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ABSTRACT  
Cell-free systems (CFS) are emerging as a powerful platform for biomanufacturing. The 

optimisation of the cell-free system is important to achieve maximum yield. The experimental 

optimisation is time-consuming and expensive. Different kinds of modelling emerged in the 

last decades, helping to optimise the pathway of interest in a shorter time at a low cost. In this 

study, we tested two approaches: systemic through the implementation of neural networks, and 

analytical through the use of differential equations. In the first step, an artificial neural network 

model was built to predict the flux through the pathway, and in the second step, a new 

methodology termed GC-ANN was developed to select optimum and cost-efficient enzyme 

balances for higher flux. This approach showed unexpected betterment of flux estimation, up 

to 63%. In the third step, a kinetic model was built and estimation of kinetic parameters for 

selected enzymes was achieved to replicate experimental conditions. Finally, linked to one of 

the most demanding chemicals, malate synthesis pathway was successfully modelled in the 

cell-free system. Even though many studies have been performed, biomanufacturing has not 

yet been possible for malate. The combination of the cell-free system and modelling could help 

achieve the biomanufacturing of malate. Overall, this thesis explores different mathematical 

modelling approaches, and their limits, for optimising metabolic pathways. 
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RESUME  
Les systèmes acellulaires sont en train de devenir une puissante plateforme de biofabrication. 

L'optimisation de systèmes acellulaires est importante pour obtenir un rendement maximal. 

L'optimisation expérimentale, en laboratoire humide, est longue et coûteuse. Différents types 

de modélisations permettant d'optimiser la voie d'intérêt, en un temps plus court et à moindre 

coût, sont apparus au cours des dernières décennies. Dans cette étude, nous avons testé deux 

approches : systémique à travers la mise en œuvre de réseaux de neurones, et analytique à 

travers l’utilisation d’équations différentielles . Dans une première étape, un modèle à réseau 

de neurones artificiels a été construit pour prédire le flux de métabolites à travers la voie. Dans 

une seconde étape, une nouvelle méthodologie, appelée GC-ANN, a été développée pour 

sélectionner des équilibres enzymatiques optimaux, et rentables, pour des valeurs de flux plus 

élevées. Cette approche a permis une amélioration inattendue du flux, jusqu'à 63%, validée in 

vitro. Dans une troisième étape, un modèle cinétique a été construit, et l’estimation des 

paramètres cinétiques pour les enzymes sélectionnées a été réalisée, afin de reproduire les 

conditions expérimentales. Enfin, liée à l'un des produits chimiques les plus exigeants en 

termes de production, la voie de synthèse du malate a été modélisée avec succès dans un 

système acellulaires. Même si de nombreuses études ont été réalisées, la biofabrication a grande 

échelle n'est pas encore possible pour le malate. La combinaison du système acellulaire et de 

la modélisation pourrait aider à réaliser la bioproduction du malate. De manière plus générale, 

cette thèse explore différentes approches de modélisations mathématiques, et leurs limites, pour 

l'optimisation de voies métaboliques. 
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With the evolution of technology and industrialisation, there has been increased utilisation of 

fossil fuel which led to the historical rise in atmospheric carbon dioxide (CO2). Population 

growth and increasing deforestation has led to a decrease in natural CO2 fixation which in turn 

has increased the global average atmospheric CO2 to 405 ppm 

(https://www.iae.org/topics/climatechange). CO2 is recognised as one of the major causes of 

global warming and finding ways to decrease the level of CO2 is an emergency for the survival 

of life on this planet. Using CO2 for the production of different chemical molecules is one of 

the ways to reduce the net CO2 concentration in the atmosphere. 

Currently, four major methods are utilised for the CO2 fixation into different products- 

chemical, electrical, photochemical and biological methods (J. Shi et al., 2015; Singh et al., 

2018). The carbon atom in CO2 is in a higher oxidation state and therefore requires energy to 

be converted into other products. Hence, industrial-scale production is limited. The chemicals 

currently synthesised by CO2 fixation are limited by market size and the electrical and 

photochemical fixation has not matured enough yet for large-scale production. The biological 

CO2 fixation is greatly observed naturally in plants and autotrophic microorganisms for 

photosynthesis. The biological method is the most appealing approach, due to the mild 

condition and high yield (Mistry, Ganta, Chakrabarty, & Dutta, 2019). However, low solar 

energy utilisation efficiency limits photosynthesis reaction by the enzymes (Y. H. Percival 

Zhang, 2013). Numbers of autotrophs have been identified, characterised and engineered for 

the CO2 fixation into chemical molecules, including ethanol (Dexter & Fu, 2009), lactic acid 

(Angermayr, Paszota, & Hellingwerf, 2012), isobutyraldehyde (Atsumi, Higashide, & Liao, 

2009), 1,3-propanediol (Hirokawa, Maki, Tatsuke, & Hanai, 2016), etc. 

Many of the biomolecules like organic acids (Alsaheb et al., 2015; Cherrington, Hinton, Mead, 

& Chopra, 1991), antibiotics (Awan et al., 2017; Haris et al., 2018; Weissman & Leadlay, 

2005), bioethanol, etc. (Khattak et al., 2014; Y. H. Percival Zhang, Sun, & Zhong, 2010) are 

used in the pharmaceutical and food industries, and as energy sources. Biomolecule production 

is attracting the attention of biologists and industries, due to the decrease in non-renewable 

resources and global warming (Yim et al., 2011; Y. H. Percival Zhang, 2010). For decades, 

scientists have been successfully producing different chemical molecules through microbial 

fermentation by optimising the process (Xiulai Chen, Wang, Dong, Hu, & Liu, 2017; Lee et 

al., 2012; Martínez, Bolívar, & Escalante, 2015; Yim et al., 2011). Synthetic biology and 

systems biology helped obtain the highest yield of biomolecules from the source (Anderson, 

Islam, & Prather, 2018; Lee et al., 2012; Zeng et al., 2018). 

https://www.iae.org/topics/climatechange
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In the following section, I discuss different fields of synthetic biology, systems biology, and 

the most commonly used databases and tools to study metabolic pathways. 

1.1 Synthetic Biology 
Synthetic biology is the interdisciplinary field of biology which uses engineering and chemistry 

for the synthesis of biomolecules in substantial quantity. Synthetic biology uses natural 

functional parts of the biological systems, and redesigns or reassembles the parts to maximise 

their potential. The most important goal of synthetic biology is the cost-effective production of 

chemicals, drugs, and fuels (Clomburg, Crumbley, & Gonzalez, 2017; Dudley, Karim, & 

Jewett, 2015; Yi Heng Percival Zhang, Sun, & Ma, 2017). Synthetic biology could be broadly 

classified into two types, in vivo, and in vitro as described hereafter. 

1.1.1 In vivo Synthetic Biology 
In vivo, synthetic biology or cell-based system utilises the living entities for production; the 

field has greatly developed with the advancement of DNA sequencing (Y. Chen, Banerjee, 

Mukhopadhyay, & Petzold, 2020; Choi et al., 2019). Traditional methods such as gene 

knockouts, gene editing, or metabolic engineering methods help assemble the biosynthetic 

pathway. The expression of heterologous genes which helps channel the pathway in particular 

directions, substrate channelling where reactants are directed to the active site of enzymes 

(Wheeldon et al., 2016; Y. H. Percival Zhang, 2011) ), quorum sensing which is capable of 

sensing a signal and responding with the gene expression (Tan & Prather, 2017), enzyme 

engineering, etc lead to improved yield. Escherichia coli and Saccharomyces cerevisiae 

organisms which are mainly engineered to produce alcohols, alkanes, and alkenes (Fatma et 

al., 2018; X. Song, Yu, & Zhu, 2016; Y. Zhang, Nielsen, & Liu, 2018). However, microbial 

biosynthesis has its disadvantages- cell toxicity, low productivity, and the possible 

coproduction of by-products, which requires complex and protracted product recovery 

processes (Lu, 2017). Also, the synthesis of some molecules on an industrial scale through 

microbial fermentation is not cost-effective due to expensive substrates. 

1.1.2 In vitro Synthetic Biology 
Nobel laureate Eduard Buchner had laid the foundation for the cell-free system (CFS) of 

biomolecule production by converting sugar into ethanol in 1897. In vitro synthetic biology or 

cell-free system, constructs the artificial synthetic pathway for the conversion of a substrate to 

the product outside the cell. These systems consist of minimised parts of the metabolic pathway 
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achieving high efficiency in production. The cell-free systems are the reconstruction of 

biological pathways and minimise the cellular process. In vitro system can be of two types, 

either cell lysate based, where the cells are lysed and used for the production (Schoborg, 

Hodgman, Anderson, & Jewett, 2014; Shrestha, Holland, & Bundy, 2012), or pure enzyme-

based: a mixture of purified enzymes and cofactors are in the system to produce the desired 

product (Y. H.Percival Zhang, 2010). CFS has been successfully used in the synthesis of many 

products like bio-hydrogen (Fontaine, Grondin-Perez, Cadet, & Offmann, 2015; Xinhao Ye et 

al., 2009), bio-ethanol (Khattak et al., 2014; Yi Heng Percival Zhang, 2015), antibodies 

(Huang, Sheng, Xu, Zhu, & Cai, 2014), vaccines (Junhao Yang et al., 2005), proteins (Lu, 

2017), etc. The advantages of the cell-free system are: no by-product formation, high 

volumetric productivity, high product titre, high tolerance to toxicity, untroubled process 

control and optimisation, etc. 

 

1.2 Computational Biology 
The complexity of the biological system and the availability of a large amount of data lead to 

using computers in biology, and encourage computational biology to be developed as a 

multidisciplinary field. Computational biology developed fast in the past decades with the 

blend of computer science, applied mathematics, statistics, and engineering to understand 

biological problems. Computational biology is extensively used for data analysis, molecular 

modelling and prediction, and simulation, etc. 

1.2.1 Study of Metabolic Pathways 
The metabolic pathways are extensively studied using synthetic biology approaches. The cell-

free systems partly eliminate the problem regarding the performance, compared to the cell-

based system, by avoiding unnecessary reactions while protein engineering is successfully used 

to improve the performance of enzymes (Erb & Zarzycki, 2016; C. Li, Zhang, Wang, Wilson, 

& Yan, 2020). However, the implementation of experimental processes for the 

biotransformation can be lengthy and costly for production. In silico approach for optimising 

the process will require less time and cost. 

The construction of the model of the metabolic network consists of four steps: 
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i. Identification of constituents of the system: To improve a metabolic network by in silico 

approach, first, it is necessary to conceptualise the system in a model that can reproduce 

the behaviour of the real system. The selection of constituents of the system is the first 

step in modelling. The selection of the system is with regards to the interest of 

metabolites or pathway. Even though this step looks simple, it is crucial and tough 

because, if important components are missing, then the final results will be 

compromised. Alternatively, if it contains too many components, the model could be 

overparameterized. 

ii. Identification of topology and regulators: This step requires substantial prior knowledge 

of the pathway. The biochemical research over the past 100 years has documented 

information about many of the metabolic pathways. The machine learning or graph-

based approaches require minimal prior knowledge, but experimental data are 

necessary. 

iii. Choice of mathematical representation: Depending on the availability of data and 

knowledge of the system, one could choose the type of the model to represent the 

system. 

iv. Parameter estimation: Parameter estimation depends on the type of the constructed 

model. When experimental data are available, parameter values are usually determined 

using inverse problem. Depending on the model chosen, the simultaneous estimation 

of many parameters can be a difficult task. 

These steps are followed by an analysis of consistency, model sensitivity, and stability. Once 

the model is optimised and validated, then it can be used to identify the regulatory points of the 

system, in order to improve its behaviour. The metabolic pathway modelling can be classified 

into two broad categories: 

i. Knowledge-based model: This approach requires detailed knowledge of the system 

and its elements. This approach is also known as an analytical method. 

ii. Data-based model: The data-based model requires experimental data from the 

system of interests. In this approach, the whole system is studied as only one entity 

and at the macroscopic level. 

The choice of an approach, depends on the aim and information available about the system. 

Whichever approach is used, the model must reproduce the experimental behaviour of the 
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given system. The accuracy of the model is variable, depending on the type and the complexity 

of the system. 

1.2.1.1 Knowledge-Based Model 
The emergence of genomics, transcriptomics and proteomics, along with improvements in 

information technology, helped us to integrate the information, build the mathematical in silico 

model of a biological system and observe its behaviour (Fukushima, Kusano, Redestig, Arita, 

& Saito, 2009; Nookaew, Olivares-Hernández, Bhumiratana, & Nielsen, 2011; Pereira et al., 

2018; Schilling et al., 2002; Stelling, 2004). Researchers became more interested in the 

mathematical modelling of biological systems due to the availability of data from “-omics” 

studies (Stelling, 2004). The modelling helps to organise the system information, to simulate 

and, hence, to optimise the experiment and to understand the system characteristics. The 

integration of different “-omics” data helped understand the genetic differences between the 

phenotypes, identify the molecular signature (Acharjee, Kloosterman, Visser, & Maliepaard, 

2016; Wheelock et al., 2013), and use metabolic engineering (G. Q. Chen, 2016; Vemuri & 

Aristidou, 2005), etc. There have been many attempts to model biological systems, like 

Saccharomyces cerevisiae (Duarte, Herrgård, & Palsson, 2004; Förster, Famili, Fu, Palsson, & 

Nielsen, 2003; Nookaew et al., 2011; Price, Reed, & Palsson, 2004), Escherichia coli (Feist et 

al., 2007; Reed & Palsson, 2003; Weaver, Keseler, Mackie, Paulsen, & Karp, 2014), other 

organisms (Pereira et al., 2018), and many plant metabolic networks for observing and 

predicting the behaviour of a system using different methods (Rios-Estepa & Lange, 2007; 

Stelling, 2004). 

Many kinds of mathematical models exist to study biological systems (Arturo & Mora, 2016; 

Friedman & Kao, 2012). From the data and constraints used, the mathematical modelling can 

be classified into two broad categories (Rios-Estepa & Lange, 2007; Stelling, 2004) i.e., 

constraint-based or stoichiometric modelling (Covert, Famili, & Palsson, 2003; Price et al., 

2004; Vijayakumar, Conway, Lió, & Angione, 2017), and kinetic modelling or mechanistic 

modelling (Almquist, Cvijovic, Hatzimanikatis, Nielsen, & Jirstrand, 2014; Srinivasan, Cluett, 

& Mahadevan, 2015; Steuer, Gross, Selbig, & Blasius, 2006).  

The metabolic network modelling, always requires the knowledge of stoichiometry. The 

stoichiometry defines numbers of reactants and products involved in the pathway, and how the 

network is connected. The stoichiometric metric is built to summarise the system and the 

stoichiometric coefficients are used to describe the reactants and the connection with the 
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network. A negative value is assigned for the reactants as they are consumed and positive for 

the product as it is formed. The rows of the matrix refer to metabolite and columns to reactions. 

The following equilibrium equation defines the steady-state: 

Equation 1.1: S is a vector of concentration of metabolites, N is the matrix of stoichiometric coefficients 

and v is a vector of reaction rates. 

    𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑁𝑁𝑁𝑁 = 0   (1.1) 

The knowledge-based modeling methods can be further classified into two types: 

1. Constraint-based model 

2. Kinetic model 

 

1.2.1.1.1 Constraint-Based Model 
The constraint-based model uses physio-chemical constraints like mass balance, 

thermodynamic constraints, etc., in the modelling, to observe and study the behaviour of the 

system (Covert et al., 2003). Different constraint-based methods have been developed to study 

the metabolic pathways, like flux balance analysis (Orth, Thiele, & Palsson, 2010) or metabolic 

flux analysis (Wiechert, 2001).  

Flux balance analysis is an approach to study biochemical networks on a genomic scale, which 

includes all the known metabolite reactions, and the genes that encode for a particular enzyme. 

The data from genome annotation, or existing knowledge, are used to construct the network 

(Edwards & Palsson, 2000; Schilling et al., 2002), and the physicochemical constraints are 

used to predict the flux distribution, considering that the total product formed must be equal to 

the total substrate consumed in steady-state conditions (Orth et al., 2010). This method is used 

to predict the growth rate (Edwards & Palsson, 2000; Jamshidi & Palsson, 2007; Orth et al., 

2010; Schilling et al., 2002) or the production of a particular metabolite (Claudia, Quintero, & 

Ochoa, 2015). Flux balance analysis aims to solve Equation 1.1 to calculate the intracellular 

fluxes. (The review of flux balance analysis can be refered (K. Raman & Chandra, 2009), 

https://en.wikipedia.org/wiki/Flux_balance_analysis,  

Metabolic flux analysis is an experiment based method and allows the quantification of 

metabolites in the central metabolism using the Carbon-labelled substrate (Xuewen Chen, 

Alonso, Allen, Reed, & Shachar-Hill, 2011; Christensen & Nielsen, 2000; Wiechert, 2001). 

https://en.wikipedia.org/wiki/Flux_balance_analysis


Doctoral Thesis Anamya Ajjolli Nagaraja  Chapter 1 

Page | 8  
 

The labelled substrate is allowed to distribute over the metabolic network, and is measured 

using NMR (Albert A. de Graaf, Mattias Mahle, Michael Mollney, Wolfgang Wiechert, Peter 

Stahmann, 2000) or mass spectrometry (Orth et al., 2010).  

Elementary modes (Schuster, Fell, & Dandekar, 2000) and extreme pathway analysis 

(Schilling, Edwards, Letscher, & Palsson, 2000) use the concept of metabolic path. An 

elementary mode is a unique metabolic path within a network, in the stationary state. An 

elementary mode consists of a minimum number of reactions and forms a unit of the network. 

The elimination of a reaction from an elementary mode reduces its functionality. 

The extreme pathways are sub-parts of the paths forming elementary modes. The determination 

of an end path, for extreme pathway analysis is through the same rules as an elementary mode, 

with two additional features. The internal reactions to the system are broken down into two 

reactions, one forward direction and the other- reversible direction. An end channel is unique, 

it cannot be represented by the combination of other preexisting extreme channels of the 

network. 

Constraint-based methods have an advantage as they do not require kinetic information. 

However, the constraint-based method does not provide information about the concentration 

of metabolites. 

1.2.1.1.2 Kinetic Model 
The kinetic model defines the reaction mechanism in the system using kinetic parameters to 

evaluate rate laws. Kinetic rate law defines how one or more reactants, products and effectors 

interact, and how fast the reaction takes place. Kinetic modelling of pathways helps to better 

understand their behaviour and replicate the system. These rate laws are defined from the 

experiment, assuming that the experimental conditions are similar to in-vivo conditions (A 

Cornish-Bowden and C W Wharton., 1988). To build a kinetic model, the system is made as 

simple as possible, while retaining the system behaviour. Several kinetic laws have been 

described, and often used to study the mechanism: 

i. Law of mass action: The law of mass action was determined in 1867 by the Norwegian 

chemists Cato Guldberg and Peter Waage. It associates the equilibrium concentrations 

of metabolites with a constant KT, which only depends on the temperature. 

Equation 1.2: Relationship between constant KT and the concentration of metabolite. 
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𝐾𝐾𝑇𝑇 =  ∏[𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑑𝑑]
∏[𝑑𝑑𝑃𝑃𝑆𝑆𝑆𝑆𝑑𝑑𝑃𝑃𝑆𝑆𝑑𝑑𝑆𝑆]

       (1.2) 

The law of mass action is used to express the kinetics of chemical reactions, but remains 

insufficient to write biochemical reactions. Indeed, it does not take the behaviour of the 

enzyme into account, and it does not describe the possible enzyme-substrate 

interactions. 

ii. Michaelis-Menten equation: The German Leonor Michaelis and the Canadian Maud 

Menten in 1913 defined Michaelis-Menten's law. This is specific to enzymatic 

reactions which establish a link between the speed of the reaction with the 

concentration of substrates, and the kinetic parameters of the enzyme used. The rate of 

reaction v, for an irreversible enzyme which converts the substrate to product is:  

S -> P 

Equation 1.3: Michaelis-Menten rate equation for irreversible conversion of substrate S to 

product P. 

𝑁𝑁 =
𝑉𝑉𝑚𝑚𝑆𝑆𝑚𝑚 ∗  [𝑆𝑆]
𝐾𝐾𝑚𝑚 + [𝑆𝑆]

                 (1.3) 

Where, Vmax = kcat * [E] 

kcat is the catalytic constant of an enzyme, which refers to the maximum number of 

substrate converted to product per unit of time (usually time in seconds). [E] and [S] 

are the concentration of the enzyme and substrate. Km is Michaelis-Menten constant 

which describes the affinity of an enzyme for the substrate.  

The dynamic model, (i.e, kinetic model) allows a better-quality reproduction of the system in 

terms of precision, than the static models like constraint-based models. However, it requires 

the knowledge of the kinetic parameters of each enzyme. The modelling of enzymes like 

phosphofructokinase, which is involved in the glycolysis pathway, can be problematic and, 

might need more parameters than other enzymes (Teusink et al., 2000). Determining the kinetic 

parameter is expensive and time-consuming (Hakenberg, Schmeier, Kowald, Klipp, & Leser, 

2004); some parameters can be more difficult to measure (Bisswanger, 2014). Although many 

enzymatic assays are described in the literature, sometimes it is necessary to modify the assay 

for new enzymes, or to find a new one. Following enzyme reaction through spectrophotometer 

or spectrofluorimeter is difficult, due to no absorption or emission signals (Bisswanger, 2014) 

linked to the reactants. Most of the available kinetic data are obtained from in vitro studies 
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using purified enzymes, which might not represent the exact properties of in vivo enzymes 

(Steuer et al., 2006). For example, the Vmax value measured in vitro, may not represent the 

value of an in vivo system, due to the destruction of enzyme complexes, cellular organisation 

and the absence of an unknown inhibitor or activator (Albe & Wright, 1992; Wright, Butler, & 

Albe, 1992). 

1.2.1.2 Data-Based Model 
The data-based approach is not about analysing each elementary entity of the system, but 

aggregating the whole into functional sub-parts. Interactions between subparts and the 

environment around the system are to be taken into account in the modelling, and only 

interaction between subparts and the environment is considered, excluding the internal detail. 

The input and output variables of the system are the only known and described variables 

whereas the internal entities and the mechanisms involved remain undetermined. This approach 

requires experimental data to build a model. The data-based modelling approach consists of 

two stages: 

i. Learning phase: From the experimental data, the model parameters are estimated to 

reproduce the similar behaviour of the data. The model represents relationships and 

logical links between the conditions and the behaviours of the system, represented 

by the outputs. 

ii. Validation phase: Using the established model from the learning phase, predict the 

behaviour of the system. The predicted behaviour is compared with experimental 

behaviour to assess the accuracy of the model. If the model has an acceptable 

accuracy, it can be used to predict the behaviour of unknown conditions. 

Several data-based methods are used in different fields of science. These methods are 

developed on the basis of the learning and validation phase. The neural network is one of such 

data-based modelling methodologies used extensively in different disciplines. 

1.2.1.2.1 Artificial Neural Network 
The biological neural system inspired the artificial neural network (ANN) model structure. 

Neurologists developed and designed the first neural networks during the years 1940-1950 

(Lettvin, Maturana, Mcculloch, & Pitts, 1959; Mcculloch & Pitts, 1990). The main aim of ANN 

is to mimic the human brain for its ability to process the information and acquire knowledge.  
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The neural network is an architecture, modelled on the brain, organised with neurons and 

synapses present in a structure of nodes (formal neuron) connected together (Hassoun, 1996; 

Jain, Mao, & Mohiuddin, 1996). The neuron is capable of receiving one or more signals (input) 

from the other neurons. It sums the information, analyses and processes the summed 

information and sends a response signal (output). By analogy to biological neuron, the formal 

neuron performs upon receipt of the input signals into a weighted, sum and processes this 

weighted sum by an activation function. If the threshold of the signal is reached, then the 

response will be transmitted. 

Each signal as the input of a neuron is associated with a weighting coefficient to give different 

weights to the information arriving at the computation cell. Signals from output go to the input 

of other formal neurons or to the outside of the system. 

Each numerical input corresponds to the input layer, and the value to predict (variable to 

explain) corresponds to the last level, the output layer. Between those two layers, intermediary 

nodes are present, built specifically and in sufficient numbers to model the problem; they form 

the hidden layer. The architecture of ANN can be summed up as in Figure 1.1: 

 

Figure 1.1: Assembly of a neural network in three layers. Information goes from the input cells to the 

output layer. pi represents the weighting coefficients of the signals coming from the neurons n1, n2..n5 

going towards the hidden neuron 1. qi represents the weighting coefficients of the signals coming from 
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the neurons n1, n2..n5 going towards the hidden neuron 2. ℿ and Ω is the weighting coefficients for the 

signal between the hidden layer and the output layer. 

i. Input layer: The first layer is made up of a set of neurons, which are receivers of 

input signals, coming from outside, picked up by the system. Each signal activating 

the system is materialised by an input cell. 

ii. Hidden layer: The second layer has a variable number of neurons. Each of these 

neurons receives signals from all the neurons in the input layer. These neurons 

process statistical information received. The weighting coefficients need to be 

estimated allowing the complex function, which represents the entire neural 

network, to reproduce the output signal. The number of hidden neurons used by the 

system is to be determined by a trial/error process to retain the one that most closely 

reproduces the actual behaviour of the system. The activation function calculates 

the weighted sum of inputs, add bias. 

iii. Output layer: The third layer receives and processes all the information generated 

by the hidden layer to reproduce the behaviour specific to the system in response to 

the conditions encountered. A behaviour can be associated with several output 

signals. Each output signal from the system is materialised by an output neuron. It 

is possible to identify a neural network with several output neurons. 

The neural network has been successfully applied in different fields of science including 

physics (Giuseppe Carleo, 2017; Kolanoski, 1995), environmental science (Ahmed Gamal El-

Din, Daniel W. Smith, 2004; Liu ZeLin, Peng ChangHui, Xiang WenHua, Tian DaLun, Deng 

XiangWen, 2010; Pawul & Śliwka, 2016) and data mining (Eide, Johansson, Lindblad, & 

Lindsey, 1997; Kamruzzaman & Jehad Sarkar, 2011), for the prediction of different features 

in the system. The ANN is also core for deep learning (Schmidhuber, 2015). The artificial 

neural network can be used to predict the product outcome (i.e. flux through the pathway) when 

combined with flux balance analysis or other modelling approaches. In particular, the ANN 

has been used for the selection of optimised medium components in the fermentation process 

for producing different molecules such as lipids from Chlorella vulgaris (Morowvat & 

Ghasemi, 2016) and Spinosyns from Saccharopolyspora spinose (Lan, Zhao, Guo, Guan, & 

Zhang, 2015). ANN was employed, for instance, for the prediction of the flux through 

mammalian gluconeogenesis, using the simulated data from metabolite isotopic labelling 

(Antoniewicz, Stephanopoulos, & Kelleher, 2006). 
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The data-based model, like a neural network, is generally less precise than a dynamic analytical 

model, due to the abstraction of the internal behaviour of the system. However, it is easier to 

build because it requires only inputs and outputs. The property of the model depends on the 

time and the situations covered by the learning base used. 

 

1.3 Databases and Tools Used in the Modelling 
Analytical approach is the type of modelling most used by biochemists in the study of the 

metabolome. It only needs to determine the greatest number of molecular mechanisms present, 

which are the basic building blocks of the metabolic system. In silico reconstruction of 

metabolic networks makes it possible to identify and to analyse the molecular mechanisms 

involved in a physiological state of an organism. The first phase consists of retrieving the 

metabolic information of the reagents, enzymes and reactions involved in a metabolic pathway 

(Francke et al. (2005)). This phase requires the collection of data from publications and 

biological databases gathering related information to the metabolic pathways and genes, 

proteins, reactions involved. Many databases allow the collection of these data, examples: 

i. The KEGG database (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa & 

Goto, 2000), is one of the first databases, on the internet, gathering information on 

genes, proteins, reactions and metabolic pathways from the sequencing of a large 

panel of organisms. 

ii. The BRENDA database (BRaunschweig ENzyme Database) (Schomburg, Chang, 

& Schomburg, 2002) contains comprehensive enzymatic and metabolic data from 

various experiments updated regularly. It describes the biochemical property of 

each enzyme. 

i. SABIO-RK database ((http://sabio.h-its.org/, (Wittig et al., 2012) ) contains 

comprehensive information about biochemical reaction and their kinetic property. 

Several tools have been developed to model and to simulate the biological networks and 

process. To improve the compatibility of these tools, markup languages such as SBML 

(Systems Biology Markup Language, (Hucka et al., 2003) have been created. SBML is a simple 

XML-based software-independent language for representing biochemical reaction networks. 

The following are the tools used in this thesis for biochemical network analysis: 

http://sabio.h-its.org/
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i. CellDesigner (Funahashi, Morohashi, Kitano, & Tanimura, 2003) is a process diagram 

editor for the gene-regulatory and biochemical network using SBML. It helps in 

modelling and simulating networks. 

ii. COPASI (COmplex PAthway Simulator) (Hoops et al., 2006) is a biochemical 

simulator with the integration of diverse numerical methods to analyse the biochemical 

pathway.
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1.4 Aim and Scope of the Thesis 
Human activities have elevated the global atmospheric carbon dioxide and there is an urgent 

need to reduce the CO2 emission and to develop the strategy to reduce atmospheric CO2. One 

of the strategies is to convert CO2 into biochemicals. The biological methods are more 

favourable with the mild reaction conditions and are easy to handle. The main goal of this thesis 

is to model the biological pathway which helps in fixing atmospheric CO2 to a chemical 

molecule. In Chapter 1, I have discussed different methods to study the metabolic pathways. 

Recently, the cell-free systems (CFS) gained its attention to produce different biochemicals. 

CFS proved its efficiency in producing proteins, therapeutics and insulin. In this thesis, four 

studies are presented. For each one, I address different issues of metabolic engineering using 

the different types of modelling approaches to study the cell-free systems. 

In Chapter 2, the applications of synthetic biology, modelling approaches, different concepts 

and differences between differet methodologies chosen are described breifly. 

The glycolysis is a central carbon metabolism pathway, studied in different aspects such as 

diseases, bioprocessing, etc. Several biomolecules are produced by optimising the glycolysis 

pathway and the availability of experimental data provided the opportunity to use data-based 

modelling approach. Many methods are developed to determine or to estimate the flux through 

the pathways. But these methods require many parameters or constraints which can be 

expensive and time-consuming to determine. Hence, an artificial neural network (ANN) based 

method is developed in predicting flux using existing experimental data, and is discussed in 

Chapter 3. 

Furthermore, the selection of optimum enzymes balance for the higher product is one of the 

challenges in bioprocessing. In Chapter 4, a new methodology for selecting optimum enzyme 

concentration in part glycolysis is explained. The developed methodology is based on the flux 

estimation through the pathway using ANN. ANN is known to be inefficient in extrapolating 

predictions outside the box: high predicted values will bump into a sort of “glass ceiling”. 

However, by careful selection of the enzyme balances from glass-ceiling space could yield 

better flux. The newly developed approach (termed GC-ANN) also helps us to select the 

economic enzyme balances with higher flux values. 

ANN is a training-based model, the prediction of new data depends on the dataset used for the 

training of the model. The training dataset used to train the model in Chapter 3 and Chapter 
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4 is small (121). Obtaining larger dataset by experiments is expensive and tedious. Simulating 

data, using the kinetic model can be a convenient choice to reduce the experiments. In Chapter 

5, the kinetic model of the upper part of glycolysis is built using the experimentally measured 

kinetic parameter. And, we attempted to fit the model with experimental data in order to 

simulate the flux through the pathway. The main goal of Chapter 5 is to perform in silico 

replication of the experimental condition, and by doing so, to obtain larger datasets to enhance 

the learning by ANN models. 

Recently, in vitro system has emerged as a platform for biomolecule production with 

advantages such as no byproduct formation, no cell toxicity due to substrate/product. Indeed, 

producing the biochemicals from cell-based fermentation emits CO2 by respiration during the 

process. Global warming is the red flag to find ways to reduce the CO2 emission to the 

environment. Malic acid is one of the chemicals which can utilise CO2 during the synthesis 

with high demand in food, beverage and chemical industries. Currently, 40,000 tons of malate 

is produced annually whereas the global demand is 200,000 tons(Chi, Wang, Wang, Khan, & 

Chi, 2016). Malic acid is defined as one of the building blocks chemicals by the US department 

of energy (Werpy & Petersen, 2004). Currently, this dicarboxylic acid is mainly synthesised 

from chemical processes using the non-renewable resources. The depletion of these resources 

and environmental concerns encouraged to develop a green method for the synthesis. The 

detailed review of the synthesis of malic acid is explained in Chapter 6. Even after extensive 

studies of biosynthesis of malic acid using different microorganisms, sources and techniques, 

there is no successful method for the industrial-scale production using microorganisms. This 

provides an opportunity to select the malic acid as the molecule of interest in our study.  

In this thesis, the synthetic pathway for malic acid synthesis is reconstructed. In vitro systems 

using the thermophilic enzyme for synthesising malic acid are getting attention in recent years. 

To optimise the malic acid synthesis system using thermophilic enzymes, the kinetic model is 

built and studied in Chapter 7.
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2.1 Synthetic Biology Techniques and Application 
1911 by French biophysicist Stéphane Leduc laid the foundation for synthetic biology (Leduc, 

S. 1912. La Biologie Synthétique. A. Poinat, Paris.). Synthetic biology aims to engineer the 

biological system with the predictable behaviour of human needs. The long-term goal is to 

breakdown the complex system to interchangeable parts that can perform different functions. 

Synthetic biology gave rise to the development of many technologies that are implemented 

using the model microbial species Escherichia coli and Saccharomyces cerevisiae which 

includes biosensors that are capable of sensing the broad range of bioanalytes and responding 

with regulated expression, the engines for the production of biochemicals or performing 

complex logical functions.  

2.1.1 Engineering Synthetic Parts 
The proteins, RNA, and DNA are extracted from the natural producer and transferred to the 

host to develop a new system with a novel function. This feature is used to develop new 

pathways in vivo and in vitro, or by incorporating unnatural amino acid. 

2.1.1.1 Genetic Circuit Design 
The cells communicate and exhibit complex patterning by responding to signal with gene 

expression. Gene switches works at the different stage of central dogma molecular biology as 

signal responses and helps cells to adapt to the environment (Ausländer & Fussenegger, 2013; 

Bradley, Buck, & Wang, 2016; Brophy & Voigt, 2014). A typical gene switch consists of a 

sensor that detects the input signal and the regulatory unit controls the gene expression which 

is the output. Gene switches respond with different chemicals as a signal example, antibiotics 

(Fussenegger et al., 2000; Weber et al., 2002), metabolites, proteins, or physical signals such 

as light and temperature. 

