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Preface 
The involvement of the intestine in metabolic diseases such as diabetes and obesity 

has been emphasized in several studies. Recently our team described for the first time, 

inflammation in the small intestine of obese subjects (Monteiro-Sepulveda et al., 2015), 

which is characterized by infiltration of T lymphocytes into the epithelium leading to an 

increased susceptibility to epithelial cells dysfunctions. Moreover, our team has shown that 

obese subjects present subtle intestinal barrier alterations in the basal state and an increased 

jejunal permeability revealed by a lipid load, associated with inflammatory and metabolic 

status (Genser et al., 2018). These results are in accord with murine studies, which have 

showed that obese mice present a higher permeability of the intestinal barrier, a higher 

endotoxemia and a higher level of circulating proinflammatory cytokines compared to the 

control mice (Brun et al., 2007; Cani et al., 2007; Cani et al., 2008).  

The mechanisms driving this intestinal barrier dysfunction present in obesity remain 

unclear. The intestine is the main barrier separating the external to the internal environment in 

the human body and it is a gateway for pathogens and antigens. Thus, nutrients and/or 

environmental factors are important to intestinal homeostasis and could be involved in 

intestinal disturbance.  

In this context, we investigated some factors that are sensitive to environmental 

changes and could be implicated on intestinal dysfunction reported in obesity. We studied the 

role of a transcription factor known to trigger an immune response to environmental changes, 

the Aryl hydrocarbon receptor (AhR) (Stange and Veldhoen 2013) and the role of lipid supply 

on small intestine disturbance. During my thesis, I focused on the effects of the activation of 

AhR and palmitic acid supply on intestinal homeostasis by studying intestinal epithelial 

disruption and the initiation of intestinal inflammation. My goal was to study the early stages 

involved in the occurrence of these events before the onset of obesity and to look beyond the 

cause-effect relationships for the molecular mechanisms involved.  
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Introduction 

1) Obesity 

Overweight and obesity are described as abnormal or excessive fat accumulation that 

may impair health (World Health Organization (WHO), 2018). Obesity is a state of excess 

adipose tissue mass. This condition usually translates into excessive body weight (Purnell 

2000). Body mass index (BMI) is a simple index of weight-for-height that is commonly used 

to classify overweight and obesity in adults. It is established by a person's weight in kilograms 

divided by the square of their height in meters (kg/m2). Overweight is defined as a BMI 

greater than or equal to 25 kg/m² while obesity is defined as a BMI greater than or equal to 30 

kg/m². According to the World Health Organization obesity distinguishes in 4 types in terms 

of severity, according to BMI: class I for a BMI between 30 and 34.9 kg/m2, class II for a 

BMI between 35 and 39.9 kg/m2, and class III for a BMI ≥ 40 kg/m2 (WHO, 2018). In turn, 

class I obesity is associated with a “moderate risk”, class II with a “high risk”, and class III 

with a “very high risk” of mortality.  

Obesity and overweight have reached epidemic proportions (WHO, 2018). In 2016, a 

report from the World Health Organization indicated that more than 1.9 billion adults, 18 

years and older, were overweight. Of these, over 650 million were obese. The pandemic of 

obesity is also developing in emerging countries, affecting now children, who 41 million 

under the age of 5 were overweight or obese in 2016 (WHO, 2018). According to a report by 

the Food and Agriculture Organization of the United Nations (FAO) and the Pan American 

Health Organization (PAHO), more than half of the Brazilian population is overweight. Based 

on data from the WHO, overweight in adults increased from 51.1% in 2010 to 54.2% in 2016 

in Brazil. The upward trend was also recorded in the national obesity assessment. In 2010, 

17.8% of the Brazilian population was obese while in 2016 the index reached 20% 

(VIGITEL, 2017). In addition, it is also reported an increase in overweight children in this 

country. It is estimated that 7.3% of children under five are overweight (FAO, 2016). In 

France, the ObEpi report indicates that 32% of French adults are overweight and 15% are 

obese (ObEpi, 2012).  

Obesity and overweight are associated with an increase of prevalence of comorbidities 

such as hypertension, diabetes and dyslipidemia (characterized by high cholesterol and high 



	

 
	

	
INTRODUCTION 

	
	 	

8 

triglyceride plasma levels). Many obese subjects will develop type-2 diabetes. According to a 

report from International Diabetes Federation (IDF, 2015) Brazil has around 14.3 million of 

people with diabetes and more than 3.3 million cases of diabetes in France in 2015, a number 

that increases year after year concomitantly with the expansion of obesity. Furthermore, high 

rates of dyslipidemia are seen among the Brazilian population. Gigante et al., conducted 

research experiments on 49,395 adults living in the state capitals and federal districts and 

reported 16.5% cases of dyslipidemia (Gigante et al., 2009) (Silva et al., 2014). Thus, obesity 

and its associated metabolic diseases are a global concern and countries need to join their 

effort in order to limit and cure these pathologies.  

The word “obesity” (from the Latin obesitas) indicates the most common behavioral 

condition leading to obesity, the overeating. In fact, obesitas is the condition of the obesus, a 

word that is composed of ob (ie, over) and esus, ie the past participle of edere (ie, to eat) 

(Purnell 2000). However the etiology of this pathology is complex and cannot be reduced to 

voluntary overconsumption of nutrients (Rotge et al., 2017). Indeed obesity is a multifactorial 

pathology resulting from multiple genetic and epigenetic factors associated with 

environmental factors such as changes in diet and lack of physical activity resulting in a 

positive energy balance. The control of body weight and composition have to consider energy 

intake, energy expenditure and fat deposition, which are interconnected and under an integral 

regulation by the neural and endocrine systems, where different neuropeptides and hormones 

participate (Gonzalez-Muniesa et al., 2017). A majority of cases of obesity is associated with 

an imbalance between food intake and energy expenditure due to deregulation of the 

mechanisms involved in their control. Several agents modify these regulatory processes: 

environmental factors, overall diet quality, level of physical activity, the gut microbiota, 

endocrine disruptors, reproductive factors, drugs, as well as intra-uterine and epigenetic 

intergenerational effects (Gonzalez-Muniesa et al., 2017). Reducing food intake or increasing 

physical activity can lead to a negative energy balance and a cascade of central and peripheral 

compensatory adaptive mechanisms that preserve vital functions (Heymsfield and Wadden 

2017).  

Several studies, including those of our team, have also demonstrated that obesity is 

characterized by low-grade systemic (Rodriguez-Hernandez et al., 2013; Magalhaes et al., 

2015; Monteiro-Sepulveda et al., 2015) and tissue (Dalmas et al., 2011; Dalmas et al., 2014; 

Monteiro-Sepulveda et al., 2015) (Vernon et al., 2011; Stolarczyk 2017) inflammation. This 
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inflammatory response is characterized by a systemic increase of molecular markers of 

inflammation of innate and adaptive immunity (activation of blood immune cells, recruitment 

of activated immune cells to "inflamed" tissues and finally repair of the tissues) (Ellulu et al., 

2017). Regarding intestinal inflammation itself, recent work conducted by our team shows for 

the first time, that human obese subjects presenting with an increased height of intestinal villi 

and therefore the absorption surface, display an inflammation of the jejunum characterized by 

infiltration of T lymphocytes into the epithelium leading to an increased susceptibility to 

epithelial cells dysfunctions such as reduced enterocyte insulin sensitivity (Monteiro-

Sepulveda et al., 2015). Moreover, this work showed a correlation between systemic insulin 

resistance (HOMA-IR) and mucosal T cell infiltration in non-diabetic obese subjects 

(Monteiro-Sepulveda et al., 2015). Thus, chronic inflammation, although present at a 

subclinical level, would contribute to the impairment of cellular functions and metabolic 

complications associated with obesity.  

 

Initial work in rodents has suggested links between immune cell recruitment, intestinal 

permeability, microbiota changes, and metabolic complications (Cani et al., 2008). It is well 

known that obesity is associated with increased risk factors for gastrointestinal diseases 

(Teixeira et al., 2012). As stated by Bischoff (2011), the gastrointestinal health can present 

some major criteria and specific signs (effective digestion and absorption of food, absence of 

gastrointestinal illness, normal and stable intestinal microbiota, effective immune status, and 

status of well-being) (Bischoff 2011). Perturbations of these signs may negatively influence 

the gut barrier function. The presence of such disorders being reported in obese subjects 

suggests impaired intestinal homeostasis. In obesity, an alteration of the intestinal barrier, a 

change in the composition of the intestinal microbiota and a chronic inflammatory state 

coexists, making it difficult to identify the triggering factors. Several observations indicate 

that an alteration of the intestinal barrier would be an early event that would occur before the 

onset of metabolic disorders and inflammation. A passage of lipopolysaccharide (LPS) 

through the transcellular route, but also paracellular in the case of an alteration of the 

intestinal barrier, is proposed (Guerville and Boudry 2016). Besides, our team has described 

also that obese subjects present subtle barrier alterations in the basal state, however, increased 

jejunal permeability is revealed by a lipid load and associated with inflammatory and 

metabolic status (Genser et al., 2018). In addition, studies have shown that obese mice present 
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a higher permeability of the intestinal barrier, higher endotoxemia of the portal system and a 

higher level of proinflammatory cytokines compared to the control mice (Brun et al., 2007; 

Cani et al., 2007; Cani et al., 2008). These findings reinforce the hypothesis of possible links 

between lipid and low-grade intestinal inflammation, which can be also correlated to 

intestinal barrier disruption. 

Thus whether the molecular mechanisms involved in the onset of intestinal and low-

grade systemic inflammation remains largely unknown several shreds of evidence revealed 

the importance of intestine in this process. 

2) Intestine 

The gastrointestinal (GI) tract is a multifunctional organ with a complex structure and 

diverse physiological roles. Rather than a single organ, it is an ecosystem composed of three 

main components: host cells, microbiota and environmental cues, including nutrients. A main 

function of the gastrointestinal tract is to provide energy as well as micro- and macronutrients 

to the rest of the body. In recent years, however, it became apparent that the GI tract is much 

more than just a digestive and absorptive organ. Indeed, it is an important line of defense 

against natural toxins and chemicals. It also contains trillions of bacteria and maintains a 

balance between tolerogenic and inflammatory signals. The GI tract is also the largest 

endocrine organ of our body by the amount and diversity of signaling molecules that it 

secretes and which communicate with the rest of the body, including the brain. All these 

functions are strongly related to the particular structure and morphology of the GI tract (Le 

Gall et al., 2018). 

In humans and other vertebrates, the digestive system consists of a tubular 

gastrointestinal tract and related digestive organs. The general anatomy of the gastrointestinal 

tract is shown in Figure 1. The digestive system begins with the oral cavity and is followed by 

the pharynx, esophagus, stomach, small intestine consisting of three segments (duodenum, 

jejunum and ileum), colon and ends with the rectum and anus. The digestive tract is 

associated with other organs such as the liver, gallbladder or pancreas that are also involved in 

physiological processes, especially during digestion by the secretion of different hormones 

and digestive enzymes.  
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Figure 1: Organs and structures in the gastrointestinal tract. 
The digestive tract includes the oral cavity, followed directly by the pharynx and esophagus, stomach, 
small intestine, large intestine and anus. These organs are interconnected and interact with each other 
via afferent nerves with the liver, gallbladder and pancreas to ensure in particular the digestive 
function. 
(https://biologydictionary.net/digestive-system/) 
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The food is crushed by the teeth, compacted by the tongue and moistened by the saliva 

produced by the salivary glands. The result of the combined action of these organs forms what 

is called the bolus. Following swallowing comes the esophagus, a muscular tube that transfers 

the food bolus to the stomach, where digestion continues. The bolus is then transformed into 

chyme, a whitish porridge, which, under the effect of contractions of the stomach, will pass 

into the small intestine where a battery of digestive enzymes continues the digestive process. 

In the proximal part of the small intestine, chemicals from the liver, pancreas (pancreatic 

juices) and gallbladder (bile) mingle with the chyme and break down the chyme into 

absorbable nutrients. The jejunum is the major site of macronutrient absorption, while colon 

ensures the absorption of electrolytes and water. The remaining product forms the feces, 

which can remain in the rectum for several hours before finally being evacuated through the 

anus. 

In humans, longitudinally, the intestinal tract can be divided into the small intestine 

(duodenum, jejunum and ileum) and the large intestine (cecum and colon), the small intestine 

is 6 m long and about 2 cm in diameter and the large intestine is 1.5 m long and about 4 cm in 

diameter. In the mouse, the small intestine measures between 35 and 45 cm and the large 

intestine measures between 10 and 15 cm. Several folding structures make it possible to 

considerably increase the exchange surface between the epithelium and the intestinal lumen. 

The mucosa is itself folded into villi 1 mm high. At the microscopic level, the apical 

membrane of intestinal epithelial cells is composed of regular microvilli formed by 

evaginations of the plasma membrane. The colonic epithelium differs from that of the small 

intestine because it is devoid of villi. It consists of epithelium and crypts. 

The gastrointestinal tract also contains a large network of neurons that are 

interconnected and allow the regulation of digestive functions. This network of nerve cells is 

called the submucosal plexus (or Meissner’s plexus) in the submucosa and the myenteric 

plexus (or Auerbach’s plexus) between the inner and outer muscular layers. 

The intestinal micro-anatomical morphology varies along the gastrointestinal tract but 

there are common features in the overall organization of the tissue (Figure 2). Transversely, 

from the external serosa to the lumen, the intestine is constituted by 2 muscle layers and 

covered by mucosa. The mucosa from lumen to internal layer consists of a monostratified 

epithelium, lamina propria and muscularis mucosae. It is largely innervated and vascularized 

with microvessels and lymph vessels.  
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Figure 2: Anatomy and surface of the small intestine in humans. 
The small intestine measures about 6 meters in width, is wrapped in the abdominal cavity 
with folds forming intestinal loops. The intestinal mucosa presents conniving valves which 
allow to triple the exchange surface between the epithelium and the intestinal lumen. These 
structures form villi which increase this surface in factor 10. Concerning a cytological view, 
each enterocyte contains microvilli on its apical surface, these folds of the plasma 
membrane will multiply the surface by 500. The surface of the small intestine epithelium is 
estimated at 32 m2, the equivalent of a badminton court. 
(Encyclopaedia Britannica, 2014) 
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The muscularis ensures peristalsis that allows the advancement of the bolus along the 

gastrointestinal tract. It consists of two layers of smooth muscle cells: the circular inner layer 

and the longitudinal outer layer.  

The surface of the small intestine is greatly enlarged through mucosal protrusions 

called villi. These cells migrate from the crypt proliferative compartment to the villus tip 

where they undergo the replacement of epithelial cells eliminated by anoïkis, which is a 

particular form of cell death triggered by the loss of adhesion between the cell and the 

extracellular matrix at the apex of the villi (Vachon 2018), cell are then shed into the lumen 

(Figure 3). The renewal of the epithelium takes approximately 3-5 days in humans (Umar 

2010; Darwich et al., 2014). It is the intestinal stem cells at the base of the Lieberkühn crypts 

that allow this constant renewal. The progeny of these stem cells then migrate along the 

crypto-villous axis and differentiate into several cell types.  

Several types of differentiated epithelial cells cover the villi: absorptive enterocytes, M 

cells which act as antigen-presenting cells and a gateway to the microorganisms (Lelouard et 

al., 2001), goblet cells producing mucous, tuft cells, which play an essential role in the 

initiation of the type 2 immune response during parasitic infections (Gerbe et al., 2016; 

Banerjee et al., 2018) and hormone-secreting enteroendocrine cells (Crosnier et al., 2006; van 

der Flier and Clevers 2009). Paneth cells settle at the crypt bottoms after differentiation and 

exert innate immunity function by producing anti-microbial peptides. In addition, the 

epithelium also contains lymphocytes. Underlying the epithelium, the lamina propria (LP) is a 

connective tissue, composed of collagen and elastin fibers that contain numerous blood and 

chyliferous capillaries through which absorbed nutrients transit. It contains smooth muscle 

cells, fibroblasts and immune cells. 

Besides, the intestine is the largest surface of the lining of the human body and is a 

critical interface between the host and the external environment. The gut epithelium consists 

of a single layer of intestinal epithelial cells (IECs) that are crucially important for nutrient 

uptake and provide a barrier against harmful substances. A fundamental function of the 

intestinal epithelium is to act as a protective barrier that regulates interactions between the 

luminal contents and the remainder of the body while controlling the absorption and secretion 

functions necessary for its digestive activity.  
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Figure 3: Architecture of the small intestinal epithelium and schematic representation 
of its different cell types.  
The small intestine presents a crypt-villus structure. The crypt, which is the proliferative 
compartment, contains stem cells and Paneth cells. The intestinal epithelial stem cells in the 
crypts produce the proliferating cells that differentiate while migrating up the villus, except 
for Paneth cells. Villi include enterocytes, M cells (at the ileum), enteroendocrine cells, 
mucus-secreting goblet cells, and tuft cells. Secretory goblet cells and Paneth cells secrete 
mucus and antimicrobial proteins, respectively, to promote the exclusion of microbiota 
from the epithelial surface. Differentiated cells are extruded into the intestinal lumen 
through a process called anoikis. The intestinal epithelium is based on the lamina propria 
which is populated by immune cells. 
(Adapted from Le Gall et al., 2018)  
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Epithelial barrier function requires a contiguous layer of cells as well as junctions 

sealing the cellular space between epithelial cells. The intestinal tissue needs to be highly 

regenerated in order to maintain its integrity against constant physical, chemical and 

biological pressures (Le Gall et al., 2018; Olivares-Villagomez and Van Kaer 2018). 

The intestinal barrier is the largest interface between the body and the external 

environment. It is a complex structure presenting around 300-400 m2 of surface area and 

composed of four main sections: the microbiological, chemical, immunological and physical 

barriers (Figure 4). The main function of this barrier is to limit the access of intestinal lumen 

contents, including bacterial components of the microbiota, to the blood circulation and the 

internal environment (Odenwald and Turner 2013). 

In the following chapters, I described the importance of microbiological, chemical, 

immunological and physical barrier for intestine functions. 

2.1) Microbiological barrier 

The digestive tract is populated by microorganisms, mainly bacteria but also viruses, 

yeasts, fungi and archaea, whose abundance increases from duodenum to the colon. The 

intestine is home, both permanently and transiently, to a complex microflora. Many studies 

have focused on the dynamic and complex interactions between pathogens and the intestinal 

epithelium, which often leads to disturbances in the intestinal barrier, altered fluid and 

electrolyte transport and the induction of an inflammatory response. Since the technological 

advances allowing the more and more precise characterization of the metagenome, the 

demonstration of a dysbiosis in several inflammatory or metabolic diseases made it possible 

to hypothesize about the implication of the host-microbiota relationship in the occurrence of 

these pathologies and in particular via its role in maintaining the integrity of the intestinal 

barrier (Groschwitz and Hogan 2009). 

The gut microflora, which is composed of approximately 1011 number of bacteria per 

ml of content, approximately the number of body cells (Sender et al., 2016), is now 

considered as a functional human pseudo-organ. Comprised of 500-1000 species, this 

complex ecosystem is established in humans from birth, stabilizes over time around the age of 

2 years and remains stable over time. Although disruptive episodes such as antibiotics may 

exist, a return to equilibrium is possible, it is the phenomenon of resilience (Villanueva-

Millan et al., 2015). Moreover, although the composition of the gut microbiota in terms of  
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Figure 4: Schematic representation of the main components of the intestinal barrier 
The intestinal barrier is a semipermeable structure that allows the immune sensing and the 
uptake of essential nutrients, while being restrictive against pathogenic molecules and 
bacteria. The microbiological barrier is formed by microorganisms, mainly bacteria but also 
viruses, yeasts, fungi and archaea, with a maximum concentration gradient reached in the 
colon. It is an essential component of intestinal barrier function that influences epithelial 
metabolism, proliferation and survival. The mucus layer forms a chemical barrier covering 
and protecting the intestinal epithelium. Antimicrobial peptides (AMPs) and secretory IgA 
molecules (sIgA) are secreted in the mucus layer as immune-sensing and regulatory 
molecules. The intestinal epithelial cells (IECs) form a continuous monolayer and physical 
barrier. Cells are tightly attached to each other by junctional complexes, such as the tight 
junctions (TJs), the adherens junctions (AJs) and desmosomes which ensure the 
maintenance of the integrity of the intestinal barrier. The lamina propria contains immune 
cells (e.g. T cells, B cells, macrophages and dendritic cells) from the adaptive and innate 
immune system forming the immunological barrier. It takes part in the immunological 
defense mechanisms of the intestinal barrier. AMP, antimicrobial peptide; sIgA, secretory 
immunoglobulin A; IECs, intestinal epithelial cells; TJ, tight junction; AJ, adherens 
junction 
(Adapted from Vancamelbeke and Vermeire, 2017) 
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 species is specific to each individual, it remains nevertheless similar between individuals in 

terms of abundance of large phylogenetic groups (Shreiner et al., 2015). 

This microbiological barrier is an essential component of intestinal barrier function 

that influences epithelial metabolism, proliferation and survival. The normal gut microflora 

provides protection against infection, educates the immune system, ensures tolerance to foods, 

and contributes to nutrient digestion and energy harvest and is important in the induction of 

the host innate response (Huang et al., 2013; Moya and Ferrer 2016). 

The abundance of intestinal microbiota is distributed mainly in five phyla: Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia (Figure 5) (Rajilic-

Stojanovic and de Vos 2014). The phylum Firmicutes is mainly composed of bacteria 

belonging to the Clostridia group of clusters XIVa and IV including respectively the groups 

Eubacterium rectal-Clostridium coccoides and Clostridium leptum. The group Eubacterium 

rectal-C. coccoides includes species belonging to the genera Clostridium, Eubacterium, 

Rhuminococcus and Butyrivibrio while the group C. leptum includes the species 

Faecalibacterium prausnitzii, Ruminococcus albus and R. flavefaciens. Another diverse, 

group of the Firmicutes is the class Bacilli that includes the genera of Lactobacillus, 

Enterococcus, and Streptococcus, which are dominant in the upper part of the gastrointestinal 

tract. The second most represented phylum is that of Bacteroidetes comprising several species 

of Bacteroides: B. thetaiotaomicron, B. fragilis, B. ovatus and B. caccae (Rajilic-Stojanovic 

and de Vos 2014). Identification of microbiota composition has received a considerable boost 

since the developing of high-throughput sequencing tool of the bacterial gene coding for 16S 

ribosomal RNA. The microbiota of an individual contains about 750,000 genes, compared to 

25,000 genes for the human genome, giving to the microbiota its importance in the regulation 

of physiological functions (Shreiner et al., 2015). 

More than 90% of the intestinal bacterial species are not cultivable since the majority 

lives in a particular physicochemical and anaerobic environment. Such conditions are difficult 

to set up in the laboratory. However, several approaches exist to study the microbiome and its 

function in a physiological and physiopathological context (Jubelin et al., 2018). Systems 

such as the TIM (TNO gastrointestinal Model), SHIME (Simulator of the Human Intestinal 

Microbial Ecosystem) or the in vitro model of piglet colon (PigutIVM), allow dynamic 

studies of changes in microbiota composition as well as microbiota-dependent digestion of 

nutrients in anaerobic conditions including controlled pH, temperature,  
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Figure 5: The schematic presentation of a phylogenetic tree of microorganisms, with the main 
bacterial phyla, composing the microbiota present in the human colon. 
The relative abundance of major phyla of human intestinal microbiota is shown. In 
parenthesis, the proportions of the total microbiota are expressed as a percentage. The 
major groups, genera and bacterial species that have been implicated in some human 
pathologies are included in the phylogenetic tree. BF: breast-fed. 
(Cheng et al. 2011) 
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flow rates etc (Fleury et al., 2017; Dupont et al., 2018; Jubelin et al., 2018). Several of these 

models have for objectives to adapt epithelial cells containing a module for studying host-

bacteria cross-talk. 

The protective role of the intestinal microbiota against colonization by pathogens 

potentially deleterious to the body goes through different actions. Indeed, symbiotic bacteria 

limit pathogen colonization by competing for adherence to epithelial surfaces, producing 

antimicrobial compounds, and stimulating mucin production. Also, commensal bacteria limit 

the accessibility of pathogenic bacteria to nutrients by competitive effects and modulate 

responses of host cells to inhibit the growth of pathogens. Bacteria communicate and interact 

with body cells but also with other bacteria via the quorum sensing which is a mode of 

communication using chemicals secreted and captured by bacteria to coordinate their 

metabolism and other processes complexes such as the formation of a biofilm (Srivastava et 

al., 2017).  

The intestinal microbiota provides crucial functions for the host such as nutrient 

acquisition and energy regulation and influences processes such as predisposition to obesity, 

immune homeostasis, inflammation, repair and angiogenesis. In eubiosis status, a mutualistic 

and symbiotic relationship exists between the intestinal microbiota and the host organism. 

Commensal bacteria contribute to the development and maturation of the immune system, the 

synthesis of certain vitamins, the production by epithelial cells of antimicrobial peptides, 

secretory IgA, cytokines, mucus and promote the integrity of the epithelial barrier (Duerkop 

et al., 2009; Ihara et al., 2017). The microbiota contributes to the metabolic functions of the 

host by biotransformation of different food substrates to obtain energy for survival and 

bacterial growth and to generate metabolites that are absorbable and usable by intestinal 

epithelial cells. Among these substrates, the undigested food fibers by the host will be 

supported by the bacteria thus providing the main source of energy for the microbiota in the 

form of carbohydrates (Makki et al., 2018). The glycolytic bacteria transform the 

carbohydrates into pyruvate via glycolysis and then into short-chain fatty acids (SCFA), the 

final products of fermentation such as butyrate, propionate and acetate (Morrison and Preston 

2016). Acetate and propionate pass into the blood compartment, reach the liver and then the 

peripheral organs where they will be used as substrates for gluconeogenesis and lipogenesis. 

An imbalance in the richness and diversity of bacterial communities is observed in several 
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metabolic and inflammatory pathologies (Young 2012; Wang et al., 2017; Valdes et al., 

2018) and its role in intestinal barrier function seems to be crucial.  

 

I present below some examples showing how bacteria species or metabolites produced 

by bacteria modulate of intestinal functions in particular barrier function and immune 

response. 

Butyrate produced by gut microbiota has been described as having protective 

properties for the colonic mucosa (Bedford and Gong 2018; Wu et al., 2018). It affects 

cellular proliferation and differentiation, increases intestinal blood flow, and inhibits 

inflammation by reducing the expression of proinflammatory cytokines such as IL-1β, TNF-α 

and IL-8 and inducing IL-10 or TGF-β anti-inflammatory cytokines (Bedford and Gong 

2018). Also, butyrate decreases oxidative stress and enhances the colonic epithelial barrier by 

participating in the formation of tight junctions in the colonic epithelium (Hou et al., 2014). 

Studies with axenic mice or intestinal flora depleted mice by antibiotic administration 

have been performed in order to establish the role of gut microbiota in epithelial barrier 

dysfunction. Some of these studies have shown that these mice are more susceptible to 

chemically induced inflammation (Natividad and Verdu 2013). Enteric bacteria can disrupt 

the intestinal barrier either directly, by binding to cell surface molecules and inducing changes 

in TJ protein expression. Bacterial fragments such as LPS produced by gram-negative 

bacteria are also able to increase permeability via activation of TLR receptors present on 

intestinal epithelial cells (Guo et al., 2013). 

A direct role of an adherent and invasive pathogenic strain of Escherichia coli (AIEC) 

on the intestinal epithelial barrier has been observed (Shawki and McCole 2017). The role of 

this bacterial species on the intestinal barrier involves several cellular and molecular actors, 

including increased permeability to ions and macromolecules, changes in membrane 

localization of ZO-1 and E-cadherin (Wine et al., 2009). Beyond these direct effects, the 

AIEC following its translocation through the epithelium is able to activate the secretion of 

cytokines by the immune cells of the lamina propria and to increase the secretion of TNF-α, 

which could also contribute to amplifying the disturbances of the barrier (Eaves-Pyles et al., 

2008). 

A commensal bacterium, the Akkermansia muciniphila (AKK), has been studied 

concerning its involvement in various pathologies such as type 1 diabetes, IBD and obesity 
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(Derrien et al., 2017). Some papers showed that this bacterium could play a beneficial effect 

on the homeostasis of the intestinal epithelium and the decrease in its abundance is correlated 

with the pathologies cited above (Reunanen et al., 2015; Derrien et al., 2017). On epithelial 

cell models in culture, AKK strengthened epithelial monolayer integrity (Reunanen et al., 

2015). AKK has also the ability to control gut microbiota, to secrete long-chain fatty acids, to 

increase mucus production and to stimulate immune defenses (Derrien et al., 2017). 

 

2.2) Chemical barrier 

The first layer of defense in the epithelium of the gut is formed by a layer of mucus, 

which is critical for the limitation of the exposure of epithelial cells to the microbiome 

(Chelakkot et al., 2018). The mucus layer forms a semipermeable, highly hydrated gel 

composed of 95% water, electrolytes, lipids, immunoglobulins, antimicrobial peptides and 

glycoproteins called mucins. The mucus is synthesized and secreted by the goblet cells, which 

form about 5% of the small intestine epithelial cells and up to 15% of the distal colon 

epithelial cells. Because of that, the goblet cells are responsible for the constant renewal of 

this mucus layer (Birchenough et al., 2015; Johansson and Hansson 2016).  

The secretion rate of mucus in the gastrointestinal tract is estimated at about 10 liters 

per day, so it is produced and then eliminated continuously to ensure permanent protection of 

the underlying structures (Cone 2009). 

The thickness of the mucus layer is determined by the balance between the level of 

synthesis/secretion and degradation/elimination and differs along the digestive tract. The 

small intestine presents one layer while the colon consists of two distinct layers. The first one 

is an adherent inner layer, firmly attached to the epithelial cells, free of bacteria and having a 

thickness of about 50µm at 100µm in the rodent. The second layer presents in the colon is a 

looser outer layer potentially colonized by commensal bacteria up to 100µm and 700µm thick 

in mice and rats, respectively (Atuma et al., 2001; Johansson et al., 2008) (Figure 6). The 

colonic epithelium is therefore in continuous interaction with an abundant microbiota. 

Various factors such as hormones, neuropeptides and inflammatory mediators such as 

prostaglandin E2 (PGE2) or inducible nitric oxide synthase (iNOS) can modulate the 

thickness of the mucus layer by stimulating the secretion of mucins (Phillipson et al., 2008). 
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Figure 6: Schematic representation of the mucus layers thickness along the rat 
gastrointestinal tract. 
The intestinal epithelium surface is covered by two layers of mucus: the inner most firmly 
attached to the mucosa and is practically devoid of bacteria; the outer layer, loosely 
adherent and potentially colonized by commensal bacteria (as schematized with black dots).  
(Adapted from Juge 2012) 
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The mucus consists essentially of water and mucins. Mucins form a glycoprotein 

network that prevents the deep penetration of pathogenic microorganisms and provides a 

habitat for commensal bacteria through the interaction between bacterial surface adhesins and 

mucin glycans. These glycanic residues act as receptors for pathogens that are then trapped in 

the mucus and then eliminated via the flow of mucus generated by peristalsis (Juge 2012). 

 Thus, the mucus layer contributes to the protection of the epithelium and protects the 

underlying epithelial cells against unwanted substances and invasion of pathogenic bacteria 

and acts as a lubricant to minimize shear stress on the physical barrier. Besides, it is a 

dynamic defense barrier containing antimicrobial peptides (immunological barrier) that helps 

prevent contact between bacteria and the epithelial layer.  

 

2.3) Immunological barrier 

The organized lymphoid tissues unencapsulated and composed by immune cells and 

are found associated with the mucosal surfaces of the respiratory, gastrointestinal and 

urogenital tracts, they are called MALT (mucosa-associated lymphoid tissue). In addition to 

MALT, a diffuse lymphoid tissue composed of widely distributed immune cells can be found 

in the lamina propria of the mucosal surfaces. The mucosal immune system contains the 

largest reservoir of immune cells in the body. It is in close contact with the outside 

environment, including nutrients, microbiota, pathogens, and environmental antigens, and this 

requires fine-tuning of the immune response to enable efficient responses against pathogens 

while maintaining tolerance to innocuous stimuli (Yap and Marino 2018). Thus, the 

development and progression of the complex defense system and immunological responses at 

this lymphoid tissue should be regulated, avoiding an exacerbated and harmful reaction to the 

body against the antigens, while at the same time promoting an effective response against 

pathogens when necessary. 

 

Recent studies have highlighted the central role of the intestine as a site of 

immunological events participating in the progress of several diseases, including metabolic 

diseases such as diabetes and obesity. The intestinal mucosal immune system forms the 

largest part of the body's immune tissues. The vast majority of immune cells within the 

intestinal epithelium are lymphocytes that are referred to intestinal intraepithelial lymphocytes 
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(IELs), which are the T cells resided interspersed among the epithelial cells (Olivares-

Villagomez and Van Kaer 2018). IELs are at the interface between the external environment 

and the body and provide immediate immune protection against initial entry and spreading of 

pathogens, thereby contributing to the intestinal barrier. Besides, the IELs are resident in the 

intestinal epithelium and they express several characteristic surface receptors, which interacts 

with those produced by IECs and thus assists in recruiting IELs to the gut mucosa (Olivares-

Villagomez and Van Kaer 2018). IELs also need to display regulatory functions to avoid 

excessive inflammation that could endanger the integrity of the intestinal barrier (Cheroutre et 

al., 2011).  

In the small intestine, the intestinal immune system is composed of an initiation 

compartment of the immune response, defined as the organized gut-associated lymphoid 

tissues (GALTs). GALT is constituted of dense lymphoid tissue, represented by lymphoid 

follicles isolated in the large intestine or forming aggregates of germinal centers with 

lymphoid follicles as in Peyer's plaques (Figure 7) (Mowat 2003; Pearson et al., 2012). The 

Peyer’s patches representing groups of non-encapsulated lymphoid follicles located between 

the mucosa and the submucosa of the small intestine, in particular in the ileum. Peyer's 

patches and lamina propria are both drained by lymphatic vessels to the mesenteric lymph 

nodes (Mowat 2003; Olivares-Villagomez and Van Kaer 2018). The intestinal immune 

system has a wide variety of cell types and can be schematically separated into an innate 

component consisting of epithelial cells, macrophages, dendritic cells, neutrophils and NK 

cells, and an adaptive component consisting of lymphocytes. The immune barrier is provided 

by the coordinated action of these two components that act synergistically to control the 

integrity of the lumen/internal environment interface (Cheroutre et al., 2011). The dendritic 

cells, having captured the antigens, and the lymphocytes sensitized by these antigens then 

migrate into the mesenteric lymph nodes. Activated lymphocytes then infiltrate the effector 

sites of the intestinal epithelium and in particular intestinal villi.  

In the colon, the lymphoid islands allow the development of an immune response 

against antigens penetrating by the M cells and contact the lymphocytes and dendritic cells 

with production of anti-immunoglobulin type A (IgA) antibodies.  

Thereby, an imbalance in the homeostasis of the intestinal immune system can result 

in inflammation of the intestine. The intestinal inflammation is characterized by infiltration of 

immune cells (intraepithelial lymphocytes, macrophages, etc) into the mucosa and by the 
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Figure 7: Architecture of gut-associated lymphoid tissue (GALT) 
The GALT contains one of the largest lymphoid cell population found anywhere in the 
body. GALT is distributed along the intestinal tract and is separated from the luminal 
content. The intestine presents immune cells dispersed in the lamina propria but also 
interposed between the epithelial cells (intraepithelial lymphocytes). It also has Peyer's 
patches of lymphoid follicles rich in B and T cells. The passage of bacteria through the M 
cells at the top of the dome triggers an immune response. The GALT displays three mainly 
functions: provides antigenic samples from throughout the GI tract; optimizes the 
opportunities for naïve lymphocytes to encounter antigens, and finally supports the 
activated lymphocytes and initiates their differentiation.  
(Brucklacher-Waldert et al., 2014) 
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production of pro- or anti-inflammatory cytokines, by several cell types, including enterocytes 

(Cader and Kaser 2013; Silva et al., 2016; Lee et al., 2018). However, the mechanisms 

driving to this intestinal dysfunction which seems to be present in several diseases is not yet 

elucidated and deserves to be more studied. 

 

2.4) Physical barrier 

The physical barrier provides a physical constraint and allows the tightness between 

cells in the intestinal epithelium, resulting in the physical inhibition of the microbial invasion 

of the mucosa. The physical barrier function is provided by the monolayer of intestinal 

epithelial cells (IECs) closely interconnected by intercellular junctions as well as by the 

mucus layer, a common component of the physical and chemical barrier, which covers the 

apical surface of intestinal epithelial cells (Okumura and Takeda 2018). 

The intestinal epithelium is a single layer of cells (IECs) lining the gut lumen and has 

two critical functions. The first one is to control the communication between the intestinal 

lumen and the body. This function is essential to prevent the passage of harmful intraluminal 

entities including foreign antigens, microorganisms and their toxins (Groschwitz and Hogan 

2009; Lee et al., 2018). Its second function is to act as a selective filter allowing the 

translocation of essential dietary nutrients, electrolytes and water from the intestinal lumen 

into the circulation. The intestinal epithelium mediates selective permeability via two major 

routes: transepithelial/transcellular and paracellular pathways (Groschwitz and Hogan 2009). 

Transcellular permeability is generally involved in the absorption and transport of 

nutrients, including sugars, amino acids, peptides, electrolytes, short chain fatty acids, 

minerals, and vitamins through the epithelial cells. As the cell membrane is impermeable, this 

process is predominantly mediated by specific transporters or channels located at the apical 

and basolateral membranes (Suzuki 2013).  

Paracellular permeability is associated with passive transport in the space between 

epithelial cells and is stringently regulated to permit the passage of only certain solutes and 

fluids, creating a selectively permeable barrier (Suzuki 2013). In the presence of an intact 

epithelial cell layer, the paracellular pathway between cells is sealed. It is ensured	 by 

intercellular junction complexes localized at the apical part of the lateral membrane and along 
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the lateral membrane (Groschwitz and Hogan 2009; Turner 2009; Le Gall et al., 2018; Lee et 

al., 2018).  
	

2.4.1) Cell-cell junctions and paracellular permeability 

Intestinal epithelial cells, and in particular enterocytes, are specialized, and by 

differentiation acquire a highly polarized phenotype. The cells present characteristic 

microvilli at their apical pole and their nucleus is located at the basal pole of the cell. In 

addition, the intestinal epithelial cells establish strong junctions between them. These cell-cell 

junctions are essential for the physical maintenance of the organs and constitute an important 

signaling platform. There are four types of intercellular junctions with distinct functions: 

communicating junctions (gap junctions), desmosomes, adherens junctions (AJs) and tight 

junctions (TJs), the last three being connected to the cytoskeleton and involved in cell-cell 

adhesion (Figure 8).  

At the cellular apical pole, the establishment of tight junctions allows delimitation 

between the apical and the basolateral pole of the plasma membrane and confers to the 

intestinal epithelium its barrier function face to the external environment. Below tight 

junctions, the cells form between them adherent bonds, desmosomes and communicating 

junctions (Figure 8). Extracellular matrix-cell interactions take place at the basal pole. 

Although forming complex multiprotein platforms, these junctions are not fixed 

structures. They are flexible, dynamic and highly regulated. This is essential in view of the 

permanent renewal of the intestinal epithelium, integrating dynamic events such as the 

extrusion of an epithelial cell or the migration of cells along the villi, or even peristalsis in 

certain regions of the intestine. 

2.4.1.1) Tight Junctions 

Among the different types of cellular junctions that occur between intestinal epithelial 

cells, tight junctions (TJs) are those that play a predominant role in maintaining the intestinal 

barrier. The TJs are responsible for sealing the intercellular space and regulating selective 

paracellular ionic solute transport. 

Tight junctions are multi-protein complexes connected to the actin microfilaments. 

These protein complexes are composed of transmembrane proteins, peripheral membrane 

(scaffolding) proteins and regulatory molecules that include protein kinases. They are  
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Figure 8: Intercellular junctions’ structure. 
Simplified scheme of the three major junctions which form the apical junctional complex, 
involved in cell–cell adhesion in intestinal epithelial cells: tight junctions (TJs), adherens 
junctions (AJs), and desmosomes. Tight junctions are responsible for controlling the 
paracellular permeability through transmembrane proteins: claudins normally ensure a 
selective permeability to cations and anions, whereas occludin and tricellulin control 
mainly the passage of macromolecules. The TJs are connected to the actin cytoskeleton via 
adapter proteins such as zonula occludens (ZO) proteins. In adherens junctions, E-cadherin 
is connected to actin by the catenin complex, whereas the molecular complex forming 
desmosomes is connected to intermediate filaments of keratins.  
(Le Gall et al., 2018) 
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intercellular contacts that "seal" the space between two adjacent epithelial cells to separate the 

tissue compartments. They are the most apical junctions and they form a kind of adherent belt 

all around the cell. Nevertheless, they do not only have a role of barrier, they are also 

important in signaling pathways, involved in the regulation of the cytoskeleton, the control of 

cell proliferation and the setting up of the cellular polarity which allows defining two 

functionally distinct domains of the plasma membrane, the apical pole and the baso-lateral 

pole (Gonzalez-Mariscal et al., 2008).  

The biochemical characterization of the tight junction showed that it is composed of a 

complex of multiple proteins that include transmembrane proteins, cytoplasmic plaque 

proteins, signaling proteins, and adapters that link it to the actin cytoskeleton (Figure 9). The 

interaction of TJ proteins with the actin cytoskeleton is essential for the maintenance of the TJ 

structure and permits the cytoskeletal regulation of TJ barrier integrity (Turner 2009; Lee 

2015). The transmembrane proteins are of particular interest. These proteins are the only 

components of the junction that have intramembranous and extracellular portions, which 

probably give them the ability to mediate the main functions of the firm junction: barrier and 

pore. 

