. 

 

To overcome the discontinuous power output of RESs, energy storage systems have 

been used earlier for time-shifting the renewable energy. From the electricity market 

point of view, storage application can bring benefits to stakeholders, end users and 

utility customers. For instance, by considering the electricity market price, storage can 

bring profits by charging during off-peak times and discharging during on-peak times. 

 

For the management of the electrical system, ESS can also provide ancillary services 

and so can assist in a better integration of RESs in the operation of the electrical network. 

Interests of the reported research works in this chapter is to assess the significant 

opportunity for energy storage to mitigate the effect of the net demand prediction error 

and so to provide OR. Three main questions are addressed: 

• What type of local control system for the ESS can be considered for OR provision? 

• How to take into account ESS actions in the unit commitment of the microgrid?  

• How to size the storage to extend benefits in the generation scheduling and estimate 

the investment cost (CAPEX)? 

 

In this chapter, distributed energy storage systems (ESSs) are considered with the 

application of PV active generators (PV AGs), which are composed of PV panels and 

batteries (as presented in Chapter 1, part 1.3.3). The control strategy of the ESS will be 

considered to decide, at each time step, the amount of power to charge or to discharge. 

With the proposed storage control strategies, the solar energy surplus is stored in ESS 

and can be consumed later for OR provision. This operation can be implemented only 
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if the ESS state of charge (SoC) is managed, making it essential to estimate the SoC 

according to the ESS use.  

 

A multi-objective scenario-based stochastic optimization method is presented in this 

chapter for generation scheduling and allocation of OR on ESSs and MGTs. The 

objective is always to minimize the operational cost and CO2 equivalent emission cost, 

but with additional constraints coming from the participation of ESS. Different 

objectives, i.e. the optimal economic and environmental-friendly outcome, as well as 

the optimal reserve provision are attained by applying presented storage control 

strategies in the multi-objective scenario-based optimization algorithm. The two use 

cases of ESS are:  

a) Strategy 1: Renewable production time-shift;  

b) Strategy 2: Operating reserve provision. 

The subsequent sections are organized as follows. Section 5.2 gives an overview of 

energy storage applications and benefits. Section 5.3 presents the two storage control 

strategies. Section 5.4 details the mathematical formulation of the deterministic 

operational planning, then application results are exposed. Meanwhile, results of two 

storage control strategies are compared. In Section 5.5, with consideration of net 

demand scenarios, the mathematical formulation of a scenario-based optimization is 

explained, then application results under the two proposed storage control strategies are 

illustrated and compared. The sizing of storage under uncertainty is discussed in section 

5.6 by applying statistical analysis methods. Finally, the conclusion is derived in 

Section 5.7. 

5.2 Overview on Energy storage applications and benefits 

5.2.1 Home energy storage 

By storing energy from renewable resources, energy storage systems (ESSs) could 

smooth renewable generation power output, and provide additional benefits for 

different stakeholders in the electrical system. In addition, they could perform the role 

of meeting power demand or shave off demand peak [231].  

 

In recent years, there has been growing interest in storing home-made energy from 

rooftop photovoltaic panels. A number of vendors have sought to capture this emerging 

market, including Tesla [232], and the German home energy storage provider 

Sonnenbatterie [233]. Meanwhile, Nissan and Mercedes-Benz also makes efforts to 

offer at-home battery to its customers in Europe [234][235]. Nissan has partnered with 

Eaton, a multinational power management company in the United States. They have 

designed a residential solar energy storage system xStorage Home, to help customers 

to optimize the consumption of clean energy. It is reported that with xStorage Home, 

the PV self-consumption can be increased from 30% to 70% [236]. 
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These home energy storages are usually combined with the electric vehicle charging 

and a home energy management system of local flexible loads, which is trying to 

increase benefit for customers with a more flexible, economic and sustainable energy 

use. For example, home energy storage can maximize solar PV self-consumption, draw 

energy from the utility grid during non-peak times, and power loads in a grid event. 

Indeed, energy storage can bring varying benefits in terms of different applications. Fig. 

5-1 summarized several main applications for energy storage: electric supply, ancillary 

services, renewables integration, grid system, and utility customer. Meanwhile, storage 

benefits are discussed in detail in [14], [237] with respect to application-specific 

benefits and incidental benefits. 

 

Fig. 5-1 Summary of energy storage applications 

 

For offering flexibility and peak shaving, a multi-objective optimization model is 

presented in [238] to minimize the operation costs and CO2 emissions in an energy 

community. Different battery technologies are considered under two different 

ownership scenarios regarding community energy storage system. An Energy Arbitrage 

- Peak Shaving (EA-PS) scenario is assessed and recommended to prevent problematic 

loads on the distribution transformer. This study is a deterministic-based optimization, 

though. Uncertainties from RES and load demand are only considered in real-time, and 

are not included in the solution search. Meanwhile, many stochastic methods, like 

scenario-based stochastic optimization [239], [240], robust optimization [241]–[243] 

and stochastic dynamic programming method [244], [245] have been applied to do 

generation scheduling with the integration of ESS and renewable energy. As reported 

in the bibliography, although ESSs are applied for economic benefits, or for hedging 
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RES output uncertainty by smoothing the renewable generation profile, ESSs were not 

served as reserve capacity in these studies. In this study, the benefits and applications 

regarding renewable energy time-shift and operating reserve supply are focused on 

and discussed in detail. 

5.2.2 Renewable energy time-shift 

Generally during off-peak times, electrical demand is low and this is the case in urban 

electrical networks at noon when all residents are outside their homes for their work 

and do not consume their local produced electricity. Hence, there may be a surplus 

energy supply capacity if PV generators are massively integrated in local energy 

communities. On the contrary, during peak times (19:00 in France), demand raises its 

peak and electricity has a rather high financial value. Typically, solar energy is 

accessible during the daylight with a peak generation at around noon whereas the peak 

times of the local load demand are mostly in the evening. To correlate the RESs peak 

generation and on-peak time of consumption, energy storage is used in many 

applications for renewable energy time-shift.  

5.2.3 Operating reserve supply 

Among ancillary services, storage is capable of providing electric supply reserve 

capacity [246]. When storage is served as reserve capacity, OR need from conventional 

generators are reduced, as well as economic and environmental costs are decreased. 

Nevertheless, if storage is used for reserve provision, the reliability and feasibility must 

be kept. Moreover, the stored energy should be well scheduled according to the 

temporal situation and the state of charge.  

 

There are many research works focusing on the application of ESS on reserve provision 

under RES uncertainty in electrical system. [247] proposed an approach for optimal 

self-scheduling of the wind/solar generation with an efficient spinning reserve 

provision due to the addition of thermal energy storage capacity. However, the impact 

of the intermittency and variability of wind and solar generation are not considered. 

[248] considered optimal operation and optimal bidding of an independent storage 

system to provide energy and reserve in the day-ahead market of a power system with 

a high penetration of wind energy. However, this study focuses on the independent local 

storage system management rather than from a grid-scale point of view. In [249] 

traditional power plants are regarded as generation-side energy storage, and power 

system economics are evaluated under uncertainty of wind generation. Whereas, in 

these studies, energy storage is provided by traditional thermal plants.  

5.3 Energy Storage Control Strategies 

5.3.1 Principle and framework 

In this chapter, the objective is to provide the reserve capacity by a clean energy with a 

least additional OPEX and emission cost. An ESS is considered for the renewable 
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energy time-shift with two proposed energy storage control strategies. As illustrated in 

Table 5-1, the stored energy surplus in ESS can be used either for: 

- Power balancing (strategy 1), batteries are available for a renewable energy production 

time-shift. 

- Reserve provision (strategy 2), batteries are used first to provide reserve power. 

 

Table 5-1 Comparison of presented energy storage control strategies 

 Strategy 1 Strategy 2 

Storage application Renewable energy time-shift and 

power balancing 

Renewable energy time-shift and supply 

of operating reserve 

Storage benefit Energy source for load supply Dynamic power source for reserve 

provision 

Objective Minimize operational costs and 

CO2 equivalent emissions 

Ensure the security level to a large extent 

 

The storage strategy and reserve dispatching among ESS and MGTs are dependent on 

the SoC of batteries at each time step during the day. In a PV AGs, an amount of power 

(𝑝𝑏𝑎𝑡(𝑡)) is exchanged with the ESS so that the power delivered to the grid (𝑝𝑎𝑔(𝑡)) can 

be adjusted to some extent: 

 𝑝𝑎𝑔(𝑡) = 𝑝𝑝𝑣(𝑡) − 𝑝𝑏𝑎𝑡(𝑡) ((5-1) 

𝑝𝑝𝑣(𝑡) is the produced power from PV panels. We consider that 𝑝𝑏𝑎𝑡(𝑡) is positive in 

charging mode, otherwise negative.  

 

The output power of the active generator is then dependent to the control strategy of 

the storage and so the operation planning must be modified. In our proposed approach, 

the storage control strategy is first considered and so applied to establish the batteries 

limits and constraints (Fig. 5-2).  

 

As results, a profile of the generated power from PV active generators is created and 

the available OR is determined. These data are used for the optimization. In the 

proposed generation scheduling, PV AGs will be used as the prior power sources. 

Meanwhile, MGTs are used as a second choice for power supply, and they are 

committed for security reason when there is not enough PV energy. The studied and 

considered control strategies are now presented. 
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Fig. 5-2 Integration of the ESS control strategy in the generation scheduling 

 

5.3.2 Storage control strategy for power balancing (strategy 1) 

In this strategy, batteries are used to time shift the power production according to the 

net demand forecasting error, which is regarded as a deviation from the commitment. 

Batteries are charged or discharged under the following situations: 

• Charging: When there is a renewable energy surplus, i.e. PV energy surplus (PV 

forecasting error > 0 or net demand 𝐷(𝑡) < 0 if MGTs are not used), the storage 

is used to store the PV energy excess, thus shaving PV power peak during daytime 

(Fig. 5-3). 

• Discharging: Unless batteries are charged, the storage is discharged to produce 

energy for the load supply (balancing between load demand and generation). If 

more storage energy is available, it can be used to provide reserve power 

(secondary use). 

 
Fig. 5-3 Schematic diagram of ESS operation in strategy 1 (Simplified PV power 

profile and load demand profile, for illustration only) 
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For the analysis, we can distinguish the charging power ( 𝑝𝑐(𝑡) ) and the discharging 

power ( 𝑝𝑑(𝑡) ) as: 

 𝑝𝑏𝑎𝑡(𝑡) =  𝑝𝑐(𝑡) − 𝑝𝑑(𝑡) (5-2) 

In order to ensure that the balancing deviation is zero, the idealized and controlled 

storage should absorb the exact net demand difference ( 𝐷(𝑡) ) if MGTs are not used: 

 𝑝𝑐(𝑡) =  −𝐷(𝑡) = 𝑝𝑏𝑎𝑡(𝑡) > 0 (5-3) 

We recall that 𝑝𝑏𝑎𝑡(𝑡) is positive in charging mode otherwise negative in discharging 

mode (generation). 𝐷(𝑡) is positive if the load demand is more than the production, 

otherwise negative. 

 

With a real storage, technical constraints must be satisfied: 

- the exchanged power with the battery must be under the rated power (𝑝𝑏𝑎𝑡), otherwise, 

it must be saturated. 

- the state of charge must be checked: 𝑆𝑜𝐶𝑚𝑖𝑛 < 𝑆𝑜𝐶(𝑡) < 𝑆𝑜𝐶𝑚𝑎𝑥. The state of charge 

of batteries is defined as: 

 𝑆𝑜𝐶(𝑡) =
𝐸𝑏𝑎𝑡(𝑡)

𝐶𝑏𝑎𝑡
 (5-4) 

𝐸𝑏𝑎𝑡(𝑡) is the energy (in Watt∙hour) stored in battery until time step t and 𝐶𝑏𝑎𝑡 is the 

battery capacity.  

 

According to the load demand forecast, the PV production forecast and the required 

reserve, the control system must calculate the battery power reference (𝑝𝑏𝑎𝑡(𝑡)), the 

produced PV power in case of limitation or not (𝑝𝑝𝑣(𝑡)) and the output generated power 

of the active generator (𝑝𝑎𝑔(𝑡)) that the central energy management will take into 

account.  

 

The flowchart of the storage control in strategy 1 is illustrated in Fig. 5-4 and is 

organized as follows: 

step (a):  PV generation and load demand forecasting at each time step. 

step (b):  Reserve requirements are calculated with the LOLP-based probability assessment 

method. 

step (c):  If the net demand 𝐷(𝑡) is negative, then the power system has too much power and 

this exceed power can be stored if storage constraints are satisfied. 

 To implement this strategy, the SoC and the rated battery power are checked. Then 

the charging power (𝑝𝑐(𝑡)) is deduced. If this one is limited to the rated battery power, 

then a part of the PV power must be curtailed and is possible to provide OR: 𝑟𝑝𝑣(𝑡) =

−𝐷(𝑡) − 𝑝𝑏𝑎𝑡. The produced power from the active generator is then deduced: 

𝑝𝑎𝑔(𝑡) = 𝑃𝑉(𝑡) − 𝑝𝑐(𝑡) (5-5) 

 If the battery is fully charged at the end of the time step, we can add a constraint to 

limit the charging power reference to be under the 𝑆𝑜𝐶𝑚𝑎𝑥 to the value:  

𝐶𝑏𝑎𝑡
𝜏

∙ 𝜂 ∙ (𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶(𝑡 − 1)) 

τ is the time duration (Here 𝜏 = 0.5, implying the half-hour time step).  
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 If the net demand 𝐷(𝑡) is positive, then the missing power in the power system can 

be generated by the storage if storage constraints are satisfied. To implement this 

strategy, the SoC and the rated battery power are checked. The discharging power 

(𝑝𝑑(𝑡)) is deduced:  

 𝑝𝑑(𝑡) = 𝐷(𝑡), 𝑝𝑏𝑎𝑡(𝑡) = −𝑝𝑑(𝑡) < 0 (5-6) 

 The increased produced power from the active generator is then deduced: 

𝑝𝑎𝑔(𝑡) = 𝑃𝑉(𝑡)+𝑝𝑑(𝑡) (5-7) 

step (d): 𝑟𝑎𝑔(𝑡) indicates the reserve power provided by PV AGs, and it comes from the direct 

PV power limitation (𝑟𝑝𝑣): 

 𝑟𝑎𝑔(𝑡) = 𝑟𝑝𝑣(𝑡) (5-8) 

The exchanged power with the batteries is expressed as: 

 𝑝𝑏𝑎𝑡(𝑡) = 𝜂 ∙ 𝑝𝑐(𝑡) −
1

𝜇
∙ 𝑝𝑑(𝑡) (5-9) 

𝜂 and 𝜇 are efficiency index of charging and discharging, respectively (𝜂, 𝜇 ∈ [0,1]). 

Finally, the SoC is refreshed: 

 𝑆𝑜𝐶(𝑡) =
1

𝐶𝑏𝑎𝑡
[𝐸𝑏𝑎𝑡(𝑡 − 1) + 𝜏 ∙ 𝑝𝑏𝑎𝑡(𝑡)] (5-10) 

 

Fig. 5-4 Flowchart of storage control and reserve dispatching in strategy 1 
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After the execution of this algorithm the planning of the battery power reference, the 

time evolution of the SoC and the offered OR are known. The calculated produced 

power from the active generator (𝑝𝑎𝑔(𝑡)) will be used for the determination of the 

operational planning. 

 

To illustrate the strategy 1, four operating points are detailed by assuming one 

aggregated active generator and 𝑝𝑏𝑎𝑡= 60kW (Table 5-2).  

 

Table 5-2 Power values (in kW) for some operating points 

Time step t 1 2 3 4 

Net load demand D(𝒕) 30 -10 -90 -90 

Reserve requirement 𝒓(𝒕) 20 30 20 40 

Available PV generation 𝑷𝑽(𝒕) 10 15 100 100 

    Power of discharging 𝑝𝑑(𝑡) 30 0 0 0 

    Power of charging 𝑝𝑐(𝑡) 0 5 60 (limitation) 60 (limitation) 

Active generator 𝒑𝒂𝒈(𝒕) 40 5 10 10 

    Reserve provided by PV limitation 𝑟𝑝𝑣(𝑡) 0 0 30 30 

PV generation 0 0 70 70 

Reserve provided by MGTs 𝒓𝒎𝒈𝒕(𝒕) 20 30 0 10 

 

Increased power capacity 

At 𝑡 = 1, the net demand is positive (missed PV power). Then the active generator 

power reference must inject more power than the predicted available PV power: 10kW 

+ 30 kW = 40 kW. This is a new possibility thanks to the storage: 𝑝𝑑(1) = 30 𝑘𝑊. 

The reserve requirement is provided by MGT ( 𝑟𝑚𝑔𝑡(𝑡)  ) and decided by the 

optimization algorithm. We will study the impact of this control strategy on the OR 

cost. 

 

Renewable energy saving 

At 𝑡 = 2, the net demand is negative (PV power surplus). Then the active generator 

power reference must inject less power than the predicted available PV power 15kW – 

10 kW = 5kW. Without a storage, 5 kW from PV panels are lost. Here, this power can 

be stored in batteries. 𝑝𝑐(2) = 5 𝑘𝑊. 