2.1.1.2 Protein Switches 
Allostery is a feature of protein, where the binding of one ligand leads to the structural 

rearrangement and influences the other protein domain (Goodey & Benkovic, 2008; S. Raman, 

Taylor, Genuth, Fields, & Church, 2014). The general architecture of protein switches consists 

of a sensor domain that binds to ligands, which is coupled to a functional domain in a way that 

allows for its allosteric regulation. For example, the intracellular calcium receptors are fused 

with the two fluorescent proteins to readout the signal (Miyawaki et al., 1997).  
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2.1.1.3 Expansion of Genetic Code 
By incorporating unnatural nucleic acids, improve the functionalities, and improves diversity. 

Since the modified nucleic acids are not targeted by the nucleases is promising therapeutic 

agents (Vater & Klussmann, 2015). The unnatural amino acids are incorporated in the proteins 

and site-specific introduction of protein modifications also used in therapeutic agents (Wals & 

Ovaa, 2014). 

2.1.2 Genome Engineering 

2.1.2.1 Site-Specific Genome-Editing 
The DNA binding protein recombinases binds to a specific region of DNA and perform the 

alterations depending on the DNA recognition sites. The zinc finger nucleases(Kim & 

Chandrasegaran, 1994) and transcription activator-like effector nucleases (Boch et al., 2009; 

Moscou & Bogdanove, 2009) are programmed to bind to DNA sites in proximity within the 

genome and with endonuclease lead to the double-stranded breakage in the genome. 

2.1.3 Application of Synthetic Biology 

2.1.3.1 Metabolic Engineering 
Metabolic engineering aims to convert the host into powerful factories which can use 

feedstocks to produce metabolites. The novel pathways are designed both in vivo and in vitro 

by incorporating the parts from different organisms. The variety of secondary metabolites are 

produced by the natural host are engineered for the industrial scale. The anticancer compounds, 

taxadiene (Ajikumar et al., 2010), and noscapine (Y. Li & Smolke, 2016) are produced 

successfully. The in-vitro systems are advanced recently for the production of different 

metabolites due to the disadvantages of the microbial system as discussed in the introduction 

chapter. 

2.1.3.2 Biocomputing 
The cellular biocomputing systems sense various input molecules and respond with a biological 

output which makes it good candidates for the control-systems in therapeutic, diagnostic. RNA-

based gene switches used for the construction of logical gates in yeast and bacterial (C. C. Liu 

et al., 2012; Win & Smolke, 2008). 
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2.1.3.3 Other Applications of Synthetic Biology 
The cell-free technology is used in diagnosis, for example, the capability of transcriptional 

factors to detect environmental signals which can serve as biosensors when added to the cell 

extracts used for the diagnosis of viral RNAs in diagnosis example Ebola (Pardee et al., 2014)- 

and Zika-specific (Pardee et al., 2016) sequences. The components that can be freeze-dried on 

a paper can be activated at the time of need. 

The detailed review of synthetic biology techniques and application can be found in many 

reviews (Cameron, Bashor, & Collins, 2014; Dudley et al., 2015; El Karoui, Hoyos-Flight, & 

Fletcher, 2019; Keasling, 2012; Lu, 2017). 

 

2.2 Modelling of the Biological System 
A mathematical model describes the behaviour of the system and can be used for 

different purposes, such as predict the future behaviour of the system, estimate unmeasurable 

variables, used in a model-based control strategy, determine the optimal operating conditions, 

etc.  The modelling is considered Succesful when the model, i. is accurate in representing the 

existing behaviour, ii. Should be able to predict the behaviour which is not already observed, 

iii. when the model can be used in another condition and iv. The model should be simple. 

The modelling methods involve different steps that are described in Chapter 1 section Study of 

Metabolic Pathways.  

Typically model consists of several components as bellow: 

i. Variables: one variable in ordinary differential equations (ODEs), or more than one 

variable as in partial differential equation (PDEs) example time t and space (x,y,z). 

ii. Unknown functions : which depends on the time example concentration of enzyme, 

substrate, and product {[E](t), [S](t), [P](t) respectively}. 

iii. Parameters: This can be varied under the experimental condition which leads to the 

change in the system behaviour. 

iv. Constants: which are fixed values, for example, Avogadro constant. 
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2.2.1 Type Of The Model 
Deterministic vs Stochastic Model: in the deterministic model, the variable, parameter, 

and constants do not contain the randomness and are defined by a unique function. In the 

stochastic model, the variable, parameter, and constants contain the randomness, described by 

the probabilities. 

The detailed description of types of models, differential equations used in systems biology can 

be found in the notes (Kuttler, 2009; Y. Zheng & Sriram, 2010) (Kuttler, 2009; Y. Zheng & 

Sriram, 2010), http://www.thep.lu.se/˜henrik/bnf079/literature.html, http://www-

m6.ma.tum.de/~kuttler/script1.pdf, 

http://www.sontaglab.org/FTPDIR/systems_biology_notes.pdf.). 

2.3 Parameterisation Of Model 
Parameter estimation aims to identify the model parameter which fits best the model to 

experimental behaviour of the system. The parameter to be estimated depends on the type of 

model constructed. For example, in the ANN model, the learning rate and weights are to be 

estimated based on the experimental data whereas in the kinetic model, the unknow kinetic 

parameters need to be calculated. In this section, I briefly discuss different methods mainly in 

the kinetic modelling of metabolic pathways.  (The most of the information are taken from the 

review (Chou & Voit, 2009)). 

2.3.1 Parameter Estimation (PE) of Kinetic Models 
The measurements of kinetic parameters from individual experiments help to build the kinetic 

model of the system. The kinetic parameters can be obtained from databases such as BRENDA 

(Schomburg et al., 2002) or SABIO-RK (Wittig et al., 2012). If the measurement of the kinetic 

parameter is not available, it can be estimated using the experimental data, and estimation 

methods that use constraints from physical, chemical, or thermodynamic conditions to obtain 

the unique values (Chakrabarti, Miskovic, Soh, & Hatzimanikatis, 2013). 

The parameters from the individual experiments might not be efficient enough to represent the 

real behaviour of the whole system because the parameter measurements are taken from 

different laboratories using different in-vitro conditions. The parameter estimation can be 

performed for the kinetic model either by simultaneous estimation of all the parameters in the 

model to experimental data or one by one parameter. The type of data required for the different 
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methods of estimation is different and based on the availability of data different approaches or 

combinations of approaches can be implemented to obtain a better model. The optimisation 

algorithms are used for parameter estimation which searches the large space of possible values 

under the constraints to search global optimum in a feasible time. 

The currently available PE methods can be classified into the following classes: 

1. Forward or bottom-up modelling 

2. Using steady-state data 

3. Inverse or top-down modelling 

2.3.1.1 Forward or bottom-up modelling 
In the bottom-up approach, the kinetic model was built using the individual parameters of the 

enzymes involved. The individual enzymes are purified, characterised, and studied and 

identified the parameter and represented in the mathematical rate laws and combining the 

information from rate law to build the mathematical model. The databases such as KEGG 

(Kanehisa & Goto, 2000), MetaCyc, and BRENDA (Schomburg et al., 2002) help to choose 

the topology of the pathway and kinetic information. The forward approach can lead to the 

qualitative representation of the system. The outline of this method involves, the representation 

of the model and estimating the parameters, then test the model behaviour and if required 

perform the refinement of the model structure and the parameter. 

Even though this method looks simple and straightforward, the main disadvantage is the 

requirement of local kinetic parameters. And most of the time, the available parameters are 

from different organisms, experimental conditions therefore model might not represent the 

biological behaviour. This method can be laborious as it requires a series of refinements of the 

model. 

2.3.1.2 Using steady-state data 
The parameter estimation from the steady-state has been studied using stoichiometry and the 

flux. The estimation of the parameter from steady-state is by observing how the system behaves 

with small perturbations around the steady-state. Parameter values are obtained by changing 

the variable directly and measuring the flux. However, the data from these steady-state can be 

noisy and consists mainly few measurements (Chou & Voit, 2009). 
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2.3.1.3 Inverse or top-down modelling 
The modern high throughput technologies such as include nuclear magnetic resonance (NMR), 

mass spectrometry (MS), high-performance liquid chromatography (HPLC), and flow 

cytometry helps to measure the concentration of the metabolite in the sequential points in time. 

And this data could be used for the modelling approaches and it is named the "top-down" or 

"inverse" approach of modelling. The advantage of inverse modelling over forward modelling 

is that the data can be obtained from the same organism with the same experimental condition, 

however, the data because of the complexity and non-linearity of the biological system (Chou 

& Voit, 2009). 

2.4 Data-Based Modelling 
The data-based modelling (DBM) requires the experimental data to study the behaviour of the 

model at the macroscopic level. Based on the data used, DBM can be classified as supervised 

and unsupervised modelling. DBM approach provides a faster predictive model. The various 

methods of DBM are highly used in biology and metabolic pathway analysis (Carbonell, 

Radivojevic, & García Martín, 2019; Cuperlovic-Culf, 2018; Mishra, Kumar, & Mukhtar, 

2019; Zampieri, Vijayakumar, Yaneske, & Angione, 2019). Example, to study the enzyme 

turn-over number  (Heckmann et al., 2018), to predict the model dynamics (Costello & Martin, 

2018), Pathway prediction (Joseph M Dale, Liviu Popescu, 2010), Identify the essential 

genes(Plaimas et al., 2008). 

2.4.1 Supervised Modellling 
Supervised modelling uses the labelled data to learn from training data and predict the features 

for test data i.e, supervised modelling algorithms are designed to learn from the experience 

(https://en.wikipedia.org/wiki/Supervised_learning, 

https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-

algorithms/ https://towardsdatascience.com/a-brief-introduction-to-supervised-learning-

54a3e3932590 ). The supervised learning algorithm can be written as Equation 2.1. 

Equation 2.1 The learning function (f) maps input (X) to output (Y). Where Y is output and X is input 

variables. 

𝑌𝑌 =  𝑓𝑓(𝑋𝑋) 

Supervised learning can be classified into two types,  
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1. Classification: the model will be trained to classify data into different categories. The 

most common algorithm for classifications is Support Vector Machines, Decision 

Trees, K-Nearest Neighbor, Random Forest, etc. 

2. Regression: the model will be trained to find the relationship between the dependent 

and independent variables. Example: linear regression, neural networks, etc. 

2.4.2 Unsupervised Modelling 
Unsupervised modelling inferences are drawn from the data consists of unlabelled input data. 

In unsupervised modelling, no training will be provided to the model, therefore the model is 

restricted to find the hidden pattern within the data 

(https://en.wikipedia.org/wiki/Unsupervised_learning, 

https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a, 

https://www.guru99.com/unsupervised-machine-learning.html). 

Unsupervised modelling can be classified into two class 

1. Clustering: the inherent groupings in the data are identified. Example: Hierarchical 

clustering, k-Means clustering. 

2. Association: it allows establishing the association amongst the data object inside the 

dataset. 

The main differences between supervised and unsupervised modeling are given in Table 2.1. 

Table 2.1: The difference between supervised and unsupervised modelling. 

Features Supervised learning Unsupervised learning 

Input data 
Uses known and labeled data 

as input 
Uses unknown data as input 

Computational complexity Very Complex Less Computational Complexity 

Real-time Uses off-line analysis Uses real-time analysis of data 

Number of classes Number of Classes are known Number of Classes are not known 

Accuracy of results Accurate and Reliable Results 
Moderate Accurate and Reliable 

Results 
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2.5 Modelling Concepts and Difference Between the 

Approaches 
In this section, I describe few basic concepts involved in different algorithms used in the thesis. 

2.5.1 Artificial Neural Network 

2.5.1.1 Feed Forward Vs Backpropagation 
In Feedforward neural networks (https://en.wikipedia.org/wiki/Feedforward_neural_network, 

https://medium.com/machine-learning-for-li/explain-feedforward-and-backpropagation-

b8cdd25dcc2f), the connections pass from the input layer to the hidden layer and then to the 

output layer and do not form a circle. Whereas in the backpropagation 

(https://en.wikipedia.org/wiki/Backpropagation, https://medium.com/machine-learning-for-

li/explain-feedforward-and-backpropagation-b8cdd25dcc2f) the signal is passed in the feed 

forward, the error is computed and then propagate back to the earlier layer. 

2.5.1.2 Importance of Order of Training Data in ANN 
1. The order of data is important in ANN during the training phase. learning phase in the 

ANN model is not deterministic, so if we change the order of data, the output will differ 

during training. Setting seed, we assume that this change in the output is very low. 

2. The ANN used in this thesis is not a recurrent neural network so it does not contain a 

dimension of time. So if we change the order of data, we can expect a slight change in 

the outcome during the training. Once the model is trained, it is deterministic: for a given 

input, the output is always the same. 

3. Once the model is trained, it does not change the outcome of the test data. 
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2.5.2 Decision Tree Vs Random Forest 
Decision tree Random forest 

Is built using the entire dataset 

Several trees are built using the different 

subgroups of data, and each tree is ranked 

for each class 

Is a simple method to explain - 

We know what variable/value is used to 

make the decision 

It is a black-box approach, what 

variable/value used to make the decision is 

not known 

- Has high accuracy due to ranking 
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Chapter 3 Artificial Neural Network in 

Flux Prediction  
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3.1 Context 
Glycolysis is the centre of the metabolic system in all living organisms. It is an anaerobic 

pathway present in almost all living cells and also helps in ATP generation. Glycolysis is 

established as the central core for fermentation. It contributes to the production of different 

metabolites, like citric acid, succinic acid, amino acids, etc., through pyruvate, the end product 

of glycolysis (J. Liu et al., 2017).  

The ANNs were used earlier in predicting the fluxes from 13C labelling of metabolites in 

mammalian gluconeogenesis by M.R. Antoniewicz et al. (Antoniewicz et al., 2006). Three 

linear regression modelling methods, multiple linear regression (MLR), principal component 

regression (PCR) and partial least square regression (PLS) were performed on simulated data 

and compared to the ANN. The study showed that ANN, which requires the larger sample 

(>200), performed better with R2 0.95 than the other methods (R2 of 0.7) for flux prediction 

using new mass isotopomer data (Antoniewicz et al., 2006).  

Several approaches were developed to determine or estimate the flux through the metabolic 

pathway (Antoniewicz et al., 2006; Fiévet, Dillmann, Curien, & de Vienne, 2006; Nikoloski, 

Perez-Storey, & Sweetlove, 2015) as explained in section Knowledge-Based Model in 

Introduction chapter. Due to the challenges in estimating the flux using different methods like 

constraint-based and kinetic-based modelling approaches (Allen, Libourel, & Shachar-Hill, 

2009; K. Raman & Chandra, 2009; Rohwer, 2012; Vasilakou et al., 2016), a simple method 

using artificial neural networks was developed. This method is based purely on the existing 

experimental data, hence does not require kinetic parameters as in kinetic modelling and no 

prior information is required regarding the stoichiometry of the metabolic pathway. In this 

study, an artificial neural network was built to estimate the flux using enzyme concentrations 

for the upper part of glycolysis as input. Finding the optimum enzyme concentration, which 

gives the highest product through experiments is laborious and expensive. The neural network 

approach can help in choosing the optimum enzyme concentrations, which enhances the final 

product concentration without experimental setup, within a short period. Experiments are 

carried out to i) assess the structure of the ANN using three different approaches, ii) evaluate 

different activation functions, and iii) compare the prediction of flux of NADH to the fluxes 

predicted by Fiévet et al. (2006) 
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3.2 Materials and Methods 

3.2.1 Principle of Artificial Neural Networks  
The base element of ANN is the perceptron, defined in 1958 by Rosenblatt (Rosenblatt, 1958). 

A combination function computes a value from the input layer and some weight. This is a 

weighted sum ∑𝑛𝑛𝑖𝑖𝑝𝑝𝑖𝑖 (observed node) of the ni values in the input layer. To define the output 

value, a function called activation function is applied to this value. The ni is the node i, the 

weight pi corresponds to the connection between node i, the observed node and the activation 

function f, associated with the observed node (Figure 3.1). 

 

 

Figure 3.1: Architecture of the artificial neural network. The input layer consists of data provided, the 

middle layer is a hidden layer which consists of the number of neurons which consists of activation 

functions and an output layer which consists of processed information. 

 

The structure of an ANN is defined by the numbers of layers and nodes, by the way, they are 

linked (activation function) and the method to estimate the weights. 

3.2.1.1 Normalisation of Data 
The data normalisation is recommended in an artificial neural network, which speeds up the 

learning and converges faster. The normalisations lead to the magnitude of the data on the same 

scale. Min-Max normalisation is the most common normalisation where the scale will be 

between 0-1. The following bellow Equation 3.1 is used for the normalisation of data: 
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Equation 3.1: Equation for min-max normalisation of data. Where Xn is normalised data, Xi is the data 

value; Xmax is the maximum value of data, Xmin is the minimum value of data. 

𝑋𝑋𝑛𝑛 =
𝑋𝑋𝑖𝑖 − 𝑋𝑋min

(𝑋𝑋𝑚𝑚𝑆𝑆𝑚𝑚 − 𝑋𝑋min)
 

3.2.1.2 Cross-validation 
Cross-validation is a method of model validation, to validate how well the model predicts the 

new data which was not used to build the model. To evaluate the model, some data will be 

removed from the training and used to test the model performance with it. In K-fold cross-

validation, the data is divided into a k subset. Each time, a model is tested with one of the k 

subsets and a k-1 subset is used for the model training. And average errors across all k trials 

are computed. Leave-one-out cross-validation (LOOCV) is a K-fold validation where k equals 

the number of data points, N. The model will be trained with all data except one point for which 

prediction is made. The average error is computed and used to evaluate the model. The LOOCV 

is the nearest solution to the final model- as only one dataset is excluded from training. 

Parameter of the model are nearest to the final model however the limitation is that it might not 

be efficient in predicting the outliers. 

3.2.2 Input for Building the ANN Model 
The flux measurement data, from the in-vitro reconstructed upper part of glycolysis (Fiévet et 

al., 2006) was used to build the artificial neural network (Figure 3.2). The input for the ANN 

model consists of concentrations of enzymes phosphoglucoisomerase (PGI), 

phosphofructokinase (PFK), fructose bisphosphate aldolase (FBA) and triosephosphate 

isomerase (TPI) in mg/l, and the output was flux J (µM/s) measured as the NADH consumption 

by glycerol-3-phosphate dehydrogenase (G3PDH). The flux measured through the upper part 

of glycolysis was indirect, and assumed that most of the NADH in the system was consumed 

during the measurement. The data were normalised using the min-max method before building 

the neural network. 
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Figure 3.2: The upper part of glycolysis reconstructed in vitro. HK-hexokinase; PGI-

phosphoglucoisomerase; PFK-phosphofructokinase; FBA-fructose bisphosphate aldolase; TPI- 

triosephosphate isomerase; G3PDH- glycerol-3-phosphate dehydrogenase, CK- Creatine kinase. 

 

3.2.3 Experimental Details 
The upper part of glycolysis was reconstructed in vitro (Figure 3.2), with a constant 

concentration of hexokinase and glycerol-3-phosphate dehydrogenase, while the other four 

enzymes (PGI, PFK, FBA and TPI) concentrations varied. The total enzyme concentration of 

the four enzymes (PGI, PFK, FBA and TPI) was constant at 101.9 mg/l. The NADH 

consumption using the glycerol-3-phosphate dehydrogenase was monitored every 2 seconds 

with the Uvikon-850 spectrometer at 390 nm from 60 to 120 seconds. The linear slope of 

NADH was calculated as the flux through the pathway. The assays were performed in triplicate 

by Fiévet et al. (Fiévet et al., 2006), at 250C, by adding 1mM ATP at pH 7.5 (Table 3.1) 
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Table 3.1: The flux measured in the experiment for enzyme balances used to build the ANN model. 

PGI: phosphoglucoisomerase; PFK: 6-phosphofructokinase; FBA: fructose bisphosphate aldolase; TPI: 

triosephosphate isomerase; Jobs: Experimentally observed flux with standard deviation (S.D). 

mg/l µM/s 

PGI PFK FBA TPI Jobs S.D. 

25 70 2 4.9 0.74 0.08 

47.5 37.5 3.5 13.4 1.1 0.03 

70 5 5 21.9 1.22 0.08 

37.5 47.5 5 11.9 1.62 0.05 

40 35 5 21.9 1.72 0.02 

15 50 5 31.9 1.79 0 

20 10 5 66.9 1.87 0.04 

35 60 5 1.9 1.89 0.01 

40 45 7 9.9 2.07 0.12 

33 1 66.23 1.66 2.2 0.06 

45 37.5 8.5 10.9 2.32 0.06 

22.5 30 8.5 40.9 2.34 0.1 

35 32.5 8.5 25.9 2.39 0.21 

25 27.5 10 39.4 2.49 0.07 

3.72 1.95 86.61 9.61 3.99 0.13 

45 40 12 4.9 4.18 0.22 

25 50 12 14.9 4.18 0.15 

55 7.5 22.5 16.9 4.53 0.65 

55 15 12 19.9 4.56 0.06 

3.98 2.28 81.52 14.12 4.62 0.06 

9.4 2.58 86.61 3.31 5.05 0.13 

4.75 2.63 81.52 13 5.13 0.19 

10 20 15 56.9 5.15 0.26 

4.23 2.62 76.42 18.62 5.46 0.1 

31 3 66.23 1.66 5.9 0.03 

6.4 2.69 86.61 6.19 6.11 0.15 

3.81 2.71 81.52 13.85 6.12 0.12 

5.79 3.3 76.42 16.38 6.38 0.29 

7.36 3.21 86.61 4.72 6.47 0.08 

5.38 3.01 86.61 6.9 6.49 0.09 

25 50 20 6.9 6.64 0.1 

15 65 20 1.9 6.69 0.11 

3.4 2.81 86.61 9.08 6.92 0.24 
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1 33 66.23 1.66 7.23 0.01 

8.62 3.47 86.61 3.19 7.25 0.11 

9.88 3.73 86.61 1.67 7.31 0.04 

20 42.5 28.5 10.9 7.57 0.65 

30 25 26 20.9 7.62 0.15 

45.65 13.3 25.47 17.47 7.65 0.32 

6.37 4.17 76.42 14.94 7.71 0.34 

4.66 4.03 81.52 11.69 7.71 0.11 

4.56 4.53 71.33 21.48 7.92 0.11 

20 45 32.5 4.4 8.28 0.33 

17.75 4.96 66.23 12.95 8.36 0.15 

51.97 14.22 25.47 10.23 8.45 0.23 

39.32 12.38 25.47 24.71 8.46 0.11 

5.35 4.48 76.42 15.65 8.5 0.09 

5.92 5.25 76.42 14.3 8.9 0.06 

8.76 5.41 66.23 21.49 8.96 0.08 

18.53 4.91 71.33 7.12 9.08 0.35 

3.33 5.75 66.23 26.58 9.24 0.04 

6 18 66.23 11.66 9.31 0.1 

28 6 66.23 1.66 9.35 0.46 

29.71 6.62 56.04 9.53 9.39 0.22 

33.82 18.87 35.66 13.55 9.5 0.18 

32.45 28.74 35.66 5.03 9.68 0.14 

40 10 40 11.9 9.7 0.55 

23.65 7.59 61.14 9.52 9.72 0.18 

24.36 7.48 56.04 14.01 9.73 0.11 

37.9 12.6 35.66 15.73 9.74 0.05 

15.24 5.45 76.42 4.78 9.76 0.03 

28.1 8.42 50.95 14.43 9.77 0.13 

22.35 16.51 45.85 17.18 9.8 0.27 

22.56 7.84 50.95 20.55 9.86 0.05 

27.65 9.99 45.85 18.4 10.05 0.09 

13.29 8.21 56.04 24.36 10.08 0.05 

16 7 66.23 12.66 10.1 0.29 

19 7 66.23 9.66 10.11 0.27 

11.5 25 47.5 17.9 10.11 0.34 

8 8 66.23 19.66 10.25 0.07 

33.81 9.61 45.85 12.63 10.26 0.03 

22.62 8.82 50.95 19.51 10.37 0.08 
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15.55 30.53 45.85 9.96 10.4 0.22 

3 45 50 3.9 10.5 0.35 

21.5 7.41 56.04 16.94 10.52 0.07 

18.35 27.25 50.95 5.35 10.55 0.29 

20.45 19.14 50.95 11.36 10.56 0.42 

19.12 16.02 56.04 10.71 10.71 0.19 

8.31 6.98 61.14 25.47 10.74 0.23 

12 20.03 56.04 13.82 10.79 0.24 

22 12 66.23 1.66 10.8 n,d, 

11.15 8.5 61.14 21.11 10.82 0.19 

24.06 26.13 40.76 10.95 10.88 0.3 

25 9 66.23 1.66 10.9 0.14 

9.9 28.14 56.04 7.82 10.95 0.26 

11.17 25.48 50.95 14.3 11.01 0.16 

5.26 11.19 71.33 14.12 11.03 0.16 

19.19 17 56.04 9.67 11.05 0.29 

23.46 10.7 50.95 16.79 11.08 0.25 

11.23 21.97 50.95 17.75 11.11 0.07 

12.2 27.64 35.66 26.39 11.19 0.22 

8.44 9.53 66.23 17.69 11.22 0.1 

6.82 14.17 76.42 4.49 11.33 0.38 

9.01 8.8 66.23 17.85 11.39 0.24 

10 15 66.23 10.66 11.45 0.49 

12 13 66.23 10.66 11.45 0.21 

9.06 16.44 56.04 20.35 11.49 0.1 

20.6 7.18 66.23 7.89 11.52 0.08 

30.21 11.88 45.85 13.96 11.54 0.07 

6.79 20.43 56.04 18.63 11.55 0.16 

9.64 16.24 66.23 9.79 11.56 0.23 

10.61 18.22 50.95 22.12 11.57 0.29 

12.34 16.16 56.04 17.36 11.58 0.06 

14 18 66.23 3.66 11.6 0 

23.34 7.8 56.04 14.72 11.63 0.14 

18.07 18.85 56.04 8.93 11.64 0.05 

4.24 25.75 66.23 5.67 11.7 0.3 

16.4 17.41 50.95 17.14 11.75 0.1 

18.13 15.35 56.04 12.38 11.79 0.08 

16 16 66.23 3.66 11.85 0.21 

13 13 66.23 9.66 11.9 0.14 
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10 10 66.23 15.66 12.05 0.07 

15 40 45 1.9 12.07 0.81 

15.66 23.52 45.85 16.86 12.15 0.22 

7.06 14.74 76.42 3.67 12.23 0.13 

5.08 15.5 71.33 9.99 12.28 0.13 

7 12 66.23 16.66 12.35 0.21 

11.04 15.68 61.14 14.03 12.47 0.17 

11.51 13.37 66.23 10.79 12.63 0.15 

4 25 66.23 6.66 12.65 0.21 

15 15 55 16.9 12.9 0.53 

 

3.2.4 Structure of ANN 
The artificial neural network was built with a single layer of hidden units, (Hornik, Maxwell, 

& White, 1989) using statistical tool R (version 3.4.3) ((R Core Team (2013). R: A language 

and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. http://www.R-project.org/.), using three different packages: nnet (version 7.3-12) 

(Venables & B. D. Ripley, 2002), neuralnet (version 1.33) (Günther & Fritsch, 2010) and 

RSNNS (version 0.4-10) (Bergmeir & Benitez, 2012). The algorithm nnet, trains the feed-

forward neural network general quasi-Newton optimisation (BFGS algorithm) procedure in 

one hidden layer (Bergmeir & Benitez, 2012), the neuralnet implements two types of resilient 

back-propagation which is one of the fastest algorithms (Günther & Fritsch, 2010) whereas in 

RSNNS; different architecture and learning functions are implemented. 

The network consists of three layers: a) input (I), b) hidden layer (H) and c) output (O). These 

layers are connected by edges or neurons. The weighted sum of neuron inputs is submitted to 

a function which conditions neuron activation. There is no rule for deciding numbers of neuron 

units in a single hidden layer; to choose the best algorithm out of three (i.e. nnet, neuralnet and 

RSNNS), first chose number of hidden units according to Equation 3.2 and compared the 

RMSE (Equation 3.3) and coefficient of determination (R2) (Equation 3.4) values between the 

three methods. The algorithm with the lowest RMSE value and highest R2 value during the 

leave-one-out cross-validation was chosen as an algorithm of interest and the effect of numbers 

of hidden units on RMSE and R2 was analysed between 1 and 25 hidden units. 
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Equation 3.2: Where Nh is number of hidden units; Ns: number of sampling in training data; Ni: number 

of input neurons; No: number of output neurons; α: arbitrary scaling factor 2-10. In this study, Ns= 120, 

Ni= 4, No = 1 and ∝=2 are used. 

Nh= 
Ns

(∝ *(Ni+No)
 

 

Equation 3.3: Where RMSE is the root mean square error, Yi is ANN predicted value; yi is experimental 

value; n is the number of predictions. 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛  

Equation 3.4: Where R2 is the coefficient of determination; Yi, ANN is predicted values; yi is 

experimental value; n is numbers of predictions, Ӯ is the average of experimental values. 

𝑅𝑅2 =  
∑ �𝑦𝑦𝑖𝑖 −  𝑌𝑌𝑖𝑖�

2
𝑖𝑖

∑ (𝑦𝑦𝑖𝑖 − Ӯ)2𝑖𝑖
 where Ӯ =  

∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛  

 

3.3 Results and Discussion 
The three-neural network algorithms: nnet (Venables & B. D. Ripley, 2002), neuralnet 

(Günther & Fritsch, 2010) and RSNNS (Bergmeir & Benitez, 2012) were built with a hidden 

number of units ranging from 9 to12, as shown in Equation 3.2. The RMSE and coefficient of 

determination are compared between algorithms during leave-one-out cross-validation. Out of 

the three algorithms tested, neuralnet performed better than the other two (Table 3.2), allowing 

the option of choosing two different activation functions, i.e., logistic (sigmoidal) and tanh 

(Equation 3.5 and Equation 3.6 respectively). 

 

Table 3.2: Comparison of RMSE and R-squared values during the leave-one-out cross-validation 

between neuralnet, nnet and RSNNS algorithm. 

number 
of 

hidden 
units 

RMSE R2 

neuralnet: 
logistic 

neuralnet: 
tanh 

nnet RSNNS neuralnet: 
logistic 

neuralnet: 
tanh 

nnet RSNNS 
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9 0.923 0.899 1.405 2.477 0.923 0.929 0.851 0.437 

10 0.933 1.113 1.289 2.523 0.92 0.887 0.848 0.414 

11 0.949 0.836 1.483 2.494 0.921 0.936 0.821 0.428 

12 0.97 1.034 1.902 2.537 0.916 0.907 0.759 0.412 
 

Equation 3.5: logistic activation function. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) =  
1

1 + 𝑒𝑒−𝑚𝑚 

 

Equation 3.6: tanh activation function. 

𝐿𝐿𝑡𝑡𝑛𝑛 ℎ( 𝑥𝑥) =  
2

1 +  𝑒𝑒−2𝑚𝑚
− 1 

 

Using the neuralnet model, with “logistic” and “tanh” activation functions, the effect of 

numbers of hidden units on RMSE and R2 was studied (Figure 3.3) with a leave-one-out-cross-

validation procedure. The logistic function with 13 hidden units gives an RMSE of 0.847, R2 

of 0.93 and tanh function RMSE of 0.804 and R2 of 0.94 with 6 hidden units. 

 

Figure 3.3: Effect of numbers of hidden units on RMSE (A) and coefficient of determination (B) 

activation function logistic (filled circle, solid line) and tanh (open circle and dotted lines). 
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Experimental flux was compared with the ANN predicted flux by leave-one-outcross-

validation procedure, using chosen hidden units with logistic and tanh function (Figure 3.4). 

The effects of enzyme concentrations on the predicted flux and experimental flux were 

compared and found to follow a similar trend (Figure 3.5). 

 

Figure 3.4: The relationship between flux predicted by leave-one-outcross-validation and experimental 

flux. Filled and open circles represent logistic and tanh activation functions respectively. 
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Figure 3.5: The relationship between the individual enzyme concentration with experimental and ANN 

predicted flux. Filled circle and open circle are enzyme concentration vs predicted flux with logistic 

and tanh activation functions respectively, open triangles represent the experiment. 

During the cross-validation of the neural network model, a negative flux value is predicted for 

one combination of enzymes (Table 3.3: Index-3). This is because, during a leave-one-out 

procedure (LOOcv), one combination of the enzymes (concentration of PGI, PFK, FBA and 

TPI) was not included in the model training and the flux must be predicted for that particular 

combination. The negative value shows the poor ability of the ANN model to predict the 

outliers, i.e. a combination that was not close (in terms of PGI, PFK, FBA and TPI 

concentrations) to those included in the training data set. 

The original study by Fiévet et al. (Fiévet et al., 2006) developed a model to predict flux. As 

the authors mentioned in their article, their flux predictor overestimates the observed flux by a 

constant factor. The predicted flux, in their method, has an R2 value of 0.86, whereas an ANN 
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approach with logistic function shows an R2 value to be 0.93 and in case of tanh activation 

function, an R2 of 0.94, obtained with leave-one-out cross-validation, which implies that the 

ANN approach is more efficient in predicting the flux than the method developed in the Fiévet 

study. The effect of enzyme concentrations on the predicted flux by both methods follows a 

similar trend. 

The difference between actual flux and ANN predicted flux was an average of 0.57 µM/s for 

logistic and for tanh, with a standard deviation of 0.63 and 0.57 respectively (Table 3.3), 

whereas the Fiévet et al. study showed an average of 3.3 and a standard deviation of 2.2 with 

actual predicted values (Fiévet et al., 2006). Fiévet et al. stated that their method overestimates 

the flux values by a constant factor of 1.38 (Fiévet et al., 2006). Hence, by dividing the 

predicted flux values by 1.38, corrected values were obtained. The new average corrected value 

is 1.04 and the standard deviation is 0.78 with the experimental value. This indicates that the 

ANN method performs better than the method described in the original study by Fiévet et 

al. This ANN-based method provides additional degrees of freedom over the method proposed 

in Fiévet et al. (Fiévet et al., 2006). Indeed, numbers of degrees of freedom increase with 

numbers of hidden units. This makes it possible to obtain an important advantage regarding the 

error inherent to the learning phase. the logistic activation function was retained for further 

study. 