The tight junctions limit solute flux along the paracellular pathway and are the principal 

determinant of mucosal permeability. The permeability of TJs varies in different segments of 

intestine and low solute permeability characterize the well-formed TJs. This permeability can 

be determined by measuring the paracellular fluxes of ions and small molecules. TJs 

permeability to ions determines the transepithelial electrical resistance (TEER). It is important 

to understand the specific barrier properties of the tight junctions, which can be defined in 

terms of size selectivity and charge selectivity (Lu et al., 2013). 	

The members of TJ transmembrane proteins can be separated in three groups: 1) the 

single transmembrane domain proteins, including junctional adhesion molecule (JAM-A) as 

the main family agent, 2) the triple transmembrane domain protein, Bves (blood vessel 

epicardial substance) and 3) the four-transmembrane domain proteins of the claudin and 

TAMP (tight junction-associated MARVEL proteins) families, which include occludin and 

tricellulin, as the main representatives of TAMP family (Gunzel and Yu 2013; Garcia-

Hernandez et al., 2017). The tight junctions are also subject to constant remodeling. Indeed, 

occludin and ZO-1 have been shown to diffuse permanently within the plasma membrane to 

continually form effective junctions (Shen et al., 2008). 
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Figure 9: Schematic representation of the basic structural transmembrane 
components of tight junctions.  
Tight junctions control the paracellular permeability. Claudins ensure a selective 
permeability to cations and anions, whereas occludin and tricellulin control the 
permeability to macromolecules. Moreover, these proteins are connected to the actin 
cytoskeleton through several adaptator proteins such as ZO proteins. ZO-1 or ZO-2 is 
important for clustering of claudins and occludin, resulting in the formation of tight 
junctional strands. The ZOs and cingulin proteins can provide a direct link to the actin 
cytoskeleton.  
(Niessen et al., 2007) 
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In the following subchapters, I will only present the junction proteins that I studied in 

my works. A subchapter is also devoted to the notion of pore and leak pathways. 

 

a) Claudins 

Within TJs, claudins appear to be the main structural components and the major 

determinants of paracellular ion conductance. Claudins are proteins with four transmembrane 

domains expressed in a tissue-specific manner, and mutation or deletion of individual family 

members can have profound effects on organ function. There are about 20 claudin isoforms, 

many of which are often expressed in the same cells; their variable expression profile makes it 

possible to regulate the barrier function (Odenwald and Turner 2017). The claudin isoforms 

have distinct charge-selectivity depending on the amino acid charge present in the proteins 

sequence of their extracellular domain (Krause et al., 2008).  

Differential expression patterns of claudin members in the GI tract are likely to 

contribute to local diversity of ion paracellular flow (Figure 10) (Van Itallie and Anderson 

2004; Lu et al., 2013). The claudins can be divided into two main categories, pore-sealing and 

pore-forming claudins. The increased expression of the pore-sealing claudins (1, 3, 4, 5, 7, 

and 19) leads to increased tightness of epithelial monolayer reflected by an increased TEER 

and decreased solute permeability across the monolayer. On the other hand, pore-forming 

claudins (2 and 15) are able to form paracellular anion/cation pores as well as water channels 

leading to a decreased epithelial tightness and resulting in an increased solute permeability 

and decreased TEER (Khan and Asif 2015).   
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Figure 10: Schematic intestinal claudins distribution 
Claudins (Cldn) are present all along the gastrointestinal tract. Different claudins are 
expressed in different intestinal portions and are responsible for variations in paracellular 
permeability. IEC: Intestinal Epithelial cells.  
(Garcia-Hernandez et al., 2017 ) 
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b) Occludin 

Occludin was the first integral TJ protein to be identified. It was be discovered by Furuse 

et al, and was assigned the name “occludin” from the Latin word "occludere" which means 

restricted passage (Furuse et al., 1993; Feldman et al., 2005). As mentioned above, occludin 

is a protein characterized by four transmembrane domains (tetraspan transmembrane), 

presenting one intracellular and two extracellular loops, as well as intracellular N-terminal 

and C-terminal sequences (Figure 11). The homophilic interaction of extracellular loops of 

occludin with adjacent cells seems to create a barrier for macromolecules, but not against 

small ions and seems to be involved in the regulation of paracellular permeability and cell 

adhesion (Traweger et al., 2002). The long C-terminal domain has been found to interact with 

several cytoplasmic proteins of the junctional plaque mainly to the guanylate kinase (GuK)-

like domain present in ZO proteins, which are required for binding of occludin to the actin 

cytoskeleton (Cummins 2012).  

Many studies have demonstrated that occludin endocytosis is a common feature of 

tight junction injury and is closely associated with physiological barrier disruption (Yu and 

Turner 2008; Marchiando et al., 2010; Cummins 2012). There is significant evidence that 

occludin is a component of detergent-resistant membrane microdomains, although it remains 

unclear whether occludin plays an active or passive role in organizing this membrane 

microdomain. However, some studies reported that occludin affects the location and lipid raft 

partitioning of caveolin-1, a component of caveolae with an important function of complex 

signaling regulator (Caserta et al., 2008; Van Itallie et al., 2010). Occludin enables caveolin 

function at the tight junction, where it participates in signaling pathways involved in barrier 

remodeling. The importance of such cholesterol-rich membrane domains in tight junction 

function has been also reported in some studies (Van Itallie et al., 2010).  

Although occludin knockout mice do not exhibit an increased intestinal permeability, 

these animals present a complex phenotype, including male sterility, an inability to nurse, and 

brain calcification. Phosphorylation appears to be a key mechanism for regulating the 

biological function of occludin, affecting barrier function and transepithelial and 

transendothelial transport. Occludin dephosphorylation is associated with decreased TEER. 

Specific occludin phosphosites also regulate occludin’s interaction with other TJ proteins, 

suggesting additional points of the regulation (Bolinger et al., 2016). 
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Figure 11: Occludin protein structure.  
Plasma membrane-associated human occludin. Individual occludin domains (and amino 
acid lengths) are indicated. Occludin is a tetraspan transmembrane protein (four 
transmembrane domains), presenting with one intracellular and two extracellular loops, 
an intracellular N-terminal sequence and an internal C-terminus. The homophilic 
interaction of extracellular loops of occludin with adjacent cells seems to create a barrier 
for macromolecules. The C-terminal domain interact with several cytoplasmic proteins of 
the junctional plaque mainly to the GuK domain presents in the ZO proteins. GuK EL1/2, 
extracellular loops 1 and 2; GuK, guanylate kinase domain; IL, intracellular loop; SH3, 
Src homology 3 domain; TM1 to -4, transmembrane domains 1 to 4.  
(Cummins 2012) 
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c) Tricellulin 

In contrast to other tight junction proteins implicated in cell-cell contacts between two 

adjacent cells (bTJs), tricellulin is preferentially localized at the cell-cell contacts of 3 

adjacent cells, tricellular junctions (tTJs) although in some conditions it can also be observed 

at bicellular junctions along with occludin and claudins. Tricellulin is a tetratranspan 

membrane protein with one intracellular and two extracellular loops, and C- and N-terminal 

cytoplasmic domains. Studies suggest that the C-terminal domain of tricellulin is important 

for the lateral translocation of the protein, whereas the N-terminal domain appears to be 

involved in directing tricellulin to tricellular contacts (Figure 12) (Suzuki 2013). 

Recent studies indicated that tricellulin plays an important role in epithelial TJ barrier 

regulation at both tricellular and bicellular junctions, although different permselective 

properties exist. When tricellulin is exogenously expressed at low levels in MDCK cells, it is 

localized at the tTJs, but not at the bTJs. This tricellulin localization is associated with 

decreased paracellular permeability to macromolecules, but not with small ions. Whereas, 

when tricellulin is overexpressed, tricellulin localizes at all TJs (bicellular and tricellular) and 

it decreases the permeability to both macromolecules and small ions. These data suggest that 

tricellulin forms an effective barrier to macromolecules at the tricellular junctions and to all 

solutes at the bicellular junctions (Ikenouchi et al., 2005; Oda et al., 2014). Moreover, some 

studies have demonstrated that occludin and tricellulin seem to affect each other’s cellular 

localization, although the mechanism is unknown (Ikenouchi et al., 2008). 
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Figure 12: Tricellulin protein structure.  
A. Schematic organization of tricellular TJs. One tricellular contact (left drawing) is 
enlarged in the right drawing.  
B. Structure of mouse tricellulin. Tricellulin, as occludin, is a tetratranspan membrane 
protein with one intracellular and two extracellular loops, and C- and N-terminal 
cytoplasmic domains. The first extracellular loop has a high content of tyrosine and 
glycine residues. The COOH-terminal (C) F130 amino acids are 32% identical to 
occludin (boxed in red). However, tricellulin bears a longer NH2-terminal (N) 
cytoplasmic domain (187 amino acids) as compared with occludin (61 amino acids).  
(Ikenouchi et al., 2005) 
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d) Zonula Occludens 

The ZO proteins were the first TJ-specific proteins identified and three ZO proteins, 

ZO-1, -2, and -3, have been inventoried to date. These ZO proteins are categorized as 

members of the membrane-associated guanylate kinase homolog family due to their sequence 

analysis. They are multi-domain proteins carrying three PDZ domains, a Src homology-3 

(SH3) domain and a region of homology to guanylate kinase (GuK) (Figure 13). The N-

terminal half region of ZO proteins binds to several TJ proteins (claudins, JAMA-A and 

occludin), while the C-terminal region interacts with the actin cytoskeleton and cytoskeleton-

associated proteins. Besides, the ZO family has a second PDZ domain, which is used for 

interactions with other ZO proteins (Figure 13) (Suzuki 2013; Lee 2015). These multi-domain 

structures provide an intracellular scaffold in the TJs and are required for regulation and 

maintenance of TJ structure (Suzuki 2013; Lee 2015). 

Interestingly, ZO-1 deficient cells are still able to maintain normal TJ structures and 

show normal permeability; however, an evident delay in the organization of other TJ proteins, 

such as occludin and claudins, is observed, indicating that ZO proteins play an important role 

in the regulation of this protein pool (Lee 2015). 
 

 
 

Figure 13: Zonula occludens (ZO) structure and interaction with others tight 
junction (TJ) proteins.  
ZO proteins carry 3 post-synaptic density 95/Drosophila disc large/zona-occludens 1 
(PDZ) domains, a Src homology-3 (SH3) domain, and a region of homology to guanylate 
kinase (GuK). The N-terminal half region of ZO proteins admits the binding of some TJ 
proteins, while the C-terminal region interacts with the actin cytoskeleton and 
cytoskeleton-associated proteins. Claudins are known to bind to the first PDZ domains of 
ZO-1, -2, and -3; JAM-A binds to the third PDZ domain of ZO-1, while occludin is able 
to bind to the GuK domain of ZO-1. The ZO family has a second PDZ domain, which is 
used for interactions with others ZO proteins. 
(Suzuki 2013) 
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e) Pore and leak pathway 

The main function of tight junction proteins is to control the paracellular permeability. 

Some studies have even allowed more accurate modeling of paracellular permeability, which 

would have two physiological components. The first one is a passage through the pores, 

known as pore pathway, a high-capacity route that is size and charge-selective, with the 

maximal diameters of transported molecules ranging from approximately ∼5 Å to ∼10 Å 

(Shen et al., 2011; France and Turner 2017). The second one, the leak pathway, is a path 

created by broad discontinuities of the barrier and allowing the passage of larger molecules 

independently of their charge; it supports the paracellular flux of molecules with diameters up 

to 125 Å (Anderson and Van Itallie 2009). The pore pathway is influenced by the expression 

of a family of tight junction proteins, the claudins, while the leak pathway is rather controlled 

by cytoskeletal proteins, the tight junction proteins ZO-1 and occludin, and also by the state 

of the adherent junctions (Figure 14).  
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Figure 14: Pore and leak pathway controlling.  
The enterocytes form a polarized single cell layer which allow two different paracellular 
pathways facilitating the transport from the apical to the basolateral side. The pore 
pathway, a high-capacity route that is size and charge-selective and the leak pathway, 
allowing the passage of larger molecules independently of their charge. The apical side, 
characterized by the presence of microvilli, is in contact with the intestinal lumen. The 
epithelial cells are tied together by several intercellular junctions, especially the tight 
junction proteins (claudins, occludin and ZO). In parallel, a transcellular pathway is 
involved in the transport of large proteins and nutrients as well as bacteria uptake. 
MLCK: Myosin light chain kinase; CLDN: Claudin; OCLN: Occludin; ZO: Zonula 
occludens. 
(Meijers et al., 2018) 
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2.4.1.2) Adherens junctions 

The adherens junctions (AJs) are closely associated with establishing and maintaining 

the morphology of adjacent cells. They are the first junctions to be put in place following 

contact between two cells. As the name suggests, the AJs have important roles in cell-cell 

adhesion and signaling. They are located under the tight junctions and, together with 

desmosomes, they make up the rest of the components of the paracellular complex. They 

provide strong adhesive bonds that maintain cellular proximity and are also a site of 

intercellular communication. Loss of AJs results in disruption of cell-cell and cell-matrix 

contacts, ineffective epithelial cell polarization, differentiation, and early apoptosis of 

intestinal epithelial cells (Turner 2009; Lee et al., 2018). As for tight junctions, adherens 

junctions are signaling platforms involved in multiple cellular processes. 

Adherens junctions are assembled by the interaction of transmembrane proteins, 

intracellular adapter proteins and the cytoskeleton. They are composed of two families of 

transmembrane spanning, adhesive receptors: the cadherins and the nectins (Figure 15). The 

extracellular regions of these proteins mediate adhesion of cells to their neighbors while the 

intracellular regions interact with an array of proteins. These intracellular proteins control the 

assembly and dynamics of adherens junctions by modulating connections with the actin 

cytoskeleton and stimulating signaling pathways (Niessen 2007; Meng and Takeichi 2009; 

Campbell et al., 2017). 

 

The main AJs complex is formed by cadherin-catenin interactions. E-cadherin (also 

known as cadherin-1), which belongs to the family of classical cadherins, is the major 

classical cadherin in epithelia. E-cadherin is involved in the setting up of the complex of 

epithelial junctional complexes. This protein is a type I glycoprotein possessing a 

transmembrane segment, the C-terminus being intracellular and the N-terminus extracellular 

(Turner 2009; Campbell et al., 2017). The extracellular domain of E-cadherin binds to 

calcium ions and forms homotypic interactions with the E-cadherin of neighboring cells. The 

cytoplasmic tail of the protein interacts directly with catenin δ1 (also known as p120 catenin) 

and β-catenin. In turn, β-catenin binds to α-catenin 1, which regulates local actin assembly 

and contributes to the development of the perijunctional actinomyosin ring (Figure 15) 

(Niessen and Gottardi 2008). α-catenin binds the adherent junction to the cytoskeletal network  
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Figure 15: Schematic representation of the basic adherens junctions structure.  
They are composed of two families of transmembrane spanning, adhesive receptors: the 
cadherins and the nectins. Shown are the cadherin–catenin complex and the nectin–afadin 
complex and their potential interactions with actin. 
Classical cadherins (clear blue), which mediate calcium-dependent (Ca2+) intercellular 
adhesion, are composed by an extracellular domain, a transmembrane domain and a 
cytoplasmic domain. The cytoplasmic tail interacts directly with catenin δ1 (also known 
as p120ctn) (yellow) and β-catenin (blue). In turn, β-catenin binds to α-catenin (green), 
which regulates local actin assembly, contributes to development of the perijunctional 
actinomyosin ring and establishes a direct link between the cadherin-catenin complex and 
the actin cytoskeleton (orange points). Ctn: catenin. 
(Niessen, 2007) 
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through direct binding of the C-terminal domain of F-actin, or indirectly via other adapter 

proteins such as afadine/AF6 (Ikeda et al., 1999; Pokutta and Weis 2002; Pokutta and Weis 

2007). Cadherin-catenin complexes are important not only for cell-cell adhesion but also for 

maintaining cell polarity, for regulating proliferation and epithelial migration, and for the 

formation of other adhesion complexes, such as desmosomes and tight junctions. Invalidation 

of E-cadherin has been shown to be lethal early in embryonic development (Larue et al., 

1994; Campbell et al., 2017). Intestine-targeted invalidation of E-cadherin can lead to an 

increased susceptibility to experimental colitis in mice and seems to be implicated in the 

maintenance of the intestinal barrier function (Hermiston and Gordon 1995; Schlegel et al., 

2010; Bondow et al., 2012).  

β-Catenin is also an essential component of adherens junctions but also participates in 

the Wnt signaling pathway. It has been shown that the dissociation of the adherens junctions 

leads to an internalization of E-cadherin and β-catenin and to the translocation of β-catenin in 

the nucleus, in parallel with an activation of the Wnt / β-catenin pathway (Kam and Quaranta 

2009) 

There is a second complex of the adherent junction, the Nectin-afadine interactions. 

Nectins belong to the family of IgG-like adhesion receptors and are transmembrane proteins 

capable of establishing homophilic or heterophilic interactions. Nectins interact with the 

cytoskeleton via afadine or other F-actin binding proteins (Figure 16) (Miyoshi and Takai 

2007; Niessen 2007; Takai et al., 2008).  

 

2.4.1.2) Desmosomes 

In conjunction with AJs, desmosomes have been known for many years to ensure the 

mechanical strength of tissues. They have mainly been studied in the skin and the heart, 

which are tissues subjected to high mechanical stress and for which there are many 

pathologies related to the loss of function of desmosomal proteins (Dusek et al., 2007; 

Waschke 2008). Unlike tight and adherens junctions, which are localized on the most apical 

part of the lateral membrane, desmosomes are found all along the lateral membrane.  

Desmosomes form structures that attach to the intermediate filaments of the 

cytoskeleton, providing strong adhesive bonds that maintain cell proximity and are also sites 

of intercellular communications. They are composed of various protein subunits including 

desmoglein, desmocolin, plakoglobin, plakophilin and desmoplakin (Holthofer et al., 2007; 
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Garrod and Chidgey 2008). Their role in maintaining barrier function may implicate its 

cellular prion protein (PrPC) component	 (Holthofer et al., 2007; Garrod and Chidgey 2008; 

Petit et al., 2013). 

	

2.4.2) Control of intestinal permeability. 

Cell-cell junctions are central to the complex information network that maintains 

tissue organization. They receive multiple signals that guide them through the process of 

establishing contact with neighboring cells and installing the appropriate scaffolding in order 

to initiate cytoskeletal connections. They also behave as sensors that send back to the nucleus 

signals about both the location of cells within tissues and their immediate environment. The 

intestinal barrier is sensitive to changes in the microenvironment of the intestinal lumen 

(nutrients, microbiota), blood compartment (cytokines, hormones) and changes in the number 

or function of mucosal immune cells (immune cell recruitment from the mucosa to 

epithelium) (Konig et al., 2016).  

Deregulation and abnormalities related to intestinal barrier function are associated 

with intestinal pathologies such as IBD, irritable bowel syndrome, digestive cancers or celiac 

disease (Konig et al., 2016). The alteration of the intestinal epithelial barrier has also been 

described in extra-intestinal pathologies such as in type 1 diabetes, cystic fibrosis and autism 

(De Lisle et al., 2011; Sanctuary et al., 2018). Since the intestinal barrier provides protection 

against the intrusion of foreign and potentially pathogenic elements, the deterioration of its 

integrity observed in certain pathologies raises the question of its role in the etiology of these 

diseases. The possible contribution of the intestinal barrier to metabolic diseases such as 

obesity has also been highlighted, particularly through the work of our team (Monteiro-

Sepulveda et al., 2015; Genser et al., 2018). All of these studies gave birth to the so-called 

"leaky gut syndrome" concept, which proposes that defects in the barrier leading to a 

disturbance of intestinal permeability contribute to the development of different pathologies. 

The effects of some different disruptors and different molecular pathways that are 

involved on intestinal barrier integrity are discussed below. Although the impact of these 

different mechanisms is presented here in separate chapters, a very close link exists between 

these different elements as modulators of intestinal barrier integrity. 
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2.4.2.1) Cytokines  

Immune-induced intestinal barrier dysfunction is thought to be critical in the 

predisposition to numerous autoimmune diseases (IBD, food allergy, celiac disease and 

diabetes) and their exacerbation. Among the inflammatory molecules that modulate the 

integrity of the intestinal barrier, pro- and anti-inflammatory cytokines are the most studied. 

The impact of cytokines on the intestinal barrier may vary according to the study model 

considered, which sometimes leads to contradictory observations in the literature. Among the 

pro-inflammatory cytokines, interferon-γ (IFNγ), tumor necrosis factor-α (TNFα) and 

interleukin IL-1β are well-known for their role in the regulation of barrier integrity by 

modulating tight junctions. These cytokines are central mediators of intestinal inflammatory 

diseases (Al-Sadi et al., 2008; Chelakkot et al., 2018).  

I will present here only a few examples showing the involvement of cytokines and the 

molecular mechanisms involved in their deleterious or beneficial effects on the intestinal 

barrier. 

TNFα is capable of increase intestinal permeability in vivo in mice (Al-Sadi et al., 

2016) and in Caco-2 cells, a model of intestinal epithelial cells (Ma et al., 2004). In Caco-2 

cells, it has been shown that TNF-α activates a signaling cascade leading to the destabilization 

of tight junctions and consequently to an increase in the permeability of the cell monolayer 

(Ma et al., 2004; Al-Sadi et al., 2016). In humans, high levels of TNF-α are found in the 

intestinal mucosa or lamina propria of patients with IBD or obesity (Lee 2015; Monteiro-

Sepulveda et al., 2015). TNF-α appears to have a major role in Crohn's disease, since the 

treatment of these patients suffering from this pathology with anti-TNF-α antibodies is an 

effective therapeutic strategy that leads in particular to an improvement of the intestinal 

barrier function (Levin et al., 2016). After the binding on its receptor, present on the surface 

of enterocytic cells, TNF-α activates the MAP3 kinase pathway, which leads to the activation 

of the NF-κB pathway. NF-κB signal transduction pathway is a central mechanism involved 

in tight junction regulation. NF-κB inhibition protected mice from severe water loss and 

diarrhea, which indicated its role in the regulation of the barrier property of IECs. Besides, 

NF-κB increases the expression of myosin light chain kinase (MLCK). MLCK regulates the 

TJs stability and is important in the destabilization of TJs in response to TNF-α (Shen et al., 

2006). By phosphorylating the myosin light chain (MLC), MLCK controls the contraction of 
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actin-myosin belt, which is necessary for the stabilization of TJs. However, an excessive 

contraction and tension in this complex leads to TJs destabilization, resulting in the opening 

of the paracellular pathways (Cunningham and Turner 2012) (Figure 16). MLC 

phosphorylation is predominantly affected by MLCK, but also by the Rho kinase (ROCK). 

ROCK can either directly phosphorylate MLC or inhibit the action of myosin phosphatase by 

phosphorylating it (Murthy 2006; Guan et al., 2013). It appears that destabilization of tight 

junctions following MLCK and contraction of the actin cytoskeleton is due to disruption of 

the junctional localization of ZO-1 and occludin (Shen et al., 2006; Du et al., 2016). TNF-α 

acts also in combination with INF-γ on the reduction of occludin expression (Mankertz et al., 

2000). 

The pro-inflammatory cytokine IL-1β plays an important role in Crohn's disease. IL-

1β leads to the phosphorylation of MLC by MLCK, which then causes a contraction of the 

cytoskeleton of actin, opening the tight junction complex and therefore increasing 

permeability. Besides, IL-1β triggers ERK1/2 signaling pathway, which activates the nuclear 

transcription factor Elk-1. Activated Elk-1 is translocated into the nucleus where it allows the 

expression of the MLCK coding gene and by consequence the opening of TJs (Al-Sadi et al., 

2008).  

Other cytokines are also able to disrupt the intestinal barrier, such as IL-6. The 

mechanisms of action involved in the increased intestinal permeability by these cytokines are 

partially described. They are involved in the activation of signaling pathways involving 

numerous kinases (PKA, PKC, ROCK), the Rho and Rac GTPases and the NF-κB pathway. 

The current data do not make it possible to determine whether the activation of a precise 

signaling cascade is actually specific for a cytokine (Andrews et al., 2018). 

Some cytokines, such as IL-10, IL-22 and IL-17 have a beneficial effect on the 

intestinal barrier (Lee et al., 2015; Onyiah and Colgan 2016; Andrews et al., 2018). IL-22, for 

example, contributes to maintaining the integrity of the intestinal barrier. It is described as 

playing a protective role on the intestinal barrier by increasing the secretion of mucus and 

antimicrobial peptides by intestinal epithelial cells via the action of the STAT3 kinase 

(Sovran et al., 2015). Nonetheless, recent work also showed that IL-22 could be involved on 

intestinal barrier defects via increased expression of claudin 2 (Tsai et al., 2017; Wang et al., 

2017). Thus, the data acquired on IL-22 (Zenewicz 2018) illustrate the complexity of the 

mode of action of cytokines on the intestinal barrier.  
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Figure 16: MLCK regulates the tight junctions stability in response to TNF-α. 
After the binding on its receptor, present on the surface of enterocyte cells, TNF-α 
activates the MAP3 kinase pathway, which leads to the activation of the NF-κB pathway. 
NFκB increases the expression of myosin light chain kinase (MLCK). By 
phosphorylation of the myosin light chain (MLC), MLCK controls the contraction of 
actin-myosin belt. An excessive contraction and tension in this complex lead to TJs 
destabilization, resulting in the opening of the paracellular pathways. pMLC, 
phosphorylated MLC.  
(Shawki and McCole, 2017). 
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2.4.2.2) Calcium depletion 

Calcium depletion provokes extensive endocytosis at the plasma membrane of 

mammary epithelial cells in culture, and some of the endocytic vesicles carry segments of 

junctional strands. Calcium is also involved in the assembly and sealing of newly formed TJs. 

When calcium is not present, junctional components are nevertheless synthesized but seem to 

accumulate at the outermost cisternae of the Golgi, or even beyond this point, but without 

reaching the outer surface. Freeze-fracture replicas show that when calcium is added to 

monolayers under such conditions (“Calcium switch”), junctional strands reappear as early as 

15 min, and the whole structure of the TJ is essentially completed in 4-5 h, coinciding with 

the increase of TEER (Gonzalez-Mariscal et al., 1990; Rothen-Rutishauser et al., 2002; 

Ivanov et al., 2004; Shen and Turner 2006).   

When cell monolayers are exposed to EGTA, a well-known calcium chelator, an 

increase of paracellular permeability occurs and occludin and ZO-1 are localized 

predominantly in intracellular vesicular structures (Nunbhakdi-Craig et al., 2002; Seth et al., 

2007), indicating that calcium chelation seems to be involved in disruption of tight junctions 

by the internalization of TJ proteins. However, in each case, tight junction protein 

internalization was defined at time points associated with or following maximal barrier loss, 

making it impossible to determine whether internalization is directly related to loss of barrier 

function or is a secondary event. 

 

2.4.2.3) Phosphorylation of tight junction proteins 

Significant evidences indicate that the activities of some protein kinases regulate the 

integrity of TJs. Indeed, AJ and TJ proteins are regulated by post-translational 

phosphorylation, which drastically alters their membrane distribution and turnover. 

Phosphorylation can either promote TJs formation and barrier function or alternatively 

promote TJ proteins redistribution and complex destabilization. 

Among the TJ proteins, occludin phosphorylation has been widely studied and is 

responsible for both opening and sealing TJs. Several various intracellular signaling 

molecules regulate the phosphorylation status of occludin. Some studies have suggested that 

serine/threonine phosphorylation is the predominant phosphorylation modification of 

occludin; nevertheless, recent works emphasized the importance of phosphorylation of 
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occludin on tyrosine (Tyr) residues, which may result in the loss of its interaction with ZO 

family proteins. As a consequence, kinases such as atypical protein kinase C (PKC) and c-Src 

and phosphatases such as protein phosphatases 2A (PP2A), which surround area of TJs and 

are able to phosphorylate and dephosphorylate occludin, have a crucial role to play in 

intestinal barrier integrity (Figure 17) (Seth et al., 2007; Chelakkot et al., 2018) 

In intact epithelium, occludin presents hyperphosphorylation on Ser/Thr residues, 

mediated by atypical PKC, however, the significance of this phosphorylation in TJs assembly 

is unclear. Occludin is shown to undergo dephosphorylation on Ser/Thr residues during the 

disruption of TJs by calcium depletion, phorbol esters, or bacterial infection (Basuroy et al., 

2006). In addition, a study indicated that PP2A, a Ser/Thr-phosphatase, interacts with TJ 

protein complex and suggested that it may influence the integrity of TJs in MDCK cells 

overexpressing PP2A (Seth et al., 2007). Therefore, the balance between atypical PKC and 

PP2A may determine the Ser/Thr phosphorylation status of occludin (Jain et al., 2011; Manda 

et al., 2018).  

The c-Src kinase seems to play a role in the regulation of tight junction integrity in 

Caco-2 and MDCK cell monolayers. Studies have demonstrated that hydrogen peroxide can 

rapidly activate c-Src. Src kinase inhibitor or a kinase-inactive c-Src mutant appeared to 

attenuate the hydrogen peroxide-induced disruption of tight junction, while overexpression of 

wild-type c-Src exacerbates the hydrogen peroxide effect (Rao 2009; Chelakkot et al., 2018). 

 

2.4.2.4) Autophagy	

Interestingly, a number of polymorphisms in a wide range of genes implicated in 

autophagy have been identified as risk factors predisposing an individual to the development 

of IBD. Recent genome-wide association scanning (GWAS) studies have identified several 

genes contributing to the development of Crohn’s disease (CD), including the autophagy-

related gene 16-like (ATG16L1), intracellular bacterial sensing (NOD2), endoplasmic 

reticulum (ER) stress and claudin-2. Two of the most prominent associations with CD have 

been found in the genes ATG16L1 and NOD2 (Randall-Demllo et al., 2013; Hu et al., 2015). 

Moreover, gut microbiota and autophagy have also been linked and this relationship appears 

to be bidirectional (Haq et al., 2019).  
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Figure 17: Schematic presentation of occludin amino acid residues targeted by 
specific kinases. 
Serine/threonine phosphorylation is the predominant phosphorylation modification of 
occludin. The phosphorylation of occludin on tyrosine (Tyr) residues may result in the 
loss of its interaction with ZO family proteins. Phosphatases or kinases such as atypical 
protein kinase C (PKC) and c-Src, which surround area of TJ, are able to dephosphorylate 
and phosphorylate occludin residues.  
(Dörfel and Huber, 2012) 
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Some studies showed that autophagy reinforced barrier function resulting in increased 

TEER and reduced paracellular permeability of small solutes and ions. This mechanism 

seems to be mediated in part by lysosome (autophagy)-mediated degradation of the tight 

junction claudin-2. Besides, works have shown that the inflamed intestinal mucosa in patients 

with active IBD presents increased claudin-2 expression and a claudin-2-dependent increase 

in TJ permeability (Hu et al., 2015). 

In the intestine, a sensitive balance between tolerance and defense is required to 

maintain homeostasis. The conserved process of autophagy seems to play a critical role in 

maintaining this balance by regulating the invasion and dissemination of pathogens, 

maintaining barrier integrity and preserving intestinal homeostasis (Hu et al., 2015; Haq et 

al., 2019).  

 

2.4.2.5) Diet and lipids 

Numerous components in the diet can affect the regulation and organization of TJ 

proteins and in turn the permeability of the intestinal barrier. Several studies have been 

investigated the impact of diet components on epithelial barrier function. The food abundance 

or scarcity and also the nature of the food, may influences the intestinal barrier differently by 

increasing or decreasing TJ permeability. Some amino acids, vitamins, polyphenols and 

peptides were described to decrease paracellular permeability, while alcohol and some fatty 

acids, for example, were shown to increase paracellular permeability and to decrease the 

TEER, mainly through TJs impairment (De Santis et al., 2015). Taken alone, many diet 

components are able to modulate the intestinal barrier via different mechanisms.  

I will focus in this chapter on the impact of certain lipid classes on intestinal barrier 

function and on the effect of a high-fat diet on barrier integrity, which has been the subject of 

many studies. 

As noted above (see chapter 2.2.1), the short chain fatty acids (SCFAs) are produced 

by the microbiota primarily in the colon. These SCFAs have been described to have a 

protective effect on the intestinal barrier. In cultured epithelial cells, butyrate increases the TJ 

protein expression (occludin, ZO-1 and claudin-1) and restores the alteration of permeability 

induced by a change in calcium availability (Wang et al., 2012; Cheng et al., 2018). These 

effects are thought to be dependent on the increased expression of claudin-1 by butyrate 
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(Wang et al., 2012). In vivo, in diabetic mice (following a mutation on the leptin receptor, 

db/db model), butyrate restores the integrity of the intestinal barrier via the activation of 

GPR43 receptor-dependent signaling pathway and involving the protein NLRC3 (a member 

of the NOD-like receptor family) (Cheng et al., 2018). 

Bile acids, whether primary or secondary (deconjugated by the microbiota), are 

capable of disrupting the epithelial barrier integrity. Their actions on the intestinal 

permeability and the secretion of antimicrobial peptides depend on the nature of the bile acid 

considered, the exposure time and the cell model used, some bile acids exerting deleterious 

effects and others no or few effects (Sarathy et al., 2017; Tremblay et al., 2017). There are 

only a few data related to the molecular mechanisms involved, however a decrease in 

occludin and an induction of oxidative stress are observed in intestinal epithelial cells in 

culture (Sarathy et al., 2017). 

The role of cholesterol on the intestinal barrier has been reported. Indeed, it has been 

shown in the Caco-2 intestinal epithelial monolayer, that the depletion of cholesterol 

membranes causes an increase in permeability to ions and macromolecules, and a decrease in 

TJ protein localization at intercellular junctions (Lambert et al., 2005). A role of cholesterol 

in the maintenance of TJ proteins in cholesterol-rich membrane domains has been suggested 

(Lambert et al., 2005). 

Also, phospholipids, and in particular phosphatidylcholine, participate in maintaining 

the integrity of the intestinal barrier. They are constituents of the mucus layer and they 

contribute to the maintenance of the integrity of the epithelial cell membranes (Lichtenberger 

2013). Although the mechanisms involved have not been described, phosphatidylcholine has 

been shown to exert a protective role against the invasion of pathogens such as Clostridium 

difficile (Olson et al., 2015). An intake of phosphatidylcholine is currently used to treat 

patients with ulcerative colitis (Stremmel et al., 2005; Schneider et al., 2010). 

 

Many studies whose purpose was to establish or reproduce the characteristics of 

human pathologies such as diabetes or obesity have used animals submitted to high-fat diets, 

generally over long-term treatments. In these models, perturbations induced by lipid intake 

such as alteration of the intestinal barrier, microbiota change, and inflammation are intimately 

linked. A high fat diet in rats is associated with the elevation of intestinal inflammatory 

markers such as fecal calprotectin, but also with a reduction of claudin-4 expression at villi 
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and at Peyer's patches (Aqilah Zainal Abidin 2015) leading to the disruption of intercellular 

junctions and by consequence to an increased transport of antigens across these patches (Khan 

2017). Moreover, after 4 weeks of high-fat diet, mice display increased intestinal permeability 

and reduced expression and membrane location of chloride ion transporter (CFTR). These 

defects lead to a disruption of ion secretions by the epithelial cells, in particular, the chloride 

ion, which massively alters the mucus layer (Tomas et al., 2016). 

A link between lipid intake, change in the composition of gut microbiota, alteration of 

the barrier and metabolic alterations was identified for the first time by the team of P. Cani 

and N. Delzenne. This team observed high plasma LPS level in obese mice. This increase in 

blood LPS has been proposed as a consequence of an intestinal barrier defect, as evidenced by 

the decrease in the expression of occludin and ZO-1 (Cani et al., 2007; Cani et al., 2008). A 

single infusion of LPS for 4 weeks in mice on a standard diet reproduces metabolic disorders 

equivalent to those observed during high-fat obesogenic treatment, giving rise to the concept 

of metabolic endotoxemia (Cani et al., 2007). Since these pioneering studies, several other 

studies have shown in mice that are genetically obese or made obese by a diet rich in lipids, 

that the expression and localization of tight junction proteins are altered, possibly contributing 

to the translocation of LPS into the circulation (Cani and Jordan 2018). Lipoproteins present 

in the circulation are involved in LPS clearance. Several evidences showed the importance of 

the phospholipid transfer protein (PLTP) in the transfer of circulating LPS to lipoproteins 

leading to the neutralization of LPS toxicity (Gautier et al., 2008; Gautier and Lagrost 2011). 

Moreover, the administration of recombinant human PLTP reduced endotoxemia and 

prevented inflammation in LPS-treated mice along with anti-bacterial properties of this 

protein, making PLTP a promising therapeutic target (Deckert et al., 2017). These results 

suggest a role for PLTP in gut barrier function. 

Several reports showed that inflammatory status works in conjunction with lipid 

intake to modulate the intestinal barrier. It has been shown that IFN-γ -/- mice fed with a 

high-fat diet rich presents a reduced intestinal permeability compared to wild mice receiving 

the same diet. This work suggested that IFN-γ acts are involved in the lipid-dependent 

alteration of intestinal permeability (Luck et al., 2015). In addition, in humans studies, our 

team recently showed that after a lipid load, the jejunal permeability (analyzed ex vivo) is 

twice as high in obese than in non-obese subjects, whereas no statistical difference was 

observed between these two types of subjects in basal conditions (Genser et al., 2018). This 
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increased permeability in response to a lipid load is correlated with systemic and intestinal 

inflammation (Genser et al., 2018). 

The modification of intestinal microbiota plays a critical role in the dysfunction of the 

epithelial barrier since antibiotic treatment to high-fat diet treated mice prevents the increase 

in intestinal permeability due to the diet (Cani et al., 2008). Moreover, the modulation of 

microbiota composition by the administration of prebiotics in genetically obese mice 

improves barrier function via a decrease in intestinal permeability and ameliorates of the 

inflammatory status of treated-mice (Cani et al., 2009). 

Taken together all these data show that dietary lipids impaired intestinal barrier 

function (Cani et al., 2008; De Santis et al., 2015; Johnson et al., 2015; Araujo et al., 2017; 

Llewellyn et al., 2018). It is proposed that excessive passage of macromolecules could 

contribute to local activation of immune cells, thereby contributing to tissue and systemic 

low-grade inflammation (Le Gall et al., 2018).  

 

3) Aryl Hydrocarbon Receptor 

 In addition to genetic susceptibility factors, diet and commensal flora, environmental 

changes also play a role in epithelial barrier disruption in several pathologies. Recent studies 

showed that the transcription factor aryl hydrocarbon receptor (AhR) is an environmental 

sensor. AhR is activated by endogenous physiological ligands some of them being produced 

by commensal flora, or by environmental ligands present in pollutants and food. AhR is an 

important regulator of the immune cells differentiation and it provides a pathway by which 

endogenous and environmental signals could control multiple immunological processes and 

inflammatory responses (Esser et al., 2009; Quintana and Sherr 2013; Esser 2016).  

 The aryl hydrocarbon receptor is a member of the basic helix–loop–helix (bHLH)–

periodic circadian protein (PER)–AhR nuclear translocator (ARNT)–single-minded protein 

(SIM) superfamily of transcription factors. The PER–ARNT–SIM (PAS) is a subgroup of the 

bHLH superfamily of transcription factors, in which PAS domain senses environmental 

alterations of both endogenous and exogenous factors. The AhR is a highly conserved nuclear 

receptor that regulates gene expression and is the only member of this bHLH subgroup known 

to be activated by ligands (Hankinson 1995; Esser et al., 2009; Barouki et al., 2012; Murray 

et al., 2014; Rothhammer and Quintana 2019). 
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AhR is widely expressed in the body and evolutionarily conserved from invertebrates.  

Its activity is tightly controlled. As a nuclear receptor, AhR is bound in an inactive 

cochaperones complex in the absence of a ligand, (Figure 18) (Stockinger et al., 2014; Esser 

and Rannug 2015). This complex formed by a dimer of the 90-kDa heat shock protein 

(HSP90), the AhR-interacting protein (AIP, also known as XAP2 or Ara9), the cochaperone 

p23 protein and the c-SRC protein kinase (Figure 18), maintain the AhR inactive and its 

localization in the cytoplasm (Okey et al., 1994; Barouki et al., 2012; Rothhammer and 

Quintana 2019). HSP90 stabilizes AhR in a high affinity for its ligands conformation. In 

addition, AIP prevents AhR ubiquitination and degradation, maintaining AhR steady-state 

cellular levels. Upon ligand binding, AIP is released from the complex, which triggers 

conformational changes in AhR that expose its nuclear localization signal (NLS), leading to 

AhR translocation to the nucleus (Hankinson 1995; Barouki et al., 2012; Tsuji et al., 2014). 

These conformational changes also expose a protein kinase C target site that when 

phosphorylated interferes with AhR nuclear translocation, constituting one of several 

mechanisms to control AhR (Chen and Tukey 1996; Gutierrez-Vazquez and Quintana 2018). 