 

Renewable energy saving and OR provision from PV limitation control 

At 𝑡 = 3, the net demand is negative (PV power surplus). Then the active generator 

power reference must inject less power than the predicted available PV power 100kW 

– 90 kW = 10 kW. Without a storage, 90 kW from PV panels are lost. Here, this power 

can be stored in batteries but must be limited: 𝑝𝑐(3) = 60 𝑘𝑊. There is still too much 

PV power: 90kW – 60 kW = 30 kW. So the PV production must be limited to: 100kW 

– 30 kW = 70 kW. But this lost power can be used as a local reserve because the PV 

production can be increased in the future if it is needed. As the reserve requirement is 
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less than the lost PV power, the PV production is able to provide a “PV reserve”: 

𝑟𝑝𝑣(3) = 30 kW > 20 kW. 

 

Coordinated OR provision with MGTs and PV limitation control 

At 𝑡 = 4, the situation is the same but the reserve requirement is more and so the 

missing reserve requirement is provided by MGTs: 𝑟𝑚𝑔𝑡(3) = 40 − 10 = 10 kW. 

 

After the application of the control strategy 1, the capacity of providing the OR by 

limiting the PV production is assessed. That means the reserve allocation regarding PV 

AG and MGT is done through the storage control strategy before the MILP optimization. 

Then, later in the operation planning, the reserve requirement from MGTs will be 

calculated before the optimization. 

5.3.3 Storage control strategy for power reserve provision (strategy 2) 

In this strategy, the stored PV energy is considered to provide a part of the OR (Fig. 

5-5).  

 

Fig. 5-5 Schematic diagram of ESS operation in strategy 2 (Simplified PV power 

profile and reserve requirement profile) 

 

Batteries are mainly used to provide a reserve capacity in the discharging mode and are 

charged or discharged under the following circumstances: 

• Charging: Same as in the strategy 1. 

• Discharging: Storage is used as a prior OR source to provide the reserve 

requirement to cover uncertainty from the net demand forecast. The surplus of 

storage energy after reserve provision is used for load supply and power balancing 

(secondary use). 

 

The flowchart of the storage control and reserve dispatching in strategy 2 is illustrated 

in Fig. 5-6. The procedure of strategy 2 is as follows: 

step (a):  PV and load demand forecast are obtained at each time step. 

step (b):  Reserve requirements are calculated at each time step.  

PV 

Stored PV 

Reserve 
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step(c):  If the net demand 𝐷(𝑡)  is negative, the exceed power is stored as in strategy 1. 

However, in strategy 2, stored power is managed for power reserve provision in 

priority. So, the available power reserve from the storage is updated with the stored 

power during the current time step: 

 𝑟𝑏𝑎𝑡(𝑡) = 𝑝𝑐(𝑡)+𝑆𝑜𝐶(𝑡 − 1)
𝐶𝑏𝑎𝑡

𝜏
  (5-11) 

 This reserve power can be delivered only if it is below the rated power; this constraint 

is checked. 

 If the net demand ( 𝐷(𝑡) ) is positive, the active generator may generate more power 

but in priority enough inner reserve power must be kept. So the available reserve 

power is estimated according the SoC: 

 𝑟𝑏𝑎𝑡(𝑡) = 𝑆𝑜𝐶(𝑡 − 1)
𝐶𝑏𝑎𝑡
𝜏

 (5-12) 

 Again, this reserve power can be delivered only if it is below the rated power of the 

battery; this constraint is checked.  

 Then, if the reserve power in batteries is less than the required reserve, the remaining 

battery power ( 𝑟𝑏𝑎𝑡 − 𝑟(𝑡)) can be used to supply the loads as the net demand is 

positive. This is a secondary use of the stored energy. So, if the net demand is less 

than the available remaining battery power, then the discharged power is obtained: 

 𝑝𝑑(𝑡) = 𝐷(𝑡) (5-13) 

 Otherwise, it is limited to this value: 

 𝑝𝑑(𝑡) = 𝑟(𝑡) − 𝑟𝑏𝑎𝑡 (5-14) 

 The battery rated power is checked and the active generator power is deduced: 

𝑝𝑎𝑔(𝑡) = 𝑃𝑉(𝑡)+𝑝𝑑(𝑡) (5-15) 

step (d): As in the previous control strategy, the SoC(t) is refreshed. 

Now, the provided reserve by the PV AGs (𝑟𝑎𝑔(𝑡)) can come from the PV power 

limitation (𝑟𝑝𝑣) or from the storage energy (𝑟𝑏𝑎𝑡) or from both ones: 

 𝑟𝑎𝑔(𝑡) = 𝑟𝑝𝑣(𝑡) + 𝑟𝑏𝑎𝑡(𝑡) (5-16) 
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Fig. 5-6 Flowchart of the storage control and reserve dispatching in strategy 2 

 

5.4 UC with a Deterministic Optimization 

5.4.1 Presentation 

As discussed before, PV AGs are managed as prior sources because of their benefits 

regarding low operating cost and gas-emission-free character. Meanwhile, MGTs are 

set as backup sources for the missing energy. Fig. 5-7 illustrates the scheme of the 

generation planning with the combination of the storage control strategy and the reserve 

allocation.  
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Fig. 5-7 Deterministic operational planning with combination of storage strategy 

regarding reserve allocation 

 

The storage control strategy determines variables concerning batteries (including 

𝑝𝑎𝑔(𝑡) , 𝑟𝑎𝑔(𝑡)). Then in the MILP procedure, 𝑝𝑎𝑔(𝑡)  is used to check the power 

balancing constraint, and 𝑟𝑎𝑔(𝑡) is used in the reserve constraint.  

 

If MGTs are used to charge batteries, emission costs may increase, making the use of 

batteries not environmentally friendly. Hence, from an environmental point of view, we 

take care that batteries are charged only by PV AGs in our proposed generation 

scheduling.  

 

Since a part of the operating reserve can be provided now by the active generator, the 

required OR from MGTs (𝑟𝑚𝑔𝑡(𝑡)) must be calculated for each time step. 

 𝑟𝑚𝑔𝑡(𝑡) = 𝑟(𝑡) − 𝑟𝑎𝑔(𝑡) (5-17) 

 

The balance between production and consumption is the first equality constraint. PV 

active generators can operate both as renewable energy-based generators and as energy 

storage devices, since they are capable of generating solar energy as well as storing 

solar power surplus in the battery. So, the produced PV power is replaced by the 

produced active generator power (𝑝𝑎𝑔(𝑡)) including the power exchanged with batteries. 

The total amount of conventional generation at time step t must meet the load demand 

forecast 𝑙(𝑡) for all time steps with the consideration of generation of PV AGs: 

 
∑ 𝑝𝑚(𝑡)

𝑀

𝑚=1

= 𝑙(𝑡) −∑𝑝𝑎𝑔(𝑡)

𝐴

𝑎=1

+ 𝑟𝑚𝑔𝑡(𝑡),  

∀𝑡 ∈ 𝒯 

(5-18) 
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5.4.2 Objective function 

The cost and emission-based multi-objective function for the operational planning in 

the first-stage (i.e. under a deterministic optimization) is the same as in Chapter 4 (equ. 

(4-7)), but with different constraints regarding reserve (5-17), (5-18): 

 
𝐽1 = min

𝛥,𝑝,𝑟
∑∑{𝛿𝑚(𝑡)[𝛼𝑐𝑐𝑚(𝑝𝑚(𝑡)) + 𝛼𝑐𝑒𝑐𝑒𝑚(𝑝𝑚(𝑡))]

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝑢𝑚(𝑡)[𝑐𝑚
𝑢 + 𝑐𝑒𝑚

𝑢 ] + 𝑑𝑚(𝑡)[𝑐𝑚
𝑑 + 𝑐𝑒𝑚

𝑑 ]} 

(5-19) 

              subject to (5-17), (5-18), 

 𝑝𝑚  𝛿𝑚(𝑡) ≤ 𝑝𝑚(𝑡) ≤ 𝑝𝑚𝛿𝑚(𝑡)  (5-20) 

∀𝑚 ∈ ℳ，∀𝑡 ∈ 𝒯, (𝛥, 𝑝, 𝑟)ϵ ℱ  

Constraints on the rated power of MGTs are the same as in Chapter 4 (equ. (5-20)). 

Similarly, the economic cost-based mono-objective function, and the emission-based 

mono-objective function are the same as equ. (4-1) and (4-4), respectively.  

5.4.3 Task and data of the study case 

The same urban microgrid (section 3.6) is considered and the profiles of the half-hourly 

electricity consumption forecast, and half-hourly forecasted daily PV generation for the 

corresponding day are recalled in Fig. 3-12. As discussed previously, by comparing the 

daily consumed PV energy and daily load energy, the PV self-production rate is about 

25% and PV self-consumption rate is 50% if no storage is used. We are going to study 

the possibility to increase the PV self-production rate from 25% to 50%, and PV self-

consumption from 50% to 100%. The energy of the ESS is sized to enable a 100% PV 

self-consumption if the control strategy 1 is used. Table 5-3 illustrates values of 

parameters of PV AGs applied in our study. 

 

Table 5-3 Values of parameters regarding PV AGs 
Parameter Nomenclature Value 

Nom.𝑃𝑃𝑉 Nominal maximum solar power 180 kW 

𝑆𝑜𝐶𝑖𝑛𝑡  Initial state of charge 𝑆𝑜𝐶𝑚𝑖𝑛  

𝑆𝑜𝐶𝑚𝑎𝑥   Stop charging threshold from PV 100% 

𝑆𝑜𝐶𝑚𝑖𝑛   Minimum allowable state of charge 20% 

𝜂  Charging efficiency 95% 

𝜇  Discharging efficiency 97% 

𝐶𝑏𝑎𝑡  Battery Storage System Capacity 350 kWh 

𝑝
𝑏𝑎𝑡

  Battery (dis)charging power limit 60 kW 

5.4.4 Applications results with the power balancing strategy (1) 

Obtained power set points of generators are shown in Fig. 5-8. The required reserve is 

then allocated and provided by MGTs and direct PV (surplus). As shown in Fig. 5-9, 

the reserve power is provided only by PV AGs with a PV power limitation during the 

period from 13:00 to14:30. During the remaining of the time period, the reserve is 

covered by MGTs. All stored energy in batteries is used for the load supply. The sum 

of the stored energy in the batteries during the day is 262.8 kWh. During the day, the 
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reserve energy from PV AGs is 6.8 kWh, the reserve energy from MGTs is 360.3 kWh, 

i.e. 6.8 kWh of reserve from MGT is reduced compared with Chapter 3 (without 

storage). 

 

Fig. 5-8 Generation planning under deterministic optimization and scheduled PV 

power in strategy 1 

 

Fig. 5-9 Reserve provided by MGTs and PV AGs at each time step under 

deterministic optimization in strategy 1 

 

Fig. 5-10 shows the active PV generator power (𝑝𝑎𝑔), the battery power (𝑝𝑏𝑎𝑡) and 

SoC during the day under the deterministic optimization in strategy 1. All energy stored 

in batteries are consumed up before 20:30 for supplying load. In this studied case, since 

all the PV generation is consumed or stored in batteries for later use, the PV self-

production rate is 50% by comparing the daily load energy (1081.5 kWh) and daily PV 

energy (539 kWh). PV self-consumption is 100% since all PV generation is consumed. 

 

Fig. 5-10 AG power, battery power and SOC of batteries at each time step under 

deterministic optimization in strategy 1 
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5.4.5 Applications results with the OR provision strategy (2) 

With the energy storage control strategy 2, obtained power set points of generators are 

shown in Fig. 5-11. The required reserve is then allocated and provided by MGTs and 

PV AGs. As shown in Fig. 5-12, the reserve power is provided by stored energy from 

PV AGs during period from 16:00 to 22:00. MGTs are operating as secondary sources 

(same as in the previous control strategy 1). In strategy 2, the stored energy in the 

batteries during the day is the same as in strategy 1, while the reserve energy from PV 

AGs is 123.3 kWh (including 6.8 kWh from the PV production limitation and 116.5 

kWh from batteries); Reserve energy from MGTs is 243.8 kWh, with a 48% of decrease 

compared to strategy 1. 

 
Fig. 5-11 Generation planning under deterministic optimization and scheduled PV 

power in second strategy 

 

Fig. 5-12 Reserve provided by MGTs and PV AGs at each time step under 

deterministic optimization in strategy 2 

Fig. 5-13 shows states of PV AGs power 𝑝𝑎𝑔 (∑ 𝑝𝑎
𝐴
𝑎=1 ), battery power 𝑝𝑏𝑎𝑡 (𝑝𝑐 − 𝑝𝑑) 

and SoC during the day under deterministic optimization in strategy 2. Compared with 

the strategy 1 (Fig. 5-10), the energy stored in batteries are consumed from 16:00 to 

21:30 for reserve provision instead of load supply. 
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Fig. 5-13 AG power, battery power and SoC at each time step under deterministic 

optimization in strategy 2 

 

5.4.6 Comparison of the two control strategies and discussion 

Objective function 

Day-ahead deterministic-based operational planning results are compared in Table 5-4 

regarding the fuel cost and CO2 equivalent emission cost. Both fuel and emission costs 

with storage are greatly decreased compared with the case without storage. Furthermore, 

fuel and emission costs of the strategy 2 are less compared with strategy 1. The reason 

is that with the storage control strategy 2, stored energy is used to provide reserve power, 

then less MGTs may be committed during certain period to provide reserve, leading to 

a lower operational cost.  

 

Table 5-4 Day-ahead deterministic-based operational planning results comparison 
Storage 

control 

strategy 

Objective 

Deterministic-based method 

Fuel Cost (€) CO2 Cost (kg) 

No Storage 

(Ch. 4) 

Multi-objective (cost & emission) 181 1017 

Mono-objective (cost) 180 1034 

Mono-objective (emission) 191 1001 

1 

Multi-objective (cost & emission) 170 945 

Mono-objective (cost) 169 961 

Mono-objective (emission) 179 931 

2 

Multi-objective (cost & emission) 167 922 

Mono-objective (cost) 167 958 

Mono-objective (emission) 176 908 

 

Obtained effective reserve 

Fig. 5-14 illustrates the comparison between the two storage control strategies 

regarding the reserve requirement and the obtained effective reserve after the 

deterministic-based method. Here the reserve requirement is quantified by the LOLP 

analysis and preset security level. Strategy 2 is interesting because of a higher security 
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level with more reserve provision when there is a rather high reserve requirement (from 

15:00 to 21:00). 

 

(a) Obtained effective reserve with a LOLP ≤ 5% in strategy 1 

 

(b) Obtained effective reserve with a LOLP ≤ 5% in strategy 2 

Fig. 5-14 Reserve requirement and obtained effective reserve after the deterministic-

based method 

 

Comparison of daily allocated reserve energy, PV self-production rate and PV self-

consumption rate  

From Table 5-5, it is observed that the integration of ESS has largely increased the PV 

self-production rate and PV self-consumption rate. Furthermore, in terms of the reserve 

allocation, more reserve power is provided by PV AGs in the storage control strategy 2 

compared with strategy 1. 

 

Table 5-5 Allocated reserve, PV self-production rate and PV self-consumption rate 
 

Storage control 

strategy 

Reserve from 

PV AGs (kWh) 

Reserve from 

MGTs (kWh) 

PV self-production 

rate (%) 

PV self-consumption 

rate (%) 

No storage (ch. 4) 0 367.1 25 50 

Power balancing 

strategy 1 
6.8 360.3 50 100 

OR provision  

strategy 2 
123.3 243.8 50 100 

5.5 UC with a Scenario-Based Stochastic Optimization  

5.5.1 Presentation 

As discussed previously in Chapter 4, a scenario-based stochastic operational planning 

process is composed of two steps:  
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1) First stage optimization, i.e. deterministic optimization. The first stage is related to 

the optimal scheduling of generation capacity. The decisions of units to be 

committed are made in advance before the uncertain event realization. They are 

based on the consumption forecast, generation forecast and the calculated power 

reserve from contemplated past forecasting errors. This commitment step is 

essential for slow MGTs. 

2) Second stage optimization, i.e. stochastic optimization. The second stage is based 

on a representation of a number of reasonable operating conditions (taking into 

account forecasting errors) that may arise in the future because of the uncertainty 

realization. As shown in Fig. 5-15, a set of scenarios 𝒲 is considered. After the 

occurrence of uncertainties under each scenario , a second optimal dispatch can 

be computed based on the commitment decisions while keeping commitments of 

slow generators made in the first stage. Consequently, the obtained decision 

variables (Power references of MGTs) after disclosure of the uncertainty depend 

also on the determinist decision made in the first-stage. Furthermore, according to 

the considered storage control strategy, output power of active generators 𝑝𝑎𝑔,𝜔(𝑡) 

and available OR 𝑟𝑎𝑔,𝜔(𝑡) are calculated. 

