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Abstract

Traditional approaches in medicine to manage diseases can be briefly reduced to the
“one-size-fits all” concept (i.e., the effect of treatment reflects the whole sample). On
the contrary, precision medicine may represent the extension and the evolution of tra-
ditional medicine because is mainly preventive and proactive rather than reactive. This
evolution may lead to a predictive, personalized, preventive, participatory, and psycho-
cognitive healthcare. Among all these characteristics, the predictive medicine (PM),
used to forecast disease onset, diagnosis, and prognosis, is the one this thesis empha-
sizes. Thus, it is possible to introduce a new emerging healthcare area, named pre-
dictive precision medicine (PPM), which may benefit from a huge amount of medical
information stored in Electronic Health Records (EHRs) and Machine Learning (ML)
techniques. The thesis ecosystem, which consists of the previous 3 inter-connected
key points (i.e., PPM, EHR, ML), contributes to the biomedical and health informatics
by proposing meaningful ML methodologies to face and overcome the state-of-the-art
challenges, that emerge from real-world EHR datasets, such as high-dimensional &
heterogeneous data; unbalanced setting; sparse labeling; temporal ambiguity; inter-
pretability/explainability; and generalization capability. The following ML method-
ologies designed from specific clinical objectives in PM scenario are suitable to con-
stitute the main core of any novel clinical Decision Support Systems [1] usable by
physicians for prevention, screening, diagnosis, and treatment purposes: i) a sparse-
balanced Support Vector Machine (SB-SVM) approach [2] aimed to discover type 2
diabetes (T2D) using features extracted from a novel EHR dataset of a general prac-
titioner (GP); ii) a high-interpretable ensemble Regression Forest (TyG-er) approach
[3] aimed to identify non-trivial clinical factors in EHR data to determine where the
insulin-resistance condition is encoded; iii) a Multiple Instance Learning boosting
(MIL-Boost) approach [4] applied to EHR data aimed to early predict an insulin re-
sistance worsening (low vs high T2D risk) in terms of TyG index; iv) a novel Semi-
Supervised Multi-task Learning (SS-MTL) approach [5] aimed to predict short-term
kidney disease evolution (i.e., patient’s risk profile) on multiple GPs’ EHR data; v) A
XGBoosting (XGBoost) approach [6] aimed to predict the sequential organ failure as-
sessment score (SOFA) score at day 5, by utilising only EHR data at the admission day
in the Intensive Care Unit (ICU). The SOFA score describes the COVID-19 patient’s
complications in ICU and helps clinicians to create COVID-19 patients’ risk profiles.
The thesis also contributed to the publication of novel publicly available EHR datasets
(i.e., FIMMG dataset, FIMMG obs dataset, FIMMG pred dataset, mFIMMG dataset).
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Sommario

L’ approccio tradizionale in medicina per gestire le patologie può essere ridotto al
concetto di “one-size-fits all”, in cui l’effetto di una cura rispecchia l’intero campi-
one. Però, la medicina di precisione può rappresentare l’estensione e l’evoluzione
della medicina tradizionale perché risulta principalmente preventiva e proattiva piut-
tosto che prettamente reattiva. Questa evoluzione può portare a una Sanità predittiva,
personalizzata, preventiva, partecipativa e psicocognitiva. Tra tutte queste caratteris-
tiche, la tesi si focalizza sulla medicina predittiva. Quindi, si può introdurre un nuovo
emergente paradigma di Sanità, chiamato medicina di precisione predittiva (PPM),
che può beneficiare da tecniche di Machine Learning (ML) e da una enorme quantità
di informazioni racchiuse nelle cartelle cliniche elettroniche (EHRs). L’ecosistema
sanitario della tesi, costituito dai 3 punti chiave interconnessi (PPM, EHR, ML), of-
fre un contributo al campo dell’informatica medica proponendo metodologie di ML
con lo scopo di affrontare e superare le sfide dello stato dell’arte che emergono dagli
EHR dataset, come: dati eterogenei e molto numerosi, sbilanciamento tra classi, la-
beling sparso, ambiguità temporale, interpretabilità, capacità di generalizzazione. Le
seguenti metodologie di ML sviluppate per specifici task clinici nello scenario della
PM sono adatte a costituire il nucleo principale di nuovi sistemi clinici di supporto
alle decisioni, utilizzabili dai medici per scopi di prevenzione, screening, diagnosi e
follow-up: i) un approccio sparse-balanced Support Vector Machine con lo scopo di
predire il diabete di tipo 2 (T2D), utilizzando le informazioni estratte da un nuovo
EHR dataset di un medico di medicina generale; ii) un approccio Regression For-
est ensemble ad alta interpretabilità con lo scopo di identificare fattori clinici non di
routine nei dati EHR per determinare dove sia racchiusa la condizione di insulino-
resistenza; iii) un approccio di Multiple Instance Learning boosting applicato ai dati
EHR volto a predire precocemente un peggioramento dell’insulino-resistenza (basso
vs alto rischio di T2D) in termini di TyG index; iv) un nuovo approccio multitasking
semi-supervisionato con lo scopo di predire l’evoluzione a breve termine della patolo-
gie renale (cioè il profilo di rischio del paziente) sui dati EHR di un cluster di medici
di medicina generale; v) un approccio XGBoosting con lo scopo di predire il SOFA
score al quinto giorno, utilizzando solo i dati EHR del giorno di ammissione in unità di
terapia intensiva (ICU). Il SOFA score descrive le complicazioni del paziente COVID-
19 in ICU e aiuta i medici a creare profili di rischio dei pazienti COVID-19. La tesi
ha anche contribuito alla pubblicazione di nuovi EHR datasets open access (FIMMG
dataset, FIMMG obs dataset, FIMMG pred dataset, mFIMMG dataset).
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Chapter 1.

Background and motivation

Medicine is an evolving field that updates its applications thanks to recent advances
from a broad spectrum of sciences such as biology, chemistry, statistics, mathematics,
engineering, and life and social sciences. Generally, discoveries in such sciences are
applied to medicine with the aim of preventing, diagnosing, and treating a wide range
of medical conditions.

The current traditional approach to manage diseases can be briefly reduced to the
“one-size-fits all” concept (i.e., the effect of treatment reflects the whole sample). Al-
though this view of medicine has been consolidated in the past for several decades,
applications of effective treatment, for example, can lack efficacy and may have ad-
verse or unpredictable reactions in individual patients [7].

Precision medicine is the extension and the evolution of the current traditional
approach to patient management [8]. Unlike “one-size-fits all” approach, precision
medicine is mainly preventive and proactive rather than reactive [9]. Barak Obama,
who claimed the importance of “delivering the right treatments, at the right time, every
time to the right person”, has highlighted the critical impact of this emerging initia-
tive in healthcare practice. The personalized approach has been therefore emerged
as a promising enhanced substitute for oversimplified and reductive medicine to dis-
ease categorization and treatment. Precision medicine uses a wide spectrum of data,
ranging from biological to social information, tailoring diagnosis, prognosis, and ther-
apy on patient’s needs and characteristics, converging to a patient-centered medicine
[10]. This evolution may lead to predictive, personalized, preventive, participatory,
and psychocognitive healthcare: among all, the predictive medicine (PM), which is
used to forecast disease onset, prognosis, and therapy outcome, is the one this thesis
emphasizes. Thus, It is possible to introduce a new emerging healthcare area, named
predictive precision medicine (PPM) [11], defined as the merging of these two new
fields (i.e. precision medicine, predictive medicine) of medical sciences by utilising
biomarkers to forecast disease onset, progression and its treatment tailored on indi-
vidual features, like omic, environmental and lifestyle elements. PPM represents a
medical model that individualises the care of patients according to their risk of dis-
ease or their predicted response to intervention and thus has the potential to ensure the
best response and highest safety margin for patient care. PPM could lead to significant
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improvement from patients’ life to the global population and healthcare systems.
PPM may soon fully benefit from a huge amount of medical information and Artifi-

cial Intelligence (AI) techniques [12, 13]. This new concept of medicine involves the
medical institutions that collect every day a huge amount of healthcare information in
Electronic Health Records (EHRs). Machine Learning (ML) and Deep Learning (DL)
techniques perfectly fit with these structured big data and, consequently, permit to
reach the PPM objectives. This new promising healthcare ecosystem (see figure 1.1),
consisting of PPM, EHR, and ML, will better identify and treat chronic pathologies,
reduce financial and time efforts, and improve patients’ quality of life.

This thesis will focus on the potential of PPM as a new approach to health sci-
ences and clinical practice, by proposing novel applicative ML methodologies as the
main core of a Clinical Decision Support System (CDSS) as shown in Figure 1.2. The
proposed ML methodologies, designed from specific clinical objectives, have been ap-
plied in several pathological scenarios, such as insulin resistance (IR), type 2 diabetes
(T2D), kidney disease (KD), and COVID-19.

EHR MLPredictive

Precision 
medicine

Figure 1.1.: Thesis healthcare ecosystem: predictive precision medicine (PPM), Elec-
tronic Health Record (EHR), and Machine Learning (ML).

Clinical Decision Support SystemData collection

Pathologies

EHR data

Laboratory 

ExamsDrugs

Generalization Prediction of risk profile

Disease modeling

Personalized medicine

Preventive medicine

Clinical Outcome

Stability

Interpretability

Robustness

Scalability

Figure 1.2.: Example of possible Clinical Decision Support System (CDSS) designed
inside the thesis healthcare ecosystem.
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1.1. Predictive medicine and precision medicine

PM is a relatively new area of Medicine. Broadly speaking, PM may be defined as the
use of laboratory and genetic tests to predict either the onset of a disease in an indi-
vidual or the trend of the current disease. PM may vary from estimating the risk for a
certain outcome to predicting which treatment will be the most effective on the indi-
vidual [12]. In this sense, lots of biomarkers could be used to forecast disease onset,
prognosis, and therapy outcome. Any biomarker indicates a medical sign that can be
measured objectively, accurately, and reproducibly; in this direction, the World Health
Organization defined biomarker as “almost any measurement reflecting an interaction
between a biological system and a potential hazard, which may be chemical, physi-
cal, or biological”. Thus, the concept of biomarker could be translated as any clinical
factor that gives us information about the health of the individual. If the current tra-
ditional approach to clinical trials is “one-size-fits-all” (i.e., the effect of treatment
reflects the whole sample), the future of medicine is to provide the “the right treat-
ment for the right patient at the right time”, identifying different subgroups depending
on certain biomarkers that respond to an optimal treatment [14].

PM institutes preventive measures to either prevent the disease altogether or signif-
icantly decrease its impact upon the patient, so that healthcare professionals and the
patient themselves can be proactive in instituting lifestyle modifications and increased
physician surveillance. Thus, PM changes the paradigm of medicine from being re-
active to being proactive and has the potential to significantly extend the duration of
health and to decrease the incidence, prevalence, and cost of diseases. PM may be ori-
ented for both healthy individuals and those with diseases, and its purpose concerns
predicting susceptibility to a particular disease or predicting progression and treatment
response for a given disease, respectively.

Unlike many preventive interventions that are applied to groups (e.g., immunization
programs), PM is conducted on an individualized basis. PM is expected to be most ef-
fective when applied to multi-factorial diseases such as diabetes mellitus and chronic
cardiovascular diseases that are prevalent in industrialized countries. However, com-
plex diseases in the wider population are not only merely affected by heredity and
patient’s clinical condition, but also by external causes such as lifestyle and envi-
ronment. Therefore, multiple environmental factors, particularly smoking, diet and
exercise, infection, and pollution play important roles and may be as important as the
patient’s clinical condition.

Thus, diseases are influenced by various factors, some of which are generally well-
known factors while others may be specific individual factors. While the former has
been studied in great detail, the latter has not yet. Understanding individual factors
may permit to prevent or manage the disease more effectively. This method of tailor-
ing treatment, practices, and medical decisions to a patient based on specific person-
alized factors (i.e., patient’s clinical history, biomarkers, environment, lifestyle) has
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been defined as precision medicine [15].
The concept of precision medicine is relatively new and some of the potential ad-

vantages are as follows:

• Efficiency of care: precision medicine makes decisions based on individual-
specific factors. Clinicians may be co-assisted and supported by proposed cus-
tomized treatments for each of their patients, improving the range and the re-
sponsiveness of all possible interventions.

• Preventive care: the screening process can be used to diagnose diseases and
even prevent such diseases by understanding the risk of an individual rather
than simply reacting to an illness.

• Limit cost: targeted treatment based on patient’s features mapping can reduce
the cost of care with more informed treatment decisions and a greater chance of
being effective. The cost will be potentially lower with the focus on preventive
care rather than treatment of disease.

• Population health: studying patterns in a population as a whole, and as sections
can help in identifying causes for particular diseases and design the treatment.
Epidemiological studies can predict the likelihood of diseases and early detec-
tion.

While the drawbacks are as follows:

• Variability; excluding the patient’s clinical condition, multiple external factors
contribute to the predictive results. This aspect implies that outcomes obtained
by precision medicine are more difficult to be quantified and objectively ac-
cepted by the scientific community. Furthermore, the potential false positives
or false negatives that may arise from a screening program can cause substantial
unnecessary stress on the individual.

• Infrastructure requirements: precision medicine might deeply impact health-
care, but it requires massive infrastructure investments to implement and update
infrastructures and mechanisms of data collection, storage, and sharing. Addi-
tionally, the privacy and security of digital data have to be improved and assured.

1.2. Electronic health records

Health Information Technology (HIT) has become an essential part of the daily work
of clinicians. The reason for a strong investment in HIT is the wider adoption of EHR
systems. EHRs are expected to improve the national healthcare quality and efficiency
[16, 17], for example, decreasing unnecessary services, such as repeated laboratory
tests every time the patient changes hospital and office visits [18, 19]. Moreover, the
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adoption of EHR reduces the workload of the clinician, healthcare costs, medical er-
rors [18, 20], patient complications, and mortality [21, 22]. In addition, EHRs can
document diagnostic investigations and medical treatment, provide CDSS and facili-
tate communication between health care personnel. EHRs represent important tools
in daily activities to store a huge amount of data [23]. The users can range from Gen-
eral Practitioners (GPs) to physicians in hospitals and Intensive Care Units (ICUs).
The most discriminative difference lies in time, particularly in record sampling fre-
quency. In fact, in general practice, EHRs data cover a longer patient time history,
but record sampling frequency is more dilated in time, while in the hospital or ICU
the patient length of stay is shorter as well the record sampling frequency. Perhaps,
EHR data usually may present a multitude of technical and operative issues, mainly
due to a lack of digitalization and standardization, respectively. Commonly, EHR data
present a non-uniform record sampling frequency, which leads to several missing val-
ues or missing views. Moreover, too sparse physician’s annotations may render EHR
data unusable. EHR data is often voluminous, multi-source and the enclosed clinical
information may be hidden or not fully interpretable a priori [24].

Cybersecurity and privacy-preserving are not irrelevant aspects due to the sensitivity
of the data.

Nowadays, there is a growing demand to extract large datasets from the EHRs for
administrative reporting, clinical audits, and, mostly, for research purposes. In the
research scenario, there is a lack of publicly EHRs availability, thus this aspect is as-
suming an increasing relevance. In the following table, several popular EHR datasets
used in clinical practice were compared in terms of specific features, such as data
documentation (dd), data accessibility (da), data heterogeneity (dh), longitudinal ob-
servations (lo), number of records/patients (#rp), and data type (dt). These features
are evaluated in terms of different levels such as low (L), medium (M), and high (H).

1.3. Machine Learning for healthcare

Driven by an increase in computational power, storage, memory, and the generation of
staggering volumes of data, AI techniques allow computers to perform a wide range
of complex tasks with impressive accuracy. On the one hand, Informatics is cru-
cial for precision medicine since it manages big data, creates learning systems, gives
access for individual involvement, and supports precision intervention from transla-
tional research [35]; on the other hand, HIT is crucial for PM providing clinicians
tools that give information about an individual at risk, disease onset and how to inter-
vene [12]. The importance of AI in the field of medicine is confirmed by the fact that,
for instance, in the United States the use of EHRs grew from 11.8% to 39.6% among
physicians from 2007 to 2012 [36].

In this context, one of the aims of HIT is to convert EHR into knowledge that could
be exploited for designing a CDSS. ML models can manage this enormous amount
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Table 1.1.: EHR datasets qualitative comparison: data documentation (dd), data acces-
sibility (da), data heterogeneity (dh), longitudinal observations (lo), num-
ber of patients (#rp), data type (dt), low (L), medium (M), and, high (H).

dd da dh lo #rp type

Nhanes [25] H H H L 103 Quest/Lab
MIMIC-III [26] H H L M 103 Hospital
HCup [27] H L L M 106 Hospital
ORBDA [28] L L M M 106 Hospital
CPRD [29] H M H H 106 GPs
THIN [30] L M M H 106 GPs
QResearch [31] M M M H 106 GPs
ResearchOne [32] M M M H 106 GPs
DNHSPD [33] M L M H 106 Pharmacy

Netmedica [1] H M H H 104 GPs
FIMMG [2] H H H M 103 GPs
mFIMMG [4] H H H M 104 GPs
RISC-19 [34] H M H H 103 Hospital

of data by predicting clinical outcomes and interpreting particular patterns sometimes
unsighted by physicians [37]. ML techniques have been widely used for extracting
information from such a large amount of data and have proven useful in improving di-
agnosis, outcome prediction, and management of chronic diseases [38, 39, 40]. This
includes a possibility for the identification of high risk for medical emergencies such
as transition into another disease state, for example, the progression from pre-diabetes
to T2D using routinely-collected EHR data [4]. ML will also play a fundamental role
in the development of learning healthcare systems, which describe environments that
align science, informatics, economical incentives, and lifestyle education for continu-
ous improvement and innovation. These systems, ranging from small group practices
to large national providers, may combine multi-source data with ML techniques. The
result consists of a continuous source of data-driven insights to optimise biomedical
research, public health, and healthcare quality [41]. Accordingly, the widespread ad-
vances in the field of Deep Learning (DL) have also encouraged the application of
DL approaches to clinical tasks (e.g., including outcome prediction) based on EHR
data [42]. Therefore one of the limitations of DL research involves topics such as data
heterogeneity and model interpretability/explainability [42, 43].

1.4. Thesis: Problems statement

In a PM scenario, ML methodologies were proposed to solve specific tasks for several
pathological conditions, such as IR, T2D, KD, and COVID-19.

Managing and modeling real-world datasets extracted from EHRs usually lead to
several ML challenges in terms of:
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• High-dimensional & heterogeneous data: The number of patients may largely
overcome the number of features (i.e. patient’s information) or vice versa.
Moreover, EHR data, which may originate from heterogeneous sources, usually
own noisy and/or redundant features. Thus, the ML model should guarantee
robustness against high-dimensional and heterogeneous data while, at the same
time, ensuring a reasonable computational cost effort.

• Unbalanced setting: In a classification task usually the target class (i.e., the
pathological condition to be predicted) is largely less representative than the
other classes. The ML model should guarantee robustness against an unbal-
anced setting, ensuring also the correct representation of the minority classes
more difficult to reach.

• Sparse labeling: Mostly in general practice, predictor and target values are
sparse and not always available over time. Predictor values may contain a huge
amount of missing values. The ML model should guarantee robustness against
missing values, ensuring affordable data imputation techniques. Moreover, in
supervised tasks, also the target values may not be constantly provided over
time and lots of important clinical information cannot be used. Thus, dedicated
ML paradigms are needed to exploit also the unlabeled information.

• Temporal ambiguity: Time-series data is of vital importance because it pro-
vides much more information than the “snapshots” presented by static data,
and hence permits much greater insight. Time-series data is the key point of
evidence-based CDSSs. With the increasing availability of EHRs, there is enor-
mous unexpressed potential for providing accurate and actionable predictive
models to time-series data for real-world concerns. The ML model should guar-
antee robustness against temporal ambiguity, being able to capture the patient’s
temporal information by adopting a suitable task-based temporal representation.

• Interpretability/explainability: Understanding which are the most discrimina-
tive predictors that contribute to the outcome of the model. It ensures that
the outputs generated by machine learning models can be understood, rather
than remaining “black boxes”. This is particularly important in the healthcare
domain where black box predictions are unlikely to be acceptable to patients,
clinicians, or regulatory bodies.

• Generalization: The ML model’s ability to well react on new unseen data rather
than just the data that it was trained on. The approach of generalization must
ensure that the data used to train the model is a good and reliable sample of the
observation in the mapping that we want the model to learn. The ML model
should guarantee robustness against the risk of overfitting, ensuring a high de-
gree of generalization performance and scalability of the algorithm.
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1.4.1. Thesis contribution

Table 1.2.: Machine Learning (ML) challenges (see Section 1.4) faced by the ML
methodologies proposed in each chapter.

ML Methodologies
High-dimensional &
heterogeneous data

Unbalance
setting

Sparse
labeling

Temporal
ambiguity

Explainability/
Interpretability Generalization

[2]T2D discovering (ch.2) x x x x x
[3]IR: clinical factors (ch.3) x x x x
[4]IR: T2D early stage (ch.4) x x x x x
[1]CDSS for T2D evaluation care (ch.5) x x x x
[5]KD early stage risk (ch.6) x x x x x x
[6]COVID-19 complications (ch.7) x x x x

The thesis healthcare ecosystem (i.e., PPM, EHR, ML), offers a contribution to the
biomedical and health informatics field by proposing meaningful ML methodologies
to face and overcome the ML challenge aspects previously listed (see Table 8.1):

• High-dimensional & heterogeneous data were managed during the preprocess-
ing stage (i.e., features selection, standardization, outliers detection);

• Unbalanced setting was managed by adopting specific optimization metrics
and/or optimal thresholds for the posterior probabilities of the decision func-
tion;

• Sparse labeling of the predictors was managed with standard static data imputa-
tion techniques (i.e, extra-values, mean, median, K-Nearest Neighbors (KNN)),
while sparse labeling of the targets was managed by proposing semi-supervised
learning (SSL) techniques;

• Temporal ambiguity was managed by proposing different experimental con-
figurations (i.e., time-invariant, stacked-temporal, Multiple Instance Learning
(MIL), Multi-Task Learning (MTL) with temporal relatedness/constraints);

• Interpretability/explainability was managed offering always a features impor-
tance ranking of the most discriminative predictors to clinically understand the
outcome of the ML model;

• Generalization was managed by adopting regularization strategies.

The proposed novel ML methodologies in the PM scenario may constitute the main
core of a CDSS usable by physicians for prevention, screening, diagnosis, and treat-
ment purposes. Several pathological conditions, such as IR, T2D, KD, and COVID-19
were debated in this thesis, but nothing prevents from generalizing and scaling the pro-
posed ML methodologies on other chronic pathological conditions as well.

This thesis also contributed to the publication of novel publicly available EHR
datasets, such as:
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• FIMMG dataset1

• FIMMG obs dataset2

• FIMMG pred dataset3

• mFIMMG dataset4

1.5. Thesis overview

An overview of the thesis structured into the following chapters is presented to facili-
tate the reading organization.

• Chapter 1 has offered a qualitative and brief introduction of PPM, EHRs, and
AI, the 3 main interconnected key points that constitute the thesis healthcare
ecosystem. Then the problem statement and the contribution of the thesis have
been provided.

The rest of the thesis proposes an in-depth study of four PM scenarios, such as IR,
T2D, KD, and COVID-19. In particular, the following list shows the organization and
an overview of the rest of the thesis:

• Chapter 2 aims to exploit an ML methodology, named sparse-balanced SVM,
for discovering T2D in general practice using features extracted from a novel
EHR dataset, namely FIMMG dataset. Pathologies, exams, drugs, and exemp-
tion are used as predictors. Temporal information has not bee taken into ac-
count.

• Chapter 3 aims to exploit a high-interpretable ML approach (i.e., ensemble
Regression Forest combined with data imputation strategies), named TyG-er,
to identify non-trivial clinical factors in EHR data to determine where the IR
condition is encoded. A specific clinical biomarker, named TyG index is intro-
duced. Temporal information is taken into account. Clinical data derive from
a subset of the FIMMG dataset, but only laboratory test values are used in this
study.

• Chapter 4 aims to exploit a Multiple Instance Learning boosting (i.e., MIL-
Boost) algorithm applied to past EHR patient information to create a predictive
model capable of early prediction of worsening IR (low vs high T2D risk) in
terms of TyG index. Temporal information is taken into account. Clinical data
derive from a subset of the FIMMG dataset, but only laboratory test values are
used in this study.

1http://vrai.dii.univpm.it/content/fimmg-dataset
2http://vrai.dii.univpm.it/content/fimmgobs-dataset
3http://vrai.dii.univpm.it/content/fimmgpred-dataset
4http://vrai.dii.univpm.it/content/mfimmg-dataset
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Chapter 1. Background and motivation

• Chapter 5 aims to develop a platform for GPs data sharing and standardized
T2D patient management, guaranteeing the inter-operability of the platform
with other healthcare databases. The proposed framework, equipped with a
novel ML-based CDSS, processes and analyses the shared EHRs data for T2D
screening purposes.

• Chapter 6 aims to exploit a novel Semi-Supervised Multi-task Learning (SS-
MTL) approach for predicting short-term KD evolution (i.e., patient’s risk pro-
file) on multiple GPs’ EHR data, named mFIMMG dataset. The SS-MTL ap-
proach imposes a temporal relatedness between consecutive time-windows to
predict the eGFR status over time and learns both from labeled and unlabeled
samples in the learning procedure. Pathologies, exams, drugs, and laboratory
test values are used as predictors.

• Chapter 7 aims to propose the prediction of the SOFA score at day 5, by util-
ising only clinical data at the admission day in ICU. The temporal evolution of
the SOFA score describes the COVID-19 patient’s complications in ICU and its
prediction helps to create patients’ risk profiles. Approximately 100 ICUs par-
ticipated at the RIsk Stratification in COVID-19 patients in the Intensive Care
Unit (RISC-19-ICU) registry, but only a subsample of those patients has been
utilised for this study. Temporal information has not been taken into account.

Each chapter (ch. 2÷ ch. 7), which differs in clinical tasks, pathological conditions
and, ML methodologies i) reviews the state-of-the-art; ii) presents the adopted EHR
dataset and preprocessing stage; iii) presents the proposed ML algorithm; iv) presents
the experimental setup and measure; v) provides the experimental results for evalu-
ating the performance of the proposed method; vi) discusses the obtained results and
future work; and vii) presents the conclusions.

• Chapter 8 offers the conclusions of each work presented in the previous chap-
ters. Then, final considerations and open challenges of healthcare ecosystems
(i.e, PPM, EHR, ML) are discussed.

1.6. Thesis outcomes: Publications

The thesis outcomes are available in the follow publications:

• M. Bernardini, L. Romeo, P. Misericordia, and E. Frontoni, “Discovering the
Type 2 Diabetes in Electronic Health Records using the Sparse Balanced Sup-
port Vector Machine”, IEEE Journal of Biomedical and Health Informatics,
2019.

• M. Bernardini, M. Morettini, L. Romeo, E. Frontoni, and L. Burattini, “TyG-er:
An ensemble Regression Forest approach for identification of clinical factors
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1.6. Thesis outcomes: Publications

related to insulin resistance condition using Electronic Health Records”, Com-
puters in Biology and Medicine, 2019.

• M. Bernardini, M. Morettini, L. Romeo, E. Frontoni, and L. Burattini, “Early
temporal prediction of Type 2 Diabetes Risk Condition from a General Prac-
titioner Electronic Health Record: A Multiple Instance Boosting Approach”,
Artificial Intelligence in Medicine, 2020.

• E. Frontoni, L. Romeo, M. Bernardini, S. Moccia, L. Migliorelli, M. Paolanti,
A. Ferri, P. Misericordia, A. Mancini, and P. Zingaretti, “A Decision Support
System for Diabetes Chronic Care Models Based on General Practitioner En-
gagement and EHR Data Sharing”, IEEE Journal of Translational Engineering
in Health and Medicine, 2020.

• M. Bernardini, L. Romeo, E. Frontoni, and M.R. Amini, “A Semi-Supervised
Multi-Task Learning Approach for Predicting Short-Term Kidney Disease Evo-
lution”, IEEE Journal of Biomedical and Health Informatics, 2020 [Accepted].

• J. Montomoli, L. Romeo, S. Moccia, M. Bernardini, L. Migliorelli, A. Do-
nati, A. Carsetti, P. Garcia, T. Fumeaux, P. Guerci, R. Schuepbach, E. Frontoni,
RISC-19-ICU Investigators, M. Hilty, “Predicting 5-day SOFA score at ICU
admission in COVID-19 patients: a proof-of-concept study using prospectively
collected data from 1613 patients in the RISC-19-ICU registry”, Journal of the
American Medical Association, 2020 [Submitted].
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Chapter 2.

Type 2 diabetes discovering

The diagnosis of type 2 diabetes (T2D) at an early stage has a key role for an adequate
T2D integrated management system and patient’s follow-up. Recent years have wit-
nessed an increasing amount of available Electronic Health Record (EHR) data and
Machine Learning (ML) techniques have been considerably evolving. However, man-
aging and modeling this amount of information may lead to several challenges such
as overfitting, model interpretability and computational cost. Starting from these mo-
tivations, a ML method called Sparse Balanced Support Vector Machine (SB-SVM)
for discovering T2D in a novel collected EHR dataset (named FIMMG dataset) was
introduced. In particular, among all the EHR features related to exemptions, exami-
nation and drug prescriptions, only those collected before T2D diagnosis from a uni-
form age group of subjects were selected. The reliability of the introduced approach
with respect to other ML and Deep Learning (DL) approaches widely employed in
the state-of-the-art for solving this task was demonstrated. Results evidence that the
SB-SVM overcomes the other state-of-the-art competitors providing the best com-
promise between predictive performance and computation time. Additionally, the in-
duced sparsity allows to increase the model interpretability, while implicitly managing
high dimensional data and the usual unbalanced class distribution.

2.1. Introduction

The World Health Organization (WHO) reported that the global prevalence of world-
wide diabetes is around 9% (more than 400 million people). The 90% of people with
diabetes suffers from T2D [44, 45]. T2D is on the rise worldwide and only in 2012
diabetes caused an estimated 1.5 million deaths. The WHO anticipates that world-
wide deaths will double by 2030 [46]. In developing nations, more than the half of
all diabetic cases goes undiagnosed. This can be attributed to the fact that T2D symp-
toms may be less marked than other types of diabetes (e.g., Type 1). Nonetheless,
the International Diabetes Federation (IDF) stated that early diagnosis and opportune
treatments can save lives while preventing or significantly delaying devastating com-
plications [45]. Moreover, diabetes is the major cost on the economic balances of
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national health systems (IDF indicates for the year 2015 a level of expenditure for the
treatment of diabetic patients equal to 11.6% of the total world health expenditure).

A more efficient integrated management system, including General Practitioners
(GPs) and specialists with multidisciplinary skills, could be a valid solution to al-
leviate the healthcare costs while preventing diabetes-related diseases (e.g., diabetic
retinopathy, renal diabetes). Almost all GP outpatient clinics are now equipped with
EHRs storing the health history of the patients as well as several heterogeneous in-
formation (i.e. demographic, monitoring, lifestyle, clinical). The reason for a strong
investment in Health Information Technology (HIT) is that wider adoption of EHRs
will reduce healthcare costs, medical errors [18, 20], patient complications and mor-
tality [21, 22]. Moreover, the HIT will decrease the use of healthcare services such
as laboratory tests and outpatient visits, [18, 19], while it will improve the national
healthcare quality and efficiency [16, 17].

The high number of patients’ information recorded in EHRs results in a large amount
of stored data. In this context, one of the aims of biomedical informatics is to convert
EHR into knowledge that may be exploited for designing a Clinical Decision Sup-
port System (CDSS). In this scenario, ML models are able to manage this enormous
amount of data by predicting clinical outcomes and interpreting particular patterns
sometimes unsighted by physicians [37].

The aim of this work is to exploit a ML methodology, named SB-SVM, for discov-
ering T2D using features extracted from a novel EHR dataset, namely the FIMMG
dataset. The proposed SB-SVM is able to manage high dimensional data by increas-
ing the model interpretability and finding the most relevant features while dealing with
the usual unbalanced class distribution. In the data analysis, among all the EHR fea-
tures related to exemptions, examination and drug prescriptions, only those collected
before T2D diagnosis were considered, while excluding all features that have already
revealed a T2D patient’s follow-up. Additionally, a subset of subjects enclosed from
60− 80 years range was considered, where the chronological age is not statistically
relevant in order to discriminate T2D condition. The employed FIMMG dataset is
available at the following link1.

Three different research questions were formulated in order to measure the reliabil-
ity of our approach with respect to the state-of-the-art methodologies:

• Case I: Is the SB-SVM approach able to predict T2D using all set of EHR
features? (Section 2.3.1.1).

• Case II: Is the SB-SVM approach able to predict T2D using only a subset of
EHR features collected before T2D clinical diagnosis? (Section 2.3.1.2).

• Case III: Is the SB-SVM approach able to predict T2D using only a subset of
EHR features collected before T2D clinical diagnosis from a uniform age group
of subjects? (Section 2.3.1.3).

