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Abstract  
 
Alphaviruses are a group of enveloped, positive-sense RNA viruses which are distributed 

almost worldwide and are responsible for a considerable number of human and animal diseases. The 
viruses are transmitted by bloodsucking arthropods and replicate in both arthropod and vertebrate 
hosts. Of these viruses, chikungunya virus has recently re-emerged and caused several outbreaks on 
all continents in the past decade. Chikungunya virus (CHIKV) induces a disease characterized by fever, 
muscle pain, acute and chronic arthralgia.  
Even if CHIKV shares many aspects with alphaviruses studied for many years such as Sindbis virus 
and Semliki forest virus, molecular mechanisms of chikungunya virus replication and virus-host 
interactions remain poorly understood. At the beginning of our study, regarding alphavirus entry, some 
attachment factors and receptors have been proposed with more or less evidence. However, very 
recently, the cell adhesion molecule Mxra8 has been identified as a receptor for multiple arthritogenic 
alphaviruses including CHIKV with similar strategies we used. 
The aim of my project was to better understand and characterize the chikungunya virus entry and the 
host factors involved during replication steps in mammals. Several different approaches have been 
used in this work.  
 
As a first step, we have demonstrated a decrease of chikungunya and Sindbis viruses’ infection after 
iron treatment in form of ferric ammonium citrate. Interestingly, the metal ion transporter NRAMP2, 
regulated by iron was known to be involved in Sindbis virus (SINV) entry in mammals. However, our 
data have shown that NRAMP2 is not required for CHIKV entry. In parallel, we have demonstrated that 
knockout of transferrin receptor, a protein involved in iron transport and a receptor for several viruses, 
does not affect chikungunya virus entry. We have suggested a direct antiviral effect of iron as ferric 
ammonium citrate as it has been recently published for Zika virus, influenza A virus and human 
immunodeficiency virus.  
 
On the other hand, other preliminary studies in collaboration allowed to identify cell membrane proteins 
of tetraspanin-enriched microdomains (TEM) as broad cell entry factors for pathogens of eight virus 
families. These include, among others, highly pathogenic Ebola virus, chikungunya virus, Lassa virus 
and influenza A virus. We focused on two proteins emphasized as potential candidate involved in 
CHIKV entry, namely CD46 and TM9SF2. Our validation experiments suggest that CD46 is not required 
for viral entry in human cells while TM9SF2 protein appeared to be involved in chikungunya efficient 
infection. This protein has been published by another laboratory in the meantime as required for CHIKV 
infection of human haploid cells. 
 
In the last axis, we have set up and carried out a genome-wide loss of function screen with the 
CRISPR/Cas9 technology in order to identify host factors important for chikungunya virus entry, 
replication or virus-induced cell death. The screen analysis has revealed the weaknesses of our 
approach which would allow optimizing future screens.  Nonetheless, this screen enabled us to identify 
potential candidates required for CHIKV. Some of these candidates have been tested individually for 
their potential involvement in CHIKV biology. Promising results have been obtained with the protein 
candidate DYNLT3, a dynein light chain. The involvement of this candidate in CHIKV infection should 
be studied in more depth in further experiments.  
  
 
Key words: arbovirus, alphavirus, chikungunya, viral entry, iron, CRISPR/Cas9, screening 
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Résumé 
 

Les alphavirus sont un groupe de virus enveloppés à ARN simple brin positif retrouvés sur la 
totalité du globe et responsables de nombreuses maladies humaines et animales. Ces virus sont 
transmis par des arthropodes hématophages au cours d’un repas sanguin et se répliquent chez les 
hôtes vertébrés et arthropodes. Durant la dernière décennie, une réémergence du virus du chikungunya 
a été observée causant de nombreuses épidémies sur tous les continents. Le virus du chikungunya 
(CHIKV) induit une maladie caractérisée par de la fièvre, des douleurs musculaires et une arthralgie. 
Bien que le CHIKV partage de nombreuses similitudes avec le virus Sindbis (SINV) et le virus de la forêt 
de Semliki (SFV) étudiés depuis de nombreuses années, les mécanismes moléculaires de réplication 
du CHIKV et les interactions hôte-virus restent peu caractérisées. Concernant l’entrée des alphavirus, 
différents facteurs d’attachement et récepteurs ont été décrits. La molécule d’adhésion, Mxra8, a 
récemment été identifiée comme récepteur du CHIKV et d’autres virus arthritogéniques à l’aide de 
stratégies similaires à celles que nous avons utilisées.  
 

L’objectif de mon travail était de mieux comprendre et caractériser l’entrée du virus du 
chikungunya et les facteurs de l’hôte impliqués dans la réplication chez les mammifères. Plusieurs 
approches distinctes ont été utilisés dans ce projet.  
 
Dans un premier temps, nous avons mis en avant une diminution de l’infection du CHIKV et du SINV 
après un traitement avec du fer sous forme de citrate d’ammonium ferrique. De manière intéressante, 
le transporteur d’ion métallique, NRAMP2, régulé par le fer a été identifié comme un facteur d’entrée 
du SINV chez les mammifères. Néanmoins, nos résultats ont permis de montrer que NRAMP2 n’est 
pas impliqué dans l’entrée du CHIKV. En parallèle, nous nous sommes intéressés au récepteur à la 
transferrine (TFRC), impliqué dans le transport cellulaire du fer et connu comme le récepteur d’entrée 
de plusieurs virus. Nous avons démontré que la déplétion de TFRC n’avait pas d’impact sur l’entrée 
du CHIKV. Nous avons suggéré un effet antiviral direct du citrate d’ammonium ferrique comme il a été 
récemment publié pour le virus Zika, le virus de la grippe A et le virus de l’immunodéficience humaine.  
 
D’autre part, des études préliminaires en collaboration ont permis d’identifier des protéines 
membranaires des microdomaines enrichis en tetraspanine comme facteurs d’entrée pour huit familles 
de virus différentes. Parmi ces virus on retrouve notamment le virus Ebola, le virus du chikungunya, le 
virus Lassa et le virus de la grippe A. Nous nous sommes intéressés à deux protéines, CD46 et 
TM9SF2, qui avaient été mis en avant comme potentiels candidats pour l’entrée du CHIKV. Nos 
expériences de validation suggèrent que la protéine CD46 n’est pas impliquée dans l’entrée du CHIKV 
tandis que le protéine TM9SF2 semble être impliquée dans l’infection des cellules par le CHIKV. Un 
autre laboratoire a mis en avant entre temps le rôle de la protéine TM9SF2 dans l’infection de cellules 
haploïdes humaines par le CHIKV.  
 
Dans le dernier axe, nous avons mis en place et réalisé un criblage « perte de fonction » sur le génome 
entier en utilisant la technologie CRISPR/Cas9 afin d’identifier des facteurs de l’hôte importants pour 
l’entrée du CHIKV, sa réplication ou la mort viro-induite. L’analyse de ce criblage a révélé certains 
points faibles de notre approche qui permettront d’optimiser les futurs criblages. Néanmoins, le 
criblage a permis d’identifier des candidats potentiels nécessaires au CHIKV qui ont été testés 
individuellement afin de confirmer leur implication dans la biologie du CHIKV. Des résultats intéressants 
ont notamment été obtenus avec la protéine DYNLT3, une chaine légère du complexe de la dynéine. 
L’implication de ce candidat dans l’infection par le CHIKV va être étudiée plus en détails dans des 
expériences futures. 
 
 
Mots clés : arbovirus, alphavirus, chikungunya, entrée virale, fer, CRISPR/Cas9, criblage 
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I - ALPHAVIRUS 

 
1 - Taxonomy and phylogeny 

 
Regarding the Baltimore classification based on viral genome, the genus alphavirus 
belongs to group IV with a single strand RNA genome of positive polarity. 
Alphaviruses are members of the Togaviridae family which also includes the rubivirus 
genus into which Rubella virus is the sole member. On the other hand, alphaviruses 
also belong to the arbovirus group, for arthropod-borne virus, which refers to any 
viruses transmitted by arthropod vectors such as mosquitoes or ticks. However, this 
arbovirus classification based on the transmission mode is only an ecological based 
assembly and it gathers morphologically heterogeneous viruses belonging to several 
distinct families. 
Alphavirus genus includes approximately 30 different species classified into 7 
serocomplexes of mosquito borne alphaviruses according to antigenic relationships 
determined in serum neutralization assays (Calisher et al., 1988).   
The seven antigenic complexes include Barmah Forest (BF), Eastern equine 
encephalitis (EEE), Middelburg (MID), Nmudu (NDU), Semliki Forest (SF), Venezuelan 
equine encephalitis (VEE) and Western equine encephalitis (WEE) (Fig. 1 and fig. 2). 
Alphavirus exceptions of mosquito-borne transmission include salmon pancreatic 
disease virus (McLoughlin and Graham, 2007), sleeping disease virus (Villoing et al., 
2000) and southern elephant seal virus (La Linn et al., 2001).  
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Figure 1: The seven antigenic complexes and viral species 
Italic = recombinant viruses

 
Figure 2: Phylogenetic tree of alphaviruses generated from structural 
polyprotein sequences 
Phylogenetic tree generated with Archaeopteryx tool based on FASTA sequences. 
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2 - Geographical distribution 
 

Alphaviruses are distributed worldwide and have been historically grouped into Old 
World and New World alphaviruses depending on their geographic localization (Fig.3) 
(Strauss and Strauss, 1994). Old world alphaviruses such as Sindbis, o’nyong-nyong, 
Ross River and chikungunya viruses were mainly found in Asia, Australia, Europe and 
Africa. On the contrary, New world alphaviruses, including equine encephalitis viruses 
like Venezuelan Equine encephalitis were mainly found in North America and South 
America.  
Old world alphaviruses are arthritogenic and typically cause rash, fever and arthritis 
and occasionally encephalitis for some viruses like Ross river and chikungunya 
viruses. In contrast, New World alphaviruses have encephalitogenic properties and 
cause encephalitis in equines and humans.  
 
 

 
 
Figure 3: World distribution of major alphavirus infections (Charlier et al., 2017) 
 
 
 

3 - Alphavirus structure and genome 
 

a. Virion structure 

Alphaviruses are small (60-70 nm diameter), icosahedral-shaped, enveloped viruses 
(Powers et al., 2001; Strauss and Strauss, 1994). The nucleocapsid is composed of 
240 capsid protein monomers holding the RNA genome (Fig.4). This nucleocapsid is 
surrounded by a viral envelope composed of host-cell derived bilayer lipid membrane 
including cholesterol and sphingolipid molecules. The two envelope glycoproteins E1 



Bibliographic Synthesis - Alphavirus 

23 

and E2 are transmembrane proteins with a C-terminal cytoplasmic region. E1 and E2 
associate as heterodimer subunits, which are in turn assembled into trimers to form 
the spikes with a total of 80 spikes at the surface of the virus.  
 

 
Figure 4: Structure of chikungunya virus particle 

(a) Schematic representation of the alphavirus virion 
(b) 3D reconstruction of alphavirus particles (VEEV on this figure), showing the E1 

basal triangle (green) and E2 central protrusion (blue) for each spike. Scale 
bar: 10 nm. (Zhang et al., 2011) 

(c) High-resolution cryo-electron microscopic reconstructions of alphavirus 
particle and spike-protein predicted structures based on atomic resolution 
structures of the envelope glycoproteins (Weaver and Lecuit, 2015).  

 
b. Genome 

Alphaviruses have a single stranded positive-sense RNA genome ((+)ssRNA) with a 
12 kb approximate length (Fig.5(a)). The alphavirus genome encodes two open 
reading frames (ORFs): one flanked by a 5’ cap and an untranslated region for the non 
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structural proteins and one controlled by a subgenomic promoter for structural 
proteins. The second ORF has a 3’ untranslated region and a poly(A) tail. A junction 
region between the non structural and structural ORF contains the nucleotide 
encoding the C-terminus of non structural polyprotein, a promoter for transcription of 
the 26S subgenomic mRNA, and the start site and 54 nucleotides untranslated leader 
sequence of the 26S mRNA. The short 5ʹ untranslated region and the longer 3ʹ 
untranslated region comprising stem-loop structures and direct repeats regulate viral 
gene expression, replication, translation and virus-host interactions (Hyde et al., 2015). 
For chikungunya virus, these regions are thought to be associated with adaptation to 
mosquito hosts (Chen et al., 2013b). Similarly, for insect only alphaviruses, these 
regions restrict replication in mammals.  
 
The non structural ORF encodes non structural proteins (nsp1-nsp4) for transcription 
and replication of viral RNA genome, polyprotein cleavage and RNA capping and is 
translated in the early times of infection (Fig.5(a)).  
The non structural protein 1 (nsp1, ~60 kDa) exhibits both guanine-7-
methyltransferase and guanylyl transferase enzymatic activities required for capping 
and methylation of newly synthesized genomic RNA and subgenomic RNA.  
The nsp2 (~90 kDa) is a multifunctional protein. The nsp2 contains a triphosphatase 
activity involved in the capping process (Vasiljeva et al., 2000), a helicase activity 
required for unwinding dsRNA replicative intermediates (Gomez de Cedrón et al., 
1999) and also a cysteine protease activity required for the cleavage of the non 
structural polyprotein (Hardy et al., 1989).   
The nsp3 (~60 kDa) possesses an ADP-ribose 1-phosphate phosphatase activity and 
an RNA-binding activity. The nsp3 is involved in minus-strand and subgenomic RNA 
synthesis.  
Finally, nsp4 (~70 kDa) exhibits an RNA-dependent RNA polymerase (RdRp) activity 
required for viral RNA replication.  
 
The non structural proteins permit the synthesis of five structural proteins, 
respectively, Capsid, E3, E2, 6K, E1 encoded by the structural ORF (Fig.5(a)).  
The capsid protein has a molecular weight of about 30 kDa. Monomeric capsid (C) 
proteins assemble to form the nucleocapsid. The C-terminal domain of the capsid 
protein has a serine protease activity which co-translationally cleaves itself out of the 
nascent structural polyprotein (Fig.5(b)).   
The E1 protein and pE2 precursor are assembled in heterodimers in the endoplasmic 
reticulum (Fig.5(c)). Furin cleavage of the pE2 precursor during virus maturation in the 
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Golgi release E3 and E2 proteins and leads to the transport of E1-E2 heterodimers to 
the plasma membrane. E1-E2 heterodimers form trimeric spikes on the virus surface. 
E2 glycoprotein (~40 kDa) is responsible for attachment to host cell receptor while E1 
protein (~44 kDa) mediates entry of the nucleocapsid from endosomes to cytoplasm 
thanks to a fusion peptide. The role of E3 is poorly characterized and appears to vary 
between alphaviruses. E3 protein might mediate spike assembly and spike activation 
for viral entry (Jose et al., 2009; Snyder and Mukhopadhyay, 2012). It can stay tightly 
connected to the E1-E2 heterodimer for some alphaviruses but not for others.  
6K is a small polypeptide present in viral particles in small amounts (7-30 copies). 6K 
protein is considered as necessary for the structure of alphavirus particle (McInerney 
et al., 2004) although viral particles lacking 6K were structurally undistinguishable of 
wild type particles. In addition, the 6K protein is able to form a cation-selective 
channel and alter the permeability of the cell membrane.  
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Figure 5: Alphavirus genome and structural proteins 
(a) Alphavirus genome is a (+)ssRNA genome, encoding two open reading frames. 

It possesses 5’ cap and 3’ poly(A) tail. 5’ and 3’ sequences carry untranslated 
regions (UTR) and the junction region between nonstructural and structural 
proteins is also non-coding. The nonstructural proteins (nsp1-nsp4) are 
translated from the genomic RNA while structural proteins (Capsid-E3-E2-6K-
E1) are translated from subgenomic 26S RNA. The two polyproteins are cleaved 
by host proteases (furin/signal peptidase) and viral proteins with a protease 
activity (nsp2/capsid). 

(b) Alphavirus structural proteins arrangement on the endoplasmic reticulum 
membrane.  (Li et al., 2010) 

(c) Structure of the E2/E1 dimer.  
Top: Ribbon diagram depicting the ectodomains of the CHIKV E1 and E2 
glycoproteins. At neutral pH, the E2/E1 dimer interaction is stabilized by the 
hydrogen bond between E2-H170 and E1-S57. Both E1-A/V226 and E1-V178 
are important for lipid sensing prior to fusion. Bottom: Surface view of a virus 
spike (from the side and the top). E1 is colored as in the ribbon diagram, E2 is 
depicted in gray. (van Duijl-Richter et al., 2015) 

4 - Alphavirus replication cycle in mammalian cells 
 

The complete alphavirus replication cycle is represented and described in figure 7. 
Each replication step will be discussed in detail below.  
 

a. Receptor binding and entry 

The receptor mediated endocytosis is the main mode of entry for alphaviruses. The 
entry process begins with the non-specific interaction of the virus to attachment 
factors, followed by more specific binding to receptors/co-receptors at the cell 
surface (Fig.7). Attachment factors concentrate viruses at the host cell surface 
allowing them to scan the cell surface and promote receptor binding which is usually 
more specific.   
 
Glycosaminoglycans (GAGs) are large complex carbohydrate molecules expressed 
on the surface of most mammalian cell types. Since GAGs are ubiquitously present 
on the cell surface, many pathogens use them for initial cell attachment or possibly 
as sole entry receptors. GAGs include among others heparan sulfate (HS), chondroitin 
sulfate and dermatan sulfate. Several alphaviruses have been shown to use GAGs for 
entry into mammalian cells in vitro (Bernard et al., 2000; Gardner et al., 2013; Klimstra 
et al., 1998; Smit et al., 2002). The infection with natural isolates of EEEV and low 
passage strains of VEEV has been shown to be dependent on GAGs (Gardner et al., 
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2013; Wang et al., 2003). However, for the other alphaviruses, the affinity of binding 
to HS appears to be acquired after a series of passages in cell culture (Klimstra et al., 
1998).  
 
DC-sign and L-sign have been identified as attachment factors for alphaviruses 
(Klimstra et al., 2003). DC-sign and L-sign are C-type lectins that bind to mannose-
rich carbohydrate structures. It has been shown that high-mannose N-glycans on the 
viral glycoproteins of phleboviruses (arbovirus group), bind to DC-sign permitting virus 
internalization and infection (Lozach et al., 2011). However, so far, a direct role of DC-
sign in alphavirus internalization beyond attachment has not been demonstrated. We 
can hypothesize that, in particular cell lines, DC-sign might be sufficient for 
attachment and internalization of alphaviruses. It should be noticed that viruses 
produced by insect cells have high mannose residues which interact better to DC- 
and L-SIGN. Therefore, the dependence on these molecules may not be equivalent if 
the virus enters after a mosquito bite (high mannose) or after production in vivo from 
infected mammal cells (complex sugars).
 
Other cell surface molecules have been reported to be involved in viral attachment at 
cell surface such as major histocompatibility antigen class I, integrin a1b1, heat shock 
protein 70 and the high-affinity laminin receptor (van Duijl-Richter et al., 2015).  
 
In parallel, the natural-resistance associated macrophage protein (NRAMP2) has been 
proposed as the receptor for SINV in Drosophila, mosquito and mammalian cells 
(Rose et al., 2011). This molecule has been identified using a whole genome screen 
in Drosophila cells using siRNA technology. More recently, the cell adhesion molecule 
Mxra8 has been identified as an entry mediator for chikungunya, Ross River, Mayaro 
and O’nyong nyong viruses through a CRISPR/Cas9 screen in mice cells (Zhang et 
al., 2018).  
 
For some viruses, the domains involved in binding to attachment factors or receptors 
are well characterized, however, regarding alphaviruses, only a few studies 
demonstrated E2 binding to attachment factors or receptors and little is known about 
envelope protein domains involved in binding. It has been shown that domains A and 
B of the extracellular part of the E2 protein facilitate cell binding. Domain B binds cell-
surface glycosaminoglycans (GAG) while domain A might bind to another cell-surface 
molecule, suggesting at least two different cell entry mechanisms, one GAG-
dependent and another GAG-independent (Weber et al., 2017). With the recent 
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identification of Mxra8, more studies will be possible to characterize the molecular 
mechanism of envelope binding to receptor for arthritogenic alphaviruses. 
 
Following the binding to the receptors, alphaviruses are rapidly internalized via the 
formation of clathrin-coated vesicles involving adaptor protein-2, dynamin, epsin and 
Eps15 (Bernard et al., 2010; van Duijl-Richter et al., 2015). The GTPase activity of 
dynamin protein facilitates indeed the formation and the budding of the clathrin-
coated pits (Sourisseau et al., 2007). Clathrin-coated vesicles are subsequently 
uncoated and form endosomes.  
Some entry mechanisms will be described in chapters 1 and 2 of part I of the 
experimental report.  
 
Alternative mechanisms for alphavirus entry have also been reported illustrated by the 
ability of Sindbis virus to enter into cells in absence of low-pH endocytosis, the 
efficient chikungunya infection in cells depleted for clathrin and the direct fusion of 
Semliki Forest virus at the cell surface (Leung et al., 2011). The possible relevance of 
these mechanisms in vivo still needs to be investigated. 
 

b. Fusion and nucleocapsid disassembly 

In the endosomal membrane, the vacuolar ATPase acts as a proton pump to acidify 
the lumen of endosomes (Mellman et al., 1986). Thus, viruses are exposed to 
increasingly low pH as they transit through the endocytic pathway. For alphaviruses, 
fusion generally occurs within the early endosome compartment, with a pH around 5 
to 6. This low-pH environment induces conformational changes in the E1-E2 
heterodimer leading the exposition of the previously buried E1 fusion loop. The 
hydrophobic fusion loop located in domain II of E1 protein inserts in the target 
membrane and E1 homotrimers are formed by domains I and II of the protein. 
Cooperative action of several homotrimers mediates the membrane fusion through a 
hemifusion step. Thereafter a fusion pore is formed through which nucleocapsid 
reaches the cytoplasm (Fig. 6). 
E1 protein might form two distinct populations with only a small fraction of E1 protein 
reacting with the membrane and generating the fusion pore. The second population 
of E1 might create ion-permeable pores in the viral membrane (Wengler, 2004).  
Both together, these processes allow the release of nucleocapsid into the cytoplasm. 
Uncoating of nucleocapsids occurs rapidly after their penetration into the cytoplasm. 
This uncoating is facilitated by the interaction of capsid protein with 60S ribosomal 
RNA (SINGH’ and HELENIUS, 1992; Wengler et al., 1992). 
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Alphavirus fusion is also dependent on membrane lipid composition. Presence of 
cholesterol is required for chikungunya virus (CHIKV), Sindbis virus (SINV) and Semliki 
forest virus (SFV) entry (Bernard et al., 2010; Kielian and Helenius, 1984) while VEEV 
is still able to enter in cells depleted of cholesterol (Kolokoltsov et al., 2006). 
Cholesterol is essential for the fusion of many enveloped viruses with cell membranes. 
Cholesterol changes the penetration of fusion peptides in membranes, it alters the 
intrinsic membrane curvature and bending in membrane fusion and it alters the 
lifetime of hemifusion intermediates. For alphaviruses, the cholesterol dependence 
might be attributed to a specific residue at position 226 in E1 protein sequence even 
if the mechanism is not completely understood. VEEV has a different residue at 
position 226 compared to SFV, SINV and CHIKV and traffics to late endosomes 
depleted of cholesterol, while SFV, SINV and CHIKV fuse with early endosomes, 
enriched in cholesterol (Leung et al., 2011). Moreover, small amounts of sphingolipids 
in the target membrane are also required for fusion and might play a role in 
accessibility of cholesterol (Kielian et al., 2010). During a recent CHIKV outbreak, the 
mutation of the amino acid 226 (alanine to valine) was selected in the Indian Ocean 
lineage (IOL) emerging strain. It has proposed that this mutation allows the virus to 
adapt to Aedes albopictus and improve the use of cholesterol (Tsetsarkin et al., 2007). 
This will be discussed in further details in paragraph II-1.  

 
 

Figure 6: Steps of the alphavirus membrane fusion process (Kielian et al., 2010)  
(a) Pre-fusion state with dimer of E2 (in light blue) and E1 (in colors) in the viral 
membrane. Target membrane is in pink color.  
(b) Low pH dissociation of E2-E1 heterodimer. Exposition of E1 fusion loop.  
(c) Insertion of E1 in the target membrane and E1 trimer formation.  
(d) Conformational transition to the E1 trimeric hairpin brings viral and target 
membranes together.  
(e) Hemifusion step with the merge of the two outer leaflets.  
(f) E1 stable post-fusion homotrimer.  
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c. Replication 

Replication is initiated by the expression of the nsp1234 precursor from the RNA 
genome and the subsequent cleavage in cis by nsp2 protease activity between nsp3 
and nsp4 to yield P123 and nsp4 (Fig.5). P123 and nsp4 associate to perform the 
early replication complex (RC) which performs full-length minus-strand RNA 
intermediate synthesis.  The proteolytic maturation of P123 allows the release of nsp1, 
nsp2 and nsp3, which associate to form mature RC to ensure positive-sense 49S RNA 
and 26S subgenomic RNA synthesis (Fig.7)  (Shirako and Strauss, 1994). Viral RNA 
synthesis takes place within membrane spherules on the plasma membrane, also 
known as type I cytopathic vacuoles (CPVs). 
The subgenomic RNA drives the expression of the C-pE2-6K-E1 precursor, which is 
processed by an autoproteolytic serine protease activity of the capsid protein (Strauss 
and Strauss, 1994). Capsid protein is released from the nascent polypeptide chain 
while the remainder of the polyprotein enters the endoplasmic reticulum for 
processing by signal peptidase and maturation (Fig.5). pE2 and E1 associate in 
heterodimer in the Golgi followed by the oligomerization of three heterodimers to form 
the immature spike complex. Immature spikes are exported to the plasma membrane 
through the host secretory system and pE2 is cleaved by cellular furin into E3 and E2 
which renders the spike fusogenic (Fig.7). 
 

d. Assembly and release 

Alphavirus assembly begins with the association between nucleocapsid and RNA 
genome (Fig.7) (Rebecca Brown et al., 2018). A specific sequence in the N-terminal 
region of the capsid is required for RNA-binding and packaging (Mendes and Kuhn, 
2018). This association leads to the assembly of 240 copies of capsid protein to form 
the nucleocapsid with icosahedral symmetry (with T=4 symmetry). This nucleocapsid 
assembly occurs in the cytoplasm and E2 protein interacts with nucleocapsid for 
budding through the cell membrane (Fig.7) (Owen and Kuhn, 1997; Zhao and 
Lindqvist, 1994). 
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Figure 7:  Alphavirus life cycle 
Alphaviruses bind to receptors on the plasma membrane and are internalized by 
clathrin-mediated endocytosis. The low-pH dependent fusion of the viral and the 
endosomal membranes leads to the release of the nucleocapsid into the cytoplasm. 
Virus replication occurs in the cytoplasm and the envelope glycoproteins are 
transported to the cell surface where new virions bud. (Schwartz and Albert, 2010) 
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II - CHIKUNGUNYA VIRUS   
 

1 - History of chikungunya virus epidemics 
 

CHIKV was originally isolated in 1952 from the serum of a febrile patient from the 
Makonde Plateau in Tanzania (Robinson, 1955 and Ross, 1956). The epidemic 
disease was characterized by fever, joint pain and rash. The disease was initially 
diagnosed as a “dengue-like” illness until chikungunya virus was identified. The virus 
takes its name from the local word chikungunya, meaning “that which bends up”, 
coming from the stooped posture of infected individuals that resulted from the pain. 
After the identification of the virus, outbreaks of chikungunya virus occurred 
sporadically with reports of human infection across central Africa from Senegal to 
Uganda to South Africa. African outbreaks were numerous but tend to be limited. 
Subsequent spread to southern Asian countries probably occurred via shipping, 
where large urban outbreaks were reported.  
Three distinct lineages of chikungunya virus have been identified by genetic analyses: 
the west African lineage, the East Central South African (ECSA) lineage and the Asian 
lineage. 
A re-emergence of chikungunya virus epidemics occurred in coastal Kenya in 2004 
and spread to several Indian Ocean islands including the Comoros, Mauritius, the 
Seychelles, Madagascar, Mayotte and La Reunion. The magnitude of the CHIKV 
outbreak in La Reunion island was unexpected, with approximately 266 000 cases 
(34% of the total island population).  

The strain which initiated the outbreak in the Indian Ocean islands, named Indian 
Ocean lineage (IOL), expressed an E1 envelope glycoprotein with the amino acid 
alanine (A) at position 226 (A226). However, strains isolated from the same geographic 
region later in the outbreak expressed either the alanine (A226) or valine residues at 
position 226 (V226) in the same E1 glycoprotein. The new V226 genotype largely 
dominated in infected humans. It was proposed that E1 A226V mutation is directly 
responsible for a significant increase in CHIKV infectivity for Aedes albopictus, the 
predominant mosquito vector in this area (Tsetsarkin et al., 2007). It provides a 
plausible explanation of how this mutant virus caused an epidemic in a region lacking 
the typical vector Aedes aegypti. If initially, the mutation in the E1 glycoprotein was 
shown to modify cholesterol dependence of the virus (Tsetsarkin et al., 2007), the 
same group finally argue that chikungunya virus adaptation to Aedes albopictus 
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mosquitoes does not correlate with acquisition of cholesterol dependence or 
decreased pH threshold for fusion reaction (Tsetsarkin et al., 2011).  

In 2006, the re-emergence of chikungunya virus was reported in India with more than 
one million cases with Aedes aegypti implicated as the mosquito vector. In 2007, an 
exportation event of CHIKV from India to Italy resulted in the first autochthonous 
transmission in a subtropical area. The spread in Italy was limited in both space and 
time, however, it demonstrated the risk of transmission in areas where only vector 
Aedes albopictus was present.  
More recently a global expansion of chikungunya virus distribution occurred from 
2011 to 2014 with outbreaks in the western Pacific, the South Pacific, the Caribbean 
and the spread of Asian lineage strains in Americas and of ECSA lineage to Brazil.  
The map in figure 8 shows the different countries where chikungunya cases have been 
reported. 
 

2 - Mosquito vectors    
 

a. Vectors and distribution 

In Africa, chikungunya virus is a zoonotic virus principally transmitted to primates by 
female Aedes mosquitoes. Enzootic strains of CHIKV have been detected in diverse 
mosquito species such as Aedes (Ae) aegypti, Ae. furcifer, Ae. taylori, Ae. 

luteocephalus, Ae. africanus and Ae. neoafricanus (Coffey et al., 2014). In Asia, the 
virus is mainly maintained in cycles between Ae. aegypti, Ae. albopictus and humans. 
Ae. aegypti is well adapted to the urban environment and prefers to feed on humans 
while Ae. albopictus is primarily a forest specie that has become adapted to rural, 
suburban and urban human environments. These two anthropophilic mosquitoes are 
widely distributed and can coexist in the same areas and often share larval habitats. 
Indeed, since several decades Ae. albopictus mosquitoes are established in many 
parts of the world, including Europe, north and south America (Fig.9).  

The expansion of Ae. albopictus distribution is linked to climate changes, human 
activities and global commerce exchanges. Ae. albopictus presents many features of 
a good viral vector. It is aggressive and diurnal, it survives in both rural and urban 
habitats, it has a long lifespan and it is zoophilic and anthropophilic. Moreover, eggs 
are resistant to desiccation and remain viable for many months without water. The 
propagation of this competent anthropophilic vector enables the spread of 
chikungunya virus (Higgs and Vanlandingham, 2015).  
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The global distribution of Aedes aegypti and Aedes albopictus mosquitoes is shown 
on the map of figure 9. 

  

Figure 8: Countries and territories where chikungunya case have been reported 

- May 2018  (Centers for Disease Control and Prevention) 

 

 

Figure 9: World distribution of Aedes aegypti and Aedes albopictus vectors 
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b. Viral infection in mosquitoes  

Aedes mosquitoes are competent vectors for chikungunya virus. This means that 
Aedes mosquitoes are able to acquire the virus, replicate it and successfully transmit 
it to another susceptible host. Chikungunya virus causes a chronic non-cytopathic 
infection in mosquito cells (Li et al., 2012). Female mosquitoes mainly become 
infected after a blood meal on viremic individuals (Fig.10), although vertical 
transmission via infected eggs may also occur at a low rate (Agarwal et al., 2014). 
During the extrinsic incubation period in the vector, CHIKV replicates in the epithelial 
cells of the midgut and disseminates through the body cavity to infect the salivary 
glands. Infection of salivary glands allows the release of the virus into the salivary 
ducts for oral transmission to vertebrates (Lim et al., 2018).  
 

 
 

Figure 10: Process of infection and transmission of chikungunya virus by 

vectors (Coffey et al., 2014) 
 

c. Transmission cycle 

Chikungunya virus circulates through two transmission cycles: an enzootic sylvatic 
cycle and an epidemic/endemic urban cycle, described in figure 11. The enzootic 
sylvatic cycle involves nonhuman primates and other vertebrates as reservoir hosts 
and arboreal Aedes mosquitoes.  
The urban cycle involves anthropophilic vectors Ae. aegypti and Ae. albopictus and 
human amplification hosts.  
Interestingly, all of the four arboviruses emerging recently (YFV, DENV, CHIKV and 
ZIKV) share this transmission cycle. The viruses were able to switch to an urban cycle, 
causing large epidemics, typically based in cities, as they were able to sustain 
interhuman transmission. They generate viremia titers sufficient to infect at least some 
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mosquito species including urban Ae. aegypti and when the density of mosquitoes 
and humans are sufficient, an urban cycle can be established. 
 
 

 
Figure 11: Sylvatic and urban cycle of alphavirus transmission 

 

3 - Chikungunya infection in humans 
 

a. Pathogenesis  

Transmission of chikungunya virus to humans generally occurs through a bite by 
infected Ae. aegypti or Ae. albopictus mosquito. Some cases of mother-to-child 
transmission during childbirth have been observed (Gerardin et al., 2008).  
Following transmission, CHIKV replicates in the skin mainly in fibroblasts and then 
disseminates to the liver, joints, muscles and lymphoid tissues, probably through the 
blood. During the acute phase, the viral load can reach 108 particles per milliliter of 
blood. 
 
CHIKV infection is symptomatic in more than 75% of cases. CHIKV is responsible for 
a febrile illness called chikungunya fever. The incubation period is usually comprised 
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between 2 to 7 days and is followed by a rapid-onset clinical disease. Symptoms of 
chikungunya include sudden high-grade fever, headache, maculopapular rash, severe 
joint pains (arthralgia), muscle pains (myalgia) and digestive troubles. The acute phase 
of infection usually lasts from a few days to a couple of weeks.  
For 30 to 40% of infected individuals, recurrent joint pains are observed during 
chronic phase. This chronic phase can last from a few months to several years 
(Brighton et al., 1984, Toivanen, 2008, Sissoko et al., 2009). Mechanisms underlying 
chronic persistence of joint pains are not well understood and notably the fact that 
infectious virus cannot be isolated from these patients, even if some CHIKV antigens 
have been observed in some joints.  

CHIKV-associated neuropathology was described early in the 1960s but neurological 
diseases were rarely observed and CHIKV was usually considered as a non-fatal 
disease. However multiple cases of neuro-invasive CHIKV infection with encephalitis 
and meningoencephalitis were reported during the outbreak in La Reunion island with 
a high mortality rate of 1:1000 principally among newborns, infants and elderly 
individuals (Renault et al., 2007, Staikowsky et al., 2009, Economopoulou et al., 2009 ).  

b. Cellular tropism 

Chikungunya virus is able to infect a variety of humans and non-humans cell lines. 
Sourisseau et al. published in 2007 a list of human cell types that support the 
replication of CHIKV including among others epithelial carcinoma cell line HeLa, 
primary skin fibroblasts and kidney epithelial cell line HEK 293T. They show that 
fibroblasts, epithelial and endothelial cells are the best cellular hosts for efficient viral 
infection in humans. CHIKV can also replicate in macrophages. However, CHIKV fails 
to replicate in primary lymphocytes, monocytes and monocyte-derived dendritic cells 
as well as in monocytoid and lymphoid cell lines (Sourisseau et al., 2007). Sensitivity 
to CHIKV of neuroblastoma cell line SH-SY5Y has been also reported (Solignat et al., 
2009). In addition, it was shown that CHIKV infects skeletal muscle progenitor cells 
and not muscle fibers. In vitro, CHIKV replicates in human muscle progenitors and 
satellite cells but not in myotubes (Ozden et al., 2007). 
 

c. Cellular response 

i. Autophagy 

Autophagy is an intracellular catabolic process important for the removal of protein 
aggregates and damaged organelles (Kuma et al., 2010). This process also serves as 
innate immune response to remove intracellular pathogens such as viruses (Deretic 
et al., 2013).  
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Briefly, the autophagy process is initiated by the formation of double-membrane 
vesicles surrounding substrates to be degraded which is called an autophagosome. 
The fusion of autophagosomes with late endosomes and lysosomes results in the 
formation of a degradative compartment called autophagolysosomes. This complete 
process required a dedicated protein machinery including autophagy-related genes 
(Atgs) and cellular organelles (Fig.12). 
Chikungunya virus activates autophagy process during infection (Krejbich-Trotot et 
al., 2011, Joubert et al., 2012). Indeed, an increase of autophagosome number was 
measured in HEK 293 cells after CHIKV infection (Krejbich-Trotot et al., 2011). CHIKV 
also provokes the conversion from LC3-I to LC3-II, a marker of autophagosomes, in 
mouse cells and primary and immortalized human cells (Joubert et al., 2012, Judith 
et al., 2013). Joubert et al. also show that CHIKV infection induces de novo 
autophagosome formation and fusion with lysosomes by monitoring the formation of 
both autophagosomes and autophagolysosomes and using lysosomal inhibitor. 
CHIKV promotes autophagic process by the independent induction of endoplasmic 
reticulum (ER) pathway and oxidative stress pathway (Joubert et al., 2012). Indeed, 
ER stress induced by CHIKV infection activates the unfolded protein response (UPR) 
which in turn triggers autophagy. CHIKV also induces Reactive Oxygen Species (ROS) 
production leading to autophagic process activation.  
 
Depending on cell type and virus, the autophagy pathway can play both an antiviral 
or a proviral role (Dong and Levine, 2013). 
 
On one hand, the autophagy machinery has an antiviral effect on CHIKV infection. 
Depletion of a particular autophagy receptor, p62, increases CHIKV replication (Judith 
et al., 2013). Indeed, p62 recruits the capsid of CHIKV to the autophagosome via 
LC3B in a SMURF1-independent manner and a ubiquitin-dependent manner for 
degradation, and thus prevents the cytotoxic effect induced by CHIKV capsid (Fig.13). 
Same observation of capsid clearance by autophagy was made for SINV but with a 
process SMURF1-dependent and ubiquitin-independent (Orvedahl et al., 2010).  
On the other hand, CHIKV also subverts the autophagy process to aid its replication. 
Several pieces of evidence show that blockage of autophagy reduces CHIKV infection 
whereas its induction enhances infection. Using inhibitor of autophagy and small 
interfering RNA (siRNA) targeting the autophagy protein Beclin-1 in human embryonic 
kidney cells, Krejbich-Trotot et al. demonstrated that autophagy is required for 
effective CHIKV replication and enhances viral replication (Krejbich-Trotot et al., 2011). 
Depletion of two autophagy actors, Beclin-1 and Atg7, also decreases CHIKV 
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replication in HeLa cells (Judith et al., 2013). Moreover, the autophagy receptor 
NDP52 interacts with CHIKV nsp2 in human cells and recruits it to the trans-Golgi 
network by binding to membrane-anchored LC3C (Fig.13). It induces autophagic 
process and seems to support viral replication by facilitating the assembly of the 
replication complex (Bouraï et al., 2012, Judith et al., 2013). This dual role of 
autophagy is illustrated and resumed in figure 13. 
 

 
 
Figure 12: Overview of the autophagy pathway 
Autophagy is induced by stress signals and initiated by the formation of isolation 
membranes or phagophore from the ER which involves Beclin-1 and VPS34 protein 
complex. Several proteins and complexes are required for the elongation and the 
closure of the autophagosome. Maturation steps begin by the fusion with endocytic 
compartment including early endosome, multi-vesicular body, late endosome and 
lysosome. The fusion with the lysosome leads to the acidification of the lumen of the 
autophagolysosome and the acquisition of hydrolytic enzymes, followed by the 
degradation and the recycling of sequestered materials.  
 
