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Abstract

Title: Study of the aggregation procedure : patch fusion and generalized Wasser-
stein barycenters

Abstract: This thesis is focused on patch-based methods, a particular type of im-
age processing algorithm. These methods include a step called aggregation, which
consists in reconstructing an image from a set of overlapping patches and statistical
models on these patches. The aggregation step is formalized here as a fusion oper-
ation on distributions living on different subspaces but not disjoint. We introduce
first a new fusion method based on probabilistic considerations, directly applied to
the aggregation problem. It turns out that this operation can also be formulated in
a more general setup, like a generalization of a barycenter problem between distri-
butions. This lead us to study this new problem from an optimal transport theory
perspective.

Keywords: Image restoration, Denoising, Optimal Transport, Wasserstein barycen-
ter, Baysesian modeling, Patch aggregation.

Titre: Etude du problème d’agrégation : fusion de patchs et barycentres de
Wasserstein généralisés

Résumé: Cette thèse porte sur une classe particulière d’algorithmes de traite-
ment d’images : les méthodes par patchs. Ces méthodes nécessitent une étape
appelée agrégation, qui consiste à reformer une image à partir d’un ensemble de
patchs, et de modèles statistiques sur ces mêmes patchs. L’étape d’agrégation est for-
malisée ici comme une opération de fusion de distributions vivant sur des espaces
différents mais non-disjoints. On propose d’abord une méthode de fusion basée sur
des considérations probabilistes, directement applicable au problème d’agrégation.
Il se trouve que cette opération peut aussi se formuler dans un contexte plus général
comme une généralisation d’un problème de barycentre entre distributions, ce qui
amène à l’étudier dans un deuxième temps du point de vue du transport optimal.

Mots clefs : Restauration d’image, Débruitage, Transport optimal, Barycenter
de Wasserstein, Modèles Bayesiens, Aggrégation de patchs.
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Notations

Here are the conventions and notations used in this thesis :

• For two real numbers a and b, Ja, bK refers to the set of all integers i such that
a ≤ i ≤ b.

• The Identity function on any space E :

{
E → E
x → x

is denoted by IE and, if there

is no ambiguity by I. In a context of square matrices, In means the n× n identity
matrix.

• 1n is the vector of ones of size n.

• In a probabilistic context, Random variables are denoted with upper-case let-
ters (X for instance), while their values are denoted with lower-case letters (x).
If ν is a probability distribution, then X ∼ ν means that ν is the density of X.

• If E is a space, then P(E) is the set probability distributions on this space.

• If X is a continuous (resp. discrete) random variable, we denote by p(X = x)
the value of the probability density function (resp. the probability) of X at x.

• X ∼ N (µ, Σ) means that X is a Gaussian random variable, with expectation
µ and covriance Σ. With a slight abuse of notation, we shall use the same
notation for the Gaussian density function of expectation µ and covariance Σ
with respect to the Lebesgue measure γ on Rd, namely

∀x ∈ Rd,N (x|µ, Σ) =
1

(2π)d/2
√

detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

• Matrices are denoted with uppercase letters, and vectors by lowercase letters.
The coefficients of a matrix M (resp. a vector) of size n×m (resp. of size n) are
denoted by Mi,j (resp. ai) for i ∈ J1, nK and j ∈ J1, mK. The trace of a matrix
M is denoted by Tr(M), its determinant by det(M), its adjoint by MT, and its
Frobenius norm by ||M||Frob =

√
Tr(MT M).

• The Kronecker’s product between two matrices M ∈ Rn×m and M′ ∈ Rn′×m′

is denoted by M⊗M′ ∈ Rnn′×mm′ and is defined as:

M⊗M′ =


M1,1M′ M1,2M′ · · · M1,m M′

M2,1M′ M2,2M′ · · · M2,m M′

· · · · · · · · · · · ·
Mn,1M′ Mn,2M′ · · · Mn,m M′


• For f : X → R and g : Y → R two functions, f � g : X × Y → R is a

function defined by ∀(x, y) ∈ X × Y, ( f � g)((x, y)) = f (x) + g(y). Similarly,
for two vectors a ∈ Rn and b ∈ Rm, a� b is the matrix of size n×m such that
∀(i, j) ∈ J1, nK× J1, mK, (a� b)i,j = ai + bj.
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• Let E be a finite set and consider a map φ : E → R, and F a subset of E. We
denote by φ|F the restriction of the map φ to F. If ν is a probability distribu-
tion on RE, we define ν|F the marginal distribution of ν on RF. If F = ∅, by
convention, we define ν|F = 1.

• In the context of image processing, u will refers to a natural image, û to a noisy
version of u, and ũ to a restored (denoised) version of u.
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Introduction

Humanity took over 1.000 billions pictures in 2017, which represent over 30.000 pic-
tures each seconds. Each of these pictures were taken by a digital camera, and most
of them from a smartphone. With the recent explosion of this device, digital images
became extremely accessible and are widely used in many aspects of life. Smart-
phone cameras enable to make photographs very easily, thanks to their small size
and their automation. These aspects make it an incredible tool as well as a big tech-
nical challenge: how to obtain high-quality pictures from a so small and light device?

A digital camera is roughly speaking a lens and a grid of sensors. Each sensor
can count the number of photons it receives during a short amount of time (the shut-
ter time). The smaller the sensor, the less light is receives and therefore the fewer
photons it counts, which means a low luminosity. To increase it, we can increase the
shutter time, but this is not always possible and leads to blurry images if the object
or the photographer is moving. The other solution is to numerically increase this
number by multiplying it by a constant: it is called the ISO. In theory, this enables
to obtain images as bright as we want even with very small sensors. But in practice,
the ISO also multiplies the errors of measurement (it also exists for analogue cam-
eras). Imagine a very reliable sensor, that counts an additional photon from time to
time. If this sensor, receives 1000 photons during the shutter time, it may count 1001,
which makes an imperceptible difference. Now, let us imagine the same sensor, but
10 times smaller, if would receive instead 1000/102 = 10 photons and would count
11, which makes it 1100 instead of 1000 on the same scale of luminosity. This error
is an example of noise, and more generally of image degradation. The description
above is obviously a huge simplification of the actual functioning of a digital camera,
and many other issues and phenomenons have to be dealt with to obtain a photo-
graph. Between the RAW image (the genuine information measured by the sensors)
and the actual image saved in the gallery, lots of algorithmic treatments have to be
made to transform this information into a deliverable image (this is besides why the
previsualization of the smart phone camera is in "real time" on the screen while we
have to wait a few seconds after taking a picture). Among them, some must correct
the degradations and improve the imperfections of the RAW signal: it is the goal of
image restoration.

There are many types of image degradations: noise, missing data, deformation,
compression, blur, etc... Even the noise, while being the most basic example of im-
age degradation, can be of many different forms (shot noise, white noise, anisotropic
noise, film grain, etc. . . ). Images can also be taken in lots of context and by lots of
devices: MRI, satellite, camera, smartphone camera, drawing, etc. . . . Image restora-
tion is the answer to the following inverse problem: given a degraded image (and a
model of the degradation), recover the underlying "original" image. It is a wide and
rich topic, as there is a big variety of degradations and original images: the restora-
tion heavily depends on the type of image. The restoration of a MRI result is very
different from of satellite images or from a portrait. Besides, in most practical case,
there is no real "original image", it has to be created by the image restoration algo-
rithm according to some criteria (help the diagnostics, look nicer, help the algorithms
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of automatic surveillance, etc...).
In this thesis, we focus on photographs that could have been taken by any per-

sonal imaging device, that we shall call natural images. We shall also only consider
the noise degradation, and in particular white Gaussian noise. Yet, the ideas de-
veloped here can be extended to wider type of problems. As we shall see, this as-
sumption is quite reasonable for practical applications on natural images, and still
includes the main challenges behind image restoration: How to mathematically cap-
ture and reconstruct the essence of natural images ?

The first part exposes a first work linking Bayesian model and an image process-
ing operation called aggregation. This work introduces a new framework which can
be naturally extended to a more general formulation on distributions. The second
part is concerned by this problem from an optimal transport perspective.

Part I: A unified view on patch aggregation

In part I, we present a study on patch aggregation, based on Saint-Dizier, Delon, and
Bouveyron, 2020. After presenting the conceptual and mathematical background of
patch based methods for image denoising in Chapter 1, we show the limits of the
actual patch aggregation schemes and propose a new one in Chapter 2.

Patch-based methods are efficient in image restoration and image processing in
general. A patch is a small part of the image, generally square and connected, i.e.
a set of n× n adjacent pixels. Patch-based methods rely mainly on the same frame-
work divided in 3 steps:

• Patch extraction: It consists in transforming the image into a set of patches.
Usually, a given size s is chosen, and all the overlapping patches of size s× s are
extracted. Some work have been made on more sublte patch extractions, like
the adaptative patch size methods presented in Deledalle, Duval, and Salmon,
2012, and some recent developments in texture synthesis suggest that careful
patch extraction can greatly improve the computational time for a minor loss
of performance (see Launay and Leclaire, 2019).

• Patch editing: It consists in processing the set of patches obtained from the
patch extraction instead of directly the image u. It enables to use powerful
data processing tools that would not scale to the size of the image. The patches
are usually used to infer a model which serves to restore the patches, with a
MLE or a MAP estimator.

• Patch aggregation: After the patch editing step, the patches a priori no longer
agree, which means that they do not have the same value on their overlap. The
reconstruction of the image is therefore not straightforward.

The concept of patch and patch-based methods are illustrated in Figure 1. These
methods implicitly assume the self-similarity principle, which states that the image
is redundant and that small parts of the image (the patches) are repeated with only
slight variations. The success of patch-based methods on natural images have shown
the relevance of this principle, however it would not be valid on different type of
images, like MRI or images in Fourier space.

Patch editing step have suscited a lot of attention in the past few years and
have benefited from the recent development of statistics, data science and machine
learning. Lots of different models and inference methods have been proposed for
this step. Among them, we have some main categories: dictionary based methods
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FIGURE 1: Illustrations of the different step of patch-based denoising.

FIGURE 2: Illustration of the new proposed paradigm for the patch
aggregation. The aggregation is no longer a fusion of estimations of
patch model, but instead a single estimation of patch models fusion.

(Aharon, Elad, and Bruckstein, 2006 for instance), sparse reresentation based meth-
ods (Yu and Sapiro, 2011, Danielyan, Katkovnik, and Egiazarian, 2012), non-local
category (Buades, Coll, and Morel, 2005, Chatterjee and Milanfar, 2011) and Bayesian
inference (Zoran and Weiss, 2011). Lots of them rely on Gaussian models (Lebrun,
Buades, and Morel, 2013) and Gaussian mixture models (Houdard, Bouveyron, and
Delon, 2017, Zoran and Weiss, 2011).

We first show that, with the current state of the art of the patch editing step, the
main limitation of patch based methods comes from the aggregation step. Indeed,
most methods estimate a restored version of each patch (using their model) and
only aggregate them into the image, using the so-called uniform aggregation (simply
averaging the patches together) or some basic variations. This approach prevents
from using efficiently the information of the model to reconstruct the image, and
assumes (mistakenly) that the restored versions of the patches are independent.

To tackle this limitation, we propose a new paradigm in patch aggregation as
presented in Figure 2. This implies extending the definition of patches to what we
called the patch models. A patch model P is defined by

P = (Ω, ν),

where Ω ⊂ R2 is the domain of the patch model (its location on the image) and ν ∈
P(R|Ω|) is the distribution of the patch model.
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This formalization enables more flexibility when handling patches, and permits
to define the notions of the agreement and fusion of patch model. We define the
fusion of two patch models (with bounded densities), P1 = (Ω1, f1dx) and P2 =
(Ω2, f2dx), by P1 � P2 = (Ω, f dx) with Ω = Ω1 ∪Ω2 and

∀x ∈ RΩ, f (x) =
f1(x|Ω1

) f2(x|Ω2
)´

z∈RΩ f1(z|Ω1
) f2(z|Ω2

)dz
.

This operation is symmetric, associative and transitive, and thus enables to de-
fine a patch model aggregation as a fusion of all patch models. This new approach
of patch aggregation turns out to embed all the previous aggregation schemes, and
generalizes the notion of EPLL of Zoran and Weiss, 2011. This operation also has
a close form solution for Gaussian distributions, which makes it directly applicable
for Bayesian patch-based methods.

This idea of merging patch models to create a bigger patch model "containing"
them seems promising, but the proposed fusion suffers from limitations. The prob-
lem can be considered with more generality as such: how to merge (or interpolate)
different distributions living in different space but having some overlapping com-
ponents. This question is more deeply related to distribution theory and led us to
consider it using optimal transport, as a tool to handle distributions. This problem
is the core of part II.

Part II: Generalized Wasserstein Barycenter

In this part, we present a natural extension to the problem raised in part I for patch
models. Chapter 3 is a survey of a classical optimal transport theory and some of
its variant like Wasserstein barycenter, multi-marginal optimal transport and the en-
tropic regularization. Chapter 4 introduces a new problem raised by the study of
Chapter 2 adapted to optimal transport theory. It turns out that it can be casted as a
generalization of the Wasserstein barycenter problem.

Optimal transport theory is centered around the Kantorovich (or Monge-Kantorovich)
problem:

Lc(µ, ν) = inf
γ∈Π(µ,ν)

ˆ
X×Y

cdγ.

µ and ν are the original and target distribution. Lc(µ, ν) is called the transport cost
and enables to define a (non-trivial) distance between distributions. Chapter 3 is
devoted to introduce this problem and the main tools and results that will be useful
throughout this thesis, with some insight on extensions and deeper studies. It will
introduce in particular the multi-marginal optimal transport problem, as a general-
ization of the Kantorovich problem, that will turn out to be of special interest to our
original motivation.

We will consider the following problem: Given (ν1, . . . , νK) some probability
distributions, c1, . . . , cK some cost functions and P1, . . . , PK linear applications, with
Pi : R→ Rdi , find

inf
ν∈P(Rd)

K

∑
k=1
Lci(νi, Pi#ν). (GWB)

A solution of Equation GWB is called a generalized Wasserstein barycenter. Pi#ν
is called the push-forward of ν by Pi, and corresponds to the distribution naturally
induce on Rdi by ν through Pi. In the case where Pis are the canonical projections
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Rd → Rdi , Pi#νs are the marginals of ν according to the variables involved in the Pi
and we find the setup corresponding to the patch aggregation (or fusion) presented
in Chapter 2. The aggregation of a set of patch model can be seen as a generalized
Wasserstein barycenter.

Chapter 4 presents a study and a characterization of generalized Wasserstein
barycenter in the case where the cost functions ci are all square of Euclidian norms.
This problem is deeply related to the thoroughtful study of 2-Wasserstein barycen-
ter problem by Agueh and Carlier, 2011, and the multi-marginal approach for tomo-
graphic reconstruction of Carlier, Oberman, and Oudet, 2015. However, those two
problems are particular cases of (GWB) which requires more subtleties, especially in
the definition of the dual.

Still, we provide some similar results, and show that (GWB) is linked to a multi-
marginal problem

inf
γ∈Π(ν1,...,νK)

ˆ
X1×···×XK

cdγ,

with c carefully chosen. This enables to solve the problem through generalized en-
tropic regularization and Sinkhorn iterations. The problem also turns out to be Gaus-
sian friendly. We show some results applied to geometrical reconstruction and to the
fusion of patch models.
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Part I

A unified view on patch
aggregation
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Chapter 1

Patch-based methods and image
denoising

Introduction

This chapter presents the mathematical and conceptual background to the ideas pre-
sented in this first part. Most of the ideas presented here will be useful to develop
the work presented in Chapter 2, and to understand the motivation behind it. This
involves the basics of the EM-algorithm and some of its applications, especially to
the Gaussian Mixture Models (GMM) and some extensions in Section 1.1. Section 1.2
presents the state-of-the-art for patch-based image denoising and some of the main
concepts behind the most popular algorithms. I included besides some leads which
naturally arise from this presentation that I have unsuccessfully explored and even-
tually let down. Yet, they still have their relevance, as they complete my thoughts,
and they may be the basis for some future deeper explorations.

1.1 EM-algorithm and mixture models

1.1.1 Gaussian Mixture Models (GMM)

A mixture model is a way to model data with a distribution obtained by combining
several other distributions.

Denoting (φk)k∈[1..K] a set of K probability distributions on Rn and π ∈ [0, 1]K

such that ∑k πk = 1, we can define the mixture model

∀x ∈ Rn, p(x) =
K

∑
k=1

πkφk(x),

where K is called the number of components, (φk)k∈[1..K] are the components and π
is the vector of mixture coefficients. The components can be any distribution chosen
arbitrarily, even other mixtures. The distribution p can be seen as a blend of the φk,
according to the proportion πk, which explains the terminology "mixture". This is
a very powerful way to combine simple models in order to obtain a more complex
and generic one.

A simple way to sample from the mixture distribution p is to choose first one of
the component φk, with probability πk, and then sample from it, which leads natu-
rally to a classical and very powerful way to model the mixture model. It consists
in considering a latent variable Z, unobserved, which refers to which component of
the mixture the corresponding observed variable X should be sampled. The couple
(X, Z) follows the graphical model presented in figure 1.1. From a data set perspec-
tive, Z is then an indicator telling from which component X is coming. This way of
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FIGURE 1.1: Graphical model of a mixture model (Image from
Bishop, 2006)

seeing a mixture model is very useful in regards to its applications, for instance for
clustering purposes, which consists in finding the “right” z for every observed data
x.

In this regard, Z is naturally modeled using a multinomial distribution Z =
(Zk)k∈J1,KK with

p(Zk = 1) = πk.

Z could be as well modeled by a discrete uniform distribution on J1, KK for instance,
but the multinomial modelling is more convenient, since we can easily write the
distribution of Z in a close form :

p(z) =
K

∏
k=1

πzk
k .

Then the distribution of X conditionally to Z is naturally defined by p(x|zk = 1) =
φk(x), which gives the final formula:

p(x, z) =
K

∏
k=1

(πkφk(x))zk .

We can check that, indeed, we have p(x) = ∑z p(z) × p(x|z) = ∑K
k=1 πkφk. We

can also use the Bayes formula to have the posterior distribution

p(zk = 1|x) = πkφk(x)
∑j πjφj(x)

. (1.1)

All these considerations enable to use the powerful tools of the graphical models
theory to work efficiently with mixture models. One of their biggest strength is that
they can in most case approximate any kind of distribution, which makes them very
useful in data processing. However, most of the mixture models lead to complex in-
ference, even with simple and well-understood basic distributions such as Gaussian
distributions.

A mixture model with only Gaussian components is called a Gaussian Mixture
Model (GMM). This mixture model is very widely used because of its flexibility, its
low complexity and, as we shall see, its compatibility with the EM-algorithm. The
components of a GMM can there be written as

φk = N (.|µk, Σk),
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where (µk, Σk) corresponds to the parameter of the k-th Gaussian. The mixture mod-
els have then additional parameters, that we can regroup into θ = (θk)k∈[1..K] =
(π, µ, Σ), which yields our GMM distribution:

p(.|θ) =
K

∑
k=1

πkN (.|µk, Σk).

Thanks to their flexibility, GMMs can be used to approximate distributions. The
inference consists in estimating a vectorial parameter θ. A very natural and popular
way to infer θ is to use the maximum likelihood principle. We need for that to ex-
press the total log-likelihood L(x, θ) for an arbitrary set of samples x = (xn)n∈J1,NK
and our parameter θ of the GMM:

L(x, θ) =
N

∑
n=1

log(
K

∑
k=1

πkN (xn|µk, Σk)). (1.2)

Even if this expression seems easier to work with than the regular likelihood,
maximizing it doesn’t lead to a convex problem and is not tractable in practice. To
tackle this issue, some iterative method must be used to try to obtain some local
maximum, like a gradient descent (see Gepperth and Pfülb, 2019 for instance) or the
EM-algorithm (see McLachlan and Krishnan, 2007) which will be described in the
next section.

Before going any further in how to optimize the (log-)likelihood, it is interesting
to think about what we really wish to obtain. The maximum likelihood is in general
a good estimator, since we can prove its consistency and normality under certain
standard conditions. But in our case, the log-likelihood function is not bounded. For
instance, if one of the component is exactly located at a point and if the others are
chosen randomly, then the likelihood of the configuration can tend arbitrarily fast to
infinity as the variance of the component on the point tends to zero.

Proposition 1. We have
sup

θ

L(x, θ) = +∞.

Proof. We choose θσ = (πk, µk, Σk)k∈J1,KK such that ∀k ∈ J1, KK, πk = 1
K , (µ1, Σ1) =

(x1, σ2I and ∀k ≥ 2, (µk, Σk) = (0, I).
Then, we have

L(x, θ) = ∑
n

log

(
1
K ∑

k
N (xn|µk, Σk)

)

≥
N

∑
n=2

log

(
1
K

K

∑
k=2
N (xn|µk, Σk)

)
+ log

(
1
K ∑

k
N (x1|µk, Σk)

)

≥ A + log
(

1
K
N (x1|x1, σ2I)

)
with A = ∑N

n=2 log
(

1
K ∑K

k=2N (xn|µk, Σk)
)

, which does not depend on σ.

We have besides N (x1|x1, σ2I) = 1
(2π)d/2σ

, so we have

L(x, θσ)→σ→0 +∞.



12 Chapter 1. Patch-based methods and image denoising

This shows that we do not wish to achieve a global maximum (which will always
be +∞), but rather find the “best” local maximum, which should be obtained among
the set of "good" θ, which corresponds to mixture of non-degenerated Gaussian dis-
tributions.

1.1.2 EM-algorithm

The EM algorithm is a powerful way to find local maxima of the log-likelihood func-
tion following the graphical model of figure 1.1. There are several ways to under-
stand the EM algorithm. One of the most intuitive, as presented for instance in
Bishop (2006) (see for more details), is to interpret it with the Kullback-Leibler diver-
gence, or KL-divergence.

Recall of information theory

We recall here some basics on information theory. The quantity of information given
by an observation x of X is defined by

I(x) = − log p(x).

The idea behind this definition is to consider that the rarest an event occurs, the
most information it contains when it happens. We have then I(x) = 0 if the event
x is "obvious" (p(x) = 1), and I(x) = +∞ if the event x is "impossible" (p(x) =
0). Indeed, observing something impossible breaks the model and therefore gives
infinite information. The choice of the log function is somewhat arbitrary, mainly
due to commodity.

Then, we define the entropy of the random variable by

H[X] = −
ˆ

x
p(x) log p(x) = E[I].

The entropy is the average quantity of information one could expect to have with
one observation of X. The entropy is always positive for discrete random variable
(the integration becomes a sum of positive quantities), but can take negative values
for variables with density.

In our application, we consider an unknown probability distribution p, and we
want to approach it with another distribution q supposed to be known (a GMM for
instance). A way to measure the distance between those two distributions from a
probabilistic point of view is to consider the amount of information lost by getting
them mixed up. It is then unavoidable to lose information by thinking that X ∼ q
instead of X ∼ p. In order to quantify this loss, we define the KL-divergence as:

KL(p||q) = −
ˆ

x
p(x) log(

q(x)
p(x)

)dx = Ep
[
Iq
]
−Ep

[
Ip
]

.

This is the difference between the average information given by a random variable
following q and by an independent one following p (which is optimal since it is
the real distribution). The KL-divergence has some nice properties: it is a pseudo
distance (non symmetric), but non-negative and vanishes if and only if p = q. For
discrete variables, the KL-divergence is defined identically, with a sum instead of an
integration.
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FIGURE 1.2: Illustration of the Kullback-Leibler divergence behav-
ior. The green lines represent p, a Gaussian distribution we want to
approximate with q, a circular Gaussian distribution (red lines). On
the left, KL(q||p) is minimized, so the red distribution cannot afford
to take large values outside the green lines. On the right, KL(p||q) is
minimized, so the red lines must include the green ones. (Image from

Bishop (2006))

Minimizing the KL-divergence corresponds to minimizing the loss of informa-
tion induced by our approximation q, which is a decent goal in our problem. Hence,
it is interesting to think about what will make this quantity small.

• If p is small in a region where q is large, then the log term will take large values,
but the contribution of this region will still be small due to the linear term in p.

• If q is small in a region where p is large, then the log term will take large values,
but won’t be reduced by the linear term.

This behaviour is highlighted on Figure 1.2. Hence, minimizing KL(p||q) with re-
spect to q is trying to approximate p where it is large, and minimizing the inverse is
trying to avoid p where it is low.

Motivation of the EM algorithm

Suppose that X and Z are two random variables, following the graphical model pre-
sented in Figure 1.1. We introduce a new density distribution q on the latent variable
Z. Recalling Equation (1.2), we can now observe the following decomposition:

log p(X|θ) = L(q, θ) + KL(q||p(·|X)) (1.3)

with L(q, θ) = ∑Z q(Z) log( p(X,Z|θ)
q(Z) ) and KL(q||p) = −∑Z q(Z) log( p(Z|X,θ)

q(Z) ).
Since the KL is non-negative, we have a lower-bound L(q, θ) on the log-likelihood,

which is more likely to be convex. Instead of maximizing directly the likelihood
function, we can maximize its lower bound, and then refresh it from the new posi-
tion and so on. The EM-algorithm is the succession of these two steps, which are
called the E-step and the M-step.

• E-step : Maximize the lower bound, which is equivalent to minimize KL(q||p(·|X))
with respect to q. If this is tractable, this simply corresponds to set q to be
p(·|X) (See Section 1.1.2).

• M-step : Maximize L(q, θ) = ∑Z q(Z) log( p(X,Z|θ)
q(Z) ) with respect to θ. This is

equivalent to maximize ∑Z q(Z) log(p(X, Z|θ)) = Eq[log(p(X, Z|θ)].
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Algorithm

Algorithm 1 EM-Algorithm
Input: I.i.d. observations x = (x1, . . . , xn) of the random variable X
Output: Parameter θ

1: Initialize the parameter θ
2: while not converged do
3: Set q = p(.|x) = arg maxq L(q, θ)
4: Set θ = arg maxθ Eq[log(p(x, Z|θ)]
5: end while

The EM-algorithm is presented on Algorithm 1. It consists in an alternate maxi-
mization of a function of two variables. But, since we have from (1.3) that log p(X|θ) ≥
L(q, θ) for any q and θ, the likelihood only increases through the steps of the algo-
rithm. This ensures that the algorithm converges to a maximum, which will likely be
local if the initialization is not ill-conditioned, i.e. if the likelihood does not diverge
next to the initialization. This fact shows that the EM algorithm is very initialization
dependent, and how to correctly initialize it depends on the problem and is most of
the time still an open issue.

EM in practice

As for all the iterative algorithms, the initialization is crucial in order to use properly
the EM algorithms, also because we already know that there are no global maximum,
so we have to be close to the local maximum that we are looking for before the be-
ginning of the algorithm. When used for clustering purposes, the most popular way
to initialize it is to use a K-means algorithm, which can also be seen as a version of
the EM-algorithm (Bishop (2006)). However, this is mostly chosen for convenience:
there is no proof of its efficiency and it does not necessarily give the best results
in practice. Several techniques have been proposed to help finding the best local
maximum like Small EM, CEM, SEM. For instance, some work have been made in
Biernacki, Celeux, and Govaert (2003) to optimize the EM procedure specifically for
the Gaussian mixture problem. Another interesting idea introduced by Ueda and
Nakano (1998) is to smooth the likelihood function in order to remove the saddle
points between the local maxima which prevent the algorithm from being stuck on
bad local maxima and helps it reaching the highest ones. These methods are dis-
cussed in details in He et al., 2004 for clustering purposes. As said, initialization is
still an open problem and have no general good solution. One must look up for each
problem which solution suits the most.

1.1.3 Application of EM to Gaussian mixture inference

The EM-algorithm is very general and can be applied to any type of mixture. How-
ever, in the case of GMMs, the iterations have a close form solution, which makes it
particularly useful to infer it.

As seen in Algorithm 1, the E-step for Gaussian mixtures consists in calculat-
ing the posterior distribution p(.|X), and the M-step consists in maximizing the
expected value of the total log-likelihood according to this distribution and with
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respect to the model parameters. Recalling Equation (1.1), we have

p(zk = 1|x) = πkN (x|µk, Σk)

∑j πjN (x|µj, Σj)
.

Considering (xn)n∈[1..N] a i.i.d sample of the mixture, we write τn,k = p(zn,k =
1|xn). The E-step consists finally simply in calculating the τn,k.

For the M-step, we have to maximize

Ez|x[logL(x, z|θ)] =
N

∑
n=1

K

∑
k=1

E[zn,k]× log(πkN (xn|µk, Σk)) =
N

∑
n=1

K

∑
k=1

τn,k× log(πkN (xn|µk, Σk))

with the constraint ∑k πk = 1 and π ≥ 0. We can rewrite this expression

Ez|x[logL(x, z|θ)] = ∑
k

Nkπk −∑
k

1
2

Nk log det(Σk)−∑
k

1
2

NkTr(SkΣ−1
k ) + cst

with Nk = ∑n τn,k and Sk = ∑n τn,k(xn − µk)(xn − µk)
T. The maximization has a

close form solution which can be found using a Lagrange multiplier, which gives
the expressions for the M-step :

µk =
∑k τn,kxk

Nk
, πk =

Nk

N
, Σk =

Sk

Nk
. (1.4)

1.1.4 High Dimensional Data Clustering (HDDC)

Even if the EM-algorithm is very useful and efficient to infer GMM, it has other
limitations than the initialization. Performing the E-step and the M-step require to
compute and invert the covariance matrices, which can become problematic as the
dimension of the problem grows. Besides, applied to clustering in high-dimensional
space can create numerical issues as the data become sparse (matrices are no longer
full rank for instance). For these reasons, Bouveyron, Girard, and Schmid, 2007 in-
troduced the High-Dimensional Data Clustering (HDDC). The idea is to add more
control onto the covariances of the componentes of our Gaussian mixture model. In-
stead of considering the covariance matrix, we consider directly its diagonalization.
For the sake of clarity, we will reason here on one cluster, but what follows can be
applied on each cluster independently.

Let fix k ∈ J1, KK. We consider the diagonalization of the covariance matrix Σk =
Qt

k∆kQk with ∆k a diagonal matrix. We assume that the signal (or cluster) that we
are trying to model lives in a subspace of dimension dk, i.e. that the covariance
matrix has dk informative eigenvalues and that the p− dk remaining ones come from
uniform noise, and therefore are identically equal to bk ∈ R. Hence, ∆k has the form

∆k =



ak,1
· · · (0)

ak,d
bk

(0) · · ·
bk

 . (1.5)

This assumption is not restrictive, since any covariance can be written in this
form for dk = p− 1, but it greatly helps focusing on the dimension reduction. The
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regularization can be toughed with some similar additional assumptions, that the
different classes share the noise, or even impose that the first eigenvalues take the
same value. All these models have been studied in Bouveyron, Girard, and Schmid
(2007), and we will only consider the most general model called [akjbkQkdk] (to re-
spect the notations of the paper), because it’s the most adapted to our application.