1https://vrai.dii.univpm.it/content/fimmg-dataset
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2.2. Related work

2.2. Related work

In the last decade, with the increasing amount of available data, ML techniques for
discriminating T2D condition have been considerably evolving. Accordingly, the
widespread advances in the field of DL have encouraged the application of DL ap-
proaches to clinical tasks (including outcome prediction) based on EHR data [42].
Therefore one of the limitation of DL research involves topic such as data heterogene-
ity and model interpretability [42, 43]. Real-world datasets extracted from EHRs usu-
ally own high dimensionality data and several noisy and/or redundant features. Man-
aging and modeling this amount of information may lead to several challenges such
as i) overfitting; ii) reduction of interpretability; iii) computational cost increment. In
this context, researchers tried to overcome these issues by performing features selec-
tion [47, 48, 49, 24] or engineering feature techniques [50]. Zheng et al. introduced
an engineering features based framework able to improve the performance of tradi-
tional ML models (e.g., SVM, logistic regression (LR), decision tree (DT), k-nearest
neighbor (KNN), random forest (RF), Naive Bayes (NB)) for predicting T2D condi-
tion [50]. Deviating from our approach, the feature extraction stage implemented by
[50] required a further computational effort as well as the supervision of the physician
in order to define high-level features. Sheikhi et al. performed the analysis not con-
sidering some features directly related to T2D (i.e., glycated hemoglobin (HbA1c))
[47]. Then, a feature selection based on LASSO and ridge LR was executed before
predicting the diabetic condition. Kamkar et al. exploited the typical EHR tree struc-
ture in order to perform a feature selection based on Tree-LASSO algorithm [48]. Cho
et al. predicted the onset of diabetic nephropathy from an unbalanced and irregular
dataset. A feature selection has been employed with baseline statistical methods, Re-
liefF [51], SVM sensitivity analysis and recursive feature elimination (RFE) [49]. In
[24] a filter feature selection strategy based on ReliefF was adopted as well, to rank
the important attributes for identifying the diabetic condition while evidencing that
the main discriminative feature is the age marker. Concerning the classification stage,
they employed standard supervised algorithms such as NB, DT, and Instance-Based
learners [24]. The main difference with the respect to the above-mentioned literature
[47, 48, 49, 24] can be resumed according to the different strategy used to manage
high dimensional data while achieving reliable performance. Our embedded method
interacts with the classifier structure and is able to manage the huge amount of features
while discovering the most relevant ones without any supplementary feature selection
stage. Differently the wrapper feature selection approaches [49] can result in an exter-
nal module with an increment of computational effort (e.g., beam search, sequential
forward selection, sequential backward elimination) for the training and validation
stage, while the filter methodologies [47, 48, 49, 24] rely on the evaluation of the data
statistics (e.g., t-test, chi-square, information gain, ReliefF) which is not always linked
with the learning algorithm.
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The papers [52, 53, 54] are closer to our work, where the aim is to develop an al-
gorithm able to manage high dimensional and unbalanced data without performing a
supplementary features selection strategy. However, apart from the proposed method-
ology, our approach is also different in terms of experimental procedure for testing the
reliability of the ML model in T2D early prediction.

In particular, DT model was proposed in [52] for discovering T2D in a uniform age
group, while the ensemble (i.e., bagging) and boosting (i.e., AdaBoost) methodolo-
gies were employed for decreasing the generalization error when dealing with high
dimensional data. In Wang et al. as well an ensemble strategy based on RF was
employed in order to suggest antihyperglycemic medications for T2D patients [54].
The synthetic minority oversampling technique (SMOTE) algorithm [55] was used to
solve the unbalanced class problem oversampling the minority class. Deviating from
their approach, our method induces sparsity which leads to an increase in the inter-
pretability of our ML model. Additionally, our method deals the high unbalanced
setting without drawing synthetic samples [54], not always consistent and close with
the real class data. As it will be evidenced from the experimental results (Section 2.5),
our methodology is more effective with respect to the DT and bagging classifiers (i.e.,
RF) employed by [52, 54] even in a uniform age group [52].

In Yu et al. a SVM model was proposed for two different classification problems
related to diabetes condition [53]. Their proposed SVM and LR models were able to
discriminate between T2D and control subjects in high dimensional data with a large
population not suffering from diabetes. The main difference of our approach with
respect to [53] lies in the application of 1-norm regularizer in the hinge loss function
that induces sparsity in the model coefficients.

2.2.1. Sparse SVM for unbalanced dataset

There were existing work which proposed the solution of a Sparse SVM while ad-
dressing the imbalance dataset problem in different domain ranging from clinical data
[56] to image categorization [57]. Differently from [56] our method induced sparsity
by applying the least absolute shrinkage and selection operator (LASSO), while the
auhors in [56] employed the smoothly clipped absolute deviation (SCAD) penalty.
Both regularizers are members of the Lq penalty functions and they can be adopted
to automatically and simultaneously select variables retaining the most relevant fea-
tures. Although LASSO and SCAD disclose the sparsity and continuty properties, the
SCAD results also in a unbiasedness estimator [58]. However, our choice is motivated
by the peculiarity of LASSO to perform better when the noise level of the features
space (i.e., EHR data) is very high [58]. Additionally, in [56] the authors deal with the
unbalanced setting by introducing an adaptive proportional weight within the objec-
tive function. This setting gives more importance to the minority class and, as result,
the well-classified group gets the less weight. On the contrary, our method proposed
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to adjust the decision threshold without modifying the SVM objective function.
Deviating from the work proposed in [57], our approach deals with the unbalanced

setting changing directly the decision threshold of the inferred posterior probability
while controlling the true positive/negative rate (macro-recall). Since under Bayesian
decision theory our approach would be the optimal strategy [59], its reliability depends
on the estimated posterior probability. On the other hand, the approach proposed in
[57] is similar to the cost-sensitive SVM proposed in [60]. Differently from the stan-
dard SVM, the authors in [60] handled the unbalanced setting by penalizing differently
each class. Our approach leads to a most intepretable strategy to deal with unbalanced
classes, while estimating the posterior probability of the predicted classes.

The reliability of our approach is also confirmed by the state-of-the-art comparison
performed in Section 2.5, which unveils a greater predictive accuracy of the SB-SVM
with a lower computation effort.

In summary, the main contributions are the following:

• The collection and employment of the novel FIMMG dataset.

• The design of an algorithm core for treating and following chronic T2D patients.

• The introduction of the SB-SVM model able to achieve better performance with
respect to the other state-of-the-art approaches.

• The experimental test performed in a clinical use case scenario.

2.3. Clinical data: FIMMG dataset

The largest Italian federation of GPs (FIMMG) have instituted Netmedica Italia (NMI)
in order to offer HIT services to GPs in the national territory. NMI platform manages
a cloud computing project that through the integration of GPs’ databases (i.e., EHRs)
is able to realize network medicine, audit process, data reporting, integrated manage-
ment systems between GPs and Specialists for treating chronic pathologies. All the
process guarantees maximum data security encrypted both during transfer and storage,
and access is strictly allowed only to ones with the permission. NMI aggregates EHRs
available from GPs in a unique standardized language and share them on a cloud plat-
form. The FIMMG dataset (Figure 2.1), extracted from NMI cloud platform, belongs
exclusively to a unique GP’s EHR. The EHR contains a total of 2433 patients, includ-
ing both those who are no longer followed by the GP or died. The physician’s and
patients’ identities are anonymous. Three main fields compose the FIMMG dataset:
Demographic (gender and age), Monitoring (blood pressure) and Clinical (patholo-
gies, exemptions, exam and drug prescriptions) collecting a total of 1862 features. For
each patient the date of feature registration and the number of its occurrence are re-
ported too. This aspect assumes a relevant significance because it allows to trace up
the patient’s clinical history even in the time domain.
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2.3.1. Data analysis

Table 2.1 reports the description of the FIMMG dataset as well as the EHR fields.
Concerning the proportions between control and T2D patients, the FIMMG dataset is
characterized by a strong imbalanced configuration with a ratio less than 10 : 1 in the
advantage of control patients not suffering from T2D, while the whole population is
balanced in terms of gender. three experimental tests were performed:

Table 2.1.: FIMMG dataset description: Data analysis of each EHR field considered
for Case II and Case III.

Dataset description Count (%) Mean (std)

Total patients: 2433 -
Control patients 2208 (0.91) -
Diabetic patients 225 (0.09) -

Total features 1841 -

Fields Count (%) Mean (std)

Demographic
Gender: - -

Male 1186 (0.49) -
Female 1247 (0.51) -

Age (years) - 58.00(±23.58)
¡60 1374 (0.56) -
60-80 535 (0.22) -
¿80 524 (0.22) -

Monitoring
Blood pressure (mmHg) -

Systolic 3 135.52(±17.21)
Diastolic 3 80.83(±8.65)

Clinical
Pathologies 877 -
Exemptions 70 -
Exams 396 -
Drugs 490 -

Figure 2.1 shows an overview of the FIMMG dataset and the CDSS architecture
emerging from the SB-SVM approach. The proposed SB-SVM algorithm can be seen
as the main core of the CDSS framework.

2.3.1.1. Case I

In the starting configuration, all the features (n = 1862) related to the EHR fields
shown in Table 2.1 have been considered for predicting the T2D condition. Obviously,
from the starting feature set, the T2D information (i.e., T2D exemption code, T2D
pathologies ICD-9 codes) have been already discarded. All the features were binarized
according to the following values:

• 0: if the subject has never been affected by this pathology or associated with
this exemption, or if the specific drug and exam have never been prescribed.

• 1: if the subject has been at least once affected by this pathology or associated
with this exemption, or if the specific drug and exam have been at least once
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Clinical

Monitoring

Demographic

CloudGP

Specialist

STD

DSS

Gender 
Age 

Blood pressure

Exams
Pathologies 
Drugs
Exemptions

FIMMG
Dataset

SB-SVM

Yes No

Figure 2.1.: Overview of the Clinical Decision Support System (CDSS) architecture
emerging from the SB-SVM approach. The Gerneral Practitioner (GP)
stores the EHR data in Netmedica Italia (NMI) Cloud platform. The
FIMMG dataset is composed of three different fields: demographic, mon-
itoring and clinical. The related features were used for training the SB-
SVM model and providing a T2D prediction.

prescribed.

2.3.1.2. Case II

The following configuration setup (Case II) has been obtained discarding all exam
and drug prescriptions collected after the T2D diagnosis. In particular, all ATC code
A10 drugs used for diabetes have been excluded. Table 2.2 summarizes all discarded
features for Case II and Case III.

For the purpose of predicting T2D early stage or an undiagnosed status, the previ-
ously removed features would excessively reveal the related pathology and affect the
training of the predictive model. Table 2.1 shows the number of features considered
for the Case II and Case III.

2.3.1.3. Case III

The chronological age is one of the most discriminative features of T2D according to
previous findings [24] and as will be evidenced by the results in Figure 2.5b and Table
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Table 2.2.: Discarded features for Case II and Case III.
Exam prescriptions

Gfr using MDRD formula, Glycaemia, HB1Ac, Microalbuminuria.

Drug prescriptions

Acarbose, Exenatide, Glibenclamide, Gliclazide, Glimepiride,
Insulin aspart, Insulin glargine, Insulin glulisine, Insulin lispro,
Linagliptin, Metformin, Metformin and linagliptin,
Metformin and sitagliptin, Metformin and sulphonylurea,
Metformin and empagliflozin, Pioglitazone, Repaglinide.

2.5. A uniform age distribution of subjects was analyzed, where it is not possible to
reject the null hypothesis (α = 0.05) that the age and the T2D condition comes from
independent random samples from Gaussian distributions with equal means and equal
unknown variances. Hence, the middle range interval 60−80 years is selected, since
it is not displayed statistically difference between age and T2D (i.e., t533 = 1.267, p =

0.206).

2.4. Methods

Given a training dataset ∑
m
i=1(xi,yi) of m observations and n features, the input xi

∈ ℜn is the feature vector and the output yi ∈ {−1,1} is the class label. SVM is
a non-probabilistic kernel-based decision machine which leads to a sparse solution.
The estimation of model parameters corresponds to a convex optimization problem
and the prediction of new inputs depends only on the kernel function evaluated on the
subset of the training data points, named support vectors [61]. These properties allow
to reduce the computational effort while improving the algorithm performance.

2.4.1. Background: 2-norm SVM

In the SVM problem the aim is to find a separating hyperplane: wwwT x + www0 = 0, which
maximizes the margin 1

‖www‖2 , that is defined to be the smallest distance between the
decision boundary and any of the training points. Since the class-conditional distribu-
tion may not be linearly separable, the exact separation of the training data can lead
to poor generalization. Thus, the general idea is to allow some of the training data
points to be misclassified, allowing to overlap class distribution, by introducing the
slack variables ξi ≥ 0 where i = 1, . . . ,M. Hence, the SVM formulation can be seen
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as the optimization of the ”soft margin” loss function [61]:

min
www,www0,ξ

1
2
‖www‖2 +C

M

∑
i=1

ξi

s.t.

yi(wwwT xxxi +www0)≥ 1−ξi

ξi ≥ 0

(2.1)

where www0 is the bias parameter and C > 0 is the box constraint and controls the
overlapping between the two classes. The procedure for solving (2.1) is to compute a
Lagrange function from the cost function and the corresponding constraints, by intro-
ducing a dual set of variables [61].

The SVM optimization problem of (2.1) can be written also in the form of error
function:

min
www,www0

m

∑
i=1

[
1− yi

(
www0 +

q

∑
j=1

w jh j(xi)
)]

+
+λ‖www‖2 (2.2)

where λ is a tuning parameter that is inversely proportional to the box constraint
C and D = {h1(x), . . . ,hq(x)} is a set of basis functions that are usually chosen in the
reproducing kernel Hilbert Space. Thus, the kernel trick allows the dimensions of the
transformed features space to be very large, even infinite in some cases [62]. Note that
the following optimization problem (2.2) has the form of loss + penalty and λ controls
the trade-off between loss and penalty as well as between bias and variance. The loss
function (1−y f )+ is called the hinge loss while the 2-norm penalty is called the ridge
penalty [62].

2.4.2. Sparse 1-norm SVM

In this work the ridge penalty was replaced with the 1-norm of www, i.e., the LASSO
penalty [63]. This penalty induced sparse solution in the model coefficients. The
application of 1-norm SVM was widely used for solving high dimensional task while
increasing sparsity as well as the interpretability of the model [64]. The considered
sparse 1-norm SVM has the following optimization problem [62]:

min
www,www0

m

∑
i=1

[
1− yi

(
www0 +

q

∑
j=1

w jh j(xi)
)]

+
+λ‖www‖ (2.3)

This formulation combines the hinge loss with an l1-constraint, bounding the sum
of the absolute values of the coefficients. Note that for a high regularization term
λ can encourage the sparsity of the model by driving some coefficients exactly to
zero, so that, irrelevant features can be automatically removed from the model. This
shrinkage has the effect of controlling the variances of the model coefficient, avoiding
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overfitting, and improving the generalization performance especially when there are
many highly correlated features. In this way it provides an automatic way for doing
model selection in linear model [65]. Accordingly, the LASSO penalty corresponds
to a double-exponential prior for the coefficients, while the ridge penalty corresponds
to a Gaussian prior [62]. This reflects the greater tendency of the 1-norm SVM to
produce some largely model coefficients in terms of magnitude and leave others at 0.
In order to solve the optimization problem described in (2.3) the Sparse Reconstruc-
tion by Separable Approximation (SpaRSA) solver [66] was employed. The SpaRSA
algorithmic framework [66] exploits the proximity operator used in [67] for solving
large-scale optimization problems involving the sum of a smooth error term and a
possibly nonsmooth regularizer. In this context, the proximal methods are specifically
tailored to optimize an objective function of the form (2.3), gaining faster convergence
rates and higher scalability to large nonsmooth convex problems [68]. In particular,
the advantages of SpaRSA with respect to other competitors [69, 70] are resumed in
[66].

It is worth noting here that when the predictor matrix X is not of full column rank,
the LASSO solutions are not unique, because the criterion is not strictly convex [65].
The non-full-rank case can occur when n > m or when n ≤ m due to collinearity of
the EHR features [65]. The numerical algorithm (e.g., SpaRSA, iterative shrinkage
thresholding and coordinate descent-based algorithms) can therefore compute valid
solutions in the non-full rank case [65].

2.4.3. Sparse Balanced SVM

The margin of the predicted SB-SVM response was mapped into [0-1] interval by
using a sigmoid function, without changing the SVM error function. The mapping
was realized according to [71], adding a post-processing step where the sigmoid pa-
rameters were learned with regularized binomial maximum likelihood. The computed
probabilistic outputs of SB-SVM reflects the predicted response (yp) based on the
threshold th = 0.5:

P(yp = T 2D| f ) = 1
1+ exp(A f +B)

> th yp = T 2D

else yp =Control
(2.4)

Several solutions to the class-imbalance problem were previously proposed both
at the data and algorithmic levels [72, 73]. Differently, from the data-level solutions
which include many different forms of re-sampling (e.g., random re-sample, directed
re-sample, oversample with informed generation), our method works at the algorithm
level. In particular, the decision threshold th was adjusted in the validation set in order
to maximize the macro-recall metric while alleviating the effect of high unbalanced
data. The prediction of the SB-SVM produces an uncalibrated value that is not a
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probability. The post-processing step allows to transform the output of the SB-SVM
classifier (i.e., distance from the margin) into posterior probability. Thus, the poste-
rior probability represents a salient information which can be integrated in a CDSS
for supporting the early-stage diagnosis by revealing the confidence level of the per-
formed prediction. The idea behind the employed methodology [74] lies in the use
of a parametric model (i.e., sigmoid model, see Eq. 2.4) to fit the posterior directly.
Hence, the parameters A and B of the sigmoid function are adapted to give the best
probability outputs [74]. Differently from [75] the employed sigmoid model has two
parameters trained discriminatively, rather than one parameter.

The general idea behind the application of the proposed approach lies in the two
main challenges that EHR data present: (i) high dimensional data with several irrele-
vant/noisy features and high degree of redundancy and (ii) natural unbalanced setting
of this task. Starting from this motivations the introduction of 1-norm LASSO regular-
izer allow to induce sparsity while increasing the interpretability of the linear model.
This is a salient information which may lead to understand not only the predicted
outcome but also why and how the prediction was made. Additionally the LASSO
regularizer may improve the accuracy prediction by reducing the variance of the pre-
dicted class by shrinking some coefficients to zero [65]. Accordingly, the shift of the
decision threshold over the estimated posterior probability favours the minority class,
increasing the recall rate over all the predicted testing set.

2.4.4. Experimental procedure

The proposed SB-SVM model was tested in three different scenarios according to the
Data Analysis described in Section 2.3.1 in order to answer the hypothesis previously
described.

Additionally, the proposed SB-SVM model was compared with respect to other
ML approaches already used to solve this task (i.e., DT [24, 50, 52], RF [50, 52, 54],
LR [49, 24], KNN [50], SVM Lin and Gauss [49, 50, 53]) and DL techniques (i.e.,
multi layer perceptron (MLP) and deep belief network (DBN)) already employed for
the prediction of heart failure [76] and osteoporosis [77] respectively. The performed
comparisons also include the data preprocessing comprised of features selection and
data level solution for dealing with the nature unbalanced setting of the task (Table
2.4).

The assessment of the introduced ML model was performed according to the fol-
lowing measures:

• Accuracy: the percentage of correct predictions;

• Macro-precision: the percentage of true positive over the predicted condition
positive (positive predicted value). The precision is calculated for each class
and then take the unweighted mean.
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Hyp Opt 
 λ, th 

Stratified Tenfold Cross-Validation

Stratified Fivefold Cross-Validation 

Validation 
 Results

Test 
 Results

SB-SVM Model
Training

Training+ValidationTest

Figure 2.2.: Overview of the SB-SVM model architecture. A Tenfold Cross-
Validation procedure was executed. The optimization of the SB-SVM
hyperparameters was performed implementing a grid-search and optimiz-
ing the macro-recall score in a nested stratified Fivefold Cross-Validation.
Hence, each split of the outer loop was trained with the optimal hyperpa-
rameters tuned in the inner loop.

• Macro-recall: the percentage of true positive over the condition positive (true
positive rate or sensitivity). The recall is calculated for each class and then take
the unweighted mean.

• Macro-F1: the harmonic mean of precision and recall averaged over all output
categories.

• Receiver Operating Characteristic (ROC): is designed by plotting the true posi-
tive rate (TPR) against the false positive rate (FPR) at various threshold settings.

• Area Under Receiver Operating Characteristic curve (AUC): represents the
probability that the classifier will rank a randomly chosen positive sample higher
than a randomly chosen negative one.

• l0 measure: it is employed as a measure of model sparsity [78]. It calculates the
number of zero coefficients of the model: #{ j,coe f f j = 0}.

From now on the Macro-precision, Macro-recall and Macro-F1 were referred as
Precision, Recall and F1 respectively.

The overview of the SB-SVM model architecture is shown in Figure 2.2. In both ex-
periments a stratified Tenfold Cross-Validation (10-CV) was computed over subjects
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procedure. The optimization of SB-SVM hyperparameters (i.e., λ , th) was performed
implementing a grid-search and optimizing the macro-recall score in a nested strati-
fied Fivefold Cross-Validation. Hence, each split of the outer loop was trained with the
optimal hyperparameters tuned in the inner loop. Although this procedure is computa-
tionally expensive, it allows to obtain an unbiased and robust performance evaluation
[79].

The regularization factor λ was picked inside the subset {0.001,0.01,0.1,1,10},
while the threshold was picked inside the subset {0,0.01,0.02, . . . ,1}. Table 2.3 shows
the different hyperparameters for all competitors’ approaches, as well as the grid-
search set.

Since the aim is to find the best threshold value of posterior probability/margin of
the classifier, the threshold is a common hyperparameter for all tested methods, except
for those using SMOTE or 1-norm SVM (i.e., the approaches which have been already
formulated to be consistent with the unbalanced setting).2.

The stability or reproducibility of the model is also an important aspect to be con-
sidered, especially in case of sparse solutions which can lead to unstable models [80].
This aspect was studied and reported by measuring the variance of the selected SB-
SVM hyperparameters. Experimental results are reported in the next section.

Table 2.3.: Range of Hyperparameters (Hyp) for the proposed Sparse Balanced-
Support Vector Machine (SB-SVM) model and other tested approaches:
Linear SVM (SVM Lin), Gaussian SVM (SVM Gauss), K-nearest neigh-
bor (KNN), decision tree (DT), random forest (RF), logistic regression
(LR) ridge, smoothly clipped absolute deviation (SCAD) SVM, 1-norm
SVM, multi layer perceptron (MLP) and deep belief network (DBN).
The threshold hyperparameter th is optimized for each model except for
SMOTE-based approaches and 1-norm SVM (i.e., the approaches which
have been already formulated to be consistent with the unbalanced setting).

Work Model Features selection Resampling Hyp Range

[49, 24, 50, 53] SVM Lin Ttest, ReliefF, RFE-SVM none Box Constraint {10−3,10−2,0.1,1,10}

[49, 24, 50, 53] SVM Gauss Ttest, ReliefF none
Box Constraint
Kernel Scale

{10−2,0.1,1,10,102,103,104}
{10−2,0.1,1,10,102,103,104}

[50] KNN none none n◦ of neighbors {1,2,3,4,5,6,7,8,9,10}
[24, 50, 52, 55] DT none SMOTE max n◦ of splits {10,20,30,40,50}

[50, 52, 54] RF none SMOTE n◦ of weak learners {10,20,30,40,50}

[49, 24] LR ridge Ttest, ReliefF, RFE-SVM none λ {10−3,10−2,0.1,1,10}

SB-SVM none none λ {10−3,10−2,0.1,1,10}
[56] SCAD SVM none none λ {0.10,0.55,1,1.45,1.90}

[57] 1-norm SVM none none
λ

µ

{10−3,10−2,0.1,1,10}
{0.1,0.2, ...,0.9}

[76, 77] MLP, DBN none none
learning rate
n◦ of hidden layers
n◦ of units

{10−5,10−4,10−3,10−2,0.1}
{1,2,4,8,16}
{16,32,64,128,256}

2Matlab code to reproduce all results (and modify the setting) is available as supplementary material (Code
Ocean platform)
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2.5. Experimental results

Our approach was tested using the FIMMG dataset described in Section 2.3 according
to the Data analysis reported in Section 2.3.1 which aims to answer the three research
questions previously described.

2.5.1. Case I

The the SB-SVM predictive performance for all cases is reported in Table 2.4. In
particular, the higher results were obtained in Case I, where all features as well as all
subjects were considered. Since recall was optimized in the validation set, it achieved
best performance when compared to precision.

The ROC curves for each fold are shown in Figure 2.3a as well as the averaged
curve. All points of ROC curves are above the chance level (i.e., red dotted line).
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Figure 2.3.: SB-SVM performance in terms of ROC curves.

The recall and AUC of SB-SVM are compared with respect to other state-of-the-art
ML and DL approaches applied for T2D prediction (Table 2.4).
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The recall and AUC for the SB-SVM are significantly higher (p < .05) than all
baseline models, except than DT (recall: t18 = 0.514, p = .61; AUC: t18 = 1.652,
p = .12) and RF (recall: t18 = 0.514, p = .09). Also the ROC curves confirm that the
SB-SVM is above the other baseline models (Figure 2.4a). The SB-SVM considerably
overcomes (p < .05) both SCAD SVM, MLP, resampling and RFE-SVM based mod-
els. On the contrary, the recall and AUC for the SB-SVM are statistically comparable
with respect 1-norm SVM, DBN, Ttest and ReliefF based models.

Table 2.4.: SB-SVM: Comparison with other state-of-the-art approaches.
CASE I CASE II CASE III

Work Model Recall% AUC% Recall% AUC% Recall% AUC%

Baseline mean std mean std mean std mean std mean std mean std

[49, 50, 53] SVM Lin 74.12 (4.02) 81.68 (5.60) 71.29 (3.65) 78.99 (4.30) 58.55 (5.80) 64.48 (5.39)
[49, 50, 53] SVM Gauss 71.96 (4.22) 81.98 (4.84) 68.34 (4.41) 76.29 (4.40) 55.62 (8.08) 62.74 (9.22)

[50] KNN 69.23 (4.97) 70.97 (5.06) 68.56 (5.57) 71.04 (6.09) 54.50 (7.16) 59.80 (8.10)
[24, 50, 52] DT 80.99 (3.34) 87.79 (4.17) 72.98 (4.54) 77.56 (4.85) 58.98 (8.37) 61.87 (7.77)
[50, 52, 54] RF 77.81 (5.66) 86.30 (4.24) 68.08 (6.36) 75.70 (4.61) 57.33 (5.74) 61.96 (9.47)

Sparse SVM

SB-SVM 81.89 (4.03) 91.04 (4.16) 74.64 (4.18) 81.43 (3.20) 65.33 (5.69) 68.90 (5.84)
[56] SCAD SVM 67.61 (4.41) 70.78 (4.20) 54.98 (4.09) 60.09 (4.13) 50.83 (9.97) 54.08 (10.41)
[57] 1-norm SVM 82.47 (3.47) 90.21 (3.65) 71.10 (4.27) 77.46 (5.76) 60.73 (7.15) 65.35 (8.38)

Resampling

[55] DT + SMOTE 75.79 (4.72) 82.03 (2.73) 67.07 (3.06) 67.57 (4.26) 57.77 (8.67) 60.73 (10.35)
[54] RF + SMOTE 71.63 (4.93) 86.34 (4.07) 58.15 (4.34) 77.10 (3.84) 57.66 (6.15) 68.57 (7.06)

Features selection

[49] Ttest + LR ridge 80.91 (2.90) 89.81 (3.35) 73.14 (3.36) 78.89 (4.58) 61.35 (3.11) 67.47 (6.81)
[49] Ttest + SVM Lin 76.81 (3.11) 88.99 (4.02) 72.42 (3.67) 79.00 (4.32) 54.07 (4.36) 60.56 (8.47)
[49] Ttest + SVM Gauss 78.49 (3.07) 85.87 (4.34) 73.78 (2.62) 80.39 (4.02) 54.65 (7.23) 62.58 (5.15)

[49, 24] ReliefF + LR ridge 83.02 (4.09) 91.39 (3.68) 74.03 (4.84) 80.34 (3.13) 57.54 (9.20) 66.66 (5.38)
[49, 24] ReliefF + SVM Lin 84.21 (3.24) 91.24 (3.34) 74.36 (3.50) 81.01 (2.71) 58.23 (6.85) 66.16 (7.63)
[49, 24] ReliefF + SVM Gauss 83.90 (3.15) 91.85 (2.97) 74.11 (2.38) 80.74 (1.84) 59.77 (5.27) 65.74 (6.53)

[49] RFE-SVM + LR ridge 72.43 (5.27) 72.54 (5.31) 52.64 (1.51) 52.81 (1.67) 56.26 (4.12) 56.28 (4.24)
[49] RFE-SVM + SVM Lin 71.87 (5.46) 72.26 (5.14) 52.27 (1.83) 52.31 (1.83) 55.23 (3.33) 55.50 (3.34)

Deep Learning

[76] MLP 67.90 (3.55) 77.53 (4.31) 58.52 (5.43) 67.03 (6.31) 54.25 (5.37) 56.89 (7.72)
[77] DBN 77.23 (4.23) 89.32 (3.47) 66.82 (5.91) 78.50 (6.97) 61.22 (10.26) 66.78 (14.68)

Once evaluated and compared the performance of the proposed SB-SVM method in
order to discriminate between healthy and T2D patients, the aim is to identify which
features contribute to the decision.

The SB-SVM offers a natural way for addressing this goal, in fact, compared to
other approaches (i.e., SVM Gauss, MLP, DBN) the model is linear and easily in-
terpretable. The computed l0 measure is 0.39, while the magnitude of the SB-SVM
coefficients is shown in Figure 2.5a.

The stability of the model was measured according to the variance of the SB-SVM
hyperparameters (Var(λ )=1.44×10−5, Var(th)=2.93×10−3).

The top 10-rank features are summarized in Table 2.5 according to the magnitude
of SB-SVM coefficients.
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Figure 2.4.: Performance comparison in terms of baseline models ROC curves.

2.5.2. Case II

Due to the increasing difficulty of the classification task, precision, recall, and AUC
decrease respectively of 5.48%, 7.25%, and 9.61%. However, all metrics are above
(p < .05) chance level (0.5).

The ROC curves for each fold are shown in Figure 2.3b as well as the averaged
curve. All points of ROC curves are above the chance level.

In the case II, once the task complexity has increased after discarding the features
reported in Table 2.2, the recall and AUC of SB-SVM are greater than all the state-
of-the-art ML and DL approaches (Table 2.4). Regarding the baseline models, the
DT (recall: t18 = 0.807, p = .43; AUC: t18 = 2.002, p = .06) and SVM Lin (recall:
t18 = 1.811, p = .09; AUC: t18 = 1.369, p = .19) are the closest models to SB-SVM.
Also the ROC curves confirm that the SB-SVM is above the other baseline approaches
(Figure 2.4b).

The performance of SB-SVM is superior but statistically comparable with respect
to 1-norm SVM, DBN, ReliefF and Ttest features selection based models. On the
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(c) Case III: l0=0.57

Figure 2.5.: Magnitude of the SB-SVM coefficients and l0 measure values. Top 10-
rank features are pointed out with red spots.

contrary, SCAD SVM, MLP, resampling and RFE-SVM based models continue to be
very far (p < .05) from the SB-SVM.

The interpretability of the SB-SVM model is increased according to the l0 measure
(0.91), while the magnitude of the SB-SVM coefficients is depicted in Figure 2.5b.
The top 10-rank features are summarized in Table 2.5 according to the magnitude of
the SB-SVM coefficients. The lower Var(λ )=3.34×10−36 and Var(th)=8.44×10−5

in the selection of the SB-SVM hyperparameters outlined the high stability of the
model.

2.5.3. Case III

In the Case III, also a uniform distribution of subjects where age is no longer statis-
tically significant for T2D prediction was considered. The precision, recall and AUC
still remain above (p < .05) the chance level (0.5).

The ROC curves for each fold are shown in Figure 2.3c as well as the averaged
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curve. All points of ROC curves are above the chance level.
The recall and AUC of SB-SVM continues to be greater than all the state-of-the-art

ML and DL approaches (Table 2.4). The gain of the SB-SVM is increased especially
in terms of recall with respect to other ML models (see Table 2.4). This aspect high-
lights the robustness of the proposed algorithm to maximize the recall while dealing
with the natural unbalanced setting of the dataset. The performance of SB-SVM is
significantly higher (p < .05) both in terms of recall and AUC compared with respect
to the all baseline models. Instead, for what concern the other approaches, it is signifi-
cantly greater (p < .05) than SCAD SVM, MLP, DT + SMOTE and RFE-SVM based
models.

The magnitude of the SB-SVM coefficients is shown in detail in Figure 2.5c. The
sparsity measure l0 of the model is 0.57. The top 10-rank features of SB-SVM are
summarized in Table 2.5. The variance in the selection of the SB-SVM hyperparame-
ter is reasonably low (Var(λ )=1.89×10−5, Var(th)=3.85×10−3).