One translocated into the nucleus, the ligand-activated AhR complex is dissociated and AhR 

forms a heterodimer with ARNT already present in the nucleus. This heterodimer 

subsequently binds to a partially characterized set of co-activators and/or co-repressors and 

the resulting complex interacts with consensus regulatory sequences (AhR-, dioxin- or 

xenobiotic- responsive elements: AHRE, DRE or XRE) located in the promoter of target 

genes, leading to their transcriptional control. These genes include, for example, several 

xenobiotic metabolizing enzymes such as the microsomal cytochrome P450-dependent 

monooxygenases including cytochrome P450 family-1 subfamily-A polypeptide-1 

(CYP1A1), cytochrome P450 family-1 subfamily-A Polypeptide-2 (CYP1A2) and 

cytochrome P450 family-1 subfamily-B polypeptide-1 (CYP1B1) (Figure 18) (Jones et al., 

1985; Reyes et al., 1992; Yao and Denison 1992; Probst et al., 1993; Barouki et al., 2007; 

Stockinger et al., 2014). Moreover, the AhR-ARNT heterodimer triggers the transcription of 

AhR-regulating antagonistic AhR repressor (AhRR) protein. The AhRR closely resembles 

AhR, but lacks the transactivation domain and may initiate a negative feedback loop 

potentially competing with AhR for heterodimerization with ARNT as well as for binding to  
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Figure 18: AhR Signaling Pathway 
Inactive AhR is localized in the cytosol forming a complex with HSP90, AIP, p23, and c-
SRC. After agonist binding to AhR, conformational changes result in the translocation of 
the complex to the nucleus, dissociation of the cytoplasmic complex and the interaction of 
AhR with ARNT. The AhR-ARNT heterodimer controls the transcription of DRE-
containing AhR target genes such CYPs 1A1, 1A2 and 1B1. AhR activation is limited by 
regulatory mechanisms, some of which are actually triggered by AhR activation itself 
such CYP enzymes, which degrade AhR ligands and by its repressor AhRR. AhRR 
inhibits the formation of AhR/ARNT complex required for AhR signaling. AIP: AhR-
interacting protein; p23: p23 co-chaperon protein; ARNT: AhR nuclear translocator; 
DRE: dioxin response element; HSP90: 90-kDa heat shock protein. 
(Gutierrez-Vazquez and Quintana, 2018) 
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XRE sequence and therefore mediates a negative feedback mechanism of AhR activation 

(Figure 18) (Mimura et al., 1999; Stange and Veldhoen 2013).  

A non-canonical AhR signaling pathway also exists, and involves binding of the 

ligand-bound AhR to the nuclear factor-κB (NF-κB) family member, RelB, which 

subsequently activates transcription of genes controlled by both AhR and NF-κB (Tian et al., 

1999; Tian et al., 2002; Vogel and Matsumura 2009). Therefore, both of these AhR signaling 

pathways have the potential to elicit immunomodulatory effects following AhR activation. 

 

3.1) AhR ligands 

The AhR ligands are in general very lipophilic and diffuse through the plasma 

membrane of the cells. To date, there is no known AhR ligand transporter system. Numerous 

chemicals exhibit high-affinity binding to AhR, altering its activity in a ligand-dependent 

manner. The first AhR ligands described and well-studied are the environmental chemicals 

such as xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and synthetic and 

halogenated polycyclic aromatic hydrocarbons (PAHs) (e.g., benzoflavones and dioxins) 

(Esser 2016). However, interest in physiological exogenous and endogenous ligands has 

increased in the last years (Guyot et al., 2013). Identification of many natural AhR ligands 

generated by cells and microbiota or derived from dietary sources have been reported. Among 

them, an important group of AhR ligands is indoles, which can be generated by bacterial 

metabolism of tryptophan and are also derived from the metabolism of nutrients. 

 One of the dietary sources of AhR ligands is a cruciferous vegetable, such as 

Brassica, including broccoli, cauliflower, Brussel sprouts and cabbages (Denison and Nagy 

2003; Nguyen and Bradfield 2008), which are rich in the glucosinolate glucobrassicin, an 

indole precursor. It is enzymatically degraded into indole-3-carbinol (I3C), which at the acidic 

environment of the stomach undergo dimerization and generate diindolylmethane (DIM) and 

further converted to the high-affinity AhR ligands indolo-[3,2-b]-carbazole (ICZ). Other 

described dietary ligands of AhR are natural flavonoids present in fruits and vegetables as 

well as resveratrol, which is abundant in red wine (Zhang et al., 2003).  However, it is still 

unclear which, if any, dietary or naturally occurring ligands of AhR have a direct agonistic 

activity or could mediate an antagonist effect. 
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 Other endogenous AhR ligands are derivatives of the essential amino acid tryptophan 

that were discovered during exposure of L-tryptophan to UVB radiation. UV light-mediated 

degradation of tryptophan generates 6-formylindolo-[3,2-b]-carbazole (FICZ), by photolysis, 

which can occur with both visible and UV light. FICZ present in humans has a high affinity 

for AhR (at picomolar concentrations) (Rannug et al., 1995; Cella and Colonna 2015) and is 

thus considered as an essential endogenous and physiologic AhR ligand (Hubbard et al., 

2015; Hubbard et al., 2015; Kiyomatsu-Oda et al., 2018). Moreover, FICZ has the 

particularity to trigger a transient activation of AhR signaling in cell systems. Its capacity to 

be a perfect substrate for mammalian CYP1A enzymes results in efficient auto-regulatory 

feedback of its action since FICZ is degraded by these enzymes (Wincent et al., 2009; 

Wincent et al., 2016). Interestingly, bacteria, including commensals, and fungi, can produce 

and metabolize tryptophan into AhR ligands and also regulate tryptophan synthesis by sensing 

tryptophan concentrations due to dietary intake (Sarsero et al., 2000). Malassezia furfur, a 

fungus common causative agent of pityriasis versicolor of the skin, secretes several ligands 

including malassezin, ICZ and FICZ that engage AhR (Gaitanis et al., 2008). Several species 

of lactobacilli, including Lactobacillus bulgaricus (Takamura et al., 2011) and Lactobacillus 

reuteri (Zelante et al., 2013) produce AhR ligands, such as indole-3-aldehyde (IAId), and 

modulate the mucosal immune response. Moreover, pathogens such as Mycobacterium 

tuberculosis and Pseudomonas aeruginosa produce pigmented virulence factors that activate 

AhR (Moura-Alves et al., 2014). These findings highlight the role of AhR as a central node 

for chemical communication between the environment and the host. 

 

In this context, AhR has been characterized as a promiscuous receptor because it is 

able to bind to a variety of exogenous and endogenous ligands with different structures and 

physiochemical characteristics (Table 1). Recently the classical AhR mechanism of activation 

has been questioned by different studies. The AhR activation pathway has been generally well 

characterized and implies that several AhR agonist ligands would trigger similar AhR-

mediated biological responses. However, ligand-specific biological responses have been 

observed in some instances of AhR-dependent transcription (Gouédard et al., 2004; Quintana 

et al., 2008; Zhang et al., 2008; Murray et al., 2010; Murray et al., 2010). To explain these 

ligand-specific differences, studies have been suggested some modifications of the classical 

pathway (Huang and Elferink 2012). These different mechanisms seem to imply ligand-
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dependent differences in the AhR complex conformation, and that different ligand-specific 

mechanisms of ligands binding to AhR would exist (Guyot et al., 2013). Indeed, different 

AhR ligands may bind in distinct sites within the AhR complex ligand-binding domain (LBD) 

(Petkov et al., 2010). Thus, AhR can be directly bound and be activated by structurally 

diverse chemicals, which could result in different biological responses (Soshilov and Denison 

2014; Shinde and McGaha 2018). 

 
 

Table 1: Major AhR agonists and antagonists studied. (Shinde and McGaha 2018) 

Class Compounds Origin

• lndole-3-carbinol (I3C)
• 3,3′-diindolylmethane (DIM)
• Indolo [3,2-b]carbazole (ICZ)
• 2-(Indol-3-ylmethyl)-3,39-diindolylmethane (Ltr-1)
• lndole-3-acetonitrile (I3ACN)
• Curcumin
• Diosmin
• Indole
• lndole-3-acetic acid (IAA)
• lndole-3-aldehyde (IAld)
• Tryptamine
• lndoxyl-3-sulfate (I3S)
• 3-Methyl-indole (skatole)
• Kynurenine (Kyn)
• Kynurenic acid (KA)
• Xanthurenic acid
• Cinnabarinic acid (CA)
• 2-(19H-indole-39-carbonyl)-thiazole-4-carboxylic acid 
methyl ester (ITE)
• 6-Formylindolo [3,2-b] carbazole (FICZ)
• 5-hydroxy-tryptophan (5HTP)
• Bilirubin
• Biliverdin
• Lipoxin A4
• Prostaglandin
• Indigo
• Indirubin
• Trypthantrin
• Malassezin

• 2,3,7,8-Tetrachlorodibenzop-dioxin (TCDD)
• 3-Methylcholanthrene
• Beta-naphthoflavone
• Omeprazole
• VAF347
• 4-hydroxy-tamoxifen (4OHT)
• 6-Methyl-1,3,8-trichlorodibenzofuran (6-MCDF)
• Resveratrol
• Quercetin
• CH223191
• StemRegenin 1 (SR1)
• GNF351
• MNF (3′-methoxy-4′-nitroflavone)
• 3′,4′-Dimethoxyflavone (DMF)

AhR 
antagonist

Dietary

Synthetic

AhR       
agonist

Endogenous

Dietary

Microbiome

Host metabolism

Plant/mammalian enzymes

Yeast/fungi

Exogenous

Polycyclic/halogenated aryl 
hydrocarbon (PAH/HAH) 

pollutants

Synthetic
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3.2) AhR and physiological functions 

AhR was originally discovered through its key role in mitigating the toxic effects of 

environmental pollutants, by binding of anthropogenic xenobiotic substances as for example 

TCDD or certain PAHs. However, studies conducted in AhR knock out models have revealed 

its physiological roles as recently reviewed by Larigot and colleagues (Larigot et al., 2018). 

Indeed, AhR null mice strain displayed a range of physiological defects, including growth 

retardation, reduced liver size, abnormalities in vascular structure, portal tract fibrosis, and 

decreased fertility, arguing for endogenous functions of AhR, especially during development 

(Hao and Whitelaw 2013). 

Several studies showed that AhR plays a critical significant role in the regulation of a 

wide range of immune functions such as the maintenance of innate and adaptive cell 

populations at mucosal barrier sites, and the control of inflammation nodes (Esser et al., 2009; 

Quintana 2013; Stockinger et al., 2014; Esser 2016; Cervantes-Barragan and Colonna 2018; 

Gutierrez-Vazquez and Quintana 2018; Neavin and Liu 2018; Rothhammer and Quintana 

2019). In particular, it can affect the differentiation of B-cells (De Abrew et al., 2011) and T-

cells (Li et al., 2017) and immune interactions between mucosal tissues and microbiome 

(Lawrence and Vorderstrasse 2013; Bessede et al., 2014; Korecka et al., 2016).  

Moreover AhR seems to also be involved in other physiological functions on the body 

such as on nervous system regulation (Rothhammer et al., 2016; Lee et al., 2017; Juricek and 

Coumoul 2018), cell apoptosis (Stolpmann et al., 2012; Esser et al., 2013), skin 

differentiation (van den Bogaard et al., 2015) and endocrine signaling (Reen et al., 2002; 

Ohtake et al., 2003). Recent studies suggested its role on pathogenesis and therapy in IBD 

(Lamas et al., 2016), cardiovascular diseases (Yi et al., 2018) and metabolic diseases such as 

obesity (Natividad et al., 2018).  

 In the following subchapter, I focus on the role of AhR in intestinal homeostasis and 

gut inflammation as well as in metabolic diseases. 

3.2.1) AhR and intestinal homeostasis and gut inflammation 

In intestinal mucosa, AhR appears to play an important role in maintaining the 

intestinal homeostasis, mainly on epithelial cell renewal and turnover (Rannug and Rannug 

2018). In particular, it seems to be involved in the proliferation of colonic crypt stem cells 

(Metidji et al., 2018). Moreover, mice with intestinal epithelium-specific AhR deficiency had 
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enhanced apoptosis of epithelial cells, reinforcing the intrinsic role of AhR in intestinal 

epithelial cells integrity (Chinen et al., 2015).  

Some effects of AhR on epithelium integrity have been attributed to lymphocyte T cell 

response and altered interleukin and cytokine secretions (Monteleone et al., 2012; Megna et 

al., 2016). AhR influences different aspects of intestinal barrier function. For example, AhR is 

required for the development of intraepithelial lymphocytes (IEL) and of innate lymphoid 

cells (ILC) producing IL-22 (Li et al., 2017), which as previously mentioned (see chapter 

2.2.3) contribute to the immunological barrier. Interestingly CYP1A1 deficiency in intestinal 

epithelial cells (IEC) has been shown to increase the availability of AhR ligands to immune 

cells, suggesting that IEC serve as gatekeepers for the supply of AhR ligands to the host 

(Schiering et al., 2017). Moreover, as bacteria produce AhR ligands, AhR plays an important 

role in the reciprocal relationship between gut microbiota and cellular host defense including 

gut immune system (Gao et al., 2018) (Figure 19). 

According to these functions, most of the data concerning the role of AhR in the gut are 

related to inflammatory diseases. Several research groups have shown that AhR is involved in 

the regulation of the immune response to Crohn’s disease (CD) and ulcerative colitis (UC), 

which are the two main subtypes of IBD, which present with important gut inflammation. 

Studies have demonstrated that lack of AhR could intensify the pathological process in IBD 

and suggest that AhR activation could have a protective role in the gut (Islam et al. 2017; 

Lamas et al. 2016; Monteleone et al. 2013). Interestingly, AhR expression is low in inflamed 

tissue from CD patients, but not UC patients, compared with CD patients in remission or with 

healthy subjects suggesting specificities linked to the intestinal pathology or intestinal 

segment injured (Qiu and Zhou 2013). In experimental animal models, AhR deficient mice 

are more susceptible to chemically and bacterially induced colitis	 (Stockinger et al., 2014; 

Lamas et al., 2018). Conversely, the administration of AhR agonists decreased the 

Trinitrobenzene Sulfonic Acid (TNBS)-, Dextran Sodium Sulfate (DSS)- and T-cell-transfer 

induced colitis severity, by down-regulation of pro-inflammatory cytokines, such as tumor 

necrosis factor TNF-α, IL-6, and IL-1β (Furumatsu et al., 2011; Li et al., 2011; Monteleone 

et al., 2011; Qiu and Zhou 2013; Lamas et al., 2016; Long et al., 2016). In these models as 

well as in the intestinal epithelial cell line Caco-2 treated with cytokines or LPS, an 

impairment of intestinal epithelium permeability and cell-cell junctions can be rescued by 

AhR agonist (Yu et al., 2018; Yu et al., 2018).	
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Figure 19: AhR and intestinal homeostasis 
Two major cell types are critically dependent on dietary derived AhR signals: specialized 
intraepithelial lymphocytes (e.g., intraepithelial T-cell receptor γδ cells) and 
CD4−RORγt+ intestinal lymphoid cells within lymphoid tissue (e.g., Peyer’s patches). 
Studies have shown that mice lacking AhR signals (obtained genetically or through 
dietary deprivation) presents a deficiency in these cell types, which leads to reduced 
epithelial turnover, reduced expression of antimicrobial peptides, altered microbiota and 
increased susceptibility to intestinal inflammation.  
(Tilg 2012) 
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3.2.2) AhR and metabolic disorders 
	

Some studies have investigated the possible role of AhR in metabolic syndrome by 

comparing the evolution of diet-induced metabolic impairments in AhR null mice or by 

treating mice with AhR agonists and antagonists. However, the reported results were 

contradictory.  

Indeed, several reports showed that AhR deficient mice are protected from diet-

induced obesity and associated metabolic disorders such as insulin resistance, and hepatic 

steatosis through mechanisms related to lipid and energy metabolisms (Xu et al., 2015; Moyer 

et al., 2016; Moyer et al., 2017). Conversely, the activation of AhR using genetic mouse 

models or agonists in particular TCDD promoted hepatic steatosis (Lee et al., 2010; He et al., 

2013). The study of Lee et al (Lee et al., 2010) revealed that the steatotic effect of AhR 

activity is due to the upregulation of the fatty acid transporter CD36, to the inhibition of 

hepatic export of triglycerides, and to the suppression of fatty acid oxidation associated with 

an increased peripheral fat mobilization. A study using two mice strains which naturally 

encoding for two different alleles of AhR gene, one strain displaying an high-affinity AhR 

allele and the other one a low-affinity AhR allele, showed that mice with the high-affinity AhR 

allele are more susceptibility to diet induced-obesity than the other one (Kerley-Hamilton et 

al., 2012). 

 The deleterious effects of AhR activation/activity reported above are in contrast with 

other works showing a protective role of AhR towards liver steatosis in mice (Wada 2016, 

Natividad 2018). Moreover, in human low levels of AhR ligands were quantified in feces of 

obese subjects and were associated with metabolic syndrome, type 2 diabetes, high BMI and 

high blood pressure (Natividad 2018).  

The discrepancy concerning the role of AhR in metabolic diseases illustrated by these 

two sets of reports may be due to the different mouse models used, (in particular regarding the 

complex phenotype of AhR KO or constitutively activated mice) as well as the diversity of 

AhR functions in different organs or cell types in the body.  

Taken together, the various examples mentioned below show that AhR plays an 

important role in intestinal inflammation, obesity and metabolic disorders. However, the 

mechanisms and the contradictory results driving AhR effects remains unclear so far.
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Objectives 

The involvement of the intestine in the etiology of the low-grade systemic 

inflammation observed during obesity has been put forward over the last decade by several 

studies in humans and in murine models submitted to a high-fat diet. In the case of established 

obesity, the coexistence of metabolic disturbances, the alteration of the intestinal barrier, the 

changes in gut microbiota composition and the presence of tissue inflammation makes it 

difficult to identify the initiating factors. Several evidences implicate the role of diet, 

especially lipid as well as environmental factors or microbiota-derived metabolites 

influencing the activity of the aryl hydrocarbon receptor, on the onset of gut inflammation and 

intestinal barrier damages during obesity. One hypothesis is that initiation of gut 

inflammation was linked to the alteration of intestinal barrier integrity, promoting the 

translocation of bacteria fragments through the intestinal mucosa that would activate gut 

immune response contributing to the establishment of a vicious circle leading to systemic 

inflammation. This hypothesis implies that part of these events such as intestinal barrier 

impairment and gut inflammation occurs before the onset of obesity as suggested by several 

studies (Cani et al., 2007; Erridge et al., 2007; Cani et al., 2008; Ghoshal et al., 2009; 

Laugerette et al., 2011; Vors et al., 2015; Genser et al., 2018).  

In this context, my thesis work was to study the role of two environmental factors 

on intestinal barrier dysfunctions reported in obesity. I focused my research on the impact 

of lipid and of the activation of the transcription factor AhR. My purpose was to identify 

cause-effect relationships and the molecular mechanisms involved.  

In a first work (article 1, Ghezzal et al.), of which I am co-first author, we sought to 

determine if single or few repeated lipid or fatty acid intake is sufficient to cause barrier 

disruption and initiate gut inflammation. I studied the effect of palmitic acid, the main fatty 

acid present in the human diet. This work was carried out on wild-type mice and on a human 

model of intestinal epithelial cells in culture, the Caco-2/TC7 cell line. 

In a second work (article 2, Postal et al.), I evaluated the AhR tone in the jejunum of 

obese subjects presenting with small intestine inflammation and I investigated the 

consequences of AhR activation in mice and in Caco-2/TC7 cells. I studied the effect of AhR 

activation by its agonist, "-naphthoflavone, on intestinal epithelium whose integrity was 

perturbed by factors affecting paracellular permeability and cell junctional complexes. 
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Results 

Effect of palmitic acid on intestinal barrier function 

The results of this study are presented at the end of this chapter in the form of an 
article in review in BBA Molecular and Cell Biology of Lipids journal, and entitled: 
"Palmitic acid damages gut epithelium integrity and initiates production of 
inflammatory cytokines", which I am the co-first author (article 1). I participated 
directly and actively in this work during the first two years of my thesis to establish 
the effects of palmitic acid on intestinal barrier function. However, I had a less 
important participation in the determination of the mechanisms involved via the 
ceramides pathway. 

 

It has been observed that the nature of fatty acids in the diet could differently affect 

metabolic inflammation. Indeed in mice, a greater increase in inflammation was caused by an 

isocaloric diet enriched in palm oil compared to other oils such as sunflower or rapeseed oil 

(Laugerette et al., 2012; Ravussin et al., 2012). These studies suggested that a high-fat diet 

triggers intestinal barrier dysfunction and emphasized the potential role of saturated fatty 

acids in this effect. Moreover, several studies showed in rodent models of high fat diet-

induced obesity that alteration of intestinal barrier function, especially of paracellular 

permeability, occurred as soon as the first week of the diet and thus before the onset of 

obesity (Johnson et al., 2015). Altogether these data conduct us to hypothesize that an 

intestinal barrier disruption triggered by lipids would be an early event involved in the 

initiation of intestinal barrier or even systemic inflammation.  

 

Thus, the aim of this work was to study the short-term effects of a saturated fatty acid, 

palmitic acid, on intestinal barrier and inflammation. This work was carried out on a mouse 

model and on Caco-2/TC7 cells. 

 

Palm oil and palmitic acid treatments perturbed intestinal epithelial barrier. 

We studied the effect of a unique or repeated supply of palm oil or palmitic acid on 

the intestinal barrier integrity by different complementary approaches: the measurement of 

intestinal permeability to macromolecules using a fluorescent tracer (FITC-dextran 4kD) and 

the evaluation of paracellular permeability to ions using the transepithelial electrical 

resistance (TEER) as well as the location and the expression of junctions proteins by 

immunofluorescence, western blot and RT-qPCR analyses.  
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In vivo measurement of intestinal permeability to macromolecules performed in wild –

type mice, has revealed that a single gavage of palm oil is sufficient to increase intestinal 

permeability, however, repeated gavages of palm oil for 5 consecutive days does not seem to 

exacerbate this effect (Figure 1A in article 1). As cell-cell junctions control intestinal 

permeability we performed immunofluorescence analyses on mouse jejunum sections to 

visualize the location of proteins involved in cell junctions. We specifically studied tight 

junction proteins (ZO-1, occludin and tricellulin) and adherent junction protein (E-cadherin). 

We observed that a single intake of palm oil altered the location of occludin and tricellulin at 

the cell membrane, while the repeated supply provoked the mislocalization of all junction 

proteins studied (Figure 1B-C in article 1). 

We then assessed intestinal inflammation, in different segments of the intestine 

(jejunum, ileum and colon), in mice (Figure 2 in article 1). We quantified the expression of 

genes and proteins known to be modulated in inflammatory conditions. We observed that 

repeated palm oil gavages provoked a mild inflammatory response characterized by the 

decrease of the intestinal expression of GATA3 (a master gene controlling the function of T 

lymphocytes and innate lymphoid cells), of Reg3γ (coding for an antimicrobial peptide) and 

the increase of pro-inflammatory cytokine IL-1β. Our results indicated that short-term 

treatment with palm oil modified the expression of genes involved in host defense and 

immunity, leading to an imbalance of intestinal defense and immune response towards a 

proinflammatory profile. 

Links between changes in microbiota composition, obesity and inflammation have 

been reported (Chassaing and Gewirtz 2014; Sanz and Moya-Perez 2014; Boulangé et al., 

2016; Sun et al., 2018; Aron-Wisnewsky et al., 2019; Cuevas-Sierra et al., 2019). Since, 

microbiota composition can change rapidly after a dietary transition (David et al., 2014), we 

investigated whether repeated intake of palm oil for 4 days is able to modify this composition. 

We chose to study selected microbiota species known to be modulated in inflammatory bowel 

diseases and obesity. Ours analyze performed by qPCR showed that species known to exert 

protective effects against pathogens and beneficial role to host cells, such as Clostridium 

leptum, Akkermensia muciniphila and Segmented Filamentous Bacteria (Marchix et al., 

2018), are reduced after palm oil treatment compared to the oil-free control group. 

Conversely, the genus Bacteroides, increased in animals subjected to an obesogenic diet 
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enriched with saturated fatty acids (Devkota et al., 2012), was higher in palm oil-treated mice 

(Figure 3 in article 1). 

Thus, the mouse experiments demonstrate that a single intake of palm oil is sufficient 

to trigger damages to the intestinal barrier and its repetition exacerbates these deleterious 

effects. The repeated supply of palm oil, even though in short-term treatment, leads to a 

proinflammatory response in the intestine and a change in the abundance of fecal bacterial 

species. 

 

To conduct the in vitro studies, we choose a cellular model of intestinal epithelial 

barrier, the Caco-2/TC7 cell line. Indeed, Caco-2 cell line and especially its clone TC7, is one 

of the most potent in vitro models to study intestinal functions (Chantret et al., 1994). This 

cell line spontaneously differentiated when the cells reach the confluence and express a 

normal human enterocyte-like phenotype (Chantret et al., 1994). The Caco-2/TC7 cell 

monolayer is used to mimic in vitro the epithelial barrier that exists in vivo between the gut 

lumen and the underlying tissues. Intestinal epithelial cells are able to produce cytokines 

(Stadnyk 2002; Miron and Cristea 2012) among which CXCL8 (IL-8), TGFB1 and IL1B 

genes are particularly well expressed in Caco-2/TC7 cells.  

Palm oil being composed palmitic and oleic acids, both fatty acids might exert specific 

impact on intestinal cells. We investigated the effects of these two fatty acids, delivered as 

complex micelles, on paracellular permeability of Caco-2/TC7 cell line monolayer and 

cytokine expression. Our results showed that a unique palmitic acid supply triggers an 

increase in paracellular permeability (Figure 4 in article 1) and a decreased expression and 

mislocalization of junctional proteins (ZO-1, occludin, tricellulin and E-cadherin) at cell-cell 

contacts (Figure 5 in article 1). The repeated palmitic acid intake over 4 days exacerbates 

these effects. Moreover, a 24 hours-treatment with palmitic increased the expression of IL-8 

and induced the secretion of this pro-inflammatory cytokine (Figure 6, article 1). A longer 

palmitic acid supply (for 4 consecutive days) accentuated these effects. Repeated palmitic 

acid supply reduced also the mRNA level of TGF-β, an anti-inflammatory cytokine (Figure 6 

in article 1). In addition, we did not observe any effect of oleic acid in all studied parameters 

(paracellular permeability and cytokine expression). 

We were also interested whether the deleterious effects on the epithelial barrier and 

the initiation of an inflammatory response mediated by palmitic acid are transitory effects. For 



	

 
	

	
RESULTS 

	
	 	

68 

that, we treated the cells with palmitic acid for 4 days followed by 24h or 48h without any 

treatment. Our results show that the impact of the 4 days treatment, although it is attenuated 

after 48 hours, persists over time (Figure 7 in article 1). 

 

Identification of molecular mechanisms involved in intestinal barrier dysfunction 

and cytokine expression triggered by palmitic acid. 

We intended to determine the molecular mechanisms responsible for the deleterious 

effects of palmitic acid on the intestinal barrier and the inflammatory response in Caco-2/TC7 

cells. In our experiments, palmitic acid is supplied as “postprandial” lipid micelles to mimic 

the complex physiological form of fatty acids present in the intestinal lumen after a meal. 

These lipid micelles are containing phospholipid, cholesterol, biliary acid and 

monooleoylglycerol. Palmitic acid is known to activate endoplasmic reticulum (ER) stress 

and de novo synthesis of ceramides, both pathways described to disrupt cellular functions 

(Chaurasia and Summers 2015; Lindholm et al., 2017). So we investigated the implication of 

these two pathways.  

The 4 days treatment with palmitic acid showed a slight increase in the expression of 

some ER stress marker genes, compared to untreated cells. However, similar effects were 

observed after oleic acid treatment (Figure 8 in article 1). Thus, the activation of the ER stress 

pathway does not seem to explain the specific impact of palmitic acid vs oleic acid on the 

epithelial barrier and cytokine expression in Caco-2/TC7 cell line.  

Palmitic acid, but not oleic acid, is a precursor of de novo ceramide synthesis (Castro 

et al., 2014), which contributes not only to membrane structure but also to signaling and 

metabolic dysfunctions in various cell types, including Caco-2/TC7 cells (Chavez and 

Summers 2012; Tran et al., 2016). We first investigated whether ceramide supply to Caco-

2/TC7 cells could perturb paracellular permeability and increases cytokine expression. Cells 

were incubated with a cell-permeable short-chain ceramide, C2-ceramide, which will then be 

elongated in the cell (Hajduch et al., 2001; Uchida 2014; Tran et al., 2016). We have 

observed that the addition of C2-ceramide produced similar deleterious effects than palmitic 

acid, on the epithelial barrier and on inflammatory cytokines expression (Figure 9 in article 

1). Moreover, in order to determine the implication of the ceramide pathway on palmitic acid 

deleterious effect, we used a specific inhibitor (L-cycloserine) of the first enzyme of de novo 

ceramide synthesis. Cells were treated with palmitic acid in the presence or absence of L-
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cycloserine (Figure 10 in article 1). Our results demonstrated that the addition of an inhibitor 

of de novo ceramide synthesis prevented the increase of IL-8 expression following treatment 

with palmitic acid. However, it did not block the increase of paracellular permeability induced 

by palmitic acid suggesting the implication of other mechanisms to explain all the palmitic 

acid effects.   

 

Taken together, our results obtained in mice and in a human cell line of the 

intestinal epithelial barrier showed that palmitic acid administered acutely is able to 

induce epithelial barrier dysfunctions, to trigger an inflammatory response and to 

modify microbiota composition. Studies performed in the Caco-2/TC7 cell line showed 

that part of these effects is ceramides synthesis dependent. Deleterious effects of palmitic 

acid occurring rapidly in the intestine may lead to the stimulation of systemic 

inflammation that in turn may affect other organs. The repetition of such deleterious 

effects associated with a lower capacity of the intestinal epithelial barrier to ensure an 

appropriate defense against pathogens, may initiate or contribute to low-grade tissue 

and systemic inflammation observed in obesity. 
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Abstract  

The mechanisms involved in low-grade inflammation observed in human obesity and in rodent 

submitted to high-fat diet, are not fully understood yet. We tested the hypothesis that the intestine 

could be damaged by the repetition of lipid supplies and thus participates in inflammation. In mice, 

one to five palm oil gavages damaged intestinal permeability via decreased expression and 

mislocalization of junctional proteins at cell-cell contacts, changed the intestinal bacterial species by 

decreasing the abundance of Akkermansia muciniphila, Segmented Filamentous Bacteria and 

Clostridium leptum, and increased inflammatory cytokine expression. This was further studied in 

human intestinal epithelial cells Caco-2/TC7, using the two main components of palm oil i.e palmitic 

and oleic acids. Saturated palmitic acid, but not unsaturated oleic acid, impaired paracellular 

permeability and junctional protein location and induced inflammatory cytokine expression in Caco-

2/TC7 cells. Part of these effects was prevented by inhibition of de novo ceramide synthesis. 

Taken together, our data show that exposure to palm oil or palmitic acid, induces intestinal 

dysfunctions on barrier integrity and inflammation. Excessive consumption of palm oil could be an 

early player in gut alterations observed in metabolic diseases.  

 

Highlights  

 
• Palm oil gavages damage the intestinal barrier.  

• Bacterial species in mice are changed after 4 gavages with palm oil. 

• Palmitic acid impairs paracellular permeability and cell-cell junctions. 

• Palmitic acid modifies cytokine expression profile in intestinal epithelial cells. 

• Inhibition of ceramide synthesis blocks part of palmitic acid effects.  
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1. Introduction 

Obesity is the result of an energy imbalance between calories consumed and calories expended 

and its rising incidence is associated with changes in eating habits. Obesity is associated with systemic 

and tissue low-grade inflammation, which, contributes to the development of insulin resistance and 

increased risk of cardiovascular diseases (Pereira and Alvarez-Leite 2014; Monteiro-Sepulveda et al., 

2015). While adipose tissue inflammation has been described as an important actor in the maintenance 

of the inflammatory state once obesity is established (Pereira and Alvarez-Leite 2014), the origin of 

this inflammation remains undetermined.  

The subclinical systemic inflammation observed during obesity has been attributed to the 

immune response to increased levels of lipopolysaccharides (LPS) from Gram-negative bacteria cell 

wall, then called metabolic endotoxemia (Cani et al., 2007). The passage of bacterial fragments into 

the blood through the intestinal mucosa emphasized the importance of intestinal epithelial barrier in 

this process (Cani et al., 2007; Neves et al., 2013; Boutagy et al., 2016). In a recent study, we showed 

that obese subjects present subtle impairments of the intestinal barrier function that is exacerbated 

after a lipid challenge, this feature being correlated with systemic and intestinal inflammation (Genser 

et al., 2018). Thus, loss of intestinal barrier integrity is probably part of the mechanisms driving 

subclinical chronic inflammation. 

Studies in rodents under long term high-fat diet (HFD) also highlighted the role of lipids on 

endotoxemia but only few have analyzed the HFD impact on intestinal barrier integrity (for recent 

reviews (Boutagy et al., 2016; Araujo et al., 2017)). Decreased mRNA levels of the tight junction 

proteins ZO-1 and occludin were observed in the intestine of mice after 4 weeks of HFD (Cani et al., 

2008). Gulhane et al (Gulhane et al., 2016) showed that prolonged HFD in mice leads to an increase in 

colonic inflammation, which is associated with endotoxemia and a decreased expression of the tight 

junction protein claudin-1 in this tissue. Some studies reported that the composition of HFD could 

influence microbiota changes, endotoxemia and immune response. Laugerette et al (Laugerette et al., 

2012) compared, in mice, the effects of 8-week diets enriched in oils and showed that a diet enriched 
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in palm oil results in the most active transport of LPS toward tissues and the highest plasma level of 

the pro-inflammatory cytokine IL-6. More recently, Lam et al (Lam et al., 2015) showed that mice fed 

for 8 weeks with high-fat diets enriched in either saturated fatty acids or in n-6 polyunsaturated fatty 

acids displayed similar weight gain and adiposity, but only mice fed with saturated HFD exhibited an 

increased paracellular permeability to ions evaluated by a decreased transepithelial resistance (TEER) 

and macrophage infiltration in the colon. Palmitic acid, one of the main saturated fatty acid present in 

human diet might exert an important impact on gut permeability and inflammation, and should 

therefore be further investigated. 

 Several studies suggest that the effects of HFD on intestinal permeability occur before the 

onset of obesity. An increase of albumin in feces, reflecting higher intestinal permeability, was 

observed as early as after 1 day of HFD and an increase of the passage of FITC-dextran molecule 

through the intestinal epithelium was shown after 7 days (Johnson et al., 2015). Moreover, studies 

conducted in lean humans or in rodents under chow diet showed that a single lipid meal led to a 

moderate and transient increase in endotoxemia (Erridge et al., 2007; Ghoshal et al., 2009; Laugerette 

et al., 2011) as well as proinflammatory cytokine IL-6 plasma level (Laugerette et al., 2011). In these 

studies, neither the importance of fatty acids composition of the meal (especially the effects of 

palmitic acid), nor the integrity of intestinal epithelial barrier was documented. Nevertheless, these 

results suggested that an acute supply of lipids was sufficient to provoke a transient alteration of 

intestinal epithelial barrier.  

It can be hypothesized that the repetition of lipid supplies could amplify or maintain a defect 

of intestinal epithelial barrier, which in turn could initiate or contribute to low-grade inflammation. 

The purpose of this study was to explore the impact of an acute single or repeated supply of palm oil 

and palmitic acid on intestinal epithelial barrier integrity and its consequence on the expression of 

intestinal genes involved in inflammatory response. Mechanistic investigations were conducted on ER 

stress and ceramide synthesis. 
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2. Materials and Methods 

2.1 Mouse treatments, induction and assessment of colitis, and intestinal permeability  

Three-month-old male C57BL/6J mice (Janviers labs, Le Genest-Saint-Isle, France) were fed ad 

libidum a standard chow diet (A04, SAFE, Augy, France). Mice were kept with the artificial light-dark 

cycle 12:12h with lights on 07:00h. Mice were gaved with palm oil (Sigma-Aldrich, Saint Quentin-

Fallavier, France) whose fatty acid composition is rich in saturated palmitic acid (about 45%) and 

unsaturated oleic acid (about 35%). Mice were gaved with 0.2ml of palm oil for one or 5 consecutive 

days at 18:00h i.e. just before the feeding period. Mice submitted to the lipid loads had a 20% 

reduction of their food consumption but the calorie intake was preserved (9kcal/mice/24h and 

8.8kcal/mice/24h for control and palm oil treated-mice, respectively). The last day of the experiment, 

mice were successively gaved with 0.2ml palm oil and with 0.2ml of 4kDa FITC-dextran  (Sigma-

Aldrich) solution (0.5mg/g of mice in water) at 9:00h. Mice were anesthetized and then euthanized 1 

hour after the last gavage. Blood, small intestine and colon were then collected. Duodenum was 

removed and the rest of the small intestine was divided in two equal parts named here jejunum and 

ileum. For in vivo measurement of intestinal permeability, FITC-dextran concentrations were 

determined in the plasma by fluorometry (FLUOstar Omega; BMG Labtech, Champigny-sur-Marne, 

France). Colitis was induced in mice by 5 days of 3.5% dextran sodium sulfate (DSS) (MP 

Biomedicals, Illkirch-Graffenstaden, France) in drinking water, followed by a 3-day recovery 

period without DSS. All experiments involving mice were approved by the French Minister of 

Education and Research and by the Animal Care and Use Committee N°5 (agreement number: 

APAFIS#2710-201510301447819). 

 

2.2 Fecal bacterial species analysis 

Mice received one gavage with 0.2ml palm oil or water each day for 4 consecutive days. Fresh feces 

were collected 16h after the last gavage and immediately stored at -80°C until analysis. DNA was 

extracted from 100mg of feces obtained from pools of fecal pellets from 1 to 3 mice, as previously 
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described (Sokol et al., 2009). The primers used for group and species-specific 16S rRNA-targeted are 

described in Table 1. PCR was performed using the Applied Biosystems StepOnePlus	Real-Time PCR 

Systems (Thermofischer Scientific, Illkirch, France). Determination of bacteria count in fecal samples 

was achieved using DNA extracted from cultured bacterial strains (see Table 1) and analyzed as 

described previously (Sokol et al., 2009). For the two species, Segmented Filamentous Bacteria and 

Akkermansia muciniphila, abundance was determined by relative quantification to DNA extracted 

from feces of untreated mice.  

 

2.3 Cell culture and cell treatments 

Caco-2/TC7 cell line is a clonal population of the human colon carcinoma-derived Caco-2 cells, which 

reproduces to a high degree most of the morphological and functional characteristics of enterocytes 

(Chantret et al., 1994). Cells were checked for absence of mycoplasma contamination. In all 

experiments, cells were cultured on 6-well Transwell® filters (Thermofischer Scientific) for 3 weeks 

to obtain fully differentiated enterocyte-like cells as previously described (Beaslas et al., 2009; Morel 

et al., 2018). 

Palmitic acid or oleic acid (Sigma-Aldrich) was supplied as complex micelles to mimic the 

physiological form in which these fatty acids are present in the intestinal lumen in vivo. Complex 

micelles (2 mM sodium taurocholate, 0.6 mM oleic acid or 0.6 mM palmitic acid, 0.2 mM 

lysophosphatidylcholine, 0.05 mM cholesterol, and 0.2 mM monoacylglycerol) were prepared in 

serum-free medium as previously described (Chateau et al., 2005; Beaslas et al., 2009) and added to 

the upper compartment for the indicated times. In some experiments, palmitic acid concentration was 

changed to 0.3 mM or 0.1 mM. Micelles were removed and replaced by fresh apical medium during 

the analysis of epithelium integrity. The release of LDH cytoplasmic enzyme in the medium, used as 

toxicity test, remained below 1% of total LDH activity of the cell lysate when palmitic or oleic acids 

were added to cultured cells. In some experiments, cells were treated with 4.5mM EGTA (Sigma-

Aldrich) added in the upper compartment or with 2mM dithiothreitol (Sigma-Aldrich), 20mM L-
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cycloserin (Sigma-Aldrich), 100µM C2-ceramide (Cayman Chemical Compagny, Montigny-le-

Bretonneux, France) added in both upper and lower compartments. C2-ceramide was dissolved in 

0.5% ethanol as previously described (Tran et al., 2016). The duration of treatments is indicated in the 

legend of figures.  

 

2.4 Permeability measurements in Caco-2/TC7 cells 

To assess paracellular permeability, 1mg/ml of 4 kDa FITC-dextran (TdB Consultancy AB, Uppsala, 

Sweden) was added to the apical medium the last day of treatment. Samples of basal medium were 

collected after 4h, and fluorescence was determined with a microplate fluorometer (FLUOstar Omega; 

BMG Labtech). Transepithelial electrical resistance (TEER), which is inversely proportional to 

permeability to small ions, was measured before and after treatments using a Volt-Ohm Meter 

(Millipore, Guyancourt, France).  

 

2.5 Total RNA extraction and RT-PCR analysis 

Total RNA from Caco-2/TC7 cells and from intestinal segments was extracted with TRI Reagent 

(Molecular Research Center, Cincinnati, OH), according to the manufacturer's instructions. Reverse 

transcription (RT) was performed with 1 µg of RNA using high-capacity cDNA reverse transcriptase 

kit (Applied Biosystem, ThermoFisher Scientific, Illkirch France). Semi-quantitative real-time 

polymerase chain reactions were performed with the Mx3000P Stratagen system using SYBR Green 

(Agilent, Les Ulis, France) according to the manufacturer's procedures. The list of human and mouse 

primers sequences are displayed in Table 2. The primer sequences for the specific quantification of the 

spliced XBP1 mRNA have been previously described in Van Schadewijk et al. (van Schadewijk et al., 

2012). 

 

 

 



	

 
	

	
ARTICLE 1 

	
	 	

77 

2.6 Cytokine content and secretion 

Cytokine IL-8 and IL-1β protein levels were quantified by enzyme-linked immunosorbent assay 

(ELISA) using kits from R&D System (Lille, France). For cytokine quantification in mouse intestine, 

whole intestinal segments were homogenized in PBS buffer using FastPrep® instrument (MP-

Biosciences, Illkirch-Graffenstaden, France), submitted to sonication (Bioruptor®, Diagenode, 

Seraing, Belgium) and then centrifuged at 10,000g for 10 min at 4°C. The supernatant (100µg of 

proteins) was used for ELISA. For experiments in Caco-2/TC7 cells, 0.2ml of basal medium was used 

for ELISA.  