 

Table 3.3: Comparison of flux values (in µM/S) between observed flux (JExp), J.B Fievet (JFievet) and 

ANN predicted flux with activation functions logistic (J {ANN: logistic}) and tanh (J {ANN: tanh}) and the 

standard deviation of observed flux (JSD). 

Index JExp JSD JFievet 

J{Fievet: 

Corrected

} 

J{ANN: 

logistic} 

J {ANN: 

tanh} 

Differen

ce_[JExp : 

JFievet] 

Differen

ce_[JExp 

: 

J{Fievet:Co

rrected}] 

Differ

ence_[

JExp : 

J{ANN:l

ogistic}] 

Differenc

e_[JExp : 

J{ANN:tanh}

] 

1 0.74 0.08 1.14 0.83 1.33 2.16 0.4 0.09 0.59 1.42 

2 1.1 0.03 1.97 1.43 1.53 1.85 0.87 0.33 0.43 0.75 

3 1.22 0.08 2.44 1.77 -1.69 0.13 1.22 0.55 2.91 1.09 

4 1.62 0.05 2.79 2.02 1.56 1.64 1.17 0.4 0.06 0.02 

5 1.72 0.02 2.78 2.01 1.66 1.62 1.06 0.29 0.06 0.1 
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6 1.79 0 2.76 2 1.86 1.32 0.97 0.21 0.07 0.47 

7 1.87 0.04 2.6 1.88 1 2.79 0.73 0.01 0.87 0.92 

8 1.89 0.01 2.8 2.03 1.62 1.85 0.91 0.14 0.27 0.04 

9 2.07 0.12 3.86 2.8 2.37 2.16 1.79 0.73 0.3 0.09 

10 2.2 0.06 3.08 2.23 2.91 3.22 0.88 0.03 0.71 1.02 

11 2.32 0.06 4.63 3.36 2.64 3 2.31 1.04 0.32 0.68 

12 2.34 0.1 4.54 3.29 2.62 2.79 2.2 0.95 0.28 0.45 

13 2.39 0.21 4.59 3.33 2.86 3.09 2.2 0.94 0.47 0.7 

14 2.49 0.07 5.26 3.81 3.1 3.41 2.77 1.32 0.61 0.92 

15 3.99 0.13 4.9 3.55 4.76 4.52 0.91 0.44 0.77 0.53 

16 4.18 0.22 6.4 4.64 3.73 3.68 2.22 0.46 0.45 0.5 

17 4.18 0.15 6.43 4.66 3.78 3.75 2.25 0.48 0.4 0.43 

18 4.53 0.65 8.4 6.09 6.6 6.65 3.87 1.56 2.07 2.12 

19 4.56 0.06 5.98 4.33 5.2 4.9 1.42 0.23 0.64 0.34 

20 4.62 0.06 5.52 4 5 4.99 0.9 0.62 0.38 0.37 

21 5.05 0.13 6.77 4.91 5.71 5.68 1.72 0.14 0.66 0.63 

22 5.13 0.19 6.27 4.54 5.62 5.74 1.14 0.59 0.49 0.61 

23 5.15 0.26 6.98 5.06 3.97 5.7 1.83 0.09 1.18 0.55 

24 5.46 0.1 6.09 4.41 5.36 5.55 0.63 1.05 0.1 0.09 

25 5.9 0.03 7.75 5.62 5.49 4.9 1.85 0.28 0.41 1 

26 6.11 0.15 6.72 4.87 5.84 5.71 0.61 1.24 0.27 0.4 

27 6.12 0.12 6.17 4.47 5.53 5.61 0.05 1.65 0.59 0.51 

28 6.38 0.29 7.51 5.44 6.42 6.38 1.13 0.94 0.04 0 

29 6.47 0.08 7.77 5.63 6.47 6.72 1.3 0.84 0 0.25 

30 6.49 0.09 7.09 5.14 6.4 6.29 0.6 1.35 0.09 0.2 

31 6.64 0.1 10.19 7.38 6.14 6.67 3.55 0.74 0.5 0.03 

32 6.69 0.11 9.95 7.21 5.64 6.59 3.26 0.52 1.05 0.1 
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33 6.92 0.24 6.2 4.49 5.68 5.84 0.72 2.43 1.24 1.08 

34 7.23 0.01 6.3 4.57 11.8 11.29 0.93 2.66 4.57 4.06 

35 7.25 0.11 8.36 6.06 6.83 7.09 1.11 1.19 0.42 0.16 

36 7.31 0.04 8.92 6.46 7.72 7.44 1.61 0.85 0.41 0.13 

37 7.57 0.65 13.45 9.75 8.26 8.59 5.88 2.18 0.69 1.02 

38 7.62 0.15 12.05 8.73 8.34 7.83 4.43 1.11 0.72 0.21 

39 7.65 0.32 10.72 7.77 7.84 7.98 3.07 0.12 0.19 0.33 

40 7.71 0.34 8.27 5.99 7.74 7.74 0.56 1.72 0.03 0.03 

41 7.71 0.11 8.86 6.42 7.81 7.67 1.15 1.29 0.1 0.04 

42 7.92 0.11 8.59 6.22 7.95 8.21 0.67 1.7 0.03 0.29 

43 8.28 0.33 15.02 10.88 9.32 9.28 6.74 2.6 1.04 1 

44 8.36 0.15 10.79 7.82 8.48 8.6 2.43 0.54 0.12 0.24 

45 8.45 0.23 10.92 7.91 7.76 8.08 2.47 0.54 0.69 0.37 

46 8.46 0.11 10.49 7.6 8.03 7.43 2.03 0.86 0.43 1.03 

47 8.5 0.09 8.97 6.5 8.05 8 0.47 2 0.45 0.5 

48 8.9 0.06 10.03 7.27 8.94 9.2 1.13 1.63 0.04 0.3 

49 8.96 0.08 10.55 7.64 9.03 8.91 1.59 1.32 0.07 0.05 

50 9.08 0.35 10.97 7.95 8.56 8.85 1.89 1.13 0.52 0.23 

51 9.24 0.04 8.74 6.33 9.4 9.55 0.5 2.91 0.16 0.31 

52 9.31 0.1 15.81 11.46 11.75 11.71 6.5 2.15 2.44 2.4 

53 9.35 0.46 12.43 9.01 9.64 9.39 3.08 0.34 0.29 0.04 

54 9.39 0.22 12.52 9.07 9.59 9.51 3.13 0.32 0.2 0.12 

55 9.5 0.18 14.66 10.62 9.7 9.67 5.16 1.12 0.2 0.17 

56 9.68 0.14 15.84 11.48 10.05 9.53 6.16 1.8 0.37 0.15 

57 9.7 0.55 13.13 9.51 10.11 9.39 3.43 0.19 0.41 0.31 

58 9.72 0.18 13.77 9.98 10.53 10.46 4.05 0.26 0.81 0.74 

59 9.73 0.11 13.23 9.59 10.13 10.11 3.5 0.14 0.4 0.38 
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60 9.74 0.05 13.24 9.59 9.79 9.61 3.5 0.15 0.05 0.13 

61 9.76 0.03 11.75 8.51 9.45 9.3 1.99 1.25 0.31 0.46 

62 9.77 0.13 13.58 9.84 10.4 10.33 3.81 0.07 0.63 0.56 

63 9.8 0.27 16.29 11.8 11.2 11.16 6.49 2 1.4 1.36 

64 9.86 0.05 12.94 9.38 10.05 10.38 3.08 0.48 0.19 0.52 

65 10.05 0.09 13.89 10.07 10.42 10.43 3.84 0.02 0.37 0.38 

66 10.08 0.05 13.11 9.5 10.84 10.83 3.03 0.58 0.76 0.75 

67 10.1 0.29 13.13 9.51 10.29 10.29 3.03 0.59 0.19 0.19 

68 10.11 0.27 13.34 9.67 10.37 10.15 3.23 0.44 0.26 0.04 

69 10.11 0.34 16.89 12.24 10.85 11.17 6.78 2.13 0.74 1.06 

70 10.25 0.07 12.73 9.22 10.5 10.92 2.48 1.03 0.25 0.67 

71 10.26 0.03 13.82 10.01 10.52 10.36 3.56 0.25 0.26 0.1 

72 10.37 0.08 13.68 9.91 10.66 10.62 3.31 0.46 0.29 0.25 

73 10.4 0.22 17.96 13.01 10.48 10.47 7.56 2.61 0.08 0.07 

74 10.5 0.35 12.1 8.77 10.1 9.89 1.6 1.73 0.4 0.61 

75 10.52 0.07 13.05 9.46 10.23 10.2 2.53 1.06 0.29 0.32 

76 10.55 0.29 19.26 13.96 10.97 10.93 8.71 3.41 0.42 0.38 

77 10.56 0.42 17.95 13.01 11.12 11.19 7.39 2.45 0.56 0.63 

78 10.71 0.19 17.85 12.93 11.37 11.37 7.14 2.22 0.66 0.66 

79 10.74 0.23 11.69 8.47 10.02 10.23 0.95 2.27 0.72 0.51 

80 10.79 0.24 17.82 12.91 11.41 11.41 7.03 2.12 0.62 0.62 

81 10.8 n,d, 17.51 12.69 11.86 11.57 6.71 1.89 1.06 0.77 

82 10.82 0.19 13.48 9.77 10.91 11.76 2.66 1.05 0.09 0.94 

83 10.88 0.3 16.88 12.23 9.96 10.08 6 1.35 0.92 0.8 

84 10.9 0.14 15.48 11.22 11.28 11.11 4.58 0.32 0.38 0.21 

85 10.95 0.26 18.48 13.39 10.9 11 7.53 2.44 0.05 0.05 

86 11.01 0.16 17.59 12.75 11.14 10.84 6.58 1.74 0.13 0.17 
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87 11.03 0.16 13.48 9.77 11.77 10.22 2.45 1.26 0.74 0.81 

88 11.05 0.29 18.2 13.19 11.38 11.41 7.15 2.14 0.33 0.36 

89 11.08 0.25 14.92 10.81 11.05 10.79 3.84 0.27 0.03 0.29 

90 11.11 0.07 17.06 12.36 11.42 11.33 5.95 1.25 0.31 0.22 

91 11.19 0.22 14.36 10.41 9.42 9.52 3.17 0.78 1.77 1.67 

92 11.22 0.1 13.93 10.09 11.31 11.46 2.71 1.13 0.09 0.24 

93 11.33 0.38 16.17 11.72 11.9 11.98 4.84 0.39 0.57 0.65 

94 11.39 0.24 13.61 9.86 11.16 11.15 2.22 1.53 0.23 0.24 

95 11.45 0.49 16.86 12.22 11.81 11.69 5.41 0.77 0.36 0.24 

96 11.45 0.21 17.14 12.42 11.68 11.65 5.69 0.97 0.23 0.2 

97 11.49 0.1 15.97 11.57 11.73 11.71 4.48 0.08 0.24 0.22 

98 11.52 0.08 13.61 9.86 10.23 10.22 2.09 1.66 1.29 1.3 

99 11.54 0.07 14.93 10.82 10.41 10.78 3.39 0.72 1.13 0.76 

100 11.55 0.16 15.71 11.38 11.32 11.42 4.16 0.17 0.23 0.13 

101 11.56 0.23 17.45 12.64 11.79 11.8 5.89 1.08 0.23 0.24 

102 11.57 0.29 16.13 11.69 11.4 11.46 4.56 0.12 0.17 0.11 

103 11.58 0.06 16.85 12.21 11.53 11.67 5.27 0.63 0.05 0.09 

104 11.6 0 19.32 14 11.66 11.44 7.72 2.4 0.06 0.16 

105 11.63 0.14 13.48 9.77 10.23 10.94 1.85 1.86 1.4 0.69 

106 11.64 0.05 18.64 13.51 11.46 11.33 7 1.87 0.18 0.31 

107 11.7 0.3 14.94 10.83 10.87 10.79 3.24 0.87 0.83 0.91 

108 11.75 0.1 17.04 12.35 11.32 11.39 5.29 0.6 0.43 0.36 

109 11.79 0.08 17.5 12.68 11.48 11.3 5.71 0.89 0.31 0.49 

110 11.85 0.21 18.97 13.75 11.23 11.61 7.12 1.9 0.62 0.24 

111 11.9 0.14 17.09 12.38 11.74 11.73 5.19 0.48 0.16 0.17 

112 12.05 0.07 14.68 10.64 11.47 11.61 2.63 1.41 0.58 0.44 

113 12.07 0.81 18.22 13.2 10.57 9.6 6.15 1.13 1.5 2.47 
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114 12.15 0.22 17.11 12.4 10.8 10.87 4.96 0.25 1.35 1.28 

115 12.23 0.13 16.53 11.98 11.56 11.25 4.3 0.25 0.67 0.98 

116 12.28 0.13 14.77 10.7 11.82 11.53 2.49 1.58 0.46 0.75 

117 12.35 0.21 14.61 10.59 11.94 11.74 2.26 1.76 0.41 0.61 

118 12.47 0.17 17.1 12.39 11.57 11.58 4.63 0.08 0.9 0.89 

119 12.63 0.15 16.91 12.25 11.72 11.63 4.28 0.38 0.91 1 

120 12.65 0.21 14.5 10.51 10.64 11.24 1.85 2.14 2.01 1.41 

121 12.9 0.53 16.79 12.17 11.42 11.53 3.89 0.73 1.48 1.37 

The average difference between observed and predicted 3.32 1.05 0.57 0.57 

The standard deviation of the difference between observed and 

predicted 
2.14 0.78 0.63 0.57 

3.4 Conclusion 
Kinetic modelling of metabolic pathways is challenging because of difficulties in estimating 

the kinetic parameters (Bisswanger, 2014; Vasilakou et al., 2016) and is sometimes expensive 

because of the high-cost substrates and technologies involved (Gupta, Rathi, Gupta, & Bradoo, 

2003; Hakenberg et al., 2004), whereas the constraint-based model does not use any kinetic 

parameters but is efficient enough to predict the flux of metabolites. Choosing the optimum 

enzyme concentrations for the highest flux could be a challenge when conducting experiments. 

Using artificial intelligence with available experimental data can help us find a quicker and 

more cost-effective solution for biological problems. 

In this study, a neural network model was tested with three algorithms and several architectures 

to determine the best configuration of the ANN model. Eventually, the neuralnet algorithm was 

retained for the study with two different activation functions: logistic (sigmoidal) and tanh, 

with RMSE and R2 values of 0.847, 0.93 and 0.804, 0.94 respectively. The difference between 

actual flux and ANN predicted flux was an average of 0.57 for both activation functions. The 

Fiévet et al. method after the correction has an RMSE of 1.30, with a 1.05 difference between 

predicted and observed flux, which clearly indicates that the ANN method works better than 

the other method. It has not escaped our attention that the artificial neural network model 

depends on the diversity of the training data and hence training the model with a maximum of 

variability in the concentration of enzymes plays a crucial role. 
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Chapter 4 Artificial Neural Network for the 

Selection of Optimum Enzyme Balances.
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4.1 Context 
The selection of enzymes is crucial for in vitro metabolic engineering since low performing 

enzymes result in poor titer and yield. Homology based methodologies like Selenzyme (Carbonell 

et al., 2018) are developed to select better performing enzymes. One of the main challenges of 

purified enzyme-based CFS is the selection of optimum enzyme concentrations for maximum 

product formation. The experimental selection of optimum enzyme concentrations is expensive 

and tedious. Hence, the development of a computational method for selecting optimum enzyme 

concentrations without detailed knowledge of their kinetic parameters, using other existing 

experimental data, is helpful.  

Glycolysis, one of the central carbon metabolism pathways, is not only important for organisms, 

but is also of great importance in biotechnology for producing different biomolecules (J. Liu et al., 

2017). Many chemicals such as organic acids (C. W. Song, Kim, Choi, Jang, & Lee, 2013; 

Jiangang Yang et al., 2014) and biofuels (Clomburg & Gonzalez, 2010; X. Yang, Xu, & Yang, 

2015) have been successfully produced with high titer using engineered microorganisms including 

Saccharomyces cerevisiae or Escherichia coli. Glycolysis is widely studied from various 

perspectives. The availability of data from Fievet et al. (Fiévet et al., 2006) for flux prediction 

with different enzyme concentrations makes it a good candidate for developing a new approach to 

select optimum enzyme concentrations. 

In Chapter 3, ANN was used to predict the flux through the upper part of glycolysis using enzyme 

concentrations, i.e., phosphoglucoisomerase (PGI), phosphofructokinase (PFK), fructose 

biphosphate aldolase (FBA), and triosephosphate isomerase (TPI) as the input to the model. The 

predicted flux has a root mean square error (RMSE) of 0.84 and an R2 of 0.93, with 13 hidden 

units. Since the ANN is a training-based method, the new prediction depends on the training 

dataset. Since ANN is not efficient in extrapolating predictions (Balabin & Smirnov, 2012; Minns 

& Hall, 1996). the new predictions will always lie in the range of the known output predictions; in 

other words, we could say that they will remain “in-the-box”. High predicted output values will 

bump into a sort of “glass ceiling”. The working hypothesis was that, in reality, actual flux values 

could be higher than the predicted ones. So, to explore this “glass ceiling” space, a new 

methodology (GC-ANN, for glass ceiling ANN) was developed to predict the flux for the upper 

part of glycolysis, given enzyme concentrations using an artificial neural network.  
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4.2 Materials and Methods 
All enzymes as well as phosphocreatine, glucose-6-phosphate, fructose-6-phosphate and fructose-

1,6-bisphosphate were purchased from Sigma-Aldrich (St. Louis, MO, USA). D-Glucose, ATP, 

NADH, and NADP were obtained from Carl Roth GmbH (Karlsruhe, Germany). Hexokinase 

(HK), phosphoglucoisomerase (PGI), triose-phosphate isomerase (TPI), and glucose-6-phosphate 

dehydrogenase (G6PDH) originated from baker’s yeast; fructose biphosphate aldolase (FBA), 

glycerol-3-phosphate dehydrogenase (G3PDH), and creatine kinase (CK) were obtained from 

rabbit muscle and phosphofructokinase (PFK) originated from Bacillus stearothermophilus. The 

enzymes were obtained as lyophilized powder except for PGI and TPI, which were ammonium 

sulphate suspensions. Detailed information on the enzymes used is provided in Table 4.1. 

4.2.1 Determination of Protein Concentration 
Protein concentrations were determined using the Bradford protein assay (Marion M. Bradford, 

1976) from Bio-Rad Laboratories (Hercules, CA). The protein solutions of 10 μL was mixed with 

200 μL of Bio-Rad Protein Assay Dye Reagent, incubated for 5 minutes at room temperature, and 

the absorbance was measured spectrophotometrically at 595 nm. A dilution series of 0.06–0.5 

mg/ml BSA (Carl Roth GmbH) was used for calibration. 

4.2.2 Enzyme Assays for the Determination of Kinetic 

Parameters 
Enzyme assays were performed in 96-well UV-STAR® microplates (Greiner Bio-One GmbH, 

Kremsmünster, Austria) in a total volume of 100 μL at 25 °C. The reaction buffer contained 50 

mM PIPES (pH 7.5), 100 mM KCl, and 5 mM magnesium acetate. The cofactors for the reactions 

were 1 mM ATP and 1 mM NADH or NADP. All reactions were monitored by recording the 

absorption at a wavelength of 340 nm (molar extinction coefficient ε340 nm, 25 °C 6.22 L mmol−1 

cm−1). Lineweaver-Burk as well as Eadie-Hofstee representations were used For calculation of the 

kinetic parameters Vmax, Km, and kcat.
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Table 4.1: Enzymes used in this study for the upper part of glycolysis. All enzymes were bought from Sigma. 

Enzyme EC Acronym Source 
Sigma Cat. -

No. 
Lot No. Purity MW 

active 

enzyme 

MW/subu

nit 

Hexokinase 2.7.1.1 HK baker's yeast H4502-1KU SLBT5451 
mix of isoenzymes 

HXK1 & HXK2 
110.0 kDa homodimer 54 kDa 

Phosphoglucoisomeras

e 
5.3.1.9 PGI baker's yeast P5381-1KU SLBW8689 n.i. 119.5 kDa homodimer 61.3 kDa 

Phosphofructokinase 2.7.1.11 PFK 
Bacillus 

stearothermophilus 
F0137-100UN SLBW6641 n.i. 136.5 kDa homotetramer 34 kDa 

Fructose bisphosphate 

aldolase 
4.1.2.13 FBA rabbit muscle A2714-100UN 

SLBR7752V 

SLBV7445 
>80% 157.4 kDa homotetramer 39.3 kDa 

Triose phosphate 

isomerase 
5.3.1.1 TPI Baker's yeast T2507-5MG 036H8025 n.i. 53.6 kDa homodimer 26.8 kDa 

Glycerol-3-phosphate 

dehydrogenase 
1.1.1.8 G3PDH rabbit muscle 10127752001 21866328 

traces of other 

enzymes 
75.2 kDa homodimer 37.6 kDa 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

1.2.1.12 GAPDH rabbit muscle G2267-1KU SLBR0602V >80% 144.0 kDa homotetramer 36 kDa 

Creatine kinase 2.7.3.2 CK rabbit muscle 10127566001 25998433 
traces of other 

enzymes 
86.2 kDa homodimer 43.1 kDa 

Glucose-6-phosphate 

dehydrogenase 
1.1.1.49 G6PDH baker's yeast G6378-250UN SLBP6152V -- -- -- -- 

https://enzyme.expasy.org/EC/2.7.1.11
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4.2.2.1 Hexokinase, HK  
The hexokinase activity was assayed using glucose-6-phosphate dehydrogenase (G6PDH) in a 

coupled reaction (Figure 4.1). The substrate glucose was converted to 6-phosphogluconate, the 

formation of NADPH was followed spectrophotometrically at 340 nm. 

 

Figure 4.1: A) Coupled HK/G6PDH assay to assess the HK activity. (B) Michaelis-Menten kinetics. Mean 

of the 4 technical replicates. Corresponding (C) Lineweaver-Burk (goodness-of-fit R2=0.9923) and (D) 

Eadie-Hofstee (goodness-of-fit R2=0.9161) plots for the HK assayed with different concentrations of 

glucose. 

 

4.2.2.2 Phosphoglucoisomerase, PGI  
The phosphoglucoisomerase activity was assayed by coupling it to the reactions of PFK, FBA, TPI 

and G3PDH (Figure 4.2) The substrate glucose-6-phosphate was converted to glycerol-3-

phosphate, the depletion of NADPH was followed spectrophotometrically at 340 nm. 
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Figure 4.2: (A) Coupled PGI/PFK/FBA/TPI/GDH assay to assess the PGI activity. (B) Michaelis-Menten 

kinetics. Mean of the 4 technical replicates. Corresponding (C) Lineweaver-Burk (goodness-of-fit 

R2=0.9987) and (D) Eadie-Hofstee (goodness-of-fit R2=0.9123) plots for the PGI assayed with different 

concentrations of glucose-6-phosphate. 

 

4.2.2.3 Phosphofructokinase, PFK  
The phosphofructokinase activity was assayed by coupling it to the reactions of FBA, TPI and 

G3PDH (Figure 4.3). The substrate fructose-6-phosphate was converted to glycerol-3-phosphate, 

the depletion of NADPH was followed spectrophotometrically at 340 nm. 
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Figure 4.3: (A)Coupled PFK/FBA/TPI/GDH assay to assess the PFK activity. (B) Michaelis-Menten 

kinetics Mean of the 4 technical replicates. Corresponding (C) Lineweaver-Burk (goodness-of-fit 

R2=0.9137) and (D) Eadie-Hofstee (goodness-of-fit R2=0.7204) plots for the PFK assayed with different 

concentrations of fructose-6-phosphate. 

 

4.2.2.4 Fructose bisphosphate aldolase, FBA  
The fructose bisphosphate aldolase activity was assayed by coupling it to the reactions of TPI and 

G3PDH (Figure 4.4). The substrate fructose-1,6-bisphosphate converts to glycerol-3-phosphate 

and the depletion of NADPH is followed spectrophotometrically at 340 nm. 



Doctoral Thesis Anamya Ajjolli Nagaraja  Chapter 4 

Page | 53  
 

 

Figure 4.4: (A) Coupled FBA/TPI/GDH assay to assess the FBA activity. (B) Michaelis-Menten kinetics. 

Mean of the 4 technical replicates. Corresponding (C) Lineweaver-Burk (goodness-of-fit R2=0.9940) and 

(D) Eadie-Hofstee (goodness-of-fit R2=0.9274) plots for the FBA assayed with different concentrations of 

fructose-1,6-bisphosphate. 

 

4.2.3 Flux Measurements 
The total reaction volume of 100 μL contained fixed concentrations of 3 mM NADH, 20 mM 

phosphocreatine, 1 μM CK, 0.1 μM HK, and 1 μM G3PDH. The concentrations of PGI, PFK, 

FBA, and TPI were varied as indicated (Flux Determinations). The reactions were started with 1 

mM ATP and 100 mM glucose. Blank reactions contained all ingredients except ATP and glucose. 

Each condition was measured in triplicates. The NADH decay was monitored every 3 s at 365 nm 

using a SynergyMxSMATBLD(+) Gen5 SW plater reader (SZABO-SCANDIC, Vienna, Austria). 

The slope of NADH decay was measured as the flux through the pathway (molar extinction 

coefficient ε365 nm, 25 °C 3.4 L mmol−1 cm−1). 
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4.3 Modifications and Calculations Used in the Study 

4.3.1 Concentration Based on the Relative Activity 
Our new methodology predicts the flux through the upper part of glycolysis based on the 

concentrations of the four enzymes, PGI, PFK, FBA and TPI. To make our prediction comparable 

to that of Fiévet et al., it was necessary to employ relative enzyme activities rather than enzyme 

concentrations. Depending on the specific activity of the enzyme preparation, the concentration of 

the enzyme represents a particular activity, which can vary from batch to batch. To account for 

this, the enzyme concentrations were taken listed in Fiévet et al. (see Table 4.6, indices 1-10) and 

transformed them into enzyme activities (Concentration based on the relative activity) by 

employing the specific activities indicated in the paper (Table 4.2). Then, the assessed specific 

activities were used for the enzymes (Table 4.3 and Table 4.8) and transformed the enzyme 

activities back into enzyme concentrations. The enzyme concentrations in Table 4.6 were used for 

the prediction (ANN predicted flux, JANN and simulated flux Jcopasi) while the concentrations 

indicated in Table 4.8, index 11-41 were used for the experimental assessment of the flux. 

Equation 4.1: where C, enzyme concentration (mg/l); Uv, enzyme activity per volume (U/ml); Us, specific 

enzyme activity (U/mg). 

𝐶𝐶 �
𝑚𝑚𝐿𝐿
𝑙𝑙
� = 1000 ∗  

𝑈𝑈𝑣𝑣 ( 𝑈𝑈𝑚𝑚𝑙𝑙)

𝑈𝑈𝑆𝑆 ( 𝑈𝑈𝑚𝑚𝐿𝐿)
 

Table 4.2: Specification of enzymes used for the calculation of cost for the preparatory stage of glycolysis 

from sigma. Specific activities are calculated by Fiévet et al. MW: Molecular weight. 

Enzyme Origin Price 
(EUR) 

Sold units 
(kU) 

Specific 
activity 
(calc.) 
(U/mg) 

Units 
(calc.) 
(kU) 

MW (active 
enzyme) 

(kDa) 

Phosphoglucoisomerase Baker's yeast 78.50 1.0 1370.0 1.0 119.5 

Phospho-fructokinase Bacillus 
stearothermophilus 

178.00 0.1 70.0 0.1 136.5 

Fructose bisphosphate 
aldolase 

rabbit muscle 48.75 0.1 42.0 0.1 157.4 

Triose phosphate 
isomerase 

Baker's yeast 146.00 n.a. 14690.0 50.0 53.6 
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Table 4.3: The measured enzyme activities for the enzymes involved in the upper part of glycolysis. 

Enzyme EC No Origin 
Specific 
activity 
(U/mg) 

Comments 

Phosphoglucoisomerase 5.3.1.9 Baker's yeast 556 this study 

Phosphofructokinase 2.7.1.11 Bacillus 
stearothermophilus 

73 this study 

Fructose bisphosphate 
aldolase 

4.1.2.13 Rabbit muscle 10 this study 

Triosephosphate isomerase 5.3.1.1 Baker's yeast 9500 Manufacturer 
value 

 

4.3.2 Cost Calculation 
The cost for µM/s of flux through the pathway was estimated as follows: 

Cost per 1U of enzyme: For each enzyme (PGI, PFK, FBA, TPI), the cost was calculated in 

Equation 4.2 as below using Table 4.2. 

Equation 4.2: Where PU, the price per unit. 

𝑃𝑃𝑈𝑈 =
𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝑒𝑒 (𝑅𝑅𝑈𝑈𝑅𝑅)
𝑈𝑈𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝑙𝑙𝑠𝑠 (𝑈𝑈)

 

 

Cost per reaction through the whole pathway: the cost per 1 ml of reaction is calculated as 

follows in Equation 4.3: 

Equation 4.3: CR, cost per reaction; Uv, enzyme activity per reaction volume (U/ml). 

𝐶𝐶𝑅𝑅 (𝑅𝑅𝑈𝑈𝑅𝑅) = �(𝑈𝑈𝑣𝑣 ∗  𝑃𝑃𝑈𝑈) 

 

Cost per one µM/s flux: Cost for the conversion of 1 µM NADH in 1 second is calculated using 

Equation 4.4: 

Equation 4.4: Cflux, cost per flux of 1 µM/s; f, estimated flux (µM/s). 

𝐶𝐶𝑓𝑓𝑓𝑓𝑃𝑃𝑚𝑚 (𝑅𝑅𝑈𝑈𝑅𝑅/
µ𝑅𝑅
𝐿𝐿

) =  
 𝐶𝐶𝑅𝑅 (𝑅𝑅𝑈𝑈𝑅𝑅)

𝑓𝑓 (µ𝑅𝑅𝐿𝐿 )
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4.4 Methodology 

4.4.1 Data for New Methodology 
The data from Fiévet et al. were used to develop the new methodology of exploring glass-ceiling 

to select optimum enzyme balances using ANN (GC-ANN) for the upper part of glycolysis. A 

balance being defined as a mixture of the four enzymes PGI, PFK, FBA and TPI. The dataset 

consisted of 121 combinations of four enzymes (PGI, PFK, FBA, TPI) of the glycolysis upper part 

for a flux value of 0.74 to 12.9 µM/s (Table 4.1). The total enzyme concentration was kept constant 

for four enzymes at 101.9 mg/l. The flux was measured as NADH consumption through G3PDH.  

4.4.2 ANN-Based Flux Prediction Workflow 
The GC-ANN methodology is explained in three steps i.) Preparatory stage: the data dimension is 

reduced to find the possibly correlated variable, the rule for obtaining higher flux (> 12 µM/s) is 

derived from the data and a neural network model is built to predict the flux using the enzyme 

balances ii.) Execution stage: the new enzyme balances are generated using the rule obtained and 

the flux is predicted for the new concentration using ANN. iii.) Validation of methodology: The 

ANN predicted flux was validated using simulation and experiments. 

4.4.3 The Workflow of the Proposed Methodology 
Based on the data listed in Fievet et al. (Fiévet et al., 2006), the ANN model was built to predict 

the flux using enzyme balances, and the rule for enzyme balances with higher flux was obtained 

by data classification. The fluxes for newly generated enzyme balances were predicted using the 

ANN model. The balances with a flux value > 12 µM/s (balances from the glass-ceiling) and the 

balances obeying the derived rule for higher flux were selected as potential higher flux balances. 

These selected balances were validated using the kinetic model and by experiments. The 

methodology that followed for exploring the glass-ceiling of ANN (GC-ANN) is represented 

diagrammatically in Figure 4.5. 
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Figure 4.5: The methodology followed to obtain the new flux values from generated enzyme concentration. 

 

4.4.3.1 Preparation Stage 

4.4.3.1.1 Reduction of Dimensionality of Data 
Principal component analysis (PCA) is one of the methods for the reduction of dimensionality of 

the dataset (Ringnér, 2008; Wold, Esbensen, & Geladi, 1987). For datasets with a high degree of 

freedom, PCA is useful to find possible correlations between the variables. The analysis of 

correlated variables helps find the relationship between the enzymes and the final flux. Finding 

correlated variables helps to understand the data in terms of flux distribution. PCA is performed 

using the R (V 3.4.3) (R Development Core Team (2008)) package FactoMineR (Le, Josse, & 

Husson, 2008). 

4.4.3.1.2 Visualisation of Data 
Three-dimensional viewing of data could provide insight into the distribution of flux in the space. 

Therefore, the fluxes in the 3D space of concentrations PGI, PFK, and TPI were visualized using 

R statistical packages plot3D (Soetaert, 2017) and plot3Drgl (Soetaert, 2016). 

4.4.3.1.3 Classification of Data for Higher Flux (>12 µM/S): 
Data classification is the process of categorizing data into various homogeneous groups or types 

based on common characteristics. Decision tree analysis is a method of data classification helping 

to search for possible associations within the dataset. The decision tree is a simple tree-like graph 



Doctoral Thesis Anamya Ajjolli Nagaraja  Chapter 4 

Page | 58  
 

method to understand and interpret the observations. The discriminant analysis helps to 

discriminate between the groups of data. The classification is supported by a discriminant analysis. 

The data were classified into 5 groups, i.e., flux value from 0.728–3.17, 3.17–5.6, 5.6–8.04, 8.04–

10.5 and 10.5–12.9. Approximately, 40% of the data are in the final group, which consists of higher 

flux concentrations (greater than 10.5 µM/s). The R packages klaR (Weihs, Ligges, Luebke, & 

Raabe, 2005) and rpart (Therneau & Atkinson, 2018) were used for discriminant analysis and 

decision tree respectively. The results from the decision tree and discriminant analysis were used 

to derive the concentration rule for higher flux values (> 12 µM/s) through the pathway. 

4.4.3.1.4 Neural Network Model 
The artificial neural network for predicting the flux through the upper part of glycolysis is built 

using the data described earlier in the section “Data for New Methodology”. The model predicts 

flux as an NADH consumption through the pathway. The model is built using the R package 

neuralnet (Günther & Fritsch, 2010), which gives us the freedom to choose two different activation 

functions: logistic and tanh as explained in Chapter 3. 