This hypothesis doesn’t constraint the space of considered distributions, since
for dk = p − 1, we have the general Gaussian mixture distributions. Infering this
model will naturally correspond to the standard GMM maximum likelihood since
the other cases are just some more compact ways to write very particular cases of the
GMM. But, as we wish to model the presence of noise and have a model as sparse as
possible, we would like to have dk as low as possible without altering too much the
accuracy of the model.

Let us fix dk for now. We can now compute this particular M-step:

θ = arg max
θ∈Θ

Eq[log(p(X, Z|θ)]

where Θ is the restricted set of GMM parameters with covariance that can be diago-
nalized like in (1.5).

Using the notations of Section 1.1.3, having λk,1, ..., λk,p the eigenvalues of the
empirical covariance Sk, the parameters that maximize the complete log-likelihood
(see Equation 1.4) are the same, except for the covariance, whose parameters are:

ak,j = λk,j for j ∈ J1, dkK and bk =
∑

p
i=dk+1 λi

p− dk
.

The result is very intuitive, since the eigenvalues corresponding to the signal are un-
touched, and the one corresponding the noise are averaged. Qk correspond also in a
natural way to the eigenvectors of Σk. It is important to note that in this parametriza-
tion, only the dk first eigenvectors are useful to store. The p− dk other directions can
be chosen arbitrary as an orthonormal basis of the remaining space. Furthermore,
we can write bk as follows

bk =
Tr(Σk)−∑dk

i=1 λi

p− dk

which enables to estimate bk precisely, since the eigenvectors corresponding to the
largest eigenvalues are well estimated by the algorithms.

We considered here the case of a single cluster (and therefore of a single Gaussian
distribution). More generally, we work with several clusters, each of them having its
own intrinsic dimension dk and potentially its own noise bk. All the formulas above
can be applied independently to each cluster. It is also possible to add more limita-
tions to the GMM, for instance by forcing that they share the same dimension or the
same eigenvectors. This leads to slight modifications in the formula, see Bouveyron,
Girard, and Schmid, 2007 for more details.

Thanks to the introduction of the intrinsic dimensions d1, . . . , dK of the clusters,
the HDDC extension of the EM algorithm applied to GMM has lot of computational
avantages which become really relevant when working with high-dimensional spaces.
The parameters are then simpler and faster to compute and store. If the dk are known
a priori as the data of the problem, HDDC is preferable to regular GMM.

If the intrinsic dimensions d1, . . . , dK are fixed before starting the EM algorithm,
HDDC has the same convergence properties than the latter. However, in practice,
we want to infer the intrinsic dimensions simultaneously and choose the d1, . . . , dK
according to some criterion. In this case, the M-step becomes in general slightly
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FIGURE 1.3: Evolution of the likelihood during the learning of the
GMM and the HDDC model

suboptimal and the algorithm no longer has theoretical convergence guaranties. But
in practice, the algorithm still converges to a local maxima (see figure 1.3).

The real issue of this technique is to be able to estimate the dimensions d1, . . . , dK,
which are almost never inputs of the problem but often an important feature to es-
timate. As we said, if we relax this parameter, the maximum likelihood is obtained
for d1 = · · · = dK = p − 1, which corresponds to a classical GMM. Therefore, the
problem of estimating the right dk in this context is ill-posed. We would like the dk to
be as small as possible, but without loosing too much information, i.e. with a good
estimation of the noise.

We could compute the likelihood with respect to the dk to see how it behaves.
This can be seen with this proposition :

Proposition 2. The maximum likelihood of the M-step of the HDDC model is obtained with
d1 = · · · = dK = p− 1.

Proof. The result is pretty obvious, since the HDDC model is equivalent to the GMM,
so they have the same maximum likelihood. We can yet compute how the likelihood
behave with the dk, even if this dependence is very complex. We consider for sim-
plicity only cluster, as this reasoning can be applied independently to all of them.

Let f (d) = maxLd(x, θ). We know that

arg max
a,b,Q
Ld(X, θ) = ((λi)i∈[1..d],

∑
p
i=d+1 λi

p− d
, eigenvectors from Σ)

Besides, arg maxa,b,Q,d L(X, θ) = arg maxd f (d) because d is discrete. And we have

f (d) = cst− 1
2
[

d

∑
i=1

log λi + (p− d) log(
1

p− d

p

∑
i=d+1

λi)]−
1
2

Tr(Σ−1
k Sk),

where

Tr(Σ−1
k Sk) = Tr(QT

k ∆kQkQT
k diag((λi)i∈[1..p])Q) =

d

∑
i=1

λi

λi
+

p

∑
i=d+1

λi
1

p−d ∑
p
j=d+1 λj

= p.
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So arg maxa,b,Q,d L(X, θ) = arg maxd ∑d
i=1 log λi + (p− d) log( 1

p−d ∑
p
i=d+1 λi). Fi-

nally, Jensen’s inequality tells us that

Lp(X, θ)−Ld(X, θ) = (p− d)(log(
1

p− d

p

∑
i=d+1

λi)−
1

p− d

p

∑
i=d+1

log λi) ≥ 0

so arg maxa,b,Q,d L(X, θ) = p− 1.

The proof of Proposition 2 gives the expression of the likelihood with respect to
d:

Ld(X, θ) = (p− d)(
1

p− d

p

∑
i=d+1

log λi − log(
1

p− d

p

∑
i=d+1

λi)) + cst.

The estimation of the dimensions d1, . . . , dK is really a central problem in the
model, and is very tedious in practice because of the ill-posedness. Furthermore, due
to the exponential number of possible choices pK (with K clusters) for the dimensions
of the clusters, we cannot compute all possibilities and then use a certain criterion.

Estimating the dk is very closely related to the estimation of the noise(s). It can
be reasonable to assess that the noise is the same for every cluster. Hence, we could
replace the estimation of d1, . . . , dK by the estimation of a single noise b, which is
likely to be known from a prior assumption. This method has lots of advantages ; it is
much more intuitive, it can be known or guessed independently from the algorithm,
and can be inferred with a Bayesian criterion as well. This is the idea behind HDMI
(Houdard, Bouveyron, and Delon, 2017), presented in Section 1.2.4.

1.1.5 Maximum likelihood denoising

As we shall see later on, modeling the noise is very powerful for denoising purposes,
more than trying to reduce it by averaging independent data. It enables then to
use estimators like the Maximum Likelihood Estimator (MLE) or the expectation,
depending on the goal and the context.

In the case of Gaussian noise, which will be our case of interest, those two esti-
mators are the same and have a close form formula that we will recall here. As we
shall see, we even have access to the posterior distribution.

Let X, Y be two Gaussian random variables, with the given probability distribu-
tion, p(x) = N (x|µ, Λ−1) and p(y|x) = N (y|Ax + b, L−1).

Then we have

p(y) = N (y|Aµ + b, L−1 + AΛ−1AT)

p(x|y) = N (x|Σ(AT L(y− b) + Λµ), Σ),
(1.6)

with Σ = (Λ + AT LA)−1.
In our case, we have Y = X + ε, with Y ∼ ∑k πkN (.|µk, Σk) and ε ∼ N (.|σ2I), so

X ∼∑
k

πkN (.|µk, Σk − σ2I).

So we have p(x|y) = ∑z p(x|y, z)p(z|y) = ∑k p(x|y, z)τk(y) using the same notation
as in Section 1.1.3. So, using (1.6) for each cluster, with A = I, L−1 = σ2I and b = 0,
we obtain

p(x|y) = ∑
k
N (x|µk + Σk

y− µk

σ2 , Σk)τk(y) (1.7)
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with Σk = ((Σk − σ2I)−1 + 1
σ2 I)−1.

Having an observation y of Y, we have then easily access to the expected value
of X :

E[X|y] = ∑
k

(
µk + Σk

y− µk

σ2

)
τk(y), (1.8)

and to the maximum a posteriori estimator

µkm + Σ̃km

y− µkm

σ2 (1.9)

with km = arg maxk
τkm (y)√
det Σ̃km

, which gives in both case an interesting candidate for

the denoised value.

1.1.6 Hyperparameters estimation

As we saw in Section 1.1.4, having some hyperparameters (i.e. parameters outside
the model) like the intrinsic dimension d in GMM or the number of classes K in a
clustering problem helps a lot when they are known thanks to some prior knowl-
edge. However, it is rarely the case, and there is rarely a "unique" good solution and
like the other parameters, they must be estimated to reach a decent solution.

Hyperparameters estimation is really crucial and is a complicated issue, since it
is in general ill-posed. For example, to choose the number of classes in a clustering
context, the "perfect" solution (in term of pure clustering objective) will always be to
take one class for each point. This solution is obviously not what we want to achieve.
The real goal in hyperparameter selection is to find the "optimal" trade-off between
accuracy and complexity, and therefore to find a criteria which leads to such a trade-
off. The difficulty becomes then to be able to compare quantitatively accuracy and
complexity, which is problematic since they are already hard to measure indepen-
dently and there is a priori no common scale between the values to which they can
be associated.

Still, some methods have been developed to estimate the hyperparameters, try-
ing to take advantages of an underlying Bayesian framework. The accuracy is then
measured by the posterior probability of the observation and the complexity is an
(increasing) function of the number of parameters. This idea have led to the so-
called penalization criterions, which are the most popular hyperparameters estima-
tion tools. Some other heuristics exist, like the popular slope heuristic, presented in
detail in Baudry, Maugis, and Michel, 2012 and can offer some nice alternative.

On general penalization criteria

The idea of penalization criteria is to add a penalization term to the likelihood of
the model to be able to compare different model with respect to a certain point of
view. Obviously, as the number of parameters grows, the likelihood is supposed
to grow as well since the model will be able to better fit the data. This leads to
two main drawbacks, first, an over-fitting of the training data, and secondly that we
may overparameterize the model. This is typically the case in clustering, where the
correct number of clusters is the "lowest possible". Otherwise, the best clustering
would be to consider each point as a single cluster.

This lead to the idea of penalizing the likelihood with a quantity which depends
on the numbers of parameters K. The criterion is then defined as crit(M,K) =
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log(θML)− pen(K). We then select the best K as

K = arg max
K∈[Kmin..Kmax ]

crit(K)

.
This idea is pretty similar to adding a prior to a hyper parameter, like an expo-

nential law and try to compute its maximum likelihood. But the Bayesian frame-
work is not very convenient in this context, because we rarely have non-heuristical
prior on the hyperparameters and mainly this "hyperprior" would introduce another
hyperparameter. Besides, the penalization term can only depend on the value of one
of the hyper parameters, we cannot choose between models differing by more than
one hyper parameter.

Several penalization criteria have between studied in the literature. General re-
sults have been proved by Nishii (1988). He considered penalization of the form
pen(K) = cn × K, with K the complexity of the model, and n the number of in-
put data. He proved that if the true distribution does not belong to the considered
model, then :

• If cn = o(n), then the criterion cannot underestimate the complexity of the
model

• If cn
log log n → ∞, then the criterion is strongly consistent, which means that the

chosen model will converge towards the simplest model among those who
minimize the KL-divergence to the true distribution.

More details can be found in Baudry (2009). These kinds of results can give hope
that these criterions will work, but there are still not very precise and strong.

Even if these criterions have been largely studied, most of the work remains ex-
perimental, and to my knowledge, no complete review have been made on the sub-
ject. The rest of the section exposes the main facts on the considered criterion, with
some references for further precision.

AIC

Criterion The Aikake Information Criterion (AIC) was one of the first selection
model criterion, introduced first by Akaike (1973). The penalization is simply the
dimension of the model. Thus, the criterion is

AIC = log p(x|θML)−K

This correspond to cn = 1 in the Nishii framework, which doesn’t guaranty the
consistence of the criterion, and Nishii (1988) showed that AIC can be inconsistent.

Motivation The idea behind it is to consider the empirical likelihood 1
N log p(x|θML)

as an estimator of E[log p(.|θML)] = −KL(p||p(.|θML)) + cst, which is asymptoti-
cally correct thanks to the law of large numbers. Hence, maximizing the empirical
likelihood enables to minimize the KL-divergence between the true distribution and
the estimated one. However, the same data are used to compute θML and to estimate
E[log(p(.|θML)], a bias is therefore induced. It is shown in Akaike (1973) that this
bias could be asymptotically estimated by the dimension of the parameter space,
which makes AIC an estimator of E[log p(.|θML)].
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Properties The AIC tries to find the closest distribution to the real one in the sense
of the KL divergence, which is already intuitively the kind of behavior one could
have expected of a criterion. Furthermore, it has some other very important prop-
erties, studied by Yang (2005). The AIC criterion is not consistent in general, but
is asymptotically optimal under the average square error loss. It means that under
some conditions, if the true distribution does not belong to the models, then the
model selected by AIC will be the “best” model in terms of average square error
loss.

BIC

Criterion The Bayesian Information Criterion was introduced by Schwarz (1978).
The penalization is stronger than the AIC criterion :

BIC = log p(x|θML)− 1
2
K log n

with n the number of points. The BIC tries to select the model with the highest
posterior model probability.

Motivation The idea of the BIC is to estimate the marginalized likelihood of the
model :

´
θ p(X, θ|M) with the Laplace approximation. Let x0 be a mode of the likeli-

hood, then we have logL(x, θ) = logL(x, θML)− 1
2 (θ− θML)T(−∇2 logL)|θ=θML(θ−

θML) + o
(
(θ − θML)2). We can therefore approximate the distribution near its mode

with a Gaussian distribution. The Laplace approximation consists in generalizing
this approximation to the whole space, giving an approximation for the integral :

log
ˆ

θ
p(X, θ|M) ≈ log p(x|θML) + log

ˆ
θ

e−
1
2 (θ−θML)T(−∇2 logL)|θ=θML (θ−θML)

This can be very efficient in practice if the distribution is concentrated around its
mode, but completely false in general, especially if the distribution has several modes.
It has been shown by Schwarz, 1978 that this integral could be approximated by
− 1

2K log n.

Properties The main result on BIC is its consistency. If the true distribution belongs
to the model, then the probability of selecting the right model by BIC will converge
to 1 as n→ ∞. See Yang (2005) for further details.

ICL

Criterion The ICL was introduced by Biernacki, Celeux, and Govaert (2000) in or-
der to mimic the derivation of the BIC in a clustering purpose. We have

ICL = log p(x|θML)− 1
2
K log n− ENT(x, θ)

with ENT(x, θ) = −∑n ∑k τi,k(θ
ML) log τi,k(θ

ML) is the entropy. The idea behind it
is that, in a clustering framework or to avoid overfitting, we don’t really want to be
close to the distribution, but rather aim at finding the right number of cluster. More
details can be found in Baudry (2009).
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Motivation The ICL criterion is specific to mixture model, and its value, like for
the BIC, comes from the Laplace approximation, but applied to the classification
likelihood, in which Z is supposed to be known (in contrast with BIC where its
expected value is considered):

logLc(x, z|θ) = ∑
n

∑
k

zn,k log(πkN (X|µk, Σk)) = logL(x|θ) +∑
n

∑
k

zn,klog(τk(x, θ)),

which gives in average ICL = BIC− ENT(x, θ).

Properties This criterion was introduced to be applied on a classification problem,
with the idea that some of the components we wish to obtain could not precisely fit
the model, and could need several classes for only one component. This explains
why BIC can tend to overestimate the number of components, because it tries too
much to fit to the distribution. On the other hand, ICL penalizes similar classes, and
therefore seems more adapted to clustering purpose. See Baudry (2009) for more
details.

Discussion

Figure 1.4 presents a comparison of the different penalization criterions on the noise
estimation problem of an image and the number of cluster estimation using an al-
gorithm based on HDDC. The context of this experiment will be better explained
in Section 1.2.4. For now, we can just consider the noise σ and the number of clus-
ters as hyperparameters. As we see, the penalization criterions are quite efficient to
estimate the noise, on which they almost all agree. It is interesting to note that the
noise, even if considered as a parameter, corresponds to a real quantitative value, in
opposition to the number of classes, which is way more subjective and has a more
subtle impact on the efficiency of the model.

Hyperparameters estimation is a very appealing problem. As shown in Figure
1.4, it can be an efficient tool to tune hyperparameters in an automatic or semi-
automatic fashion. However, their main drawback is that their computation implies
doing a dichotomy on the value of the hyperparameter, which involves inferring a
new model each time and is not feasible in practice when they are a bit elaborated.
In the application that we shall make of the presented models, their use would not
be relevant, that is why we won’t use them in the rest of this thesis.

1.2 Image denoising

In the field of image processing, lots of challenges have arised in the last decades,
with the explosion of digital images. Among them, one of most basic and fundamen-
tal is the problem of image restoration. Unlike analogical images (argentic cameras),
after the capture of an image by a digital device (camera, scanner, IRM, ...), the pic-
ture is rarely ready to be used, and has to be post-processed by algorithms that im-
prove its quality, based on what is known and expected of the result. This is the main
difficulty of image restoration: the algorithms have to guess what can improve the
image, relying on their objective and/or every prior knowledge on the nature of the
degradation. As a matter of fact, most problems of image restoration are ill-posed.
Among them, the denoising problem has a particular place : it is one of the simplest
since the signal is only degraded by addition of noise and still remains fundamental.
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FIGURE 1.4: Comparison of all the presented criterions for the noise
estimation (related to the instrisic dimension) and the number of
classes for the inference of an HDDC model on the patches of an im-
age with artificial white Gaussian noise of standard deviation σ = 30.

See Section 1.2.4 for further details.
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In the following, we will only consider this problem on natural images, obtained
from camera, but everything that we will discuss could be extended to wider appli-
cations.

1.2.1 The denoising problem

The denoising problem is posed as followed: given an image with noise, be able to
estimate it and recover the image without the noise. The assumption behind this
problem is that it exists a genuine noise-free image u, and that we observe the image

û = u + ε,

where ε is the noise that we can model depending on the context of the problem.
This problem is completely ill-posed, since theoretically, all images are possible,

even those with noise. A photograph of a noisy image of a scene becomes a natural
image once it is captured. There are no way that one could hope to be able to solve
the problem without any further assumption, and the way of solving it has to be
related to the purpose behind it. For instance, in the field of medical imaging, the
denoised image must help the diagnostic, which gives already some contraints and
ideas to work with. In the case of photography, we want to obtain a nice-looking
image that our eyes could have observed, corresponding to what we call the visual
quality. Even if it is the ultimate criterion, it is highly subjective and does not help
formalizing the problem.

Yet, in most cases, what we really want to achieve is to have nice looking im-
ages. The most popular way to measure and compare the efficiency of a denoising
algorithm is the PSNR (Peak Signal to Noise Ratio) defined by

psnr(ũ, u) = 10× log10(
d2

MSE(ũ, u)
)

with MSE the mean square error: MSE(u1, u2) =
1
|u1| ∑pixel p(u1(p)− u2(p))2 and d

the dynamic of the signal (255 in the standard cases). It is equivalent to the MSE (or
the RMSE as sometimes used (for Root Mean Square Error)) but enables to measure
with decibels in a increasing scale: the higher the PSNR, the better the result.

In order to test an algorithm, one has to artificially add noise to a test image, con-
sidered to be noise-free, and see how far the result of the algorithm is to the ground
truth, thanks to the PSNR. This measurement is not really justified and far to be op-
timal, but it remains really simple. Some works have tried to improve the criterium,
trying to better mathematically catpure the notion of visual quality. It is the case of
the structural similarity criterion (SSIM), introduced by Wang et al., 2004. This cri-
terium became quite popular but remains a second choice after the PSNR due to its
complexity and the lack of clarity of its added value. In particular, Hore and Ziou,
2010 compared it to the PSNR, and showed that they are somewhat related.

The key challenge in image denoising is to understand and express mathemati-
cally what makes an image look natural. The first observation we can make is that
natural images are somewhat piecewise smooth, as they are most of the time a com-
bination of objects. As a first approximation, we can suppose that they are composed
of constant zones delimited by the contours. A first idea is therefore to impose regu-
larization conditions on the noisy image while trying to preserve as much as possible
the contour, and then hope that is will lead back to the natural image. This have led
to the so-called varational methods, which were first very popular in the 90’s, see for
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instance Rudin, Osher, and Fatemi, 1992. However, this assumption is very limited,
the smoothness of a natural image is more subtle than piecewise constantness. This
idea doesn’t take into account many particularities of images, like the textures for
instance, which are very crucial in natural images.

A second idea for denoising algorithms is the so-called "self-similarity" principle,
which states that an image is made of the complicated combination of a limited set
of small and simple patterns. This idea have led to patch based methods that we
shall develop in Section 1.2.3.

A third type of methods comes from the recent developpement of neural net-
works, which became very efficient in image denoising. They can be seen as a very
powerful and automatic way to make use of the two previous ideas. Some neu-
ral networks are trained on patches, like Zhang et al., 2017 for instance. The real
strength of neural network is that they can handle different level of noise, as pre-
sented in Wang and Morel, 2014, Zhang, Zuo, and Zhang, 2018 and Islam et al.,
2018. Their drawbacks are the following : they need a huge training data set and
they do not help better understanding and improving the concept behind the image
denoising problem. Some work like Soltanayev and Chun, 2018 have been made to
tackle the issue of the size of the data set.

1.2.2 Denoising generalities

We refer to the review of Lebrun et al., 2012 for more details on the idea developped
in this section.

About the noise

The presence of noise is unavoidable in photography. In a numerical camera, pixels
of the image are captured by small sensors that are never perfectly similar and ac-
curate. This always adds some noise to the picture. Besides, the quantum nature of
light itself adds noise in any situation. For standard setting on a personal camera,
this phenomenom is not quite visible, but as soon as the luminosity is low and/or
the shutter time is fast, images become very noisy. We can even observe noise with
our own eyes in the dark (even if our brain is used to ignore it).

Hence, the noise in cameras has most of time the same origin and can pretty
acurately be modeled at each pixel using a i.i.d. Poisson distribution. For large
enough values of the expected value (i.e. not excessively low luminosity), this can
accurately be approximated by a Gaussian distribution : N (u(i), u(i)). However,
in this approximation, the variance still depends on the signal. In order to get the
white Gaussian noise, way more convenient to work with, one can apply a Variance
Stabilizing Transformation (VST) to the signal, process the image, and then apply an
inverse VST to get the final result. More details on this can be found in Makitalo and
Foi, 2010. Hence, it is relevant, for practical applications, to assume that the noise is
a white Gaussian noise.

The noise model mainly depends of the context of the scene and the quality of
the camera. It is therefore pretty accurate to assume that it is the same for the whole
image. Hence, the only remaining uncertainity to model properly the noise is the
variance, which will differ on every input. There are several ways to estimate the
variance of the noise from a single image that we will not discuss here, but we can
therefore assume that the noise variance is known. More details can be found in
Colom, Buades, and Morel, 2014.
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Eventually, most images nowadays are color images. Since the captors of the
different color channel are very similar, we can still suppose that the noise on each
channels is added in a similar fashion. A first idea to process a color image is to
denoise each channel independently. However, this does not work very well, since
it creates color artifacts to which the eye is very sensible. Fortunately, the RGB data
is not the only way to store an image, and it appears that this idea works fine with
other representations, like YUV, which can be obtained from an RGB image by a
multiplication by the following matrix:

YUV =

 0.30 0.59 0.11
−0.15 −0.29 0.44
0.61 −0.51 −0.10

 or Y0U0V0 =

 1
3

1
3

1
3

1
2 0 − 1

2
1
4 − 1

2
1
4

 .

Therefore, an algorithm on black and white images can directly be applied to color
images.

In the rest of the thesis, we will therefore consider only black and white im-
ages with a white Gaussian noise whose variance is known.

Main denoising principles

As we said in Section 1.2.1, the main challenge of denoising problems is to find a way
to capture the subtle regularity of natural images without destroying the textures.
Most of the denoising algorithms rely on these 3 main ideas :

• The self-similarity principle, which states that a natural image is a combination
of similar lower-scale patterns. This idea has led to the so-called patch-based
methods, discussed in detail in Section 1.2.3.

• Sparsity of patches in a fixed basis, which has led to transform thresholding
methods (based of the thresholding of the signal in a sparse representation).
This is the same assumption as the one behind the famous JPEG compression,
that, in a proper basis, the image can be sparsly represented. However, these
methods often create ringing phenomena.

• Sparsity on a learned dictionary. Instead of assuming that the image is sparse
in an universal basis, the idea is to learn a dictionary which will represent
sparsely the image. These methods lead to optimization problem with sparsity
constraints, for example finding α̃ = arg minα ||α||0 such that ||û− Dα||2 ≤ λ
where D is the dictionary, and λ a data-fidelity parameter.

Denoising tools

In addition to the main ideas and mathematics behind a denoising algorithm, there
are other "meta" ideas that can be plugged to any method in order to slightly im-
prove the results. Those are useful when one tries to reach the highest possible
performance, but can prevent from developing new ideas and from identifying the
flaws of a method. We will present some of the most popular ones here, but will not
use them in the rest of this thesis.

• Aggregation of estimates : if we have m "independent" different estimate, we can
try to average them to decrease the variance. For example, we can denoise an
image by averaging the output of all the algorithms presented in Section 1.2.4.
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• Iteration/oracle filters : The idea is to first denoise roughly the input image using
any algorithm, and then use this result as an oracle to help the main algorithm
to perform its task (for clustering for instance). For instance, in NL-Bayes,
this idea helps greatly to detect similar patches, and then to average more effi-
ciently the noisy ones (see Section 1.2.4).

• Twicing : After having a first result with a denoising algorithm, one can com-
pute the residual noise with a simple subtraction to the original input. There
are often lots of information left in the estimation, and another algorithm can
be applied to this residual to better estimate the noise.

• Multiscale algorithm : One of the difficulty faced by most of denoising algo-
rithms is the low-frequency noise which is harder to differentiate from the true
image than the high-frequency one. A way to solve this issue is to denoise
the image at different resolutions. Starting at the smaller one (where it is way
easier since the noise is highly reduced by the scaling), we can then use each
result as a basis for the next resolution until the one of the input image.

• Constant zone enforcement : The eye is very sensitive to small variations in a
constant region, therefore it can be useful, inside an algorithm, to detect these
constant zones (if the variance of a patch is below a certain threshold for in-
stance) and apply a different treatment to these patches.

1.2.3 Patch-based methods

Patch based methods were first introduced in the end of the 20th century, have led to
a new paradigm in image processing, and were applied to various image processing
problem such as inpainting (Wexler, Shechtman, and Irani, 2007, Newson et al., 2014,
Criminisi, Pérez, and Toyama, 2004), image synthesis (Efros and Leung, 1999, Kwa-
tra et al., 2005), denoising (Buades, Coll, and Morel (2005)) or editing (Barnes et al.,
2009, Frigo et al., 2016), improving the state of the art. The non local methods have
been largely studied and improved, with some variants (Kervrann and Boulanger,
2006), adaptation to other type of noise (Deledalle, Tupin, and Denis, 2010) and ex-
tensions to more complex inverse problems (Peyré, Bougleux, and Cohen, 2008).
Concerning the denoising, most of the state of the art methods rely nowadays on
probabilistic models, such as NL-Bayes (Lebrun, Buades, and Morel (2013)), or in the
works of Yang (2005), Zoran and Weiss (2011), and Wang and Morel (2013). These
works have led the state of the art until recently where they were overcome by neu-
ral networks. However, patch-based methods are still interesting, as they don’t need
data set to train and can perform image-based denoising, they are better understood
theoretically.

A patch, as illustrated Figure 1.5 is a small piece of image (in practice, between
3× 3 and 25× 25). In our context, it should be of the size where the self-similarity
principle applies. We focus here on the case of images, which are 2D-signals, but
all the concepts presented hereafter are much more general and can be defined for
signals with any number of dimensions. As presented in Figure 1.6, there are 3 main
steps in patch-based signal processing methods :

1. Patch extraction : divide the image into patches

2. Patch editing : perform learning, computation and restoration of the patches
from step 1.



28 Chapter 1. Patch-based methods and image denoising

FIGURE 1.5: Illustration of the patch transformation of an image (im-
age from Houdard, Bouveyron, and Delon, 2017)
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FIGURE 1.6: Illustration of the 3 steps of patch-based image process-
ing. Patches are small image pieces, they can be seen as vectors of a
high dimensional space. Patch-based methods decompose images in
overlapping patches (step 1) and make these patches collaborate for
restoration, synthesis or editing purposes (step 2). At this point, the
processed overlapping patches do not necessarily share the same val-
ues on their common pixels. Aggregation techniques aim at combin-
ing all these different overlapping patches into a single image (step 3).
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3. Patch aggregation : reform the image from the restored patches from step 2.

We will present in the following these steps more in details. Let Ω be a discrete
rectangular grid of size sx × sy in R2 and let u : Ω→ R be a grey level image on Ω.

Patch extraction

A patch of an image u can be written as a sub-image u|Ω ∈ RΩ where Ω ⊂ Ω is
the domain of the patch. The number of pixels |Ω| is called the size of the patch.
Patches usually considered in the literature have connected domains. For example,
if Ω = J1,

√
dK2, u|Ω is the square patch of size d at the top left corner of u. The

image u can be considered itself as a (large) patch of size sx × sy, and contains N =

(sx −
√

d + 1)× (sy −
√

d + 1) overlapping square patches of size d.
The patch extraction is characterized by an extraction operator χ which gives a set

of patches from an image. In most applications, this set is composed of all overlap-
ping square patches of size d of u. Assimilating u to a sx × sy matrix and patches
as vectors of size d (read column-wise), this extraction operator can for instance be
written

χ : Rsx×sy → Rd×N ,

where the ith column yi of the matrix χ(u) is the ith patch of u. Since χ is a linear
operator, Im(χ) is a linear subspace of Rd×N of dimension sx× sy at most. Therefore,
Im(χ) 6= Rd×N . For commodity, we shall write χ = (χi)i∈I with (χi)i∈I the set of
linear operators such that χi(u) refers to the ith patch.

In the general case, χ is not surjective, and an element of Im(χ) has lots of redun-
dancies, since each pixel may appear in many different patches.

Patch-based editing or restoration

Given an extraction operator χ returning a set of N patches, patch-based signal pro-
cessing consists in processing the set of patches χ(u) instead of the signal u. How-
ever, after this processing, the set of patches is usually not in Im(χ) anymore. It
means that a pixel which belongs to several patches can have different values in all
these processed patches.

For example, in image restoration, we have access to û, a distorted version of the
true signal u. In order to construct ũ, an estimate of u, we first extract the patches
(ỹi)i∈J1,NK := χ(û) and we try to infer their restored versions ŷi. For instance, in
a Bayesian framework, if we have access to a posterior probability distribution for
each patch, we can estimate each ŷi by

ỹi = arg max
y

p(y|ŷi).

However, after this estimation, there is no guaranty that (ỹi)i∈J1,NK ∈ Im(χ), i.e. no
guaranty that we can find ũ such that χ(ũ) = (ỹi)i∈J1,NK.

Patch aggregation

The patch aggregation is the action of recovering an image from a set of patches. It
is characterized by an aggregation operator ξ, which reconstructs an image from a
set of patches. Most of the time, it satisfies ξ ◦ χ = Isx×sy , but it is not mandatory.