Table 2.5.: Top 10-rank features according to the SB-SVM magnitude coefficients:
Blood Pressure (BP), Drugs (D), Exam prescriptions (EP), Exemptions (E),
Pathologies (P).

Rank Case I Case II Case III

1 HbA1c (EP) Age Arterial hypertension(stage II, III) (E)
2 Age Mean diastolic (BP) Weight (EP)
3 eGFR(MDRD formula) (EP) Max diastolic (BP) Arterial hypertension (E)
4 Metformin (D) Mean systolic (BP) Creatinine clearance (EP)
5 Heart failure (P) Arterial hypertension (P) Fundus oculi (EP)
6 Microalbuminuria (EP) Max systolic (BP) Aorta aneurysm (P)
7 Insulin glargine (D) Min diastolic (BP) Moxifloxacin (D)
8 Arterial hypertension (P) Min systolic (BP) Myasthenia gravis (P)
9 Hyper/Dyslipidaemia (P) Creatinine clearance (EP) Netilmicin (D)
10 Cancer pancreas (P) Heart failure (P) Myasthenia gravis (E)

In summary, the SB-SVM achieves always the greater recall and AUC over the
other state-of-the-art models (Table 2.4) for the more challenging data analysis (i.e.,
Case II, Case III).

The motivation behind the selection of different top features lies in the substantial
divergence between each case which represents a different performed task (Table 2.5).

2.5.4. Computation time analysis

The computation time analysis for the training and validation stage is performed in
Figure 2.6a, while the computation time for the testing stage is shown in Figure 2.6b.

The training stage of the features selection models which include a wrapper (i.e.,
RFE-SVM) or advanced filter approaches (i.e., ReliefF) is more time consuming than
the SB-SVM. In particular the computation training effort of SB-SVM is lower than
other linear (i.e., SVM Lin, Ttest + SVM Lin, ReliefF + SVM Lin, RFE-SVM + SVM
Lin and 1-norm SVM), non-linear (i.e., SVM Gauss, Ttest + SVM Gauss and ReliefF
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+ SVM Gauss) SVM-based approaches and ensemle-based classifiers (i.e., RF and RF
+ SMOTE). All the Sparse SVM approaches achieved a competitive computation time
for the testing stage.
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Figure 2.6.: Comparison in term of computation time.
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2.6. Discussion

The proposed approach and the results shown before brings to the following main
discussion points.

2.6.1. Clinical perspective

Faced with an often difficult and complicated management of the diabetic patient, the
gold-standard diagnosis of T2D remains uncertain and challenging. In this condition,
a CDSS solution which is able to provide a reliable prediction of T2D becomes essen-
tial in order to target timely and appropriately prevention strategies. This possibility
becomes more interesting when the ML algorithm is able to identify a cluster of pa-
tients at high risk of developing the disease. Starting from these clinical motivations
a ML approach, named SB-SVM, was proposed, able to predict T2D using the novel
FIMMG dataset available at the following link3.

2.6.2. SB-SVM effectiveness and outcomes

The experimental results demonstrate how the early stage T2D prediction is enclosed
within EHR features. However, the discriminative power of each feature is not uni-
form, but sparsely distributed. In fact, the SB-SVM overcomes the other state-of-
the-art approaches, particularly for the most challenging data analysis (i.e., Case II,
Case III). The better recall and AUC suggest how the proposed SB-SVM methodol-
ogy is a viable and natural solution to model the high dimensional EHR data while
discarding noisy and/or redundant features. The LASSO regularizer is proven to be an
effective strategy for dealing with high level of noise while significantly reduces both
model error and model complexity [58, 65]. The FIMMG dataset comprises several
noise components: i) missing values; ii) outliers; iii) unreadable encrypted informa-
tion for privacy preserving; iv) GP’s transcription typos (e.g., ICD-9 codes) and v)
non-uniformity in the definition of certain medical examinations or pathologies.

The better effectiveness, as well as the higher interpretability of the SB-SVM model,
are the key advantages of our methodology with respect to other ML and DL competi-
tors. This is a salient information which leads to understand not only the predicted
outcome, but also why and how the prediction has been made. On the other hand,
DL approaches often lack this sort of algorithmic transparency. While the heuristic
optimization procedures for neural networks are demonstrably powerful, it is not easy
to understand how they work, and what inputs are most relevant for the prediction
[43]. Accordingly, the experimental results outline some peculiarity of SB-SVM with
respect to other state-of-the-art work: (i) the algorithm is robust to the natural high
unbalanced setting (i.e., several healthy subjects and few T2D subjects) without draw-
ing synthetic examples or employing additional resampling strategies, such as in [54];

3http://vrai.dii.univpm.it/content/fimmg-dataset
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(ii) the model is linear and easy interpretable due to the induced sparsity; (iii) it is
able to manage high dimensional data implicitly selecting the most relevant features
without requiring a further features selection [47, 48, 49, 24] or engineering features
techniques [50]; (iv) the sparse solution is stable across the considered dataset and (v)
the proposed classifier is trained only from a subset of EHR features recorded before
the T2D diagnosis (i.e., Case II, Case III). In particular, all ATC code A10 drug pre-
scriptions and exam prescriptions shown in Table 2.2 (i.e., Case II) were excluded.
Simultaneously, a uniform age sample group was also selected, where the age does
not enclose anymore a relevant information for discriminating the T2D condition (i.e.,
Case III).

The SB-SVM approach may be easily generalized for multi-class problem and for
regression task. The multi-class problem can be set by combining multiple two-class
SB-SVMs in order to build a multiclass classifier. This step can be performed by
using the one-versus-the-rest or the one-versus-one approaches [81]. Currently, the
performances of the SB-SVM are being tested in other EHR datasets available in the
literature, with an increasing number of heterogeneous features and a higher number
of subjects.

Another future direction may be the application of non-linear Kernel as Polynomial
or Gaussian in order to map the features in non-linear space. This problem can be seen
as constructing non-linear regression models with Gaussian basis functions instead of
linear basis functions, using LASSO regularization [82]. Imposing LASSO in the
non-linear model means to select not the original features but the most relevant non
linear basis functions.

2.6.3. Pattern discrimination and localization

The main research questions previously answered are whether the SB-SVM is able
to discover the T2D according to all set of EHR features (Case I), a subset of EHR
features collected before the T2D diagnosis (Case II), even considering a uniform age
group of subjects (Case III). This work focuses on the introduction of a ML model for
pattern discrimination to answer these research questions. However, once the reliabil-
ity and the robustness of our approach have been detected, it may possible to go ahead
answering where the discriminatory information is encoded. The SB-SVM is able to
implicitly localize the discriminative pattern while identifying the most relevant fea-
tures for providing an accurate T2D prediction. These features were summarized in
Table 2.5 and represent a salient information which can be exploited in order to sup-
port early stage diagnosis. It turns out that some of the top 10-rank features selected
by the SB-SVM model for both experimental cases are consistent with those reported
in the state-of-the-art regarding the T2D risk factors [45, 46]. In particular for the
Case III, recent studies [83, 84] are also confirming the possibility that the antibiotics
(e.g., Moxifloxacin, Netilmicin) exposure could increase the T2D risk.
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2.6.4. Clinical impact

These experimental setups assume a considerable significance in the clinical use case,
where a CDSS should provide a prediction in order to support the early-stage diagno-
sis while learning hidden patterns sometimes unsighted by physicians. Experimental
results provide the evidence of the robustness of the SB-SVM methodology in the
clinical scenario. Furthermore, the high stability of the model selection criterion out-
lines the great reproducibility as well as the high impact of the presented results for
the considered dataset. The model is able to generalize across unseen subjects while
selecting consistently the most relevant features over the whole dataset. However, the
sparsity of the model coefficients is likely to be dataset/task dependent (it may change
across different EHR dataset and different task). Moreover, the sample size and the
disease heterogeneity of the employed EHR data may limit the generalization power of
the study. Future work may be addressed to increase the number of subjects included
in the FIMMG dataset while considering additional clinical features. From the clini-
cal perspectives, the SB-SVM model may be useful also for the prediction of different
pathological conditions (e.g., cardiovascular and neurological diseases). In addition to
the resources offered by the so-called predictive medicine, in which the point analysis
of genetic and biological components represent the constitutive elements of forthcom-
ing widespread implementation, ML approaches that use EHR clinical data could offer
and anticipate early care strategies.
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Chapter 3.

Insulin resistance: Clinical factors

Insulin resistance (IR) is an early-stage deterioration of type 2 diabetes (T2D). Identifi-
cation and quantification of IR requires specific blood tests; however, the triglyceride-
glucose (TyG) index can provide a surrogate assessment from routine Electronic Health
Record (EHR) data. Since IR is a multi-factorial condition, to improve its characteri-
sation, this study aims to discover non-trivial clinical factors in EHR data to determine
where the IR condition is encoded.

A high-interpretable Machine Learning approach (i.e., ensemble Regression For-
est combined with data imputation strategies), named TyG-er was proposed. Three
different experimental procedures were applied to test TyG-er reliability on the Ital-
ian Federation of General Practitioners dataset, named FIMMG obs dataset, which is
publicly available and reflects the clinical use-case (i.e., not all laboratory exams are
prescribed on a regular basis over time).

Results detected non-conventional clinical factors (i.e., uricemia, leukocytes, gamma-
glutamyltransferase and protein profile) and provided novel insight into the best com-
bination of clinical factors for detecting early glucose tolerance deterioration. The
robustness of these extracted clinical factors was confirmed by the high agreement
(from 0.664 to 0.911 of Lin’s correlation coefficient (rc)) of the TyG-er approach
among different experimental procedures. Moreover, the results of the three experi-
mental procedures outlined the predictive power of the TyG-er approach (up to a mean
absolute error of 5.68% and rc = 0.666, p < .05).

The TyG-er approach is able to carry information about the identification of the TyG
index, strictly correlated with the IR condition, while extracting the most relevant non-
glycemic features from routine data.

3.1. Introduction

T2D is a widespread disease. It is estimated that it will affect approximately 693
million people worldwide by 2045 [85]. Due to the high prevalence and costs asso-
ciated with management of T2D and its related complications, early identification of
subjects at risk of developing T2D represents a key issue in public-health policy. In-
deed, the later T2D onset is identified, the more aggressive and the more adapted to
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the pathophysiological stage of T2D development the intervention should be [86]. In
this context, General Practitioners (GPs) represent the first medical contact who may
provide early identification of subjects at T2D risk.

T2D is characterised by a deterioration of glucose tolerance, thus resulting in an in-
creased blood glucose concentration, termed hyperglycemia. Hyperglycemia arises in
overt T2D and in intermediate pre-diabetic states; however, at an early stage of glucose
tolerance deterioration, hyperglycemia has not yet occurred and the main alteration is
represented by IR (i.e., a reduced sensitivity of tissues to insulin action in lowering
blood glucose concentration), compensated by increased insulin secretion [87]. Dif-
ferently from hyperglycemia, the correct identification and quantification of IR con-
dition is not straightforward since it requires specific blood tests that are not included
in those usually ordered by GPs in routine check-ups [88]. However, it is possible
to provide a surrogate assessment of an IR condition by the TyG index [89, 90, 91],
based on routine triglyceride and glucose measurements.

Since IR is a multi-factorial condition, identification of additional routine clinical
factors (i.e., different from triglyceride and glucose measurements) could improve
the characterisation of this condition and the effectiveness of early identification of
subjects at T2D risk [92].

Machine Learning algorithms can be used to analyze EHR data to discover complex
patterns and set up powerful models for GPs to screen the patient population and
identify subjects at T2D risk [93]. Several studies, employing ML or model-based
approaches, focused on management of T2D pathology [50, 52, 24, 93, 53, 2, 94, 95]
but not on the identification of clinical factors, among routine measurements, of IR.

Starting from a clinical motivation and a gap in scientific literature, the present
study aims to discover non-trivial clinical factors in EHR data to determine where
the IR condition is encoded. To achieve this aim, a high-interpretable ML regression
approach, named TyG-er approach, was proposed.

3.2. Clinical data: FIMMG obs dataset

FIMMG obs1 is a publicly available collection of data stored by a single GP that in-
cludes demographic, monitoring and laboratory exam data. The FIMMG obs dataset
(see Tab. 3.1) includes 968 patients not affected by T2D. The longitudinal patient
observational time-period was from 2010 to 2018. During this period, each patient
(identified by an id) underwent multiple triglycerides (TG; mg/dl) and glycemia (Gb;
mg/dl) measurements, acquired simultaneously and in fasting conditions, thus result-
ing in a sequence of TGi, Gbi pairs. For each id, a seq was defined as {1, . . . , i, . . . , t}
where t is the total number of pairs. For each i belonging to seq, the TyGi was com-

1http://vrai.dii.univpm.it/content/fimmgobs-dataset
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3.2. Clinical data: FIMMG obs dataset

Table 3.1.: FIMMG obs dataset overview.
Dataset description Count Mean (Std)

Total patients 968 -
Observation period (years) 9 -
Total observations 2276 -

Fields Count Mean (Std)

Demographic 2
Gender:

Male 473 -
Female 495 -

Age (years) - 61(±18)
Monitoring 5

Blood pressure (mmHg):
Systolic - 135(±16)
Diastolic - 82(±9)

Height (cm) - 160(±16)
Weight (Kg) - 83(±17)
Body Mass Index (Kg/m2) - 32(±5)

# Laboratory exams # Laboratory exams
1 Thyroglobulin antibodies (TgAb) 38 Gfr using MDRD formula
2 Thyroperoxidase antibodies (AbTPO) 39 Hematocrit (HCT)
3 Albumin 40 Haemoglobin (HGB)
4 Alpha-1-fetoprotein (α1 fetoprotein) 41 Immunoglobulin A (IgA)
5 Alpha-1 globulin (α1 globulin) 42 Immunoglobulin G (IgG)
6 Alpha-2 globulin (α2 globulin) 43 Immunoglobulin M (IgM)
7 Alanine transaminase (ALT) 44 Lactate dehydrogenase (LDH)
8 Amylase 45 Lymphocytes
9 Aspartate aminotransferase (AST) 46 Lipase

10 Basophils 47 Bilateral mammography
11 Beta globulin (β globulin) 48 Mean cellular volume (MCV)
12 Beta-2 globulin (β2 globulin) 49 Microalbuminuria
13 Total bilirubin 50 Monocytes
14 Carbohydrate antigen 19-9 (CA 19.9) 51 Neutrophils
15 Calcium (Ca) 52 C-reactive protein (CRP)
16 Occult blood stool sample 53 Brain natriuretic peptide (BNP)
17 Carcinoembryonic antigen (CEA) 54 Platelets (PLT)
18 Creatinine clearance (Cockroft) 55 Potassium (K)
19 Chlorine (Cl) 56 Total proteins
20 HDL Cholesterol 57 Protein electrophoresis
21 LDL Cholesterol 58 Prostate-specific antigen (PSA)
22 Total Cholesterol 59 Free prostate-specific antigen (free PSA)
23 Colonscopy 60 Prothrombin time (PT)
24 Creatinine kinase (CK) 61 Erythrocytes (RBC)
25 Creatinine 62 Reticulocytes
26 Complete blood count (CBC) 63 Sodium (Na)
27 Eosinophils 64 Free triiodothyronine (T3)
28 Hepatitis B surface antigen (HBsAg) 65 Free thyroxine (T4)
29 Hepatitis C antibodies (HCV) 66 Thyrotropin (TSH)
30 Rheumatoid factor (RF) 67 Urea
31 Ferritin 68 Uric acid
32 Iron 69 Complete urine test
33 Vitamin B9 (folate) 70 Urine culture
34 Alkaline phosphatase (ALP) 71 Erythrocyte sedimentation rate (ESR)
35 Free/total prostate-specific antigen ratio (free/total PSA) 72 Vitamin B12 (cobalamin)
36 Gamma globulin (γ globulin) 73 Leukocytes (WBC)
37 Gamma-glutamyl transferase (γGT)

puted according to [91]:

TyGi =
ln(T Gi ·Gbi)

2
(3.1)

Overall, the FIMMG obs dataset comprises of 2276 TyG observations. On the basis
of the TyG threshold (TyGth=8.65) reported in [91], each observation can be classified
as normal (TyGi¡8.65) or at risk (TyGi≥8.65).

FIMMG obs includes also three different fields (i.e., demographic, monitoring and
laboratory exams) resulting in a total of 80 EHR features (i.e., 2 demographic features,
5 monitoring features and 73 laboratory exams features). The list of the 73 laboratory-
exams features is reported in Table 3.1; none of them provides glycemic information.
For each id and for each i belonging to seq, a vector of 80 EHR features was consid-
ered. Missing values of monitoring and laboratory exams features were indicated as
NaN.
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3.3. Methods

The TyG-er approach combined data imputation strategies with a Regression Forest
(RF) model to discover non-trivial clinical factors in EHR data for the identification of
the TyG index ( ˆTyGi). After applying data imputation strategies, the 80 EHR features
(inp) together with id and seq were considered as the features to train the RF model.
The TyGi computed according to Eq.3.1 represents the label of the RF model.

3.3.1. Preprocessing

In order to retrieve information from the missing values stored in FIMMG obs were
exploited the widely known [96]:

1. Extra values imputation: The NaN values were replaced with a numeric extra
value (i.e., 999).

2. Median imputation: The NaN values were replaced with a median value com-
puted in the training set [96].

3. K-Nearest Neighbor (KNN) imputation: The NaN values were replaced accord-
ing to the KNN strategy [97]. The hyper-parameter K was set to 1 in order to
preserve the initial data structure [97].

3.3.2. Regression Forest

Regression Forest (RF) is a Random Forest strategy for solving regression tasks. RF
is a variant of bagging proposed by [98] and consists of an ensemble of regression
trees (RTs) (i.e., n◦ of RT) generated by independent, identically distributed, random
vectors. RF is designed by sampling from the observations, from the features (i.e., n◦

of features to be selected) and by varying two tree-parameters (i.e., max n◦ of splits
and max n◦ of size) [99]. The best splitting features for each node was computed
according to the sum of squared error.

3.3.3. Features importance

The influence of a feature in the RF model to identify ˆTyG was measured according
to a permutation of out-of-bag feature observation [100]. Hence, if a feature was
relevant to identify the TyG index, then permuting its values should affect the model
error. On the other hand, if a feature was not relevant, then permuting its values should
not significantly affect the model error. Notice how the permutation approach offers
an almost unbiased importance measure and is more consistent with respect to other
approaches (e.g., the Gini index) [101].
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3.3.4. Experimental procedure
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Figure 3.1.: Overview of the TyG-er approach for the Tenfold Cross Validation Over
Subjects (CVOS-10) procedure. The id number represents the patient;
given N, the total number of the subjects, M = {1, ...,m}, the training pa-
tients, and I = {1, ..., i}, the testing patients, since N = M + I, it follows
that M∩ I = /0. The seq number identifies the temporal sequences of the
TyG measurement for each id, where t is the last seq number for each id.
The inp values represent the 80 EHR features (i.e., demographic, moni-
toring and laboratory exams). TyGi represents the label of the Regression
Forest (RF), while ˆTyGi is the prediction of the RF.
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Figure 3.2.: Overview of the TyG-er approach for the Leave Last Records Out (LLRO)
procedure. The id number represents the patient; given N = {1, ...,n}, the
total number of the patients, it follows that all patients were included for
training and testing (i.e., i ∈ I, I ⊂ N). The seq number identifies the
temporal sequences of the TyG measurement for each id, where, if t is
defined as the last seq number for each id, it follows that 1 < j < t. The
inp values represent the 80 EHR features (i.e., demographic, monitoring
and laboratory exams). TyGi represents the label of the Regression Forest
(RF), while ˆTyGi is the prediction of the RF.
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To measure the robustness of the discovered clinical factors, the TyG-er approach
was tested for the TyG identification in three different experimental procedures 2.

The Tenfold Cross-Validation (CV-10) procedure represents the baseline experi-
mental procedure, where an overall ˆTyG was identified for each subject and compared
with the average of all recorded TyGi. At the same time, the features vector was
represented by the average of the laboratory exams for each subject. CV-10 was im-
plemented dividing all subjects into ten folds: selecting nine folds for training, and
one fold for testing.

Two further experimental procedures were applied for TyG identification: (i) Ten-
fold Cross-Validation Over Subjects (CVOS-10) (see Fig. 3.1) and ii) Leave Last
Records Out (LLRO) (see Fig. 3.2).

The generalisation across unseen patients of the TyG-er approach was implemented
using a CVOS-10 procedure. On the other hand, the LLRO procedure allowed testing
of how the TyG-er is able to generalise across unseen observations of the same patient.
In the LLRO scenario, TyG-er was trained according to the first three observations
(i.e., threshold (th) = 3) of all patients and tested with the remaining observations of
the 50% of patients (i.e., the other observations of the remaining patients were used
for the validation stage). The rational choice of the selected th affects the number of
known observations for each patient.

3.3.4.1. Experimental Measurements

For each couple of experimental procedures the agreement of the different experimen-
tal procedures was measured according to Lin’s concordance correlation coefficient
(rc) [102]. This index quantifies the agreement of the TyG-er approach among the
three different experimental procedures for assigning a feature’s importance. Lin’s
coefficient modifies the Pearson correlation coefficient by taking into account not only
how close the feature’s importance is to the line of best fit, but also how far that line
is from the 45-degree mark (i.e., perfect agreement) [102].

The predictive performance of TyG-er in each experimental procedure was evalu-
ated according to the following measures: (i) Pearson correlation (r), (ii) Spearman’s
rank correlation (rs), (iii) mean absolute error (MAE), (iv) MAE% (computed with
respect to the maximum range of TyGi), v) mean squared error (MSE) and (vi) rc.
Statistical significance of the correlation tests was set at the 5% significance level.

3.3.4.2. Validation procedure

Concerning the CV-10 and CVOS-10 experimental procedures, the optimisation of the
RF hyperparameters (i.e., n◦ of RT, max n◦ of splits, n◦ of features to select at random
for each decision split) was performed implementing a grid-search and optimising the

2The code to reproduce all the results (testing different settings) is available at the following link: https:
//github.com/michelebernardini/T2D-early-risk-identification
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MSE in a nested Fivefold Cross-Validation. MSE was preferred over other optimisa-
tion objectives, because the identification of the TyG exact numerical value has more
clinical relevance than the identification of its trend over time. Hence, each split of
the outer loop was trained with the optimal hyperparameters tuned in the inner loop.
Although this procedure was computationally expensive, it allowed the researchers
to obtain an unbiased and robust performance evaluation [79]. The testing/validation
split in the LLRO procedure was performed in order to uniformly stratify the distribu-
tion of the TyG index by minimising any bias between the validation and test sets. In
particular, the overall TyG index was clusterised over patients performing a k-means
strategy [103]. Thus, the optimal number of clusters (i.e., k = 4) was set according
to a Calinski-Harabasz criterion [104]. Then, the test/validation subset was extracted
in order to stratify the output of the k-means. Table 3.2 summarises the range of the
hyperparameters optimised during the validation stage for each method.

Table 3.2.: Range of Hyperparameters (Hyp) for each model: Regression Forest (RF),
Regression Tree (RT), Boosting, Linear Support Vector Machine (SVM
Lin), Gaussian SVM (SVM Gauss), and SVM Lasso.

Model Hyp Range

RF
max n◦ of splits
n◦ of RT
n◦ of features to select

{5,10,15,20,25}
{50,100,150,200,250}
{ all

4 , all
3 , all

2 ,all}

RT [24, 50, 52, 93]
max n◦ of splits
min n◦ of leaf size

{5,10,15,20,25}
{50,60,70,80,90,100}

Boosting [52]
max n◦ of splits
max n◦ of cycles

{100,200,300,400,500}
{100,200,300,400,500}

SVM Lin [50, 53, 93] Box Constraint {10−3,10−2,0.1,1,10}

SVM Gauss [50, 53, 93]
Box Constraint
Kernel Scale

{10−2,0.1,1,10,102,103,104}
{10−2,0.1,1,10,102,103,104}

SVM Lasso [2] Lambda {10−3,10−2,0.1,1,10}

3.4. Experimental results

The results of our study are provided in terms of preprocessing (see Sec. 3.4.1 and
Fig. 3.3), pattern localisation (see Sec. 3.4.2 and Fig. 3.4) and predictive performance
(see Sec. 3.4.3 and Tab. 3.3).

3.4.1. Preprocessing

Figure 3.3a shows the overall temporal distance distribution between between consec-
utive TyGi and TyGi+1 measurements per patient. It turns out that laboratory exams
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TyG index measurements per patient over time
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(a) Overall temporal distance distribution between consecutive
TyGi and TyGi+1 measurements per patient. The amount of
patients for each number of temporal sequences (seq) is indi-
cated below in round brackets.
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(c) Percentage (%) of missing values (NaN) for each of the 80
EHR features (inp), where inp1 ≤ laboratory exams≤ inp73,
inp74 ≤ monitoring ≤ inp78 and demographic = {inp79,
inp80}.

Figure 3.3.: Preprocessing results. 43
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repeated more than once are progressively closer in time and executed by a decreasing
number of patients.

Figure 3.3b shows the overall TyG index distribution for the FIMMG obs dataset.
The data follow a Normal distribution (according to a Kolmogorov Smirnov Test,
H = 0.025, p = 0.121) with mean µ = 8.41 and standard deviation σ = 0.51.

Details about missing value occurrences for each EHR feature (inp) (i.e., demo-
graphic, monitoring and laboratory exams) are reported in Figure 3.3c.

3.4.2. Pattern localisation

For each experimental procedure, TyG-er is represented by the best combination be-
tween data imputation and RF in terms of MSE. TyG-er is defined as RF combined
with extra values for CV-10 (MAE = 0.295 corresponding to a MAE% = 5.98) and
CVOS-10 (MAE = 0.310 corresponding to a MAE% = 6.29) procedures, while RF
combined with KNN imputation represents the TyG-er approach for the LLRO (MAE=

0.280 corresponding to a MAE% = 5.68) procedure.
The top 10 features were listed in descending order of percentage importance ac-

cording to the permutation approach for each experimental procedure (see Fig. 3.4).
Such further intra-model analysis is useful to extract and quantitatively compare the
most discriminative features.

Figure 3.4a shows the most relevant TyG features for the CV-10 procedure; while
Figure 3.4b and Figure 3.4c show respectively the most relevant TyG features of the
TyG index over unseen patients (CVOS-10) and over unseen successive observations
of the same patients (LLRO). The remaining features (i.e., Others) achieved individu-
ally a percentage importance of less than 2%.

The agreement between the features’ importance assigned by the TyG-er approach
for each experimental procedure follows below:

• CV-10 vs CVOS-10: rc = 0.664 (p < .05), CI = [0.608,0.714]

• CVOS-10 vs LLRO: rc = 0.720 (p < .05), CI = [0.656,0.775]

• CV-10 vs LLRO: rc = 0.911 (p < .05), CI = [0.872,0.938]

3.4.3. Predictive performance

The predictive performance of the three different procedures in terms of MAE% and
rc is reported below:

• CV-10: MAE%=5.98, rc=0.545 (p < .05)

• CVOS-10: MAE%=6.29, rc=0.543 (p < .05)

• LLRO: MAE%=5.68, rc=0.666 (p < .05)
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tal procedure. TyG-er consists of Regression Forest com-
bined with extra values imputation.
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(b) Top 10 features for the Tenfold Cross-Validation Over Sub-
jects experimental procedure. TyG-er consists of Regression
Forest combined with extra values imputation.
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(c) Top 10 features for the Leave Last Records Out experimental
procedure. TyG-er consists of Regression Forest combined
with the K-Nearest Neighbour imputation.

Figure 3.4.: Top 10 features listed in descending order of percentage importance ac-
cording to the permutation approach (see Sec. 3.3.3) for each experimen-
tal procedure.
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Table 3.3 shows the predictive performance of TyG-er as well as the performed
comparison with respect to other standard ML algorithms, widely used for the predic-
tion of the T2D condition [52, 93, 50, 53, 2].

Table 3.3.: Predictive performance of TyG-er and comparison with respect to the state-
of-the-art (i.e., Regression Tree (RT), Boosting, Linear Support Vector Ma-
chine (SVM Lin), Gaussian SVM (SVM Gauss), and SVM Lasso). For
each experimental procedure (i.e., Tenfold Cross-Validation (CV-10), Ten-
fold Cross-Validation Over Subjects (CVOS-10), and Leave Last Records
Out (LLRO)), the best model in terms of mean squared error (MSE) as
well as the best competitor were highlighted in bold. MAE represents the
mean absolute error, while r and rs represent the Pearson correlation and
the Spearman’s rank correlation. Standard deviation is indicated in round
brackets.

CV-10 CVOS-10 LLRO

Model r rs MAE MSE r rs MAE MSE r rs MAE MSE

Baseline

RF 0.567 0.575 0.321 (0.026) 0.171 (0.024) 0.546 0.540 0.338 (0.048) 0.189 (0.055) 0.595 0.553 0.347 0.197
RT 0.436 0.443 0.342 (0.026) 0.196 (0.029) 0.389 0.388 0.368 (0.047) 0.222 (0.061) 0.505 0.416 0.366 0.210
Boosting 0.580 0.590 0.331 (0.031) 0.181 (0.026) 0.551 0.554 0.351 (0.052) 0.203 (0.061) 0.585 0.551 0.359 0.214

Extra values

RF 0.637 0.633 0.295 (0.021) 0.143 (0.023) 0.633 0.611 0.310 (0.037) 0.157 (0.036) 0.706 0.651 0.305 0.147
RT 0.400 0.392 0.354 (0.018) 0.205 (0.024) 0.467 0.445 0.356 (0.037) 0.205 (0.046) 0.539 0.483 0.359 0.201
Boosting 0.636 0.633 0.298 (0.021) 0.146 (0.023) 0.623 0.607 0.319 (0.045) 0.166 (0.047) 0.698 0.647 0.311 0.157
SVM Lin 0.381 0.400 0.362 (0.023) 0.220 (0.024) 0.395 0.376 0.371 (0.038) 0.226 (0.042) 0.380 0.379 0.391 0.249
SVM Gauss 0.235 0.282 0.381 (0.039) 0.238 (0.037) 0.111 0.192 0.400 (0.053) 0.261 (0.071) 0.443 0.419 0.381 0.232
SVM Lasso 0.322 0.360 0.364 (0.028) 0.223 (0.024) 0.413 0.395 0.365 (0.043) 0.217 (0.047) 0.401 0.394 0.386 0.241

Median

RF 0.638 0.637 0.297 (0.025) 0.144 (0.025) 0.620 0.608 0.312 (0.036) 0.160 (0.036) 0.705 0.642 0.307 0.147
RT 0.479 0.491 0.328 (0.034) 0.185 (0.036) 0.457 0.440 0.359 (0.040) 0.209 (0.050) 0.474 0.414 0.379 0.221
Boosting 0.639 0.635 0.298 (0.023) 0.146 (0.023) 0.614 0.603 0.319 (0.042) 0.168 (0.046) 0.717 0.660 0.302 0.151
SVM Lin 0.487 0.612 0.340 (0.031) 0.211 (0.042) 0.417 0.536 0.369 (0.056) 0.297 (0.262) 0.154 0.685 0.446 3.702
SVM Gauss 0.174 0.367 0.380 (0.037) 0.238 (0.037) 0.288 0.395 0.386 (0.058) 0.244 (0.075) 0.691 0.657 0.295 0.155
SVM Lasso 0.639 0.645 0.301 (0.022) 0.151 (0.018) 0.594 0.596 0.329 (0.042) 0.179 (0.047) 0.569 0.561 0.344 0.204

KNN

RF 0.625 0.625 0.300 (0.025) 0.148 (0.023) 0.585 0.585 0.324 (0.038) 0.172 (0.041) 0.742 0.691 0.280 0.129
RT 0.464 0.476 0.334 (0.023) 0.189 (0.024) 0.456 0.456 0.357 (0.045) 0.208 (0.059) 0.499 0.470 0.362 0.215
Boosting 0.616 0.614 0.303 (0.026) 0.152 (0.024) 0.583 0.572 0.327 (0.045) 0.177 (0.051) 0.715 0.700 0.290 0.145
SVM Lin 0.556 0.603 0.315 (0.033) 0.222 (0.195) 0.459 0.536 0.372 (0.050) 0.515 (0.740) 0.150 0.652 0.468 4.495
SVM Gauss 0.238 0.344 0.372 (0.043) 0.228 (0.045) 0.164 0.302 0.384 (0.064) 0.245 (0.081) 0.783 0.764 0.254 0.116
SVM Lasso 0.603 0.639 0.306 (0.029) 0.180 (0.097) 0.593 0.593 0.328 (0.042) 0.179 (0.048) 0.198 0.640 0.420 2.103

The performed comparison highlighted how the TyG-er approach was the most
reliable model for CV-10 (r = 0.637, p < .05; rs = 0.633, p < .05; MAE = 0.295;
MSE = 0.143 ) and CVOS-10 (r = 0.633, p < .05; rs = 0.611, p < .05; MAE = 0.310;
MSE = 0.157).