4.4.3.2 Execution Stage 

4.4.3.2.1 Generation of New Enzyme Concentration 
To explore the glass-ceiling space to obtain better balances with higher flux, new enzyme balances 

are generated. To limit the number of new balances generated, highest (PGI = 70, PFK = 70, FBA 

= 86.1, TPI = 66.1 mg/l) and lowest (PGI = 1, PFK = 1, FBA = 2, TPI = 1.66 mg/l) concentrations 

of the data from Fiévet et al. (Fiévet et al., 2006) were used with the step size of 1 mg/l using R 

script. The total enzyme concentration of four enzymes was kept constant at 101.9 mg/l as in Fiévet 

et al. (Fiévet et al., 2006). The newly generated concentrations are used in the additional analysis. 

4.4.3.2.2 Flux Prediction Using ANN 
Newly generated enzyme balances are fed to the ANN model to predict the flux. The data consisted 

of flux values ranging from 0.74 µM/s to 12.9 µM/s. Since ANN is not good for extrapolation, the 

prediction is limited to this range. Nevertheless, new enzyme balances could likely provide higher 

flux. However, ANN prediction will remain in the glass ceiling space. Hence, we decided to 

explore this space of squeezed flux, i.e. balances which lies in this particular space. Thus, for our 

study, fluxes >12 µM/s predicted by ANN and the balances which obeyed the rules derived from 

data classification were retained. 
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4.4.3.3 Validation of Methodology 
The GC-ANN methodology of selection of enzyme balances is validated in two steps. In the first 

step, the silico model of the experimental system was built using the available kinetic parameters 

from Fiévet et al. (Fiévet et al., 2006). In the second step, experiments were carried out to validate 

the selected balances. 

4.4.3.3.1 Simulation of Upper Part of Glycolysis 
In CellDesigner (ver 4.4) (Funahashi et al., 2008, 2003), the kinetic model of the upper part of 

glycolysis was built using the kinetic parameters from Fiévet et al. (Fiévet et al., 2006). The 

parameters for cofactors were chosen from the BRENDA (Schomburg et al., 2002) database. The 

model was built to replicate the experimental condition with the Michaelis-Menten equation 

(Figure 4.6, Table 4.4). ATP is regenerated using the creatine kinase system. The hexokinase 

concentration was kept constant at 0.1 µM and flux was measured as NADH consumption, as 

catalysed by 1 µM of G3PDH. The concentrations of PGI, PFK, FBA and TPI are varied according 

to the selected balances from section “Flux Prediction Using ANN” (i.e. with concentrations which 

provide a flux ≥12 µM/s as predicted by the ANN model). The concentrations were converted 

from mg/l to µM using the molecular weight as suggested by Fiévet et al. 

The model was simulated for 120 seconds using COPASI (Hoops et al., 2006) to measure NADH 

consumption. The slope of NADH decay between 60 to 120s was estimated as flux through the 

pathway. 182 enzyme balances yielding flux ≥15 µM/s from simulation using an in silico model 

were selected as the potential higher flux balances. 
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Figure 4.6: CellDesigner diagram for the upper part of glycolysis which replicates the experimental 

conditions described by Fiévet et al. (Fiévet et al., 2006).
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Table 4.4 The kinetic equations and parameters used to build the kinetic model of the upper part of glycolysis. Glu: glucose; G6P: glucose-6-phosphate; F6P: 

fructose-6-phosphate; FBP: fructose bisphosphate; DHAP: dihydroxyacetone phosphate. kcat: turnover number in s-1; Km: Michaelis-Menten Constant in µM 

and Ki: inhibition constant in µM Keq: equilibrium constant without units. 

Reaction catalysed by Kinetic Equation Kinetic Parameters 

Hexokinase 

(HK) 
𝑁𝑁 =

kcatHK ∗ 𝐻𝐻𝐾𝐾 ∗ 𝐺𝐺𝑙𝑙𝐺𝐺 ∗ 𝐴𝐴𝐴𝐴𝑃𝑃
(Glu +  KmGlucose)  ∗  (ATP +  KmATP) kcatHK = 72; KmGlucose = 120; KmATP = 100 

Phosphoglucoisomerase 

(PGI) 𝑁𝑁 =  
�kcatPGIF ∗  PGI ∗  � G6P

Kmg6p� −  kcatPGIR ∗  PGI ∗  � F6P
KeqPGI ∗  Kmf6p��

�1 + G6p
Kmg6p  +  F6P

Kmf6p�
 

kcatPGIF =1410; kcatPGIR =3720; Kmg6p = 

1650; Kmf6g = 4100; KeqPGI = 31 

Phosphofructokinase 

(PFK) 

 

𝑁𝑁 =
kcatPFK ∗  PFK ∗  F6PnH )  ∗  ATP / 

((Kmf6pnH + F6PnH)  ∗  (Kmatp +  ATP)) 
kcat =41.7; Km_F6P = 33; nH = 1.1; Kmatp 

=120 

Aldolase 

(ALD) 𝑁𝑁 =

�kcatALDF ∗  FBA ∗  � FBP
KmFrucBPhosp

� −  kcatALDR ∗  FBA ∗  � glyc3pho ∗ DHAP
�Kmgap ∗  Kmdhap�

��

�1 + FBP
KmFrucBPhosp

 +  glyc3pho
Kmgap

 + DHAP
Kmdhap

 +  FBP ∗  glyc3pho
�KmFrucBPhosp ∗  Kig3p�

+ glyc3pho ∗ DHAP
�Kmgap ∗  Kmdhap�

�
 

kcatALDF=7.59; kcatALDR=720; KmFrucBPhosp = 

12; Kmgap =2000; Kmdhap = 2400 ;Kig3p= 10000 

Triose-phosphate Isomerase 

(TPI) 
𝑉𝑉 =  

kcatTPI ∗  TPI ∗  glyc3pho 
Kmgap +  glyc3pho  kcatTPI =6680; Kmgap = 238 

Glycerol-3-phosphate 

dehydrogenase 

(G3PDH) 

𝑁𝑁 =  
kcatG3PDH ∗  G3PDH ∗ DHAP

KmDHAP
∗ NADH

KmNADH

�1 + DHAP
KmDHAP

+ 𝐿𝐿3𝑝𝑝
KmG3P

� ∗  (1 + NADH
KmNADH

 +  NAD
KmNAD

)
 

kcatG3PDH= 189.1 s-1; KmDHAP =75; KmG3P = 

909; KmNADH = 22; KmNAD = 83 

Creatine kinase 

(CK) 
𝑁𝑁 =  

kcatCK ∗  𝐶𝐶𝐾𝐾 ∗  phosphocreatine ∗  ADP 

��1 + phosphocreatine
KmPhosphoCrea

+ Creatine
KmCreatine

� ∗  �1 + ADP
KmADP

 +  ATP
KmATP

��
 kcatG3PDH= 189.1; KmDHAP =75; KmG3P = 909; 

KmNADH = 22; KmNAD = 83 
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4.4.3.3.2 Experimental Validation 
The upper part of glycolysis was reconstructed as described in Fiévet et al. (Fiévet et al., 2006). 

The in vitro system consisted of varied concentrations of PGI, PFK, FBA and TPI. The HK 

and G3PDH were kept constant and creatine kinases were used to regenerate ATP in the 

system. The NADH decay was measured as flux through the pathway and the slope of the linear 

NADH decay was used to calculate the flux in μM/s. 

 

4.5 Application and Results 

4.5.1 Preparation 

4.5.1.1 Data Dimension Reduction 
PCA identifies new variables, the principal components, which are linear combinations of the 

original variables. This new variables can be used for further step in the methodology. 

In our study, PCA does not provide much information regarding the data. The total four-

enzyme concentration is constant in the system, which reduces the degree of freedom to limit 

the enzyme concentrations to three. . If total enzyme concentration had not been constant or 

the dataset presented a high degree of freedom, PCA would have been more useful for obtaining 

uncorrelated variables. 

4.5.1.2 Visualisation of Data 
After the PCA, data is visualised in 3D (Figure 4.7). In Figure 4.7 the quite distinct higher flux 

(red dots) can be observed. The distinction of flux in space indicates that a quantitative method 

could be applied to select the best balance for obtaining higher flux and should provide good 

results. Indeed, this is verified in the section “Flux Prediction Using ANN” (Figure 4.7). In this 

methodology, the space around those higher flux concentrations was explored to obtain new 

concentrations of PGI, PFK and TPI. 
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Figure 4.7: Three-dimensional visualization of Fievet et al. (Fiévet et al., 2006) enzyme balances after 

PCA (Dim1: 43.55%; Dim2: 23.78% Dim 3: 17.56%). The change from blue to red indicates the 

gradient from low to high fluxes, respectively. Standard deviation of experimental flux is represented 

on the third-dimension. 

 

4.5.1.3 Enzyme Concentration Rule 
Decision tree analysis was performed using the R package, rpart, by dividing the data into five 

groups; this provides with the best compromise on the gain in inter-class inertia. The five 

groups are determined using K-means clustering. Figure 4.8 represents the classification of 

data where the percentage of data belongs to the branch of tree and fraction represents the 

distribution into different groups. For example, 89% of the data has FBA concentration >11 

and distributed in five groups as fraction of 0.01, 0.09, 0.17, 0.29 and 0.44 (Figure 4.8, node 

3). 
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Figure 4.8: Decision tree for the Fiévet et al. (Fiévet et al., 2006) data to obtain the rule for higher flux 

(≥12 µM/s). The data is classified into 5 groups (i.e., flux value from 0.728-3.17, 3.17-5.6, 5.6-8.04, 

8.04-10.5, 10.5-12.9). 

 

Among the different methods of discriminant analysis studied, rpart performed the best with 

an approximate error rate of 0.1. The different methods studied were lda (linear discriminant 

analysis), qda (quadratic discriminant analysis), sknn (simple k nearest neighbours), rda 

(regularized discriminant analysis) and naïve Bayes (under R package). For the sknn method, 

the error rate is low but it leads to an over-classification (
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Annexe 2). Figure 4.8 represents the discriminant analysis for the classification of data from 

Fievet et al. (Fiévet et al., 2006) using the rpart (Therneau & Atkinson, 2018) method from R. 

 

Figure 4.9: Discriminant analysis for the classification of data from Fievet et al. (Fiévet et al., 2006) 

using the rpart (Therneau & Atkinson, 2018) method from R. Color code according to the feature space 

of data, where group 1 (flux: 0.728-3.17 µM/s) is shown in light blue, group 2 (flux: 3.17-5.6 µM/s) in 

dark blue, group 3 (flux: 5.6-8.04 µM/s) in white, group 4 (flux: 8.04-10.5 µM/s) in light pink and group 

5 (flux: 10.5-12.9 µM/s) in dark pink. Numbers in black represent the data classified to the same group, 

and in red represent data misclassified into the other groups. 

 

After using the decision tree and discriminant analysis, the following rule was derived to obtain 

a flux ≥12 µM/s: 

PGI < 11; 10 < PFK < 16; TPI < 18; 59 >FBA (mg/l) which corresponds to 

PGI < 15.07 U/ml 

0.7 U/ml > PFK < 1.12 U/ml 

TPI < 264.42 U/ml 

2.48 U/ml > FBA. 
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The conversion from mg/l to U/ml is given in 4.3.1. The derived rule is applied for the selection 

of the best concentrations of the enzymes PFK, PGI, TPI and FBA to obtain a high flux through 

the pathway. 

4.5.1.4 Neural Network Model 
ANN is a training-based method, the structure of the neural network needs to be chosen 

carefully since it depends on the number of inputs, sampling in the training dataset and the 

outputs. The structure was determined based on our previous study as described in Chapter 3. 

The neuralnet package from R statistical tool with the logistic activation function was used. It 

has 13 hidden units in a single layer. The ANN model used has an RMSE value of 0.84 and an 

R2 value of 0.93, using leave-one-out cross-validation (Chapter 3).  

4.5.2 Execution 

4.5.3 Generation of New Enzyme Concentrations 
The new concentrations of PFK, PGI, TPI and FBA were generated as explained in the 

methodology section. These new balances were used for further analysis to predict the flux. 

4.5.3.1 Flux Prediction Using ANN 
The new balances were fed into the previously built neural network to predict the flux. The 

ANN predicted flux from the newly generated data was visualised in 3-dimensions (Figure 

4.10). 
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Figure 4.10: Three-dimensional visualisation of flux predicted by ANN for newly generated enzyme 

concentration. The colour gradient is from the lowest (blue) to the highest (red) predicted flux. 

 

As expected, the new prediction remained in the box (see the maximum value of the colour 

gradient bar in Figure 4.10) since the ANN is a training-based method, which depends on the 

training dataset. The high predicted values bump into the “glass ceiling”. Hypothesise that even 

though they remain in the roof of the “glass ceiling”, the experimental values could be higher 

than the predicted ones. By exploring this space, new balances with higher flux values could 

be obtained. 

To explore the “glass ceiling” space, the new methodology (GC-ANN) using the artificial 

neural network was developed to predict the flux through the upper part of glycolysis for given 

enzyme balances. This study showed that (see below in the section Validation) by careful 

selection of enzyme balances from the “glass ceiling” space, it is possible to obtain higher flux 

values “out-of-the-box”. 

For all the enzyme balances generated between minimum and maximum of experimental data, 

only flux values above 12 µM/s predicted by the neural network and only enzyme balances 
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(total of 335 balances) obeying the enzyme concentration rules are selected as potential high-

flux balances.  

4.5.4 Validation 
The methodology for exploring the glass-ceiling using ANN (GC-ANN) was validated in two 

steps: first using the kinetic model and second, in vitro. 

4.5.4.1 Simulation of Upper Part of Glycolysis 
The kinetic model is built using CellDesigner (Funahashi et al., 2008, 2003) (Figure 4.6) and 

validated with COPASI (Hoops et al., 2006) using the 121 concentrations from Fiévet et al. 

(Fiévet et al., 2006). The model has an RMSE value of 1.58 and R2 of 0.84 in a cross-validation 

procedure, compared to the experimentally determined flux (Figure 4.11). The highest flux 

predicted by the kinetic model of the reconstituted upper part of glycolysis was 14.93 µM/s, 

where the highest experimentally observed flux was 12.9 µM/s. The flux predicted by ANN 

for new enzyme balances from the section “Flux Prediction Using ANN” was compared with 

the simulated flux for each enzyme (Figure 4.12). Figure 4.12 shows that the balances which 

were predicted with higher flux through GC-ANN were also estimated to have higher flux 

using the kinetic model. This validates the good quality of the kinetic model. 

 

 

Figure 4.11: Relationship between experimental flux (JFievet) estimated by Fiévet et al. (Fiévet et al., 

2006) and COPASI (Hoops et al., 2006) estimated by the kinetic model. 



Doctoral Thesis Anamya Ajjolli Nagaraja      Annexe 

Page | 69  
 

 

 

Figure 4.12: The relationship between flux values predicted by ANN vs COPASI for newly generated 

enzyme balances. The enzymes considered are: upper, left (PGI), right (PFK), lower left (TPI), right 

(FBA). The colour gradient from blue to red represents the particular enzyme concentration from low 

to high, respectively.  

 

4.5.4.2 Experimental Validation of the Methodology 
To validate GC-ANN approach to exploring the glass-ceiling (GC-ANN), the new enzyme 

balances generated were assayed in vitro. For the control experiment, 10 enzyme balances from 

previously used by Fiévet et al. (Fiévet et al., 2006) was selected (Figure 4.13, Table 4.6). 

These selected balances were with a correlation R2 of 0.99 and an RMSE of 0.17 between the 

predicted flux from kinetic model and the experimental flux assessed by Fiévet et al. (Fiévet et 

al., 2006) (Figure 4.13). Figure 4.13 shows that balances selected for the control study are an 

appropriate choice. Two of these selected Fievet’s balances were tested experimentally. The 

resulting fluxes for these two balances were 0.59 (±0.10) µM/sand 8.03 (±0.56) µM/s while 

Fievet et al. had determined 1.22 (±0.08) µM/s and 11.05 (±0.29) µM/s, respectively. Two of 

Fiévet’s balances were tested experimentally (Table 4.5). The resulting fluxes for these two 
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balances were 0.59 (±0.10) µM/s and 8.03 (±0.56) µM/s while Fiévet et al. had determined 

1.22 (±0.08) µM/s and 11.05 (±0.29) µM/s, respectively. 

 

 

Figure 4.13: Correlation between Fiévet et al. (Fiévet et al., 2006) experimental flux and Copasi 

predicted flux. The balances corresponding to these flux values are selected as the experimental control. 

Table 4.5: Comparison of flux predicted between Fiévet et al. selected concentration (JFievet) and new 

estimation during current work (Jobs). 

Index 
PGI 

(mg/l) 

PFK 

(mg/l) 

FBA 

(mg/l) 

TPI 

(mg/l) 

Jobs 

[μM s-1] 

JFievet 

[μM s-1] 

1 70.0 5.0 5.0 21.9 0.59 1.22 

10 19.19 17.0 56.4 9.67 8.03 11.05 
 

31 new balances were selected from the GC-ANN approach (Figure 4.14; Table 4.6) for 

experimental validation. The flux values associated with the selected balances had a coefficient 

of determination R2 of 0.44, between GC-ANN predictions and simulated flux. This low R2 

between ANN and Copasi prediction is due to the glass-ceiling effect: the underestimation of 

the flux due to the inability to obtain “out-of-the-box” values for the ANN was expected. 
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Figure 4.14: Comparison between GC-ANN predicted flux and simulated flux. The enzyme balances 

corresponding to these flux values are selected for experimental validation of the methodology. 

 

Table 4.6: The enzyme concentrations (mg/l) predicted from ANN and in-silico modelling to have 

higher flux values. For the experimental validation, relative concentrations of enzymes obtained were 

used. 

Index 
PGI 

mg/l 

PFK 

mg/l 

FBA 

mg/l 

TPI 

mg/l 
Index 

PGI 

mg/l 

PFK 

mg/l 

FBA 

mg/l 

TPI 

mg/l 

1 70 5 5 21.9 22 4 11 85.24 1.66 

2 33 1 66.23 1.66 23 4 16 80.24 1.66 

3 55 7.5 22.5 16.9 24 4 16 79.24 2.66 

4 4.23 2.62 76.42 18.62 25 5 15 80.24 1.66 

5 7.36 3.21 86.61 4.72 26 5 16 79.24 1.66 

6 5.38 3.01 86.61 6.9 27 5 16 78.24 2.66 

7 8.62 3.47 86.61 3.19 28 5 16 77.24 3.66 

8 28.1 8.42 50.95 14.43 29 6 15 79.24 1.66 

9 22.56 7.84 50.95 20.55 30 6 15 78.24 2.66 

10 19.19 17 56.04 9.67 31 6 15 77.24 3.66 
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11 2 10 88.24 1.66 32 6 16 78.24 1.66 

12 2 10 86.24 3.66 33 6 16 77.24 2.66 

13 2 11 82.24 6.66 34 7 12 78.24 4.66 

14 2 12 80.24 7.66 35 7 15 78.24 1.66 

15 2 13 85.24 1.66 36 7 15 77.24 2.66 

16 2 14 84.24 1.66 37 7 16 77.24 1.66 

17 2 15 83.24 1.66 38 8 13 79.24 1.66 

18 2 16 78.24 5.66 39 8 15 77.24 1.66 

19 3 10 85.24 3.66 40 9 12 78.24 2.66 

20 3 12 85.24 1.66 41 10 12 78.24 1.66 

21 3 16 80.24 2.66      

 

4.5.4.2.1 Enzyme Assays for Measurement of Kinetic Parameters 
HK activity was assessed using glucose-6-phosphate dehydrogenase (G6PDH) in a coupled 

reaction. The substrate glucose was converted to 6-phosphogluconate, the formation of 

NADPH was followed spectrophotometrically at 340 nm (Figure 4.15A). 

the activities of PGI, PFK and FBA were assessed using a coupled NADH assay applied to the 

upper part of glycolysis (Figure 4.15B). To determine the activity of PGI, the assay was started 

with glucose-6-P (Figure 4.15B, reaction 1); for the measurement of the activities of PFK and 

FBA, fructose 6-P and fructose 1,6-bisP were used as the substrates (Figure 4.15B, reactions 2 

and 3).  
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Figure 4.15: A) Coupled HK/G6PDH assay to assess the HK activity. (B) Coupled NADH assay to 

assess the activities of PGI, PFK and FBA. The individual reactions were started with substrates 

indicated by the numbers in circles. 

 

All reactions were monitored by reading the absorbance of NADH at 340 nm and the initial 

rates were used to calculate the Michaelis constant Km and the maximal velocity Vmax. The 

kinetic parameters Km and Vmax for HK, PGI, PFK and FBA corresponded well to the values 

listed by the manufacturer (Sigma) or by the Enzyme Database Brenda (Table 4.7). 

Nevertheless, some enzymes, particularly HK and FBA, showed lower specific activity 

compared to the Sigma reference. The loss of activity could have occurred during delivery 

and/or storage of the enzymes or could be attributed to a different enzyme assay.
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Table 4.7: Summary of the kinetic parameters of HK, PGI, PFK and FBA. The experimentally assessed values were deduced from Lineweaver-Burk and Eadie-

Hofstee plots. Reference values for Km and Vmax from Brenda and Sigma’s product data sheets are indicated, respectively. 

  
Reference 

Sigma 
This study 

Reference 

Brenda 
Lineweaver-Burk Eadie-Hofstee 

Enzyme Lot No. 
sp. act. 

[U/mg] 

sp. act. 

[U/mg] 

Km 

[mM] 

Km 

[mM] 

Vmax 

[U/ml] 

kcat 

s-1 

Km 

[mM] 

Vmax 

[U/ml] 

kcat 

s-1 

HK SLBT5451 472 163 
0.12-0.5 (“BRENDA - Information on 

EC 2.7.1.1 - hexokinase,” n.d.) 
0.28 225.5 299 0.30 248.7 330 

PGI SLBW8689 618 556 

0.084-1.5 (“BRENDA - Information on 

EC 5.3.1.9 - glucose-6-phosphate 

isomerase,” n.d.) 

1.1 7409 1107 0.9 7685 1147 

PFK SLBW6641 72 73 

0.023-0.15 (“BRENDA - Information on 

EC 2.7.1.11 - 6-phosphofructokinase,” 

n.d.) 

0.13 196 166 0.11 206 175 

FBA 
SLBR7752V 11.5 6.4 0.00084-2 (“BRENDA - Information on 

EC 4.1.2.13 - fructose-bisphosphate 

aldolase,” n.d.) 

0.14 19.6 17 0.12 18.7 16 

SLBV7445 12.4 10 n.d. n.d. n.d. n.d. n.d. n.d. 
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4.5.4.2.2 Flux Determinations 
The reaction mixtures for the measurements of the flux through the upper part of glycolysis were 

based on Fiévet et al. (Fiévet et al., 2006) (Table 4.8). In contrast to Fiévet et al., our mixtures 

were based on relative enzyme activities rather than enzyme concentrations. Calculations are 

explained in section Concentration Based on the Relative Activity. 

 

Table 4.8: Comparison of ANN predicted flux (JANN in µM/s), simulated flux (JCopasi in µM/s) and 

experimentally assessed flux (JExp in µM/s). The four enzymes PGI, PFK, FBA and TPI were used at the 

indicated concentrations for the experimental assessment of the flux with mean deviation (M.D) of 

triplicates. 

Index 
U/ml µM/s 

PGI PFK FBA TPI JANN JCopasi JExp M.D 

11 2.74 0.7 3.71 24.39 12.24 15.63 15.7 2.5 

12 2.74 0.7 3.62 53.77 12.06 15.45 16.3 2.7 

13 2.74 0.77 3.45 97.84 12 15.21 12.1 4.2 

14 2.74 0.84 3.37 112.53 12.03 15.07 16.6 0.1 

15 2.74 0.91 3.58 24.39 12.7 15.87 13.9 3.9 

16 2.74 0.98 3.54 24.39 12.74 15.81 18.3 1.2 

17 2.74 1.05 3.50 24.39 12.72 15.72 17.1 0.2 

18 2.74 1.12 3.29 83.15 12.16 15 20.1 0.3 

19 4.11 0.7 3.58 53.77 12 15.61 14.4 0.1 

20 4.11 0.84 3.58 24.39 12.53 16 15.8 0.2 

21 4.11 1.12 3.37 39.08 12.44 15.5 20.6 0.2 

22 5.48 0.77 3.58 24.39 12.32 15.93 15.4 0.2 

23 5.48 1.12 3.37 24.39 12.49 15.54 16.1 2.3 

24 5.48 1.12 3.33 39.08 12.36 15.39 19.3 0.6 

25 6.85 1.05 3.37 24.39 12.48 15.54 18.5 0.6 

26 6.85 1.12 3.33 24.39 12.41 15.4 17.8 0.1 

27 6.85 1.12 3.29 39.08 12.29 15.25 16.3 0.3 

28 6.85 1.12 3.24 53.77 12.18 15.08 19.7 2.5 

29 8.22 1.05 3.33 24.39 12.41 15.39 17.8 1 

30 8.22 1.05 3.29 39.08 12.29 15.23 19 0.6 



Doctoral Thesis Anamya Ajjolli Nagaraja      Annexe 

Page | 76  
 

31 8.22 1.05 3.24 53.77 12.19 15.07 21 0.6 

32 8.22 1.12 3.29 24.39 12.34 15.24 15.6 3.1 

33 8.22 1.12 3.24 39.08 12.23 15.09 17.8 2.2 

34 9.59 0.84 3.29 68.46 12 15.08 17.1 0.7 

35 9.59 1.05 3.29 24.39 12.33 15.22 17.7 1 

36 9.59 1.05 3.24 39.08 12.22 15.07 18.8 1.8 

37 9.59 1.12 3.24 24.39 12.27 15.08 20.4 0.6 

38 10.96 0.91 3.33 24.39 12.26 15.3 15.9 0.9 

39 10.96 1.05 3.24 24.39 12.26 15.06 17.9 0.8 

40 12.33 0.84 3.29 39.08 12.04 15.08 15.8 0.9 

41 13.7 0.84 3.29 24.39 12.05 15.07 13.6 2.4 
 

 

Out of 41 selected balances, 31 newly predicted enzyme balances were tested experimentally to 

estimate flux. All 31 new enzyme balances experimentally tested were estimated with flux values 

greater than 12 µM/s (Table 4.8). Table 4.8 shows that 28 out of 31, i.e. 90.3%, have a value 

above15.0 µM/s, as expected according to the kinetic model. Moreover, 31 out of 31, i.e. 100%, 

have a value up to 12.0 µM/s, as expected according to our methodology. 

4.5.5 Application: Selection of Cost-Efficient Enzyme 

Balances 
For industrial-scale production, the selection of the best enzyme balances in terms of cost is 

essential. Therefore, the cost per µM of NADH consumed per second were estimated for all the 

enzyme balances generated (Figure 4.16) and for those selected balances from ANN prediction, 

which obey the enzyme concentration rule (flux greater than 12 µM/s), i.e., 335 balances from 

Flux Prediction Using ANN ( Figure 4.17). The calculations are described in section Cost 

Calculation. The cost calculation for each reaction observed in the selection of enzymes could help 

to reduce cost. Figure 4.16 and Figure 4.17 show the variation in cost according to each balance 

and its flux and allow the selection of balances with higher flux at low cost. 
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Figure 4.16: 3D-representation of the cost estimated for all the enzyme balances generated. The colour 

gradient is according to the cost required for each balance: blue is the lowest and red is the highest cost for 

a selected balances of the four enzymes PGI, PFK, FBA and TPI. 

 

 

Figure 4.17: 3D-representation of the cost estimated for the enzyme concentration which obeys the rule 

obtained for higher flux values. The colour gradient is according to the cost required for each balance, blue 

is the lowest and red is the highest cost for a selected balance of the four enzymes PGI, PFK, FBA and TPI. 
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As an example: the enzyme balance (in mg/l) with PGI = 2, PFK = 12, FBA = 81.24 and TPI = 

4.66 (index 13 in Annexe 3) could give a flux of 12.1 µM/s with a cost of 3.79 EUR. 

 

4.6 Discussion 
Traditionally, chemical molecules are synthesised by the chemical reaction of petroleum-based 

products. Due to the depletion of petroleum products, in-vivo biosynthesis has gained a lot of 

attention. Limitations of the cellular production system, such as low productivity, by-product 

formation and low host cell tolerance to toxins moved the focus towards development of cell-free 

systems. Compared to cell systems, cell-free systems have high productivity and high toxin 

tolerance (Lu, 2017). The selection of optimal enzyme balances for maximal productivity is a 

crucial step for industrial scale, cell-free production of biomolecules. The modelling of metabolic 

pathways helps to study and predict the behaviour of the biological system. Constraint-based 

methods facilitate the understanding of the system but do not provide information about the 

concentration of the individual metabolites. In contrast, kinetic models provide information about 

individual metabolite concentrations but require kinetic parameters of enzymes, which are tedious 

and expensive to determine (Bisswanger, 2014). Design of experiment (DOE) is a systematic 

approach to optimise the conditions for biomolecule production in the field of biotechnology (V. 

Kumar, Bhalla, & Rathore, 2014). In DOE, multiple variables are studied to find the correlation 

between the variables and the final outcome. The main objective of DOE is to reduce the number 

of experiments, time and cost; our study has the same objective. The benefit of GC-ANN is that 

the objective optimum can be “out-of-the-box” but will nevertheless be found without additional 

experiments. 

4.6.1 GC-ANN Approach could be Used to Predict Out-of-

the-Box Values 
In this study, a new methodology, GC-ANN, to select the optimum enzyme balances for industrial 

biotechnology is devised. This approach aims to see beyond the “glass ceiling”, using an artificial 

neural network and different statistical methods like PCA and data classification. The method was 

designed and validated for the upper part of glycolysis but could be applied to any other natural or 

reconstituted biosynthesis pathway. 

The workflow of the methodology used in the upper part of glycolysis is summarised in Figure 

4.5. In the first step, for selecting the optimum concentrations of the four relevant enzymes PGI, 
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PFK, FBA and TPI, a rule was devised for high flux values (supported by Figure 4.7-Figure 4.9). 

All the possible balances were generated using a step of 1 mg/l in terms of variation of each enzyme 

concentration. The balances newly generated in the present study have higher and lower limits 

than those in Fiévet et al. (Fiévet et al., 2006). When these new enzyme balances were used to 

predict the flux through the upper glycolysis using ANN and the predicted fluxes were depicted in 

3D representation (Figure 4.10), a zone (Figure 4.10, brown zone) with predicted flux >12 µM/s 

was observed. To explore this space in order to obtain even higher fluxes, the high-flux-rule was 

applied, i.e. 10 < PFK < 16; PGI < 11; TPI < 18; 59 < FBA (in mg/l) and 335 enzyme balances 

were scrutinized. The main idea behind our approach is based on the fact that i). ANN is known 

to be a good tool for predicting class and/or quantitative values inside the box (i.e. prediction close 

to training data), ii). the brown region in Figure 4.10 contains values that are all very close to 12 

µM/s (from 12 µM/s to 12.9 µM/s) because ANN is not good for extrapolation and new predictions 

remain inside the box; iii). but we postulate that among these flux values some could be higher 

than predicted. 

In the second step, to validate our hypothesis in silico and in vitro experiments were conducted: 

4.6.2 In Silico Validation 
Due to the availability of kinetic parameters, to avoid unnecessary expenses linked to in vitro 

assays: 

- First, a kinetic model was built. Figure 4.11 shows good agreement (R2=0.84) between the fluxes 

predicted by the kinetic model and all the flux values experimentally assessed by Fievet et al. 

(Fiévet et al., 2006). Then, 10 balances associated with experimental values between 0.74 to 12.9 

µM/s of Fievet’s data for the benchmark study were selected. Figure 4.12 excellent correlation 

with R2 of 0.99 and an RMSE of 0.17 between the predicted flux from our kinetic model and the 

experimental flux assessed by Fievet et al. Taken together, these first results were a good validation 

of our kinetic model. 

- Second, to validate our in vitro assay by reproducing the results obtained by Fiévet et al. (Fiévet 

et al., 2006) in vitro experiments for the balances that had a good correlation between simulated 

and experimental flux were carried out. The experimentally determined fluxes using the balances 

selected from the Fievet data were lower than those previously determined by these authors (Table 

4.5). Nevertheless, the fold-increase was comparable (approximately 9-fold, this study vs 13-fold, 

Fiévet et al. (Fiévet et al., 2006)). The deviation of the absolute flux values could be attributed to 

experimental settings, i.e. NADH depletion assay in cuvettes at 390 nm (Fiévet et al., 2006). vs in 
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96 well plates at 365 nm, this study; or differences in the assays performed to measure kinetic 

parameters of the individual enzymes. 

Finally, as our kinetic model is validated, it was used to conduct the first verification, in silico, of 

our hypothesis. For 31 new balances selected according to the methodology described above 

section “Experimental Validation of the Methodology”. Figure 4.14 shows how flux values 

predicted by the kinetic model fit with the simulated values. All the balances selected from the 

brown zone (Figure 4.10) are indeed superior to 12.0 µM/s. Moreover, the flux should be above 

15.0 µM/s. So, this is a first, in silico, validation of our hypothesis, i.e. the ANN-based approach 

could be used to predict out-of-the-box values. 

At this point, we have to keep in mind that this preliminary verification was conducted because 

the kinetic model was possible to establish, but this step is not mandatory in the proposed 

methodology. Indeed, the 31 balances were chosen first, based only on the outcome of GC-ANN 

methodology that combines ANN and different statistical methods like PCA and data 

classification.  

4.6.3 In Vitro Validation 
The 31 new enzyme balances were assessed experimentally. Table 4.8 proves our hypothesis: with 

careful selection of enzyme balances from the glass ceiling, it is possible to obtain higher flux 

values. For the 27 best enzyme balances, the improvement of flux ranges from 30% (observed 

flux: 15.4, original flux: 12) to 70% (observed flux: 21.0, original flux: 12). This clearly 

demonstrates that exploring the predicted values which hit the “glass ceiling” using the GC-ANN 

approach is a good way to select the optimum enzyme concentration. 

Since artificial neural networks do not require much information regarding the experimental 

conditions and particularly in our case kinetic parameters hard to obtain, they are easy to apply in 

different fields of science. Our GC-ANN approach could be applied on any pathway provided the 

experimental data are available. 