If χ extracts all N overlapping square patches of size d from u, ξ can be seen as a
map from Rd×N to Rsx×sy . In this case, the most common aggregations are the central
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FIGURE 1.7: Test images, from left to right: Lena, Barbara, Cartoon,
Squares.

pixel aggregation, which consists in keeping only the central pixel of each patch and
the uniform (resp. weighted) aggregation which consists in taking, at each pixel, the
uniform (resp. weighted) average of the d different values provided by the patches
it belongs to.

1.2.4 Detail on some patch-based algorithms

The framework of patch based methods presented in Section 1.2.3 is very general
and has led to a large variety of algorithms in the literature. They sometimes devi-
ate a bit from this formalization (like in Section 1.2.4, where the two last steps are
merged), but they always contain in one way or another these three steps. We will
present in this section some particular patch-based algorithms, with their results on
a bench of images presented on Figure 1.7 and for three different noise standard
variation: σ = 10, σ = 30 and σ = 50.

NL-Means and NL-Bayes

NL-Means, for Non-Local Means, was introduced in 2005 by Buades, Coll, and
Morel, 2005. It is considered to be the first patch-based denoising algorithm. At
the time, this algorithm stroke by its simplicity and its obvious potential and yet its
good PSNR results.

The idea of the algorithm is to first extract all the overlapping square patches
of size k (the author found best results by setting k = 3) and then for each patch,
average it with all the patches in a search window (used for computational time
purposes) weighted by the (minus exponential of the) square Euclidean distance to
the considered patch. The idea is that we perform a noise reduction by averaging
each patch with its most similar ones. The complete process is detailed in Algorithm
2.

NL-means gives quite good PSNR results because it works well in constant zones.
Even if the authors studied and proved some consistency results (see Buades et al
2006), its strategy remains basic. It implicitly assumes that the noise is Gaussian but
does not use any model on the patches which, as we shall see, limits the restoration.

A direct extension of NL-means is NL-Bayes (introduced by Lebrun, Buades,
and Morel, 2013), which keeps almost the same idea, simply adding a model to the
patches coherent with the one of the noise. It is presented in Algorithm 3. Instead of
averaging directly the patch of the search window, the algorithm infers a Gaussian
model with all the "close" patches and uses this model to compute the most likely
restored patch. The authors also adds some general denoising tricks, in particular
an oracle step and a constant zone enforcement (see Section 1.2.2) to improve the
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Algorithm 2 NL-means
Input: Noisy image û, standard deviation σ
Output: Denoised image ũ

1: Set parameter size of the patch : k = 3
2: Set parameter size of the search window : λ = 31
3: Set parameter bandwith filtering parameter : C = 0.6σ
4: for each i pixel of the image do
5: P : patch of size k× k whom i is the center
6: for each Q in the search window of size λ× λ do
7: d(P, Q)2 ← 1

k2 ||P−Q||2

8: wQ ← exp(− d(P,Q)2

C2 )
9: end for

10: P̃← ∑Q wQ×Q
∑Q wQ

11: end for
12: for each pixel i do
13: Set ĩ as the average of all the patches whome it belongs
14: end for

performances of the algorithm. NL-Bayes remains basic: the model is simple and the
use of the l2 norm to compare similar patches is not ideal (a patch almost identical
but with a slight shift is considered far although it is similar for our eyes), but its
results are way better than those of NL-means: it shows how powerful and crucial it
is to have a model on the patches and by extension on the image. The visual results
of these two algorithms are presented on Figure 1.8 and Figure 1.9.

HDMI

NL-means has shown that patch-based methods have potential, and NL-Bayes that
they need a model to be efficient. In the recent years, lots of powerful statistical
tools have been developed to process data and can almost directly be applied to the
patches. This new paradigm have led to many methods in the denoising literature.
The idea is to consider the whole set of patches of the image (or a transformation of
the image, like the Fourier transform) as a single data set and infer a single model on
it. Introduced by Houdard, Bouveyron, and Delon, 2017, HDMI is one of the most
recent and efficient one, and makes use of HDDC (see Section 1.1.4).

Even if NL-means uses very small patches (3× 3), they can be taken larger (10×
10 for instance). Considering all overlapping patches of an image, this constitutes a
large data set of reasonable dimension (compared to the image) which remains high
for statistical models. This makes HDDC particularly useful, as it is adapted to high
dimensional data. Besides, the underlying assumptions of the model are besides
justified in the case of patch data :

• The noise is the same in all patches, and therefore in all the clusters

• The patches inside a cluster live in a lower dimensional space: real world im-
ages seem to satisfy this criterion, as demonstrated by the success of patch
based and of dictionary method in denoising.

• This model uses a lot of information redundancy, which fits the "self-similarity"
principle.
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Algorithm 3 NL-bayes
Input: Noisy image û, standard deviation σ
Output: Denoised image ũ

1: Set parameter size of the patch k, Set parameter size of the search window λ, Set
parameter close patches C (see Buades, Lebrun, and Morel, 2012)

2:
3: for each i pixel of the image do . First loop to compute the oracle
4: P : patch of size k× k whom i is the center
5: P(P)← {Q; ||Q− P|| ≤ C}
6: Compute CP and P with
7: CP = 1

|P(P)|−1 ∑Q∈P(P)(Q− P)(Q− P)T and P = 1
|P(P)| ∑Q∈P(P) Q

8: P̃1 ← P + (CP − σ2û)C−1
P (P− P)

9: end for
10: Obtain a first denoised version ũ1 by averaging all the patches
11:
12: for each i pixel of the image do . Second loop to denoise the image
13: P : patch of size k × k whom i is the center extracted from the noisy image,

and P̃1 the corresponding patch in ũ1

14: P(P) ← {Q patch of û; such as the corresponding Q̃1 in ũ1 verifies ||Q̃1 −
P̃1|| ≤ C} and P̃(P)← {Q̂1 patch of ũ1; ||Q̃1 − P̃1|| ≤ C}

15: Compute C̃P and P̃ with
16: C̃P = 1

|P̃(P)|−1 ∑Q̃∈P̃(P)(Q̃− P̃)(Q̃− P̃)T and P̃ = 1
|P̃(P)| ∑Q̃∈P(P) Q̃

17: P̃2 ← P̃ + (C̃P − σ2û)C̃P
−1
(P− P̃)

18: end for
19: Obtain the final denoised version ũ by averaging all the patches P̃2
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Original image Denoising σ = 10 Denoising σ = 30 Denoising σ = 50

FIGURE 1.8: Experimental results of NL-Means on the test images.
The parameters used the standard parameters recommended by the

authors and explicited in Alogrithm 2.



34 Chapter 1. Patch-based methods and image denoising

Original image Denoising σ = 10 Denoising σ = 30 Denoising σ = 50

FIGURE 1.9: Experimental results of NL-Bayes on the test images. The
parameters choice follows the recommandation in Buades, Lebrun,

and Morel, 2012.



1.2. Image denoising 35

In practice, HDMI follows the 3 steps of patch-based methods presented in Sec-
tion 1.2.3, using HDDC to infer and restore the patches in the patch edition step.
However, the estimation of the intrinsic dimension di of the cluster is a capital prob-
lem. But, as we said in Section 1.1.4, the noise is closely related to the intrinsic
dimensions and it is here supposed to be known. So the dimension of each cluster is
chosen in order to fit the value of the noise with the one implied by the choice of the
intrinsic dimensions of the clusters d1, . . . , dK. We have therefore this formula:

∀k ∈ J1, KK, dk = arg min
δ

(
1

p− δ

p

∑
i=δ+1

λ
(k)
i − σ). (1.10)

The complete algorithm is presented in Algorithm 4 and its visual results are
presented on Figure 1.10.

Algorithm 4 HDMI
Input: Noisy image û, standard deviation σ
Output: Denoised image ũ

1: Extract the patches of I
2: Learn HDDC using (1.10) and estimate the dimension
3: for each noisy patch P do
4: Find the cluster k whose P belongs
5: P̃ ← ∑k πk

(
µk + Qk(I− σ2∆−1

k )Qt
k(P− µk)

)
, where (π, µ, Q, ∆) are the in-

ferred parameters of HDDC (see Equation (1.8)).
6: end for
7: Average all patches P̃ to obtain the denoised image ũ

EPLL

Until now, we only saw methods using the so-called standard or uniform aggrega-
tion. More complex strategies including both patch restoration and aggregation into
a single variational formulation have also been considered in the literature. This
idea was first introduced by Zoran and Weiss, 2011 with the Expected Patch Log
Likelihood (EPLL) and remains, to our knowledge, largely unexploited. Similarly
to NL-Means, they introduced this new strategy into a basic framework, showing
the potential of it. Some work has extended their algorithm, for instance addind a
multiscale framework like Papyan and Elad, 2015, or using more general prior mod-
els like Deledalle, Parameswaran, and Nguyen, 2018, but these extensions remained
focused on the edition step and have left the aggregation step untouched, although
it was one of the main innovation of EPLL.

In details, starting from a noisy image û, the authors reconstruct a restored ver-
sion of u as one of the solutions of

arg min
u

λ

2σ2 ||û− u||2 − EPLL f (u), (1.11)

where EPLL f (u) = ∑j log f (χi(u)), with χi the patch extraction operators presented
in Section 1.2.3 and f a given prior density on the image patches.

In their paper, Zoran and Weiss used as a prior a huge GMM on patches learned
previously on a big data set of noise-free natural images, which is their second main
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Original image Denoising σ = 10 Denoising σ = 30 Denoising σ = 50

FIGURE 1.10: Experimental results of HDMI on the test images. For
the experiment, we used patch of size 10× 10 and 80 clusters.
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idea derived from machine learning. The rest of the method consists of an opti-
mization step, made by a ’half-quadratic splitting’, which makes use of an auxiliary
variable Z = (zi)i∈I corresponding to the set of extracted patches. Their goal is then
to optimize the quantity

λ||û− u||2 + ∑
i

β
(
||χi(u)− zi||2

)
−∑

i
log f (zi), (1.12)

on both u and Z, where β is an additional hyperparameter (ratio between prior and
data term) chosen heuristically. Algorithm 5 presents the details of the method, and
more information can be found in the original paper. The visual results on the test
images are presented in Figure 1.11.

The authors of EPLL interpret the quantity EPLL f (u) as the empirical expecta-
tion of the log-likelihood of a patch (up to a multiplicative factor 1

N with N the num-
ber of patches). We believe that this interpretation is reductive and we will show in
Chapter 2 that it has another intuitive interpretation.

Algorithm 5 EPLL
Input: Noisy image û, standard deviation σ
Output: Denoised image ũ

1: Learn a GMM on a large patch dataSet
2:
3: for A certain amount of time while inscreasing β do
4: ũ←

(
λ + β ∑i χT

i χi
)−1

(λû + β ∑i zi) . Solving (1.12) according to u
5:
6: for Each patch Pi = χi(u) do . Approximate the solution of (1.12) according

to z
7: ki ← maxk τi,k . choosing the most likely component of the GMM
8: zi ←

(
Σki + σ2I

)−1 (Σki û + σ2µki

)
9: end for

10: end for

BM3D

BM3D, introduced by Dabov et al., 2007, is one of the most famous and competi-
tive patch-based algorithm for denoising. It relies on the NL-Means structure, but
instead of adding a Bayesian framework like NL-Bayes, it makes use of a transform
thresholding, applied on a 3D group of similar patches (all the 2D-patches are piled
up in a third direction), in order to restore the sparsity the structure is supposed to
satisfy, with an additional second step (the oracle trick, see 1.2.2). This leads to a
quite complicated algorithm, presented on Algorithm 6.

Even if it is quite efficient, BM3D is optimized and contains lots of heuristic and
empirical parameters tuning. Another paradigm in the patch-based denoising liter-
ature is the use of a sparse dictionary. It can be either a learned dictionary, like in
Aharon, Elad, and Bruckstein, 2006 or a fixed basis, like the Fourier or Wavelet trans-
form, like in Yu and Sapiro, 2011. Among those methods, which are very technical,
one of the most competitive is BM3D.
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Original image Denoising σ = 10 Denoising σ = 30 Denoising σ = 50

FIGURE 1.11: Experimental results of EPLL on the test images. These
results have been made with the original code that the authors of Zo-

ran and Weiss, 2011 provided.
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Algorithm 6 BM3D
Input: Noisy image û, standard deviation σ
Output: Denoised image ũ

1: First iteration or Oracle iteration to obtain a basic estimate of the image
2: Set parameters for the first round : κ, λ, NMAX, s, λ3D, τ, see original paper for

more details
3: for Each patch P of size κ × κ with a step s in rows and columns do
4: (Qi) ← Set of square patches in the square neighborhood of P of size λ× λ

such that ||Qi − P|| ≤ τ
5: if There are more than NMAX similar patches then
6: Keep only the NMAX closest
7: else
8: Keep 2p patches, with p as big as possible.
9: end if

10: Construct a 3D group P(P) from the patches (Qi)
11: Apply a biorthogonal spline wavelet on every patch in P(P)
12: Apply a Walsh-Hadamard transform along the third dimension of P(P)
13: Apply a hard thresholding with λ3D to P(P) and set

wP =

{
N−1

P If NP ≥ 1,
1 Otherwise.

,

where NP is the number of non-zero coefficients remaining
14: Apply an inverse Walsh-Hadamard transform along the third dimension,

and inverse biorthogonal spline wavelet on every patch Qi of P(P) and make
it an estimate Q̃i for the patch Qi associated with the weight wP.

15: end for
16: Reconstruct the image by averaging all the estimator Q̂j created with their asso-

ciated weights.
17:
18: Second and final iteration of the algorithm
19: Set parameters for second round : κ, λ, NMAX, s, λ3D, τ, see original paper for

more details
20:
21: for Each patch P from the basic estimate of size κ × κ with a step s in rows and

columns do
22: Select (Qi) a set of close patches to P from the basic estimate like in first

round
23: Construct two 3D group from the patches (Qi), P(P) and P(P) from the

noisy image and the basic estimate
24: Apply a 2D-DCT and then a Walsh-Hadamard transform along the third axis

on every patch in P(P) and P(P)
25: ωP ← |P(P1)|2

|P(P1)|2+σ2

26: Apply a Wiener collaborative filtering by mulptiplicating element-wise
τ3D(P(P)) with the Wiener coefficient ωP

27: wP ←
{
||ωP||−2

2 If ||ωP||2 > 0,
1 Otherwise.

,

28: Apply an inverse Walsh-Hadamard transform along the third dimension,
and inverse 2D DCT on every patch Qi of P(P) and make it an estimate Q̃i for
the patch Qi associated with the weight wP.

29: end for
30: Reconstruct the image by averaging all the estimators Q̂j created with their as-

sociated weights.
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Original image Denoising σ = 10 Denoising σ = 30 Denoising σ = 50

FIGURE 1.12: Experimental results of BM3D on the test images. The
parameters choice follow the recommandation of lebrun12analysis.
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NL-Means NL-Bayes EPLL HDMI BM3D

σ = 10

Lena 34.30 35.84 35.15 35.90 35.91
Barbara 33.28 35.17 33.26 35.18 35.09
Cartoon 36.12 37.90 36.39 37.86 37.45
Squares 43.21 47.22 46.68 54.85 50.70

σ = 30

Lena 29.45 31.20 30.44 31.08 31.24
Barbara 27.06 29.83 27.07 29.68 29.76
Cartoon 28.92 30.45 28.84 30.64 30.40
Squares 38.39 40.73 39.47 46.54 41.25

σ = 50

Lena 27.41 28.81 28.04 28.68 28.88
Barbara 25.58 25.97 24.10 26.76 27.10
Cartoon 25.11 26.88 26.65 27.18 26.76
Squares 37.66 36.79 35.78 42.04 37.31

FIGURE 1.13: PSNR of the different aggregation methods with NL-
Bayes inference, on the test image of Figure 1.7, with standard devia-
tion of σ = 10, σ = 30 and σ = 50. This corresponding visual results

can be found in Figure 1.8, 1.9, 1.10, 1.11 and 1.12

Performance comparison

We present in Figure 1.13 the PSNR comparison of the different algorithms presented
in this section, on the test images of Figure 1.7, with noises of standard deviation
σ = 10, σ = 30 and σ = 50. Visual results can be found in Figure 1.8, 1.9, 1.10, 1.11
and 1.12.

As we can see, the quality of the results highly depends on the images. Simple
images like squares are easier to denoise.

The results at low noise (σ = 10) are almost perfect, and it is hard for the eye to
differentiate with the ground truth. Indeed, natural images like Lena or Barbara are
already a bit noisy. For higher noise (σ = 50), the problem becomes very difficult
as there are almost more noise than information. This enables to see the differences
between these algorithms. Even if they have similar PSNR, their results on the same
image differ a lot visually. EPLL has very poor performance for high noise in terms
of visual quality (see Barbara in Figure 1.11) although its PSNR remains competitive.
This highlights the idea mentioned in Section 1.2.2, that the PSNR is not an ideal
criterion and must be considered with care.

It is also interesting to see that EPLL and NL-Means, even if they remain com-
petitive, are a bit less effective (of 1 or 2 dB) than the other algorithms, which are
more optimized and tuned. This shows that relevant improvements in efficiency
come more from the paradigms than from the technical optimizations and from the
tuning, even if they are important to exploit an idea to its maximum potential.

1.2.5 Conclusion

We reviewed some basics on Bayesian models and how to apply them to patch-based
algorithms. As we saw, these models participate a lot in the success of patch-based
methods.

These methods are an interesting approach to tackle the denoising problem, as
they seem well adapted to natural images and the recent computer modeling devel-
opment. Even if they are all based on the same principle, there is a huge variety of
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approaches. Small details in the models and in how they are learned and inferred
can change a lot the results.

Among them, the most competitive have very good results, but as the noise in-
creases, lots of visual flaws appear in their estimations: they can still be greatly im-
proved and these flaws are a good starting point to analyze and improve the models
and the frameworks. Indeed, some similarities and pattern can be observed in the
defects and artifacts in the image. By studying and classifying them, one can hope
to better understand their origin and to remove them. This will be the main concern
of the next chapter.
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Chapter 2

Patch aggregation

This chapter is based on the publication:

Alexandre Saint-Dizier, Julie Delon, and Charles Bouveyron (2020). “A unified
view on patch aggregation”. In: Journal of Mathematical Imaging and Vision 62.2, pp.
149– 168.

Introduction

As we saw in Chapter 1, patch-based methods have shown promising results for
image denoising. They all rely on three steps: the patch extraction step, the patch
editing step and the aggregation step (see Section 1.2.3). In most of the literature, all
the attention has been put into the patch editing step, which benefits from the recent
progress in statistics, machine learning and signal processing. While powerful and
complicated models have been used for patch editing, most methods share the same
basic ideas for the patch extraction and the patch aggregation steps.

For the patch extraction, most methods simply take all overlapping square patches
of a given size. The question of how to choose properly the patch size and more
generally of the patch extraction has been less studied. This question could be ap-
proached with hyper-parameters estimation (see Section 1.1.6), but different patch
size implies different patches and thus different data, which makes the model selec-
tion even more intricate. Some work has also been made to desing methods with
adaptive patch size, like in Deledalle, Duval, and Salmon, 2012 and Kervrann and
Boulanger, 2006. Besides, taking all the patches of an image can form very large
data set. Recent study in texture synthesis have shown that choosing carefully the
patches can improve greatly the speed of an algorithm for almost no loss of perfor-
mance, by using determinantal point process for instance (see Launay and Leclaire,
2019). These ideas could be applied to image denoising to speed up the computation
time. I decided in this PhD to focus on the aggregation step, as I believe that this step
deserves more attention in patch-based methods.

In the aggregation step, the processed patches are merged together into a single
image. While much attention has been paid on statistical or geometrical patch rep-
resentations and interpretation, little work has been dedicated to explore this merg-
ing or aggregation step. Going from the image space to the patch space is a linear
and straightforward operation, but recovering an image from a set of overlapping
patches is straightforward only if all of these patches share the same values on their
common pixels. Even for patches coming from the same image, this property is lost
as soon as the patches undergo non trivial operations. For patches of size d, each
pixel belongs to d different patches (neglecting the borders) and these patches yield
d different estimates for the pixel value, as illustrated by Figure 1.6. In the literature,
there are essentially four ways to answer the aggregation question:
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1. For each pixel, keep only the estimator provided by the patch centered at this
pixel (central aggregation);

2. For each pixel, average the d estimators with uniform weights (uniform aggre-
gation);

3. For each pixel, average the d estimators with adapted weights (weighted aggre-
gation);

4. Reconstruct the image from the patches as a solution of a variational problem.

The first solution is the one chosen in the first version of NL-Means (see Section
1.2.4). This approach ignores the information available in the rest of the patches.
As a result, when applied in the context of image denoising for instance, residual
noise can often be observed around edges or rare regions. A majority of meth-
ods tackle this issue by averaging the d estimates of the pixel, either with uniform
weights Kervrann and Boulanger, 2006 or with weights taking into account the pre-
cision of each estimator Dabov et al., 2007; Salmon and Strozecki, 2010; Talebi, Zhu,
and Milanfar, 2013, in order to minimize the variance of the aggregated estimator.
A recent approach Romano and Elad, 2015, called SOS boosting, proposes to im-
prove iteratively a denoising algorithm by reducing the gap between each restored
patch and its value after uniform aggregation. The BM3D algorithm Dabov et al.,
2007 uses weights which are chosen inversely proportional to the total variance of
the sample of noisy patches used to estimate the denoised patch. More recently, the
DCT-based denoising approaches Guleryuz, 2007; Pierazzo, Morel, and Facciolo,
2017 use weights chosen inversely proportional to the number of non-zero coeffi-
cients of the DCT after thresholding, giving more weights to patches that have a lot
of coefficients set to 0 (flat patches for example). Other approaches draw on similar
ideas to derive optimal weights Dengwen and Xiaoliu, 2009; Sezer and Altunbasak,
2009; Kervrann, 2014; Feng et al., 2015. Instead of the variance, some authors also
attempt to minimize the risk of the final estimator at each pixel, by making use of
Stein’s Unbiased Risk Estimator (SURE) Deledalle, Duval, and Salmon, 2012; Van De
Ville and Kocher, 2009. In Carrera et al., 2017, a comparison is led between global
optimization and weighted aggregation for denoising purposes.

The last solution for patch aggregation, explored for instance in Elad and Aharon,
2006; Zoran and Weiss, 2011, consists of a global variational formulation of the
restoration problem, including a global prior. These global formulations intrinsi-
cally include the aggregation problem, which is treated iteratively during the opti-
mization process. In Zoran and Weiss, 2011, the log of the global prior (the expected
patch log likelihood, or EPLL) is a sum of local priors on the patches and inter-
preted, up to a scalar, as “the expected log likelihood of a randomly chosen patch
in the image”. However, it can also be interpreted, up to a constant, as (the log
of) a global image probability distribution, as already noted by Tabti et al., 2014.
Other attempts Roth, Lempitsky, and Rother, 2009; Cho et al., 2008 have been made
to construct a global image probability distribution from local patch priors, such as
the field of experts Roth, Lempitsky, and Rother, 2009 which uses Markov Random
Fields priors on pixels. We will see that the approach developed in the current chap-
ter has strong links with these global interpretations. In a related direction, the fact
that patches should coincide on their intersections can also be written as a hard con-
straint that can be included in any variational framework, as explored in the recent
paper Paulino, 2018.
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In texture synthesis, alternatives to aggregation have been considered, such as Efros
and Freeman, 2001 which finds a minimal error boundary cut between two overlap-
ping patches, or Raad, Desolneux, and Morel, 2016 which uses conditioning to force
the new patches to be coherent with the part of the image which has already been
synthesized.

In this chapter, we propose a novel perspective on this aggregation stage. To
this aim, we focus on the case where each image patch is given a stochastic model
on Rd, for instance a Gaussian distribution or a mixture of Gaussian models. This
situation is quite classical in Bayesian image restoration, where each patch is restored
with a prior model (see Section 1.2.3). It is usual that these different models do not
coincide on overlapping patches. In order to overcome this limitation, we introduce
the notion of patch fusion, which draws on all the prior models to construct a global
model on the whole image (up to a normalization), by taking into account the fact
that these models should coincide on their overlaps. At the end, the final models for
overlapping patches coincide but are not generally the same than the ones prescribed
as input. As we shall see, the classical aggregation techniques described above can
be interpreted as special cases of our fusion framework. Our notion of patch fusion
also reconciles the point of view developed in EPLL Zoran and Weiss, 2011 and the
conditioning approach suggested in Raad, Desolneux, and Morel, 2016 for texture
synthesis.

2.1 Motivations

2.1.1 Directions of improvement

The different algorithms presented in Section 1.2.3 have good results in term of
PSNR, but can still be improved, especially visually. By comparing their differences
and similarities among the different images and methods, we can have an idea of
which aspects of the methods work and which aspects limit the performances (see
Section 1.2.3). As we saw, for low standard deviation of the noise, the results are al-
most perfect, and thus difficult to compare. The reconstruction issues become more
and more visible as the standard deviation of the noise increases. At σ = 50, they
are particularly noticeable while still being representative of the general behavior of
the algorithms. This makes this level of noise a good choice to study these issues.
The main reconstruction issues that we identified for σ = 50 of all the algorithms are
presented in Figures 2.1, 2.2, 2.3, 2.4 and 2.5.

NL-Means (see Figure 2.1) is unique among the presented patch-based methods,
as it is the only algorithm which uses central aggregation (some version using the
uniform has been developed). This gives usually good results, but with some sort
of blurry noise. This is due to a lack of structure, one of the main problem of cen-
tral aggregation, which considers the pixel independently and does not favor local
coherence. Besides, NL-Means uses very small patches, which does not help restor-
ing border and textures as well. With a closer look, we can see that, in addition to
the general noise impression remaining in the restored version, a bigger artifact re-
mains next to the border and in some particular areas. This effect called the "rare
patch effect", is due to the fact that some patches in the image are too singular (like
the eyes of Barbara for instance), so that the algorithm does not find enough "close
patches" to perform a large enough average in the case of NL-Means. This effect is
inherent to patch-based methods and difficult to tackle since it is a counter example
to the self-similarity on which they all rely. One way to tackle this issue it is to use
a larger data set, like in EPLL, but it does not really solve the problem and raise
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FIGURE 2.1: Issues on the reconstruction of Barbara and Cartoon with
the NL-Means algorithm for σ = 50. As we can see, the images con-

tains strong artifacts, especially around the borders.

other issues (computational time, over fitting, etc. . . ). Eventually, we can see on the
arm in Cartoon that NL-Means added some extra lines to it. This is also a general
problem of patch-based methods that we call "wrong patch effect", when different
patches are associated together by the algorithm (also as a consequence of the "rare
patch effect"). This is one of the main source of creation of "artifacts" (a nonsense tex-
ture addition of the algorithm) by patch-based methods. This effect is particularly
present in NL-Means and NL-Bayes because they use l2 norm to compare patches.

The result of NL-Bayes on Cartoon (see Figure 2.2) shows a good example of "ar-
tifacts" : the weird contrasts on the table or on the hands. It can as well be explained
by the "rare patch effect". This phenomenon occurs mainly around borders, and es-
pecially when the borders are not straight (like in this example). The right image
of Figure 2.2 shows an opposite phenomenon, the algorithm has removed a whole
part of the image (the antenna on the robot), but explained by the same rare patch
effect : the algorithm has associated most of the patch of this area to patches from the
nearby constant zone, having no better candidates. This leads to assimilate this zone
to its constant surroundings. Yet, the algorithm works well for uniform areas, con-
trary to NL-Means. This shows the power of the Gaussian model, which is the main
improvement of NL-Bayes. Yet, the transition between the two gray zones is impre-
cise, although it is still a simple type of frontier. I think that it can be explained by
the use of small patches and the simplicity of the limitations of the single Gaussian
model.

The result of EPLL are also very special. This method has two main differences
with the others : its aggregation step, which is the (approximated) solution of a
variational problem and the learning of its model, which is not performed on the
image itself but rather beforehand on a large data set. We can see on the left picture
of Figure 2.3, that the stripes of the trousers of Barbara are really poorly restored.
This is probably due to the lack of such a particular pattern in the training data of
EPLL (or in insufficient quantity). Besides, the algorithm has a strange behavior, it
seems that it applies by default some uniform areas in regions where the model has
a low variance. This leads to these visually unpleasant flat tints, which are very bad
in term of visual quality but do not decrease too much the PSNR. Indeed, a stripe
shifted of one pixel would have a smaller PSNR than a uniform gray area, which
shows one again the limitation of this criteria. This phenomenon may be caused by
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FIGURE 2.2: Issues on the reconstruction of Cartoon with the NL-
Bayes algorithm for σ = 50. We can see on the left lots of artifacts on
the table, and the disparition of the antenna of Bender on the right.

FIGURE 2.3: Issues on the reconstruction of Barbara and Cartoon with
the EPLL algorithm for σ = 50. We can see on the left some gray
flat tints instead of the stripes. On squares, the estimation is quite

accurate, with still some fluffy effect in the gray square.

the ’Half quadratic splitting’ of the aggregation procedure, which may be stuck in
a local maxima, but it is difficult to say with all the different steps involved in the
algorithm involved. On the image Squares, all the patches seem to be successfully
restored by the model. However, in the grey square, we can see some low-frequency
variation in this region, supposed to be uniform. This is what we call a fluffy effect
(see Section 2.1.2). It may have the same origin as the flat tints, and also be due to the
presence of the data term which drags the estimation toward the noisy image and to
the low-frequency noise that the regularization by the prior is enable to compensate.

As we have seen in Figure 1.10, HDMI performs very well on artificial images
like Cartoon. Figure 2.4 shows its main limitations. As we can see, the stripes of Bar-
bara are very well denoised, since this pattern occurs a lot in the image, it has been
well integrated to the model. However, the stripes are also visible on the floor next
to the face of Barbara and even in the door. This problem is due to the predominance
of the stripes in the learned model on the image. This could be tackled with more
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FIGURE 2.4: Issues on the reconstruction of Barbara and Cartoon with
the HDMI algorithm for σ = 50. We can see on Barbara that the stripes
are well-denoised, but they are still (wrongly) visible on the floor and
in the door. On Lena, their is no such defect, but a strong fluffy effect.

careful patch extraction which keeps some balance between the patterns of the im-
age. The other main issue of HDMI is the fluffy effect, which becomes very present
in textured zones, like in the face of Lena.

BM3D leads to different kinds of flaws. Like for HDMI, it performs well on the
stripes of Barbara, but it (almost) does not add stripes on the constant zones. Yet, it
creates lots of artifacts, like in the arm of Barbara or in the hat of Lena. The algorithm
also behaves like if it would favor piecewise constant zone in its estimation (but
with more general geometry than EPLL). Yet, because of the complexity of BM3D, it
is difficult to track the origin of the encountered issues.