The SVM Gauss combined with the KNN data imputation strategy showed the best
predictive power for LLRO. However, the TyG-er approach was found to be the best
contender (r = 0.742, p < .05; rs = 0.691, p < .05; MAE = 0.280; MSE = 0.129 ).
Compared to the SVM Gauss, the TyG-er approach may offer a greater level of inter-
pretability [105] while being less time consuming (200 seconds faster in the training
stage).
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3.5. Discussion

This study aimed to discover non-trivial clinical factors in EHR data to determine
where the TyG information is encoded. To this end, a high-interpretable ML regres-
sion approach (the TyG-er approach) was proposed. Patients included in our analysis
ranged from normal to high-risk condition (see Fig. 3.3b). T2D patients were excluded
since they can be under anti-diabetic pharmacological treatment and TyG values may
not be representative. The results of our study detected some non-conventional clin-
ical factors and provided novel insight into the best combination of risk factors for
detecting early glucose tolerance deterioration. The top three features of the TyG
index selected by the proposed TyG-er approach, namely, high-density lipoprotein
(HDL) cholesterol, total cholesterol and age, remained stable among the three experi-
ments performed (CV-10, CVOS-10 and LLRO). The top three features provided high
model interpretability since clinical studies in literature have shown their relationship
with early glucose tolerance deterioration and IR [106]. Uricemia, leukocytes and
gamma-glutamyltransferase (γGT) were selected by the proposed TyG-er approach as
further important features. Altered values of uricemia and leukocytes are not usually
conceived by GPs as primary features of early states of glucose tolerance deteriora-
tion; however, the results of our study confirmed what recent literature has suggested,
i.e., that altered values of uricemia [107] and leukocyte activation [108] are correlated
with an IR condition. Elevated serum γGT concentration is an accepted component
of metabolic disturbance [109]; however, the results of our study confirmed its im-
portant contribution also in incipient disturbances in the glucose metabolism, such as
IR [110]. Accordingly, clinical evidence showed that, in particular categories of in-
dividuals at high risk of developing T2D, fatty change of the liver linked to γGT is
associated with IR [111]. Moreover, our results are also confirmed by recent evidence
showing that γGT and uricemia can synergise in predicting the development of T2D
[112].

Eventually, features related to the protein profile (α , β and γ globulins) were se-
lected among the top 10 features. This result supports current trends aimed at search-
ing for novel protein clinical factors of early glucose tolerance deterioration using
tissues and/or biofluids (blood, serum, plasma, and urine) [113]. The robustness of
those extracted clinical factors was confirmed by (i) the high agreement (according to
the rc value) of the TyG-er approach among the three different experimental proce-
dures (see Sec. 3.4.2), and (ii) the high reliability in terms of predictive performance
(see Tab. 3.3).

The results of the three experimental procedures outlined the predictive power of the
TyG-er approach (see Sec. 3.4.3). In particular, the predictive power of the extracted
clinical factors was demonstrated to generalise (i) across a different unseen subset of
patients (i.e., CVOS-10) and (ii) across different trials of the same subset of patients
(i.e., LLRO).
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Although traditional methods [106, 107, 108, 112, 113, 110, 109] employed statis-
tical analysis to answer the aim of our study, the TyG-er approach may improve the
sensitivity of detection by combining multiple pieces of information across several
clinical factors while dealing with the intrinsic presence of missing values.

3.5.1. Limitations and future work

To confirm generalisation capabilities of the TyG-er approach, future strategies will
investigate the robustness of the results with different patient stratification (i.e., dif-
ferent TyG index values). Results of this study may differ when stratifying patients
with respect to their metabolic risk (on the basis of TyG index values). Another future
direction to prove the generalisation capabilities of the proposed method will be ad-
dressed to test the robustness of the extracted clinical factors into a multi-GP dataset.
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Chapter 4.

Insulin resistance: Type 2
diabetes early-stage risk condition

Early prediction of target patients at high risk of developing type 2 diabetes (T2D)
plays a significant role in preventing the onset of overt disease and its associated co-
morbidities. Although fundamental in early phases of T2D natural history, insulin
resistance (IR) is not usually quantified by General Practitioners (GPs). Triglyceride-
glucose (TyG) index has been proven useful in clinical studies for quantifying IR and
for the early identification of individuals at T2D risk but still not applied by GPs for
diagnostic purposes. The aim of this study is to propose a Multiple Instance Learn-
ing boosting algorithm (MIL-Boost) for creating a predictive model capable of early
prediction of worsening IR (low vs high T2D risk) in terms of TyG index. The MIL-
Boost is applied to past electronic health record (EHR) patients’ information stored by
a single GP. The proposed MIL-Boost algorithm proved to be effective in dealing with
this task, by performing better than the other state-of-the-art ML competitors (Recall
from 0.70 and up to 0.83). The proposed MIL-based approach is able to extract hid-
den patterns from past EHR temporal data, even not directly exploiting triglycerides
and glucose measurements. The major advantages of our method can be found in its
ability to model the temporal evolution of longitudinal EHR data while dealing with
small sample size and variability in the observations (e.g., a small variable number of
prescriptions for non-hospitalized patients). The proposed algorithm may represent
the main core of a clinical decision support system (CDSS).

4.1. Introduction

T2D is a chronic metabolic disorder characterized by high blood glucose concentra-
tion (i.e., hyperglycemia). T2D affects millions of people worldwide and predisposes
to the development of severe cardiovascular and renal complications [85]. Early pre-
diction of target patients at high risk of developing T2D plays a significant role in
preventing the onset of overt disease and its associated comorbidities. Unfortunately,
it is estimated that the first 10 years of T2D natural history - when the disorder is
easiest to treat - are wasted [114].
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The most powerful predictor of future development of T2D is represented by ”in-
sulin resistance”, a reduced sensitivity of tissues to insulin action in lowering blood
glucose concentration [115]. As IR worsens, more global defects in insulin secretion
occur and, at the end, hyperglycemia arises [116]. Although fundamental in early
phases of T2D natural history, IR is not usually quantified by GPs since specific blood
tests - which are not included in those usually performed in routine examinations - as
well as mathematical computations, are required [88].

A simple surrogate assessment of IR can be obtained through the triglyceride-
glucose (TyG) index, based on routine triglyceride and glucose measurements [89,
90]. TyG index has been proven useful in clinical studies for the early identification
of individuals at T2D risk and its predictive value was shown to be stronger than the
one observed for triglyceride and glucose measurements taken singularly [91]. These
findings highlight the usefulness of this index for the identification of individuals with
early risk of developing T2D. However TyG index is still not applied by GPs for di-
agnostic purposes. In fact, this methodology may be ideally straightforward on an
individual basis; however, scheduling an appointment for laboratory screening across
a patient panel of thousands becomes challenging.

In this context, a CDSS predicting TyG changes over time may allow for better
predictions of target groups with high risk of T2D. Such a CDSS based on EHR data
may provide to GPs reminders for routine lab testing, recommendations for specific
medication choices, and prescription of specialist examinations for a more accurate as-
sessment of the metabolic status. Machine Learning model have already been utilised
in developing successfully predictive models for T2D [93], but still never focused on
early temporal prediction of T2D risk (i.e. IR worsening prediction). One of the main
challenge in this context is the modelling of the temporal evolution of EHR data. The
Multiple Instance Learning (MIL) is one of the ML techniques that has been proven
useful to accomplish this challenge, even though in a different domain [117, 118].

The aim of this study was to propose the core of a new CDSS based on a MIL
boosting (i.e., MIL-Boost) algorithm. The proposed algorithm was applied to past
EHR patient information stored by a single GP in order to create a predictive model
capable of early prediction of worsening IR (low vs high T2D risk) in terms of TyG
index.

4.2. Related work

In recent literature several approaches have been proposed to predict chronic patholo-
gies onset from heterogeneous and longitudinal EHR data [119, 120, 121, 122, 123,
124, 125].

Usually, the most important requirement to perform this predictive task is the avail-
ability of a large amount of transversal (i.e., number of patients) and longitudinal
(i.e., number of temporal observations of the same patient) data, which commonly
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come from hospitals or clinical research structures but are not always easily accessi-
ble or publicly available in the general practice scenario. The authors in [121] pre-
dicted multiple chronic diseases from longitudinal EHR data through an unsupervised
Deep Learning (DL) model (e.g., deep neural network of stack of denoising autoen-
coders). However, this approach may suffer from a lack of interpretability because is
not able to explicitly provide a top feature rank importance. On the contrary, other
work proposed supervised techniques to predict chronic cardiovascular [122] and kid-
ney diseases [123, 124, 125] by providing also model interpretability. The authors
in [122] employed Logistic Regression (LR), Random Forest (RF), Gradient Boost-
ing Trees (Boosting), Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) models to predict 10-year cardiovascular disease events. In addi-
tion, the authors in [123] used also a temporal multi-task procedure to predict the
short-term progression (i.e., 1 year) of estimated glomerular filtration rate (eGFR).
They proposed a L2-regularized LR model to rank the predictors importance within
each fixed past time-window (i.e., 6 months). Similarly, the authors in [124] deter-
mined the progression of kidney disease through the prediction of the future eGFR
from 1 to 3 years by applying a RF regression model. The authors in [125] aimed to
predict levels of albuminuria to evaluate renal function changes across a 5-year time
window. Time-interval relations patterns were employed to discover the most rele-
vant laboratory exams as predictive risk factors. Focusing on T2D, in literature lots
of work have already been proposed for classification [50, 52, 53, 2, 126, 127] and/or
prediction [128, 129, 93] tasks. Studies related to the classification task did not fo-
cus on predicting the temporal evolution of T2D condition across EHR longitudinal
data. Differently, studies performing a prediction task employed standard ML models
to predict the T2D diagnosis using past EHR observations divided in a fixed number
of time windows. Moreover, although the authors in [93] used EHR data of GPs, the
considered features space contains also glycaemic information. In order to handle
limited longitudinal EHR data, the authors in [130] proposed a semi-supervised learn-
ing solution, that consists of a generative adversarial network coupled with a CNN
to augment the training set data and improve the risk prediction performance, respec-
tively. Their proposed model, also compared with LR, RF, LSTM, and Support Vector
Machine (SVM) obtained the best predictive performance, but was not able to quan-
tify the importance of the best predictors. Differently from all the above cited work
[128, 129, 130, 93], our task aims to predict insulin-resistance as an early factor of
T2D risk condition.

The limited amount and sparsity of longitudinal observations for each patient reflect
the main challenges of our task. Because of these differences in the task definition,
the experimental comparison was performed with respect to other state-of-the-art ML
models (i.e., Decision Tree (DT) [128, 129, 93, 127]; RF [128, 129, 124]; KNN [128,
129]; Boosting [52]; SVM with linear kernel (SVM Lin) and SVM with Gaussian
kernel (SVM Gauss) [128, 129, 93]; and SVM with Lasso regularizer (SVM Lasso)
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[2]), employed in literature to solve tasks closer to our setting. Similarly to [123],
these state-of-the art models were compared according to time-invariant and temporal
majority vote procedures.

4.3. Clinical data: FIMMG pred dataset

The FIMMG dataset1 has been collected from a single General Practitioner’s Elec-
tronic Health Record which consists of 2433 patients. Our clinical data represent
a subset of the FIMMG dataset with a longitudinal observational time-period up to
9 years according to the following criteria (see Fig. 4.1): i) exclusion of all diag-
nosed diabetic patients according to the International Classification of Disease 9th
Revision (ICD-9) (since they can be pharmacologically treated) ii) inclusion of only
demographic, monitoring and laboratory exam fields (since continuous EHR features
are collected more frequently over time); and iii) inclusion of patients with at least
a single measurement of triglycerides (TG; mg/dl) and fasting glycemia (Gb; mg/dl)
collected simultaneously.

For each i-th patient, a different number (ti) of (TG j, Gb j) pairs measurements were
collected, where j identified the temporal instance with {1, . . . , j, . . . , ti}. Accordingly,
the TyG j index was computed according to [91]:

TyG j =
ln(T G j ·Gb j)

2
(4.1)

On the basis of the IR threshold of TyG (TyGth = 8.65) reported in [91], each
observation can be classified as low (TyG j < TyGth) or high (TyG j ≥ TyGth) risk.

Let seqi j be the d-dimensional EHR features vector of the j-th instance for the i-th
patient. If a single EHR feature has multiple records between two TyG measurements
its median value was taken into account.

Missing values of monitoring and laboratory exams features were indicated as NaN.
The following the full list of the laboratory exams:

4.3.0.1. Problem formulation

FIMMG dataset
N=2433 N=2208 N=1861

V=107
N=968
V=81

N=374
V=81

N=256
V=81

FIMMG_pred dataset
N=256
V=49i viviiiii vi

Figure 4.1.: Inclusion and exclusion criteria (N identifies the number of EHR patients,
and V the number of EHR features)

In order to better evaluate the temporal evolution of the patient’s T2D risk condition,
more strict inclusion criteria (see Fig. 4.1) were added to i), ii) and iii) as follows: iv)

1http://vrai.dii.univpm.it/content/fimmg-dataset
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Table 4.1.: Detailed list of the 45 laboratory exams evaluated for this study.
# Laboratory exams # Laboratory exams

1 Albumin 24 Hematocrit (HCT)
2 Alpha-1 globulin (α1 globulin) 25 Haemoglobin (HGB)
3 Alpha-2 globulin (α2 globulin) 26 Lymphocytes
4 Alanine transaminase (ALT) 27 Bilateral mammography
5 Aspartate aminotransferase (AST) 28 Mean cellular volume (MCV)
6 Basophils 29 Monocytes
7 Beta globulin (β globulin) 30 Neutrophils
8 Total bilirubin 31 C-reactive protein (CRP)
9 Calcium (Ca) 32 Platelets (PLT)
10 Occult blood stool sample 33 Potassium (K)
11 Creatinine clearance (Cockroft) 34 Total proteins
12 HDL Cholesterol 35 Protein electrophoresis
13 LDL Cholesterol 36 Prostate-specific antigen (PSA)
14 Total Cholesterol 37 Free prostate-specific antigen (free PSA)
15 Creatinine kinase (CK) 38 Erythrocytes (RBC)
16 Creatinine 39 Sodium (Na)
17 Complete blood count (CBC) 40 Thyrotropin (TSH)
18 Eosinophils 41 Urea
19 Iron (Fe) 42 Uric acid
20 Alkaline phosphatase (ALP) 43 Complete urine test
21 Free/total prostate-specific antigen ratio 44 Erythrocyte sedimentation rate (ESR)
22 Gamma globulin (γ globulin) 45 Leukocytes (WBC)
23 Gamma-glutamyl transferase (γGT)

patients with at least 3 instances (for ensuring sufficient medical history to be inves-
tigated); v) patients with a temporal distance ∆(ti−1)ti between the two last instances
equal or greater than 12 months (to guarantee, also in agreement with GPs, a consis-
tent and robust predictive temporal window [123]); and vi) EHR features that contain
an overall amount of NaN less than a threshold of 90% (thnan= 90%). The rationale
behind this threshold is the need of a predictive model in the clinical scenario that is
consistent even with large proportions of missing data (up to 90%), as previously done
in other studies [131, 132].

The proposed approach predicts the future TyGiti ( ˆTyGi) considering only the past
instances (i.e., {seqi1, . . . ,seqi(ti−1)}) (see Fig. 4.2).

Table 2.1 shows the final configuration of our clinical data, named FIMMG pred
dataset2, after the application of all six inclusion/exclusion criteria to the original
FIMMG dataset.

seqi(ti-1) seqitiseqij
j(ti-1)

> 12 months

patient
i-th

Future TyGiti

(ti-1)tiseqi1
1j

Past instances (thnan= 90%)

Figure 4.2.: For each i-th patient, the temporal distance between past instances (i.e.,
∆1 j, ∆ j(ti−1)) is variable, while between the last 2 instances (i.e., ∆(ti−1)ti )
is at least equal or greater than 12 months.

2http://vrai.dii.univpm.it/content/fimmgpred-dataset
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4.4. Methods

Preprocessing In order to handle missing data in the FIMMG pred dataset, K-
Nearest Neighbor (KNN) imputation was used, which replaces the NaN according to
the KNN strategy [97]. The hyper-parameter K was set to 1 in order to preserve the
initial data structure [97]. As already done in a similar context [3], the K-Nearest
Neighbor (KNN) imputation was selected as the best strategy after exploring other
data imputation techniques (extra values imputation, median imputation).

4.4.1. Multiple Instance Learning boosting algorithm

MIL paradigm has attracted much attention in the last several years, and has been
proven useful in various domains, including bioinformatics [133], text processing
[134], computer vision [135] and biomedical image analysis [136].

In the MIL paradigm the data is assumed to have some ambiguity in how the labels
are associated. Differently from traditional supervised learning, labels are assigned to
a set of inputs (bags) rather than providing input/label pairs. Thus, during the learning
process, the classifier receives a set of bags along with the corresponding ground-
truth (i.e., label). Each bag contains multiple instances. In this framework, the data
is assumed to have some ambiguity in how the labels are associated: a bag is labeled
positive if there is at least one positive instance [137]. Hence, the MIL task can be
addressed to both estimate the instance and bag labels.

The MIL-Boost algorithm originated from the work presented in [138] by start-
ing with the standard multiple instance assumption [137] and the boosting algorithm
[139]. The main idea behind the boosting algorithm is to sequentially train several
weak classifiers hk ∈ H and combine them into a strong classifier h [137]. The com-
bination is performed in an additive way by weighting each weak classifier hk:

h =
K

∑
k=1

αkhk(x) (4.2)

where αk are positive weights, K refers to the number of weak classifiers and x is the
feature vector. The employed weak classifier is the logistic regression. The gradient
boosting framework evolves the standard boosting formulation by considering each
classifier hk the best sequential approximation in the classifiers space H of the relative
loss function based on a previous estimation [140, 141].

The general idea behind the application of MIL-Boost is to consider as instances
the set of past observations (seqi j) related to different patients (i.e., bags). In the
MIL paradigm, the instance probabilities of the MIL-Boost algorithm are derived as
follows:

pi j = σ(h(seqi j)) (4.3)
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where σ(·) is the logistic function 1
1+exp(−(·)) . The instance probability is related to

the bag probability as follows:

pi = g j(pi j) (4.4)

where g(·) is a function that approximates the max operator (i.e., noisy OR function).
The loss function is the negative binomial log-likelihood. For each patient, the last
TyGiti measurement was assumed as the bag label (0 [negative bag] if the TyGiti <

8.65, 1 [positive bag] if the TyGiti ≥ 8.65) of the proposed MIL-Boost algorithm where
the past instances {seqi1, . . . ,seqi(ti−1)} are the instance predictors (see Fig. 4.2 and
Fig. 4.3a). The MIL-Boost algorithm (see Fig. 4.3a) groups the past instances into
bags of instances. Thus, our task is to predict the bag label according to the estimated
bag probability (pi).

In the proposed MIL-based approach each bag is allowed to have different size (i.e.
different number of instances ti− 1), by taking into account the sparse sample size
of longitudinal data (i.e. the laboratory exams for non-hospitalized patients are not
prescribed on a regular basis over time).

Although the single bag was modeled as a set of multiple instances, an ordinal and
defined structure of the instance was not explicitly assumed (e.g. by including the
instance ordering number [ion] in the feature set).

4.4.2. Experimental procedure

The performance of the MIL-Boost was evaluated using a Tenfold Cross-Validation
over subjects (CVOS-10) procedure3 to measure the prediction of early T2D risk con-
dition. All subjects were divided in ten folds and selecting alternately nine folds for
training and one fold for testing in order to generalize across unseen patients. This
setup is closer to clinical diagnosis purposes, since the ML algorithm needs to gener-
alize the decision rules, learnt from subjects who already have a diagnosis, across new
unseen subjects.

The experimental procedure was evaluated by considering two different configura-
tions: i) ”yesTyG” where triglycerides and glycaemia were included as separate EHR
predictors; ii) ”noTyG” where triglycerides and glycaemia were not included. In both
configurations (i.e. ”yesTyG” and ”noTyG”) the past TyG index was never included
among the EHR predictors.

The predictive performance was evaluated according to the measures defined in
Section 2.4.4.

3The code to reproduce the experimental results is available at
the following link: https://github.com/michelebernardini/
Early-temporal-prediction-of-type-2-diabetes-risk
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Figure 4.3.: Overview of the experimental procedures: a) MIL-Boost, b) time-
invariant baseline, and c) temporal majority vote.

4.4.3. Experimental comparisons

The MIL-Boost algorithm was compared with respect to other ML algorithms em-
ployed in literature closer to our setting (see Sec. 4.2), such as: DT [93, 128, 129, 127];
RF [124, 128, 129]; KNN [128, 129]; Boosting [52]; SVM Lin and SVM Gauss [93,
128, 129]; and SVM Lasso [2]. These state-of-the-art approaches were also combined
with the KNN imputation technique described in Sec. 4.4 to provide a fair compar-
ison with the proposed MIL-Boost. Moreover, these state-of-the art methods were
compared according to the approach proposed by [123] where a time-invariant and a
temporal majority vote procedures were used. Further comparisons were performed
with respect to other standard MIL-algorithms: MIL-DT [ID3-MI] [142], MIL-RF
[MIForests] [143] and MIL-SVM [134] with linear and Gaussian kernel.

Time-invariant baseline In the time-invariant baseline experimental procedure
(see Fig. 4.3b) a single instance was computed for each bag/patient as the average of
the past EHR features (seqiavg). The ˆTyGiti was predicted without taking into account
the temporal evolution of the past clinical history.

Temporal majority vote The temporal majority vote experimental procedure (see
Fig. 4.3c) combines the temporal information in the longitudinal data. A single in-
stance learning ML model was trained by all the past instances seqi j of the trained
subjects for predicting the ˆTyGi. Each past instance ({seqi1, . . . ,seqi(ti−1)}) of the
i− th patient provides a total of ti−1 predictions of ˆTyGi. The final output ˆTyGi was
computed by computing the majority vote of each single prediction for each patient.
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4.4.4. Validation procedure

Table 4.2.: Range of Hyperparameters (Hyp) for each model: Decision Tree (DT),
Regression Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting
Trees (Boosting), Support Vector Machine with linear kernel (SVM Lin),
Support Vector Machine with Gaussian kernel (SVM Gauss), Support Vec-
tor Machine with Lasso regularizer (SVM Lasso), and Multiple Instance
Learning Boosting (MIL-Boost). The chosen hyperparameters were sum-
marized according to how many times the value was chosen in the CVOS-
10 models (count) for the noTyG procedure.

Model Hyp Range(count)

DT [93, 128, 129, 127] max # of splits {5(3),10(2),15(2),20(2),25(0),50(1)}

RF [124, 128, 129] # of DT
# of predictors to select

{5(4),10(2),20(1),30(2),40(0),50(1)}
{ all

4 (0), all
3 (0), all

2 (0),all(10)}

KNN [128, 129] max # of neighbors {1(1),3(2),5(1),7(1),9(0),11(0),13(3),15(2)}

Boosting [52] max # of splits
max # of weak classifiers

{1(0),5(2),10(2),20(3),30(1),40(1),50(1)}
{1(1),5(0),10(1),20(0),30(3),40(2),50(3)}

SVM Lin [93, 128, 129] Box Constraint {10−2(0),0.1(1),1(1),10(2),102(5),103(1)}

SVM Gauss [93, 128, 129] Box Constraint
Kernel Scale

{10−4(0),10−3(1),10−2(9),0.1,1,10,102,103}
{10−4(0),10−3(2),10−2(8),0.1,1,10,102,103}

SVM Lasso [62] Lambda {10−5(0),10−4(5)10−3(3),10−2(2),0.1(0),1(0),10(0)}

MIL-DT max # of splits {5(2),10(1),15(2),20(1),25(1),50(3)}

MIL-RF # of DT
# of predictors to select

{5,10,20(1),30(5),40(2),50(2)}
{ all

4 (0), all
3 (0), all

2 (0),all(10)}

MIL-SVM Lin Box Constraint {10−4(0),10−3(0),10−2(0),0.1(7),1(3),10(0)}

MIL-SVM Gauss Box Constraint
Kernel Scale

{10−5(0),10−4(6),10−3(0),10−2(4),0.1(0),1(0)}
{10−5(0),10−4(7),10−3(3),10−2(0),0.1(0),1(0)}

MIL-Boost learning rate
# of weak classifiers

{10−5(0),10−4(3),10−3(1),10−2(0),0.1,1(3),10(2),102(1)}
{1(0),5(10),10(0),15(0)}

Table 4.2 summarizes the range of the hyperparameters optimized for each ML
model during the CVOS-10. The chosen hyperparameters were summarized accord-
ing to how many times the value was chosen in the CVOS-10 models (count) for the
noTyG procedure. In particular, the hyperparameters tuning was performed imple-
menting a grid-search and optimizing the Recall in a nested CVOS-5. Recall was
preferred over other optimization objectives, because minimising the false negative
rate has more clinical relevance for a screening purpose. Hence, each split of the outer
loop was trained with the optimal hyperparameters tuned in the inner loop. Although
this procedure was computationally expensive, it allowed us to obtain an unbiased and
robust performance evaluation [79]. For all models the Accuracy, F1, Precision and
Recall were computed by selecting the best threshold in the nested CVOS-5. The pre-
dicted bag label was assigned according to the best threshold and the model scores.
This procedure aims to deal with the natural unbalanced setting of this task.
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Table 4.3.: Results of baseline, majority vote and MIL-Boost experimental procedures
by considering (i.e., yesTyG) or not considering (i.e., noTyG) triglycerides
and glucose information. Best results are evidenced in bold for both (i.e.,
yesTyG, noTyG) configurations. Recall is underlined because it is chosen
as the hyperparameters optimization metric during the validation stage.

Baseline Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

DT 0.77 0.67 0.72 0.60 0.75 0.61 0.71 0.61 0.79 0.64
RF 0.77 0.68 0.72 0.57 0.74 0.61 0.72 0.58 0.84 0.66
Boosting 0.76 0.70 0.71 0.59 0.73 0.62 0.72 0.59 0.82 0.58
KNN 0.69 0.63 0.57 0.49 0.62 0.50 0.58 0.51 0.64 0.56
SVM lin 0.73 0.67 0.68 0.62 0.70 0.63 0.68 0.62 0.75 0.66
SVM lasso 0.77 0.65 0.70 0.57 0.76 0.60 0.70 0.57 0.80 0.63
SVM Gauss 0.70 0.70 0.41 0.41 0.35 0.35 0.50 0.50 0.50 0.50

Majority vote Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

DT 0.78 0.68 0.74 0.62 0.74 0.65 0.76 0.66 0.84 0.74
RF 0.77 0.65 0.73 0.57 0.73 0.60 0.75 0.59 0.83 0.69
Boosting 0.79 0.70 0.74 0.61 0.75 0.63 0.75 0.62 0.87 0.68
KNN 0.63 0.60 0.50 0.42 0.51 0.41 0.52 0.46 0.64 0.54
SVM lin 0.75 0.64 0.69 0.57 0.70 0.59 0.71 0.60 0.81 0.65
SVM lasso 0.77 0.66 0.69 0.57 0.71 0.59 0.70 0.59 0.81 0.66
SVM Gauss 0.63 0.66 0.38 0.39 0.31 0.33 0.50 0.50 0.46 0.50

MIL-algorithm Accuracy F1 Precision Recall AUC

yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG yesTyG noTyG

MIL-Boost 0.83 0.70 0.81 0.68 0.82 0.69 0.83 0.70 0.89 0.71
MIL-DT 0.84 0.59 0.84 0.56 0.84 0.57 0.87 0.58 0.91 0.59
MIL-RF 0.87 0.63 0.86 0.60 0.86 0.60 0.89 0.61 0.94 0.64
MIL-SVM lin 0.67 0.72 0.40 0.67 0.34 0.69 0.50 0.68 0.47 0.52
MIL-SVM Gauss 0.67 0.67 0.40 0.40 0.34 0.34 0.50 0.50 0.51 0.49
Decision Tree (DT), Regression Forest (RF), K-Nearest Neighbor (KNN), Gradient Boosting Trees (Boosting), Support

Vector Machine with linear kernel (SVM Lin), Support Vector Machine with Gaussian kernel (SVM Gauss), Support
Vector Machine with Lasso regularizer (SVM Lasso), and Multiple Instance Learning Boosting (MIL-Boost)

4.5. Experimental results

Figure 4.5 shows the TyGiti index distribution for the final configuration of the FIMMG pred
dataset (see Tab. 2.1). The data follow a Normal distribution (according to a Kol-
mogorov Smirnov Test, D = 0.041, p = 0.753) with mean µ = 8.41 and standard
deviation σ = 0.52.

Figure 4.4 shows the overall temporal distance between consecutive instances (∆ j( j+1))
per patient. It turns out that in our dataset in average laboratory exams are repeated
for each patient at regular time intervals of almost 400 days.

Figure 4.6 quantifies the NaN occurrences for each EHR feature (i.e., demographic,
monitoring and laboratory exams) stored in the FIMMG pred dataset.

4.5.1. Predictive performance

Table 4.3 shows the predictive performance of MIL-Boost and comparisons with dif-
ferent experimental procedures (i.e., time-invariant baseline, temporal majority vote),
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Figure 4.4.: Overall temporal distance distribution between consecutive instances
(∆ j( j+1)) per patient. The amount of patients is indicated below in round
brackets.

-2 - + +2

TyG index

0 %

1 %

2 %

2 %

3 %

4 %

5 %

5 %

D
is

tr
ib

u
ti
o

n
 i
n

 %

TyG<8.65

=8.41

=0.52

Figure 4.5.: TyGiti index distribution with mean µ = 8.41 and standard deviation σ =
0.52. TyG index threshold (TyGth = 8.65) separates the green side (179
patients) from the red side (77 patients) of the graph.

different configurations (i.e., yesTyG, noTyG), and different classification algorithms.
Figure 4.7 shows the performance comparison in terms of averaged Recall and stan-

dard deviation of Majority vote and MIL-algorithms over all CVOS-10 folds
The Recall obtained for both MIL configurations follows a Normal distribution ac-

cording to the one-sample Kolmogorov-Smirnov test (yesTyG: D = 0.198, p = 0.76;
noTyG: D = 0.161, p = 0.92).

59



Chapter 4. Insulin resistance: Type 2 diabetes early-stage risk condition

0 10 20 30 40 50 60 70 80 90

Missing values [%]

Leukocytes
Erythrocyte sedimentation rate

Complete urine test
Uric acid

Urea
Thyrotropin

Sodium
Erythrocytes

Free PSA
Prostate-specific antigen (PSA)

Protein electrophoresis
Total proteins

Potassium
Platelets

C-reactive protein
Neutrophils
Monocytes

Mean cellular volume
Bilateral mammography

Lymphocytes
Haemoglobin

Hematocrit
Gamma-glutamyl transferase

Gamma globulin
Free/total PSA ratio

Alkaline phosphatase
Iron

Eosinophils
Complete blood count

Creatinine
Creatinine kinase
Total cholesterol
LDL cholesterol
HDL cholesterol

Creatinine clearance
Occult blood stool sample

Calcium
Total bilirubin
Beta globulin

Basophils
Aspartate aminotransferase

Alanine transaminase
Alpha-2 globulin
Alpha-1 globulin

Albumin
Diastolic blood pressure
Systolic blood pressure

Age
Gender

Figure 4.6.: Percentage (%) of missing values (NaN) for each of the 49 EHR features:
demographic, monitoring, and laboratory exams.

Accordingly, the statistical comparisons in terms of Recall between the proposed
approach and the other ML models for each configuration were performed by a two-
sample t-test (significance level = 0.05). Results evidenced that MIL-Boost is statisti-
cally superior (p < 0.05) than baseline yesTyG: KNN, SVM Gauss; baseline noTyG:
DT, RF, Boosting, KNN, SVM lasso, SVM Gauss; majority vote yesTyG: KNN, SVM
lin, SVM lasso, SVM Gauss; and majority vote noTyG: RF, KNN, SVM Lasso, SVM
Gauss. Moreover MIL-Boost is statistically superior (p< 0.05) than noTyG: MIL-DT,
MIL-RF and MIL-SVM Gauss and yesTyG: MIL-SVM lin and MIL-SVM Gauss.

4.5.2. Model interpretability

The top-10 rank features are listed in descending order of percentage importance for
the temporal MIL-Boost experimental procedure in yesTyG configuration (see Fig.
4.8) and in noTyG configuration (see Fig. 4.9). The most discriminative predictors
were extracted according to the weights ωK of the last updated weak logistic regressor
hK averaged over the 10 folds, where K is the maximum # of classifiers tuned during
the validation stage. The percentage of the top-10 rank features was about 46.30 %
and 40.91%, respectively.
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9.88%

5.15%

4.48%

4.27%

4.16%

4.02%

3.93%

3.57%

3.48%
3.33%

Triglycerides

ALT

 GT

Hematocrit

HDL cholesterol

AST

Urea

Diastolic

Sodium

Albumin

Others

Figure 4.8.: Top-10 rank features for MIL-Boost experimental procedure (yesTyG
configuration). The percentage importance of the Others features was
about 54%. Glycaemia ranks the 12nd position with 2.68 %.

61



Chapter 4. Insulin resistance: Type 2 diabetes early-stage risk condition

7.60%

4.18%

4.12%

3.90%

3.77%

3.73%

3.71%

3.56%

3.38%

2.96%

HDL cholesterol

2 globulin

Bosophils

Total cholesterol

Urea

ALT

Lymphocytes

Neutrophils

 GT

PSA

Others

Figure 4.9.: Top-10 rank features for MIL-Boost experimental procedure (noTyG con-
figuration). The percentage importance of the Others features was about
59%.