 
Fig. 5-15 Scenario-based stochastic operational planning with combination of storage 

strategy regarding reserve allocation 

5.5.2 Building of Net Demand scenarios for uncertainties representation 

Uncertainties in PV and load demand forecasting requires an ad hoc modelling in order 

to anticipate the future evolving. Decisions of generation scheduling for tomorrow must 

be optimal regarding forecasted data and probable deviations (part 4.2). Scenarios 

should take into account all the possible net demand uncertainties over the generation 

scheduling period (the following 24h) with the consideration of different PV generation 

scenarios and load generation scenarios. The net demand for each scenario is the 

expected load demand minus the PV production. The objective of this storage 

application is to erase the net demand forecasting error. 
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In Chapter 2, an artificial neural network (ANN) is applied to forecast the load 

consumption and PV generation. Based on probabilistic characteristics of forecast 

errors, scenarios are generated regarding PV generation prediction and load demand 

prediction. After applying ANN to forecast the PV generation and load demand, 

forecast errors are calculated as the difference between the forecast values and real 

values. Here a population of historical PV data and a population of load data (real data 

and forecasted data) in past one year and half are used to analyze the statistic 

characteristics of PV forecast errors and load forecast errors. Owning to the 

considerable database, the probability distributions of PV forecast errors and load 

forecast errors at each time step t are seen as standard normal distribution functions 

[229]. 

 

 PV forecast                                Load forecast 

 

pdf analysis at each time step 

 
PV scenarios                      Load scenarios 

 

 
Net load demand scenarios  

Fig. 5-16 pdf analysis based net load demand scenario generation  
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With a pdf analysis at each time step, the mean value and the standard deviation value 

of PV (𝜇𝑝𝑣,𝜀,𝑡  and 𝜎𝑝𝑣,𝜀,𝑡 ) and load demand (𝜇𝑙𝑜𝑎𝑑,𝜀(𝑡), 𝜎𝑙𝑜𝑎𝑑,𝜀(𝑡)) are calculated. 

Hence, the mean value and the standard deviation value of the net demand are obtained 

with equations:  

 
𝜇𝑁𝐷,𝜀(𝑡) = 𝜇𝑙𝑜𝑎𝑑,𝜀(𝑡) − 𝜇𝑝𝑣,𝜀(𝑡) 

𝜎𝑁𝐷,𝜀
2(𝑡) = 𝜎𝑙𝑜𝑎𝑑,𝜀

2(𝑡) + 𝜎𝑝𝑣,𝜀
2(𝑡) 

(5-21) 

After net demand scenarios are built for the representation of uncertainties, 6 probable 

net load demand scenarios are considered with different probabilities of occurrence. 

Under each scenario, daily PV energy, daily net load demand energy and daily stored 

energy in batteries are presented in Table 5-6. 

 

Table 5-6 Daily PV energy, daily net load demand energy and daily stored energy 

under each scenario 

 

Meanwhile, Fig. 5-17 shows the reserve requirement under each scenario. The 

maximum reserve requirement is in S6 since there is a maximum PV generation 

uncertainty. The minimum value is reached in S1. By calculating the reserve 

requirements for each scenario, more appropriate reserve power is provided regarding 

each possible case, leading to a more reasonable reserve provision than in deterministic 

optimization. 

 
Fig. 5-17 Reserve requirement under each scenario 
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 Scenario 1 S 2 S 3 S 4 S 5 S 6 

Daily PV energy (kWh) 177.5 316.1 480.7 676.9 888.9 1100.9 

Daily net load demand energy (kWh) 771.3 821.3 845.5 833.0 780.6 703.5 

Daily stored energy (kWh) 68.9 156.6 250.8 310.9 342.0 369.6 

RES self-production rate (%) 18.7 27.8 36.3 43.8 50.4 56.9 

RES self-consumption rate (%) 100 100 100 97.6 94.7 93.2 

Probability of occurrence (%) 2.3 13.6 34.1 34.1 13.6 2.3 
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5.5.3 Stochastic Operational Planning with a Mixed-Integer Programming 

Optimization 

Reserve constraints and MGTs limits 

For each scenario, the expected net demand 𝐷𝜔(𝑡)  is re-calculated. Hence, the 

dispatching adjusts the previous scheduled power in the first stage, according to the 

varying reserve requirement of each scenario in the second stage. After the uncertainties 

coming from second-stage decision variables are considered, the system reserve power 

requirement 𝑟 𝜔(𝑡) is quantified by considering uncertainties from net demand forecast 

errors and risk-constrained reserve provision approach: 

 𝑟 𝜔(𝑡) = ∆𝐷𝜔(𝑡) + 𝜙
−1(1 − 𝜀|𝜇𝑁𝐷,𝜀(𝑡), 𝜎𝑁𝐷,𝜀(𝑡)), ∀𝑡 ∈ 𝒯,∀𝜔 ∈ 𝒲 (5-22) 

where ∆𝐷𝜔(𝑡) includes uncertainties from both PV forecast errors and load demand 

forecast errors. ∆𝐷𝜔(𝑡) is the difference between the net demand forecast in first stage 

𝐷(𝑡) and net demand under each scenario 𝐷𝜔(𝑡). 𝒲 is the set of scenarios. ∆𝐷𝜔(𝑡) 

could be one value among 6 possibilities: {𝜇𝑁𝐷,𝜀(𝑡) ± 0.5𝜎𝑁𝐷,𝜀(𝑡), 𝜇𝑁𝐷,𝜀(𝑡) ±

1.5𝜎𝑁𝐷,𝜀(𝑡), 𝜇𝑁𝐷,𝜀(𝑡) ± 2.5𝜎𝑁𝐷,𝜀(𝑡)}. 

Afterwards, MGTs limits are set as follows: 

 𝑝𝑚  𝛿𝑚,𝜔(𝑡) ≤ 𝑝𝑚,𝜔(𝑡) ≤ 𝑝
𝑚
𝛿𝑚,𝜔(𝑡), ∀𝑚 ∈ ℳ (5-23) 

 
𝛿𝑚,𝜔(𝑡) = 𝛿𝑚(𝑡), ∀𝑚 ∈ ℳ𝑆𝐿𝑂𝑊 

, ∀𝑡 ∈ 𝒯, ∀𝜔 ∈ 𝒲 
(5-24) 

Net demand constraints 

The following constraints are related to the balance of expected generation and 

expected consumption under each scenario, as well as the generation limits of 

generators. All of them are indexed by the scenario index 𝜔: 

 
∑ 𝑝𝑚,𝜔(𝑡)

𝑀

𝑚=1

= 𝑙𝜔(𝑡) −∑𝑝𝑎𝑔,𝜔(𝑡)

𝐴

𝑎=1

+ 𝑟𝑚𝑔𝑡,𝜔(𝑡) 

∀𝑡 ∈ 𝒯, ∀𝜔 ∈ 𝒲 

(5-25) 

Objective functions 

As in Chapter 4, one of the broadly used mathematical methods for UC-based problems, 

the mixed-Integer Linear Programming (MILP), is applied to obtain the operation 

planning results considering constraints and objectives. Hence during the search of the 

problem tree, optimum can be reached by proximity and convergence process in a finite 

time [78]. The purpose of the optimization function is to minimize the total cost of both 

first and second stages, considering the recourse cost of the second-stage with a 

weighted probability. So, the cost and emission-based multi-objective function of the 

operational planning in the second-stage is formulated by taking into account the 

occurrence probability (𝜋𝜔) of each scenario 𝜔: 
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𝐽2 = min
𝛥,𝑝,𝑟

∑𝜋𝜔

Ω

𝜔=1

∑∑ {𝛿𝑚,𝜔(𝑡) [𝛼𝑐𝑐𝑚 (𝑝𝑚,𝜔(𝑡)) + 𝛼𝑐𝑒𝑐𝑒𝑚 (𝑝𝑚,𝜔(𝑡))]

𝑀

𝑚=1

𝑇

𝑡=1

+ 𝑢𝑚,𝜔(𝑡)[𝑐𝑚
𝑢 + 𝑐𝑒𝑚

𝑢 ] + 𝑑𝑚,𝜔(𝑡)[𝑐𝑚
𝑑 + 𝑐𝑒𝑚

𝑑 ]} 

(5-26) 

subject to (5-22)-(5-25), 

 𝑟𝑚𝑔𝑡,𝜔(𝑡) = 𝑟 𝜔(𝑡) − 𝑟𝑎𝑔,𝜔(𝑡)  (5-27) 

(𝛥, 𝑝, 𝑟)ϵ ℱ, ∀𝑚 ∈ ℳ，∀𝑡 ∈ 𝒯  

where ∑ 𝜋𝜔
Ω
𝜔=1 = 1 . ℱ  is the set scheduling decision variables 𝛿𝑚,𝜔(𝑡) , 𝑝𝑚,𝜔(𝑡) 

and 𝑟𝑚𝑔𝑡,𝜔(𝑡). The expected cost is directly affected by the uncertainty of PV and load 

forecasting, which is modelled through scenarios and their probabilities. Similarly, the 

cost-based mono-objective function, and emission-based mono-objective function for 

the operational planning in the second-stage are the same as (4-13) and (4-14), 

respectively. 

5.5.4 Applications results with the power balancing strategy (1) 

Owing to the different scenarios under different probabilities, the expected daily cost is 

re-calculated, as well as the reserve power, and the re-scheduling of all MGTs are done 

each half-hour. Fig. 5-18 shows the generation scheduling, which is obtained with the 

expected net demand scenarios during the day by applying the scenario-based 

optimization with integration of the storage control strategy 1. 

 

Fig. 5-18 Generation planning under scenario-based optimization and storage control 

strategy 1 

 

The case of scenario 4 is shown as an example in Fig. 5-19, a part of the reserve power 

is provided by PV generation limitation at 11:00, as well as during the period from 

12:30 to 14:30. The reserve is totally covered by MGTs during the remaining time steps. 

Fig. 5-20 shows the state of batteries under scenario 4. All energy stored in batteries 

are consumed up before 20:30 for the load supply. 
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Fig. 5-19 Power reserve provided by MGTs and PV AGs under scenario 4 

 

Fig. 5-20 AG power, battery power and battery energy at each time step under 

scenario 4 

 

The reserve from PV AGs and MGTs varies according to the committed MGTs, SoC, 

as well as considered PV generation. For the different net demand scenarios, the reserve 

requirement, as well as the given reserve power from PV AGs and MGTs are observed 

to analyze the effect of uncertainties. For instance, the pdf of the reserve requirement, 

reserve from PV AGs and MGTs at 11:00 and 16:30 are shown in Fig. 5-22 and Fig. 

5-22, respectively. The fitted pdf curve is obtained for each time step according to the 

corresponding histogram. The means and standard deviations are displayed in Table 

5-7. At 11:00, there is PV generation surplus to provide a part of the reserve power; 

while at 16:30, there is no reserve from PV AGs, because there is no PV surplus, and 

batteries are not for reserve provision. Hence all the reserve power is coming from 

MGTs at 16:30. 
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Fig. 5-21 Reserve requirement, reserve from PV AGs and MGTs at 11:00 with 

Strategy 1 

 

 

Fig. 5-22 Reserve requirement, reserve from PV AGs and MGTs at 16:30 with 

Strategy 1 

 

Table 5-7 Means and standard deviations regarding reserve requirement, reserve from 

PV AGs and MGTs under strategy 1 

𝒕  𝟏𝟏: 𝟎𝟎 𝟏𝟔: 𝟑𝟎 

𝒓(𝒕) 
𝝁 𝒓(𝒕) 30 35 

𝜎 𝑟(𝑡) 8 10 

𝒓𝒂𝒈(𝒕) 
𝝁 𝒓𝒂𝒈(𝒕) 14 0 

𝜎𝑟𝑎𝑔(𝑡) 17 0 

𝒓𝒎𝒈𝒕(𝒕) 
𝝁 𝒓𝒎𝒈𝒕(𝒕) 16 35 

𝜎 𝑟𝑚𝑔𝑡(𝑡) 10 10 

5.5.5 Applications results with the OR provision strategy (2) 

With the storage control strategy 2, Fig. 5-23 shows the generation scheduling. 

 
Fig. 5-23 Generation planning under scenario-based optimization and storage control 

strategy 2 
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The case of scenario 4 is shown in Fig. 5-24, the reserve power is provided by the stored 

energy in batteries during the period from 16:00 and 22:00. Fig. 5-25 shows the state 

of charge under scenario 4. 

 

Fig. 5-24 Power reserve provided by MGTs and PV AGs under scenario 4 

 

Fig. 5-25 AG power, battery power and battery energy at each time step under 

scenario 4 

 

As for the Strategy 1, a similar pdf analysis is made. The reserve dispatching is the same 

at 11:00; while at 16:30, reserve dispatching has changed since part of reserve power is 

provided by batteries under strategy 2. The pdf of the reserve from PV AGs at 16:30 is 

𝜇 𝑟𝑎𝑔(𝑡 = 19: 30) = 27 𝑘𝑊,𝜎 𝑟𝑎𝑔(𝑡 = 19: 30) = 15 𝑘𝑊, as well as the reserve from MGTs 

with 𝜇 𝑟𝑚𝑔𝑡(𝑡 = 19: 30) = 8 𝑘𝑊, 𝜎 𝑟𝑚𝑔𝑡(𝑡 = 19: 30) = 20 𝑘𝑊. Comparing to the strategy 1, 

the mean of reserve power from PV AGs has increased 27 𝑘𝑊. On the contrary, the 

mean of reserve power from MGTs has decreased from 35 𝑘𝑊 to 8 𝑘𝑊. 

 

 

 

6h 8h 11h 14h 17h 20h 23h 2h 5h

Time (half hour)

0

10

20

30

40

50

P
o

w
er

 (
k
W

)

Reserve power by MGTs

Reserve power by PV AG (instant PV)

Reserve power by PV AG (batteries)

6h 8h 11h 14h 17h 20h 23h 2h 5h
0

20

40

60

P
ag

 (
k
W

)

6h 8h 11h 14h 17h 20h 23h 2h 5h

-50

0

50

P
b

at
 (

k
W

)

6h 8h 11h 14h 17h 20h 23h 2h 5h
0

0.5

1

S
O

C
 (

%
)



 CHAPTER 5  

 155 

 
Fig. 5-26 Reserve requirement, reserve from PV AGs and MGTs at 16:30 with 

Strategy 2 

 

Table 5-8 Means and standard deviations regarding reserve requirement, reserve from 

PV AGs and MGTs under strategy 2 

𝒕  𝟏𝟔: 𝟑𝟎 

𝒓(𝒕) 
𝝁 𝒓(𝒕) 35 

𝜎 𝑟(𝑡) 10 

𝒓𝒂𝒈(𝒕) 
𝝁 𝒓𝒂𝒈(𝒕) 27 

𝜎𝑟𝑎𝑔(𝑡) 15 

𝒓𝒎𝒈𝒕(𝒕) 
𝝁 𝒓𝒎𝒈𝒕(𝒕) 8 

𝜎 𝑟𝑚𝑔𝑡(𝑡) 20 

5.5.6 Discussion about the two control strategies according to different uncertainties 

Comparison of costs 

Day-ahead scenario-based stochastic operational planning results are compared in 

Table 5-9 regarding the fuel cost and CO2 equivalent emission cost, as well as 

possibility of risk under worst-case (S6) and under S4 (one of the most probable case). 

Similarly, as in deterministic case, both the fuel costs and emission costs of the strategy 

2 are less compared with strategy 1. Since in the strategy 2, the stored energy in battery 

is used to provide the reserve power, fewer generators may be committed when the 

storage energy is consumed.  

 

Table 5-9 Day-ahead scenario-based stochastic operational planning results 

comparison 

Storage 

control 

strategy 

Objective 

Scenario-based Stochastic Optimization 

Fuel Cost 

(€) 

CO2 Cost 

(kg) 

Possibility of risk 

under worst-case (S6) 

Possibility of risk 

under S4 

No 

storage 

Multi-objective 

(cost & emission) 
211 1239 ≤16.7% of time steps ≤2.1% of time steps 

Mono-objective (cost) 209 1283 ≤3.6% of daily 

reserve energy deficit 

(21.2 kWh / 591.5 

kWh) 

≤0.2% of daily 

reserve energy deficit 

(0.7 kWh / 411.7 

kWh) 

Mono-objective 

(emission) 
215 1213 

1 

Multi-objective 

(cost & emission) 
178 1045 ≤6.25% of time steps ≤2% of time steps 

Mono-objective (cost) 177 1066 
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Mono-objective 

(emission) 
187 1030 

≤1.6% of daily 

reserve energy deficit 

(9.6 kWh / 591.5 

kWh) 

≤0.02% of daily 

reserve energy deficit 

(0.1 kWh / 411.7 

kWh) 

2 

Multi-objective 

(cost & emission) 
169 977 

No 

(0 kWh / 591.5 kWh) 

No 

(0 kWh / 411.7 kWh) 
Mono-objective (cost) 168 1011 

Mono-objective 

(emission) 
179 962 

 

In terms of the reserve provision with storage control strategy 1 and strategy 2, Table 

5-10 shows the daily reserve energy provided by PV AGs (including PV generation 

limitation and batteries) and MGTs under each scenario. Compared with strategy 1, the 

reserve is provided by available energy in batteries rather than by MGTs in strategy 2. 

Utilization rate of MGTs in terms of reserve provision has been greatly reduced. 