2.1.2 Fluffy effects and artifacts

In the previous section, we have seen that patch-based methods face two main diffi-
culties : the fluffy effect and the presence of artifacts. We call fluffy effect the effect
visually similar to cotton, that we can see for instance in the gray area of Squares in
Figure 2.3. HDMI has a very strong fluffy effect and few artifacts while BM3D, on
the contrary, has almost no fluffy effect and lots of artifacts. The origin of artifacts
is hard to identify especially for complex algorithm like BM3D. On the other hand,
the fluffy effect seems related to the low-frequency of the noise. Indeed, even if the
noise is perfectly i.i.d., there are inevitably some local effects, for instance some spots
where all the noise is higher or lower than its expectation. This effect is highlighted
on Figure 2.6. This phenomenon justifies the use of large patches, since the probabil-
ity of such a spot decreases greatly with its size. Besides, it questions the validity of
uniform aggregation. Indeed, the low-frequency of the noise induces a small bias on
each patch on a dark spot, and averaging all these patches does not have any effect
on this bias. This is the motivation behind the next section.

2.1.3 Independence of the patches

The main assumption behind the inference of the models used in patch-based de-
noising is the independence of the patches, and thus of the noise added to it. Even if
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FIGURE 2.5: Issues on the reconstruction of Barbara, Lena and Cartoon
with the BM3D algorithm for σ = 50. On Barbara and Lena, we can
see some important artifacts, and also some piecewise constant effect
in the hat of Lena. The results have also some edge artifacts, similar
to those of NL-Bayes, that we can see in Cartoon around and on the

hand.

FIGURE 2.6: Illustration of the fluffy effect. From left to right: the
noisy image (σ = 30), the result of HDMI and the original image. We
can see a good example of the fluffy effect on the shoulder of Lena
in the central image. If we pay attention to the bottom left of these
images (under the curls), we can see a small dark spot in the denoised
image which is completely absent from the original image, but seems
to exist in the noisy one. This is due to low-frequency noise, when
the local expectation of the noise is higher than the global one. This is
one of the main origin of the fluffy effect that patch-based algorithms

struggle to avoid creating.
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it is obviously false, it does seem realistic, since the value a pixel does not appear at
the same place in all the patches it belongs to. It is well-known that this assumption
is mandatory for inferring, but it is often forgotten that it is also the case for the ag-
gregation. This step is less formalized and is most of the time justified by heuristics,
but the main idea behind it is that the "i.i.d." values of the patches averaged at each
pixel will decrease the noise. And as we saw in Section 2.1.2, this is not the case.

In a real world scenario, it is impossible to achieve real independence of the
noise. Yet, in an experimental study, it is possible to add the noise directly to the
patch after the patch extraction instead of adding it to the image. This enables to
obtain data which are genuinely i.i.d. and to see how the algorithms behave on it.
We have then four possibilities : we can learn the model with or without this oracle
data set, and then restore and aggregate the patches with or without it. The result
of this experiment with HDMI (patches of size 10× 10) is presented on Figure 2.7. It
is important to mention that in order to reconstruct the image using the oracle data
set, each pixel was given the value of the patch of which it is the center, instead of
averaging its value on all the patches it belongs. Otherwise, this experiment would
have been useless, since averaging 100 version of the same image with different
noise divides the noise standard deviation by 100.

Unsurprisingly, the utilization of the oracle data set has no influence on the
model inference. As we said, this assumption is quite reasonable for learning pur-
poses: the patch extraction takes the pixel values apart. On the contrary, the aggrega-
tion brings pixel values together, and the non-independence becomes problematic.
This is clearly shown in the second column of Figure 2.7. With the oracle data set,
the estimations look almost perfect, whatever the learning procedure.

2.1.4 Conclusion

As we saw, patch-based methods show a lot of potential, but are far to be perfect.
The patch edition step has been widely studied and discussed in the literature, to
the detriment of the two other steps of the framework : patch extraction and patch
aggregation.

More careful patch extraction could benefit to the computation time of the patch-
based methods, and help solving some small learning over-fitting. But one of the
main limitation to patch-based methods appears to be the aggregation. Indeed, it
seems irrelevant to perform a simple averaging on data on which much energy has
been spent to model precisely. This is yet what most methods do, as if there were
no relation between the patches and the whole image. This appears to be a loss of
precious information that could be used to better aggregate. This following study
is a first attempt to incorporate the aggregation fully into the Bayesian framework
used in patch edition.

2.2 Patch model, agreement and fusion

In this section, we define what we call a patch model, which extends the classical
definition of a deterministic patch in a stochastic setting. This model will be used
thereafter to define a notion of patch fusion, motivated by the situation described in
Section 2.1.
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(A) Learning : real data,
aggregation : real data.

(B) Learning : real data,
aggregation : oracle data.

(C) Learning : oracle data,
aggregation : real data.

(D) Learning : oracle data,
aggregation : oracle data.

FIGURE 2.7: Experiment on Lena with HDMI (σ = 30) using real or or-
acle data on the learning and/or on the restoration and with a central
aggregation, so that the comparison remains relevant. Each picture

corresponds to one of the four different possibilities.

2.2.1 Patch model: a probabilistic patch representation

Let us define a patch model of size d on the discrete grid Ω. The notion is illustrated
by Figure 2.8.

Definition 3. A patch model P on the grid Ω is a couple (Ω, ν), where Ω ⊂ Ω and
where ν is a probability distribution on RΩ. We refer to ν as the distribution of the
patch model, and to Ω as its domain. We denote by P the set of all patch models on
Ω.

This definition is a generalization of the classical definition of a patch on a grid.
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P = (Ω, ν)

Ω
probability distribution on ℝΩ

FIGURE 2.8: A patch model on Ω is composed of a domain Ω (a sub-
set of Ω) and a probability distribution ν on RΩ.

Indeed, a deterministic patch P can be assimilated to a Dirac distribution on RΩ. We
do not impose any connectedness of Ω in our definition.

We are now in the position to define the notion of agreement between two patch
models (see Figure 2.9), which says that two patch models agree if they share the
same distribution on their intersection.

Definition 4 (Patch model agreement). Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two
patch models in P . We say that these two patch models agree and we write P1=̂P2 if
and only if

ν1|Ω1∩Ω2
= ν2|Ω1∩Ω2

.

Therefore, two disjoint patch models (P1 and P2 such that Ω1 ∩Ω2 = ∅) agree
automatically. The =̂ relation is reflexive and symmetric, but not transitive.

Observe that this definition can also be applied to deterministic patches. We say
that they agree if their values on their overlap coincide. We will also denote this with
the symbol =̂. We now define the notion of compatibility between patch models,
which is much less restrictive that the patch agreement, and will be important to
introduce the notion of patch fusion in the next section.

Definition 5 (Patch model compatibility). Let (Pn)n∈J1,NK = (Ωn, fn(x)dx)n∈J1,NK be
a set of N patch models with bounded densities f1, . . . , fn. We say that these patch
models are compatible if

ˆ
z∈R

∪N
n=1Ωn

N

∏
n=1

fn(z|Ωn)dz > 0.

2.2.2 Patch model fusion

We can now define the fusion of two patch models. As explained before, this defini-
tion is motivated by the situation where we end up with one or several distributions
on the different patches. The fusion operation permits to construct directly a distri-
bution for the whole image from the different patch models. It simply consists in
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(A) The two patches agree,
the aggregation is straight-

forward

(B) The two patches do not
agree, the aggregation is

ambiguous

FIGURE 2.9: Illustration of the notion of agreement between two de-
terministic patches.

aggregating patch models by merging their domains, and defining a novel distribu-
tion on this merged domain as a (specific) product of their original distributions.

Definition 6 (Patch model fusion). Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be two com-
patible patch models. We suppose that the distributions ν1 and ν2 have bounded
densities f1 and f2.

The fusion P1 � P2 is the patch model defined by (Ω, ν) where Ω = Ω1 ∪Ω2 and
ν(dx) = f (x)dx, with

∀x ∈ RΩ, f (x) =
f1(x|Ω1

) f2(x|Ω2
)´

z∈RΩ f1(z|Ω1
) f2(z|Ω2

)dz
.

Remark 7. • For the sake of simplicity, we restrict ourselves to the set of patch models
with bounded densities. This strong assumption is convenient because it is stable for
the fusion operation, and it is always satisfied with the distributions we consider, but
it could be relaxed. In practice, we only need to ensure that

ˆ
z∈RΩ

f1(z|Ω1
) f2(z|Ω2

)dz < +∞.

• With this definition, the notion of patch fusion does not directly apply to deterministic
patches if we see them as Dirac distributions. However, as we shall see in Section 2.3,
the notion of fusion extends well to deterministic patches, if they are modeled by Gaus-
sian distributions with their value as expectation, and with a covariance proportional
to the identity.

This fusion definition has a very intuitive motivation, as we shall see in the next
proposition.

Proposition 8 (Interpretation of the fusion). Let P1 = (Ω1, ν1) and P2 = (Ω2, ν2) be
two compatible patch models and define P1 � P2 = (Ω, ν). Assume that the distributions
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ν1 and ν2 have bounded densities f1 and f2. Let Z1 ∼ ν1 and Z2 ∼ ν2 be two independent

random vectors. We write Z1 =

(
X1
Y1

)
, where X1 corresponds to the coordinates of Z1 on

Ω1 ∩Ω2 (so X1 ∼ (ν1)|Ω1∩Ω2
) and Y1 to the coordinates on Ω1 \Ω2. We write Z2 =

(
X2
Y2

)
in the same way, where X2 corresponds to the coordinates of Z2 on Ω1 ∩ Ω2 and Y2 on
Ω2 \Ω1 (Y1 and Y2 may not have the same dimension). Then ν is the conditional probability

distribution of the vector

X1
Y1
Y2

 given X1 = X2.

Proof. In the following, we denote by p(X = x) the value of the density of the ran-
dom variable X at x. For z = (x1, y1, y2) ∈ RΩ1∩Ω2 ×RΩ1\Ω2 ×RΩ2\Ω1 , we want to
calculate the conditional density

p

X1
Y1
Y2

 =

x1
y1
y2

 |X1 = X2

 .

This conditional density can be written

p((X1, Y1, X2, Y2) = (x1, y1, x1, y2))

p(X1 − X2 = 0)

where

p((X1, Y1, X2, Y2) = (x1, y1, x1, y2)) = p((X1, Y1) = (x1, y1))× p((X2, Y2) = (x1, y2))

= f1

((
x1
y1

))
× f2

((
x1
y2

))
= f1(z|Ω1

)× f2(z|Ω2
),

by independence of Z1 and Z2. Moreover,

p(X1 − X2 = 0) =
ˆ

p(X1 = x1, X2 = x1)dx1 =

ˆ
p(X1 = x1)× p(X2 = x1)dx1.

Since

p(X1 = x1) =

ˆ
f1

((
x1
y1

))
dy1 and p(X2 = x1) =

ˆ
f2

((
x1
y2

))
dy2,

we conclude that

p(X1 − X2 = 0) =
ˆ

f1(z|Ω1
)× f2(z|Ω2

)dz > 0.

The fusion operation is therefore a way to combine two patch models while im-
posing these models to be equal on the intersection of their domains.

In order to extend this fusion operation to larger sets of patches, we need the
following proposition.

Proposition 9. For any compatible patch models with bounded densities P1, P2 and P3 in
P , the fusion operation � is well-defined and satisfies

• P1 � P2 ∈ P and has a bounded density.
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• (P1 � P2)� P3 = P1 � (P2 � P3).

• P1 � P2 = P2 � P1

Proof. Let P1 = (Ω1, f1(x)dx), P2 = (Ω2, f2(x)dx), P3 = (Ω3, f3(x)dx) and (Ω̂, f̂ (x)dx) =
P1 � P2. We have Ω̂ = Ω1 ∪Ω2 and

f̂ (x) ∝ f1(x|Ω1
)× f2(x|Ω2

),

which clearly shows the commutativity. So P1 � P2 has also a bounded density and
it is straightforward from the definition that P1 � P2 is compatible with P3. Besides,
if we have (Ω̄, f̄ dx) = (P1 � P2)� P3, we get

f̄ (x) ∝ f1(x|Ω1
)× f2(x|Ω2

)× f3(x|Ω3
),

which clearly shows the associativity.

Remark 10. This proposition ensures the stability and coherence of the operation, which can
therefore be extended to any number of compatible patch models without ambiguity. For any
set of compatible patch models with bounded densities written

(Pn)n∈J1,NK = (Ωn, fn(x)dx)n∈J1,NK,

we will denote this fusion by⊙
n

Pn = (Ω, f (x)dx), with Ω =
⋃
n

Ωn and

∀x ∈ RΩ, f (x) ∝ ∏
n

fn(x|Ωn).

Merging patch models in any order will always yield the same result (under the
condition of compatibility and bounded densities). This operation can be used to
propagate and connect all patch models to obtain a single image model.

2.2.3 Fused image model

The previous fusion operation can be used to define a global model on the whole
image space from a set of local patch models.

Definition 11. Let E be a set of patch models. We say that E covers the image support
if every pixel of Ω belongs to the domain of at least one patch model of E, i.e.

∀i ∈ Ω, ∃P = (Ω, ν) ∈ E such that i ∈ Ω.

We say that E is coherent if all patch models in E agree, i.e.

∀ (P1, P2) ∈ E2, P1=̂P2.

We say that E represents an image if E covers the image support and is coherent.

For a set E of compatible patch models which covers the image support, Propo-
sition 9 ensures that it is possible to fuse all the patch models of E to obtain a global
model (Ω, ν) =

⊙
P∈E P on the image. As a by-product, this constructs a new set Ê

by
Ê := {

(
Ω, ν|Ω

)
with P = (Ω, ν) ∈ E}.
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For each patch (Ω, ν) in E, there is a patch
(
Ω, ν|Ω

)
in Ê with the same domain, but

with the marginal of ν on Ω as a distribution instead of ν. Therefore, Ê covers the
image, according to the previous definition.

Observe that this coherent set Ê is generally different from the set E, even in the
case where E is obtained as all the marginals of a patch model on the whole image.
Indeed, even if they agree, fusing two patch models does not preserve their common
distribution on their intersection. Indeed, the fusion is not stable, in the sense that
in general P� P 6= P. Fusing a patch model P adds some information: having two
patches with the same distribution gives more confidence in this distribution than
having only one. Furthermore, this property is not compatible with the associativity
and the commutativity: if P and Q are two patch models such that P� P = P, then
one must have (P� Q)� P = Q� P, which is not desirable because P� Q 6= Q in
general. Still, the fusion ensures a weaker stability, but well-suited for our applica-
tion: MLE(P� P) = MLE(P) where MLE is the Maximum Likelihood Estimator.

In practice, the previous definitions lead to generic algorithms which consist in
fusing all patch models iteratively, in any order. This is justified by proposition 9, but
is not necessarily efficient. How the fusion is performed in practice should depend
on the considered distributions.

In the case of normal or uniform patch models, we will see in the next section
that the fusion has a closed-form solution. We did not investigate more involved
models, but we think that approximate schemes could be used for more complex
distributions.

2.3 Application to particular distributions

2.3.1 Uniform distribution

A very simple example of patch model fusion can be derived in the case of uniform
distributions.

Proposition 12 (Fusion of uniform patch models). Let A ⊂ RΩA and B ⊂ RΩB be
two bounded borelian sets, and PA = (ΩA, νA), PB = (ΩB, νB) be two patch models with
uniform distribution on A and B, i.e. such that νA = 1

|A|1A, νB = 1
|B|1B. Let Ω =

ΩA ∪ΩB and C = {x ∈ RΩ; x|ΩA
∈ A and x|ΩB

∈ B}.
If C is of strictly positive Lebesgue measure in RΩ, then PA and PB are compatible and

denoting PA � PB by (Ω, ν), ν is a uniform distribution on C.

In other terms, the fusion of two uniform patch models is also a uniform patch
model. Its distribution is the only uniform distribution on RΩ whose marginal dis-
tributions on ΩA and ΩB are PA and PB.

This illustrates the behavior of the fusion operation, which forces patch models
to agree on their intersection. As a consequence, a patch model with a peaked dis-
tribution will impose its opinion to the other patch models: we expect a confident
model to be given more credit in the final aggregation. As we shall see, the Gaussian
case keeps this behavior, but in a softer way.

2.3.2 Gaussian distributions

The Gaussian distribution also yields a closed form expression for the fusion opera-
tion.
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Proposition 13 (Fusion of Gaussian patch models). Let P1 = (Ω1, ν1) and P2 =
(Ω2, ν2) be two Gaussian patch models with positive definite covariances. We write x the
variable representing the common pixels of the two patch models (i.e. those in Ω1 ∩Ω2) and
y for the others (i.e. those in Ω1 \Ω2 for P1, and those in Ω2 \Ω1 for P2), and we write

ν1 = N
((

µx
µy

)
,
(

Σx Σxy
ΣT

xy Σy

))
and ν2 = N

((
µ′x
µ′y

)
,
(

Σ′x Σ′xy
(Σ′xy)

T Σ′y

))
.

Then (Ω1, ν1) and (Ω2, ν2) are compatible and the distribution of (Ω1, ν1)� (Ω2, ν2)
is Gaussian with parameters

µ =

µx
µy
µ′y

+

 Σx (Σx + Σ′x)
−1

(Σxy)T (Σx + Σ′x)
−1

−(Σxy)T (Σx + Σ′x)
−1

(µx − µ′x
)

and

Σ=

( Σx Σxy
(Σxy)T Σ′y

)
0

0 Σ′y

−
 Σx (Σx + Σ′x)

−1

(Σxy)T (Σx + Σ′x)
−1

−(Σ′xy)
T (Σx + Σ′x)

−1


 Σx

Σxy
−Σ′xy

T

.

Proof. Let Z1 =

(
X1
Y1

)
∼ ν1 and Z2 =

(
X2
Y2

)
∼ ν2 be two independent Gaussian ran-

dom vectors. From proposition 8, we know that the distribution we are looking for

is the conditional probability distribution of

X1
Y1
Y2

 knowing X1 = X2. The random

variable W = X1 − X2 follows a Gaussian distribution with expectation µx − µ′x and

covariance Σx + Σ′x. Similarly, we know that

Z1
Y2
W

 is a Gaussian random vector

with parameters µ̂, Σ̂ such that

µ̂ =


µx
µy
µ′y

µx − µ′x

 and Σ̂ =


Σx Σxy 0 Σx
ΣT

xy Σy 0 ΣT
xy

0 0 Σ′y −Σ′Txy
ΣT

x Σxy −Σ′xy Σx + Σ′x

 .

Indeed, since Z1 =

(
X1
Y1

)
and Z2 =

(
X2
Y2

)
are independent, the covariance between

Z1 and W can be written

Cov(Z1, W) = Cov(Z1, X1 − X2) = Cov(Z1, X1) =

(
Σx
ΣT

xy

)
,

and the covariance between Y2 and W is

Cov(Y2, W) = −Cov(Y2, X2) = −Σ′Txy.
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It follows that the conditional density of

X1
Y1
Y2

 knowing W = 0 is a normal distri-

bution with expectation

µ = E

(
Z1
Y2

)
+

(
Cov(Z1, W)
Cov(Y2, W)

)
Cov(W, W)−1(0−E(W))

=

µx
µy
µ′y

+

 Σx (Σx + Σ′x)
−1

ΣT
xy (Σx + Σ′x)

−1

−Σ′Txy (Σx + Σ′x)
−1

 (µ′x − µx)

and covariance matrix

Σ = Cov
((

Z1
Y2

)
,
(

Z1
Y2

))
−
(

Cov(Z1, W)
Cov(Y2, W)

)
Cov(W, W)−1

(
Cov(Z1, W)T

Cov(Y2, W)T

)

=

( Σx Σxy
(Σxy)T Σ′y

)
0

0 Σ′y

−
 Σx (Σx + Σ′x)

−1

(Σxy)T (Σx + Σ′x)
−1

−(Σ′xy)
T (Σx + Σ′x)

−1


 Σx

Σxy
−Σ′xy

T

.

Remark 14. We have defined the fusion only for distributions with densities, but in this case
we see that we could extend the fusion to singular Gaussian distributions such that Σx + Σ′x
is invertible.

As a consequence, the set of all Gaussian patch models is stable by fusion. So
if we have a set E of Gaussian patch models which covers the image, the resulting
fusion of all the patch models from E will be a huge Gaussian model on the whole
image support.

If we merge N Gaussian patch models (Ωn, νn)n∈J1,NK with expectations (µn)n∈J1,NK
and precision matrices 1 (Λn)n∈J1,NK, a very simple formula can be derived to link
the parameters (µ, Λ) of the fused Gaussian model and the set (µn, Λn)n∈J1,NK. Be-
fore giving this formula in the next proposition, note that we see the expectations µn
as vectors of RΩ and matrices Λn as matrices of RΩ×Ω, which means that µn(i) is the
expectation of the patch n at the pixel i, and is thus defined only if i belongs to Ωn.

Proposition 15. Let (Ωn, νn)n∈J1,NK be N Gaussian patch models, with expectations (µn)n∈J1,NK
and precision matrices (Λn)n∈J1,NK. Let P = (Ω, ν) =

⊙
n∈J1,NK(Ωn, νn) the patch model

obtained by fusing all these patch models.
Then P is a Gaussian patch model, whose precision matrix Λ and expectation µ satisfy,

for all (i, j) ∈ Ω×Ω,

Λ(i, j) = ∑
1≤n≤N,i∈Ωn,j∈Ωn

Λn(i, j).

(Λµ)(i) = ∑
1≤n≤N,i∈Ωn

(Λnµn)(i).
(2.1)

1The precision matrix is the inverse of the covariance matrix.
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Proof. From Proposition 13, we know that ν is a Gaussian distribution N (µ, Λ−1).
Denoting the density of this distribution by f , we have

− log f (x) =
1
2
(x− µ)TΛ(x− µ) + cte.

According to remark 10, we also have

− log f (x) = −∑
n

log fn(x|Ωn) + cte

=
1
2

N

∑
n=1

(x|Ωn − µn)
TΛn(x|Ωn − µn) + cte.

Equations for Λ and µ follow by identifying the covariance matrices and expecta-
tions of these Gaussian distributions.

Remark 16. Observe that while the precision matrices can be easily derived, the value of
the expectation of the whole Gaussian is not directly accessible from (2.1), since the precision
matrix needs to be inverted.

2.3.3 Fusion algorithm for Gaussian distributions

From the previous results, we can derive a simple and explicit fusion algorithm for
normally distributed patches. In practice, if we aim at merging a set E of Gaussian
patch models covering an image, keeping in memory and computing the covariance
of the global Gaussian model is not tractable, since it requires to deal with a (sx× sy)2

matrix. Thanks to Proposition 15, we know that the precision matrix is sparse, but
we have no such result on the covariance matrix. Still, if necessary, we can approxi-
mate the global covariance matrix by noticing that pixels which are far enough from
each other do not much influence each other. For instance, using standard Gaussian
models for the image Lena, we observe that beyond a distance of 2

√
d, patch models

do not influence each other anymore, as illustrated by Figure 2.10. It means that the
covariance matrix of the whole image is almost sparse. This gives us the possibil-
ity to compute and store this covariance matrix much more easily, as described in
algorithm 7 and figure 2.11.

In practice, this algorithm permits to compute the whole fused model. The com-
putation is however quite slow: for a 512× 512 image and 10× 10 patches, fusing
all patch models takes several minutes on a recent computer.

2.4 Link with classical aggregation methods

2.4.1 Standard aggregations

In the previous section, we have seen how to construct a distribution on a whole
image from a set of compatible patch models. This construction, while theoretical,
actually contains the main aggregation procedures used in the literature as special
cases. More precisely, we shall see that these aggregation procedures can be seen as
special cases of the fusion of Gaussian patch models with diagonal covariances.
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FIGURE 2.10: In this experiment, we compute a complete Gaussian
model for the image Lena thanks to our fusion algorithm. The figure
shows the resulting (absolute values of the) correlation map of a pixel
in a 100 × 100 patch. As we can see, the correlation decreases to 0
very fast when we move away from the center. This experiment was
made using 10× 10 patches, which justifies to approximate by 0 the

correlation between pixels at distance greater than 2
√

d.

Algorithm 7 Approximation of the fusion procedure for Gaussian models with spar-
sity hypotheses on the covariance matrix
Input: Set P of square patches of size d, block-size b
Output: Aggregated image ũ

1: Compute B, partition of the image domain composed of disjoint blocks of size
b× b.

2: s← 2×
√

d (sparsity parameter)
3: for B ∈ B do
4: B̃← block of size (b + s)× (b + s) centered in B
5: PB̃ ← {P ∈ P|P ⊂ B̃}
6: Compute uB̃ by fusing iteratively all patches from PB̃ using proposition 13
7: ũ|B ← uB̃ |B
8: end for
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FIGURE 2.11: Illustration of algorithm 7. The image is divided into
blocks of size b. For each block B, we extend this block by a distance s
into a larger block B̃. The fusion of all patch models in B̃ is computed,

but only the values of pixels belonging to B are kept.
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Proposition 17. Let (Ω1, ν1) and (Ω2, ν2) be two Gaussian patch models with diagonal
positive definite covariances

ν1 = N
((

µx
µy

)
,
(

Σx 0
0 Σy

))
and ν2 = N

((
µ′x
µ′y

)
,
(

Σ′x 0
0 Σ′y

))
,

where the variable x represents the common coordinates of the two patch models (µy and µ′y
may not have the same dimension). Then the patch models (Ω1, ν1) and (Ω2, ν2) are compat-
ible and the distribution of (Ω1, ν1)� (Ω2, ν2) is a Gaussian distribution with parameters

µ =

(Σ−1
x + Σ′−1

x )−1(Σ−1
x µx + Σ′−1

x µ′x)
µy
µy′

 and Σ =

(Σ−1
x + Σ′−1

x )−1 0 0
0 Σy 0
0 0 Σ′y

 .

Moreover, the matrix (Σ−1
x + Σ′−1

x )−1 is diagonal, and so is Σ.

Proof. This proposition is a direct application of proposition 13.

The previous proposition states that if covariance matrices are all supposed diag-
onal, then the resulting fused image has also a diagonal covariance. This boils down
to assume that all the pixels are independent.

In the final image model, the mean at each pixel is simply a weighted average
of all the expectations of the patches containing this pixel. The weights are given
by the precisions of the marginals at these pixel. We recognize here a special case of
the weighted aggregation procedure described in the introduction. The more precise an
estimate is, the more it counts in the final estimate.

A more specific case is the one obtained when all covariance matrices are iden-
tical and proportional to the identity matrix. In this case, the covariance of the re-
sulting image model will be simply a diagonal, counting for each pixel the number
of patches it belongs to. The resulting expectation at a given pixel will be a simple
average of all the expectations of the patches containing this pixel. This corresponds
to the widely used uniform aggregation.

Finally, the limit case where each patch model has a covariance with infinite val-
ues except for its central pixel corresponds to the central aggregation.

2.4.2 Expected Patch Log Likelihood

More complex strategies including both patch restoration and aggregation into a
single variational formulation have been considered in the literature. This is the case
of the Expected Patch Log Likelihood (EPLL) of Zoran and Weiss, 2011. Starting
from an image

û = Au + ε, (2.2)

degraded by a linear operator A and an i.i.d. Gaussian noise ε ∼ N (0, σ2 Id), the
authors reconstruct a restored version of ũ as one of the solutions of

arg min
u

λ

2σ2 ||Au− û||2 − EPLL f (u), (2.3)

where EPLL f (u) = ∑j log f (xj), with {xj} the set of all square patches of size
√

d×√
d extracted from the image u and f a given prior density on the image patches.
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The authors of Zoran and Weiss, 2011 interpret the quantity EPLL f (u) as the
empirical expectation of the log-likelihood of a patch (up to a multiplicative factor
1
N with N the number of patches). This quantity has another intuitive interpreta-
tion, as highlighted in the following proposition, whose proof follows directly from
Remark 10.

Proposition 18. Let u be an image on the domain Ω and assume that ν(dx) = f (x)dx is a
prior on all square patches of size

√
d×
√

d with domain inside Ω. Define E the set of all of
of these square patch models sharing the same distribution f (x)dx. Then if P̄ =

⊙
P∈E P =

(Ω̄, f̄ (x)dx) is well defined, there is a constant c such that

EPLL f (u) = log f̄ (u) + c.

The function EPLL f is the log of the density obtained by fusing all square patch
models on the grid with the same prior f (x)dx. Up to a constant, it can thus be
interpreted as the log of a prior p(u) on the whole image u. Consequently, by choos-
ing λ = 1 in equation (2.3), the solution of (2.3) can be interpreted as a maximum
a posteriori and be written argmaxu log p(u|û) on the whole image, since the term
− λ

2σ2 ||Au − û||2 is, up to a constant, equal to log p(û|u) under the white Gaussian
noise assumption.

Propositions 8 and 18 also clarify the link between the EPLL approach and the
iterative conditioning strategies used for instance in Raad, Desolneux, and Morel,
2016 for texture synthesis. Indeed, the fused image prior used in EPLL can be inter-
preted as a probability distribution of a global random image obtained by fusing all
patch distributions, conditioning by their equality on all their intersections.

Now, consider the pure denoising case (A = Id). In this case, the solution
of (2.3) can also be interpreted as a maximum likelihood for another fused distri-
bution ¯̃f (x)dx on the whole image, as shown in the following distribution.

Proposition 19. Keeping the notations of proposition 18, let P̄ =
⊙

P∈E P be the image
model obtained by fusing all patch models of E. Let Pû =

(
Ω,N (û, σ2

λ Id)
)

be an image
model on the whole grid.

Then if (Ω, f̃ (x)dx) := P̄� Pû, we have

arg min
u

λ

2σ2 ||u− û||2 − EPLL f (u) = arg max
u

f̃ (u).

Proof. We just have to remark that

log f̃ (u) = log f̄ (u) + log
(

e−λ ‖u−û‖2
2σ2

)
+ cst

= EPLL f (u)−
λ

2σ2 ||u− û||2 + cst.

In the light of this proposition, the result of the EPLL algorithm in the denoising
case is simply the maximum likelihood of the probability distribution obtained by
merging all the patch models with a large Gaussian model centered on the noisy
image and with variance σ2

λ .
Under the full degradation model (2.2), a last interpretation of (2.3) is possible,

using the fusion of posterior patch models. To this aim, we have to assume that the
degradation operator A is diagonal, which means that it acts separately on pixels.
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The restriction of A to a domain Ω can thus be written A|Ω and the model (2.2)
restricted to Ω becomes

û|Ω = A|Ωu|Ω + ε|Ω.

For a given patch model P = (Ω, f (x)dx) in E, the corresponding posterior patch
model is just (Ω, fap(x)dx) where fap(x)dx is the posterior obtained under this degra-
dation model on Ω and the prior f (x)dx. For the sake of simplicity, we assume in
the following proposition that each pixel is covered by exactly the same number of
patch models. This is true if we assume that the image is periodic. In practice, it is
satisfied for all pixels except those lying close to the image borders.

Proposition 20. Keeping the notations of proposition 18, assume that each pixel of Ω is
covered by exactly d patch models of E. For each patch model P = (Ω, f (x)dx) in E, we
define the corresponding posterior patch model as Pap = (Ω, fap(x)dx) with

fap(x) ∝ f (x)
1

(2π)d/2σd e−
1

2σ2 ‖A|Ωx−û|Ω‖2
.

We define Eap the set of all these posterior patch models,

Eap = {(Ω, fap(x)dx), such that (Ω, f (x)dx) ∈ E}.