 

2.7 Analysis of junctional proteins by immunofluorescence 

Immunofluorescence analyses were performed as previously described (Petit et al., 2012). Briefly, 

Caco-2/TC7 cells were fixed and permeabilized by incubation for 5 minutes in methanol at −20°C. 

Jejunum cryosections were fixed for 30 minutes with 4% paraformaldehyde at 4°C, and permeabilized 

for 30 minutes in 0.1% Triton X-100 at 4°C. For immunostaining of mouse jejunum cryosections, we 

used primary antibodies for tricellulin (1:10; Tric2469; kindly provided by Dr Furuse (Ikenouchi et 

al., 2005; Ikenouchi et al., 2008)), ZO-1 (1:200; 617300; Thermofischer scientific), occludin (1:10; 

Moc-37; kindly provided by Dr Furuse (Saitou et al., 1997)) and for E-cadherin (1:500; ECCD2 

M108; from Takara Bio Europe, Saint-Germain-en-Laye, France). For immunostaining on Caco-

2/TC7 cells, we used primary antibodies for tricellulin (1:200; MARVELD2 700191; Thermofischer 

scientific), ZO-1 (1:200; ZO1-1A12; 33-9100 Thermofischer scientific), occludin (1:200; 71-1500; 

Thermofischer scientific) and for E-cadherin (1:500; ECCD2 M108; Takara Bio Europe). Alexa 488 

and Alexa 546–conjugated anti–immunoglobulin G were used as secondary antibodies (1/400; 

Molecular Probes, Life Technologies, Saint-Aubin, France). Nuclei were stained with 4′-6-diamidino-

2-phenylindole (DAPI) to assess the monolayer integrity. Cells were examined by microscopy using 

an Axio Imager 2 microscope equipped with an apotome.2, allowing optical sectioning (Zeiss, 
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Oberkochen, Germany). Images were acquired by ZEN 2011® software (Zeiss,) and analyzed by 

Image J 1.46c.  

 

2.8 Simple WesternsTM 

Caco-2/TC7 cells were lysed as previously described (Beaslas et al., 2009). Protein levels were 

detected in cell lysates using a WesTM capillary electrophoresis system (ProteinSimple, San José, CA, 

USA) according to the manufacturer's instructions. Reconstituted images and quantification were 

performed using Compass for Simple Western software (ProteinSimple). Primary antibodies were 

rabbit anti-tricellulin (1:2000; MARVELD2 700191; Thermofischer scientific), rabbit anti-ZO-1 

(1:200; ZO1-1A12; 33-9100 Thermofischer scientific), rabbit anti-occludin (1:25; 71-1500; 

Thermofischer scientific) and rabbit anti-E-cadherin (1:1000; clone 36, 610181; BD Biosciences, 

Rungis, France). Secondary antibodies and reagents used were provided in the separation and 

detection module kits (ProteinSimple). Junctional proteins levels were normalized to Hsc70 (1:100; 

sc7298 Santa Cruz, Clinisciences Nanterre, France) or to actin (1:1000; NB600-532SS Novus 

Biologicals, Bio-techne Ltd. Lille, France). 

 

2.9 Statistical analysis 

Values were expressed as mean ± SEM. Statistical analyses were performed using GraphPad Prism 6.0 

(GraphPad Software, La Jolla, CA). Two group comparisons were performed using Student’s T-test. 

Comparisons involving multiple groups were done using one-way analysis of variance (ANOVA). A 

level of p < 0.05 was considered as significant. 

 

3. Results 

3.1 Palm oil gavage in mice increases intestinal permeability, perturbs cell-cell junction and modifies 

the expression of genes involved in inflammation  
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We first analyzed in mice the effects of palm oil administration on intestinal barrier integrity 

by measuring intestinal permeability to FITC-dextran 4kDa. We compared the effects of a single 

gavage of palm oil to daily gavages for 5 consecutive days. We calculated that a lipid gavage of 180 

mg represents, in one taking, the daily lipid consumption (210 mg) of a mouse fed control diet 

containing 8 % w/w fat. A group of mice treated with dextran sodium sulfate (DSS) was used as a 

model of chemically induced barrier defect (for review (Eichele and Kharbanda 2017)). As previously 

described (Yan et al., 2009), DSS treatment induced a 2-fold increase in intestinal permeability as 

compared to control group (p=0.0008) (Fig. 1A). The permeability to 4 kDa molecules after palm oil 

gavage was increased in the same range as in our positive control, DSS. Mice that received one palm 

oil gavage displayed higher intestinal permeability (p<0.0001) than the control group. Surprisingly, no 

further increase followed multiple gavages.  

As an efficient epithelial barrier is dependent on cell-cell junction integrity, we analyzed by 

immunofluorescence in the jejunum the localization of three tight junction proteins (ZO-1, occludin 

and tricellulin) and of the adherens junction protein E-cadherin. One palm oil gavage resulted in 

reduced occludin and tricellulin labeling at apico-lateral membranes. ZO-1 labeling was more diffuse 

while E-cadherin was not affected (Fig.1B). After 5 consecutive palm oil gavages, the distribution of 

all these proteins was perturbed. In addition to the reduction of occludin and tricellulin labeling, we 

observed a shift of E-cadherin and ZO-1 labeling toward the basal region of the lateral membrane 

(Fig.1B, red arrows). A decreased occludin mRNA level was observed after 1x and 5x palm oil 

gavages (Fig.1C) while the mRNA levels of the other junction proteins remained unmodified (data not 

shown). 

We then analyzed the expression of several genes linked to inflammation in intestine (Fig. 2). 

Gata3 is known as a master gene controlling the functions of T cells and innate lymphoid cells (Wan 

2014; Zhu 2017). When compared to control mice, Gata3 mRNA level in jejunum was decreased in 

mice from the DSS (p=0.0003) or 5 palm oil gavages (p=0.0024) groups but not yet after a single palm 

oil gavage (Fig. 2A). This suggests that repeated palm oil gavages altered immune response in 
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intestine. Reg3g is a major antimicrobial peptide gene involved in host defense against bacterial 

invasion (Loonen et al., 2014; Wang et al., 2016). One palm oil gavage increased the mRNA level of 

Reg3g (p=0.0118) in ileum as compared to the control group (Fig. 2B) suggesting that antimicrobial 

host defense is engaged, but this vanished in mice submitted further to 5 palm oil gavages or to DSS. 

One can hypothesis that repeated palm oil treatment impaired antimicrobial host defense that could 

participate to intestinal barrier defects. This result suggests also that changes in microbiota 

composition could occur after palm oil treatment. The protein level of pro-inflammatory IL-1β tended 

to increase (p=0.053) in colon of mice submitted to one palm oil gavage and a 2.4-fold increase 

(p=0.0027) was observed after 5 gavages (Fig. 2C). 

Altogether, we show in vivo in mice that a short-term treatment with palm oil is sufficient to 

increase intestinal permeability, to provoke the mislocalization of several proteins involved in cell-cell 

junctions and to modify immune-related gene expression profile in intestine suggesting tissue 

inflammation.  

 

3.2 Palm oil gavages in mice modify fecal bacterial species 

Previous studies report major changes in the relative abundance of bacteria species during 

high-fat feeding (for review (Murphy et al., 2015)). Palm oil might affect bacterial abundance via 

bacterial growth or via modification of genes involved in antimicrobial response (such as Reg3g) as 

previously observed after long-term high-fat diet (Everard et al., 2014).	We measured the abundance 

of selected fecal bacteria after 4 palm oil gavages. We found that Clostridium leptum (Fig. 3A, 

p=0.0273), Akkermansia muciniphila (Fig. 3B, p=0.0274) and Segmented Filamentous Bacteria (Fig. 

3C, p=0.0133) abundances were significantly decreased after 4 palm oil gavages, while Bacteroides 

sp. abundance was increased (Fig. 3D, p=0.0230). The abundance of Lactobacillus sp. (Fig. 3E) and 

Clostridium coccoides (Fig. 3F) as well as total bacteria count (Fig. 3G) were unaffected. Thus, these 

results indicate that the gut bacterial species composition is modified rapidly after 4 palm oil gavages.  
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3.3 Palmitic acid perturbs permeability and cytokine expression in human intestinal epithelial cells  

Palm oil being composed of palmitic and oleic acids, both fatty acids might exert specific 

impact on intestinal cells. We investigated the effects of these two fatty acids, delivered as complex 

micelles, on paracellular permeability of a monolayer of the human enterocytic-like cell line Caco-

2/TC7. Cells were incubated for 24h or daily during 4 consecutive days with micelles containing 

either palmitic or oleic acid. A 24h-treatment with 4.5mM EGTA, a calcium chelator, a treatment 

known to increase epithelial permeability (Artursson 1990; Boulenc et al., 1993), was used as positive 

control. As expected, EGTA treatment increased the permeability of Caco-2/TC7 cell monolayer to 

4kD FITC-dextran (p<0.0001) (Fig. 4A) and to ions (decreased TEER, p<0.0001) (Fig. 4C). 

Interestingly, 1 day-treatment with palmitic acid provoked a significant increase of 4kD FITC dextran 

flux (Fig. 4A) without significant changes permeability assessed by TEER (Fig. 4D). A repeated 

supply for 4 days of palmitic acid markedly enhanced the permeability of the cell monolayer to 4kD 

FITC-dextran  (p=0.0152). TEER was decreased as soon as the first 48h of treatment (p=0.038). These 

effects were not observed when oleic acid was supplied instead of palmitic acid. A dose-response 

effect of palmitic acid concentration increased 4kD FITC-dextran flux (Fig. 4B) and decreased TEER 

(Fig. 4E). This suggests that in mice gaved with palm oil (composed of 45% palmitic and 35% oleic 

acids) gavage in mice, the observed effects on intestinal permeability are probably due to palmitic 

rather that oleic acid in oil.  

 We analyzed by immunofluorescence the localization of the tight junction proteins ZO-1, 

occludin and tricellulin and of the adherens junction protein, E-cadherin, in cells treated with palmitic 

acid- or oleic acid-containing micelles (Fig. 5A). In cells incubated for 24h with palmitic acid we 

observed a decrease in the fluorescence intensity of all junction proteins analyzed, without 

modification of their localization at cell-cell contact. However, repeated supply of palmitic acid 

micelles during 4 days provoked the internalization of E-cadherin, ZO-1 and occludin as well as the 

loss of tricellulin at tricellular junction. In accordance with the absence of effects on paracellular 

permeability, the distribution of junction proteins was not altered by oleic acid micelles. The 
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determination of junctional proteins amount in total lysates (Fig. 5B-F), showed a decrease of E-

cadherin, occludin and tricellulin protein levels but not for ZO-1, in cells treated for 4 days with 

palmitic acid. Any modification of junctional protein levels was observed in total cell lysates from 

cells treated for 24h with palmitic or oleic acids (data not shown). The mRNA level of occludin is 

decreased only after 4-days palmitic acid treatment (Fig. 5G) but the mRNA levels of the other 

junctional proteins studied were unchanged (data not shown). Altogether these results showed that 4-

days palmitic acid treatment impaired both the localization of junction proteins at cell membrane and 

their expression. 

 Intestinal epithelial cells are able to produce cytokines (Stadnyk 2002; Miron and Cristea 

2012) among which CXCL8 (IL-8), TGFB1 and IL1B genes are particularly well expressed in Caco-

2/TC7 cells. We then determined whether palmitic acid could induce the production of these 

cytokines. Cells were treated for 24h or 4 days with palmitic acid- or oleic acid-containing micelles 

(Fig. 6). Palmitic acid increased the expression of IL-8 (as soon as after 24h of treatment (p=0.0214), 

Fig. 6A) and its secretion in basal medium (after 4-days treatment, Fig. 6B), while oleic acid did not 

exert any effect. A dose-dependent increase of Il-8 mRNA expression (Fig. 6E) as well as a trend for 

IL-8 secretion (Fig. 6G) were observed upon palmitic acid treatment. A small decreased of TGFB1 

mRNA level (p=0.0022) was observed after a repeated supply of palmitic acid (Fig. 6C), whereas 

oleic acid did not modify its expression. A lower concentration of palmitic acid (0.1 or 0.3 mM instead 

of 0.6mM) is not sufficient to modulate TGFB1 expression (Fig. 6F). Neither oleic acid nor palmitic 

acid modified IL-1β mRNA level whatever the duration of the treatments (Fig. 6D). Interestingly, we 

showed that EGTA increased IL-8 (p<0.0001) and IL-1β mRNA levels (p<0.0001) as well as IL-8 

secretion (p=0.0042), indicating that the destabilization of cell-cell junctions was sufficient to induce 

cytokine production. 

 We then determined whether the effects of palmitic acid could rapidly vanish after its removal 

from medium culture (Fig.7). Cells were treated daily during 4 days with palmitic-acid containing 

micelles and then cultured in control medium for 1 or 2 more days. We observed a time-dependent 



	

 
	

	
ARTICLE 1 

	
	 	

83 

decrease of 4kDa FITC-dextran passage through the cell monolayer after the removal of palmitic acid. 

However, 2 days after the medium change, the paracellular permeability of the monolayer remained 

3.5-fold higher in cells previously treated with palmitic acid than in untreated cells (Fig. 7A, 

p=0.0008). The removal of palmitic acid did not restore the basal level of TEER, which remained 

between 10 to 15% lower than control cells (Fig. 7B, p=0.007). Immunofluorescence analyses of 

junctional proteins were performed after 4 days of palmitic acid treatment and 1 and 2 days after its 

removal (Fig. 7C). A gradual recovery of occludin and tricellulin distribution was observed during the 

time-course after palmitic acid removal. The distribution of E-cadherin and ZO-1 remained largely 

altered even 2 days after the cells were cultured back with control medium. Western blots experiment 

showed that tricellulin (Fig.7D) as well as E-cadherin and ZO-1 (data not shown) protein amounts 

were recovered 2 days after palmitic acid removal. While occludin mRNA level returned to control 

value 2 days after palmitic acid removal (Fig. 7E), occludin protein amount remained lower than in 

control cells (Fig. 7D). We also observed that the effects of palmitic acid on IL-8 (Fig. 7F) and 

TGFB1 (Fig. 7G) mRNA levels were abolished 2 days and 1 day, respectively, after its withdrawal 

from culture medium. Altogether these results show that the effects of palmitic acid are slowly 

attenuated after the arrest of treatment.  

 

3.4 Palmitic acid induces a moderate endoplasmic reticulum stress  

We sought to analyze the molecular mechanisms involved in the effects of palmitic acid on 

barrier integrity and cytokine production in Caco-2/TC7 cells. Palmitic acid is known to be a more 

potent inducer of endoplasmic reticulum (ER) stress than oleic acid (Caviglia et al., 2011; Deguil et 

al., 2011; Danino et al., 2015; Pardo et al., 2015). Moreover, it has been shown that the induction of 

ER stress by various stimuli, including fatty acids, is able to increase the expression of cytokines in 

several cell types (Willy et al., 2015; Tang et al., 2017) and may induce dysfunction of epithelial 

barriers (for review (Ma et al., 2017)). We thus wanted to determine whether the observed effects of 

palmitic acid were due to an induction of ER stress. Caco-2/TC7 cells were then treated for 24h or 
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daily during 4 consecutive days with palmitic acid- or oleic acid-containing micelles. A treatment with 

2mM DTT was used as a known inducer of ER stress (Oslowski and Urano 2011; Beriault and 

Werstuck 2013). As expected, DTT treatment increased paracellular permeability (Fig. 8A) and IL-8 

mRNA level (Fig. 8B). The induction of ER stress by DTT treatment was assessed through the 

increased expression of GRP78/HSPA5, GADD153/DDIT3 and of the spliced form of XBP1 (Fig. 8C-

E), three gene markers of unfolded protein response. Oleic acid treatment provoked a moderate 

induction of GRP78/HSPA5 expression, detectable only after 24h treatment (p=0.0085) but not after 4 

days (Fig. 8C), while GADD153/DDIT3 and spliced XBP1 mRNA levels were unchanged (Fig. 8D-

E). Palmitic acid increased, but to a limited extent as compared to DTT, the expression of all these 

three gene markers of ER stress. This effect was mainly observed after 24h treatment (Fig. 8C-E). As 

palmitic acid exerts only a moderate induction of ER stress while its impact on epithelial barrier 

integrity and IL-8 expression was important, we thus hypothesized that other molecular mechanisms 

may also be involved in the deleterious effect of palmitic acid.  

 

3.5 Ceramide mediates the deleterious effect of palmitic acid on epithelial barrier and immune 

response.  

Palmitic acid, but not oleic acid, is a precursor of de novo ceramide synthesis (for review 

(Castro et al., 2014)), which contributes not only to membrane structure but also to signaling and 

metabolic dysfunctions in various cell types, including Caco-2/TC7 cells (Chavez and Summers 2012; 

Tran et al., 2016). We thus wanted to determine whether ceramide could provoke epithelial barrier 

damages and induce cytokine production. Caco-2/TC7 cells were treated with C2-ceramide, a short 

chain cell-permeable biologically active analogue of ceramide. We observed that a 24h-treatment with 

C2-ceramide provoked a marked increase of paracellular permeability (p<0.0001) (Fig. 9A) along with 

a decrease of TEER (p<0.0001) (Fig. 9B). These effects were associated with a decreased expression 

of all junctional proteins (Fig. 9C). Immunofluorescence analysis showed that the localization at cell-

cell contacts of tight junction proteins (ZO-1, occludin and tricellulin) and of the adherens junction 
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protein E-cadherin was altered (Fig. 9D). C2-ceramide treatment increased the expression and the 

secretion of IL-8 (p=0.0201) (Fig. 9E-F), decreased TGFB1 mRNA level (p=0.038) (Fig. 9G) and had 

no effect on IL-1β mRNA level (Fig. 9H). For all these parameters, no effect of ethanol used as the 

vehicle for C2-ceramide was observed. Altogether, these results show that C2-ceramide treatment 

induces effects similar to palmitic acid on intestinal epithelial barrier integrity and cytokine 

production. 

We then determined whether the inhibition of de novo ceramide synthesis could attenuate the 

deleterious effect of palmitic acid. Caco-2/TC7 cells were treated with L-cycloserine, an irreversible 

inhibitor of serine palmitoyltransferase, the first enzyme of de novo ceramide synthesis (Kang et al., 

2010; Lowther et al., 2010). The treatment with L-cycloserine did not modify the paracellular 

permeability of Caco-2/TC7 cell monolayer at the basal state or in presence of palmitic acid-

containing micelles (Fig. 10A). However, L-cycloserine treatment abolished the palmitic acid-

dependent increase in IL-8 mRNA level (Fig. 10B). These results suggested that inflammatory but not 

permeability effects of palmitic acid on enterocytes were dependent on de novo ceramide synthesis. 

 

4. Discussion 

In this study, we showed in vivo that treatment with palm oil gavages for 5 days is sufficient to 

provoke a defect in intestinal epithelial barrier integrity and an alteration of the expression of genes 

involved in the immune response in intestine. Using a model of human enterocytes, we demonstrated 

that palmitic acid exerted direct deleterious effects on intestinal epithelial cells, part of which were 

linked to de novo ceramide synthesis. Our results highlight direct links between the repeated 

consumption of palmitic acid and intestinal barrier defects as well as proinflammatory cytokine 

expression. These alterations, occurring before the onset of diet-induced obesity, may thus represent 

an early event in the initiation of low-grade inflammation. 
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We observed that a single supply of palm oil in vivo in mice provoked an increase in intestinal 

epithelium permeability accompanied by the loss of several tight junction proteins at cell-cell contacts, 

whereas a global mislocalization of tight and adherens junctional proteins was evidenced only after 

repeated gavages. This rapid intestinal barrier defect is in accordance with the increase of albumin 

fecal content, used as a marker of intestinal permeability alteration, observed in mice one day after the 

beginning of a high-fat diet (Johnson et al., 2015). Similar effects on epithelium permeability without 

marked changes in the localization of cell-cell junction proteins at cell-cell contacts were showed in 

Caco-2/TC7 cell monolayer incubated for 24h with palmitic acid-containing micelles. These results 

indicate that a single supply of saturated lipids is sufficient to affect intestinal permeability. 

Interestingly, the increased expression of the gene coding for antimicrobial peptide Reg3γ, as soon as 

after one palm oil gavage, suggests that intestine has engaged mucosal defense. Moreover, in Caco-

2/TC7 cells, an increase in pro-inflammatory cytokine IL-8 mRNA level was observed after only 24h 

treatment with palmitic acid-containing micelles. Altogether our results show that a single supply of 

saturated fatty acids is sufficient to initiate an immune response by intestinal epithelial cells.  

After repeated supplies of palm oil in vivo or palmitic acid in Caco-2/TC7 cells, we observed a 

decreased expression of junctional proteins and a marked mislocalization at cell-cell contacts, which 

were associated with enhanced paracellular permeability as well as additional modifications of 

immune gene expression profile suggesting tissue inflammation. The deleterious effects of palmitic 

acid vanished more slowly than they appeared. 

IL-8 is a chemokine produced by many cell types, including intestinal epithelial cells, and it is 

known to participate to the acute phase response of inflammation (Gruys et al., 2005). In intestine, IL-

8 is involved in the neutrophil activation and infiltration in intestinal mucosa where it participates to 

host defense against bacteria invasion. The level of expression of IL-8 was enhanced with the duration 

of lipid challenge in palmitic acid-treated human enterocytic Caco-2/TC7 suggesting tissue 

inflammation. IL-8 expression is absent in mice (Nomiyama et al., 2010), IL-1ß is an important pro-

inflammatory cytokines in this species. In colon of mice, the protein IL-1β level increased 
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significantly in parallel with the duration of lipid challenge, highlighting a tissue inflammatory 

response to lipid gavages. An increased expression of Il-1β expression in intestine was frequently 

reported in high-fat-diet models and in human obesity (for review (Winer et al., 2016)). Both IL-1β 

and IL-8 are known to perturb tight junction proteins (Al-Sadi	et	al.,	2013;	Yu	et	al.,	2013),	their 

time-dependent increase of expression with lipid challenge may contribute to exacerbate the 

mislocalization of junction protein and thus to amplify permeability defects. 

We observed that the expression of Gata3 mRNA level is decreased in proximal intestine only 

after repeated palm oil gavages. Gata3 is a key transcription factor involved in the differentiation and 

the maturation of innate lymphoid cells controlling both the expression of pro-and anti-inflammatory 

cytokines (Wan 2014). A link between Gata3 activity and visceral fat inflammation during obesity was 

recently reported (Qiang et al., 2016). However, its exact role in intestinal inflammation remains to be 

characterized. Interestingly the increase of Reg3g mRNA level observed after one palm oil gavage 

was no longer observed after repeated gavages. As Reg3g is involved in host defense against bacteria, 

this suggests that saturated fat overload results in a decreased efficiency of intestinal defense response.  

Associated with changes in immune-related gene expression and intestinal barrier defects, we 

observed that repeated palm oil gavages provoked changes in microbiota composition. We studied 

some bacteria species previously reported as modified by high-fat diet or obesity. We showed a 

decreased fecal abundance of Clostridium leptum, Akkermansia muciniphila and segmented 

filamentous bacteria in palm oil-treated mice as compared to control. These three bacteria species are 

known to exert a protective role against pathogen proliferation and to contribute to host defense by 

promoting maturation of immune cells (Thursby and Juge 2017). Their decreased abundances were in 

relevance with inflammatory status of the tissue. The anti-inflammatory properties of Akkermansia 

muciniphila has gained attention and highlight its interest as a therapeutic target to treat intestinal 

inflammation (Ottman et al., 2017). In particular, gut Akkermansia muciniphila abundance is reduced 

in human obesity (Karlsson et al., 2012; Dao et al., 2016) and in high-fat diet-induced obesity in mice 

(Everard et al., 2013). The decreased of abundance segmented filamentous bacteria observed after 
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palm oil gavages is in accordance with its reduction in mice submitted to long-term high-fat diet 

(Garidou et al., 2015), but its role in inflammation is still questioned (Ericsson et al., 2014). We 

observed an increase in Bacteroides sp. in palm oil-treated mice, in congruence with several reports 

showing an increase in the abundance of this species associated with the consumption of high-fat diet, 

rich in saturated fatty acids (Wu et al., 2011; Yan et al., 2013; Caesar et al., 2015; Heinritz et al., 

2016). We can conclude that 4 gavages with palm oil are sufficient to promote changes in microbiota 

composition corresponding to the changes reported in obesity induced by high-fat diet and relevant to 

gut inflammation. 

The studies of molecular mechanisms involved in the deleterious effects of palmitic acid on 

intestinal epithelial cells revealed the contribution of de novo synthesis of ceramides. In established 

obesity, elevation of circulating saturated fatty acids and inflammatory signals promote ceramide 

synthesis (Fucho et al., 2017). In the present study, we observed that C2-ceramide acted on three 

parameters: increase in intestinal epithelial permeability, mislocalization of junctional proteins and 

modification of cytokine expression. Interestingly, intestinal barrier defect was shown recently to be 

associated with elevated C16-ceramide levels, (Kim et al., 2017) and with increased ceramides content 

induced by sphingomyelinase addition (Bock et al., 2007). Ceramides can increase permeability 

through their properties to perturb membrane raft domains (van Blitterswijk et al., 2003; Zhang et al., 

2009; Bieberich 2018) where several junctional proteins are localized (Nusrat et al., 2000; Dodelet-

Devillers et al., 2009). Ceramides may also alter membrane integrity by their capacities to form 

channels (Perera et al., 2012). Nevertheless, we observed that the inhibition of de novo ceramide 

synthesis reduced pro-inflammatory cytokine expression but failed to restore cell monolayer 

permeability suggesting a role of de novo ceramide synthesis limited to the inflammatory process. 

Very few studies have analyzed the direct impact of ceramides on cytokine expression, however an 

induction of IL-6 by C2-ceramide was reported in human fibroblast (Laulederkind et al., 1995) and in 

human astrocytoma cells (Fiebich et al., 1995). We showed that the inhibition of de novo ceramide 

synthesis prevented the increase of IL-8 secretion in palmitic acid-treated cells. Thus, palmitic acid 
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engaged multiple mechanisms, including ceramide pathways, for exerting its deleterious effects on 

intestinal permeability and inflammation. 

Recent advances suggest that fatty acids may act via their binding to membrane receptors 

(such as TLRs, G protein-coupled receptor) or nuclear receptors (such as PPARs, LXR or FXR) and 

the subsequent rapid activation of signaling cascades (for review (Suzuki 2013)). Our study showed a 

specific effect of palmitic acid since oleic acid showed no effect on intestinal barrier integrity and 

cytokine expression. However, several fatty acids, such as short and medium fatty acids, were reported 

to modulate intestinal barrier integrity (for review (Suzuki 2013)).  Interestingly we observed in Caco-

2/TC7 cells that a very short treatment (4 hours) with oleic acid under the form of mixed micelles 

might perturb the distribution of tricellulin and increase intestinal permeability (Genser et al., 2018). 

Altogether, these data underline the differential effects of fatty acids according to their nature and 

length of exposure on intestinal barrier integrity. Beneficial or deleterious effects of fatty acids on 

intestinal barrier and inflammation were reviewed by Fritsche K.L. (Fritsche 2015). Interestingly the 

deleterious effect of palmitic acid on cellular functions can be counteracted or diminished in presence 

of oleic acid (Palomer et al., 2018). Other lipids or nutrients are contributing to barrier dysfunctions 

(De Santis et al., 2015).  

In healthy humans, meals are constituted of mixed nutrients and intestinal barrier integrity is 

maintained and post-prandial inflammation is limited. Nevertheless, in pathological condition a 

chronicization of the alteration of barrier functions might occur. Indeed, we have previously observed 

that obese subjects presents only subtle intestinal barrier defect that can be revealed after a lipid load 

(Genser et al., 2018) and hyperglycemia was recently described to disturb gut barrier (Thaiss et al., 

2018). Thus, excess of nutrients in pathological context might further aggravate barrier dysfunctions 

probably by exceeding regulatory capacities of the gut. Further studies are needed to identify other 

contributors of metabolic-associated gut barrier defects.  
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In conclusion, our results showed that limited repeated supply of saturated fatty acids and 

particularly palmitic acid are sufficient to deregulate intestinal inflammatory response, to induce an 

intestinal barrier defect and to change microbiota composition. Most of these alterations, which are 

features of obesity and metabolic diseases, stress that reiterated consumption of saturated fatty acids is 

an early player in gut alterations observed in these pathologies.  
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Figure legends  

Figure 1: Palm oil gavage increases intestinal permeability in vivo. Mice were submitted to one 

(1x) or 5 gavages (5x) with 200µl palm oil or water. A control group was constituted of mice treated 

with DSS in drinking water to induce barrier damage. The intestinal permeability (A) was assessed 

after the gavage with oil or water by measuring plasma concentration of FITC-dextran one hour after 

an oral 4kDa FITC-dextran load. Results are expressed in µg/ml (mean ± SEM, n=5-10). **p<0.01, 

****p<0.0001 as compared to water. The distribution of cell-cell junction proteins, E-cadherin, ZO-1, 

occludin and tricellulin (B) was analyzed by immunofluorescence on jejunum sections. Nuclei were 

stained with 4’,6-diamidino-2-phenylindole (DAPI). An enlargement is shown for each condition. 

White arrows indicate the localization of the junctional proteins in control (water) conditions. Red 

arrows point out E-cadherin and ZO-1 mislocalization after 5x palm oil gavages. Scale bar= 20µm. 

The expression of occludin in jejunum (C) was determined by RT-QPCR. Cyclophilin (cyclo) was 

used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of target gene to 

cyclophilin mRNA level (mean ± SEM, n=10). *p<0.05, ***p<0.001 as compared to water condition.  

 

Figure 2: Repeated gavages with palm oil modify expression of genes involved in immune 

response. Mice were submitted to one (1x) or 5 (5x) gavages with 200µl palm oil or water. A control 

group was constituted of mice treated with DSS. Intestine was collected one hour after the last gavage. 

The expression of Gata3 in jejunum (A) and of Reg3g in ileum (B), were determined by RT-PCR. 

Cyclophilin was used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of 

target gene to cyclophilin (cyclo) mRNA level (mean ± SEM, n=5-10). The quantification of Il-1β 
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protein in the colon (C) was determined by ELISA. Results are expressed in pg/mg of protein as mean 

± SEM, n=5-9. *p<0.05, **p<0.01 as compared to water condition. 

 

Figure 3: Repeated palm oil gavages modify gut bacterial species. Mice were submitted to daily 

gavages with water or palm oil for 4 consecutive days. Total DNA from feces was extracted and used 

for quantification of bacteria species content by qPCR. Results are expressed as mean ± SEM, n=4-6, 

*p<0.05 as compared to water, ns: not statistically significant, a.u.: arbitrary unit. Fecal quantification 

of (A) Clostridium leptum, (B) Akkermansia muciniphila, (C) Segmented Filamentous bacteria, (D) 

Bacteroides sp., (E) Lactobacillus sp., and (F) Clostridium coccoides. (G) Total fecal bacterial counts. 

 

Figure 4: Saturated palmitic acid but not unsaturated oleic acid increases paracellular 

permeability of an intestinal epithelial monolayer.  Caco-2/TC7 cells were incubated with control 

medium (Ctrl) or treated with micelles containing either palmitic acid (PA) or oleic acid (OA) for 24h 

or daily for 4 consecutive days (4d). A 24h-treatment with 4.5mM EGTA was used as positive control 

known to display altered epithelial barrier integrity. Paracellular permeability across Caco-2/TC7 cell 

monolayer (A) was evaluated by measuring the accumulation during 4 h of 4kDa FITC-dextran in the 

basal compartment. Results are expressed as percentage of 4kDa FITC-dextran input (amount added in 

the apical compartment), mean ± SEM, n=6-15. Fold-increase, as compared to control condition, is 

indicated at the top of the corresponding histogram. Dose-response to palmitic acid (B) was evaluated 

on cells incubated for 4 days with micelles containing 0.1mM or 0.3mM or 0.6mM of palmitic acid 

(PA). The accumulation of 4kDA FITC-dextran in the basal compartment was determined. Results are 

expressed as in (A). mean ± SEM, n=6. **p<0.01, *** p<0.001 as compared to control (Ctrl) cells. 

TEER (inverse relationship to permeability) (C) was assessed in control and EGTA-treated cells. 

Results are expressed in percentage of TEER measured in control condition, as mean ± SEM, n=6. 

The percentage of decrease compared to the control condition is indicated. Time-course of TEER (D) 

was measured before (0) and every 24h during the treatment with micelles containing palmitic acid 

(PA) or oleic acid (OA) or in untreated cells (control). The percentage of decrease in PA-treated cells 

as compared to control cells is indicated. Results are expressed in ohm.cm2 as mean ± SEM, n=6. 

*p<0.05, **p<0.01, *** p<0.001 as compared to untreated cells, unless otherwise indicated. Dose-

response of TEER (E) was assessed in control and in cells treated for 4 days with micelles containing 

0.1mM, or 0.3mM or 0.6mM palmitic acid. Results are expressed as in D, mean ± SEM, n=6. *p<0.05, 

*** p<0.001 as compared to control cells. 

 

Figure 5: Repeated supplies of palmitic acid, but not of oleic acid, alter the expression of 

junctional proteins and their localization at cell-cell contacts. Cells were incubated or not with 
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palmitic acid (PA)-containing micelles (for 24h or 4 days) or with oleic acid (OA)-containing micelles 

(for 4 days). Immunofluorescence analysis (A) was performed to study the localization of E-cadherin, 

ZO-1, occludin and tricellulin. Nuclei were stained DAPI. Bar=20µm Protein levels (B) were 

determined in cell lysates by Simple Western. Reconstituted images are shown. Hsc70 protein levels 

were used as loading control. Quantification of junctional protein levels normalized to Hsc70 protein 

levels (C-F). Results are expressed in arbitrary units (a. u.) as mean±SEM, n=4, *p<0.05, **<0.001 as 

compared to control (Ctrl). The mRNA level of occludin (G) was quantified by RT-PCR. Cyclophilin 

was used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of target gene to 

cyclophilin (cyclo) mRNA level (mean±SEM, n=6-15). 

 

Figure 6: Palmitic acid modifies cytokine expression in Caco-2/TC7 cells. Caco-2/TC7 cells were 

cultured in the same conditions as in Figure 4. The mRNA levels of IL-8 (A), TGFB1 (C) IL-1β (D), 

were quantified by RT-PCR. Cyclophilin was used as reference gene. Results are expressed in 

arbitrary units (a.u.) as the ratio of target gene to cyclophilin (cyclo) mRNA level (mean ± SEM, n=6-

15). The concentration of IL-8 protein (B) in the basal compartment was quantified by ELISA. Results 

are expressed in pg/ml as mean±SEM, n=6. Fold-increase as compared to control condition is 

indicated at the top of histograms. Dose-response to palmitic acid on mRNA levels of IL-8 (E) and 

TGFB1 (F) was studied. Cells were incubated for 4 days in presence of micelles containing 0.1mM, 

0.3mM or 0.6mM palmitic acid (PA). The mRNA levels were quantified by RT-PCR. Cyclophilin was 

used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of target gene to 

cyclophilin (cyclo) mRNA level (mean±SEM, n=4). Dose-response to palmitic acid on IL-8 secretion 

(G) was determined as in (B). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 as compared to control.  

 

Figure 7: The removal of palmitic acid partially restores its deleterious effects on intestinal 

epithelial cell monolayer integrity and on expression of genes involved in immune response. 

Caco-2/TC7 cells were cultured in control medium (Ctrl) or with palmitic acid-containing micelles 

(PA) for 4 days followed or not by a period of one or 2 more days in control medium without PA (w/o 

PA). (A) Paracellular permeability was evaluated by measuring 4kDa FITC-dextran flux across Caco-

2/TC7 monolayer, after a 4-day palmitic acid treatment and each day after cells were shifted to control 

medium. FITC-dextran 4 kilodaltons was added in the apical compartment and fluorescence values 

were determined in the basal compartment 4 hours later. Results are expressed in percentage of 4kDa 

FITC-dextran input in the apical compartment, mean ± SEM, n=6-18. Fold-increase, as compared to 

control condition, is indicated at the top of histograms. *p<0.05, **p<0.01,*** p<0.001 as compared 

to control cells at the same day of the culture, unless otherwise indicated. (B) TEER was measured in 

control (white circles) and in palmitic acid-treated cells. The measure was performed before treatment 
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(day 0), at day 1 and 4 of palmitic acid treatment (black circles) and after the removal of palmitic acid-

containing micelles (grey circles). Dashed line indicated the day when PA-treated cells were shifted to 

control medium. Results are expressed in ohm.cm2 as mean ± SEM, n=6-18. The percentage of 

decrease in PA-treated cells as compared to control cells is indicated. **p<0.01, ***p<0.001 as 

compared to control cells. (C) Immunofluorescence analysis was performed to study the localization 

of E-cadherin, ZO-1, occludin and tricellulin. Nuclei were stained with DAPI. Bar=20µm. Occludin 

and tricelllulin protein levels (D) were measured by Simple Western. Reconstituted images are shown. 

Actin was used as loading control. The mRNA levels of occludin (E), IL-8 (F) and TGFB1 (G) were 

quantified by RT-PCR. Cyclophilin was used as reference gene. Results are expressed in arbitrary 

units (a.u.) as the ratio of target gene to cyclophilin (cyclo) mRNA level (mean ± SEM, n =6-18). 

*p<0.05, **p<0.01 as compared to control, unless otherwise indicated, ns: not statistically significant. 

 

Figure 8: Palmitic acid provokes a moderate ER stress in Caco-2/TC7 cells. Caco-2/TC7 cells 

were incubated with control medium (Ctrl), or were treated for 24h or daily for 4 consecutive days 

(4d) with micelles containing either palmitic acid (PA) or oleic acid (OA). A 4h-treatment with 2mM 

DTT was used to induce an ER stress (positive control). (A) Paracellular permeability was evaluated 

by measuring FITC-dextran flux across Caco-2/TC7 cell monolayer. FITC-dextran 4 kilodaltons was 

added in the apical compartment the last day of the experiment and fluorescence values were 

determined in the basal compartment 4 hours later. Results are expressed in percentage of 4kDa FITC-

dextran added in the apical compartment (input), mean ± SEM, n=4-6. The mRNA levels of IL-8 (B) 

GRP78/HSPA5 (C), GADD153/DDIT3 (D) and XBP-1 spliced form (E) were quantified by RT-PCR. 

Cyclophilin was used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of 

target gene to cyclophilin (cyclo) mRNA level, (mean ± SEM, n=6-15). Fold-increase as compared to 

control condition is indicated at the top of some histograms. *p<0.05, **p<0.01, ***p<0.01, 

****p<0.0001 as compared to control.  

 

Figure 9: C2-ceramide addition provokes barrier defects and modulates cytokine expression. 

Caco-2/TC7 cells were culture in absence (Ctrl) or in presence for 24h of vehicle 0.5% ethanol 

(EtOH), or 100µM C2-ceramide (C2-Cer). (A) Paracellular permeability was evaluated by measuring 

4kDa FITC-dextran flux across Caco-2/TC7 cell monolayer as in Figure 4. Results are expressed as 

percentage of 4kDa FITC-dextran input in the apical compartment, (mean ± SEM, n=6). (B) TEER 

was measured after 24h-treatments. Results are expressed in % of value obtained in untreated cells, 

mean ± SEM, n=6. (C) Representative western blots of junction protein levels determined in cell 

lysates by Simple Western. Reconstituted images are shown. Hsc70 was used as loading control. (D) 

Caco-2/TC7 cells were analyzed by immunofluorescence for tight junction proteins ZO-1, occludin, 
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tricellulin and for E-cadherin an adherens junction protein. Nuclei are stained with DAPI. Bar= 20µm. 

The mRNA levels of IL-8 (E), TGFB1 (G) and IL-1B (H) were quantified by RT-PCR. Cyclophilin 

was used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of target gene to 

cyclophilin (cyclo) mRNA level (mean ± SEM, n=6-15). (F) The concentration of IL-8 protein in the 

basal compartment was quantified by ELISA. Results are expressed in pg/ml as mean ± SEM (n=6). 

*p<0.05, **p<0.01, ***p<0.01, ****p<0.0001 as compared to untreated cells.  

 

Figure 10: Inhibition of de novo ceramide synthesis abolishes inflammatory effects of palmitic 

acid. Caco-2/TC7 cells were cultured for 24h in absence (Ctrl) or in presence of micelles containing 

palmitic acid (PA) or 20mM L-cycloserine (Lcyclo). In one condition, cells were pre-treated with L-

cycloserine for 1 h before incubation for 24h with PA-containing micelles (PA+Lcyclo). (A) 

Paracellular permeability was evaluated by measuring 4kDa FITC-dextran flux across Caco-2/TC7 

cell monolayer. Results are expressed in percentage of 4kDa FITC-dextran input in the apical 

compartment, mean ± SEM, n=3-6. (B) The mRNA levels of IL-8 were quantified by RT-PCR. 