4.6.4 The Proposed Methodology is Cost-Efficient 
From an industrial perspective, the production costs per quantity of product are very important. 

Choosing an enzyme balance that results in maximum flux at a very low cost per given quantity 

of product is essential. The ANN-based methodology makes it easy to estimate the total cost. The 

approximate price for each reaction is calculated using the details provided by the manufacturer, 

such as specific activity and units of enzyme in the sample. The approximate cost required for 1 
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µM of product formation per second through the pathway can be calculated. This will help to 

decide which is the most suitable enzyme balance for maximum flux in terms of cost minimisation, 

which is important for industrial-scale production. For example, to obtain a flux of 12.1 µM/s, the 

approximate cost should be 6.28 EUR, whereas the same flux value with a cheaper rate of 3.79EUR 

(~40%) could be achieved. Figure 4.16 clearly shows how costs vary. Details are provided in 

Annexe 3 and Annexe 4. Among the enzyme combinations selected for the validation of our 

methodology, PGI = 3, PFK= 16, FBA = 80.24, TPI= 2.66 (mg/l) have an estimated flux value of 

20.6 µM/s with the lowest cost of 0.197 EUR per µM of NADH consumed per second using GC-

ANN methodology for the selection of enzyme balances (Annexe 5). In contrast, the lowest price 

in Fiévet et al. (Fiévet et al., 2006) with the selected balance PGI = 7, PFK= 12, FBA = 66.23, 

TPI= 16.66 (mg/l) was 0.349 EUR per µM/s with an experimentally estimated flux value of 12.35 

µM/s (Annexe 5). This method, therefore, makes it possible to identify the production costs of 1 

µM of product from 0.197 € to 6.28 € to choose the best compromise between cost and speed of 

the reaction. 

Lastly and interestingly, the validated kinetic model makes it possible to generate a huge amount 

of data so as to feed our ANN-based model with more flux values from the newly predicted enzyme 

balances. This should be explored in future studies. 

4.7 Conclusion 
The selection of enzymes is an important step in the production of biomolecules. Methods based 

on homology are widely used to select the best performing enzymes. In addition, the selection of 

optimum enzyme balances is also crucial. Most methods use kinetic information for concentration 

selection via modeling. However, the determination of kinetic parameters is not always easy; 

therefore, developing new methodologies for selecting the optimum enzyme balances is of great 

interest. 

In this study, a new approach, GC-ANN, was developed which uses an artificial neural network 

along with different statistical methods (PCA and data classification) to select enzyme balances 

that improve the flux as well as the costs. The selected balances may not be the balances with the 

highest flux, but they will be among the best. This approach allows cost-efficient selection of 

enzyme balances using a small existing dataset, and it opens the door for rapid optimization of 

cell-free systems in an industrial environment.



Doctoral Thesis Anamya Ajjolli Nagaraja  Chapter 5 

Page | 82  
 

Chapter 5 Kinetic Modelling of the Upper 

Part of Glycolysis. 
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5.1 Context 
Glycolysis is one of the central metabolic pathways where glucose is converted into a series of 

intermediates forming pyruvic acid. Glycolysis reactions can be classified into two phases: the 

preparatory phase and pay off phase. In the preparatory phase, six-carbon glucose is converted into 

two, three-carbon sugar phosphates. ATP is consumed in this phase. In the pay off phase, 

glyceraldehyde-3-phosphate is converted into pyruvate with a series of the intermediate reactions. 

The energy-rich ATP and NADH are formed in this step. The pyruvate, end product of glycolysis, 

is the branch point for many biochemical syntheses. The glycolysis intermediates are involved in 

the synthesis of many chemical molecules. 

Mathematical modelling of biological pathways is used in the optimisation of the process for 

chemical synthesis. The modelling helps to reduce the cost by the selection of optimum balances. 

The balances are defined by the combination of enzymes in the pathway. In this study, we focus 

on the preparatory part of glycolysis. Thus, the balances are the combination of enzymes 

phosphoglucoisomerase (PGI), phosphofructokinase (PFK) and fructose bisphosphate aldolase 

(FBA) and triosephosphate isomerase (TPI). 

Different types of models have been developed to measure the flux through the metabolic pathway. 

Mainly, there are two kinds of models, i. the constraint-based model which uses constraints like 

mass balance, physicochemical constraints, etc, ii. kinetic model, which uses kinetic parameters 

of enzymes and helps in understanding the behaviour of the system. The kinetic model provides 

information about metabolite concentration. In Chapter 3 and Chapter 4 an artificial neural 

network model was developed to predict flux through the upper part of glycolysis. In both the 

studies, the ANN model was trained with 121 balances varied concentrations of enzyme PGI, PFK, 

FBA and TPI and corresponding flux values measured by in vitro experiments. The dataset consists 

of the flux value range from 0.78 µM/s to 12.9 µM/s, and as a training-based method, ANN cannot 

predict accurately beyond the range of training set. In Chapter 4, it was demonstrated that these 

newly predict values can be outside the training data and that our GC-ANN approach allows 

selecting the balances with higher flux. However, the ANN model was built on a small dataset of 

121 balances and flux values. Increasing dataset by experiments is an expensive process, and 

choosing in silico method such as building a kinetic model of the pathway could be a good choice 

to reduce the cost and time required in generating new data. It could be a good choice, particularly 

when considering the availability of kinetic parameters measured in Chapter 4. In this study, the 

kinetic model of the upper part of glycolysis was built to estimate the flux through the pathway. 
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In the previous study described in Chapter 4, it was shown that while excellent predictions of flux 

values are obtained within the range of experimental values (0-12 µM/s) used in the training 

dataset, this model could predict a maximum flux around 15 µM/s. Nevertheless, experimental 

measurement provides flux values up to 20 units i.e. far from the maximal value predicted by the 

model. Thus, the objective of this study was to first optimise the kinetic model to replicate 

experimental conditions and then use the optimised model to generate a huge amount of data 

consisting of different enzyme balances and corresponding flux values for the upper part of 

glycolysis; this newly generated data would be used to train the ANN model to predict flux, which 

is expected to be higher than 12.9 µM/s. In this study, with the purpose of optimising the kinetic 

model of the upper part of glycolysis, parameter estimation (PE) for the kinetic parameters of the 

model was performed using ODE (reaction rate equation) (Hoops et al., 2006). The model 

parameters were estimated using the existing experimental data of measurement of flux, as NADH 

consumption by glycerol-3-phosphate dehydrogenase system. 

 

5.2 Materials and Methods 

5.2.1 Enzyme Assays for Measurement of Kinetic Parameters 
Hexokinase (HK) activity was assessed using glucose-6-phosphate dehydrogenase (G6PDH) in a 

coupled reaction. The substrate glucose was converted to 6-phosphogluconate, the formation of 

NADPH was followed spectrophotometrically at 340 nm (Figure 5.1A). 

The activities of phosphoglucoisomerase (PGI), phosphofructokinase (PFK) and fructose 

bisphosphate aldolase (FBA) was assessed using a coupled NADH assay applied to the upper part 

of glycolysis (Figure 5.1B). To determine the activity of PGI, the assay started with glucose-6-P 

(Figure 5.1B, reaction 1); for the measurement of the activities of PFK and FBA, fructose 6-P and 

fructose 1,6-bisP were used as the substrates (Figure 5.1B, reactions 2 and 3). The detailed method 

of kinetic parameter measurement is explained in section “Enzyme Assays for the Determination 

of Kinetic Parameters” of Chapter 4. 
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Figure 5.1: (A) Coupled HK/G6PDH assay to assess the HK activity. (B) Coupled NADH assay to assess 

the activities of PGI, PFK and FBA. The individual reactions were started with substrates indicated by the 

numbers in circles. 

  

5.2.2 Reconstruction of In Silico Model 
For the in silico reconstruction of the upper part of glycolysis, the kinetic model was built in 

CellDesigner (Funahashi et al., 2008, 2003). The model consists of seven reactions. Creatine 

kinase was used for the regeneration of ATP, glycerol-3-phosphate dehydrogenase (G3PDH) was 

used for the measure the flux in terms of NADH consumption. The system consists of a constant 

concentration of HK, creatine kinase (CK), G3PDH, ATP. The kinetic equations and the 

parameters used in the kinetic model are given in Table 5.1. For the experimental measurement of 

flux, the concentration of PGI, PFK, TPI and FBA are varied (µM) as given in Table 5.3. 

5.2.3 Experimental Flux Determination 
To optimise the kinetic model, the experimental data of NADH consumption through the 

reconstructed in vitro system of the upper part of glycolysis are used. The experimental 

measurement of flux is explained in detail in “Experimental validation” and “Flux determinations” 

sections of Chapter 4. The data consist of triplicate measurement of NADH decay for 600 seconds 

for 31 experiments, with various concentrations of PGI, PFK, FBA and TPI. The plot of NADH 

consumption over time through the pathway is given as a figure in Annexe 6 and Annexe 7.
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Table 5.1: Kinetic equations used at the beginning of optimisation of the upper part of glycolysis. G6P: Glucose6-phosphate; F6P: fructose-6-phosphate; FBP: 

fructose bisphosphate; DHAP: dihydroxyacetone phosphate. kcat: turnover number in s-1; Km: Michaelis-Menten Constant in µM; Ki: inhibition constant in µM 

and Keq: equilibrium constant without units. 

Reaction catalysed by Kinetic equation Kinetic Parameter 

Hexokinase 

(HK) 
𝑁𝑁 =  

kcatHk ∗ HK ∗ Glucose ∗ ATP
((Glucose + KmHKGlu) ∗ (ATP + KmHKATP)) kcatHK = 298.83; KmHKGlu = 280; 

KmHKATP = 100 

Phosphoglucoisomerase 

(PGI) 
𝑁𝑁 =  

kcatPgiF ∗ PGI ∗ G6P
KmPGIG6P − kcatPgiR ∗ F6P

KeqPGI ∗ KmPGIF6P

1 + G6P
KmPGIG6P + F6P

KmPGIF6P
 

kcatPgiF = 1107.367; kcatgiIR 

=3720; KmPGIG6P= 1100; 

KmPGIF6P= 4100; KeqPGI = 31 

Phosphofructokinase 

(PFK) 
𝑁𝑁 =  

kcatPfk ∗ PFK ∗ F6PnH ∗ ATP
(𝐾𝐾𝑚𝑚𝑃𝑃𝑓𝑓𝐾𝐾𝐾𝐾6𝑃𝑃𝑛𝑛𝑛𝑛 + 𝐾𝐾6𝑃𝑃𝑛𝑛𝑛𝑛) ∗ (𝐾𝐾𝑚𝑚𝑃𝑃𝑓𝑓𝐾𝐾𝐴𝐴𝐴𝐴𝑃𝑃 + 𝐴𝐴𝐴𝐴𝑃𝑃) 

kcatPfk =166.075; KmPfkF6P = 

130; KmPfkATP =120; nH = 1.1 

Fructose bis-phosphate 

aldolase 

(FBA) 

𝑁𝑁

=  
kcatFbaF ∗ FBA ∗ � FBP

KmFbaFBP� − kcatFbaR ∗ FBA ∗ �G3P ∗ DHAP
KmFbaG3P ∗ KmFbaDHAP�

�1 + FBP
KmFbaFBP + G3P

KmFbaG3P + DHAP
KmFbaDHAP + FBP ∗ G3P

KmFbaFBP ∗ KiFbaG3P + G3P ∗ DHAP
KmFbaG3P ∗ KmFbaDHAP�

 

kcatFbaF =16.789; kcatFbaR =720; 

KmFbaFBP = 140; KmFbaG3p 

=2000; KmFbaDHAP = 2400; 

KiFbaG3P= 10000 

Triose-phosphate 

isomerase 

(TPI) 

𝑁𝑁 =  
kcatTpiF ∗ TPI ∗ G3P

KmTpiG3P − kcatTpiR ∗ TPI ∗ DHAP
(KmTpiDHAP ∗ KeqTPI)

�1 + DHAP
KmTpiDHAP + G3P

KmTpiG3P�
 

kcatTPIF = 8486.67; kcatTpiR= 

816.67; KmTpiDHAP= 1230; 

KmTpiG3P = 1270 

Glycerol-3-phosphate 

dehydrogenase 

(G3PDH) 

𝑁𝑁 =  
kcatG3PDH ∗ G3DH ∗ � DHAP

KmG3dhDHAP� ∗ �
NADH

KmG3dhNADH� 
�1 + DHAP

KmG3dhDHAP + Gly3P
KmG3dhGly3P� ∗ �1 + NADH

KmG3dhNADH + NAD
KmG3dhNAD�

 

kcatG3PDH= 189; KmG3dhDHAP 

=75; KmG3dhG3P = 909; 

KmG3dhNADH = 22; 

KmG3dhNAD = 83 

Creatine kinase 

(CK) 

𝑁𝑁 =  
kcatCK ∗ CK ∗ Phosphocreatine ∗ ADP

�1 + Phosphocreatine
KmCkPCre + Creatine

KmCkCre� ∗ �1 + ADP
KmCkADP + ATP

KmCkATP�
 

kcatCK = 148; KmCkPCre = 5000; 

KmCkCre =16000; KmCkADP = 

800; KmCkATP = 500 
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5.2.4 Optimisation of Kinetic Model 
The main objective of this study was to obtain the kinetic model of the upper part of glycolysis 

which could replicate the experimental condition. Therefore, to use the model to simulate flux 

with more enzyme balances without hands-on experiments. Further, to use these new balances 

and predicted flux for training the ANN model. Since the model was not optimised, kinetic 

parameter estimation was performed using the experimental data of NADH consumption over 

time, through the upper part of glycolysis. 

5.2.4.1 Selection of Experimental Data 
The experimental measurement for the flux determination was carried out in triplicates and 

final flux was calculated and the median deviation of the measurement of experimental 

triplicates. In 31 experimental measurements of NADH consumption over time, two groups 

were observed by visualisation inspection: 

Group 1: Results of NADH consumption with a low deviation between triplicates. i.e. keeping 

all triplicate measurements (Indexes 14, 17-22, 24-27, 30, 31 and 37) (Annexe 6) and, 

Group 2: Results of NADH consumption with low deviation between duplicates, i.e. by 

omitting the replicate which has a higher deviation. (Indexes 11-13, 15, 16, 23, 28, 29, 32-36, 

38-41) (Annexe 7) 

5.2.4.2 Parameter Estimation 
Parameter estimation (PE) is the process of estimating the parameter in the model by 

mathematically fitting the simulated data to the measured dataset. This data could be from time-

course analysis, steady-state or both. The goal is to minimise the objective function by scanning 

one or more parameters within the specified range. The objective function can be considered 

as the error between experimental and simulated data. The parameter estimation is 

computationally expensive. It is important to notice that if the optimisation problem is not well-

posed (e.g. if the numbers of parameters to estimate is large regarding the numbers of targets) 

the existence and the uniqueness of the optimal solution cannot be guaranteed. 

In this study, COPASI was used which is a tool which can handle both stochastic and 

deterministic simulation of pathways. The kinetic model consists of ordinary differential 

equations (ODE) (reaction rate equation). The main steps in the parameter estimation using 

COPASI is as follows: 
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1. Identify the model: From the data and the model, identify which model object is linked 

to the data. 

2. Select the search algorithm: The search algorithms attempt to minimise the root mean 

square error (RMSE) (objective/cost function) between experimental and simulated 

data. 

3. Select the parameter to be fitted: Select the parameters of unknown value (or to be 

estimated) of the model which should be fitted with the experimental data to minimise 

the objective function. These parameters will be estimated to find the minimised 

objective function. 

Different algorithms available for parameter estimation task from COPASI are tested.  

5.2.4.2.1 Glycerol-6-Phosphate Dehydrogenase Turnover Number (kcat) 
The kinetic model was built, based on the experimentally measured kcat for the enzymes HK, 

PGI, PFK, FBA and TPI, whereas the kcat of G3PDH was taken from the literature. Since the 

kcat was not measured in our experiments, estimations of kcat for G3PDH was performed for 

only the Group 1 data were performed. 

5.2.4.2.2 Iterative Estimation of Kinetic Parameters 
The kinetic model contains seven reactions (Table 5.1), where the CK system was used to keep 

the ATP in the system constant. The enzyme HK was used at the constant concentration in the 

system to make sure the constant flux of glucose-6-phosphate. This requirement for the 

constant flux is used as the constraint in the model, i.e. the kinetic parameter, are chosen in this 

study to keep a constant flow of glucose-6-phosphate. Therefore, the other five i.e., PGI, PFK, 

FBA, TPI and G6PDH enzymes were chosen to estimate the kinetic parameters of the model. 

From five enzymes, 24 parameters i.e., catalytic constant (kcat) and the Michaelis-Menten 

constants (Km) were needed to be estimated. 

Firstly, estimating individual parameters would be computationally expensive and time-

consuming. The model consists of 24 kinetic parameters from PGI, PFK, FBA, TPI and 

G6PDH and 31 experiments with varied enzyme concentration. If individual parameter must 

be estimated to fit with experimental data, at least 744 (i.e., 31 experiments x 24 parameters) 

parameter estimation analyses are needed to be performed in one iteration. More importantly, 

if the numbers of parameters to estimate is large, then it is often impossible to find a unique 

solution, and several sets of parameters could give the best. To reduce the number of 

experiments, the iterative approach of parameter estimation using the experimental triplicate 
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data between 60-120s was performed using COPASI (Hoops et al., 2006). By doing so, only 

155 experiments for one iteration (31 case x 5 enzymes) was performed. 

Secondly, to limit the search space for a parameter value, which reduces the calculation time, 

the values mentioned in the BRENDA database was used to limit the range (Table 5.2). The 

BRENDA database contains the curated enzyme kinetic parameters from the experiments 

reported in the literature. The parameter estimation was performed on both Group 1 and Group 

2 experimental data. 

 

Table 5.2: The Parameter range used for the parameter estimation for each enzyme. PGI: 

phosphoglucoisomerase, PFK: phosphofructokinase, FBA: fructose 1,6, biphosphate aldolase, TPI: 

triosephosphate isomerase, G6PDH: glycerol-6phosphate dehydrogenase, EC No: Enzyme commission 

number, F: forward catalytic constant, R: reverse catalytic constant. 

Enzyme EC No Km (mM) kcat (s-1) Organism 

PGI 5.3.1.9 G6P = 0.084 – 1.5; 
F6P = 0.11-0.307 

F = 487-1410; 
R = 247.2-3720 yeast 

PFK 2.7.1.11 F6P = 0.23-0.15; 
ATP = 0.07 F = 3.1-210 Bacilllus 

st 

FBA 4.1.2.13 
FBP = 0.00084-5; 

G3P = 0.3-1; 
DHAP = 0.4-2 

F = 0.55 – 42.4; 
R= 10.28 

Rabbit 
muscle 

TPI 5.3.1.1 G3P =1.1-1.5; 
DHAP = 1.23 – 2.3 

F = 4700-16700; 
R = 500 yeast 

G3PDH 1.1.1.8 

DHAP= 0.075-0.46; 
NADH = 0.0043-0.022; 

G3P= 0.19-0.909; 
NAD = 0.0044-0.38 

F: 309 Rabbit 
muscle 

 

From the upper part of glycolysis model, for 31 enzyme concentration conditions (Table 5.3) 

the kinetic parameters of each enzyme is estimated separately. After the estimation process, 

RMSE between the mean of the experimental triplicate concentrations of NADH and the 

concentration of NADH by obtained using the kinetic model with the newly estimated 

parameter were compared. The enzyme which has lower RMSE between experiment and 

estimated concentrations were updated to the model and repeated until all the enzyme 

parameters are newly estimated (referred as one cycle where all the parameters from five 

enzymes are estimated). The process is repeated up to five times. Then for parameters which 

deviated less across 31 conditions, at the end of the fifth cycle of parameter estimation, mean 

was calculated. The mean of the less deviated parameter is updated to the model, and highly 

deviated parameters are again estimated in five iterations, updating the parameter value with 

the newly estimated value. 
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The updated model after five cycles of estimation was utilised to simulate the other enzyme 

balances given in Table 5.3. The model was simulated for 120 seconds and the flux was 

calculated as the slope of NADH concentrations between 60 to 120 seconds like in 

experimental estimation. The variation of estimated kinetic parameters estimated after five 

cycles were compared. 

 

Table 5.3: The concentration of enzymes (µM) used in the kinetic model of the upper part of glycolysis. 

The equivalent U/ml concentration was used in the experiments. PGI: phosphoglucoisomerase, PFK: 

phosphofructokinase, FBA: fructose 1,6, biphosphate aldolase, TPI: triosephosphate isomerase, JExp: 

experimental flux; MD: median deviation 

Index 
U/ml µM JExp M.D 

PGI PFK FBA TPI PGI PFK FBA TPI (µM/s)  

11 2.74 0.7 3.71 24.39 0.080 0.282 9.451 0.096 15.7 2.5 

12 2.74 0.7 3.62 53.77 0.080 0.282 9.237 0.211 16.3 2.7 

13 2.74 0.77 3.45 97.84 0.080 0.310 8.809 0.384 12.1 4.2 

14 2.74 0.84 3.37 112.53 0.080 0.338 8.595 0.442 16.6 0.1 

15 2.74 0.91 3.58 24.39 0.080 0.367 9.130 0.096 13.9 3.9 

16 2.74 0.98 3.54 24.39 0.080 0.395 9.023 0.096 18.3 1.2 

17 2.74 1.05 3.50 24.39 0.080 0.423 8.916 0.096 17.1 0.2 

18 2.74 1.12 3.29 83.15 0.080 0.451 8.380 0.327 20.1 0.3 

19 4.11 0.7 3.58 53.77 0.121 0.282 9.130 0.211 14.4 0.1 

20 4.11 0.84 3.58 24.39 0.121 0.338 9.130 0.096 15.8 0.2 

21 4.11 1.12 3.37 39.08 0.121 0.451 8.595 0.154 20.6 0.2 

22 5.48 0.77 3.58 24.39 0.161 0.310 9.130 0.096 15.4 0.2 

23 5.48 1.12 3.37 24.39 0.161 0.451 8.595 0.096 16.1 2.3 

24 5.48 1.12 3.33 39.08 0.161 0.451 8.487 0.154 19.3 0.6 

25 6.85 1.05 3.37 24.39 0.201 0.423 8.595 0.096 18.5 0.6 

26 6.85 1.12 3.33 24.39 0.201 0.451 8.487 0.096 17.8 0.1 
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27 6.85 1.12 3.29 39.08 0.201 0.451 8.380 0.154 16.3 0.3 

28 6.85 1.12 3.24 53.77 0.201 0.451 8.273 0.211 19.7 2.5 

29 8.22 1.05 3.33 24.39 0.241 0.423 8.487 0.096 17.8 1 

30 8.22 1.05 3.29 39.08 0.241 0.423 8.380 0.154 19 0.6 

31 8.22 1.05 3.24 53.77 0.241 0.423 8.273 0.211 21 0.6 

32 8.22 1.12 3.29 24.39 0.241 0.451 8.380 0.096 15.6 3.1 

33 8.22 1.12 3.24 39.08 0.241 0.451 8.273 0.154 17.8 2.2 

34 9.59 0.84 3.29 68.46 0.281 0.338 8.380 0.269 17.1 0.7 

35 9.59 1.05 3.29 24.39 0.281 0.423 8.380 0.096 17.7 1 

36 9.59 1.05 3.24 39.08 0.281 0.423 8.273 0.154 18.8 1.8 

37 9.59 1.12 3.24 24.39 0.281 0.451 8.273 0.096 20.4 0.6 

38 10.96 0.91 3.33 24.39 0.322 0.367 8.487 0.096 15.9 0.9 

39 10.96 1.05 3.24 24.39 0.322 0.423 8.273 0.096 17.9 0.8 

40 12.33 0.84 3.29 39.08 0.362 0.338 8.380 0.154 15.8 0.9 

41 13.7 0.84 3.29 24.39 0.402 0.338 8.380 0.096 13.6 2.4 

These enzyme concentrations are originally based on Table 4.6 converted into U/ml and µM based on the 

calculations described in Chapter 3: “Concentration Based on the Relative Activity”. Therefore index starts from 

11. 

 

5.2.4.2.3 Summary of the Followed Methodology 
The methodology followed is summarised in Figure 5.2 is as follows: 

1. From the initial upper part of glycolysis model, the parameters were estimated for each 

enzyme using the experimental measurement of NADH concentration (step 1). 

2. The RMSE between the experiment and the model with the new estimated parameter 

were calculated (step 2).  

3.  The parameters of enzymes with low RMSE from step 2 were updated to the model, 

and for the remaining enzymes, step 1 and 2 were performed until all five enzyme 

parameters were estimated. This referred to as one iteration(step 3). 
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4. The estimation of all five-enzymes ( i.e., PGI, PFK, FBA, TPI, G3PDH) kinetic 

parameters (both kcat and Km) were performed iteratively, five times and referred to as 

one cycle(step 4).  

Steps 1-4 were performed for all 31 enzyme combinations outlined in indices 11-41 in Table 

5.3. 

5. The mean of the less deviated parameters across 31 experiments was updated to the 

model, and highly deviated parameters were estimated for five iterations using the mean 

updated model. 

6. After estimating and updating the model with the highly deviated parameters, the model 

was simulated for 31 concentrations of enzymes from Table 5.3. The RMSE between 

the simulated flux and experimental flux was calculated. 
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Figure 5.2: (A) Summary of the methodology followed for the parameter estimation. Enzyme ni 

represents the kinetic parameters of PGI, PFK, FBA, TPI and G3PDH iteratively (i=1 to 5). (B: ) 

Experimental measurement of NADH between 0 to 120 seconds. Between 60-120 seconds 

concentration are considered for Parameter estimation. (C) calculation of RMSE between experimental 

and fitted value after the parameter estimation. 

The above methodology was followed for all 31 enzyme combinations outlined in indices 11-

41 in Table 5.3 individually. 

 

5.2.4.3 Ranking of Simulated Flux 
The rank correlation of data measures the ordinal association between the ranking of two 

different variables or different ranking of same variables and the rank correlation coefficient 

measures the degree of similarity between the two rankings and can be used to weigh the 

significance of relation. Kendall Tau and Spearman coefficient are two of the most popular 

rank correlations. These two methods measure the association between variables considering 

the rank of the data and not the value itself. The data is ranked by putting the variables in order 

and ranked.  

Kendall Tau calculation is based on the concordant and discordant pairs. The rank order 

between a pair of two variables is said concordant when they have a similar ranking and 

discordant if the ranking is different. 

Kendall Tau coefficient between the two random variables is defined as Equation 5.1 

Equation 5.1: Calculation of the Kendall Tau coefficient. Where, 𝜏𝜏: Kendall Tau coefficient. n: number 

of observations 

𝜏𝜏 =
(𝑛𝑛𝐺𝐺𝑚𝑚𝑛𝑛𝑒𝑒𝑃𝑃 𝐿𝐿𝑓𝑓 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿𝑃𝑃𝑠𝑠𝑡𝑡𝑛𝑛𝐿𝐿 𝑝𝑝𝑡𝑡𝐿𝐿𝑃𝑃𝐿𝐿) − (𝑛𝑛𝐺𝐺𝑚𝑚𝑛𝑛𝑒𝑒𝑃𝑃 𝐿𝐿𝑓𝑓 𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑠𝑠𝑡𝑡𝑛𝑛𝐿𝐿 𝑝𝑝𝑡𝑡𝐿𝐿𝑃𝑃𝐿𝐿)

𝑛𝑛(𝑛𝑛 − 1)/2
 

 

Spearman Coefficient calculation is based on the deviation between the two rankings and 

usually have larger values than the Kendall tau. 

Equation 5.2: Calculation of the Spearman rank correlation coefficient. Where, ρ= Spearman rank 

correlation; di = the difference between the ranks of corresponding variables; n= number of observations 

𝜌𝜌 = 1 −  
6∑𝑠𝑠𝑖𝑖

2

𝑛𝑛(𝑛𝑛2 − 1)
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The correlation coefficients take the value between -1 and +1. The Kendall Tau and Spearman 

Coefficients between experimental and model-simulated flux is calculated. 

 

5.3 Result and Discussion 
The kinetic model was built to reconstruct in vitro upper part of glycolysis. The model consists 

of newly estimated parameters for the forward direction, the reversible reaction and the co-

substrates parameters are taken from the literature. The model was simulated with varied 

concentration of enzymes (Table 5.3) for 120 seconds, the flux was calculated as the slope of 

NADH consumption between 60-120 seconds. The experimental vs simulated flux from the 

kinetic model were compared (Figure 5.3). The model has an RMSE of 5.147 between all the 

experimental flux and simulated flux. 

 

Figure 5.3: The experimental flux vs simulated flux of the upper part of glycolysis with varied 

concentration of PGI, PFK, FBA and TPI. The black filled circle represents the experimental flux with 
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standard deviation in black dashed line, red filled circles represents the simulated flux from the kinetic 

model. X-axis: indexed according to sorted experimental flux in ascending order. 

 

Figure 5.3 shows that the original model is not optimised to replicate the experimental 

condition and the parameters need to be fine-tuned so that this kinetic model could thus be used 

for generating more data of enzyme balance, and for predicting flux to train ANN model. Hence 

the kinetic parameters of the model were optimised to replicate the experimental flux. 

5.3.1 Optimisation of Kinetic Model 
The enzymes HK and CK did not directly contribute to the flux variation. The HK was 

important to keep the constant flux of Glucose-6P while the CK system was important to keep 

the ATP in the system regenerated. Therefore, these enzymes parameters were not taken into 

account for the parameter optimisation. 

5.3.1.1 kcat Estimation Of Glycerol-6-Phosphate Dehydrogenase 
In this study, kcat of all the enzymes were measured, except for the G3PDH. Hence, initially, 

the parameter estimation was performed only for optimising kcat of G3PDH. It was observed 

that by only optimising the kcat value, a plateau in the final flux measurement for other 

conditions in Figure 5.4. Figure 5.4 proves that by only estimating the kcat of G3PDH, the model 

cannot be optimised to replicate the experimental system. 
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Figure 5.4: Effect of newly estimated kcat parameters from glycerol-3-phosphate dehydrogenase (top 

and bottom). X-axis: indexed according to sorted experimental flux in ascending order. kcat values are 

given in s-1. 

5.3.1.2 Iterative Estimation Of Parameters 
To measure the flux through the pathway, the NADH consumption between 60-120 seconds 

was considered in the experiments the same as in Fiévet et al. (Fiévet et al., 2006). Hence, the 

parameter estimation was carried out using data between 60-120 seconds. The parameter 
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estimation was performed iteratively for five enzymes i.e. PGI, PFK, FBA, TPI and G3PDH, 

for 31 datasets up to five cycles. It was observed that, at the fifth cycle of parameter estimation, 

there was not much improvement in the fitting of the model to experimental data, therefore 

estimation was stopped at the fifth cycle. The variation of RMSE across different iteration of 

parameter estimation is represented Annexe 8 and Annexe 9. 

The efficiency of the new model was measured as the RMSE between the experimental 

measurement for 31 datasets with that of simulated flux using the updated parameter. The best 

model obtained after five cycles of estimation has an RMSE of 1.93, between the 

experimentally measured flux (total of 31 datasets) and the simulated flux. The RMSE, Kendall 

tau coefficient and Spearman coefficient were calculated for the model which measures the 

association between the two random variables. The Kendall tau and Spearman coefficients are 

used to measure the relationship between simulated and experimental flux. If the simulated and 

experimental flux is positively correlated then the coefficient values will be positive 1 for 

Kendall tau and spearman coefficient and if they are negatively correlated, then then the 

Kendall Tau and Spearman coefficient will be negative 1. The indexes with positive Kendall 

tau coefficient i.e., positive correlation between experimental and model-simulated flux is 

given in Table 5.4, and RMSE values less than 2, are given in Table 5.5. The kinetic parameters, 

yielding positive Kendall Tau, with the RMSE between experimental and simulated flux less 

than 2 is given in Annexe 10. 
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Table 5.4: The Kendall tau and Spearman coefficient between the best model obtained after the 

five cycles of parameter estimation and mean of experimental flux. 

Index Kendall Tau Spearman Coefficient 

Index37 0.42209 0.5861 

Index29 0.41776 0.58025 

Index30 0.38745 0.55079 

Index39 0.25758 0.35226 

Index38 0.18832 0.2413 

Index40 0.17966 0.25361 

Index41 0.17533 0.24533 

Index35 0.11039 0.15737 

 

Table 5.5: The model with RMSE less than 2 between the best model after five cycles of parameter 

estimation and the mean of experimental measurement for all 31 enzyme combinations outlined in 

indices 11-41 in Table 5.3. 

Index RMSE 

Index37 1.97001 

Index29 1.97653 

Index30 1.93239 

Index39 1.98293 
 

The kinetic parameters corresponding to the model with the lowest RMSE after five cycles of 

parameter estimation (index 30:Table 5.5) are provided in  

Table 5.6. All the kinetic parameters estimated during the iterative estimation are found to be 

within the biological range. 

Table 5.6: Kinetic parameter obtained for the index 30 based model after five cycles of iterative 

parameter estimation. These kinetic parameters in the model yield an RMSE of 1.93 with mean 

of the experimental triplicates for 31 varied concentrations of enzymes PGI, PFK, FBA and 

TPI. The kcat values are given in s-1, Km values in µM and equilibrium constant Keq have no 

units. 

Kinetic parameters Index30 Kinetic parameters Index30 
KeqPGI 1.000 kcatPfk 27.784 
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kcatFbaR 0.000 KmPGIG6P 84.000 
KeqTPI 0.021 KmFbaFBP 3.978 

KmG3dhNADH 4.301 kcatPgiR 543.518 
kcatFbaF 1.541 kcatPgiF 1398.289 

KiFbaG3P 10000.000 KmFbaDHAP 1238.556 
kcatTpiF 16700.000 KmFbaG3P 2500.000 

kcatG3dhG3PDH 256.548 KmTpiDHAP 1521.178 
KmPGIF6P 306.506 KmTpiG3P 1370.018 

KmG3dhDHAP 119.781 kcatTpiR 942.491 
KmPfkATP 76.389 KmG3dhGly3P 768.741 
KmPfkf6p 143.616 KmG3dhNAD 380.000 

 

The comparison of experimental flux vs simulated flux using the newly estimated parameter is 

given in (Figure 5.5) confirms that after estimating the kinetic parameters for all the enzymes 

in five iterations provided a better fit with the experimental flux. 