Then, if P̄ap =
⊙

P∈Eap
P = (Ω, f̄ap) is well defined, we have

log f̄ap(u) = EPLL f (u)−
d

2σ2 ||Au− û||2 + cst.

Proof. We just have to remark that

∑
P∈E
‖A|Ωu|Ω − û|Ω‖2 = d||Au− û||2.

In other words, for λ = d, the solution of (2.3) is a maximum of a fused posterior
model on the whole image, assuming that all patches have the same prior f (x)dx.

2.4.3 Bayesian Model Averaging

We can ask ourselves the question of the link between the fusion operation intro-
duced in this chapter and the notion of Bayesian Model Averaging (BMA) Hoeting
et al., 1999, which also attempts to combine information provided by different mod-
els on data. For the sake of simplicity, assume that we have two patch models P1
and P2 on the same domain Ω, and an observed degraded patch y on Ω. In the
BMA framework, the a posteriori distribution of the (unknown) clean patch x can be
written

p(x|y) = ∑
k=1,2

p(x|y, Pk)p(Pk|y),

where each p(x|y, Pk) is simply the a posteriori distribution of x knowing y for the
patch model Pk. Since p(Pk|y) is a scalar, the BMA of two posterior models is merely
a linear combination of these models. It can be interpreted as a generalization of the
weighted aggregation, but is different from the fusion operation.
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2.5 Experiments

In this section, we illustrate the behavior of the fusion operation on different exam-
ples. We start with toy examples showing the main difference between the fusion
and the classical uniform and weighted aggregations. Then we focus on the particu-
lar case of patch-based image denoising and we give some insight on the advantages
and limitations of the fusion. We conclude with two simple extensions: the first one
consists in mixing the fusion and the uniform aggregation in order to keep the best
of both worlds, and the second one consists of a sparse fusion relying on a very few
number of patch models.

Throughout this experimental section, we focus on the case of Gaussian distri-
butions and we compute the expectations and covariances of the fused models ex-
plicitly, as explained in Section 2.3.3. However, let us underline that this is usually
not the most efficient way to take advantage of the fused model. Indeed, we have
seen in Remark 10 that the logarithm of the fused density can be written directly by
summing the logarithms of these densities. As a consequence, it is very easy to inte-
grate such a model in any variational framework, without any explicit computation
of the fused model, even if this won’t necessary yield a convex formulation (it will
be convex for normal densities though).

2.5.1 A toy example

Figure 2.12 shows two toy examples clarifying the difference between the fusion de-
fined in this article on the one hand, and the weighted and uniform aggregation on
the other hand. In these examples (a) and (b), two Gaussian patch models (shown re-
spectively in red and blue on the left) are fused and the three aggregation strategies
lead to quite different results. In both examples, the red model has a high variance
and the blue model is more precise (or more confident, if we see patch models as per-
sons with more or less solid opinions). On the right, we show only the expectations
of the fused models.

In both examples, the uniform aggregation gives the same credit to both patch
models, whatever their covariances. In (a), although both patch models seem to
almost agree on their overlap, this results in a quite noisy result on the patches over-
lap, even if the blue model has a very high precision in this region. The weighted
aggregation takes into account this precision and yields a more satisfying result. The
fusion operation also gives much more credit to the blue patch model than to the red
one and yields a much smoother result. As we shall see in the section devoted to im-
age denoising, this behavior permits to obtain very regular results, free from the
usual artifacts created by standard aggregation procedures, but at the price of some
blur.

In example (b), both patch models strongly disagree on their overlap. The uni-
form aggregation yields a result which can be seen as a compromise between their
opinions but is in contradiction with both of them. The weighted aggregation takes
into account the greater precision of the blue model but still yields a result which
is quite unlikely from both models point of views. Again the fusion yields a quite
smooth result, which is likely for both patch models (even if it is more likely for the
blue model than for the red one).

Notice that the uniform and weighted aggregations do not update the pixels out-
side of the patch overlap zone, while the fusion operation also affects these pixels,
as shown in Proposition 13.
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(A) In this case, the two patch models almost agree, but the red one has a very
large variance compared to the blue one.

(B) In this case, the two patch models completely disagree.

FIGURE 2.12: Illustration of the behavior of the different aggregation
schemes for two adjacent Gaussian patch models. On both figures,
the two patch models on the left are aggregated in three different
ways to form the patches on the right, either with the uniform aggre-
gation, the weighted aggregation (taking into account the precision

of each pixel) and the fusion operation.



2.5. Experiments 67

NL-Bayes
Aggregation Uniform Weighted Fusion λ = d Fusion

λ = 10d
Lena 30.58 30.49 30.28 30.66

Barbara 28.99 28.94 28.83 29.04
Cartoon 30.04 29.98 29.57 30.35
Squares 45.28 46.87 47.35 46.54

EPLL Model
Aggregation Uniform Weighted Fusion λ = d Half Quadratic

Splitting
Lena 30.69 30.42 29.88 30.71

Barbara 26.56 26.18 25.45 27.55
Cartoon 29.89 29.62 28.65 30.49
Squares 37.38 39.09 36.96 39.51

HDMI
Aggregation Uniform Weighted Fusion λ = d Fusion

λ = 10d
Lena 31.12 31.10 28.16 29.96

Barbara 29.55 29.54 25.57 28.72
Cartoon 30.55 30.52 25.67 29.34
Squares 44.24 48.77 46.37 35.62

FIGURE 2.13: PSNR of the different aggregation methods with NL-
Bayes inference.

2.5.2 Application to denoising

For the sake of simplicity, we restrict the rest of our experiments to denoising prob-
lems. We also restrict our experiments to the case where the patches of E are all
square patches of size

√
d×
√

d in Ω.
We recall here the patch-based restoration framework applied to denoising. In

image denoising, in order to restore an unknown image u from its noisy version
u + ε, we usually start by extracting all square patches {yk, k ∈ {1, . . . , |Ω|}} from
û = u + ε. The noise model on patches can be written

yk = xk + εk,

with xk the (unknown) patch before degradation. As explained in Section 1.2.2, we
will assume that the noise is i.i.d Gaussian of variance σ2.

In this situation, Bayesian patch-based methods use a common restoration frame-
work to restore u from u + ε:

1. Estimation: estimate a prior density fk for each clean patch xk.

2. Restoration: compute a denoised version x̂k from yk using the knowledge of
the noise model and the prior fk.

3. Aggregation: reconstruct a whole denoised image û from the set of denoised
patches {x̂k, k ∈ {1, . . . , |Ω|}}.

The restoration step can for instance take the form of a maximum a posteriori

x̃k = argmaxx
1

2σ2 ‖yk − x‖2 − log fk(x).
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Several methods in the literature use the previous restoration scheme, with slight
variations. In the following sections, we will focus on three of them, which are rep-
resentative of different choices in the three previously mentioned steps:

• NL-Bayes (Lebrun, Buades, and Morel, 2013), which estimates a specific Gaus-
sian model N (µk, Σk) for each patch xk (see Section 1.2.4).

• HDMI (Houdard, Bouveyron, and Delon, 2017), which estimates a low-dimensional
Gaussian Mixture model for the whole set of patches xk, k ∈ {1, . . . , |Ω|} (see
Section 1.2.4).

• EPLL (Zoran and Weiss, 2011), which estimates a Gaussian Mixture model for
patches on an external database, and replaces steps 2 and 3 above by the vari-
ational problem (2.3) and solves it by Half Quadratic Splitting. (see Section
1.2.4).

All of these methods yield a prior model fk for each patch xk. In the case of
Gaussian Mixture Models, for the sake of simplicity, we choose to keep as a prior for
xk the Gaussian component which is the most likely for xk.

Since the noise model is also Gaussian, these methods also yield Gaussian poste-
rior models for each patch. We write these posteriors f̃k, and

f̃k(x|yk) ∝ fk(x)e−
‖x−yk‖

2

2σ2 .

In the following, we will illustrate how these prior or posterior models can be
fused using the framework introduced in the previous sections. If we compute a
fused prior model, the maximum a posteriori under the noise degradation model
can be used to restore the image. In other words, if f̄ is the fused image model
density, the restored image is computed as the solution of

argminu
1

2σ2 ‖u− û‖2 − log f̄ (u). (2.4)

If instead we compute a fused posterior model f̄ (u|û), the restored image can be
computed directly as the maximum of this posterior, i.e.

argmaxu f̄ (u|û).

Now, writing xk for the patches of u,

− log f̄ (u|û) = − log
|Ω|

∏
k=1

fk(xk|yk)

= −
|Ω|

∑
k=1

log fk(xk) +
|Ω|

∑
k=1

‖xk − yk‖2

2σ2

= − log f̄ (u) + d
‖u− û‖2

2σ2 .

Thus, both strategies boil down to minimize an energy of the same form

argminu
λ

2σ2 ‖u− û‖2 − log f̄ (u), (2.5)



2.5. Experiments 69

Uniform aggreg. Weighted aggreg. Fusion λ = d EPLL algorithm Original image

FIGURE 2.14: Comparison of the different aggregation procedures on
the 4 test images using EPLL for the inferrence of Gaussian models.

Images are degraded by a noise of standard deviation σ = 30.
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with different values of λ. The value λ = 0 corresponds to the fusion of the prior
models and λ = d corresponds to the fusion of the posterior models. Fusing with
higher values of λ gives much more weight to the noisy image û.

2.5.3 Results for the three different inference methods

Experiments are led on four different 512× 512 images, Lena, Barbara, Cartoon and
Squares. We will see that the behaviors of the different aggregation procedures strongly
depend both on the image content and on the way patch Gaussian models are in-
ferred from the noisy data.

For each of the three inference methods described in the previous section, we pro-
vide different visual results illustrating the visual effects of all aggregation strategies.
PSNR values are also provided in Table 2.13. As we shall see, while the complete fu-
sion operation is not really competitive PSNR-wise, it leads interesting visual results,
quite different from the simpler aggregation strategies. Our goal here is to study and
highlight these different behaviors.

NL-Bayes

The NL-Bayes algorithm infers a specific Gaussian models for each patch and uses
small patches (5× 5). As a consequence, most Gaussian covariances are quite well
approximated by their diagonal, and the different aggregation procedures only dis-
play minor differences on natural images. Table 2.13 shows that the fusion slightly
improves the PSNR results, but the difference is more significant for very simple
geometric images like squares, even if the visual differences are quite subtle and con-
centrated around the junctions and edges of the rectangles.

EPLL

The EPLL model (Zoran and Weiss, 2011) makes use of 8× 8 patches and learns a
Gaussian mixture model with 200 groups on a large external set of images. In the
original paper, patches are centered (their DC component is removed) before pro-
cessing and all the Gaussian models from the GMM are assumed to have zero means.
Additionally, in order to minimize (2.3), the authors of Zoran and Weiss, 2011 intro-
duce an auxiliary variable and make use of Half-Quadratic Splitting, which means
that the restoration iterates between patch estimation and image reconstruction (by
a uniform aggregation). In consequence, while the EPLL f term is a particular case
of the fusion operation, their model is not directly comparable to our framework.

First, in order to use the closed-form expressions of Proposition 13, we need a
Gaussian model for each patch and not a full GMM. As explained above, we chose
to keep as a prior for each patch the Gaussian of the mixture which is the more
likely for it. However, observe that by making this choice we loose some of the
information of the full GMM model. Second, we need a model on patches, and not
on centered patches. To cope with this limitation, we remove the mean value of each
patch, select the most likely Gaussian component in the GMM, and give the mean
value of the original patch to this Gaussian model. As a result, the expectations
of the different Gaussian models contain an important low frequency noise. For
these different reasons, the comparison of the different aggregation strategies with
the EPLL algorithm (which makes the fusion on the full GMM model) should be
made with caution. Figure 2.14 provides the result of these different strategies for
the images Lena and Barbara with σ = 30. The results of the fusion operation on these
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Uniform aggreg. Weighted aggreg. Fusion λ = d Fusion λ = 10d Original image

FIGURE 2.15: Comparison of the different aggregation procedures on
the 4 test images, using HDMI for the inferrence of Gaussian models.

Images are degraded by a noise of standard deviation σ = 30.
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models are very smooth but present what we call a “fluffy” effect (see Section 2.5.4
and Figure 2.16), due to the way the Gaussian means are handled.

HDMI

In the HDMI algorithm (Houdard, Bouveyron, and Delon, 2017), a GMM is learned
on 10 × 10 patches, with only a few dozens of low-dimensional Gaussian models
in the mixture. Again, we keep as a prior for each patch the Gaussian of the mix-
ture which is the more likely for it, so we loose part of the richness of the original
model in our experiments. Figure 2.15 provides the result of the different strategies
for the images Lena and Barbara with σ = 30. In this case, the different aggregations
procedures produce quite important differences. The uniform aggregation is effi-
cient PSNR-wise, but suffers from numerous artifacts (see Section 2.5.4). Using the
whole fused model provides results which are below PSNR-wise but are also much
smoother, and removes numerous artifacts. Some of the results suffer from a loss of
contrast, explained in Section 2.5.4.

It is noticeable that the fusion operation tends to improve the results for the mod-
els inferred by NL-Bayes while it does not for the HDMI and EPLL models, at least
PSNR-wise. We think that it can be partly explained by the fact that at this point, we
are able to take fully into account the Gaussian models inferred by NL-Bayes and
that it is not the case for the GMM in HDMI and EPLL.

2.5.4 Visual effects

Fluffy effect

We call fluffy effect the effect visually similar to cotton, appearing in constant regions
when using single scale patch-based methods. This effect was presented in Section
2.1.2.

As we can see in Figure 2.16, when using HDMI Houdard, Bouveyron, and De-
lon, 2017, the fusion aggregation clearly reduces this defect, whereas it does increase
when using EPLL Zoran and Weiss, 2011. We can explain these results as follows: in
HDMI, patch priors have (almost) independent expectations, since they are inferred
using numerous different patches on the whole image. The remaining inconsisten-
cies between overlapping patch models are thus removed by the fusion. With EPLL,
since each noisy patch has its own DC component as a model expectation, and since
these DC components are not independent for overlapping patches, the white noise
low frequencies are reinforced by the fusion and the results show a very pronounced
fluffy effect.

When the model is appropriate, the fusion aggregation is a solution to the prob-
lems raised in Section 2.1.2, namely the fluffy effect and the visual artifacts as shown
in Figure 2.16. It still assumes that patches are independent, but it takes into account
the influence of their overlap on their reconstruction, by forcing them to agree. Nev-
ertheless, this constrains the patch models to reduce their possibilities, which results
in a blur and a loss of contrast, as developed in Section 2.5.4 (blur and contrast).

Artifacts

The main advantage of the fusion aggregation is to reduce the artifacts. This is quite
understandable, since the method creates a model for which all overlapping patches
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(A) HDMI with uniform
aggregation

(B) HDMI with fusion

(C) EPLL model with uni-
form aggregation

(D) EPLL model with fu-
sion

FIGURE 2.16: Influence of the fusion on the fluffy effect (low fre-
quency noise visually similar to cotton and visible in constant regions
after patch-based processing). On the first line, when using the HDMI
algorithm, the fluffy effect is highly reduced by the fusion, since the
hypothesis that the patch models are independent is almost fulfilled.
On the contrary, when using EPLL, the average of the noisy patch be-
comes the expectation of its prior model. In this case, the fluffy effect

is amplified by the fusion.

have to agree. An artifact is created when one or several of the original overlapping
patch models are badly estimated. In this case, even if the uniform aggregation
averages several correct estimates with this wrong estimate, the artifact can remain
noticeable. When using the fusion approach, if this artifact is inconsistent with the
other models, it will completely disappear. This is illustrated by Figure 2.17.
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(A) HDMI with uniform
aggregation

(B) HDMI with fusion

FIGURE 2.17: Examples of artifacts created in patch-based image de-
noising. On the left, we can see that the uniform aggregation cre-
ates numerous artifacts, for instance around the fingers. These ar-
tifacts, which are inconsistent across overlapping patch models, are

not present in the fusion result.

Blur and constrast

The main drawback of the fusion operation is a loss of constrast and sharpness
around some geometric structures, which makes the PSNR decrease. This is partic-
ularly striking in regions where the patch models are not well learned. In practice,
flat patch models tend to come with higher precisions than patch models represent-
ing geometric structures or contrasted textures. If, across an edge or a geometric
structure, some patches are wrongly attributed to a flat patch model, this model will
count significantly more than others in the fusion operation, and will result in an im-
portant contrast loss. These shortcomings can be reduced by increasing the weight λ
of the data term in the final restoration (Equation 2.5), at the cost of a slight increase
of noise. Besides, if a texture or an edge is not captured by the model, then the fusion
cannot restore it properly and the resulting texture will appear blurry. This effect is
illustrated on Figure 2.18 and can be reduced for instance by using the information
of the fused model, see Section 2.5.5.

2.5.5 Possible extensions

Precision estimate

As we have seen, the fusion yields good results in regions where the estimated
model is confident and has been well trained. This "confidence" level can be ac-
cessed through the covariance of the fused model. A simple way to exploit it is to
consider the precision of the marginal at a given pixel. If this precision is high, we
can consider to keep the estimate provided by the fusion, and use another estimate
otherwise, like the uniform aggregation. This way, we can construct the precision es-
timate, defined as an average of the images obtained by the uniform aggregation and
the fusion, weighted by the precision of the marginals for each pixel. This idea is il-
lustrated on Figure 2.19. The figure shows the precision map obtained on Lena with
the Gaussian models of the HDMI algorithm, and the resulting precision estimate,
which clearly keeps the best of both worlds, reducing the artifacts of the uniform
aggregation but providing a much less blurry result than the sole fusion.
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(A) HDMI with uniform
aggregation

(B) HDMI with fusion

FIGURE 2.18: Illustration of the loss of sharpness and constrast due
to the fusion operation. As we can see, the stripes of the legs of Bar-
bara are perfectly restored by the fusion aggregation, since the model
is well-trained on this region. However, on the sides of the leg, the
texture looks blurry. This is explained by the lack of patch examples
for this geometry. The bound of the shadow on the arm is also well-
restored by the fusion, but the "dark spot" on the elbow is another
good example of contrast loss: many patch models of this region are
considered to be uniform and highly reduce the obscurity of the area.
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(A) Precision map (B) Uniform aggregation

(C) Fusion (D) Precision estimate,
mix of (b) and (c)

FIGURE 2.19: The inverse of the diagonal of the covariance matrix
gives us the precision of the marginal of each pixel. This is a basic
estimate of how confident the model is for each pixel. This enables to
compute the precision estimate, which tries to keep the best of both

worlds.
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(A) Fusion with 4% of the
patches

(B) Uniform aggregation
with 4% of the patches

(C) Fusion with all the
patches

(D) Uniform aggregation
with all the patches

FIGURE 2.20: Comparison of different aggregation procedures on the
Cartoon image. On the top row, only 4% of the patches are used, and
on the bottom row, all the patches are used. On the left the fusion,

and on the right the uniform aggregation

Sparse aggregation

The fusion does not need numerous patches at each pixel to achieve visually smooth
results. The image can therefore be reconstructed using a reduced number of patches,
chosen either at random or using some heuristics to select the best model among
them, as in Tabti et al., 2014 for instance. This could be a way to speed up the learn-
ing phase, or to spend more time learning more complicated models. Figure 2.20
shows an example of a simple sparse aggregation, using only 4% of the patches (of
size 10× 10), so that each pixel belongs to only 4 patches.

2.5.6 Limitations

If we look closely at the formula to merge Gaussian patches presented in Proposition
13, we can see that the resulting covariance matrix of the fusion does not depend on
the expectations of the two Gaussian distributions. This is problematic. Intuitively,
a compromise made between converging opinions (patches) should be considered
with more assurance than one made between diverging opinions. This would be
the behavior of an ideal fusion, which would more efficiently deal with "isolated"
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(A) Ideal behavior (B) Behavior of the
proposed fusion

FIGURE 2.21: Schematic comparison of the behavior of the proposed
fusion and the ideal behavior of the patch model fusion.

opinions. This behavior is presented in Figure 2.21. In comparison, the proposed
fusion does not adapt to the proximity of opinion of the patches. This would result
in an influence of the original expectations on the value of the resulting covariance
matrix when merging two Gaussian patches.

2.6 Conclusion

We have presented a new way of aggregating patches in the Bayesian framework
of patch-based methods. This study was motivated by the problem raised in Sec-
tion 2.1 and the experiment of Figure 2.7. We have shown that Bayesian patch-based
methods were mainly limited by the non independence of the patches during the
aggregation step. We constructed an aggregation procedure based on more realistic
hypothesis than the independence of the patches and on a deeper utilization of the
model inferred in the editing step. This has led us to introduce a new formal defi-
nition of a patch model, and the notion of agreement between overlapping patches.
We have built on this notion to propose a general common framework for the aggre-
gation operation, seen as a fusion of different overlapping patch models. As we have
shown, this common framework includes all previous aggregation schemes used in
the literature, and reduces the design of new ones to the design of a fusion operation.

Our approach also permits to compute a fused image model which generalizes
the Expected Patch Log Likelihood introduced by Zoran and Weiss, 2011. When
patches are assumed to follow Gaussian distributions, this fused model is also Gaus-
sian, with tractable expectation and covariance. This whole fused model can in turn
be used to restore the whole image. In practice, the fusion operation can be used for
any model which leads to tractable computations.

We have compared experimentally several special cases of this fusion operation
for patch-based image denoising. As we have seen, using the fusion to aggregate
does not necessarily improve the result PSNR-wise, but highly reduces the visual
artifacts and the fluffy effects, identified as the main reconstruction issues of stan-
dard aggregation procedures in Section 2.1. On some images, it sometimes outper-
forms the standard uniform and weighted aggregations. The fusion is preferable
if the model is well trained, since it takes advantage of all the provided informa-
tion. However, it has some severe limitations, like the fact that estimates are less
contrasted and sharp, and the computational time.

The proposed patch fusion is a first idea toward more general and efficient ag-
gregation schemes. It was motivated by the prior knowledge that the patches should
agree. Even if this fusion has some nice properties and intuitive interpretations, its
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behavior is not ideal, as explained in Section 2.5.6. This suggests the introduction of
a new fusion operation that would follow a more suitable behavior, and naturally
led us to the optimal transport theory, which is a powerful and well-studied way
to interpolate and compare distributions. Merging patch models, as formalized in
this Chapter, with optimal transport theory can be formulated as a generalization
of Wasserstein barycenter. Even if some applications of optimal transport theory to
tomographic reconstruction led to similar considerations (see Abraham et al., 2017),
it remains a particular case of this new problem, which has not yet been addressed
in the literature. The next part present a study of this problem, that we called Gener-
alized Wasserstein Barycenter (GWB).
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Part II

Generalized Wasserstein
Barycenter
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Chapter 3

Requirements: Optimal Transport

Introduction

This chapter presents some basis of the optimal transport theory which will be useful
to expose the work presented in Chapter 4. I will mostly present the problems mo-
tivating the theory and the main theoretical and computational tools to solve them.
This includes the Kantorovich duality, the network simplex algorithm, the entropic
regularization and finally the multi-marginal formulation of optimal transport.

3.1 General optimal transport

3.1.1 Kantorovitvh formulation

Optimal transport is the mathematical answer to a very basic and practical question:
how to displace mass from a pile of soil to another with the lowest cost possible, as
roughly illustrated on Figure 3.1. There are several ways to formulate this mathe-
matically.

Before everything, we need two spaces X and Y where the piles are located. A
natural way to mathematically model a pile of soil is using a distribution. The pile
we want to move will be denoted by µ and the target pile we want to obtain by ν. In
order to be able to move µ to ν, we must ensure that they have the same mass, so we
have to assume that

µ[X] = ν[Y]

So without loss of generality, we can assume that µ and ν have a unitary mass, and
hence that they are probability distributions. The space of Borel probability distri-
butions of a space E is denoted by P(E).

Then, we have to define what we mean by "displace". We are only interested in
the theoretical procedure of moving the soil and therefore what really matters is the

FIGURE 3.1: The goal of optimal transport is to find a way to displace
the first distribution µ to the target distribution ν with the lowest pos-

sible cost.
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cost of displacement. Hence, we model the displacement (or rather its consequence)
by a cost function

c : X×Y → R+.

In the real world, c(x, y) would correspond to the total amount of energy needed to
load a unity (1kg for instance) of soil at the location x ∈ X, to move it to y ∈ Y and
unload it there, or the price that we would pay someone to do it, in a more capitalist
mindset.

We then need to model our goal, i.e. the procedure to follow in order to move the
first pile to the other. A natural way to do it is to consider, for each location x ∈ X,
to which location y ∈ Y we have to displace it. This implies defining a function

T : X → Y,

that we call the displacement map. This modelization leads to the Monge formulation,
presented in Section 3.1.2. However, this formulation excludes the possibility to di-
vide the mass. For instance, if all the soil lies in x ∈ X, this would imply that we can
only move this pile to another single point pile. The Monge formulation is therefore
a bit restrictive, and we shall relax it to the so-called Kantorovich formulation. This
is the same idea, with the additional assumption that we should be able to divide the
mass. Instead of asking us where to move the mass lying in x ∈ X, we shall instead
ask how much mass lying in x should we move to y ∈ Y. This implies having what
we call a transport plan, i.e. a distribution γ on X × Y. For x ∈ X and y ∈ Y, γ(x, y)
would correspond to the amount of mass displaced from x to y.

But, so that the transport plan γ remains acceptable, we need to ensure that we
would actually end up having all the mass of µ exactly displaced to ν if we follow
the plan γ. This means that γ should satisfy

∀A ⊂ X, γ[A, Y] = µ[A] and ∀B ⊂ Y, γ[X, B] = ν[B] (3.1)

Formally, we say that µ and ν are the marginals of γ. We can also write it by

∀(φ, ψ) ∈ L1(dµ)× L1(dν),
ˆ

X×Y
φ(x)dγ(x, y) =

ˆ
X

φ(x)dµ(x)

and
ˆ

X×Y
ψ(y)γ(x, y) =

ˆ
Y

ψ(y)dν(y) (3.2)

and also more succinctly by

∀(φ, ψ) ∈ L1(dµ)× L1(dν),
ˆ

X×Y
(φ(x)+ψ(y))dγ(x, y) =

ˆ
X

φ(x)dµ(x)+
ˆ

Y
ψ(y)dν(y)

(3.3)
The set of all acceptable γ satisfying either (3.1), (3.2) or (3.3) is denoted by

Π(µ, ν).
Finally, "to transport" means to move all the mass of µ to ν according to the

displacement procedure or transport plan γ. The cost of the displacement is the sum
of all the infinitesimal costs of moving the mass γ(x, y) from x to y. The transport
cost of a transport plan γ is therefore

ˆ
(x,y)∈X×Y

c(x, y)dγ(x, y).
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We can now define formally the Kantorovich formulation of the optimal trans-
port problem :

Problem 1 (Kantorovich formulation). Given two probability measures µ ∈ P(X)
and ν ∈ P(Y), and a cost function c : X×Y → R+, find

inf
γ∈Π(µ,ν)

ˆ
X×Y

cdγ (3.4)

with Π(µ, ν) the set of admissible transport plans, defined by

Π(µ, ν) =

{
γ ∈ M(X×Y);

{
∀A ⊂ X, γ[A×Y] = µ[A]

∀B ⊂ Y, γ[X× B] = ν[B]

}
(3.5)

The value of (3.4) is called the transport cost and will be denoted by Lc(µ, ν).

Problem 2 (Probabilistic interpretation). Given two probability measures µ ∈ P(X)
and ν ∈ P(Y), and a cost function c : X × Y → R+, the Kantorovich optimal trans-
port problem can equivalently be formulated as

inf
(U,V)∈Π̃(µ,ν)

E[c(U, V)]

with Π̃(µ, ν) is the set of all pairs of random variables (U, V) such that U ∼ µ and
V ∼ ν.

3.1.2 Monge formulation

The first formulation of the optimal transport problem was introduced by Monge.
He gave his name to the so-called Monge formulation. As we saw in the previous
section, it consists in assuming that we cannot split mass and implies defining a
displacement map T : X → Y.

Again, for a given displacement map, we need to ensure that it displaces cor-
rectly µ to ν. It means that the total mass displaced to y following the procedure
implied by T corresponds to the actual mass we need to move to the location:

∀B ⊂ Y, ν[B] = µ[T−1(B)]. (3.6)

We write equality (3.6) as
ν = T#µ

and we say that ν is the push-forward of µ by T. This leads to the Monge formulation
of the optimal transport problem

Definition 21. Given two probability measure µ ∈ P(X) and ν ∈ P(Y), and a cost
function c : X×Y → R+, find

inf
T;ν=T#µ

ˆ
x∈X

c(x, T(x))dµ(x). (3.7)

The Monge formulation is finally a particular and degenerated case of the Kan-
torovitch formulation. We can indeed notice that every displacement map T induce
a transport plan defined by ∀(x, y) ∈ X × Y, γT(x, y) = δy=T(x)µ(x), which indi-
cates to move the mass µ(x) from x to y if y = T(x) and nothing otherwise. This is
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equivalent to

∀φ ∈ L(dγ),
ˆ

X×Y
φ(x, y)dγT(x, y) =

ˆ
X

φ(x, T(x))dµ(x).

We could define other problems as well, for instance assuming that each tar-
get location y ∈ Y should receive the mass from only one location. The Monge
formulation is often presented for historical reasons and because it remains quite
intuitive, but most of the results and development of optimal transport rely on the
Kantorovich formulation.

Since the Kantorovich formulation is a relaxation of the Monge formulation, we
have always

Lc(µ, ν) ≤ LMonge
c (µ, ν).

But it appears that the solutions of the two problems coincide in some (quite gen-
eral) cases, which mainly depends on c. For instance, if c is the power of a distance,
or if c is stricly concave and µ vanishes on supp ν, then the Monge and Kantorovich
formulations are equivalent. A general result proven by Pratelli, 2007 is presented
in the following proposition.

Proposition 22. If X and Y are Polish spaces, µ and ν are nonatomic measures (their mass
can be split indefinitely) and c is continuous, then the Monge and Kantorovich formulation
of the optimal transport problem have the same solution.

When this occurs, the Monge formulation is very useful to characterize solutions.
For example, for the quadratic cost, it can be shown that the displacement maps are
gradients of a convex function.

We will only consider the Kantorovitch formulation in the rest of this thesis.

3.1.3 Particular costs

The solution of the problem will highly depend on the properties of the cost (con-
vexity, regularity, ...) and the characteristic of the input distributions (discrete, con-
tinuous, Gaussian, ...). For some special cases, the optimal transport problem takes
particular forms that can more easily be solved.

The case X = Y and c(x, y) = 1x 6=y

This cost basically means that the cost of displacing mass from x to y is independent
of the distance from x to y. For a given transport plan γ, we have

ˆ
(x,y)∈X×Y

c(x, y)γ(x, y) = 1−
ˆ

x∈X
γ(x, x)

In this setup, the problem boils down to leave as much mass as possible immo-
bile. The only mass that we can afford to leave in place is the one already at the
target location. The total cost of the transport will be half of the total mass of the
difference of µ and ν, which is exactly the total variation. This is a consequence of
the Strassen’s theorem (Valadier, 1974). We have then

Lc(µ, ν) =
1
2
||µ− ν||TV
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Wasserstein metric : case where c is the power of a distance

When c is the power of a distance d (and therefore when X = Y), the transport
cost enables to define a distance on the space of the bounded measures, called the
Wasserstein distance. It is one of the reasons which made optimal transport very
popular, as it becomes an efficient tool to define the distances between distributions.
These distances are widely used in machine learning.