 

Table 5-10 Reserve provision in storage control strategy 1 / 2 under each scenario 

 
Storage 

control 

strategy 

Reserve energy sources (kWh) 
Scenario 1 

(S 1) 
S 2 S 3 S 4 S 5 S 6 

Strategy 1 

Reserve energy 

from PV AGs  

PV limitation 0 0 2.5 48.8 129.7 234.0 

Batteries 0 0 0 0 0 0 

Reserve energy from MGTs  151.2 235.0 319.5 362.9 371.9 357.5 

Strategy 2 

Reserve energy 

from PV AGs  

PV limitation 0 0 2.5 48.8 129.7 234.0 

Batteries 51.1 78.1 116.3 126.0 131.2 133.8 

Reserve energy from MGTs  100.2 156.9 203.2 236.9 240.6 223.7 

 

Comparison of the obtained effective OR 

Fig. 5-27 and Fig. 5-28 illustrate the comparison of the two storage control strategies 

regarding the obtained effective OR after the scenario-based stochastic method. Under 

scenario 4 (Fig. 5-27), from 15:30 to 21:00, there are more effective reserve in strategy 

2 than in strategy 1. In strategy 1, the reserve deficit occurs at 18:00; while all reserve 

requirement is satisfied by the effective reserve in strategy 2. In terms of risk level 

regarding the preset reserve requirement, among 48 time steps, only 1 time steps is at 

risk (effective reserve is less than reserve requirement), i.e. 2% possibility of risk during 

the day in strategy 1, the daily additional required reserve energy is 0.1 kWh in total. 

While in strategy 2, none time step is at risk, i.e. no possibility of risk occurrence.  
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(a) Obtained effective reserve with a LOLP ≤ 5% in strategy 1 

 
(b) Obtained effective reserve with a LOLP ≤ 5% in strategy 2 

Fig. 5-27 Reserve requirement and obtained effective reserve under scenario 4 

 

In order to study the worst-case situation, Fig. 5-28 illustrates the obtained effective 

reserve under scenario 6. Among the 48 time steps, 3 time steps are at risk, i.e. 6.25% 

possibility of risk during the day with the strategy 1. The daily additional required 

reserve energy is 9.6 kWh in total. For the compensation of the probable occurrence of 

reserve deficit, fast generators are capable of being committed in case of emergency to 

provide additional required reserve provision, but with a higher operational cost. With 

the strategy 2, none of time steps are at risk.  

 

(a) Obtained effective reserve with a LOLP ≤ 5% in strategy 1 

 

 (b) Obtained effective reserve with a LOLP ≤ 5% in strategy 2  

Fig. 5-28 Reserve requirement and obtained effective reserve under scenario 6 
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Analysis of minimized costs with a Pareto-optimal front representation 

For a multi-objective optimization problem, there is not an optimal solution when the 

problem objectives are conflicting. However, it has a set of incomparable optimal 

solutions: each one is inferior to the other one in some objectives and superior in other 

objectives. The set of the entire feasible decision space, i.e. the set of solutions for the 

objective function domain, is called Pareto set. The boundary defined by the set of all 

points mapped from the Pareto set is called the Pareto-optimal front [250]. Hence, in 

order to find the Pareto optimal solution, finding the trade-off between multiple 

objectives, the Pareto-optimal front should be examined. 

 

In this study, one of the classic multi-objective optimization methods: weighted sum 

method, is used to find the Pareto-optimal fronts. To find solutions of a multi-objective 

optimization problem, the corresponding weights are added in a weighted sum method. 

They are multiplied by two objectives to scalarize a set of objectives into a single 

objective. Weight of each objective is chosen in proportion to the relative importance 

of the objective. Fig. 5-29 illustrates the Pareto-optimal fronts for the multi-objective 

optimization of the CO2 equivalent emission and operational cost. The red lines imply 

the Pareto-optimal fronts of deterministic (stage 1) and stochastic (stage 2) optimization 

when ESS is not implemented. The yellow/green lines indicate the Pareto-optimal 

fronts when storage control strategy 1/strategy 2 is integrated. It is observed that, the 

strategy 2 leads to less costs and emissions, compared with the strategy 1. Both 

strategies benefit from reducing operational costs and CO2 equivalent emissions, 

compared with the situation without ESS.  

 

Fig. 5-29 Pareto-optimal fronts for the multi-objective optimization of the CO2 

equivalent emission and operational cost 

 

Synthesis of applied methods 

To summarize, Table 5-11 shows a comparison of optimization implementation in 

Chapter 3, 4 and 5 regarding the optimization type, applied algorithm, objective 

function, building of scenarios, constraints and average computational time. 
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Table 5-11 The comparison of optimization implementation in Chapter 3,4 and 5 

 Ch.3 Ch. 4 Ch.5 

Optimization Type Deterministic Stochastic Stochastic 

Algorithm DP MILP MILP MILP 

Objective Function 

Type 
Quadratic Linear Linear Linear 

Objective Function 
Operating 

cost 

Operating 

cost 

Operating cost + 

Emission cost 

Operating cost + 

Emission cost 

Scenarios Generation - - PV 
PV, Load 

(Net demand) 

Battery Constraints Not included Not included 
Not 

included 
Included 

Computational Time 4.39 2.53 12.13 13.92 

 

5.6 Sizing of Storage under Uncertainty  

5.6.1 Principle 

In order to implement the energy storage with the optimal operations and profits, the 

sizing of energy storage devices is inevitable. Storage devices must be sized and located 

regarding power reliability, cost-effectiveness, and environmental-friendly target. 

 

Previous researchers have focused on handling RES uncertainty when dealing with the 

problem of storage sizing. The optimal ESS sizing problem is discussed in [251]. With 

an optimal economic target, the proposed MIP approach solved the optimal sizing 

problem by minimizing initial investment costs of storage devices and operational costs 

of the microgrid with renewable unit implementation. In [252] a method is proposed 

for sizing the ESS and is based on the cost-benefit analysis in a microgrid. Firstly, wind 

speed and solar irradiation are forecasted by feed-forward neural network techniques 

and time series. Then, the optimal ESS size is determined by MILP by considering the 

islanded mode and grid-connected mode. An heuristic method is performed in [253] for 

optimal sizing of not only ESS, but also DERs including wind turbines, PV panels and 

hydrogen tanks. The microgrid sizing problem is solved by PSO algorithm, and 

optimization results are compared regarding scenarios with and without wind power 

uncertainty. [254] implemented an analytical approach to solve the sizing problem of 

ESS with the aim of increasing power dispatchability of wind farms. In [255], 

considering the RES-based ESS in autonomous small islands, PV generators and ESS 

are optimally sized and combined. The electrical generation cost is minimized by taking 

into account the maximum solar energy penetration. 

 

While many researchers investigate above deterministic-based approaches, statistical-

based approaches are less discussed. Taking an interest in these methods is significant 
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for RES-integrated ESSs, though. Under this context, a probabilistic method for ESS 

sizing under wind power forecast uncertainty is applied in [256], by taking into account 

the statistical behavior of SoC and forecast errors. Focusing on Loss of Power Supply 

Probability (LPSP) as a reliability criterion, optimum sizing of batteries and PV 

generators is proposed in [257] for a stand-alone PV system in isolated areas. In [258] 

the optimal capacity of ESS is determined in an autonomous microgrid by 

implementing a capacity-based statistical model. A statistical analysis is performed and 

is based on the capacity distribution of the presented ESS. However, in this work the 

ESS is used for the frequency regulation thus the optimum capacity of ESS is based on 

the minimum requirement of frequency regulation. Similarly, by applying a statistical 

approach to describe the ESS capacity distribution, an ESS sizing algorithm is carried 

out in [259] with a dynamic programming process. In this case, integrated ESS aimed 

to smooth the variations of RESs power production (wind & solar). 

 

In our work, to find the benefits of the battery usage in terms of long-term benefits, and 

to take into account primary source (PV) generation in different seasons during one 

year, a storage sizing approach is proposed by applying the uncertainty analysis method. 

In this section, historical database of load demand and PV generation are analyzed with 

a probabilistic method to calculate the expected net demand during the day regarding 

varying seasons and types of the day (workdays, non-workdays). Then the pdf-based 

expected net demands are built and taken into account the time factors (seasonal 

characteristics, national / regional holidays, etc) of energy consumption and RESs 

generation. Hence, the sizing of storage is decided to save probable RES surplus. 

 

5.6.2 Load demand analysis 

To illustrate the sizing method, used load data have been collected from the RTE 

website (Réseau de transport d'électricité) [111] and, after scaled to our urban microgrid 

(maximum peak load is equal to 120 kW), are used as representative load demand 

variations for load demand analysis [111]. With historical database of hourly load 

demand in France during the year 2013-2014 and 2019-2020, the load demand is 

analyzed with temporal information, e.g. month of the year, day of the week, hour of 

the day. Meanwhile the public holidays are discriminated in order to separate them from 

workdays. In the current study, the distinction of four seasons and workdays/non-

workdays are shown in Table 5-12 and Table 5-13, respectively. Four seasons are 

identified according to monthly average temperature at Lille: Spring and autumn: 5-

15 °C; winter: below 5°C and summer: beyond 15°C. 

 

Table 5-12 Types of the days regarding seasons 

Spring Summer Autumn Winter 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 

January 

February 



 CHAPTER 5  

 161 

Table 5-13 Types of the days regarding workdays/non-workdays 

Non-workdays Workdays 

Saturday 

Sunday 

National public holidays 

Monday to Friday 

(except national public holidays) 

 

Finally, 8 types of load profiles are identified according to seasons and type of day 

(workday or not). i.e. spring & non-workdays, spring & workdays, summer & non-

workdays, summer & workdays, autumn & non-workdays, autumn & workdays, winter 

& non-workdays, winter & workdays. With a pdf -based probabilistic analysis, the 

mean and standard deviation are calculated and the corresponding pdf are obtained at 

each time step under each load profile types.  

 

As illustrated in Fig. 5-30-Fig. 5-33, (a1)/(b1) are normalized load profiles during non-

workdays/workdays in spring (Fig. 5-30), summer (Fig. 5-31), autumn (Fig. 5-32), and 

winter (Fig. 5-33), respectively. At each time step, a normal distribution fitting curve is 

generated according the frequency distribution histogram. As an example, (a2)/(b2) 

presents the frequency histograms and fitted pdf of load power at peak load hour. 

(a3)/(b3) describes probability distribution of load power at each time step during the 

day. The solid line indicates the mean value of load power, while different levels of 

grey indicate confidence intervals (CIs) of 99%, 80% and 40%. 

 
(a1)                            (a2)                         (a3) 

(a) Non-workdays 

 

(b1)                            (b2)                         (b3) 

(b) Workdays 

Fig. 5-30 Probabilistic analysis and pdf of load demand in spring 
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(a1)                            (a2)                         (a3) 

(a) Non-workdays 

 

 

(b1)                            (b2)                         (b3) 

(b) Workdays 

Fig. 5-31 Probabilistic analysis and pdf of load demand in summer 

 

 

(a1)                            (a2)                         (a3) 

(a) Non-workdays 
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(b1)                            (b2)                         (b3) 

(b) Workdays 

Fig. 5-32 Probabilistic analysis and pdf of load demand in autumn 

 

 

(a1)                            (a2)                         (a3) 

(a) Non-workdays 

 

(b1)                            (b2)                         (b3) 

(b) Workdays 

Fig. 5-33 Probabilistic analysis and pdf of load demand in winter 
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Concerning workdays and non-workdays, the average load is always higher in 

workdays, with a difference of around 0.1 p.u. at peak load. When the storage is used 

to store the surplus RES energy, the maximum battery energy is rather small in winter, 
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because the consumed RES energy at this moment is more than other seasons due to 

the higher load consumption. 

 

In these scaled national load data, the load demand of the industry is included, which is 

not relevant to the study of residential network. However, the same probabilistic 

method for load analysis can be employed in the residential network study. 

 

5.6.3 PV generation analysis 

PV energy is greatly dependent on meteorological information, e.g. temperature, 

irradiance, cloud cover, etc. These factors possess seasonal characteristics thus are 

greatly impacted by varying season types. However, unlike load demand, 

workdays/non-workdays types do not influence PV generation. Hence, for PV 

generation analysis, PV profiles are classified into 4 types regarding different seasons: 

spring, summer, autumn, and winter. The data of sensed PV power are obtained from 

PV generation system Rizomm at L2EP-HEI, and the database is built from July, 2019 

until July, 2020.  

 

With a pdf-based probabilistic analysis, the mean and standard deviation are calculated 

and the corresponding pdf are obtained at each time step under each PV profile types. 

As shown in Fig. 5-34-Fig. 5-37, (1) are the normalized PV power profiles in spring 

(Fig. 5-34), summer (Fig. 5-35), autumn (Fig. 5-36), and winter (Fig. 5-37), 

respectively. Each (2) presents the frequency histograms and fitted pdf of PV power at 

peak load hour. Each (3) describes probability distribution of PV power at each time 

step during the day. The solid line implies the mean value of PV power, while different 

levels of grey indicate CIs of 99%, 80% and 40%. 

 

(1)                            (2)                         (3) 

Fig. 5-34 pdf-based probabilistic analysis of PV generation in spring 
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(1)                            (2)                         (3) 

Fig. 5-35 pdf-based probabilistic analysis of PV generation in summer 

 

 

(1)                            (2)                         (3) 

Fig. 5-36 pdf-based probabilistic analysis of PV generation in autumn 

 

 

(1)                            (2)                         (3) 

Fig. 5-37 pdf-based probabilistic analysis of PV generation in winter 

 

Through Fig. 5-34-Fig. 5-37, it can be concluded that in this case, the average PV 
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autumn (0.3 p.u.) and summer (0.5 p.u.), then reach the highest value in spring (0.6 

p.u.). When storage is used to store surplus RES energy, the need of battery size is 

rather small in winter, because less RES energy is generated at this moment. On the 

contrary, the maximum battery energy is large in spring and summer, when there is 

more RES generation. 
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5.6.4 Expected net load demand 

With a pdf-based probabilistic analysis of load demand and PV generation in 5.8.2 and 

5.8.3, the expected net load demand can be calculated through the pdf analysis of the 

difference between load demand and RES generation. According to the 8 types of load 

demand profiles and 4 types of PV generation profiles, the expected net demand profiles 

are categorized into 8 types. As illustrated in Fig. 5-38-Fig. 5-41, probability 

distribution of the net demand is described at each time step during the day regarding 

workdays/non-workdays and four seasons. The solid line indicates the mean value of 

net demand, while different levels of grey indicate CIs of 99%, 80% and 40%. 

Considering the nominal load demand power, it is assumed that the load demand is no 

more than 120 kW. 

 

(a) Non-workdays                            (b) Workdays 

Fig. 5-38 pdf-based expected net demand in spring 

 

 

(a) Non-workdays                            (b) Workdays 

Fig. 5-39 pdf-based expected net demand in summer 
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(a) Non-workdays                            (b) Workdays 

Fig. 5-40 pdf-based expected net demand in autumn 

 

 

(a) Non-workdays                            (b) Workdays 

Fig. 5-41 pdf-based expected net demand in winter 

 

It is observed that net load demand is rather high in winter and autumn. During the day, 

the net load demand reaches the highest level during 17:00-21:00, and the peak load 

occurs around 18:00-19:00. Concerning the variability, the largest deviation always 

occurs around 9:00-14:00 due to the high PV energy generation uncertainty. 

 

In order to obtain the value of the maximum battery energy, the expected renewable 

energy surplus is calculated regarding different seasons and types of days. As shown in 

Table 5-14, mean values of renewable energy surplus are varying from 0 to 129 kWh 

in various time periods. Moreover, renewable energy surplus within 40% and 80% of 

probability is also calculated, respectively. It is concluded that the maximum battery 

energy can be possibly reached in spring & non-workdays, since there is the maximum 

renewable energy surplus during this period of time. There is also considerable amount 

of energy surplus in summer & non-workdays, followed by spring & workdays and 

summer & workdays. On the contrary, less renewable energy is generated and more 

load demand is required, inducing less renewable energy surplus in autumn and winter. 

In this study, according to the possible maximum renewable energy surplus, the 

required battery energy size is 280 kWh in order to store energy surplus within the 80% 
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of probability. Hence according to the minimum allowable state of charge (20 %), the 

battery is sized 350 kWh with a net storage capacity of 280 kWh. 

 

Table 5-14 Expected energy surplus regarding different seasons and types of days 

Seasons Spring Summer Autumn Winter 

Workdays / non-workdays (w / n) n w n w n w n w 

Mean value of renewable energy surplus (kWh) 129 98 113 82 9 9 2 0 

Renewable energy surplus within 40% of probability (kWh) 179 146 158 126 22 26 11 6 

Renewable energy surplus within 80% of probability (kWh) 278 246 250 217 59 83 45 36 

 

5.7 Conclusion 

In this chapter, the use of ESS in homes is considered. Two storage control strategies 

are considered with a scenario-based stochastic optimization for operational scheduling 

under renewable energy uncertainty. First, the reviews of ESS applications and benefits 

are introduced. The applications and benefits of renewable energy time-shift and supply 

reserve power capacity are discussed in detail. Then according to these benefits, two 

storage control strategies are presented with respect to different objectives:  

- Power balancing with optimal operational costs and CO2 equivalent emissions;  

- Maximization of the power reserve provision by RESs and optimal reserve allocation 

regarding PV AGs. 

 

The deterministic and stochastic operational planning are applied and compared. First, 

reserve requirements are calculated with probabilistic analysis regarding uncertainties 

of load demand and PV generation. Then the deterministic operational planning is 

performed with the energy storage control strategy 1 and strategy 2, respectively. 