 

 

Figure 5.5: The experimental flux vs estimated flux from the model with after 5 iterations of parameter 

estimation. The black dots represent experimental flux with standard deviation, red, blue, green, 

magenta dots represent the estimated flux after 5 cycles of parameter estimation from index 29, 30, 37 

and 39 respectively. X-axis: indexed according to sorted experimental flux in ascending order. 
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5.3.1.3 Selective Parameters Estimation 
The parameters between 31 datasets are compared after five cycles of estimation (Figure 5.6). 

Figure 5.6 shows that some of the parameters have deviated less (less than 60%) within 31 

experiments and some parameters deviate more (more than 60%) compared the initial model. 

The deviation is calculated in percentage as Equation 5.3 and the percentage of deviation is 

given in Annexe 11.  

Equation 5.3: The percentage deviation of kinetic parameters during the iterative parameter estimation 

across 31 experimental conditions. 

Deviation parameter (%) =  
Average of 31 experiments 

Initial value of the model
∗ 100 

 

Figure 5.6: Summary variation of kinetic parameter parameters of PGI, PFK, FBA, TPI and G3PDH 

after the 5 cycles of parameter estimation from 31 datasets. 
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The hypothesis is- the parameter which contributes highly to the final flux variation, deviates 

less and those parameters, which has limited control over the final flux, deviate more. To test 

our hypothesis and improve the model accuracy further, only parameters which were deviated 

most (more than 60% from initial value) in the five cycles of PE in 31 datasets were chosen for 

further analysis (Figure 5.7 and Table 5.7). These parameters will be referred to as selective 

parameters. 

 

 

Figure 5.7: The selected parameters after five cycles of estimations from 31 datasets with higher 

deviation, for further analysis. 

 

Table 5.7: Kinetic parameters that deviated most in between all 31 enzyme combinations outlined in 

indices 11-41 in Table 5.3 selected for further analysis. 

Parameter Parameter 

kcatPgiF KeqTPI 

KmPfkf6p KmTpiDHAP 

kcatPfk KmTpiG3P 
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KmPfkATP kcatTpiF 

KiFbaG3P kcatTpiR 

KmFbaDHAP KmG3dhNAD 

KmFbaFBP kcatG3dh 

KmFbaG3P  
 

Part of our hypothesis is that the parameter which deviated less has more control over the final 

flux. Thus, the model was updated with the mean of the less deviated parameters across 31 

experiments to take account for different flux values as listed in Table 5.8. The selective kinetic 

parameters were estimated again in five cycles. 

 

Table 5.8: The mean of the parameters with low variation (less than 60%) used in the updated model 

for further analysis. The units of Km are µM and kcat is s-1. 

Parameter Mean Parameter Mean 

KmPGIG6P 181.4721 kcatFbaR 2.039088 

kcatPgiR 481.9601 KmG3dhGly3P 426.182 

KmPGIF6P 205.7683 KmG3dhNADH 7.67841 

KeqPGI 0.81634 KmG3dhDHAP 124.8282 

kcatFbaF 6.193805   
 

The selective parameter estimation performed using the model containing enzyme 

concentrations of index 26 (from Table 5.3) yielded an RMSE of 1.91, Kendall Tau and 

Spearman coefficient of 0.292 and 0.403 respectively. However, Figure 5.8 revealed that, 

though RMSE between experimental flux and simulated flux, after the selective PE process, 

the model was inefficient in simulating flux across the different condition. 
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Figure 5.8: The comparison of best models obtained by iterative parameter estimation (index 30) and 

selective parameter estimation (index 26). Black circles represent experimental flux with standard 

deviation, red circles represent the flux with the original model before parameter estimation, blue circles 

represent index 30 based simulation after iterative estimation and green circles represent index 26 based 

selective simulation. X-axis: indexed according to sorted experimental flux in ascending order. 

 

The highly deviating parameters by iterative PE and after five cycles of selective PE 

approaches were compared (Figure 5.9). The RMSE, Kendell Tau and Spearman coefficients 

were computed for all the 31 enzyme combinations (outlined in indices 11-41 Table 5.3)PE 

(Annexe 12) and only the positive values (i.e., the experimental and model-simulated flux 

across 31 conditions are positively correlated) are given in Table 5.9. 

. 
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Table 5.9: RMSE, Kendell tau and Spearman coefficient for selective parameter estimation. 

Index RMSE Kendall 
Tau 

Spearman 
Coefficient Index RMSE Kendall 

Tau 
Spearman 
Coefficient 

Index13 7.490 0.340 0.483 Index31 3.022 0.219 0.400 
Index15 6.206 0.353 0.495 Index32 2.042 0.318 0.439 
Index20 2.174 0.024 0.018 Index33 2.150 0.314 0.435 
Index22 2.350 0.058 0.087 Index34 2.062 0.374 0.508 
Index24 2.413 0.297 0.415 Index35 4.407 0.331 0.470 
Index25 2.084 0.236 0.343 Index36 3.233 0.348 0.492 
Index26 1.912 0.292 0.403 Index37 2.544 0.201 0.295 
Index27 2.500 0.331 0.472 Index38 3.956 0.318 0.462 
Index28 4.458 0.370 0.518 Index39 3.196 0.180 0.266 
Index29 2.153 0.249 0.346 Index40 8.183 0.227 0.328 
Index30 2.131 0.219 0.309 Index41 13.623 0.197 0.286 

 

 

 

Figure 5.9: (A, B) The estimated highly deviated parameters after five cycles of iterative parameter 

estimation. (C, D) The parameter estimation of highly deviated parameters after updating the model 

with the mean of the less deviated parameter from iterative parameter estimation. 
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From Figure 5.9 and Table 5.10, it is evident that, by estimating the highly deviated parameter 

from the iterative PE approach, even though the range of variation varied, it did not improve 

the quality of the simulation in terms of RMSE, Kendall Tau and Spearman coefficients. In 

other words, the RMSE increased and Kendall tau and Spearman coefficient values decreased. 

In Figure 5.10 it is clear that, after PE using selective parameter approach, the flux predicted 

by kinetic models is not successful in simulating experimental flux accurately. 

 

Table 5.10: The comparison of RMSE, Kendall tau and Spearman coefficients for the model with 

positive coefficient after the five iterative estimations, and after five cycles of estimation selective 

parameters. 

After Iterative Approach After Selective Approach 

Index RMSE Kendall Tau Spearman 
Coefficient RMSE Kendall Tau Spearman 

Coefficient 

Index37 1.970005 0.422087 0.586099 2.543507 0.201303 0.295168 

Index29 1.976526 0.417758 0.580248 2.153019 0.248923 0.346414 

Index30 1.932388 0.387454 0.550792 2.131409 0.218619 0.308887 

Index39 1.98293 0.257581 0.352265 3.195822 0.179657 0.266115 

Index38 2.796894 0.188316 0.241299 3.955999 0.318189 0.462423 

Index40 10.76548 0.179658 0.253606 8.182841 0.227278 0.327852 

Index41 14.86231 0.175328 0.245335 13.62289 0.196974 0.286291 

Index35 2.115905 0.110392 0.157369 4.406505 0.331176 0.470493 
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Figure 5.10: Comparison of experimental flux vs the flux simulated by the kinetic model after five 

iterations of parameter estimation using the mean of the selected parameter. Black circles represent 

experimental flux with standard deviation, red, blue, green, magenta, cyan and orange circles represent 

the flux simulated by the kinetic model with mean of parameter and newly estimated parameter for 

index 29, 30, 35, 37, 38 and 39 respectively. X-axis: indexed according to sorted experimental flux in 

ascending order. 

Previously, the ANN model was built to predict the flux through the upper part of glycolysis 

(Chapter 3). The data used for training the ANN model has a flux range of 0.79 µM/s to 12.9 

µM/s. The best ANN model has an RMSE of 0.8 and R2 of 0.9 between experimental flux and 

ANN predicted flux with 13 hidden units in a single layer using the logistic activation function. 

For the experimental enzyme balances used in this study (Table 5.2), if the flux is predicted 

using the ANN model from Chapter 3, an RMSE of 4.98 and R2 of 0.675 will be obtained. Such 

result was expected, indeed, since ANN models are known to not perform well outside the 

training dataset, whereas the kinetic model which is not a training-based model has no such 

limitation. Therefore, in this study, the kinetic model was built using experimentally measured 

kinetic parameters. The main objective of the present study was to build the kinetic model of 

the upper part of glycolysis which can simulate the various range of flux values to generate 
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more data for the ANN model. So, the ANN model could be extended beyond the range of 0.79 

µM/s to 12.9 µM/s. The first kinetic model built in this study was simulated with experimental 

flux values from 12.1 to 21 µM/s and the maximum outcome was 24.3 µM/s. From Figure 5.3, 

it is shown that the kinetic model is not optimised to replicate the experimental system. After 

the extensive investigation to optimise the parameters of the initial kinetic model, the analysis 

showed that it is not always easy to build the kinetic model to replicate the experimental 

conditions. Indeed, regarding the large number of parameters to be estimated, there is not a 

unique optimal solution to the optimisation problem. By performing different parameter 

estimations, the model was finally optimised to simulate the flux with an RMSE of 1.91. 

Nonetheless, this model quality is insufficient to be used for generating data to improve and 

extend the ANN model presented in a previous Chapter 3-Chapter 4. Nevertheless, the final 

kinetic model obtained with parameter estimation can be used to check if the balances found 

in the glass-ceiling of the ANN (Chapter 4) are potential high flux or not. However, flux value 

simulated by the model may not have a good agreement with experiments. 

5.4 Conclusion 
The parameter estimation is the process of trying to find the best parameter of the model using 

the experimental data. In this study, parameter estimation was performed for the upper part of 

glycolysis using 31 experiments with different enzyme concentrations. By the iterative 

approach, the kinetic parameters of PGI, PFK, FBA, TPI and G3PDH are estimated. The final 

best model obtained after the different steps of parameter estimation has an RMSE of 1.91 

between the experimental flux and the model simulated flux. This study showed that even when 

the experimental kinetic parameters are available, and assuming that they are exact, it is not 

always easy to fit the model to experimental data to predict the behaviour and replicate the 

system. If there are too many parameters to be estimated, the process of estimation is 

computationally expensive, and besides, the existence and the uniqueness of an optimal 

solution are not guaranty. Even though the model obtained after series of parameter estimation, 

had a better efficiency in terms of RMSE (1.91) to predict flux, this would not be enough to 

meet our objective which was i. to use the kinetic model to predict accurately flux for different 

enzyme concentration, ii. then, utilise these newly predicted fluxes, associated enzyme 

concentrations, for training the ANN model and extend its range of application in terms of flux 

prediction. Nevertheless, the final kinetic model obtained in this study is good enough as a 
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guide to check the trend in terms of high flux: this could help during industrial process 

optimisation.
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Chapter 6 The State of Art in the Malic 

Acid Synthesis
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6.1 Introduction 
Malic acid (MA) is a four-carbon dicarboxylic acid that is an intermediate in the Tricarboxylic 

acid (TCA) cycle. It is one of the major acid components in fruits and plants (Battat, Peleg, 

Bercovitz, Rokem, & Goldberg, 1991). The US department of energy classified malic acid as 

one of the top 12 building block chemicals. Malic acid has been widely used as an acidulant 

and taste enhancer/modified in the food and beverage industry and has also found its 

application in metal cleaning, textile industries, water treatment and fabric dying (Cheng, Zhou, 

Lin, Wei, & Yang, 2017; Wei, Cheng, Lin, Zhou, & Yang, 2017; K. Zhang, Zhang, & Yang, 

2013). The polymer of β-L-malic acid (poly malic acid) is used as the biodegradable plastic 

(Cheng et al., 2017; Chi et al., 2016; Y. K. Wang, Chi, Zhou, Liu, & Chi, 2015). L-malic acid 

is used as an amino acid precursor for the treatment of hyperammonemia and liver dysfunction 

(Rosenberg, Miková, & Krištofíková, 1999). 

In this chapter, I review different methods, pathways, microorganisms and substrates used for 

the malate synthesis. 

 

6.2 Methods of Malic Acid Synthesis 
Malic acid contains two optical isomers, i.e., D-, L- and the mixture of DL- isomers. Different 

types of acid show different properties. The D- isomer is produced synthetically, whereas L- 

isomer is observed naturally. L- isomer is an intermediate of cell metabolism. MA is produced 

by three methods: 

6.2.1 Chemical Synthesis  
Currently, the major portion of malic acid is synthesised by chemical synthesis. The petroleum-

derived maleic anhydride, resulting from the oxidation of benzene, n-butane, or fumarate 

through chemical hydration, produces a mixture of DL-malic acid. This method requires high 

temperature and pressure which make the process difficult and cost-inefficient. The depletion 

of petroleum sources and environmental concerns led to finding alternative methods for 

production (Goldberg, Rokem, & Pines, 2006). 
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6.2.2 Enzymatic Conversion 
Pure L-malic acid is produced by enzymatic conversion of fumarate using immobilised or 

isolated fumarase. The substrate inhibition and temperature sensitivity of fumarase make it 

difficult to industrial-scale production (Giorno, Drioli, Carvoli, Cassano, & Donato, 2001; 

Kimura, Kawabata, & Sato, 1986). 

6.2.3 Fermentation 
In 1924, malic acid is identified as a fermentation product by Dakin (Dakin, 1924). From then, 

many species are identified, characterised for the production of malic acid from various 

feedstocks such as lignocellulosic biomass (corn, sugarcane), xylose, etc (Mondala, 2015; Wei 

et al., 2017; Xia, Xu, Hu, & Liu, 201s6; T. Zambanini et al., 2016; Zou, Wang, Tu, Zan, & Wu, 

2015). The sustainable, eco-friendly feedstock usage and the drawbacks of other methods 

encouraged developing microbial fermentation for malate production. 

 

6.3 Biosynthesis Pathways for Malic Acid Synthesis 
The L-malic acid is identified as one of the intermediates in biological pathways including 

bacteria, fungi and C4-plants (Ludwig, 2016; Neufeid, Peleg, Rokem, Pinest, & Goldberg, 

1998). Four major pathways are recognised (Figure 6.1) for the biosynthesis of L-malic acid 

(Zelle et al., 2008). All four pathways share the common precursor pyruvate. The pyruvate is 

synthesised from glucose through the central carbon metabolism pathway, glycolysis. 

6.3.1 Oxaloacetate Reduction Pathway 
The oxaloacetate reduction is a cytosolic pathway, also known as the reductive tricarboxylic 

acid (rTCA) pathway. First, pyruvate is gets carboxylated to oxaloacetate (OAA) by pyruvate 

carboxylase (PYC) followed by the reduction of OAA to malic acid in the cytosol by malic 

enzymes (malate dehydrogenase, MDH). The OAA reduction pathway is an ATP neutral 

pathway, that produces 2 mols of malate per mol of glucose with fixation of 2 mol of CO2 per 

mol of glucose. The rTCA pathway is the most economic and widely studied in many 

organisms for the synthesis of malic acid. 

In 1983, Osmani suggested the existence of a cytosolic pathway in Aspergillus flavus (Stephen 

A. Osmani and Michael C. Scrutton, 1983) and identified that PYC is important for malic acid 
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synthesis (Peleg, Stieglitz, & Goldberg, 1988) which is found only in the cytosol in A. flavus 

and Aspergillus niger found both in cytosol and mitochondria. Peleg et al. in 1988 found higher 

malate dehydrogenase (MDH) activity than fumarase during malic acid production. Later in 

1989 from 13C, NMR study proved that malate is majorly synthesised from the rTCA pathway 

in A. flavus. Currently, this pathway is introduced into many microorganisms to produce malic 

acid (Peleg, Barak, Scrutton, & Goldberg, 1989). 

6.3.2 Tricarboxylic Acid Cycle (TCA cycle) 
TCA is the second most studied pathway for malic acid synthesis. Oxaloacetic acid and acetyl 

CoA produced from pyruvate is catalysed to citric acid in mitochondria followed by several 

oxidation reactions to form malate. This pathway produces a maximum of 1 mol malate/mol 

of glucose with the release of 2 CO2 per mol of glucose (Zelle et al., 2008).  

The studies showed that, only deleting the mitochondrial MDH which reverse catalyse the 

malate to oxaloacetate, is not enough for improved malate production via the TCA cycle 

(Trichez et al., 2018). Along with these enzyme deletions, over-expression of malate 

insensitive phosphoenolpyruvate carboxylase (PpcK620S), and inactivation of the acetate 

pathway improves the malate synthesis (Trichez et al., 2018). 

6.3.3 Glyoxylate Cyclic Pathway 
 The glyoxylate cyclic pathway produces 1 mol of malate per mol of glucose (Zelle et al., 

2008). The enzyme from glyoxylate pathway iso-citrate lyase (ICL) and enzyme from TCA, 

isocitrate dehydrogenase (IDH) are competing for the same substrate isocitrate. This pathway 

is repressed by the high concentration of glucose, which makes it not a good fit for malic acid 

synthesis (Dai et al., 2018). 

6.3.4 Glyoxylate Noncyclic Pathway 
The glyoxylate non-cyclic pathway involves the same enzymes as that of the cyclic pathway. 

The non-cyclic glyoxylate cycle results in a theoretical maximum yield of 1.33 mol/ mol of 

glucose, because of the replenishing of oxaloacetic acid by pyruvate carboxylation. 
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Figure 6.1: Four possible biosynthesis pathways for the production of malic acid synthesis as described 

in Zelle et al. (Zelle et al., 2008) i) oxaloacetate reduction pathway, ii) tricarboxylic acid pathway, iii) 

glyoxylate pathway, iv) glyoxylate noncyclic pathway. The precursor oxaloacetate is produced from 

pyruvate via glycolysis. 

6.3.5 Secretion of Malic Acid 
Accumulation of high concentration of malic acid is toxic to cells, and need to be transported 

across the plasma membrane. Many dicarboxylic acid transporters are identified in various 

microorganisms (Day & Hanson, 1977; Manuela & Leao, 1990; Osothslip & Subden, 1986; 

Zoglowek, Krömer, & Heldt, 1988). The transporter from Schizosaccharomyces pombe has 

shown higher activity in malate transport and heterologous expression resulted in a higher yield 

of malate (Osothslip & Subden, 1986).  
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6.4 Microorganisms for the Production of Malic Acid 
Traditionally, malic acid was extracted from apple juice which comprises 0.4-0.7% of malate 

and extraction from eggshells requires high energy consumptions and heavy pollution (Lin et 

al., 2012). Many microorganisms have been identified and developed for malic acid synthesis. 

Microbial fermentations have advantages of using different raw materials such as glycerol 

(West, 2015a), soybean (Cheng et al., 2017) or xylose (Z. Li, Hong, Da, Li, & Stephanopoulos, 

2018), along with the major substrate glucose. 

Aspergillus species: Aspergillus species has advantages of utilising various sugars such as 

glucose, xylose (Begum & Alimon, 2011; Cardoso Duarte & Costa-Ferreira, 1994; Prathumpai 

et al., 2003) and, is used for the production of many organic acids, like malic acid with high 

yields and production rates (Table 6.1). 

In A. flavus, the malic acid is synthesised via reductive carboxylic acid cycle and a maximum 

76% of theoretical yield was obtained (Peleg et al., 1988). A. flavus accumulates large amounts 

of malic acid when cultivated on media containing a high concentration of glucose, limited 

nitrogen and CaCO3 which supplies CO2 for the pyruvate carboxylase. However, the aflatoxin 

production disqualifies the food-grade chemical production from A. flavus (Battat et al., 1991; 

Geiser, Pitt, & Taylor, 1998). 

The other Aspergillus species such as A. oryzae or A. niger are proved to be “Generally 

Recognized as Safe” for industrial-scale production and usage of products in food and 

pharmaceuticals (Abe, Gomi, Hasegawa, & Machida, 2006; Andersen, Nielsen, & Nielsen, 

2008). Brown et al. showed that by over-expressing cytosolic malate dehydrogenase, pyruvate 

carboxylase and dicarboxylate transporter, the higher malic acid yield of 1.38 mol/mol could 

be obtained in Aspergillus oryzae (Knuf et al., 2013). However, the yield, titre and productivity 

from other species are lower compared to A. flavus. 

The availability of annotated genome sequences helps to develop gene-editing strategies and 

methods. However, Aspergillus species have disadvantages such as lack of self-replicating 

vectors, and low transformation efficiencies unlike Escherichia coli or Saccharomyces 

cerevisiae. The filamentous growth of fungus Aspergillus decreases the oxygen supply to the 

fermentation system (Klement & Büchs, 2013), which makes it difficult for product formation 

and industrial-scale production.
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Table 6.1: Comparison of malic acid production in various Aspergillus species. 

Substrate Organism 

Culture condition 

Pathway Engineering strain 

Results Reference 

pH 
Temperature 

in °C 

Time 

(h) 

Operating 

mode 

Malic 

acid 

(g/l) 

Yield 

(mol 

mol−1) 

Productivity 

(g/l/h) 
 

Glucose 98 

g/l 

Aspergillus 

flavus 
- - 6-8days - rTCA - 36 - - (Peleg et al., 1988) 

Glucose 

120 g/l 
A. flavus - 32 190h 

Stirred 

fermenter 
TCA - 113 - 0.59 (Battat et al., 1991) 

Glucose 

100 g/l 

Aspergillus 

oryzae NRRL 

3488 6.9 34 164 

- 

rTCA 

Overexpression of 

C4T318, mdh3, and PYC 
154 1.38 0.94 

(Knuf et al., 2013) 

 - 
Overexpression of C4T318 

transporter 
122 1.17 0.74 

Thin stillage 
A. niger ATCC 

9142 
- - - - - -  0.8 g/g - (West, 2011) 

Glycerol 

 

Aspergillus 

niger ATCC 

12846 

- 25 192 - - -  - - (West, 2015b) 

Syngas* 

15.84 g/l 

Aspergillus 

oryzae 
5.9 37 - 

Stirred tank 

reactor 
- - 4.34 - 0.27 g/g 

(Oswald, Dörsam, Veith, 

Zwick, & Neumann, 2016) 

Glucose 

110 g/l 

Aspergillus 

oryzae 
- - - 

3L- fed-

batch 

culture 

rTCA 

Overexpression of PYC, 

MDH, PFK and 

heterologous expression of, 

malate permease, 

overexpression of PEP 

carboxykinase, PEP 

carboxylase 

165 - 1.38 (J. Liu et al., 2017) 

*Synthetic gas (syngas) is a mixture of hydrogen and carbon monoxide which is produced during the gasification of biomass and waste streams (Hammerschmidt et al., 2011; Rokni, 2015) 
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Escherichia coli: E. coli has proved to be an excellent platform for the production of many 

chemicals using metabolic engineering. In E. coli, rTCA and TCA pathways are studied for the 

malic acid synthesis. Moon et al., using the metabolic flux analysis, showed that by 

incorporating Phosphoenolpyruvate (PEP) carboxykinase (pckA) into E. coli, it can achieve 

high malic acid production (Soo Yun Moon; Soon Ho Hong; Tae Yong Kim; Sang Yup Lee, 

2008). Prevention of acetic acid formation, using pta mutant alone, achieved 1.42 g/l of malic 

acid. Whereas, by inserting pckA from Mannheimia succiniciproducens, a production of 9.25 

g/l of MA is achieved (Table 6.2). 

Saccharomyces cerevisiae: In S. cerevisiae, malic acid is produced mainly by the rTCA 

pathway in the cytosol, which converts pyruvic acid to oxaloacetate. Overexpression of the 

pyruvate carboxylase, malate dehydrogenase and heterologous expression of malate transporter 

from the S. pombe, increased the yield of malate in S. cerevisiae (Table 6.3). 

Other microorganisms: Other than the classical producers of malate, many other organisms 

are used for the malic acid synthesis (Table 6.4). 

The vitamin-auxotroph of Torulopsis glabrata is a well-established microorganism, used for 

the industrial production of pyruvate. By overexpressing pyruvate carboxylase, malate 

dehydrogenase and the transporter SpMAE1, accumulation of 8.5 g/l malate concentration was 

achieved in the engineered strain (Xiulai Chen et al., 2013). Thermobifida fusca is aerobic, 

moderately thermophilic, filamentous soil bacterium with high activity and thermostability of 

cellulose with a wide pH range. Using T. fusca, 62.76 g/l of malate was obtained from cellulose 

(Deng, Mao, & Zhang, 2016). Zygosaccharomyces rouxii uses the medium with 300 g/l of 

glucose and glutamic acid to produce 75 g/l of malate (Taing & Taing, 2007). Ustilago 

trichophora TZ1: The yeast-like growing smut fungus was used to produce the malic acid from 

glycerol. Pichia pastoris is a methylotrophic yeast which has a better efficient heterologous 

gene expression, physical robustness and well-established fermentation. The integration of the 

pyruvate carboxylase gene (pyc), the cytoplasmic malate dehydrogenase gene (mdh1) into the 

chromosomal DNA of P. pastoris GS115 produced the malic acid at 42.28 g/l.
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Table 6.2: Comparison of Malic acid synthesis in Escherichia coli. 

Substrate Organism 

culture condition 

Engineering strain 

Results 

Reference 
pH 

Temperature 

in °C 

time 

(h) 

Operating 

mode 
Malic acid 

(g/l) 

Yield 

(mol mol−1) 

Productivity 

(g liter−1 

h−1) 

Glucose E coli K-12 7 37 - 
batch 

culture 

deletion of MDH, ME; overexpression of 

PEP carboxylase + (inactivation of acetate 

pathway or NADH-insensitive CS mutant) 

- 0.82 -  (Trichez et al., 2018) 

Glucose E coli 6.7 37 12h 

5L 

bioreactor 

(aerobic) 

PEP carboxykinase pckA from M. 

succiniciproducens; pta mutant 
9.25 0.56 0.74 (Jantama et al., 2008) 

Glucose 

E coli (XZ658) - - - - 
E. coli ATCC 8739 ( ldhA 

 ackA adhE pflB) 

163 mM 1 - (X. Zhang, Wang, 

Shanmugam, & Ingram, 

2011) 
 - - 72 - 34 1.42 0.47 

Glucose 
E. coli 

SGJS115 
- 37 9 flask PEP carboxylase - 9.90% - 

(Park, Chang, Jin, Pack, & 

Lee, 2013) 

Glucose E coli 
5.5 30 48 - 

synthetic scaffold between pyc and sfcA 
5.72 - - (Somasundaram, Eom, & 

Hong, 2018) - - - - 30.2   

Glucose 
E. coli strain 

WGS-10 
- - 12h aerobic 

pta mutant, PEP carboxykinase from M. 

succiniproducens 
9.25 0.75 0.74 

(Soo Yun Moon; Soon Ho 

Hong; Tae Yong Kim; Sang 

Yup Lee, 2008) 

Xylose E. coli - 37 72h 

shake flask 

cultivations; 

aerobic 

maeA, maeB, mdh, 

fumA, fumC, and fumB were knocked out; 

overexpressing dte from Pseudomonas 

cichorii 

and E. coli: fucK, fucA, aldA, glcDEF, 

glcB, and katE 

5.90 0.80 g/g - (Z.-J. Li et al. 2018) 
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Table 6.3: Comparison of engineered Saccharomyces cerevisiae for the production of malic acid. 

 

Substrate organism 

culture condition 

pathway Engineering strain 

Results 

Reference 
pH 

Temperature 

in °C 

time 

(h) 

Operating 

mode 

Malic acid 

(g litre-1) 

Yield 

(mol 

mol−1) 

Producti

vity (g 

liter−1 

h−1) 

Glucose 

189 g/l 

Saccharomyces 

cerevisiae 
~8 30 - 

calcium 

carbonate-

buffered 

shake flask 

cultures. 

- 

overexpression of pyruvate 

carboxylase, high-level 

expression of cytosolic mdh, 

heterologous expression of 

malate transporter 

59 0.42 - (Zelle et al., 2008) 

Glucose 

100 g/l 

(556 mM) 

Saccharomyces 

cerevisiae 
5 30 82h batch culture - - 268 mM 0.48 - 

(Zelle, Hulster, 

Kloezen, Pronk, & 

Maris, 2010) 

Glucose 

20 g/l 

Saccharomyces 

cerevisiae 
- - 48 

shake 

flask 

fermentation 

rTCA 
pyc: A. flavus; mdh: R. oryzae; 

Spma: S. pombe; 
30.25 0.3 g/g - 

(Xiulai Chen et al., 

2017) 
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Table 6.4: Alternative organisms used for malic acid synthesis. 

Substrate organism 

culture condition 

pathway Engineering strain 

Results 

Reference 
pH 

Temperatu

re in °C 

time 

(h) 

Operating 

mode 

Malic acid 

(g litre-1) 

Yield (mol 

mol−1) 

Productivity (g 

liter−1 h−1) 

Glucose 

60 g/l 
Torulopsis glabrata - 30 60 flask - 

pyc, mdh, transported 

overexpression 
8.5 0.17 g/g - 

(Xiulai Chen et al., 

2013) 

Cellulose 

100 g/l 

Thermobifida fusca 

- -  - rTCA - 62.76 - - 

(Deng et al., 2016) 
dry corn stover 

50 g/l (18.45 g/l 

glucan and 9.65 

g/l xylan). 

- -  - - - 21.47 - - 

Glycerol 

250 g/l 
Ustilago trichophora TZ1 - 30 - shake flask   196 0.82 g/g 0.39 

(Zambanini, Sarikaya, et 

al., 2016) 

Glycerol 

250 g/l 
Ustilago trichophora TZ1 6.5 - - - - - 195 - 1.94 

(Zambanini, Kleineberg, 

et al., 2016) 

Glucose 

10% 
Pichia pastoris  - - - - 

pyc, mdh, retarded 

fumarase 
42.28 - - 

(T. Zhang, Ge, Li Deng, 

Tan, & Wang, 2015) 

Glucose 

10% (w/v) 100g/l 

Monascus araneosus AI-

W9087 
6 37 5 days - - - 28 - - 

(Lumyong & Tomita, 

1993) 

hydrolysate 

sugar (from corn) 

150 g/l 

Aureobasidium pullulans  -  
repeated 

batch 
- - 38.6 0.3 g/g 0.4 (Zou et al., 2015) 
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6.5 Other Techniques Used in The Malic Acid 

Production 
Along with the traditional gene knockouts, heterologous expression, other techniques are used in 

malic acid synthesis such as photochemical, electrical and enzymatic conversion (Amao & 

Ishikawa, 2007; Inoue, Yamachika, & Yoneyama, 1992; H. Zheng, Ohno, Nakamori, & Suye, 

2009). All these methods have not yet matured for industrial-scale production. 

Recently, one-pot biosynthesis of malic acid had attracted research interest (T. Shi, Liu, & Zhang, 

2019; Xiaoting Ye, Honda, Morimoto, Okano, & Ohtake, 2013). The enzymes from the 

thermophilic enzymes, which are stable at high temperatures, were used to design the pathway for 

malic acid synthesis. Using glucose as the substrate, 60% molar yield was obtained by Ye et al. 

(Xiaoting Ye et al., 2013), and with maltodextrin as substrate, Shi et al. achieved 95.3% of 

theoretical yield using the ATP balanced synthetic pathway (T. Shi et al., 2019). 

 

6.6 Sources for the Malic Acid Synthesis 
A variety of substrates are used to produce malate from simple glucose to complex lignocellulosic 

biomass. The following are the few examples of the majorly used substrates: 

Glucose: The glucose is used as the source for the malic acid synthesis in the majority of studies 

(Table 6.1-Table 6.4). Most of the natural producers and engineered strains are based on the 

glucose-based pathways. The theoretical yield of malate production from glucose is 1-2 mol/ mol 

glucose depending on the pathways used for the production, as explained in the “Biosynthesis 

Pathways for Malic Acid Synthesis” sections. But the industrial-scale production of malic acid 

from glucose is expensive compared to other feedstocks (Xia et al., 2016).  

Glycerol: Recent increase in attention for biodiesel, accompanied by the production of around 19 

million tons per year of crude glycerol (Anand & Saxena, 2012). Different production processes 

using glycerol as a precursor have been reported for the production of 1,3-propanediol, 

polyhydroxyalkanoates, lipids, succinate, citrate or erythritol. One advantage of the microbial 

conversion of glycerol to C4 dicarboxylic acids, such as malate or succinate, is the possibility of 

CO2 fixation through the action of pyruvate Carboxylase. The theoretical yield malate from 

glycerol is 1 mol malate/ mol glucose. 
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Thin stillage: Thin stillage is the by-product from grain-based ethanol production. It contains a 

high percentage of glycerol (West, 2011). The ability of malic acid production using thin stillage 

was studied in A. niger strains and A. flavus ATCC 13697 (West, 2011). A. niger strains produce 

higher malic acid using thin stillage compared to A. flavus using glucose. Lower Malic acid 

production could be due to slower utilisation of source in A. flavus. 

Xylose: Xylose is the second most abundant sugar in lignocellulosic biomass (Nieves, Panyon, & 

Wang, 2015). A novel pathway for malic acid synthesis was engineered using E. coli to utilise 

xylose as the substrate. The pathway was constructed by overexpressing D-tagatose 3-epimerase, 

L-fuculokinase, L-fuculose-phosphate aldolase, aldehyde dehydrogenase and, malate consuming 

enzymes, i.e. malic enzymes, malate dehydrogenase and fumarate reductase, were knocked out. 

The hydrogen peroxide (H2O2), which is toxic to the cell was produced during the synthesis of 

malate from xylose (Demple, Halbrook, & Linn, 1983; Imlay, Chin, & Linnt, 1986). The H2O2 

activity was decomposed by overexpressing catalase which in turn improved the cell growth and 

malate production up to 90% of maximum theoretical yield (Z. Li et al., 2018). 