Cyclophilin was used as reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of 

IL-8 gene mRNA level to cyclophilin (cyclo) mRNA level (mean ± SEM, n=3-6). **p<0.01*** 

p<0.001 as compared to control cells unless indicated, ns: non statistically significant.  
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Table 1: Primer sequences and bacteria strains used used for the quantification of bacterai group or species

group or species bacteria strain used for
name sequence name the standard curve 

Clostridium leptum Clept 09 5'-CCTTCCGTCCGSAGTTA-3' Clept 08 5'-GAATTAAA CACAT CT CACTGCTT-3' Faecalibacterium prausnitzii
Akkermansia muciniphila AKK-F 5'-GGTAGCCGGTCTGAGAGGAT-3' AKK-R 5'-TAGGTGTCTGGACCGTGTCTC-3' see legend below
Lactobacillus sp. Lacto 04 5'-CGCCACTGGTGTTCYTCCATA-3' Lacto 05 5'-AGCAGTAGGGAATCTTCCA-3' Lactobacillus acidophilus
Segmented Filamentous Bacteria SFB-F 5'-CACGGTCCATACTCCTACGG-3' SFB-R 5'-AGGGTTTCCCCCATTGTG-3' see legend below
Bacteroides sp. Bacter 11 5'-CCTWCGATGGATAGGGGTT-3' Bacter 08 5'-CACGCTACTTGGCTGGTTCAG-3' Bacteroides thetaiotaomicron
Clostridium coccoides Ccoc 07 5'-GACGCCGCGTGAAGGA-3' Ccoc 14 5'-AGCCCCAGCCTTTCACATC-3' Clostridium coccoides
All bacteria F_Bact 1369 5'-CGGTGAATACGTTCCCGG-3' R_PROK 1492 5'-TACGGCTACCTTGTTACGACTT-3' Escherichia coli 

The determination of  Akkermansia muciniphila and Segmented Filamentous Bacteria abundance was determined by relative quantification to a control sample. 

 reverse primer forward primer
sequence
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Table 2: List of primer sequences used for RT-PCR analyses

human genes (alias names)  forward primer  reverse primer
CXCL8 (IL-8) 5'-AGACAGCAGAGCACACAAGC-3' 5'-ATGGTTCCTTCCGGTGGT-3'
TGFB1 (TGF-Beta-1) 5'-GCAGCACGTGGAGCTGTA-3' 5'-CAGCCGGTTGCTGAGGTA-3'
IL1B (IL-1-Beta) 5'-CTGTCCTGCGTGTTGAAAGA-3' 5'-TTGGGTAATTTTTGGGATCTACA-3'
HSPA5 (GRP78, BIP) 5'-CTGGGTACATTTGATCTGACTGG-3' 5'-TCCTTGAGCTTTTTGTCTTCCT-3'
DDIT3 (GADD153, CHOP) 5'-AGCTGTGCCACTTTCCTTTC-3' 5'-CAGAACCAGAGAGGTCACA-3'
XBP1 spliced form 5′-TGCTGAGTCCGCAGCAGGTG-3′ 5'-GCTGGCAGGCTCTGGGGAAG-3′
PPIB (Cyclophilin B)* 5'-GCCTTAGCTACAGGAGAGAA-3'    5'-TTTCCTCCTGTGCCATCTC-3'
CDH1 (e-cadherin) 5'-GCCGAGAGCTACACGTTCA-3' 5'-GACCGGTGCAATCTTCAAA-3'
TJP1 (ZO-1) 5'-CAGAGCCTTCTGATCATTCCA-3' 5'-CATCTCTACTCCGGAGACTGC-3'
OCLN (occludin) 5'-AGGAACCGAGAGCCAGGT-3' 5'-GGATGAGCAATGCCCTTTAG-3'
MARVELD2 (tricellulin) 5'-CAGGCTGTCCTGAGGAAGTT-3' 5'-CCGAATGATGTGGCAATCT-3'

mouse genes  forward primer  reverse primer
Cdh1 (e-cadherin) 5'-TCCTTGTTCGGCTATGTGTC-3' GGCATGCACCTAAGAATCAG
Tjp1 (ZO-1) 5'-AGGACACCAAAGCATGTGAG-3' 5'-GGCATTCCTGCTGGTTACA-3'
Ocln (occludin) 5'-TCCGTGAGGCCTTTTGAA-3' 5'-GGTGCATAATGATTGGGTTTG-3'
Marveld2 (tricellulin) 5'-AGGCTCCCACATCATTCTGA-3' 5'-TCCAGAAACGAAGGGTCATT-3'
Gata3 5'-TTATCAAGCCCAAGCGAAG-3' 5'-TGGTGGTGGTCTGACAGTTC-3'
Reg3g 5'-ACCATCACCATCATGTCCTG-3' 5'-GGCATCTTTCTTGGCAACTT-3'

* PPIB gene is used as reference gene and the same sequences are used for both human and mouse species.
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Role of AhR on intestinal barrier integrity and inflammation 

The results of this study are presented at the end of this chapter in the form of a 
manuscript in preparation entitled: “AhR activation defends gut barrier integrity 
against damage occurring in obesity”, which I am the first author (article 2). 
 

 
Our team described an inflammation in the small intestine of obese subjects leading to 

an increased susceptibility to epithelial cells dysfunctions (Monteiro-Sepulveda et al., 2015). 

In a recent study, we showed that obese subjects present subtle intestinal barrier alterations in 

the basal state and increased jejunal permeability that was revealed after a lipid load. This 

susceptibility to lipid challenge was correlated to inflammatory and metabolic status (Genser 

et al., 2018). In addition, studies showed that genetically and diet-induced	obese mice present 

a higher intestinal permeability, higher endotoxemia and a higher level of proinflammatory 

cytokines compared to control mice (Brun et al., 2007; Cani et al., 2007; Cani et al., 2008). 

Therefore, these findings led us to hypothesize possible links between environmental factors, 

lipids, obesity and low-grade intestinal inflammation, which can be correlated to intestinal 

barrier disruption. 

 

Low AhR tone correlates with intestinal inflammation in obese patients. 

For human studies, this project benefits from a well-characterized cohort of non-

diabetic obese and lean subjects collected by the Research Center for Human Nutrition at the 

Pitié-Salpêtrière Hospital (Paris, France) through collaborative work with Christine Poitou 

and Karine Clément (Table 1 in article 2). This biobank includes blood samples and intestinal 

tissues obtained from bariatric surgery (gastric bypass) for obese subjects or after intestinal 

biopsy for non-obese subjects. 

The obese patients underwent by-pass surgery meanwhile a piece of the small 

intestine, a surgical waste is collected. The jejunal fragment is dissociated into epithelium and 

lamina propria. Afterward, based on previous data obtained by our team characterizing low-

grade intestinal inflammation in obese subjects (Monteiro-Sepulveda et al., 2015), we 

classified the subjects according to their small intestine inflammation score, established by the 

densities of T lymphocytes using the CD3 marker. We used the epithelium/lamina propria 

(Epi/LP) CD3 ratio, as a parameter to evaluate intestinal inflammation quantifying infiltration 

of T lymphocytes within intestinal epithelium in jejunum samples. We analyzed the AhR tone 
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by measuring mRNA levels of AhR and of its target genes (CYP1A1, CYP1B1, IL-22, 

AhRR) by RT-qPCR (TaqMan LDA) in jejunum epithelium of obese subjects. 

We observed that obese patients display a higher Epi/LP CD3 ratio in comparison to 

lean patients, indicating that the gut of obese patients presents a local inflammation. 

Moreover, we observed a more important heterogeneity in Epi/LP CD3 ratio in obese as 

compared to non-obese subjects (Figure 1A in article 2). We established a correlation between 

Epi/LP CD3 inflammation score and mRNA level of AhR target genes in jejunum epithelium 

(Figure 1B-F in article 2). Our results show that obese subjects presenting a high CD3 ratio 

display a lower AhR activity. This result suggests that obese patients with higher recruitment 

of T lymphocytes in the small intestine have an impaired AhR activation.  

The obese patients studied in our work have well-establish obesity and inflammatory 

state. Thus, it is difficult to know whether the intestinal inflammation results from an 

impaired AhR tone or whether the decreased expression of their target genes was a 

consequence of the inflammation. Other factors can contribute to the modulation of AhR tone. 

Thus, we decided to use cellular and animal models to study the mechanistic implication of 

AhR activation on the intestinal barrier and the onset of gut inflammation. 

 

AhR activation prevented damages on the intestinal epithelial barrier in mice 

and intestinal epithelial cells.  

We assessed the induction of AhR activity in enterocytes presenting an intestinal 

epithelial barrier disturbance to evaluate the role of this transcription factor on intestinal 

inflammation and epithelial barrier disruption. For in vivo studies, we analyze the effect of 

AhR activation on intestinal inflammation in C57BL/6 wild-type mice submitted to the 

nutritional challenge. 

Previous data of our team shows that mice fed with a long-term high fat diet exhibit 

low AhR activation in the intestine, which is reflected by the low expression of its target 

genes, CYP1A1 and CYP1A2 in the tissue (not published data). A low AhR activity may be 

due to the lower amount of dietary fibers present in the high-fat diet as compared to control 

chow diet. Indeed, fibers are known to be metabolized in the gut by microbiota fermentation 

resulting in the production of short chain fatty acids, such as acetate, propionate, and butyrate 

(Koh et al., 2016) and a recent study have demonstrated that butyrate is able to activate AhR 

(Marinelli et al., 2019). Thus, in order to limit the impact of fiber depletion in our 
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experiments, mice were gavaged daily with palm oil while being maintained on a standard 

diet (normal fiber composition) ad libitum. This model was chosen in article 1 to demonstrate 

a postprandial alteration of the intestinal barrier and a wild gut inflammation after palm oil 

intake.  

Among the different exogenous or endogenous AhR ligands available, we chose to use 

the AhR agonist β-naphthoflavone (βNF) to activate AhR in mice and in Caco-2/TC7 cells. 

βNF is a synthetic derivative of a naturally occurring flavonoid that has been widely used as 

an AhR agonist although its capacity to induce AhR target genes is less potent than TCDD 

(Soshilov and Denison 2014). Some exogenous ligands such as TCDD (the most studied and 

powerful of them) are carcinogen and/or mutagen (Sugimura 2000). Contrary to these ligands, 

βNF displays no mutagenic activity and is thus less dangerous to manipulate (Yokouchi et al., 

2007; Allan 2008). Moreover, while the endogenous AhR agonist FICZ is considered to be as 

potent as TCDD, the effect of FICZ on the induction of AhR target genes, in our experimental 

conditions in Caco-2/TC7 cells, was lower than observed for βNF.  

 

As observed in my previous work (see article 1), 5 days palm oil treatment increased 

paracellular permeability in vivo, perturbed the location of tight junction proteins ZO-1, 

occludin and tricellulin at cell-cell contact in the jejunum and induced a mild inflammation in 

the intestine. In mice submitted to the concomitant supply of palm oil and βNF (Figure 2 in 

article 2), I observed that AhR activation, confirmed by the induction of the AhR target genes 

CYP1A1 and CYP1B1 in the jejunum, partially prevented the mislocalization of three 

junction proteins caused by palm oil gavage. This partial restoration was not sufficient to 

counteract the defects induced by palm oil on paracellular permeability. However, in our 

experimental conditions, AhR activation seems to protect the cell-cell junctions’ disruption 

induced by lipids. 

To better understand the role of the AhR activation on cell-cell junction disruption, we 

carried out experiments in Caco-2/TC7 cell model. In this cellular model, we can study the 

role of AhR pathway directly on the intestinal epithelium without the interference of other 

mechanisms in which AhR is involved, such as microbiota, immune cell regulation, etc.  

To investigate the consequences of an increase of AhR tone in enterocytes, we studied 

the effect of the AhR agonist βNF on intestinal epithelium whose functions are perturbed by 

factors affecting the intestinal epithelial barrier permeability and cell-cell junctional 
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complexes, i.e. in the presence of palmitic-acid containing micelles or of a calcium chelator  

(see article 1).  

I showed in Caco-2/TC7 cells that the concomitant treatment with palmitic acid and 

βNF was able to improve the cell-cell junctions’ disruption induced by palmitic acid (data not 

shown). Indeed, I observed that the tight junction proteins, occludin, ZO-1 and tricellulin 

were maintained at cell-cell contact upon βNF treatment. However, the AhR activation was 

not able to counteract the deleterious effect of palmitic acid on paracellular permeability and 

on inflammatory markers (IL-8, TGFβ and TNFα) (data not shown). So, as in mice fed with 

palm oil, AhR activation seems to act on cell-cell junctions in Caco-2/TC7 cells treated with 

palmitic acid. 

Since AhR agonist appears to play a role in the integrity of cellular junctions in the 

intestinal epithelium, we studied the effect of AhR activation on cell-cell junction integrity in 

a situation of chemically-induced barrier damage. We used EGTA, a calcium chelator known 

to provoke the disruption of junctional protein complexes and to prevent the return of junction 

proteins to the membrane, that resulted in the opening of the intercellular junction and in the 

increase of paracellular permeability (Tria et al., 2013). We then analyzed the role of βNF on 

barrier integrity and cytokines expression and secretion triggered by this chemical barrier 

damage. 

Our results demonstrated that the AhR agonist was able to counteract the chemical 

barrier damage on paracellular permeability to ions (TEER), on tight junctions (occludin, 

tricellin and ZO-1) location (Figure 3 in article 2) and on proinflammatory cytokines secretion 

and expression (Figure 4 in article 2). This suggests that AhR activation might improve the 

intestinal inflammation and epithelial damage triggered by EGTA.  

As cell-cell junction integrity is depended on processes controlled by kinases and 

phosphatases pathways, I studied the implication of PKC, p38MAPK and ERK kinases on 

AhR action. I analyzed the effects of specific inhibitors of these kinases on the EGTA-

dependent decrease of TEER in presence of βNF in Caco-2/TC7 cells (Figure 5 in article 2). I 

observed that the inhibition of PKC and p38MAPK signaling pathway blocked the action of 

AhR agonist on TEER. These results suggest the potential implication of these two kinases in 

the protective effect of βNF on intestinal permeability to ions. 
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Taken together, our data revealed that the AhR tone is decreased in non-diabetic 

obese subjects presenting with gut inflammation. Besides, our studies in mice and 

intestinal epithelial cells showed that AhR activation plays an important role in 

intestinal barrier integrity and inflammation, both epithelial dysfunctions present in 

obese subjects. Thus, our work suggests that the administration of AhR agonists might 

protect the intestine damages reported in obesity. 
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ABSTRACT  

Obesity is characterized by systemic and tissue low-grade inflammation, however the mechanisms 

involved need further understanding. Accumulation of inflammatory cells is also found in the 

intestine. The obesity-associated environmental changes might be involved in the development of this 

inflammation process. In this context, we focused on intestine response to external stimuli mediated 

by the activation of aryl hydrocarbon receptor (AhR). Jejunum samples from subjects with normal 

weight and severe obesity were phenotyped according to T lymphocytes infiltration in epithelium from 

lamina propria, and were assayed for mRNA level of AhR target genes. The effect of an AhR agonist 

was studied in mice and in Caco-2/TC7 cells. AhR target gene expression, permeability to small 

molecules and ions and location of cell-cell junction proteins were recorded in condition of altered 

intestinal permeability. We showed that a low AhR tone correlated with a high inflammatory score in 

intestinal epithelium in human severe obesity. Moreover, AhR activation protected junctional 

complexes in intestinal epithelium in mice challenged by an oral lipid load. AhR ligand prevented 

chemically induced damages of barrier integrity and cytokine expression in Caco-2/TC7 cells. PKC 

and p38MAPK signaling pathways were involved in this AhR action. Taken together, the results of 

these series of human, in vivo and in vitro experiments suggest a protective effect of AhR activation in 

the intestine. We therefore propose that AhR constitutes a valuable target to protect intestinal 

functions in metabolic diseases that can be achieved in the future via food or drug ligands. 
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INTRODUCTION 

The development of obesity is characterized by a progressive aggravation of systemic low-grade 

inflammation together with metabolic deterioration. Inflammation also occurs in tissues such as in 

adipose tissue (Reilly and Saltiel 2017; Stolarczyk 2017), liver (Loomis et al., 2016) and more 

recently in the small intestine (Monteiro-Sepulveda et al., 2015). During obesity, adipose tissue 

contributes to inflammation either directly in the systemic vascular system but also through the portal 

vein via the release of free fatty acids, cytokines and adipokines (Makki et al., 2013). Recent reports 

highlighted the role of intestine as an early contributor to low-grade inflammation. Studies in mouse 

models of high-fat diet induced obesity suggested that the passage of bacterial components such as 

lipopolysaccharides (LPS) from the intestinal lumen towards the circulation promotes the systemic 

inflammation through mechanisms involving intestinal barrier damage (Cani et al., 2007; Cani et al., 

2008; Araujo et al., 2017). Intestinal permeability was increased during the first week of high-fat diet 

in mouse (Hamilton et al., 2015; Johnson et al., 2015) and, as we recently demonstrated, after a single 

gavage with palm oil (Ghezzal et al., in press). These last results suggested that intestinal barrier 

defects may precede the onset of obesity. In human, we showed that the higher T lymphocytes density 

in jejunal epithelium of obese compared to lean patients was associated with markers of systemic 

inflammation (Monteiro-Sepulveda et al., 2015). In fasting state, subtle intestinal barrier alterations 

were evidenced in jejunum samples of subjects with severe obesity that were further enhanced after an 

ex-vivo lipid challenge (Genser et al., 2018). The patient susceptibility to lipid-induced barrier defect 

was correlated with both intestinal and systemic inflammation. Altogether these studies established a 

link between intestinal barrier and low-grade inflammation in obesity, where the molecular actors that 

orchestrate this relationship need to be deciphered.  

Several data highlight the role of AhR in metabolic diseases and inflammation. The aryl hydrocarbon 

receptor (AhR), a transcriptional factor and a sensor of environmental changes, was extensively 

studied for its role in the metabolism of xenobiotics (Ramadoss et al., 2005). Investigations using AhR 

knockout mouse unveiled its important role in the development and control of the immune system 

(Rothhammer and Quintana 2019). In gut, a protective role of AhR in inflammation or barrier injury 

conditions have been reported (Rothhammer and Quintana 2019). Its role in the intestinal tract seems 

acting through intraepithelial lymphocytes differentiation and modulation of innate lymphoid cells 

(Rothhammer and Quintana 2019). In human, a loss of protective function of AhR was proposed to 

occur in intestinal bowel diseases, which were linked to reduced production of AhR agonists by gut 

microbiota of the patients (Lamas et al., 2016). A protective effect of AhR agonist on intestinal barrier 

in mouse models or in intestinal cells submitted to inflammatory stresses has been reported (Yu et al., 

2018; Yu et al., 2018). In metabolic diseases contradictory results were obtained concerning the 

importance of AhR tone. A set of recent reports showed that AhR deficient mice are protected from 
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diet-induced obesity and associated metabolic disorders such as insulin-resistance, and hepatic 

steatosis through mechanisms related to lipid and energy metabolisms (Xu et al., 2015; Moyer et al., 

2017). Conversely, the activation of AhR using genetic mouse models or specific ligands such as 

TCDD promoted hepatic steatosis (Lee et al., 2010; He et al., 2013). This deleterious impact of AhR 

activation is in contrast with other works showing a protective role of AhR towards liver steatosis in 

mice (Wada et al., 2016; Natividad et al., 2018). Moreover, in human low levels in feces of AhR 

agonists were associated with metabolic syndrome, type 2 diabetes, increased body mass index and 

blood pressure (Natividad et al., 2018).   

Combining a series of human, in vivo and in vitro studies, we aim at determining the potential 

implication of AhR in the intestinal inflammation and barrier dysfunction reported in obesity.  

 

RESULTS 

Increase level of CD3+ T cell density in intestinal epithelium of obese subjects negatively 

correlates with AhR gene targets. 
The clinical characteristics of non-obese and severely obese patients included in this study are 

provided in table 1. The obese patients are free of type 2 diabetes (T2D) and T2D treatment according 

to clinical record and the measure of fasting glucose and insulin parameters.  

We evaluated intestinal inflammation in non-obese and subjects with severe obesity by quantifying the 

density of CD3+ lymphocyte T in jejunum mucosa. The epithelial to lamina propria (Epi/LP) ratio 

allowed quantifying the T lymphocyte recruitment in the epithelium (Figure 1A). We showed a 

significantly higher CD3 Epi/LP ratio in obese than in non-obese subjects (0.49±0.06 and 0.811± 

0.077 respectively, p<0.0209). A more heterogeneous distribution of CD3 Epi/LP was observed within 

the obese cohort. To study the relevance of AhR activity in the heterogeneity of intestinal 

inflammation within the obese cohort, we determined in jejunum epithelium from the same samples, 

the expression of AhR and of its well-known target genes (CYP1A1, CYP1B1) as well as the recently 

identify AhR-target gene, IL-22 (Parks et al., 2015). We observed strong significant negative 

relationships between AhR, CYP1A1, IL-22 mRNA levels and CD3 Epi/LP in obese subjects (Figure 

2B-D). CYP1B1 mRNA levels and CD3 Epi/LP ratio showed also a tendency (p=0.0542) toward a 

negative correlation (Figure 1E). However, AhR repressor (AhRR) involved in the feedback 

regulation of AhR signaling (Vogel and Haarmann-Stemmann 2017) was not correlated with intestinal 

inflammatory cell accumulation (Figure 2F).  

Altogether these results show relationships between intestinal inflammation in obesity and AhR, and 

its target gene favoring the hypothesis of a low AhR tone, however a direct implication of AhR 

activity in this context needs to be established.  
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AhR activation protects junctional complexes in murine intestinal epithelium during lipid load 

Inflammation and intestinal permeability is tightly linked in mice. In particular, we previously 

observed that repeated gavages with palm oil caused a disruption of the intestinal barrier integrity in 

mice and initiate intestinal inflammation (Ghezzal et al., in press). We thus investigated the effect of 

AhR activation in a mouse model of lipid-induced impairment of intestinal epithelial barrier. Mice 

were force-fed with palm oil alone or with β-naphthoflavone (βNF), an AhR agonist (Figure 2). As 

expected, βNF administration markedly increased the expression of AhR target genes CYP1A1 and 

CYP1A2 in jejunum (Figure 2A). Importantly, we observed	 that palm oil feeding impaired tight 

junction integrity by causing the mislocalization of three tight junction proteins ZO-1, occludin and 

tricellulin at cell membrane (Figure 2B). The activation of AhR activity by βNF partially restored the 

localization of these proteins at the membrane (Figure 2B). However, the administration of βNF did 

not prevent the increase of intestinal permeability to macromolecules (determined by the measure of 

FITC-dextran 4kDa) induced by palm oil (Figure 2C), suggesting that the partial restoration of cell-

cell junction is not sufficient to maintain epithelium integrity in our experimental conditions. 

Nevertheless, these results suggest a relative protective role for AhR on intestinal epithelium through a 

direct impact on cell-cell junctions.  

 
AhR activation prevents chemically induced damages of barrier integrity in intestinal epithelial 

cells 

We further investigated the role of AhR on cell-cell junctions in intestinal epithelium monolayer and 

examined in the human intestinal epithelial Caco-2/TC7 cell line, the effect of AhR activation after 

barrier damage. Chemical disruption of cell-cell junction disruption was induced by EGTA a calcium 

chelator known to alter barrier permeability (Rothen-Rutishauser et al., 2002). We first wanted to 

determine whether AhR activation could prevent the loss of barrier integrity induced chemically by 

EGTA (Figure 3). Caco-2/TC7 cells were treated for 4 days with βNF and EGTA was added during 

the last 4h of the experiment. As expected, the treatment of Caco-2/TC7 cells with βNF increased the 

mRNA level of the AhR target gene CYP1A1 (Figure 3A). The chemical damage of barrier integrity 

did not further modify CYP1A1 expression. While the permeability to macromolecules measured by 

the passage of FITC-dextran 4kDa was increased upon chemically induced barrier damage, this 

increase was not modified in presence of βNF (Figure 3B). Unexpectedly, a small increase of FITC-

dextran 4kDa flux is observed when the cells are incubated with βNF alone. We then studied the 

effects of AhR activation on paracellular permeability to ions measured by the determination of 

transepithelial resistance (TEER). As awaited, chemically induced barrier damage decreased TEER 

denoting an enhanced permeability to ions (Figure 3C). We showed that βNF prevented the 

chemically induced barrier damage by maintaining TEER to control value. A reinforcement of TEER 
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was also noticed when the cells were incubated with βNF alone. We analyzed by immunofluorescence 

the localization of the tight junction proteins ZO-1, occludin and tricellulin in cells, pre-treated or not 

with βNF, in chemically induced barrier damage condition (Figure 3D). We observed a decrease in the 

fluorescence intensity for these junction proteins in chemically induced barrier damage, which is 

prevented by βNF. Non-obvious effect was observed in presence of βNF alone. An increase in protein 

level of occludin and tricellulin was observed in presence of βNF alone, and in chemically induced 

barrier damage cell treated with βNF (Figure 3E). These results then indicate that pretreatment with 

the AhR agonist βNF prevent the damages to intestinal epithelium monolayer induced chemically 

through a mechanism involving an increase of occludin and tricellulin expression and localization at 

cell-cell contact. We then determined whether the activation of AhR may reinforce the recovery to 

normal permeability after chemically-induced damages. We incubated the cells for 4h with EGTA and 

then added new culture medium containing or not the AhR agonist (Figure 3F). We showed that the 

addition of βNF improved the recovery of TEER in chemically induced barrier damage. This 

amelioration was apparently initiated the first hours after βNF addition and reached the statistical 

significance after 5 hours. 

Altogether, these results from in vitro experiments showed that the activation of AhR protects and 

restores the intestinal epithelial cell monolayer from damages provoked by a disruptor of cell-cell 

junctions. 

 

AhR activation prevents the increase of cytokine expression associated with epithelium damages 

Intestinal epithelial cells can produce many cytokines and chemokines (Stadnyk 2002; Miron and 

Cristea 2012). The CXCL8 (IL-8), TNFA and IL1B genes are particularly well expressed in the model 

of Caco-2/TC7 cells. We previously showed in this model that chemical barrier damage provoked an 

increase of TNFα, IL1-β and IL-8 expression as well as of IL-8 secretion (Ghezzal et al., in press). 

We determined whether the presence of the AhR agonist counteracts these effects. Despite barrier 

damage, we showed that the pre-treatment with βNF indeed prevented the increase in the mRNA level 

of the three investigated cytokines (Figure 4A-C) and of the secretion of IL-8 in the basal medium 

(Figure 4D). These results showed that in vitro activation of AhR precludes the inflammatory response 

of intestinal epithelial cells during a treatment disrupting epithelial barrier. 

 

AhR activation exerts its preventive effect through PKC and p38MAPK signaling pathways  

The assembly and maintenance of cell-cell junction and in particular of tight-junctions are controlled 

and regulated by phosphorylation/dephosphorylation processes (Garcia et al., 2018) involving several 

regulatory proteins such as kinases or phosphatases (Stein and Kottra 1997; Mitic and Anderson 1998; 
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Matter and Balda 2003). We investigated the implication of such signaling pathways in the protective 

effect of AhR activation on the EGTA-dependent decrease of TEER in Caco-2/TC7 cells. Cells were 

pre-incubated, daily for 4 consecutive days, with inhibitors of protein kinases C (Ro 31-8220) or 

p38MAP kinase (SB203580) or ERK1/2 (U0126) one hour before the addition of βNF. Chemical 

barrier damage was induced for the last 4 hours of treatment. We confirmed that barrier damage is 

associated with a decrease of TEER that is counteract in presence of this AhR agonist and further 

showed that the maintenance of TEER by βNF treatment in barrier-damaged cell monolayer did not 

occur when the cells were pretreated with Ro-318220 (Figure 5A) or with SB203580 (Figure 5B). 

However, in the absence of βNF treatment, we found a decrease of TEER in presence of Ro-318220 in 

chemically damaged epithelial barrier (Figure 5A), indicating that the inhibition of protein kinase C is 

sufficient to modify TEER. Contrary to the effects of PKC and p38MAPK inhibitors, the inhibition of 

protein kinase ERK1/2 by U0126 treatment did not blocked the βNF dependent-maintain of TEER to 

control value (Figure 5C).  

These results suggest the potential implication of PKC and p38MAPK in the protective effect of βNF 

on intestinal permeability to ions (TEER). 

 

DISCUSSION 

The molecular mechanisms involved in the intestinal and systemic low-grade inflammation in human 

subjects need deeper understanding. Reports suggest that intestinal barrier defect may represent an 

early event in the onset of intestinal and systemic inflammation (Laugerette et al., 2011; Vors et al., 

2015; Genser et al., 2018; Ghezzal et al., in press). We here showed a negative correlation between the 

expression of AhR target genes and inflammation in jejunum samples of subjects with obesity albeit 

without diabetes. This observation suggests that low AhR activity is linked to low-grade inflammation 

in human obesity. Several mediators recently suggested, including changes in gut microbiota 

composition in obesity, may be related to this potentially decrease of AhR tone in obesity. It was 

reported that endogenous AhR ligands are produced by intestinal microbiota from the metabolism of 

nutrients-derived metabolites such as tryptophan (Hubbard et al., 2015) and butyrate, a short chain 

fatty acid (Marinelli et al., 2019), to activate the AhR tone at least in the intestine. Intestinal 

inflammation and changes in fecal microbiota composition of subjects suffering from intestinal bowel 

diseases were associated with low level of fecal AhR ligands (Lamas et al., 2016). The diet 

supplementation with Lactobacillus strains, which display a high natural capacity to produce AhR 

ligands, improved the metabolic impairments induced by the high fat diet (Kang and Cai 2018; 

Natividad et al., 2018) or reduced the severity of chemically induced colitis in mice (Lamas et al., 

2016). However, obesity is often associated with an increased fecal abundance of Lactobacillus 

species (Armougom et al., 2009; Million et al., 2012; Peters et al., 2018), thus one wonder whether 
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this change in abundance is accompanied by an increase in the function of this bacterial species. 

Indeed, low levels of AhR ligands in feces were correlated with high corpulence in Human (Natividad 

et al., 2018). Moreover, the use of probiotics showed beneficial effects, albeit moderate, of 

Lactobacillus strains administration in fat mass reduction in obese subjects (Kang and Cai 2018). The 

mechanisms involved in these effects need understanding.  

We demonstrated here that AhR activation prevented the increase of cytokine expression induced by a 

chemical treatment disrupting cell-cell junctions. Several mechanisms are involved in the expression 

of cytokine in immune cells, most of them are linked to the activation of NF-kB pathways and protein 

kinases, however little is known on those specifically responsible for the expression of cytokines by 

intestinal epithelial cells (Andrews et al., 2018). We here provide mechanistic information regarding 

the link between AhR activation and intestinal barrier properties. We showed in mice after a lipid load 

or in human intestinal epithelial cell line that AhR activation by the agonist βNF preserved the 

integrity of intestinal epithelium by maintaining paracellular permeability to ions and by preserving 

cell-cell junction. Experimental approaches in Caco-2/TC7 cells revealed increased occludin and 

tricellulin protein levels after βNF treatment and the potential implication of protein kinase C and 

p38MAPK in the protective effect of AhR action on paracellular permeability. AhR is a transcription 

factor known to bind specific responsive elements in the promoter of its target genes (Guyot et al., 

2013). To date no AhR responsive elements have been described on the promoter of occludin and 

tricellulin suggesting that the effects of AhR occurs through indirect pathways. Numerous 

observations indicated that AhR triggers several cellular pathways via the activation of protein kinases 

or via its E3 ubiquitin protein ligase activity (Larigot et al., 2018; Rothhammer and Quintana 2019). 

Studies suggest that the Src tyrosine kinase is a member of the multiprotein AhR complex located in 

the cytosol in absence of AhR ligands. The interaction of AhR with its ligands provoked the 

dissociation of this complex, the release and the activation of src kinase as well as the translocation of 

AhR in the nucleus (Rothhammer and Quintana 2019). Most interestingly src and other protein kinases 

activated by AhR such as PKC and p38MAPK are involved in the maintenance of tight junctions. 

Paracellular permeability is tightly regulated by mechanisms controlling the localization and the 

expression of tight junctions proteins through phosphorylation/dephosphorylation or protein 

stabilization processes (Turner 2009; Van Itallie and Anderson 2018; Schuhmacher et al., 2019). For 

example it has been observed that PKC and the protein Par-6 are members of a multiprotein complex 

involved in the maintenance of cell polarity (Schuhmacher et al., 2019) and that Par-6 is also involved 

in the protective effects of AhR on intestinal epithelial barrier (Yu et al., 2018).  

Further studies are required to fully understand the mechanisms involved in the protective effect of 

AhR on intestinal epithelium. 
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Altogether, our study shows an important protective role of AhR on intestinal barrier integrity 

including on cell-cell junction and expression of inflammatory markers and suggest that in obesity this 

integrity might be altered through an imbalance between AhR tone and low-grade inflammation. The 

lower AhR activity in intestine of obese subject may thus contribute to local and systemic 

inflammation through a loss of intestinal barrier integrity. AhR might thus constitute to protect 

intestinal functions in metabolic diseases via food or drug ligands action. 

 
EXPERIMENTAL PROCEDURES 

Human subjects, Clinical and biological characteristics 

This study is ancillary to a previously published study (Monteiro-Sepulveda et al., 2015) that included 

a population of severely obese patients involved in a bariatric surgery program (Roux-en-Y gastric 

bypass), occurring at the Pitié-Salpétrière University Hospital, Nutrition and visceral surgery 

departments, Paris, France. Non-obese subjects underwent pancreaticoduodenectomy or gastrectomy 

allowing access to proximal jejunal samples. For this study purpose, a subgroup of 36 subjects 

including 26 severely obese and 10 non-obese subjects, were selected being free of diabetes based on 

international definition and with no personal or familial history of inflammatory bowel disease. Their 

levels of white blood count were under 10.109/mm3 and of CRP inferior to 5 mg/l. We excluded non-

obese subjects with diabetes, renal- cardiac- or hepatic failure. The study was conducted in accordance 

with the Declaration of Helsinki, received approval from the local ethics committee (CPP Ile de 

France I) and was registered on the ClinicalTrials.gov website 

https://clinicaltrials.gov/ct2/show/NCT00476658 (Monteiro-Sepulveda et al., 2015). Informed written 

consent was obtained from all patients prior to study inclusion. Medical history and clinical variables 

were recorded for non-obese and obese patients before surgery as described in (Monteiro-Sepulveda et 

al., 2015). Venous blood samples were collected after a 12-h fast for routine assessment of biological 

metabolic as previously described (Dalmas et al., 2011). Insulin resistance was assessed using the 

HOMA-IR index [insulinemia (mIU/L) x fasting blood glucose (mmol/L)/22.5]. 

 

Human jejunum tissue sampling, epithelium and lamina propria fractions and analyses  

Proximal jejunum samples from obese subjects and non-obese subjects were collected during surgery, 

conditioned and transported as described (Monteiro-Sepulveda et al., 2015). Briefly, proximal jejunal 

samples (60–70 cm distal to the ligament of Treitz) were collected from surgical waste (4 cm). Tissue 

was rapidly opened, washed in DMEM (1g Glucose Glutamax + pyruvate + 10% SVF + 1% 

Penicilline/Streptomycine) and kept at 4°C before cell isolation, fixation and paraffin imbedding, or 

freezing at -80°C.  

Immunohistology of jejunum (5 mm paraffin-embedded tissue sections) was performed using CD3 
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rabbit polyclonal (A0452, DAKO, Agilent Technologies, Les Ulis, France). Primary antibody or 

secondary antibody were incubated for 1h at room temperature and revealed with a streptavidin biotin 

peroxidase kit (GMR4-61, BioSpa Milan, Italy), DAB staining (DAKO, Agilent technologies), and 

nuclei hematoxylin counterstaining (Vector, Eurobio, les Ulis, France). Images were obtained by 

conventional microscopy. Lamina propria and epithelial immune cell densities (cell/mm2), excluding 

lymphoid structures, were analyzed in longitudinal sections of mucosa in two to four fields (ImageJ 

1.46c).  

Preparation of epithelial and lamina propria fractions were obtained as previously described 

(Monteiro-Sepulveda et al., 2015). Briefly, the jejunal mucosa was dissected and minced prior 

incubation in chelating buffer (5mM EDTA, 2mM DDT, PBS; at 37°C for 20 min). Released 

epithelial cells were filtered through 70µm mesh cell strainers, centrifuged (600g at 4°C for 5min), 

and recovered in complete DMEM (10% FCS, 1% Penicilline/Streptomycine). Sucrase activity, used 

as a witness of enterocyte contamination of lamina propria by epithelial cells, was below 2% of total 

mucosa activity. Epithelial immune cells were enriched, at the interface of a 40%/70% Percoll gradient 

(GE Healthcare Europe, Velizy, France). Cells of the lamina propria, including lymphoid tissue, were 

isolated from fibrous matter by collagenase D digestion (1 mg/ml, Roche, Meylan France) at 37°C for 

2h. Red blood cells were removed in lysis buffer (154 mM NH4Cl, 10 mM KHCO3, and 0.1mM 

EDTA). Total RNA of lamina propria and epithelial fractions were extracted with the RNAeasy Mini 

kit (QIAGEN, Thermofischer scientific, Illkirch, France). RNA concentration and quality were 

assessed (2100 Bioanalyzer, Agilent Technologies) before reverse transcription of total RNA (Applied 

Biosystems, Thermofischer scientific). qPCR analyses were performed using Taqman Low Density 

Arrays (Thermofisher scientific) according to the manufacturer's procedures with the following gene 

assay IDs : AhR (Hs00907314_m1), AhRR (Hs01005075_m1), CYP1A1 (Hs01054797_g1), CYP1B1 

(Hs00164383_m1) and IL22 (Hs01574154_m1). Results were normalized to the geometric mean of 

ribosomal 18S (Hs99999901_s1) and peptidylprolyl isomerase B (cyclophilin B, Hs00168719_m1) 

values.  

 

Mouse treatments and in vivo intestinal permeability 

Three-month-old male C57BL/6JRj mice (Janviers labs, Le Genest-Saint-Isle, France) were fed ad 

libidum a standard chow diet (A03, SAFE, Augy, France) during all the experiments. Mice were kept 

with the artificial light-dark cycle 12:12h with lights on 07:00h. Mice were forced-fed with 0.2ml of 

water, palm oil (Sigma-Aldrich, Saint Quentin-Fallavier, France) or βNF (40mg/kg, Sigma-Aldrich) 

dissolve in palm oil for 4 consecutive days at 18:00h just before the feeding period of mice. For in 

vivo intestinal permeability measurement, fed mice were successively force-fed the 5th day of the 

experiment, with 0.2ml of palm oil or βNF dissolved in palm oil followed by 0.2ml of 4kDa FITC-
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dextran solution (Sigma-Aldrich, 0.5mg/g of mice in water) at 9:00h. Mice were anesthetized and then 

euthanized 1 hour after the last gavage. Blood and jejunum were then collected. FITC-dextran 

concentrations were determined in the plasma by fluorometry (FLUOstar Omega; BMG Labtech, 

Champigny-sur-Marne, France). All experiments involving mice were approved by the French 

Minister of Education and Research and by the Animal Care and Use Committee N°5 (agreement 

number: APAFIS#2710-201510301447819). 

 

Cell culture and cell treatments 

Caco-2/TC7 cell line is a clonal population of the human colon carcinoma-derived Caco-2 cells, which 

reproduces to a high degree most of the morphological and functional characteristics of enterocytes 

(Chantret et al., 1994). Cells were checked for absence of mycoplasma contamination. In all 

experiments, cells were cultured on 6-well Transwell® filters (Thermofischer scientific) for 3 weeks 

to obtain fully differentiated enterocyte-like cells as previously described (Beaslas et al., 2009; Morel 

et al., 2018). Cells were treated with 20µM βNF added in both apical and basal compartments. In 

some experiment cells were treated with 4.5mM EGTA (Sigma-Aldrich, St. Quentin Fallavier, France) 

added to the upper compartment. The duration of treatments is indicated in the legend of figures. In 

some experiments cells were pre-incubated with 5µM Ro 31-8220 (Calbiochem, Merck-Chimie, 

Fontenay-sous-bois, France) or 10µM U0126 (Cell Signaling, Ozyme, Saint-Cyr-l’école, France) or 

20µM SB203580 (5633S, Calbiochem, Merck-Chimie), 1-hour prior βNF addition. These treatments 

were repeated daily for 4 days. These protein kinases inhibitors were added at both upper and lower 

compartment of the filters.  

 

Permeability and transepithelial electrical resistance (TEER) measurements in Caco-2/TC7 cells 

To assess paracellular permeability, 1mg/ml of 4 kDa FITC-dextran (TdB Consultancy AB, Uppsala, 

Sweden) was added to the apical medium the last day of treatment. Samples of basal medium were 

collected after 4h, and fluorescence was determined with a microplate fluorometer (FLUOstar Omega; 

BMG Labtech, Champigny s/Marne, France). Transepithelial electrical resistance (TEER), which is 

inversely proportional to permeability to small ions, was measured before and after treatments using a 

Volt-Ohm Meter (Millipore, Guyancourt, France).  

 

Total RNA extraction and RT-PCR analysis  

Total RNA from Caco-2/TC7 cells was extracted with TRI Reagent (Molecular Research Center, 

Cincinnati, OH), according to the manufacturer's instructions. Reverse transcription (RT) was 

performed with 1 µg of RNA using high-capacity cDNA reverse transcriptase kit (Applied Biosystem, 

Thermofischer scientific). Semi-quantitative real-time polymerase chain reactions were performed 
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with the Mx3000P Stratagen system using SYBR Green (Agilent, Les Ulis, France) according to the 

manufacturer's procedures. The human primer sequences are 5'-AGACAGCAGAGCACACAAGC-3' 

forward and 5'-ATGGTTCCTTCCGGTGGT-3' reverse for CXCL8 (IL-8), 5'-

CTGTCCTGCGTGTTGAAAGA-3' forward and 5'-TTGGGTAATTTTTGGGATCTACA-3' reverse 

for IL1B (IL1-β), 5'-CAGCCTCTTCTCCTTCCTGA-3' forward and 5'-

GCCAGAGGGCTGATTAGAGA-3' reverse for TNFA and 5'-TCCAAGAGTCCACCCTTCC-3' 

forward and 5'-AAGCATGATCAGTGTAGGGATCT-3' reverse for CYP1A1. PPIB (Cyclophilin B) 

gene is used as reference gene, the primer sequences are 5'-GCCTTAGCTACAGGAGAGAA-3' 

forward and 5'-TTTCCTCCTGTGCCATCTC-3' reverse. 