 
 



Bibliographic Synthesis – Chikungunya virus 

41 

 
 
Figure 13: Dual effect of the autophagic machinery on CHIKV replication 
ER: endoplasmic reticulum, LC3B: light chain protein 3B, LC3C: light chain protein 
3C, NDP52: nuclear dot protein 52,  TGN: trans Golgi network. 
(adapted from Münz, 2013) 
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i. Apoptosis  

Many different signals can trigger apoptosis such as viral entry, cellular injury and 
death receptor signaling, leading to a cascade of activation of cysteine aspartyl 
proteases known as caspases. Caspases are essential for the initiation and the 
execution of the apoptotic process. This activation induces membrane modification, 
cleavage of cellular constituents and DNA fragmentation. Apoptosis is characterized 
by the release of membrane-delimited apoptotic bodies and blebs which are taken up 
by neighboring cells and professional phagocytes in a non-inflammatory manner. 
Apoptosis occurs by both intrinsic and extrinsic pathways.  
In the intrinsic pathway, also called mitochondrial-dependent apoptosis, 
mitochondrial events trigger the activation of initiating caspase-9. The extrinsic 
pathway is mainly mediated by signal transduction through death receptors which 
activates caspase 8 or 10. Nevertheless, both pathways lead to the activation of 
effector caspases and may be interconnected.  
 
In many viral infections, apoptosis is used as a first-line defense mechanism (Fig.14) 
(Upton and Chan, 2014). In the case of CHIKV, infection induces cytopathic effects 
and rapidly triggers apoptosis to limit virus production and spreading (Sourisseau et 
al., 2007). Indeed, infection with CHIKV leads to the relocalization of Bax protein to 
the mitochondria and the cleavage of PARP, a target of effector caspases. It has also 
been shown that CHIKV infection triggers both caspase-9-dependent and caspase-
8-dependent pathways (Krejbich-Trotot et al., 2011).  
 

Furthermore, apoptosis could also have a proviral role (Fig.14). It has been 
demonstrated that CHIKV hijacks the apoptotic machinery through the formation of 
apoptotic blebs enclosing viral components subsequently engulfed by neighboring 
cells (Krejbich-Trotot et al., 2011). This mechanism limits the inflammatory response 
and promotes viral spreading.   
 
Interestingly, Joubert et al. have shown a relationship between autophagy process 
and apoptosis in the context of viral infection. Based on kinetic studies, they 
demonstrated that autophagy is a pro-survival mechanism that delays apoptotic cell 
death induced by CHIKV but is ultimately overwhelmed by viral replication (Joubert et 
al., 2012) 
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Figure 14: Proviral and antiviral roles of apoptosis on CHIKV infection 

 

d. Immune response 

The innate immune response against CHIKV induces activation of components of the 
cell-mediated immunity. In fibroblasts and other infected cells, single-stranded RNA 
(ssRNA) and intermediate double-stranded RNA (dsRNA) can be recognized by 
pathogen recognition receptors called Toll-like receptors (TLRs) and retinoic acid-
inducible gene I (RIG-I)-like receptors (RLRs) (Fig.15). TLR7 and TLR8 are engaged by 
ssRNA while TLR3 is triggered by dsRNA. The two RLRs, RIG-I and MDA5, detect 
viral RNA in the cytoplasm. These receptors activate a cascade of signalization via 

their common adaptor called mitochondrial antiviral signaling (MAVS). This triggers 
the induction of type I interferon (IFN-I) and production of pro-inflammatory cytokines 
(Her et al., 2015; Schwartz and Albert, 2010). In addition, MAVS also recruits caspase-
8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-
independent manner (El Maadidi et al., 2014). Interestingly, this response links innate 
antiviral signaling to apoptosis. 
 
Induction of cytokines and chemokine recruits Natural Killer (NK) cells, macrophages, 
inflammatory monocytes, and CD4+ and CD8+ T cells. Hence, CHIKV infection leads 
to a protective cellular and humoral adaptive immunity. T cells are important effector 
cells during viral infection. Both CD4+ and CD8+ T cells can eliminate virus-infected 
cells. CD8+T cells seem to be preferentially activated in the early stages of infection 
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while a switch from CD8+ T cells to CD4+ T cell lymphocyte-mediated immune 
response occurs in the later stages of acute infection. The activation of the humoral 
response induces the development of neutralizing antibodies (Tanabe et al., 2018).  
 

 
 

Figure 15: Innate immune control of CHIKV 

MyD88: myeloid differentiation primary response protein 88, TRIF: TIR domain-
containing adaptater-inducing IFN-β, IRF: IFN regulatory factor, NFκB: nuclear factor 
κB, IL: interleukin, TNF: Tumor Necrosis Factor.  
 

e. Diagnostic 

Chikungunya virus infection is diagnosed on the basis of clinical, epidemiological and 
laboratory criteria. Given similarities in clinical manifestations of CHIKV infection with 
other arboviruses like Dengue virus, the use of specific diagnosis assays is crucial. 
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The laboratory diagnosis assays of CHIKV infection are based on the kinetic of 
infection (Fig.16). Detection of viral RNA by molecular assays permits diagnosis during 
the acute viremic phase. Molecular assays include detection of viral RNA of E1 protein, 
nsp1 or nsp2 by reverse transcription-polymerase chain reaction (RT-PCR) (Pastorino 
et al., 2005, Carletti et al., 2007, Ho et al., 2010).  

Diagnosis by viral isolation can be performed from the serum of infected individuals 
on insect cell lines or VeroE6 mammal cell line. It can also be useful for 
epidemiological studies, pathogenesis studies or molecular characterization. 
However, early antibody response limits virus isolation.  

Other diagnosis assays rely on serological methods such as Enzyme-linked assays 
(ELISA) and indirect immunofluorescence assays (IFA), hemo-agglutination inhibition 
(HI) and microneutralization (MNt). zELISA and IFA can distinguish between IgM (acute 
phase) and IgG (late or after infection) antibodies. IgM appear 2-3 days after the onset 
of clinical illness and persist for several weeks to months while IgG antibodies are 
detected soon after IgM (day 7-8) and persist for years (Johnson et al., 2016).  

f. Antiviral treatments and vaccines  

No antiviral drugs or licensed vaccines are available against CHIKV and patients are 
symptomatically treated with anti-inflammatory drugs.  
Chloroquine, commonly used as an anti-malaria drug, showed promising results on 
CHIKV infected patients in a study more than 30 years ago (Brighton, 1984). Although 
chloroquine shows a strong antiviral effect in cell culture, it has no effect on patients 
and seems, quite the opposite, to exacerbate the acute infection and to delay cellular 
and humoral response in non-human primate models and in patients (de Lamballerie 
et al., 2009, Roques et al., 2018). 
Broad-spectrum anti-viral combination of ribavirin and interferon have been shown to 
inhibit CHIKV infection in cell culture, but further studies are required to support the 
clinical efficiency in vivo (Briolant et al., 2004, Gallegos et al., 2016). On the contrary, 
the small anti-inflammatory molecule bindarit has been shown to be effective to treat 
CHIKV infection induced arthritis (Rulli et al., 2011). Moreover, a drug used against 
influenza and other respiratory infections, called Arbidol, which impacts membrane 
remodeling and fusion, proved to efficiently inhibit CHIKV replication on a human cell 
line (Delogu et al., 2011).  

Given recent CHIKV outbreaks, many research approaches were used to develop a 
vaccine triggering a high level of antibodies and providing lasting immunity. As of 2018, 
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about 40 vaccine candidates have been developed. These approaches include virus-
like particle (VLP) vaccines, subunit vaccines, chimeric vaccines, nucleic acid 
vaccines and live attenuated vaccines (Powers et al., 2017). Some approaches are 
described below.  

One of these approaches permits the generation of a vaccine candidate 
CHIKV/internal ribosome entry sequence (IRES) by manipulation of the structural 
protein expression of a wild type CHIKV (La Réunion strain) and the IRES of 
encephalomyocarditis virus (EMCV). This vaccine candidate has presented promising 
results in mice and it is being tested in nonhuman primates (Plante et al., 2011). 

In parallel, another approach with a chimeric vaccine using the backbone of vascular 
stomatitis virus (VSV) and structural proteins of CHIKV showed an efficient induction 
of neutralizing antibody response in mice against CHIKV infection (Chattopadhyay et 
al., 2013).  

A virus-like particle vaccine derived from a West African lineage strain (CHIKV strain 
37997) has been shown to be immunogenic, safe and well tolerated in phase I and II 
of clinical trial (Chang et al., 2014).  

In addition, a recombinant Measle virus-based chikungunya vaccine has been 
demonstrated to be safe and highly immunogenic in humans. Clinical evaluations are 
ongoing for this promising candidate vaccine against chikungunya fever (Gerke et al., 
2019). 

Nowadays, the predominant need for a vaccine is within low- and middle-income 
countries although it could be used by travelers and military. However, the cost of 
production and the requirement for immunization campaign may discourage 
widespread use in these countries where CHIKV is endemic, such as India, 
Bangladesh and southern Indian Ocean islands. 
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Figure 16: Chikungunya virus pathogenesis and diagnosis assays range.  
Following transmission by mosquito bite, infected individuals present an acute onset 
of disease with an increasing viremia. Biomarkers used in diagnostic assays to detect 
CHIKV infection are shown on the timeline.  
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III - CRISPR/Cas9 gene editing scissors 
 

1 - Traditional genetic tools 
 

a. Homologous recombination 

Since the discovery of the deoxyribonucleic acid (DNA) double helix, the possibility of 
genome modification run through the mind of researchers and scientists. One of the 
first techniques to modify DNA in eukaryotic cells is called gene targeting. This 
method enables to modify an endogenous gene by homologous recombination (HR). 
Nevertheless, HR was complicated to use routinely as it shows poor efficiency. Two 
studies have shown that introduction of double-strand break (DSB) could enhance 
the efficiency of gene targeting (Rouet et al., 1994; Rudin and Haber, 1988).  
 

b. Zinc finger nuclease 

During the 90’s, the discovery of zinc finger-mediated DNA binding and the 
endonuclease domain of the FokI enzyme led to the development of Zinc Finger 
Nucleases (ZFNs) (Li et al., 1992; Pavletich and Pabo, 1991). ZFNs are fusion proteins 
composed of a DNA-sequence-specific zinc finger protein and a nuclease domain 
derived from the FokI restriction endonuclease. They are designed as a pair that 
recognizes DNA sequences flanking the target site, one on the forward strand and the 
other on the reverse strand. The binding of the two ZFNs permits the dimerization of 
FokI nucleases which generate a DSB of the DNA between the DNA binding sites 
(Fig.17). Such ZFNs were found to be effective at inducing genomic sequence 
changes in Drosophila and mammalian cells (Bibikova, 2003; Bibikova et al., 2002). 
Although ZFN efficacy was reported for genome editing, they were not widely used 
as designing and engineering proteins targeting a specific DNA site of interest was 
very challenging. 
 

c. TALEN 

Later, the DNA binding domain of the transcription activator–like effector (TALE) from 

Xanthomonas, a bacterial plant pathogen, was described (Boch et al., 2009; Moscou 
and Bogdanove, 2009). Similarly to ZFN, this domain can be coupled to the FokI 
nuclease to create transcription-activator-like effector nuclease (TALEN) (Miller et al., 
2011). In this way, TALEN are programmable fusion nuclease composed of a DNA-
sequence-specific transcription-activator-like effector (TALE) protein and a nuclease 
domain derived from the FokI restriction endonuclease (Fig.17). 
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Figure 17:  Schematic representation of ZFN and TALEN binding on DNA 
 (Gupta and Musunuru, 2014) 
 
 
 

d. RNA interference (RNAi) 

RNA interference (RNAi) has been discovered and described by Fire and Mello with 
their work on Caenorhabditis elegans in 1998 (Fire et al., 1998). The RNAi pathway 
used by cells for regulating gene expression is a well conserved process found in 
many eukaryotes described in figure 18. This discovery has rapidly resulted in the 
widespread use of synthetic small RNAs (Elbashir et al., 2001). Indeed, the cellular 
RNAi machinery can be redirected by introducing synthetic small RNAs into cells such 
as short-interfering RNAs (siRNAs) or short-hairpin RNAs (shRNAs). They target 
specific mRNA and promote their degradation which subsequently leads to the 
reduction of the protein level. 
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Figure 18: Gene silencing by RNA interference 
Long dsRNA and shRNA are processed into siRNA by an enzyme called Dicer (in 
orange). The siRNA is recruited by an RNA-induced silencing complex (RISC, in pink) 
and the unwinding of the siRNA activates the complex. RISC targets a messenger 
RNA (mRNA, in green) leading to its cleavage and degradation. (Rutz and Scheffold, 
2004) 
 
 

2 - Discovery of the bacterial adaptive immunity system CRISPR/Cas  
 

CRISPR acronym stands for Clustered Regularly Interspaced Short Palindromic 
Repeats. CRISPR/Cas systems are well-known acquired immunity systems that are 
widespread in archaea and bacteria. The first report of CRISPR was in 1987 when 
unusual repetitive sequences, later named CRISPR, were observed in Escherichia coli 
(Ishino et al., 1987). Similar sequences were then reported in an increasing number of 
distant bacterial and archaeal genomes suggesting an unknown but important 
function in prokaryotes (Mojica et al., 1993, 2000). These palindromic repeated 
sequences were shown to be interspaced with non-repetitive spacers. DNA repeated 
sequences were finally named CRISPR and genes associated with CRISPR 
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sequences were identified and called Cas genes for CRISPR-associated genes 
(Fig.19) (Jansen et al., 2002). In 2005, three different groups have reported that the 
spacers were similar to sequences of bacteriophages, archaeal viruses and plasmids 
suggesting a bacterial immune system role (Bolotin et al., 2005; Mojica et al., 2005; 
Pourcel et al., 2005). The demonstration that CRISPR/Cas systems are involved in 
acquired immunity against bacteriophages was quickly published (Barrangou et al., 
2007). The following year, CRISPR RNAs (crRNAs) were then identified as guides in 
complex with Cas proteins to target specific DNA (Brouns et al., 2008).   
 
 

 
Figure 19: CRISPR/Cas locus  
CRISPR/Cas loci consist of CRISPR array of identical repeats interspaced with invader 
DNA-targeting spacers encoding crRNA components and an operon of Cas genes 
encoding the Cas proteins. 
 
 
In bacteria the CRISPR adaptive immunity process is divided into three stages:  
acquisition, expression and interference (Fig.20). During the immunization process 
or acquisition, exogenous DNA from virus or plasmid is recognized by a Cas complex. 
This complex cleaves DNA and incorporates a short sequence of the invading DNA 
as a spacer sequence into the CRISPR array. After a new insertion of exogenous DNA, 
the CRISPR array is transcribed into a precursor crRNA (pre-crRNA) that is processed 
to generate mature crRNAs, each composed of a repeat portion and an invader-
targeting spacer portion. crRNA directs specific cleavage of foreign nucleic acid by 
Cas proteins for degradation (Fig.20).  
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Figure 20: CRISPR acquisition process and immunity process 
3 stages:  
(1) acquisition: integration of exogeneous DNA into the CRISPR locus 
(2) expression: transcription of pre-crRNA processed to crRNA  
(3) interference: degradation of foreign DNA by Cas proteins directed by crRNA 
 

 
3 -  CRISPR/Cas mechanism 

CRISPR systems have been classified into two major classes divided into six types 
and more than 30 subtypes (Koonin et al., 2017; Makarova et al., 2015). The 
conserved common feature of the different CRISPR systems is the acquisition 
mechanism by Cas1 and Cas2 proteins (Fig.21). These two proteins form a complex 
which captures about 30 base pairs (bp) of foreign DNA and integrates them into the 
CRISPR locus during the immunization process (Nuñez et al., 2014). However, the 
interference mechanism varies significantly among the different CRISPR systems. The 
class 1 systems (types I, III and IV) use specialized Cas endonucleases to process the 
pre-crRNAs and then mature crRNA assembles into a large multi-Cas protein complex 
capable of targeting and cleaving nucleic acids complementary to the crRNA  
(Makarova et al., 2011; Nishimasu and Nureki, 2017). In contrast, class 2 systems 
(types II, V and VI) involve a single effector Cas protein for interference process. The 
type II-A system is the most studied since a genome editing tool has been developed 
with the Cas9 from Streptococcus pyogenes.  
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Figure 21: Acquisition mechanism by Cas1-Cas2 complex 
The protospacer from exogenous DNA is incorporated into the CRISPR locus by the 
Cas1-Cas2 complex.  (Wright et al., 2016) 
 
 
Like for the other systems, the mechanism of action of the type II-A CRISPR system 
of Streptococcus pyogenes includes an acquisition mechanism involving Cas1 and 
Cas 2 proteins. Moreover, in this system, it has been reported that Cas9 and Csn2, a 
protein encoded by a gene of the Cas operon, also contribute to the acquisition of 
new spacers (Heler et al., 2015). 
For the expression and interference mechanisms in this system, Cas9 protein requires 
a trans-activating crRNA (tracrRNA) (Chylinski et al., 2013; Jinek et al., 2012). Indeed, 
after pre-crRNA transcription, tracrRNAs complementary to the repeat sequences in 
pre-crRNA are recruited and trigger the processing of pre-crRNA into mature crRNA 
by the ribonuclease RNase III and the Cas9 protein (Fig. 22). In this way, there is a 
formation of a crRNA/tracrRNA/Cas9 complex. Then, each crRNA/tracrRNA/Cas9 
complex will specifically bind to a target DNA sequence complementary to the crRNA 
(Fig.22). The target sequence contains a short motif called the Protospacer Adjacent 
Motif (PAM) directly after the target site of the crRNA. The PAM of Streptococcus 

pyogenes Cas9 is 5’-NGG but the motif differs between different strains and types of 
Cas protein. It has been shown that the complex initially binds to PAM to quickly 
screen for potential target sequences. If the complex finds an appropriate PAM, the 
complementarity between crRNA and target sequence is tested (Sternberg et al., 
2014). After the complex stably binds, Cas9 separates the double stranded DNA 
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target and cleaves both strands near the PAM (Fig.22). Finally, the 
crRNA/tracrRNA/Cas9 complex unbinds after the double-strand break. 
 
The Cas9 nuclease has two functional endonuclease domains, RuvC and HNH. The 
RuvC nuclease initiates cleavage of the DNA strand not complementary to the guide 
RNA while the HNH nuclease domain of Cas9 cleaves the DNA strand complementary 
to the RNA guide (Fig.22). 
 
 

 
Figure 22: CRISPR/Cas9 system mechanism 

(a) Association of Cas9 with tracrRNA and pre-crRNA and processing of pre-
crRNA into mature crRNA by RNase III.  

(b) crRNA/tracrRNA/Cas9 complex binds to the target sequence followed by PAM 
and induces DSB.  (Doudna and Charpentier, 2014)

 
 

4 - CRISPR/Cas9 system as a gene editing tool 
 

a. Mechanism 

Jinek et al. have marked the beginning of CRISPR as a biotechnology tool, with the 
demonstration that Cas9 enzyme from Streptococcus pyogenes (spCas9) can be 
reprogrammed to target the desired DNA sequence in bacteria. They have also shown 
that Cas9 can be guided by a single chimeric RNA formed by the fusion of tracrRNA 
and crRNA, called single guide RNA (sgRNA) (Fig.23) (Jinek et al., 2012). This 
publication was quickly followed by revolutionary publications demonstrating that 
CRISPR can be adapted for in vivo genome editing in eukaryotic cells (Cong et al., 
2013; Jinek et al., 2013; Mali et al., 2013). 
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The mechanism of targeting and cleavage of this two components system (sgRNA 
and Cas9) remains the same (Fig.24). The sgRNA/Cas9 complex identifies a PAM 
sequence in the genome, then the target-specific sequence of 20 nucleotides of the 
sgRNA hybridizes with the genomic DNA target sequence leading to a precise double-
strand break 3 or 4 bp downstream of the PAM. The requirement of the PAM 
sequence directly after the 20 bp target sequence does not limit the targeting range 
in the human genome since the PAM sequence of spCas9 (5’-NGG) can be found in 
average every 8-12 bp. Regarding the design of sgRNA, many studies have been 
published to show how to optimize the design in order to maximize efficacy without 
reducing the specificity (Cui et al., 2018; Doench et al., 2016; Hsu et al., 2013).  
 
 

 

 
Figure 23: Programmed CRISPR/Cas9 systems with two RNAs or one single RNA 
Left: Two-RNA complex formed by tracrRNA and crRNA guides Cas9 to cleave 
specific DNA target site. Right: Chimeric sgRNA generated by fusing the 3′ end of 
crRNA to the 5′ end of tracrRNA guides Cas9 nuclease. (Doudna and Charpentier, 
2014) 
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Figure 24: CRISPR/Cas9 mechanism with the single guide RNA (sgRNA) 
The 20 nucleotides genomic DNA target sequence must be adjacent to a PAM 
sequence. Hybridation of sgRNA to the target specific sequence induces a double-
strand break (DSB) of the target sequence generated by Cas9. DSB can be repaired 
by the non-homologous end-joining (NHEJ) mechanism or the homology-directed 
repair (HDR) process. ( Agrotis and Ketteler, 2015) 
 
 

b. DNA repair 

The double strand break induced by Cas9 enzyme can be repaired by one of the two 
repair mechanisms: the non-homologous end-joining or the homology-directed repair 
(Fig.24). 
 

The non-homologous end-joining (NHEJ) is an error-prone process used to repair 
DSB in absence of a repair template. This mechanism attempts to ligate the cleaved 
ends of the DSB together, but it often induces small insertion or deletion at the DSB 
site. This frequently causes frame shifts or introduces premature stop codons that 
permanently disrupt the open reading frame of the gene. It enables to generate 
specific gene knock-out.  
 



Bibliographic Synthesis – CRISPR/Cas9 gene editing scissors 

57 

The homology-directed repair (HDR) process can be used if a repair template is 
available or added. The DNA repair template has a high degree of homology to the 
sequence upstream and downstream of the DSB. The cell repairs the DSB by 
homologous recombination using the repair template. HDR permits to modify the 
target gene by introducing point mutation or by generating insertion or deletion of 
DNA fragments.  
 

c. CRISPR/Cas9 limitation 

Ideally, a sgRNA has a perfect homology to the target DNA with no homology 
elsewhere in the genome. Actually, unselective cleavages of DNA sequences that do 
not fully match the sgRNA have frequently been reported (Frock et al., 2015; Fu et al., 
2013; Hsu et al., 2013; Kuscu et al., 2014; Lin et al., 2014b). These off-target events 
can introduce insertion or deletion mutation at sites in the genome other than the 
desired target site. Many different tools are available for designing sgRNA minimizing 
off-target effects based on prediction, but off-targets are challenging to predict (Bae 
et al., 2014a; Naito et al., 2015; Stemmer et al., 2015). To overcome the off-target 
effects in vitro, several distinct sgRNAs targeting different sequences of the same 
gene are usually used in separate assays.  
 
In parallel, various strategies have been described to reduce genome off-target 
mutations.  
A Cas9 nickase, a variant of the Cas9, has been developed by introducing a mutation 
in one of the two nuclease domains (Cong et al., 2013; Ran et al., 2013). This mutant 
cuts only one strand of DNA (nick) instead of inducing a DSB. A pair of sgRNAs, 
designed on opposite DNA strands, are required to permit gene editing (Fig.25). Since 
a single stranded break can be easily repaired by HDR using the non-cleaved 
complementary strand and the two sgRNAs need to work together to induce DSB, 
off-target effects are minimized.  
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Figure 25: Use of Cas9 nickase recruited by a pair of sgRNAs for gene editing 

(From Abm website) 

 

The use of truncated sgRNAs has also been described to improve the Cas9 complex 
specificity (Fu et al., 2014). Moreover, several high fidelity nucleases such as the 
spCas9-HF and the HypaCas9, have been developed presenting very low off-target 
activity (Kleinstiver et al., 2016; Slaymaker et al., 2016).  

In addition to the specificity, the efficiency of the CRISPR/Cas9 is another crucial point. 
The efficiency depends on the sgRNA sequence but is difficult to predict. These 
efficiency issues have been illustrated notably by the fact that in vitro CRISPR/Cas9 
system is more efficient in haploid cells than in diploid cells and in vivo with mosaicism 
observations in mice. 

5 -  Applications 

a. Gene knockout 

As described above, CRISPR/Cas9 system can be used to generate gene knockout. 
In absence of a repair template, the DSB generated by Cas9 is repaired by NHEJ that 
usually induces small insertions or deletions. Thus, there is a shit of the reading frame 
or an introduction of a premature stop codon, leading to the gene disruption. To 
maximize the gene disruption, sgRNAs are generated to target the first or the second 
exon ensuring that frame shift mutations do not generate a partially functional gene 
product. In addition, a pair of sgRNAs can be used simultaneously to ensure gene 
knockout, to generate a larger deletion or to remove an exon (Cong et al., 2013). The 
microhomology-mediated end joining, an alternative NHEJ pathway, should be 
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avoided near the site of the DSB as they enhance deletion without shift of the reading 
frame (Bae et al., 2014b).  
 

b. Gene editing 

While NHEJ repair often leads to gene disruption, homology direct repair (HDR) 
mechanism can be used to induce mutations or insert a large fragment after Cas9-
mediated DSB. In order to edit a gene, a DNA repair template is introduced with the 
sgRNA and the Cas9 into the cells. The DNA template must contain the sequence of 
interest flanked by homology arms. However, even in presence of sgRNA, Cas9 and 
a DNA template, the efficiency of HDR is generally low, with around 10% of modified 
alleles. Many studies have enabled to develop approaches to enhance HDR, some 
are presented below. 

The use of small molecules that either inhibit NHEJ or upregulate HDR pathways have 
been reported to enhance HDR (Chu et al., 2015; Song et al., 2016). 

Another approach to increase HDR efficiency is to synchronize cell cycle of all cells in 
order to introduce Cas9/sgRNA complex during the S/G2 phases of the cell cycle 
when HDR occurs (Lin et al., 2014a). In the same idea, a group has generated a 
modified Cas9 that allows a temporal control of Cas9 expression. The modified Cas9 
is only expressed during the S/G2 phases of the cell cycle and thus induces DSB at 
the right time (Gutschner et al., 2016).  

More recently, a strategy based on a covalent tethering of the donor DNA to 
Cas9/sgRNA ribonucleoprotein has been shown to increase HDR repair efficiency. 
This approach permits to spatially and temporally colocalize the DSB machinery and 
the template DNA (Aird et al., 2018).  

Lastly, the DNA template can be optimized. It has been shown that a single strand 
DNA template with a length of around 70 nucleotides allows to enhance HDR 
efficiency (Yang et al., 2013). Moreover, the desired mutation should be as close as 
possible to the PAM sequence (Liang et al., 2017; Paquet et al., 2016). The 5’-NGG 
PAM is relatively abundant in the human genome but it may not be positioned 
correctly to target a specific gene for inducing mutation. Thus several teams have 
developed nuclease variant with different PAM sequence, for example the Cpf1 
nuclease (Gao et al., 2017; Kleinstiver et al., 2015).   
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c. Base editing 

Generation of deactived Cas9 (dCas9) with mutations in both nuclease domains 
permits the development of many tools. dCas9 is unable to cleave DNA but retains 
the ability to recognize and specifically bind to DNA when guided by a sgRNA. dCas9 
fused with cytidine desaminase has been shown to mediate the conversion of cytidine 
to uridine within a window of around five nucleotides (Fig.26) (Komor et al., 2016).  
 

d. Activation or repression of a target gene (CRISPRa and CRISPRi) 

dCas9 has been also used to activate (CRISPRa) or repress (CRISPRi) target genes 
(Fig.26). By directly targeting dCas9 to the transcription site with a sgRNA, it permits 
to block RNA polymerase or disrupt transcription factor binding and thus inhibit gene 
expression (Dominguez et al., 2016). Many studies have described systems with 
dCas9 fused with transcriptional repressors or activators that result in robust 
transcriptional repression or activation of downstream target genes (Cheng et al., 
2013; Gilbert et al., 2013; Lawhorn et al., 2014; Maeder et al., 2013; Perez-Pinera et 
al., 2013).  
 

e. Epigenetic modification      

Deactived Cas9 has also been fused to epigenetic modifiers to create programmable 
epigenome-engineering tools (Fig.26). These tools have the ability to induce histone 
acetylation, histone methylation or DNA methylation and thus modulate chromatin 
state and gene expression (Hilton et al., 2015; Thakore et al., 2015).   
 

f. RNA targeting 

Nuclease inactive Cas9 has also been fused to a fluorescent protein and programmed 
thanks to a specific sgRNA to target mRNA (Fig.26). This system offers a means to 
track RNA in living cells in a programmable manner (Nelles et al., 2016). Interestingly, 
another Cas protein, the Cas13 has been used to develop diagnostic assay that 
detects viral RNA of dengue virus and Zika virus (Gootenberg et al., 2017; Myhrvold 
et al., 2018).  
 

g. Chromatin imaging and chromatin topology 

Usually studied by fluorescent in-situ hybridization method (FISH), the organization of 
the chromatin structure can be studied by the use of fluorescently labeled dCas9 
(Fig.26). This customizable DNA labeler permits to detect chromatin dynamics in living 
cells (Chen et al., 2013a). In addition, tools have been developed to manipulate 
chromatin topology (Fig.26). This involves the use of two sgRNA targeted dCas9 fused 
to two dimerizable protein domains. The dimerization of the two induces a forced 
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chromatin loop formation to understand the function of the chromatin structure and 
its contribution to gene expression (Morgan et al., 2017).  
 
 
 

 
 
Figure 26:  Different applications of the CRISPR/Cas9 system 
(Adli, 2018) 
 
 

6 - Particular application : CRISPR/Cas9 screens 
 

a. Principle  

CRISPR screens and genetic screens in general can be designed in two ways, an 
arrayed format or a pooled format which is mostly used. 
In CRISPR arrayed screens, sgRNAs are separately introduced into wells in multi-well 
plates allowing direct monitoring of the phenotype. In contrast, pooled screens rely 
on the separation of cells into subpopulations either enriched or depleted for the 
phenotype of interest. They are based on the simultaneous targeting of a large number 
of genes in a pooled manner by using a library of sgRNAs. From this library, a library 
of lentiviruses is usually generated. Then lentiviral library is transduced into cells at a 
low multiplicity of infection to avoid co-infection by multiple lentiviruses and ensure 
that most cells receive only one stably-integrated sgRNA. After the screen is 
complete, genomic DNA of cells with the phenotype of interest is isolated and sgRNA 
sequences inserted into the genome are amplified by PCR. Finally, PCR amplicons 
are analyzed by next generation sequencing to determine sgRNA enrichment or 
depletion due to the applied screening selection pressure. 
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Many CRISPR screens take advantage of DNA cleavage process mediated by 
sgRNA-guided Cas9 that are subsequently repaired by the error-prone mechanism 
NHEJ to generate gene knockout (Shalem et al., 2014; Wang et al., 2014). In this way, 
a library of sgRNAs is used to generate a knockout library of cells. Many different 
libraries of sgRNAs are available. They vary in the target species (human, mice), the 
target genes (genome wide or a subpool of genes), the number of sgRNAs for each 
gene and the targeted position within the gene (Sanjana et al.; Shalem et al., 2014; 
Wang et al., 2015). Libraries are usually available as one-plasmid system with Cas9 
and sgRNA encoded by the same plasmid or two-plasmids system in which sgRNA 
and Cas9 are encoded by two separate plasmids (see Part 2 Chapter 1). Cas9 
expression can be stable, inducible or transient depending on the vector used. 

A similar approach can be used to generate gene knockdown libraries by exploiting 
catalytically inactive Cas9 (dCas9). dCas9 targeted to the gene promoter or dCas9 
fused to transcriptional repressor can be applied to modulate transcription without 
genome editing (Gilbert et al., 2014; Qi et al., 2013). 

CRISPR screens have already been published for a wide range of approaches such 
as identification of genes essential  for cell survival, identification of genes important 
for bacterial toxicity or viral replication and identification of genes responsible for drug 
resistance (McDougall et al., 2018; Shalem et al., 2014; Wang et al., 2014; Zhou et al., 
2014). 

b. Comparison with RNAi and haploid approaches for viral infection 

studies 

Over the last several years, loss-of-function screens have played a major role in our 
understanding of how pathogenic viruses exploit cells to replicate. Indeed, the 
development of RNAi and haploid screens has led to the identification of cellular 
factors that promote viral replication for a large number of virus (Perreira et al., 2016).  
Compared to haploid and RNAi screens, the recent screens based on CRISPR/Cas9 
system are more versatile and accurate. Among the major advantages of CRISPR 
screens over alternative technologies are the ability to generate null phenotypes and 
the possibility of using in any cell line. Indeed, RNAi approaches lead to a partial 
knockdown of gene expression while haploid screens are limited to cell types that 
have a haploid karyotype to achieve insertional mutagenesis of the allele. These 
haploid cells are not always permissive and susceptible to infection.  
In addition, CRISPR approach has a high specificity with less off-target effects 
observed and a relative lack of false positives and false negatives (Puschnik et al., 
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2017). Finally, CRISPR screens are relatively low cost and easily available. High levels 
of overlap between CRISPR screens involving the same virus were observed while 
low inter-screen overlaps between RNAi screens generated from different libraries 
have been noticed (Perreira et al., 2015; Savidis et al., 2016; Zhu et al., 2014).  
 

c. Study of virus-host interactions by CRISPR screens 

Last few years, several CRISPR pooled screens for virus-host interactions have been 
published.  
A large majority of the studies relies on cytopathic viruses with cell survival as a 
phenotypic readout. The loss of particular cellular factors mediated by sgRNA makes 
cell resistant to viral infection and killing. These resistant cells are able to survive and 
expand leading to a relative prevalence of the sgRNAs they expressed. Similarly, 
several screens have been realized with labeled-virus that allow the enrichment for 
viral resistant cells by flow cytometry (Heaton et al., 2017; Park et al., 2017; Zhang et 
al., 2018).  
 
Since the early CRISPR/Cas9 screen realized to identify host factors required for West 
Nile virus infection (Ma et al., 2015), screens have been achieved among others for 
human immunodeficiency virus, influenza virus, hepatitis C virus, chikungunya virus 
and several flaviviruses like Zika virus and dengue virus. A non-exhaustive table of 
some main CRISPR host-virus interaction screens is presented in figure 27.   
 
Regarding the screen analysis and the ranking of candidate genes, different methods 
have been chosen in the published studies. Some teams have realized their analysis 
based on the number of reads for a specific sgRNA (Heaton et al., 2017; Ma et al., 
2015; Park et al., 2017) while some others have ranked the candidates based on gene 
with the greatest number of unique sgRNAs (Savidis et al., 2016). On the other hand, 
some analyses were conducted with a RNAi screen analysis program adapted to 
CRISPR screen (Marceau et al., 2016), while others were realized with programs 
developed for CRISPR screening, like MAGeCK, that compare starting and ending 
sgRNA population to determine sgRNA enrichment or depletion (Li et al., 2014; Lin et 
al., 2017; Ma et al., 2017; Richardson et al., 2018; Zhang et al., 2016).  
 
Many CRISPR screens to study flaviviruses replication cycle have been performed 
(Lin et al., 2017; Ma et al., 2015; Marceau et al., 2016; Richardson et al., 2018; Savidis 
et al., 2016; Zhang et al., 2016). The strong overlap of pathways and complexes 
identified in the different screens has permitted to attest the validity of the approach. 
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In addition, already known receptors or protein modifications essential for viral entry 
have been recovered in different CRISPR screens (Marceau et al., 2016; Park et al., 
2017; Savidis et al., 2016). Thus CRISPR/Cas9 screen approach represents a 
powerful tool to study host-virus interactions.  
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7 - The rise of CRISPR as a gene-editing technology 

During the last 10 years, the study of the CRISPR mechanism in bacteria, the 
development and improvement of the genetic tool and its use for various applications 
have led to an increasing number of publications about CRISPR (Fig.28). 
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OBJECTIVES 
 

Alphaviruses are emerging viruses representing a public health issue 
worldwide. Recent outbreaks of chikungunya virus across the world have caused 
debilitating diseases with fever and severe joint pains, resulting in a significant loss of 
life-quality and societal cost. Currently, there is no licensed cure for the disease. 
Acquired more knowledge of the virus biology is becoming crucial as it should enable 
the development of antiviral approaches, vaccines, and diagnostics as well. 
Nonetheless, chikungunya and alphavirus biology, in general, is poorly characterized 
and especially little is known about alphavirus entry. The main objective of my project 
was to better understand and characterize the chikungunya virus entry and the host 
factors used during replication steps.  
 

The first key objective was mainly focused on alphavirus entry and early 
infection steps. In this way, we have made an interesting observation of infection 
decrease after treatment of cells with iron. Consequently, we have investigated the 
role of two iron-dependent proteins in chikungunya entry, the divalent metal 
transporter NRAMP2, and the transferrin receptor TFRC.  
On the other hand, we have also studied the involvement in the entry of two totally 
distinct membrane proteins, CD46 and TM9SF2. These two proteins were highlighted 
as required for several viruses’ entry in an RNAi screen realized previously in 
collaboration with other laboratories. 

 
In parallel, in a second focal area, we have tried to gain a global understanding 

of host factors used during chikungunya virus replication by carrying out a genome-
wide loss of function screen with the CRISPR/Cas9 technology. The selection of a 
relevant natural cell target for this screen (muscle cells) should have allowed a more 
physiological characterization of chikungunya virus cell cycle. In this approach, a cell 
library has been generated, in which each cell has a distinct knockout gene. As 
chikungunya virus normally induces cell death, this screen is based on the survival of 
cells in which the virus was not able to enter or replicate. Hits identified through the 
screen were tested individually in infection assays to study their involvement in the 
chikungunya replication cycle. 
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Chapter 1: Iron effect on alphavirus infection 
 

I - Context  
 

Iron required for metabolic processes  

Iron is an essential nutrient for living cells and is required for cellular processes, such 
as DNA synthesis, energy metabolism, and electron transport in the respiratory chain 
(Anderson and Vulpe, 2009; Hentze et al., 2010). Deregulation of the iron status, both 
excess or deficiency, clearly affects the activity of iron-dependent proteins and 
disrupts cellular functions. Indeed, iron catalyzes the propagation of Reactive Oxygen 
Species (ROS) and the generation of reactive radicals that are toxic for the cell. Thus, 
a tightly regulated system has been developed to ensure an appropriate concentration 
of iron at the systemic and at the cellular levels.   

Since viruses hijack the cellular machinery in order to replicate, iron homeostasis is 
also important for efficient viral replication. In the case of the human 
immunodeficiency virus and hepatitis C virus, viral infections can cause iron overload 
and exacerbate disease. In addition, it has been demonstrated that a decrease of 
intracellular iron concentration affects the viral replication of both viruses (Drakesmith 
and Prentice, 2008; Franchini et al., 2008). Regarding the arbovirus West Nile (WNV), 
it has been shown that iron treatment of mosquito vector cells increases WNV 
infection (Duchemin and Paradkar, 2017). 

Antiviral effect of iron on several viruses 

Wang et al. have recently shown an antiviral effect of iron as ferric ammonium citrate 
(FAC) on several viruses including Influenza A virus, Human Immunodeficiency virus, 
Zika virus and Enterovirus 71 (Wang et al., 2018). It has been observed that HIV 
infection and associated innate immune response were decreased by FAC in human 
dendritic cells. In parallel, FAC has also been shown to inhibit Zika virus infection in 
green monkey Vero cells and in U251 mouse cell line. Finally, for enterovirus infection, 
FAC has been demonstrated to decrease genome amplification, induction of 
cytopathic effects and expression of a particular viral protein. In addition, a dose-
dependent effect has been noticed on viral RNA level and new virions release. In the 
case of influenza A virus (IAV), viral infection was inhibited by FAC in a dose-
dependent manner in human cell lines and co-inoculation of IAV and FAC in mice 
protects the animals from infection with a lower level of viral RNA and proinflammatory 
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cytokines. Treatment of cells with an iron chelator, deferoxamine, has been shown to 
rescue FAC-inhibited IAV infection, highlighting the iron requirement. Moreover, Wang 
et al. have demonstrated that both ferric ion and citrate ion of the complex were 
required for the antiviral activity.  