Theorem 23 (Wasserstein distances). We denote by Pp(X) the set of probability measures
on X with finite moments of order p, i.e. the set of measures µ such that for some x0 we have:

ˆ
x∈X

d(x, x0)
pdµ(x) < +∞.

Then we have

• For all p ≥ 1, Wp = L1/p
dp defines a metric on Pp(X).

• For all p ∈ [0, 1[, Wp = Ldp defines a metric on Pp(X).

The transport cost is in general symmetric. The point-separation property relies
on the one of d, so that the cost is null only on its diagonal. The triangle inequality is
a consequence of the Minkowski inequality and the gluing lemma. More details can
be found in Villani, 2008.

One dimensional transport

When the space X is one-dimensional and c = ψ(d), with d a distance and ψ a convex
function, the Wasserstein distance has a closed form expression.

Definition 24. For a measure α on R, we define the cumulative distribution function
Cα : R→ [0, 1] by

∀x ∈ R, Cα(x) =
ˆ x

−∞
dα,

and its pseudo inverse Cα−1 : [0, 1]→ R by

∀t ∈ [0, 1], C−1
α (t) = min{x ∈ R|Cα(x) ≥ t}.

Proposition 25. Then, for p ≥ 1, we have

Wp(α, β)p =

ˆ 1

0
|C−1

α (t)− C−1
β (t)|pdt.

The particularity of the one dimensional case is that the space can be ordered.
With this in mind, the introduction of the cumulative function becomes quite natu-
ral.

Quadratic cost

Among all costs, there is one particularly convenient to work with, as it behave
nicely with the problem. The transport cost associated to the quadratic cost will be
denoted by L2. Here is for information a part of Theorem 11 of Villani, 2003.

Theorem. Let µ and ν be two probability measures on Rn with finite second moment. Then,
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1. γ ∈ Π(µ, ν) is optimal if and only if there exists a convex lower semi-continuous
function φ such that

supp γ ⊂ graph(∂φ),

where ∂φ is the subdifferential of φ.

2. If µ does not give mass to sets of Hausdorff dimension less than n− 1, then there is a
unique optimal γ, which is

dγ(x, y) = dµ(x)δy=∇φ(x),

where∇φ is the unique gradient of a convex function which pushes forward µ onto ν,
i.e. ∇φ#µ = ν.

3. As a corollary, ∇φ is the unique solution to the Monge transportation problem:
ˆ
|x−∇φ(x)|2dµ(x) = inf

T#µ=ν

ˆ
X
|x− T(x)|2dµ(x).

∇φ is called the Brenier’s map.

Gaussian with quadratic cost

In case of a quadratic cost, we have a closed-form solution for Gaussian distribu-
tions, which behave in general nicely in l2-norm optimizations. It is also a good
example of the advantages of the probabilistic formulation.

Proposition 26. Let µX = N (mX, ΣX) and µY = N (mY, ΣY) be two Gaussian distribu-
tion. Then, the optimal transport quadratic cost between these two distribution is

L2(µX, µY) = |mX −mY|2 + Tr(ΣX + ΣY − 2
√

Σ
1
2
XΣYΣ

1
2
X),

And in the case where ΣX and ΣY commute, we have

L2(µX, µY) = |mX −mY|2 + ||
√

ΣX −
√

ΣY||2Frob.

Proof. The proof uses the probabilistic interpretation of the Kantorovich formula-
tion :

L2(µX, µY) = min
(X,Y),X∼µX ,Y∼µY

E
[
|X−Y|2

]
.

First we reduce to the case where mX = mY = 0. As we shall see, the reasoning
is very general, and we do not need to assume that we work with Gaussian distri-
butions. We just have to remark that

E
[
|(X−E[X])− (Y−E[Y])|2

]
= E[|X−Y|2] + E[|E[X]−E[Y]|2]− 2〈E[X−Y], E[X]−E[Y]〉
= E[|X−Y|2]− |E[X]−E[Y]|2,

So we have

E[|X−Y|2] = |E[X]−E[Y]|2 + E[|(X−E[X])− (Y−E[Y])|2],

which reduces the calculation to the case where the variables have 0 mean.
Then we prove that the optimal case is attained for a Gaussian. We know from

the Kantorovich theorem that the infimum is attained (see Theorem 33). Let suppose
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that it is attained for a coupling (a probability distribution on X × Y) γ. Then let γ′

be a Gaussian distribution with the same covariance as γ. Then clearly we have

Eγ′
[
|X−Y|2

]
= Eγ

[
|X−Y|2

]
.

All this together reduces the problem to look for a Gaussian random variable
Z = (X, Y), with marginal µX and µY and with covariance

Z ∼ N (mZ, ΣZ) = N
((

mX
mY

)
,
(

ΣX C
CT ΣY

))
,

where C is such that ΣZ ≥ 0, which is equivalent to ΣX − CTΣ−1
Y C ≥ 0 by the Shur

complement. This transitions to

E
[
||X−Y||2

]
= E[XTX] + E[YTY]− 2E[XTY].

We have E[XTX] = E[Tr(XXT)] = Tr(ΣX) + mT
XmX and E[YTY] = Tr(ΣY) +

mT
YmY and E[XTY] = Tr(C) + mT

XmY. So the minimization is equivalent to

max
C,ΣY−CTΣ−1

X C≥0
Tr(C)

Let S = ΣY − CTΣ−1
X C. Then ΣY − S = CTΣ−1

X C ≥ 0. We can write ΣY − S =
UD2U = UrD2

r UT
r with U an unitary matrix, r the rank of ΣY− S and Ur of size n× r,

U = [Ur, Un−r]. Un−r corresponds to the eigenvectors of ΣY − S for the eigenvalue 0,
so CUn−r = 0 because Σ−1

X > 0.
Then we have the identity(

Σ−
1
2

X CUrD−1
r

)T (
Σ−

1
2

X CUrD−1
r

)
= Ir.

So we have CUr = Σ
1
2
XODr for O a given orthonormal matrix. Furthermore, we

have CUn−r = 0. So

C = CUUT = CUrUT
r = Σ

1
2
XODrUT

r .

We just showed that for each C such that S = ΣY − CTΣ−1
X C ≥ 0, we have S =

ΣY − C′TΣ−1
X C′ ≥ 0 for all C′ = Σ

1
2
XODrUT

r with O an n× r matrix.
Now, let us fix S. We want to calculate

sup
OTO=Ir

Tr(Σ
1
2
XODrUT

r ) = sup
OTO=Ir

Tr(OTΣ
1
2
XUrDr) = sup

OTO=Ir

Tr(OTB) (3.8)

with B = Σ
1
2
XUrDr.

We can express the constraint with a Lagrangian, denoting O = [v1, ..., vr], we
have vT

i vj = δi,j, expressed by ∑i,j λi,j(vT
i vj − δi,j) = Tr(Λ(OTO − I)). The dual

problem is
inf

Λ∈Sr
sup

O∈Mr

Tr(OTB) + Tr(Λ(OTO− I))
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The optimum exists because of the Kantorovich theorem (see Theorem 33), and
the admissibility condition is

BT + 2ΛOT = 0 and OTO = Ir,

so we have OΛ = −2B. Furthermore, O is of rank r and B as well, so Λ is invertible,
and O = −2BΛ−1. So we have

BTB = 4ΛTOTOΛ = 4Λ2

We conclude that Λ is a square root of 1
4 BTB, so Tr(OTB) = −2Tr(Λ−1BTB) ≤

Tr(
√

BTB
+
), where

√
·+ is the square root with only positive eigenvalues. Equation

3.8 is therefore maximized for Λ = −
√

BTB
+

.
What we have shown is that

sup
OTO=Ir

Tr(OTB) = Tr(
√

BTB
+
) = Tr

(√
BBT

+)
,

since BTB and BBT share the same eigenvalues (except 0).
Replacing B by its value, we find

Tr
(√

BBT
)
= Tr

(√
Σ

1
2
XUrD2

r UT
r Σ

1
2
X

)
= Tr

(√
Σ

1
2
X(ΣY − S)Σ

1
2
X

)
.

So for a given S ≥ 0, we have

sup
C;ΣY−CTΣXC=S

Tr(C) = Tr
(√

Σ
1
2
X(ΣY − S)Σ

1
2
X

)
.

Then we have, ∀x ∈ Rn, xTΣ
1
2
X(ΣY − S)Σ

1
2
Xx ≤ xTΣ

1
2
X(ΣY − 0)Σ

1
2
Xx because S is

symmetric positive. Therefore, the eigenvalues of Σ
1
2
X(ΣY − S)Σ

1
2
X are lower than the

eigenvalues of Σ
1
2
X(ΣY)Σ

1
2
X, thanks to the Courant-Fisher theorem stating that

µk+1 = min
Vk

max
x∈V⊥k

xT Mx
xTx

.

So the maximum is attained for S = 0, which gives

sup
C;ΣY−CTΣ−1

X C≥0

Tr(C) = 2Tr
(√

Σ
1
2
XΣYΣ

1
2
X

)
,

and we can conclude that

inf
X∼µX ,Y∼µY

E
[
|X−Y|2

]
= Tr(ΣX) + Tr(ΣY)− 2Tr

(√
Σ

1
2
XΣYΣ

1
2
X

)
.

Proposition 27. Let µX = N (mX, ΣX) and µY = N (mY, ΣY) be two Gaussian distribu-
tions. Then, the Brenier’s map ∇φ for the quadratic cost that pushes µX to µY is linear and
we have

∇φ(x) = Σ1/2
Y

(
Σ1/2

Y ΣXΣ1/2
Y

)−1/2

Σ1/2
Y .
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A proof of this result can be found in Knott and Smith, 1984.

3.2 Discrete optimal transport

3.2.1 Discrete formulation

The optimal transport problem remains relevant when the distribution are discrete,
i.e. can be expressed as a (finite) sum of Dirac masses. We have in this case µ =

∑n
i=1 aiδxi and ν = ∑m

j=1 bjδyj with a ∈ Rn
+ and b ∈ Rm

+.
In this framework, admissible transport plans are also discrete. Indeed, for γ ∈

Π(µ, ν), from condition (3.1), we have

γ({a1, . . . , an} ×Y) = µ({a1, . . . , an}) = 1 and similarly γ(X× {b1, . . . , bm}) = 1.

So γ({a1, . . . , an} × {b1, . . . , bm}) = γ(({a1, . . . , an} × Y) ∩ (X × {b1, . . . , bm}) = 1.
As a consequence, we can write

γ = ∑
i,j

Pi,jδ(xi ,yj)

and γ is fully characterized by the matrix P. Condition (3.1) becomes{
∑n

i=1 Pi,j = bj

∑m
j=1 Pi,j = ai

,

which can succinctly be rewritten as

P1m = a and 1T
n P = b. (3.9)

where 1n is the vector of 1 of dimension n.
Then, the transportation cost for a given transport plan can be written

ˆ
X×Y

cdγ = ∑
i,j

Pi,jc(xi, yj). (3.10)

We see that the spaces X and Y, and the cost function c disappear. The input
can be reduced to two vectors representing the distributions a = (ai)i∈J1,nK and b =
(bj)j∈J1,mK, and a matrix C such that

∀(i, j)J1, nK× J1, mK, Ci,j = c(xi, yj).

This matrix is called the cost matrix. The transport plans can also be represented
by a matrix, and the sum in Equation (3.10) becomes a matrix scalar product. This
leads to the discrete formulation:

Definition 28 (Discrete optimal transport). Given a cost matrix C ∈ Rn×m
+ , and two

vectors a ∈ Rn and b ∈ Rm, find

min
P∈Π(a,b)

〈C, P〉,

where Π(a, b) ⊂ Rn×m
+ is the set of admissible (discrete) transport plan satisfying

(3.9).
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Remark 29. The cost matrix can also go to +∞ and take negative values, as adding a
constant to it does not change the optimal transport plan. This also applies in the continuous
setting, the cost function can take negative values as long as it remains bounded below.

As definition 28 suggests, the discrete optimal transport problem, besides being
convex, is linear. Birkhoff’s theorem, a fundamental theorem of linear programming
states that any linear program with a non-empty and bounded feasible set attains its
minimum at an extreme point of the feasible set. In our case, Π(a, b) is non empty
and bounded, so we can restrain the search for solutions to these extreme points,
which have interesting structure.

3.2.2 Graph interpretation

We will recall here some basic definitions of graph theory that will be useful to char-
acterize our graphical representation of the optimal transport problem.

Definition 30. A bipartite graph (or bigraph) is a graph whose vertices can be divided
into two disjoint and independent sets S and T, such that each edge of G connects a
vertex of S to a vertex of T. We will here only consider undirected bipartite graphs.
A bipartite graph is said to be complete if each vertex of S is connected to each vertex
of T.

As we saw, the original motivation behind optimal transport was the problem
of moving a pile of soil to another, which led to the continuous formulation. The
discrete problem is more intuitive.

A Dirac mass can be seen as a location, e.g. as a shop or a factory, which needs/provides
a certain amount of supply, represented by the mass of the given Dirac mass. A sum
of Dirac masses is by extension a natural representation of a set of locations with
different needs/productions.

In our classical optimal transport setup, we shall see the first distribution µ =

∑n
i=1 aiδxi as a representation of n factories at the locations x1, . . . , xn, and ν = ∑m

j=1 bjδyj

as a representation of m shops located at y1, . . . , ym. The factory i produces ai copies
of a product, and the shop j sells bj copies of it. We suppose that the total production
of all the factories equals the total consummation of all the shops. Transporting 1
product from xi to yj costs c(xi, yj). In order to launch the business, we have to find
a plan, saying how many products the factory i delivers to the shop j. This is exactly
a transport plan, and the optimal transport plan corresponds to the cheapest way to
supply the shops. This interpretation is illustrated on Figure 3.2.

In this setup, it becomes natural to introduce a bipartite graph to represent the
problem. The source distribution is represented by a set S of n vertices and the target
distribution a set T of m other vertices. Two vertices i and j are connected by an edge
e ∈ E if and only if Pi,j > 0. In this case, we associate the flow Pi,j to this edge.

This gives a bipartite graph G(P) = ((S, T), E). In this setup, the cost matrix
naturally induces a cost on the edges of G. A transport plan can be represented by
a flow on this graph, i.e. a value on each edge (i, j) referring how much "flow" goes
from vertex i ∈ S to j ∈ T. A transport plan is admissible when the capacity of
the vertices are saturated, when the total flow going out of the source vertices of S
equals their capacity and the same for the total flow going in the target vertices T.
This is illustrated on Figure 3.3.

The discrete optimal transport is very different of the well-known maximum
flow problem. It consists in finding the admissible flow with the least cost. This
representation does not enable to use directly a graph algorithm to solve the prob-
lem (like for linear solvers in Section 3.4.1), but will turn out to be very useful when
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FIGURE 3.2: Illustration of the discrete optimal transport problem.
The mass of µ (the products of the factories) must be sent to ν (the

shops) with the lowest cost possible.

combined to the dual representation to use the general network simplex algorithm
(see Section 3.4.3). For now, it will help us characterize nicely the extreme points
of the polytope Π(a, b) and thus to have a better idea of the form of the potential
solutions.

Proposition 31. An extreme point of Π(a, b) is a flow with no non-null cycle. In particular,
it cannot have more than n + m− 1 zeros.

Proof. Let X be an extreme point of Π(a, b), and E the set of edges of G(X), i.e.
edges with (strictly) positive flow. Let suppose that we have a cycle, so we have
a path i1, j1, . . . , ik, jk, i1 with positive edges. Let ε > 0 be a positive number lower
than all the flows on the path, e.g. ε = min(i,j)∈E Xi,j. Then we can define X+ by
augmenting X by ε the flow on the odd edges of the cycle, so ∀l ≤ k, X+

il ,jl
=il ,jl +ε

and ∀l ≤ k, X+
jl ,il+1

= Xil ,jl − ε and X− by augmenting by ε the even edges of the
cycle by the same way. So we have clearly X+ ∈ Π(a, b) and X− ∈ Π(a, b) and
X = 1

2 (X+ + X−), which contradicts the extremality of X.

Remark 32. This proof is quite insightful and, as we shall see in Section 3.4.3, its main idea
will be central in the network simplex algorithm. However, this result can simply be seen
as a consequence of a general linear programming result, stating that if a linear program
with M constraints has an optimal solution, then it has an optimal solution with at most
M nonnegative entries. As we shall see in Section 3.4.1, the optimal transport problem can
be recasted as a linear problem with n + m− 1 constraints, and has an optimal solution by
theorem 33.

3.2.3 The affectation problem

In case of discrete distributions with uniform weights and the same number of
points, we can assume that ∀i ∈ J1, nK, ai = bi = 1.
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FIGURE 3.3: Example of a transport plan between two discrete dis-
tributions, modeled by the black arrows. As we see, this transport is
not extreme, as it has 5 nonnegative values and 5 > 2 + 3− 1. It may
be optimal, but it can be modified to a (non necessarly strictly) better

extreme transport plan.

A coupling P would in this case be a positive square matrix whose columns and
lines sum to 1. The resulting optimal transport problem becomes

min
P∈Π(a,b)

∑
i,j

Pi,jCi,j.

As we saw in Section 3.2.2, the solution of the problem is necessarily an extremal
point of Π(a, b). In this case, it can easily be shown that P must be binary, and thus
have exactly one non null entry equal to 1 for each line and column. Such a matrix
naturally encodes a permutation. The problem becomes therefore

LC(a, b) = min
σ∈S(n)

∑
i

Ci,σ(i),

which coincides with the matching problem or affectation problem (also corresponds to
the discrete Monge formulation).

This problem, originally formulated on graphs, as the problem of finding an op-
timal perfect matching on a bipartite graph is well-known in Informatics and can
efficiently be solved by the Hungarian algorithm (see Kuhn, 1955).

3.3 Kantorovitch duality

The main result in optimal transport theory is the Kantorovich duality, which under
weak conditions on the cost c states the equality with the dual problem. It serves as
a basis for most of the further results and study of optimal transport.
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3.3.1 General Kantorovich duality

Theorem 33 (Kantorovich duality). Let X,Y be two (Polish) space with probability mea-
sure µ and ν, and c : X×Y → R+ ∪ {+∞} a lower semi-continous function, then:

min
γ∈Π(µ,ν)

ˆ
X×Y

c(x, y)dγ = sup
Φc

ˆ
X

φ(x)dµ +

ˆ
Y

ψ(y)dν,

where Φc = {(φ, ψ) ∈ L1(dµ)× L1(dν); ∀(x, y) ∈ X×Y, φ(x) + ψ(y) ≤ c(x, y)}.

A detailled proof of this theorem can be found in Villani, 2003. We will present
here a formal proof which helps understanding the underlying process of the dual-
ity.

Proof. The idea is to rewrite the constraints of the problems as indicator functions
and see that they can be derived from each other. The difficulty of the real proof lies
in the careful verification of the condition of a general duality theorem.

We have

inf
γ∈Π(µ,ν)

ˆ
cdγ = inf

γ≥0

(ˆ
cdγ +

{
0 if γ ∈ Π(µ, ν)

+∞ otherwise

)
(3.11)

Recalling the compact definition of Π(µ, ν) of Equation (3.3), we can write the indi-
cator function of (3.11) as({

0 if γ ∈ Π(µ, ν)

+∞ otherwise

)
= sup

φ,ψ

[ˆ
φdµ +

ˆ
ψdν−

ˆ
(φ(x) + ψ(y))dγ(x, y)

]
which gives :

Lc(µ, ν) = inf
γ≥0

sup
φ,ψ

[ˆ
cdγ +

ˆ
φdµ +

ˆ
ψdν−

ˆ
[φ(x) + ψ(y)]dγ(x, y)

]
≡ sup

φ,ψ
inf
γ≥0

[ˆ
cdγ +

ˆ
φdµ +

ˆ
ψdν−

ˆ
[φ(x) + ψ(y)]dγ(x, y)

]

= sup
φ,ψ

[ˆ
φdµ +

ˆ
ψdν− sup

γ≥0

ˆ
X×Y

[φ(x) + ψ(y)− c(x, y)]dγ(x, y)

]
.

The inversion sup/inf above is formal and needs to be justified properly using a
duality theorem.

If it exists (x0, y0) such that φ(x0) + ψ(y0)− c(x0, y0) > 0, then for γλ = λδ(x0,y0),
we have

[φ(x) + ψ(y)− c(x, y)]dγλ(x, y) →
λ→+∞

+∞.

Otherwise, if ∀(x, y) ∈ X × Y, φ(x) + ψ(y) ≤ c(x, y), the supremum is obviously 0
and is obtained for γ = 0. So we have

sup
γ≥0

ˆ
X×Y

[φ(x) + ψ(y)− c(x, y)]dγ(x, y) =

{
0 if (ψ, ψ) ∈ Φc

+∞ otherwise
.
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Therefore, this gives

Lc(µ, ν) = sup
(φ,ψ)∈Φc

[ˆ
φdµ +

ˆ
ψdν

]
.

3.3.2 Discrete duality

The duality problem in the discrete setting is a direct application of the general re-
sult, but can also be proven using a similar reasoning and a min-max theorem.

Proposition 34. Let a ∈ Rn and b ∈ Rm be two vectors and C ∈ Rn×m
+ be a cost matrix.

Then,
LC(a, b) = max

( f ,g)∈ΦC

〈 f , a〉+ 〈g, b〉, (3.12)

where ΦC = {( f , g) ∈ Rn ×Rm : ∀(i, j) ∈ J1, nK× J1, mK, fi + gj ≤ Ci,j} is the set of
admissible potentials.

Duality plays a crucial role in computation and characterization of solutions.

3.3.3 Interpretation

We follow here and extend the graphical interpretation given in Section 3.2.2.
We saw that the source distribution can be interpreted as a set of factories that

must deliver their products to a set of shops, modeled by the target distribution. A
transport plan is a procedure telling how to dispatch to production while minimiz-
ing the transportation cost.

Now, we imagine that the operator of the business described above doesn’t know
how to compute such an optimal plan (he doesn’t have access to Section 3.4) but still
wants to make sure that he doesn’t lose money. He has no choice but to subcontract
the transportation. Since he doesn’t know the optimal plan, he can’t pay for each
transportation, the problem would remain the same (the truck company could use a
suboptimal plan and charge him more than needed). So he finds an idea to be sure
that he does not lose money : he offers the truck company the choice in the pricing,
at the condition that it would only charge the loading and unloading of the goods
(with the vectors f and g), and that the price fi of loading a product at factory i and
gj of unloading it at shop j cost less than if he would have done it himself, i.e. that
fi + gj ≤ Ci,j. The operator is then sure to make a good deal (by the so-called weak
duality) or at least to avoid making a bad one. But the duality theorem states that
if the truck company finds the right pricing, then the operator will pay exactly as
much as we would have with an optimal transport plan.

3.3.4 C-transform

The form of the dual problem suggests further study on the optimal couple of po-
tentials. Let consider ( f , g) an admissible pair to the dual problem. Even if the pair
( f , g) is not optimal, we can try to check if at least g is optimal for this given f .

In this case, we have to maximize 〈g, b〉 while keeping the constraints satis-
fied, i.e. that ∀i, j, gj ≤ Ci,j − fi. Since b is positive, it means increasing g until
the constraints are saturated, which implies, by definition of the min, by choosing
∀j ∈ J1, mK, g∗ : mini Ci,j − fi. This is what we call the C-transform.
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Definition 35. Given a dual pair of potential ( f , g) and a cost matrix C, the C-
transform of f , denoted by f C, is defined by

∀j ∈ J1, mK, f C
j = min

i
Ci,j − fi.

Similarly, the C-transform of g, also denoted by gC (by a slight abuse of notation)
is defined by :

∀i ∈ J1, nK, gC
i = min

j
Ci,j − gj

Remark 36. We can define a continuous version of the C-transform: for c a cost function
and φ a function, we define

φc : y→ inf
y

c(x, y)− φ(x)

and similarly for the second variable. Most of the properties developed in the discrete case
have their equivalent in the continuous case, but they are difficult to apply directly to the
optimal transport problem because of definition and convergence issues that we will not de-
velop here. Still, they are central in the theory and the c-transform will play a big role in
the barycenter dual (see Section 3.6.3). For now, it is worth mentioning that the function
φ→ φc is concave.

The c-transform (resp. C-transform) has a lot of nice properties, which makes it
a useful tool to study discrete (resp. continuous) optimal transport solutions.

Proposition 37. If ( f , g) is an admissible pair of the discrete dual problem, then ( f , f C)
and (gC, g) are better ones, namely:

〈 f , a〉+ 〈 f C, b〉 ≥ 〈 f , a〉+ 〈g, b〉 and 〈gC, a〉+ 〈g, b〉 ≥ 〈 f , a〉+ 〈g, b〉.

Proposition 38. We have the following properties for the C-transform :

• f ≤ f ′ =⇒ f C ≥ f ′C

• f CC ≥ f

• f CCC = f C

The same properties apply for the C-transform of g, as the problem is perfectly symmetric.

Proof. The first statement is trivial. For the second one, we write

f CC
k = min

j
Ck,j − f C

j = min
j

Ck,j − (min
i

Ci,j − fi)

for k ∈ J1, nK. Then, using mini Ci, j− fi ≤ Ck,j − fk, we find

f CC
k ≥ min

j
Ck,j − Ck,j + fk = fk

which gives the second statement. Combining it with the first one, we get f CCC ≤ f C

and we have also, from the second applied to f C, f CCC ≥ f C, which gives the third
one.
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Proposition 37 enables reducing the admissible pair of potentials to the set of
potentials of the form ( f , f C) and even of the form ( f CC, f C). This will be very useful
in practice to solve the discrete problem. In the continuous setting, this is known as
the double convexification trick, to assume that the pair are of the form (φcc, φc) (the
c-transform of a function is often more regular). It is widely used in the proofs, but
can rarely be extended to the results because of the passage to the limit.

A similar work can be done for the primal problem and induces the notion of
c-cyclical monotony:

Definition 39. Let c be a cost function. A subset E ⊂ X × Y is said to be c-cyclically
monotone if, for any K ∈ N, and any family (x1, y1), . . . , (xK, yK) of points in E, the
following inequality holds:

K

∑
k=1

c(xk, yk) ≤
K

∑
k=1

c(xk, yk+1) (3.13)

with yK+1 = y1.
A transport plan is said to be c-cyclically monotone if its support is a c-cyclically

monotone set.

Intuitively, a c-cyclically monotone set is a set of correspondence (like a continu-
ous graph) that cannot be improved by shifting the correspondence along a cycle. It
can be shown that an optimal transport plan is necessarily c-cyclical monotone, and
the inverse holds under particular conditions.

This notion, central in the continuous setting, by its relation with the sub-differential
of convex functions, has also an equivalent in the discrete setting, as a condition to
the edges of the graph G(P). It is rather inefficient because of the impossibility to be
checked in practice.

Definition 40. Let C be a cost matrix. A bipartite graph G is said to be C-cyclically
monotone if, for any K ∈ J1, min(n, m)K, and any family (i1, j1), . . . , (iK, jK) of vertices
of G, the following inequality holds:

K

∑
k=1

Cik ,jk ≤
K

∑
k=1

Cik ,kk+1 (3.14)

with yK+1 = y1.
A discrete transport plan P is said to be C-cyclically monotone if its graph G(P) is

a C-cyclically monotone graph.

It roughly says that we cannot construct a cycle with negative cost using edges of
G, which already gives the intuition of the crucial role of such cycle in the resolution
of the discrete optimal transport problem.

3.4 Solving optimal transport

3.4.1 Linear programming

We have
LC(a, b) = min

P∈Π(a,b)
∑
i,j

Pi,jCi,j.
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with

P ∈ Π(a, b)⇔


∀(i, j) ∈ J1, nK× J1, mK, Pi,j ≥ 0
∀j ∈ J1, mK, ∑i Pi,j = bj

∀i ∈ J1, nK, ∑j Pi,j = ai

. (3.15)

The objective function to optimize is linear, as well as the constraints on P. We
can therefore rewrite the above equation in a standard form for the linear program
literature, and use blindly their algorithms to solve it. We need for this to express
the constraints in terms of equality and nonnegativity using vectors, and therefore to
encode P in a vector fashion. For instance, we can transform P ∈ Rn×m to p ∈ Rnm

by saying that pi+n(j−1) = Pi,j. This simply consists in putting all the column of P
one after another in a vector.

In (3.15), there are n + m linear equality constraints, on n × m variables, which
can therefore be expressed with a matrix A ∈ R(n+m)×(m×n). With the encodage of
P, we need to define A by

A =

(
1T

n ⊗ Im
In ⊗ 1T

m

)
,

where ⊗ is the Kronecker’s product (see Notations for the definition).
With these definitions, the constraints of (3.15) can be written as

P ∈ Π(a, b)⇔ p ∈ Rnm
+ , Ap =

(
a
b

)
which gives

LC(a, b) = min
p∈Rnm

+

Ap=

a
b


〈c, p〉 (3.16)

This enables to solve exactly the discrete optimal transport problem, with any
linear programming solver, like the simplex algorithm. Even if this gives the right
solution and is simple to code, the use of a general solution to linear program is quite
inefficient, as we have more information on the problem (like the duality relation)
that we could take advantage of. This is the case of the network simplex algorithm,
presented in the Section 3.4.3.

Remark 41. The n + m constraints defined above are redundant, because the fact has been
omitted that ∑i ai = ∑j bj. The problem has in reality n + m − 1 constraints as stated
in Remark 32. For practical purposes, one needs to remove one line (any of them) of the
constraints to avoid degeneracy in the computation.

3.4.2 Characterization of the solutions

As we saw in Section 3.3.4, we have some independent characterizations on the opti-
mal solutions of the primal and dual problem. In addition, we can also characterize
their relationship.

Let us recall the interpretation with the shops and factories of Section 3.3.3. For
the truck company, moving a product from i to j costs Ci,j and is charged fi + gj to
the operator. So if the constraints are saturated, i.e. if we have fi + gj = Ci,j, then the
truck company can safely supply the shop j with the factory i. On the contrary, if we
have fi + gj < Ci,j, the company would suffer some loss that it will never be able to
compensate with another trip.
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In conclusion, if the truck company wants to make the deal work, it must trans-
port products only on the edges of the graph where the constraints is saturated, i.e.
either it must have fi + gj = Ci,j, or Pi,j = 0. This notion is called the complementary
slackness. It corresponds to a situation (not necessarily optimal) where the operator
and the company have a fair deal, i.e. when what the operator pays to the company
with pricing ( f , g) corresponds to the cost of the company following the procedure
P.

Proposition 42. Let P∗ and ( f ∗, g∗) be optimal solutions for the primal and the dual prob-
lem. Then we have

∀(i, j) ∈ J1, nK× J1, mK, P∗i,j(ci,j − f ∗i − g∗j ) = 0.