Missing values threshold (th
nan

)

# EHR features

 R
e

c
a

ll

yesTyG

noTyG

Figure 4.10.: Trend of the MIL-Boost Recall and its standard deviation as a function
of the missing values threshold thnan. The amount of EHR features is
indicated in round brackets for each thnan.

4.5.3. Sensitivity to missing values

Figure 4.10 shows the trend of the MIL-Boost Recall as a function of the missing val-
ues threshold thnan for both feature space configurations. For yesTyG configuration,
the lower the thnan, the more the Recall increases (up to almost 0.90), while for noTyG
configuration, the maximum Recall (thnan= 90%) does not increase by decreasing the
thnan and thus, it appears that Recall is not affected by the EHR features elimination.
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Standard deviation in noTyG configuration is globally greater than yesTyG one. A
multiple comparison t-test confirms how there are not any significative differences
(p < .05) across NaN thresholds.

4.5.4. Sensitivity to the sparsity of the data
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Figure 4.11.: MIL-Boost Recall vs sparsity of the dataset in terms of the number of
past instances (ti−1).

The Recall of MIL-Boost was computed versus a measure of the sparsity of the data
(see Figure 4.11). Since the sparsity can be due to a small variable number of exam
prescriptions, the number of past instances (ti− 1) was selected as a measure of the
sparsity in the data. The lower the number of past instances and the higher the sparsity
in the data. An overall Recall was computed by aggregating the predictions of all the
10 folds for each value of ”number of past instances” (ti−1).

Although the performance decrease as the sparsity in the data increases, the Recall
remains always over chance level (0.5).

4.5.5. Computation-time analysis

The computation time analysis for the training and validation stage is shown in Figure
4.12a, while for the testing stage in Figure 4.12b.

4.6. Discussion

4.6.1. Predictive performance

This study proposed a model that captures temporal information for the early predic-
tion of worsening IR (low vs high T2D risk) in terms of TyG index. The model learns
from past routine measurements either including or excluding triglycerides and glu-
cose measurements, which are the ones used to compute the TyG index. The proposed
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Figure 4.12.: Comparison in term of computation time.

MIL-Boost algorithm proved to be effective in dealing with this task, by perform-
ing better than the other state-of-the-art ML models for both configurations (Recall,
yesTyG: 0.83, noTyG: 0.70) and other MIL-based approaches for the noTyG config-
uration. In particular, the higher performance of MIL-Boost with respect to other
MIL-based approaches in the more challenging clinical scenario (i.e. noTyG) high-
lights how the proposed approach is able to extract hidden patterns from past EHR
temporal data, even not directly exploiting triglycerides and glucose measurements.

The TyG index, core element of this study, has been exploited by the same authors
also in a previous work [3]. However, the present study is basically different from
the previous one in terms of tasks (identification vs. forecast), dataset considered
(present observations/future observations) and for the adopted methodologies. The
TyG-er approach [3] deals with the identification of the TyG index from routine data,
i.e. the extraction of the most relevant non-glycemic (routinary) clinical factors strictly
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associated with the insulin-resistance condition; associations have been investigated
by looking at clinical factors and TyG observed at the same time point. Results of
[3] highlighted clinical factors having a well-known (as for example cholesterol), but
also a non-trivial (as for example leukocytes and protein profile) association with IR.
Knowledge of non-trivial associations provides hints for further investigation in clin-
ical studies. Differently, this work deals with the prediction of future (i.e. forecast)
TyG worsening, starting from the knowledge of past values of routine clinical factors.
Thus, the proposed MIL algorithm explored the relation among the sparse observa-
tions of the clinical factors in order to improve the prediction of TyG worsening and
thus of the T2D risk. As desirable, clinical factors highlighted by the TyG-er approach
[3] are also the more relevant ones for TyG worsening prediction.

The recent advances of DL and the huge amount of the data have laid the foun-
dations to apply DL methodologies to EHR data for predictive tasks [42]. However,
in most cases EHR data pertain to hospitalized subjects [42, 144, 145], thus being
characterized by a huge set of longitudinal and more specific measurements. The ma-
jor advantages of our method with respect to other approaches reported in literature
[121, 122, 125, 124, 123] can be found in its ability to deal with a lower and a more
sparse sample size of transversal and longitudinal data (e.g., a lower number of pre-
scriptions for non-hospitalized patients). Although the performance decrease as the
sparsity in the data increases (see Section 4.5.4), the proposed MIL-Boost algorithm
may deal with the variability of this setting, where different subjects (i.e., bags) may
have a different number of observation (i.e., instances) over time. Our MIL-based
approach relaxes the constraint imposed by some other work [128, 129, 93, 123] by
modeling a variable number of observations for each patient (i.e. in the proposed
MIL-based approach each bag is allowed to have different size). Additionally, no pre-
processing step was employed (e.g., resampling strategies) to deal with the natural
unbalance of this task.

Moreover, no statistical changes were found related to the inclusion of the tem-
poral information (i.e. instance ordering number [ion]) in the model for the yesTyG
(p = 0.793) and noTyG (p = 0.375) configuration. Results evidenced that MIL-Boost
Recall of the noTyG configuration is slightly higher (0.70 vs 0.68) if the ion is not
included in the feature set. On the other hand the MIL-Boost Recall of the yesTyG
configuration is slightly lower if the ion is not included in the feature set. Although
the experimental results might suggest that the temporal ordering of the exams is not
relevant for predicting the early T2D risk condition, future work could address the
temporal evolution of the instance inside the bag by imposing a sequential constraint
(e.g. by applying a laplacian regularizer which encourages the temporal smoothness
between two exams).

Additionally, concerning the sensitivity to missing values, the proposed model is
affected only by the yesTyG configuration, because the progressive EHR feature elim-
ination gives more importance to triglycerides and glycaemia as discriminant predic-
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tors; while for noTyG configuration the Reecall trend appears more stable. However,
t-test confirms there are no significant differences (p < .05) across NaN thresholds.
This fact implies that features with many missing values are not discriminative, and
thus, suggests how the distribution of missing values is the same for all the two classes
(i.e. the missing values mechanism is not informative about the classification target
[96]).

4.6.2. Clinical significance

MIL-Boost predicts the deterioration of TyG index, whose efficacy in discriminating
subjects at low and high T2D risk has been recently recognized in clinical settings
[146, 91]. Our approach could lay the foundations for a CDSS having an important
impact from the therapeutic point of view. Besides planning targeted screening, such
a CDSS may allow pharmacological and non-pharmacological interventions admin-
istration by GPs in an early pathophysiological T2D state, thus when they are more
effective. Non-pharmacological interventions may include timely promotion by GPs
of a healthy diet and/or regular physical activity, which have been shown to modify
early T2D mechanisms correlated to IR [147, 148].

The model interpretability results of our study provided novel insight into the best
combination of conventionally used (HDL, ALT, γGT) and non-conventionally used
(urea, α2 globulin, bosophils, lymphocytes, neutrophils) biomarkers for diagnosing
early T2D risk condition. Evidence in recent literature can be found to support our
model interpretability results [149, 3]. Glycaemia appears redundant (12nd rank) in
case of presence of triglycerides and other clinical factors in the yesTyG configura-
tion. It appears that triglycerides are more relevant than glycaemia in order to predict
the future TyG status of the patient. Additionally, regarding the complementary set
of features, ALT, gamma-GT, HDL cholesterol, and urea keep remaining within the
top-10 rank features. Note that glycated haemoglobin (HbA1c), an important clini-
cal factor used for T2D diagnosis and monitoring, was not included in our analysis.
HbA1c is not included in routine examinations since GPs usually prescribe HbA1c as-
sessment when T2D is strongly suspected or already diagnosed. In our dataset (which
does not consider already-diagnosed T2D patients), HbA1c was measured in less that
10% of the cases and it has been discarded according to the exclusion criteria vi) (i.e.,
EHR features that contain an overall amount of NaN less than a threshold of 90%).

4.6.3. Future work

Starting from the knowledge of the best features, the higher interpretability of our
approach may favor the acceptance of the experimental findings by the medical com-
munity and allow an easier implementation of a CDSS. The proposed MIL-Boost
approach performed on the FIMMG pred dataset, collected by the same GP, could
be also extended and applied to other EHRs stored by multiple GPs. In fact, the

66



4.6. Discussion

computational-time efficiency of our algorithm allows to easily re-train the model
over new EHR data (see Fig. 2.6a). Such competitiveness in terms of computational
efficiency (see Fig. 4.12) allows the proposed algorithm to be embedded also in a
cross-platform framework for low-cost mobile devices. Since missing values repre-
sent one of the main problems of this kind of data, future work should also try to
investigate the effect of more advanced strategies (e.g., collaborative filtering, matrix
factorization, etc.).

Of note, the methodology proposed in the present study is not meant to replace cur-
rent diagnostic T2D methodology, which will be applied in the case of TyG classified
as ”high”. Our aim was to provide a support to screen patients at risk for T2D at the
very beginning and a classification setup may be effective. Of course, a continuous
prediction of TyG changes over time resulting from a regression setup is desirable and
will be explored in future studies.

The final application of the proposed approach will be the integration of the MIL-
Boost on the FIMMG Nu.Sa. cloud platform [150] to achieve a real-world application
of a data driven CDSS. The actual FIMMG Nu.Sa. suite has more than 20 statistical
or ML based applications to support GPs in their daily activities and, the proposed
new approach will be the first based on a predictive and high-interpretable ML model
able to capture EHR temporal data.
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Chapter 5.

Clinical Decision Support System
for type 2 diabetes quality care
evaluation

Clinical Decision Support Systems (CDSS) have been developed and promoted for
their potential to improve quality of health care. However, there is a lack of common
clinical strategy and a poor management of clinical resources and erroneous imple-
mentation of preventive medicine.
To overcome this problem, this work proposed an integrated system that relies on the
creation and sharing of a database extracted from GPs’ Electronic Health Records
(EHRs) within the Netmedica Italian (NMI) cloud infrastructure. Although the pro-
posed system is a pilot application specifically tailored for improving the chronic
type 2 diabetes (T2D) care it could be easily targeted to effectively manage differ-
ent chronic-diseases. The proposed CDDS is based on EHR structure used by GPs
in their daily activities following the most updated guidelines in data protection and
sharing. The CDDS is equipped with a Machine Learning (ML) method for analyzing
the shared EHRs and thus tackling the high variability of EHRs. A novel set of T2D
care-quality indicators are used specifically to determine the economic incentives and
the T2D features are presented as predictors of the proposed ML approach.
The EHRs from 41237 T2D patients were analyzed. No additional data collection,
with respect to the standard clinical practice, was required. The CDDS exhibited
competitive performance (up to an overall accuracy of 98%±2% and macro-recall of
96%±1%) for classifying chronic care quality across the different follow-up phases.
The chronic care quality model brought to a significant increase (up to 12%) of the
T2D patients without complications. For GPs who agreed to use the proposed system,
there was an economic incentive. A further bonus was assigned when performance
targets are achieved.
The quality care evaluation in a clinical use-case scenario demonstrated how the em-
powerment of the GPs through the use of the platform (integrating the proposed
CDDS), along with the economic incentives, may speed up the improvement of care.
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5.1. Introduction

Type 2 diabetes (T2D) results from an ineffective use of insulin. The risk of devel-
oping T2D depends on an interplay of genetic and metabolic factors. For instance,
high waist and body mass index (BMI) are associated with an increased risk, though
the relationship may vary in different populations [151]. In 2015, the World Health
Organization (WHO) estimated a global prevalence of diabetes around the 9%, with
more than 90% of the patients being affected by T2D [44, 45]. Only in 2012, diabetes
caused 1.5 million deaths, with more than 8 out of 10 deaths occurring in low and
middle income countries. In developing countries, more than half of all diabetes cases
goes undiagnosed due to the poor T2D symptoms, at least at the early T2D stage.
The WHO anticipates that worldwide deaths from diabetes will double by 2030 [46].
As reported by the International Diabetes Federation (IDF), T2D early diagnosis and
treatment can save lives and prevent, or significantly delay, complications [152].

T2D strongly impacts on the costs of national health systems (NHSs). According
to the IDF [153], health expenditure for diabetes was estimated at US$ 105.5 billion
in the European Region in 2010 (the 10% of the total health expenditure). This ex-
penditure is expected to reach US$ 124.6 billion by 2030. The estimated costs for the
European countries are around the 9%. In Italy, the total cost is about 15 billion e,
with an increasing trend up to the 14.4% in 2040, slightly lower than the one expected
at European level (18%) [45, 154]. T2D also causes a significant loss of productivity
(work days lost, lower working efficiency, early retirement) and mortality and such
social costs represent a heavy economic burden, not always easy to quantify, on so-
ciety [155]. In Italy many legislative initiatives have taken place on the protection
of the diabetic patients, which have merged over time into a National Diabetic Dis-
ease Plan (NDDP). Following legal considerations on T2D patient treatment that date
back to 1987 [156], the NDPP from the Italian Ministry of Health has been released
[157]. The NDPP has identified different areas of intervention to standardize treat-
ments of prevention, diagnosis and monitoring of people with T2D living in Italy. The
NDPP foresees a capillary network of GPs and other healthcare professionals (nurse,
nutritionists, psychologist, podiatrist, cardiologist, nephrologist, neurologist, ophthal-
mologist, etc.) and provides regular consultation to approximately 50% of people
suffering from T2D. Consequently, one of the major challenges of modern care is to
develop and sustain a person-centered management of T2D that relies on interdisci-
plinary work, communication, data collection, continuous monitoring, and processing
and well as reduction of costs. However, several Italian Regions are independently de-
signing their own models for chronic management and reorganization of territoriality
care, with inevitable inhomogeneities. Further barriers to optimal care include limited
appointment times, lack of easy access to patient information, and fragmentation of
data between healthcare providers. Optimizing the use of the EHRs by configuring a
CDSS, changing workflow patterns to include team management, and implementing a
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structured patient education can improve the management of T2D in primary care and
in successive levels [158, 159].

A wider adoption of EHRs would reduce health care costs, medical errors [18, 20],
healthcare disparities, patient complications in hospitals and mortality [21, 22, 160].
Moreover, sharing EHRs among healthcare professionals will decrease the use of un-
necessary services, such as repeated laboratory tests every time the patient changes
hospital and office visits [18, 19]. In this scenario, in order to foster the digitalization
and sharing of health data in an easy and accessible way, as well as to coordinate data
flows, the NMI has been established, in cooperation between FIMMG (the largest Ital-
ian federation of GPs) and Federsanità ANCI (the Italian federation of Public Health
Agencies). This was done with the final goal to offer HIT services to GPs at national
level.

Ermakova et al. [161] surveyed the use of cloud computing technology in health-
care. The survey pointed out the importance, for GPs, to share healthcare data under a
common standard system [162, 163, 164]. On this consideration, and considering the
central role of GPs in effective chronic-disease diagnosis and management strategies,
a platform for GPs data sharing and unified T2D patient management was developed,
guaranteeing the interoperability (e.g., using EHRs data standards) of the platform
with other healthcare databases.

5.1.1. Contributions

This work overcomes solutions in the literature (Sec. 5.2), by developing a novel
framework with relevant contributions:

• The proposed solution is based on the standard EHR structure used by GPs in
their daily activities, ensuring large-scale use;

• A novel set of quality indicators for shared data and T2D care process quality is
presented;

• The framework is equipped with a ML-based CDDS, analyzing the shared EHRs
for T2D screening.

• The architecture involves quality-care evaluation by a second ML approach,
with manual annotation on five quality classes;

• The CDSS testing was performed on 41237 T2D patients, one order of magni-
tude larger than the dataset presented in the closer work to ours [54], with real
data collected from about 800 GPs;

• A quality-based economic incentive model is proposed to foster GPs empower-
ment. Up to our knowledge, this is one of the first real applications of quality
measures to a standard chronic care model.
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The proposed framework is currently used in the NMI cloud with a Software as a
Service (SaaS) design that ensure scalability and real-time performances with a direct
access from GPs ambulatory software in Italy. All Web Services Description Lan-
guages (WSDLs) of the proposed EHRs data standard used in this work are publicly
available1 and can be considered one of the most comprehensive data standard for
GP’s EHR in Europe.

5.2. Related work

5.2.1. EHR use and sharing

The adoption of EHRs can represent a possible solution to integrate data provided by
different information sources transforming them into useful shared knowledge. This
allows to define metrics and assessment of clinical performance as well as to take cor-
rective actions to support better decision-making based on a set of clinical indicators
defined to manage the intervention of patients with diabetes.

In a feasibility study within an Italian regional environment, Pecoraro et al. [159]
show the applicability of a shared EHR in a clinical governance framework. The use of
EHRs has the advantage of managing standardized data already integrated in several
health infrastructures. An Austrian study [158] underlines as the continuity of care in
chronic diseases has a positive impact during the patient follow-up. Yamaguchi et al.
[165] investigated the effectiveness of cooperation of medical experts using data from
EHRs in a medium-sized local hospital. Sharing information and electronic clinical
path are the main factors in promoting inter-professional work. In addition, introduc-
ing an electronic information technology tool, the authors have reported a challenging
strategy to improve T2D integrated management. T2D is a chronic and transversal dis-
ease related to many other pathologies. Therefore, the integrated management should
possess a wide scalability and must be able to discriminate and evaluate other chronic
complications that result from T2D [166]. In another work [167], an EHR architecture
is used to discriminate prevalence and incidence of cardiovascular disease (CVD) in
T2D patients. The large availability of EHR data allows to extract information relevant
to favourable or unfavourable long-term strategies related to specific glucose-lowering
therapies.

5.2.2. EHR analysis for CDDS

EHR-CDSS based have great potential to improve the diabetes care. A systematic re-
view presents the potential clinical, social and economic benefits that a CDDS could
add to an already existing healthcare system [168, 169]. Clinical guidelines for opti-
mal management of diabetes are widely available, yet adherence to these guidelines

1http://cloud.fimmg.org/wsdl.php?wsdl
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remains variable [170]. CDSS systems is designed to guide optimal medical therapy
based on individual patient characteristics extracted from the EHR [168]. CDSS tools
have been developed to provide reminders for routine laboratory testing, recommen-
dations for specific medication choices, and alerts for potential drug-drug interactions.
Electronic clinical reminders have evidenced an increased adherence to recommended
pharmacotherapy and screening [171]. Holbrook et al. [172] showed that when the
decision support is shared between physician and patient through a web-based inter-
face, significant improvements in clinical diabetes care can be achieved. In a research
conducted by Modafar Ati et al. [173], a knowledge based system is created and then
integrated with a EHRs database as part of the national E-Health infrastructure. This
is used to create a system based on Service Oriented Architecture that is able to predict
or monitor the condition of any diabetic patient based on a certain number of features
defined by the health authorities.

A widely adopted approach for identifying subjects with and without T2D is to
involve experienced physicians that manually design algorithms based on their expe-
rience and examination of EHR data [174, 175, 176, 177]. However, such strategies
increasingly prove to be limited and not scalable [174, 175, 177] due to the laborious
process of human intervention and rule abstraction capabilities of experts. Further-
more, expert algorithms are often designed with conservative identification strategy,
thus may fail to identify complex (e.g., borderline) subjects and miss a significant
number of potential T2D cases [50]. Thus, recent work in addition to EHRs has intro-
duced a CDSS integrated with a ML based framework [2, 3].

ML and data mining models are increasingly utilized in diabetes related research
from EHR data. These studies have primarily focused on mining T2D-related EHR
data for clinical purposes. For instance, some studies aimed at forecasting clinical risk
of diabetes from EHR [24, 4]. Wang et al. explain as the use of a shared decision-
making (SDM) process in antihyperglycemic medication strategy decisions is nec-
essary due to the complexity of the conditions of diabetes patients. Knowledge of
guidelines is used as decision aids in clinical situations, and during this process no
patient health conditions are considered. It is proposed a SDM system framework for
T2D patients that not only contains knowledge abstracted from guidelines but also
employs a multilabel classification model that uses class-imbalanced EHR data and
that aims to provide a quality care model to help physicians and patients having a
SDM conversation [54, 178] and to improve chronic care models.

5.3. Methods

In this section, a CDDS framework for T2D is introduced as well as the dataset used
for evaluation. The framework is depicted in Figure 5.1 and comprises five main
components:
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• Clinical data collection of T2D patients from EHRs and data sharing in a cloud
infrastructure (Sec. 5.3.1;

• T2D patients enrollment (Sec. 5.3.2);

• Data indicators and features (Sec. 5.3.3);

• Enrolled patient management (screening and follow-up): Self-Audit & Data
Quality (Sec. 5.3.4);

• Quality score for economic incentives (Sec. 5.4.4).

The framework is comprehensively evaluated on the a T2D dataset collected for this
work. The details of the data collection and ground truth labeling are also discussed
(Sec. 5.4.1).

Figure 5.1.: GP’s workflow in T2D Integrated Management Care.

GP membership to the system is free and there are no sanctions for GPs that do not
intend to attend. GPs involved and patients cooperate to apply scientific guidelines.
The flowchart in Fig. 5.2 shows a CDSS for T2D patients integrated management care.
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Figure 5.2.: CDSS for T2D patients integrated management care managing patient en-
rolment and treatment in the same conceptual flow and using the same
data features

5.3.1. Data collection of T2D patients from EHRs and data
sharing in a cloud infrastructure

The NMI platform manages a cloud computing project that, through the integration of
GPs’ EHR databases, is able to realise: network medicine, audit process, data report-
ing, integrated management programs between GPs and specialists for treating chronic
pathologies. NMI aggregates databases available from GPs in a unique standardized
language and share them in a cloud platform. The database is available for transversal
interoperability with other GPs, and for a vertical interoperability with several health-
care professionals of the NHS. The architectural features of the system meets stringent
requirements: security and privacy, high reliability, ease of access and wide interop-
erability through the availability of flexible interfaces and standard communication
protocols. Additionally, the system is equipped with services and tools which make it
useful and usable by general practitioners, satisfying his/her needs for practice of the
daily-life profession.
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Authentications and authorizations Data are security protected through en-
cryption during both transfer and storage. Data access is strictly allowed to only those
that have the required permissions [150]. In particular, all connections and accesses
are tracked and are subject to verification of the credentials and the possessed permits.
A second level of access is regulated by a further 32-byte long key. The key is issued
directly by Netmedica Italia to access different services according to the needs of the
user.

Interoperability via Web Services Interface The frameowrk allows a high de-
gree of interoperability with other applications. It has an API interface to intercede
directly with the cloud database. Most of the features of the Netmedica Cloud are
provided by a Web Service Interface that exposes various functionalities through the
publication of precise methods to be invoked. The name of the main interface is FIM-
MGwsdl. It is based on the Simple Object Access Protocol over HyperText Transfer
Protocol and the default style is Remote Procedure Call.

The features offered by the web services can be grouped into the following macro
categories: Access, Writing, Consultation, and Other Services. Other services include
features such as: notifications, patient report and delete record. These features and
the relative methods are used by the extractor program that is specifically designed to
receive the complete encrypted patient card. All patient cards are potentially analyzed,
uploaded and stored, still encrypted, to the unified and normalized database.

Data extractor The data centralization procedure of Netmedica Cloud is based on
the specially developed automatic extractor software called NetDesk. All EHRs are
first encrypted with the GP’s secret key and then transferred to the Netmedica cloud.
The GP can install automatically the program with a wizard. Data are collected from
the outpatient database, by applications that allow the extraction of clinical features of
outpatients. The process of extraction normalizes the database according to a record
layout defined in XML. After extracting and standardizing data into XML, through
Web Services, data are forwarded to the cloud, where they are aggregated into a nor-
malized database.

The extraction process takes place in 2 phases: first massive data extraction, suc-
cessive extractions according to incremental logic. The GP can arrange the timing of
the extraction (every 10, 30 ... minutes), even differing in a daily time when he is not
using the PC. In clinics where more general practitioners work, it is possible to install
the extractor on a network server that accesses the medical management software and
the cloud database in multi-user mode. A GUI interface is available for managing user
authorizations, scheduling the process, timing and extraction type.

Database platform Through the WSDL, many services and applications commu-
nicate with the database. The database allows on-line sharing of care data, even among
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professionals that normally use different ambulatory management software. The or-
ganization of the data takes place in a patient centric manner and its structure has
been designed as flat as possible. The figure 5.3 shows the available EHR field in the
database.

Figure 5.3.: The available EHR fields in the database

A main patient registry table contains all the patient’s id informations. These infor-
mations are appropriately encrypted according to the key assigned to the physician.

5.3.2. T2D patients enrollment

Once the GP is logged in with his/her own credentials, the system automatically pro-
poses a list of T2D patients or potentially T2D (Table 5.1) extracted from the EHRs.
Only T2D patients without major (uncontrolled) complications are automatically en-
rolled.

Complications that lead to patient exclusions are:

• The presence of, at least, one of these pathologies: coronary heart disease, ictus,
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Table 5.1.: T2D patients’ enrolment CDSS output. Examples with real (anonymized)
data.

Update Indicators Add Patient
ID Patient Type I Type II Exemptions Drugs Checks Complications Enrolment Actions

A0001 * * Add
A0002 * * Remove
A0003 * * Remove
A0004 * * * * Remove
A0005 * * Remove
A0006 * Add
A0007 * * * Remove
A0008 * * Remove
A0009 * * * * Remove
A0010 * * * * Remove
A0011 * * * * Remove

... ... ... ... ... ... ... ... ...

peripheral arterial disease, diabetic or hypertensive retinopathy;

• The presence of uncompensated diabetes: estimated in the presence of HbA1c
> 8% in the last year;

• Insulin treatment in the last year.

Potential T2D patients may be automatically added by GPs. Potential T2D pa-
tients are subjects who, while not presenting the NHS code for T2D, have a high
chance of developing T2D due to ongoing pharmacological treatment or specific clin-
ical checks. With the “Add Patient” button, the physician starts collecting and main-
taining informed all those patients who adhere to the integrated management path.

Table 5.1 shows an example of the output of the enrollment that suggests patients
to be added or removed. The final decision is always performed by the GP.

5.3.3. Data indicators and features

For a proper and correct implementation of a T2D integrated management system,
it is necessary to define overall indicators for monitoring and evaluating treatment
results. The care-quality indicators used to allow GPs to monitor and improve the care
process of diabetic patients were taken from the international literature and the most
important international guidelines on diabetes management. In order to evaluate the
quality of the assistance provided and the conformity with the standards defined in
the guidelines, it is crucial to identify process and outcome indicators to measure the
achievement of the set goals. Specifically, the proposed indicators allows to control the
activities of chronic care model and ultimately evaluate the capability of the integrated
management pathway. Thus, these represent salient information to verify if and in
which entity the totality of results has reached the set goals for improving the chronic
care quality model.
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The proposed care-quality indicators are:

• # 1.1 Indicator “T2D Patients” highlights the correspondence of the percentage
of T2D patients with respect to total assisted patients enclosed in GP’s EHR.
From here on, the following ratios will be calculated only respect to the total of
enrolled T2D patients that have express the consent for adhering to integrated
management system . The GP will schedule the visit of patients with T2D
already under treatment and in according to the integrated follow up will update
the EHR with indicator data required. The physician requires the determination
of each indicator and records the value in the EHR.

• # 2.1 Indicator “Diabetics with annual HbA1c” is obtained from the ratio be-
tween T2D patients with HbA1c monitored minimum during last 12 months and
the total number of T2D patients. This indicator expresses an adequate follow
up of the patient.

• # 2.2 Indicator “Diabetics with annual lipid profile” is obtained from the ra-
tio between T2D patients with lipid profile monitored minimum during last 12
months and the total number of T2D patients. It is demonstrated that LDL
cholesterol reduction in diabetic patients reduces severe cardiovascular risks.
The measurement cannot be calculated for triglyceride values > 200 mg/dl.

• # 2.3 Indicator “Diabetics with annual AP” is obtained from the ratio between
T2D patients with arterial pressure measured minimum during last 12 months
and the total number of T2D patients. It is evidenced that the average prevalence
of hypertension in diabetes is about 50%.

• # 2.4 Indicator “Diabetics with BMI” is obtained from the ratio between T2D
patients with Body Mass Index measured and the total number of T2D patients.
This indicator is indispensable to evaluate the effectiveness of therapy and can
suggest a cardiovascular risk factor. The physician processes BMI and records
the values in the EHR and, finally, performs an educational reinforcement.

• # 2.5 Indicator “Diabetics with Waist” is obtained from the ratio between T2D
patients with waist measured and the total number of T2D patients. This indi-
cator is indispensable to evaluate the effectiveness of therapy and can suggest a
cardiovascular risk factor. The physician processes this value and records it in
the EHR and, finally, performs an educational reinforcement.

• # 2.6 Indicator “Diabetics with annual Microalbuminuria” is obtained from the
ratio between T2D patients with microalbuminuria measured minimum during
last 12 months and the total number of T2D patients. Microalbuminuria is an
early marker of diabetic nephropathy when there is still hope for reversibility or
arresting progression.
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• # 2.7 Indicator “Diabetics with annual Creatinine” is obtained from the ratio
between T2D patients with creatinine measured minimum during last 12 months
and the total number of T2D patients. This indicator is a very sensitive and
specific index of glomerular insufficiency. It is important not only to diagnose
kidney failure, but also for any contraindications to the use of nephrotoxic drugs.

• # 3.1 Indicator “Diabetics with HbA1c ≤ 6.5%” is obtained from the ratio be-
tween the number of T2D patients with latest registered value of HbA1c≤ 6.5%
and the total number of T2D patients. Values below 6.5% prevent the onset of
complications.

• # 3.2 Indicator “Diabetics with LDL ≤ 130 mg/dl” is obtained from the ra-
tio between the number of T2D patients with latest registered value of LDL
cholesterol ≤ 130 mg/dl and the total number of T2D patients. Reduction in
LDL cholesterol values reduces cardiovascular risk. Physician reinforces life
fitness education, evaluates therapeutic strategy after stratification of cardiovas-
cular risk.

• # 3.3 Indicator “Hyp diabetics with AP ≤ 130/80 mmHg” is obtained from the
ratio between T2D and hypertensive patients with AP registered value≤ 130/80
mmHg and the total number of T2D patients. Antihypertensive therapy in dia-
betic subjects, if effectively conducted, reduces micro and macrovascular com-
plications. The GP monitors the values of the Arterial Pressure and, eventually,
modifies the therapy.

Table 5.2 shows aggregated data collection under the evaluation period. For each
indicator, the (“Ratio”) achieved by the GP is shown. The “Ratio” estimates the
correlation between the single indicator and the entire patient population.

The percentage Ratio achieved by the physician for each indicator is compared with
the expected “Target” established by the diabetes project, and its positive or negative
“Distance” from the target is calculated. At this step, in order to assign the overall
“Acceptable Level of Performance (LAP)” score, only if the target is exceeded by the
ratio, the LAP score provided by each indicator is assigned. The “Mean” value of the
indicator of all GPs participating in the project is also reported.

Every GP can also consult the following tables that report for information purposes
the use of antidiabetic drugs (Table 5.3) and the detection of complications(Table 5.4).
For each indicator, the GP can compare his performance with correspondent average
value reached by all GPs participating in the project. In particular, the information re-
ported in Tables 3 and 4 refers to only one GP. However, the ”Mean” value represents
the average of all GPs participating in the project. Although these Tables represent
standard medical information related to antidiabetic drugs subministration and com-
plications in act, it allows the comparison between the incidence of each indicator for
each GP and the average value reached by all GPs participating in the project. Data
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Table 5.2.: Care quality Indicators under evaluation for improving the clinical perfor-
mance. Data from a single GP.

# Description Num Den Ratio Target Distance Mean LAP

1.1 T2D Patients 74 1501 4.93% 3% 64.33% 6.17 % 150

2.1 Diabetics with annual HbA1c 43 74 58.11% 70% -16.99% 66.41 % 100
2.2 Diabetics with annual lipid profile 56 74 75.68% 60% 26.13% 46.64 % 100
2.3 Diabetics with annual AP 24 74 32.43% 90% -63.96% 63.35 % 100
2.4 Diabetics with annual BMI 5 74 6.76% 70% -90.35% 72.73 % 50
2.5 Diabetics with annual waist 0 74 0 50% -100% 53.95 % 50
2.6 Diabetics with annual microalbuminuria 10 74 13.51% 50% -72.97% 31.00 % 100
2.7 Diabetics with annual creatinine 59 74 79.73% 60% 32.88% 41.25 % 50

3.1 Diabetics with HbA1c ≤ 6.5% 35 74 47.3% 25% 89.19% 51.95 % 100
3.2 Diabetics with LDL ≤ 130 mg/dl 43 74 58.11% 20% 190.54% 37.44 % 100
3.3 Hyp diabetics with AP ≤ 130/80 mmHg 5 50 10% 20% -50% 37.68 % 100

indicators were used specifically to determine the economic incentives, but globally
they may help every single GP to improve diabetes care by focusing on specific com-
plications and drugs that have a greater incidence for them.