Furthermore, in the scenario-based stochastic operational planning, net demand 

scenarios are considered for the representation of load and PV uncertainties. Similarly, 

as in the deterministic case, with the application of storage control, certain constraints 

are then considered in the scenario-based optimization with MILP approach. Strategy 

2 benefits from less operational costs and CO2 equivalent emission costs, as well as 

higher security level because of the reserve provision by battery storage. Results 

confirm that the presented algorithm enables RESs to serve as primary source of reserve 

capacity, and the performance in terms of security level and environmental benefits are 

highlighted. 

 

Finally, taking into account primary source (PV) generation and load demand in 

different seasons and different types of the day during the whole year, a storage sizing 

approach is proposed to save probable RES surplus by applying the probabilistic-based 

uncertainty analysis method.



 CHAPTER 6  

 169 

 

 

 

 

CHAPTER 6 

  



 CHAPTER 6  

 170 

CHAPTER 6 MICROGIRD CENTRAL ENERGY 

MANAGEMENT SYSTEM INTERFACE DESIGN  

6.1  Introduction 

In an urban microgrid, the presence of large uncontrollable RESs makes grid control a 

complex task. Operational planning and energy usage scheduling are essential for 

keeping a balance between demand and supply, as well as handling uncertainties within 

RESs and load demand. Energy management system (EMS) platform is thus significant 

to support the monitoring and control of the microgrid in terms of appliances, applied 

techniques and control strategies. 

 

Meanwhile, GUI-based simulation tools are becoming a trend since they offer 

simplified implementations and user-friendly interactive experiences. For example in 

[260], a MATLAB/GUI based simulation is presented for photovoltaic systems to 

analyze the parameters, like radiation and temperature. In [261] different wind turbines 

generator types are modelled in the developed MATLAB/GUI with user-determined 

parameters. 

 

Many research works have been focused on energy management simulation tools for 

microgrid/smart grid. A DC microgrid graphical user interface (GUI) is presented in 

[262]. It served as a control and monitoring tool for the microgrid system, integrated 

with the implemented hardware simulation. [263] proposed a GUI of a home energy 

management system, which is capable of managing household loads and performing 

demand response for residential customers. With the integration of MATLAB 

SIMULINK toolbox, a real-time simulator is presented in [264] for the microgrid to 

analyze the dynamic behavior of loads, controllable generating units and uncontrollable 

RESs. A Matlab GUI simulator is illustrated in [265] for the generation of distribution 

grid models. By generating reasonable distribution grid topologies, more distributed 

and stochastic generation connects to the grid are increasing regarding distribution level, 

monitoring, control, and flexibility needs. However, none of these research works have 

made efforts to integrate the uncertainty analysis of RESs and OR determination and 

allocation.  

 

Previously in [49][172], an urban Microgrid Central Energy Management System 

(MCEMS) is developed with MATLAB/GUI. It provides a user-friendly graphical 

interface to properly model and study the details of PV AGs, including PV panels and 

batteries, load demand, as well as MGTs. In addition, uncertainties are analyzed and 

OR dispatching is researched. Energy management is undertaken with a DP algorithm-

based optimization.  
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In this chapter, to build a better supervisory control and data acquisition (SCADA) 

system, the MCEMS is further developed and improved regarding uncertainties study. 

With the building of net demand scenarios, RES and load uncertainties are represented 

with different probability of occurrences. The proposed tool helps to model the way 

appliances generate and consume power and energy under different net demand 

scenarios. Furthermore, it enables a better understanding of uncertainties in terms of 

OR dispatching in different storage control strategies. The impact of uncertainty on the 

system security is also explicitly demonstrated under different optimization criteria. 

 

This chapter is organized as follows: Firstly, an urban MCEMS description is presented 

in section 6.2 with a summary of interfaces and function modules. In section 6.3, an 

urban microgrid energy management system with four main interfaces and several 

individual modules are designed. Finally, in section 6.4, the conclusion is made. 

6.2 GUI description 

6.2.1 MCEMS functions presentation  

To develop a user-friendly MCEMS, several interfaces are designed with inclusion of 

different function modules. The presented EMS comprises four main interfaces as 

shown in Table 6-1.  

 

Table 6-1 Main interfaces and function modules 
Interfaces Function Modules 

Data Collection and 

Predictive Analysis for Forecasting 

• Historical Data Collection for ANN 

Training 

• Day-ahead Data Download for 

Forecasting 

• PV Power and Load Demand Forecast 

by Using a well-trained ANN 

System Uncertainties Assessment and 

OR Quantification 

• PV Power Uncertainty 

• Load Demand Uncertainty 

• Net Demand Uncertainty 

• OR Quantification 

Deterministic Optimization for 

Operational Planning 

• Operational Planning Results with 

Deterministic Optimization 

• MGTs Power References 

Scenario-based Stochastic Optimization for 

Operational Planning 

• Storage Control Strategies 

• Operational Planning Results with 

Stochastic Optimization 

• PV AGs and MGTs Power References 

 

An interface can be regarded as a function of MCEMS. For each interface, several 

functions are performed with the combination of methods, algorithms and strategies. In 

addition, different criteria and scenarios are considered. Urban MCEMS functions and 

the applied methods/strategies for these functions are illustrated in Fig. 6-1. 
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Fig. 6-1 Urban MCEMS functions and the applied methods/strategies 

 

6.2.2 Home interface window design 

Home Interface Window is shown in Fig. 6-2. There are four available interfaces and 

they can be accessed by clicking buttons: 

• Button “Uncertainty Analysis” for the interface “Data Collection and Predictive 

Analysis for Forecasting”; 

• Button “OR Quantification” for the interface “System Uncertainties Assessment 

and OR Quantification”; 

• Button “Deterministic Algorithm” for the interface “Deterministic Optimization 

for Operational Planning”; 

• Button “Stochastic Algorithm” for the interface “Scenario-based Stochastic 

Optimization for Operational Planning”. 

 

These four interfaces are presented in detail with regard to layout design and interface 

design in the following sections. 
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Fig. 6-2 Home Interface Window of the MCEMS 

 

6.3 Main Interfaces Design 

6.3.1 Data collection and predictive analysis for forecasting  

Layout design 

The layout design of Data Collection and Predictive Analysis for Forecasting interface 

is shown in Fig. 6-3. There are four function modules including: 

• Historical data collection for ANN training; 

• Data download for forecasting; 

• PV power and load demand forecasting by using a well-trained ANN; 

• ANN training results display, day-ahead forecasting results display. 

 

 

Fig. 6-3 The layout design of “Data Collection and Predictive Analysis for 

Forecasting” interface 
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A) Historical data collection for ANN training  

Firstly, historical data are collected, e.g. past few months or years of meteorological 

data (temperature, cloud cover, humidity, UV index, time of sunrise/sunset, etc), PV 

power data, and load demand data.  

 

The collected data are used for predictive analysis to identify correlated patterns and 

parameters, related to PV power output and load demand. Previously in Chapter 2, 

correlation analysis regarding PV uncertainty and load demand uncertainty are carried 

out to determine inputs of the ANN-based forecasting models.  

 

Then, forecasting models are built for PV power and load demand forecast. As 

presented in Chapter 2, a three-layer BP ANN is developed for PV power and load 

forecast, respectively. Before implementing this tool for PV power and load demand 

prediction, ANNs need to be well trained with collected past data. The training, 

validation, and test procedures were explained in Chapter 2. 

 

B) Data download for forecasting 

Once the ANN is well trained, it can be used for day-ahead forecast. The first step is to 

download the data one day-ahead to update inputs of ANNs. For procedures A) and B) 

above, used data and their sources are summarized in Table 6-2. 

 

Table 6-2 Summary of used data for ANN training and ANN-based PV power/load 

demand forecast 
Data Source Use 

Historical database: 

Meteorological data 

PV Power 

Load demand 

 

The Weather Channel [108] 

Rizomm at HEI-L2EP laboratory 

RTE (Réseau de transport d'électricité) France [111] 

ANN Training 

Forecast data of D+1: 

Meteorological data 

Real data of D-1: 

PV Power 

Load demand 

 

The Weather Channel 

 

Rizomm 

RTE France 

PV Power Forecast 

Load Demand Forecast 

 

C) PV power and load demand forecasting by using a well-trained ANN 

With the well-trained ANN in A), PV power and load demand are forecasted one day 

ahead. ANN models and forecasting procedures are detailed in Chapter 2.  

Interface design 

With designed layout in Fig. 6-3, the interface is shown in Fig. 6-4. Results on the left-

hand side are the data collection and predictive analysis for PV power and load forecast 

ANN training. On the right-hand side, downloaded data and day-ahead PV power and 

load forecasting results are presented. 
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Fig. 6-4 The “Data Collection and Predictive Analysis for Forecasting” interface 

 

6.3.2 System uncertainty assessment and OR quantification 

Layout design 

Fig. 6-5 illustrates the layout of the interface “System uncertainty assessment and OR 

quantification”. The following function modules are included: 

• Uncertainty assessment; 

• OR quantification; 

• Uncertainties display, quantified OR display. 

 

Fig. 6-5 The layout design of “System uncertainty assessment and OR quantification” 

interface 
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A) Uncertainty assessment 

As introduced in Chapter 3, with ANN and pdf analysis of forecast errors, PV power 

and load demand forecasting uncertainties are obtained, respectively. Then, the net 

demand uncertainty is calculated at each time step.  

 

B) Risk-constrained OR Quantification 

Following the probability distribution of the net demand uncertainty, a probabilistic 

risk-constrained method is proposed for the OR quantification. A LOLP risk level is 

pre-defined as a security index. As discussed in Chapter 3 (3.3.5), a certain amount of 

OR power is provided at each time step by applying a pdf analysis of net demand 

forecast errors. As a result, the risk-reserve curves can be obtained. Under a preset 

LOLP risk level, the OR requirement is determined at each time step during the day. 

Interface design 

Fig. 6-6 is the designed interface of the System uncertainty assessment and the OR 

quantification. The left-hand side shows uncertainty assessment results of the PV power, 

load, and net demand. With a chosen quantification method (first, second) and a pre-

defined risk level (𝜀 of LOLP), results of the risk-constrained OR calculation with 

LOLP are illustrated on the right-hand side. A risk-reserve curve can be acquired at 

each time step. Hence, a 3D-plot figure is illustrated to describe the required reserve at 

each time step under the prescribed risk level. Finally, with a selected risk level (5% 

LOLP in the example shown in Fig. 6-6), the required OR is displayed at each time step 

during the day. 

 

Fig. 6-6 The “System uncertainty assessment and OR quantification” interface 
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6.3.3 Deterministic optimization for operational planning 

Layout design 

Fig. 6-7 illustrates the layout of the interface “Deterministic optimization for 

operational planning”. The following function modules are included: 

• System Parameters; 

• DP for UC planning of MGTs; 

• Optimization results display. 

• Sub-interfaces of MGTs; 

 

 

Fig. 6-7 The layout design of “Deterministic optimization for operational planning” 

interface 

 

A) System parameters 

In this area system parameters are set and shown, like rated load, rated PV power and 

pre-defined risk level for OR quantification. 

 

B) DP for UC planning of MGTs 

Previously in Chapter 3, according to the forecasted PV power profile, upper bound and 

lower bound of PV are obtained with an uncertainty propagation analysis. Following 

the chosen PV power scenarios (forecasted PV, upper bound/lower bound regarding 

forecast PV), OR requirement is determined. 

 

After obtaining the profiles of forecast PV power, forecast load demand and quantified 

OR power, a DP algorithm is applied for UC problem. The optimal operational planning 

of MGTs is obtained under the economic optimization criteria. Details of the DP 

application for UC planning are discussed in Chapter 3.  
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Interface design 

Fig. 6-8 shows the interface of Deterministic optimization for operational planning. On 

the right-hand side, UC planning results are shown with the chosen PV power scenario 

and the determined OR. The left-hand side button is a link to sub-interfaces of MGTs, 

which is displayed in Fig. 6-9 where the operational planning of the three MGTs are 

illustrated, followed with the half-hourly OR (positive and negative) and the half-hourly 

operating cost variation interval. 

 

 
Fig. 6-8 The “Deterministic optimization for operational planning” interface 

 

 

Fig. 6-9 The “MGTs” sub-interface 
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6.3.4 Scenario-based stochastic optimization for operational planning 

Layout design 

The layout design of “Scenario-based stochastic optimization for operational planning” 

interface is illustrated in Fig. 6-10. The following function modules are included: 

• Storage control strategy; 

• Stage-1 optimization; 

• Stage-2 optimization; 

• Optimization results display in terms of stage-1, stage-2. 

 

Fig. 6-10 The layout design of “Scenario-based stochastic optimization for 

operational planning” interface 

 

A) Storage control strategy 

As presented in Chapter 5, two storage control strategies are employed. Strategy 1 is 

applied for the renewable energy production time-shift, while the merit of Strategy 2 is 

a higher security level with more OR provision by batteries. The strategy decision 

should be made before the optimization. 

 

B) Stage-1 optimization 

First stage optimization includes the OR determination with the preset security level. 

Then a optimization criteria is decided. The objective function is determined to carry 

out the mono-objective optimization regarding economical optimum or environmental 

optimum, or a multi-objective optimization for both economic and environmental costs. 
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C) Stage-2 optimization 

To apply the scenario-based optimization algorithm, firstly net demand scenarios are 

built for the representation of the PV and load demand uncertainty. Second stage 

optimization includes the OR determination with both preset security level under each 

scenario corresponding to a probability of occurrence. Details were discussed in 

Chapter 5. Then with a determined objective function, a mono-objective optimization 

regarding operating cost/CO2-equivalent cost, or a multi-objective optimization 

regarding both of them is carried out. A scenario-based stochastic optimization is 

applied for the operational planning under a selected storage control strategy. 

Interface design 

Fig. 6-11 shows the interface of the scenario-based stochastic optimization for the 

operational planning. Firstly, the storage strategy choice is made on the left-hand side. 

Then the first stage optimization is undertaken with a net demand forecast and a chosen 

optimization criterion (economic objective, environmental objective and multi-

objective). The operational planning result is attained, followed by the available OR 

and OR allocation result at each time step. Meanwhile, the sub-interfaces of PV AGs 

and MGTs can be accessed. 

 

On the right-hand side, the scenario-based optimization results are presented with the 

building of net demand scenarios in the second stage. Once the optimization objective 

is chosen, operational planning results are shown by considering uncertainty under each 

scenario. In addition, reserve requirement is acquired under each scenario. As one of 

the most possible scenarios, scenario 4 (with a 34.1% of probability of occurrence) is 

chosen as an example to observe required OR, available OR and OR allocation results. 

The parameters of PV AGs and MGTs are available in sub-interfaces. 
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Fig. 6-11 The “Scenario-based stochastic optimization for operational planning” 

interface 

 

In Fig. 6-12, parameters of PV panels and batteries are shown. At each time step, states 

of Active PV Generator power, battery charging/discharging power and battery state of 

charge are shown graphically. Furthermore, utilization ratio of each MGT and PV AGs 

are illustrated as pie charts. Utilization ratio of PV AGs regarding OR provision and 

total load can be observed visually through a proportion comparison. Fig. 6-13 presents 

the operational planning of three MGTs, followed with the operating cost and CO2-

equivalent emission at each time step. 
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Fig. 6-12 “PV Active Generators” sub-interface 

 

Fig. 6-13 “MGTs” sub-interface 

 

6.4 Conclusion 

In this chapter, a use-friendly MCEMS interface is presented with four designed 

interfaces with inclusion of different function modules: 1) data collection and predictive 

analysis for forecasting, 2) system uncertainty assessment and OR quantification, 3) 

deterministic optimization for operational planning, and 4) scenario-based stochastic 

optimization for operational planning. The MCEMS interface facilitates day-ahead 

energy management and uncertainty analysis in microgrid, since it provides a better 
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way of integrating all EMS function modules. The interface design visualizes the 

energy management process in terms of data collection, PV generation and load demand 

forecasting, uncertainty analysis, OR determination, operational planning with 

deterministic/stochastic optimization. 
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CHAPTER 7 GENERAL CONCLUSION AND 

PERSPECTIVES 

This dissertation has proposed a framework to take optimal generation scheduling 

decisions in the presented urban microgrid regarding energy and reserve provision in 

the presence of generation and load demand uncertainty. To be robust in front of 

uncertainties, an operating reserve must be scheduled with a minimized economic and 

environmental cost. Two research fields have been addressed. 

 

The first research field has explored quantification methods of this OR by considering 

uncertainty modelling (based on past uncertainty realizations) with deterministic 

methods and probabilistic methods (Fig. 7-1) before applying a deterministic 

optimization of the generation scheduling. In chapter 4, a foresight framework is built 

to consider also future and probable uncertainty realizations and so implies a scenario-

based stochastic optimization method.  

 

Fig. 7-1 Schemes of deterministic, probabilistic and stochastic optimization 

 

The second research field has considered the OR provision with storage and an 

integration in the UC scheme (with deterministic and stochastic optimization) has been 

proposed. 

 

The contributions of the dissertation can be summarized as follows: 

1. Uncertainties of RESs and load are properly handled with uncertainty analysis. 

In Chapter 3, a risk-constrained probabilistic method is implemented for the 

determination of reserve.  

2. A dynamic programming (DP) algorithm is carried out for the UC to find solutions 

of the studied non-convex mixed-integer nonlinear programming (MINLP) problem 
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in chapter 3. Moreover, due to advantages of MILP compared with DP, deterministic 

operational planning has been implemented with MILP. 

3. The uncertainty propagation is analyzed with probabilistic methods in a 

deterministic UC model by using uncertain inputs. 