 
Interestingly, the iron transporter Malvolio or dNRAMP has been proposed a few years 
ago as an entry receptor for another alphavirus, Sindbis virus, in Drosophila (Rose et 
al., 2011). dNRAMP is a member of a protein family that is well conserved from 
bacteria to humans (Nevo and Nelson, 2006). In mammals, two NRAMP genes are 
present, NRAMP1 and NRAMP2. NRAMP1 is mainly expressed in macrophages and 
monocytes, while NRAMP2 is ubiquitously expressed and is localized in endosomes 
and at the plasma membrane. High iron concentrations regulate NRAMP2 expression 
(Foot et al., 2008; Mackenzie et al., 2016). Rose et al. have used this response to iron 
to downregulate NRAMP2 in mammalian cells. Iron treatment with FAC has been 
shown to attenuate Sindbis virus infection in human U2OS, Drosophila DL1 and Aedes 

aegypti Aag2 cell lines. In parallel, depletion of NRAMP2 in mouse embryonic 
fibroblasts decreased Sindbis virus infection (Rose et al., 2011).  
 

Role of NRAMP2 and transferrin receptor in iron transport 

NRAMP2 also known as DMT1 for divalent metal transporter 1, is a widely expressed 
metal transporter capable of transporting metals such as iron, zinc, and manganese 
(Gunshin et al., 1997). This iron transporter facilitates iron uptake at the apical cell 
membrane in duodenal enterocytes and transports iron across the endosomal 
membrane in almost all cell types after iron uptake via the transferrin pathway. There 
are two alternative transcripts of the 3’ untranslated regions (UTR), one with an Iron 
Responsive Element (+IRE) and one without IRE (-IRE), involved in NRAMP2 
regulation at the mRNA level. There are also two transcripts 1A and 1B differing in the 
5’ region (Hubert and Hentze, 2002). In total, this leads to four NRAMP2 isoforms 
namely 1A/+IRE, 1A/-IRE, 1B/+IRE and 1B/-IRE (Fig.29). 1A isoforms are 
predominantly found in duodenum and kidney tissues whereas 1B isoforms are 
ubiquitously expressed. In response to iron overload or deficiency, the conserved 
hairpin structure IRE permits mRNA stability or degradation thanks to iron-responsive 
proteins (IRP) (Fig.30) (Pantopoulos, 2004). NRAMP2 mRNA has only one IRE hairpin 
structure while other iron-regulated proteins may have several.  
NRAMP2 expression and activity is not only regulated by IRE but also by a complex 
regulatory system at transcriptional, post-transcriptional and post-translational levels 
including, protein internalization by endocytosis, recycling of endosomal protein to 
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the plasma membrane, protein release by plasma membrane budding, ubiquitination 
and degradation of NRAMP2 protein or regulation of the transport activity by 
phosphorylation (Foot et al., 2008; Gunshin et al., 2001; Lam-Yuk-Tseung and Gros, 
2006; Mackenzie et al., 2016; Seo et al., 2016).  

Besides NRAMP2, the cellular iron-regulatory system involves various proteins 
including the transferrin and the transferrin receptor (TFRC). The transferrin receptor 
is also regulated by iron at the transcriptional and post-transcriptional level (Hentze et 
al., 2010) including a regulation mediated by IRE in the 3’UTR of the mRNA. The TFRC 
is the main receptor that mediates iron uptake in many cell types and is located on 
the plasma membrane. Hence, ferric iron is captured on transferrin which binds to the 
transferrin receptor leading to the uptake of the complex via clathrin-mediated 
endocytosis into endosomes (Fig.31). (Mayle et al., 2012). Subsequently, ferric iron 
taken up by transferrin is reduced in ferrous iron and NRAMP2 transports the iron 
across the endosomal membrane to be released into the cytosol (Gruenheid et al., 
1999; Touret et al., 2003). Internalized iron is used for the synthesis of heme or iron-
sulfur clusters, which are parts of several metalloproteins. Iron in excess is stored and 
detoxified in cytosolic ferritin (Hentze et al., 2010).  

Given this broad antiviral effect of FAC, we have investigated an effect on 
alphavirus infection, in particular on chikungunya virus infection. We have observed a 
dose-dependent inhibition on chikungunya virus infection with FAC in human cell lines 
and sought to understand the mechanism. Since NRAMP2 and transferrin receptor 
proteins, both involved in iron uptake, are regulated by iron level and NRAMP2 has 
been proposed as the receptor for the alphavirus Sindbis, we investigated a potential 
role of NRAMP2 transporter and transferrin receptor in chikungunya virus entry.  
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Figure 29: Schematic representation of mouse NRAMP2 with isoforms 1A and 
1B +/- IRE, representative of mammal NRAMP2  
(Skjørringe et al., 2015) 
 
 

Figure 30: General mechanism of the Iron Responsive Element (IRE)  

Presence of iron: Iron, in form of iron-sulfur cluster, can bind to Iron Responsive 
Protein (IRP) leading to the dissociation of IRP from the IRE. Transcripts are more 
susceptible to endonuclease attack and degradation which down-regulate the 
translation.  
Absence of iron: The IRP binds to the IRE in 3’ UTR and protects transcripts against 
endonuclease degradation and therefore promotes the translation.  
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RNA degradation by endonuclease
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Figure 31: Scheme of iron transport by transferrin receptor and NRAMP2 

Ferric iron Fe3+ binds to transferrin which subsequently binds to transferrin receptor 
(TFRC). The complex iron-transferrin-transferrin receptor is endocytosed. Ferric iron 
is reduced into ferrous iron Fe2+ by a metalloreductase STEAP and then transported 
to the cytoplasm by NRAMP2 transporter. Both molecules, TFRC and NRAMP2, are 
recycled back to the plasma membrane. Fe2+ pool, also called Labile Iron Pool (LIP) is 
utilized for direct incorporation into iron-proteins or transported to mitochondrion via 
mitoferrin, where the metal is inserted into Fe-S cluster and heme. Excess iron is 
stored in ferritin.  
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II - Material and Methods 
 

1 -  Cell lines and reagents 
 

HEK 293T, BHK21, U2OS, and VeroE6 cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM; Gibco™ Thermo Scientific) supplemented with 10% fetal 
bovine serum (FBS; HyClone). LHCN-M2 (human skeletal myoblasts) were maintained 
in medium 4:1 DMEM/Medium 199 (Gibco™ Thermo Scientific) supplemented with 
15% FBS, 0,02 M HEPES, 0,03 μg/mL Zinc sulfate (Sigma Aldrich), 1,4 μg/mL Vitamin 
B12 (Sigma Aldrich), 0,055 μg/mL Dexamethasone (Sigma Aldrich), 2,5 ng/mL 
recombinant human Hepatocyte Growth Factor (HGF, Peprotech), 10 ng/mL 
recombinant human FGF-basic (Peprotech).  
Caco2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; 
Gibco™ Thermo Scientific) supplemented with 20% FBS, 1% non-essential amino 
acids, 0,01 M HEPES (Gibco™ Thermo Scientific). All mammalian cell lines used were 
maintained at 37°C in the presence of 5% of CO2 in a humidified incubator.  
Aedes aegypti Aag2 cells were cultured in Leibovitz’s L-15 medium (Gibco™ Thermo 
Scientific) supplemented with 10% FBS and 10% Tryptose Phosphate Broth (TPB, 
Gibco™ Thermo Scientific). Aag2 cells were maintained at 28°C in an insect cell 
incubator.  
 

2 -  Virus production and titration 
 

Chikungunya La Réunion infectious molecular clone (CHIKV LRic, strain LR2006 
OPY1, European Virus Archive; Marseille) and derived CHIKV-GFP were used to 
generate replicative chikungunya viruses in BioSafety level 3 (BSL3) laboratory. 
Starting from the infectious clone, viral RNA was generated by in vitro transcription 
(mMessage mMachine kit, Ambion) for subsequent electroporation in BHK-21 cells. 
After trypsinization and two washes with PBS 1X, 5.106 cells were resuspended into 
Opti-MEM medium (Gibco™ Thermo Scientific) and electroporated with viral RNA in 
a cuvette (0,4 cm gap width) using a Gene Pulser Xcell electroporation system (1 
pulse, 270V, 950 μF). Electroporated cells were plated in DMEM supplemented with 
10 % FBS and incubated for 20h at 37°C until medium change. The supernatant was 
harvested 24h and 48h later, clarified by centrifugation and then mixed with 0,5 M 
Sucrose (MP Biomedicals) and 50 mM HEPES (Gibco™ Thermo Scientific) for long 
time conservation at -80°C. SINV (Sindbis Virus) was produced in the same way using 
molecular clone from Toto 1101 strain. All viral stocks were titrated by TCID50 and 
plaque assay on VeroE6 cells. 
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3 -  Production of pseudotyped retroviral particles 
 

We have generated pseudotyped viruses consisting of a replication-deficient lentiviral 
backbone which displays viral envelope proteins at the surface and carries GFP 
reporter. These pseudotyped particles allow studying envelope-dependent entry in 
BSL2 conditions.  
Different plasmids encoding the different viral envelopes were used: a plasmid 
encoding the chikungunya La Réunion infectious clone (LRic strain, LR2006 OPY1) 
viral envelope glycoproteins (the last 35 Capsid amino acids in frame with E3, E2, 6K 
and E1) under a CMV promoter, a plasmid encoding the Sindbis (strain Toto1101) viral 
envelope glycoproteins (the last 36 Capsid amino acids in frame with E3, E2, 6K and 
E1) under a CMV promoter and a plasmid encoding the Vesicular Stomatitis Virus g 
protein (VSVg) under a CMV promoter. In order to produce the VSV-, SINV-, CHIKV-
pseudotyped retroviral particles, the 293T cells were transfected with expression 
vectors encoding the viral components, i.e. plasmids encoding the envelope 
glycoproteins (phCMV VSV-G, phCMV SINV, phCMV CHIKV), the retroviral core 
proteins (pTG5349 murine leukemia virus MLV gag-pol), and a packaging-competent 
GFP (pTG13077 expressing an MLV based RNA containing a CMV-GFP internal 
transcriptional unit). The 293T cells seeded the day before transfection, were 
transfected using calcium phosphate co-precipitation method with the gag-pol 
packaging construct (8,3 μg), the transfer vector construct (8 μg), and the 
glycoprotein-expressing construct. The medium was changed 16h after transfection. 
Supernatants were harvested and filtered through 0,45 μm pore-sized membranes 24 
hours later.  
 

4 - Cell viability assays after ferric ammonium citrate treatment 
 

In order to monitor the effect of ferric ammonium citrate (FAC; generating Ferric iron 
Fe3+) on cell fitness, cell viability assays were carried out. Cell viability was measured 
at different times after treatment with several concentrations of fresh ammonium iron 
(III, Fe3+) citrate (Sigma Aldrich) using the CellTiter-Glo® luminescent cell viability 
assay kit (Promega) and a plate reader (Victor2 plate reader, Perkin Elmer).  
 

5 -  Iron treatment and infection with replicative viruses 
 

LHCN-M2, U2OS, and Aag2 cell lines were treated with different concentrations of 
fresh ammonium iron (III, Fe3+) citrate for 24h prior to and throughout the infection. 
Cells were counted before infection to adapt the multiplicity of infection (MOI). The 
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different mammalian cell lines were infected at different MOI with CHIKV LRic (strain 
LR2006 OPY1) and SINV (Toto1101). After 1h of virus binding at 4°C without FAC, 
cells were washed with PBS 1X, fresh medium with FAC was added, and cells were 
incubated at 37°C. For infection of mosquito cells Aag2 with CHIKV LRic, an 
incubation without FAC at 28°C for 1h was realized, then cells were washed with PBS 
1X and fresh appropriate medium with FAC was added. Twenty-four hours post-
infection, cells were fixed with paraformaldehyde 4% at 4°C for 15 min. Intracellular 
immunostaining was realized with antibodies diluted in PBS 1X supplemented with 
0,1% saponin for cell permeabilization and 10 % FBS. First, cells were incubated 1h 
at 4°C with primary antibody raised to Semliki Forest nucleocapsid protein (1/800), 
that reacts with CHIKV capsid protein (IgG2a C42 kindly provided by Dr. Irene Greiser-
Wilke, School of Veterinary Medicine (Hannover, Germany)). After washes, cells were 
incubated 1h at 4°C with FITC conjugated secondary anti-mouse IgG antibody (1/200) 
(F0257, Sigma Aldrich), cells were analyzed using a flow cytometer (FACSCalibur, BD 
Biosciences). 
 

6 -  NRAMP2 expression after iron treatment – qPCR and Western Blot 
  

LHCN-M2, U2OS and Caco2 cells were plated and treated the next day with 50 μg/mL 
of fresh ammonium iron (III) citrate (Sigma Aldrich). After 24h and 48h of iron 
treatment, cells were lysed to follow NRAMP2 mRNA and protein expression by RT-
qPCR and western blot respectively.  
Total RNA of cells was extracted using NucleoSpin® RNA kit (Macherey Nagel). RNA 
was reverse transcribed using PrimeScriptTM RT-PCR kit (Takara). mRNA was 
quantified by qPCR amplification in AriaMx system (Agilent) using SYBR Premix Ex 
Taq II (Takara) with the following primers (Hubert and Hentze, 2002). Results were 
normalized by at least three different housekeeping genes (RPL27, RPL22, GUSB).  
 
Oligo name   Sequence 5'-3' 

hNRAMP2_1A Forward GGAGCTGGCATTGGGAAAGTC 
Reverse GGAGATCTTCTCATTAAAGTAAG 

hNRAMP2_1B Forward GTTGCGGAGCTGGTAAGAATC 
Reverse GGAGATCTTCTCATTAAAGTAAG 

hGUSB Forward GATTGCCAATGAAACCAGGTATC 
Reverse ACACGCAGGTGGTATCAGTCTT 

hRPL22 Forward TCGCTCACCTCCCTTTCTAA 
Reverse TCACGGTGATCTTGCTCTTG 

hRPL27 Forward ATCGCCAAGAGATCAAAGATAA 
Reverse TCTGAAGACATCCTTATTGACG 
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For western blot analysis, cells were lysed with RIPA lysis buffer pH 8 supplemented 
with Phosphatase and Protease Inhibitor (PI) 1X (ThermoFisher Scientific), 
Ethylenediaminetetraacetic acid (EDTA) at 1 mM (ThermoFisher Scientific) and 
Dithiothreitol (DTT) at 1 mM. RIPA lysis buffer was composed of 20 mM Tris HCl pH 
7,5, 1% Triton X-100 (Euromedex), 0,05% SDS, 0,5% NaDeoxycholate, 150 mM 
NaCl. Cell lysates were sonicated on ice (3 pulses, amplitude 30) then incubated 30 
min on ice, centrifuged for 5 min at 4°C at 11 000 g and supernatants were transferred 
into a new tube. Bradford protein assay was realized to quantify proteins in cell 
lysates. Whole cell extracts were separated by SDS-PAGE and then transferred to 
nitrocellulose membranes using a transfer apparatus according to the manufacturer’s 
protocols (Bio-Rad). After protein transfer, membranes were incubated with 10% milk 
in PBS 0,1% Tween 20 (PBST 0,1%) for 2 hours followed by overnight incubation at 
4°C with NRAMP2 mouse monoclonal antibody clone G-5 sc-166884 (Santa Cruz 
Biotechnology) in 10% milk PBST 0,1%. Membranes were washed 3 times and 
incubated 1 hour with a Horseradish peroxidase anti-mouse IgG antibody (1/10 000, 
A5906, Sigma Aldrich). After 3 washes, proteins were revealed with SuperSignalTM 
chemiluminescent substrate (ThermoScientific) using ChemiDocTM imaging system 
(BioRad).  
 

7 - Generation of NRAMP2 and TFRC CRISPR-mediated knockout cell lines 
 

In order to study the potential role of NRAMP2 and TFRC in chikungunya virus 
replication, we have generated knockout cell lines using the CRISPR/Cas9 
technology. This required the design of a single-guide RNA (sgRNA) specific for the 
gene of interest which was then cloned into the lentiviral vector, lentiCRISPRv2 
(Fig.32) (Addgene). This lentiviral vector construct was co-transfected with other 
vectors in 293T cells to generate lentiviral particles bearing the g envelope protein of 
the Vesicular Stomatitis Virus (VSVg). Given the broad tropism of VSV, lentiviral 
particles are able to enter in almost all cell types and thus allow the stable integration 
of sgRNA sequence, Cas9 gene, and puromycin resistance gene into the genome. 
Puromycin selection permitted to select only transduced cells which stably expressed 
the sgRNA and the Cas9 nuclease. Finally, CRISPR-mediated knockouts were 
validated by western blot or cell surface immunostaining followed by flow cytometry 
analysis.  
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Figure 32: LentiCRISPRv2 cloning vector 

Lentiviral expression vector for Streptococcus pyogenes Cas9 and sgRNA in a “one 
vector” system. Specific sgRNA sequence is cloned into the vector after digestion with 
BsmBI restriction enzyme. The sequence between the two Long Terminal Repeats 
(LTR) is transcribed and then packaged thanks to the Psi packaging signal (Ψ ).  
RRE: rev response element, cPPT: central polypurine tract, EF-1α: elongation factor-
1α short promoter, P2A: 2A self-cleaving peptide, PuroR: puromycin selection marker, 
WPRE: post-transcriptional regulatory element. 
 

a. sgRNA design 

Sequences of single-guide RNAs (sgRNAs) for specific gene knockout were designed 
using different online tools. The sequence should be around 19-21 nucleotides and 
adjacent to a protospacer adjacent motif (PAM) sequence. Some compromises were 
made to select sgRNAs with the highest efficiency score, the highest out-of-frame 
score and the smallest risk of off-target. As lentiCRIPSRv2 (Addgene) used for cloning 
contains a U6 promoter, a G nucleotide (in blue) was added to increase transcription 
efficiency when primers start with another nucleotide. Finally, BsmBI restriction sites 
(in red) were added to the primers for cloning step. 
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The following primers were used: 
Guide name   Sequence 5'-3' 

sgRNA NRAMP2 
Forward CACCGCCAGTCTAGCTGCAAGCCGC 
Reverse AAACGCGGCTTGCAGCTAGACTGGC 

sgRNA_1 TFRC 
Forward CACCGAAATTCATATGTCCCTCGTG 
Reverse AAACCACGAGGGACATATGAATTTC 

sgRNA_2 TFRC 
Forward CACCGTGGAAACTGAGTGTGATTGA 
Reverse AAACTCAATCACACTCAGTTTCCAC 

 
b. Cloning 

LentiCRISPRv2 vector was digested with BsmBI restriction enzyme and then purified 
from the agarose gel. Each pair of primers was annealed using an annealing buffer 
composed of 10 mM Tris-HCl pH 8, 50 mM NaCl and 1 mM EDTA. The mix was 
incubated for annealing for 3 min at 90°C following by incubation of 15 min at 37°C. 
Annealed primers were cloned into the linearized lentiCRISPRv2 using a ligation kit 
(Rapid DNA ligation kit, Roche) and then transformed into DH5α competent bacteria. 
Colony PCRs were realized for determining the presence or absence of insert DNA in 
the lentiCRISPRv2 plasmid. Clones were amplified and lentiCRISPRv2 plasmids 
containing the sequence for transcription of a specific sgRNA were purified and 
digested for verification. 
 

c. Lentivirus production 

In order to generate stable cell lines expressing the sgRNA and the Cas9 nuclease, 
lentiviruses were produced. For this, 293T cells seeded the day before transfection, 
were co-transfected using calcium phosphate co-precipitation method with the HIV 
packaging construct with a CMV promoter (8,3 μg, psPAX2 (AddGene 12260)), the 
gene specific lentiCRISPRv2 construct (8 μg), and the VSV glycoprotein-expressing 
construct under CMV control (2,5 μg, pVSVg (AddGene 8454)). The medium was 
changed 16 hours after transfection. Supernatants were harvested, filtered through 
0,45 μm pore-sized membranes 24hours later and stored at -80°C.  
 

d. Stable cell line generation by transduction  

Cells were plated in 6-well plates and transduced the day after with lentivirus. 
Transduced cells were selected with different concentrations of puromycin depending 
on the cell type. Puromycin selection was maintained until non-transduced control 
cells are all dead, then selected cells were amplified. 
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e. Verification of gene knockout 

Depending on the tools available, several strategies were used to confirm gene 
knockout in the different cell lines. 
 

i. Western blot 
Cells were lysed and sonicated as described above. Bradford protein assay was 
realized to quantify proteins in cell lysates. Whole cell extracts from CRISPR and 
control cell lines were separated by SDS-PAGE and then transferred to nitrocellulose 
membranes. After protein transfer, membranes were incubated with 10% milk in 
PBST 0,1% for 2 hours followed by overnight incubation at 4°C with 
NRAMP2/SLC11A2 monoclonal mouse antibody clone 4G2 (1/300, SAB1404146, 
Sigma Aldrich). Membranes were washed 3 times and incubated 1 hour with a 
Horseradish peroxidase anti-mouse IgG antibody (1/10 000, A5906, Sigma Aldrich). 
After 3 washes, proteins were revealed with SuperSignalTM chemiluminescent 
substrate (ThermoScientific) using ChemiDocTM imaging system (BioRad).  
 

ii. Flow cytometry  

The sgRNA TFRC cells were directly stained for cell surface protein detection. Cells 
were incubated for 1h at 4°C with anti-TFRC CD71 antibody (DF1513, SantaCruz sc-
7327) at 1 μg/mL  in PBS 1X-2% FBS-0,1% NaN3 (PBFA). After 3 washes with PBFA, 
cells were incubated with FITC conjugated anti-mouse IgG secondary antibody 
(1/200) (F0257, Sigma Aldrich) in PBFA. After 3 washes, immunostained cells were 
analyzed using a flow cytometer (Accuri C6 or FACSCalibur, BD Biosciences). 
 

8 - Generation of NRAMP2 shRNA-mediated knockdown cell lines 
 

NRAMP2 knockdown was generated using the following shRNA against NRAMP2:  
5’-CCGGGCTATCAATCTTCTGTCTGTACTCGAGTACAGACAGAAGATTGATAGCTTTTTG-3’ 
(TRCN0000043248, Sigma Aldrich). The lentiviral shRNA expressing plasmid was 
used to generate lentiviruses as described above. Caco2 cell line was transduced by 
lentiviruses packaging shRNA and selected with puromycin for several days. 
NRAMP2 knockdown cell line was validated by western blot analysis using a mouse 
monoclonal anti-NRAMP2 antibody (SAB1404146, Sigma Aldrich) followed by 
incubation with an anti-mouse IgG peroxidase antibody as described above. 
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9 -   Infection of knockout and knockdown cell lines with replicative virus or 
pseudoparticles 

 

The different cell lines were infected at different MOI with CHIKV LRic (strain LR2006 
OPY1) and SINV (Toto1101) as a control. After 1h of virus binding at 4°C, cells were 
washed with PBS 1X and the medium was changed before incubation at 37°C. 
Twenty-four hours post-infection, cells were fixed with paraformaldehyde 4% at 4°C 
for 15 min. Intracellular immunostaining was realized with antibodies diluted in PBS 
1X supplemented with 0,1% saponin for cell permeabilization and 10 % FBS. First, 
cells were incubated 1h at 4°C with a primary antibody raised to Semliki Forest 
nucleocapsid protein (1/800), that reacts with CHIKV capsid protein (IgG2a C42 kindly 
provided by Dr. Irene Greiser-Wilke, School of Veterinary Medicine (Hannover, 
Germany)). After washes, cells were incubated 1h at 4°C with FITC conjugated 
secondary anti-mouse IgG antibody (1/200) (F0257, Sigma Aldrich), cells were 
analyzed using a flow cytometer (FACSCalibur, BD Biosciences). For CHIKV-GFP 
infected cells, the percentage of infected cells was directly measured by flow 
cytometry analysis after fixation with paraformaldehyde (PFA).   
 
In parallel, the different cell lines were infected with SINV-, CHIKV- and VSV-
pseudotyped retroviral particles. After 1h of particles binding at 4°C, cells were 
washed with PBS 1X and the medium was changed before incubation at 37°C for 
three days. Cells were fixed with paraformaldehyde 4% at 4°C for 15 min and the 
percentage of GFP-positive cells was directly measured by flow cytometry. 
 

10 -  Study of correlation between NRAMP2 expression profile and CHIKV 
permissiveness of cell lines 

The different following cell lines were lysed and whole cell lysates were separated by 
SDS-PAGE and transferred to nitrocellulose membranes for western blot analysis with 
NRAMP2/SLC11A2 monoclonal mouse antibody clone 4G2 (SAB1404146, Sigma 
Aldrich) as explained above in the western blot section. The nine different human cell 
lines are listed below: 
 

Jurkat: CD4+ T lymphoid cell line 
Raji: B lymphoid cell line 
A431: epidermoid carcinoma epithelial cell line 
HT1080: connective tissue fibrosarcoma epithelial cell line 
HOS: bone osteosarcoma fibroblast/epithelial-like cell line 
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Caco2: colorectal adenocarcinoma epithelial-like cell line 
Hela: cervical carcinoma epithelial cell line 
LHCN-M2: immortalized human myoblast cell line 
U2OS: bone osteosarcoma epithelial cell line. 

 
In parallel, the different cell lines were infected with CHIKV LRic and level of infection 
was monitored by immunostaining followed by flow cytometry analysis as described 
above and/or titration of viral production in the cell supernatant by TCID50 on VeroE6. 
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III - Results 
 

1 - Infection of LHCN-M2 and U2OS cell lines by alphaviruses 
 

Our study relies on the use of two different cell lines, LHCN-M2 and U2OS. As 
alphaviruses infect muscle cell lines in humans, skeletal muscle cell line LHCN-M2 
represents a suitable model for chikungunya study (Ozden et al., 2007). The second 
cell line, U2OS derived from bone osteosarcoma is frequently used in alphavirus 
studies like whole genome screens (Ooi et al., 2013; Rose et al., 2011; Stiles and 
Kielian, 2016). We infected cells with either CHIKV or SINV and looked at the 
percentage of infected cells over time. CHIKV and SINV infect and replicate efficiently 
in U2OS (Fig.33). In parallel, LHCN-M2 cells were also efficiently infected by CHIKV 
and began to die after 48h of infection.  
 

 
Figure 33: Infection kinetics in U2OS and LHCN-M2 cell lines
Cells were infected with CHIKV or SINV at MOI 0,1 and harvested at different time 
points after infection. Cells were fixed in PFA 4% before immunostaining with a 
primary antibody raised to Semliki Forest nucleocapsid protein, that reacts with CHIKV 
and SINV capsid protein (IgG2a C42) and then analyzed by flow cytometry analysis.  
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2 - Effect of ferric ammonium citrate (FAC) treatment on SINV and CHIKV 
infections 

 
Due to the broad antiviral effect of ferric ammonium citrate described for different 
viruses, we tested whether ferric ammonium citrate (FAC) had an effect on SINV and 
CHIKV infection in U2OS. Many cell mechanisms - DNA replication, mitochondrial 
function - are regulated by iron. To make sure that FAC does not have a toxic effect 
on cells, we followed cell growth and survival after FAC treatment. We observed that 
U2OS cell viability and growth were not greatly affected by FAC (Fig.34). Cells treated 
with 10, 25 or 50 μg/mL grow similarly as untreated cells while the growth of cells 
treated with 100 μg/mL of FAC was slightly slowed. Regarding LHCN-M2 cells, the 
growth of cells treated with 10 μg/mL FAC was comparable to the growth of untreated 
cells. Treatment with 25 μg/mL FAC was shown to slow the growth and the greater 
doses to completely stop the growth. With 100 μg/mL of FAC, LHCN-M2 cells seem 
to die after 60 h of treatment. However, we did not use this high concentration and 
did not treat cells during more than 48h in our infection assays. 
 
Subsequently, U2OS cells were treated with FAC and infected with CHIKV or SINV 
for 24h. We observed a substantial decrease of CHIKV infection in presence of FAC 
(Fig.35(a)) and also a decrease of SINV infection as it was previously described (Rose 
et al, 2011). Same results were obtained with a significant decrease of CHIKV infection 
in LHCN-M2 cells (Fig.35(b)). Using different concentrations of FAC, we observed a 
dose-response relationship with both SINV and CHIKV in U2OS cells with almost 
complete inhibition of infection at 100 μg/mL of FAC (Fig.35(c)).   
Moreover, as Aedes aegypti is one of the natural mosquito vectors for both CHIKV 
and SINV, we examined the effect of FAC treatment on Aedes Aegypti cells Aag2. Cell 
count after iron treatment has demonstrated that cell viability and growth were not 
affected by FAC (data not shown). Iron treatment with 50 μg/mL of FAC on Aag2 cells 
attenuated CHIKV infection (Fig.36). In parallel, as we had difficulties to detect SINV 
by immunostaining in Aag2 cells, we have shown by supernatant titration (TCID50 
assay on VeroE6 cells) that FAC also decreased SINV infection in Aag2 (data not 
shown).  
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Figure 34: Cell viability after iron treatment with ferric ammonium citrate 
Cell viability of both cell lines was measured at different times after treatment with 
several concentrations of ferric ammonium citrate (FAC) using the CellTiter-Glo® 
luminescent cell viability assay kit (Promega). NT = untreated, CPS = count per second 
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Figure 35: Effect of iron treatment on chikungunya virus and Sindbis virus 
infection in mammal cell lines  

(a) Proportion of infected cells after 24h of SINV or CHIKV infection in presence of 
50 μg/mL of FAC in U2OS cells (n=3). Infection on untreated cells was 
established at 1. 

(b) Proportion of infected cells after 24h of CHIKV infection in presence of 50 
μg/mL of FAC in LHCN-M2 cells (n=3). Infection on untreated cells was 
established at 1. 

(c) Dose-dependent inhibition of SINV and CHIKV infection in U2OS cells by 
increasing dose of FAC (n=2).  

Cells untreated or treated with FAC were infected with CHIKV or SINV at MOI 0,1 and 
harvested at different time points after infection. Cells were fixed in PFA 4% before 
immunostaining with a primary antibody raised to Semliki Forest nucleocapsid protein, 
that reacts with CHIKV and SINV capsid protein (IgG2a C42) and then analyzed by 
flow cytometry analysis. Statistical analyses were made with unpaired t-test with p-
value < 0,05.  
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Figure 36: Effect of iron treatment on CHIKV infection in Aag2 mosquito cells  
Proportion of infected cells after 24h of CHIKV infection in presence of 50 μg/mL of 
FAC (n=3). 
Aag2 cells were infected with CHIKV at MOI 1 and harvested after 24h of infection. 
Cells were fixed in PFA 4% before immunostaining with a primary antibody raised to 
Semliki Forest nucleocapsid protein, that reacts with CHIKV capsid protein (IgG2a 
C42) and then analyzed by flow cytometry analysis. Infection on untreated cells was 
established at 1. Statistical analysis was made with unpaired t-test with p-value < 0,05.  
 
 

3 - NRAMP2 transcriptional and post-translational regulations after FAC treatment 
 

A decrease of CHIKV and SINV infections induced by FAC treatment has been 
observed in mammal and mosquito cells. Since iron regulates many processes and 
proteins, we have tried to identify a potential host factor regulated by iron which could 
explain the infection decrease. The iron transporter NRAMP2 has been published 
several years ago as a potential receptor of SINV in mammal cells (Rose et al., 2011). 
In this publication, it was notably shown that FAC treatment decreases SINV infection 
as we have also observed. Thus, we have investigated the potential role of NRAMP2 
for CHIKV entry.  
 
SLC11A2 gene encoding NRAMP2 protein produces multiple isoforms through 
alternative promoters (1A or 1B) and/or alternative splicing to produce transcripts with 
or without an iron regulatory element (+IRE or −IRE).  
Here we have, as a first step, examined mRNA and protein expressions in different 
cell lines after 24h and 48h of iron treatment with 50 μg/mL of FAC. RT-qPCRs were 
realized using published primers that recognize isoform 1A and isoform 1B, without 
distinction between +IRE and -IRE (Hubert and Hentze, 2002). Besides the skeletal 
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muscle cell line (LHCN-M2) and the osteosarcoma cell line (U2OS), we have used a 
cell line derived from epithelial intestinal cells called Caco2.  
The 1A isoforms are known to be expressed in duodenum and kidney, while 1B 
isoforms are ubiquitously expressed. As we expected from the literature, 1A isoform 
has been found in large amount in Caco2 cells compared to LHCN-M2 and U2OS 
cells (Fig.37(a)). Moreover, 1B isoform has been observed in comparable quantity in 
the three cell lines nonetheless with an expression more important in LHCN-M2 cells 
(Fig.37(a)). Regarding the effect of iron on NRAMP2 expression, 1A isoform was 
greatly reduced in Caco2 and LHCN-M2 after 24h in presence of iron and expressed 
again after 48h (Fig.37(b)). In U2OS cells, the iron response seems slower with a slight 
decrease of 1A isoform at 24h and a higher reduction at 48h (Fig.37(b)). Overall, 1A 
isoform appears to be sensitive to iron and its regulation by iron was clearly visible.  
On the other hand, the 1B isoform detected in Caco2 was halved after 24h and 48h 
of iron treatment (Fig.37(b)). In LHCN-M2 cells, the quantity of 1B isoform was also 
halved after 24h but seemed to slightly re-increased at 48h (Fig.37(b)). Finally, 1B 
isoform expression did not seem to be impacted by iron treatment in U2OS cells. Our 
results show that 1A isoform is more sensitive to FAC treatment than 1B isoform. 
 

In parallel, NRAMP2 protein expression after iron treatment was also monitored 
by western blot analysis on whole cell lysates. The NRAMP2 mouse monoclonal 
antibody (sc-166884, Santa Cruz Biotechnology) used is raised against amino acids 
461-568 mapping at the C-terminus of NRAMP2 and recognizes both 1A and 1B 
isoforms. After western blot revelation, we did not observe any changes in NRAMP2 
protein expression after 24h and 48h of FAC treatment in the three cell lines (Fig.38). 
The western blot presented below is representative of what we observed in three 
separate experiments.  

 
From these analyses, we can conclude that, surprisingly, after FAC treatment, 

we observed regulation of NRAMP2 mRNA level but the total cellular NRAMP2 protein 
content does not appear to vary significantly.  
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Figure 37: Monitoring RNA level of 1A and 1B isoforms of NRAMP2 by RT-qPCR 

Expression of 1A and 1B isoforms in the different cell lines (relative to 3 
housekeeping genes) 
Effect of FAC treatment on both isoforms in the three cell lines. Cells were 
incubated for 24 h or 48 h after treatment with 50 μg/mL of FAC and RNA level 
monitored by RT-qPCR. (relative to 3 housekeeping genes) Expression on 
untreated cells was established at 1. NT= untreated control cells. n=3.  
Statistical analyses were made with unpaired t-test with p-value < 0,05. 
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Figure 38: NRAMP2 protein expression in whole cell lysate after FAC treatment  
Cells were treated with FAC and harvested 24h or 48h later. NRAMP2 mouse 
monoclonal antibody clone G-5 (sc-166884, Santa Cruz Biotechnology) was used to 
detect NRAMP2 protein. Antibody raised to housekeeping protein β-actin was used 
as an internal control. 
 
 

4 - Effect of NRAMP2 downregulation and depletion on the entry of pseudotyped 
alphaviruses  

 
As NRAMP2 is a transmembrane protein and suggested to be an alphavirus receptor 
(Rose et al., 2011), we chose to focus on viral entry. We decided to analyze the direct 
role of NRAMP2 in CHIKV entry by generating cell lines depleted for NRAMP2.  
We generated NRAMP2 CRISPR-mediated knockout in U2OS and LHCN-M2 cell 
lines. NRAMP2 knockouts were confirmed by western blot analysis using an antibody 
recognizing all isoforms (Fig.39). For studying the viral entry, we used pseudotyped 
viruses consisting of a replication-deficient lentiviral backbone which displays CHIKV 
or SINV envelope proteins at the surface and carries GFP reporter. For most of virus 
families, their entry mimics perfectly the entry properties of wild type replicating virus. 
Pseudoparticles bearing envelope protein of Vesicular Stomatitis Virus (VSV) were 
used as a control. WT and NRAMP2 CRISPR-mediated knockout cell lines were 
infected with pseudoparticles as described earlier. Three days post-infection, 
pseudoparticles entry was assessed by GFP reporter gene expression. We checked 
that infection percentage never exceed 50 % to remain in the linear range. NRAMP2 
knockout in LHCN-M2 did not seem to affect CHIKV and SINV pseudoparticles as the 
GFP level were equivalent to WT cells (Fig.39(a)). Same observations were made in 
U2OS cells infected CHIKV and SINV pseudoparticles (Fig.39(a)). As expected, no 
changes in infection by VSVg pseudotypes were observed as VSV was shown recently 
to use Low-Density Lipoprotein (LDL) receptor for entry. 
In parallel, to verify that our protocol did not induce a bias in our analysis, we have 
realized shNRAMP2 mediated knockdown in the Caco2 cell line and carried out 
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infection with pseudoparticles in these cells. GFP levels in cells infected with CHIKV 
or SINV pseudoparticles were comparable between WT and shNRAMP2 Caco2 cells 
(Fig.39(b)). 
 

 
Figure 39: Infection with pseudotyped viruses in cells depleted or downregulated 
for NRAMP2 

(a) NRAMP2 depletion (sgRNA) has no effect on infection with SINV and CHIKV 
pseudotyped viruses in U2OS and LHCN-M2 cell lines. n=3 

(b) NRAMP2 knockdown (shRNA) has no effect on infection with SINV and CHIKV 
pseudotyped viruses in the Caco2 cell line. n=3 

NRAMP2 expression was analyzed by western blot using NRAMP2/SLC11A2 mouse 
monoclonal antibody clone 4G2. Antibody raised against β-actin protein was used as 
an internal control. 
Pseudoparticles entry was determined by measuring the percentage of GFP positive 
cells using a flow cytometer. Infection on naïve WT cells was established at 1. 
Statistical analysis was made with unpaired t-test with p-value < 0,05. ns= non 
significative 
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5 - Effect of NRAMP2 downregulation and depletion on SINV and CHIKV infection 
 

As the NRAMP2 knockout and downregulation did not seem to have an impact on the 
entry of pseudotyped alphaviruses, we assumed that NRAMP2 might be important 
for another step in the viral cycle. Hence, we have carried out infection assays with 
replicative viruses in the cell lines with NRAMP2 knockout and knockdown. We found 
that NRAMP2 CRISPR-mediated knockout did not influence CHIKV infection in 
LHCN-M2 and U2OS cell lines (Fig.40(a)). Surprisingly, NRAMP2 knockout in U2OS 
cells did not seem to impact SINV infection either.  
Despite clear downregulation of NRAMP2, infection rates for CHIKV at both MOI 1 
and 0,1 were comparable between wild-type (WT) and shNRAMP2 Caco2 cells. 
Infection levels were also equivalent in both cell lines with SINV (Fig.40(b)). 
 