Table 5.3.: Antidiabetics drugs subministration. Data from a single GP.
Description Num Den Ratio Mean

Diet treatment 49 75 65.33% 20.67%
Insuline treatment 2 75 2.67% 19.46%
Metformin treatment 21 75 28% 44.71%
Sulfaminide treatment 6 75 8% 13.44%
Acarbose treatment 1 75 1.33% 5.03%
Pre cost treatment 3 75 4% 24.01%

Table 5.4.: Complications in act. Data from a single GP.
Description Num Den Ratio Mean

Ischemic cardiopaty 3 75 4% 17.27%
AMI 1 75 1.33% 2.84%
Revascularisation 1 75 1.33% 1.82%
Claudicatio 2 75 2.67% 0.37%
TIA 1 75 1.33% 1.74%

These indicators, together with a subset of the EHRs, are used to perform a machine-
learning-based evaluation of chronic care quality (Subsection 5.4.2).

5.3.4. Enrolled patient management (screening and
follow-up)

The patient management comprises the following steps: Potentially diabetes patient
screening, New diagnosis of T2D, Follow-up A of T2D patient without complications,
Follow-up B of T2D patient with stabilized complications, and Follow-up C of all
patients with T2D.
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Potentially diabetes patient screening (Figure 5.2) To enroll patients that are
suspected to develop T2D, GPs inspect and record lifestyle habits (eating habits, al-
cohol, smoking, physical activity, work activity), measure and record weight, height,
BMI, AP, waist and calculate and record the cardiovascular risk score [179]). The
screening of potentially diabetic patients was performed periodically by evaluating
the fasting plasma glucose test (more cost-effective than HbA1c and OGTT) in sub-
jects over 45 years. GPs perform a fasting plasma glucose test to discriminate diabetes
in subjects with BMI > 25 kg/m2 and at least one or more of the following conditions
in subjects under 45 years:

• Physical inactivity;

• 1st degree familiarity with T2D;

• Belonging to a high-risk ethnic group;

• Arterial hypertension (≥ 140/90 mmHg) or antihypertensive therapy in act;

• HDL cholesterol < 35 mg/dl and/or triglycerides > 250 mg/dl;

• Past diagnosis of gestational diabetes or infant birth with > 4 kg weight;

• Previous diagnosis of Impaired Glucose Tolerance (IGT) or Impaired Fasting
Glucose (IFG), HbA1c 42-48 mmol/mol;

• Insulin resistance;

• Clinical evidence of cardiovascular disease (AMI, stroke, claudicatio, etc.) ac-
cording to a cardiovascular risk score [179].

In the absence of the previous criterion, screening should start at the age of 45 years.
If the blood glucose is not diagnostic for diabetes (<126 mg/dl), screening should

be repeated at least three years, considering a more frequent test for subjects with
dysglycemia (> 100 and < 126 mg/dl). In addition to diabetes, other dysglycemia
patterns are known. To define these conditions, however, the use of the term ”pre-
diabetes” may be misleading and thus not recommended. Hence, the following values
of the main glycemic parameters should be considered, as they identify subjects at risk
of diabetes and cardiovascular disease [180, 181, 182]:

• Fasting blood glucose 100-125 mg/dl (IFG)

• 2-hour glucose after OGTT 140-199 mg/dl (IGT)

• HbA1c 42-48 mmol/mol (only with IFCC aligned assay)
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New diagnosis of T2D (Figure 5.2) GP makes a general visit and prescribes the
first indications on lifestyle (diet, physical activity, smoking abolition, etc.). More-
over, GP considers the opportunity to initiate drug therapy (metformin, if not con-
traindicated) and to send the patient to the dietician. Finally, GP requires investiga-
tions for the first diagnostic check-up by the specialist:

• HbA1c, total cholesterol, HDL, LDL, triglycerides; creatinine, AST, ALT, GGT,
blood count;

• Microalbuminuria;

• Full urine examination;

• ECG (and cardiologic examination at discretion);

• Fundus oculi.

Then GP sends the patient to diabetes center to perform:

• Diagnostic overview;

• Specialists clinical staging and any complications;

• Certification for diabetes exemption;

• Compilation, if necessary, of the therapeutic plan, assessment of care criticality,
individual or group therapeutic education planning.

Finally, depending on the clinical condition, the specialist:

• Starts not complicated T2D patients’ follow-up (follow-up A);

• In agreement with GP, approves the care plan for insulin-dependent diabetes
and/or complications and/or inadequate control (follow-up B).

Follow-up A of T2D patient without complications (Figure 5.2) The care
quality is also based on specific follow up for every enrolled patients. The proposed
NMI system requests every GP to register data relevant to the follow up process, which
are automatically retrieved when requested by the GP. GP conducts a general medical
examination: history to detect urinary, visual, cardiovascular and neurological disor-
ders (erectile dysfunction, muscle cramps, paraesthesia, skin disorders, etc.); periph-
eral wrists, vascular soffits, heart rate, tendon reflexes, tactile sensitivity examination,
skin and feet examination.

Every 3 months within GP’s dedicated outpatient clinic:

• Body weight, BMI and waist;

• AP;
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• Evaluation of the blood glucose control performed by the patient.

GP each year prescribes: HbA1c, blood glucose and any other examinations based
on clinical judgment and/or how agreed with the diabetic specialist, full urine exami-
nation, microalbuminuria, clearance, creatinine, total cholesterol, HDL, triglycerides,
ECG.

GP every 2 years prescribes fundus oculi and record results in the EHR.

Follow-up B of T2D patient with stabilized complications (Figure 5.2)
Every 6 months GP sends patients with stabilized complications to the diabetes

center:

• Activities suggested by Follow-up A;

• In relation to clinical needs, diabetic pathology specialist (including examina-
tion aimed at finding lesions of the feet).

Depending on the intervals programmed for insulin-treated diabetics and/or with
evolving complications and/or inadequate control, GP sends the patient to the diabetes
center in case of:

• Periodic inspection, if provided by the individual care path, agreed with the
diabetic team;

• Social-welfare criticisms that lead to erroneous or non-therapeutic adherence;

• Failure to maintain agreed therapeutic goals, especially if present:

– Severe and/or repeated hypoglycemia;

– Rapidly evolving neurological, renal, ocular or macrovascular complica-
tions;

– Diabetic foot (ulceration or infection);

– Pregnancy in diabetes, gestational diabetes.

Moreover, diabetic center can:

• Perform further specialist examinations (ecocolordoppler, angiographic exams,
percutaneous oximetry, electromyography, retinography, etc.);

• Activate additional therapeutic treatments;

• Agree with GP for any personalized clinical-therapeutic-assistance plan (in the
case of diabetes with evolving complications);

• Manage with a multidisciplinary approach, and according to organizational re-
sources, patients who have:
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– Severe metabolic instability;

– Neurological, renal, ocular or macrovascular complications that are rapidly
evolving;

– Diabetic foot (ulceration or infection);

– Erectile dysfunction;

– Pregnancy in diabetes, gestational diabetes.

Follow-up C of all patients with T2D (Figure 5.2) Every 12 months, GP sends
patient to the diabetic centre to allow annual screening, sharing all the available data.
If the clinical conditions are stable, the annual renewal of the therapeutic plan will be
reported directly by GP, otherwise a new one will be planned.

The integrated management provides a specialist’s visit in the following cases (be-
yond the new diagnosis and annual screening):

• Urgency:

– Acute metabolic deficit;

– Repeated episodes of hypoglycaemia;

– Pregnancy in diabetic women;

– Appearance of foot ulcer or ischemic and/or infectious lesions at the lower
extremities.

• Programmable:

– Repeated glycemic fasting > 180 mg/dl;

– HbA1c > 6.5% in two consecutive determinations;

– Appearance of clinical signs related to complications.

The NMI infrastructure makes data processing possible for individual physicians or
diabetic team for every one of the previously described follow up. Data processing is
focused on audit tools for improving the use of the medical tool by the physician and
on specific local projects aimed at the treatment of chronic diseases or prescriptive
appropriateness. The processing system is built in such a way as to maintain historical
memory of past elaborations for reporting data or for checking trends. Using a stan-
dard data format, regardless of the record software used by the physician, facilitates
the collection, processing, and sharing of information.

5.3.5. Self-Audit & Data Quality

Through self-audit, the physician can evaluate his performance compared to colleagues
on a set of standard indicators that can be subdivided into four areas:
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i. Recording completeness: The accuracy of the collected data, the presence of
the main outpatient data (AP, BMI, etc.) and the recording of laboratory results
in numerical format are evaluated;

ii. Adherence to prevalence: Distances from the prevalence of the major chronic
conditions are shown to the physician. Patients potentially affected by the
pathologies under investigation are reported by examining therapeutic prescrip-
tions, examinations carried out, exemptions granted etc.;

iii. Treatment of chronic diseases: The physician is evaluated on the main indicators
of fitness identified by the international guidelines as compared to the main
chronic diseases;

iv. Contact intensity: In addition to the quality of the recordings, the amount of
these records is also measured. The purpose is to document the activities of the
physician.

Table 5.5 shows the indicators under LAP score evaluation for each patient. For the
indicators: HbA1c, LDL cholesterol and Pressure (only if the patient is hypertensive),
the cell assumes green or red colour, as the result for the examination falls within the
thresholds established by project. For indicators: BMI, waist, microalbuminuria and
creatinine, the star symbol in green is displayed if the data is recorded with a coherent
numeric value within the period indicated by the project. The system finally has the
complete set of features for every T2D patient (Table A.1) where all the indicators
required by the project are displayed. If a data used in the dataset for the care quality
and economic incentives evaluation is not registered, the relative row is shown in grey.
Process indicators are continuously monitored. If a data is not collected, the physician
is alerted by the system to understand the nature of the problem. If a data is collected
incompletely, a different type of notification is sent proactively to the physician.

Table 5.5.: Self Audit & Data Quality aggregated visualization. Sample data for a GP.
Red show warning data for a particular feature of an enrolled patient.

Patient HbA1c LDL Press. BMI Waist Micr. Creat.

Patient 1 6.54 150 F
Patient 2 8.46 120 80/150 F
Patient 3 7.27 117 F F
Patient 4 123 F
Patient 5 6.82 144 F F

. . . . . . . . . . . . . . . . . . . . . . . .
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5.4. CDSS analysis on a real-use case for quality
care evaluation

The results of care quality evaluation relevant to 2018-2019 are presented. The quality
of care was evaluated for every GP based on T2D Patient’s feature set (see Table
A.1), with the main purpose to foster care-delivery quality improvement. The dataset
annotation was firstly described in Section 5.4.1, while Section 5.4.2 described the
ML approach and results. Finally, Section 5.4.4 reported the impact of the proposed
CDSS in terms of economic incentives.

5.4.1. Dataset annotation

A subset of the dataset comprised of 1780 patients was extracted from the entire
dataset (41237 patients) and was manually annotated by experts. This distribution
was equally balanced across the five follow-up phases (19% Potentially diabetes pa-
tient screening, 21% New diagnosis of T2D, 20% Follow-up A of T2D patient without
complications, 22% Follow-up B of T2D patient with stabilized complications, 18%
Follow-up C of all patients with T2D). Each of the follow-up phase (i.e. Potentially
diabetes patients screening, a new diagnosis of T2D, Follow-up A of T2D patient
without complications, Follow-up B of T2D patients with stabilized complications
and Follow-up C of all patients with T2D) described in Section 5.3.4 was manually
annotated by a team of 10 experts (5 from GPs leading group and 5 from diabetic
centers). The experts evaluated the chronic care quality according to a 5-Likert ordi-
nal scale [183] ranging from level 1 (Excellent) to level 5 (Poor). The labels may be
affected by the inter-observer/expert variability: the experts can evaluate the chronic
care quality in a different way based on their different motivation, experience and
background knowledge. For this reason, this problem was alleviated by averaging the
response of the ten expert GPs according to a majority vote approach. As future work,
it may possible to rank the label according to a confidence level [184] and to further
minimize the inter-rater variability by developing a Multi-task learning approach and
maximizing a consensus among annotators.

The input data of the classifier were represented by the T2D patient’s feature set de-
scribed in Table A.1. The majority vote of the expert ratings represented the chronic
care quality ground-truth. The final dataset was comprised of a total of 1780 observa-
tions balanced across the five follow-up phases. Two years interval (2018-2019) was
considered for learning and evaluating the ML model while the data of the following
6 months were used to evaluate the improvement of the economic incentives.
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5.4.2. Machine learning approach

The Random Forest (RF) [98] was employed for classifying chronic care quality. RF
is a variant of bagging proposed by [98] and consists of an ensemble of decision
trees (DT) (i.e., n◦ of DT) generated by an independent identically distributed random
vectors. RF is developed by sampling from the samples, from the features (i.e., n◦ of
features to be selected) and by changing two tree-parameters (i.e., max n◦ of splits and
max n◦ of size) [99]. The splitting features for each node was computed according to
the Gini index metric.

The model was built using Azure Machine Learning Studio and was deployed as
web services on the proposed Service-oriented architecture. The 10 cross-validation
(CV) procedure was implemented, dividing all datasets into 10 folds and selecting
iteratively nine folds for training and one fold for testing. This procedure was stratified
across the five follow-up phase. The optimization of the RF hyperparameters (i.e., n◦

of RT, max n◦ of splits, n◦ of features to select at random for each decision split) was
performed implementing a grid-search and optimizing the macro-recall in a nested
Fivefold Cross-Validation.

5.4.3. Machine learning results

The RF achieved an overall accuracy (averaged over the 10 fold) of 98%± 2% and
macro-recall of 96%± 1%. This result suggests how there is a close dependency
between the indicators displayed in Table A.1 and the chronic care quality ground-
truth. Moreover, these indicators are informative for each of the follow-up phases of
T2D patients. Accordingly, the proposed CDDS might be exploited to support all GPs
over time by providing incentives for moving from one class to another (i.e. from Poor
to Excellent) with the main objective of improving the chronic care quality.

Furthermore, the extracted results pointed out how the proposed CDDS, along with
the economic incentives, brought to a significant improvement of class A (i.e. an
increasing number of patients in class A [Follow-up A of T2D patient without com-
plications]), with more than 12% of the increase in the first 6 months. This result
refers to a six-month prospective outcome of the selected samples (1780 patients).
The total incentive costs are irrelevant if compared with the impact of the care quality
and reduction of T2D consequences over time and their social costs.

5.4.4. Impact of the proposed CDDS: Quality care
evaluation for economic incentives

By selecting the LAP column, GP observes the LAP schedule and the incentives cal-
culated for the reference period (Table 5.6). By selecting the Diabetics column, the
enrolled patients’ schedule is shown. The GP visualizes the overall indicators that de-
termine the LAP score. Moreover, by selecting the patient’s name, GP access to every
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Table 5.6.: Data delivered consultation
Date Diabetics LAP Enrollement inc. LAP inc. Total inc.

2019 72 500 3. 600,00 e 2.160,00 e 5.760,00 e

detailed indicator.
GPs receive the remuneration of 50 e per patient enrolled. In addition to standard

remuneration, the GP annually receives a bonus related to the LAP score achieved.
For determining the overall “LAP Score”, GP’s performance is compared with the
project “Target” for each indicator. If the target is reached or exceeded, the “LAP” for
the indicator is assigned (see Table 5.2).

Thus, the LAP score determines a further economic remuneration (LAP inc.) that
can be 30, 40 or 50 e per patient/year, as showed in Table 5.7.

Table 5.7.: LAP score incentives
LAP LAP inc. per patient

From 300 to 599 30 e
From 600 to 5799 40 e
From 800 to 1000 50 e

The bonus is accumulated over the test period and can be used in similar cases both
from the economic point of view or as a performance indicator that can be transformed
into different loyalty programs.

5.5. Discussion

The proposed CDDS laid the foundation for enhancing the sharing of information
among other GPs by allowing a more planning clinical diagnosis and analysis and
continuity of assistance to patients who need it. The experimental results show how
the ML model is able to support the GP while accurately predicting the chronic care
quality based on specific indicators selected by GPs. However one important limita-
tion of the proposed pilot study may be the specific focus on diabetes care quality.
In medicine, all the guidelines consider the management of the pathology in standard
conditions or with the most frequent and known comorbidities; then it is up to the
physician’s preparation and awareness to adapt the recommendations of the guide-
lines to the specificity of the individual patient, also considering the infinite variability
of individual clinical conditions. Future work may be addressed to (i) validate the pro-
posed CDDS for the management of different chronic diseases and (ii) generalize and
standardize these quality indicators for the prediction of chronic care quality related
to different pathology.
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Chapter 6.

Short-term kidney disease
evolution

Kidney disease (KD) may hide complex causes and is associated with a tremendous
socio-economic impact. A timely identification and management from the first level
of medical care represent the most effective strategy to address the growing global
burden sustainably. Clinical practice guidelines suggest utilizing estimated Glomeru-
lar Filtration Rate (eGFR) for routine evaluation within a screening purpose. Ac-
cordingly, the analysis of Electronic Health Records (EHRs) using Machine Learning
(ML) techniques offers great opportunities to monitor and predict the eGFR trend
over time. This work aims to propose a novel Semi-Supervised Multi-Task Learn-
ing (SS-MTL) approach for predicting short-term KD evolution on multiple General
Practitioners’ EHR data. the SS-MTL approach was demonstrated to be able to (i)
capture the eGFR temporal evolution by imposing a temporal relatedness between
consecutive time-windows and (ii) exploit useful information from unlabeled patients
when labeled patients are less numerous with a gain of up to 4.1 % in terms of Recall.
This situation reflects the real-case scenario, where available labeled samples are lim-
ited, but those unlabeled much more abundant. The SS-MTL approach, also given the
high level of interpretability, might be the ideal candidate in general practice to get
integrated within a decision support system for KD screening purposes.

6.1. Introduction

Kidney disease, often incautiously underestimated as a comorbidity of diabetes or
hypertension, may hide complex causes and is associated with a tremendous socio-
economic impact [185, 186]. Worldwide, 19 million disability-adjusted life-years
were directly attributable to a reduced GFR, which measures the health-state of kidney
functionality [187]. According to WHO recommendations, if KD is early-diagnosed
and an effective screening strategy is adopted, the worsening of kidney function can
be slowed or averted by inexpensive interventions [188]. Thus, the timely identifica-
tion and management of chronic KD (CKD) from the first level of medical care (e.g.,
general practice) represent the most effective strategy to address the growing global
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burden sustainably. Most recent clinical practice guidelines suggest utilizing eGFR
for routine evaluation within a screening purpose, rather than a GFR measure, needed
when an accurate assessment is required [189]. The 6 CKD stages strictly based on
eGFR values serve to assess the kidney functionalities [190]. Accordingly, the anal-
ysis of EHRs using Machine Learning (ML) techniques offers a great opportunity to
monitor the eGFR trend over time and predict its value in the short-term period. Un-
fortunately, in a real-case scenario, EHRs collected by GPs include several challenges
such as multi-source and non-standardized data, incomplete or missing values, regis-
tration errors, data sparsity, privacy-preserving, etc [191].

Patients are followed over some time by GPs, which, at each visit, store a large
variety of clinical events (i.e., exam prescriptions, medications, pathologies, lab tests,
etc). Thus, eGFR evolution can be modeled using Multi-Task Learning (MTL) ap-
proach [192, 193], where the prediction of the eGFR status at a single time point is
considered as a task and the predictive models at different time points may be simi-
lar because temporally related. Differently from the intensive care unit EHR datasets
[194], in GPs scenario the limited availability of i) patients (i.e., spatial-transversal
data) and/or ii) patients’ medical history (i.e., time-longitudinal data) precludes an
adequate labeled sample size (i.e., annotation of eGFR status over time) for exploit-
ing a robust and representative supervised learning strategy. Usually, labeled data are
expensive to collect and unlabeled data are abundant. Accordingly, also in the best-
case scenario where a large amount of transversal and longitudinal data is available,
the label might be sparsely distributed over time. This point is a crucial issue in the
clinical-use case, where data labeling is prohibitive (especially for the healthy sub-
jects) and possibly captures only the most important events of pathological subjects,
and besides, unlabeled data are abundant.

Starting from these motivations, the work aims to propose a novel Semi-Supervised
Multi-task Learning (SS-MTL) approach for predicting short-term KD evolution on
multiple GPs’ EHR data. The SS-MTL approach combines a Semi-Supervised Learn-
ing (SSL) strategy with an MTL procedure to i) impose a temporal relatedness be-
tween consecutive time windows to predict the eGFR status over time and ii) ex-
ploit both labeled and unlabeled samples in the learning procedure for capturing high-
discriminative temporal patterns. Thus, two research questions (RQs) are formulated
to measure the effectiveness of the proposed approach for state-of-the-art approaches:

• RQ1: Is the MTL approach capable to capture the eGFR temporal evolution?

• RQ2: Is the SS-MTL approach capable to capture useful information from un-
labeled patients?
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6.2. Related work

Machine Learning techniques have been already adequately proven to be effective in
dealing with sequential temporal data in many applicative research areas, including
especially healthcare scenarios. In particular, EHR data have been largely exploited to
accomplish predictive tasks such as stages of chronic diseases, disease complications,
intensive care unit clinical events, etc. These approaches spread from standard ML
models such as Logistic Regression (LR) [122, 195, 196], Decision Tree (DT) [197],
Random Forest (RF) [122, 196], Gradient Boosting Tree (Boosting) [122], Support
Vector Machine (SVM) [2, 197] to more appealing and complex Deep Learning (DL)
frameworks, mostly based on feedforward [198], Long-Short Term Memory (LSTM)
[122], and Convolutional Neural Network [122] architectures.

The MTL approach is a well-known and consolidated learning paradigm to address
health informatics and clinician prediction tasks, capable of extracting useful informa-
tion from multiple related tasks and improve the overall generalization performance
[199]. In [198, 200] authors tried to answer when MTL improved prediction perfor-
mance for different clinical tasks using EHR data. Multi-task feedforward [198] and
multi-task LSTM networks [200] were compared with baseline single task networks
and LR models. Most related to our work is the paper [193], where a temporal MTL
was adopted to stratify the risk of renal function deterioration. In fact, the different
clinical tasks do not differ by their intrinsic nature (i.e., eGFR prediction), but from
their temporal evolution (i.e., time windows). Differently from [193], in our work,
this problem is modeled as an SSL scenario, where the label is sparse over time. Ad-
ditionally, the whole raw EHR data is used rather than performing a feature selection
for each task, so as to potentially avoid a lack of relevant information to detect hidden
patterns.

As mentioned before, in GPs EHR data, labeled data are expensive to collect and
unlabeled data are abundant. Moreover, even if originally a huge amount of labeled
data is available, during a real-case scenario usually happens that after the prepro-
cessing stage (e.g., inclusion/exclusion criteria) a considerable amount of labeled data
is going to be reduced [4, 193]. Thus, the precondition of collecting a huge labeled
sample size is necessary, but not easily satisfied especially in the GP scenario where
large and publicly available datasets are limited. In [130, 201] the training labeled
sample size was augmented using GANs and conditional GANs, respectively, without
considering unlabeled data. Given this operational necessity to retrieve labeled infor-
mation, MTL could be combined with SSL, leading to Semi-Supervised Multi-Task
Learning (SS-MTL) paradigm, where a training set of each task consists of both la-
beled and unlabeled data to exploit useful information contained in the unlabeled data
in order to further improve the MTL performance. A similar rationale was proposed in
[202], where a multi-task setting based on an SSL technique, named Positive and Un-
labeled learning (PU), was implemented for addressing a disease gene prioritization
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problem. A different SSL technique (i.e., Label Propagation [LP]), which constructs
a similarity graph over all input data, was proposed in [203] to generate personalized
drug recommendations by leveraging patient similarity and drug similarity analytics.
In our proposed approach, the Self-Learning Algorithm (SLA) inspired from [204] is
utilized as SSL paradigm, which during the training stage (i.e., negative and positive
samples), iteratively assigns pseudo-labels to the set of unlabeled training samples that
have their margin above a threshold automatically achieved from this bound.

After evaluating the state-of-the-art, our proposed SS-MTL approach represents the
first attempt to combine the SSL paradigm in an MTL scenario where the main goal
is to predict the eGFR evolution based on EHR data.

Therefore, the applicative theoretical novelty of this work actively contributes to the
biomedical informatics field when a large number of unlabeled samples and a tempo-
ral relatedness between consecutive tasks are involved. In this work, the SS-MTL
approach, capable to predict and explain the short-term KD evolution, contributes to
improve the KD management especially at an early stage. Thus, in general practice,
the SS-MTL approach may be integrated in a decision support system for screening
purposes.

6.3. Clinical data: mFIMMG dataset

The publicly available mFIMMG dataset1, which is extracted from the standardized
FIMmG Netmedica Cloud computing infrastructure [150, 1], stores a 10-year (2010−
2019) activity collected by 6 GPs, and consists of 14175 patients and 6 main fields.
The demographic field is composed by age and gender. The monitoring field (i.e.,
diastolic and systolic blood pressure, height, weight, and waist) contains only contin-
uous predictors, as well as the lab tests field where all the laboratory outcomes (e.g.,
eGFR) are stored. The remaining fields (i.e., pathologies, drugs, exam prescriptions
[exams]) are all categorical.

6.3.1. Preprocessing

Figure 6.1 shows all the preprocessing procedure: i) eGFR, ii) Labeled samples, and
iii) Temporal data.

6.3.1.1. eGFR

The eGFR index was calculated by the authors using a unique the CKD-EPI formula
[205, 206], as a combination of 4 factors:

eGFR = f (creatinin,age,gender,race) (6.1)

1http://vrai.dii.univpm.it/content/mfimmg-dataset
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This rationale mitigated the inter-laboratory variability. Among all patients, let call
labeled samples (#5812) the subset of patients whose at least a single eGFR index is
known, unlabeled samples (#8363) the remaining.

6.3.1.2. Labeled samples

Let tg the time-stamp of the last eGFR observation, the previous 1-year time-stamp is
defined as:

tt = tg−12 months (6.2)

Among all labeled samples only those which satisfy the following criteria were
selected:

• At least a single observation of all fields (#5494);

• At least 2-year eGFR medical history before tt , that must include 2 or more
eGFR observations (#2176).

Table 6.1 shows the eGFR distribution at tg time-stamp of the selected samples (i.e.,
from now on mentioned as labeled samples) in according with the CKD stages [190].
The remaining samples named discarded samples (#3636) from now on were merged
with unlabeled samples and named as such (#11999).

Additionally, for each field, only features whose appearances are less than 5% of the
total of labeled samples were excluded. Regarding the monitoring field, only the blood
pressure feature is over cut, then was grouped with lab tests field because of the same
continuous nature. From now on, all the included features were named predictors.

mFIMMG
#14175

Unlabeled
#8363

Labeled
#5812

Discarded
#318

Selected
#5494

Discarded
#3636

Unlabeled
#8363

Unlabeled
#11999

Unlabeled
#4996

eGFR Labeled samples Temporal data

Selected
#2176

Labeled
#2176

Labeled
#2136

Labeled
#1833

Figure 6.1.: mFIMMG dataset preprocessing: labeled and unlabeled samples.

6.3.1.3. Temporal data

Following [193], 6-month granularity was chosen to define a time-window. For each
labeled sample, only the first five consecutive non-overlapping time-windows (i.e.,
2.5-year medical history) before tt were chosen. If few time-windows were chosen
the eGFR temporal evolution could not be caught by the predictive model; on the
other hand, the model would risk overfitting because the more observations the patient
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Table 6.1.: Distribution of eGFR for the labeled samples (#2176) in according with
the CKD stages.

CKD stage eGFR [ml/min/1.73m2] %

I ≥ 90: normal 19.35
II 60–89: mild reduction 53.31
IIIa 45–59: mild-moderate reduction 16.59
IIIb 30–44: moderate-severe 7.49
IV 15–29: sever reduction 2.85
V < 15: kidney failure 0.41

would have, the more the patient would tend to have chronic kidney complications
(i.e., low eGFR values) [207]. Thus, for each field, all the patients that did not contain
observations in any of the selected five time-windows were deleted (#2136).

The information about eGFR before tt was deleted only from the lab tests field
(i.e., eGFR continuous values) because already indirectly present through the pre-
dictors used in CKD-EPI formula (6.1), while from exams field was left (i.e., times
of eGFR examination prescription). Finally, a supplementary field named ’Overall’-
which consists of the aggregation of drugs, exams, lab tests predictors only if they
were fully shared by the same patient - was provided (#1833 samples and 494 predic-
tors). Additionally, Overall* field included also demographic predictors (i.e., gender
and age).

On the contrary, for each field of unlabeled samples, five random consecutive time-
windows were chosen if patients shared at least a single observation of the same pre-
dictors extracted from the labeled samples, by obtaining the final Overall and Overall*
fields (#4996 samples).

Both categorical and continuous features were appropriately standardized during
the preprocessing stage. The one-hot encoding was used on categorical features (i.e.,
pathologies, exams, drugs), while the z-score was used on continuous features (i.e.,
lab tests) by removing the mean and scaling to unit variance. Thus, categorical fields
reflect the presence or the absence of a given pathology, drug, or exam without dis-
playing any missing values. On the other hand, the continuous field (lab tests) may
present missing values or outliers. For that reason, an outlier detection strategy based
on scaled median absolute deviation and an extra-values imputation of missing values
was performed for both labeled and unlabeled samples of the lab tests field. Table 6.2
shows the final configuration of the mFIMMG dataset after the preprocessing stage.

6.4. Methods

The binary classification task consists in predicting the short-term (1-year) eGFR evo-
lution. Given the longitudinal information of each patient, according to Table 6.1 the
assumption is to predict CKD stage I (e.g., negative or normal samples, y−) from the
others (e.g., positive or risky samples, y+).

96



6.4. Methods

Table 6.2.: Final configuration of the mFIMMG dataset after the preprocessing stage.

Pathologies Drugs Exams Lab tests Overall Overall*

Predictors 38 309 135 50 494 496

Total samples 5660 9533 9530 7479 6829 6829
Labeled samples 707 1853 1887 1877 1833 1833
Unlabeled samples 4953 7680 7643 5602 4996 4996

no-timea)

b)

c)

Figure 6.2.: Three different approaches. a) No-temporal: the temporal information
is averaged across all time-windows; b) Stacked-temporal: the tempo-
ral information is preserved by concatenating longitudinally all the time-
windows; and c) Multitask-temporal: each time-window is treated as a
separate task.

6.4.1. Notations

The main mathematical notations used in the following Sec. 6.4 were summarized in
Table 6.3.

6.4.2. Baseline approaches

No-temporal In this approach, the continuous predictors were averaged across all
time windows, while the categorical ones were aggregated. Even if the temporal in-
formation has vanished, this approach handles the challenge of irregular sampling and
missing values.

Stacked-temporal In this approach temporal information was preserved by con-
catenating longitudinally all the time windows. This approach can capture temporal
information across time windows, but it may suffer from overfitting, considering the
increasing number of predictors which is directly proportional to the number of time
windows.
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Table 6.3.: Notations.
Symbol Description

n # of samples
d # of predictors
t # of tasks (time-windows)
X ∈ Rn×d Observations

- x ∈ Zl - labeled
- x
′ ∈Vu - unlabeled

- x̃
′ ∈ Z̃u - pseudolabeled

- x̃ ∈ Z̃ - labeled and pseudolabeled
W ∈ Rd×t Weights
Y ∈ Rn×t Targets

- y ∈ Zl - labeled
- y
′ ∈Vu - unlabeled

- ỹ
′ ∈ Z̃u - pseudolabeled

- ỹ ∈ Z̃ - labeled and pseudolabeled
ŷ ∈ Rn×1 Target predictions

6.4.3. Semi-Supervised Multi-Task Learning (SS-MTL)

In the following subsection the SS-MTL approach is introduced by providing: i)
multi-task temporal Lasso formulation (see Sec. 6.4.3.1), ii) Self-Learning Algorithm
formulation (see Sec. 6.4.3.2), and iii) SS-MTL approach implementation (see Sec.
6.4.3.3).

6.4.3.1. MTL: multi-task temporal Lasso

Multitask-temporal In this approach (see Figure 6.2c) the temporal information
was handled as a MTL problem. Each time-window was treated as a separate task
and then, the resulting intermediate outputs (y1,y2, ...,yt ) were combined to obtain the
final prediction ŷ.

Considering the following MTL problem with t tasks (time-windows), n samples,
and d predictors, the model encodes the temporal information using regularization
terms. Let {x1, ...,xn} be the input data and {y1, ...,yn} be the targets, where each
xi ∈ Rd represents a sample, and yi ∈ Rt is the corresponding target at different time-
windows. X = [x1, ...,xn]

T ∈ Rn×d is denoted as the data matrix, Y = [y1, ...,yn]
T ∈

Rn×t as the target matrix, and W = [w1, ...,wt ]∈Rd×t as the weight matrix. The whole
formulation of multitask temporal Lasso is given by [192, 208]:

min
W

L(W )+ρ1‖W‖2
F +ρ2

t−1

∑
i=1
‖Wi−W1+1‖2

F +ρ3‖W‖2,1 (6.3)

where L(W ) is the loss function and ρ1,ρ2,ρ3, represent the regularization penal-
ties: the first penalty controls the complexity of the model; the second penalty couples
the neighbor tasks, encouraging every two neighbour tasks to be similar (temporal
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smoothness); and the third penalty induces the grouped sparsity, which performs the
joint feature selection on the tasks at different time-windows (longitudinal feature se-
lection). The temporal information is modeled as a type of graph regularization A,
where neighbour tasks are coupled via edges.