4. A robust operational planning approach is employed with scenario-based stochastic 

optimization by carrying out Mixed-Integer Linear Programming (MILP) in chapter 

4. To integrate probable uncertainties, net demand scenarios have been built 

considering PV uncertainty, and multi-objective scenario-based stochastic 

optimization has been performed for operational planning. The interest is to 

schedule the possible use of fast MGTs in case of future deviations between the 

forecasted power data and real ones while minimizing costs.  

5. Storage has been considered in chapter 5 for RES production shifting and OR 

provision. Firstly, energy storage applications and benefits are discussed. Two 

storage control strategies have been integrated in the multi-objective scenario-based 

stochastic optimization method. Various benefits are highlighted. 

6. An approach for the storage sizing is also carried out with probabilistic analysis 

method. 

7. To integrate the operational planning procedure, and visualize the energy 

management system operation, a user-friendly simulation tool of an urban 

microgrid central energy management system (MCEMS) is developed with 

MATLAB/GUI (graphical user interface).  

 

The following points may be further studied in order to broaden the understanding of 

the topics treated in this dissertation: 

• The main sources of uncertainties, which are characterized using scenarios are the 

PV power generation and load demand. However, uncertainties are also presented 

in other appliances, like distributed network line outage, generating unit outage, are 

not considered. Hence, a perspective of the current work is to evaluate the impact 

of uncertainty within power outage on operational planning results and costs. 

• In the presented optimization, a two-stage scenario-based approach has been 

undertaken with the built scenarios. To compare and further investigate the two-

stage scenario-based approach, a multi-stage optimization could be employed and 

compared with the presented two-stage optimization. In a multi-stage optimization, 

scenarios are built with more possibilities of variation, while the computational cost 

can increase exponentially. Hence, a trade-off between the accuracy (number of 

generated scenarios) and the efficiency (computational cost) should be further 

researched. 

• A sensitivity analysis after the optimization could be promising. The Monte Carlo 

simulation approach can be implemented to further analyze the impact of 

uncertainty on the system model outputs. 
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APPENDIX 1. Back-Propagation Neural Network  

1) Structure 

An increasing attention is paid to the application of artificial neural networks (ANNs) 

since its emerging in 1950s. As one of the most popular algorithms in artificial 

intelligence field, ANN is successfully applied in various scientific researches and has 

become a hot topic in machine learning. ANNs provide an excellent mathematical tool 

for dealing with non-linear problems. Effectively, any continuous non-linear 

relationship can be approximated with an arbitrary accuracy by using a neural network 

with a suitable architecture and weight parameters [266]. Through a learning algorithm, 

interconnected neurons are trained so that parameters of neurons and weights are 

adjusted, thus obtaining a relationship between inputs and target outputs of current 

ANN. A diagram of forecasting by ANN application is shown in Fig. A1- 1. 

 

Forecasting  

Input data 

x 

ANN 

Output data 

y 

Learning algorithm 

+ 
Forecasted output  

Prediction errors  

_ 

Parameter 

adaptation 

 

Fig. A1- 1 Forecasting by ANN application 

 

An example of a three-layer based architecture is shown in Fig. A1- 2 with 3 neurons 

in the input layer, 4 neurons in the hidden layer and 2 neurons in the output layer.  

 

Fig. A1- 2 The structure of a three-layer BP network 
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Outputs and inputs of the BPNN are connected by neurons. Numbers of neurons at input 

layer and output layer are set according to the characteristics of the system input and 

system output, while hidden layer numbers are usually set by experiences and tests.  

All inputs ( 𝑥𝑖 ) are copied to an input neuron in the input layer. To establish 

mathematical representations, input neuron variables are described as a vector: 

 𝒂(𝟏) = [𝑎0
(1), 𝑎1

(1), 𝑎2
(1), … , 𝑎𝑖

(1)]
𝑇
, ∀𝑖 ∈ [0, 𝐼] (A1- 1) 

where 𝑎𝑖
(1)

 represents the i th neuron at first layer (input layer). Here 𝑎0
(1) = 1 is a 

constant input for bias calculation and for easier mathematical expression.  

 

Between adjacent layers, neurons are interconnected by model parameters: weights and 

bias values. Each hidden neuron receives many inputs from other nodes and computes 

a single output based on the inputs and weights. Weights are represented as matrices 

𝒲1 ∈ ℝ𝐽 ×（𝐼+1）and 𝒲2 ∈ ℝ𝐾 ×（𝐽+1）, respectively: 

 𝒲1 = [

𝒘𝟎
(𝟏)

⋮

𝒘𝒋
(𝟏)
] = [

𝑤10
(1)

⋯ 𝑤1𝑖
(1)

⋮ ⋱ ⋮

𝑤𝑗0
(1)

⋯ 𝑤𝑗𝑖
(1)
] (A1- 2) 

 𝒲2 = [
𝒘𝟎
(𝟐)

⋮

𝒘𝒌
(𝟐)
] = [

𝑤10
(2)

⋯ 𝑤1𝑗
(2)

⋮ ⋱ ⋮

𝑤𝑘0
(2)

⋯ 𝑤𝑘𝑗
(2)
] (A1- 3) 

In the matrices, 𝑤𝑗𝑖
(1)

 represents the weight from neuron 𝑎𝑖
(1)

 to 𝑎𝑗
(2)

, 𝒘𝒋
(𝟏)
∈

ℝ（𝐼+1）is a transverse vector representing all weights for neuron 𝑎𝑗
(2)

. Equations of 

bias values are: 

 𝒃𝟏 = 𝑎0
(1) ∙ [

𝑤10
(1)

⋮

𝑤𝑗0
(1)
] = [

𝑤10
(1)

⋮

𝑤𝑗0
(1)
] , 𝒃𝟏 ∈ ℝ𝐽  (A1- 4) 

 𝒃𝟐 = 𝑎0
(2) ∙ [

𝑤10
(2)

⋮

𝑤𝑘0
(2)
] = [

𝑤10
(2)

⋮

𝑤𝑘0
(2)
] , 𝒃𝟐 ∈ ℝ𝐾  (A1- 5) 

Weights and biases are initialized with random values before the training process, and 

they are gradually adjusted along with training iterations in order to minimize the errors 

between the target outputs and BPNN output values.  

 

Values of neurons at hidden layer are calculated according to: 

 𝑎𝑗
(2)
= 𝑓𝑎𝑐𝑡 (𝒘𝒋

(𝟏)
∙ 𝒂(𝟏)) (A1- 6) 



 APPENDIX 1  

 190 

where 𝑓𝑎𝑐𝑡 is the nonlinear activation function. The choice of activation function can 

considerably change the behavior of the BPNN.  

Similarly, hidden layer neurons are described by a vector: 

 𝒂(𝟐) = [𝑎0
(2), 𝑎1

(2)
, 𝑎2
(2)
, … , 𝑎𝑗

(2)
]
𝑇
, ∀𝑗 ∈ [0, 𝐽] (A1- 7) 

where 𝑎0
(2) = 1.  

If the same activation function is chosen in the output layer, the k neuron output in the 

output layer can be expressed similarly: 

 𝑦𝑘̂ = 𝑓𝑎𝑐𝑡(𝒘𝒌
(𝟐)
∙ 𝒂(𝟐)) (A1- 8) 

Output layer neuron variables are expressed as: 

 𝒚̂ = [𝑦1̂, 𝑦2̂, … , 𝑦𝑘̂]
𝑇 , ∀𝑘 ∈ [1,𝐾] (A1- 9) 

2) Data pre-processing 

Inputs of BPNN are not identical and the values of each kind of input may have large 

numerical differences. So, each input must be preprocessed and normalized. Data 

preprocessing prevents that the larger information swallow up small numerical 

information. Also, it prevents that some neurons reach supersaturation state. More 

accurate and reliable network can be established after data normalization. Also certain 

training algorithms are greatly influenced by normalization, e.g. gradient descent, and 

other descending algorithms relating to gradient descent. With normalization, 

distribution of training data and testing data are the same, hence network capability of 

generalization is increased, while time for training is decreased. 

 

In this BPNN algorithm, to avoid the training from diverging, and accelerating the 

learning speed of the network with a better fit, data are normalized to have zero mean 

and unit variance. Training data and test data are all normalized by the following 

equation: 

 𝑋𝑠 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (A1- 10) 

Where 𝑋𝑠 is the normalized data, 𝑋 is the real data before normalization, 𝑋𝑚𝑎𝑥 and 

𝑋𝑚𝑖𝑛  are the maximum value and minimum value of all inputs. Thus, all data are 

normalized to fall within the [0, 1] range. 

 

3) Selection of activation function  

The choice of activation functions may strongly influence the complexity and 

performance of neural networks and play an important role in the convergence of the 

learning algorithms. In this BPNN algorithm, sigmoid functions are chosen as 

activation function in hidden layer and output layer. The sigmoid function is a nonlinear 

activation function that allows networks to compute by using only a small number of 

neurons, and the range of neuron values is set [0,1]. Values of neurons at hidden layer 

and output layer are calculated according to: 
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 𝒂(𝟐) = [𝑎1
(2)
, 𝑎2
(2)
, … , 𝑎𝑗

(2)
]
𝑇
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝒘𝒋

(𝟏)
∙ 𝒂(𝟏)) (A1- 11) 

 𝒚̂ = [𝑎1
(3)
, 𝑎2
(3)
, … , 𝑎𝑘

(3)
]
𝑇
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝒘𝒌

(𝟐)
∙ 𝒂(𝟐)) (A1- 12) 

where: 

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1 + 𝑒−𝑧
 (A1- 13) 

4) Training procedure with a gradient descent-based BP algorithm 

The Back-Propagation algorithm is a commonly used for feed-forward networks. Its 

learning rules supervise errors between the BPNN output and the targeted output. 

Though the training, the error is calculated and backpropagated from the output layer 

to the input layer. Meanwhile, weights are iteratively adjusted to optimal values in order 

to minimize the error. 

As shown in Fig. A1- 3, the procedure of BPNN includes data preprocessing, activation 

function selection, training function, parameter setting and training of BPNN. 

 

 

Fig. A1- 3 Flow chart of BPNN procedure 

 



 APPENDIX 1  

 192 

Before training the BPNN, it is necessary set the appropriate training parameters such 

as the learning rate. In this algorithm, gradient descent backpropagation that updates 

weight and bias values according to the gradient of errors, is chosen as training function. 

 

Based on a multilayered, feed-forward topology with supervised learning, BP algorithm 

can be divided into two parts: feed-forward stage and back-propagation stage. In the 

first stage, BPNN is firstly initialized with randomly settled weights and biases. Then 

a training set of input database is imported and transmitted forward to output layer. 

Next, outputs are obtained. According to the feed-forward transmission of neuron 

values based on activation function, the output vector of hidden layer and output layer 

are calculated by equation (A1- 11) and (A1- 12).  

 

In the second stage, back-propagation is used to calculate derivatives of performance 

with respect to the weight and bias variables, thus weights are gradually adjusted with 

errors between target values and output values propagating back to the network. At this 

stage, the back-propagation algorithm is based on a certain objective function, i.e. 

training function, and the gradient descent method to modify the weights in this case. 

To minimize the error 𝐸 between target vector 𝒚 and network output vector 𝒚̂, the 

objective function (loss function) is expressed as: 

 𝐸(𝑤) = ∑𝑒𝑘

𝐾

𝑘=1

=
1

2
∑(𝒚𝒌 − 𝒚̂𝒌(𝑤))

2

𝐾

𝑘=1

 (A1- 14) 

where 𝑤 can be either value of 𝒘𝒋
(𝟏), 𝒘𝒌

(𝟐)
 to be updated. 𝐾 is the size of the output 

vector. Meanwhile, the gradient descent algorithm is applied to minimize value of 𝐸. 

For each parameter 𝑤, it is updated by: 

 𝑤 ← 𝑤 − 𝜂∇𝐸(𝑤) = 𝑤 − 𝜂
𝜕𝐸(𝑤)

𝜕𝑤
 (A1- 15) 

where 𝜂 is the learning rate, and (A1- 15) is used to reduce 𝐸(𝑤) to the minimum 

point by adjusting the value of 𝑤. The performance of the algorithm is very sensitive 

to the proper setting of the learning rate. If the learning rate is set too large, the gradient 

descent may oscillate around the minimum and may fail to converge. If the learning rate 

is too small, the algorithm will take too long to converge. It is not practical to determine 

the optimal setting for the learning rate before training. Usually, the optimal learning 

rate is found during the training process. 

 

After BPNN is trained by training set data, values of weights and biases are used to 

calculate nRMSE and nMAE of validation set to assess the network forecast 

performance: 

 𝑛𝑅𝑀𝑆𝐸 = √
1

𝐾
∑(𝑦𝑘 − 𝑦𝑘̂)

2

𝐾

𝑘=1

 (A1- 16) 
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 𝑛𝑀𝐴𝐸 =
1

𝐾
∑|𝑦𝑘 − 𝑦𝑘̂|

𝐾

𝑘=1

 (A1- 17) 

Overall, the training procedure can be explained as following steps:  

1) Set the architecture (number of layers and neurons), equations of networks 

(activation function, training function) and randomly initialize weights and biases; 

2) Set the learning rate, input and output data of the training set and the validation set; 

3) Load a sample of input and output from the training set, calculate the BPNN output 

with a feed-forward algorithm. Then calculate the error between target output and 

NN output with equation (A1- 14); 

4) The error 𝐸 between target and output values is then back propagated through the 

hidden layer. A gradient descent algorithm in equation (A1- 15) is used to minimize 

𝐸 by updating the weights and biases; 

5) Go to the step 3) and repeat iteratively until the objective function converges to a 

minimum. Then the network is trained;  

6) Test the trained network with the validation set to validate the parameters that have 

been obtained with the training set. If either the following condition a), b) or c) is 

satisfied, go to step 7), the training end: a) the number of iterations exceeds the 

maximum number of epochs; b) the nRMSE meets the preset target value; c) the 

maximum validation check value is exceeded; Otherwise, if none of the above 

condition is met, go to step 3), and the process is repeated until the target ending 

condition is reached; 

7) Training end with well-trained weights and bias.  

 

Finally, BPNN model is trained and adjusted with supervised learning by obtaining the 

optimal parameters. In a supervised learning procedure, since the sample input-output 

pairs are known, each pair of samples in training set is used to train the BPNN. Errors 

between desired output and model output are minimizing. By training the NN under 

supervision, the relationship between model inputs and outputs are presented by 

mathematical functions in BPNN structure. 

5) Database for training and testing the ANN 

The database is split into two data sets: a training set and a validation set. Firstly, the 

training set is used for updating and adjusting the network parameters. Then, the 

validation set is used for testing the performances of the trained ANN with new data 

through the normalized Root Mean Square Error (nRMSE) and normalized Mean 

Absolute Error (nMAE). The validation set is essential to avoid an overfitting of training 

data.  
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APPENDIX 2. Statistics and Probabilistic Theories 

1) Correlation coefficient  

In statistics, correlation coefficient (𝑟) and correlation factor “R squared”(𝑅2) are often 

used to determine how closely a certain function fits a particular set of experimental 

data. They are applied to determine how close is the observed data with a linear 

relationship. 𝑟 values range from -1 to 1 (𝑅2 from 0 to 1), with ±1 representing a 

perfect fit between scatters and a linear relation through them, and 0 representing no 

statistical correlation. The relationship between correlation coefficient 𝑟  and 

correlation factor 𝑅2 is: 

 𝑟2 = 𝑅2 (A2- 1) 

𝑅2 is calculated as follows: 

 𝑅2 = 1 −
∑(𝑦𝑖 − 𝑓𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
 (A2- 2) 

where 𝑓𝑖 implies the fitted value of 𝑦𝑖, and: 

 𝑦̅ =
1

𝑁
∑(𝑦𝑖)

𝑁

𝑖=1

 (A2- 3) 

2) Random variables 

A random variable is characterized by two quantities: its value and its probability. For 

example, during a process of flipping a coin, there are two possible results: tail or head. 

If X is used to represent the outcome of one observation, then X is defined as random 

variable, and it is expressed as: 

 𝑋 = {
0, 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑡𝑎𝑖𝑙
1, 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑒𝑎𝑑

 (A2- 4) 

The value of a random variable cannot be known before carrying out the random 

experiment of which it is the result. However, it is possible to know in advance the 

probability of occurrence of the possible values. For example, in the previous 

experiment, X can only take two values (0 or 1) with probabilities: 

 𝑃(𝑋 = 0) =
1

2
, 𝑃(𝑋 = 1) =

1

2
 (A2- 5) 

Random variables can be distinguished into two types: discrete random variables and 

continuous random variables [267]. Discrete random variables can take only finite 

number of values, and they are usually attained by counting. e.g. numbers of tails when 

flipping a coin for five times, grade level of students in a class, or number of rainy days 

in a month. Continuous random variables can take infinite number of values, and they 

are often attained by measuring. e.g. heights of adults in a country, and the hourly 

measure temperature during the day.  
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3) Probability density and probability distribution function 

In probabilistic theory, the uncertainty of a variable is represented as a random variable, 

which is determined with a probability distribution function or a probability density 

function (pdf). This pdf models the possible values that the random variable can take 

according to its probability of occurrence (probability law). A pdf of a discrete random 

variable, is a function f, which represents all the possible values of random variables 

and how their probabilities are distributed.  