6 - Study of the correlation between NRAMP2 expression profile and cell 
permissiveness for CHIKV 

 
In parallel of infection assays, we have tested several cell lines for their permissiveness 
for CHIKV and simultaneously examined NRAMP2 protein expression in these cell 
lines. Whereas most of blood-derived cells are refractory to CHIKV (excepted 
macrophages and platelets), CHIKV is known to infect many different adherent cells 
including Hela (cervical carcinoma epithelial), 293T (kidney epithelial), MRC5 (primary 
lung fibroblasts), Vero (monkey kidney epithelial), BEAS-2B (bronchial epithelial) 
(Sourisseau et al., 2007). In our assay, different cell lines were infected with CHIKV 
and the level of infection was monitored by immunostaining followed by flow 
cytometry analysis and/or titration of viral production in the cell supernatant. 
In parallel, whole cell lysate was loaded and separated by SDS-PAGE, then NRAMP2 
protein was detected by western blot analysis using an antibody that recognizes all 
isoforms (Fig.41). For lymphoid Jurkat and Raji cell lines known to be refractory for 
CHIKV, we did not observe CHIKV-positive cells after infection as expected. 
Regarding NRAMP2 expression, Jurkat cells seem to express the protein while no 
NRAMP2 protein was detected in the Raji cell line. A431 cell line was shown as poorly 
sensitive to CHIKV although it expressed the NRAMP2 protein. HT1080 and HOS cell 
lines are mildly sensitive to CHIKV and do not express NRAMP2 at all. Finally, Caco2, 
Hela, LHCN-M2 and U2OS cell lines were demonstrated to be permissive for CHIKV 
and to express NRAMP2.  
Although we observed NRAMP2 protein expression in cell lines sensitive to CHIKV, it 
seems difficult to establish a correlation between NRAMP2 protein expression and 
cell sensitivity to CHIKV infection.  



Part 1 - Chapter 1 - Iron effect on alphavirus infection 

96 

 

 
 
Figure 40: Replicative virus infection in cells depleted or downregulated for 
NRAMP2 

(a) NRAMP2 depletion (sgRNA) has no effect on CHIKV infection in LHCN-M2 
cells and on SINV and CHIKV infection in U2OS cells. n=3  
(b) NRAMP2 knockdown (shRNA) has no effect on SINV and CHIKV infection 
in Caco2. n=3   
Infection of knockout cells was measured by FACS using C42 antibody raised 
against SFV nucleocapsid protein. Infection on naïve WT cells was established 
at 1. Statistical analysis was made with unpaired t-test with p-value < 0,05.  
ns= non significative 
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Figure 41: Study of cell permissiveness to CHIKV infection and NRAMP2 protein 
expression  
Jurkat: CD4+ T lymphoid cell line, Raji: B lymphoid cell line, A431: epidermoid 
carcinoma epithelial cell line, HT1080: connective tissue fibrosarcoma epithelial cell 
line, HOS: bone osteosarcoma fibroblast/epithelial-like cell line, Caco2: colorectal 
adenocarcinoma epithelial-like cell line, Hela: cervical carcinoma epithelial cell line, 
LHCN-M2: immortalized human myoblast cell line, U2OS: bone osteosarcoma 
epithelial cell line. 
Cell permissiveness was assessed by infection assays and NRAMP2 protein was 
detected by western blot on whole cell lysate using SLC11A2 monoclonal mouse 
antibody clone 4G2 (SAB1404146, Sigma Aldrich). Antibody raised to housekeeping 
protein tubulin or β-actin was used as an internal control. 
 

7 - Effect of Transferrin Receptor (TFRC) depletion on CHIKV and SINV infection 
 

Two TFRC CRISPR-mediated knockout cell lines were generated using two distinct 
sgRNA targeting different sequences into the TFRC gene. The CRISPR-mediated 
knockout in 293T was validated by cell surface immunostaining with an anti-
TFRC/CD71 antibody (DF1513, SantaCruz sc-7327) followed by flow cytometry 
analysis. Percentage of cells expressing TFRC in the WT population was around 80% 
while percentages were around 5% in both cell lines with sgRNA TFRC (Fig.42). As 
these two cell lines were indeed depleted for TFRC protein, we realized infection 
assays with either alphavirus derived pseudoparticles or replicative alphaviruses. 
 
TFRC depleted and WT cells were transduced with pseudotyped virus harboring 
either CHIKV, SINV envelope proteins or VSV-g as a control. In regard to alphavirus 
pseudotyped viruses, TFRC depletion did not seem to alter entry of the different 
pseudoparticles (Fig.43). The entry of control VSV-pseudotyped viruses was not 
affected by TFRC depletion in 293T cells.  
 
In parallel, TFRC knockout and WT cell lines were infected simultaneously with CHIKV 
or SINV at two different MOI for 24h. At MOI 0,1, we observed a small increase of 
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CHIKV infection in TFRC KO cell lines compared to WT cells (Fig.44) while infection 
levels between cell lines are similar at MOI 1. Regarding SINV, infection levels were 
comparable between WT and KO cell lines, except for CHIKV MOI 0,1 in sgRNA_2 
TFRC cells but with large variability between replicates. Taken together, it seems that 
the depletion of TFRC protein has no impact on CHIKV and SINV infection in 293T 
cells. However, it is interesting to note that we observed variations between the two 
TFRC cell lines generated with different sgRNAs. It highlights the importance to work 
with independent replicates generated with different sgRNAs even if the population is 
a cellular pool. Despite the requirement of TFRC for the entry of other RNA viruses, 
our data enabled to demonstrate that the transferrin receptor is not required for CHIKV 
and SINV entry route.  
 

 
 

Figure 42: Validation of TFRC CRIPSR-mediated knockout in 293T by 
immunostaining and flow cytometry analysis. 
TFRC protein expression was assessed by cell surface immunostaining with anti-TFRC 
CD71 antibody (DF1513, SantaCruz sc-7327) at 1 μg/mL in PBS 1X-2% FBS-0,1% 
NaN3  and anti-mouse IgG coupled with FITC. Cells were analyzed on FACS calibur 
cytometer (BD Biosciences). 
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Figure 43: Infection assays in WT and sgRNA TFRC cell lines with 
pseudoparticles.  
Cells were incubated with pseudoparticles 2 h at 37°C before medium change and 
then harvested 3 days post-infection and fixed in PFA 4%. Pseudoparticles entry was 
determined by measuring the percentage of GFP positive cells using a flow cytometer. 
Infection on naïve WT cells was established at 1. (n=2) 
 
 

 
 
Figure 44: CHIKV and SINV infection assays in WT and sgRNA TFRC 293T cells.  
Cells were infected with CHIKV or SINV at MOI 0,1 or MOI 1 for 24h and then 
harvested and fixed in PFA 4%. CHIKV and SINV infection was monitored by 
immunostaining using primary antibody raised to Semliki Forest nucleocapsid protein, 
that reacts with CHIKV and SINV capsid protein (IgG2a C42) and then analyzed by 
flow cytometry analysis. Infection on naïve WT cells was established at 1. (n=2) 
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IV - Discussion  
 

As we mentioned earlier, iron is essential for cellular processes and activities 
and is probably important also for viruses as cell-dependent pathogens. However, it 
has recently been shown that iron in the form of ferric ammonium citrate (FAC) 
presents an antiviral effect on several diverse viruses (Wang et al., 2018). In our study, 
we have investigated and demonstrated an antiviral role of FAC treatment on 
alphavirus infection including CHIKV and SINV. Then we have studied a potential 
involvement of protein implicated in iron transport to explain this inhibition of infection 
and we have demonstrated that neither NRAMP2 or TFRC are required for CHIKV 
infection. This suggests that the antiviral effect of iron on alphavirus infection is 
dependent on another still unexplored mechanism.  
 

We have initially observed a decrease of SINV and CHIKV infection in U2OS 
cells and a decrease of CHIKV infection in LHCN-M2 after treatment with FAC. Since 
iron catalyzes the formation of reactive oxygen species which can damage cells 
(Andrews, 2000), we have evaluated the toxicity of FAC treatment on U2OS and 
LHCN-M2 cells by realizing viability assays. It has permitted to show that iron does 
not affect U2OS cell viability even at high concentration while LHCN-M2 cells appear 
to be more sensitive to high iron concentration. We have then demonstrated that the 
FAC effect on alphavirus infection is dose-dependent. In parallel, as alphaviruses are 
transmitted by mosquitoes and are known to infect and replicate efficiently in the 
Aedes aegypti mosquito cell line, Aag2, we have investigated the FAC effect on 
mosquito cell line infection. We have demonstrated an antiviral activity of FAC on 
CHIKV and SINV infection in Aag2 cells. A decrease of SINV infection after FAC 
treatment in Aag2 has already been published but with a lower iron-concentration and 
a longer treatment duration (Rose et al., 2011).  
We have sought a virus as a control which would not be affected by FAC treatment.  
Two published experiments highlight the insensitivity of West Nile virus (WNV) to FAC 
treatment. In U2OS cell line, it has been shown that treatment with 160 μM (≈42 
μg/mL) of FAC does not affect WNV infection and seems to even increase the infection 
level (Rose et al., 2011). In another study focusing on WNV infection of its Culex 
mosquito vector, it has been demonstrated that increasing iron levels increase viral 
titers (Duchemin and Paradkar, 2017). Thus, WNV appears to be a proper control virus 
for our infection assays. Preliminary promising results have allowed to observe similar 
infection levels with WNV in untreated and FAC treated U2OS cells. However, 
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infection levels were a bit low to clearly conclude. Further experiments with a higher 
MOI will be conducted.  
It should be noticed that ferric ammonium citrate has an opposite effect on two 
viruses of the same genus of flavivirus. As we just mentioned above, FAC appears 
indeed to increase the infection of the flavivirus West Nile while Wang et al. have 
emphasized that infection of the flavivirus Zika was inhibited by FAC (Wang et al., 
2018). These two flaviviruses are known to share a similar replication cycle in cells 
(Brinton, 2013; Medigeshi, 2011). Nonetheless, the distinct experiments seem difficult 
to compare as they have not been realized in the same cell line and the virus has been 
produced in cell lines from different species.  
 

As NRAMP2 is a divalent metal transporter regulated by iron and has been 
reported as the receptor of Sindbis virus in mammals (Rose et al., 2011), we have 
studied its potential involvement in CHIKV entry. 
Overall, we have observed a rapid regulation of NRAMP2 mRNA, isoforms 1A and 1B, 
after iron treatment in Caco2 and LHCN-M2 cells. In contrast, the regulation of 1A 
isoform is slower in U2OS cells after FAC treatment and the expression of 1B isoform 
transcript does not seem to be regulated. Our data suggest that 1A isoforms are more 
sensitive to FAC treatment than 1B isoforms. Interestingly, NRAMP2 1A/+IRE isoform 
is predominantly detected at the plasma membrane, whereas the 1A/−IRE, 1B/+IRE 
and 1B/−IRE isoforms are more abundant in intracellular compartments i.e. recycling 
endosomes (Seo et al., 2016). The iron-dependent regulation is linked to IRE harbored 
by mRNA in its 3’ UTR (Lee et al., 1998). However, it was also shown that the exon 
1A region adds an in-frame translation initiation codon extending the NRAMP2 open 
reading frame (ORF) by a sequence of 29-31 amino acids which participates in iron 
regulation of NRAMP2 expression (Hubert and Hentze, 2002). This could explain the 
higher iron susceptibility of 1A isoform compared to 1B isoform.  
 
In parallel, we have realized western blot analysis to detect NRAMP2 protein in the 
whole cell lysate. Iron treatment with FAC did not seem to modify total abundance of 
expressed NRAMP2 protein and we did not observe a relationship between mRNA 
level variations and protein expression. Even if it may seem surprising as it is usually 
assumed that there is some correlation between the levels of mRNA and protein, 
several reasons might explain this poor correlation. First, there are many varied post-
transcriptional mechanisms involved in turning mRNA into protein that are not yet 
sufficiently well-defined to be able to compute protein concentrations from mRNA. 
On the other hand, information regarding in vivo half-lives of NRAMP2 protein in our 
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different cell lines is poorly described. It is maybe the easiest explanation for the lack 
of correlation during 48 hours between mRNA level and protein level. Longer 
treatment associated with RNA and protein detection will be necessary to validate this 
hypothesis. On the other hand, regulation of NRAMP2 protein might occur in many 
different ways, including the relocalization of NRAMP2 transporter from cell 
membrane to recycling endosome by internalization (Lam-Yuk-Tseung and Gros, 
2006). In addition, the transport-activity of NRAMP2 can be regulated via the 
phosphorylation of NRAMP2 (Seo et al., 2016). These types of regulation are not 
detectable by western blot on whole cell lysate but might be the mean used by the 
cell to rapidly control iron transport prior to RNA-dependent regulation. Finally, in 
regard to the methods employed, both western blot and qPCR are at risk of errors 
and noise and western blot analysis is hardly quantitative. In the end, these results do 
not highlight a link between FAC treatment, NRAMP2 protein expression and the 
decrease of viral infection. 
 

We have then carried out infection assays in cell line knockout or knockdown 
for NRAMP2 to investigate more specifically a potential role of the protein in 
chikungunya virus infection.  
Our data suggest that NRAMP2 is not required for chikungunya virus infection in 
Caco2, U2OS and LHCN-M2 cells. Our CRISPR approach will be validated in short-
term experiments by adding a positive control in our infection assays. We have indeed 
planned to generate CRISPR-mediated knockout for the protein Mxra8 which has 
been recently described as a receptor for chikungunya virus in mammal cells (Zhang 
et al., 2018). As the first description of the role of NRAMP2 has used RNAi 
technologies, we also knockdown NRAMP2 in human cells using shRNA that targets 
the RNA (and not the genome directly as for CRISPR/Cas9 strategy). However, no 
effect of NRAMP2 reduction on the CHIKV and SINV entry or replication was observed 
neither. Since it’s generally assumed that RNAi induces many off-target effects, cell 
lines with scramble shRNA are also going to be generated.  
 

We sought to find out if there was a correlation between the permissiveness of 
cells to chikungunya virus and expression of NRAMP2 protein. In our experiments, 
cell lines refractory to CHIKV infection appear to express NRAMP2 protein while some 
cell lines which did not express NRAMP2 were susceptible to CHIKV infection. Thus, 
the permissiveness of cells to CHIKV does not seem to be strictly correlated with the 
presence of NRAMP2.  
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Taken together with infection assays in depleted cell lines, our data suggest that 
NRAMP2 is not required for CHIKV biology.  
 

Surprisingly, in our hands, we did not either observe an effect of NRAMP2 
depletion on SINV infection in U2OS cells as it was described (Rose et al., 2011). In 
this publication, the dNRAMP (Drosophila NRAMP) transporter was identified as 
required for SINV infection thanks to a genome-wide RNAi screen in Drosophila cells. 
The role of dNRAMP was confirmed in Drosophila cells by silencing gene with double-
stranded RNA (dsRNA) in vitro and also in vivo. They took advantage of the sensitivity 
to iron of the transporter to study NRAMP involvement in SINV infection in mosquito 
vector and mammal cells. However, it should be noticed that the expression of many 
proteins and many cellular activities are modified upon iron treatment (Wang and 
Pantopoulos, 2011). 
Rose et al. have shown that iron in form of FAC, decreased SINV infection in Aedes 

aegypti cells and they suggest that NRAMP is also required for viral entry into vector 
mosquitoes.  
A study has recently identified new candidate iron transporters from the Zinc-
regulated transporter/Iron-regulated transporter-like and Zinc transporters (ZIP and 
ZnT) gene families in the mosquito Aedes aegypti, but they were unable to identify an 
NRAMP2 ortholog in Aedes aegypti or other culicine mosquitoes (Tsujimoto et al., 
2018). This suggests that the inhibition of SINV infection noticed in Aag2 cells after 
FAC treatment may not be correlated to NRAMP2, and a translation of results 
obtained in Drosophila insect model may not always be possible in other insects or 
mammals.  
In human U2OS cells, Rose et al. have demonstrated that FAC decreased SINV 
infection as we also observed. Their data suggest that NRAMP2 co-precipitates with 
SINV and that this interaction is lost under high iron concentration. Finally, they have 
shown the requirement of NRAMP2 for SINV infection with Cre-Lox knockout in a 
different cellular model which are mouse embryonic fibroblasts (MEFs). It is 
nonetheless difficult to compare with our results because the origin of the cell line and 
the technique used to deplete gene are both different.  
In a genome-wide RNAi screen conducted later in U2OS cells, Ooi et al. explained 
that they did not find NRAMP2 in their screen but they identified FBXL5 as an inhibitor 
of SINV infection (Ooi et al., 2013). The iron-sensing protein FBXL5 promotes the 
degradation of the iron regulatory proteins that stabilize the mRNAs of both NRAMP2 
and transferrin receptor (TFRC) (Thompson and Bruick, 2012).  
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The sensitivity of CHIKV to iron has made of the transferrin receptor another 
interesting candidate for viral entry. Furthermore, TFRC has been identified as a 
cellular receptor for different viruses including haemorrhagic fever arenaviruses 
Machupo (MACV), Guanarito (GTOV), Junin (JUNV) (Radoshitzky et al., 2007), feline 
panleukopenia virus and canine parovirus (Parker et al., 2001). Lastly, a team has 
shown that TFRC was involved in Hepatitis C virus (HCV) particles internalization 
(Martin and Uprichard, 2013). Nonetheless, our data did not suggest a role of TFRC 
in CHIKV and SINV entry even if iron-sensing protein FBXL5 regulates TFRC and even 
if FAC inhibits infection.  
 

To conclude, the two candidates tested, NRAMP2 and TFRC, did not appear 
to be required for infection in mammal cells. The inhibition of infection observed after 
iron treatment in mammal cells and insect cells might be linked to another unexplored 
mechanism.  
The study from Rose et al. on NRAMP2, the publication on the antiviral effect of iron 
and our experiments share a common point which is the use of iron in the form of 
ferric ammonium citrate. As we discussed earlier, Wang et al. have demonstrated that 
FAC has an antiviral effect and that both ferric ion and citrate ion of the complex were 
required for the antiviral activity.  
In their study, in order to understand the antiviral mechanism of FAC, they were 
focused first on viral entry and have shown by doing virus attachment assays that 
FAC does not inhibit viral binding on the cell surface but target early events (Wang et 
al., 2018). Indeed, the inhibitory effect of FAC is lost when it is added 3h post infection. 
It has been observed that FAC directly promotes the fusion of virions on the plasma 
membrane, which made the virions difficult to be endocytosed by the cell. In spite of 
this fusion induced by FAC, a part of virus particles was shown to still enter the cell. 
However, it has been found that FAC also enhances intracellular vesicle fusion thus 
preventing the release of viruses from the endosome and keeping them in endosomal 
compartments. Since FAC was shown to induce liposome aggregation as well, the 
authors have suggested that FAC binds to phosphate head group of phospholipid 
molecules of the viral membrane to explain the fusion of viruses and intracellular 
vesicles. Nonetheless, they do not exclude the possibility of FAC interference with 
intracellular proteins involved in vesicle traffic, fission or fusion.  
This mechanism of action of FAC might explain the decrease in CHIKV and SINV 
infection observed in our experiments and the decrease of SINV infection in the 
experiments of Rose et al. as well. SINV and CHIKV might be indeed sensitive to FAC 
and particles could fuse together as it has been noticed for the other viruses. In 
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addition, since alphavirus entry is mainly mediated by endocytosis, FAC might also 
interfere with endosomes and enhance vesicles fusion thus preventing the delivery of 
alphavirus into the cytoplasm.  
By treating cells with FAC at different time points of the infection (prior to infection, 
during viral incubation and/or after incubation time), we could understand which stage 
of the viral infection is affected by FAC. More specifically, binding assays could be 
realized to determine if FAC modifies viral attachment on cell surface by measuring 
viral RNA by RT-qPCR. Finally, we could carry out time course immunofluorescence 
of chikungunya virus after infection of cells with or without ferric ammonium citrate to 
compare viral replication in both conditions. 
 

To sum up, we have highlighted the inhibition of chikungunya and Sindbis 
viruses infection by ferric ammonium citrate in human cells and in Aedes aegypti cells 
as well.  
Our data suggest that the NRAMP2 transporter and the transferrin receptor, both 
regulated by iron, are not involved in chikungunya virus entry and early infection steps.  
We suggest a direct antiviral effect of iron as ferric ammonium citrate as it has been 
recently published for several viruses. Further experiments will be conducted to 
explore the mechanism of action of FAC on CHIKV and SINV infection. 
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Chapter 2 - Receptor candidates:  infection 
assays of CRISPR-mediated knockout cells 
 

I - Context 
 

Alphavirus entry pathway 

Viral entry into host cells is a key step in viral infection. For enveloped viruses, after 
nonspecific attachment to different cell surface molecules, the primary step involves 
specific binding of the viral glycoproteins to cellular receptors and possibly co-
receptors. Following this binding, the virus is internalized, and the viral material 
released into the cytoplasm thanks to the fusion of viral and endosomal membranes. 
Most viruses use receptor-mediated endocytosis, generally mediated by the 
formation of clathrin-coated pits and the transport to early endosomes where fusion 
is triggered by the low-pH environment. Alternatively, some viruses enter into cells via 
clathrin-independent pathways, such as caveolar/raft pathway or small GTPases 
dependent pathway (Mayor and Pagano, 2007). 
Alphaviruses belong to enveloped viruses. Their nucleocapsid is surrounded by a lipid 
bilayer containing glycoproteins E1 and E2 organized in a trimer of heterodimers. It is 
established so far that E2 protein mediates virus attachment with protein receptors 
while E1 is responsible for low-pH mediated fusion of viral and endosomal 
membranes after clathrin-dependent endocytosis. Within endosomal vesicles, low-
pH environment leads to the dissociation of E1-E2 heterodimer resulting in the 
liberation of E1 fusion loop and insertion in the membrane. This allows the 
rearrangement to a homotrimeric complex active for fusion. The fusion of alphavirus 
particles to membrane required also the presence of cholesterol (Kielian et al., 2010; 
Leung et al., 2011). This fusion of envelope with the membrane of endosome releases 
alphavirus nucleocapsid into the cytoplasm.  
 
Despite many studies, factors required for alphavirus entry into cells remain poorly 
understood. Since Sindbis and chikungunya viruses are able to infect many different 
tissues and many different species, it suggests either the cell receptor is a ubiquitous 
class of molecules or alphaviruses utilize different or multiple receptors on different 
cells from different species.  
Several molecule candidates have been suggested in the literature to act as 
alphavirus receptors and/or attachment factors in a non-specific manner, including 
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the high-affinity laminin receptor, the class I major histocompatibility antigen, α1ß1 
integrin, cell surface glycosaminoglycan heparan sulfate, and C-type lectins (DC-
SIGN and L-SIGN) (Kielian et al., 2010).  As we discussed in the first chapter, NRAMP2 
has been proposed as the receptor for Sindbis virus in mammal cells (Rose et al., 
2011). More recently, Mxra8, a receptor for multiple arthritogenic alphaviruses 
including CHIKV and O’nyong nyong virus has been identified in a genome-wide 
CRISPR/Cas9 based screening in mice cells (Zhang et al., 2018).  
Moreover, the human T-cell immunoglobulin and mucin-domain protein (TIM1) has 
been proposed as a mediator of the entry of a broad range of enveloped viruses 
including filovirus, flavivirus, New world arenavirus and alphavirus. Generally, TIM-
family proteins specifically bind phosphatidylserine (PS) on apoptotic cells and 
promote their phagocytosis. TIM proteins have been suggested as an attachment 
factor for these viruses through binding PS residues exposed on the viral membrane 
(Jemielity et al., 2013; Moller-Tank et al., 2013). 
  
Regarding the endocytosis stage, fuzzy homolog (FUZ) known to be involved in planar 
cell polarity and cilia biogenesis was identified as required for clathrin-dependent 
internalization of alphaviruses and endocytic ligand transferrin in human cells (Ooi et 
al., 2013). They also determined that TSPAN9, a member of the tetraspanin family, 
promotes infection by the alphaviruses Sindbis (SINV), Semliki Forest (SFV), and 
chikungunya (CHIKV) by using TSPAN9 siRNA in U2OS and Hela human cell lines (Ooi 
et al., 2013). TSPAN9 was shown to be localized at the plasma membrane and in early 
and late endosomes. TSPAN9 seems to be critical for efficient low pH-triggered fusion 
of alphavirus particles with the endosomal membrane by modulating early endosome 
compartment (Stiles and Kielian, 2016).  
 

Potential entry factors identified in a preliminary screen   

A collaboration between several laboratories has focused on tetraspanin-enriched 
microdomains (TEM) as common pan-viral entry pathway. Using proteomic analysis, 
RNAi and viral pseudoparticles, the consortium and collaborators have identified cell 
membrane proteins of TEM as broad cell entry factors for pathogens of eight virus 
families (unpublished data). Among the identified cell membrane proteins, three 
candidates seem potentially important for chikungunya virus entry: CD46, TM9SF2 

and PVR (unpublished data, confidential).  
CD46 receptor, also known as membrane cofactor protein (MCP), is a regulator of 
complement innate immunity system. CD46 is expressed in most human cells. It binds 
several viruses such as enveloped RNA measles virus (Dörig et al., 1993), enveloped 
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DNA human herpes virus 6 (HHV6), non-enveloped DNA adenoviruses B and D, and 
other pathogens like some serotypes of streptococcus bacteria (Cattaneo, 2004). 
CD46 seems to be a port of entry for many pathogens but the reasons for such an 
attractive molecule remain unclear. It might be linked to its capacity to drive T-cell 
differentiation via its cytoplasmic tail through which it connects innate and acquired 
immunity. This could allow pathogens to unbalance the immunity response (Cattaneo, 
2004). 

The second protein identified is TM9SF2 which is a member of the transmembrane 9 
superfamily with a little-known function. A study published meanwhile has shown that 
TM9SF2 knockout strongly affects the expression of N-sulfate of Heparan Sulfate (HS) 
because it is involved in the proper localization and stability of NDST1, the catalyzer 
of N-sulfation of HS (Tanaka et al., 2017).  

Lastly, the third protein identified in the screen is PVR (also called CD155) which is a 
transmembrane glycoprotein belonging to the nectin-like molecule family. PVR was 
originally identified as a receptor for Poliovirus, a human neurotropic virus which 
invades the central nervous system (Mendelsohn et al., 1989). The external domain of 
PVR mediates cell attachment to the extracellular matrix, while its intracellular domain 
interacts with the dynein light chain DYNLT1 (Mueller et al., 2002). This interaction of 
PVR with DYNLT1 could explain how poliovirus reaches the neuronal cell body via 
retrograde axonal transport. As another dynein light chain, DYNLT3, was identified in 
our CRISPR genome-wide screen with CHIKV, this interaction aroused our interest. 
This topic and the study of PVR in chikungunya virus entry will be dealt in chapter 2 
of Part 2 regarding the DYNLT3 protein candidate.  
 

In this context, our aim was to study and characterize these first steps of 
infection for alphaviruses relying especially on these potential candidates. For this, we 
generated CRISPR-mediated knockout cells and realized infection assays to test a 
potential role of CD46 and TM9SF2 proteins in alphavirus early infection steps.
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II - Material and methods 
 

1 - Cell lines  
 

HEK 293T, BHK21, and VeroE6 cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM; Gibco™ Thermo Scientific) supplemented with 10% fetal bovine 
serum (FBS; HyClone).  
LHCN-M2 (human skeletal myoblasts) were maintained in medium 4:1 
DMEM/Medium 199 (Gibco™ Thermo Scientific) supplemented with 15% FBS, 0,02 
M HEPES, 0,03 μg/mL Zinc sulfate (Sigma Aldrich), 1,4 μg /mL Vitamin B12 (Sigma 
Aldrich), 0,055 μg /mL Dexamethasone (Sigma Aldrich), 2,5 ng/mL recombinant 
human Hepatocyte Growth Factor (HGF, Peprotech), 10 ng/mL recombinant human 
FGF-basic (Peprotech).  
All cell lines used were maintained at 37°C in the presence of 5% of CO2 in a 
humidified incubator.  
 

2 -  Generation of CRISPR-mediated knockout cell lines 
 

a. sgRNA design 

Sequences of single-guide RNA (sgRNA) for specific gene knockout were designed 
using different online tools as described in the previous chapter. The following primers 
were used for CD46 and TM9SF2 sgRNA: 
 
Guide name   Sequence 5'-3' 

sgRNA_1 CD46 
Forward CACCGTTTAAAGGATCCCGTATATA 
Reverse AAACTATATACGGGATCCTTTAAAC 

sgRNA_2 CD46 
Forward CACCGAACTCGTAAGTCCCATTTGC 
Reverse AAACGCAAATGGGACTTACGAGTTC 

sgRNA_1 TM9SF2 
Forward CACCGAACGTAAACTTATATGGTGA 
Reverse AAACTCACCATATAAGTTTACGTTC 

sgRNA_2 TM9SF2 
Forward CACCGTGGATAATATGCCTGTAACG 
Reverse AAACCGTTACAGGCATATTATCCAC 

 

b. Cloning, lentivirus production and cell line generation 

As described in the previous chapter, sgRNAs were cloned into the lentiCRISPRv2 
vector, then lentiCRISPRV2 constructs were used to generated lentivirus particles and 
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subsequently CRISPR-mediated knockout cell lines. We have tried to generate CD46 
knockout in 293T and LHCN-M2 cells and TM9SF2 knockout in 293T cells only.  
 

3 - Validation of gene knockout 
 

Depending on the tools available, several strategies were used to confirm gene 
knockout in the different cell lines. 
 

a. Flow cytometry immunostaining 

The sgRNA CD46 cells were directly stained for cell surface protein detection. Cells 
were incubated 1h at 4°C with mouse monoclonal CD46 antibody (clone 13/42, kindly 
provided by C.Levy, ENS, Lyon) in PBS 1X-2% FBS-0,1% NaN3  (PBFA). After 3 
washes with PBFA, cells were incubated with an anti-mouse fluorochrome-
conjugated secondary antibody in PBFA. After 3 washes with PBFA, immunostained 
cells were analyzed using a flow cytometer (Accuri C6 or FACSCalibur, BD 
Biosciences).  
 

b. RNA detection by RT-qPCR  

RT-qPCR analysis was used to detect TM9SF2 specific mRNA since no antibodies 
gave good results or were available. Total RNA of CRISPR and control cell lines were 
extracted using NucleoSpin® RNA kit (Macherey Nagel). RNA was reverse transcripted 
using PrimeScriptTM RT-PCR kit (Takara). mRNAs were quantified by qPCR 
amplification in AriaMx system (Agilent) using SYBR Premix Ex Taq II (Takara) and the 
following primers: hTM9SF2/Fw 5’-CAGATGGGCGTCTAGATGGG-3’, hTM9SF2/Rv 
5’-CTGGGCATCTTCCGTAGAGTC-3’. Results were normalized by at least three 
different housekeeping genes (RPL27, RPL22, GUSB). 
 

4 - Isolation of a clonal population  
 

For sgRNA CD46 cell lines, a heterogeneous population was observed by flow 
cytometry showing cells with effective gene knockout and some with a wild type 
phenotype. Two different approaches were used. For 293T cells, single cell cloning 
by dilution in 96-well plate was realized to obtain a clonal population with a real 
knockout. Since LHCN-M2 cells do not tolerate single cell dilution even with 
conditioned media, cell sorting was established. LHCN-M2 cells were filtered through 
70 μm pore-sized membranes prior to sorting. Cells were stained as described above 
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with CD46 antibody and fluorochrome-conjugated secondary antibody and then 
sorted using FACSAria cytometer (BD Biosciences).  
 

5 - Production of alpha-pseudotyped viruses and infection assay 
 

For infection assays, VSV- and CHIKV-pseudotyped retroviral particles were 
generated as described in the previous chapter.  
One day before infection, CRISPR and control cell lines were plated in 48-well plates. 
Cells were transduced with pseudotyped viruses and incubated 2 h at 37°C before 
medium change. Cells were harvested 3 days post-infection and fixed in 
paraformaldehyde 4% at 4°C for 15 min. The cells were directly analyzed to measure 
the percentage of GFP positive cells using a flow cytometer (Accuri C6 or 
FACSCalibur, BD Biosciences).  
 

6 - Production of replicative alphaviruses and infection assay 
 

CHIKV LRic strain LR2006 OPY1 (European Virus Archive; Marseille) and Sindbis virus 
strain Toto1101 were produced as described in the previous chapter. Viral stocks 
were titrated by TCID50 and plaque assay on VeroE6 cells.  

One day before viral infection, CRISPR and control cell lines were plated in 48-well 
plates. Cells were infected with replicative viruses at MOI 0,1 or MOI 1 and incubated 
2 h at 37°C before medium change. Infected cells were harvested 24h post infection 
and fixed in paraformaldehyde 4% at 4°C for 15 min. The cells were permeabilized 
with saponin 0,1% for intracellular immunostaining and incubated at 4°C with a 
primary antibody raised to Semliki Forest nucleocapsid protein, that reacts with 
CHIKV and SINV capsid protein (IgG2a C42 kindly provided by Dr. Irene Greiser-Wilke, 
School of Veterinary Medicine (Hannover, Germany)). After washes, cells were 
incubated with anti-mouse IgG FITC conjugated secondary antibody (F0257, Sigma 
Aldrich), cells were analyzed using a flow cytometer (Accuri C6 or FACSCalibur, BD 
Biosciences).  
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III - Results and discussion  
 

1 - Effect of CD46 depletion on entry of CHIKV-derived pseudoparticles 
 

A cell surface immunostaining was realized with sgRNA CD46 293T cells and we 
observed a heterogeneous population of some cells with effective gene knockout and 
some with a wild type phenotype. Single cell cloning by dilution in 96-well plate was 
realized to obtain a clonal population with a real knockout. Each clone was 
subsequently tested for its CD46 expression status by cell surface immunostaining 
and we finally selected one clonal cell population depleted for CD46 protein (Fig.45). 
The wild-type (WT) 293T and clonal CD46 knockout cells were infected with 
pseudotyped viruses with CHIKV envelope proteins and GFP reporter gene. Level of 
pseudotyped viruses which entered the cells was monitored by measuring GFP-
positive cells by flow cytometry. A slight decrease of GFP-positive cells was observed 
for cells with sgRNA targeting CD46, however, this diminution was not statistically 
significative (Fig.46). Comparison of clonal population with a WT pooled population is 
complex as clonal cell line might present a very distinct phenotype. Moreover, clonal 
cells might grow slower or faster than WT cells and as cells were not counted the day 
of infection, 24h after cell seeding, the MOI applied might vary from one cell line to 
another. Therefore, these results need to be taken with caution and we decided to 
develop another cell line.  
 
sgRNA CD46 LHCN-M2 were also generated and like 293T cells, we observed a 
heterogeneous population of some cells with effective gene knockout and some with 
a wild type phenotype by flow cytometry analysis. As LHCN-M2 cell do not tolerate 
single cell cloning, we isolated a population depleted for CD46 by cell sorting (Fig.47). 
WT LHCN-M2 and CD46 knockout cells were infected with pseudotyped virus bearing 
either CHIKV envelope proteins or envelope of VSV (VSVg) as a control. The entry of 
CHIKV pseudotyped viruses and the entry of control VSV pseudotyped viruses were 
not impacted either by the CD46 knockout (Fig.48).  
Altogether, even if a high variability was observed in 293T assays, we demonstrated 
that CD46 does not appear to be required for entry of CHIKV pseudotypes. Some 
exploratory infection assays performed with replicative viruses in 293T and LHCN-M2 
cells knockout for CD46 (data not shown) did not bring evidence of an implication of 
CD46 for CHIKV infection neither. Experiments including Measle pseudotypes or virus 
should be added to validate the effect of CD46 KO. 
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Preliminary results from collaborators had shown that CD46 silencing with siRNA 
inhibits the entry of lentiviral pseudoparticles derived from CHIKV in Hela cells and 
the infection of Huh 7.5.1 cells with replicative CHIKV LRic strain (personal 
communication). CD46 protein might be involved in CHIKV entry in Hela cells and in 
Huh 7.5.1 but might be non-essential or used only as a cofactor in our cell lines. On 
the other hand, it is also possible that preliminary results obtained with siRNA are not 
reproducible with the CRISPR/Cas9 approach due to the high prevalence of off-target 
effects with RNAi reagents.  
 
 
 

 
 
Figure 45: Validation of CD46 CRISPR-mediated knockout in clonal 293T 
population after serial dilution by immunostaining and flow cytometry analysis 
Cell surface immunostaining was realized with CD46 antibody (clone 13/42, kindly 
provided by C.Levy, ENS, Lyon) in PBS 1X-2% FBS-0,1% NaN3  and anti-mouse IgG 
coupled with FITC. Cells were analyzed on A6 accuri cytometer (BD Biosciences).   
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Figure 46: Infection assay in WT and clonal CD46 knockout 293T cell lines with 
CHIKV-derived pseudoparticles 
Cells were incubated with pseudoparticles 2 h at 37°C before medium change. Cells 
were then harvested 3 days post-infection and fixed in PFA 4% before flow cytometry 
analysis (n=3). Statistical analyses were made with unpaired t-test with p-value < 0,05. 
Infection on naïve WT cells was established at 1. 
 
 

 
 
Figure 47: Validation of CD46 CRISPR-mediated knockout in LHCN-M2 
population after cell sorting by immunostaining and flow cytometry analysis. 
Cell surface immunostaining was realized with CD46 antibody (clone 13/42, kindly 
provided by C.Levy, ENS, Lyon) in PBS 1X-2% FBS-0,1% NaN3  and anti-mouse IgG 
coupled with FITC. Cells were analyzed on A6 accuri cytometer (BD Biosciences).   
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Figure 48: Infection assay in WT and CD46 knockout LHCN-M2 cell lines with 
CHIKV- and VSV-derived pseudoparticles.  
Cells were incubated with pseudoparticles 2 h at 37°C before medium change. Cells 
were then harvested 3 days post-infection and fixed in PFA 4% before flow cytometry 
analysis (n=3). No significative differences observed with unpaired t-tests. Infection on 
naïve WT cells was established at 1. 
 
 

2 - Effect of TM9SF2 depletion on SINV and CHIKV infection 
 

As the antibody targeting the TransMembrane 9 SuperFamily member (TM9SF2) we 
had was not functional, we tried to confirm the disruption of TM9SF2 mRNA in 293T 
cells by RT-qPCR. Compared to WT cells, sgRNA TM9SF2 cells had 50% less 
TM9SF2 mRNAs meaning that at least one of both alleles has been altered (Fig.49). 
However, we were not able to conclude on the protein expression status for this cell 
line as we don’t know if the remaining 50% of mRNAs are wild-type or altered and 
lead to translation of a correctly folded and active TMS9F2 protein or not. 
Through preliminary data from collaboration, TM9SF2 silencing using siRNA had been 
shown to inhibit CHIKV derived pseudoparticles entry in both Hela and Huh 7.5.1 cells 
and replicative CHIKV infection in Huh 7.5.1 cells (data not shown).  
In our study, infection assays were realized on WT and sgRNA TM9SF2 cells with 
replicative alphaviruses. A decrease of CHIKV infection was observed for both 1 and 
0,1 MOI in sgRNA TM9SF2 cells compared to WT cells (Fig.50). The difference was 
significative only for infection at MOI 1. Regarding SINV infection, a slight non 
significative diminution was also detected with an MOI of 0,1 but a high variability was 
noticed among replicates (Fig.50). Lastly, no variations in infection levels were 
detected in sgRNA TM9SF2 cells compared to WT cells with SINV at MOI 1. During 
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the course of our study, it has been published that TM9SF2 is involved in the proper 
localization and stability of NDST1, a catalyzer of N-sulfation of Heparan Sulfate 
(Tanaka et al., 2017). Heparan sulfate was identified for the first time in 1998 as a 
receptor for alphaviruses. Tanaka et al. also illustrate that knockout of TM9SF2 
reduced the susceptibility of HAP1 human haploid cells to CHIKV infection via a non-
working N-sulfation activity. This result is in correlation with the slight decrease of 
CHIKV infection observed in our experiment. A cell line with complete depletion of 
TM9SF2 might be used as a control in future experiments.  
 

 
Figure 49: Quantification of TM9SF2 transcripts in WT and sgRNA TM9SF2 cells 
RT-qPCR was realized on total RNA extracted to quantify TM9SF2 RNA in both cell 
lines. 
 
 

 
 

Figure 50: CHIKV, SINV and SFV infection assay in WT and sgRNA TM9SF2 cells 
Cells were infected with CHIKV or SINV at MOI 0,1 or MOI 1 for 24h. Cells were 
harvested and fixed in PFA 4% before immunostaining and flow cytometry analysis 
(n=3). Statistical analyses were made with unpaired t-test with p-value < 0,05. Infection 
on naïve WT cells was established at 1. 
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PART 1 - Conclusion 
 

To sum up this first part, we mainly focused on early steps of replication by 
studying the involvement in the viral entry of iron-dependent proteins, NRAMP2 and 
TFRC and then we have explored the role of CD46 and TM9SF2 proteins for 
chikungunya virus entry and replication.  
 