This condition is called the complementary slackness, and if it is satisfied, we say that P and
( f , g) are complementary.

Proof. From the strong duality relation we have

〈P∗, C〉 = 〈 f ∗, a〉+ 〈g∗, b〉.

So

〈P∗, C〉 = 〈 f ∗, P∗1〉+ 〈g∗,1TP∗〉
= 〈 f ∗1T, P∗〉+ 〈1g∗, P∗〉

This leads to
〈P∗, C− f ∗ � g∗〉 = 0.

where ( f � g)i,j = fi + gj. And, by positivity of P∗ and C − f ∗ � g∗, this gives the
result.

Proposition 43. If P and ( f , g) are complementary and feasible solutions of the primal and
the dual problem, then both are optimal.

Proof. From the proof of proposition 42, we know that P and ( f , g) are complemen-
tary and feasible solutions implies

〈C, P〉 = 〈 f , a〉+ 〈g, b〉.

Therefore, we have

LC(a, b) ≤ 〈C, P〉 = 〈a, f 〉+ 〈g, b〉 ≤ LC(a, b)

which gives
LC(a, b) = 〈C, P〉 = 〈a, f 〉+ 〈g, b〉 = LC(a, b).

3.4.3 The network simplex

General solvers of linear problem use the convexity of the problem, but do not take
advantage of the strong duality relation and in particular of the complementary
slackness. The network simplex is a general iterative algorithm, alternating on the
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primal and dual formulation of the problem to reach the solution. We will present
here the (almost complete) adaptation to the optimal transport problem.

Starting from an extreme point of the simplex of the primal admissible solutions,
the algorithm is based on two principles :

• For the current admissible primal solution, we associate a complementary dual
solution. If this solution is admissible, then the primal solution is optimal (and
therefore the dual as well).

• If the dual solution is not admissible, we use it to improve the primal, and get
closer to the solution.

Obtaining a complementary dual solution from a primal solution

We will use here the graph formulation of Section 3.2.2 to explain the algorithm. We
associate, for a primal solution candidate P, a bipartite graph G(P) = ((S, T), E), S
being indexed by i, T by j and E being the set of nonnegative edges of P, i.e.

(i, j) ∈ E⇔ Pi,j > 0.

During the algorithm, we work with a graph G, that we initialize as G(P) with P
a starting candidate solution (extreme point of the polytope), but, as we shall see, G
can deviate from G(P) by having some additional edges. We will, however, always
ensure that G(P) ⊂ G and that G (and G(P)) has no cycle.

Since P is assumed to be an extreme point of the polytope, we have |E| < n + m
and G = G(P) has no cycle.

We are looking for a complementary solution (but not necessarily feasible), so
we just have to find f and g such that

∀(i, j) ∈ E, fi + gj = Ci,j.

This is a system of |E| < n+m equations with n+m unknown. It is always solvable,
but undetermined, and any solution of this system is suitable.

Yet, there is a very practical way to compute a solution in practice. Since G has
no cycle, it is a forest (union of disconnected trees). Let consider H ⊂ G a tree of
G. Each vertex of H corresponds to a variable, and each edge to a constraint, which
involves only two variables. Starting from the root r, we set fr ← 0, and we follow
the edges (i, j) of the tree and set to the unassigned variable the value given by the
constraint, either fi ← Ci,j − gj or gj ← Ci,j − fi, until the leaves of the tree.

By doing this to each tree of G, we obtain ( f , g) a pair of potentials complemen-
tary to P. This procedure is efficient but quite naive. In practice, a little more care
must be taken to solve the system to ensure that the algorithm remains robust to
degeneracy. See Remark 45 for more details.

Network simplex update

Following the procedure of the previous section, we are now in possession of a pri-
mal solution candidate P, which is an extreme point of the polytope, and ( f , g), a
complementary pair of potentials.

If ( f , g) is admissible, it means from Proposition 43 that both P and ( f , g) are
optimal.
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Let suppose that ( f , g) is not admissible. It means that we have (i0, j0) such that

fi0 + gj0 > Ci0,j0 .

The edge (i0, j0) is called the pivot. It may not be unique, and it must be carefully
chosen in order to avoid termination issues and optimize the computation time (see
Remark 45). We will not discuss the strategies here, we just consider one particular
pivot.

Let consider the graph G as defined earlier. We know that (i0, j0) /∈ G since all
edges of G have saturated constraints (and therefore we have Pi0,j0 = 0). So we add
the edge to G. We now have two cases :

1. (i0, j0) connects two trees of G, which thus remains a forest. It means that P
remains an extreme point of the polytope. We can then construct a new com-
plementary solution ( f , g) using the previous algorithm. This case is however
degenerated, since we will get an edge of G whereas Pi0,j0 remains 0, and we
no longer have G(P) = G.

2. (i0, j0) creates a cycle. We have to remove an edge to get back a forest, and to
modify P so that we still have G(P) ⊂ G.

In the second case, we will follow the same strategy as in the proof of Proposition
31. Adding and subtracting successively a value θ to all the edges of the cycle won’t
affect the admissibility of P and, if the value is chosen carefully, will make some of
them vanish while improving the solution. From the truck company point of view,
at this point, the edge (i0, j0) is very profitable ( fi0 + gj0 > Ci0,j0) and yet unexploited
(Pi0,j0 = 0): we want to add on it as much traffic as possible (change P) without
affecting our quality of the delivery.

Let consider the cycle we have just created: i0, j0, i1, j1, . . . , il , jl , il+1 = i0.
We shall add θ to the odd edges (of the form (ik, jk) and including the null edge

(i0, j0)) and subtract θ to the even ones (of the form (ik+1, jk)). So, in order to keep
the positivity of P and to make at least one value vanish, we have to chose

θ = min
k

Pik+1,jk ,

which is the biggest (and only) possible value. P is then modified only on the cycle
as follow:

∀k ≤ l, Pik ,jk ← Pik ,jk + θ and ∀k ≤ l, Pik+1,jk ← Pik+1,jk − θ.

We finally remove from G one edge (i, j) where Pi,j vanished (see 45). We obtain
a primal admissible solution, which is an extreme point of the polytope, since its
positive graph, G, has no cycle.

This solution maximizes the earning of the truck company for the pricing given
by the dual pair ( f , g). Therefore, it is closer to the optimal as shown in the following
proposition.

Proposition 44. The network simplex update improves the dual solution.

Proof. Keeping the notation of the rest of the section, we consider P and P′ the former
and new solution. We have

〈C, P′〉 − 〈C, P〉 = 〈C, P′ − P〉 = θ ×
(

l

∑
k=0

Cik ,jk − Cik+1,jk

)
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And since the constraints of the edges of P are saturated, we have

l

∑
k=0

Cik ,jk − Cik+1,jk = Ci0,j0 − Ci1,j0 +

(
l

∑
k=1

Cik ,jk − Cik+1,jk

)

= Ci0,j0 − fi1 − gj0 +

(
l

∑
k=1

fik + gjk − fik+1 − gjk

)
= Ci0,j0 − fi0 − gj0 .

which gives 〈C, P〉 − 〈C, P′〉 = θ × (Ci0,j0 − ( fi0 + gj0)) ≥ 0.

Initialise the network simplex

The last remaining step of the simplex is the initialization. We only need an heuristic
to start with an extreme point of the simplex. A simple way to do that is the West-
corner heuristic, which simply consists in managing the factory and the shop in an
arbitrary order.

The idea is to saturate the edges one after the other. At each step (i, j), Pi,j take
the highest possible value, i.e. min(ai, bj) : either the factory i gives all its production
to the shop j, either the shop j receives all its products from factory i. In the first case,
we increase i (factory i has already given everything, we move on to the next one)
and in the second case, we increase j (same idea, shop j is full). If both saturations
occur simultaneously, we go directly to (i + 1, j + 1).

As we move in a diagonal, we have at most n+m− 1 nonnegative entries, which
ensures that the produced primal solution is indeed extreme.

Algorithm

The complete network simplex algorithm is presented in Algorithm 8.

Remark 45. The proof of Proposition 44 shows that the new transport plan P is not worst
than the previous one. However, θ can be null when G and G(P) differ. In this case, P
doesn’t change, but G does. It may be problematic for the terminaison of the algorithm.

To ensure that the algorithm terminates, one needs to fix only one root, and initialize with
one tree (adding null edge at the beginning), and be careful when deleting the edge at each
iteration to ensure that we keep a strongly feasible tree. We can then show that the global
distance to the root strictly decreases if the cost doesn’t increase. This point is quite technical
and will not be developped here. See Bertsekas, 1998, chapter 5, proposition 5.2 for more
details.

3.4.4 Other methods

Even if the network simplex is a good way to compute the exact solution of the opti-
mal transport problem, it remains pretty slow and it is not very scalable in practice.
Other methods have been developed to quickly approximate the transport cost, like
the sliced Wasserstein distance, which project the original distributions on 1-D lines,
and use Radon inverses to estimate it (see Rabin et al., 2011 for more details).

Among all these methods, the most efficient and popular is by far the entropic
regularization, to which the next section is dedicated.
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Algorithm 8 Network simplex for optimal transport

Input: A cost matrix C, input vectors a and b.
Output: P and ( f , g) respectively a primal and dual solution.

1: Initialize an extreme primal solution P, using for instance the West-corner
heuristic (see Section 3.4.3)

2: Construct the graph G(P) associated to P
3: while P is not optimal do
4: Compute a complementary dual potential ( f , g) as described in Section 3.4.3
5: if ( f , g) is admissible then
6: Return P and ( f , g)
7: else
8: Update the graph G and P as described in Section 3.4.3
9: end if

10: end while

3.5 Entropic regularization

Solving the exact optimal transport problem is difficult. In practice it doesn’t scale
very well and in theory, only a few cases have a closed form solution. One of the
main difficulty is that the problem is quite "sharp" : the solution must be sparse. It
can therefore be interesting to "soften" the problem with a regularization. A classical
way to do it is to penalize with a prior function (similar ideas than in the Bayesian
framework and model selection of Section 1.1.6), and in particular with the entropy.
This regularization was introduced and popularized by Cuturi, 2013 in the field of
machine learning, but was already widely used in other fields such as economics. It
leads indeed to very useful theorems and algorithms, but other regularization can
be considered, like the l2 norm (see Essid and Solomon, 2018) or any strictly convex
cost (see Dessein, Papadakis, and Rouas, 2018). However this alternatives does not
lead to results as good and simple as with the entropy.

3.5.1 Discrete formulation

The main interest of the entropic regularization lies in its resolution in the discrete
case.

As we saw in Section 1.1.2, it is generally used in a probabilistic context, but we
can extend its definition to matrices (basically by seeing them as vectors):

H(P) = −∑
i,j

Pi,j log(Pi,j)

with the convention 0× log(0) = 0 and H(P) = −∞ if P has a nonpositive entry
(this fact turns out to be crucial in the Bregman formulation of Equation (3.20)).

Remark 46. The entropy is sometimes defined with an additional −1, but then it is no
longer positive for transport plans.

Problem 3 (Entropic regularization). Given a, b a source and target vectors, C a cost
matrix, and ε > 0 a regularization parameter, we define

Lε
C(a, b) = min

P∈Π(a,b)
〈P, C〉 − εH(P). (3.17)
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Since−H is strongly convex, and the scalar product is convex, the objective func-
tion of (3.17) is also strongly convex. This means that for all ε > 0, Problem 3 has a
unique optimal solution.

Remark 47. The entropic regularization introduces a new hyper-parameter ε. Even if the
influence of this parameter can be intuitively understood, and its limit behavior is stable, its
choice still remains an issue in practice. As we shall see in the interpretation of the impact of
the regularization, it represents a trade-off between efficiency and dispersion, and therefore
cannot be optimized.

3.5.2 Entropic behaviour

As we saw, solutions of the discrete optimal transport problem lies in the extreme
points of Π(a, b), and hence have a priori a pretty low entropy. Problem 3 favors
solutions with high entropy. So the solution will no longer lie in the border of the
polytope but will be attracted toward its center, as a trade-off between entropy and
transport cost. The phenomenon is highlighted by the following proposition.

Proposition 48. For all ε > 0, there exists λ > 0 such that

min
P∈Π(a,b)

〈C, P〉 − εH(P) = min
P∈Πλ(a,b)

〈C, P〉

with
Πλ(a, b) = {P ∈ Π(a, b); KL(P|a⊗ b) ≤ λ}.

The proof can be found in Cuturi, 2013. Proposition 48 shows that solving the
entropic regularization consists indeed in forcing the solution to move away from
the extreme point of Π(a, b) and approach its (entropic) center, as the set of possible
solutions reduces from the convex set Π(a, b) to the strictly convex set Πλ(a, b).

Proposition 49. The unique solution Pε of Equation (3.17) converges to the optimal solution
with maximal entropy within the set of all optimal solutions. So we have

Pε →
ε→0

arg max
P∈Π(a,b)

〈C,P〉=LC(a,b)

H(P) (3.18)

and
Lε

C(a, b) →
ε→0

LC(a, b). (3.19)

Besides,
Pε →

ε→+∞
a⊗ b = (aibj)(i,j)∈J1,nK×J1,mK.

Proof. Let εl be a sequence of strictly positive real such that εl→ 0. For each l, we de-
note by Pl the solution of the regularized optimal transport problem. By compacity
of Π(a, b) (closed and bounded), we can assume that a subsequence of Pl (that we
do not relabel) converges : Pl→ P∗ ∈ Π(a, b).

Let P be a solution of the regular discrete optimal transport problem. We have
〈C, P〉 = LC(a, b). Then, for any l, by optimality of Pl , we have 〈C, Pl〉 − εl H(Pl) ≤
〈C, P〉 − εH(P). Similarly, by optimality of P (for ε = 0), we obtain

0 ≤ 〈C, Pl〉 − 〈C, P〉 ≤ εl (H(Pl)− H(P)) .
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Since H is continuous, taking the limit l→+∞, we have

〈C, P∗〉 = 〈C, P〉 = LC(a, b) and H(P∗)− H(P) ≥ 0,

which shows that P∗ is a solution of the right-hand side of (3.18). By strong con-
cavity of H, this solution is unique, and therefore is the only limit possible for a
subsequence of (Pl). So we have Pl→ P∗, which proves (3.18) and (3.19).

Similarly, having a sequence εl→+∞, (a subsequence of) Pl→ P∗, and P = a⊗ b
the solution of maxP∈Π(a,b) H(P), we have

〈C, Pl〉 − 〈C, P〉
εl

≤ H(Pl)− H(P) ≤ 0

which, by taking the limit l→+∞, shows that H(P∗) = H(P) and that Pl converges
by uniqueness of P.

Remark 50. These results still hold for any strictly convex regularization functions.

In the case where ε→+∞, the entropy regularization forces the solution to split
the mass and, at the limit, to spread it completely: each point of the source distribu-
tion sends mass to each point of the target distribution. For the shops and factories
interpretation, it would correspond to the introduction of a law that would force the
factories to share more their product with the rest of the shops. In the case of an in-
finite ε, it means that each factory send a proportion of its production to each shop,
which gives the maximal number of edges in G(P). On the contrary, when ε = 0, the
solution is an extreme point of Π(a, b), with at most n + m− 1 nonnegative entries,
the shops have less than 2 providers in average. For the in-between values of ε, the
solution will be a balance between these two extremities.

The main impact of the regularization is the diffusion of the mass which "blurs"
the optimal transport plans. This can be annoying when we want to calculate the
actual transport cost and transport plan, but it can also be preferable in practice,
when we use optimal transport with neural networks or to optimize the distance
between distribution. But the main advantage of the entropic regularization is that
solutions are extremely faster to compute than the exact solution as we shall see in
the next section.

3.5.3 Sinkhorn algorithm

Even if the idea of entropic regularization is pretty insightful, there is another way
of formulating Problem 3 which is more convenient for practical applications.

Similarly as we did for the entropy, we can define the Kullback-Leibler diver-
gence for (nonnegative) coupling matrices:

KL(P|K) = ∑
i,j

Pi,j log
(

Pi,j

Ki,j

)
.
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With this definition in mind, we have

Lε
C(a, b) = min

P∈Π(a,b)
∑
i,j

Pi,jCi,j + ε ∑
i,j

Pi,j log(Pi,j)

= min
P∈Π(a,b)

ε×
[
∑
i,j

Pi,j

(
log(Pi,j)−

−Ci,j

ε

)]

= ε× min
P∈Π(a,b)

∑
i,j

Pi,j log

(
Pi,j

e−
Ci,j

ε

)
= ε× KL(P|K),

with K the Gibbs kernel associated to C defined by Ki,j = e−
Ci,j

ε .
Finally, we have

P∗ = arg min
P∈Π(a,b)

〈C, P〉 − εH(P) = arg min
P∈Π(a,b)

KL(P|K). (3.20)

Proposition 51. Let Pε be the unique solution to the Problem 3. Then there exist (u, v) ∈
Rn

+ ×Rm
+ such that

∀(i, j) ∈ J1, nK× J1, mK, (Pε)i,j = uiKi,jvj.

Proof. We introduce two Lagrangian dual variables α ∈ Rn and β ∈ Rm. The opti-
mization problem then becomes:

L(P, α, β) = min
P≥0

max
f ,g
〈C, P〉 − εH(P)− 〈α, P1m − a〉 − 〈β, PT1n − b〉.

We know that this problem must have a solution (Pε, α∗, β∗), which leads to

∂L(Pε, α∗, β∗)

∂Pi,j
= Ci,j − ε log((Pε)i,j)− αi − β j = 0.

This gives
(Pε)i,j = eαi/εe−Ci,j/εeβj/ε.

So we have u = eα∗/ε and v = eβ∗/ε.

From Proposition 51, we see that computing the matrix Pε reduces to compute the
two vectors u and v, which are related to the constraints Πa and Πb. It is tempting
to use for that an iterative algorithm, which would compute u so that the matrix
(uiKi,jvj)(i,j) ∈ Πa for a given v, and compute v so that (uiKi,jvj)(i,j) ∈ Πb for a
given u. It turns out that these iterations are fully justified by the general Sinkhorn
theorem, which gave its name to this particular procedure.

Following Sinkhorn and Knopp, 1967, the scaling procedure to compute Pε is :

u(l+1) =
a

Kv(l)
and v(l+1) =

b
KTu(l+1)

. (3.21)

From Sinkhorn theorem, we know that the solution is unique up to a multiplica-
tive constant (if (u, v) is a solution, ( u

λ ,λv) is also one), but the algorithm will always
converges to a pair (u, v) satisfying Proposition 51.
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Another way of seeing the Sinkhorn theorem is from a Bregman iterative projec-
tion point of view. Indeed, as Equation (3.20) suggests, the entropic regularization
of the optimal transport problem can be seen as a projection on Π(a, b) with the KL-
divergence of the Gibbs kernel of the cost matrix. This form suggests the use of a
Bregman iterative projection algorithm, introduced by Bregman, 1967. The principle
is to divide the constraints into simpler ones easier to handle and to alternatively
project on each corresponding set. Bregman, 1967 showed that under general as-
sumptions, this algorithm converges. It is the case for affine subconstraints. A deep
study of general Bregman algorithms and their application to optimal transport can
be found in Benamou et al., 2015.

In our case, the set Π(a, b) can be seen as the addition (intersection) of two con-
straints Πa = {P; P1m = a} and Πb = {P; PT1 = b}. These two sets are affine, and
therefore the iterative Bregman projections converges with the following procedure

P(2l+1) = arg min
P∈Πa

KL(P|P(2l)) and P(2l+2) = arg min
P∈Πb

KL(P|P(2l+1)). (3.22)

The two problems of Equation 3.22 can be solved using a Lagrangian multiplier,
following the same scheme as the proof of Proposition 51, we define

L(P, α) = KL(P|K)− 〈α, P1m − a〉

and we have
∂L(P∗, α)

∂Pi,j
= 0⇔ P∗i,j = λi × Ki,j

with λi only depending on i. Using the constraints P∗ ∈ Πa, we find that

∀i, λi =
ai

∑j Ki,j
,

which gives the result.
The second problem is solved exactly the same way, and this leads to exactly the

same updates as seen previously. The two approaches are perfectly equivalent and
two different ways of seeing the problem.

In practice, the Sinkhorn algorithm involves the Gibbs kernel of the cost matrix,
which can create some computational problems due to the exponentiation. So it is
more efficient and convenient to work in the log-domain. The detailed algorithm is
presented in Algorithm 9. It makes use of a logsumexp function, that is generally
implemented in standard computer science libraries, that efficiently computes the
logarithm of the sum of all the exponential of an array.

3.5.4 Continuous formulation

The entropic regularization can also be formulated in a continuous setting:

Problem 4. Let µ, ν ∈ P(X) absolutely continuous with respect to the Lebesgue
measure and c a cost function. Solve

inf
γ∈Π(µ,ν)

ˆ
X×X

cdγ + εH(γ|µ⊗ ν). (3.23)

As for the other problems, the continuous case is more subtle because of issues
of regularity and definition of limits. However, it is still relevant to study, as it is
can be related to physics, and in particular to a problem formulated by Schrödinger:
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Algorithm 9 Sinkhorn algorithm

Input: A cost matrix C, input vectors a and b, ε > 0
Output: Pε solution of the entropic regularization.

1: Initialize log u and log v
2: for A given number of iteration do
3: log Xi,j ← −

Ci,j
ε + log vj

4: log u← log a− logsumexp(X)

5: log Yi,j ← −
Cj,i
ε + log ui

6: log v← log b− logsumexp(Y)
7: end for
8: Pε ← exp(log ui −

Ci,j
ε + log vj)

9: Return Pε

knowing the distributions of particles at an initial time t0 and a final time t1, identify
the most likely flow of density of particles between these two times. The problem
seems indeed related to the entropy, which was originally introduced in physics to
measure the "amount of chaos in the universe", and turns out to be possibly recasted
in an entropic regularization optimal transport problem. It is interesting to note that
in this context, the parameter ε can be interpreted as the temperature of the particles.
See Léonard, 2013 for more details.

3.5.5 Extensions of the entropic regularization

The Sinkhorn algorithm plays a central role in the application of optimal transport.
It enables to use optimal transport on problem where the network simplex algorithm
doesn’t scale. We presented in Section 3.5.3 the basic ideas, but it has been widely
studied and improved. Many works have been made to speed up its computation
using GPU (see Cuturi, 2013), multiscale approaches (see Schmitzer, 2019), conver-
gence acceleration (see Peyré et al., 2019) and approximations (see Solomon et al.,
2015 for instance). The Sinkhorn algorithm has also been generalized to a wider
type of algorithms in Peyré, 2015 and Chizat et al., 2018.

Still, as we saw, the entropic regularization is more than a computational friendly
application. Its use can be preferable to the regular transport cost in various practical
applications, as it models better some chaotic and spreading behaviors. Besides, a
similar duality relation holds for the regularized transport cost, which turns out to
be differentiable with a simple formula:

Proposition 52 (Dual of the discrete entropic regularization). For ε > 0, we have

Lε
C = max

f∈Rn,g∈Rm
〈 f , a〉+ 〈g, b〉 − ε〈e f/ε, Keg/ε〉. (3.24)

Proposition 53. For ε > 0 and C a cost matrix, (a, b) → Lε
C is convex and differentiable.

Its gradient reads
∇Lε

C(a, b) = ( f ∗, g∗)

where ( f ∗, g∗) is the unique solution of Equation 3.24 such that ∑i fi = ∑j gj = 0.
Similarly, for a, b two vectors summing to 1, the function C → Lε

C(a, b) is convex and
smooth and

∇CLε
C(a, b) = P∗
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where P∗ is the unique optimal solution of the entropic regularization of the discrete optimal
transport problem.

These beautiful results make the regularized Wasserstein distance extremely use-
ful in fields of data science and machine learning.

3.6 Multi-marginal optimal transport

3.6.1 Continuous formulation

Until now, we considered the problem of optimal transport as transporting the mass
from a source distribution to a target distribution. This seemed at first unsymmetri-
cal (with the Monge formulation), but we saw with the Kantorovich relaxation that
it was more natural to search for an optimal coupling (a transport plan) instead of a
transport map. This formulation does not limit the number of marginals to couple.
When they are more than two, we speak of the multi-marginal optimal transport
problem.

Problem 5 (Multi-marginal optimal transport). Given p spaces X1, . . . , Xp, p distri-
butions ν1 ∈ P(X1), . . . , νp ∈ P(Xp) called marginals, and c : X1 × · · · × Xp → R+ a
lower semi-continuous cost function, we consider the following optimization prob-
lem:

inf
γ∈Π(ν1,...,νp)

ˆ
X1×···×Xp

cdγ (3.25)

where Π(ν1, . . . , νp) is the set of admissible coupling having ν1, . . . , νp as marginals,
i.e. such that

∀i ∈ J1, pK, πi(γ) = νi

where πi : X1 × · · · × Xp → Xi is the canonical projection.
The value of (3.25) is called the transport cost and is denoted by Lc(ν1, . . . , νp).

For p = 2, the multi-marginal optimal transport problem exactly corresponds
to the regular optimal transport problem. Many of the results on regular optimal
transport apply to the multi-marginal case, with sometimes some technical adjust-
ments due to the scaling of the dimension. It appears that it also leads to special
results and form of solutions with no counter-part in the two marginal case. The
multi-marginality character of the problem increases its difficulty, and it has been
less studied. In particular, we can show that Problem 5 admits a solution, and com-
pute its dual problem :

Problem 6 (Dual of multi-marginal optimal transport). Let ν1, . . . , νp be p marginals
and c a cost function. Find

sup
u1,...,up∈Φc

p

∑
i=1

ˆ
Xi

φidνi, (3.26)

with

Φc =

{
u1, . . . , up ∈ L1(dν1)× · · · × L1(dνp); ∀(x1, . . . , xp) ∈ X1 × · · · × Xp, ∑

i
φ(xi) ≤ c(x1, . . . , xp)

}

the set of admissible potentials.

The form of the dual is not surprising and can be guessed from the two marginals
problem, which is obviously a particular case of this one. The same concepts can
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be derived from this formulation, like the multi-marginal c-transform (also called
c-conjugate) and the c-cyclically monotone set.

However, the strong duality relation is not as well-known as for the two marginals
case. From Kellerer, 1984, it holds for bounded costs. Some recent work have shown
that it holds for the Coulomb cost:

c(x1, . . . , cK) = ∑
k 6=k′

1
|xk − xk′ |2

.

in some particular cases.
We can define similarly the Monge formulation of the multi marginal optimal

transport problem:

Problem 7 (Multi-marginal Monge formulation). Let ν1 ∈ P(X1), . . . , νp ∈ P(Xp)
and c : X1 × · · · × Xp → R a lower semi-continuous cost function. Find

inf
(T1,...,Tp)∈T (ν1,...,νp)

ˆ
(x1,...,xp)∈X1×···×Xp

c(T1(x1), . . . , Tp(xp))dν1(x)

where T (ν1, . . . , νp) is the set of admissible transport maps, and is defined by

T (ν1, . . . , νp) = {(T1, . . . , Tp); Ti#ν1 = νi, 2 ≤ i ≤ p and T1 = I}.

In this formulation, we consider having one source distributions and p− 1 target
distribution. It turns out that the results of Proposition 22 can easily be scaled by
recurrence to the multi-marginal case:

Proposition 54. If X1, . . . , XK are Polish space, ν1, . . . , νK are non-atomic probability mea-
sures, and c a continuous cost, the multi-marginal Monge formulation and the multi-marginal
Kantorovich formulation have the same solution.

See Nenna, 2016 for more details on the multi-marginal optimal transport prob-
lem.

3.6.2 Discrete formulation

The discrete multi-marginal formulation and its dual derive quite naturally from the
continuous two marginals ones.

Problem 8 (Discrete multi-marginal optimal transport). Let a1, . . . , ap be vectors of
Rd1 , . . . , Rdp and C ∈ Rd1×···×dp be a cost matrix. Find

min
P∈Π(a1,...,ap)

< C, P >= min
P∈Π(a1,...,ap)

∑
s

ds

∑
is=1

Pi1,...,ip Ci1,...,ip ,

with Π(a1, . . . , ap) = {P ∈ Rd1×···×dp ; ∀s, ∀is, ∑l 6=s ∑nl
il=1 Pi1,...,ip = as,is}.

Problem 9 (Dual of the discrete multi-marginal OT problem). Let a1, . . . , ap be vec-
tors of Rd1 , . . . , Rdp and C ∈ Rd1×···×dp be a cost matrix. Find

max
( f 1,..., f K)∈ΦC

K

∑
k=1

dk

∑
ik=1

f k
ik

aik ,

where ΦC = {( f 1, . . . , f K) ∈ Rd1 × · · · ×RdK ; ∀(i1, . . . , iK), ∑k f k
ik
≤ Ci1,...,iK}.
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Similarly to the two marginals problem, the multi-marginal transport problem
can be formulated as a general linear problem, and solved by a solver. However,
the primal (resp. the dual) problem has d1 × · · · × dK variables (resp. constraints)
and d1 + . . . + dK constraints (resp. variables). This makes this very inefficient and
enables to solve the problem only when having a few marginals with a few points.

3.6.3 Barycenter and optimal transport

Having a metric on a given space enables to define the notion of barycenter on this
space. There are several ways to do so, the most popular follows the idea of the
Fréchet mean:

Definition 55. Given K points x1, . . . , xK ∈ X, a "pseudo-metric" d on this space and
λ1, . . . , λK ∈ R+ some weights, a barycenter of x1, . . . , xK for d is defined by

Bd(x1, . . . , xp) = arg min
y∈Rd

∑
i

λid(xi, y).

Bd is called the barycentric map and is not in general single-valued.

When X is an Euclidian space and d is the square of the l2 norm, the barycenter
of K points is unique and we have

∀x1, . . . , xK ∈ X, B2(x1, . . . , xK) = ∑
i

λixi. (3.27)

In this case, B2 is single-valued and defines a proper function from XK to X.
As we saw, optimal transport theory can define a distance on the space of dis-

tributions thanks to the the Wasserstein distance. The question of a Wasserstein
barycenter arises therefore naturally.

Problem 10 (Wasserstein Barycenter). Given K probability distributions ν1, . . . , νK ∈
P(X) and λ1, . . . , λK ∈ R+, find

inf
ν∈P(X)

∑
i

λiWp(νi, ν) (3.28)

where Wp is the p-Wasserstein distance.