 

For example, Fig. A2- 1 shows the probability function of a discrete random variable 

𝑋 = {1, 2, 3, 4,5,6,7} whose probabilities values are given by: 

 

{
 
 

 
 𝑃(𝑋) =

1

16
, 𝑋 = {1,7}

𝑃(𝑋) =
1

8
, 𝑋 = {2,6}

𝑃(𝑋) =
3

16
, 𝑋 = {3,5}

𝑃(𝑋) =
1

4
, 𝑋 = {4}

  (A2- 6) 

In this situation, function f indicates the probability density of the variable X, and it 

follows these rules: 

 {

𝑃(𝑋 = 𝑥) = 𝑓(𝑥)

∑ 𝑓(𝑥)𝑛
𝑥=1 = 1
𝑓(𝑥) ≥ 0

  (A2- 7) 

 
Fig. A2- 1 An example of probability distribution of discrete random variable 

 

As for the continuous random variable, the relation between probability density 

function f and the continuous random variable is: 

 {

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

∫ 𝑓(𝑥)
+∞

−∞
𝑑𝑥 = 1

𝑓(𝑥) ≥ 0

  (A2- 8) 

Here are some examples of pdf of continuous random variable: 

 

   (a) Normal            (b) Triangle           (c) Uniform         (d) Log Normal 

Fig. A2- 2 Some examples of probability distributions of continuous random variable 
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The pdf is summing all probabilities of all possible values. Hence a pdf is always 

varying between 0 and 1.  

4) Cumulative distribution function 

For any discrete random variable X whose pdf is f(x), the cumulative distribution 

function (cdf) F(x) of is defined as the probability of having a value of the variable X 

less than a given value x: 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑓(𝑋)  (A2- 9) 

Similiarly, for any continuous random variable whose pdf is f(x), the cumulative 

distribution function is: 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑋)
𝑥

−∞
𝑑𝑋  (A2- 10) 

5) Normal distribution (Gaussian distribution) 

Normal distribution, also called Gaussian distribution, is the most common continuous 

probability distribution that can be found in nature and real life. It is often used to 

describe independent and randomly distributed variables. For example, heights of 

adults, annual income of each family in a country, and blood pressure studies, these all 

follow normal distribution pattern. In scientific research, errors in measurements are a 

typical case that can be approximated by normal distribution. 

 

The normal probability distribution curve is a bell-shaped normal curve as shown in 

Fig. A2- 3. The characteristics and shape of the normal distribution rely on two 

parameters: the mean  𝜇  and standard deviation 𝜎  of the set of random values. 

Supposed that the density of X is 𝑓(𝑥; 𝜇, 𝜎), then we have: 

 𝑓(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−

1
2(
𝑥−𝜇
𝜎 )2 , −∞ < 𝑥 < +∞ (A2- 11) 

The mean 𝜇 is the value of the random variable with the highest probability, and 𝜎 

indicates how spread out these random variables are. 68% of values are within the 

standard deviation 𝜎 of the mean, 95% of values are within 2𝜎 from the mean, and 

99.7% of values are within 3 SD of the mean. Particularly, if a normal distribution owns 

parameters 𝜇 = 0 and 𝜎 = 1, then it is defined as a standard normal distribution.  

 

As in Fig. A2- 4, Graphically, the value of CDF(x) equals to the area under the pdf 

function PDF(x) (area in shade). 

 
Fig. A2- 3 Probability density function of a normal distribution 
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Fig. A2- 4 pdf and cdf of a normal distribution 

 

The modelling of a random variable with a normal distribution is useful because many 

theorems exist and may make appear interesting properties (as central limit theorem, 

addition of normal distributions, etc.) 

6) Quantile analysis  

The pdf and cdf are usually used to measure a standard probability. Alternatively, 

quantile/percentile values can also be used to divide the range of a cumulative 

distribution (probability) function into continuous and regular intervals with equal 

probabilities. Simulation based confidence intervals can be used to provide an 

uncertainty estimation of a random variable. 

 

A quantile is a measure used in statistics, indicating the value below a given percentage 

of observations [268]. The data are arranged in ascending order and are divided it into 

four roughly equal parts. The lower quartile 0-Q1 is the part containing the lowest data 

values (namely 0 to 25th percentile). The lower middle quartile Q1-Q2 is the part 

containing the next-lowest data values (25th to 50th percentile). The upper middle 

quartile Q2-Q3 is the part containing the next-highest data values (50th to 75th 

percentile). The upper quartile Q3-Q4 (75th to 100th percentile) is the part containing 

the highest data values. Hence the data are divided according to the minimum, first 

quartile Q1 (25th), median Q2 (50th), third quartile Q3 (75th) and the maximum. 

Meanwhile, [202] proposed the concepts of "Box and Whisker Plot" and draw a box 

from the Q1 quartile to the Q3 quartile, thus to examine a graphical summary of the 

data. We can show all the important values in a box-and-whisker plot, as well as their 

corresponding positions in pdf (Fig. A2- 5). IQR (interquartile range) is the distance 

between Q1 and Q3. 
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Fig. A2- 5 Boxplot and pdf 

 

In descriptive statistics, a box plot is a method for graphically depicting groups of 

numerical data through their quartiles. In each box, the central mark indicates the 

median Q2, and the bottom and top edges of the box indicate the 25th and 75th 

percentiles, respectively. The lines extending from the boxes (whiskers) indicate 

variability outside the upper and lower quartiles within a certain variation interval. 

Meanwhile, a 50% confidence interval of random variable X is corresponding to the 

area below the pdf curve and between the interval (Q1, Q3).  
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APPENDIX 3. Branch-and-Cut Algorithm for MILP  

1) Mixed-integer linear programming  

Compared with solving a linear programming (LP) optimization problem, solving an 

integer programming problem can be much harder. The mathematical model for mixed-

integer linear programming (MILP) is the linear programming model with additional 

restrictions that certain decision variables must have integer values [61]. UC problem 

is a well-known MIP problem because decisions of switching on/off the generating 

units are binary variables [269]. A MILP problem can be generally expressed as: 

 𝐦𝐢𝐧
𝒙,𝒚

   𝑐𝑇𝑥 + 𝑑𝑇𝑦 (A3- 1) 

                          subject to 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏 

                                     𝑥 ∈ ℤ+
𝑛   

                                     𝑦 ∈ ℝ𝑘  

                                   𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑚×𝑘 , 𝑐 ∈ ℝ𝑛, 𝑑 ∈ ℝ𝑘 , 𝑏 ∈ ℝ𝑚 

where 𝑥 and 𝑦 are decision variables (𝑥 as integer variables), 𝐴, 𝐵, 𝑐, 𝑑 and 𝑏 are 

known vectors / matrices regarding the given size above. 

 

The MILP solving is not as simple as a relaxed linear problem (LP) (corresponding to 

the MILP) and rounding certain variables. Solving MILP problems by rounding the 

solution from a traditional LP solver (e.g. simplex method) is usually not optimal, or 

even not feasible, especially for large scale formulations [59].  

 

For instance, assuming that an integer programming (IP) problem includes only integer 

random variables (𝑥1, 𝑥2), graphical demonstrations in Fig. A3- 1 show the rounding 

examples that are far beyond reach of the optimum. Fig. A3- 1 (a) shows an example 

where rounding the optimal solution for the LP relaxation is far from the optimum 

found with the IP problem. Even worse, in Fig. A3- 1 (b) an IP problem is shown where 

the optimal solution for the LP relaxation cannot be rounded to obtain the feasible 

solution of the presented IP problem. Therefore, the integer constraints have to be 

explicitly taken into account in the problem resolution. 
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                       (a)                                     (b) 

Fig. A3- 1 Examples of IP problems with unsatisfying rounded solutions from LP 

relaxations [61] 

 

While improvements of algorithmic techniques and computer capabilities during the 

last decades, MILP problems remain difficult to solve, especially for large-scale 

formulations (e.g. stochastic programming). The objective is therefore to design a 

computationally efficient (quickly solved) formulation that accurately models the 

original problem so that the resulting solution is feasible and closed to the actual 

optimum. 

 

The most commonly used algorithm for MILP is the branch-and-cut, i.e. branch-and-

bound search tree combined with cutting planes.  

2) Branch-and-bound search tree 

As an example, a branch-and-bound search tree with four integer variables 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) is illustrated in Fig. A3- 2. After solving a relaxed LP problem by 

neglecting integer constraints, the obtained root node comprises a fractional solution 

𝑥1 = 3.5. Since 𝑥1 should be an integer, two sub-nodes (subproblems) are created 

(𝑥1 ≤ 3, 𝑥1 ≥ 4), which is called branching. Similarly, the search tree keeps branching. 

During the solution search, upper bound is obtained/refreshed if a solution is found and 

𝑥1, 𝑥2, 𝑥3, 𝑥4 are all integers. This solution may not be optimal, but it is a feasible 

solution that satisfies all integer constraints. So it is regarded as a upper bound. Lower 

bounds are obtained/refreshed if a new optimal value is obtained at a node, though not 

all integer constraints are met. Therefore, the lower bound indicates that although an 

optimal value is reached, there are still integer variables that are not yet branching into 

an integer. If no feasible solution (nodes) is found at a node, the node is marked 

infeasible with no further branch. Once the gap between upper and lower bound is 

approximated to 0, an optimum solution is found and all integer constraints are satisfied. 
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Fig. A3- 2 An example of a branch-and-bound tree 

 

3) Branch-and-cut algorithm 

The idea of branch-and-cut is to implicitly enumerate the feasible integer solutions. 

Here the branch-and-cut algorithm is explained pedagogically. More details, 

explanations and examples can be found in [61][270]. The flowchart of this algorithm 

is described in Fig. A3- 3. It is composed of a branch-and-bound algorithm procedure 

(blocks marked in solid line) and cutting-planes-relating processes (blocks marked in 

dash line). In CPLEX, the MIP optimizer applies a wide range of pre-solving techniques 

and heuristic approaches to increase efficiency and reduce problem size.  

 

Firstly, pre-solving techniques are carried out to reduce computational complexity 

through identification of infeasibility and redundancy. 

 

Secondly, with a selected node in the branch-and-bound tree, a relaxed LP problem is 

formed from original MILP formulation, while integer constraints are neglected. For 

the solution of the relaxed LP, if the solution contains a non-integer value (i.e. fractional 

solution) for a variable that is supposed to be integer, a cutting plane is added to tighten 

the LP relaxation.  
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Fig. A3- 3 The flowchart of the branch-and-cut algorithm 

 

Adding cuts (cutting planes) refer to find additional linear constraints to tighten the 

formulation in order to refine the feasible set of a problem and tighten the formulation. 

The addition of cuts usually reduces the number of branches needed to solve a MIP. A 

cut can be found during the analysis of a particular node, but all cuts are valid for all 

nodes of the branch-and-bound tree. In CPLEX, widely used cuts include mixed integer 

rounding cuts, disjunctive cuts, lift-and-project cuts, etc. For instance, MIR cuts are 

generated by applying integer rounding on the coefficients of integer variables and 

constraints. More cuts types and their explanations can be found in [271]. Cuts can 

reduce the feasible region for the LP relaxation without eliminating any feasible 

solutions for the MILP problem. As illustrated in Fig. A3- 4, undesirable fractional 

solutions (including the optimum of LP relaxation) are removed by adding rounding 

cuts during the solution process, hence formulation is tightened and computational time 

is reduced. 

 

Fig. A3- 4 An example of cutting planes 
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In CPLEX, heuristic approaches are employed before branching to find integer 

feasible solutions and an optimum more efficiently. Subsequently, the branching 

(branch-and-bound) algorithm is started. The basic idea of this algorithm is to rely on 

two subroutines that compute respectively a lower and an upper bound of the optimal 

solution. The upper bound is an integer solution pertaining to the feasible set. The lower 

bound is a fractional solution (originating from relaxation). The objective is to minimize 

the gap between upper and lower bound by partitioning the search space into convex 

sets, and find lower/upper bounds for each set. The procedure necessitates the efforts 

to solve a sequence of LP relaxations, and is stopped when a termination criterion is 

met. 

 

Termination criteria refers to: The algorithm stops when 1) all parts of the search space 

(all nodes) have been processed; 2) The set MIP gap tolerance (between upper bound 

and lower bound) is reached, i.e. an integer feasible solution has been proved to be 

within 0.01% of optimality; 3) A set limit is reached regarding time, number of nodes, 

size of tree memory, and number of integer solutions. If either of these situations is 

satisfied, then iterations stop with obtained optimum solution. Otherwise, another 

iteration is performed. 
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               Résumé Étendu en Français 

Contexte et motivation 

La Commission européenne a adopté un nouveau cadre climatique et énergétique d'ici 

2030. Les objectifs de 2030 comprennent une réduction de 40% des émissions de gaz à 

effet de serre par rapport aux niveaux de 1990, ainsi qu'une part plus élevée pour les 

énergies renouvelables et une amélioration de l'efficacité énergétique. Ces actions de 

l'UE montrent la voie vers un avenir sobre et prospère avec de faibles émissions de 

carbone pour l'environnement et l'économie. 

Intégration des sources d'énergies renouvelables dans les communautés 

énergétiques locales 

Poussés par les actions climatiques de l'UE et la politique climatique, de nombreux 

secteurs économiques ont réalisé que des opportunités existent dans la lutte contre le 

réchauffement climatique. Par exemple, avec le besoin émergent de sources d'énergies 

renouvelables (SER), il y a une demande croissante de technologies et d’équipements 

innovants pour des applications telles que les bâtiments durables (par exemple, des 

ménages avec des panneaux photovoltaïques), des transports propres (véhicules 

électriques), les produits / solutions éco énergétiques, etc. 

 

De plus en plus de production à énergie renouvelable, comme le solaire et l'éolien, 

conduisent à une nouvelle organisation du système électrique reposant de la production 

décentralisée (DG). Différente de l'alimentation électrique centralisée traditionnelle 

utilisant des grandes centrales électriques non renouvelables conventionnelles, la DG 

fournit de l'électricité produite et consommée localement. L'émergence de la DG 

montre des avantages et des perspectives pour la création de communautés énergétiques 

grâce à des caractéristiques respectueuses de l'environnement et à une meilleure 

efficacité du système électrique, évitant les pertes liées au transport et à la distribution 

d'électricité, évitant les pertes liées au transport et à la distribution d'électricité. 

 

De plus en plus de communautés énergétiques, comme les micro-réseaux 

communautaires, émergent pour apporter des opportunités et des défis sociaux, 

environnementaux et économiques dans la production et l'utilisation locale d'énergie. 

L’organisation d’un system électrique avec des micro-réseaux vise à construire de petits 

systèmes électriques qui pourraient gérer l'équilibrage électrique localement dans des 

sous-parties du réseau. Il devrait être conçu pour améliorer le confort énergétique des 

consommateurs : réduire les coûts locaux et les émissions, améliorer la fiabilité et 

fournir une alimentation électrique efficace aux charges locales sans pertes de 

transmission. 
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Pour bien intégrer les SER dans les micro-réseaux communautaires, des équipements 

et des technologies avancés, tels que des systèmes de gestion intelligent, une 

infrastructure électrique sécurisée et des dispositifs de stockage d'énergie, sont 

nécessaires pour fournir une électricité de façon efficace avec une grande fiabilité. 

Gérer l'incertitude des SER avec une réserve de puissance 

Les SER, comme le vent et le solaire, dépendent fortement de la météorologie, qui 

induit une variabilité. Heureusement, la production d’électricité à partir de SER est 

prévisible mais avec des erreurs de prévision. En raison de cette incertitude, de 

nouveaux défis sont survenus dans la planification et l'exploitation des micro-réseaux. 

L'incertitude des SER doit être correctement abordée pour équilibrer l'offre et la 

demande au niveau local avec des risques limités garantissant un fonctionnement sûr 

du réseau électrique. 

 

Lorsqu'un déséquilibre inattendu entre l'offre et la demande apparaît, les gestionnaires 

de réseau et les automates utilisent une capacité de production disponible, appelée 

réserve de puissance (OR), pour compenser le déficit de puissance. L’OR pour le 

système électrique (entier) doit être bien dimensionnée et idéalement allouée sur les 

générateurs de cette puissance pour minimiser les coûts opérationnels tout en 

maintenant un niveau de sécurité satisfaisant. Dans un réseau électrique traditionnel, 

l’OR est prescrit pour gérer la perte des plus gros générateurs et les incertitudes liées à 

la demande de charge. Avec plus de SER, l'exigence de l’OR sera largement augmentée, 

en particulier pendant les moments où il y a une variabilité et une incertitude élevées 

des SER. 

 

Dans ce contexte, les incertitudes liées aux erreurs de prévision des SER et des charges 

doivent être correctement gérées par une quantification et une allocation de l’OR 

appropriées et raisonnables. Des approches d'évaluation de l'incertitude fondées sur les 

risques peuvent être adoptées. L'accent sera mis sur l'étude du compromis entre un 

fonctionnement sûr et économique des systèmes électriques. 