Although we clearly observed an effect of iron on chikungunya virus infection, 
it appears that neither NRAMP2 nor TFRC were required for chikungunya virus 
infection of human cell lines. As it has been described for several viruses, we have 
suggested a direct antiviral effect of iron in the form of ferric ammonium citrate on 
chikungunya virus replication in mosquito and mammal cell lines. Further experiments 
should be realized to understand the mechanism of action of ferric ammonium citrate 
on viral replication as we discussed in the first chapter. In particular, we would like to 
determine if ferric ammonium citrate induces a non-specific fusion of virus particles 
and a fusion of intracellular vesicles or acts through a more complex pathway.  
 

In parallel, two potential entry factors, CD46 and TM9SF2, had been identified 
through an RNAi screen in collaboration with other laboratories.  
Preliminary results from collaborators had suggested an involvement of CD46 in 
CHIKV entry in Hela and Huh 7.5.1 cell lines. On the other hand, CD46 is known to be 
involved in several virus entry pathways such as Measle virus. However, using two 
CRISPR/Cas9 knockout cell lines, in our hands, CD46 protein does not appear to be 
required for CHIKV pseudoparticles entry. As we have suggested earlier, CD46 
requirement for CHIKV entry might vary from a cell type to another and the use of 
different approaches to deplete protein could impact the reproducibility. However, it 
should be noticed that CD46 requirement has not been validated for any viruses 
identified in the screen so far (personal communication). 
 

Preliminary data from collaboration had also highlighted a requirement of 
TM9SF2 for CHIKV entry. According to our data, we have also observed a small 
decrease of CHIKV infection in TM9SF2 CRISPR-mediated knockout cells although 
we were not able to characterize without ambiguity the knockout. Indeed, our cell line 
appears to be not fully knockout for TM9SF2 based on RNA analysis. TM9SF2 protein 
was poorly characterized at the time of its identification in the RNAi screen. A study 
published in the meantime, in 2017, highlighted the involvement of TM9SF2 in N-
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sulfation of heparan sulfate and consequently the requirement of TM9SF2 for CHIKV 
infection (Tanaka et al., 2017). TM9SF2 candidate might serve as a positive control 
for our CHIKV infection assays by generating complete knockout.
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mediated loss of function screen 
to identify host factors required 
for chikungunya virus infection
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Chapter 1 - Realization of a genome-wide 
CRISPR/Cas9 screen 

 

I - Context  
 

Alphavirus studies with loss of function screens 

As described before, genome-wide screens are powerful tools to study virus-
host interactions. Regarding alphaviruses, RNAi-mediated loss of function screens 
and haploid screenings have enabled the identification of host factors and pathways 
that either help (proviral) or limit (antiviral) viral replication.  
A genome-wide RNAi screen in Drosophila cells has enabled the identification of a 
divalent metal ion transporter called natural resistance-associated macrophage 
(NRAMP2) and two related proteins, VCP and SEC61A, as factors required for SINV 
infection (Panda et al., 2013; Rose et al., 2011). Ooi et al. have realized a siRNA screen 
in human U2OS cells with SINV and identified Fuzzy homolog (FUZ) and tetraspanin 
membrane protein (TSPAN9) among others as required for SINV infection, but also for 
SFV and CHIKV infections (Ooi et al., 2013). Trafficking host factors used in human 
Hela cells by Venezuelan Equine Encephalitis Virus (VEEV) were identified by a siRNA 
screening (Radoshitzky et al., 2016). In parallel, a siRNA genome-wide loss of function 
screening was realized to find host factors implicated in CHIKV infection in human 
HEK-293 cells and to identify pathways possibly inhibited by effective chikungunya 
antiviral drugs (Karlas et al., 2016). Finally, a recent screen in human haploid cells 
HAP1 uncovered the importance of N-sulfation of heparan sulfate involving TM9SF2 
protein for CHIKV infection (Tanaka et al., 2017). 
 
In contrast to RNAi, which leads to partial depletion of expression for a specific gene, 
CRISPR/Cas9 enables a complete disruption of gene expression. CRISPR screens 
have allowed to study various viral infections with high fidelity and adaptability 
compared to RNAi and haploid screen approaches (cf. bibliographic synthesis). 
Recently, Rong Zhang et al. described Mxra8 as an entry mediator for multiple 
arthritogenic alphaviruses in humans including CHIKV. The cell adhesion molecule 
has been identified using a genome-wide CRISPR/Cas9-based screen in 3T3 mouse 
fibroblasts (Zhang et al., 2018). 
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Realization of a genome-wide loss of function screen with 

CRISPR/Cas9 to study chikungunya virus infection 

In order to identify cellular host factors important for chikungunya virus 
infection in humans, we carried out a genome-wide loss of function screen with 
CRISPR/Cas9 based on the stable knockout of genes. For this, each gene of the 
genome has been depleted using the CRISPR/Cas9 technology to identify which 
proteins, encoded by a gene, are required for the chikungunya virus infection. 

Pooled screens rely on the physical separation of cells into subpopulations either 
enriched or depleted for the phenotype of interest. In our case, the phenotype of 
interest is cell viability. In the cell line used, chikungunya virus enters into the cell, 
replicates and induces strong cytopathic effects leading to cell death (Fig.51). This 
enables a straight selection of cells potentially resistant to the virus. Using a library of 
lentiviruses, a library of cells has been generated with one gene knockout in each cell. 
The principle is that majority of cells of the library die upon CHIKV infection and some 
cells survive and recover from CHIKV infection meaning that recovered mutant cells 
do not allow viral entry, translation, replication of viral genome or virus-induced cell 
death (Fig.51). Beforehand, practical considerations have to be taken into account to 
realize the screen, such as the choice of the cell line and of the CRISPR/Cas9 library. 

Infection assays have been carried out to choose an appropriate cell line, efficiently 
infected by CHIKV and relevant for the study regarding the tropism in humans. Several 
human cell lines available in our lab were tested in CHIKV infection assays, including 
osteosarcoma cell line HOS, fibrosarcoma cell line HT1080, hepatocarcinoma cell line 
Huh7, melanoma cell line A375, epidermoid carcinoma cell line A431, 
adenocarcinoma cell line Caco2 and immortalized skeletal muscle cell line LHCN-M2. 
The immortalized human skeletal myoblasts were finally selected as they are able to 
produce a high virus titer and more than 99% of cells die after several days of infection. 
Immortalized cultured myoblasts consisted of a human myogenic cell line, called 
LHCN-M2, that had previously been obtained by introduction of human telomerase 
and cyclin-dependent protein kinase (Zhu et al., 2007). Different specific muscle cell 
markers have been well characterized in these cells. LHCN-M2 cells were known to 
be efficiently infected by CHIKV and likely to replicate the virus (Ozden et al., 2008). 
Given the cellular tropism of CHIKV for skeletal muscle cells among others (Ozden et 
al., 2007), LHCN-M2 cell line represents a relevant cellular model for CHIKV infection 
study. As LHCN-M2 cells are adherent cells which detach from the support when 
dying, this enables to easily keep the surviving cells and remove dead cells after viral 
infection. 
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The Zhang lab’s GeCKOv2 sgRNA pooled library from the non-profit plasmid 
repository Addgene has been used for our screen. This library consists of over 100 
000 unique sgRNAs for gene knockout in the human genome (Sanjana et al.). The 
library targets 19 050 genes and is split into two half-libraries called A and B, with 
each pool containing 3 sgRNAs against each gene, for a total of 6 sgRNAs per gene 
in the whole library. The library A also targets miRNAs (4 sgRNAs/miRNA). Both A and 
B libraries contain 1000 control sgRNAs designed not to target in the genome. The 
library is delivered as two pooled DNA plasmid half-libraries. Library’s plasmids are 
based on a one vector expression system consisting of a lentiviral backbone 
containing both the Streptococcus pyogenes Cas9 nuclease and the single guide 
RNA (sgRNA) scaffold (Fig.52). 

 
 
Figure 51: Principle of the genome-wide loss of function screen with 

CRISPR/Cas9 to identify important host factors for CHIKV infection 
(a) Chikungunya virus enters and replicates efficiently in WT LHCN-M2 cells leading 

to the induction of cytopathic effects and cell death. Using a high MOI, all cells die 
after several days. 

(b) Starting from LHCN-M2 WT cells, a library of cells with one gene knockout in each 
cell has been generated by transducing cells with the GeCKO lentivirus library. 
Infection with CHIKV enables a straightforward selection of virus-resistant cells. 
Majority of cells are dead, meaning that CHIKV killed them and that knockout genes 
in that particular cells were not important for viral entry or replication or for virus-
induced cytopathic effects. In contrast, recovered mutants were not killed by virus 
meaning that knockout genes were genes involved in viral entry, translation of the 
viral genome, replication of the viral genome or virus-induced cell death. 
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Figure 52: Genome-scale CRISPR Knock-Out (GeCKO) library 

(a) Characteristics of the GeCKO v2 human library, adapted from Sanjana et al., 2014. 
(b) Lentiviral expression vector for sgRNA and Streptococcus pyogenes Cas9 in one 
vector system. Psi+/Ψ : Psi packaging signal, RRE: rev response element, cPPT: 
central polypurine tract, U6: U6 promoter, sgRNA: sequence of sgRNA, EFS: 
elongation factor-1α short promoter, spCas9: Streptococcus pyogenes Cas9 gene, 
P2A: 2A self-cleaving peptide, Puro: puromycin selection marker, WPRE: post-
transcriptional regulatory element. 
(c) The lentiviral expression vector encodes Streptococcus pyogenes Cas9 protein 
which recognizes PAM sequence directly upstream of the target sequence and sgRNA 
which binds to the Cas9 enzyme and to the DNA target sequence. Both elements are 
expressed simultaneously in cells.

 



Part 2 – Chapter 1 – Genome-wide CRISPR/cas9 screen 

126 

Starting from the library of lentiviral vectors, a library of lentivirus was generated and 
titrated precisely using the puromycin resistance. By transduction, a library of cells in 
which one gene is knocked out in each cell was created after selection. Subsequently, 
the library of cells was challenged twice with CHIKV. Finally, cell populations before 
and after viral challenge were sequenced. The genes driving cell survival were 
identified by comparing the relative abundance of corresponding sgRNAs in both 
fractions. The whole process is described in figure 53.   

In this way, two screen replicates have been achieved separately and sgRNA 
enrichment analysis for both replicates has permitted to identify host factors 
potentially required for chikungunya virus infection. It should be noticed, however, 
that the two first steps, i.e. the amplification of plasmid library and the production of 
lentivirus, were common to both replicates.  
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Figure 53: General workflow of the genome-wide screen  

The library, delivered as two pooled DNA half-libraries, was amplified in competent 

bacteria cells. To ensure the sgRNA library’s quality, it is important to maintain the 

complexity of the sgRNA pool when expanding the sgRNA plasmid pool in bacteria, 

during transduction of the target cells and during the extraction of genomic DNA from 
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cells for downstream analyses. Lentiviruses were produced by co-transfecting 293T 

cells with lentiviral vectors from the library, gag-pol packaging construct and 

glycoprotein-expressing construct. The use of lentivirus allows to obtain a stable cell 

line constitutively expressing a sgRNA and the Cas9 enzyme. LHCN-M2 cells were 

transduced with the library of lentiviruses with a low multiplicity of infection (MOI ∼0,3) 

to ensure that only one integration event takes place per cell. Transduced cells were 

selected with puromycin treatment. A part of the whole cell library was used for next 

generation sequencing to determine sgRNA representation. The other part of the cell 

library was infected by replicative chikungunya virus using an MOI of 2. After several 

days, resistant cells from the infection were pooled and amplified for a second viral 

challenge. An MOI of 2 was also used for the second viral challenge with chikungunya 

virus. Surviving cells were amplified for subsequent genomic DNA extraction. PCRs 

were then realized to amplify the integrated sgRNA sequence and add at the same 

time adapters and barcode for the sequencing platform. After sequencing, sgRNA 

abundance between uninfected cells and surviving cells from viral challenges was 

compared.  
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II - Material and Methods 
 

1 - Cell line and viral production 
 

LHCN-M2 cells (immortalized human skeletal myoblasts) were used to generate the 
cell library of the genome-wide loss of function screen. HEK 293T cells were used for 
lentivirus production. BHK21 and VeroE6 cells were used for chikungunya virus 
production and titration respectively. Cell culture conditions were previously 
described in part 1. Chikungunya virus LRic strain was produced and titrated as 
previously described in part 1. 
 

2 - Gecko library 
 

The Zhang lab’s Human CRISPR knockout pooled library (GeCKOv2 sgRNA library) 
was acquired from Addgene. The library targets 19 050 genes and is split into two 
half-libraries (A and B), with each pool containing 3 sgRNAs against each gene, for a 
total of 6 sgRNAs per gene in the whole library. The library A also targets miRNAs (4 
sgRNAs/miRNA). The library includes 123 411 sgRNAs in total.  
 

a. DNA amplification 

Each lentiviral library (A and B) was amplified and prepared separately following the 
same protocol. Each library was diluted to 50 ng/μL in water and 2 μL of 50 ng/μL 
GeCKO library were electroporated in Endura electrocompetent cells (Lucigen). 
Electroporation in competent cells was made 4 times for each library. Cells were 
recovered in recovery media and placed in shaking incubator for 1 hour at 37°C. For 
each library, electroporated cells were plated on two pre-warmed 600 cm2 LB agar 
plates with ampicillin and were grown for 16 hours at 37°C. In parallel, a 30 000-fold 
dilution of the full transformation was plated to estimate transformation efficiency to 
ensure that full library representation is preserved. The total number of colonies 
should be at least 3.106 corresponding approximatively to 50 colonies per construct 
in each GeCKO library. GeCKO library colonies were harvested by adding 10 mL of 
LB medium onto each plate and scrapped with a cell spreader. Liquid plus scrapped 
colonies were collected into a tube and the procedure was repeated a second time 
on the same plate with additional 10 mL of media. After centrifugation, bacterial 
pellets were weighed to determine the proper number of Maxiprep columns to use. 
Appropriated number of MaxiPrep (NucleoBond Xtra, Macherey Nagel) were 
performed and the concentration of each library was determined by NanoDrop 
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(NanoDrop 2000, Thermo Fischer Scientific). Plasmid libraries A and B were pooled in 
equimolar proportions for lentivirus production. 
 

b. Lentivirus production and titration 

HEK 293T cells were seeded at 5.106 cells per dish (15cm diameter) one day prior to 
transfection. Cells were transfected using Xtreme gene reagent (Roche) with three 
expression vectors, respectively, 10 μg of phCMV-VSV-g, 15 μg phCMV-Gag-Pol-
HIV, 20 μg GeCKO plasmid library. The medium was changed with medium without 
antibiotic before incubation with DNA. Six hours after transfection, medium was 
replaced. Two viral harvests were collected at 40 hours and 60 hours after 
transfection. The two harvests were pooled, centrifuged and filtered through a 0.45 
μm filter. Aliquots from the cleared supernatant were stocked at -80°C. Lentivirus 
production was titrated by infecting LHCN-M2 cells in 12-well plates with several 
different volumes of lentivirus. The next day, each well was split into duplicate: one 
replicate received a puromycin selection with a concentration determined earlier, the 
other one no puromycin. As soon as no surviving cells remained in the non-
transduction control well under puromycin, cells were counted to calculate the 
percent of transduction and the viral titer.  
 

c. Cell library generation 

One day prior transduction, 10-10,5 millions of LHCN-M2 were plated in eight 12-well 
plates. Cells were transduced with a volume of GeCKO lentivirus library determined 
earlier for achieving an MOI of 0,3-0,5. LHCN-M2 cells were transduced by spin-
infection during 1h30 at 37°C in complete LHCN-M2 medium supplemented with 8 
μg polybrene. The next day, cells were trypsinized and seed into eight dishes (15 cm 
diameter) with puromycin at 0,8 μg/mL. Non-transduced cells were plated and treated 
with puromycin at 0,8 μg/mL in parallel as control of selection.  
 

3 - Viral challenges 
 

After several days of puromycin selection, a part of the cell library was lysed for 
genomic extraction and sequencing. The other part of the cell library was plated and 
infected with chikungunya virus (LRic strain LR2006 OPY1) at an MOI of 2. The 
medium was replaced 6 hours after infection. In parallel, a control dish with non-
transduced LHCN-M2 cells was infected at MOI 2 with chikungunya virus. After 
several days, all surviving cells were pooled into three 15cm-dishes. When all cells 
were dead in the control dish, surviving cells of the library were plated into one 25cm-
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dish for a second virus challenge. Cells were infected with chikungunya virus from the 
same production at an MOI of 2. A new control dish with non-transduced LHCN-M2 
cells was infected in parallel. When all cells were dead in the control dish, surviving 
cells of the library were amplified for a few days and then lysed for genomic extraction 
and sequencing.  
 

4 - Genomic extraction and DNA amplification 
 

Preliminary tests were realized beforehand to estimate the DNA yield from a given 
number of cells and to calculate the maximum amount of starting material that can be 
loaded on spin columns without overloading them. 
Genomic DNA (gDNA) was extracted from the cell library before chikungunya virus 
challenge and from surviving cells after chikungunya infection using Dneasy 
Blood&Tissue Kit (Qiagen).  
The amplification of pooled sgRNA isolated from cell samples was carried out by one 
round of PCR using Clone Amp HiFi (Clontech Takara). Three separate PCRs with 250 
ng of gDNA each were realized for each sample with fusion primers. Fusion primers 
used for the PCR contain a barcode for sample identification and an adapter 
complementary to the immobilized primers in the NGS flow cells (Fig.54). PCR 
products were purified with PCR Clean-up/Gel extraction kit (Macherey Nagel) then 
run on agarose gel following by a new purification step with PCR Clean-up/Gel 
extraction kit (Macherey Nagel). A last step of purification (AMPure, Beckman Coulter) 
was done by the sequencing platform (Sequencing platform IGFL). 
 

5 - Next Generation Sequencing and analysis 
 

Next Generation Sequencing was performed by the Sequencing platform at IGFL 
(Lyon) using Ion PI HiQ Chef Kit and Ion PI HiQ chip v3 (100pb-80M reads) on Ion 
Torrent platform (Thermo Fischer Scientific). The amplified samples of uninfected and 
challenged library conditions from both replicates were pooled together on the 
sequencing chip for the run. Afterward, thanks to barcode sequences added on PCR 
amplification primers, samples from uninfected and challenged conditions were 
sorted. Raw data from sequencing were processed to keep only the sequence of the 
sgRNA. In order to do so, data processing software was used to first eliminate 
incorrect sequences and then to trim sequences flanking the sequence of the sgRNA. 
The trimmed sequences were blasted against the GeCKO library database with 
determined parameters (95% identity on 90 % of the length (22 bp)) and only the first 
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hit was kept. Finally, a list was obtained with the number of reads for each sgRNA for 
each experimental condition. 
For a given condition, the number of reads of each sgRNA was normalized by the total 
number of reads in this condition. Analyses were realized by comparing for each 
sgRNA, the number of reads in viral challenge condition to the number of reads in 
uninfected condition. Two different analyses were carried out, the first one based on 
genes (6 sgRNA/gene, 4sgRNA/miRNA) and the second one on sgRNAs.  
 
 
 
(a) 

 
 
 
(b) 

 
Figure 54: PCR amplification of sgRNA sequences from genomic DNA  

 (a) Table of fusion primers used for PCR amplification of sgRNA sequences from 
genomic DNA. For each condition (uninfected/challenged) and each library, a forward 
primer was designed. Reverse primer used was identical for all PCRs.  
(b) Schematic representation of the PCR amplicon obtained and of the sequences 
recognized by primers. The primers allow the amplification of an amplicon with adapter 
sequences, a barcode, lentiCRISPRv2 sequences flanking sgRNA sequence and the 
sgRNA sequence. 
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III - Results 
 

1 - General analysis of the screen 
 

To identify host genes critical for CHIKV replication, we generated a GeCKO library 
with LHCN-M2 cells and performed a genome-scale loss of function genetic screen.  
To generate this library, several preliminary set-up experiments and intermediate 
controls were necessary. It is crucial to maintain the complexity of sgRNA pools at 
each step of the cell library generation.   
 
The first control was realized when expanding the sgRNA plasmid pool in bacteria. A 
dilution of the full transformation was realized for both libraries to estimate 
transformation efficiency to ensure that the complexity of libraries was maintained. 
The library of lentiviruses was produced using validated sgRNA plasmid pools.  
 
The lentivirus library was titrated beforehand in order to transduce cells with an MOI 
of about 0,3 to ensure that only one lentivirus enters per cell and that only one 
integration event takes place per cell. After discussion with collaborators from A. 
Ploss lab (Princeton University), we have chosen to transduce a number of cells 100-
fold higher than the number of sgRNAs in the library to obtain a good sgRNA 
representation. After selection of transduced cells, a part of the cell library was kept 
for sequencing and the other part was plated for CHIKV challenge.  
 
As a first step, after sequencing, the quality of the library of each replicate, called 
library 1 and library 2 thereafter, was observed. As a reminder, the library includes 6 
sgRNAs for each gene for a total of 123 411 sgRNAs. In the library 1, 92% of total 
genes are represented but only 38% of sgRNAs are found (Fig.55). Regarding the 
library 2, 77% of all genes and 24% of sgRNAs are represented (Fig.55). In addition 
to negative selection of cells with a sgRNA targeting essential gene for cell survival, a 
lot of sgRNAs might have been lost during one or several steps of the process. 
Nevertheless, analysis of enrichment between the uninfected control cell line and 
challenged population in both replicates was examined in two different approaches. 
It should be noticed that the difference in total sgRNA counts between uninfected and 
challenged was not as important as we expected for both libraries (Fig.55). This small 
difference in sgRNA counts might suggest that our screen is not enough stringent.  
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Figure 55:  Recap chart of the number of reads for each library and condition 

and number of different sgRNAs counted 

Numbers between parenthesis represent sgRNA counts with more than 10 

reads/sgRNA.  

 

2 - First analysis: analysis based on total sgRNA count per gene  
 

As not so many sgRNAs were present in the uninfected library, we have chosen to 
realize the first analysis based on the number of reads per gene by taking account the 
6 sgRNAs. All sgRNAs with less than 10 reads in uninfected or infected conditions 
were removed. Normalization was realized before focusing on gene enrichment by 
relating the number of reads per gene to the total number of reads in a given condition. 
Briefly, means of sgRNA counts of both libraries were calculated and DESeq2 
algorithm was used in R software to generate a statistical analysis of differential 
sgRNA representation and the number of sgRNAs targeting each gene was integrated 
(Love et al., 2014). This analysis permitted to identify 142 enriched genes. Using the 
online tool PANTHER, we realized gene ontology analysis (Fig.56 and Fig.57) 
(Thomas, 2003).    
Given the fact that CHIKV, and viruses in general, hijack the whole cellular machinery 
for their replication and for host-response shut down, we selected protein candidates 
with different cellular localization and favored proteins known to be required for 
replication of other viruses.   
Several proteins localized at the plasma membrane were selected as we were 
particularly interested in chikungunya virus entry steps. In addition, as the team 
project also focuses on the role of apoptosis in alphavirus infection, several proteins 
related to apoptosis and p53 transcription factor were selected. The cellular 
localization of the nineteen hits selected from the screening analysis is displayed in 
figure 58. The candidates are presented below in alphabetical order with the number 
of sgRNAs (counted reads >10) present in challenged conditions, found either in the 
first replicate (library 1) or in the second replicate (library 2) or in both replicates.  
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Figure 56: Gene ontology analysis of hits from the screen based on protein class 

Analysis realized with the online tool PANTHER. 

 

 
Figure 57: Gene ontology analysis of hits from the screen based on biological 

process 

Analysis realized with the online tool PANTHER.   
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Figure 58: Cellular localization of the 19 hits selected from the screen analysis 

 

The C-type lectin domain family 2 member B, CLEC2B (2 sgRNAs), is a member of 
the C-type lectin superfamily. Several C-type lectin receptors, e.g. DC-sign and L-
sign, are important for viral infection by recognizing carbohydrate structures present 
on viral glycoproteins and functioning as attachment factors for several enveloped 
viruses (Lozach et al., 2007).  
 
The cap-binding complex dependent translation initiation factor, CTIF (3 sgRNAs), is 
a component of the CBP80/CBP20 translation initiation complex. The translation 
initiation complex binds to the cap end of nascent mRNA and mediates translation 
(Kim et al., 2009).  
 
The Duchenne muscular dystrophy gene, DMD (2 sgRNAs) encodes the dystrophin 
protein. This protein is found principally in muscles where it anchors the extracellular 
matrix to the cytoskeleton. Dystrophin is a part of the dystrophin-glycoprotein 
complex (DGC), which plays an important role as being a structural unit of muscle. 
DMD gene is mainly known for its implication in the inherited disease Duchenne 
muscular dystrophy (Gao and McNally, 2015).   
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DYNLT3 (4 sgRNAs) gene encodes the dynein light Tctex-type 3 which is a 
component of the dynein motor protein. Dynein motor complex protein has been 
shown to be involved in the transport of several viruses along microtubules. Moreover, 
DYNLT3 has been shown to interact directly with viral proteins (Milev et al., 2018). 
Involvement of dynein in viral infections is described in detail in chapter 2 of part 2.  
 
Etoposide-induced protein 2,4kb transcript, EI24 (3 sgRNAs) encodes a 
transmembrane protein localized in the endoplasmic reticulum, which is induced by 
the tumor suppressor protein p53. EI24 is known to be involved in apoptotic process 
by playing a pro-apoptotic role (Gu et al., 2000). Furthermore, EI24 is an essential 
autophagy gene and plays an important role in clearance of aggregated proteins 
(Zhao et al., 2012).  
 
The Golgin subfamily A member 3, GOLGA3 (3 sgRNAs) also called GCP170 is 
localized to the Golgi complex. It might be involved in the structural organization or 
stabilization of the Golgi complex (Misumi et al., 1997).  
 
The junction adhesion molecule 3, JAM3 (2 sgRNAs), also named JAM-C, belongs to 
the immunoglobulin superfamily with JAM-A, JAM-B and also Coxsackievirus and 
Adenovirus Receptor (CAR). JAM and CAR proteins span the membrane a single time 
and have a large extracellular domain and a short cytoplasmic C-tail. Several viruses 
including Reovirus, Rotavirus, Adenovirus, Coxsackievirus use members of this family 
as receptors (Bhella, 2014; Torres-Flores and Arias, 2015).  
 
The MRM1 (3 sgRNAs) gene encodes the mitochondrial rRNA methyltransferase 1 
that is required for mitochondrial ribosome function in mammalian cells. MRM1 might 
participate in methylation of ribosomal RNA (Lee et al., 2013).  
 
The NCR3LG1 (4 sgRNAs) gene encodes the natural cytotoxicity triggering receptor 
3 ligand 1 protein also known as B7-H6. NCR3LG1 is a ligand which triggers NCR3 
(NKp30)-dependent natural killer cell activation.  
 
The obscurin protein encoded by OBSCN (3 sgRNAs) gene plays important roles in 
myofibrillogenesis, cytoskeletal organization, and cell adhesion (Manring et al., 2017). 
 
 



Part 2 – Chapter 1 – Genome-wide CRISPR/cas9 screen 

138 

 
The poly(A) RNA polymerase PAPD4 (4 sgRNAs), also called GLD2, is a cytoplasmic 
RNA polymerase that forms poly(A) tail by adding successive AMP monomers to the 
3’ end of selected cytoplasmic mRNAs (Kwak et al., 2004). A study has reported an 
effect of cytoplasmic polyadenylation of human papillomavirus type 16 (HPV-16) 
mRNAs by PAPD4 (Glahder et al., 2010).  
 
The plexin-B1, PLXNB1 (3 sgRNAs), has been identified as semaphorin receptors. 
Semaphorins play a role in axon guidance and in immune response. Activation of 
plexin results in the regulation of actin cytoskeleton by activating small GTPases 
(Driessens et al., 2001).  
 

The syndecan 3, SDC3 (2 sgRNAs), is a single-pass membrane heparan sulfate 
proteoglycan. SDC3 has been identified as a major HIV-1 attachment receptor on 
dendritic cells (de Witte et al., 2007). Moreover, it has been shown that syndecan 1 
(SDC1) serves as a major receptor for attachment of Hepatitis C virus to hepatocytes 
while syndecan 2 (SDC2) is used as a receptor by Dengue 2 virus (Okamoto et al., 
2012; Shi et al., 2013). Finally, both SDC1 and SDC2 have been shown to be involved 
in Herpes Simplex Virus type 1 (HSV1) infection (Bacsa et al., 2011).  

The septin 7, SEPT7 (3 sgRNAs), is a GTP-binding protein that associates with actin 
filaments and cellular membranes and that is required for many cellular processes 
including migration, division and membrane trafficking (Mostowy and Cossart, 2012). 
It has been demonstrated that septins inhibit bacterial infection by forming cage-like 
structures around intracellular pathogens such as Shigella flexneri bacteria and 
promote their targeting to autophagosomes (Mostowy et al., 2010; Sirianni et al., 
2016). A high throughput small interfering RNA (siRNA) screen identified several 
septins as strong anti-viral factors against Vaccinia virus (VACV) (Beard et al., 2014). 
Another study confirms this role by demonstrating that septins suppress Vaccinia 
virus release from infected cells by “entrapping” the virus at the plasma membrane 
(Pfanzelter et al., 2018).  

SLC6A14 (5 sgRNAs) and SLC6A9 (2 sgRNAs) are two solute carrier (SLC) membrane 
transport proteins. SLCs control essential physiological functions, including ion 
transport, nutrient uptake and are relatively understudied (César-Razquin et al., 2015). 
Some solute carriers are receptors for viruses (retrovirus…) and their topology as 
multi-transmembrane protein are involved in tight binding of the virus to the cell 
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surface. Interestingly, the two transporters, SLC15A3 and SLC25A28, have been 
reported to inhibit CHIKV replication (Schoggins et al., 2011).  
 

TIMM13 (3 sgRNAs) is a translocase of inner mitochondrial membrane that has been 
shown to participate in the import of protein into the mitochondrial inner membrane. 
This mitochondrial protein was selected notably since viruses are known to alter 
mitochondria functions, to influence energy production, metabolism, survival, and 
immune signaling.  
 

TRIM9 (3 sgRNAs) is an E3 ubiquitin-ligase. TRIM9 short isoform has been shown to 
promote DNA and RNA virus-induced production of type I interferon (IFN) and 
expression of IFN-stimulated genes (Qin et al., 2016).  
 

VRK2 (2 sgRNAs) is a serine-threonine kinase with two isoforms. VRK2A is anchored 
to the endoplasmic reticulum and mitochondria while VRK2B is detected free in 
nucleus and cytosol.  
VRK2A isoform has been shown to be involved in the regulation of mitochondrial-
mediated apoptosis (Monsalve et al., 2013). On the other hand, it has been published 
that VRK2B phosphorylates p53 and induces its stabilization (Blanco et al., 2006).  
 

3 - Second analysis: analysis based on sgRNA 
 

For comparison, a second analysis was realized based on counts for each sgRNA. 
The mean of count number in both replicates was calculated for each sgRNA in both 
conditions and was used to determine the log2 of fold change for each given sgRNA 
to study enrichment.  
Genes highlighted in this second analysis were different from genes identified in the 
first analysis. A gene ontology analysis was also realized with the list of sgRNAs 
enriched (Fig.59 and Fig.60). From this second analysis, only one candidate has been 
selected for future assays. 
 
AMBRA1 candidate presented one highly enriched sgRNA between uninfected and 
infected conditions. If we look at all sgRNAs targeting AMBRA1, four were presents 
in infected conditions with two sgRNAs found in both replicates.  
However, for one screen replicate, only 1 of the 4 sgRNAs found in challenged 
conditions was present in uninfected conditions indicating as we presumed before 
that sgRNAs information have been lost during the process.  
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AMBRA1 has been identified as an important factor in regulating autophagy in 
vertebrates by promoting Beclin-1 interaction with its target kinase VPS34, thus 
mediating autophagosome nucleation (Maria Fimia et al., 2007). On the other hand, it 
has been shown that chikungunya virus triggers an autophagic process which 
promotes viral replication (Krejbich-Trotot et al., 2011). Thus, AMBRA1 might be 
involved in the autophagy process observed during chikungunya virus replication. 
Furthermore, it has been shown that AMBRA1 binds the dynein motor complex 
through direct interaction with the dynein light chain DLC1 (also called LC8). After 
autophagy induction, AMBRA1-DLC1 are released from the dynein complex upon 
ULK1-dependent phosphorylation, and relocalize to the endoplasmic reticulum, thus 
enabling autophagosome nucleation (Fig.61) (Di Bartolomeo et al., 2010). The 
presence of both AMBRA1 protein and a dynein light chain protein (DYNLT3) among 
the hits of the screen make them particularly interesting candidates. 
 

Several candidates selected from the screen and presented above have been 
tested individually using CRISPR/Cas9 system to confirm or invalidate their role in 
chikungunya virus infection. Results from these assays are shown in the two following 
chapters.  
 

 
 

Figure 59: Gene ontology analysis of hits from the screen based on protein class  

Analysis realized with the online tool Panther.  
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Figure 60: Gene ontology analysis of hits from the screen based on biological 

process 

Analysis realized with the online tool Panther.   

Figure 61: Model of AMBRA1 dynamic interaction with the dynein motor protein 

during autophagy induction 

When the autophagic process is not induced, AMBRA1 is bound to the dynein light 

chain DLC1 of the dynein complex on microtubules. After autophagy induction, the 

phosphorylation of AMBRA1 by ULK1 allows the release and the translocation of 

AMBRA1 with Beclin-1 and Vps34 to the endoplasmic reticulum leading to 

autophagosome formation.
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IV - Discussion 
 

Identification and characterization of host factors involved in viral replication 
permit to bring new perspectives in understanding cellular biology and virus-host 
relationship and are also an important approach to develop potential therapeutics. 
Genetic screens are powerful tools that have been widely used to identify host factors 
that promote or restrict virus replication. Loss of function screens include RNAi 
approaches, haploid genetic screens and more recently CRISPR-mediated knockout 
screens.  

By performing a loss of function screen, many critical aspects should be considered 
at different stages of the screen, from cell line choice to enrichment analysis. 

A first critical step is the choice of a cell line. As viruses differ in their host range 
and tissue tropism, a cell line susceptible to the virus of interest and capable of 
efficiently replicating the virus has to be selected. CHIKV is known to infect the 
immortalized myoblast cell line, LHCN-M2, and also to replicate in these cells (Ozden 
et al., 2008). In addition, the choice of this cell line was relevant regarding the skeletal 
muscle tropism of CHIKV (Ozden et al., 2007). However, since the primary 
immortalized cell line could be considered as more normal compared to tumoral cell 
lines, they might have better DNA repair mechanisms. Consequently, cells might 
repair more efficiently double strand break induced by Cas9 and thus prevent the 
CRISPR-mediated loss of function. Another limitation of the use of this cell line is its 
poor tolerance to be seed at a very low density which makes it difficult to amplify after 
a strong cytolytic effect induced by CHIKV challenge. In spite of the strengths of 
LHCN-M2 cells, the use of a cell line that grows more easily should be considered for 
future screenings.  

Regarding CRISPR sgRNA library, several CRISPR libraries are available with 
different features. The GeCKO library we used covers the whole genome and contains 
6 sgRNAs per gene. This redundancy enables to control eventual low efficacy of 
sgRNA and off-target effects thus discriminate true and false positive hits. Indeed, 
genes that display high depletion or enrichment across multiple sgRNAs are more 
likely real. Another way to limit screen background and false positives is to include 
biological replicates of the viral transduction step. Our two screens were thus realized 
from independent libraries generated via two separate transduction steps.  

Another crucial point is to maintain the complexity of the sgRNA pool to ensure 
the quality of the library. Library diversity should be preserved when expanding the 
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sgRNA plasmid pool, during lentiviral production, during transduction of target cells 
and during genomic DNA extraction and PCR amplification. High library diversity has 
a great impact on the robustness of the screen. High background noise is introduced 
by a too low representation, resulting in false positives due to random variations of 
the sgRNAs present in low numbers at the onset of the screen. Keep the diversity and 
identify all of the genes involved in viral replication is awkward as a proportion of 
genes are essential for cell viability and growth. Studies based on CRISPR screens 
and haploid screens have enabled the identification of a set of approximately 2 000 
genes, so that’s 10% of human genome, that are essential for cell growth and viability 
(Blomen et al., 2015; Wang et al., 2015). Nonetheless, this list includes genes which 
have only a moderate effect on cell growth and thus could be represented in the 
screening.  

After sequencing, the quality and diversity of both cell libraries were analyzed. 
The genome coverage of the first library replicate was quite satisfactory with 92% of 
genes represented but the sgRNA diversity was very low with only 38% of total 
sgRNAs. For the second library, the genome coverage was acceptable with 77% of 
genes found but the sgRNA coverage was also very low with 24% of different sgRNAs 
identified. Determine at which stage sgRNA diversity was lost is a challenging point. 
We did not sequence plasmid library after amplification as it was not essential, but it 
might be interesting to sequence the pool of plasmids in order to estimate diversity at 
that stage. In the following steps, a loss of library complexity during lentivirus 
production is difficult to determine. However, sgRNA diversity might have been lost 
during cell line generation. Indeed, we have tried to achieve a 100-fold representation 
of the sgRNA library in our cell line but several studies published later highlight the 
requirement of a number of cells 500-fold to 1000-fold higher than the total number 
of sgRNAs in the library (McDougall et al., 2018; Perreira et al., 2016). Finally, 
information on present sgRNAs might have been lost during PCR amplification steps. 
Especially as we have observed sgRNAs present in challenged conditions but absent 
of the starting uninfected library, like for AMBRA1 gene. Genomic DNA quantity used 
or number of separate PCR might have been insufficient. 

Our screen is based on phenotypic selection by selecting virus-resistant cells. 
In pooled screens, stringent selection leads to the selection of resistant cells for which 
gene depletion caused marked phenotype. The high stringency enables to be more 
confident of genes identified however genes with a less marked effect on viral 
infection may be missed. Indeed, in the case of highly cytopathic viruses which rapidly 
hijack the host cellular machinery after entry, only sgRNAs targeting factors involved 



Part 2 – Chapter 1 – Genome-wide CRISPR/cas9 screen 

144 

in the entry process are likely recovered (Kim et al., 2017). In contrast, the use of less 
aggressive viruses or the possibility to contain infection (e.g. with neutralizing 
antibodies) allow recovering factors that act at later stages of replication (Zhang et al., 
2016, 2018).  

Although the CHIKV challenge with an MOI of 2 seemed to induce strong cytopathic 
effects leading to cell death, we have observed a poor enrichment between 
unchallenged and challenged conditions. For future screening replicates, the 
selection should be more stringent, probably not in term of MOI, but with a longer 
selection period or with multiple rounds of virus challenge at low MOI. In a recent 
CRISPR screen with influenza virus, Julianna Han et al. have analyzed sgRNA 
enrichment during sequential influenza virus selection of five rounds. They observed 
a robust enrichment in the second round of infection with a progressive increase in 
enrichment occurring between round two and round five (Han et al., 2018).   

The level of sgRNA enrichment in virus-resistant cells compared with that in 
unselected cells is determined by comparing the number of reads observed for each 
specific sgRNA in the different cell populations. Our first analysis based on the 
number of reads of all sgRNAs for a given gene enables to take into consideration the 
level of enrichment of multiple sgRNAs against the same gene. An important number 
of sgRNAs enriched for a given gene increases confidence in the candidate gene 
identified. In contrast, our second analysis based on the number of reads for a specific 
sgRNA is more susceptible to generate false positives mainly due to off-target effects 
of one specific sgRNA. Thus, our first analysis strategy seems more reliable. In parallel, 
it would have been interesting to realize a systematic comparison of the enriched 
genes in our screen with previous alphavirus or closely related virus screenings. This 
comparison would have been useful for the selection of candidates among the 
enriched genes.  