Corn: The corncob consists of 35% of hemicellulose. The concentrated 150g/l corncob 

hydrolysate contains approximately 96 g/l glucose, 54 g/l xylose, 0.14 g/l furfural, 2.34 g/l, HMF, 

0.1 g/l formic acid and 1.8 g/l acetic acid (Zou et al., 2015). Using 110 g/l sugar equivalent of 

corncob hydrolysate, 36.24±0.65 g/l of malic acid was produced (Zou et al., 2015) 

6.7 Conclusion 
Malic acid is a four-carbon dicarboxylic acid used mainly as an acidulant in the food and beverage 

industry. Currently, malic acid is mainly synthesised by the chemical process, using the petroleum-

derived substrate. The environmental concern and depletion in non-renewable resources 

encouraged to find an alternative eco-friendly method of synthesis. Many organisms are identified, 

characterised and engineered for the malic acid synthesis. However, industrial-scale production 

using malic acid has not yet been achieved. Recently, malic acid was produced via a synthetic 

pathway in a cell-free system using thermophilic enzymes from maltodextrin. This system was 

able to produce 95% of the maximum theoretical yield of malate. This proves that malic acid can 

be synthesised by a cell-free system and, by optimising the pathway, can achieve an already high 

MA production even if not full. Hence in this thesis, an attempt was made to model malic acid 

synthesis via cell-free synthetic pathway. The main objective is to develop a model which can be 

used as a plugin to test different substrates and experimental condition.
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Chapter 7 Modelling of the Cell-Free 

System for Synthesis of Malic Acid.
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7.1 Context 
Malic acid (MA) is a C4-dicarboxylic acid, mainly used as an acidulant in the food and 

beverage industries. Malate is an intermediate of Krebs cycle which is a deprotonated form of 

malic acid. Currently, malic acid is produced for commercial use from petroleum-based maleic 

anhydride. Due to the depletion of petroleum products and environmental concerns encouraged 

scientists towards synthesising chemicals through the biological system. In Chapter 2, malic 

acid synthesis using different microorganisms (natural and/or engineered), sources, and 

techniques developed are discussed in detail. Even if many studies have been performed to 

optimise the microorganisms for producing malic acid, achieving theoretical maximum yield 

still remain a challenging goal. Brown et al., by over-expressing pyruvate carboxylase, malate 

dehydrogenase and native C4-dicarboxylate transporter in Aspergillus oryzae NRRL 3488, 

achieved 1.39 mol malate per mol of glucose (Brown et al., 2013). Zhang et al. produced 1.42 

mol of malate/mol of glucose by adopting two-stage bioprocess for Escherichia coli(X. Zhang 

et al., 2011). This is the highest malate yield achieved so far by using microorganisms, 

however, it is far from the maximum theoretical yield of 2 mol of malate/ mol of glucose. 

Metabolic engineering and synthetic biology are one of the promising approaches for 

sustainable production of chemicals by cell-based systems. The emergence of the field 

synthetic biology led to the development of many technologies including biosensors (Kotula et 

al., 2014; Siciliano et al., 2018), combinatorial transcriptional regulation (Du, Yuan, Si, Lian, 

& Zhao, 2012) etc, in the recent decade. The advantage of using cell-based systems is self-

reproduction. Nevertheless, the engineered organisms carry the risk contaminating and 

affecting humans. Another challenge of cell-based synthetic biology is the requirement of 

laborious design and testing. The cell-free synthetic biology helps in tackling these risk where 

the pathway is built outside the living cell. Cell-free systems (CFS) are easy to manipulate, 

monitor and optimise. CFS adds the advantages of i. high yield by eliminating side reactions, 

and, ii. high tolerance to toxic intermediates and products (Carlson, Gan, Hodgman, & Jewett, 

2012; Dudley, Nash, & Jewett, 2019; Rollin, Tam, & Zhang, 2013). The cell-free systems are 

emerging as powerful systems for biomanufacturing of proteins, bio-commodities and value-

added chemicals (Carlson et al., 2012; Dondapati, Pietruschka, Thoring, Wüstenhagen, & 

Kubick, 2019; Dudley et al., 2015, 2019; Kojima, Uchiya, Manshio, & Masuda, 2020; 

Taniguchi, Okano, & Honda, 2017; Ward, Chatzivasileiou, & Stephanopoulos, 2019; Y. 

H.Percival Zhang, 2010). 
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Using thermostable enzymes is important for the industrial-scale biomanufacturing because 

these enzymes eliminate enzyme contaminants from other microbes and prolong the lifetime 

of enzymes. Recently, enzymes from thermophilic archaea have been discovered and used in 

cell-free systems. Lately, CFS using enzymes hyperthermophilic archaea were used for the 

synthesis of malic acid (T. Shi et al., 2019; Xiaoting Ye et al., 2013). Ye et al. used glucose as 

a substrate and achieved 60% of the theoretical maximum yield (Xiaoting Ye et al., 2013) 

whereas Shi et al. achieved 95.3% from maltodextrin (T. Shi et al., 2019). The designed 

pathway fix 2 mol of CO2 per mol of glucose, but the enzyme production using Escherichia 

coli produces CO2. Therefore the total fixation of CO2 will be less than the theoretical value of 

2 mol CO2 per mol of glucose. Moreover, the temperature of 50 °C could lead to the 

degradation of intermediates and hence less malate yield. In this study, the ATP-balanced 

pathway designed by Shi et al. for malate production was modelled. The goal of this work is 

to obtain the optimised model which can be used as a plugin for different substrates such as 

lignocellulose. 

 

7.2 Materials 

7.2.1 Experimental System for the Malic Acid Synthesis 
Shi et al. designed three pathways for synthesis malate from maltodextrin using 

hyperthermophilic enzymes in a cell-free system (T. Shi et al., 2019). The pathways design are 

described in the next section. The basic architecture of the pathway includes 13 enzymes from 

the hyperthermophilic archaea which adds an advantage of high thermostability. The designed 

pathways fix 2 mol of carbon per mol of glucose, which is the theoretical maximum. 

7.2.1.1 Design of Artificial Synthetic Pathway 
The pathway designed for malate production includes three parts:  

1. Production of glyceraldehyde-3-phosphate: In the first step, the glyceraldehyde-3-

phosphate (G3P) is formed from starch (maltodextrin) by a six enzymes cascade: alpha-

glucan phosphorylase (alphaGP), phosphoglucomutase (PGM), ATP-dependent-6-

phosphofructokinase (PFK), fructose bisphosphate aldolase (ALD) and triosephosphate 

isomerase.  
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2. Production of 3-phosphoglycerate: 3-phosphoglycerate (3PG) is formed from 

glyceraldehyde-3-phosphate. This step can be achieved in three ways:  

 2.a. Classical glycolysis route: This route is catalysed by glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) which catalyses the conversion of G3P to 1,3-

biphosphoglecerate, and followed by synthesis of 3-phosphoglycerate by 

phosphoglycerate kinase (PGK). PGK can generate two ATP per glucose molecule. 

 2.b. Without ATP generation: This route is catalysed by non-phosphorylating 

glyceraldehyde-3-phosphate dehydrogenase (GAPN) which catalyses the conversion of 

G3P to 3PG without the generation of ATP which is observed in hyperthermophilic 

archaea. 

 2.c. Combination of the above two ways. 

3. Production of malate: The 3-PG was converted into 2-phosphoglycerate by 

phosphoglycerate mutase (PGAM) followed by the formation of phosphoenolpyruvate 

(PEP) by enolase (ENO). The phosphoenolpyruvate carboxylase (PEPC) was used to 

convert PEP to oxaloacetate with the fixation of 2 mol of CO2 per mol of glucose. The 

malate dehydrogenase (MDH) converts oxaloacetate (OAA) to malate using NADH. 

When Part 1 and Part 3 are combined with part 2.a, the entire pathway generates 1 ATP per 

glucose and the pathway was called ATP excess pathway. When Part 1 and 3 are combined 

with 2.b., the pathway was called ATP deficit and when part 1 and 3 are combined with 2.a. 

and 2.b. it was called ATP balanced pathway (Figure 7.1). All the enzymes used in the pathway 

for synthesis of malate are given in Table 7.1. 

7.2.1.2 Cell-Free Synthesis of Malate 
Shi et al. tested the three designed pathways for malate production (described in section 

“Design of Artificial Synthetic Pathway”), using 1U/ml of 13-enzymes from 

hyperthermophilic archaea (Table 7.1) (T. Shi et al., 2019). The ATP-balanced pathway 

produced the highest malate compared to ATP-excess and ATP-deficit pathways. When the 

enzyme cocktail increased to 15 U/ml, malate yield of 0.986 mol/mol of glucose was obtained 

(50% of theoretical yield) (T. Shi et al., 2019). In the experimental system, there was no rate-

limiting step observed for the designed pathway. 

27.5 mM glucose equivalent maltodextrin was used for the malate synthesis by Shi et al. (T. 

Shi et al., 2019). To enhance the starch utilisation, the maltodextrin was treated with 
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isoamylase (IA) which produce linear amylodextrin. The isoamylase treatment increased 

malate yield up to 70.2% of the theoretical yield. 4-gluconotransferase (4-GT) was added at 12 

hours to generate more glucose-1-phosphate (G1P) from maltotriose and maltose resulting in 

an increase of malate to 90.4%. The polyphosphate glucokinase (PPGK) along with 5mM 

polyphosphate was added at hour 24, to utilise the residual glucose formed by 4GT. After 48 

h, 95.3% of the theoretical maximum yield (52.4 mM) was observed (T. Shi et al., 2019). 

 

 

Figure 7.1: The schematic representation of malate synthesis pathway designed by Shi et al. (T. Shi et 

al., 2019). ATP excess pathway (A), ATP-deficit pathway (B) and ATP- balanced pathway (C). The 

enzymes used are alpha-glucan phosphorylase (αGP), phosphoglucomutase (PGM), 6-phosphate 

isomerase (PGI), ATP-dependent 6- phosphofructokinase (PFK), fructose-bisphosphate aldolase 

(ALD), triosephosphate isomerase (TIM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

phosphoglycerate kinase (PGK), non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase 

(GAPN), cofactor-independent phosphoglycerate mutase (PGAM), enolase (ENO), 

phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH). The metabolites are glucose 

1-phosphate (G1P), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), fructose 1,6-diphosphate 

(F1,6-BP), glyceraldehyde 3-phosphate (G3P), 1,3-diphosphoglycerate (1,3-BPG), 3-phosphoglycerate 

(3-PG), 2-phosphoglycerate (2-PG), phosphoenolpyruvate (PEP), oxaloacetate (OAA), and inorganic 

phosphate (Pi). 
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7.3 Methodology Followed for In Silico Modelling of 

Malate Synthesis 
In this study, the malate synthesis pathway was modelled to identify the important regulators 

and to optimise the pathway. The computational model was built as described in further 

sections. 

7.3.1 Finding Homologous Enzymes 
For all enzymes used in the experimental cell-free systems (Table 7.1), kinetic parameters were 

not available in the literature. Therefore, in this study, the homologous enzymes were selected 

from which kinetic parameters were available to build the model. To find the homolog of an 

enzyme for which kinetic information was not available, phylogenetic analysis was performed, 

using software MEGA X (Molecular analysis Genetic Analysis) (S. Kumar, Stecher, Li, Knyaz, 

& Tamura, 2018)
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Table 7.1: The enzymes used in the cell-free system of malic acid synthesis from hyperthermophiles. 

Hyperthermophilic 
enzymes used in this 

study. 

Enzyme 
Abb. Source EC Reaction 

Alpha-glucan 
phosphorylase αGP Thermotoga 

maritima MSB8 2.4.1.1 
(1,4-alpha-D-glucosyl) n + phosphate=(1,4-
alpha-D-glucosyl) n-1 + alpha-D-glucose 1-

phosphate 

Phosphoglucomutase PGM 
Thermococcus 
kodakarensis 

KOD1 
5.4.2.2 D-Glucose 1-phosphate=D-Glucose 6-

phosphate 

Phosphoglucoisomerase PGI 
Thermus 

thermophilus 
HB27 

5.3.1.9 D-Glucose 6-phosphate=D-fructose 6-
phosphate 

6-phosphofructokinase PFK T. thermophilus 
HB8 2.7.1.11 ATP + D-fructose 6-phosphate = ADP + D-

fructose 1,6-bisphosphate 
Fructose-bisphosphate 

aldolase ALD T. thermophilus 
HB27 4.1.2.13 D-fructose 1,6-bisphosphate = glycerone 

phosphate + D-glyceraldehyde 3-phosphate 
Triosephosphate 

isomerase TIM T. thermophilus 
HB27 5.3.1.1 D-Glyceraldehyde 3-phosphate=glycerone 

phosphate 
Glyceraldehyde-3-

phosphate 
dehydrogenase 

GAPDH T. maritima 
MSB8 1.2.1.12 

D-glyceraldehyde 3-phosphate + phosphate + 
NAD+ = 3-phospho-D-glyceroyl phosphate + 

NADH + H+ 
Phosphoglycerate 

kinase PGK T. thermophilus 
HB27 2.7.2.3 ADP + 3-phospho-D-glyceroyl phosphate = 

ATP + 3-phospho-D-glycerate 
Non-phosphorylating 

glyceraldehyde-3-
phosphate 

dehydrogenase 

GAPN T. kodakarensis 
KOD1 1.2.1.90 D-Glyceraldehyde 3-phosphate + NAD+ + 

H2O = 3-phospho-D-glycerate + NADH 

Cofactor-independent 
phosphoglycerate 

mutase 
PGAM Pyrococcus 

horikoshii OT3 5.4.2.12 2-phospho-D-glycerate=3-phospho-D-
glycerate 

Enolase ENO T. thermophilus 
HB27 4.2.1.11 2-phospho-D-glycerate = 

phosphoenolpyruvate + H2O 
Phosphoenolpyruvate 

carboxylase PEPC T. thermophilus 
HB27 4.1.1.31 Phosphoenolpyruvate + CO2 + H2O 

=Orthophosphate + oxaloacetate 

Malate dehydrogenase MDH Archaeoglobus 
fulgidus 1.1.1.37 oxaloacetate + NADH = malate + NAD+ 

 

The phylogenetic analysis was performed in three steps: 

1. Collection of sequences from alternative enzymes: The kinetic parameters for all the 

enzymes used in the experimental systems by Shi et al. were not available in the 

literature. For those enzymes, where the kinetic parameters were available in the 

BRENDA database, amino acid sequences were collected. The BRENDA Database is 

a comprehensive manually curated database of enzyme kinetic data from experiments 

and literature.  

2. Multiple sequence analysis (MSA): MSA was performed for each enzymes using the 

sequences collected from step 1 using MEGA with MUSCLE algorithm (Edgar, 2004a, 

2004b). MUltiple Sequence Comparison by Log-Expectation (MUSCLE) is .a multiple 
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sequence alignment algorithm which is a combination of local and global alignment 

proved to perform better than global alignment algorithm ClustalW (Edgar, 2004a, 

2004b). The software MEGA X (S. Kumar et al., 2018) default values are used for the 

sequence alignment with algorithm MUSCLE. 

3. Building phylogenetic tree: Once the MSA is built, the phylogenetic tree was 

constructed using default values of the algorithm maximum likelihood using a bootstrap 

value of 500 with the Jones-Taylor-Thornton (JTT) model of substitution matrix. 

Bootstrapping increases the confidence of the phylogenetic tree. The bootstrapping 

values indicate how many times out of 500 the same branch was observed during 

the repetition of phylogenetic reconstruction on a re-sampled set of data.  

The kinetic parameters from closely related organisms were collected. 

7.3.2 Malic Acid Synthesis Model 
In this study, the kinetic model for the malate synthesis via ATP-balanced pathway was built 

using CellDesigner (Funahashi et al., 2008, 2003). The kcat values are calculated using the 

specific activities and molecular weight mentioned as in Shi et al.2019 (T. Shi et al., 2019). 

The Km values are taken from the BRENDA database for homologous enzymes found through 

phylogenetic analysis. The model consists of 15 enzymes with mM equivalent of 15U/ml of 

each enzyme. 27.5 mM glucose equivalent maltodextrin, 2mM ATP, 2mM NAD+, 5mM 

phosphate and 100mM of HCO3- are used in the model. The enzymes 4GT, PPGK and 5 mM 

polyphosphate were added according to the experimental set up at hour 12 (add 4GT) and hour 

24 (add PPGK and polyphosphate). 

The model data was stored in SBML (Systems Biology) format Markup Language, Hucka et 

al. (Hucka et al., 2003) which is a standard for representing networks biochemicals. The SBML 

format uses an XML architecture (eXtensible Markup Language) adapted to contain all 

information related to metabolites and biochemical reactions. The format adopted is compatible 

with most bioinformatics software used for modelling and analysis of biochemical systems. 

7.3.3 Estimation of Kinetic Parameters 
The SBML model was imported in COPASI to perform further analysis. The model was 

optimised using the experimental malate concentration at different time points of 48h 

fermentation measured by Shi et al. (T. Shi et al., 2019). In the experimental system, there was 

no rate-limiting step was observed by Shi et al. (T. Shi et al., 2019). Nevertheless, in the kinetic 
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model, it was observed that GAPDH, GAPN and PGK appear as potential regulators for malate 

concentration. Indeed, the enzyme GAPN and PGK are involved in the regeneration of NADH 

and ATP in the system, and GAPN and GAPDH share the substrate which is Glyceraldehyde-

3-phosphate (Figure 7.1). So, keeping high and constant concentrations of NADH and ATP 

should allow higher production of malate at the end of the cascade, and high efficiency of 

GAPN and GAPDH should increase the concentration of the intermediate Glyceraldehyde-3-

phosphate. Therefore, GAPDH, GAPN and PGK parameters were selected to be optimised. To 

limit the search space, the range between parameter divided by 10 and parameter and multiplied 

by 10 were used for the estimation. Limiting the search space helps in reducing the time 

required for finding optimised parameter. The parameter estimation was performed in COPASI 

using the genetic algorithm, with the default 2000 generations of population size 20. The 

algorithm attempts to minimise the sum of squares of variation between experimental data and 

simulated data. 

The parameter estimation is performed in the following steps 

1. Only Isoamylase treated maltodextrin as substrate: In the first step, the experimental 

measurement of malate concentration using Isoamyalse treated maltodextrin without 

4GT and PPGK was used. This will prevent the effect of 4GT and PPGK on the final 

malate concentration. The kcat and Km of GAPDH, GAPN and PGK were fitted with 

experimentally measured malate concentration. The kinetic model contains 13 enzymes 

as given in Table 7.1. Three algorithms i.e, Genetic algorithm (evolution-based), 

Particle swarm and Hooke-Jeeves algorithm (geometry-based) were tested each with 

three iterations while updating the parameters of the model from the previous iteration. 

2. Update kinetic model: The newly estimated parameters were updated to the model. 

3. Estimate 4GT and PPGK added model: For the kinetic model obtained after step 2, the 

4GT and PPGK were added at the 12th hour and the 24th hour to enhance the starch 

utilisation. The data from 4GT, PPGK added experimental system was used for the 

parameter estimation. The parameters of PFK, GAPDH, GAPN, PGK and MDH were 

selected for the estimation as explained in further sections. The kinetic model was 

updated with new estimated parameters.
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The methodology followed for the optimisation of the kinetic model is summarised in Figure 

7.2. 

 

Figure 7.2: The methodology followed for the optimisation of kinetic model for the synthesis of malate. 
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7.4 Results and Discussion 
Shi et al. experimentally proved that out of three pathway designed i.e, ATP-excess, ATP-

Deficit, and ATP-balanced for malate synthesis, ATP-balanced pathway produced more malate 

(2.58 mM) compare to the other two i.e. ATP-excess (0.60 mM), ATP-deficit (1.47 mM). 

Therefore, ATP-balanced pathway was selected to build the computational model.  

7.4.1 Homologous Enzymes 
To build the kinetic model of the system, it is important to know the kinetic parameters of the 

enzymes involved in the pathway. For the all hyperthermophilic enzymes used in the study, 

kinetic parameters were not available. Therefore, to choose the alternative enzyme, 

phylogenetic analysis was performed. The phylogenetic analysis helps to find the evolutionary 

relationships between the organisms. Hence, in this study, the alternative enzymes were 

identified for the enzymes for which the kinetic data was not available. The alternative enzyme 

parameters were used as the starting point to overcome the problem of lacking data. 

The phylogenetic tree (Figure 7.3) showed that all the hyperthermophilic enzymes clustered 

together. From Figure 7.3, the close homolog of Pyrococcus horikishii is P. furiosus for which 

kinetic parameters are available. The result from phylogenetic analysis for all the enzymes are 

summarised in Table 7.2. The Phylogenetic tree for other enzymes are given in Annexe figures 

Annexe 13 to Annexe 18. 
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Figure 7.3: The phylogenetic tree for the enzyme cofactor-independent phosphoglycerate mutase 

(PGAM). The phylogeny was constructed using organisms from which enzyme parameters are available 

in the BRENDA database. 

 

According to Table 7.2 (and Annexe 14), for the enzyme Phosphoglucoisomerase (PGI) from 

Thermus thermophilus HB27, the closest homolog found are Geobacillus stearothermophilus, 

Hungateiclostridium thermocellum and Methanocaldococcus jannaschii. The G. 

stearothermophilus and H. thermocellum are thermophilic bacteria whereas M. jannaschii is 

an archaeal species. This could be because of the horizontal transfer of genes between archaea 

and thermophilic bacteria (Nelson et al., 1999; Rudolph, Hansen, & Schönheit, 2004; P. Wang, 

Wang, Guo, Huang, & Zhu, 2020). However, further detail study is required to support this 

conclusion.  
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Table 7.2: The alternative enzymes found through phylogenetic analysis. In parameter availability, Yes: 

refers to the availability of kinetic parameters and No refers to lack of kinetic data from the enzymes 

used in the experimental study. Re No: reaction number; EC: Enzyme commission number. 

Re. 

No 

Hyperthermophile 

enzymes used in the 

experiment 

Enzyme 

Abb. 
Source EC 

Parameter 

availability 

Parameters available 

from homologous 

enzyme 

1 
Alpha-glucan 

phosphorylase 
αGP 

Thermotoga 

maritima MSB8 
2.4.1.1 No Pyrococcus furiosus 

2 Phosphoglucomutase PGM 
Thermococcus 

kodakarensis 

KOD1 

5.4.2.2 Yes - 

3 Phosphoglucoisomerase PGI 

Thermus 

thermophilus 

HB27 

5.3.1.9 No 

Geobacillus 

stearothermophilus 

Methanocaldococcus 

jannaschii 

Hungateiclostridium 

thermocellum 

4 6-phosphofructokinase PFK T. thermophilus 

HB8 
2.7.1.11 Yes - 

5 
Fructose-bisphosphate 

aldolase 
ALD 

T. thermophilus 

HB27 
4.1.2.13 No Thermus aquaticus 

6 
Triosephosphate 

isomerase 
TIM 

T. thermophilus 

HB27 
5.3.1.1 No Mycobacterium 

tuberculosis 

7 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

GAPDH 
T. maritima 

MSB8 
1.2.1.12 No 

Thermus thermophilus 

HB27 

8 
Phosphoglycerate 

kinase 
PGK 

T. thermophilus 

HB27 
2.7.2.3 Yes - 

9 

Non-phosphorylating 

glyceraldehyde-3-

phosphate 

dehydrogenase 

GAPN 
T. kodakarensis 

KOD1 
1.2.1.90 No Thermoproteus tenax 
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10 

Cofactor-independent 

phosphoglycerate 

mutase 

PGAM Pyrococcus 

horikoshii OT3 
5.4.2.12 No Pyrococcus furiosus 

11 Enolase ENO 
T. thermophilus 

HB27 
4.2.1.11 No 

Chloroflexus 

aurantiacus 

Brucella abortus 

12 
Phosphoenolpyruvate 

carboxylase 
PEPC 

T. thermophilus 

HB27 
4.1.1.31 No 

Thermosynechococcus 

elongatus 

Nostoc sp. 7120 

Synechocystis sp. 

PCC 6803 

 

13 Malate dehydrogenase MDH 
Archaeoglobus 

fulgidus 
1.1.1.37 Yes - 

 

7.4.2 Construction of Kinetic Model 
After finding the alternative enzymes through phylogenetic analysis, kinetic parameters were 

collected from the BRENDA database and literature Table 7.3.  

Table 7.3: Kinetic parameters used in the ATP-balanced pathway for malic acid synthesis. * indicates 

the kinetic parameters are taken from the enzymes used in the original study by Shi et al. (Shi et al., 

2019). Re No: reaction number; EC: enzyme commission number; kcat: catalytic constant or turn-over 

number in s-1; Km: Michaelis-Menten constant in mM; Ka: association constant in mM; Keq: Equilibrium 

constant; Ki: inhibition constant in mM. 

re 
No 

Enzyme 
Abb. Source EC no 

kcat 
calculated 

(s-1) 
Km (mM) Keq (mM) 

Parameter 
from other 

sources 

1 αGP Pyrococcus furiosus 2.4.1.1 6.2 Pi:30; 
maltotrose: 70 0.3 - 

2 PGM 
Thermococcus 

kodakarensis KOD1 
* 

5.4.2.2 5 G1P:3.0 20 - 

3 PGI Methanocaldococcus 
jannaschii 5.3.1.9 40.83 G6P: 1; F6P: 

0.04 0.361 - 

4 PFK T. thermophilus 
HB8* 2.7.1.11 2.5 - 641 

KaF6P: 0.027; 
KaMgATP: 

0.006m PFKn = 
4; KiATP = 

5 ALD Thermus aquaticus 4.1.2.13 8.16 FBP: 0.305 3.2 × 10-4 

KmG3P: 0.052; 
KmDHAP: 

0.171 mM from 
S. solfataricus 
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6 TIM Mycobacterium 
tuberculosis 5.3.1.1 181.25 

DHAP = 
0.0025; G3P= 

0.084 
0.108 - 

7 GAPDH Thermus 
thermophilus HB27 1.2.1.12 47.67 g3p: 0.3; nad: 

0.1 0.0765 

KmPhosphate: 
8.3 frm G. 

stearothermophi
lus 

8 PGK T. thermophilus 
HB27 2.7.2.3 96.63  1.8 × 

10^3 

Km3PG: 0.54; 
KmADP: 0.085; 

KmBPG: 5.6; 
KmATP: 9.7 

from S. 
solfataricus 

9 GAPN Thermoproteus tenax 1.2.1.90 1.73 G3P: 0.02; 
NAD:3.1 - - 

10 PGAM Pyrococcus furiosus 5.4.2.12 28 3PG:0.49 0.185 Km2PG: 0.2 
from A. fulgidus 

11 ENO Chloroflexus 
aurantiacus 4.2.1.11 80 2PG: 0.03 5.19 - 

12 PEPC Synechocystis sp. 
PCC 6803 4.1.1.31 10 PEP: 0.3; 

HCO3-: 0.8; 
4.0 × 
10^6 - 

13 MDH Archaeoglobus 
fulgidus 1.1.1.37 35 OAA: 0.043; 

NADH:0.024 
1.3 × 
10^5 

KmMal: 0.095; 
KmNAD: 0.14 
taken from T. 
Thermophilus 

14 4GT Thermococus 
litoralis* 2.4.1.25 33.83 Maltohep: 0.46 -  

15 PPGK Thermobifda fusca * 2.7.1.63 32.3 Glucose: 0.8; 
Ppi: 0.1 -  

 

The kinetic model was built for the ATP-balanced pathway designed by Shi et al. (T. Shi et al., 

2019). The schema of the kinetic model from Celldesigner is given in Figure 7.4, which 

consists of 15 reactions. The kinetic equations used for each reaction are given in Table 7.4 

and kinetic parameters are given in Table 7.3. 
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Table 7.4: Kinetic equation used for modelling the malic acid synthesis via ATP-balanced pathway in this study.v: rate of reaction; kcat: catalytic constant or 

turn-over number in s-1; Km: Michaelis-Menten constant in mM; Ka: association constant in mM; Keq: Equilibrium constant; Ki: inhibition constant in mM. 

re 
No Enzyme Name Enzyme 

Abb. Kinetic Equation 

1 Alpha-glucan 
phosphorylase αGP 𝑁𝑁 =  

kcataGP ∗ (aGP) ∗ �maltodextrin
aGPKmGlyc � ∗  Pho

aGPKmPi

�1 + maltodextrin
aGPKmGlyc � ∗  �1 + Pho

aGPKmPi�
 

2 Phosphoglucomutase PGM 𝑁𝑁 =  
kcatPGM ∗ (PGM) ∗ G1P

PGMKmG1P
PGMKmG1P + G1P

 

3 Phosphoglucoisomerase PGI 𝑁𝑁 =  
kcatPGI ∗ (PGI) ∗ (G6P − F6P

PGIKeq)

PGIKmG6P ∗ �1 + F6P
PGIKmF6P) + G6P�

 

4 6-phosphofructokinase PFK 𝑁𝑁 =  
kcatPFK ∗ (PFK) ∗ � F6P

PFKKaF6P� ∗ ( ATP
PFKKaATP)

�1 + F6P
PFKKaF6P + � PEP

PFKKiPEP�
PFKn

� ∗ �1 + ATP
PFKKaATP�

 

5 Fructose-bisphosphate 
aldolase ALD 𝑁𝑁 =  

kcatFBA ∗ (ALD) ∗ (FBP − DHAP ∗ G3P
FBAKeq)

FBAKmFBP ∗ �1 + DHAP
FBAKmDHAP + G3P

FBAKmG3P� + FBP
 

6 Triosephosphate isomerase TPI 𝑁𝑁 =  
kcatTPI ∗ (TPI) ∗ (DHAP − G3P

KeqTPI)

TPIKmDHAP ∗ �1 + G3P
TPIKmG3P� + DHAP

 

7 Glyceraldehyde-3-
phosphate dehydrogenase GAPDH 𝑁𝑁 =  

kcatGAPDH ∗ (GAPDH ∗ default) ∗ � G3P
GAPDHKmG3P� ∗ �

NAD
GAPDHKmNAD� ∗ ( Pho

GAPDHKmPho)

�1 + G3P
GAPDHKmG3P� ∗ �1 + NAD

GAPDHKmNAD� ∗ �1 + Pho
GAPDHKmPho�
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8 Phosphoglycerate kinase PGK 𝑁𝑁 =  
kcatPGK ∗ (PGK) ∗ � BPG

PGKKmBPG� ∗ ( ADP
PGKKmADP)

�1 + BPG
PGKKmBPG� ∗ �1 + ADP

PGKKmADP�
 

9 
Non-phosphorylating 

glyceraldehyde-3-
phosphate dehydrogenase 

GAPN 𝑁𝑁 =  
kcatGAPN ∗ (GAPN ∗ default) ∗ � G3P

GAPNKmG3P� ∗ ( NAD
GAPNKmNAD)

�1 + G3P
GAPNKmG3P� ∗ �1 + NAD

GAPNKmNAD�
 

10 Cofactor-independent 
phosphoglycerate mutase PGAM 𝑁𝑁 =  

kcatPGAM ∗ (PGAM) ∗ (P3G − P2G
PGAMKeq)

PGAMKm3PG ∗ �1 + P2G
PGAMKm2PG� + P3G

 

11 Enolase ENO 𝑁𝑁 =  
kcatENO ∗ (ENO) ∗ P2G

ENOKm2PG
1 + P2G

ENOKm2PG
 

12 Phosphoenolpyruvate 
carboxylase PEPC 𝑁𝑁 =  

kcatPEPC ∗ (PEPC) ∗ � PEP
PEPCKmPEP� ∗ ( CO2

PEPCKmHCO3)

�1 + PEP
PEPCKmPEP� ∗ �1 + CO2

PEPCKmHCO3�
 

13 Malate dehydrogenase MDH 𝑁𝑁 =
kcatMDH ∗ (MDH ∗ default) ∗ � OAA

MDHKmOAA� ∗ ( NADH
MDHKmNADH)

�1 + OAA
MDHKmOAA + mal

MDHKmMal� ∗ �1 + NADH
MDHKmNADH + NAD

MDHKmNAD�
 

14 4-glucano transferase 4GT 𝑁𝑁 =  
kcatGT ∗ GT ∗ aGlycon1

GTKmGlycn1 + aGlycon1
 

15 Polyphosphate glucokinase PPGK 𝑁𝑁 =  
kcatPPGK ∗ PPGK ∗ � Gluc

PPGKKmGlu� ∗ ( polyP
PPGKKmPolyP)

�1 + Gluc
PPGKKmGlu� ∗ �1 + polyP

PPGKKmPolyP�
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Figure 7.4: Schema of the kinetic model built for the synthesis of malate. The enzymes used are alpha-

glucan phosphorylase (aGP), phosphoglucomutase (PGM), 6-phosphate isomerase (PGI), ATP-
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dependent 6- phosphofructokinase (PFK), fructose-bisphosphate aldolase (ALD), triosephosphate 

isomerase (TIM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 

(PGK), non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), cofactor-

independent phosphoglycerate mutase (PGAM), enolase (ENO), phosphoenolpyruvate carboxylase 

(PEPC), malate dehydrogenase (MDH), 4Gluconotransferase (4GT), Polyphosphate glucokinase 

(PPGK). The metabolites are glucose 1-phosphate (G1P), glucose 6-phosphate (G6P), fructose 6-

phosphate (F6P), fructose 1,6-diphosphate (FBP), glyceraldehyde 3-phosphate (G3P), 1,3-

diphosphoglycerate (BPG), 3-phosphoglycerate (3-PG), 2-phosphoglycerate (2-PG), 

phosphoenolpyruvate (PEP), oxaloacetate (OAA), malate (Mal), inorganic phosphate (Pi), 

polyphosphate (PPi), (1,4-alpha-D-glucosyl)n-1 ((glyc)n-1), Glucose (Gluc) 

 

7.4.3 Optimisation of Kinetic Model 
The model, with isoamylase treated maltodextrin without 4GT and PPGK (named model-1), 

was simulated for 48 hours as in the experimental system. Figure 7.5 shows that the maximum 

malate produced by the kinetic model was 5 mM and the intermediates of the pathway glucose-

6-phosphate (G6P) and fructose-6-phosphate (F6P) were 3mM and 8mM respectively. This 

indicates that not all the intermediates are converting to the final product, and this could be due 

to a lack of ATP in the system. 
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Figure 7.5: The simulated concentration of malate and intermediates via ATP-balanced pathway.[(1,4-

a-D-glyc)n-1]: (1,4-alpha-D-glycosyl)n-1; G6P: Glucose 6-Phosphate; F6P: Fructose-6-Phosphate; 

Mal: Malate. 

 

To check if ATP concentration in the model is limiting the final malate production, the 

concentration of ATP was varied from 2mM, 5mM to 10 mM. As the concentration of ATP 

increases in the model, the final malate concentration increases to 4.89, 12.176 and 24.74 mM 

respectively (Figure 7.6). The decrease in the intermediate concentration (G6P and F6P) is 

observed too (G6P was 8.20, 8.94, 5.05 mM and F6P was 2.96, 3.22 and 1.8 mM at ATP 

concentration of 2mM, 5mM and 10mM respectively). This indicates that the ATP 

concentration was limiting the malate production, and thus by regenerating ATP, the enzymatic 

system should produce more malate. 
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Figure 7.6: The effect of ATP concentration on different intermediates and final malate production in 

the ATP-balanced pathway for malate synthesis. The line colour represents as follows: Blue: 2mM 

ATP; red: 5mM ATP: and cyan: 10mM ATP in the model. 