Fourniture de l’OR avec des SER et avec intégration de systèmes de stockage 

d'énergie 

La fourniture de l’OR a un coût économique (CAPEX et OPEX) ainsi qu'un coût 

environnemental. Traditionnellement, l’OR est fourni par des groupes électrogènes 

classiques pour assurer la disponibilité de l'alimentation électrique en cas d'urgence. En 

termes de SER, leur utilisation est limitée en ce qui concerne la fourniture de l’OR en 

raison de leur production intermittente. Cependant, avec l'émergence de technologies 

avancées de stockage d'énergie, le potentiel et les bénéfices de la fourniture de l’OR par 

des SER sont intéressants à explorer et à prendre en compte. Avec l'intégration de 

systèmes de stockage d'énergie (SSE), les SER hybrides et actifs sont capables de 

fournir plus de services auxiliaires pour le système électrique par un large éventail 

d'applications, par ex. capacité de réserve d'alimentation électrique, participation au 

réglage de la tension, de la fréquence primaire, etc. 
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Il est intéressant de trouver des solutions optimales pour fournir de l’OR à partir de 

l'énergie renouvelable stockée dans les SSE car il s'agit d'une technologie propre, non 

émettrice de CO2 pour ce fonctionnement. L'allocation d’OR doit être optimisée selon 

la disponibilité des SER et l'état de cette charge des SSE. 

Planification de la production d’électricité au jour le jour avec optimisation 

déterministe / stochastique 

Dans un système électrique, l'engagement d’unité et l'ordonnancement des générateurs 

planifient le fonctionnement des unités de production sur un horizon afin de satisfaire 

la demande des charges sous les contraintes d'exploitation du système électrique. À 

partir de la prévision journalière de la demande de charge (et de la production d'énergie 

renouvelable si des SER sont incorporés), un algorithme d'optimisation trouve 

classiquement les points de consigne de fonctionnement optimaux de tous les 

générateurs contrôlables qui minimisent les coûts opérationnels (de fonctionnement) 

globaux. Aujourd'hui, les problèmes d’engagement déterministe d'unité (DUC) 

concernent la planification à court terme des générateurs en supposant que toutes les 

prévisions concernant la consommation et la production d'énergie renouvelable 

intermittente sont fixes et certaines. 

 

La forte pénétration des énergies renouvelables augmente l'incertitude du système 

électrique tandis que les demandes de fiabilité du système électrique augmentent. Par 

conséquent, les approches déterministes traditionnelles de l’UC doivent évoluer vers de 

l'optimisation stochastique. L’engagement stochastique d'unité (SUC) est un outil 

prometteur pour traiter les problèmes de production d'électricité en incluant les 

incertitudes dans la recherche optimale de solutions. Cependant, l'efficacité du calcul 

enferme de complexité et de temps d’exécution est toujours un problème. Parallèlement, 

les caractéristiques non convexes de la formulation du problème (la fonction objective 

et / ou les contraintes) sont également un obstacle lors de la recherche d'une solution 

réalisable. 

 

Pour surmonter les inconvénients des DUC et SUC, des approches avancées doivent 

être envisagées et développées. À titre d'exemple, le DUC basé sur les probabilités 

donne une solution en appliquant une analyse de distribution de probabilité de 

compensation pour gérer l'incertitude SER. En ce qui concerne le SUC, des méthodes 

de calcul plus efficaces sont nécessaires (traitabilité), et une formulation mathématique 

doit être recherchée et construite pour rendre le problème facile à résoudre 

(expressivité). L'essentiel est le compromis entre la formulation du modèle et la 

traitabilité de l'approche. 

Problèmes et objectifs abordés 

L'objectif principal de cette thèse est de proposer de nouvelles méthodes permettant 

l’optimisation stochastique des décisions optimales d'ordonnancement de production 
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dans un micro-réseau urbain dans le but de réduire au minimum les coûts d'exploitation 

et les émissions CO2. La fourniture de puissance de réserve doit prendre en compte 

l'incertitude due aux SER et les erreurs de prévision du côté de la demande, tout en 

considérant le compromis entre la sécurité et le coût économique. Plus précisément, les 

problèmes suivants sont traités : 

1. Planification des réserves : Avec une approche probabiliste d'évaluation de la fiabilité, 

les réserves doivent être dimensionnées et planifiées à l'avance pour garantir le niveau 

de sécurité et réduire les risques dus aux incertitudes des charge et des SER. 

2. Développement d'algorithmes et d'outils pour l'optimisation stochastique : La 

planification opérationnelle des générateurs sous contraintes stochastique de sécurité 

doit être développée pour inclure les incertitudes considérées dans la recherche de 

solution. Des décisions optimales de planification de la production doivent être prises 

pour minimiser des fonctions mono-objectifs et multi-objectifs. 

3. Contribution des systèmes de stockage d'énergie à la fourniture d'une réserve de 

puissance : lorsqu’un le système de stockage d'énergie (SSE) est mis en œuvre, des 

stratégies de stockage optimales doivent être élaborées pour maximiser les bénéfices 

pour le réseau. Par exemple : pour optimiser la part d'énergie SER dans la fourniture de 

réserves, ou pour minimiser les coûts d'exploitation / d'émission. 

Contributions 

Pour résoudre les problèmes, un environnement est proposé pour prendre des décisions 

d’engagement et de planification opérationnelle de la production optimale dans un 

micro-réseau urbain en ce qui concerne la fourniture d'énergie et de réserve en présence 

d'incertitudes des charges et des énergies renouvelables. Les contributions de la thèse 

peuvent être résumées comme suit : 

1. Les incertitudes des SER et de la charge sont modélisées par une analyse d'incertitude 

et prise en compte par une méthode probabiliste sous la contrainte d’un risque. 

2. Optimisation déterministe de la production en considérant la fourniture de réserve de 

puissance. Un algorithme de programmation dynamique (DP) est utilisé pour que l'UC 

résolve ce problème de programmation non linéaire non convexe à nombres entiers 

mixtes. De plus, en raison de ses avantages, un algorithme linéaire en nombres entiers 

(MILP) a été également développé et les résultats et performances composés. 

3. La propagation de l'incertitude est analysée avec des méthodes probabilistes dans un 

modèle de UC déterministe en utilisant des entrées incertaines. 

4. Une approche robuste de planification opérationnelle est employée avec une 

optimisation stochastique basée sur des scénarios en exécutant une programmation 

linéaire en nombres entiers mixtes (MILP). L'incertitude est modélisée à travers des 

scénarios de la demande nette, ainsi les incertitudes sont incluses dans le processus de 

recherche de la solution. 

5. Pour considérer l’utilisation du stockage d'énergie, deux stratégies de contrôle du 

stockage sont présentées avec des avantages et des objectifs d'application différents. 

6. Une approche de dimensionnement du stockage est proposée avec une méthode 

d'analyse probabiliste. 
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7. Pour intégrer la procédure de planification opérationnelle et visualiser le 

fonctionnement du système de gestion de l'énergie, un outil de simulation convivial de 

la gestion centralisée de l'énergie du micro-réseau urbain (MCEMS) est développé avec 

MATLAB / GUI (interface utilisateur graphique). 

Structure de la thèse 

Chapitre 1 Défis et opportunités des sources d'énergie renouvelables dans les 

communautés énergétiques locales 

Dans le chapitre 1, l'état de l'art des SER dans une communauté énergétique / un micro-

réseau est présenté. Le système de gestion de l'énergie est discuté en ce qui concerne 

les fonctions et l'architecture contrôle. Le micro-réseau étudié est introduit. Il contient 

des générateurs actifs PV hybrides composés de sources d'énergie renouvelables et 

d'unités de stockage, de micro turbines à gaz et de charges. Parallèlement, les approches 

planification opérationnelle de la génération sous incertitudes sont passées en revue en 

termes d'optimisation déterministe et stochastique. 

 

Chapitre 2 Analyse de l'incertitude des prévisions 

Au chapitre 2, les différentes sources d'incertitudes dans un système énergétique sont 

présentées et l'incertitude de production PV et l'incertitude de la charge sont discutées 

en détail. La corrélation entre la production PV et les facteurs météorologiques est 

étudiée, ainsi que la corrélation entre la charge et la température. Un algorithme basé 

sur un réseau neuronal est mis en œuvre pour prévoir la production PV et la demande 

de charge un jour à l'avance. Différentes techniques pour caractériser l’incertitude issue 

de ces prédictions sont alors présentées. 

 

Chapitre 3 Planification déterministe sous incertitude 

Au chapitre 3, un état de l’art sur la planification déterministe est d’abord présenté ainsi 

que l’intérêt de disposer d’une puissance de réserve. Les différents critères pour 

dimensionner l’OR sont résumés en distinguant ceux reposant sous une considération 

déterministe (tel que le critère N-1) et ceux probabilistique utilisant une prise de risque. 

Une méthode de l’OR est proposée en utilisant l'évaluation des incertitudes de prévision. 

Ensuite, une planification déterministe est formulée puis résolue à l’aile d’un 

algorithme basé sur une programmation dynamique (DP). La propagation de 

l’incertitude sur la production PV est ensuite étudiée et l’impact sur la réserve de 

puissance est quantifié et analysé. Enfin, l'approche de programmation linéaire en 

nombres entiers mixtes (MILP) est introduite et appliquée pour la planification 

opérationnelle du micro-réseau étudié. Les résultats obtenus avec DP et MILP sont 

composés. 

 

Chapitre 4 Anticiper l'incertitude avec une optimisation stochastique basée sur 

des scénarios 

Dans le chapitre 4, suite à un état de l’art sur la planification stochastique (SUC) sous 

incertitude, une approche robuste est construite avec une optimisation basée sur des 
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scénarios. Les incertitudes sont prises en compte à travers divers scénarios de 

production PV considérés avec leurs probabilités. Ainsi, les incertitudes sont incluses 

dans le processus de recherche de la solution. L’algorithme MILP est appliqué pour 

rechercher des solutions minimisant un objectif économique, un objectif 

environnemental ou un compromis entre les deux. 

 

Chapitre 5 Participation du stockage pour la fourniture de puissance de réserve 

Au chapitre 5, les applications du stockage d'énergie sont présentées. Ensuite, deux 

stratégies de contrôle du stockage sont présentées pour deux applications : le décalage 

temporel de l’injection de production à base d’énergies renouvelables et la fourniture 

de puissance de réserve. Dans le cadre de ces deux stratégies de contrôle du stockage, 

l'optimisation stochastique multi-objectifs basée sur des scénarios est mise en œuvre 

avec différents critères d'optimisation : économique, environnemental et les deux. En 

outre, différentes stratégies d'allocation de la réserve entre les turbines à gaz et les unités 

de stockage sont envisagées selon les différentes stratégies de contrôle du stockage. 

Enfin, un état de l’art sur les méthodes de dimensionnement du stockage est rédigé, 

suivies d'une approche proposée pour le dimensionnement du stockage avec une 

analyse probabiliste concernant la prise en compte des saisons dans l’année et des types 

de charges. 

 

Chapitre 6 Conception de la gestion centralisée de l'énergie dans un micro-réseau 

Au chapitre 6, un outil de simulation convivial de la gestion centralisée de l'énergie 

(MCEMS) est développé avec MATLAB / GUI (interface utilisateur graphique) pour 

visualiser le processus de planification opérationnelle avec les différentes approches 

d'optimisation proposées dans cette thèse. L'interface MCEMS facilite la gestion de 

l'énergie et l'analyse des incertitudes dans le micro-réseau, car elle offre un meilleur 

moyen d'intégrer tous les modules fonctionnels EMS. La conception de l'interface 

visualise le processus de gestion de l'énergie en termes de collecte de données, de 

production PV et de prévision de la demande de charge, d'analyse de l'incertitude du 

système, de quantification et allocation de la puissance de réserve et de planification 

opérationnelle avec une optimisation déterministe ou stochastique. 

 

Chapitre 7 Conclusion générale et perspectives 

Enfin, au chapitre 7, des conclusions sont formulées avec des discussions et des 

perspectives pour de futurs travaux de recherche. 

 

 

Cette thèse propose un cadre pour prendre des décisions optimales de planification de 

la production dans le micro-réseau urbain présenté concernant la fourniture d'énergie et 

de puissance de réserve en présence d'incertitudes liée à la prédiction de la production 

PV et de la demande. Pour être robuste face aux incertitudes, une réserve de puissance 

doit être programmée avec un coût économique et environnemental minimisé. Deux 

domaines de recherche ont été abordés. 
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Le premier domaine de recherche a exploré les méthodes de quantification de la 

puissance de réserve en considérant la modélisation d'incertitude (basée sur des 

incertitudes relevées pour le passé) avec des méthodes déterministes et des méthodes 

probabilistes (Fig. R- 1) avant d'appliquer une optimisation déterministe de la 

planification opérationnelle de la production. Dans le chapitre 4, une prospective est 

construite pour tenir compte également des réalisations futures et probables de 

l'incertitude et implique donc une méthode d'optimisation stochastique basée sur des 

scénarios. 

 

Le deuxième domaine de recherche a considéré la fourniture de puissance de réserve 

avec de stockage et une intégration dans la planification opérationnelle (avec 

optimisation déterministe et stochastique) a été proposée. 

 

Fig. R- 1 Comparaison des approches d'optimisation déterministe et stochastique sous 

incertitude 
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Titre en français 

Optimisation stochastique pour la planification de la production d’électricité dans une communauté énergétique locale en situation 

d'incertitude liée aux énergies renouvelables 

Résumé en français 

Dans un système électrique, la planification opérationnelle (PO) consiste à prévoir l'utilisation de générateurs ainsi que leurs références 

de puissance pour satisfaire la demande tout en respectant les contraintes d'exploitation du système. De nos jours, des communautés 

énergétiques ont émergé avec des besoins énergétiques individuels et une augmentation de la production distribuée. La forte pénétration 

des sources d’énergies renouvelables accroît localement l'incertitude liée à leur prévision J+1 tandis que les exigences en matière de 

fiabilité du système électrique augmentent. Par conséquent, les approches déterministes traditionnelles pour la PO doivent év oluer vers 

une optimisation stochastique. Ce travail explore l’apport des méthodes d'optimisation probabiliste et stochastique pour la planification 

opérationnelle de la production d’électricité et des réserves de puissance (RP) dans un micro réseau urbain avec le souhait de réduire au 

minimum les coûts d'exploitation et les émissions. Sur la base d'une modélisation d'incertitude avec des distributions d'erreur de 

prévision, une méthode d'évaluation des risques basée sur le critère probabilité de la perte de charge (LOLP) est utilisée pour déterminer 

une quantité appropriée de RP pour chaque pas de temps du jour suivant. Ensuite, dans une première étape, une optimisation 

déterministe utilisant une méthode de programmation linéaire en nombres entiers mixtes (MILP) décide la PO avec la prévision de la 

demande de charge et de la production PV pour la journée. Dans une deuxième étape, un ensemble de scénarios est construit pour 

modéliser les incertitudes futures et probables. Il est intégré dans une optimisation stochastique du PO. L’objectif de la deuxième étape 

est de prévoir l’utilisation éventuelle de générateurs suffisamment flexibles et rapides pour compenser les écarts inattendus  de puissance 

par rapport aux prévisions. Pour contribuer à la diminution des émissions, la planification de systèmes de stockage locaux est ensuite 

considérée pour la fourniture de cette RP ; l’autoconsommation d’énergie PV s’en trouve augmentée et les coûts opérationnels réduits. 

La méthodologie proposée est illustrée par les résultats obtenus à partir d'un système de micro réseau urbain étudié. Un système convivial 

de contrôle de supervision et d'acquisition de données est développé avec l'interface graphique Matlab pour intégrer et visualiser 

l'opération de gestion de l'énergie. 

Mots-clés : Optimisation stochastique, incertitude, engagement des générateurs (planification de la production), système de gestion de 

l'énergie, puissance de réserve, énergie renouvelable, micro réseau 

 

Titre en anglais 

Stochastic optimization for generation scheduling in a local energy community under renewable energy uncertainty 

Résumé en anglais 

In electrical systems, the unit commitment (UC) and power scheduling plan the operating of generating units in order to satisfy the load 

demand under system operating constraints. Nowadays, energy communities have emerged with individual community energy 

requirements and increasing capacity deployment of distributed energy resources. The high penetration of renewable energy sources 

(RES) and load demand increase locally the power system uncertainty. Hence, traditional deterministic approaches for one day ahead UC 

should evolve to stochastic optimization methods. The main goal of this thesis is to propose a probabilistic-based and stochastic 

optimization methodology for optimal generation and operating power reserve (OR) scheduling decisions in an urban microgrid, with the 

objective of addressing the minimization of operating costs and emissions. Based on an uncertainty modelling with forecasting error 

distributions, a loss of load probability-based (LOLP-based) risk assessment method is used to determine an appropriate amount of OR 

for each time step of the next day. Then, in the first stage, a deterministic optimization within a mixed-integer linear programming (MILP) 

method generates the unit commitment of controllable generators with the day-ahead PV and load demand prediction. In the second 

stage, a set of scenarios is built to model future and probable uncertainties. It is integrated into a stochastic optimization of the operational 

planning. Issues of the second stage are the commitment of enough flexible and fast generators to handle unexpected deviations from 

predictions. In order to decrease emissions, the scheduling and operational planning of local storage systems for OR provision is 

considered; the PV self-consumption is increased and operational costs are decreased. The significance of the proposed methodology is 

illustrated with results obtained from a studied urban microgrid system. A user-friendly Supervisory Control and Data Acquisition system 

is developed with the Matlab GUI to integrate and visualize the energy management operation. 

Mots-clés : Stochastic optimization, uncertainty, unit commitment (generation scheduling), energy management system, power reserve, 

renewable energy, microgrid 
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