 

Cytokine secretion 

Cytokine IL-8 protein level was quantified in basal medium (0.2 ml) of Caco-2/TC7 cells by enzyme-

linked immunosorbent assay (ELISA) using kit from R&D System (Lille, France).  

 

Analysis of junctional proteins by immunofluorescence  

Immunofluorescence analyses were performed as previously described	 (Petit et al., 2012). Briefly, 

Caco-2/TC7 cells were fixed and permeabilized by incubation for 5 minutes in methanol at −20°C. For 

immunostaining on these cells, we used primary antibodies for tricellulin (1:200; MARVELD2 

700191; Thermofischer scientific), ZO-1 (1:200; ZO1-1A12; 33-9100 Thermofischer scientific) and 

for occludin (1:200; 71-1500; Thermofischer scientific). Jejunum cryosections were fixed for 30 

minutes with 4% paraformaldehyde at 4°C, and permeabilized for 30 minutes in 0.1% Triton X-100 at 

4°C. For immunostaining of mouse jejunum cryosections, we used primary antibodies for tricellulin 

(1:10; Tric2469; kindly provided by Dr Furuse (Ikenouchi et al., 2005; Ikenouchi et al., 2008)), ZO-1 

(1:200; 617300; Thermofischer scientific) and for occludin (1:10; Moc-37; kindly provided by Dr 

Furuse (Saitou et al., 1997)). Alexa 488 and Alexa 546–conjugated anti–immunoglobulin G were used 

as secondary antibodies (1/400; Molecular Probes, Life Technologies, Saint-Aubin, France). Nuclei 

were stained with 4′-6-diamidino-2-phenylindole (DAPI) to assess the monolayer integrity. Cells were 

examined by microscopy using an Axio Imager 2 microscope equipped with an apotome.2, allowing 

optical sectioning (Zeiss, Oberkochen, Germany). Images were acquired by ZEN 2011® software 

(Zeiss,) and analyzed by Image J 1.46c.  

 

Simple WesternsTM 

Caco-2/TC7 cells were lysed as previously described (Beaslas et al., 2009). Protein levels were 

detected in cell lysates using a WesTM capillary electrophoresis system (ProteinSimple, San José, CA, 

USA) according to the manufacturer's instructions. Reconstituted images and quantification were 
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performed using Compass for SW3.1 software (ProteinSimple). Primary antibodies were rabbit anti-

tricellulin (1:2000; MARVELD2 700191; Thermofischer scientific), and rabbit anti-occludin (1:25; 

71-1500; Thermofischer scientific). Secondary antibodies and reagents used were provided in the 

separation and detection module kits (ProteinSimple). Junction proteins levels were normalized to 

Hsc70 (1:100; sc7298 Santa Cruz, Clinisciences Nanterre, France).  

 

Statistical analysis 

Values were expressed as mean ± SEM. Statistical analyses were performed using GraphPad Prism 6.0 

(GraphPad Software, La Jolla, CA). Two group comparisons were performed using Student’s T-test 

(quantitative variables) or chi-square test (categorical variables). Comparisons involving multiple 

groups were done using one-way analysis of variance (ANOVA). Correlations were determined using 

Spearman rank correlation coefficient. A level of p < 0.05 was considered as significant. 
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FIGURE LEGENDS 

Figure 1: Low expression of AhR target genes in obese subjects with intestinal inflammation 

(A) CD3+ T cell density (cell/mm2) in epithelium/lamina propria ratio (Epi/LP) was determined by 

immunohistochimistry in jejunum of non-obese (n =10) and obese subjects (n = 26). Results are 

expressed as mean ± SEM, *p< 0.05. (B-F) Spearman correlations of AhR (B), CYP1A1 (C), IL-22 

(D), CYP1B1 (E), AhRR (F) mRNA levels in intestinal epithelium and CD3 Epi/LP ratio in obese 
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subjects. AhR: aryl hydrocarbon receptor, AhRR: aryl hydrocarbon receptor repressor, a.u.: arbitrary 

units. Spearman r and p value are indicated. 
 

Figure 2: Protective role of AhR activation on cell-cell junctions in murine intestinal epithelium. 

Mice were submitted to 5 gavages (5x) with 200µl water or palm oil or palm oil + βNF for five 

consecutives days. (A) The expression of CYP1A1 and CYP1A2 were determined by RT-PCR in the 

jejunum. Cyclophilin was used as reference gene. Results are expressed in arbitrary units (a.u.) as the 

ratio of target gene to cyclophilin (cyclo) mRNA level as mean ± SEM, n=5, ***p< 0.001 as 

compared to water condition. (B) The distribution of tight junction proteins ZO-1, occludin and 

tricellulin was analyzed by immunofluorescence on jejunum sections. Nuclei were stained with 4’,6-

diamidino-2-phenylindole (DAPI). White arrowheads indicate the labeling of junction proteins. Bar= 

20µm. (C) The intestinal permeability was assessed after the last gavage with water, palm oil or palm 

oil+βNF by measuring plasma concentration of FITC-dextran 4kDa (FD4) one hour after an oral FD4 

load. Results are expressed in µg/ml as mean ± SEM, *p<0.05, **p<0.01 as compared to water. 

 
Figure 3: Protective role of AhR activation on EGTA-induced damages of barrier integrity in 

Caco-2/TC7 cells. 

(A) Caco-2/TC7 cells were pre-incubated without (Ctrl) or with 20µM βNF for 4 consecutive days 

before the addition or 4.5 mM EGTA for additional 24h. βNF treatment was maintained during all the 

experiment. The expression of CYP1A1 was quantified by RT-qPCR. Cyclophilin was used as 

reference gene. Results are expressed in arbitrary units (a.u.) as the ratio of target gene to cyclophilin 

(cyclo) mRNA level as mean ± SEM, n=6-15, ****p < 0.0001 as compared to control. (B) Cells were 

cultured in the same conditions as in (A). Paracellular permeability across Caco-2/TC7 cell monolayer 

was evaluated by measuring the accumulation during 4 h of FITC-4kDa dextran (FD4) in the basal 

compartment. Results are expressed as percentage of FD4 input (amount added in the apical 

compartment), mean ± SEM, n=6-15, ***p<0.001 and ****p<0.0001 as compared to control. (C) 

Cells were cultured in the same conditions as in (A). TEER was assessed in control and treated cells. 

Results are expressed in ohm.cm2 as mean ± SEM, n=6-15, **p<0.01 and ***p<0.001 as compared to 

control. ###p<0.001 as compared to EGTA. (D) Cells were cultured in the same conditions as in (A). 

Immunofluorescence analysis was performed to study the localization of ZO-1, occludin and 

tricellulin. Nuclei were stained DAPI. Bar=20µm (E) Cells were cultured as in (A). Occludin and 

tricellulin protein levels were determined in cell lysates using a capillary-based western blot. 

Reconstituted images were displayed. Hsc70 protein levels were used as loading control. (F) Caco-

2/TC7 cells were first incubated in presence or not of 4.5mM EGTA for 4h. Medium were then 

removed and replace with fresh medium in presence or not of 20µM βNF for 20h. TEER was 
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measured before EGTA treatment (T0), after 4h of EGTA treatment (T4) and at different times after 

βNF addition. Results are expressed in percentage of TEER measured at T0 for each cell culture 

condition as mean ±SEM, n=6. *p<0.05 and ****p<0.0001 as compared to control and ##p<0.01 as 

compared to EGTA.  

 

Figure 4: AhR activation prevents the increase of cytokine expression induced by EGTA 

Caco-2/TC7 cells were cultured in the same conditions as in Figure 3. The mRNA levels of TNF-α 

(A), IL-1β (B) and IL-8 (C), were quantified by RT-PCR. Cyclophilin was used as reference gene. 

Results are expressed in arbitrary units (a.u.) as the ratio of target gene to cyclophilin (cyclo) mRNA 

level as mean ± SEM, n=20-30. (D) The concentration of IL-8 protein in the basal compartment was 

quantified by ELISA 24h after EGTA treatment. Results are expressed in pg/ml as mean ± SEM, n=6. 

Fold-increase as compared to control condition is indicated at the top of histograms. **p<0.01, 

***p<0.001, ****p<0.0001 as compared to control unless otherwise indicated. 

 

Figure 5: Signaling pathways are involved in the preventive effect of AhR activation on 

transepithelial resistance 

Caco-2/TC7 cells were pre-incubated with (A) 5 µM Ro 31-8220 (Ro) or (B) 20µM SB203580 (SB) 

or (C) 10µM U0126, 1-hour prior βNF addition. These treatments were repeated daily for 4 days. 

EGTA was added for the last 4 hours of treatment. Transepithelial resistance (TEER) was measured at 

the end of the experiment. Results are expressed in percentage of TEER measured at T0 for each cell 

culture condition as mean ± SEM, n=3. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 as compared 

to control unless otherwise indicated. 
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Table 1. Clinical and biological baseline characteristics of non- obese and obese patients enrolled in the study

non-obese                    
(n= 10)

obese                             
(n= 26 )

pvalue     
obese vs 

non- obese
Demographic data

sex ratio M/F, % 100 / 0  4 / 96 < 0.0001
age (years) 58.8 ± 4.9 (42-84) 39.3 ± 2.3  (21-64) 0.0002

Corpulence and adiposity
weight (kg), mean ± SEM (min-max) 69.5 ± 3.2 (50-87) 124.3 ± 4.7 (83.1-184.4) < 0.0001
BMI (kg/m2), mean ± SEM (min-max) 22.6 ± 0.82 (16.9-26.37) 46.5 ± 1.3 (38.1-56.9) < 0.0001

Comorbidities
type 2 diabetes, % 0 0  -
hypercholesterolemia, % 20 35 0.6749
hypertriglyceridemia, %  - 30
hypertension, % 0 25 0.1310

Glucose metabolism
glycemia (mmol/L), mean ± SEM (min-max)  - 5.3 ± 0.1  (4.3-6.4)  -
insulinemia (mU/L), mean ± SEM (min-max)  - 25.1 ± 3.9 (9.5-67.5)  -
HOMA-IR index, mean ± SEM (min-max)  - 6.3 ± 1.1 (2.4-18.7)  -

Lipid metabolism
total cholesterol (mmol/L), mean ± SEM (min-max)  - 5.0 ± 0.2 (3.3-7.2)  -
triglycerides (mmol/L), mean ± SEM (min-max)  - 1.3 ± 0.08 (0.47-1.96)  -
HDL (mmol/L), mean ± SEM (min-max)  - 1.1 ± 0.06 (0.7-1.6)  -
LDL (mmol/L), mean ± SEM (min-max)  - 3.3 ± 0.2 (1.9-5.2)  -
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Supplementary results 

During my thesis, I focus on the molecular mechanisms by which AhR is implicated in 

the maintenance of intestinal barrier integrity. However, I also analyzed in the human 

intestine of obese patients, the activity of another transcription factor the nuclear farnesoid X 

receptor (FXR) known to trigger an immune response and barrier dysfunction to 

environmental changes in the intestine (Gadaleta et al., 2011). This transcription factor is 

especially important in the intestine because it is involved in the entero-hepatic cycling of bile 

acids, which are important substrates for microbiota metabolism. It is also involved in 

intestinal homeostasis and displays intestinal-specific target genes as FGF19. 

FXR is a nuclear hormone receptor mainly involved in bile acid, lipid and glucose 

metabolism as well as in inflammation. Bile acids are the major FXR endogenous ligands. 

They are produced in hepatocytes, stored in the gallbladder, and released into the duodenum 

upon ingestion of a meal to facilitate absorption of nutrients. In intestinal lumen, bile acids are 

actively transformed by microbiota controlling their re-absorption in the ileum. The bile acids 

in the gut lumen influence microbiota composition and reciprocally, changes in microbiota 

composition modify bile acid transformation and metabolism (Chavez-Talavera et al., 2017). 

Conflicting results are showing that either an FXR activation or an inhibition can occur in 

metabolic and gut inflammatory diseases (Stojancevic et al., 2012; Jiang et al., 2015; Verbeke 

et al., 2015; Gonzalez et al., 2016). Indeed, it was observed that FXR activation improved 

inflammation in chemically-induced colitis in mice (Vavassori et al., 2009; Gadaleta et al., 

2011). In contrast, FXR-deficient mice displayed intestinal barrier defect (Inagaki et al., 2005; 

Blacher et al., 2017). Focusing on human obesity, a positive correlation between BMI and the 

expression of FXR or target genes in ileum samples was reported (Jiang et al., 2015). 

However, the secretion of the intestine-specific FXR target gene FGF19 in the blood is 

decreased in obese patients (Gallego-Escuredo et al., 2015; Gomez-Ambrosi et al., 2017). In 

this context, the FXR tone in the jejunum of obese patients was assessed according to their 

intestinal inflammatory score.   

I used the same non-diabetic obese subjects as for the AhR study. I correlated their 

jejunum inflammation score, (established by the ratio T cells CD3 Epi/LP) with the mRNA 

levels of FXR and its target genes (SHP, IBABP, ASBT, OST alpha and beta, MRP3) in 

jejunum epithelium fraction. Spearman correlations showed that the jejunum of obese patients 

with high recruitment of T lymphocytes display a lower FXR tone defined by lower RNA 
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levels of FXR itself and of six target genes (Figure 20). This result suggests that when non-

diabetic obese patients display an intestinal inflammation it is accompanied by an impaired 

FXR activation, as shown earlier for AhR tone.  

 

 
Figure 20: Low FXR tone in jejunal epithelium from obese subjects with intestinal 
inflammation 
(A-G) Spearman correlations of FXR (A), SHP (B), IBABP (C), ASBT (D), OSTa (E), 
OSTb (F) and MRP3 (G) mRNA levels in intestinal epithelium and CD3 Epi/LP ratio in 
obese subjects. FXR: Farnesoid X Receptor, SHP: small heterodimer partner, IBABP: ileal 
bile acid-binding protein, ASBT: sodium-dependent bile acid transporter, OSTα/β: organic 
solute transporter α/β, MRP3: multidrug resistance protein 3, a.u.: arbitrary units. 
Spearman r and p value are indicated. 
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To have a more complete analysis of AhR and FXR tone in human jejunum of obese subjects 

I include, below, complementary data to those presented as Spearman correlations. First, I 

arbitrary separated obese subjects in two groups according to the value of CD3 Epi/LP ratio, 

the cut-off value chosen was 0.8. The CD3Low group of obese displays a similar CD3 ratio as 

lean group (0.51 ± 0.04 and 0.50 ± 0.06 respectively), while the CD3High obese group displays 

a significantly higher ratio (1.16 ± 0.08) than obese CD3Low and lean subjects (Figure 21).    

 

    
Figure 21: Lymphocyte T density in jejunum of lean and obese subjects.  
CD3+ T cell density (cell/mm2) in epithelium/lamina propria ratio (Epi/LP) was determined by 
immunohistochimistry in jejunum of non-obese (n =10) and obese subjects (n = 26). Obese subjects 
were separated in two groups according to the CD3 ratio value, CD3Low contains subjects with a CD3 
ratio < 0.8, and CD3High group contains subjects with a CD3 ratio > 0.8. Dashed line represents the 
cut-off line at value 0.8. Results are expressed as mean ± SEM. 

 
 
Besides the quantification of AhR and FXR target genes mRNA levels in the epithelium 

fraction of jejunum human samples, I also quantified their expression in the lamina propria 

fraction prepared as previously described (Monteiro-Sepulveda et al., 2015). The Table 2 

below reports the statistical analysis of variation of mRNA levels of AhR, FXR and their 

target genes in obese subjects with gut inflammation (CD3High group) compared to lean and to 

CD3Low obese group in both epithelium and lamina propria fractions of jejunum. No 

modification of the expression of AhR and FXR target genes were observed between CD3Low 

obese group and lean group. Only obese subjects with intestinal inflammation, CD3High group, 

presented a decreased expression of AhR and FXR tone is human jejunum.  
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Table 2: Variation of mRNA levels of AhR, FXR and their target genes in epithelium and lamina propria 
from jejunum of lean, CD3low and CD3high obese groups. 

 

 

 

 

vs. Lean vs. Obese CD3Low vs. Lean vs. Obese CD3Low

IBABP *

OSTa *

OSTb * * *

SHP **

ASBT, IBAT * *

MRP3 p=0.076

FXR * *

CYP1B1 *

CYP1A1
IL22 p=0.079 ** p=0.086

AHR *

AHRR

    
p < 0.01            

**
p < 0.05                               

* Tendency

AhR  
Target 
Genes

FXR 
Target 
Genes

Decrease of the expression (mRNA)

Epithelium

Obese CD3High

Lamina Propria

Obese CD3High
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General Discussion 
	

In 2005, Chris Wild introduced the innovative “exposome” concept (Wild, 2005). This 

concept considers all exposures to environmental factors that undergo a human body from its 

conception to its end of life that complete the effect of the genome. It aims to understand the 

response of the human body, or any other organism, to combined and cumulative exposures to 

chemicals and diseases. This concept has been enlarged, mentioning that the assessment of 

body exposures should not be restricted to exogenous chemicals coming from air, water, food, 

smoking, etc., but should also include endogenous toxicants produced by the gut flora, 

inflammation, oxidative stress, lipid peroxidation, infections, and other natural biological 

processes (Liory and Rappaport, 2011; Wild, 2012). Thus, this concept can easily be applied 

to the multifactorial processes involved in obesity since the exposure to environmental and 

endogenous factors could be implicated in obesity etiology. 

Obesity is associated with both tissue and systemic inflammation and several intestinal 

dysfunctions are reported in humans and mice (Cotillard et al., 2013; Everard et al., 2013; 

Monteiro-Sepulveda et al., 2015; Nehra et al., 2016; Birchenough et al., 2017; Genser et al., 

2018; Tseng and Wu 2018). However, the etiology of defects such as local intestinal barrier 

disruption and tissue inflammation observed in obese subjects remains unclear. Studies 

conducted in obese individuals or in obese animal models induced by a long-term high fat diet 

make it difficult to establish a causal relationship and by consequence the identification of the 

actors involved in the origin of these dysfunctions.  

The main hypothesis of my thesis work was to consider that intestinal and systemic 

inflammation might originate from intestinal barrier defects and to envisage the implication of 

different environmental factors in the intestinal dysfunction. Based on these findings, I 

studied the contribution of dietary lipids, in particular, palmitic acid, and of the transcription 

factors AhR in the onset and the modulation intestinal barrier dysfunction and intestinal 

inflammation. We hypothesized, that all these events could participate in low-grade 

inflammation reported in obesity. I also analyze the FXR tone in the jejunum of human obese 

subjects. We choose to study AhR and FXR in the intestine for their importance in 

inflammation, their sensitivity to environmental changes and because some studies have 

shown that FGF21 and FGF19, target genes of AhR and FXR respectively (Cheng et al., 
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2014), present opposite concentrations in the blood of obese patients. While FGF21 is 

increased, FGF19 is decreased in these patients (Zhang et al., 2008, Gomez-Ambrosi et al., 

2017). 

All these points are commented separately to facilitate the reading in the following discussion. 

 

Dietary lipids involvement on the onset of intestinal inflammation and epithelial 

dysfunctions  

As mentioned previously in the results part of my thesis, several studies conducted in 

healthy human and in rodents showed that one lipid meal is sufficient to provoke a transient 

endotoxemia and elevation of plasma level of pro-inflammatory cytokines (Cani et al., 2007; 

Cani et al., 2008); (Erridge et al., 2007) (Laugerette et al., 2011; Vors et al., 2015) (Ghoshal 

et al., 2009) suggesting that lipid meal-induced alteration of intestinal barrier. Moreover, in 

mice submitted to a long-term high-fat diet, this metabolic inflammation seems to be more 

severe when saturated fatty acids were present (Laugerette et al., 2012); (Ravussin et al., 

2012). In human, our group has recently shown that defect of the intestinal barrier in intestinal 

permeability in obese subjects was revealed by a dietary lipid challenged and was linked with 

systemic and intestinal inflammation (Genser et al., 2018). I thus determined whether a short-

term supply of palmitic acid, a main saturated fatty present in the human diet, can trigger 

intestinal barrier alteration and induce intestinal and systemic inflammation. 

In a mouse model, I demonstrated the existence of an intestinal barrier alteration from 

the first intake of palm oil. It is characterized by an increase in intestinal permeability and an 

alteration of the localization of some junction proteins. All deleterious effects were 

exacerbated after 5 palm oil gavages. Associated with intestinal epithelial barrier perturbation, 

we observed a modification in the expression of inflammatory genes in mouse intestine (IL-

1β, Reg-3γ, Gata-3). Moreover, in Caco-2/TC7 cell model, a single treatment of palmitic acid 

also triggers an increase in epithelial paracellular permeability, an alteration on junctional 

proteins location at the cell membrane and an increase in the expression of the pro-

inflammatory cytokine IL-8. These results suggest that alteration of the intestinal barrier 

integrity and the increase of pro-inflammatory cytokines in response to dietary lipids may 

represent early events in the onset of intestinal inflammation reported in obesity. 

The intestinal inflammation that we observed in vivo remains moderate. We reported 

an increased IL-1β expression and a decreased Gata-3 transcription factor. The Gata-3 protein 
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controls the Th-2 anti-inflammatory response by inducing the expression of anti-inflammatory 

cytokines (IL-4, IL-5 and IL-13) and repressing the expression of interferon-γ (IFN- γ) 

associated with the Th-1 pro-inflammatory response (Ho et al., 2009; Seidelin et al., 2015). 

Thus, the modification of IL-1β and Gata-3 expression suggests a modification of immune 

profile in the intestine towards a pro-inflammatory profile.  

Interestingly, an increase in Reg-3γ expression, an antimicrobial peptide exhibiting a 

beneficial role in intestinal immunity and barrier function (Hogan et al., 2006) is observed 

after one palm oil gavage but not in animals that received palm oil for 5 days. A previous 

report showed that Reg-3β and Reg-3γ mRNA levels were reduced in mice intestine after 10 

and 30 days of HFD (Garidou et al., 2015). These findings suggest that after one lipid 

challenge, the intestine rapidly engages defense mechanisms but that the repetition of palm oil 

gavage decreased the efficiency of intestinal defense response. 

The low intestinal inflammation observed in our experiments is consistent with the 

observations of Johnson et al (Johnson et al., 2015) where limited alteration of the intestinal 

immune system is observed after several weeks of a high-fat diet in mice. Intestinal 

inflammation in diet-induced obesity differs from the marked inflammation observed in other 

tissues such as the liver and adipose tissue (van der Heijden et al., 2015). Several mechanisms 

could explain the low gut inflammation, the rapid renewal of the intestinal epithelium or the 

efficient mechanisms of gut defense.  

Four days of palm oil gavage changes the composition of the microbiota as did several 

weeks of high-fat diet (Clarke et al., 2012; Matsuoka and Kanai 2015). Our data showed that 

palm oil gavages induced an increase in the abundance of Bacteroides, which are known to be 

increased following an obesogenic diet enriched in saturated fatty acids (Devkota et al., 

2012), and a decrease in bacterial species such as Clostridium leptum, Akkermensia 

muciniphila and Segmented Filamentous Bacteria (SFB), described to play a protective role in 

the intestinal host cells (Everard et al., 2013; Marchix et al., 2018). This fast switch of 

microbiota composition was also demonstrated in healthy humans after a dietary change 

(David et al., 2014) and in rats fed a diet rich in lipids (Vaughn et al., 2017). Also, obese 

subjects undergo a by-pass surgery present rapidly changes in their microbiota in a starvation-

like situation induced by RYGB (Furet et al., 2010). Since the microbiota have an important 

role on intestinal barrier integrity, such as shaping the intestinal immune system by 

contributing to immune system development and maturation (Rolhion and Chassaing 2016), 
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maintain of microvilli formation patterns and cell renewal (Yu et al., 2012; Takiishi et al., 

2017), changes in its composition observed after 4 gavages can also contribute to the 

alteration of the intestinal barrier and/or intestinal inflammation. 

I investigated whether intestinal barrier dysfunctions and intestinal inflammation in 

response to a short-term palm oil treatment can be associated with systemic inflammation. 

The plasma IL-6 and IL-1β levels show no difference between animals gavaged with palm oil 

or with water. This result suggests that palm oil gavages for 4 days are not enough to trigger 

systemic inflammation. Meanwhile, our data could also indicate that intestinal epithelial 

barrier disruption and intestinal inflammation may precede the systemic inflammation 

induced by fat diet. In literature, studies on the effect of diets on endotoxemia and systemic 

inflammation are still contradictories. While some studies observed that a single high-fat meal 

is sufficient to increase endotoxemia and pro-inflammatory cytokines in healthy humans 

(Laugerette et al., 2011; Vors et al., 2015) and animals (Ghoshal et al., 2009). Other studies 

performed in mice, showed the activation of signaling pathways involved in cytokine 

expression after 2 weeks of high-fat diet and increased intestinal expression of TNF-α after 

the 6th week (Ding and Lund 2011). However, this increased intestinal immune activation did 

not trigger a systemic inflammation (Ding and Lund 2011). 

Altogether our experiments in mice showed that short-term supply of palm oil alters 

intestinal barrier, intestinal immune response and microbiota composition. As for Human 

studies, causal relationships are difficult to establish. We thus used a cellular model of human 

enterocytes, the Caco-2/TC7 cell line to disconnect further the effects of short-term palmitic 

acid on intestinal barrier and cytokine expression without the interference of other factors or 

cell types such as microbiota and immune cells. Studies in a cell culture model render 

possible the analyses of molecular mechanisms involved. 

 

In Caco-2/TC7 cells, we observed that 24h treatment with palmitic is sufficient to alter 

intestinal permeability, to perturb the localization of junction proteins and to modify the 

expression of IL-8 and TGFB1 cytokines. Repeated palmitic acid supply exacerbated these 

effects. These events are not observed in the presence of a monounsaturated fatty acid, oleic 

acid, suggesting that they are fatty acid nature dependent. IL-8 is a proinflammatory 

chemokine involved in the recruitment and activation of immune cells, in particular, 

neutrophils (David et al., 2016). This cytokine participates in the host cells defense against 



	

 
	

	
DISCUSSION 

	
	 	

150 

pathogenic bacteria invasion (Wera et al., 2016). Interestingly, IL-8 is elevated in the serum 

of obese patients compared to non-obese patients and is positively correlated with BMI and 

fat mass (Straczkowski et al., 2002; Kim et al., 2006). 

I then analyzed by which mechanisms palmitic acid could alter the intestinal barrier.  

My first hypothesis is to consider that palmitic acid induces specific cellular events 

leading to alteration of the intestinal barrier. A recent study published by our team, in which I 

participated, showed that a single intake of palmitic acid, but not oleic acid, triggers the de 

novo synthesis of ceramides (Tran et al., 2016). The ceramides are known for their deleterious 

effects in the cell and our work demonstrated that ceramides produced in response to this 

acute intake of palmitic acid, disrupt the insulin signaling in Caco-2/TC7 cells and in the 

intestine of mice after a single palm oil gavage (Tran et al., 2016). Moreover, a recent study 

has highlighted the importance of ceramide levels, particularly C-16 ceramide in intestinal 

barrier defects (Kim et al., 2017). Determining and assaying the species of ceramides 

produced by palmitic acid and comparing them with those produced by the addition of C2-

ceramide in the cells would make it possible to identify the species that is mainly involved in 

the deleterious effects induced by palmitic acid.   

Based on this study and others, we wondered whether the ceramides could be involved 

in the disturbances of intestinal barrier integrity caused by palmitic acid. We observed that 

inhibition of de novo synthesis of ceramides prevented the increase of IL-8 expression but not 

paracellular permeability in cells incubated with palmitic acid. This discrepancy could be 

explained by the fact that the inhibition of de novo synthesis of ceramides was not totally 

effective. A residual production of ceramides could be sufficient to alter paracellular 

permeability through their properties to form channels on membranes (Siskind et al., 2002; 

Siskind 2005) and thus maintaining elevated paracellular flux through these artificial pores. 

To test these hypotheses, we could compare the amount of ceramides produced by palmitic 

acid with and without the inhibitor and to performed immunofluorescence staining of 

ceramides in the membrane to detect the presence of channels in treated Caco-2/TC7 cells. 

Moreover, ceramides are known to be located in rafts domains of the membrane, where tight 

junctions proteins are localized (Eum et al., 2015; Head et al., 2014). Several works showed 

that ceramides may affect the stability of rafts membrane domains and their composition of 

protein (Yu et al., 2005; Megha et al., 2007). Thus, it is possible that ceramides by 

destabilizing rafts domains, alter junctional complexes and increase paracellular permeability. 
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Another hypothesis is to consider that the cytokines secreted by intestinal epithelial 

cells could alter directly cell-cell junctions. Indeed several studies have elucidated the role of 

pro-inflammatory cytokines on the intestinal epithelial barrier dysfunctions (Ma et al., 2004; 

Al-Sadi et al., 2010; Al-Sadi et al., 2012; Lee 2015). Beyond the described effects of 

cytokines such as TNF-α, INF-γ or IL-1β (Al-Sadi et al., 2008; Al-Sadi et al., 2012; 

Kominsky et al., 2014; Al-Sadi et al., 2016), deleterious and dose-dependent effects of IL-8 

on tight junction proteins, have been also reported on endothelial permeability (Yu et al., 

2013). However, the underlying mechanisms driving this IL-8 effect remains unclear. Since 

IL-8 expression and secretion is increased here, after short-term palmitic acid treatment, we 

presume that this cytokine could participate in epithelial barrier homeostasis. Other studies 

have shown that TGF-β1 is implicated on tight junctions’ homeostasis. In response to TGF-

β1, proteins of the SMAD (Small Mothers Against Decapentaplegic) family are able to reduce 

the expression of genes encoding junction proteins such as E-cadherin and occludin 

(Lamouille et al., 2014). In Caco-2 cells, one of the TGF-β1 receptors, TGF-βRI, co-localizes 

with occludin (Yakovich et al., 2010), suggesting a possible interaction between TGF-β1 and 

occludin. Thus, IL-8 and TGF-β1 cytokines can be involved in epithelial barrier alteration. It 

would be interesting to analyze the signaling pathways controlled by these cytokines by 

blocking their action, by invalidating their expression or by blocking the binding on their 

receptor (via blocking antibodies). 

Another interesting point is the specificity of the effects of palmitic acid versus the 

absence of effect of oleic acid after 24 hours of treatment. However, our team showed 

increased cell permeability to macromolecules and decreased the tricellulin intensity in Caco-

2/TC7 cells 4 hours after oleic acid (Genser et al., 2018). This indicates that oleic acid, as 

probably other fatty acids, may exert transient effects on the intestinal barrier. This may be 

explained by the differences in the metabolism of these 2 fatty acids, oleic acid being rapidly 

used for triglycerides secretion and secreted as lipoproteins in a more efficient manner than 

palmitic acid. Moreover, oleic acid did not increase intracellular ceramides levels either the 

induction of pro-inflammatory cytokines, which could explain that the long-term treatment 

with oleic acid does not cause alteration of the epithelial barrier. It could suggest also that 

intestinal epithelial cells have the capacity to cope with a massive supply of lipids by 

engaging host defense but a lipid overload according to the nature of the fatty acid may 

exceed this host defense.  
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AhR and FXR in intestinal inflammation in human obesity 

According to the objectives of my thesis, I explored the relationship between intestinal 

inflammation and AhR and FXR activities in obese subjects. I observed negative correlations 

between the expression of AhR and FXR target genes in one hand and jejunum inflammation 

score (T lymphocyte recruitment) in the other hand. Thus, intestinal inflammation in obese 

subjects is correlated with a low activity of these 2 transcription factors. The main challenge 

is now to determine whether the low activity of AhR and FXR in the intestine is a 

consequence of obesity, linked to associated modifications of host metabolism or microbiota 

composition or whether AhR and FXR activity may trigger gut inflammation by direct control 

of inflammatory processes or intestinal barrier integrity.  

My results concerning the low AhR tone in human jejunum of obese subjects with 

intestinal inflammation can be put in regard with the recent observation of Natividad et al 

showing that obese subjects with metabolic disease present low levels of endogenous AhR 

ligands in feces (Natividad et al., 2018). Although in Natividad et al, the presence of gut 

inflammation was not studied, the low intestinal AhR activity was correlated with high BMI, 

type-2 diabetes and high blood pressure. The same authors observed also low fecal levels of 

AhR ligands in the high-fat-induced model of obesity in mice and established a link with 

changes in gut microbiota composition. Interestingly, the supplementation of mice with 

Lactobacillus strains, which display a high natural capacity to produce AhR ligands, 

improved the metabolic impairments induced by the high-fat diet through mechanisms related 

to intestinal barrier integrity and production of the incretin hormone GLP-1 (Natividad et al., 

2018). Besides, some studies have highlighted the important role of AhR in lipid homeostasis 

(La Merrill et al., 2013). AhR seems to be activated by LDL, and AhR-knockout mice have 

higher levels of serum LDL (McMillan and Bradfield 2007).	Altogether these data reinforce 

the potential important role of AhR in obesity and its metabolic complications. 

Several reports addressed the importance of FXR in obesity however as for AhR, 

conflicted results were obtained (De Magalhaes Filho et al., 2017). It has been observed that a 

FXR deficiency protected mice against diet-induced obesity (Prawitt et al., 2011). Tissue-

specific invalidation of FXR in mice revealed that intestinal FXR is required for the 

development of diet-induced obesity and its metabolic complications (insulin resistance, non-

alcoholic fatty liver disease). However, fexaramine a potent FXR agonist acting specifically 
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in the intestine, exerts an anti-obesity effect in high-fat-fed mice (Fang et al., 2015). These 

controversial findings of the role of FXR on obesity prove the complexity of this transcription 

factor and the mechanisms triggered by their activation and also how complex is this disease, 

which displays a lot of metabolic disturbances in different organs including the intestine. FXR 

may be also involved in intestinal inflammation during obesity through its role in the 

modulation of immune response and barrier function (Vavassori et al., 2009). Indeed, bile 

acids, the natural FXR ligands have been described to regulate many different aspects of 

intestinal physiology, such as cell survival and death, fluid secretion and production of mucus 

and epithelial barrier function, tight junction integrity, and proinflammatory cytokines 

production (Barcelo et al., 2001; Dossa et al., 2015) (Maran et al., 2009). Moreover, a study 

has associated the increase of luminal bile acids to a deterioration of intestinal permeability in 

vivo (Stenman et al., 2012). On the other hand, the immune cell modulation by the FXR 

signaling pathway could improve intestinal inflammation (Gadaleta et al., 2011). FXR itself 

and its natural ligands bile acids appear to play an important role in the modulation of 

inflammatory responses and barrier function (Mroz et al., 2018).  

 

These findings evidence the difficulty to understand the causal relationship between 

transcription factor activities and the onset or the modulation of intestinal inflammation and 

low-grade inflammation reported in obesity.  
 

AhR involvement in the intestinal inflammation and epithelial dysfunctions  

Recently, studies emphasized the key role of AhR in the maintenance of intestinal 

homeostasis, by acting on the proliferation of stem cells in the colon crypt, the formation of 

lymphoid tissue and the prevention of bacterial overload (Stockinger et al., 2014). This role 

was essentially described in colitis animal models or in human suffering of intestinal bowel 

disease (Takamura et al., 2010; Furumatsu et al., 2011; Monteleone et al., 2011; Kiesler et 

al., 2015; Goettel et al., 2016; Lamas et al., 2016; Lanis et al., 2017; Lamas et al., 2018). In 

the intestinal immune system, AhR regulates the function and development of innate 

lymphoid cells and also the differentiation and function of the intestinal lymphocytes 

(Cervantes-Barragan and Colonna 2018), especially those secreting IL-22, a cytokine 

responsible for maintaining the intestinal barrier function and expression of REG3, an 

antimicrobial gene (Kiss et al., 2011; Lee et al., 2011; Gulhane et al., 2016; Wang et al., 



	

 
	

	
DISCUSSION 

	
	 	

154 

2017). AhR knock-out mice displayed a decreased expression of IL-22 and REG3 in the 

intestine. When these animals were exposed to a bacterial infection, they developed more 

serious colitis than wild-type animals (Stockinger et al., 2014). Although IL-22 is 

characterized by several studies’ relevance in IBD, about its ability to induce mucosal 

healing, further works still need to fully understand the mechanism that determines its 

beneficial effect on colitis. In this context, AhR activation as a stimulator of IL-22 expression 

would be considered a promising therapeutic target for IBD.  
In our experimental conditions, we did not detect IL-22 in mouse intestine submitted 

to repeated gavage with palm oil, however, in obese subjects presenting an intestinal 

inflammation, we observed that the mRNA level of IL-22 in jejunum epithelium is decreased 

and negatively correlated to the recruitment of T lymphocytes into the epithelium. It is known 

that IL-22 exerts diverse metabolic benefits, as it improves insulin sensitivity, preserves gut 

mucosal barrier and endocrine functions, decreases endotoxemia and chronic inflammation, 

and regulates lipid metabolism in liver and adipose tissue (Dalmas and Donath 2014; Wang et 

al., 2014; Sabat and Wolk 2015). Besides, IL22 is an important cytokine in wound healing 

through stimulating survival of intestinal stem cells and enhancing anti-bacterial peptide 

production from epithelial cells (Rubino et al., 2012; Aparicio-Domingo et al., 2015). IL-22 

expression can be stimulated by AhR activation (Alam et al., 2010; Lamas et al., 2016; 

Lamas et al., 2016), suggesting that IL-22 is an AhR stimulated gene. Thus, in my study in 

obese subjects, the decreased expression of AhR itself or, by consequence, the decreased 

expression of IL-22 could be involved in the intestinal inflammation reported in obesity.  

 

In vivo in mice, I observed that the short-term treatment with the AhR agonist was not 

sufficient to prevent the increased intestinal permeability caused by palm oil and did not allow 

paracellular permeability to reach normal value even though a clear beneficial effect on 

junctional complexes can be observed. The protective role of AhR on cell-cell junction 

integrity is supported by other studies, especially in mouse models of colitis, where the 

expression of tight junction proteins and paracellular permeability were significantly 

decreased but restored after the activation of AhR by its agonist, FICZ (Park et al., 2015; Park 

et al., 2015; Yu et al., 2018). The same protective role of AhR on junctional proteins and 

paracellular permeability was observed in Caco-2 cells treated with the pro-inflammatory 

cytokines TNF-α and IFN-γ (Natividad et al., 2018; Yu et al., 2018). Moreover, in my study 
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in mice, short term AhR activation was not able to mitigate the inflammatory profile 

disturbance on mice treated with palm oil. Thus, our data in vivo suggest that AhR activation 

could act directly on junctional complexes but a more sustained activation might be necessary 

to improve the intestinal barrier dysfunction. A specific-dependent effect of the different AhR 

agonists used can also be responsible for some discrepancy between my results and the results 

described above. FICZ and βNF are distinct AhR ligands and their triggering intracellular 

signaling pathways remains to be explored. Moreover, emerging data suggest the importance 

of concentration of AhR agonist on AhR function. It is suggested that depending of AhR 

ligands/agonists dose, no beneficial or deleterious effects could occur (Esser et al., 2018). 

 

The mechanisms involved in epithelial barrier improvement modulated by AhR  

I used the human intestinal epithelial cell line, Caco-2/TC7 cells to study the role of 

the AhR on the intestinal epithelium and the molecular mechanisms involved without the 

interference of microbiota, immune cell regulation, etc. 

 

I showed that AhR activation prevented chemical barrier damage induced by both 

exposure of Caco-2/TC7 cells to lipid micelles containing palmitic acid, and upon chemical 

disruption of junctional protein complexes, the calcium chelator EGTA. Indeed, I 

demonstrated that AhR activation by its agonist βNF prevented the barrier disruption 

triggered by palmitic acid and EGTA. While βNF was not able to counteract the 

inflammatory response to palmitic acid, it diminished the expression and the secretion of 

cytokines induced by EGTA treatment. My results are showing a protective role of AhR on 

intestinal barrier dysfunction via an action on junctional complexes.  

Recent studies emerged on the protective effect of the AhR agonist FICZ on barrier 

function, especially on colitis models. However, the mechanisms driving its beneficial effect 

remain not well understood. Some papers showed that AhR protective effect acts through 

tight junctions regulation, mainly occludin and ZO-1 (Han et al., 2016; Liu et al., 2018; Yu et 

al., 2018) and implicates mainly the myosin light chain (MLC) kinase (MLCK) pathway (Han 

et al., 2016; Yu et al., 2018). The MLCK-dependent MLC phosphorylation is an important 

regulatory point involved in the maintenance of tight junction (Cunningham and Turner 

2012). In our experiments, MLCK pathways do not appear to be implicated in the protective 

effects of βNF, since the expression of MLCK and the phosphorylation of MLC were not 
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modified under our experimental conditions (data not shown), so the beneficial effect of AhR 

activation on chemically-induced tight junctions disassembly involves other pathways.  