A is the structure matrix which encodes the task relatedness. In the temporal group
Lasso formulation, A is defined as an (t− 1)× t sparse matrix, in which Ai,i = 1 and
Ai,i+1 =−1; and thus, the formulation can be written in a simpler form:

min
W

L(W )+ρ1‖W‖2
F +ρ2‖WA‖2

F +ρ3‖W‖2,1 (6.4)

However, this formulation assumes that for each sample a predictor is simultane-
ously selected or not at all time-windows. The convex fused sparse group Lasso (CFG)
formulation overcomes this issue [208]:

min
W

L(W )+ρ1‖W‖1 +ρ2‖AW T‖1 +ρ3‖W‖2,1 (6.5)

Accordingly, the CFG with Logistic loss model solves the CFG regularized multi-
task Logistic regression problem:

min
W,c

t

∑
i=1

ni

∑
j=1

log
{

1+ exp
[
−Yi, j

(
W T

j Xi, j + ci

)]}
+

+ρ1‖W‖1 +ρ2‖AW T‖1 +ρ3‖W‖2,1

(6.6)

where ρ3 controls group sparsity for joint feature selection, while ρ1, which controls
element-wise sparsity and ρ2 which controls the fused regularization represent the
parameters for the fused Lasso.

6.4.3.2. SSL: Self-Learning Algorithm (SLA)

Semi-supervised learning, also referred as learning with partially labeled data, con-
cerns the case where a prediction function is learned on both labeled and unlabeled
training samples. Unlabeled training samples may contain valuable information on
the prediction problem at hand which exploitation may lead to a performant pre-
diction function. For a binary classification scenario, a set of labeled training sam-
ples Zl = {(xi,yi) | i = 1, ..., l} and a set of unlabeled training samples Vu = {x

′
i | i =

l +1, ..., l +u} are defined.
Considering learning algorithms that work in a fixed hypothesis space H of binary

classifiers and given the whole training set S = Zl ∪Vu, the task of the learner h ∈ H
is to choose a posterior distribution Q over H such that the Q-weighted majority vote
classifier BQ (i.e., Bayes classifier) will have the smallest possible risk on samples of
Vu. Defining the Bayes classifier:

BQ(x) = sign[Eh∼Qh(x)] (6.7)
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Its empirical error over the unlabeled set Vu, called the transductive risk, can be
defined as:

Ru(BQ) =
1
u ∑

x′∈Vu

[BQ(x
′
) 6= y

′
] (6.8)

The corresponding Gibbs classifier, GQ, is randomly chosen from the hypothesis
space H according to the posteriror distribution Q and its transductive risk over the
unlabeled training set is defined by:

Ru(GQ) =
1
u ∑

x′∈Vu

Eh∼Q[h(x
′
) 6= y

′
] (6.9)

Note that these risks cannot be estimated as the labels of unlabeled examples are
unknown.

In [209, Ch. 3] the margin of a Bayes classifier was shown to be an indicator
of confidence respecting the cluster assumption in semi-supervised learning which
stipulates that the decision boundary passes through low density regions. Supposing
to have a tight upper bound Rδ

u (GQ) over the risk of the Gibbs classifer GQ which
holds with probability 1−δ , [204] showed that it is possible to bound the transductive
risk of the Bayes classifier with high probability.

This result follows from a bound on the joint Bayes risk depending on a thresh-
old θ :

Ru∧θ (BQ) =
1
u ∑

x′∈Vu

[BQ(x
′
) 6= y

′ ∧mQ(x
′
)> θ ] (6.10)

where mQ(·) = |Eh∼Qh(·)| is the absolute value output of the Bayes classifier, de-
noted as the unsigned margin function.

This bound over the joint Bayes risk can be estimated by considering the distri-
bution of unsigned margins regarding the threshold θ and it constitutes the working
hypothesis of the margin-based Self-Learning Algorithms (SLA). This algorithm first
trains a classifier on the labeled training set. The output of the learner can then be used
to assign pseudolabels to unlabeled examples (denoted by the set Z̃u in what follows)
having a margin above a certain threshold θ and the supervised method is repeatedly
retrained upon the set of the initial labeled and unlabeled examples that have been
classified in the previous steps. The threshold θ is iteratively estimated at each step of
the algorithm as the one which minimizes the conditional Bayes error defined as:

Ru|θ (BQ) = Pu(BQ(x
′
) 6= y

′ | mQ(x
′
> θ) =

Ru∧θ (BQ)

Pu(mQ(x
′
> θ)

(6.11)

In practice, the upper bound Rδ
Q(G) of the risk of the Gibbs classifier which is

involved in the computation of θ in equation (6.8) is fixed to its worst value 0.5.
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Algorithm SLA
Input: Labeled and Unlabeled training sets: Zl ,Vu
Initialize
Train a classifier H on Zl
Set Z̃u ← ∅
repeat

Compute the margin threshold θ from (6.8)
S←

{
(x
′
, y
′
) | x′ ∈ Vu; mQ(x

′ ≥ θ ∧ y
′

= sign(H(x
′
))
}

Z̃u← Z̃u ∪S, Vu =Vu\S
Learn a classifier H by optimizing a global loss function on Zl and Z̃u

until Vu is empty or no adds to Z̃u ;
Output: The final Z̃ = Zl ∪ Z̃u

6.4.3.3. Implementation of SS-MTL

The training experimental procedure adopted by our proposed method is shown in
Figure 6.3.

outer
10 fold CV >

SMOTE

SLA

downsampling

nested
5 fold CV =

=

?

Figure 6.3.: SS-MTL: training experimental procedure.

At the beginning of the outer 10-fold cross-validation (10-CV) procedure, negative
labeled samples y− were around four times more numerous than those positive y+,
thus SMOTE [55] was utilized to balance the labeled samples (y− = y+). In the ex-
periments, two different Bayes classifiers, which are Decision Trees (DT) and SVM,
were considered in the SLA algorithm for Overall and Overall* fields, respectively.
On the contrary for the other single fields only DT model was used. This rationale is
justified by the fact that after having tested all the possible combinations of classifiers
(i.e., LR, DT, RF, Boosting, SVM) within the SLA algorithm, in terms of predictive
performance, the SVM resulted the best classifier for Overall* field, while the DT
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classifier for all the others.
During each SLA iteration, every candidate pseudolabel is chosen only if selected

(i.e., above threshold θ ) for all time-windows. After that, the final prediction asso-
ciated to the pseudolabel was selected by testing 3 different strategies (i.e., majority
voting (majvot), unanimous, and Gibbs).

From the final SLA output ∈ Z̃, the imbalance ratio between ỹ− and ỹ+ is un-
known (ỹ− ? ỹ+), thus random downsampling over the pseudolabel majority class was
performed in order to achieve again a balanced condition. The hyperparameters tun-
ing was performed by implementing a grid-search and maximizing the macro-Recall
within a nested 5-fold cross validation (5-CV) procedure. The rationale behind the op-
timization of the Macro-recall in the validation set is justified by the fact of achieving
an objective that is more clinical relevant for a screening purpose. Thus, the authors,
following this rationale, preferred to minimize the false negatives and achieve a trade-
off between sensitivity and specificity. This choice has been also performed according
to the most recent state-of-the-art approaches in predictive medicine scenario [2, 4].
The optimal hyperparameters (hyp opt), x̃, and ỹ were fed to the MTL model (i.e.,
CFG) for the training stage. The final prediction of the SS-MTL was computed by
averaging the margin outputs of each single t task and then taking the decision based
on the sign function:

ŷi = sign
(

∑
t
i=1 x̃T wi + ci

t

)
(6.12)

The code to replicate the SS-MTL approach is publicly released by the authors.

6.4.4. Experimental comparisons

Our proposed SS-MTL approach was compared with baseline approaches (i.e., no-
temporal, stacked-temporal) and with the MTL approach. Moreover, to better contex-
tualize the proposed SS-MTL in the Semi-Supervised Learning (SSL) literature, the
Self-Learning Algorithm (SLA) procedure was also compared with other existing SSL
techniques, such as Positive and Unlabeled learning and Label Propagation. These ap-
proaches adopted as ML models those employed in the state-of-the-art closer to our
setting (see Sec. 6.2), such as LR [122, 195, 196] with Lasso regularizer; DT [197];
RF [122, 196]; Boosting [122]; and SVM [197, 2] with Lasso regularizer. Experi-
mental results were provided both for single (i.e., pathologies, drugs, exams, lab tests)
and Overall/Overall* fields, by utilizing or not (i.e., noSLA) the SLA procedure. The
same ML model adopted externally for the 10-CV was utilised also within the SLA
procedure.

The predictive performance was evaluated according to the following standard met-
rics for classification task defined in Section 2.4.4: Accuracy, Precision, Recall, F1
and AUC.
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Table 6.4.: Range of hyperparameters (hyp) for each model: Logistic Regression (LR)
with Lasso regularizer, Decision Tree (DT), Random Forest (RF), Gradi-
ent Boosting Trees (Boosting), Support Vector Machine (SVM) with Lasso
regularizer, and Convex Fused Group Lasso (CFG) with Logistic regres-
sion model.

Model Hyp Range

LR [122, 195, 196] Lambda {10−5,10−410−3,10−2,0.1,1}

DT [197] max # of splits {100,200,300,400,500}

RF [122, 196]
# of DT
# of predictors to select

{25,50,75,100,125,150}
{ all

4 , all
3 , all

2 ,all}

Boosting [122]
max # of splits
learning rate

{50,100,150,200}
{10−2,0.1,1}

SVM [197, 2] Lambda {10−5,10−410−3,10−2,0.1,1}

CFG [192, 208]
ρ1
ρ2
ρ3

{10−6,10−5,10−4,10−3,10−2,0.1}
{10−5,10−4,10−3,10−2,0.1,1}
{10−3,10−2,0.1}

Table 6.4 summarizes the range of the hyperparameters optimized in all the experi-
ments.

6.5. Experimental results

The experimental results of the SS-MTL approach are shown as predictive perfor-
mance comparison with baseline approaches (i.e., no-temporal [Sec. 6.5.2], stacked-
temporal [Sec. 6.5.3]) and with the MTL approach (Sec. 6.5.4). For the baseline
approach (i.e., no-temporal), the SLA procedure (i.e., the SSL technique from which
our proposed approach is originated) is firstly compared with other SSL techniques,
such as PU and LP (Sec. 6.5.1).

In particular, Section 6.5.4 shows the trend of the predictive performance in relation
to different portions of labeled training samples. This rational is due to the intention
to measure the reliability of SS-MTL for dealing with a higher portion of unlabeled
samples as excepted in a real-case scenario. Finally, the experimental results of the
SS-MTL approach are shown in terms of pattern localization (Sec. 6.5.5) to measure
the importance of the predictors.

6.5.1. State-of-the-art comparison: Semi-Supervised
Learning (SSL)

Table 6.5 shows the comparison of the experimental of the SLA procedure with other
SSL techniques (i.e., PU, LP). The comparison was performed only for the Overall*
field of the baseline (i.e., no-temporal) approach. The predictive performance of all
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ML models that used the SLA procedure is clearly superior to the other SSL tech-
niques (i.e., PU, LP), thus the SLA procedure was selected as the SSL paradigm for
the proposed SS-MTL approach.

Table 6.5.: Experimental results comparison of the Self-Learning Algorithm (SLA)
procedure with other Semi-Supervised Learning (SSL) techniques (i.e.,
Positive and Unlabeled learning [PU], Label Propagation [LP]). The com-
parison was performed only for the Overall* field of the baseline (i.e., no-
temporal) approach. The best result in terms of Recall was highlighted in
bold.

SLA Accuracy F1 Precision Recall AUC

LR 0.744 0.629 0.620 0.660 0.741
DT 0.792 0.677 0.670 0.697 0.693
RF 0.838 0.730 0.731 0.734 0.827
Boosting 0.849 0.687 0.760 0.660 0.847
SVM 0.716 0.627 0.623 0.685 0.749

LP Accuracy F1 Precision Recall AUC

LR 0.651 0.575 0.582 0.632 0.724
DT 0.698 0.583 0.592 0.618 0.616
RF 0.788 0.687 0.644 0.692 0.811
Boosting 0.813 0.646 0.707 0.640 0.829
SVM 0.598 0.559 0.576 0.655 0.710

PU Accuracy F1 Precision Recall AUC

LR 0.759 0.610 0.611 0.607 0.680
DT 0.795 0.553 0.594 0.538 0.532
RF 0.816 0.598 0.638 0.646 0.721
Boosting 0.811 0.516 0.662 0.508 0.692
SVM 0.705 0.601 0.609 0.640 0.729

6.5.2. State-of-the-art comparison: No-temporal

Table 6.6 shows the comparison results for the no-temporal approach. Considering
the SS-MTL an evolution of standard LR model, the comparison of the SS-MTL
approach with the LR model would represent the most fair and straight compari-
son. The SS-MTL approach performance (Recall = 0.737±0.054) for Overall* field
was greater than no-temporal (LR: Recall = 0.660±0.048) and stacked-temporal (LR:
Recall = 0.657±0.042) in SLA configuration. Again for Overall field, the SS-MTL
approach performance (Recall = 0.668±0.053) was greater than no-temporal (LR:
Recall = 0.616±0.062) and stacked-temporal (LR: Recall = 0.588±0.034) in SLA
configuration.

Nevertheless, if a global overview is considered, the best performance (Recall =
0.734±0.051) for no-temporal approach was obtained by the RF model for Over-
all* field in SLA configuration, but still lower than the best ones obtained by MTL
(Recall = 0.742±0.060) approach and SS-MTL (Recall = 0.737±0.054) approach.
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Table 6.6.: No-temporal: Logistic Regression (LR) with Lasso regularizer, Decision
Tree (DT), Random Forest (RF), Gradient Boosting Trees (Boosting), and
Support Vector Machine (SVM) with Lasso regularizer. In SLA procedure
the same classifier adopted externally in 10-CV was used. Overall* indi-
cates that also gender and age were included as predictors. Best result in
terms of Recall was highlighted in bold for each field.

noSLA SLA

Pathologies Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.519 0.456 0.529 0.556 0.557 0.528 0.452 0.516 0.530 0.568
DT 0.614 0.499 0.531 0.553 0.576 0.652 0.511 0.531 0.556 0.549
RF 0.628 0.506 0.530 0.554 0.608 0.642 0.517 0.537 0.562 0.579
Boost 0.652 0.523 0.544 0.572 0.585 0.651 0.518 0.539 0.563 0.580
SVM 0.488 0.437 0.524 0.546 0.563 0.501 0.445 0.532 0.559 0.568
Drugs Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.638 0.557 0.573 0.618 0.643 0.631 0.552 0.570 0.612 0.650
DT 0.694 0.540 0.540 0.549 0.559 0.628 0.543 0.561 0.598 0.602
RF 0.759 0.561 0.568 0.559 0.618 0.724 0.542 0.542 0.543 0.538
Boost 0.781 0.557 0.580 0.554 0.608 0.767 0.538 0.552 0.537 0.596
SVM 0.594 0.536 0.574 0.625 0.645 0.597 0.541 0.579 0.633 0.659
Exams Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.607 0.534 0.559 0.594 0.647 0.610 0.537 0.562 0.600 0.643
DT 0.707 0.552 0.551 0.559 0.557 0.670 0.550 0.553 0.574 0.604
RF 0.778 0.548 0.576 0.546 0.663 0.774 0.543 0.569 0.541 0.602
Boost 0.798 0.526 0.600 0.531 0.662 0.797 0.528 0.593 0.533 0.639
SVM 0.593 0.536 0.571 0.617 0.667 0.606 0.547 0.579 0.629 0.670
Lab tests Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.645 0.559 0.572 0.611 0.661 0.656 0.559 0.566 0.599 0.656
DT 0.743 0.574 0.574 0.576 0.576 0.710 0.574 0.572 0.588 0.588
RF 0.806 0.630 0.661 0.619 0.761 0.789 0.605 0.622 0.598 0.731
Boost 0.815 0.498 0.565 0.522 0.759 0.815 0.514 0.649 0.529 0.743
SVM 0.633 0.550 0.565 0.602 0.657 0.668 0.567 0.571 0.603 0.653
Overall Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.703 0.582 0.579 0.607 0.676 0.706 0.587 0.584 0.616 0.683
DT 0.741 0.576 0.574 0.581 0.569 0.711 0.597 0.593 0.629 0.598
RF 0.803 0.640 0.654 0.632 0.762 0.777 0.615 0.620 0.612 0.695
Boost 0.821 0.532 0.673 0.541 0.770 0.816 0.542 0.635 0.546 0.783
SVM 0.651 0.583 0.601 0.665 0.709 0.677 0.592 0.599 0.654 0.706
Overall* Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
LR 0.739 0.622 0.615 0.650 0.727 0.744 0.629 0.620 0.660 0.741
DT 0.796 0.658 0.660 0.662 0.666 0.792 0.677 0.670 0.697 0.693
RF 0.830 0.717 0.716 0.722 0.854 0.838 0.730 0.731 0.734 0.827
Boost 0.847 0.678 0.761 0.650 0.875 0.849 0.687 0.760 0.660 0.847
SVM 0.693 0.613 0.617 0.683 0.747 0.716 0.627 0.623 0.685 0.749
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Instead for Overall field, the best performance (Recall = 0.665±0.062) was obtained
by the SVM in noSLA configuration. This result is comparable with the one extracted
for the SS-MTL approach (Recall = 0.668±0.053).

6.5.3. State-of-the-art comparison: Stacked-temporal

Table 6.7.: Stacked-temporal: Logistic Regression (LR) with Lasso regularizer, De-
cision Tree (DT), Random Forest (RF), Gradient Boosting Trees (Boost-
ing), and Support Vector Machine (SVM) with Lasso regularizer. In SLA
procedure the same classifier adopted externally in 10-CV was used. Over-
all* indicates that also gender and age were included as predictors. Best
result in terms of Recall was highlighted in bold for each field.

noSLA SLA

Pathologies Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.658 0.506 0.521 0.537 0.561 0.682 0.534 0.543 0.566 0.562
DT 0.607 0.500 0.533 0.563 0.578 0.703 0.539 0.546 0.568 0.563
RF 0.550 0.468 0.524 0.549 0.571 0.545 0.467 0.529 0.558 0.554
Boost 0.680 0.526 0.536 0.557 0.561 0.685 0.512 0.522 0.533 0.541
SVM 0.646 0.511 0.529 0.550 0.570 0.726 0.539 0.544 0.555 0.557
Drugs Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.679 0.533 0.534 0.544 0.623 0.653 0.553 0.561 0.591 0.641
DT 0.693 0.540 0.540 0.550 0.548 0.613 0.532 0.554 0.588 0.567
RF 0.750 0.549 0.554 0.547 0.610 0.743 0.561 0.562 0.562 0.529
Boost 0.758 0.555 0.565 0.554 0.620 0.701 0.538 0.537 0.545 0.617
SVM 0.587 0.535 0.579 0.633 0.665 0.582 0.530 0.574 0.624 0.666
Exams Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.665 0.540 0.543 0.560 0.603 0.648 0.539 0.546 0.567 0.616
DT 0.686 0.528 0.528 0.535 0.530 0.648 0.530 0.537 0.554 0.544
RF 0.764 0.551 0.565 0.548 0.611 0.748 0.531 0.540 0.531 0.561
Boost 0.791 0.480 0.515 0.504 0.629 0.787 0.487 0.512 0.507 0.611
SVM 0.624 0.547 0.566 0.605 0.648 0.615 0.540 0.562 0.599 0.646
Lab tests Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.651 0.552 0.560 0.590 0.645 0.657 0.555 0.562 0.591 0.642
DT 0.723 0.554 0.553 0.556 0.554 0.675 0.541 0.542 0.557 0.537
RF 0.785 0.573 0.602 0.566 0.711 0.777 0.578 0.593 0.573 0.670
Boost 0.818 0.496 0.699 0.521 0.731 0.811 0.490 0.585 0.516 0.713
SVM 0.611 0.545 0.572 0.617 0.663 0.638 0.563 0.580 0.628 0.671
Overall Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.727 0.571 0.567 0.579 0.660 0.721 0.576 0.572 0.588 0.669
DT 0.727 0.570 0.567 0.577 0.567 0.690 0.573 0.573 0.601 0.586
RF 0.795 0.625 0.638 0.617 0.745 0.775 0.602 0.611 0.598 0.660
Boost 0.817 0.509 0.646 0.526 0.751 0.816 0.503 0.633 0.522 0.738
SVM 0.661 0.583 0.595 0.652 0.713 0.668 0.590 0.600 0.659 0.713
Overall* Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC
Logistic 0.755 0.611 0.606 0.621 0.706 0.762 0.638 0.630 0.657 0.742
DT 0.772 0.638 0.633 0.648 0.622 0.769 0.648 0.639 0.668 0.619
RF 0.816 0.696 0.691 0.704 0.834 0.805 0.678 0.675 0.684 0.777
Boost 0.840 0.632 0.745 0.610 0.857 0.835 0.622 0.733 0.602 0.835
SVM 0.745 0.651 0.641 0.700 0.782 0.751 0.659 0.647 0.709 0.787

Table 6.7 shows the comparison results for the stacked-temporal approach. Focus-
ing on the comparison of the LR model, the SS-MTL approach performance (Recall =
0.737±0.054) for Overall* field was greater than stacked-temporal (LR: Recall =
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0.657±0.042) in SLA configuration. Again for Overall field, the SS-MTL approach
performance (Recall = 0.668±0.053) was greater than stacked-temporal (LR: Recall =
0.588±0.034) in SLA configuration.

Nevertheless, if a global overview is considered, the best performance (Recall =
0.709±0.057) was obtained by the SVM model for Overall* field in SLA configu-
ration. Accordingly for Overall field, the best performance (Recall = 0.659±0.047)
was still obtained by the SVM model in SLA configuration. These results were lower
than those extracted by the SS-MTL approach for Overall* (Recall = 0.737±0.054)
and Overall field (Recall = 0.668±0.053).

6.5.4. Multitask-temporal comparison

Table 6.8.: Multitask-temporal: Decision Tree (DT) classifier was used to select
pseudolabels in SLA procedure, except for Overall* where Support Vector
Machine (SVM) with Lasso regularizer was used. Overall* indicates that
also gender and age were included as predictors. Fraction (f) represents
the amount of labeled samples used in the training stage. The table de-
picts the SS-MTL majvot configuration. Best result in terms of Recall was
highlighted in bold for each field.

f = 100% MTL SS-MTL

Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC

Pathologies 0.766 0.510 0.542 0.510 0.517 0.782 0.523 0.541 0.522 0.511
Drugs 0.568 0.526 0.584 0.640 0.680 0.581 0.533 0.582 0.638 0.690
Exams 0.580 0.532 0.579 0.631 0.677 0.573 0.522 0.568 0.611 0.673
Lab tests 0.622 0.561 0.587 0.643 0.687 0.621 0.560 0.587 0.642 0.687

Overall 0.625 0.568 0.598 0.664 0.720 0.636 0.575 0.601 0.668 0.713
Overall* 0.765 0.681 0.668 0.742 0.816 0.750 0.670 0.661 0.737 0.820

f = 30% MTL SS-MTL

Accuracy F1 Precision Recall AUC Accuracy F1 Precision Recall AUC

Pathologies 0.730 0.512 0.516 0.515 0.542 0.600 0.457 0.542 0.549 0.564
Drugs 0.584 0.531 0.575 0.626 0.671 0.640 0.566 0.584 0.635 0.680
Exams 0.625 0.550 0.569 0.610 0.651 0.626 0.539 0.556 0.587 0.630
Lab tests 0.662 0.570 0.576 0.616 0.656 0.660 0.575 0.584 0.629 0.658

Overall 0.682 0.590 0.593 0.642 0.686 0.707 0.612 0.610 0.662 0.700
Overall* 0.758 0.655 0.644 0.692 0.784 0.746 0.665 0.657 0.731 0.811

Figure 6.4 compares the performance trend (i.e., Recall) over the fraction of labeled
training samples x,y ∈ Zl for MTL and SS-MTL approaches considering both Overall
and Overall* fields. Starting from a total of 4996 unlabeled samples x′ ∈ Vu, figure
6.5 shows the trend of the pseudolabels samples x̃

′
, ỹ
′ ∈ Z̃u selected by the SS-MTL

approach (after random downsampling) over the fraction of labeled training samples.
Table 6.8 shows more in detail the predictive performance for MTL and SS-MTL
approaches. In particular, two configurations were highlighted, where both the full
amount (f=100%) and a specific portion (f=30%) of labeled samples was utilised in
the training stage. Comparable performance were obtained by the MTL (Recall =
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Fraction of labeled training samples

 R
e

c
a

ll

Figure 6.4.: MTL and SS-MTL approaches: Recall trend over fraction of labeled train-
ing samples x,y∈ Zl . In the legend, stars indicate that gender and age were
included as predictors (Overall*), filled circles were not (Overall).
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Figure 6.5.: Pseudolabel samples x̃
′
, ỹ
′ ∈ Z̃u selected from SLA procedure (after ran-

dom downsampling) over fraction of labeled training samples x ∈ Zl . In
the legend, stars indicate that gender and age were included as predictors
(Overall*), filled circles were not (Overall).

0.742±0.060) approach and SS-MTL (Recall = 0.737±0.054) for Overall* field with
f=100%. On the contrary, if f=30% the best performance (Recall = 0.731±0.049)
was obtained by the SS-MTL approach with an important gain of 4.1% with respect to
MTL (Recall = 0.692±0.035). The rationale to emphasize this result was due to the
fact that the performance of SS-MTL remained stable from f=100% to f=30% while
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the performance of MTL decreased (see Figure 6.4).

6.5.5. Pattern localisation

Table 6.9 explains which predictors in SS-MTL majvot (f=30%) configuration were
more decisive to predict the next 1-year eGFR state. The final percentage weight of
each predictor showed in Table 6.9 was calculated by averaging the weights of the
model over 10 folds, and then, over the t tasks.

Table 6.9.: Top-10 predictors for SS-MTL majvot approach with f =30 %. Overall*
indicates that also gender and age were included as predictors. D=Drugs;
E=Exam; M=Monitoring.

Overall Overall*

Rank Field Predictors W [%] Field Predictors W [%]

1) D Valsartan and diuretics 3.78 M Age 44.85
2) D Colecalciferol (vitamin D3) 3.59 D Furosemide 3.26
3) D Levothyroxine 3.17 D Metformin 2.42
4) D Alfuzosin 3.16 D Amlodipine 1.40
5) D Lansoprazole 3.08 D Ramipril and amlodipine 1.38
6) D Furosemide 2.89 D Valsartan and diuretics 1.32
7) D Acetylsalicylic acid 2.78 D Pravastatin 1.28
8) D Pantoprazole 2.67 D Atorvastatin 1.27
9) E Interview and evaluation 2.51 D Bisoprolol 1.19

10) D Nebivolol 2.28 D Omeprazole 1.16
Others 70.09 Others 40.47

6.6. Discussion

This work has mainly contributed to the biomedical informatics field for the following
points:

• Introduction of the SS-MTL paradigm for predicting short-term KD evolution.
The proposed high-interpretable approach seeks to learn from labeled and unla-
beled samples while imposing a temporal relatedness between consecutive tasks
(i.e., time windows).

• Measurement and demonstration of the effectiveness of the SS-MTL approach
with respect to the state-of-the-art in real-use case scenario (i.e., GP EHR dataset).
The benefits in terms of predictive performance are particularly pronounced the
more numerous the unlabeled samples are than those labeled. This condition
reflects the real clinical use case where the observations of each patient lack
annotation or are only partially labeled.
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The impact of the predictive performance and pattern localization experimental re-
sults will be thoroughly discussed in Section 6.6.1 and Section 6.6.2. Then, limitations
and future work will be argued in Section 6.6.3 and Section 6.6.4.

6.6.1. Predictive performance

In the following section the two RQs formulated in Sec.6.1 will be discussed.

6.6.1.1. RQ1: Is the MTL approach capable to capture the eGFR
temporal evolution?

The MTL approach as showed in Table 6.8 was capable to capture the eGFR temporal
evolution, because for Overall* configuration in terms of Recall = 0.742±0.060 was
superior than the best competitors for no-temporal (Table 6.6) and stacked-temporal
(Table 6.7) approaches (RF: Recall = 0.722±0.036; RF: Recall = 0.704±0.067, re-
spectively). Instead, if age and gender were not considered (i.e., Overall), the MTL
performance (Recall = 0.664±0.048) was close to SVM (Recall = 0.665±0.062) for
no-temporal approach but superior than SVM (Recall = 0.652±0.053) for stacked-
temporal approach. However, the performance of the MTL approach remained greater
than the baseline LR model for both Overall* and Overall configurations. These out-
comes highlighted the importance to include the temporal evolution of the predictors
in the ML model. Moreover, experimental results suggested how demographic infor-
mation was highly discriminative in terms of predictive performance.

The single fields of the MTL approach that mostly affected the predictive perfor-
mance were drugs and lab tests, while exams seemed to impact less. For instance, the
single lab tests field in MTL reached a Recall until 0.643±0.039, much more superior
than the other competitors. On the contrary, the pathologies field obtained very poor
results and for this reason, was excluded from the Overall and Overall* fields. Results
evidenced how the predictive performance of MTL and no-temporal approaches were
globally superior to one of the stacked-temporal approaches, which encapsulated the
temporal information by aggregating longitudinally the time windows, and this aspect
may suffer much the high temporal data sparsity. However, the MTL approach was ca-
pable of modeling and interpreting through the regularization strategy the progression
of the temporal information, otherwise lost in the no-temporal approach.

6.6.1.2. RQ2: Is the SS-MTL approach capable to capture useful
information from unlabeled patients?

The SS-MTL approach was mostly capable to gain useful information from unlabeled
patients, in terms of predictive performance concerning to MTL, when labeled patients
were less numerous than those unlabeled. This situation commonly reflects the real-
case general practice scenario, where available labeled samples size is limited, while

110



6.6. Discussion

unlabeled samples are much more abundant.

Specifically (see Figure 6.4), the SS-MTL approach did not add an important gain
compared to MTL in predictive performance both for Overall and Overall* fields when
the full fraction (f=100%) of labeled training sample size was considered. But, if f was
progressively decreased (i.e., both for MTL and SS-MTL), the predictive performance
kept on being still similar until f=70% for Overall* and until f=60% for Overall. Af-
ter these cut points, the more f decreases, the more the spread between SS-MTL and
MTL increased due to an MTL predictive performance worsening. This finding sug-
gested that our proposed SS-MTL approach was convenient since at least unlabeled
samples (# 4996) were almost 2.5 times more numerous than labeled samples (# 1894
at f=70%). Additionally, the SS-MTL predictive performance until f=30% remained
almost constant if compared to f=100%, while the MTL performance decreased much
earlier as seen before. This further finding proved how the SS-MTL approach was
reliable in dealing with unlabeled information.

Basically, for the Overall* field, the Recall trend across SLA majvot, unanimous,
and Gibbs seemed to be more stable. On the contrary, for the Overall field, the Recall
trend was more fluctuating and it appeared that SLA unanimous was less perform-
ing than the others. These considerations may be fully explained in Figure 6.5, from
which it has emerged that the number of pseudo-labels selected by SLA directly in-
terfered with the SS-MTL working stability. Indeed, the most stable performance of
the SS-MTL for the Overall* field was influenced by almost constant pseudo-labels
selected by SLA. However, even if for the Overall field at f=30% more pseudo-labels
were selected by SS-MTL Gibbs and SS-MTL majvot than Overall*, the gap between
the predictive performance remained fairly constant across different f thresholds (see
figure 6.4). These findings suggested how an increase of almost 2K pseudo-labels
between Overall and Overall* fields was not related to an increase in predictive per-
formance. Indeed, the pseudo-labels may not be necessarily informative enough to
improve the generalization performance of the ML model.

We demonstrated that all the models used for SSL techniques obtained the best
predictive performance with the SLA procedure. A central hypothesis in SSL, based
on which discriminant models are developed, is the low density separation assumption
(H) [210] which stipulates that the decision boundary should pass through low-density
regions. In this sense, contrary to PU [202], the negative class has a central role in
finding the decision boundary. In this sense, SLA follows assumption H which is also
shown to be effective in our experiments. Instead, graphical models, as LP [203],
are based on manifold assumption and construct a graph where the nodes represent
training examples and the edges reflect similarities between them. The class label of
each labeled node is then propagated to its neighbors using label spreading techniques.
The similarity between the two observations is based on their Euclidean distance in the
feature space, and due to the curse of dimensionality when the dimension of the space
is high - as in our case - the Euclidean distance does not reflect well the proximity
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between examples.