All these different aspects and problems considered subsequent to the screen 
allow to take a critical look at these screen assays and to identify crucial points to 
improve future screens. These improvements include notably a higher number of cells 
for library generation for a better sgRNA representation, an optimized CHIKV 
challenge with several rounds of infection and a more adapted number of PCR 
reactions before sequencing. 
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Chapter 2: DYNLT3, a component of the 
cytoskeleton dynein motor complex  

I - Context 

Components of the cytoskeleton 

The cytoskeleton is a complex network of filaments regulated by many accessory 
proteins that extends throughout a cell. The cytoskeleton defines the cell shape and 
the internal organization. It also provides mechanical support that enables cells to 
carry out essential functions like motion and division. The cytoskeleton consists of 
three main components that differ in protein composition and in size. These 
components include actin filaments, microtubules and intermediate filaments (Fig.62). 
 
Here we discuss more microtubules (MT) that are long hollow, straw-shaped cylinders 
with a diameter of about 25 nm. They are formed by the lateral association of between 
12 and 17 protofilaments into a regular helical lattice. Each protofilament consists of 
repeating units of polymerized alpha (α) and beta (ß) tubulin monomers. MT are dynamic 
structures. Indeed, tubulin dimers are constantly added and subtracted at both ends of 
the filament. One end grows more rapidly and is called the plus end, whereas the other 
end is known as the minus end (Fig.63). Minus-ends are attached to the microtubule 
organizing center (MTOC) also called centrosome, usually located closed to the nucleus. 
Plus-ends are pointing in the direction of the cell periphery and the plasma membrane. 
MTOC creates the global organization of the microtubule network. 
 Main functions of MT are: 

Structural role by influencing the organization of the organelles, nucleus and 
cytoskeleton components. 
Formation of spindle structure which pulls the chromosome apart into daughter 
cells during cell division. 
 Formation of an internal transport network for motors proteins called kinesins and 
dyneins which transport vesicles containing essential materials and other cargoes 
around the interior of the cell.  
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Figure 62: The three components of the cytoskeleton 

 (A) Actin filaments are the smallest type of filaments with a diameter of about 7 
nanometers (nm), they are made up of strands of the protein actin and have plus and 
minus ends.  
(B) Intermediate filaments are mid-sized with a diameter of 8 to 12 nm. Unlike 
microfilaments and microtubules, they are made of a number of different subunit 
proteins.  
(C) Microtubules are the largest type of filament and are composed of a protein called 
tubulin. 
 

 
Figure 63: Microtubule dynamics 

 Microtubules are composed of two subunits, α-tubulin and β-tubulin, assembled into 
protofilaments. MT size can rapidly grow by polymerization or shrink by depolymerization. 
(Kaur et al., 2014) 
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The two motor proteins: kinesin and dynein  

Kinesin was the first plus-end directed microtubule motor to be identified. Kinesin 
catalyzes the anterograde transport in the cell (Fig.64). It is a heterotetramer composed of 
two heavy chains and two light chains (Fig.65). The head domain composed of heavy 
chains, which binds microtubules and ATP, is responsible for the motor activity of 
kinesin. Light chains are responsible for binding to membrane vesicles. 
 
The second microtubule motor protein is the dynein protein. Two classes of dynein are 
identified: axonemal and cytoplasmic dynein. Axonemal dyneins are responsible for 
flagellar and ciliary beating while cytoplasmic dyneins are involved in intracellular 
transport, mitosis, cell polarization and directed cell movement. 
Cytoplasmic dynein (called dynein afterward) powers the transport of cargoes - protein, 
membrane-bounded organelles, mRNA particles - towards MT minus ends by converting 
energy stored in ATP (Fig.64).   
Dynein is a large protein complex (1,5 megaDalton) in the shape of a Y and consists 
of two dynein heavy chains (HCs), two intermediate chains (ICs), two light intermediate 
chains (LICs) and three families of light chains (Fig.66).  
Dynein HCs contain at the C-terminal end the motor domain that composed of six 
ATPases of AAA+ superfamily and a binding stalk which mediates MT interaction 
(Carter et al., 2011; Kon et al., 2011). The N-terminus is involved in the 
homodimerization of the HC and contains the interaction sites for LICs and ICs. LICs 
contain binding sites for the Dynein Light Chains (LCs). ICs, LICs, and LCs are 
implicated in motor regulation and cargo binding. Cytoplasmic dynein requires help 
from a cofactor called dynactin to function in the cell (Kardon and Vale, 2009; Schroer, 
2004). The dynactin complex interacts with dynein via binding sites on ICs. 

 

Figure 64: Dynein and Kinesin movement on microtubules 

Dynein is a minus-end directed microtubule motor which enables cellular retrograde 
transport. Kinesin is a plus-end directed microtubule motor for anterograde transport in 
the cell. 
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Figure 65: Schematic representation of kinesin motor protein 

The two heavy chains (in orange) bind to the microtubules via a domain found in the 
N-terminus. Light chains (in blue) associate with heavy via heptad repeat motifs. The 
six Tetratricopeptide repeats (TPR) at the C-terminus of the light chains serve as 
cargo-binding domains. (Dodding and Way, 2011) 
 

 

 
 

Figure 66: Schematic representation of dynein motor protein. 

The dynein motor protein is composed of different subunits. The motor activity resides 
in the heavy chains (in orange). The six AAA ATPase domains are arranged in a 
hexameric ring from which an MT binding stalk sticks out. The N-terminal tail of heavy 
chains permits its dimerization and also the binding site for the intermediates chains 
(ICs) and light intermediates chains (LICs) (in blue). The three pairs of light chains (LC7, 
LC8, Tctex also called DYNLT) interact with ICs.(Dodding and Way, 2011) 
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Hijack of the cytoskeleton by viruses 

Viruses are intracellular parasites, this means that they use and manipulate the cellular 
machinery for trafficking, transcription, splicing and protein synthesis. Viruses or 
subviral particles are transported from the cell surface to the site of viral replication 
and from the site of synthesis to the assembly site and back to the plasma membrane 
for virus budding. They evolved to exploit the cellular cytoskeleton transport 
mechanisms since free diffusion of particles larger than 50 nm is restricted by the 
structural organization of the cytoplasm. This is especially true for neurotropic viruses 
that travel long distances through the cytoplasm in the axon during retrograde and 
anterograde transport (Bearer and Satpute-Krishnan, 2002).  
Many arboviruses take advantage of cytoskeleton filaments as actin filaments as 
intermediate and microtubule filaments. Actin filaments were shown to contribute in 
the entry, production and release of the arbovirus dengue virus 2 (DENV2) by 
interacting with the viral protein E (Foo and Chee, 2015). It was also published that 
the actin motor, myosin, was involved in the release of DENV2 particles from HepG2 
cells (Xu et al., 2009). In addition, the intermediate filament vimentin regulates the 
establishment of dengue virus replication complexes through interaction with non-
structural protein ns4A (Teo and Chu, 2014). Concerning CHIKV, an interaction of 
vimentin with non-structural protein nsp3 of CHIKV was shown. Vimentin plays also 
an important role in CHIKV replication complexes by providing anchorage for the 
complexes (Issac et al., 2014).  
 

Many viruses rely on microtubules for transport towards intracellular replication sites 
immediately after they have gained entry to the cell, this includes Herpes Simplex 
virus (HSV), human immunodeficiency virus (HIV), influenza virus, adenovirus, human 
cytomegalovirus, papillomavirus and rabies virus (RV) (Milev et al., 2018; Miranda-
Saksena et al., 2018). Some viruses like herpes virus, HIV and several flaviviruses take 
advantage of microtubule network to move newly assembled particles to the plasma 
membrane to facilitate their egress (Brault et al., 2011; Ward, 2011). Microtubule 
cytoskeleton is also used by viruses to transport nucleic acids and protein 
components involved in virion assembly to specific cellular locations. In the case of 
CHIKV, it was shown that treatment with a MT polymerization inhibitor, called 
nocodazole, induces a decrease of CHIKV infection in HEK 293T cells (Bernard et al., 
2010).  
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Involvement of the dynein complex in viral replication 

Research conducted over the past 10 years revealed that cytoplasmic dynein and 
kinesin are the two most common motor proteins involved in viral transport. For 
numerous viruses, interactions with microtubules occur through dynein interaction 
and in most cases, dynein light chains were identified as the dynein chains that 
interact with viral proteins (Fig.67). Herpes simplex virus type 1 (HSV1) transport along 
axons is mediated by cytoplasmic dynein (Döhner et al., 2002). Using a library of HSV 
capsid and tegument structural genes in a yeast two-hybrid system to identify dynein 
interactors, Douglas et al. have shown that the outer capsid protein VP26 interacts 
with dynein light chains DYNLT1 and DYNLT3. This interaction was confirmed by pull-
down assays in vitro (Douglas et al., 2004). On the other hand, L2 capsid protein from 
DNA non-enveloped Human Papillomavirus 16 (HPV16) interacts with both dynein 
light chains DYNLT1 and DYNLT3 and depletion of both proteins by siRNAs inhibits 
HPV 16 infection (Schneider et al., 2011). These results suggest a likely requirement 
of the two proteins DYNLT1 and DYNLT3 for viral transport towards the nucleus.  
A study on flaviviruses showed that DYNLT1 interacts with the ectodomain of 
membrane protein (M) of dengue viruses (serotypes 1-4), West Nile virus, and 
Japanese Encephalitis virus. Using RNA interference against DYNLT1, they 
demonstrated that interaction between M protein and DYNLT1 plays a role in late 
stages of virus replication, probably during the trafficking of flaviviral particles within 
infected cells (Brault et al., 2011).  
 
Based on these different observations, the hijack of the dynein motor by many viruses 
has been proposed as a common mechanism for virus delivery near the cell nucleus 
replication site. Different models for viral retrograde transport presented in figure 68 
have been proposed by Merino-Gracia et al..  
 
Interestingly, an interaction between the Poliovirus Receptor (PVR) and the dynein 
light chain 1 (DYNLT1) has been highlighted (Mueller et al., 2002). This interaction 
enables the transport of the neurotropic poliovirus particles bound to PVR from the 
cell periphery to the neuronal cell body where the virus is uncoated and replicates. 
Model for retrograde transport of Poliovirus-PVR complex by dynein is presented in 
figure 68, model (C).  This interaction has peaked our interest as PVR has been 
identified as a potential CHIKV receptor in the RNAi screen realized in collaboration 
(unpublished data) (described in Chapter 2 of Part 1).  

In this context, we have tried to confirm a potential role of dynein light chain 3 
(DYNLT3) identified in our CRISPR screen in CHIKV infection and investigated for a 
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potential interaction of DYNLT3 with a viral protein of CHIKV. Given the presence of 
DYNLT3 in our hits from the CRISPR screen, the presence of PVR in the RNAi screen 
and the described interaction between PVR and the other dynein light chain DYNLT1, 
we, therefore, decided to also investigate a potential role of PVR associated with 
dynein light chain in CHIKV entry steps.  

 

 

Figure 67: Viruses interacting with dynein complex 
For each interaction, viral protein and dynein component are specified when they are 
known. (adapted from Milev et al. 2018) 
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Figure 68: Model for retrograde transport of viruses proposed by Merino-Gracia 

et al., 2011 

Both the entry of the viral particle through the endosome pathway (A, C) and the direct 
fusion of the viral envelope to the plasma membrane (B) might lead to the retrograde 
transport along microtubules using the cytoplasmic dynein motor.  
After viral entry by endocytosis (A) or direct membrane fusion (B), viral capsid might 
associate to dynein directly leading to the retrograde transport along microtubules 
using the dynein motor protein.  
After viral entry by endocytosis, cellular receptor might bind simultaneously to a viral 
protein and the dynein protein (C).  
Viruses reach the MicroTubules Organizing Center (MTOC) at the minus end of MT (D) 
where they are uncoated and directed to the sites of replication, production and, 
assembly. The newly assembled viral particles might be transported to the cell 
periphery by the anterograde transport machinery. (Merino-Gracia et al., 2011)
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II - Material and Methods 
 

1 - Generation of CRISPR-mediated knockout cell lines 
 

SgRNA design, cloning and lentivirus production were realized as described 
previously in part 1 using the following primers. Two sgRNAs were designed for the 
DYNLT3 gene and one sgRNA was designed for both DYNLT1 and PVR genes. In 
addition, a sgRNA targeting luciferase (sgRNA luc) was designed as a control.  
 
Guide name   Sequence 5'-3' 

sgRNA_1 DYNLT3 
Forward CACCGCCACTATGCTTGCAGTCCAC 
Reverse AAACGTGGACTGCAAGCATAGTGGC 

sgRNA_2 DYNLT3 
Forward CACCGTTTTCGAGGCCCGCCCGGT 
Reverse AAACACCGGGCGGGCCTCGAAAAC 

sgRNA DYNLT1 
Forward CACCGTTAACGCACACGGTGCCGAT 
Reverse AAACATCGGCACCGTGTGCGTTAAC 

sgRNA PVR  
Forward CACCGTGAGTGACCCCCGCGCAGTC 
Reverse AAACGACTGCGCGGGGGTCACTCAC 

sgRNA luc 
Forward CACCGGGCATTTCGCAGCCTACCG 
Reverse AAACCGGTAGGCTGCGAAATGCCC 

 
For cell line generation, LHCN-M2 cells were plated in 6-well plate and transduced 
the day after by lentiviruses. Transduced cells were selected with 0,8 μg/mL 
puromycin. Puromycin selection was maintained until non-transduced control cells 
are all dead.  
 

2 - Verification of gene knockout by qPCR 
 

Total RNA of CRISPR and control cells was extracted using NucleoSpin® RNA kit 
(Macherey Nagel). RNA was reverse transcripted using PrimeScriptTM RT-PCR kit 
(Takara). mRNAs were quantified by qPCR amplification in AriaMx system (Agilent) 
using SYBR Premix Ex Taq II (Takara) with the following primers. Results were 
normalized by at least three different housekeeping genes (GUSB, RPL22, RPL27). 
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Oligo name   Sequence 5'-3' 

hDYNLT3 
Forward AGTGGACTGCAAGCATAGTG 
Reverse GGTACAGGTTCCATCAGATGTG 

hDYNLT1 
Forward AACGCTTATCAACACAGCAAAGTGAAC 
Reverse CAGTGCAGCTCCCGTCAGT  

hGUSB 
Forward GATTGCCAATGAAACCAGGTATC  
Reverse ACACGCAGGTGGTATCAGTCTT  

hRPL22 
Forward TCGCTCACCTCCCTTTCTAA  
Reverse TCACGGTGATCTTGCTCTTG 

hRPL27 
Forward ATCGCCAAGAGATCAAAGATAA 
Reverse TCTGAAGACATCCTTATTGACG 

 
3 - Production of alpha-pseudotyped viruses and infection assays 

 

Pseudoparticles bearing alphavirus envelopes and carrying GFP reporter were 
produced and infection assays carried out as described previously in part 1.  
 

4 - Production of replicative alphaviruses and infection assays 
 

CHIKV LRic strain LR2006 OPY1 and derived CHIKV-GFP were produced as 
mentioned before in chapter 1 of Part 1. For infection assays, two different protocols 
were successively used. First cells were plated for infection assay 4 days after 
transduction by CRISPR lentiviruses. In a second phase, cells were amplified after 
transduction at least one-week before infection assay. Procedure for infection assay 
was realized as explained in chapter 1 of part 1.  
 

5 - Infection of LHCN-M2 cells overexpressing DYNLT3 protein 
 

a. Generation of LHCN-M2 cells overexpressing DYNLT3 and 

characterization 

LHCN-M2 cells were transduced by DYNLT3 packaging lentiviruses. As described 
above in part 1, lentiviruses were produced by co-transfecting three vectors in 293T 
cells: gag-pol packaging construct derived from HIV, VSV glycoprotein-expressing 
construct and lentiviral DYNLT3-expressing construct from Addgene (pLX307, 
Addgene). The DYNLT3 construct permits the expression of DYNLT3 protein with a 
V5 tag at the C-terminal end. LHCN-M2 cells were plated in 6-well plate and 
transduced the day after by lentiviruses. Transduced cells were selected with a 
concentration of 0,8 μg/mL puromycin. Puromycin selection was maintained until 
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non-transduced control cells are all dead and then selected cells were amplified. In 
order to monitor the effect of DYNLT3 overexpression on cell fitness, a cell viability 
assay was carried out. WT and DYNLT3 overexpressing LHCN-M2 cells were plated 
in 96-well plate at 3000 cells per well. Cell viability was measured at different time 
points (0, 18, 24, 48 and 72 hours) using the CellTiter-Glo® Luminescent cell viability 
assay kit (Promega) and a plate reader (Victor2 plate reader, Perkin Elmer). It allows to 
determine the number of viable cells in culture based on the generation of a 
luminescent signal proportional to the amount of ATP present, which signals the 
presence of metabolically active cells.  
 

b.  Infection assay 

One day before viral infection, cells overexpressing DYNLT3 and WT control cells 
were plated at 50 000 cells/well in 48-well plates. Cell lines were counted before 
infection to adapt the MOI. Cells were infected with replicative viruses at an MOI 0,1 
or MOI 1 and incubated 1h at 4°C before medium change. Infected cells were 
harvested 24h post-infection and fixed in paraformaldehyde 4% at 4°C for 15 min. 
Intracellular immunostaining was realized with antibodies diluted in PBS 1X 
supplemented with 0,1% saponin for cell permeabilization and 10 % FBS. First, cells 
were incubated 1h at 4°C with a primary antibody raised to Semliki Forest 
nucleocapsid protein (1/800), that reacts with CHIKV capsid protein (IgG2a C42 kindly 
provided by Dr. Irene Greiser-Wilke, School of Veterinary Medicine (Hannover, 
Germany)). After washes, cells were incubated 1h at 4°C with FITC conjugated anti-
mouse IgG secondary antibody (1/200) (F0257, Sigma Aldrich), cells were analyzed 
using a flow cytometer (FACSCalibur, BD Biosciences). For CHIKV-GFP infected cells, 
the percentage of infected cells was directly measured by flow cytometry analysis 
after paraformaldehyde fixation.   
 

6 - Co-immunoprecipitation assay 
 

The potential interaction between the capsid of chikungunya virus (CHIKV-capsid) and 
the DYNLT3 protein was studied in two different approaches: 

In the first approach, CHIKV-capsid and DYNLT3 protein with V5 tag (DYNLT3-
V5) were overexpressed in LHCN-M2 cells (a and b). 
In the second model, LHCN-M2 cells overexpressing DYNLT3-V5 were 
infected with CHIKV to study the potential interaction under conditions of 
infection (c). 
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a. Generation of CHIKV-capsid stable and inducible cell line 

For stable and inducible expression, CHIKV-capsid gene was cloned in the 
tetracycline-inducible lentiviral pCW57.1 vector (Addgene). Using CHIKV LRic 
molecular clone as a template, CHIKV capsid was cloned in frame with a FLAG tag 
into the vector using In-Fusion®HD Cloning kit (Clontech).  
Lentiviruses were produced, as described above in part 1, by co-transfecting three 
vectors in 293T cells: gag-pol packaging construct derived from HIV, VSV 
glycoprotein-expressing construct and CHIKV-capsid inducible expressing construct. 
LHCN-M2 were transduced by lentiviruses and selected with 0,8 μg/mL puromycin. 
Puromycin selection was maintained until non-transduced control cells are all dead 
and then selected cells were amplified.  
In order to verify CHIKV-capsid expression in transduced cells, LHCN-M2 cells were 
plated and capsid expression was induced by doxycycline (tetracycline analog) 
treatment at a concentration of 2 μg/mL determined beforehand. After 48h of 
doxycycline treatment, cells were lysed and whole-cell extracts were separated by 
SDS-PAGE and then transferred to nitrocellulose membranes using a transfer 
apparatus according to the manufacturer’s protocols (Bio-Rad). After protein transfer, 
membranes were incubated with 10% milk in PBST 0,1% for 2 hours followed by 
overnight incubation at 4°C with primary antibody (1/300, PBST 0,1% with 5% milk) 
raised to Semliki Forest nucleocapsid protein, that reacts with CHIKV capsid protein 
(IgG2a C42). Membranes were washed 3 times and incubated 1 hour with anti-mouse 
IgG coupled with Horseradish Peroxidase (1/10 000, A5906, Sigma Aldrich). After 3 
washes, proteins were revealed with SuperSignalTM chemiluminescent substrate 
(ThermoScientific) using ChemiDocTM imaging system (BioRad).  
 

b. Generation of a DYNLT3-V5/CHIKV-capsid inducible cell line 

Stable LHCN-M2 cells with inducible CHIKV capsid gene were transduced with a high 
MOI of DYNLT3-V5 packaging lentiviruses to guarantee that each cell has been 
transduced and expresses DYNLT3-V5 protein. Finally, this cell line expresses 
constitutively the protein DYNLT3-V5, and the CHIKV-capsid expression can be 
induced by doxycycline treatment. For the co-immunoprecipitation assay, 1.106 cells 
were plated in 10 cm dish and CHIKV-capsid expression was induced by 2 μg/mL of 
doxycycline for 48h before cell lysis.  
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c. Chikungunya virus infection of LHCN-M2 cells overexpressing 

DYNLT3-V5 

LHCN-M2 cells overexpressing DYNLT3-V5 and WT LHCN-M2 cells were plated in 
parallel in 10 cm dish for chikungunya virus infection the next day. Cells were infected 
by CHIKV LRic strain with an MOI of 1 and lysed 24h after infection. 
 

d. Co-immunoprecipitation 

Cells were lysed with RIPA lysis buffer (pH 8) supplemented with Protease Inhibitor 
(PI) 1X (Thermo), Ethylenediaminetetraacetic acid (EDTA) 1mM and Dithiothreitol (DTT) 
1mM, called afterward supplemented RIPA buffer. Cell lysates were sonicated on ice 
three times then incubated 30 min on ice and centrifuged for 5 min at 4°C at 11 000 
g and supernatants transferred to a new tube. Bradford protein assay was realized to 
quantify proteins in cell lysates using protein assay dye reagent (Bio-Rad). 
 
For the co-immunoprecipitation assay, the antibody raised to SFV capsid that reacts 
with CHIKV capsid was used to form immunocomplex (antibody C-SFV, IgG2a C42 
kindly provided by Dr. Irene Greiser-Wilke, School of Veterinary Medicine (Hannover, 
Germany)). 500 μg of proteins in 500 μL of supplemented RIPA buffer were incubated 
with 2 μL of antibody C-SFV with rotation for 2 h at 4°C. A volume of 20 μL of protein 
G magnetic beads (Cell signaling #70024) was pre-washed four times with 
supplemented RIPA buffer using a magnetic separation rack. The lysate and antibody 
(immunocomplex) solution were transferred to the tube containing the pre-washed 
magnetic bead pellet and then incubated with rotation overnight at 4°C. Beads were 
pelleted using magnetic separation rack and washed four times with 400 μL of 
supplemented RIPA buffer for 10 min with rotation. For elution step, 30 μL of Laemmli 
2x-supplemented RIPA buffer were added directly on beads. Samples were 
centrifuged for 2 min at 4°C at 500g, gently mixed and then heated for 5min at 95°C. 
A new centrifugation step (2min, 4°C, 500g) was realized to pellet beads and eluate 
was transferred to a new tube stored at -20°C until western-blot analysis.  
 

After heat denaturation, proteins were separated by electrophoretic migration on 
SDS-PAGE and then transferred onto nitrocellulose membranes using a transfer 
apparatus according to the manufacturer’s protocols (Bio-Rad). After protein transfer, 
membranes were incubated with 10% milk in PBST 0,1% for 2 h at room temperature 
followed by overnight incubation at 4°C with following primary antibodies to detect 
respectively DYNLT3-V5 and CHIKV-capsid.  
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Protein Antibodies Reference Source Working dilution 

DYNLT3-V5 antibody anti-V5 V5 probe (C9) Sc-271944  
SantaCruz 

mouse 1/1000 
PBST 0,1% 
10% milk 

CHIKV-Capsid Antibody anti-C-SFV IgG2a C42 provided by 
Dr.Greiser-Wilke  
(Hannover, Germany) 

mouse 1/300 
PBST 0,1% 
5% milk 

 

After three washes with PBST 0,1%, membranes were incubated for 2 h at room 
temperature with anti-mouse IgG coupled with horseradish peroxidase (A5906, Sigma 
Aldrich) diluted at 1/5000 in PBST 0,1%, milk 10%. Detection of β-actin was 
performed as a loading control for input samples. After 3 washes, immunoreactive 
bands were revealed with SuperSignalTM chemiluminescent substrate 
(ThermoScientific) using ChemiDocTM imaging system (BioRad).  
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III - Results 
 

1 - Generation of CRISPR-mediated knockout cell lines: DYNLT3, DYNLT1 and 
PVR genes 

 

We looked into a direct role of DYNLT3 in CHIKV infection by generating cell lines with 
two different sgRNAs targeting DYNLT3: sgRNA_1 DYNLT3 and sgRNA_2 DYNLT3. 
We tried to confirm knockout of DYNLT3 by western-blot analysis using two different 
antibodies raised to DYNLT3 protein (SAB #45950 and Proteintech 11687-1-AP), but 
unfortunately, we were not able to detect endogenous DYNLT3 protein in LHCN-M2 
cells. Using specific primers, we realized RT-qPCR to quantify DYNLT3 mRNAs in 
cells (Fig.69). Compared to wild-type (WT) cells, sgRNA_1 DYNLT3 cells had 50% 
fewer DYNLT3 mRNAs but we cannot know if the remaining 50% of mRNAs lead to 
the translation of a correctly folded and active DYNLT3 protein or not. In parallel, we 
tried to study also the role of DYNLT1 and PVR in CHIKV infection by generating cell 
lines with sgRNA targeting both genes. qPCR assays have shown that cells with 
sgRNA DYNLT1 had also 50% less DYNLT1 mRNA (Fig.69). However, we were not 
able to confirm the protein status in sgRNA PVR cell line due to a lack of tools.  
 

 
Figure 69: Quantification of DYNLT3 and DYNLT1 transcripts in WT and sgRNA 

DYNLT3 or sgRNA DYNLT1 cells 

RT-qPCR was realized on total RNA extracted to quantify DYNLT3 and DYNLT1 RNA 
in cell lines. Results were normalized by three different housekeeping genes (GUSB, 
RPL22, RPL27). RNA level on naïve WT cells was established at 1. 
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2 - Study of chikungunya virus infection in lentivirus-generated cell lines 
 

Chikungunya virus infection levels in cells with sgRNA_1 and sgRNA_2 DYNLT3, 
sgRNA DYNLT1 and sgRNA PVR were compared to infection level in WT LHCN-M2 
cells. For the first infection assays, cells were plated 4 days after transduction by 
CRISPR lentiviruses and infected with CHIKV the day after (Fig.70). 
 
 

 
 
Figure 70: Schematic workflow of the first infection assay 

Day 1: LHCN-M2 cells were transduced by CRISPR lentiviruses. Day 2: Transduced 
cells were selected with puromycin. Day 5: After 3 days of selection, cells were plated 
for infection assay. Day 6: Cells were infected with replicative CHIKV-GFP. Day 7: 
Cells were harvested for flow cytometry analysis. 
 
Cells were infected at two different MOI with CHIKV-GFP making possible to directly 
determine the percentage of infected cells by flow cytometry. After 24h of infection, 
we observed a huge decrease of CHIKV infection in LHCN-M2 with either sgRNA_1 
DYNLT3 or sgRNA_2 DYNLT3 at both MOI compared to the WT cells (Fig.71 (a) and 
(b)). In sgRNA DYNLT1 and sgRNA PVR LHCN-M2 cell lines, we also detected a 
considerable diminution of CHIKV-GFP infection compared to wild type cells (Fig.71 
(c) and (d)). 
As the lentiviral transduction and the stable expression of Cas9 protein and sgRNA 
might alter the cell fitness, we generated a control sgRNA targeting the luciferase 
gene (sgRNA luc) which is not naturally present in the LHCN-M2. LHCN-M2 cells with 
sgRNA Luc were used as control cells for new infection assays realized following the 
same procedure. WT, sgRNA luc, and sgRNA DYNLT3 cells were infected 
simultaneously with CHIKV-GFP for 24h allowing direct assessment of infection level 
by flow cytometry. We observed a huge decrease of CHIKV infection compared to 
WT cells in sgRNA DYNLT3 cells, from 50% of infected cells to less than 5%, but 
surprisingly we also observed this decrease in sgRNA luc cells with less than 10% of 
GFP-positive cells (Fig.72 (a)). In parallel, we monitored CHIKV infection by TCID50 
titration of viral production in the supernatant of the three cell lines. Viral production 
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in both sgRNA cell lines was significantly decreased (Fig.72 (b)). As a control the 
sgRNA luc should not impact gene expression in cells and therefore should not modify 
CHIKV infection, we hypothesized that cell transduction itself might modify cell 
fitness. Nonetheless, a decrease of viral production was observed in sgRNA DYNLT3 
cells compared to control sgRNA luc cells (> 1 log decrease).  
 
 

 
 

Figure 71: CHIKV-GFP infection assays in WT, sgRNA_1 DYNLT3 (a), sgRNA_2 

DYNLT (b), sgRNA DYNLT1 (c) and sgRNA PVR (d) LHCN-M2 cells 

Cells were infected 4 days after lentiviral transduction with CHIKV-GFP at MOI 0,1 or 
MOI 1 for 24h. Cells were harvested and fixed in PFA 4% before flow cytometry 
analysis (n=2). 
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Figure 72: CHIKV-GFP infection assays in WT, sgRNA luc and sgRNA_1 DYNLT3 

LHCN-M2 cells 

(a) Monitoring of GFP positive cells for the three cell lines.  
Cells were infected 4 days after lentiviral transduction with CHIKV-GFP at MOI 1 for 
24h. Cells were harvested and fixed in PFA 4% before flow cytometry analysis (n=2). 
(b) Titration of viral production in the supernatant of the three cell lines. 
Supernatants were titrated by serial dilution (TCID50) on VeroE6 cells (n=2).  
 

3 - Chikungunya infection assays in cells with sgRNAs against DYNLT3, DYNLT1, 
and PVR after long culture period 

 

For this second round of infection assays, cells were amplified at least one week after 
transduction by CRISPR lentiviruses for subsequent CHIKV infection (Fig.73). 
 

 
 

Figure 73: Schematic workflow of infection assay 

Day 1: LHCN-M2 cells were transduced by CRISPR lentiviruses. Day 2: Transduced 
cells were selected with puromycin (3 days) and amplified at least one week before 
CHIKV-infection. Day 9 or more: Cells were plated for infection assay. Day 10 or 
more: Cells were infected with replicative CHIKV-GFP. Day 11 or more: Cells were 
harvested for flow cytometry analysis. 
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sgRNA_1 DYNLT3 cells were infected with CHIKV-GFP at two different MOI for 24h. 
The other cell lines (sgRNA_2 DYNLT3, sgRNA DYNLT1, and sgRNA PVR LHCN-M2) 
were only infected with CHIKV-GFP at MOI 1 for 24h. After 24h of infection, we 
observed a slight decrease of CHIKV infection in LHCN-M2 with sgRNA_1 DYNLT3 at 
both MOI compared to the WT cells (Fig.74(a)). However, no difference in CHIKV 
infection level was observed in sgRNA_2 DYNLT3 cells (Fig.74 (b)). A slight decrease 
of CHIKV infection was shown for sgRNA DYNLT1 cells compared to WT cells (Fig.74 
(c)). A small increase of infection level is observed in sgRNA PVR cells, but it might be 
due to a problem of cell number at the moment of infection (Fig.74 (d)). Nonetheless, 
these observations have been made on only two experiments. Replicate experiments 
should be realized once the protein status has been properly validated. In addition, 
like in the previous experiment, sgRNA luc cells should be infected in parallel and viral 
production in the supernatant should be titrated. 

 
Figure 74: CHIKV-GFP infection assays in WT, sgRNA_1 DYNLT3 (a), sgRNA_2 

DYNLT3 (b), sgRNA DYNLT1 (c) and sgRNA PVR (d) LHCN-M2 cells 

Cells were infected with CHIKV-GFP at MOI 0,1 or MOI 1 for 24h. Cells were harvested 
and fixed in PFA 4% before flow cytometry analysis (n=2).  
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Subsequently, we tried to generate CRISPR-mediated knockout of DYNLT3 in another 
cell line as efficient CRISPR depletion might vary from cell to cell. We used U2OS cell 
line to generate sgRNA luc U2OS and sgRNA DYNLT3 U2OS. Cells were transduced, 
selected with puromycin and amplified at least one week before infection assays. 
Cells were infected with CHIKV-GFP at MOI 0,1 or 1 for 24h. Luciferase sgRNA 
appears to generate a small effect on CHIKV infection compared to WT cells (Fig.75). 
We did not observe a decrease of infection in sgRNA DYNLT3 U2OS cells but even a 
slight increase (Fig.75). However, this experiment has been realized only once and, 
for this cell line neither, we were not able to confirm the knockout due to the lack of 
antibodies. 
Generally, this CRISPR approach was considerably penalized by the lack of 
performant characterization tools to validate protein status. It represents an important 
issue that needs to be overcome before carrying out further infection assays.  
 

 
Figure 75: CHIKV-GFP infection assays in WT, sgRNA luc and sgRNA DYNLT3 

U2OS cells 

Cells were infected with CHIKV-GFP at MOI 0,1 or MOI 1 for 24h. Cells were harvested 

and fixed in PFA 4% before flow cytometry analysis (n=1). 
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Another way to look into the role of DYNLT3 in CHIKV infection was to overexpress 
DYNLT3 protein in LHCN-M2 cells. Lentiviruses carrying the DYNLT3 gene were 
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cells was confirmed by western-blot analysis with antibodies against DYNLT3 (Fig.76 
(a)). However, as before, the two different DYNLT3 antibodies tested were not able to 
detect endogenous DYNLT3 protein in WT cells. Cell viability over time was monitored 
for WT cells and cells overexpressing DYNLT3 (called thereafter LHCN-M2 hDYNLT3) 
to make sure that overexpression does not modify too much cell fitness. Cell viability 
of both cell lines was similar 18h and 24h after cells were plated (Fig.76 (b)). After 48h 
and 72h, it appears that the cell viability of LHCN-M2 hDYNLT3 is higher than the 
viability of WT cells (Fig.76 (b)). Since we observed that LHCN-M2 hDYNLT3 grow a 
little bit slower than WT cells, the lower viability of WT at 72 h especially might be 
explained by a more confluent state in the well.  
 
Subsequently, WT and hDYNLT3 cells were infected with CHIKV-GFP at two different 
MOI for 24h. The level of CHIKV-GFP in hDYNLT3 cells was significantly lower than 
in WT cells at MOI 0,1 and also at MOI 1 (Fig.76 (c)). 
To explain this effect, one hypothesis was that the dynein might interact with a protein 
of CHIKV during infection. This hypothesis is supported by the numerous studies 
published on interactions between dynein light chains and viral proteins. Thus, we 
suggested that DYNLT3 might interact with the capsid protein of CHIKV. The infection 
decrease observed in cells overexpressing DYNLT3 might be due to the DYNLT3 
protein present in high amount which catches capsid proteins. To test this hypothesis, 
we realized a co-immunoprecipitation assay. 
 
 
 
 
 
 
 



Part 2 - Chapter 2 - DYNLT3 

166 

 
Figure 76: Overexpression of DYNLT3 protein in LHCN-M2 cells 
(a) Expression of DYNLT3 protein in cells overexpressing DYNLT3 and in WT cells. 
DYNLT3 rabbit antibody (11687-1-AP, Proteintech) was used to detect DYNLT3 
protein. Antibody raised to housekeeping protein β-actin was used as an internal 
control.  
(b) Cell viability over time of WT cells and cells overexpressing DYNLT3.  
Cells were plated in 96-well plate and the number of viable cells in culture was 
monitored at different time points by using a kit which quantifies the ATP present in 
the well.  
(c) CHIKV-GFP infection assay in WT and hDYNLT3 overexpressing LHCN-M2 cells.  
LHCN-M2 WT and LHCN-M2 hDYNLT3 cells were infected with CHIKV-GFP at MOI 
0,1 or MOI 1 for 24h (n=3). Cells were harvested and fixed in PFA 4% before flow 
cytometry analysis. Statistical analyses were made with unpaired t-test with p-value 
<0,05. Infection on naïve WT cells was established at 1. 
 

 

5 - Study of a potential interaction between CHIKV-capsid and DYNLT3 protein 
 

Two separate co-immunoprecipitation (Co-IP) assays were carried out to study a 
potential interaction between CHIKV-capsid and DYNLT3 protein. 
Both proteins were overexpressed in LHCN-M2 cells for the first assay. DYNLT3 with 
a V5 tag was constitutively expressed while CHIKV-capsid protein was only 
expressed after induction with doxycycline to avoid toxicity. The antibody anti-Capsid 
(C-SFV) that reacts with CHIKV capsid was used to form immunocomplexes and to 
co-immunoprecipitate proteins. 
Input samples and Co-IP samples were analyzed by western-blot with antibodies 
targeting V5 tag of DYNLT3 and capsid protein respectively. On the western blot 
membranes with input samples, as expected we saw that CHIKV-capsid is not 
expressed in cells not treated with doxycycline (Fig.77). CHIKV-capsid theoretical 
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molecular weight is about 30 kDa and in the past, we already detected the capsid by 
western-blot around this size from lysates of CHIKV infected cells. 
In lysates from cells treated with doxycycline, we observed one weak signal and a 
stronger one (Fig.77). We suggested that the weak signal corresponds to the CHIKV-
capsid as it is at the expected molecular weight. The stronger signal is either a non-
specific signal or it might come from an unexplained cleaved form of the capsid 
protein. On the membrane with Co-IP samples, the two signals were also detected 
meaning that both forms were recognized by the antibody and successfully captured 
on magnetic beads (Fig.77).  
 
Regarding DYNLT3 in input samples, the protein was detected using an antibody 
directed to the V5 tag of the protein. DYNLT3-V5 was detected as the expected size 
of about 13 kDa on both samples with or without doxycycline (Fig.77).
However, on the membrane with Co-IP samples, DYNLT3-V5 protein was not 
detected in the condition with doxycycline treatment meaning that no interaction 
between CHIKV-capsid and DYNLT3 was found in this assay. It might signify that no 
physical interaction exists between the two proteins but given the weak signal for 
CHIKV-capsid protein and the presence of the strong unexplained signal we were not 
able to openly conclude. 
 

 

Figure 77: Input and co-immunoprecipitation samples from the overexpression 
system analyzed by western-blot 
Cells were treated or not with doxycycline (doxy) for 48 h before cell lysis. The antibody 
anti-Capsid (C-SFV) was used to form immunocomplexes and to co-
immunoprecipitate proteins. Input and co-IP samples were analyzed by western-blot 
using anti-Capsid (C-SFV) and anti-V5 (sc-271944, SantaCruz) antibodies. Antibody 
raised to housekeeping protein β-actin was used as an internal control. 
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In order to overcome these two signals observation in our overexpression 
system, we infected LHCN-M2 hDYNLT3 with chikungunya replicative virus, 
permitting the capsid expression in a context of infection. As a control, we infected 
WT LHCN-M2 cells in parallel. CHIKV-capsid was clearly detected in our input sample 
with the majority of the signal around 30 kDa (Fig.78). After the co-IP assay, CHIKV-
capsid was also distinctly observed by western-blot analysis (Fig.78).  
In parallel, DYNLT3-V5 was detected with the anti-V5 antibody in cells overexpressing 
the protein (Fig.78). Unfortunately, DYNLT3-V5 protein was not observed on the 
membrane with samples from the Co-IP (Fig.78) which implies that CHIKV-Capsid 
and DYNLT3 proteins do not seem to interact.   
 
In addition, we have also reversed the co-immunoprecipitation assay by using anti-
V5 tag antibody to form immunocomplexes and to co-immunoprecipitate proteins, 
but it appeared that the CHIKV-capsid binds in an unspecific manner to magnetic 
beads (data not shown).  
 