Other protein kinases and phosphatases activities have been involved in junctional 

proteins disruption. In particular, it is known that occludin dephosphorylation on threonine 

residues without affecting the serine-phosphorylation accompanied a rapid disassembly of 

tight junctions in Caco-2 cell monolayers caused by EGTA-induced calcium depletion (Seth 

et al., 2007). Thus, I investigated the links between AhR activation and protein kinases 

pathways involved in the control of junction proteins. We observed that the beneficial effect 

of AhR activation on paracellular permeability to ions was abolished when we blocked the 

PKC and p38MAPK phosphorylation pathway but not the MEK dependent pathway. It has 

been observed that PKC is a member of a multiprotein complex involved in the maintenance 

of cell polarity acting on the tight junction proteins ZO-1 and occludin (Schuhmacher et al., 

2019). Interestingly, another member of this complex is the protein Par-6, which has been 

recently involved in the protective effects of AhR activation on the intestinal epithelial barrier 

in response to lipopolysaccharide (Yu et al., 2018). It is now important to measure in situ 

interaction of junction proteins with their partners inside junctional complexes using in situ 

proximity ligation assay experiments. Indeed it has been shown that threonine 

phosphorylation on T770/T772 residues in the GuK (guanylate kinase) domain of ZO-1 by 

PKCε disrupts its interaction with occludin (Chattopadhyay et al., 2014). Moreover, the 

determination of phosphorylation status of tight junction proteins using antibodies against 

serine, threonine or tyrosine phosphorylated residues could also support our hypothesis.  

The expression of the total and phosphorylated form of Src and JNK kinases was 

analyzed here (data not shown) and no difference in protein expression was observed neither 

upon AhR activation or chemical barrier damage. However, changes in the phosphorylation 

status of a protein are highly dynamic and reversible and might be difficult to catch 

experimentally.  

Interestingly, we observed that chemically induced barrier damage (EGTA treated 

cells) is accompanied by an increased pro-inflammatory cytokines expression and secretion 

that was counteracted by AhR activation. NF-κB pathway is an important regulator involved 

in the expression and secretion of cytokines but also in the effect of cytokines on intestinal 

epithelial barrier (Ma et al., 2004; Al-Sadi et al., 2008; Al-Sadi et al., 2010; Al-Sadi et al., 

2012; Kominsky et al., 2014; Lee 2015; Al-Sadi et al., 2016). I observed that barrier damage 
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by EGTA did not increase the NF-κB activation (results not shown), suggesting that the NF-

κB pathway was not involved in this process. Others kinases such as ERK and p38MAPK 

regulates IL-8 expression (Jijon et al., 2002) or autophagy regulates Il-1β and TNFα 

expression (Liu et al., 2017). Cytokine expression can also be controlled by 

posttranscriptional mechanisms via many cis-acting sequence elements and transcription 

factors (Kovarik et al., 2017). Further experiments are required to fully decipher the 

mechanisms involved in the protective effects of AhR on intestinal barrier. 

 

Our findings reinforce the link between obesity and low-grade intestinal inflammation 

to environmental factors such as diet, microbiota and the activation of transcription factors 

expressed in the intestine. Furthermore, our data suggest the direct implication of all these 

factors, especially the palmitic acid and AhR activation, in the intestinal barrier integrity. 

Henceforth, it needed to go further to investigate the molecular mechanisms involved in the 

activation of AhR and its reduced activity in obese subjects, jointly with FXR, to better 

understand their specific role on gut inflammation and intestinal epithelium damage in 

obesity. 
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Conclusion 

In my thesis work, I studied the participation of two actors (palmitic acid and AhR) 

related to environmental changes in the development of intestinal inflammation reported in 

obesity. My starting hypothesis was to consider that intestinal inflammation is linked to 

intestinal barrier perturbation and can imply mechanisms occurring before the onset of 

obesity. My studies conducted in enterocytic cell line help me to identify the mechanisms that 

occur in the intestinal epithelium independently of microbiota or immune cells influence.  

Firstly, my work shows that obese subjects presenting with gut inflammation in their 

jejunal mucosa, display a decreased epithelial AhR and FXR tone, suggesting that these 2 

transcription factors exert a potential role in epithelial intestinal dysfunction, as reported in 

intestinal bowel diseases in human (Lamas et al., 2016).  

Moreover, I showed that the short-term palm oil intake in mice is capable to trigger an 

early disruption on the intestinal barrier integrity, initiate an inflammatory response and 

modify the intestinal microbiota composition. Iterative short-term supply of palmitic acid is 

sufficient to induce persistent alterations in the enterocytic cell line, supporting the idea that 

the irreversibility of these effects deleterious, contribute to a vicious circle. 

Further, my findings showed that the AhR activation by βNF improves the intestinal 

barrier dysfunction both in vivo and in intestinal epithelial cells. The mechanisms driving this 

protective effect of AhR involve here the tight junction proteins assembly. The AhR 

activation maintains the tight junction proteins at the membrane, preventing their loss of 

location triggered by nutrient or chemically induced barrier damage. The AhR protective 

action appears to be regulated by the phosphorylation of junctional proteins.  

Take our findings together and regarding the mechanism involved, our results show 

that palmitic acid may initiate a vicious cycle starting at the gut barrier, leading to gut 

inflammation, that may contribute to systemic inflammation. I showed also AhR activation 

might improve the intestinal inflammation and epithelial damage, both epithelial dysfunctions 

present in obese subjects (Figure 22). Hence, the administration of AhR agonists might 

protect the intestine damage in obesity. 
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Figure 22: Gut - A nexus between inflammation and obesity? 
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Perspectives 
The actors studied here can induce cross-talk between host cells, thus it would be now 

useful to deepen the sequence of events occurring in vivo taking into account the role of 

microbiota and immune cells on the gut barrier in physiological and pathological situations. 

The jejunum samples of well-phenotyped obese patients might help to further understand the 

tight junction protein status in the damaged gut. 

To better characterize the AhR tone in obese subjects, it would be interesting to 

quantify the amount of AhR ligands/agonists in feces at different time after by-pass surgery to 

determine whether changes in AhR ligands amount (total or specific ligand) is correlated with 

improvement of metabolic parameters and if possible, with intestinal permeability.  

To better characterize the AhR action on intestinal functions, it would be interesting to 

quantify: 1) the recruitment of immune cells of the intestine and the infiltration of immune 

cells from lamina propria to the epithelium using in situ markers such as T lymphocytes (CD3 

T cell marker) (Monteiro-Sepulveda et al., 2015), Macrophages (F4/80 marker) (Wagner et 

al., 2018), and neutrophil (MPO marker) (Helke et al., 2018).; 2) the injury of the epithelium 

by the quantification in feces of lipocalin-2 (neutrophil marker) (Moschen et al., 2017); 3) the 

protection by the thickness of mucus layer via histological staining with alcian blue, which 

stains the mucins and mucopolysaccharides (Rohe et al., 2018); 4) the systemic consequences 

by using markers of neutrophil infiltration in plasma (MCP-1 marker) (Osaka et al., 2016) or  

of acute inflammation (SAA-1, -2,-3) (Tannock et al., 2018); 5) the apparition and 

maintenance of AhR protective effect by time course of intestinal barrier readouts and 6) 

better explore the role of AhR in the kinases pathways and tight junctions phosphorylation 

through the tight junctions immunoprecipitation followed by western blot analysis and the 

kinases activity. 

 

Additionally FXR activation is supposed to participate to the improvement of 

intestinal barrier function (Gadaleta et al., 2011; Stojancevic et al., 2012; Verbeke et al., 

2015; Liu et al., 2017). Obese subjects showed a decreased FXR target gene expression 

correlated with intestinal inflammation. Henceforth, to better clarify the role of FXR 

activation on intestinal barrier function, it is necessary to carry out in vivo and in vitro 

experiments. Since FXR is highly expressed in the intestine and activated by bile acids, 
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intestinal barrier function would be addressed in the basal state and after a lipid load. 

Constitutive activation of FXR via genetic models might be useful to complement the drug-

induced FXR activation. The enterocytic cellular model will help to establish the relative 

importance of AhR and FXR on intestinal barrier.  

 

A comprehensive view of the reduction of AhR and FXR tone in the intestine of obese 

subjects is not reached yet. Indeed, according to our findings, a reduction of AhR activity in 

inflammatory conditions would lead to intestinal epithelium damages and seems to present 

importance in metabolic diseases. 
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Annexes 

1) Article as second author: Tran et al., 2016  

During my thesis, I participated in a study investigating in mice and in Caco-2/TC7 

cells the mechanism involved in the insulin resistance of intestinal epithelial cells induced by 

palmitic acid (Tran et al., 2016). In this study of which I am the second author, we showed 

that: 

- Insulin was not able to exert its physiological action on intestinal lipid metabolism 

when mice have received one bolus of saturated fatty acid-rich palm oil rather than of mono-

unsaturated fatty acid-rich olive oil.  

- Insulin-signaling pathway, assessed by the phosphorylation of protein kinase B 

(AKT), is impaired under palmitic acid supply in mouse intestine and Caco-2/TC7 cells. 

- Palmitic acid supply, contrary to oleic acid supply, triggered intracellular ceramide 

production 

- The inhibition of palmitic-acid-dependent production of ceramides blocked part of 

the palmitic acid effects on AKT signaling pathways. 

 

Altogether, this work demonstrates that a palmitic acid-ceramide pathway accounts for 

the impairment of intestinal insulin sensitivity occurring as soon as the first lipid supply. 
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The worldwide prevalence of metabolic diseases is increasing,
and there are global recommendations to limit consumption of
certain nutrients, especially saturated lipids. Insulin resistance,
a common trait occurring in obesity and type 2 diabetes, is asso-
ciated with intestinal lipoprotein overproduction. However, the
mechanisms by which the intestine develops insulin resistance
in response to lipid overload remain unknown. Here, we show
that insulin inhibits triglyceride secretion and intestinal micro-
somal triglyceride transfer protein expression in vivo in healthy
mice force-fed monounsaturated fatty acid-rich olive oil but not
in mice force-fed saturated fatty acid-rich palm oil. Moreover,
when mouse intestine and human Caco-2/TC7 enterocytes were
treated with the saturated fatty acid, palmitic acid, the insulin-
signaling pathway was impaired. We show that palmitic acid or
palm oil increases ceramide production in intestinal cells and
that treatment with a ceramide analogue partially reproduces
the effects of palmitic acid on insulin signaling. In Caco-2/TC7
enterocytes, ceramide effects on insulin-dependent AKT phos-
phorylation are mediated by protein kinase C but not by protein
phosphatase 2A. Finally, inhibiting de novo ceramide synthesis
improves the response of palmitic acid-treated Caco-2/TC7
enterocytes to insulin. These results demonstrate that a palmitic
acid-ceramide pathway accounts for impaired intestinal insulin
sensitivity, which occurs within several hours following initial
lipid exposure.

The worldwide obesity epidemic has stimulated numerous
research efforts to identify factors that affect energy balance. As
compared with the liver, pancreas, muscle, or adipose tissues,

the intestine has received little attention with regard to its
potential role in the onset of metabolic disorders. Nevertheless,
the intestine could also contribute to the development of met-
abolic disease, especially through its role in postprandial
lipemia.

The increased amplitude and duration of the postprandial
peak of circulating triglyceride-rich lipoproteins (TRL)5 are
known risk factors for atherosclerosis and cardiovascular dis-
eases (1, 2). Postprandial hypertriglyceridemia can be due to
impaired TRL catabolism, and/or lipoprotein remnant uptake,
and may also result from intestinal TRL overproduction (3).
Thus, investigating intestinal lipoprotein secretion might help
to understand aberrant postprandial lipemia (4).

The intestine ensures the transport of alimentary fat, which
is the most calorie-dense nutrient. Enterocytes produce intes-
tinal TRLs (chylomicrons) along a multistep pathway, which
includes long chain fatty acid uptake, triglyceride synthesis in
the endoplasmic reticulum, and assembly with apolipoproteins
(apo) such as apoB48. Chylomicrons are then secreted into the
lymph and ultimately into the blood. Overproduction of intes-
tinal TRL may be an important contributor of both fasting and
postprandial dyslipidemia (3, 5). Microsomal triglyceride trans-
fer protein (MTP) transports neutral lipids (6) and plays a cen-
tral role in the efficiency of lipid absorption by modulating chy-
lomicron size. Alterations in MTP protein expression can
impact intestinal fat transport and lipoprotein metabolism (7).
However, in metabolic syndrome, which encompasses dyslipi-
demia, hypertension, and insulin resistance, the mechanisms
underlying perturbed chylomicron assembly and secretion
remain poorly explored.

Insulin also plays a central role in regulating energy metabo-
lism. In the liver, the other TRL-secreting organ, insulin inhib-
its the production of very low density lipoproteins via the inhi-
bition of MTP expression and apoB secretion (8 –10). In the
human intestine, insulin inhibits the production of apoB48-
containing lipoproteins by both direct and indirect mecha-
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nisms (11). In healthy chow-fed hamsters, a decrease in circu-
lating levels of triglyceride-rich apoB48-containing lipo-
proteins was observed 60 min after insulin administration (12).
The mechanisms involved in the inhibitory effect of insulin on
chylomicron production remain unclear.

In hamsters, intestinal insulin resistance can be induced by a
high fructose diet (12, 13), a high fat diet (15), or by TNF-�
infusion (14). In these conditions, an overproduction of intes-
tinal lipoproteins and/or an induction of MTP expression are
observed. Moreover, several groups have reported that the
intestine plays a role in the onset of insulin resistance in
humans. Indeed, hyperinsulinemic insulin-resistant human
subjects display increased production rates of intestinal
apoB48-containing lipoproteins (16), and in individuals with
type 2 diabetes, intestinal chylomicron production is resistant
to insulin’s acute suppressive effects (17).

Dyslipidemia is often reported during the progression from
obesity to type 2 diabetes, thus exposing tissues to a variety of
elevated lipids. Among these lipid species, ceramides have
recently gained attention as important in the development of
insulin resistance and impaired glycemic control (18). With
excess saturated fat intake, ceramides accumulate in insulin-
sensitive tissues, either as a consequence of de novo synthesis or
through mobilization from complex sphingolipids (18). Insu-
lin-resistant rodents and humans often display elevated cer-
amide concentrations in the liver, muscle, or serum, as com-
pared with lean or untreated control subjects (19). At the
cellular level, ceramide accumulation impairs insulin signaling
and intracellular handling of glucose and lipids, resulting in
deleterious effects on cell metabolism in liver, muscle, and adi-
pose tissue (20, 21). However, in these studies the intestine was
not investigated.

The cellular mechanisms that link lipid overload, the intes-
tine, and insulin resistance remain to be clarified. Moreover,
most of the above reported results were obtained under estab-
lished states of insulin resistance or after long term high fat or
fructose diets. Considering the rapid renewal of intestinal epi-
thelium, local insulin resistance may occur rather quickly. In
this work, we aimed to determine whether an acute supply of
the saturated fatty acid palmitic acid would be sufficient to
interfere with insulin action in intestinal cells and, if so, by
which mechanisms.

Results

In Mouse Intestine, a Single Oral Gavage with Palm Oil
Impairs Insulin Effects on Lipid Absorption—Following a single
administration of those oils that are enriched in monounsatu-
rated fatty acids (olive oil) or saturated fatty acids (palm oil)
(Table 1), the effects of insulin on lipid absorption were ana-
lyzed in mice. In the absence of insulin treatment and 1 h after
an olive or palm oil bolus, the postprandial plasma triglyceride
content was increased as compared with control (water), as
expected (Fig. 1A). Insulin injection reduced the plasma triglyc-
eride level rise in mice that received an olive oil bolus, although
no effect was observed in mice that received a palm oil bolus
(Fig. 1A). Modifications of MTP activity (Fig. 1B) and expres-
sion (Fig. 1C) were analyzed in intestinal cells of mice force-fed
palm oil, olive oil, or water and treated with or without insulin.

Gavage with olive or palm oil both increased MTP activity when
compared with water. However, insulin exerted an inhibitory
effect on MTP activity in mice force-fed water or olive oil but
not in mice force-fed palm oil (Fig. 1B). Concerning changes of
Mttp gene expression in intestinal epithelial cells, in the
absence of insulin treatment, MTP mRNA levels were similar in
mice that received either water or palm oil boluses (Fig. 1C),
although they increased after an olive oil bolus. Insulin treat-
ment reduced the rise of MTP mRNA in intestinal epithelial
cells of mice force-fed olive oil (Fig. 1C) but led to increased
MTP expression in mice force-fed palm oil (Fig. 1C). Differ-
ences between MTP mRNA levels and MTP activity following
treatment may be explained by the complexity of the mecha-
nisms responsible for MTP regulation, which has been shown
to occur at transcriptional, translational, and/or post-transla-
tional levels (6).

These results indicate that palm oil prevents insulin exerting
its inhibitory action on triglyceride secretion, Mttp gene
expression, and MTP activity, suggesting that palm oil may
interfere with the insulin-signaling pathway.

Palmitic Acid Impairs Insulin Signaling in Mouse Intesti-
nal Epithelial Cells and in Human Enterocytes—To further
understand the mechanisms by which saturated fatty acids
alter intestinal insulin actions, we analyzed the effects of
olive and palm oils on insulin signaling in mouse intestinal
epithelial cells (Fig. 2). We observed that the increased AKT
serine 473 phosphorylation in mouse intestinal epithelial
cells, after insulin injection, was significantly impaired in
mice that were force-fed palm oil but not olive oil. This sug-
gests that a single bolus of palm oil is sufficient to alter insu-
lin signaling in vivo.

Because palmitic acid is the major fatty acid component of
palm oil (Table 1), we tested the specific effect of this saturated
fatty acid on insulin signaling in intestinal cells as compared
with oleic acid (the main monounsaturated fatty acid in olive
oil). For this experiment, we used cultured human Caco-2/TC7
enterocytes incubated for 24 h with lipid micelles containing
either palmitic (PA) or oleic acid (OA) before an insulin chal-
lenge. As shown in Fig. 3, in control and oleic acid-treated cells,
insulin treatment induced a significant increase in insulin
receptor substrate (IRS) phosphorylation at tyrosine 612
(Fig. 3A) and in AKT phosphorylation at both serine 473 and
threonine 308 (Fig. 3B). In contrast, no increase in IRS or
AKT phosphorylation occurred in Caco-2/TC7 cells treated
with palmitic acid-containing lipid micelles, indicating that
this saturated fatty acid prevents insulin signaling in entero-
cytes. This inhibitory effect of PA-containing lipid micelles
in Caco-2/TC7 cells was observed after 24 h of treatment but

TABLE 1
Fatty acid composition of olive and palm oils, according to the manu-
facturer

Component Olive oil (100 g) Palm oil (100 g)

Palmitic acid 11.3 43.5
Oleic acid 71.3 36.6
Linoleic acid 12.5 9.1
Others 4.9 10.8
Total saturated fatty acids 13.8 49.3
Total monounsaturated fatty acids 72.9 37
Total polyunsaturated fatty acids 10.5 9.3
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not after 6 h of treatment (Fig. 3C). This suggests that met-
abolic processing of palmitic acid is required for its effect on
insulin signaling.

Palmitic Acid Increases Ceramide Production in Mouse Intes-
tinal Cells—Palmitic acid has been described as a precursor of
de novo ceramide synthesis, which contributes to insulin resis-

tance (20, 27). We thus analyzed whether this saturated fatty
acid increases ceramide production in intestinal cells.

We first compared the amount of ceramide in mouse plasma
4 h after gavage with water, olive oil, or palm oil. An increase in
plasma ceramide was observed following palm oil bolus and to
a lesser extent after olive oil bolus (Fig. 4A). The effect of palm
oil on ceramide production was further analyzed in mouse
plasma and intestinal samples. Mice were treated or not with
myriocin, an inhibitor of serine palmitoyltransferase (SPT) that
is the first enzyme in de novo ceramide synthesis (28). Mice
were then force-fed palm oil. Both treatments were adminis-
tered daily for 4 consecutive days. Plasma ceramide levels were
quantified in all mice before and 2 h after the last palm oil bolus.
As shown in Fig. 4B, an increase (�21%) of total ceramide con-
tent was observed in mouse plasma 2 h after the palm oil bolus.
This increase in plasma ceramide level was not observed in
animals treated with myriocin, suggesting the occurrence of de
novo ceramide synthesis in the small intestine during the 2-h
period immediately following the palm oil bolus. The total cer-
amide content was also measured in the intestine of mice
treated with palm oil in the presence or absence of myriocin
(Fig. 4C). In epithelial intestinal cells, total ceramide remained
unchanged after 2 h of palm oil treatment; however, an inhibi-
tory myriocin effect was observed. According to the increase in
total plasma ceramide after a palm oil bolus (Fig. 4B), we
hypothesized that ceramides were rapidly secreted after syn-
thesis. Thus, we assayed the intestinal content of dihydrocer-
amides (DHCer), ceramide precursors that are specifically pro-
duced via de novo synthesis (20). We observed a �48% increase
in total DHCer levels 2 h after palm oil bolus, which was pre-
vented with myriocin treatment (Fig. 4D). DHCer species anal-
ysis revealed that palm oil mainly increased C20 and C22
DHCer in this tissue (8.3- and 2.1-fold, respectively) (Fig. 4E).

FIGURE 1. Effects of palm and olive oils on insulin-dependent intestinal
lipid absorption in mice. A, fasted mice were force-fed water, olive oil, or
palm oil and either subjected or not to an intraperitoneal injection of insulin
(ins) 30 min later. Blood was collected 1 h after the bolus. Plasma triglyceride
levels were quantified. #, p � 0.05, and ##, p � 0.01, as compared with water;
**, p � 0.01 as compared with the same condition without insulin, ns, not
significant, mean � S.E., n � 8. B, fasted mice were force-fed either water,
olive oil, or palm oil and were either subjected or not to an intraperitoneal
insulin (ins) injection 4 h later. Mice were euthanized 30 min after insulin
injection. MTP activity was assayed in cellular homogenates of intestinal epi-
thelial cells. Results display mean � S.E., n � 4, for each condition. #, p � 0.05
as compared with water; *, p � 0.05, as compared with the same condition
without insulin; ns, not significant. C, fasted mice were force-fed water, olive
oil, or palm oil and were either subjected or not to an intraperitoneal insulin
(ins) injection at the same time as lipid bolus. Four hours later, mice were
euthanized, and the jejunum was collected. MTP mRNA levels were quanti-
fied by RT-PCR in mouse intestinal epithelial cells, and by using L19 mRNA as
a reference. Results display mean � S.E., n � 4, for each condition. #, p � 0.05,
as compared with water; *, p � 0.05, as compared with the same condition
without insulin; ns, not significant.

FIGURE 2. Effects of palm and olive oils on insulin signaling in themouse
intestine. Fasted mice were force-fed water, olive oil, or palm oil, and 4 h later
were either subjected or not to an intraperitoneal insulin injection. Mice were
euthanized 30 min after insulin injection, and cell lysates from intestinal epi-
thelial cells were analyzed by Western blotting for AKT phosphorylation
(P-AKT) at serine 473 (top panel). AKT phosphorylation was reported as the
ratio of P-AKT to total AKT content (arbitrary units, a.u.) (bottom panel). The
P-AKT/AKT ratio obtained in the water condition without insulin was set at 1.
Results display mean � S.E., n � 4, for each condition. **, p � 0.01, and ***, p �
0.001, compared with the same treatment without insulin; ns, not significant.
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Because palm oil and olive oil contain a mixture of fatty acids
(Table 1), we analyzed the specific effect of palmitic acid on
ceramide production by comparing the intracellular content of
ceramide in Caco-2/TC7 cells incubated with palmitic acid or
oleic acid (Fig. 5). As compared with control cells, the intracel-
lular content of C14-, C18-, C20-, C22-, and C24-ceramide species
was increased in PA-treated cells but not in OA-treated cells
(Fig. 5A). Interestingly, we observed a 46% increase in serine
palmitoyltransferase 2 subunit (SPT2) expression in PA-treated
cells as compared with control cells (Fig. 5B). SPT2 expression
remained unchanged in OA-treated cells as compared with
control cells.

Altogether, these results demonstrate that palmitic acid
induces de novo ceramide synthesis in intestinal cells. They
indicate that the effects of palmitic acid on insulin signaling
could occur through increased ceramide synthesis in
enterocytes.

Alteration of Insulin Signaling in Intestinal Cells by Palmitic
Acid Is Dependent on de Novo Ceramide Synthesis—We then
determined the direct impact of ceramide on insulin signal-

ing in intestinal cells. Caco-2/TC7 cells were incubated with
C2-ceramide, a short chain cell-permeable biologically active
analogue of ceramide (Fig. 6A) (29, 30). Compared with con-
trol cells, the addition of C2-ceramide reduced the basal phos-
phorylation level of the AKT threonine 308 residue, and it
significantly impaired the response to insulin, as early as 6 h
after the beginning of the treatment. C2-ceramide addition
also tended to decrease both basal and insulin-stimulated
AKT phosphorylation at serine 473 (Fig. 6A), but it did not
reach statistical significance when compared with untreated
cells. These results demonstrate that ceramide addition in
enterocytes partially reproduces the effects of palmitic acid
on insulin signaling.

We then analyzed whether inhibiting de novo ceramide syn-
thesis reversed the effect of palmitic acid on insulin signaling
(Fig. 6B). As myriocin treatment is toxic to Caco-2/TC7 cells
(data not shown), we used L-cycloserine, another potent inhib-
itor of de novo ceramide synthesis (31). L-Cycloserine treatment
partially restored serine 473 and threonine 308 AKT phosphor-
ylation upon insulin treatment of PA-treated cells (Fig. 6B).

FIGURE 3. Effects of palmitic or oleic acid on AKT phosphorylation in cultured human Caco-2/TC7 enterocytes. A, Caco-2/TC7 cells were incubated with
oleic acid- or palmitic acid-containing lipid micelles (OA and PA, respectively) for 24 h. As indicated, insulin (ins) was added to the culture 10 min prior to
harvesting. Cell lysates were used for Western blotting analysis of IRS phosphorylation at tyrosine 612, with Hsc70 as loading control (left panel). Ratios of
phosphorylated IRS to Hsc70 protein, expressed as arbitrary units (a.u.), are reported in the right panel. Results display mean � S.E., n � 4. *, p � 0.05, as
compared with the same condition without insulin; ns, not significant. B, Caco-2/TC7 cells were cultured in the presence or absence of OA- or PA-containing
lipid micelles for 24 h. Cells were incubated with or without insulin (ins) for 10 min prior to harvest. AKT phosphorylation at serine 473 (P-AKTSer-473) or threonine
308 (P-AKTThr-308) was analyzed by Western blotting (left panel) using specific antibodies against the phosphorylated residues. Total AKT was used as control,
and the ratios of the respective P-AKT to total AKT content are reported (right panels). The P-AKT/AKT ratio obtained under control conditions (without lipid
micelles and insulin) was set at 1. *, p � 0.05; **, p � 0.01, as compared with the same conditions without insulin. ns, not significant, mean � S.E., n � 4. C,
Caco-2/TC7 cells were incubated in the presence or absence of palmitic acid-containing lipid micelles (PA) for 6 or 24 h and treated or not with insulin for 10 min
prior to harvest. AKT phosphorylation in cell lysates was analyzed by Western blotting (left panel). Quantification of AKT phosphorylation was expressed as the
ratio of P-AKT to total AKT (right panels) in arbitrary units (a.u.). Results display mean � S.E., n � 4. *, p � 0.05, and **, p � 0.01, as compared with the same
conditions without insulin. ns, not significant.
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Altogether, these results show that the effects of palmitic acid
on insulin signaling are directly linked to de novo ceramide
synthesis in enterocytes.

Inhibitory Effect of Ceramide on Insulin-stimulated AKT
Phosphorylation Is Mediated by PKC Activity but Not by PP2A
Activity—In 3T3-L1 adipocytes and L6 muscle cells, it has been
reported that protein kinase C (PKC) and protein phosphatase
2A (PP2A) are involved in the inhibitory effect of ceramide on
insulin signaling (31, 32). To determine whether PKC and/or
PP2A pathways are also involved in enterocytes, we pre-treated
Caco-2/TC7 cells with either a broad PKC inhibitor (Ro
31.8220) or a PP2A inhibitor (okadaic acid, OKA), before the
addition of C2-ceramide and insulin (Fig. 7). When Caco-2/

TC7 cells were incubated in the presence of ceramide and insu-
lin, we observed that the ceramide-dependent low level of AKT
phosphorylation was prevented by pre-treatment with Ro
31.8220 (Fig. 7A) but not with OKA (Fig. 7B). These results
indicate that a ceramide-activated PKC pathway is likely to be
involved in the inhibitory effect of ceramides on insulin signal-
ing in Caco-2/TC7 cells.

Inhibiting de Novo Ceramide Synthesis Partially Restores
Insulin Effects on ApoB48 Secretion and MTP Activity in PA-
treated Caco-2/TC7 Cells—We next determined the impact of
palmitic acid supply and inhibiting de novo ceramide synthesis
on apoB48 secretion and MTP activity in Caco-2/TC7 cells. As
observed previously (33), palmitic acid-containing micelles

FIGURE 4. Effects of palm oil on ceramide production in mouse intestinal epithelial cells. A, total ceramide was quantified in mouse plasma 4 h after a
water, olive oil, or palm oil bolus. Results (mean � S.E.) are expressed as pmol/50 �l plasma. *, p � 0.05 versus water, n � 4, for each condition. B–E, mice received
or not myriocin (myr) by gavage and a bolus of water or palm oil 30 min later. These treatments were repeated for four consecutive days (n � 4, for each
condition). On the 4th day of the experiment, ceramides and dihydroceramides were quantified in plasma and intestinal epithelial cells by mass spectrometry.
B, total plasma ceramides were quantified before (T0, white boxes) and 2 h after the gavage (T2, black boxes). Results (mean � S.E.) are expressed as pmol/50 �l
plasma. **, p � 0.01, as compared with palm oil at T0. C, total ceramide content was quantified in intestinal epithelial cells 2 h after the final water or palm oil
gavage, with or without myriocin treatment. Results (mean � S.E.) are expressed as pmol/mg of protein. ##, p � 0.01, as compared with palm oil. D, total DHCers
were quantified in mouse intestinal epithelial cells 2 h after the final gavage. Results (mean � S.E.) are expressed as pmol/mg of protein. **, p � 0.01, as
compared with control; #, p � 0.05, as compared with palm oil. E, quantification of C20- and C22-dihydroceramides (C20 DHCer and C22 DHCer, respectively) was
carried out in mouse intestinal epithelial cells 2 h after the bolus. Results (mean � S.E.) are expressed as pmol/mg of protein. *, p � 0.05, and ***, p � 0.001, as
compared with water.
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were less potent than oleic acid-containing micelles in inducing
the secretion of apoB48 (Fig. 8A). Insulin decreased apoB48
secretion in OA-treated cells but not in PA-treated cells. Upon
insulin stimulation, apoB48 secretion tended to be lower in PA-
treated cells that were pre-treated with L-cycloserine as com-
pared with the observed apoB48 level in the absence of the de
novo ceramide synthesis inhibitor.

Furthermore, MTP activity was determined in Caco-2/TC7
cells (Fig. 8B). As observed previously in these cells (23, 34),
MTP activity was not modified by the supply of oleic acid-con-
taining micelles. However, we observed an increase of MTP
activity in PA-treated cells as compared with control cells. Insu-
lin decreased MTP activity in OA-treated cells but not in PA-
treated cells. Upon insulin stimulation, the pre-treatment of
PA-treated cells with L-cycloserine decreased MTP activity as
compared with the same conditions but without L-cycloserine
pre-treatment.

Altogether, these results indicate that the inhibitory effects of
insulin on apoB48 secretion and MTP activity observed in OA-
treated cells do not occur in PA-treated cells and that an inhi-
bition of the de novo ceramide synthesis pathway can restore
insulin action.

Discussion

It has been established that enterocytes express all of the recep-
tors and mediators involved in the insulin-signaling pathway (35).
However, few data exist on the intestinal role of insulin during fat
absorption under healthy conditions. The inhibitory effect of insu-
lin on intestinal lipoprotein secretion has previously been
observed (11, 36, 37), but the mechanisms implicated remain
unknown. Here, we report for the first time that in enterocytes (in
vivo as well as in Caco-2/TC7 cells) insulin modulates the expres-
sion and/or activity of MTP, which has a crucial role in the assem-
bly of intestinal apoB-containing lipoproteins (6).

Most of the knowledge concerning the effects of insulin on
intestinal lipoprotein secretion has been obtained in patholog-
ical situations with an overt insulin-resistant state, such as in
obesity or type 2 diabetes. In such pathologies, the increased
production of chylomicrons and their reduced clearance con-
tribute to the postprandial dyslipidemia observed in insulin-
resistant individuals (38). The physiological suppressive effect
of insulin on chylomicron production is reportedly absent in
type 2 diabetes subjects (17). Duodenal explants from insulin-
resistant obese subjects undergoing bariatric surgery were
shown to express higher mRNA levels of free fatty acid-binding
proteins and MTP and to secrete more intestinal triglyceride-
rich lipoproteins, i.e. chylomicrons (39). Interestingly, it has
also been recently shown that bariatric surgery improves trig-
lyceride-rich lipoprotein metabolism and, in particular,
decreases the levels of intestinal lipoproteins in obese subjects
(40). These changes were associated with decreases in
HOMA-IR (homeostasis model assessment-insulin resistance)
index after surgery, indicating an improvement in insulin sen-
sitivity (40). Specific intestinal perturbations in insulin signal-
ing have been observed in enterocytes from the fructose-fed
hamster model of insulin resistance (41). In this model, reduced
levels of IRS-1 phosphorylation were observed (12). Although
chronic administration of fructose led to increased intestinal
lipoprotein secretion, such an effect was not observed after
short term treatment (2 days) (12), suggesting that the pertur-
bation of intestinal lipoprotein secretion in this model could be
a consequence of intestinal adaptation to an overt insulin-re-
sistant state. In this study, we demonstrate that an acute supply
of palm oil in mice, or of palmitic acid in Caco-2/TC7 entero-
cytes, is sufficient to impair insulin signaling as well as insulin
effects on lipid-induced MTP expression and/or activity. This
indicates that intestinal insulin resistance rapidly occurs within
a time frame compatible with an enterocyte’s short life span in
the intestinal epithelium (42). It is thus possible that repeated
consumption of saturated fat containing large amounts of pal-
mitic acid might maintain this intestinal insulin-resistant state,
leading to altered intestinal function, which in turn could affect
the function of peripheral tissues.

Our results demonstrate that the effects of palmitic acid on
insulin signaling in enterocytes depend on the production of
ceramides. Ceramides are generated through three different
pathways as follows: 1) de novo synthesis, in which the conden-
sation of serine and palmitoyl-CoA by SPT constitutes the rate-
limiting step; 2) from sphingomyelin through the activation of
sphingomyelinases; and 3) the salvage pathway, through the

FIGURE 5. Effects of palmitic acid on ceramide production in Caco-2/TC7
enterocytes. A, cellular ceramide species content was quantified in control
cells and in cells treated for 24 h with OA- or PA-containing lipid micelles.
Results (mean � S.E.) are expressed as pg/mg protein. *, p � 0.05; **, p � 0.01,
and ***, p � 0.001 as compared with control cells, n � 4. B, representative
Western blot of SPT2 (upper panel) in cell lysates from Caco-2/TC7 cells cul-
tured under the same conditions as in A. Hsc70 protein was used as loading
control. The lower panel represents the quantification of SPT2 protein levels
expressed as the SPT2/Hsc70 ratio in arbitrary units (a.u.), the control value
being set to 1. Results display mean � S.E., n � 6; **, p � 0.01, as compared
with control.
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breakdown of complex sphingolipids (43). In palm oil-treated
mice and in palmitic acid-treated Caco-2/TC7 cells, our results
show that the observed increase in ceramide production mainly
occurs via the de novo synthesis pathway. Indeed, in intestinal
cells, we observed an increase in dihydroceramides (Figs. 4 and

5), which are intermediate metabolites specifically generated
during the de novo ceramide synthesis pathway (43). Moreover,
an increase of SPT2 expression, one of the SPT subunits, is
observed in palmitic acid-treated Caco-2/TC7 cells (Fig. 5).
Finally, the inhibition of the de novo ceramide synthesis path-

FIGURE 6. Effects of C2-ceramide addition and de novo ceramide synthesis inhibition on insulin-dependent AKT phosphorylation. A, Caco-2/TC7 cells
were incubated for 6 or 24 h with or without C2-ceramide. For some conditions, insulin was added 10 min prior to harvest. AKT phosphorylation in cell lysates
was analyzed by Western blotting (left panel). Specific antibodies against phosphorylated serine 473 (P-AKTSer-473) and threonine 308 (P-AKTThr-308) AKT residues
were used. Total AKT was used as control. The quantification of AKT phosphorylation is displayed in the right panel. Results are expressed as the P-AKT/total AKT
ratio in arbitrary units (a.u.). Results represent mean � S.E., n � 4. *, p � 0.05, and **, p � 0.01, as compared with the same condition without insulin. #, p � 0.05,
as compared with control cells in the presence of insulin. B, Caco-2/TC7 cells were incubated 24 h with or without palmitic acid-containing lipid micelles (PA).
For some conditions, cells were pre-treated with L-cycloserine for 1 h before incubation with PA-containing lipid micelles (PA�Lcyclo). When appropriate,
insulin was added 10 min prior to harvest. AKT phosphorylation in cell lysates was analyzed by Western blotting (left panels). Specific antibodies against
phosphorylated serine 473 (P-AKTSer-473) and threonine 308 (P-AKTThr-308) AKT residues were used. Total AKT was used as control. Quantification of AKT
phosphorylation (right panels) was expressed as the P-AKT/total AKT ratio in arbitrary units (a.u.); the ratio value obtained without insulin for each condition was
set at 1. *, p � 0.05; **, p � 0.01, and ***, p � 0.001, as compared with the same condition without insulin, ns, not significant, n � 4.

FIGURE 7. Effects of PKC and PP2A inhibitors on insulin-dependent AKT phosphorylation. Caco-2/TC7 cells were incubated with or without 100 �M

C2-ceramide (C2-cer) for 6 h. For some conditions, insulin was added 10 min prior to harvest. When indicated, cells were treated for 24 h with 5 �M Ro 31.8220
(A) or 100 nM OKA (B). AKT phosphorylation in cell lysates was analyzed by Western blotting (left panels). Specific antibodies against phosphorylated serine 473
(P-AKTSer-473) and threonine 308 (P-AKTThr-308) AKT residues were used. Total AKT was used as control. Quantifications of AKT phosphorylation are displayed in
the right panels. Results are expressed as the P-AKT/total AKT ratio in arbitrary units (a.u.). Results represent mean � S.E., n � 3. **, p � 0.01, and ***, p � 0.001,
as compared with the same condition without insulin; #, p � 0.05, ##, p � 0.01, and ###, p � 0.001, as compared with the indicated condition.
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way partially reversed the effects of palmitic acid in these cells
(Figs. 6B and 8). We delved deeper into the mechanism and
showed that in enterocytes the effects of C2-ceramide on AKT
phosphorylation involved the activation of the PKC pathway.
This ceramide-activated pathway has previously been observed
to mediate deleterious ceramide effects on insulin signaling in
different insulin-sensitive cell types (31, 32).

Interestingly, we show that both C2-ceramide addition and
inhibition of the de novo ceramide synthesis pathway mainly
exert their effects on the AKT threonine 308 residue and to a
lesser extent on its serine 473 residue (Fig. 6). These AKT serine
and threonine residues are also known to be phosphorylated
upon insulin stimulation by distinct protein kinases, PDK-1 and
mTORC2, respectively (44). Further studies will be needed to
determine whether palmitic acid and ceramides could also act
negatively on these kinases in intestinal cells.

Our present results must be taken into account in the context
of the augmented saturated fat consumption and the concom-
itant increased incidence of obesity and type 2 diabetes in
humans. Indeed, elevated ceramide levels associated with met-
abolic disease have been observed in the plasma of subjects
(45– 47). Interestingly, gastric bypass surgery, which improves
insulin sensitivity in severely obese patients, also reduces levels
of plasma ceramide subspecies (48). Moreover, inhibiting de
novo ceramide synthesis by myriocin treatment, which
decreased ceramide levels in tissues and/or plasma (49 –51),
also diminishes atherosclerotic lesions in rodents (51) and

reverses diet-induced insulin resistance (49, 50, 52). Altogether,
these data suggest that elevated plasma ceramide levels could
contribute to the onset of metabolic diseases. In our study, we
observed that a single oral administration of palmitic acid is
sufficient to augment plasma ceramide levels in mice. Increased
plasma ceramide levels resulting from intestinal metabolism
after consumption of saturated fatty acid-rich diet, may thus
contribute to the altered insulin sensitivity in peripheral tissues.

In summary, our study has demonstrated for the first time that
the palmitic acid-ceramide-AKT pathway modifies intestinal
insulin sensitivity. We show that the small intestine is able to rap-
idly and locally produce ceramides from palmitic acid, which then
alter intestinal insulin responses. An elevation of intestine-derived
plasma ceramides due to a saturated fat-containing diet may thus
contribute to the onset of metabolic diseases.

Experimental Procedures

Animals—Male 10 –12-week-old C57BL/6 mice were
obtained from Janvier (St Berthevin, France), housed in stan-
dard cages, and supplied with food and drinking water ad libi-
tum. Animals were kept in a 12-h light/dark cycle and at a con-
trolled temperature (22 °C). All animal care and experimental
procedures were conducted in accordance with the French Law
of April 6, 2010, and they were approved by the local ethics
committee (Charles Darwin, Ce5/2012/052).

Cell Culture—Cell culture media and supplements were
obtained from Invitrogen (Cergy-Pontoise, France) and FCS (fetal

FIGURE 8. Effects of de novo ceramide synthesis inhibition onMTP activity and apoB48 secretion in Caco-2/TC7 cells. Caco-2/TC7 cells were incubated
with or without OA- or PA-containing lipid micelles (PA) for 24 h. When indicated, L-cycloserine was added 1 h before incubation with PA-containing lipid
micelles (PA�Lcyclo). Insulin (ins) was added 30 min prior to harvest. A, apoB48 secretion in basal culture medium was determined by Western blotting (left
panel). Quantification of the Western blotting is displayed in the right panel. Results are expressed as arbitrary units (mean � S.E., n � 6). ***, p � 0.001, as
compared with the same condition without insulin; ###, p � 0.001, as compared with control; ns, not significant. B, MTP activity was assayed in cell homoge-
nates. Results display mean � S.E., n � 6, for each condition. *, p � 0.05, as compared with the same condition without insulin; **, p � 0.01, as compared with
the indicated condition; ##, p � 0.01, as compared with control.