6.6.2. Clinical significance

The proposed SS-MTL approach was high-interpretable and this aspect assumes an
important relevance in the general practice scenario. In fact, obtaining only satisfac-
tory predictive results might be useless if then the results cannot be interpreted by GPs,
which need to understand and explain which factors have mostly determined a predic-
tion. From experimental results, it has turned out how gender and age may play a key
role compared to other predictors for forecasting the next 1-year eGFR state. In fact,
the predictive performance of the SS-MTL approach for the Overall* field (f=30%)
was much greater than the one for the Overall field (see Table 6.8). This finding was
fully clarified in Table 6.9, from which it emerged that age was the leading predictor
with importance of 44.85%, while gender did not appear as a discriminant factor. Al-
though age has already been adequately demonstrated to be one of the major factors
in kidney functionality, a prediction merely based on age provided inferior predictive
performance, as proven also in [196]. The remaining predictors belonged to the drugs
field and this aspect suggested how highly discriminative the past patient’s pharmaco-
logical treatment might be. In particular, the best contenders such as furosemide and
metformin are strictly correlated to variations of eGFR value. Furosemide treatment
reduces kidney functionalities for patients with cardiovascular pathologies [211, 212],
while metformin administration in patients suffering from moderate CKD is associ-
ated with clinical outcome improvements [213]. The creatinin, even if it has been
used in Eq. 2.1 for the calculation of the CKD-EPI formula, did not appear as one of
the best top-10 predictors. Since the demographic predictors (i.e., gender and age) are
included in the eGFR formula (see Eq. 2.1) the performance of the predictive model
improved in the Overall* experiment. On the other hand, if demographic information
(i.e., gender and age) were not considered (i.e., Overall and single modality experi-
ments) to discover further discriminative predictors besides demographic information,
there was no predominant predictor over others, but the pharmacological pathway re-
mained still decisive with respect to the other fields.

6.6.3. Limitations

In this work, the Overall/Overall* fields did not account for the pathologies’ informa-
tion, which caused a predictive performance worsening. In fact, the pathologies field
contains much more static information than the others, and it may have found diffi-
cult to offer discriminative temporal information to the predictive model. Perhaps, the
exclusion of pathologies among the predictors may limit the global contextualization
of the clinical problem. To better combine and make coexist heterogeneous feature
sets consisting of various EHR fields (e.g., pathologies, exams, drugs, lab tests) of dif-
ferent data types (e.g., categorical, continuous), multi-view learning approaches [214]
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may be explored as an intriguing future direction.
We used linear models, which assume linear relationships between the variables,

and the outcome and we did not take into account the non-linear combination of dif-
ferent predictors that could potentially affect the outcome. In this context, we may
explore non-linear models with different features map in order to discover new hidden
high-discriminative temporal patterns.

6.6.4. Future work

Future work may be addressed to explore interesting directions by including different
experimental procedures, task definitions, and data processing.

It would be interesting to apply the SS-MTL approach considering only patients en-
closed within a specific range of CKD stages and/or, unlike our strategy, predict CKD
stages I and II from the others. Alternatively, binary classification could be applied to
the prediction of the variation in time of the eGFR value above a certain experimental
threshold [193]. Other very promising and attractive solutions could be to extend the
current SS-MTL binary classification problem to a multiclass classification problem
[215] or to learning to rank approach (i.e., learning the risk prediction using an ordinal
structure of all CKD stages).

For what concernc the data processing, the strong class imbalance may be addressed
using more advanced data imputation strategies rather than SMOTE, median/mean
imputation [3] and KNN [216]. For instance, the missing values of the EHR field may
be imputed by using conditional GAN [217] across different temporal windows and
different spatial views (i.e., EHR fields).
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Chapter 7.

COVID-19 Complications

Accurate risk stratification of patients with coronavirus disease 2019 (COVID-19) is a
critical point to optimize resources allocation and deploy targeted interventions. The
objective of this study is to predict the improvement or worsening of the Sequential
Organ Failure Assessment (SOFA) score among COVID-19 patients admitted to the
Intensive Care Unit (ICU). A prognostic observational cohort study with 5 days of
follow-up from the ICU admission was designed. 96 ICUs participated at the RIsk
Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) reg-
istry. The study was performed from March 17th to October 31st , 2020. Data were
analyzed from November 5th to November 30th, 2020. RISC-19-ICU registry included
patients diagnosed with COVID-19 admitted to the ICU with absolute SOFA change
greater than 1 after 5 days from the ICU admission. Worsening or improvement of
SOFA defined, respectively, as SOFA ≥ 2 points or SOFA ≤ 2 points, was predicted
using the eXtreme Gradient Boosting (XGBoost) model. Among the 1613 COVID-19
patients in the RISC-19-ICU registry, 675 patients satisfied necessary inclusion condi-
tions, with a median age of 64 (interquartile range (IQR) 56-63) and time from symp-
toms onset to ICU admission of 8 days (IQR 6-11). At the ICU admission, SOFA was
11 (IQR 6-14) with a pO2/FiO2 ratio of 121.6 (IQR 80.9-170.9), and 86% of patients
were mechanically ventilated. The SOFA worsening was correctly predicted among
320 (83%) of the 385 while the SOFA improvement among 210 (72%) of the 290
COVID-19 patients. The corresponding area under the mean ROC curve was 0.86.
The model selected the Glasgow coma scale, state of shock, use of vasopressors, and
bilirubin concentration as the most relevant features to determine the SOFA modifi-
cations. Machine Learning (ML)-based prediction model could support physicians to
accurately identify patients more likely to worsen or improve their conditions at the
time of ICU admission in the following 5 days. Implementation of the model could
help in the optimization of available resources and identification of early treatments to
be adopted.
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7.1. Introduction

The COVID-19 outbreak represents one of the most critical global health emergencies
in modern times, reaching almost 1.2 million deaths worldwide at the end of October
2020. The COVID-19 pandemic poses an unprecedented challenge for policymakers
across the world, given the pace at which its effects are unfolding and its potential
to cause critical illness with single- and multi-organ failure. ICUs capacity has been
rapidly exceeded in several regions around the world during the first weeks of the
COVID-19 outbreak. The recent surge of COVID-19 cases in Europe is already chal-
lenging national healthcare systems. The ability to predict patients’ complications and
outcomes by analyzing the medical records of patients in ICU is hampered by numer-
ous challenges such as difficulty in finding structured clinical data, missing values, and
datasets collecting a sufficient amount of patients. Under these conditions, predicting
the risk of a particular patient to develop complications associated with COVID-19 or
to improve his conditions is relevant and may help both healthcare organization and
clinical management of the patients defining a personalized risk profile and optimiz-
ing the appropriateness of care. The RISC-19-ICU registry was launched on March
17th, 2020 and created to provide near real-time assessment of patients developing
critical illness due to COVID-19 [34]. It includes up to 96 centers from 15 different
countries with a continuously expanding number of critically ill COVID-19 patients,
encompassing 1613 individual admissions at the end of October 2020. The analytical
capability of ML methods has proven to be extremely accurate and in some cases su-
perior to classical statistical approaches. This improvement has been also confirmed
by recent work in this field aimed to propose ML methodologies for providing the
prediction of risk conditions and complications related to chronic diseases [2, 4, 218].
Therefore, a prediction model could be trained using the parameters collected in the
RISC-19-ICU registry at ICU admission, to estimate the worsening or improvement
of critically ill COVID-19 patients within the first 5 days. The SOFA score was used
to evaluate disease severity. The SOFA score is used to track the patient’s status dur-
ing the stay in ICU to determine the extent of a person’s organ function or rate of
failure. The score is based on six different scores, one each for the respiratory, cardio-
vascular, hepatic, coagulation, renal and neurological systems. The SOFA score can
be measured daily on all patients admitted to ICU to determine the level of acuity and
mortality risk. The accurate prediction of SOFA score may be relevant to the clinical
scenario to provide risk profiles of individual patients from which a different intensity
of care can be deduced, with consequent modification of the control time according to
the needs.

7.1.1. Problem formulation

the SOFA change on the fifth day from ICU admission for individual patients was pre-
dicted. Worsening or improvement of SOFA was defined, respectively, as an increase
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in SOFA ≥ 2 points or a decrease of ≤ 2 points.
Thus, the objective of the work aims to predict and manage the complications which

COVID-19 patients develop, by designing a clinical decision support system (CDSS)
based on ML algorithms to provide:

• “Risk profiles” of the COVID-19 patients in ICU from which a different in-
tensity of care can be deduced, providing a shortening of the waiting time and
increase the appropriateness of care

• “Prediction of risk of short term complications” of the COVID-19 patients that
will activate personalized prevention systems directly addressed to the patient:
from targeted recalls to targeted motivational and training activities.

Figure 7.1.: Experimental setup of the proposed method.

7.2. Clinical data: RISC-19-ICU registry

The RISC-19-ICU registry [34] aims to collect an anonymized dataset to character-
ize patients that develop life-threatening critical illness due to COVID-19 and make
it accessible to collaborative analysis. The data collected may be composed of a core
dataset and/or an extended dataset. The core dataset consists of a basic set of parame-
ters, of which many are commonly generated during treatment of critically ill patients
with COVID-19 in an intensive care unit. The extended dataset consists of parameters
that may be measured during treatment of critically ill patients with COVID-19 in an
ICU, depending on clinical practice, indication, and availability of the measurement
method. The data accumulating in the registry as the pandemic or subsequent waves
develop are made available to the collaborators to support an optimal response to the
pandemic threat. The information gained on the initial characteristics and disease
course via the RISC-19-ICU registry may contribute to a better understanding of the
risk factors for developing critical illness due to COVID-19 and for an unfavorable
disease course, and thus support informed patient triage and management decisions.
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The target population consists of i) patients admitted to a collaborating center with
COVID-19 infection confirmed according to the WHO guidelines; ii) collaborating
centers contributing anonymized data to the registry may be one of the following:
ICU centers, non-ICU centers treating patients with high-flow oxygen therapy or non-
invasive ventilation.

Patient characteristics, laboratory, and physiological parameters at the time of ICU
admission were used as predictors (Figure 7.1, Table A.2). A feature with a number
of missing values greater than 70 % was excluded from the model.

7.3. Methods

The XGBoost method [219] was applied as a prediction model in consideration of its
characteristics of high generalization performance and the low risk of overfitting that
outperforms other data mining methods widely used for solving predictive medicine
tasks (see Figure 7.2) [2]. The gradient tree boosting algorithms extend the concept of
adaptive boosting by sequentially adding predictors and correcting previous models
using the gradient descent algorithm.

Figure 7.2.: Flowchart of the proposed method.

7.3.1. Experimental procedure

The model was built using the extended RISC-19-ICU registry after excluding patients
with SOFA change ≤ 1 and patients with missing SOFA at the admission or at day
5. Among the 1613 patients included in the RISC-19-ICU registry, 1030 have stayed
in the ICU for five or more days and had valid SOFA scores both at ICU admission
and at day 5. The model was tested using a 10 fold cross-validation (CV-10) proce-
dure. CV-10 was implemented by dividing all subjects into ten folds, by selecting nine
folds for training and one fold for testing. The optimization of the hyperparameters
was performed by implementing a grid-search and optimizing the macro-recall in a
nested 5-fold CV. Hence, each split of the outer loop was trained with the optimal
hyperparameters tuned in the inner loop. Although this procedure is computation-
ally expensive, it allows obtaining an unbiased and robust performance evaluation.
The model was applied to the entire RISC-19-ICU cohort consisting of 675 patients
with an absolute SOFA score change of ≥ 2 points between the two-time points. The
median age in the study cohort was 64 (interquartile range (IQR) 56-63), 74% were
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males, and median body mass index (BMI) of 27.8 (IQR 25.4-31.6). At the ICU ad-
mission, median SOFA was 11 (IQR 6-14), median time from symptoms onset was 8
days (IQR 6-11), median pO2/FiO2 ratio 121.6 (IQR 80.9-170.9), and 86% of patients
were mechanically ventilated (see Table 7.1).

Table 7.1.: Descriptive statistics.

Description X1st.Qu. Median Mean X3rd.Qu.

n◦ patients 675 675 675 675
Age 56 64 62.817 72
SOFA 6 11 10.319 14
Gender 0 1 0.745 1
BMI 25.391 27.766 29.029 31.561
Symptoms to ICU 6 8 9.316 11
pO2/FiO2 ratio 80.883 121.619 153.963 170.875
Mechanical ventilation 1 1 0.858 1

7.4. Experimental results

The model correctly predicted SOFA worsening among 320 (83%) of the 385 and
SOFA improvement among 210 (72%) of the 290 COVID-19 patients (Table 7.2) with
a corresponding area under the mean ROC curve of 0.86 (Figure 7.3). As expected,
the most relevant features selected to determine the SOFA modifications were mainly
related to the SOFA items such as the Glasgow coma scale, state of shock, use of
vasopressors, and bilirubin concentration (Figure 7.4). However, other well-known
features related to the patient’s outcome such as type of respiratory support, comorbid
conditions, the Acute Physiology And Chronic Health Evaluation (APACHE), and the
Simplified Acute Physiology Score (SAPS) scores contributed to the correct predic-
tion. Notably, the presence/absence of diabetes mellitus was among the most relevant
conditions playing a role in the prediction of SOFA modifications at day five.

Table 7.2.: Confusion matrices (rows are the true classes) of the XGBoost algorithm
for solving the classification task.

Worsening Improvement
Worsening 0.83 0.17

Improvement 0.28 0.72
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Figure 7.3.: Receiver operating characteristic (ROC) analysis over each fold.

Figure 7.4.: Visualisation of the top 10 most discriminative features for predicting the
SOFA score according to the XGBoost algorithm.

7.5. Discussion

Findings provide encouraging evidence regarding the use of a prediction model using
advanced ML algorithms to discriminate patients likely to worsen or improve their
clinical condition. The ML algorithm represents the main core of a CDSS that pro-
vides the risk profiles of the individual patients in the ICU in terms of prediction of
risk of short-term complications. The implementation of the actual model may pro-
vide the creation of a strategic tool for the optimization of intensity able to assist
physicians to make differentiated and personalized treatment decisions for critically
ill COVID-19 patients. With the rapid increase of the RISC-19-ICU cohort, the aim is
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to predict more clinically relevant outcomes such as the risk for endotracheal intuba-
tion, need for renal replacement therapy, and mortality. Moreover, the extension of the
participation to the RISC-19-ICU registry to non-ICU departments will provide rele-
vant information to identify patients with a high probability of failing a non-invasive
ventilation trial and at high risk of ICU admission for non-respiratory complications.
Additionally, the proposed model can ensure high interpretability by discovering rele-
vant features related to the development of complications associated with COVID-19.
The integration of the model into the RISC-19-ICU registry may allow predicting the
risk profile of morbidity and resource consumption of the patients according to their
clinical features. In conclusion, the use of advanced prediction models will ensure
the more appropriate use of resources for those patients who need them most by in-
creasing the appropriateness of care and activating a personalized prevention system
directly addressed to the patient.
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Chapter 8.

Conclusions

In the following chapter the conclusions of each single work presented in the thesis
are shown. Then, the final considerations of the thesis are discussed.

Table 8.1 summarizes the ML challenges, listed in Section 1.4, which were faced
by the ML approaches proposed for each work (ch. 2 ÷ ch. 7).

Table 8.1.: Machine Learning (ML) challenges (see Section 1.4) faced by the ML
methodologies proposed in each chapter.

ML Methodologies
High-dimensional &
heterogeneous data

Unbalance
setting

Sparse
labeling

Temporal
ambiguity

Explainability/
Interpretability Generalization

[2]T2D discovering (ch.2) x x x x x
[3]IR: clinical factors (ch.3) x x x x
[4]IR: T2D early stage (ch.4) x x x x x
[1]CDSS for T2D evaluation care (ch.5) x x x x
[5]KD early stage risk (ch.6) x x x x x x
[6]COVID-19 complications (ch.7) x x x x

In chapter 2 was presented the SB-SVM approach for discovering T2D in the novel
collected EHR dataset, named FIMMG dataset. The SB-SVM approach was proven to
be the best compromise between predictive performance and computation time, with
respect to other ML and DL EHR-based approaches widely employed in the state-of-
the-art for solving this task. The SB-SVM was able to manage high dimensional data,
by increasing the model interpretability and finding the most relevant features while
dealing with the usual unbalanced class distribution. The SB-SVM approach may be
embedded in a CDSS to aid the physician in discovering and preventing T2D at an
early stage, offering an adequate T2D integrated management system and patient’s
follow-up.

In chapter 3 was presented the TyG-er approach, a high-interpretable ensemble re-
gression model for providing knowledge about the identification of clinical factors
correlated with a T2D risk condition. In particular, the sparse nature of the employed
publicly available FIMMG obs dataset reflects the clinical use-case where not all lab-
oratory exams are prescribed regularly over time. The TyG-er approach was able to
carry information about the identification of the TyG index, strictly correlated with
the IR condition while extracting the most relevant non-glycemic features from rou-
tine laboratory exams.
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In chapter 4 was presented the MIL-Boost approach for the early prediction of T2D
risk condition (low vs high T2D risk) using past EHR temporal information collected
from a single GP. As demonstrated by the high predictive performances, the model
interpretability, and the capability to handle variability in the number of observations,
the MIL-Boost is a reliable approach that may represent the main core of a CDSS.

In chapter 5 was presented and tested on a real clinical use-case scenario and over
time a comprehensive framework for supporting GPs during diabetes early detection
and enrollment stage. In particular, was proposed an integrated chronic care model
based on ML and data sharing between GPs and diabetes centers, as the main core
of a CDSS. The quality care evaluation in a clinical use-case scenario demonstrated
how the empowerment of the GPs through the use of the platform (integrating the
proposed CDSS), along with the economic incentives, may speed up the improvement
of care. The National Sanitary System and its regional agencies are funding the GP’s
incentives. The overall investment is based on the concept that prevention is less
expensive than intervention. Chronic care models contribute to a long-term positive
balance on the overall care strategy and budget, both in economic value and in quality
of life.

In chapter 6 was presented the SS-MTL approach for predicting short-term KD
evolution on multiple GPs’ EHR data, named the mFIMMG dataset. The SS-MTL
approach was capable to capture the eGFR temporal evolution by imposing a tempo-
ral relatedness between consecutive time-windows and was most capable to capture
useful information from unlabeled patients when labeled patients are less numerous
than those unlabeled. This situation reflects commonly the real-case general practice
scenario, where available labeled samples are limited, but those unlabeled are much
more abundant. The SS-MTL approach, exhibiting also a high level of interpretability,
might be the ideal candidate in general practice to get integrated within a CDSS for
CKD screening purposes.

In chapter 7 was presented the XGBoost approach for predicting the risk of de-
veloping complications for COVID-19 patients in ICU. In particular, utilising only
the patient’s information at ICU admission, the XGBoost model was capable to cor-
rectly predict the improvement or the worsening of the patient’s clinical condition at
5 days from ICU admission. The proposed approach may help physicians to identify
in advance COVID-19 patients admitted to the ICU at high risk of worsening their
conditions. This information could benefit the therapeutic interventions with a more
precise care strategy. With the power of analytics and prediction, we can advance to
prescriptive medicine, effectively controlling the response of our patients starting with
the earliest phases of an incipient critical illness and extending throughout the course
of their care. With the prediction, prescription, and prevention of severe illness and
organ dysfunction, the most common and vexing problems of critical care medicine
may be reduced.
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8.1. Final considerations

In the emerging era of PPM, the management of diseases is evolving into a more per-
sonalized approach, as more multi-source data are available from high-dimensional
and heterogeneous EHR fields. PPM is capable to extend basic risk scores and predic-
tions into personalized screening and monitoring, personalized forecasting of biomark-
ers, disease trajectories and clinical outcomes, and personalized estimation of treat-
ment effects over time. PPM improves patients’ quality of life and mitigates the in-
creased cost of frequently necessary life-long treatments.

The application of ML methodologies to big data is facilitating the evolution of tra-
ditional medicine to intelligent healthcare ecosystems (see Figure 1.1). These health-
care ecosystems are already transforming the traditional analytic medicine - which
describes what happened - to an emerging PM - which accurately predicts when an
event will occur and understands why happened. In the near future, these healthcare
ecosystems, in which science, biomedical informatics, incentives, and lifestyle educa-
tion are aligned for continuous improvement and innovation, will look at prescriptive
paradigms, which will control events or make events happen. Thus, these healthcare
ecosystems will make easier the transition of a clinic or hospital from a traditional
healthcare environment to a smarter learning healthcare system, which sets the foun-
dation for personalised medicine on an international scale to ensure the best and the
most timely response for patient care.

This last aspect may assume particular relevance in ICUs, where medical care is
often time-sensitive because high-stakes decisions are made with incomplete infor-
mation and imperfect knowledge. In critical care, PM may create opportunities such
as predicting arrhythmias or cardiac arrest in minutes, respiratory or renal failure in
hours, hospital complications and readmissions in months, etc. The fullest expres-
sion of these healthcare systems requires both additional scientific discovery and the
real-time integration and analysis of these large-scale data to overcome the human lim-
itations of information overload and cognitive processing. Instead, in general practice,
PM will be fundamental to manage chronic pathologies (e.g., T2D, KD, cardiovascu-
lar disease, etc.) for preventive, screening, diagnostic, and treatment purposes.

With targeted investments, these healthcare ecosystems could be used for a variety
of purposes at a local (e.g. clinic, hospital, etc.), regional, national, or even interna-
tional scale. These healthcare ecosystems could turn EHRs from a tedious data-entry
infrastructure into a powerful tool that empowers healthcare providers and patients
alike—especially given the fact that a great deal of potentially relevant information
is lost because it cannot be appreciated by clinicians, whereas ML predictions could
make such data salient.
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Chapter 8. Conclusions

8.1.1. Open challenges

These healthcare ecosystems are not yet being used at a large scale to empower health-
care professionals and patients. The removal of several obstacles could accelerate this
transformation process.

The first obstacle is the preprocessing stage (i.e., data cleaning, preparation, and
standardization). In almost every case, a data scientist in collaboration with a health-
care professional will need to review, clean, and prepare data to be understood by ML
frameworks. In the healthcare scenario, methods and protocols for maintaining and
sharing EHR vary between countries and regions; furthermore, EHR data types vary
between locations, organizations, and even individuals. EHR data need to be recorded
and shared in a consistent, high-quality, and easy-to-read manner across the healthcare
ecosystem.

The second obstacle is the ongoing need to build layers of abstraction that permit
various users to interact with ML frameworks at their own knowledge level. This in-
cludes creating intuitive, easy-to-use interfaces that enable end-users (i.e., physicians)
to describe clinical tasks they want to solve. The physician’s objective should be
understandable also by other users (i.e., data scientists) operating in different layers.
Additionally, the trade-off between humans and the ML framework should be smooth,
but at the same time, the distinct roles well-defined. For example, physicians and data
scientists may need to formulate specific clinical tasks together at the beginning of
the process and evaluate results at the end; by contrast, the ML framework can gener-
ally handle tasks in the middle, such as model construction, prediction, and treatment
estimation.

The third obstacle is the commonization of components. User-friendly ML frame-
works should be designed as modular blocks and selected depending on the objective
of the clinical task. These blocks should also speak a standardized language that al-
lows them to operate seamlessly when added to a framework.

In the short term, the removal of the obstacles outlined above would be an important
step toward the realization of an ambitious and meaningful long-term vision, consist-
ing of the creation of a novel healthcare ecosystem in which ML can understand, col-
laborate with, and empower humans. This healthcare ecosystem would require that,
on the one hand, the ML methodologies would analyze EHR datasets and offer predic-
tions and recommendations for the patient (i.e., personalized screening, monitoring,
diagnosis, early diagnosis) while also providing interpretable results and uncertainty
estimates associated with the various predictions and recommendations. On the other
hand, would provide recommendations tailored to individual decision-makers, such
as clinicians, administrators, or researchers. This would be based on a deeper, more
fundamental understanding of human behavior and decision-making, combined with
informed judgements regarding which tasks can be automated, which tasks can be
recommended (but not fully automated), and which tasks should be left entirely to
humans. While this healthcare ecosystem requires a level of cognition that is arguably
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8.1. Final considerations

beyond the current abilities of ML, this vision would not be realized at a large scale
in the near future. Whether AI systems are smarter than human practitioners makes
for a stimulating ethical debate — but is largely irrelevant. Combining ML “software”
with the best human clinician “hardware” will permit delivery of care that outperforms
what either can do alone. Research encourages to publicly use and provide every in-
formation and data resource to consistently improve our collective health.
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Appendix A.

Table A.1.: Type 2 diabetes patient’s features set. Example from a real anonymous
patient.

PATIENT DETAILS

Glycated hemoglobin Not registered
Total cholesterol Not registered
HDL cholesterol Not registered
Triglycerides Not registered
LDL cholesterol Not registered
Blood pressure 21/01/2016 80/130
Weight 21/01/2016 70
Height 21/01/2016 156
Body mass index 21/01/2016 28.76
Waist 21/01/2016 98
Microalbuminuria Not registered
Creatinine Not registered
Exemptions:
E00
013 R
E10
Pharmacological treatments:
Glucophage * 30 pills 500 mg 14/01/2016 Metmorfin
Lifestyles:
Smoking habit Not detected
Cigarettes per day Not detected
Alcohol consumption Not detected
Alcohol type Not detected
Physical activity Not detected
Macrovascular Complications:
Ischemic cardiopathy Not affected
Acute myocardial infarction Not affected
Revascularization Not affected



Appendix A.

Table A.1.: Type 2 diabetes patient’s features set. Example from a real anonymous
patient.

PATIENT DETAILS

Claudicatio Not affected
Transient ischemic attack Not affected
Stroke Not affected
Angina Not affected
Eye Examination:
Eye examination 28/02/2012 Performed
Retinopathy Not affected
Blindness Not affected
Examination of the Foot:
Ulcers Not affected
Amputations Do not suffer
Renal complications:
Nephropathy Not affected
Dialysis Not subjected
Educational Reinforcement:
Power Not done
Motor activity Not done
Self control Not done
Foot prevention Not done
Verified glycemic control Not done
Findings:
Foot inspection Not done
Uricemia Unregistered
AST Not registered
GGT Not registered
Blood count formula Not done
Cardiovascular risk Not registered
Specializations:
ECG Not done
Diabetic visit Not done
Cardiological visit Not done
Eye examination 28/02/2012 Performed
Fundus oculi Not done
Nephrological visit Not done
Neurological visit Not done
Date enrolled: 16/09/2015
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Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Age 0.00
Weight 2.99
Height 5.53
Gender 0.15
Adm smoke 12.41
Initial Symptoms
Rinorrhea 0.00
Headache 0.00
Dry Cough 0.00
Sore throat 0.00
Coloured Sputum production 0.00
Fatigue 0.00
Shortness of Breath 0.00
Nausea or Vomiting 0.00
Diarrhea 0.00
Myalgia or Arthralgia 0.00
Hemoptysis 0.00
Chest pain 0.00
Dizziness 0.00
Chills 0.00
Anorexia 0.00
Abdominal pain 0.00
Fever 0.00
Conjunctivitis 0.00
Tachypnea 0.00
Apnea 0.00
Syncope 0.00
Olfactory disorder 0.00
Taste disorder 0.00
Other neurological disorder 0.00
Fever before admission 67.26
Signs of Infection previous to ICU admission
Throat Congestion 0.00
Tonsil Swelling 0.00
Enlargement of Lymph nodes 0.00
Rash 0.00
Rales 0.00
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Appendix A.

Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Comorbidities
Myocardial Infarction / Ischemic Heart Disease 0.00
Chronic Heart Failure 0.00
Peripheral Vascular Disease 0.00
Chronic Arterial Hypertension 0.00
Diabetes mellitus Type 1 or 2 0.00
Diabetes mellitus with End Organ Damage 0.00
Cerebrovascular Disease 0.00
Dementia 0.00
Hemiplegia 0.00
Chronic Obstructive Pulmonary Disease 0.00
Chronic Restrictive Pulmonary Disease 0.00
Pulmonary Hypertension 0.00
Connective Tissue Disease 0.00
Peptic Ulcer Disease 0.00
Mild Liver Disease 0.00
Moderate to Severe Liver Disease 0.00
Moderate to Severe Chronic Kidney Disease 0.00
Solid Tumor (Localized) 0.00
Solid Tumor (Metastatic) 0.00
Leukemia 0.00
Lymphoma 0.00
HIV 0.00
Chronic Hepatitis B 0.00
Chronic Hepatitis C 0.00
Immunosupression for any reason 0.00
Previous Medication
ACE-Inhibitors 0.00
Angiotensin II receptor blockers 0.00
Other cardiovascular medication (not including lipid lowering drugs) 0.00
Lipid lowering drugs 0.00
Platelet aggregation inhibitors 0.00
Oral anticoagulants 0.00
Inhalative Corticosteroids 0.00
Systemic Corticosteroids 0.00
Other immunosuppressive therapies 0.00
Oral antidiabetic drugs 0.00
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Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Insulin 0.00
Non-steroidal anti-inflammatory drugs used to treat COVID-19 symptoms 0.00
Antiepileptics 0.00
Exposure to COVID-19 focus in past 14 days
None Known 0.00
COVID-19 infected person (family or friends) 0.00
COVID-19 infected person 0.00
Travel to an Endemic Region up to 03-2020 (China, Italy, Iran) 0.00
Previous Therapies (before ICU Admission)
Antibiotic Therapy 0.00
Specific Anti-SARS-CoV-2 Therapies (off-label) 0.00
Additional Oxygen (Nasal Canula, Mask, NIV, High-Flow) 0.00
Additional Parameters at Admission
temperature 41.11
hematocrit 42.75
sodium 2.69
potassium 2.84
Symptoms duration
sympt to hosp 5.38
sympt to dg 4.33
hosp to icu 19.43
Patient’s indexes
bmi 5.83
saps 0.15
apache 0.00
sofa.x 0.00
Clinical Assessment
Wheezing 0.00
Rales/ Crackles 0.00
Pleural friction rub 0.00
Silent Chest 0.00
cyanosis yn 69.96
GCS 4.93
estimated urine output 6.43
patient shock yn 64.42
Temperature [°C] 62.03
Heart Rate [1/min] 8.22
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Appendix A.

Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Respiratory Rate [1/min] 14.65
Systolic Arterial Pressure [mmHg] 62.03
Mean Arterial Pressure [mmHg] 12.41
Diastolic Arterial Pressure [mmHg] 62.03
Central Venous Pressure [mmHg] 69.06
Percutaneous Arterial Oxygen Saturation [%] 39.46
Vasopressors and Inotropes
Norepinephrine Dose [µg/min] 40.51
Was Anti-Hypertensive Medication needed? 67.86
Arterial and central venous
Arterial oxygen saturation [%] 65.17
Arterial pO2 [kPa] 5.23
Arterial pCO2 [kPa] 5.08
Arterial pH 5.23
Arterial HCO3- [mmol/L] 5.68
Arterial Base Excess [mmol/L] 66.37
Glucose [mmol/L] 7.32
Arterial Lactate [mmol/L] 1.20
FiO2 [%] 10.46
Need for Rescue Measures?
Prone Positioning 0.00
Inhalative Nitric Oxide 0.00
Extracorporeal CO2 Removal 0.00
Continuous Renal Replacement Therapy or Hemodialysis of any form 0.00
vv-ECMO 0.00
va-ECMO (incl. vv-a, v-va, vv-va cannulation) 0.00
Abnormalities in Thorax Radiography
Circumscribed infiltrate 0.00
Unilateral patchy infiltrates 0.00
Bilateral patchy infiltrates 0.00
Signs of interstitial abnormalities 0.00
Emphysema 0.00
Pneumothorax 0.00
Pleural Effusions 0.00
Signs of fungal infection (nodular aspect) 0.00
Abnormalities in Thorax CT
Circumscribed infiltrate 0.00
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Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Unilateral patchy infiltrates 0.00
Bilateral patchy infiltrates 0.00
Interstitial abnormalities 0.00
Emphysema 0.00
Pneumothorax 0.00
Pleural Effusions 0.00
Signs of fungal infection (nodular aspect, reverse Halo Sign) 0.00
Crayz Paving 0.00
Pulmonary Embolism 0.00
Valvulopathy in TTE or TEE
None 0.00
Moderate to severe mitral regurgitation 0.00
Moderate to severe tricuspid regurgitation 0.00
Aortic valve stenosis 0.00
Other 0.00
Laboratory Parameters
Leucocyte Count [109/L] 10.46
Neutrophil Count [109/L] 27.65
Lymphocyte Count [109/L] 27.50
Thrombocyte Count [109/L] 22.27
Hemoglobin [g/L] 66.67
Hematocrit [% 66.67
D-Dimer [µg/L] 41.55
CRP [mg/L] 18.09
PCT [µg/L] 38.71
LDH [U/L] 49.33
Serum Ferritin [µg/L] 68.16
Total Bilirubin [µmol/L] 39.91
Albumin [g/L] 69.81
Creatinine [µmol/L] 12.11
Urea [mmol/L] 32.44
Creatine Kinase [U/L] 57.70
High Sensitivity Troponin [ng/l] 56.80
Neuromuscular Relaxation
Were Neuromuscular blocking agents used in the chart day? 67.86
Rocoronium 0.00
Vecuronium 0.00
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Appendix A.

Table A.2.: Percentage [%] of missing values for each feature. *The cut-off of missing
values used to exclude a feature from the model was 70%.

Features Missing*, %
Cisatracurium 0.00
Atracurium 0.00
Mivacurium 0.00
Other 0.00
time 0.00
Computed values
pf ratio 13.60
vent ratio 18.39
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