To conclude these assays do not permit to identify an interaction between the 
two proteins and the potential relationship between CHIKV-Capsid and DYNLT3 
might be studied by other approaches.  
 

 
Figure 78: Input and co-immunoprecipitation samples from infected conditions  
Cells were infected or not with CHIKV for 24h before cell lysis. The antibody anti-
Capsid (C-SFV) was used to form immunocomplexes and to co-immunoprecipitate 
proteins. Input and co-IP samples were analyzed by western-blot using anti-Capsid 
(C-SFV) and anti-V5 (sc-271944, SantaCruz) antibodies. Antibody raised to 
housekeeping protein β-actin was used as an internal control
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IV - Discussion 
 

In the past few years, a lot of studies have demonstrated the role of 
microtubules and in particular dynein motor for transport during virus infection (Milev 
et al., 2018). In addition, direct interactions between viral proteins and dynein light 
chains have been identified including HSV L2 capsid protein, HPV16 capsid, Ebola 
virus VP35 protein, HIV Vpr protein and M protein of several flaviviruses (Brault et al., 
2011; Caly et al., 2016; Douglas et al., 2004; Kubota et al., 2009; Schneider et al., 
2011). The presence of the dynein light chain, DYNLT3, among the hits of our 
CRISPR-mediated screening, suggests a potential role of the dynein motor for CHIKV 
infection. Our CRISPR-based approach to study a potential implication of DYNLT3 
protein in CHIKV infection has encountered technical difficulties which will be 
discussed there. On the other hand, we will present and discuss hypotheses to 
explain the decrease of CHIKV infection observed in DYNLT3 overexpression system.  
 

Given the fact that we focused on many different protein candidates, as many 
tools as proteins were necessary to study these candidates. The critical and crucial 
point is the validation of knockout in CRISPR-mediated knockout cell lines by 
western-blot or immunostaining using specific antibodies. When specific antibodies 
were not available or not functional, a RT-qPCR strategy was used to quantify specific 
mRNA in cells. However, this approach does not always allow to conclude about the 
protein expression status in our cell lines. One solution, adopted by several other 
laboratories, is to generate clonal cell lines which are then sequenced. As one clonal 
cell line might represent a given phenotype, it implies to realize experiments on several 
clonal cell lines in parallel. Nevertheless, the clonal cell line option was hardly 
conceivable with LHCN-M2 cells as they don’t really tolerate to be seeded at very low 
density. More experiments will be needed to validate or not knockout. 
 

An important decrease in the level of CHIKV infected cells was observed when 
viral infection was realized shortly after cell line generation but not when cells were 
amplified several days after transduction. We suggested a potential effect of the 
transduction on cell fitness and consequently on CHIKV infection. Lentiviral 
transduction might induce an innate immune response which limits the CHIKV 
infection 5 days later. After entry into the cell, the single-stranded RNA (ssRNA) of 
lentivirus is released, reverse transcribed into viral cDNA and transported to the 
nuclear genome for integration. Indeed, RNA from lentiviruses and reverse-
transcribed viral DNA might be recognized by Toll-like receptors (TLRs) and cytosolic 
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DNA sensors (CDSs). TLR7 and TLR8 recognize ssRNA while TLR9 targets viral cDNA 
due to the presence of high frequency of CpG motifs. Ligand binding to TLRs triggers 
intracellular signaling pathways leading to the secretion of type 1 interferons (IFNs) 
and pro-inflammatory cytokines (Borsotti et al., 2016; Follenzi et al., 2007). 
By doing RT-qPCR experiments throughout infection assays, IFN-β RNAs were 
detected 24h but not 96 h after lentiviral transduction and then strongly induced 24h 
after CHIKV infection (data not shown). In parallel, we also monitored RNAs of two 
interferon-stimulated Genes (ISGs), Mx and IFIT1 (data not shown). RNAs of both 
genes were detected 24h and 96h after lentiviral transduction and also after 24h of 
CHIKV infection. These data highlight the immune response triggered by the lentiviral 
transduction which could limit the subsequent CHIKV infection and might be an 
explanation of the observed effect.  
 

Regarding cells with sgRNA DYNLT3 in the second round of infection assays, 
it might be difficult to conclude on a potential role of DYNLT3 for CHIKV infection as 
we were not confident in DYNLT3 protein status in both cell lines. In parallel, a cell 
line with a sgRNA targeting the other dynein light chain, DYNLT1, was generated as 
the two dynein light chains might have a redundant function in dynein activity or both 
be required for CHIKV infection. Indeed, in the case of human papillomavirus type-16, 
both DYNLT1 and DYNLT3 light chains are required for infection and the viral capsid 
protein interacts in fact with both DYNLT1 and DYNLT3 (Schneider et al., 2011).  

 
On the other hand, the poliovirus receptor (PVR) has been shown to associate strongly 
and specifically with the dynein light chain DYNLT1. Data indicate that DYNLT1 
interacts with a particular motif in the cytoplasmic domain of PVR closed to the 
membrane. In the case of the neurotropic poliovirus, the interaction might explain how 
poliovirus reaches motor neurons via retrograde transport. In the proposed model for 
infection, poliovirus binds to its receptor PVR and is subsequently endocytosed. The 
cytoplasmic tail of PVR displayed at the surface of endosomes associate with 
DYNLT1 and the virus/receptor complex is transported along microtubules by 
retrograde axonal transport (cf. figure 68 model C) (Mueller et al., 2002). Interestingly 
though, PVR has been identified in a collaborative RNAi screen project as an entry 
factor for CHIKV (unpublished data from collaboration, confidential). In order to 
validate the impact of PVR for entry of CHIKV and study an eventual PVR/dynein 
association, a cell line with a sgRNA targeting PVR was generated. However, it was 
difficult to conclude for both DYNLT1 and PVR impact on infection since protein 
status was unknown for lack of characterization tools. Cell lines should be 
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characterized using specific tools in future experiments and new infection assays 
should be realized. 
 

With regard to the CRISPR-mediated knockout system, it’s a recent 
technology, but it rapidly appears that control/scramble sgRNAs are primordial for 
experimental studies particularly regarding off-target effects. However, information 
obtained from such control is limited to off-target effects due to Cas9 but not to off-
target effects derived from specific sgRNA used. Moreover, as sgRNA and Cas9 
protein are integrated into the genome and constitutively active, it might clearly affect 
cell fitness. Indeed, it has been shown that double strand break induced by Cas9 
activates p53, leading to a growth arrest (Haapaniemi et al., 2018). In our experiments, 
it also seems that the control sgRNA (targeting luciferase gene) might have an impact 
on cells as we almost always observed a slightly lower level of CHIKV infection in cells 
with sgRNA luciferase compared to WT cells.  
 

Interestingly, overexpression of DYNLT3 protein in LHCN-M2 cells induces an 
important decrease of CHIKV infection level. A cell viability assay has been realized 
to ensure that overexpression does not alter cell survival. Further experiments could 
be realized to better characterize this cell line such as cell cycle assay. It could be 
also interesting to set up microscopy assays to observe the cellular localization of the 
overexpressed DYNLT3 protein. In addition, for infection assays, an overexpression 
control cell line should be added as well as a control virus (not affected by DYNLT3 
overexpression).  
 
Several hypotheses could be proposed to illustrate the CHIKV infection diminution. 
Many virus-dynein interactions occur via an association of a dynein component with 
the viral capsid. It can be illustrated by the interaction with dynein of, among others, 
HSV capsid, L2 capsid protein of HPV, capsid of adenovirus, capsid of bovine 
immunodeficiency virus  (Bremner et al., 2009; Douglas et al., 2004; Kelkar et al., 2004; 
Su et al., 2010). With this in mind, we have studied the alphavirus replication cycle to 
suggest steps during which DYNLT3 protein might interact with CHIKV-capsid.   
 

During the alphavirus replication cycle, after receptor binding and endocytosis, 
the fusion of viral envelope with the endosomal membrane allows the release of 
nucleocapsid into the cytoplasm. The capsid proteins of the nucleocapsid associate 
with 60S ribosomal subunit, facilitating the uncoating and disassembly of the 
nucleocapsid and the release of viral RNA for initiation of the protein synthesis 
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(SINGH’ and HELENIUS, 1992; Wengler et al., 1992). We have suggested that 
nucleocapsid might be transported by dynein to a particular localization inside the cell 
for disassembly and RNA release for subsequent protein synthesis. When 
overexpressed, the dynein light chain might disrupt dynein complex formation or 
correct dynein function and consequently inhibit dynein-dependent transport of the 
nucleocapsid. Some data published on dynactin that act as a co-factor for the 
microtubule motor dynein show that overexpression of one dynactin subunit, 
dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein in 
mammalian cells (Echeverri, 1996). Also, transport of HSV1 capsid by dynein along 
microtubules has been shown to be inhibited by dynamitin overexpression leading to 
dynactin complex disruption (Döhner et al., 2002).  
 

Following the translation from subgenomic RNA, the alphavirus polyprotein is 
autocatalytically processed at the N-terminal end by the capsid protease and the 
alphavirus capsid protein is released into the cytoplasm. Capsid protein binds to 
genomic RNA promoting nucleocapsid formation. Finally, 240 copies of capsid 
proteins assemble to encapsidate the viral RNA and form nucleocapsid core (NC). A 
study suggests that NC assembles near cytopathic vacuole type I (CPV I) that are the 
sites of viral RNA synthesis and then traffic to the plasma membrane for budding. In 
parallel, few of NC were found attached to cytopathic vacuole type II (CPV-II) 
originated from the trans-Golgi network, and the rest of NC transported by unknown 
host transport machinery (Bremner et al., 2009; Douglas et al., 2004; Kelkar et al., 
2004). It has also been shown that distinct capsid and NC pools are formed during 
infection with only a fraction of total capsid produced that is incorporated into new 
virions. Regarding what we know about nucleocapsid formation, we have suggested 
that after translation of new capsid proteins, a potential association between capsid 
and the dynein light chain DYNLT3 might permit to transport capsid monomer to the 
site of nucleocapsid assembly. Overexpressed DYNLT3 in our assays might bind to 
CHIKV-capsid and catch a large amount of monomeric capsid protein preventing the 
assembly of new nucleocapsid.  
 

As positive-strand RNA viruses, alphaviruses replication cycle occurs within 
the cytoplasm of infected cells. However, several RNA viruses and alphaviruses target 
a number of viral proteins to the nucleus (Garmashova et al., 2007a; Jakob, 1993; 
Walker and Ghildyal, 2017; Weidman et al., 2003). CHIKV-capsid has been reported 
to possess one nuclear import signal (NLS) and two nuclear export signals (NES) 
(Jacobs et al., 2017; Thomas et al., 2013). Little is known about the importance of 
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capsid nuclear transport and localization for CHIKV and other arthritogenic 
alphaviruses. On the other hand, it has been shown that nuclear localization of the 
non structural protein nsp2 of old world alphaviruses CHIKV, SINV and SFV induces 
a transcriptional shutoff while new world alphaviruses VEEV and EEEV transcription 
inhibition is dependent on the capsid protein (Garmashova et al., 2007b). Finally, it 
has also been demonstrated that mutation in the nuclear localization sequence of 
CHIKV-capsid attenuates viral replication in mammalian cells (Taylor et al., 2017). 
Based on these data, our last hypothesis suggests the transport of CHIKV-capsid by 
the dynein motor near the nucleus thus enabling its trafficking into the nucleus. 
CHIKV-capsid in the nucleus might play an unknown role or might be involved a 
transcriptional shutoff. Free DYNLT3 in excess in our overexpression system might 
interact with CHIKV-Capsid stopping its nuclear trafficking.  
 

To investigate a potential interaction between the dynein light chain DYNLT3 
and the capsid of CHIKV, a cell line expressing constitutively DYNLT3 and CHIKV-
capsid protein under induction was generated. An unexpected strong signal has been 
observed on the western-blot realized for capsid detection with a lower molecular 
weight than the expected CHIKV-capsid signal. As this signal has not been observed 
in the same cell line but without doxycycline induction, we have suggested that it 
might be a cleaved form of the capsid protein although no study has reported such a 
cleaved form of the protein. This assay did not permit to conclude about the 
interaction. In the second assay realized with the capsid protein expressed from 
CHIKV infection, a strong signal corresponding to the 30 kDa capsid protein has been 
observed. Despite this, no results for CHIKV-capsid and DYNLT3 interaction was 
observed in this assay nor in the reverse co-immunoprecipitation assay either. These 
results seem to suggest either the dynein light DYNLT3 does not interact with the 
capsid protein or not directly. It would be interesting to realize further experiments to 
study eventual proximity or colocalization of the two proteins such as proximity 
ligation, immunofluorescence or confocal microscopy assays. It will be also possible 
with the tagged DYNLT3 to pool down cellular protein of infected versus non infected 
cells to identify any virus protein/DYNLT3 interactions.  
 

On the other hand, the DYNLT3 protein might be involved indirectly in the 
chikungunya virus infection. Indeed, it has been shown that autophagosomes are 
transported by dynein motor proteins along microtubules towards lysosomes near the 
microtubule-organizing center (Jahreiss et al., 2008; Ravikumar et al., 2005) and that 
inhibition of autophagy dramatically decreases chikungunya virus infection (Krejbich-
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Trotot et al., 2011). Overexpression or depletion of DYNLT3 might increase the level 
of non-functional or disrupted dynein complex inside the cell that might inhibit the 
autophagy process and subsequently the chikungunya virus infection. It will be 
interesting to quantify autophagy in infected cells overexpressing or not DYNLT3. 
 

To conclude, several pieces of evidence suggest the involvement of DYNLT3 
in chikungunya virus replication: DYNLT3 has been identified in our CRISPR screen, 
DYNLT3 is required for the infection of numerous viruses and DYNLT3 overexpression 
has an impact on CHIKV infection. Thus, it would be interesting to realize, among 
others, new infection assays in validated CRISPR-mediated knockout cell lines and 
to set up microscopy assays to observe the cellular localization of the viral 
components in WT cells, cells overexpressing DYNLT3 and cells knockout for 
DYNLT3.
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Chapter 3: Candidates from the screen 

I - Material and Methods 
 

Generation of CRISPR-mediated knockout cell lines and infection assays were realized as 
described in Part 1.  The following primers were used to generate the different CRISPR 
vectors.  
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II - Results 
 

Cloning of sgRNAs into lentiCRISPRv2 and lentiviral production were achieved for the 
nineteen selected candidates from the first analysis based on gene counts. In addition to 
DYNLT3 assays, test of protein expression status and infection assays were executed for 
some of the nineteen candidates, including CLEC2B, JAM3, SLC6A14, PAPD4. In parallel, 
infection assays were also realized for the candidate AMBRA1 coming from the guide-
based analysis. For infection assays, cells were amplified at least one week after 
CRISPR lentivirus transduction.  
 

1 - CLEC2B 
 

We tried to validate CLEC2B knockout by immunohistochemistry, however, the antibody 
used for the staining did not permit to obtain an exploitable signal. Infection assays were 
realized without a confirmed status of CLEC2B expression. SgRNA CLEC2B and WT were 
infected with replicative CHIKV at two different MOI. A decrease of CHIKV infection was 
observed with an MOI of 0,1 in sgRNA CLEC2B cells compared to WT cells (Fig.79) 
while infection levels were almost similar between the two cell lines at MOI 1. 
Experiments need to be replicated to confirm the decrease observed at MOI 0,1 in 
sgRNA CLEC2B cells. In addition, sgRNA luc cells should be infected in parallel as a 
control. Concurrently, sgRNA CLEC2B and WT cells were also infected with 
pseudotyped viruses harboring either CHIKV, SINV envelope proteins or envelope of 
VSV as a control. No significative differences were observed with CHIKV and SINV 
pseudotypes (Fig.80). 

 
Figure 79:  CHIKV infection assay in WT and sgRNA CLEC2B cell lines  

Cells were infected with CHIKV at MOI 0,1 or MOI 1 for 24h. Cells were harvested and 
fixed in PFA 4% before immunostaining and flow cytometry analysis (n=2). Infection 
on naïve WT cells was established at 1. 
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Figure 80: Infection assay in WT and sgRNA CLEC2B cells with pseudoparticles 

Cells were incubated with pseudoparticles 2 h at 37°C before medium change. Cells 
were then harvested 3 days post-infection and fixed in PFA 4% before flow cytometry 
analysis (n=3). Infection on naïve WT cells was established at 1. 
 

2 - JAM3 
 

A cell surface immunostaining was realized with sgRNA JAM3 pooled cells followed 
by flow cytometry analysis as described in Part 1 (antibody CD323, 356703, 
Biolegend). It appears that 84% of cells were negative for JAM3. Infection assays with 
CHIKV-GFP were carried out using this knockout cell line. Infection levels were nearly 
equivalent between WT and sgRNA JAM3 cell lines (Fig.81). This result needs to be 
confirmed by other replicates and with control sgRNA luc cell line in parallel. 

 
Figure 81:  CHIKV-GFP infection assay in WT and sgRNA JAM3 LHCN-M2 cells  

Cells were infected with CHIKV-GFP at MOI 0,1 or MOI 1 for 24h. Cells were harvested 
and fixed in PFA 4% before flow cytometry analysis (n=2). Infection on naïve WT cells 
was established at 1. 
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3 - SLC6A14 
 

We tried to validate SLC6A14 knockout by immunohistochemistry and western-blot 
however the antibody used did not permit to obtain exploitable results (SLC6A14 
polyclonal antibody, E-AB-33363, Elabscience). The SLC6A14 protein expression status 
needs to be confirmed. Infection assays with replicative CHIKV-GFP and pseudotyped 
viruses were carried out twice. By considering the standard deviation in each assay, we 
did not observe any difference in infection levels either with CHIKV-GFP (Fig.82) or 
pseudotyped viruses (Fig.83).    

 
Figure 82:  CHIKV-GFP infection assay in WT and sgRNA SLC6A14 cells 

Cells were infected with CHIKV-GFP at MOI 0,1 or MOI 1 for 24h. Cells were harvested 
and fixed in PFA 4% before flow cytometry analysis (n=2). Infection on naïve WT cells 
was established at 1. 
 

 
Figure 83: Infection assay in WT and sgRNA SLC6A14 cells with pseudoparticles 

Cells were incubated with pseudoparticles 2h at 37°C before medium change. Cells 
were then harvested 3 days post-infection and fixed in PFA 4% before flow cytometry 
analysis (n=2). Infection on naïve WT cells was established at 1. 
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4 - AMBRA1 
 

AMBRA1 CRISPR-mediated knockout in LHCN-M2 cells was validated by western 
blot analysis (Fig.84). Cell lines depleted for AMBRA1 were infected by CHIKV LRic in 
parallel with WT cells and control cell line with sgRNA luciferase (sgRNA luc). 
Unfortunately, we did not notice any significative difference in CHIKV infection level 
between the control cell line and AMBRA1 knockout cell lines either at MOI 0,1 or MOI 1 
(Fig.85).  
 

 
 

Figure 84: Validation of AMBRA1 knockout by western blot analysis 

AMBRA1 mouse monoclonal antibody clone G6 (SantaCruz sc-398204) was used to 
detect AMBRA1 protein in cell lysates (1/1000 in 10% milk PBST 0,1%, overnight 
incubation, 4°C). Secondary anti-mouse IgG antibody was used as described 
previously. Antibody raised to β-actin was used as an internal control.  
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Figure 85: Infection assay in WT, sgRNA luc and sgRNA AMBRA1 cells 

WT, sgRNA luc, and sgRNA AMBRA cells were infected with CHIKV LRic at MOI 0,1 
or MOI 1 for 24h and then harvested in PFA 4%. Cells were immunostained with a 
primary antibody raised to Semliki Forest nucleocapsid protein, that reacts with CHIKV 
capsid protein (IgG2a C42) and then analyzed by flow cytometry analysis. (n=3) 
Statistical analyses were made with unpaired t-test with p-value < 0,05. Infection on 
naïve WT cells was established at 1. 
 

 
Finally, very preliminary data were obtained in sgRNA PAPD4 cells (expression 

status not confirmed). We observed a slight decrease of CHIKV-GFP infection in 
sgRNA PAPD4 cells, from 40% of infected cells in WT to 32% in CRISPR cells. 
Replicates experiment needs to be realized to confirm the observed tendency since 
infection assay has been made only once. As we have already observed and mentioned 
in the previous chapter, our approach was limited by the need of numerous and 
performant antibodies to validate protein status. 
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Part 2 - General discussion  
 

Over the past decade, loss of function screens have provided a powerful tool 
for investigating virus-host biology. The discovery of CRISPR/Cas9 system has 
enabled the expansion of CRISPR/Cas9 screen as a new tool to identify host factors 
that are important for viral replication. In parallel, face to the recent re-emergence of 
arboviruses including Zika, dengue and chikungunya viruses causing large outbreaks, 
more virus-cell interaction studies were needed and have been conducted. However, 
the replication of chikungunya virus and other alphaviruses remains poorly 
characterized and the efforts to understand the virus biology and the pathogenesis 
need to progress.  
In order to understand the chikungunya replication cycle and identify host factors 
required for the infection, a genome-wide CRISPR/Cas9 loss of function screen has 
been realized. Besides problems of library diversity raised earlier, we have faced 
difficulties to confirm the role of the hits identified through the screen. These 
difficulties are associated with the validation of specific-gene knockout, the actual 
efficiency of CRISPR/Cas9 in vivo and the presence of false positives. 
 

An important issue already mentioned is the requirement of multiple functioning 
tools to validate gene knockout in the different generated cells lines. The use of 
antibodies for western-blot, flow cytometry or microscopy immunostaining permits to 
confirm with certainty the protein status and the efficient knockout. However, their 
use is tricky as antibodies are generally quite expensive and as their efficacy and 
quality cannot be assured prior to testing them.  
We used an alternative approach by doing RT-qPCR assays to monitor transcript level 
in CRISPR cell lines compared to the WT cell line. These assays are informative when 
transcript level is actually null in CRISPR cell line but since transcripts are detected it 
is difficult to conclude on protein knockout. 
Other strategies are used to estimate or validate the presence of mutations and might 
be considered for future experiments.  
The generation of clonal cell lines and sequencing of the region of interest might be 
one of the best alternatives although our LHCN-M2 model cell line is hardly clonable 
and multiple sequencing can be quite expensive and highly time-consuming.  
Nuclease mismatch detection assay is a widely used method which exploits the 
properties of mismatch-specific endonucleases to detect and cleave mismatches 
(Vouillot et al., 2015). After PCR amplification of the region of interest and denaturation 
followed by formation of DNA duplex by heating and slow cooling, mismatch 
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nucleases (T7E1) or Surveyor nucleases can be used to recognize and cleave 
heteroduplexed DNA amplicons containing mismatched base-pairs. Visualization of 
cleaved DNA products on electrophoresis agarose gel permits to determine the 
frequency of mutations induced by the CRISPR/Cas9 system. 
Another approach to estimate mutation frequency is the use of digital PCR assays. In 
digital PCR (dPCR), the sample is split up into thousands of physically isolated 
partitions (such as droplets or wells on a chip), such that most partitions will contain 
either one or no copies of the target DNA. The assay consists of a reference PCR with 
primers binding to sequences distant from the target site and then a second PCR is 
realized with the same forward primer, but a reverse primer designed to bind directly 
at the Cas9 target site. If the target site is mutated, the primer is not capable of binding 
and the corresponding amplicon is not amplified (Findlay et al., 2016). Observations 
of the different amplicons on agarose gel permit to identify mutated samples. Finally, 
approaches to monitoring gene editing are multiple and enabled a systemic screening 
of mutated samples, nevertheless, verification of protein expression remains crucial.  
In the end, another alternative to validate hits will be to use siRNA or shRNA that target 
the mRNA and to measure the level of mRNA by RT-qPCR. However, this technic can 
have other bias like more frequent off-target effect, reduction in particular but not all 
spliced mRNA.  

 
Surprisingly, for genes for which we had functioning characterization tools, it 

often appears that protein expression remains unchanged in CRISPR-edited cell lines. 
It means either no modification has been introduced in the genome or the introduced 
mutation(s) do not lead to protein disruption. The efficiency of sgRNAs is a major 
concern in the CRISPR field. Several publications have shown that sgRNA efficiency 
varies widely. Indeed, it has been reported that the level of insertion/deletion creation 
varies between 5% to 65% with an average between 10 to 40% (Cong et al., 2013; 
Fu et al., 2013). Chromatin structure, particular sequence elements and stability of 
sgRNA-target DNA complex might avoid efficient sgRNA binding and activity (Chen 
et al., 2017; Xu et al., 2017).   
Efforts have been made to develop algorithms that predict sgRNA activity and 
efficiency. Nevertheless, through our CRISPR experience, we have often observed 
that even if the in silico predicted efficiency is high, two or three sgRNAs have to be 
tested in vitro to successfully generated a knockout. For the candidates from the 
screen, we did not design our own specific sgRNAs targeting candidate genes, but 
we used sgRNAs from the library highlighted in the screen. Given our results, it 
suggests a variable efficiency among the sgRNAs of the library. The question arises 
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of whether variable efficiency seen using CRISPR/Cas9 is sufficient to generate a 
desired phenotype in the screening assay. In theory, this is in part offset by the 
presence of multiple sgRNAs targeting the same gene. We may design ourselves 
other sgRNA targeting the selected genes using other software and test them.   
 
The cell line might also influence gene editing efficiency. Indeed, the ploidy of the 
gene locus of interest and the DNA repair status of the target cell might affect the 
efficiency of the knockout. Double strand break of only one allele of a gene can be 
easily repaired by HDR with a second allele as a template. To improve the chances of 
generating protein depletion, two sgRNAs targeting the same gene can be used for 
instance to generate large deletion easily detectable by PCR and likely to disrupt 
protein expression. In addition, as discussed previously, the LHCN cells might be 
more prone to DNA repair that cell lines derived from tumor cells. Even if initially our 
goal was to select a relevant target cell closest of the real tissue in vivo, finally, our 
screen may be improved by using another cancer cell line.    
 

In parallel of our screening, another library in a different cell line (HCT116 
epithelial cells from colorectal carcinoma) was generated for a collaboration with 
another team working on dependence receptors and cancer (Team P.Mehlen, CRCL, 
Lyon). Except for their screen challenge which was drug-triggered cell death, their 
screen and our screen were generated and processed following the same process. 
We have used the same lentiviral library for generating both modified cell lines and 
they have realized PCR amplification from both genomic DNA samples in the same 
way. After the analysis of their screen, they observed a low library representation and 
several false positives among their enriched candidates as well.  
 
In our screen, we have also observed a low library representation as discussed earlier. 
Moreover, even among the cell lines with a validated knockout, none of the screen 
candidates have been clearly confirmed as required for CHIKV infection assays 
suggesting the presence of many false positives.  
 
As already mentioned earlier, the low library representation might greatly impact the 
robustness of both screens. Indeed, random variations of sgRNAs present in low 
numbers introduce high background noise. Moreover, a high representation allows to 
avoid depletion by random chance leading to false negatives. Based on what we knew 
at that time, cell libraries were realized with a 100-fold representation of sgRNA library, 
but it appears with the different screens and studies published later than a higher 
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representation is preferred to maintain the diversity. However, it also appeared that 
the genomic DNA quantity used for PCR amplification prior sequencing was 
insufficient to maintain the representation. In the screen of the other team, indeed, 
many sgRNAs were present among hits of the challenged condition although they 
were not detected in the non-challenged control library. It means that certain sgRNAs 
were present in the cell library, but they have not been detected during the 
sequencing, certainly because the genomic DNA quantity used for PCR did not 
preserve the representativeness of the library. This too low DNA quantity might greatly 
impact the library representativeness and the presence of false positives. PCR 
amplification was realized with less than 1 μg of genomic DNA while quantities used 
in other studies are generally higher than 5 μg (Han et al., 2018; Richardson et al., 
2018). Nevertheless, it’s hardly comparable since the quantity of genomic DNA for 
PCR should be adapted to the number of lysed cells. We have tried to find a way to 
calculate the amount of genomic DNA required. As it is generally agreed that the 
genome of diploid cells has a mass of 6,6 picograms, we suggested that the quantity 
of genomic DNA required for PCR amplification might be calculated by taking into 
account the number of cells with a lentiviral integration and the mass per genome. 
Thus, by multiplying the number of cells by the mass per genome, it might be possible 
to calculate the amount of genomic DNA required to maintain fold representativeness.  
 

In addition, as we already discussed earlier, we have also noticed a poor 
enrichment in our screen after the challenge although two rounds of viral infection 
have been realized. This not-enough-stringent challenge can considerably increase 
the number of false positives among the hits. As we mentioned earlier through a 
CRISPR screen with the influenza virus, the multiplication of the number of rounds of 
selection permits a progressive increase in sgRNA enrichment (Han et al., 2018). Thus, 
multiple rounds of chikungunya virus challenge in our future screens might reduce the 
number of false positives among the hits.  
 
Presence of false positives might also be linked to the specificity of the CRISPR/Cas9 
system. It has been described that CRISPR/Cas9 induces less off-target effects than 
RNAi, nevertheless, several studies have highlighted a quite high frequency of off-
target mutagenesis in human cells (Fu et al., 2013). Notably, it has been revealed 
sequence flexibility and tolerance up to five mismatches and tolerance for bulges of 
sgRNAs (Carroll, 2013). The observed virus-resistant phenotype might be linked to 
off-target effects rather than the specific-knockout effect. In CRISPR screens, 
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multiple sgRNAs for each gene are included to overcome specificity and efficiency 
issues and in order to observe redundancy of phenotype. 
The issue of the specificity is also raised as we have noticed the presence of control 
non-targeting sgRNAs which are supposed to target nothing in the human genome, 
in our lists of enriched sgRNAs and in other published screens.  
 

In this screen, our approach is based on the genomic DNA isolation from a pool 
of virus-resistant cells and on the sequencing of sgRNA sequence integrated into the 
genome. The first questionable aspect of this approach is that a pool of cells is 
recovered without knowing if every single cell is really resistant to the virus. The 
second point of criticism is the fact that we cannot know if the virus-resistant 
phenotype is truly caused by the specific knockout generated by the integrated 
sgRNA or by an off-target effect. Other approaches described below that might be 
explored, could permit to significantly decrease the number of false positives.  
After one or several virus challenges, surviving cells might be isolated by serial dilution 
in a multi-well plate to obtain ideally one single clone in each well. After cell expansion, 
a new virus challenge permits to confirm or invalidate the virus-resistant phenotype 
of every single clone. The genome of resistant single clones can be sequenced and 
compared with the genome of WT cells to identify mutations conferring the resistance.  
On the other hand, by using virus with a fluorescent reporter, non-infected cells or 
cells with low levels of virus can be isolated and their resistant-phenotype can be 
confirmed with a new virus challenge as described above (Heaton et al., 2017; Park 
et al., 2017).  
 

To conclude, this screen has enabled us to observe the limitations of the 
CRISPR/Cas9 technology and to identify the defaults of our approach. Screenings 
with CRISPR/Cas9 are powerful tools, provided that the library representation is high, 
and the phenotypic selection is stringent.  

 
In short-term prospects, it might be valuable to redo PCRs with the appropriate 
quantity of DNA starting from the remaining extracted genomic DNA of both screens, 
then to realize a new sequencing with this amplified DNA. By doing this for our screen 
in LHCN-M2 cells and the other screen in HCT116 cells, this will enable to gain insight 
into the source of the problem. 
Indeed, if after PCR amplification in adapted conditions and sequencing, the library 
representation is clearly better for both screens (LHCN-M2 cells and HCT116 cells), it 
will suggest that the low representation was linked to PCR amplification.  
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In the other hand, if library representation is better but still not so high, it might mean 
that adapted PCR amplification improved the diversity but that the number of cells 
used at the beginning (100-fold library) was probably not enough and should be 
increased. However, it might also be linked to a loss of sgRNAs during DNA 
amplification, lentivirus production or during any other step of the process. That is 
why the sequencing of the DNA plasmid library should also be considered before any 
replicate. Lastly, if the library representation is improved for the screen in HCT116 
cells but not for our screen in LHCN-M2 cells, it might suggest that the LHCN-M2 cell 
line is not totally suitable for a CRISPR/Cas9 screen approach. 
 
In a long-term perspective, based on the observations made from our data and the 
new sequencing, we could carry out a new screen by using a cell library with a better 
sgRNA diversity, realizing multiple rounds of virus challenge (with tagged virus or not), 
and adapting genomic DNA quantity used for PCR amplification to increase the 
signal-to-noise ratio. Finally, we might also consider collaborating with a 
bioinformatician to analyze in greater detail the sequencing data using notably 
CRISPR-specific analysis software. 
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GENERAL CONCLUSION 
Alphaviruses are arboviruses typically disseminated to humans by mosquitoes 

such as Aedes aegypti and Aedes albopictus. In recent years, chikungunya virus has 
spread from endemic areas of Africa and Asia to new populations in Europe and the 
Americas, making chikungunya virus a global threat and the most common alphavirus 
infecting humans. It is generally accepted that the global spread of alphaviruses and 
especially CHIKV is a combination of expanding mosquito populations, the adaptation 
of alphaviruses to new mosquito vectors and increased international travel (Kraemer 
et al., 2015; Tsetsarkin et al., 2007). Chikungunya virus is an alphavirus capable of 
causing long term debilitating joint and muscle pain. Millions of individuals were 
infected in the last 10 years, resulting in a significant loss of life-quality, high societal 
cost, and thousands of deaths. Currently, there are no licensed vaccines or treatments 
for CHIKV infection justifying the importance to continue research and gain insight 
into chikungunya virus biology. Despite the numerous studies, host factors involved 
in chikungunya virus entry and replication cycle remain poorly characterized. 
 

The main objective of my project was to better understand and characterize 
the chikungunya virus entry and the host factors used during replication steps.  
 

The first key objective was mainly focused on alphavirus entry and early 
infection steps. Working with CHIKV and SINV, we have demonstrated that iron 
treatment of cells prior to and throughout the infection has an effect on viral infection 
of both viruses. This effect appears to be dose-dependent. Impact of iron on SINV 
infection had already been described in a study in which the divalent metal ion 
transporter NRAMP2 has been identified as a receptor for SINV in mammals (Rose et 
al., 2011). Given the fact that SINV and CHIKV are closely-related viruses belonging 
to the same genus of Alphavirus, we have hypothesized that NRAMP2 could also be 
involved in CHIKV entry. By generating cell lines depleted for NRAMP2 protein, we 
have demonstrated that the protein is required neither for the entry of CHIKV-derived 
pseudotypes and nor for the infection with replicative viruses. Finally, we have shown 
that there is no clear correlation between cell permissiveness for CHIKV and NRAMP2 
expression profile. This combination of arguments allows to rule out the involvement 
of NRAMP2 in CHIKV infection. In term of analysis of arbovirus entry, it is an important 
conclusion that suggests that the use of orthologs is not the obvious way to identify 
receptors in different species. In addition to our work, it has also been shown that 
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Malvolio or NRAMP2 orthologs do not exist in Aedes aegypti mosquitoes (Tsujimoto 
et al., 2018). Clearly, more work is needed to understand the broad tropism of 
alphavirus and arboviruses in general.  
Following the idea of receptor regulated by iron, we have then highlighted that the 
transferrin receptor is neither involved in CHIKV infection although TFRC is also iron-
regulated and known to be a receptor for several viruses. Finally, our current 
hypothesis is that iron in form of ferric ammonium citrate might have an antiviral effect 
as it has been recently described for several viruses. Relying on this latter, future 
experiments will be focused on the understanding of the antiviral effect of iron 
treatment in our model.  
 

Regarding the two proteins identified previously in an RNAi screen, we have 
demonstrated that CD46 is not required for CHIKV entry while TM9SF2 appears to be 
required for CHIKV efficient infection. However, the role of the latter has been 
published in the meantime by another laboratory. TM9SF2 has been shown to be 
involved in the localization and stability of another protein called NDST1 known to be 
required for the N-sulfation of heparan sulfate. Since CHIKV uses heparan sulfate as 
attachment factors, the depletion of TM9SF2 in cells has an indirect impact on CHIKV 
infection.  
 

In the last focal area, our goal was to obtain a global understanding of host 
factors used during chikungunya virus replication by carrying out a genome-wide loss 
of function screen with the CRISPR/Cas9 technology.  
The difficulties experienced have been analyzed and discussed in order to determine 
short-term experiments to realize and to optimize future screens.  
 
Among the candidates identified through the screen, we focused on the DYNLT3 
protein, a light chain of the dynein motor complex involved in cargo binding. Since 
cytoskeleton is commonly used by viruses and the dynein motor often hijacked by 
viruses for intracellular transport, DYNLT3 protein represents a good candidate. 
Unfortunately, we did not observe an effect of sgRNA against DYNLT3 in our infection 
experiments, but the protein expression status was not clearly characterized. 
However, we have shown that the DYNLT3 overexpression induces a decrease of the 
CHIKV infection. Our hypothesis of an interaction between DYNLT3 and CHIKV-
capsid protein has not been validated by the co-immunoprecipitation experiments. 
More work remains to be done to understand and to characterize a potential role of 
DYNLT3 in CHIKV infection. In parallel, the study of the potential implication in 
infection of the other hits identified in the screen should be continued. Indeed, the 
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CRISPR/Cas9 system has been validated by many studies of virus-cell interaction. 
For Hepatitis C virus for example, in one screen, three receptors, namely CD81, 
Claudin 1 and Occludin, have been confirmed, whereas with previous technics, it took 
11 years for scientists to discover them all from the first one CD81 (1998) to Occludin 
(2009). Very recently, the Mxra8 receptor has been discovered for arthritogenic 
alphaviruses (CHIKV, O’nyong nyong virus, Mayaro virus) using a CRISPR/Cas9 
screen in mice cells. However, CRISPR/Cas9 screens in human cells are still of high 
importance. In addition, Mxra8 protein is not the receptor for encephalitogenic 
alphaviruses. Therefore, other screen using other alphaviruses will be valuable and 
the setting up will lead to important knowledge of alphavirus biology.
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Abstract

The incidence of arbovirus infections has increased dramatically in recent decades,

affecting hundreds of millions of people each year. The Togaviridae family includes the

chikungunya virus (CHIKV), which is typically transmitted by Aedes mosquitoes and

causes a wide range of symptoms from flu‐like fever to severe arthralgia. Although

conventional diagnostic tests can provide early diagnosis of CHIKV infections, access

to these tests is often limited in developing countries. Consequently, there is an

urgent need to develop efficient, affordable, simple, rapid, and robust diagnostic tools

that can be used in point‐of‐care settings. Early diagnosis is crucial to improve patient

management and to reduce the risk of complications. A glass‐fiber laser‐cut
microfluidic device (paper‐based analytical device [PAD]) was designed and evaluated

in a proof of principle context, for the analysis of 30 μL of patient serum. Biological

raw materials used for the functionalization of the PAD were first screened by MAC‐
ELISA (IgM capture enzyme‐linked immunosorbent assay) for CHIKV Immunoglobulin

M (IgM) capture and then evaluated on the PAD using various human samples.

Compared with viral lysate traditionally used for chikungunya (CHIK) serology,

CHIKV pseudo‐particles (PPs) have proven to be powerful antigens for specific IgM

capture. The PAD was able to detect CHIKV IgM in human sera in less than 10

minutes. Results obtained in patient sera showed a sensitivity of 70.6% and a

specificity of around 98%. The PAD showed few cross‐reactions with other tropical

viral diseases. The PAD could help health workers in the early diagnosis of tropical

diseases such as CHIK, which require specific management protocols in at‐risk
populations.