Palmitic Acid, Ceramides, and Intestinal Insulin Resistance

JULY 29, 2016 • VOLUME 291 • NUMBER 31 JOURNAL OF BIOLOGICAL CHEMISTRY 16335

 at IN
SER

M
 on A

ugust 1, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


calf serum) from AbCys Biowest (Paris, France). Microporous pol-
yethylene terephthalate membrane inserts were from Corning
(Avon, France) (23.1 mm diameter, 3-�m pore size high density).
C2-ceramide was purchased from Cayman Chemical Co. (Mon-
tigny-le-Bretonneux, France), and insulin, myriocin, or L-cycloser-
ine was from Sigma. Ro 31.8820 and OKA inhibitors were pur-
chased from Merck Millipore (Molsheim, France).

Caco-2/TC7 cells were plated at a density of 0.25 � 106 cells
on each insert in 6-well plates and grown and differentiated as
described previously (22) in Dulbecco’s modified Eagle’s medium
(DMEM) GlutaMAX I containing 25 mM glucose, supplemented
with penicillin (100 IU/ml) and streptomycin (100 �g/ml), 1%
non-essential amino acids, and 20% (v/v) heat-inactivated (56 °C,
30 min) fetal calf serum. Cells were cultured for 1 week in media
containing FCS in the upper and lower compartments and then for
1 week with FCS in the lower compartment only. Media were
changed daily. The day before and during treatment with insulin,
cells were cultured in media devoid of FCS. After incubation,
media and cells were immediately collected and processed for
Western blotting as described below. In some experiments, cells
were treated with insulin (100 nM), L-cycloserine (20 mM), C2-cer-
amide (100 �M), OKA (100 nM), or Ro 31.8220 (5 �M), and the
duration of treatment is indicated in figure legends.

Preparation of Lipid Micelles—Lipid micelles were prepared
as described (23). Briefly, stock solutions (100 mM) of PA, OA,
L-�-lysophosphatidylcholine, 2-mono-oleoylglycerol, and 25
mM cholesterol (all from Sigma) were prepared in chloroform/
methanol (2:1, v/v). To prepare 1 ml of lipid micelles, 6 �l PA or
OA was mixed with 2 �l of other lipids in a sterile glass tube.
The mixture was dried under a stream of nitrogen gas; the res-
idue was dissolved in 83 �l of a sterile solution of 24 mM sodium
taurocholate in serum-free medium, and the volume was
brought to 1 ml with serum-free medium. The final lipid
micelle preparation therefore consisted of serum-free medium
containing sodium taurocholate (2 mM), PA or OA (0.6 mM),
L-�-lysophosphatidylcholine (0.2 mM), and cholesterol (0.05
mM) with 2-mono-oleoylglycerol (0.2 mM).

Mouse Treatments—Mice were fasted overnight and force-
fed either 0.2 ml of olive or palm oil. The lipid composition of
olive and palm oils is described in Table 1. Insulin (0.5 units/25
g of mouse weight) was injected intraperitoneally. Treatment
duration and biological sample collection time points are indi-
cated in the figure legends. For myriocin treatment, mice were
subjected to a daily oral gavage for 4 days with vehicle (100 �l of
5% w/v carboxymethylcellulose) or myriocin (0.3 mg/kg/day)
30 min before a palm oil bolus (0.2 ml). On day 5, mice received
the same gavage, 2 h before euthanasia. Five minutes before
treatment or euthanasia, blood samples were collected into
EDTA tubes from the tail vein of conscious animals by gentle
massage following tail snip and kept chilled on ice. Following
centrifugation of blood samples, plasma was used for triglycer-
ide measurements using a kit from DiaSys (DiaSys, Condom,
France) according to the manufacturer’s instructions. Intestinal
epithelial cells were prepared as described previously (24).
Briefly, the jejunum was cut into small pieces and incubated at
4 °C for 2 h in 3 ml of cell recovery solution (BD Biosciences, Le
Pont de Claix, France) containing protease and phosphatase
inhibitor mixtures (Roche Diagnostics, Meylan, France). Epi-

thelial cell homogenates were filtered, washed with PBS, cen-
trifuged to obtain villus epithelial cells, and then homogenized
for protein extraction.

Protein Extraction and Measurement—Proteins were solubi-
lized from isolated intestinal epithelial cells or Caco-2/TC7
cells in high sucrose buffer containing protease and phospha-
tase inhibitors (25). Protein concentration was determined
using the Bio-Rad DC protein assay (Bio-Rad, Marnes-La-Co-
quette, France) with BSA standards.

Western Blotting—Cell lysates (30 �g of protein) were frac-
tionated by SDS-PAGE, and proteins were transferred to a
nitrocellulose membrane. After an overnight incubation at 4 °C
in TBS-T (20 mM Tris/HCl, pH 7.6, 137 mM NaCl, and 0.1%
Tween 20) supplemented with 5% (w/v) BSA, blots were probed
with primary antibodies, i.e. anti-AKT, anti-P-AKTThr-308,
anti-P-AKTSer-473 (Cell Signaling Technology, Ozyme, Saint
Quentin en Yvelines, France), anti-P-IRS1Tyr-612 (Millipore,
Guyancourt, France), anti-HSC70 (Santa Cruz Biotechnology,
CliniSciences, Nanterre, France), anti-apoB (Chemicon, Milli-
pore, Guyancourt, France), and anti-SPT2 (a gift from Horne-
mann Thorsten, Institute of Clinical Chemistry, Zurich,
Switzerland), followed by peroxidase-conjugated secondary
antibodies. Blots were developed with enhanced chemilumi-
nescence (ECL�) reagents according to the manufacturer’s
instructions (Amersham Biosciences, Orsay, France).

Quantitative Real Time PCR—Total RNA was extracted
from intestinal epithelial cells using Tri-Reagent (Invitrogen)
according to the manufacturer’s recommendations. Quantita-
tive real time PCR was performed with the SYBR Green PCR kit
(Life Technologies, Inc.) using a Stratagene system according to
instructions. Relative quantification was determined using the
2-��Ct method. Oligonucleotide sequences were as follows:
forward, 5�-GGCAGTGCTTTTTCTCTGCT-3�, and reverse,
5�-TGAGAGGCCAGTTGTGTGTGAC-3� for murine Mtp
mRNA and forward, 5�-ATGTATCACAGCCTGTACCTG-3�,
and reverse, 5�-CGTGCTTCCTTGGTCTTAGAC-3� for
murine L19 mRNA (reference gene).

Quantification of Ceramides and Dihydroceramides by
LC-MS/MS—Ceramide standards (d18:1–14:0 Cer, d18:1–16:0
Cer, d18:1–17:0 Cer, d18:1–20:0 Cer, d18:1–22:0 Cer, d18:1–
24:0 Cer, and d18:1–24:1 Cer) were obtained from Avanti Polar
Lipids (Coger SAS, Paris, France). Chemicals of the highest
available grade were purchased from Sigma. LC-MS/MS quality
grade solvents were purchased from Fisher (Illkirch, France).

Ceramides and dihydroceramides were extracted according
to the Bligh and Dyer method as described by Reis et al. (26).
Briefly, plasma aliquots (50 �l of plasma � 150 �l of saline) or
cell lysates (200 �l) were mixed with d18:1–17:0 Cer, used as an
internal standard, and extracted with 750 �l of 2:1 chloroform/
methanol for 10 min. Chloroform (250 �l) was then added and
extraction followed for 10 min. Distilled water (250 �l) was
added and extraction continued for 10 more min. After centrif-
ugation (10,000 � g, 10 min, 4 °C), the organic phase was col-
lected. The aqueous phase was acidified with hydrochloric acid
(8 �l, 3 mol/liter) and further extracted with 600 �l of chloro-
form for 10 min. After centrifugation (10,000 � g, 10 min, 4 °C)
the organic phase was collected and combined with the previ-
ous sample. Pooled organic phases were washed with 800 �l of
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the upper phase from a chloroform/methanol/water (96.7:93.3:
90) mixture. The organic phase was evaporated under vacuum.
Extracts were finally dissolved with 200 �l of 60:30:4.5 chloro-
form/methanol/distilled water, and 3 �l were injected on a 1200
6460-QqQ LC-MS/MS system equipped with an ESI source
(Agilent Technologies, Les Ulis, France). Separation was
achieved on a Poroshell C8 2.1 � 100 mm, 2.7-�m column
(Agilent Technologies) at a flow rate of 0.3 ml/min, 30 °C, with
a linear gradient (solvent A) of formic acid/ammonium formate
(0.2%/1 mM final concentration) and (solvent B) methanol con-
taining formic acid/1 mM ammonium formate as follows: 70% B
for 1 min, up to 100% B in 4 min, and maintained at 100% for 5 min.
Acquisition was performed in positive multiple reaction monitor-
ing mode (source temperature, 300 °C, nebulizer gas flow rate 10
liters/min, sheath gas flow 11 liters/min, temperature 325 °C, cap-
illary 3500 V, nozzle 1000 V, fragmentor 180 V, collision energy 27
V). Transitions, [M 	 18]� 3 262.2, [M 	 18]� 3 264.2, and
[M 	 18]�3266.2, were used for quantitation of d18:2-ceramide,
d18:1-ceramide, and d18:0-ceramide, respectively.

Calibration curves were obtained for each molecule using
authentic standards extracted by identical methods as used for
plasma samples and cell lysates. Quadratic regression and lin-
ear regression were applied to calculate plasma and cell lysate
ceramide concentrations, respectively.

MTP Activity—MTP activity was assayed using 100 –200 �g
of cell homogenate according to the manufacturer’s instruc-
tions (MAK110 kit, Sigma, Saint-Quentin Fallavier, France).

Statistics—Comparisons between the two groups were per-
formed with Student’s t tests. Comparisons involving multiple
groups were done using one-way analysis of variance. A level of
p � 0.05 was considered as significant.
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2) Article at Médecine/Science, 2017   

During my thesis, I participated in the organization of the event: "Journées de l'Ecole 

Doctorale Physiologie Physiopathologie et Thérapeutique " which resulted in the publication 

of a report in the French journal Médecine/Science. 
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Partenariat 
médecine/sciences - 
Écoles doctorales (5)
Nos jeunes pousses 
ont du talent !

> Les doctorants organisateurs de ces jour-
nées proposent un résumé des principaux évé-
nements scientifiques qui se sont déroulés les 
25 et 26 mai 2016 au centre de recherche des 
Cordeliers (CRC) lors des journées de l’École « phy-
siologie, physiopathologie et thérapeutique » (ED 
394). Outre la présentation de leurs travaux scienti-
fiques lors des sessions « communications orales » 
et « posters », les participants ont entendu une 
conférence plénière du Professeur Pierre Corvol 
sur l’intégrité scientifique et participé à une table 
ronde consacrée à la médiation scientifique. Ces 
deux conférences ont permis d’échanger les points 
de vue sur ces problématiques actuelles. <

Ce travail de rédaction a été encadré par Isabelle Cremer 
et Catherine Monnot, directrice et directrice adjointe de 
l’ED394.
isabelle.cremer@crc.jussieu.fr
catherine.monnot@college-de-france.fr

Série coordonnée par Laure Coulombel.

Des résultats scientifiques à 
l’honneur !
Les doctorants ont récompensé les pré-
sentations de plusieurs de leurs collè-
gues dans les domaines de la physiologie 
cardio-vasculaire, de l’inflammation, 
des pathologies virales et génétiques ou 
de la fonction intestinale, sélectionnées 
sur l’intérêt scientifique et la qualité de 
la présentation (orale ou poster).

• Un modèle murin d’hy-
pertension d’or igine 
sympathique. L’inter-
vention d’Émilie Simon-
net1 a été très remarquée. Dans le 
cadre de son projet de thèse, Émilie 
a mis en évidence le rôle crucial de 
l’innervation sympathique des arté-
rioles. Celle-ci participe à la régula-
tion de leur diamètre, et donc du flux 
sanguin dans les tissus périphériques. 
Émilie a en effet démontré in vitro 
et in vivo que lorsque l’innervation 

1 Équipe « développement et physiologie des interactions 
neurovasculaires », Inserm U1050 - UMR7241 CNRS, Centre 
interdisciplinaire de recherche en biologie, Collège de 
France.

artérielle se met en place, les artères 
expriment une molécule de guidage 
axonale, l’éphrine-A4, qui possède une 
action répulsive sur les neurones sym-
pathiques. Les souris génétiquement 
inactivées pour le récepteur Ephrine-A4 
présentent donc une innervation arté-
rielle accrue, associée à une hyper-
tension. Ces souris pourraient ainsi 
constituer le premier modèle murin 
d’hypertension d’origine sympathique, 
permettant de tester de nouvelles voies 
thérapeutiques dans le traitement de 
l’hypertension artérielle.

COMPTE RENDU DE CONGRÈS
Les journées 2016 de l’école doctorale 
« physiologie, physiopathologie 
et thérapeutique » 
de l’Université Pierre et Marie Curie*

Sami Ayari1, Cécile Bandet2, Marion Dajon3, Ray El Boustany4, 
Sara Ghezzal1, Annaelle Jarossay5, Hélène Kaplon3, 
Barbara Postal1, Élodie Pramil6, Jules Russick5, 
pour le comité d’organisation des journées

* « L’école doctorale physiologie, physiopathologie et théra-
peutique (P2T)/ED394 est une école doctorale accréditée par 
l’Université Pierre et Marie Curie (UPMC) et associée à l’Ins-
titut Pasteur, l’Institut Curie, l’INRA, l’IRSN et le Collège de 
France. Cette école doctorale est pluridisciplinaire, regrou-
pant environ 250 doctorants dans le domaine des sciences 
de la vie avec une forte composante en biologie, médecine et 
santé ». (présentation tirée du site http://www.ed394.upmc.
fr/fr/l_ecole_doctorale.html).

1Équipe « physiopathologies intestinales : nutrition et 
fonction de barrière », UMRS 1138 (Armelle Leturque), 
centre de recherche des Cordeliers, Paris, France ; 2équipe 
« pathogenèse cellulaire et clinique du diabète », 
UMRS 1138 (Fabienne Foufelle), Centre de recherche des 
Cordeliers ; 3 équipe « Cancer et immunité anti-tumorale », 
UMRS 1138, (Isabelle Cremer et Jean-Luc Teillaud), Centre 
de recherche des Cordeliers ; 4équipe « Physiopathologie et 
thérapeutiques des maladies vasculaires et rénales liées 
au diabète et à la nutrition » (Ronan Roussel), Centre de 
recherche des Cordeliers ; 5équipe « Immunopathologie et 
immuno-intervention thérapeutique » UMRS 1138 (Sébastien 
Lacroix-Desmazes), Centre de recherche des Cordeliers ; 
6équipe « Mort cellulaire et résistance aux traitements dans 
les hémopathies malignes » UMRS 1138 (Santos A. Susin), 
Centre de recherche des Cordeliers, Paris, France.

Partenariat_SerieEtudiants.indd   197 15/02/2017   13:24:37

http://www.medecine/sciences.org/
http://dx.doi.org/10.1051/medsci/20173302017


m/s n° 2, vol. 33, février 2017 198

tions intestinales dans l’obésité et le 
diabète. Charlotte s’intéresse en par-
ticulier à l’absorption intestinale des 
sucres alimentaires, fonction vitale pour 
l’organisme. Elle a montré que le trans-
porteur GLUT2 est impliqué dans l’ab-
sorption des sucres et dans la plasticité 
des cellules endocrines de l’intestin.
• Cellules immunitaires intestinales et 
obésité. Sothea Touch8 présentait un 
poster sur le rôle des cellules immu-
nitaires intestinales dans la physio-
pathologie de l’obésité. Ses résultats 
ont révélé l’importance du recrutement 
des cellules immunitaires contribuant à 
l’inflammation dans cette pathologie. 
Elle a entrepris une étude des cellules 
immunitaires sanguines et intestinales 
de sujets obèses, qui démontre l’alté-
ration globale de l’immunité dans ces 
deux compartiments. Ces données sont 
actuellement confrontées aux para-
mètres cliniques et à la composition 
du microbiote intestinal à la recherche 
d’un lien entre les modifications du 
microbiote, l’état inflammatoire et les 
dysfonctions métaboliques liés à l’obé-
sité humaine.

Le respect de l’intégrité scientifique : 
une conférence de Pierre Corvol
Docteur en médecine et chercheur, 
Pierre Corvol, professeur émérite 
(chaire de médecine expérimentale) 
et ancien administrateur du Collège 
de France, vice-président de l’Acadé-
mie des Sciences, a été chargé par le 
ministre de l’Enseignement supérieur et 
de la Recherche d’établir un rapport sur 
l’intégrité scientifique et de faire des 
recommandations pour la promouvoir. Il 
est intervenu lors d’une séance plénière 
des Journées de notre École doctorale 
« physiologie, physiopathologie et thé-
rapeutique » sur ce sujet de grande 
actualité, la formation des doctorants à 
l’intégrité scientifique étant désormais 
stipulée dans l’arrêté du 25 mai 2016 
fixant le cadre national de la formation 

8 Équipe « nutriOMICS », Inserm U1166, ICAN, hôpital la 
Pitié-Salpétrière.

tré que les macrophages font partie des 
cellules réservoirs qui empêchent l’éra-
dication complète du VIH. Le VIH-2, très 
semblable au VIH-1, est mieux contrôlé 
par le système immunitaire. L’objectif 
du travail d’Esther est d’analyser cette 
différence, et notamment de comparer 
des macrophages infectés in vitro par 
l’un ou l’autre de ces deux virus. Ce 
travail a permis d’identifier des diffé-
rences majeures de la distribution dans 
les macrophages d’une protéine virale, 
la production virale et la transmission 
aux lymphocytes T du virus présent dans 
les macrophages. La connaissance de 
ces différences pourrait contribuer à 
un meilleur contrôle de l’infection par 
le VIH-2.
• Une nouvelle stratégie thérapeu-
tique dans la mucoviscidose ? Dans le 
domaine de la génétique, le travail de 
Florence Sonneville6 porte sur la muco-
viscidose : il démontre que le canal 
chlorure ANO1 (anoctamin-1) pourrait 
être un canal alternatif pour compenser 
la protéine déficiente (le canal chlo-
rure CFTR, cystic fibrosis transmem-
brane conductance regulator). Florence 
a montré que le microARN miR-9 inhibe 
le gène ANO1. Pour lever cette inhibition, 
une molécule spécifique a été synthéti-
sée : le TSB ANO1. Dans le contexte de 
la mucoviscidose (modèles de lignées 
cellulaires épithéliales bronchiques, ou 
de cultures de cellules primaires issues 
de patients et de souris), cette molé-
cule restaure les efflux de chlorure ainsi 
que de nombreux paramètres dérégulés 
in vitro et in vivo. Lever l’inhibition de 
l’expression de cette protéine pourrait 
donc être considéré comme une nouvelle 
stratégie thérapeutique.
• Absorption des sucres intestinaux. 
Enfin, dans la thématique métabolisme 
et nutrition, le travail de Charlotte 
Schmitt7 a été récompensé. Il porte sur 
les mécanismes de contrôle des fonc-

6 Équipe « mucoviscidose : physiopathologie et phénogéno-
mique », UMRS938 Inserm, Centre de recherche Saint Antoine.
7 Équipe « physiopathologies intestinales : nutrition et fonc-
tion de barrière », UMRS1138 Inserm, centre de recherche 
des Cordeliers.

• Récepteur des minéralocorticoïdes et 
inflammation. Mathieu Buonafine2 a 
démontré que dans les cellules dendri-
tiques, l’activation du récepteur aux 
minéralocorticoïdes par l’aldostérone  
jouait un rôle fondamental au cours 
de l’inflammation observée lors d’une 
hypertension induite par l’aldostérone 
chez la souris. Il a pu mettre en évi-
dence, grâce à des modèles de souris 
transgéniques, que cet effet implique 
la protéine neutrophil gelatinase-asso-
ciated lipocalin, dont le rôle est encore 
mal connu. Cette dernière pourrait jouer 
un rôle majeur dans la médiation des 
effets pathologiques de l’activation 
du récepteur aux minéralocorticoïdes, 
notamment lorsqu’elle est exprimée par 
certains types de cellules immunitaires.
• Réponses immunitaires différentielles 
et statut des patients VIH. Concernant 
les pathologies virales, deux travaux 
portant sur le VIH (virus de l’immunodé-
ficience humaine) se sont particulière-
ment démarqués. Tout d’abord, Angeline 
Rouers3 a montré que la fonctionnalité 
des lymphocytes T folliculaires helper 
(Tfh) était altérée lors de l’infection 
par le VIH. Elle a également démon-
tré que dans le sang des patients elite 
controllers4, la réponse des lymphocytes 
B mémoires anti-VIH était maintenue, 
contrairement à celle des patients non 
controllers traités. Reste à savoir si 
chez ces patients elite controllers, les 
fonctionnalités des Tfh sont également 
intactes. Ainsi, une meilleure compré-
hension des mécanismes cellulaires lors 
de l’infection par le VIH pourrait contri-
buer à l’élaboration de nouvelles straté-
gies vaccinales anti-VIH.
• Macrophages et contrôle du réservoir 
du VIH. Ester Gea-Mallorqui5 a mon-

2 Équipe « récepteur minéralocortocoïde : physiologie et 
innovations thérapeutiques », UMRS1138 Inserm, centre de 
recherche des Cordeliers.
3 Équipe « immunobiologie des infections virales et pré-
sentation des antigènes », Inserm U1135, CR7 UMRS UPMC, 
centre de recherche immunologie et maladies infectieuses 
(CIMI).
4 Sur cette dénomination, voir la Nouvelle de V. Martinez et 
B. Autran, Med Sci (Paris) 2008 ; 24 : 7-9.
5 Équipe « transport intracellulaire et immunité », Inserm 
U932, Institut Curie.
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la médiation scientifique. Nous avons 
souhaité ouvrir le débat sur les enjeux 
de la communication scientifique avec 
les doctorants et nos invités qui en ont 
fait leur métier. Cette table ronde a 
été animée par Ange Ansour (coordina-
trice éducative « Les Savanturiers12 »), 
Mathieu Buonafine (doctorant et grand 
vainqueur national du concours « Ma 
thèse en 180 secondes13 »), Anne Nassif 
(directrice de publication de « Nutrimé-
dia14 ») et Noémie Naguet (chargée de 
communication au CNRS et à « L’esprit 
sorcier15 »).
Le profil varié des invités a rapidement 
soulevé la question suivante : qui est le 
mieux placé aujourd’hui pour informer le 
public de la science ?
En effet, de nombreuses formations per-
mettent d’accéder au métier de média-
teur scientifique et les scientifiques 
ne sont plus les seuls acteurs de la 
communication scientifique. Noémie 
Naguet explique avoir suivi une forma-
tion en communication pendant un an 
avec le Cnam (centre national des arts 
et métiers) car elle souhaitait obte-
nir la légitimité de pouvoir faire de 
la communication scientifique après 
l’obtention de son doctorat en biologie. 
De même, Ange Ansour dévoile un par-
cours de traductrice avant de devenir 
professeure des écoles et de se mettre 
au service des Savanturiers. Les moyens 
de communication (vidéos publiées sur 
Internet, réseaux sociaux, blogs, milieux 
associatifs, etc.) sont de plus en plus 
nombreux et permettent de s’adresser 
à un public plus large (sans qu’une for-
mation scientifique soit indispensable). 
Leur multiplication témoigne du besoin 
de diversité des stratégies de commu-
nication afin de combler le fossé qui 
s’est installé entre les scientifiques et 
le public. Les enjeux sont multiples et 
loin d’être négligeables. La médiation 
scientifique intervient non seulement 

12 http://les-savanturiers.cri-paris.org/
13 http://mt180.fr/
14 http://www.nutrimedia.fr/
15 http://www.lespritsorcier.org/

aussi par la recherche de financement 
ou encore par un besoin de reconnais-
sance. Afin de contrôler et de pouvoir 
repérer ce type de comportement, la 
communauté scientifique internationale 
a élaboré des codes ou des chartes. De 
ce fait en 2011, The European Code of 
Conduct for Research Integrity9 a été 
mis en place. En 2015, les universités et 
les principaux organismes de recherche 
en France ont signé une charte natio-
nale de déontologie des métiers de la 
recherche10. D’autres moyens ont égale-
ment été développés pour lutter contre 
tous ces manquements à l’intégrité, 
notamment sur les réseaux sociaux 
(https://www.pubpeer.com et https://
www.retraction watch.com). Ainsi, cela 
permet de repérer et de diffuser les 
diverses falsifications de données dans 
un article. En effet, certains auteurs 
prétendent avoir réalisé leur expérience 
en « triplicate », or la figure correspon-
dant à la dite expérience ne présente ni 
moyenne ni barre d’erreur.
L’accès aux données brutes de la 
recherche et le projet de Loi « Pour 
une République numérique11 » devraient 
contribuer à une recherche intègre et 
responsable. Enfin, rappelons que c’est 
à chaque scientifique qu’incombe la res-
ponsabilité d’avoir une conduite exem-
plaire et de produire une science pleine-
ment intègre. Cette conférence a permis 
de souligner l’importance de la géné-
ration et de la divulgation de données 
scientifiques originales fiables pour la 
société d’aujourd’hui et de demain.

Transmettre la science : 
un enjeu de société
Nous avons également choisi d’orga-
niser une table ronde sur le thème de 

9 Document téléchargeable à l’adresse : http://ec.europa.
eu/research/participants/data/ref/h2020/other/hi/h2020-
ethics_code-of-conduct_en.pdf
10 Document téléchargeable à l’adresse : http://www.cnrs.fr/
comets/IMG/pdf/charte_nationale__deontologie_signe_e_
janvier2015.pdf
11 LOI n° 2016-1321 du 7 octobre 2016 pour une République 
numérique. Voir le site légifrance https://www.legifrance.
gouv.fr/affichLoiPubliee.do?idDocument=JORFDOLE0000315
89829&type=general&legislature=14 

conduisant à la délivrance du diplôme 
national de doctorat.
Lors de son intervention, Pierre Corvol 
a défini l’intégrité scientifique puis en 
a exposé les enjeux. Rapidement, il a 
lancé un dialogue constructif avec les 
doctorants sur l’importance de l’inté-
grité scientifique dans notre travail au 
quotidien. En effet, la recherche scien-
tifique se doit de contribuer à faire 
évoluer les connaissances de la Science 
de façon honnête et intègre. La com-
munauté scientifique, et plus largement 
la société, doivent avoir confiance dans 
les différents résultats publiés. Le débat 
sur l’intégrité scientifique a permis de 
pointer du doigt des méconduites scien-
tifiques, voire des fraudes. Nous avons 
pu échanger nos points de vue concer-
nant l’arrangement ou la falsification 
des données, telle que l’augmentation 
de l’échantillonnage de façon factice 
pour rendre un résultat statistique-
ment significatif. Nous avons conclu 
que ce genre de pratiques est considéré 
comme une fraude. De plus, ces pra-
tiques peuvent avoir un impact néfaste 
et important dans les domaines de la 
santé et de l’environnement. Le coût 
financier qu’elles peuvent engendrer est 
loin d’être négligeable pour la société.
Nous avons également discuté d’une 
autre problématique concernant l’inté-
grité scientifique, le plagiat. N’oublions 
pas que le plagiat est une forme de 
méconduite assez répandue et qui fait 
l’objet de sanctions. Ce comportement 
peut conduire à des poursuites pénales. 
Les causes des dérives évoquées ci-des-
sus sont multiples. Entre 2010 et 2015, 
dans 27 universités et 8 établissements 
de recherche en France et à l’interna-
tional, il a été relevé 22 falsifications de 
données ; 46 cas de plagiat ; 6 conflits 
d’intérêt. Par ailleurs, la surinterpréta-
tion de données ou de résultats publiés 
peut conduire à émettre des conclu-
sions scientifiques erronées. Toutes 
ces formes de méconduites peuvent 
être motivées par des enjeux de car-
rière, notamment l’obtention d’un poste 
stable chez le jeune chercheur, mais 
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minéralocorticoïdes. « Il [ce concours] 
m’a permis de faire découvrir mon tra-
vail de thèse à un public très large et de 
lui ouvrir une petite porte sur le monde 
complexe de la biologie et de la démarche 
scientifique [...]. C’est un challenge très 
formateur qui m’a permis de m’aguerrir à 
la prise de parole en public et d’aborder 
mon travail de thèse sous un angle com-
plètement différent », explique-t-il.

En conclusion
Les journées de l’École doctorale 394 
ont été une bonne occasion pour les 
doctorants venant de domaines très dif-
férents d’échanger et d’interagir scien-
tifiquement et techniquement, souli-
gnant l’intérêt de la pluridisciplinarité 
de notre École doctorale. De plus, de 
nombreuses idées discutées au cours 
de sessions spéciales (table ronde et 
conférence plénière), ont permis l’ou-
verture sur des questions d’avenir, de 
médiation et d’intégrité. L’ensemble du 
comité organisateur tient à remercier 
les doctorants, les sponsors ainsi que 
les directrices et la gestionnaire de 
l’École doctorale, acteurs qui ont permis 
la concrétisation de ces deux journées 
scientifiques très enrichissantes. ‡
2016 Two-day doctoral conference 
organised by the Doctoral school 
“physiology, physiopathology and 
therapeutics” Pierre and Marie Curie 
University, Paris

LIENS D’INTÉRÊT
Les auteurs déclarent n’avoir aucun lien d’intérêt 
concernant les données publiées dans cet article.

Une réflexion a également été engagée 
sur les moyens qui pourraient être mis 
en place pour inciter davantage les gens 
et les chercheurs à s’investir dans des 
actions de médiation scientifique. Com-
ment les activités de médiation scienti-
fique d’un chercheur peuvent-elles être 
évaluées par les instances d’évaluation 
des organismes de recherche et comment 
peut-on juger ces activités ? Certains 
scientifiques estiment que la publica-
tion des résultats de leurs travaux fait 
office de médiation scientifique, d’autres 
leur font remarquer que ces publications 
ne sont compréhensibles que par leurs 
pairs et restent incompréhensibles pour le 
grand public. Par ailleurs, les doctorants 
sont désireux de s’investir davantage 
dans la médiation scientifique malgré les 
éventuelles difficultés auxquelles ils sont 
souvent confrontés (manque de temps, 
manque d’outils et de formation et faible 
valorisation de cette activité).
Néanmoins, les activités de média-
tion scientifique se diversifient au sein 
des écoles doctorales. « Ma thèse en 
180 secondes » est un exemple d’un nou-
veau moyen de médiation mis en place 
pour les doctorants. Le défi pour les doc-
torants est de présenter leur projet de 
recherche de manière concise en trois 
minutes avec l’appui d’une seule diaposi-
tive. « Le concours MT180 est un vrai défi 
de communication et de vulgarisation 
scientifique » témoigne Mathieu Buona-
fine, vainqueur de la finale nationale 2016 
de Ma thèse en 180 secondes, organisée à 
Bordeaux. Il a remporté le premier prix du 
jury pour sa présentation sur l’étude du 
rôle de la neutrophil gelatinase associa-
ted lipocalin dans les effets cardiovas-
culaires de l’activation du récepteur des 

pour transmettre le savoir mais éga-
lement pour répondre à des questions 
d’ordre sociétal. La situation est parfois 
délicate comme le montre une enquête 
de l’Institut d’études d’opinion Ipsos, 
qui a révélé que certains Français ne 
font plus confiance aux scientifiques 
quand il s’agit de dire la vérité sur leurs 
résultats et leurs travaux. Un étudiant 
présent dans la salle a tenu à rappe-
ler une polémique récente illustrant 
la défiance des Français vis-à-vis de 
l’innocuité des vaccins, notamment ceux 
qui contiennent des sels d’aluminium 
utilisés comme adjuvant et suspectés 
de déclencher une myopathie inflam-
matoire : la myofasciite à macrophages.
D’aucuns se sont interrogés sur la rigueur 
de la vulgarisation scientifique. À force 
de trop vouloir simplifier le contenu 
scientifique, le risque est réel de défor-
mer les propos initiaux quel que soit le 
public auquel on s’adresse. Ces questions 
ont ensuite laissé place à de nouvelles 
interrogations sur les contenus scien-
tifiques du Palais de la découverte ou 
bien de la Cité des sciences : ceux-ci sont 
très souvent destinés aux enfants étant 
donné que de moins en moins d’adultes 
se rendent dans des musées ayant pour 
thématique les sciences. En effet, une 
sorte de cercle vicieux s’est installé : 
plus les enfants sont nombreux, plus les 
contenus scientifiques seront adaptés 
aux enfants, ce qui aura pour consé-
quence d’attirer encore plus d’enfants et 
ainsi de suite. Cette tendance génère une 
base solide d’accès aux sciences pour les 
enfants, et donc la société à venir,  mais 
ne permet pas de remédier à la méfiance 
vis-à-vis des sciences des adultes de la 
société actuelle.
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ABSTRACT 

	
	 	

Obesity is associated with chronic low-grade inflammation, which contributes to metabolic 
disorders. However, the origin of systemic inflammation observed at subclinical level in obese patients 
is still unclear. Recent studies highlighted a central role of the intestine in metabolic diseases. Our 
team reported a low-grade inflammation in the small intestine of obese subjects, but the underlying 
molecular mechanisms are still to be revealed. The causes of intestinal inflammation may be due to 
nutrients and environmental factors. Indeed, studies in healthy subjects and wild-type rodents exposed 
to a lipid diet reveal an increase in endotoxemia, which is characterized by bacteria wall fragments 
translocation through the intestinal mucosa into blood. These findings allowed us to hypothesize a role 
of the intestine and environmental changes such as dietary lipids in the initiation of this inflammation.	
My specific aims were to investigate the role of palmitic acid and of the transcription factor Aryl 
Hydrocarbon receptor (AhR), which is sensitive to environmental changes and known to be involved 
in inflammation, in the onset or modulation of gut inflammation.  

In a first study, I analyzed the impact of palm oil on the set up of gut inflammation in mice. 
My results showed that palm oil gavages during 5 days increased the intestinal permeability, altered 
the subcellular localization of several junctional proteins and modulated the intestinal expression of 
pro-inflammatory genes (IL-1β, Gata-3, Reg-3γ). Repeated supply of palm oil also modified the 
composition of intestinal microbiota. I then studied the effect of palmitic acid on a polarized 
monolayer of the human intestinal epithelial Caco-2/TC7 cell line. The results indicated that palmitic 
acid treatment disrupted the epithelial barrier and increased IL-8 cytokine mRNA level and secretion. I 
showed that de novo ceramide synthesis pathway induced by palmitic acid in Caco-2/TC7 cells 
controlled the IL-8 cytokine expression. Together, our results show that dietary lipids can rapidly 
induce barrier defects and an intestinal inflammatory response. 

Afterwards, I evaluated the role of AhR on the intestinal inflammation in obese subjects, and 
on gut barrier integrity both in mice and Caco-2/TC7 cells. Severely obese patients were phenotyped 
for multiple bioclinical parameters. Jejunal samples were gathered from obese and lean patients. We 
measured the expression levels of AhR target genes in jejunal samples of patients according to their 
score of intestinal inflammation using an index of T cells infiltration in epithelium. We observed that 
gut inflammation in obese patients was higher than in lean patients. Moreover, obese patients with a 
high gut inflammation score showed a lower expression of AhR target genes. We hypothesized that 
the activation of AhR induced by an agonist may thus decrease gut inflammation and improve gut 
barrier function in mice and in human enterocytic cells. We set up inflammatory environment or 
epithelial barrier impairment by damaging intestinal epithelium integrity in vivo with palm oil and in 
vitro with a calcium chelator. My results showed that AhR activation in mice prevented alteration of 
cell-cell junctions triggered by palm oil. In Caco-2/TC7 cells, AhR activation counteracted the 
damages on the epithelium and decreased cytokine expression. These beneficial effects of AhR 
activation might involve PKC and p38MAP kinase pathways. Thus, we show that a reduced intestinal 
AhR tone is associated with elevated intestinal inflammation in obese patients and the AhR activation 
can exert a protective effect on the intestinal barrier integrity and reduce the gut inflammation. 

Altogether, these studies demonstrated that alteration of the intestinal epithelial barrier 
integrity is an important contributor of pro-inflammatory response in gut. Intestinal AhR activation 
protected the gut epithelium from inflammatory responses and barrier function damage. Although the 
mechanisms by which AhR activation exert a protective effect on gut need further investigations, AhR 
might be a possible therapeutic target to limit gut damage in metabolic diseases. 

 
Keywords: intestine, dietary lipids, AhR, intestinal barrier, tight junctions, inflammation, metabolic 
diseases



		
RESUME 

	
	 	

L’obésité est associée à un état inflammatoire systémique chronique évoluant à bas bruit, qui 
contribue aux complications métaboliques observées dans cette pathologie. L’origine de cette 
inflammation est mal connue, cependant des études récentes ont mis en évidence un rôle central de 
l'intestin dans les maladies métaboliques. Notre équipe a montré une inflammation de l'intestin grêle 
chez des patients obèses, dont l’origine pourrait être due à des facteurs nutritionnels ou 
environnementaux. La présence d’une endotoxémie, signant le passage de fragments bactériens à 
travers la muqueuse intestinale, chez des sujets sains ou des rongeurs soumis à un régime riche en 
lipides, a permis d’émettre l’hypothèse d’un rôle de la barrière intestinale et des changements 
environnementaux comme les lipides alimentaires dans l’initiation de l’inflammation intestinale voir 
systémique. Pour étayer cette hypothèse, j’ai étudié le rôle d’un lipide alimentaire, l’acide palmitique, 
et du facteur de transcription Aryl Hydrocarbon (AhR), sensible aux changements environnementaux 
et connu pour son rôle dans l'inflammation. 

Dans une première étude, nous avons analysé l'impact de l'huile de palme sur la mise en place 
de l’inflammation intestinale chez la souris. Mes résultats ont montré que l'apport répété pendant 5 
jours d'huile de palme augmente la perméabilité intestinale, modifie la localisation subcellulaire de 
plusieurs protéines de jonction et l'expression des gènes impliqués dans les réponses pro-
inflammatoires (IL-1β, Gata-3, Reg-3γ). Cet apport répété d'huile de palme modifie également la 
composition du microbiote intestinal. J'ai ensuite étudié l'impact de l'acide palmitique sur les cellules 
intestinales épithéliales humaines Caco-2/TC7. Les résultats indiquent que l'acide palmitique perturbe 
la barrière épithéliale et augmente l’expression et la sécrétion de la cytokine pro-inflammatoire IL-8. 
L'étude des mécanismes moléculaires induits par l'acide palmitique dans les cellules Caco-2/TC7 a 
révélé l'implication de la voie de synthèse de novo des céramides dans l'expression d’IL-8. Nos 
résultats montrent donc que les lipides alimentaires, en particulier l’acide palmitique, peuvent induire 
rapidement des défauts de la barrière et une réponse inflammatoire intestinale.  

J’ai par la suite évalué le rôle d’AhR sur l’inflammation intestinale chez des patients obèses. 
Le phénotype bioclinique des sujets obèses a été caractérisé et des échantillons de jéjunum ont été 
recueillis après chirurgie bariatrique. Nous avons déterminé le score de l'inflammation de l'intestin 
grêle par l’index d’infiltration épithéliale des lymphocytes T et les taux d'expression des gènes cibles 
d’AhR ont été mesurés et comparés à des jéjunum de patients minces. Nous avons observé que les 
sujets obèses présentent une densité de lymphocytes T plus élevée que les sujets minces. De plus, 
l’inflammation intestinale chez les sujets obèses est négativement corrélée au taux d’expression des 
gènes cibles d’AhR. Nous avons fait l'hypothèse que l'activation d’AhR par un agoniste pourrait 
diminuer l'inflammation intestinale et améliorer la fonction de barrière chez la souris et dans les 
cellules Caco-2/TC7. Nous avons induit un environnement inflammatoire ou une altération de la 
barrière épithéliale intestinale in vivo avec de l'huile de palme et in vitro avec un agent chélateur du 
calcium. Mes résultats ont montré que l'activation d’AhR chez la souris empêchait l'altération des 
jonctions cellule-cellule déclenchée par l'huile de palme. De plus, dans le modèle cellulaire Caco-
2/TC7, l’activation d'AhR par un agoniste a limité les dommages induits chimiquement sur l’intégrité 
de la barrière épithéliale et sur la sécrétion de cytokines pro-inflammatoires. Les effets bénéfiques de 
l’activation d’AhR interviendraient via des voies de signalisation des protéines kinases PKC et 
p38MAPK. Ainsi, nos résultats montrent qu’un niveau réduit d’activation intestinale d’AhR est 
associé à une inflammation intestinale élevée chez les patients obèses et que l’activation d’AhR peut 
exercer un effet protecteur sur l’intégrité de la barrière intestinale et réduire l’inflammation dans ce 
tissu.  

L'ensemble de cette étude démontre que la détérioration de l’intégrité de la barrière intestinale 
contribue à l’inflammation dans l’épithélium intestinal. Un effet protecteur contre les atteintes 
intestinales pourrait être obtenus par l’activation du facteur de transcription AhR dont une partie des 
cibles intestinales reste encore à découvrir. AhR pourrait ainsi constituer une option thérapeutique 
dans les maladies métaboliques pour limiter les dommages de la barrière et l’inflammation tissulaire. 
 

Mots-clés : intestin, lipides, AhR, barrière intestinale, jonctions serrées, inflammation, maladies 
métaboliques 
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