 

The low concentration of malate (5mM) at an ATP concentration of 2mM (Figure 7.5) is much 

lesser than the experimental condition at the end of 48 hours, which was 52.4mM. This low 

concentration of malate simulated by the model indicates that the model is not optimised. 

Therefore, parameter estimation was performed to fit the model to experimental measurement 

of the malate concentration throughout 48 hours of fermentation. The experimental data points 

from Shi et al. (Annexe 19) was extracted using WebPlotDegitizer 

(https://automeris.io/WebPlotDigitizer/). The extracted points divided into two groups: test and 

validation dataset (Figure 7.7). 

Two sets of experiments are considered for the parameter estimation, based on the enzymes 

used for the complete utilisation of maltodextrin. In the first step, the malate only produced by 

isoamylase treated maltodextrin was utilised (without 4GT and PPGK addition) for the 

parameter estimation. The kinetic model has only 13 enzymes and parameter estimation was 

https://automeris.io/WebPlotDigitizer/
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performed using three different algorithms i.e, Genetic algorithm (GA, evolution-based), 

Particle swarm (PS) and Hooke-Jeeves algorithm (HJ, geometry-based). For each algorithm, 

parameter estimation was performed in three iterations while updating the parameters from the 

previous iteration. The objective function value, root mean square (RMS) between 

experimental and model-simulated malate concentration between experimental data set and 

validation set, was chosen to select the best performing algorithm out of three studied 

algorithms. The GA performed better than the PS and HJ (Annexe 20). 

 

 

Figure 7.7: The malate concentration used for the parameter estimation of the kinetic model. The data 

points are extracted from Shi et.al. for malate synthesis from isoamylase treated maltodextrin. 

 

The newly estimated parameter from the genetic algorithm (Table 7.5) after three iterations 

were updated to the model-1 and the model was simulated for 48 h. Figure 7.8 indicates that 

by optimising the GAPD, GAPN and PGK kinetic parameters (Table 7.5), a higher malate 

concentration can be obtained. Thus, as expected, by optimising these three enzymes ATP was 
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regenerated at a higher concentration. The ADP formed at the PFK step now will be regenerated 

at PGK step. The PGK is the enzyme in the pathway which convert ADP to ATP which is 

important for complete conversion of F6P to FBP. The GAPN and GAPDH share the same 

substrate, by optimising these two enzymes, it helps in balancing the flow of substrate and 

provides enough substrate to the enzyme PGK. The results observed in Figure 7.6 also proves 

that ATP concentration is important in the kinetic model to obtained higher malate. 

 

 

Figure 7.8: Comparision of malate concentration between experimental system and kinetic model 

before and after the parameter estimation. The malate concentration if isoamylase treated maltodextrin 

from Shi et al. was used for parameter estimation. 
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Table 7.5: The kinetic parameters used in the model before and after estimating the parameters 

(GAPDH, GAPN PGK parameters) using the IA-treated model. Km: Michaelis-Menten constant in mM 

and kcat: turnover number or catalytic constant in s-1. The parameters were estimated using data from 

Shi et al. (T. Shi et al., 2019) in COPASI with genetic algorithm. 

Kinetic parameters used in the original model Kinetic parameters estimated from IA treated 
model 

Reaction Kinetic parameter Original value Reaction Kinetic parameter New value 
re7 GAPDHKmG3P 0.3 re7 GAPDHKmG3P 1.54304 
re7 GAPDHKmNAD 0.1 re7 GAPDHKmNAD 1 
re7 GAPDHKmPho 8.3 re7 GAPDHKmPho 4.18037 
re7 kcatGAPDH 47.67 re7 kcatGAPDH 377.954 
re8 PGKKmADP 0.085 re8 PGKKmADP 0.011195 
re8 PGKKmBPG 5.6 re8 PGKKmBPG 2.19344 
re8 kcatPGK 96.63 re8 kcatPGK 32.1124 
re9 GAPNKmG3P 0.02 re9 GAPNKmG3P 0.2 
re9 GAPNKmNAD 3.1 re9 GAPNKmNAD 0.31 
re9 kcatGAPN 1.73 re9 kcatGAPN 0.173 

 

In the second step, to enhance the starch utilisation, 4-gluconotransferase (4-GT) and 

polyphosphate glucokinase (PPGK) were added to the optimised model-1 (referred to as 

model-2). The model-2 was simulated to observe the malate production with the addition of 

two enzymes. Figure 7.9 represents the malate synthesis through the pathway (model-2) which 

was approximately 45 mM, and the intermediates of the pathway fructose 1,6-bisphosphate 

(~4.5 mM) and 1,3-biphosphoglycerate (~2 mM). These intermediate concentrations indicate 

that not all the substrate is getting converted to final product in the model. 
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Figure 7.9: The metabolite produced by the new model with 4GT and PPGK. The model contains newly 

estimated parameter for GAPN, GAPDH and PGK.  

 

In the third step, to enhance the malate production by utilising FBP and BGP, the kinetic model 

from the second step (model-2) was used. The model-2 parameters are then estimated using 

the data from Shi et al. for 4GT, PPGK added system (Annexe 21). The model-2 parameter 

was fit to experimental data for the enzymes PFK, GAPN, GAPDH, PGK and MDH. These 

five enzymes are selected because these reactions involve the cofactors ATP/ADP and 

NADH/NAD+. The hypotheses is that adjusting these enzyme parameters could help in the 

regeneration of the cofactors and therefore, would increase the final malate production. The 

parameter estimation from COPASI is used to fit the kinetic model to experimental data for 

time-course production of malate from Shi et al. (T. Shi et al., 2019) using the genetic 

algorithm. The kinetic parameter PFKn was omitted from the estimation as it represents the 

number of allosteric site in the enzyme which is constant (n=4). 
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Figure 7.10: The concentration of metabolite produced before and after optimisation of the kinetic 

parameter. The kinetic parameters of enzyme PFK, GAPDH, GAPN, PGK and MDH are used fit with 

the experimental data. 

 

From Figure 7.10 it is clear that, by regenerating the cofactors, higher malate concentration can 

be obtained. The enzyme PFK consumes ATP and converts F6P to FBP. In the system, the 

ATP concentration is low i.e. 2mM. This implies that ATP should be regenerated to obtain a 

higher malate concentration, according to the observation from Figure 7.6. PGK catalyses the 

ATP/ADP regeneration. The NAD+ in the pathway will be reduced to NADH by GAPN 

whereas the NADH is oxidised to NAD by MDH and hence leading to the regeneration of 

NADH/NAD+. FBP concentration decreased (Figure 7.11), which means that most of the 

intermediate FBP is completely utilised through effective regeneration of ATP and ADP by 

enzymes PGK and PFK respectively. And the NAD+/ NADH regeneration is effectively taking 

place by GAPN, GAPDH and MDH as observed in Figure 7.12. This proves that the enzymes 

selected i.e., PFK, GAPDH, GAPN, PGK and MDH, are an appropriate choice for optimising 

the system.  
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It should be noted that in microbial fermentation for malate synthesis, malate dehydrogenase 

(one of the five enzymes selected in model-2 for the optimisation) was found to be the rate-

limiting step. And, as of now, other enzymes (PFK, GAPDH, GAPN and PGK) were not found 

to be rate-limiting in the context of malate synthesis. In the kinetic model, five enzymes (PFK, 

GAPDH, GAPN, PGK and MDH) were found to be important. This could be explained by the 

fact the model does not contain all the exact experimental values for some kinetic parameters 

of the enzymes, thus the experimental behaviour is not exactly observed during the simulation 

using the kinetic model. 

New parameters obtained from optimisation of model-2 are given in Table 7.6. Except for the 

PFKKaATP, GAPDHkcat and PGKKmADP, all the parameters estimated were found to be in 

the range experimentally measured kinetic parameter from different sources recorded in the 

BRENDA database (Annexe 22). 

 

Figure 7.11: The concentration of fructose 1,6-bisphosphate and 1,3 biphosphoglycerate produced 

before and after optimisation of the kinetic parameter. The kinetic parameters of enzyme PFK, GAPDH, 

GAPN, PGK and MDH are used fit with the experimental data. 
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Figure 7.12: The concentrations of (A): NAD+ (B): NADH, (C): ADP (D): ATP before and after the 

estimation of PFK, GAPDH, GAPN, PGK, MDH parameter. 

 

The above-optimised model (model-2) has an RMSE of 1.96 between the experimentally 

measured and model-simulated malate concentration. The final malate produced by the 

optimised model is 51.16 mM which is 97% of the experimentally measured malate 

concentration (52.4mM). And this is 93% of the theoretical maximum. This is a good validation 

for the kinetic model. Thus, model-2 can be used for further study. The 100% conversion of 

malate is not yet possible in the experimental system and some possible reasons could be, for 

example, i. the degradation of intermediates at high temperature such as 50-80 °C in which 

thermophilic enzymes are highly active, or ii. the NADH can be easily get decomposed at a 

higher temperature (Hofmann, Wirtz, Santiago-Schübel, Disko, & Pohl, 2010). 
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Table 7.6: The kinetic parameters used in the model before and after estimating the parameters (PFk, GAPDH, 

GAPN, PGK, MDH) using the IA-treated model with 4GT-PPGK. Km: Michaelis-Menten constant in mM and 

kcat: turnover number or catalytic constant in s-1. The parameters were estimated using data from Shi et al. (T. Shi 

et al., 2019) in COPASI with genetic algorithm. 

Kinetic parameter used before the optimisation Kinetic parameters estimated for IA treated + 
4GT, PPGK added model 

Reaction Kinetic parameter Original value Parameter Kinetic parameter New value 
re4 PFKKaATP 0.006 re4 PFKKaATP 0.000672 
re4 PFKKaF6P 0.027 re4 PFKKaF6P 0.038633 
re4 PFKKiPEP 0.00158 re4 PFKKiPEP 0.007513 
re4 kcatPFK 2.5 re4 kcatPFK 0.431056 
re7 GAPDHKmG3P 1.54304 re7 GAPDHKmG3P 3.77858 
re7 GAPDHKmNAD 1 re7 GAPDHKmNAD 0.995012 
re7 GAPDHKmPho 4.18037 re7 GAPDHKmPho 0.418504 
re7 kcatGAPDH 377.954 re7 kcatGAPDH 2149.92 
re8 PGKKmADP 0.011195 re8 PGKKmADP 0.00551 
re8 PGKKmBPG 2.19344 re8 PGKKmBPG 0.219 
re8 kcatPGK 32.1124 re8 kcatPGK 23.2651 
re9 GAPNKmG3P 0.2 re9 GAPNKmG3P 0.958756 
re9 GAPNKmNAD 0.31 re9 GAPNKmNAD 0.033685 
re9 kcatGAPN 0.173 re9 kcatGAPN 0.72704 

re13 MDHKmMal 0.095 re13 MDHKmMal 0.0095 
re13 MDHKmNAD 0.14 re13 MDHKmNAD 1.27271 
re13 MDHKmNADH 0.024 re13 MDHKmNADH 0.248088 
re13 MDHKmOAA 0.043 re13 MDHKmOAA 0.164212 
re13 kcatMDH 35 re13 kcatMDH 32.8082 

 

Here, estimating the values of the kinetic parameters for a given enzyme guide us for the 

selection of the more appropriate enzymes to add in the system. Indeed, one could choose for 

example phosphoglycerate kinase from Chlamydomonas reinhardtii which has a kcat (28.5 s-1) 

value close to the optimised parameter (23.26 s-1), or malate dehydrogenase from 

Methylomicrobium alcaliphilum which has a kcat/Km (2558 1/mMs-1) close to the estimated 

parameters (3452.63 1/mMs-1). Nevertheless, there is no guarantee that an enzyme that fits 

exactly the requirements in term of kinetic parameters can be found, and that the enzyme is 

thermostable. So, obviously, such an approach can be considered as an interesting step in the 

development of a process to build a metabolic pathway which will produce a maximum 

concentration of malate, but not as a final goal. The other interest of such an approach is to 

provide a guide in terms of enzyme improvement through protein engineering: using a 

thermostable enzyme, to introduce mutation(s) to modify kinetic parameters so as it fits with 

the estimated values could be tried. So, introducing enzyme engineering to improve the kinetic 
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parameters, or substrate channelling between two or more successive enzymes in the cascade 

reactions to fasten the conversion of intermediates, could be an interesting area of research. 

Nevertheless, the optimised model-2 can be already used to optimise the malate synthesis from 

other substrates such as cellulose, cellobiose etc. Currently, poly-malic acid synthesis is studied 

from the lignocellulose. Synthesising malate from the low-cost substrate using thermophilic 

enzymes could be a promising field of research for malate synthesis. 

 

7.5 Conclusion  
The kinetic model of biosynthesis of malic acid was built in this study based on Shi et al. 

designed an ATP-balanced pathway using hyperthermophilic enzymes. Since the kinetic 

parameters were not available for all the enzymes used in the experimental study, homologous 

enzymes were identified for which kinetic parameters were available in the BRENDA database. 

The kinetic parameters from homologous enzymes are used and classical Michaelis-Menten 

kinetic equations are utilised in the model. To improve the model accuracy, the kinetic 

parameters were estimated using the experimental data. The parameter estimation was 

performed in two steps using malate produced by i. isoamylase treated maltodextrin and ii. 

isoamylase treated malate with 4GT and PPGK being added. This two-step estimation approach 

helps to identify the key enzyme in the model to optimise. The important enzymes in the higher 

malate production by this kinetic model was found to be PFK, GAPN, GAPDH, PGK and 

MDH. With newly estimated parameters the model could produce malate up to 51.16 mM 

which was 93% of the maximum theoretical yield. This is 97% of the experimentally obtained 

malate which validates the model to study the regulators of the pathway and to examine other 

substrates.
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Conclusion and Prospectives 
In the past decades, Cell-free systems (CFS) have emerged as a powerful technology to 

engineer biological systems for the synthetic biology application without using living cells. 

Compared to cell-based systems, CFS provides a simpler and faster solution with a high degree 

of freedom to control and to manipulate the process. Cell-free systems are used both in the 

laboratory, to develop and optimise new pathways and in the industry, for biomanufacturing. 

CFS offers a way to overcome the drawbacks of cell-based systems like unnecessary side 

reactions, the toxicity of substrates, intermediates or products, etc. The CFS allows not only 

the use of enzymes from different organisms, but also to use different metabolisms across 

different phyla. This thesis explores the data-based (machine learning) and knowledge-based 

(kinetic modelling) modelling approaches to study cell-free systems in two aspects. 

First, for selecting the optimum enzyme concentrations: One of the main challenges for CFS is 

the selection of appropriate enzymes. The choice of low performing enzyme can compromise 

the final product yield. This issue can be solved by identifying homologous enzymes which 

perform better. After the identification of the suitable enzyme, the selection of optimum 

enzyme concentration is crucial. The experimental selection of optimal enzymes for the higher 

yield is time-consuming and expensive. 

Therefore, in Chapter 3 an artificial neural network (ANN) model was developed using part of 

classical glycolysis pathway. The ANN model predicts flux through the pathway. Different 

algorithms, architectures and activation functions were examined in the study. Eventually, the 

model built using algorithm neuralnet and logistic activation function was retained. 

The ANN has been already used in fermentation for predicting the culture conditions. In 

Chapter 3, the artificial neural network was used for the prediction of flux. However, the ANN 

method is a training based method which means the prediction depends on the data used for 

the modeling. ANN is known to be inefficient in extrapolating the prediction beyond the 

training data range used in the model. Indeed, when the model receives new information 

outside the trained data, the new prediction within the range of training data. Mostly, possible 

higher values are predicted at the glass ceiling (GC), ie. at a limit maximal value. 

In chapter 4, a new ANN-based methodology (GC-ANN for Glass ceiling ANN) was 

developed to select the optimum enzyme balances (the combination of different enzymes 

concentration) of higher flux. The methodology uses different statistical analysis methods such 
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as principal component analysis, data classification along with the neural network. The new 

methodology aids in silico selection of optimum enzyme concentrations for maximum flux 

through the pathway. The approach was validated in simulation using the kinetic model of the 

pathway, and the experimentally. This methodology also provides an advantage of selecting 

the cost-efficient optimum balances. It was expected to obtain slight improvements, i.e., 

improved flux values close to the highest one that fed into the model. Surprisingly, 

improvements up to 63% were obtained. Moreover, these improvements are coupled with a 

cost decrease of up to 25% for the assay. The GC-ANN methodology was implemented for the 

upper part of glycolysis as a first example. It would be interesting to apply this methodology 

for different pathways in future. 

The ANN model for chapter 3 and chapter 4 was built using the experimental measurement of 

flux through the upper part of glycolysis. The data consists of 121 enzyme balances with the 

flux value ranging from 0.79 µM/s to 12.9 µM/s. It is difficult to accurately predict the flux 

beyond this range of flux. And, increasing the dataset of different enzyme balances, with 

diverse flux, by performing experiments is intensive and high-budget. Hence, the potential of 

kinetic modelling of the pathway was explored to increase the size of learning dataset.  

The building of the kinetic model requires kinetic information of enzymes. The kinetic 

parameters measured in chapter 4 helped to build the model. The model built was inefficient 

in replicating experimental flux (RMSE: 5.14). Thus, the optimisation for kinetic parameters 

of the enzymes was performed in two steps: i. iterative approach: where individual enzymes 

parameter were fitted with experimental data, ii. Selective approach: the mean of the less 

deviated parameters from step (i) was updated to the model, and highly deviated parameters 

were identified. The hypothesis was that the parameters which deviate less are more crucial to 

the model than the once which deviate a lot. After the two steps of parameter estimation, the 

final model had an RMSE of 1.91, which was a significant improvement in the model 

efficiency. And the final kinetic model obtained can be used to check if the balances found in 

the glass-ceiling of the ANN are potential high flux or not. Yet, there is room to improve the 

model to replicate the experimental conditions. 

Second, for modelling carbon fixation, the constant increase of carbon dioxide (CO2) 

concentration in the atmosphere is one of the major threats to life on earth. Finding ways to 

reduce global CO2 is not only fascinating but also an urgent requirement. The fixation of CO2 

is observed naturally in plants, bacteria and cyanobacteria. The CO2 fixation, by biosynthesis, 
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into demanding biochemicals is a good choice. The malic acid is a four-carbon dicarboxylic 

acid, part of the citric acid cycle. Malic acid is extensively used in the food and beverage 

industries as an acidulant. Currently, malic acid is synthesised by chemical method from 

petroleum-based. In chapter 6, the state of art in malic acid synthesis is discussed. Many studies 

have been performed for malate synthesis using microorganisms. However, microbial synthesis 

of malate is not yet reached the biomanufacturing stage. This is mostly due to expensive 

substrates and low yield of malate by microbial fermentation. Recently malate has been 

synthesised using a cell-free system of thermophilic enzymes in artificial ATP-balanced 

pathway. The ATP-balanced pathway produced 95% of the theoretical yield from maltodextrin 

in 48 hours (55 mM).  

In Chapter 7, the ATP-balanced pathway was studied using the kinetic modelling approach. 

The model was built using the kinetic parameters from homologous enzymes, whenever it was 

necessary. The model utilises the isoamylase treated maltodextrin as a substrate. In in vitro 

experiments of ATP-balanced pathway, no rate-limiting step was found. Using the kinetic 

model, it was discovered that enzymes involved in cofactor regeneration, i.e. PFK, GAPDH, 

GAPN, PGK and MDH, were important for higher malate production. The enzymes kinetic 

parameters of these five enzymes were estimated to fit the model with experimental data. The 

enzyme MDH was identified as the rate-limiting step in microbial biosynthesis. However, other 

enzymes are not identified as potential regulators for malate synthesis in microbial 

fermentation and it will be interesting to study these enzymes in the cell-free system to check 

if these biocatalysts could be potential regulators for the pathway. The optimised kinetic model 

obtained, can produce 97% (51.16mM malate) of experimentally produced malate and 93% of 

the theoretical maximum (55 mM). This is an indication that our kinetic model is good. 

In future, the modelling of cell-free systems can be used to optimise the malate synthesis using 

low-cost raw materials such as lignocellulose. The already developed kinetic model can be 

used as a plugin to examine the potential of other substrates. This modelled pathway can be 

used as a guide for enzyme improvement through protein engineering to improve the efficiency 

of key enzymes. The substrate channelling between two or more successive enzymes in the 

cascade reactions could be tested to fasten the conversion of intermediates. 
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ANNEXE 
Annexe 1: The variation of flux predicted by ANN model with different order of input data during the 

training phase of modelling. 
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Annexe 2: Discriminant analysis for the classification of data from Fiévet et al. (Fiévet et al., 

2006) using the rpart (Therneau & Atkinson, 2018) method from R. Colour code according to 

the feature space of data, where group 1 (flux: 0.728-3.17 µM/s) is shown in light cyan, group 

2 (flux: 3.17-5.6 µM/s) darker cyan, group 3 (flux: 5.6-8.04 µM/s), group 4 (8.04-10.5 µM/s), 

group 5 (10.5-12.9 µM/s). 
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Annexe 3: The calculated price for the µM of NADH consumed per second by the enzyme concentration 

selected for the experiment. 

Index 
mg/l µM/s in EUR 

PGI PFK FBA TPI JANN JEXP Price per µM 

11 2 10 88.24 1.66 12.24 15.7 0.213 

12 2 10 86.24 3.66 12.06 16.3 0.208 

13 2 11 82.24 6.66 12 12.1 0.294 

14 2 12 80.24 7.66 12.03 16.6 0.222 

15 2 13 85.24 1.66 12.7 13.9 0.263 

16 2 14 84.24 1.66 12.74 18.3 0.205 

17 2 15 83.24 1.66 12.72 17.1 0.226 

18 2 16 78.24 5.66 12.16 20.1 0.202 

19 3 10 85.24 3.66 12 14.4 0.241 

20 3 12 85.24 1.66 12.53 15.8 0.230 

21 3 16 80.24 2.66 12.44 20.6 0.198 

22 4 11 85.24 1.66 12.32 15.4 0.235 

23 4 16 80.24 1.66 12.49 16.1 0.257 

24 4 16 79.24 2.66 12.36 19.3 0.216 

25 5 15 80.24 1.66 12.48 18.5 0.223 

26 5 16 79.24 1.66 12.41 17.8 0.237 

27 5 16 78.24 2.66 12.29 16.3 0.261 

28 5 16 77.24 3.66 12.18 19.7 0.217 

29 6 15 79.24 1.66 12.41 17.8 0.237 

30 6 15 78.24 2.66 12.29 19 0.223 

31 6 15 77.24 3.66 12.19 21 0.203 

32 6 16 78.24 1.66 12.34 15.6 0.277 

33 6 16 77.24 2.66 12.23 17.8 0.244 

34 7 12 78.24 4.66 12 17.1 0.237 

35 7 15 78.24 1.66 12.33 17.7 0.243 

36 7 15 77.24 2.66 12.22 18.8 0.230 

37 7 16 77.24 1.66 12.27 20.4 0.216 

38 8 13 79.24 1.66 12.26 15.9 0.263 

39 8 15 77.24 1.66 12.26 17.9 0.245 

40 9 12 78.24 2.66 12.04 15.8 0.265 

41 10 12 78.24 1.66 12.05 13.6 0.312 
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Annexe 4: The cost predicted (in EUR) for the four-enzyme concentration (PGI, PFK, FBA and TPI) 

selected for experimental validation. The blue is lowest, to highest in red. 
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Annexe 5: The cost predicted (in EUR) for the four-enzyme concentration (PGI, PFK, FBA and TPI) 

selected by Fiévet et al. (2006). The blue is lowest, to highest in red. 
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Annexe 6: The Group 1 data used for the estimation of the kinetic parameters. The dots represent the experimental measurement of NADH consumption by 

G3PDH through the upper part of glycolysis. The colours of the dot represent different replicates as follows: red: replicate 1; blue: replicate 2, green: replicate 

3. The x-axis: time in seconds, y-axis: Concentration of NADH in µM. 
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Annexe 7: The Group 2 data used for the estimation of the kinetic parameters. The dots represent the experimental measurement of NADH consumption by 

G3PDH through the upper part of glycolysis. The colours of the dot represent different replicates as follows: red: replicate 1; blue: replicate 2, green: replicate 

3. The x-axis: time in seconds, y-axis: Concentration of NADH in µM. 
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Annexe 8: RMSE variation between experimental and model fitted concentration of NADH across different cycles of parameter estimation. 

 Cycle1 Cycle12 Cycle13 
 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 

index14 13.640 11.575 11.575 11.675 11.690 11.380 11.387 11.243 11.419 11.419 11.251 11.167 11.130 11.241 10.995 
index17 14.043 11.844 11.441 11.405 11.404 10.934 10.920 10.883 10.880 10.880 10.880 10.873 10.870 10.870 10.867 
index18 13.309 12.157 12.135 11.961 11.989 11.812 11.705 11.705 11.753 11.753 11.441 11.324 11.302 11.330 11.326 
index19 20.961 18.514 18.442 18.380 18.264 17.512 17.325 17.287 17.435 17.451 17.215 17.215 17.255 17.373 17.373 

 

Annexe 9: RMSE variation between experimental and model fitted concentration of NADH across the different cycle of parameter estimation after updating 

PGI, PFK, FBA, TPI, And GDH iteratively. The order of enzyme selected at step n depends on the RMSE between new prediction and experimental 

concentration at step n-1. 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

index14 11.68973 11.41933 10.99482 10.99482 10.6495 

index17 11.40421 10.87999 10.86682 10.85298 10.84276 

index18 11.98877 11.75305 11.32596 10.95669 10.18399 

index19 18.26374 17.45077 17.37294 17.30587 17.21132 
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Annexe 10: Kinetic parameters obtained after five cycles of iterative parameter estimation for the indexes which yield an RMSE of less than 2 and positive 

Kendall Tau between experimental and model-simulated flux. kcat: turnover number in s-1; Km: Michaelis-Menten constant in mM; Ki: inhibition constant in 

mM; Keq: Equilibrium constant. 

Parameter Index29 Index30 Index37 Index39 parameter Index29 Index30 Index37 Index39 

KeqPGI 0.615 1 0.581132 1.000 kcatPfk 29.390 27.78415 28.55318 209.998 

kcatFbaR 0.000 0 0.007345 0.046 KmPGIG6P 84.000 84 84 400.782 

KeqTPI 0.209 0.021268 0.049036 0.029 KmFbaFBP 3.904 3.977679 20.32414 5000.000 

KmG3dhNADH 4.300 4.300936 4.3 21.992 kcatPgiR 262.649 543.5177 290.158 247.200 

kcatFbaF 1.512 1.541179 3.244096 5.449 kcatPgiF 1410.000 1398.289 1397.283 1410.000 

KiFbaG3P 9960.214 10000 10000 65.784 KmFbaDHAP 2375.261 1238.556 2036.585 1745.441 

kcatTpiF 5640.078 16700 4891.016 15471.033 KmFbaG3P 2173.774 2500 716.7147 2500.000 

kcatG3dh 309.000 256.5478 307.8306 195.335 KmTpiDHAP 1230.219 1521.178 1241.007 2240.978 

KmPGIF6P 268.106 306.5059 307 307.000 KmTpiG3P 2433.737 1370.018 722.3535 2256.048 

KmG3dhDHAP 77.176 119.7806 96.13302 75.722 kcatTpiR 623.360 942.4913 898.5548 999.936 

KmPfkATP 120.722 76.38901 71.03611 72.550 KmG3dhGly3P 318.890 768.7406 409.0252 909.000 

KmPfkf6p 205.619 143.6157 190.1068 193.792 KmG3dhNAD 380.000 380 380 67.510 
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Annexe 11: The percentage deviation between the kinetic parameters used in the initial model and the 

parameter estimated after 5 cycles of iterative parameter estimation across 31 experiments. Original 

value: the kinetic values used in the original model, Average Value: The average of kinetic parameters 

estimated during iterative PE and Deviation: is the percentage deviation between the original value and 

average.kcat: turnover number in s-1; Km: Michaelis-Menten constant in mM; Ki: inhibition constant 

in mM; Keq: Equilibrium constant. 

Parameter Original 
value 

Average 
value 

Deviation 
% Parameter Original 

value 
Average 

value 
Deviation 

% 

kcatG3dh 189.1 287.3792 151.9721 KiFbaG3P 10000 6387.225 63.87225 

KeqTPI 0.045 0.105636 234.7466 KmFbaDHAP 2400 1791.64 74.65168 

KmG3dhNAD 83 272.9613 328.869 kcatPgiF 1107.37 860.1729 77.6771 

KmFbaFBP 140 603.0298 430.7355 KmTpiG3P 1270 1044.958 82.28017 

KmPfkATP 120 107.7768 89.81401 KmFbaG3P 2000 1667.025 83.35125 

kcatPfk 166.075 161.9523 97.51757 kcatTpiF 8486.67 10394.19 122.4767 

kcatTpiR 816.67 839.7529 102.8265 KmTpiDHAP 1230 1529.05 124.313 

KmPfkf6p 130 143.1877 110.1444  
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Annexe 12: The comparison of RMSE, Kendall tau and Spearman coefficients between experimental 

and model-simulated flux for the model after five cycles of estimation selective parameters. 

Index RMSE Kendall 
Tau 

Spearman 
Coefficient Index RMSE Kendall 

Tau 
Spearman 
Coefficient 

Index11 3.852 -0.249 -0.354 Index27 2.500 0.331 0.472 

Index12 3.816 -0.262 -0.373 Index28 4.458 0.370 0.518 

Index13 7.490 0.340 0.483 Index29 2.153 0.249 0.346 

Index14 5.517 -0.054 -0.095 Index30 2.131 0.219 0.309 

Index15 6.206 0.353 0.495 Index31 3.022 0.219 0.400 

Index16 2.533 -0.245 -0.349 Index32 2.042 0.318 0.439 

Index17 4.366 -0.058 -0.349 Index33 2.150 0.314 0.435 

Index18 5.988 -0.054 -0.095 Index34 2.062 0.374 0.508 

Index19 3.351 -0.024 -0.039 Index35 4.407 0.331 0.470 

Index20 2.174 0.024 0.018 Index36 3.233 0.348 0.492 

Index21 3.146 -0.006 -0.015 Index37 2.544 0.201 0.295 

Index22 2.350 0.058 0.087 Index38 3.956 0.318 0.462 

Index23 2.172 -0.158 -0.233 Index39 3.196 0.180 0.266 

Index24 2.413 0.297 0.415 Index40 8.183 0.227 0.328 

Index25 2.084 0.236 0.343 Index41 13.623 0.197 0.286 

Index26 1.912 0.292 0.403  
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Annexe 13: The phylogenetic tree for the enzyme alpha-glucan transferase (aGP). The phylogeny was 

constructed using organisms from which enzyme parameters are available in the BRENDA database. 
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Annexe 14: The phylogenetic tree for the enzyme Phosphoglucoisomerase (PGI). The phylogeny was 

constructed using organisms from which enzyme parameters are available in the BRENDA database. 
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Annexe 15: The phylogenetic tree for the enzyme fructose-bisphosphate aldolase (ALD). The 

phylogeny was constructed using organisms from which enzyme parameters are available in the 

BRENDA database. 
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Annexe 16: The phylogenetic tree for the enzyme triose-phosphate isomerase (TPI). The phylogeny 

was constructed using organisms from which enzyme parameters are available in the BRENDA 

database. 
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Annexe 17: The phylogenetic tree for the enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). The phylogeny was constructed using organisms from which enzyme parameters are 

available in the BRENDA database. 
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Annexe 18: The phylogenetic tree for the enzyme phosphoenolpyruvate carboxylase (PEPC). The 

phylogeny was constructed using organisms from which enzyme parameters are available in the 

BRENDA database. 
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Annexe 19: The experimentally measured malate concentration by Shi et al. via ATP-balanced malate 

synthesis pathway (T. Shi et al., 2019). The 13-enzyme cocktail (open square), from IA-treated starch 

(solid circle), from IA-treated starch supplemented with 4GT (solid square), and from IA-treated starch 

supplemented with 4GT and PPGK (open circle) 

 

 

Annexe 20: Comparision of statistics between the three algorithms used for parameter estimation of 

enzymes GAPDH, GAPN and PGK in the kinetic model, without 4GT and PPGK. RMS is the root 

mean square between the experimental and model-simulated malate concentration. 

 Genetic algorithm Particle swarm Hooke Jeeve 

Iteration 
Objective 
function 

value 
RMSE SD 

Objective 
function 

value 
RMSE SD 

Objective 
function 

value 
RMSE SD 

1 56.078 2.077 4.324 66.655 2.264 4.714 61.088 2.168 4.512 
2 53.573 2.030 4.226 58.549 2.122 4.418 59.168 2.133 4.441 
3 53.539 2.029 4.224 55.252 2.062 4.292 58.324 2.118 4.409 
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Annexe 21: The experimentally measured malate concentration used to fit the kinetic parameters of the 

PPGK added model. The data points are extracted using WebPlotDegitizer from Annexe 19. 

 

 

Annexe 22: The range of kinetic parameter values observed in the experimental assays across different 

sources from the BRENDA database. These kinetic parameters were selected for the estimation to fit 

the model to experimental data. kcat: turnover number in s-1; Km: Michaelis-Menten constant in mM; 

Ka: association constant in mM; Ki: inhibition constant in mM. 

The experimentally observed parameter values across different sources 

Kinetic parameter Biological range Kinetic parameter Biological range 
PFKKiPEP 0.0016 - 0.83 kcatPGK 0.78 - 2633 
PFKKaATP 0.005-0.7 GAPNKmG3P 0.02 
PFKKaF6P 0.007-254 GAPNKmNAD 1-3.3 

kcatPFK 0.015 - 185 kcatGAPN NA 
GAPDHKmG3P 0.00025 - 15 MDHKmMal 0.00012-20 
GAPDHKmNAD 0.000032 - 322 MDHKmNAD 0.00087 - 3.32 
GAPDHKmPho 0.2 - 37 MDHKmNADH 0.0014 - 1.4 

kcatGAPDH 0.002-234 MDHKmOAA 0.0001 - 29.4 
PGKKmADP 0.039 - 7.4 kcatMDH 4.71 -4729 
PGKKmBPG 0.0005 - 5.6  
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