K E YWORD S

arbovirus, chikungunya, diagnosis, paper analytical device, pseudotyped virus, virus‐like particles

1 | INTRODUCTION

Chikungunya (CHIK) is an infectious disease caused by the

chikungunya virus (CHIKV), an arbovirus (arthropod‐borne virus)

transmitted by infected Aedes mosquitos.1 CHIKV belongs to the

Togaviridae family (Alphavirus genus), which also includes Ross River,

Mayaro, Semliki Forest, and O’Nyong‐Nyong viruses.2,3 CHIKV was

first isolated in Tanzania in 1952 4,5 and became endemic in large

areas of Africa, the Middle East, India, and Southeast Asia.6,7

Between 2005 and 2007, CHIKV caused a massive epidemic on

Reunion Island.8 Since 2013, the rapid spread of the virus has been

reported in the Caribbean and Central and South America. CHIK is an
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acute highly symptomatic illness characterized by strong fever,

headache, intense asthenia, rash, myalgia, and severe arthralgia.9

Severe arthralgia that mainly affects hands, wrists, elbows, ankles,

and knees can evolve to chronicity. To date, there is no specific and

efficient treatment.

Arboviruses are mainly prevalent in developing countries of

tropical and subtropical areas and represent a serious public health

concern for these countries.10 Diagnostic assays, such as reverse‐
transcriptase polymerase chain reaction (RT‐PCR), plaque reduction

neutralization test (PRNT) or enzyme‐linked immunosorbent assay

(ELISA) can provide sensitive results and help to optimize patient

care.11-15 However, these assays are time‐consuming, rarely afford-

able, and require infrastructure and qualified operators, making them

accessible to relatively few low‐income countries.16

The development of rapid and affordable diagnostics tests can be

an interesting alternative to the use of traditional diagnostic tests.

Lateral flow assays (LFAs) for arboviruses diagnostics have been

developed and are to date commercially available, both for the

detection of viral proteins and for the serological of type M

Immunoglobulins (IgM) and/or type G Immunoglobulins (IgG).15,17,18

However, although the use of these tests is in principle suitable for

low‐income countries,19 some issues have been reported, notably in

terms of reliability, performance, quality, and regulatory ap-

proval.20-24 Moreover, even with a regulated market price, they

remain expensive and therefore relatively inaccessible to a great

majority of the population living in the poorest countries.

Paper‐based analytical devices (PADs) provide an alternative

technology to traditional diagnostic devices. They are simple, low‐
cost, and suitable not only for infectious disease diagnosis but also

for food quality control and environmental monitoring.25,26 PADs are

good candidates to fulfill the ASSURED criteria 27 as defined in 2003

by the World Health Organization (WHO). These criteria specify the

ideal characteristics of a test that can be used at all levels of the

health system, and are defined as: (i) affordable, (ii) sensitive, (iii)

specific, (iv) user‐friendly, (v) rapid and robust, (vi) equipment‐free,
(vii) delivered to those who need them.27-29

PAD manufacturing has been intensively explored and described

in the literature. Techniques involving laser cutting, wax printing or

photolithography are often cited.30-34 PADs were originally devel-

oped for the separation of plasma from whole blood ‐ notably by

using glass‐fiber paper,35 for the detection of heavy metal ions 36,37

or for the detection of biomolecules such as uric acid and glucose in

various biological samples.38,39 PADs have also been used for

bacterial diagnostics (egMycobacterium tuberculosis).40 More recently,

PADs have been developed for arboviruses diagnostics, including

Zika and dengue.34,41,42 To date, few data are available concerning

CHIK diagnostic.

The presence of CHIKV‐specific IgM that appears early in the

disease is indicative of a recent infection. Assaying for their presence

is recommended from the 5th‐day onset after onset. Historically, the

IgM capture enzyme‐linked immunosorbent assay (MAC‐ELISA)
developed by the Centers for Disease Control and Prevention

(CDC, Atlanta, GA) for the serological diagnosis of chikungunya used

either a chemically inactivated chikungunya viral lysate (CHIK VL),43

or a CHIKV envelope recombinant protein.44

In the present paper, a laser‐cut glass‐fiber PAD using chikungu-

nya pseudo‐particles (PPs) and virus‐like‐particles (VLPs) as alter-

native antigens to the viral lysate, was evaluated as a proof of

concept for CHIKV IgM serology in human samples. PPs and VLPs are

multiprotein structures that mimic the organization and conforma-

tion of the native virus but lack the viral genome and are therefore

noninfectious.45

2 | MATERIALS AND METHODS

2.1 | Materials and specimens

Anti‐E2 monoclonal antibody (3E10A5) was internally produced.

3E10A5 was directed against a conformational epitope of E2. If

needed, it can be labeled with alkaline phosphatase (AP) following

conventional procedures. CHIK VL was produced and purified by the

Centre National de Reference des arbovirus (CNR Arbovirus, Institut

de Recherche Biomédicale des Armées/IRBA, Marseille, France) using

standard procedures.46

CHIK‐negative sera and whole blood specimens were obtained

from healthy donors from the French National Blood Bank

(Etablissement Français du Sang, Lyon, France). Patient serum

specimens were obtained from Biomnis, ABO (Lyon, France) and

IRBA (Marseille, France) through specific contracts with bioMérieux

SA (Lyon, France). Informed consent was obtained for all experi-

mentation. All experiments were performed in compliance with

relevant laws and institutional guidelines and in accordance with the

Ethical Standards of the Declaration of Helsinki.

2.2 | VLPs and PPs production and purification

The methods for obtaining VLPs or PPs were adapted from previous

studies.45,47,48 Briefly, for the PPS, 293T eukaryotic cells (ICAAC,

Washington, DC) were cotransfected with plasmids encoding the Gag‐
Pol (core) proteins of Murine leukemia virus, the green fluorescent

protein (GFP) or the chikungunya viral envelope glycoproteins, by the

CaCl2 method (Clontech Transfection Kit; Clontech, Fremont, CA)

following the manufacturer’s instructions. After transfection, the cells

were incubated overnight at 37°C. The transfection was checked the

next day by controlling the presence of GFP in the cells using a flow

cytometer (FACS Calibur; Becton‐Dickinson, Franklin Lakes, NJ). For

VLPs, the same protocol was applied except that only one plasmid,

containing the genes encoding the different structural proteins of the

CHIKV, was used. After an additional 24 hours of incubation, the cell

culture medium containing the unpurified VLPs or PPs (u‐VLPs or

u‐PPs) was harvested and filtered using a 0.45 μm filtration unit (Merck

Millipore, Burlington, MA).

The filtered cell culture medium was either frozen at −80°C or

purified by ultracentrifugation. In this case, the medium was loaded

on a 2mL sucrose cushion (20% w/v in PBS1x) and was ultracen-

trifuged at 107 000g, for 2 hours at 4°C (SW 41 T rotor, Beckmann
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Optima LE 80 K ultracentrifuge, Indianapolis, IN). The pellet contain-

ing the particles was resuspended in PBS1X and then frozen and

stored at −30°C. About 60 μL of purified VLPs (p‐VLPs) or purified

PPS (p‐PPs) were recovered from a 10 cm Petri dish containing 7mL

of OPTIMEM medium (Invitrogen, Carlsbad, CA).

2.3 | Western blot analysis

Antigens were analyzed in nonreducing conditions. Briefly, 2.5 μL of

antigen was mixed with 2.5 μL of 4X NuPAGE LDS Sample Buffer

(Thermo Fisher Scientific, Waltham, MA). Then, 5 μL of deionized

water was added (q.s. 10 μL). Samples were heated at 70°C for

10minutes and transferred to a NuPAGE 4%‐12% Tris‐Bis 200M gel

(Invitrogen, Carlsbad, CA). The sample migration occurred in a 1X

MES migration buffer (Thermo Fisher Scientific) over 52minutes at

200 V, 400mA, and 100W. The transfer of migrated proteins on a

PVDF membrane (Merck Millipore) was performed using an

Invitrolon apparatus following the manufacturer’s instructions

(Thermo Fisher Scientific). Proteins were revealed with the 3E10A5

primary antibody and an AP‐labeled antimouse secondary antibody

(bioMérieux SA) using the Snap‐iD 2.0 Protein Detection System

(Merck Millipore), and the addition of NBT/BCIP Substrates (nitro‐
blue tetrazolium and 5‐bromo‐4‐chloro‐3′‐indolyphosphate; Thermo

Fisher Scientific). Protein bands on the blots were analyzed using a

GS‐800 scanner (BioRad, Hercules, Ca). The ImageJ software (https://

imagej.nih.gov/ij/) was used to quantify the gray intensity level of

each band. The height of each band was also evaluated using the

ImageJ software by measuring the distance between the upper and

lower zones of the bands.

2.4 | MAC‐ELISA

IgM antibody capture ELISA proceeded according to standardized

methodology.43,49-51 Polystyrene 96‐well plates were coated overnight

at 4°C with 5 μg.mL−1 of goat anti‐human IgM (Jackson ImmunoR-

esearch, Baltimore Pike, PS) in PBS1x. Plates were washed with PBS1x

containing 0.05% Tween 20 and blocked with a solution of PBS1x

−0.5% BSA for 1 hour at 37°C. Fifty microliters of patient serum 1:200

diluted were added and incubated for 1 hour at 37°C. CHIKV antigens

diluted in PBS1x −0.05% BSA –0.05% Tween 20 were then added and

incubated for 2 hours at 37°C. The optimal antigen concentration was

experimentally determined for each antigen: p‐VLPs or p‐PPs were

diluted 1:20, u‐VLPs or u‐PPs were used undiluted, the E2

recombinant protein (Aalto Bio Reagent, Dublin, Ireland) was used at

2 μg.mL−1, the viral lysate inactivated by β‐propiolactone was diluted

at 1:400. Finally, 0.5 μg.mL−1 of AP‐conjugated anti‐E2 monoclonal

antibody (3E10A5; bioMérieux SA) was added into each well and

incubated for 1 hour at 37°C. After intensive washing, the reaction

was developed at room temperature for 15minutes after adding a

PNPP solution (P‐NitroPhenyl Phosphate, Thermo Fisher Scientific),

and was stopped by adding 2N sodium hydroxide. The optical density

(OD) was measured at 450 nm in a plate reader (Eon Biotek; Biotek

Instruments, Winooski, VT).

2.5 | Paper devices manufacturing

Laser‐cut PAD manufacturing was described in details in a previous

publication.34 Briefly, two ARcare7815 auto‐adhesive plastic layers

(Adhesive Research Inc, Limerick, Ireland) and a glass‐fiber paper (MF1;

GE Healthcare, Velizy, France) were cut using a 30W CO2 laser cutting

machine (Speedy 100; Trotec, Niederhausbergen, France) following a

pattern designed with Inkscape v.0.92. Parameters like speed displace-

ment and laser power are optimized for each material (paper or

adhesive) and the expected results. PADs are made of three layers. The

bottom layer and the top layer are made of the adhesive film

ARcare781, a 2mil clear polyester film coated on one side with a

medical grade acrylic pressure‐sensitive adhesive. The intermediate

layer is the MF1 glass‐fiber based paper. Manufacturing and assembly

steps are performed before any biological activation.

2.6 | PAD biological activation and CHIKV IgM
testing

The Test area was coated with a capture antibody directed against

the human IgM (0.5 μL at 4 mg.mL−1, Jackson ImmunoResearch) in

PBS1x. The Control area was spotted with an anti‐alkaline
phosphatase monoclonal antibody (14A10B7, bioMérieux SA; 0.5 μL

at 0.5 mg.mL−1 in PBS1x). The Mock area was coated with 0.5 μl of

PBS1x containing 0.5% BSA (PBS‐BSA). One microliter of an anti‐E2
AP‐labeled monoclonal antibody (AP‐3E10A5, bioMérieux SA),

diluted to 0.05mg.mL−1 in a buffer containing detergent and sucrose

(VIKIA buffer, bioMérieux SA), was mixed with 1 μL of lyophilized

unpurified PPs (u‐PPs‐lyo) for 5minutes at room temperature, and

the mix was loaded in the square‐shaped sample hole (2 μL).

Alternatively, the Test area was directly coated with 0.5 μL of

u‐PPs‐lyo. In that case, an AP‐labeled anti‐human IgM monoclonal

antibody diluted in VIKIA buffer was loaded into the square‐shaped
sample hole (3 μL at 0.1 mg.mL−1).

The functionalized PADs were dried for 1minute 30 seconds at

60°C. Then, 0.5 μL of PBS‐BSA was added to the Test area, to minimize

background noise. Finally, the PADs were dried for 1minute 30 seconds

at 60°C again. Once functionalized, the PADs could be stored for

several days at room temperature or at 4°C before use.

For IgM testing, the PAD was loaded with 30 μL of biological sample

(serum). Once the sample was totally absorbed by the PAD, 30 μL of the

precipitating, coloring substrate (5‐bromo‐4‐chloro‐3‐indolyl‐phosphate
solution; BCIP; Promega, Charbonnières, France) was added. Finally, the

PAD was incubated for a few minutes until BCIP absorption and the

appearance of the signal – blue if the sample is positive. A picture was

then taken using a smartphone, 8 to 10minutes after the sample loading.

2.7 | Ethical approval

All procedures performed in studies involving human participants were

in accordance with the ethical standards of the institutional and/or

national research committee and with the 1964 Helsinki Declaration

and its later amendments or comparable ethical standards.
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3 | RESULTS

3.1 | Anti‐CHIKV IgM detection on MAC‐ELISA

It has previously been demonstrated that CHIK VL was the antigen of

choice for sensitive IgM detection by MAC‐ELISA.43 Logically, CHIK

VL seemed to be the ideal antigen for the PAD. However, producing

CHIK VL and using it for serology requires a Level‐3 laboratory and

can be problematic in terms of safety. The CHIK VL is traditionally

inactivated by treatment with a chemical reagent (eg β‐propiolac-
tone) that potentially has an impact on the viral protein structure. To

find a safer and more convenient alternative solution to CHIK VL for

CHIKV IgM serology, we compared a variety of other antigens,

including CHIKV‐PPs, CHIKV‐VLPs, and CHIKV E2 recombinant

protein.

These antigens were first evaluated by MAC‐ELISA. As the VLPs/PPs

purifications steps (ie centrifugation; see section 2) were time‐consuming

and could result in a significant loss of material, VLPs and PPs were

tested either purified by ultracentrifugation (p‐PPs and p‐VLPs, around
0.1 μg.μL−1 in PBS1x) or unpurified (u‐PPs and u‐VLPs). In this case, the

cell culture supernatant that contained the VLPs/PPs was directly used.

The E2 recombinant protein was used at 2 μg.mL−1. Experiments were

conducted on 20 CHIKV IgM‐positive patient sera tested in duplicate.

Twenty samples from healthy patients (without CHIKV IgM) were used

as negative control.

As illustrated in Figure 1A, the highest signal was observed for a

MAC‐ELISA using the nonpurified PPs, u‐PPs (OD = 2.860+/−0.140).

The signal was approximatively 2.4 times higher than for CHIK VL

(OD = 1.259+/−0.066), which is considered as the reference assay.

The u‐VLPs showed a signal 1.4 times lower than the signal observed

for CHIK VL, and 3.2 times lower than for the u‐PPs. Conditions using
p‐PPs or p‐VLPs and E2 protein shared approximately the same

signal level (OD between 0.461 and 0.602), ie approximately

F IGURE 1 CHIKV IgM MAC‐ELISA. (A)
CHIKV IgM MAC‐ELISA using different
CHIKV antigens. Viral lysate (VL)
corresponds to the reference antigen.

Black bars: test; gray bars: negative control
using a healthy patient serum (no CHIKV
IgM). Each condition has been conducted

at least 20‐fold in duplicate; (B) relative
quantity of CHIKV E2 protein estimated
for each antigen by Western blot analysis
and densitometry analysis. CHIKV,

chikungunya virus; IgM, immunoglobulin
M; MAC‐ELISA, IgM capture enzyme‐
linked immunosorbent assay; p‐PP/p‐VLP,
purified PP/VLP; u‐PP/u‐VLP: unpurified
PP/VLP
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2.4 times lower than the signal of the reference assay, and 5.5 times

lower than the u‐PPs condition.

Antibody 3E10A5, used in the MAC‐ELISA as a detection

antibody, is directed against a conformational epitope of the E2

protein. To ensure that the signal observed in MAC‐ELISA with u‐PPs
was not due to a difference in E2 protein concentration, the

concentration for each antigen was estimated from the Western

blot analysis using the 3E10A5 antibody and densitometry analysis.

Figure 1B shows the values calculated from the Western blot picture.

The value of each bar on the graph corresponds to the formula (band

gray value intensity) × (band surface). The highest signal was

observed for VL (gray intensity relative value, V = 254), which

featured a value 1.4 times higher than for the recombinant protein

E2 (V = 176.4). In comparison, the signal calculated for u‐PPs
(V = 34.2) was 7.4 times lower and 5.2 times lower than in the CHIK

VL and the E2 recombinant protein, respectively. The same

magnitude order was observed for p‐VLPs. The p‐PPs showed a

signal 2.8 times higher than all others PPs/VLPs antigens tested.

The results showed that, among the various antigens tested by

MAC‐ELISA, the CHIKV‐u‐PPs have the highest signal intensity and

can be used as an alternative antigen to VL.

3.2 | Anti‐CHIKV IgM detection on PAD using
different antigens

To confirm the results obtained with MAC‐ELISA, the different

CHIKV antigens were first evaluated on PAD (Figure 2A), functio-

nalized as for CHIKV MAC‐ELISA plates (ie with IgM‐directed
antibody as a capture tool; Figure 2B).51 IgM detection was

performed by loading 30 μL of serum onto the PAD. The addition

of the sample resulted in the resuspension of the dried AP‐3E10A5

antibody and the dried antigens that migrated along the PAD. After

BCIP addition, the AP‐3E10A5‐antigen‐IgM complex was revealed

after capture by the anti‐IgM antibody in the Test area. A blue signal

in the Test area indicated that the sample was positive for CHIKV

IgM. The test was validated by the presence of a blue signal on the

Control area (functionalized with an AP‐directed monoclonal anti-

body). No color should appear on the Mock area. The entire process,

from the sample loading to the final picture, took less than

10minutes.

A specific detection signal (S) was calculated for each experiment

using the ImageJ software. The value of S corresponded to the

formula (gray level calculated for Mock area)/(gray level calculated

for Test area).34 Thus, S takes into consideration the background

observed in the Mock area. For negative sera, S had values between

0.95 and 1.032. For positive samples, a dark blue signal appeared on

the Test area (Figure 2C) and S could reach values up to 1.95. The

presence of blue color in the Control zone indicated that the test was

successfully validated. The complete process, from the sample

loading to the final picture, took around 8minutes. Each antigen

was tested in duplicate on three CHIKV IgM‐positive sera and one

healthy CHIKV IgM negative serum.

Despite the encouraging results obtained on MAC‐ELISA, the first

results obtained on the PAD with u‐PPs and u‐VLPs were negative.

To assess whether the signal could be improved by increasing the

concentration of the u‐PPs or u‐VLPs, 2 mL of culture media

containing the u‐PPs or u‐VLPs were lyophilized at 13 μbar at

−80°C (Usifroid lyophilisator; Société Nouvelle Usifroid, Elancourt,

France). The lyophilisate was finally resuspended in 100 μL of ultra‐
pure water to obtain a 20‐fold concentrated antigen. For IgM

serology, the lyophilized/concentrated antigens (u‐PPs‐lyo or u‐VLPs‐
lyo) were loaded on the Test zone of the PAD.

F IGURE 2 CHIKV IgM detection on

PAD. (A) Picture of a ready‐to‐use PAD; (b)
schematic depiction of the MAC‐ELISA
detection format (from Castellanos et al51);
(C) examples of results obtained for IgM

serology on PAD (for CHIKV IgM‐positive
sera and negative sera). S (specific
detection signal) corresponds to the

formula (gray level calculated for Mock
area)/(gray level calculated for Test area).
CHIKV, chikungunya virus; IgM,

immunoglobulin M; MAC‐ELISA, IgM
capture enzyme‐linked immunosorbent
assay; PAD, paper‐based analytical device
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The PAD functionalized with u‐PPs‐lyo gave a positive result for

the detection of anti‐CHIKV IgM (S = 1.302). All the other antigens

such as VLPs, E2 recombinant protein, diluted or not diluted, showed

negative results on PAD (S values between 1.013 and 1.037). For

CHIK VL, the PAD was negative when used diluted at 1:400 as in

MAC‐ELISA (S = 1.000), but was positive when the VL was used

undiluted (S = 1.117). In comparison, the S value for u‐VLPs‐lyo
remained negative (S = 1.037), around 1.25 times lower than the

S value for u‐PPs‐lyo (S = 1.302).

Thus, for CHIKV IgM serology on the PAD, u‐PPs‐lyo is to be

used preferably as a capture antigen.

3.3 | CHIKV IgM PAD performances

To estimate the sensitivity of the PAD, a positivity threshold was first

calculated. The Limit Of Detection (LOD) determines the threshold

above which the test result can be considered positive. Twenty‐four
PADs were loaded with 30 μL of serum samples from healthy

patients (without CHIKV IgM). For these PADs, the mean of S was

1.027 and the standard deviation (SD) was 0.02. Consequently, for

CHIKV IgM detection on sera, a PAD was considered positive when

the S value was higher than M + 2SD = 1.067.

PADs were evaluated by loading 30 μL of 14 CHIKV IgM sera.

Twelve sera from patients without CHIKV IgM were also tested. Only

five CHIKV sera of 14 (36.7%) were found to be positive on the PAD

(Smax = 1.096 and Smin = 1.077; see Supporting Information Data 1).

Alternatively, the antigen (u‐PPs‐lyo) was directly spotted on the

Test zone of the PAD, as capture tool (Figure 3A). The test was

performed by loading 30 μL of the sample on the PAD. Detection was

performed using an anti‐human IgM AP‐labeled monoclonal antibody.

For this new PAD format, a new positivity threshold was

calculated as described above. Forty‐four PADs were loaded with

30 μL of serum samples from healthy patients (without CHIKV IgM).

For these PADs, the mean) of S was 1.002 and the SD was 0.018.

Thus, for CHIKV IgM detection in sera, the PAD was considered

positive when the S value was higher than M + 2SD = 1.039. Of the

44 negative sera tested, only one appeared positive, with a S value

of 1.047.

Thirty‐four sera samples (21 females/13 males; mean age, 37

years) were tested on PAD for CHIKV IgM serology. All samples had

previously been tested by a CHIKV MAC‐ELISA and were confirmed

to be CHIKV IgM‐positive by the providers.

The results illustrated by Figure 3B showed that among the 34

samples tested on PAD, 24 came up as positive, with an S mean of

1.110 and an SD of 0.059 (Smin = 1.042 and Smax = 1.527). The PADs

that came up negative presented an S mean of 1.008, with an SD of

0.008 (Smin = 0.992 and Smax = 1.029). The Figure 3C depicted the

results obtained with the 44 negative sera. Taken together, these

data allowed to estimate the PAD sensitivity as 70.6% (95% CI:

52.52% to 84.89%). The specificity of the PAD was also calculated as

97.7% (95% CI: 87.98% to 99.94%; see Table 1).

3.4 | IgM detection in plasma specimens from
patients infected by other arboviruses

The PAD was evaluated for patient sera that were IgM‐positive for

other arboviruses such as dengue virus (DENV) and Zika virus (ZIKV;

see Table 2). These sera were confirmed to be CHIKV IgM negative

by sera providers. These viruses were chosen because of their

recurrent cocirculation with CHIKV in tropical countries 52 and the

capacity of the flavivirus genus to induce antibody cross‐reactivity.53

We also evaluated the sample from a patient infected with

O’Nyong’Nyong viruses (ONNV), an alphavirus known to cross‐react
with CHIKV.54,55 Thus, a total of 26 specimens, consisting of recently

infected DENV (n = 11), ZIKV (n = 14), and ONNV (n = 1) patient

samples, were evaluated in parallel using the CHIKV MAC‐ELISA (ie

the reference method), the CTK Biotech anti‐CHIKV IgM LFA (CTK

Biotech, San Diego, CA), and the PAD. In addition, 18 healthy samples

were tested as negative controls.

F IGURE 3 CHIKV IgM PAD performances. (A) Schematic
depiction of the format using unpurified and lyophilized CHIKV
pseudo‐particules (u‐PP‐lyo) as capture antigen, directly coated on

the PAD; (B) detection of CHIKV IgM on PAD using u‐PP‐lyo as
capture antigen for 34 patient sera. Each test was conducted in
duplicate or in triplicate. A PAD is considered positive when S is
equal to or higher than 1.039 (positivity threshold); (C) CHIKV anti‐
IgM negative samples tested on the PAD using u‐PP‐lyo as capture
antigen for 44 patient sera. Each test was conducted in duplicate or
in triplicate. A PAD is considered positive when S is equal to or

higher than 1.039 (positivity threshold). CHIKV, chikungunya virus;
IgM, immunoglobulin M; PAD, paper‐based analytical device
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All the DENV IgM‐positive sera were found to be negative for

CHIKV IgM with MAC‐ELISA. When tested using the CTK Biotech

rapid test, these samples were also found to be negative. Interest-

ingly, by using the PAD, two sera were found lightly positive for

CHIKV IgM (S1 = 1.093; S2 = 1.056).

As for the dengue samples, all the ZIKV IgM‐positive sera were

found negative by the CHIKV MAC‐ELISA. However, one serum was

observed to be positive on the CTK Biotech rapid test. On the PAD,

three sera were found to be positive (S1 = 1.180; S2 = 1.144;

S3 = 1.103).

Concerning the ONNV IgM‐positive serum, it was found to be

negative with CHIKV MAC‐ELISA.
The negative samples were always found to be negative.

4 | DISCUSSION

The development of immunological rapid point‐of‐care (POC) and

home‐based diagnostic tests, such as lateral flow assays, have greatly

contributed to generating appropriate analytical results more rapidly,

thereby accelerating patient management.56 In this regard, it seems

crucial to collect biological samples within a short period of time,

close to the patient location, with the aim of administrating the most

adequate treatment to the patient, or of adjusting it quickly.57

In previous publications, a new type of POC test, the paper‐based
analytical device, called PAD, was successfully developed for DENV

NS1 proteins and specific IgM detection in various human biological

samples. In both cases, the LOD was close to that obtained with a

commercial rapid test.33,34

In the present paper, the PAD was tested as a prototype for the

detection of specific CHIKV IgM in sera. The reference method for

specific CHIKV IgM detection is MAC‐ELISA. In MAC‐ELISA, CHIK

VL is generally used as an antigen that binds specific IgM to be

detected. However, obtaining viral lysate is time‐consuming and

requires that experiments be conducted in a Biosafety Level‐3
laboratory.58 Before any use, the virus must be inactivated using

chemical treatment such as β‐propiolactone (BPL).59 It is generally

recognized that BPL inactivates viruses through cross‐linking of viral

surface proteins. Consequently, BPL treatment could alter the overall

structure of envelope viral proteins, which may modulate the affinity

of antibodies for these proteins and thus decrease the sensitivity of

the test.60,61

To overcome these drawbacks, alternative antigens to the viral

lysate were produced and tested for specific CHIKV IgM detection.43

Among these antigens, VLPs and PPs, two types of synthetic viruses,

were chosen because of their innocuous nature due to the absence of

viral genome. They can be produced in a simple Biosafety Level‐2
laboratory. Moreover, they do not require chemical inactivation, as

with viral lysate, reducing the risk of alterations of antigenic epitopes.

Synthetic viruses are well characterized and have already been

considered to be a powerful template to develop next‐generation
vaccines.47,62-64 However, there are few references in the literature

regarding the use of these antigens as diagnostic tools.65,66

Interestingly, using MAC‐ELISA, a very strong detection signal for

specific CHIKV IgM was observed for u‐PPs in comparison with all

other antigens, including CHIK VL. The difference of the signal was

apparently not due to the relative quantity of E2 protein present in

each antigen. The differences could be explained by the intrinsic

nature of the antigens used. For example, E2 recombinant protein

was produced in sf9 insect cells, not in mammalian cells. Between

these two expression systems, the nature and linkage of mono-

saccharides to N‐glycosylation sites are different and can lead to

changes in the folding and three‐dimensional structure of the E2

protein.67 In this regard, two potential N‐glycosylation sites have

been identified on the E2 protein sequence (https://www.ncbi.nlm.

nih.gov/Structure/cdd/cddsrv.cgi?uid = 279311). On the contrary,

VLPs and PPs were produced in 293T eukaryotic cells, closer to

the natural production cycle of the virus, and allowed to more

effectively mimic the native CHIKV.

It has previously been shown that the PAD sensitivity is generally

lower than that for ELISA.33 Here, it has been necessary to

concentrate the culture supernatant containing the PPs through a

lyophilization step to obtain a specific signal from IgM‐positive
samples. Interestingly, a positive result for the detection of CHIKV

IgM was also obtained with the CHIK VL. Preliminary experiments

conducted on the wax‐printed version of the PAD 33 showed

negative results with CHIK VL for CHIKV IgM serology. The antigen

u‐PPs‐lyo showed positive results with all PAD versions (wax‐printed
and laser‐cut versions). In addition, the S value obtained for CHIK VL

TABLE 1 PAD performances for CHIKV IgM detection

Reference test (MAC‐ELISA)

Test to evaluate (PAD) Positive Negative Total

Positive 24 1 25

Negative 10 43 53

Total 34 44 78

Abbreviations: CHIKV, chikungunya virus; IgM, immunoglobulin M;

MAC‐ELISA, IgM capture enzyme‐linked immunosorbent assay;

PAD, paper‐based analytical device.

TABLE 2 Cross‐reaction with other arboviruses

PAD
LFA (anti‐
CHIKV IgM)

MAC‐
ELISA

DENV 2/11 (18%) 0/11 (0%) 0/11 (0%)

ZIKV 3/14 (21.4%) 1/14 (7.1%) 0/14 (0%)

ONNV 0/1 (0%) 0/1 (0%) 0/1 (0%)

Negative sera 0/18 (0%) 0/18 (0%) 0/18 (0%)

Healthy negative sera, DENV, ZIKV, ONNV IgM‐positive sera were tested

using the PAD functionalized for CHIKV IgM serology, a commercial

lateral flow assay for the CHIKV IgM serology (CTK Biotech) and the

CHIKV MAC‐ELISA. The ratio and the percentage represent the number

and the proportion of positive for each test. Each test has been conducted

in triplicates.

Abbreviations: CHIKV, chikungunya virus; DENV, dengue virus; IgM,

immunoglobulin M; LFA, lateral flow assays; MAC‐ELISA, IgM capture

enzyme‐linked immunosorbent assay; ONNV, O’Nyong’Nyong viruse;

PAD, paper‐based analytical device; ZIKV, Zika virus.

THEILLET ET AL. | 7



was lower than the S value for u‐PPs‐lyo. Finally, as previously

discussed, obtaining the u‐PPs‐lyo is easier and safer than the CHIK

VL. Consequently, u‐PPs‐lyo could be used as capture antigen on the

PAD instead of the CHIK VL.

In a previous study, Prat et al24 evaluated two CHIKV IgM rapid

tests: SD Bioline CHIKV IgM (Standard Diagnostics Inc., Yongin‐si,
South Korea), and OnSite Chikungunya IgM Combo Rapid Test (CTK

Biotech Inc). The SD Bioline showed poor sensitivity (30%) and

specificity (73%) for CHIK patients. Authors calculated that 39% and

57% of the results were false negatives and false positives,

respectively. Concerning the CTK Biotech Kit, results showed 20%

sensitivity and 93% specificity for CHIKV, with 36% of false

negatives and 33% of false positives. These results led the authors

to state the ineffectiveness of these kits. A similar study conducted

by Kosasih et al68 showed similar sensitivity results, but a higher

specificity for CTK Biotech test, evaluated at 100%. However, for the

SD Bioline Kit, the sensitivity reached 68.2% by increasing the time‐
to‐result to 20minutes instead of 10minutes. Arya SC et al69

evaluated the performances of the CTK Biotech kit as well,69 and

calculated sensitivity and a specificity of 71% and 100%, respectively.

For the authors, these commercial kits are essential in healthcare

centers for developing countries, to be used in the routine early

diagnosis and to initiate control measures for CHIK.

The sensitivity of the solution presented here (70.6%) was

comparable to these performances, with a time‐to‐result of 10min-

utes. Clinical performances were calculated from a small cohort of

patients (N = 78) and need to be confirmed on a larger cohort.

Equivalent sensitivity was observed by Arya et al69 for the same SD

Bioline kit. By increasing the reading time to 20minutes, as

suggested by the manufacturer, the sensitivity of the SD Bioline test

dropped to 68.2%.68 However, this value remains lower than that

obtained with the PAD. The performance of these kits is summarized

in Supporting Information Data 2.

Rianthavorn et al70 claimed that the sensitivity of these tests is

correlated to the duration of symptoms. Consequently, rapid tests

should not be used as a screening diagnostic tool during the first

week of the disease, when IgM is present at low titers in infected

patients. This could explain the poor performances of these tests.

In comparison, commercial ELISA designed for CHIKV IgM

serology, have better performances than the LFA or the PAD.

Drebot et al18 evaluated commercial kits from Abcam, EuroImmun,

and InBios, and found for each kit a sensitivity of 100%, and a

specificity of 97% (Abcam, Cambridge UK ; EuroImmun, Lubeck

Germany) and 100% (InBios, Seattle, WA). Despite their improved

detection performance, these commercial ELISAs do not exactly

match the ASSURED criteria defined by WHO: they require qualified

staff, incubators, and readers, and they are expensive and time

consuming. This could be an obstacle to their use in the poorest

countries.

The PAD can overcome these hurdles by offering a faster time‐
to‐result of 8 to 10minutes, and a much cheaper diagnostic solution

than ELISA tests, with clinical performances comparable to those of

most commercialized rapid tests. Compared with a “traditional” LFA,

the cost of goods of the PAD was found to be between 5‐ and 10‐fold
lower. In addition, the PAD has a reduced size (9 cm2 surface area

and 0.07 cm thickness) and is made of fewer materials, which is

advantageous for storage and waste management.34

Some DENV and ZIKV IgM samples were found to be positive on

the PAD for the detection of CHIKV IgM. In the literature, there is no

report describing cross‐reactions between these viruses regarding

IgM serology. This could be due, in part, to the folding similarities

observed between the alphaviruses and flaviviruses envelope

proteins. Atomic resolution crystal structure of the alphavirus E1

protein showed a folding pattern related to the E protein of

flaviviruses, suggesting homology of at least some genes between

flaviviruses and alphaviruses.71 In addition, flaviviruses were pre-

viously classified in the Togaviridae family, suggesting some simila-

rities to the current members of this family. However, owing to viral

cocirculation, improvements are required to lower the level of cross‐
reactivity observed with the PAD. It would be interesting to put

flaviviruses specific antibodies upstream of the PAD Test area.

Cross‐reactions between CHIKV and ONNV have already been

reported.72 The two viruses belong to the same Semliki Forest virus

complex.2,73,74 Interestingly, the PAD showed no cross‐reaction with

the ONNV sample. It will be necessary to test a larger panel of

alphavirus patients other than CHIK patients, such as O’Nyong‐
Nyong or Ross River patients. However, this type of patients is quite

rare and are difficult to find.

Clinical performances of the PAD suggest that it would be

beneficial to improve sensitivity and reduce cross reactions. Many

ways to enhance sensitivity detection of specific CHIKV IgM on PAD

were investigated. Besides the nature of the antigens and their

positions on the PAD, chemical pretreatments of the PAD were also

studied. Thus, chitosan coating and glutaraldehyde cross‐linking were

used to modify the surface of the PAD to covalently immobilize

antibodies on it. Moreover, these compounds simultaneously

enhance the wet‐strength of the PAD and the stability of immobilized

antibodies, because chitosan is readily compatible with paper and

imparts improved mechanical strength to the paper 75-79 However,

no significant difference in sensitivity was observed in comparison

with the PADs that were not functionalized with chitosan and

glutaraldehyde.

Another way to enhance sensitivity performance was the addition

of anti‐Human IgG antibody or G protein on the PAD, upstream of

the Test area. These proteins are expected to capture IgG from the

sample tested, thereby decreasing IgG binding on the Test area, and

in turn enhancing the specific IgM detection signal. Unfortunately, in

our hands, no significant improvement was observed.

Alternatively, sensitivity could also be enhanced by testing

various blocking agents such as Biolipidures (NOF America Corp,

Irvine, CA), known to reduce nonspecific adsorption and to enhance

specific signal.80

Currently, many approaches are being explored to improve the

performance of arbovirus diagnosis on paper or on low‐cost
microchips. Thus, it is possible to use the aptamers as tools for

CHIKV detection. Bruno et al81 developed and screened a DNA
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aptamers bank directed against CHIKV envelope proteins, for the use

as diagnostic tools on paper. The selected aptamers were used for

capturing and/or detecting CHIKV envelope proteins. Compared with

the cost of production of monoclonal antibodies, aptamers can be

considered as a low‐cost raw material.

Electrochemical immunosensors also seem to be a promising

approach for arbovirus detection. For instance, Kaushik et al82 have

developed an electrochemical immunosensor for the specific and

sensitive detection of ZIKV, using a network of gold microelectrodes

integrated to an immunodetection chip. The binding of the protein of

interest to the microchip produces an electrical current that is

measured by electrochemical impedance spectroscopy, allowing

detection of the viral protein over a range of 10 pM to 1 nM.

Another biosensor system uses an optical biosensor coupled to the

CRISPR technology to detect the viral genome of ZIKV on paper.83

Detection is highly selective due to the hybridization between the

CRISPR‐Cas9 sensor and ZIKV RNA. In a logical way, these methods

using biosensors could be applied to the CHIKV diagnosis.

The cut‐off values of a serodiagnostic test are calculated so as to

minimize the total cost of misdiagnoses.84 To determine the

appropriate cut‐off value above which a PAD will be regarded as

positive, many variability factors must be weighed: the nature and

quality of the tested sample (serum or blood), the signal quantifica-

tion procedure (use of a specific software, impact of natural or

artificial light, user experience, test repeatability). All these factors

have to be considered to determine the best threshold value. For

serology on the PAD, it was decided to set the threshold at M + 2SD,

as described in the literature.85 With this threshold, we obtained an

acceptable specificity but average sensitivity (97.7% and 70.6%,

respectively). By setting the threshold at M + 1.5SD, sensitivity

remains unchanged, but specificity falls to 81.8%. At M + 1SD,

sensitivity increases to 73.5%, but specificity decreases to 77.3%.

When using the gray‐level analysis software (ImageJ), manual

selection of the different PAD areas may impact the S value

calculation which may slightly differ from one reading to another.

Automating the S value calculation can be an alternative way of

improving PAD sensitivity. Many previous studies have demon-

strated the benefits of a smartphone for reading and obtaining a

quantitative and objective result for an accurate diagnostic.86-91 For

the first version of the PAD,33 an Android‐based application was

developed on a smartphone for reproducible and quantitative results

from the raw signals. This application calculated, from a simple

picture of the PAD, the S value and compared it with the cut‐off
value, to determine if the test was positive or negative. By limiting

the variations in measurement that are inherent to the manual

method, S values reproducibility was improved. A new version of this

smartphone application is to be further developed for use with the

improved version of the PAD presented in this publication, to

enhance both the reproducibility and the sensitivity of detection.

Recently, Quesada‐González and Merkoçi92 predicted that the

development of smartphone biosensing will probably decentralize

existing care systems and laboratories, in the near future. They also

foresee the rapid spread of POC diagnostic tests and other

monitoring devices to be used as close to the patient as possible.

The use of a smartphone as a tool for diagnostic tests is compatible

with the ASSURED criteria since the arrival of new phone

manufacturers make smartphones accessible to the greatest number

of people.93

In the present publication, a new solution using PPs on laser‐cut
PAD was evaluated in the context of a proof of concept for CHIKV IgM

detection. The use of CHIK synthetic viruses, such as PPs, present an

alternative way of developing new serological diagnostic tests for CHIK,

and could be applied to the diagnosis of other viral diseases. By

combining CHIKV and DENV diagnostics, PAD could be a very useful

tool for multiplexed arboviruses diagnosis in endemic regions of the

world, enabling to improve patient care at a very low price. However, it

will be necessary to carry out a study on a larger cohort of samples to

confirm the performance level obtained from the PAD. Moreover, the

development of a smartphone‐based PAD reader, combined with a

dedicated application, would provide faster and more accurate

diagnostic results, while also objectivizing the result obtained and

making the reading easier for the operator and/or the patient.
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