Due to the high non-linearity of this problem, it is very difficult and it still re-
mains an open issue to compute and characterize the Wasserstein barycenters. How-
ever, some relaxations have been considered like the transport cost barycenter:

Problem 11 (Transport cost barycenter). Given K probability distributions ν1, . . . , νK ∈
P(X), λ1, . . . , λK ∈ R+ and a cost function c, find

inf
ν

∑
i

λiLc(νi, ν). (3.29)

The main advantage of this formulation is that the objective function becomes
linear. In the discrete case, we have

min
a∈Σn

min
P1∈Rn×n1 ,...,PK∈Rn×nK

{
∑

k
λk < Pk, Ck >; ∀k, Pk1nk = a, PT

k 1n = bk

}

it enables to solve it with a linear solver, or subgradient descent on the dual to tackle
the scalability of the problem, as presented in Carlier, Oberman, and Oudet, 2015,
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or can even be approximated using Bregman iterative projections, see Benamou et
al., 2015. The main result on the transport cost barycenters is due to Agueh and
Carlier, 2011, who have studied in depth the questions of existence and unicity of
the barycenters for the square of the 2-Wasserstein distance :

inf
ν

∑
i

λiW2
2 (νi, ν) = inf

ν
∑

i
λiL2(νi, ν). (3.30)

They have shown existence, unicity and regularity of the solution, and that the solu-
tions of this barycenter problem can be related to the solution of the multi-marginal
optimal transport problem with a particular cost function (see also Gangbo and
Świkech, 1998), which can be written

inf
γ∈Π(ν1,ν2,...,νp)

ˆ
Rd×···×Rd

1
2

p

∑
i,j=1

λiλj|yi − yj|2dγ(y1, y2, . . . , yp), (3.31)

where Π(ν1, ν2, . . . , νp) is the set of probability measures on (Rd)p with ν1, ν2, . . . , νp
as marginals. More precisely, they show the following proposition.

Proposition 56 (Agueh and Carlier, 2011). Assume that νi vanishes on small sets for
i = 1, . . . , p. If (3.31) has a solution γ∗, then ν∗ = B#γ∗ is a solution of (3.30), and the
infimum of (3.31) and (3.30) are equal.

It turns out that this equivalence remains relevant for barycenters of more gen-
eral transport costs, if the barycentric map Bc is single-valued.

Proposition 57. Let ν1, . . . , νK ∈ P(X) be K probability distributions, λ1, . . . , λK ∈ R+

and a cost function c such that Bc is single-valued. Then Bc#γ∗ is a solution of the transport
cost barycenter, where γ∗ is an optimal transport plan of the multimarginal optimal transport
problem with marginals ν1, . . . , νK and the cost

ĉ :

{
X1 × · · · × XK → R

(x1, . . . , xK) → ∑k c(xk, Bc(x1, . . . , xK))

Some other variations of the barycenter problem have been studied like replac-
ing the transport cost by its entropic regularization (see Cuturi and Doucet, 2014
and Cuturi and Peyré, 2016), or by restraining the constraint to Gaussian mixtures
(see Delon and Desolneux, 2020). This topic is still a very active area of research,
as Wasserstein barycenters have numerous applications in image processing, com-
puter graphics, statistics and machine learning. See Peyré and Cuturi, 2019 for more
details.

3.6.4 Interpretation

The two marginals optimal transport problem can be intuitively understood using
the shops and factory interpretation. We could try to extend it to the multi-marginal
case, saying that each factory produces K− 1 products and we have K− 1 shops spe-
cialized in each product. This approaches a Monge formulation (due to the asymme-
try of the marginals) and doesn’t work directly because the cost function concerns
all marginals at once, and not taken independently.
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FIGURE 3.4: Illustration of the burger making interpretation of the
multi-marginal optimal transport problem. The distribution can be
modeled by the different ingredients of the burgers, and a multi-
marginal transport plan is the set of made burgers (that can be seen
as team of ingredients). Each burger has a taste according to the syn-
ergy of its components, and the goal is to optimize the global taste

(the sum) of the production.

Multi-marginal interpretation:

The multi-marginal optimal transport problem is better represented in the context of
a restaurant: let imagine that we want to make burgers. The distributions ν1, . . . , νp
corresponds to the different ingredients needed, say steak, cheese, salad, etc. . . . Each
distribution indicates the supply of each ingredients. For instance, if ν1 = ∑i a(1)i δxi ,
then x1, . . . , xn refer to the different categories of cheese, e.g. cheddar, roquefort
and camembert, and ai how much of each is available. To make one hamburger,
we need exactly one piece of each ingredient and its global taste will depend on the
synergy of the ingredients, given by the cost c. It is indeed a total waste to mix a high
quality rare steak with some tasteless cheddar, or to mix a well done steak with some
beaufort. The problem is to find the way to make the most tasteful burger production
from the ingredients at disposal. This is a way to find an optimal combination among
different populations, or a "team assignment" as it is called in the fields of economics
(with yet a slightly more restricted problem). This is illustrated in Figure 3.4.

Transport cost barycenter problem interpretation :

As we saw, the optimal transport problem is well-described by the notion of "trans-
portation", and the multimarginal optimal transport problem is more about assigne-
ment. The transport cost barycenter problem stands in middle ground. For two
point of the map x and y, c(x, y) still corresponds to the cost of transporting some-
thing from x to y. Let imagine that we are in possession of old cars that we want to
recycle. But recycling a wheel is different of recycling an engine : for each part of the
car, there is a specialized recycling center. The distributions ν1, . . . , νp correspond to
the locations and capacities of these specialized centers, for instance ν1 refers to the
wheel centers, ν2 the engine centers, and so on. Before recycling the cars with these
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FIGURE 3.5: Illustration of the interpretation of the optimal trans-
port barycenter problem. The input distributions ν1, . . . , νK are mod-
eled by different recycling centers, specialized in wheel, engine or
car body. In this context, the barycenter µ is a set of dissassembling
centers that cut cars into its different components and send it to the

recycling centers.

centers, we need first to disassemble them and send the pieces to the corresponding
centers. The problem of the barycenter consists in choosing the locations of the dis-
assembling centers. We can create as much as we want, but we want to minimize the
cost of transporting the car piece to the recycling centers once they are disassembled.
This is illustrated in Figure 3.5.

Link between the transport cost barycenter and the multi-marginal transport :

Finding a solution of the transport cost barycenter problem corresponds to choosing
an optimal distribution of the disassembly centers following the previous interpre-
tation. However, in order to actually recycle the cars, each disassembly center has to
figure out where it has to send the disassembled pieces. The different parts are inde-
pendent, so it can be done by solving a regular optimal transport problem between
the disassambling centers distribution (the barycenter) and each of the correspond-
ing specialized recycling center distribution.

From another point of view, this corresponds to the knowledge of the final distri-
bution of the destination of the cars pieces, i.e. for each particular car, to which recy-
cling centers go its different components. This is exactly a team assignment problem,
a team being the set of recycling centers which will receive the different pieces from
a same car. And this information is enough to recover the optimal location of the dis-
sassembly centers: at the spatial barycenter of all the teams of recycling centers. This
highlights the fact that the transport cost barycenter problem can be reformulated as
a multimarginal optimal transport problem. This is illustrated in Figure 3.6.

3.6.5 Multi-marginal Sinkhorn iterations

The well-known Sinkhorn algorithm used to solve optimal transport regularization
can be extended to the multi-marginal case. It leads to similar Bregmann projections
(see Benamou et al., 2015 for more details).
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FIGURE 3.6: Illustration of the link betwwen the barycenter and the
multi-marginal problem. The solution of the barycenter µ, the dissas-
sembling centers, can be reduced to the teams of recycling centers that
will work together (receiving the components of the same car). With
a proper cost, these teams can be found by a multi-marginal transport

plan γ.

We will use in this section multi-indices. Let I = J1, n1K × · · · × J1, nKK, and
i = (i1, . . . , iK) ∈ I , then we shall write Ci for Ci1,...,iK .

We consider a1 ∈ Rn1 , . . . , aK ∈ RnK the discrete marginals of our problem, and
C ∈ Rn1×···×nK the cost matrix.

The regularized OT problem can be generalized to the multi-marginal case by

LC(a1, . . . , aK) = inf
P∈Π(a1,...,aK)

∑
i∈I

CiPi − εH(P)

Similarly to the two marginals case (see Equation 1.3), this problem can be refor-
mulated as an optimization of a Kullback Leibler divergence:

LC(a1, . . . , aK) = arg min
P∈Π(a1,...,aK)

KL(P|K)

with Ki = e−Ci/ε.
The solution P∗ can be approached by Bregman projections and can be written

in this form

∀i ∈ I , P∗i = Ki ×
K

∏
k=1

(uk)ik ,

where u1, . . . , uK are non-negative vectors uniquely determined up to a multiplica-
tive constant, which can be obtained following an iterative projection procedure,
similar to the Sinkhorn algorithm (see Section 3.5.3). Each uk must be updated as
follow:

∀ik ∈ J1, nkK, (u
(n+1)
k )ik =

(ak)ik

Sk(g(n+1)
k )
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where Sk and gk are the marginalization along dimension k and the actual k-
multiplicative factor, and are defined by

∀i ∈ I , (g(n+1)
k )i = Ki

(
∏
l<k

(u(n+1)
l )il

)(
∏
l>k

(u(n)
l )il

)

∀ik ∈ J1, nkK, Sk(P)ik = ∑
i1,...,ik−1,ik+1,...,iK

Pi1,...,ik−1,ik,ik+1,...,iK

These operations are a direct generalization of the 2-marginal case. They can be
coded in Python and enable to approximate the solution of the multimarginal OT
problem with more points and dimension that the exact linear approach. It will be
used in the next chapter for several experiments.

3.7 Conclusion

Optimal transport is a very wide subject. We presented here the basic tools and
notions that we will use in the next Chapter, as well as some insights on related
parts of the fields, but we did not mention many other variations and extensions of
optimal transport.

Another big aspect of optimal transport is its application to physics model and
in particular to the fluid mecanics. Optimal transport problems also have a dynamic
formulation, called the Benamou-Brenier formulation, more related to interpolation
and partial differential equations. For a good insight on optimal transport, see Vil-
lani, 2003 or Villani, 2008 for a theoretical perspective, and Peyré and Cuturi, 2019
from a more computational point of view.
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Chapter 4

Generalized Wasserstein
Barycenter

In this chapter, we introduce a generalization of the Wasserstein barycenter, to a case
where the initial probability measures live on different subspaces of Rd. This study
is motivated by the problem of patch model fusion introduced in Chapter 2 and aims
at finding a way to merge patch models using optimal transport.

4.1 Introduction

In recent years, optimal transport (Villani, 2008) has received a lot of attention and
has become an essential tool to compare or interpolate between probability distri-
butions. The apparition of efficient numerical approaches has made optimal trans-
port particularly successful in numerous applied fields such as image processing,
machine learning (particularly deep learning) and computer graphics (Peyré and
Cuturi, 2019), to name just a few.

An important tool derived from optimal transport is the notion of Wasserstein
barycenter. In the euclidean case, the barycenter of x1, . . . , xp with weights λ1, . . . , λp

(positive and summing to 1) is the point x of Rd which minimizes ∑
p
i=1 λi|x − xi|22.

The Wasserstein barycenter is obtained in the same way in the space P2(Rd) of prob-
ability measures with second order moments, by replacing the euclidean distance by
the square Wasserstein distance W2.

In this chapter, we propose a generalization of the notion of Wasserstein barycen-
ter, to a case where the considered probability measures live on different subspaces
of Rd. Relying on the same euclidean analogy as above, for p vectors xi ∈ Rdi and p
linear transformations Pi : Rd → Rdi , i = 1, . . . , p, a generalized barycenter between
these xi can be defined as a minimizer in Rd of ∑

p
i=1 λi|Pi(x) − xi|22. A solution is

given by x̂ = (∑
p
i=1 λiPT

i Pi)
−1(∑ λiPT

i xi) when the matrix ∑
p
i=1 λiPT

i Pi is full rank.
Our generalized Wasserstein barycenter is obtained by replacing the vectors xi by p
probability measures νi on their respective subspace Rdi and the euclidean distance
by W2. In other words, we study the minimization problem

inf
ν

p

∑
i=1

λiW2
2 (Pi#ν, νi), (4.1)

where Pi#ν denotes the push-forward measure of ν by Pi.
Observe that this formulation contains the Wasserstein barycenter problem as a

special case (choosing Pi as the identity matrix on Rd ). A particular case of this
problem, where all but one of the Pi are 1D projections and the last one is full rank,
has been studied in Abraham et al., 2017 for tomography reconstruction.
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FIGURE 4.1: Illustration of the geometrical application of our gener-
alized barycenter.

Figure 4.1 illustrates an example in R3 for p = 4 distributions, where the trans-
formations P1 are linear projections on four different plans. Knowing these four pro-
jections ν1, . . . , ν4, we look for the 3d probability measure ν which minimizes (4.1).

As a simpler example, for p = 2 probability measures ν1 and ν2 on R2, assume
that P1 : R3 → R2 is the projection on the first two coordinates, and P2 : R3 → R2 is
the projection on the last two coordinates. If ν1 and ν2 coincide on their only common
coordinate, the minimum of (4.1) is 0 and a possible solution is given by the gluing
lemma applied to ν1 and ν2. A more interesting case is obtained when the measures
ν1 and ν2 do not coincide on their common coordinate. In this case, a solution of
the minimization problem should realize a compromise between the marginals of ν1
and ν2 on this common coordinate.

A first application of this problem is the reconstruction of a measure from the
mere knowledge of projections of this measure on different subspaces. These pro-
jections can be noisy or contain errors, and therefore do not necessarily coincide on
their common subspaces. Another application, in image processing, is patch-based
aggregation Saint-Dizier, Delon, and Bouveyron, 2020. Patches are small overlap-
ping image pieces. Many Bayesian image restoration approaches Zoran and Weiss,
2011; Lebrun, Buades, and Morel, 2013; Wang and Morel, 2013; Yu, Sapiro, and Mal-
lat, 2012; Teodoro, Almeida, and Figueiredo, 2015; Houdard, Bouveyron, and Delon,
2017 work at the patch level and assume stochastic prior models on these patches.
Since these models are usually infered independently on all patches, they never co-
incide on their overlaps. In this context, the generalized Wasserstein barycenter is
a way to define a stochastic model on the whole image from a set of probability
distributions on patches.

The contributions of this chapter are the following. We first show the existence
of solutions for the minimization problem (4.1). We also show how it is related
to a multi-marginal optimal transport problem in dimension ∑

p
i=1 di, and how to

solve 4.1 numerically.
The chapter is organized as follows. Section 4.2 studies the dual of (4.1), shows

the existence of our generalized Wasserstein barycenters and studies the link with an
associated multimarginal problem. Section 4.3 illustrates the notion of generalized
Wasserstein barycenters on Gaussian distributions, and finally, Section 4.4 proposes
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some numerical experiments.

4.2 Generalized Wasserstein barycenters between probabil-
ity measures on different subspaces

In the Wasserstein barycenter problem (see Section 3.6.3), the measures ν1, . . . , νp are
assumed to live in the same space Rd. In the multi-marginal formulation (3.31), these
measures are seen as marginals on independent spaces of a probability measure on
the product space (Rd)p. The generalized Wasserstein barycenters (GWB) can be
seen as a generalization of these problems, where the space to which the νi live can
intersect.

Definition 58 (GWB). Given p positive integers d1, . . . , dp, p probability measures
(ν1, . . . , νp) ∈ P2(Rd1)× · · · × P2(R

dp), λ = (λ1, . . . , λp) positive weights summing
to 1 and p surjective linear applications Pi : Rd → Rdi , a solution ν of the minimiza-
tion problem

inf
ν

p

∑
i=1

λiW2
2 (νi, Pi#ν) (GWB)

is called generalized Wasserstein barycenter of the marginals νi for the applications
Pi.

Observe that the previous energy is convex in ν. In the following section, we
study the dual of this optimization problem and we show the existence of solutions
for the primal optimization problem.

Remark 59. • The case where X1 = · · · = Xp = X, P1 = · · · = Pp = Id and
ci = λic corresponds to the optimal barycenter problem introduced in Section 3.6.3.

• The case where X = X1 × · · · × Xp and where Pi : X → Xi are the canonical
projections is trivial, and any µ ∈ Π(ν1, . . . , νp) is a marginal barycenter.

• We can assume without loss of generality that the projections Pi are surjective, since
the spaces Xi could be replaced by Pi(Xi).

4.2.1 Study of the dual

Definitions

We denote byM(Rdi) the space of bounded Radon measures on Rdi , identified with
the dual of C0(Rdi), the set of continuous functions on Rdi vanishing at infinity. We
also denote byM1

+(R
d) the set of Radon probability measures on Rd.

Following the same reasoning as Agueh and Carlier, 2011, we define

Fi = (1 + |.|2)C0(R
di) =

{
fi ∈ C(Rdi); lim

|x|→+∞

| fi(x)|
1 + |x|2 = 0

}
.

The dual of Fi is identified with F′i =
{

µ ∈ M(Rdi); (1 + |.|2)µ ∈ M(Rdi)
}

. We
define as well F by

F =

{
f ∈ (1 + |.|2)C0(R

d); ∃( f1, . . . , fp) ∈ F1 × · · · × Fp;
p

∑
i=1

fi ◦ Pi = f

}
,
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equipped with the norm

∀ f ∈ F, || f ||F = sup
x∈Rd

| f (x)|
1 + |x|2 .

Proposition 60. The dual space F′ of F is

F′ =
{

ν ∈ M(Rd); ∀i, Pi#ν ∈ F′i
}

.

Proof. Let E =
{

ν ∈ M(Rd); ∀i, Pi#ν ∈ F′i
}

. Let i ∈ J1, pK and fi ∈ Fi. We have, for
all x ∈ Rd,

| fi ◦ Pi(x)|
1 + |x|2 =

| fi ◦ Pi(x)|
1 + |Pi(x)|2 ×

1 + |Pi(x)|2
1 + |x|2

≤ | fi ◦ Pi(x)|
1 + |Pi(x)|2 ×max(|||Pi|||2, 1) −→

|Pi(x)|→+∞
0.

where |||.||| is the operator norm, namely |||Pi||| = max|x|=1 |Pi(x)|
Let ε > 0. By the previous equation, we can choose A1 such that |Pi(x)| ≥

A1 =⇒ | fi◦Pi(x)|
1+|x|2 ≤ ε.

By continuity of fi, we know that K = sup|x|≤A1
| fi(x)| < +∞. So we can choose

A2 such that |x| ≥ A2 =⇒ K
1+|x|2 ≤ ε.

Let x such that |x| ≥ max(A1, A2). We have then two cases:

• If |Pi(x)| ≥ A1, then by definition of A1, | fi◦Pi(x)|
1+|x|2 ≤ ε.

• If |Pi(x)| < A1, then | fi ◦ Pi(x)| ≤ K and therefore | fi◦Pi(x)|
1+|x|2 ≤

K
1+|x|2 ≤ ε.

This shows that ∀x ∈ Rd such that |x| ≥ max(A1, A2),
| fi◦Pi(x)|

1+|x|2 ≤ ε and therefore

| fi ◦ Pi(x)|
1 + |x|2 −→

|x|→+∞
0.

So fi ◦ Pi ∈ F.
Let µ ∈ F′, we have

ˆ
Rdi

fidPi#µ =

ˆ
Rd

fi ◦ Pidµ < ∞

because µ ∈ F′. As a consequence, ∀i ∈ J1, pK, we have Pi#µ ∈ F′i , and therefore
F′ ⊂ E.

Conversely, let µ ∈ E. For f ∈ F, it exists f1, . . . , fp ∈ F1 × · · · × Fp such that
f = ∑

p
i=1 fi ◦ Pi, so we have µ( f ) = ∑

p
i=1

´
Rdi fid(Pi#µ) < +∞. So µ ∈ F′.

We are interested in the following primal problem:

inf
ν∈F′∩M1

+(R
d)

p

∑
i=1

λiW2
2 (νi, Pi#ν). (GWB)

We define, for fi ∈ Fi and xi ∈ Rdi ,

Si fi(xi) = inf
yi∈Rdi

λi|xi − yi|2 − fi(yi).
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and we consider the following maximization problem

sup
∀i, fi∈Fi ; ∑

p
k=1 fk◦Pk=0

p

∑
i=1

ˆ
Rdi

Si fidνi. (GWB’)

Duality relation

The proof of the duality between (GWB) and (GWB’) is a bit more complicated than
for the regular barycenter formulation, because of the singularity of the space F. We
will need the following assumption, whose validity shall be discussed later on.

Assumption 1. Let ε > 0. It exists ηε > 0 such that for all f ∈ F,

|| f || ≤ ηε =⇒ ∃( f1, . . . , fp) ∈ F1 × . . .× Fp such that ∑
i

fi ◦ Pi = f and ∀i, || fi|| ≤ ε.

We can now express the duality relation.

Proposition 61. Under Assumption 1, the following duality relation holds

(GWB) = (GWB’).

Proof. We suppose that Assumption 1 holds. The proof goes as follows: we first in-
troduce convex functions His which help us express the transport cost differently.
From those, we define a convex function H which enables to express the dual prob-
lem and the primal problem with its conjugate. We finally conclude thanks to a
duality theorem.

Using classical optimal transport results, we first express the individual transport
costs of the barycenter with respect to the function Si:

λiLci(νi, Pi#ν) = sup
{ˆ

Rdi
fidPi#ν +

ˆ
Rdi

gidνi; fi, gi ∈ Cb(R
di), fi(xi) + gi(yi) ≤ λi|xi − yi|2

}
= sup

{ˆ
Rd

fi ◦ Pidν +

ˆ
xi∈Rdi

inf
yi∈Rdi

(λi|xi − yi|2 − fi(yi))dνi, fi ∈ Cb(R
di)

}

= sup

{ˆ
Rd

fi ◦ Pidν +

ˆ
xi∈Rdi

inf
yi∈Rdi

(λi|xi − yi|2 − fi(yi))dνi, fi ∈ Fi

}

= sup
{ˆ

Rd
fi ◦ Pi(x)dν +

ˆ
Rdi

Si fidνi, fi ∈ Fi

}
The switch from Cb(R

di) to Fi is valid since Cb(R
di) ⊂ Fi is dense in Fi and because

the expression we try to optimize is continuous in the functions fi.
We define, for fi ∈ Fi,

Hi( fi) = −
ˆ

xi∈Rdi
Si fidνi

.
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It is then easy to show that fi → Si fi is concave, and that Hi is convex. We will
now study the conjugate of the H∗i s, namely

H∗i (µi) = sup
fi∈Fi

{ˆ
Rd

fidµi − Hi( fi)

}

Let µi ∈ F′i .

• If µi is not positive, then it exists fi ∈ Fi such that f ≤ 0 and
´

fidµi > 0. Then
considering t fi, for t > 0, we have t fi ∈ Fi, Hi(t fi) =

´
Rdi supyi

t fi(yi)− λi|xi −
yi|2dνi ≤ 0 because t fi ≤ 0 and so

H∗i (µi) ≥ t
ˆ

fidµi − Hi(t fi) ≥ t
ˆ

fidµi →t→+∞ +∞

• If µi is positive and |µi| 6= 1, then using fi : x → t, t ∈ R, we have lim|xi |→+∞
fi(xi)

1+|xi |2
=

0, so fi ∈ Fi, which gives Si fi = t and

H∗i (µi) ≥ sup
t

ˆ
tdµi −

ˆ
tdνi = sup

t
t(|µi| − 1) = +∞.

• Finally, if µi ∈ P(Rd), then by Kantorovitch duality, we have directly that
H∗i (µi) = Lci(νi, µi).

Therefore

H∗i (µi) =

{
Lci(νi, µi) if µi ∈ P(Rd) ∩ F′i
+∞ otherwise

And, in particular, for ν ∈ F′ :

H∗i (Pi#ν) =

{
Lci(νi, Pi#ν) if ν ∈ M1

+(R
d) ∩ F′

+∞ otherwise

If we denote by K(ν) = ∑i H∗i (Pi#ν), we have

(GWB) = inf
ν∈F′∩P(Rd)

∑
i

H∗i (Pi#ν) = inf
ν∈F′

K(ν) = −K∗(0)

For f ∈ (1 + |.|2)C0(Rd), we define

H( f ) = inf

{
∑

i
Hi( fi); ∑

i
fi ◦ Pi = f

}

with the convention inf ∅ = +∞.



4.2. Generalized Wasserstein barycenters between probability measures on
different subspaces

125

H is convex, dom(H) = F and we have, for ν ∈ F′,

H∗(ν) = sup
f∈F

{ˆ
Rd

f dν− inf
∑i fi◦Pi= f

∑
i

Hi( fi)

}

= sup
f∈F

{ˆ
Rd

f dν + sup
∑i fi◦Pi= f

−∑
i

Hi( fi)

}

= sup
f∈F,∑i fi◦Pi= f

{ˆ
Rd

f dν−∑
i

Hi( fi)

}

= sup
fi∈Fi

{
∑

i

ˆ
Rd

fi ◦ Pidν− Hi( fi)

}

= ∑
i

sup
fi∈Fi

{ˆ
Rd

fidPi#ν− Hi( fi)

}
= ∑

i
H∗i (Pi#ν) = K(ν)

So H∗ = K and we have (GWB) = −K∗(0) = −H∗∗(0) and −H(0) = (P).
Let us show that H(0) = H∗∗(0). We have, using that νi ∈ F′i ,

Hi( fi) = −
ˆ

xi∈Rdi
inf
yi
(λi|xi − yi|2)− fi(yi)dνi ≥ fi(0)− λi

ˆ
xi∈Rdi

|xi|2dνi > −∞

So Hi and therefore H cannot go to −∞.

Then, using Assumption 1 for ε = 1
2 min{λ1, . . . , λp}, we have ηε > 0 such

that for all satisfying || f ||F ≤ η, there exists f1, . . . , fp such that ∑i fi ◦ Pi = f and
∀i, || fi|| ≤ ε. So we have, for such a function f :

H( f ) ≤∑
i

Hi( fi) = ∑
i

ˆ
xi∈Rdi

sup
yi

( f (yi)− λi|xi − yi|2)dνi

≤∑
i

ˆ
xi∈Rdi

sup
yi

(
λi

2
(1 + |yi|2)− λi|xi − yi|2)dνi

≤∑
i

ˆ
xi∈Rdi

λi(1 + |xi|2)dνi ≤ 1 + ∑
i

λi

ˆ
xi∈Rdi

|xi|2dνi < ∞

So H is bounded around 0.

The function H̃ = H|F is well-defined, convex, and
◦

(domH̃) = F. In particular

0 ∈
◦

(domH̃), so by standard convex analysis result (see for instance Proposition 5.2
Chapter 1 from Ekeland and Temam, 1999), ∂H̃(0) 6= ∅.

Since ∀ f ∈ (1 + |.|2)C0(Rd), H( f ) =

{
H̃( f ) if f ∈ F
+∞ otherwise

, we have ∂H̃(0) ⊂

∂H(0), so ∂H(0) 6= ∅. Therefore, by equality (5.3) from Ekeland and Temam, 1999,
we have H(0) = H∗∗(0).

So we have (GWB′) = (GWB)

Concerning Assumption 1, we were only able to prove it in particular cases, al-
though we conjecture that it holds in more general cases.
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Proposition 62. If at least one space Rdi has the same dimension as Rd, we have F =
(1 + |.|2)C0(Rd) and Assumption 1 holds.

This is roughly the case of study of Abraham et al., 2017 and the proof is obvious
(just take f j = f with j such that dj = d and ∀i 6= j, fi = 0). The following proposition
gives another case of validity of Assumption 1.

Proposition 63. If P1, . . . , Pp satisfy the coordinate projection condition, i.e. if there exists
a basis B such that

∀i ∈ J1, pK, Ker(Pi) = Vect(Bi), Bi ⊂ B,

then Assumption 1 holds.

Proof. We show the result by induction on the number p of functions.
Initialization: For p = 1, since f ∈ F, we have f1 ◦ P1 = f . We choose an

arbitrary linear pseudo-inverse P̃1
−1

of P1 such that ∀x1 ∈ Rd1 , P1(P̃1
−1
(x1)) = x1.

So we have,∀x1 ∈ Rd1 ,

| f1(x1)|
1 + |x1|2

=
| f1 ◦ P1(P̃1

−1
(x1))|

1 + |x1|2

=
| f (P̃1

−1
(x1))|

1 + |P̃1
−1
(x1)|2

× 1 + |P̃1
−1
(x1)|2

1 + |x1|2

≤ || f || ×max(|||P̃1
−1|||2, 1),

so we can take ηε =
ε

max(|||P̃1
−1|||2,1)

.

Heredity: Let suppose the result for p ≥ 1, and let ε > 0 and f ∈ F.
Let B = (e1, . . . , ed) a common basis for all the Ker(Pi). For all i ∈ J1, pK, it exists

Ri ⊂ J1, dK such that ∀x = ∑j λjej ∈ Rd, Pi(x) = ∑j∈Ri
λjPi(ej), and

{
Pi(ej); j ∈ Ri

}
is

a basis of Rdi because of the surjectivity of Pi.

For xi = ∑j∈Ri
λiPi(ej) ∈ Rdi , we define P̃i

−1
(xi) = ∑j∈Ri

λiej. We have, by

construction, P̃i
−1 ◦ Pi(∑j λjej) = ∑j∈Ri

λjej.
We define f̃1 by

∀x1 ∈ Rd1 , f̃1(x1) = f1(x1) + ∑
i>1

fi ◦ Pi ◦ P̃1
−1
(x1),

and f̃i for i > 1 by

∀xi ∈ Rdi , f̃i(xi) = fi(xi)− fi ◦ Pi ◦ P̃1
−1 ◦ P1 ◦ P̃i

−1
(xi).

Then, we have by construction,

∀x1 ∈ Rd1 , f (P̃1
−1
(x1)) = f̃1(x1).

So, following the same reasoning as in the initialization, we have the property

∀ε1 > 0, ∃η such that || f || ≤ η =⇒ || f̃1|| ≤ ε1. (4.2)
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Besides, ∀x ∈ Rd

∑
i

f̃i ◦ Pi(x) = ∑
i

fi ◦ Pi(x) + ∑
i>1

(
fi ◦ Pi ◦ P̃1

−1 ◦ P1(x)− fi ◦ Pi ◦ P̃1
−1 ◦ P1 ◦ P̃i

−1 ◦ Pi(x)
)

= f (x) + ∑
i>1

(
fi ◦ Pi ◦ P̃1

−1 ◦ P1(x)− fi ◦ Pi ◦ P̃1
−1 ◦ P1 ◦ P̃i

−1 ◦ Pi(x)
)

.

If x = ∑j λjej, then

Pi ◦ P̃1
−1 ◦ P1 ◦ P̃i

−1 ◦ Pi(x) = ∑
j∈R1∩Ri

λjPi(ej)

and
Pi ◦ P̃1

−1 ◦ P1(x) = ∑
j∈R1∩Ri

λjPi(ej).

It follows that for all i, we have

fi ◦ Pi ◦ P̃1
−1 ◦ P1(x) = fi ◦ Pi ◦ P̃1

−1 ◦ P1 ◦ P̃i
−1 ◦ Pi(x),

so ∑i f̃i ◦ Pi(x) = f (x). Now, ∀x ∈ Rd,

|∑i>1 f̃i ◦ Pi(x)|
1 + |x|2 =

| f (x)− f̃1 ◦ P1(x)|
1 + |x|2

≤ | f (x)|
1 + |x|2 +

f̃1 ◦ P1(x)
1 + |P1(x)|2 ×

1 + |P1(x)|2
1 + |x|2

≤ || f ||+ || f̃1|| ×max(1, |||P1|||2). (4.3)

The rest of the proof is a combination of Property (4.2), Equation (4.3) and of the
induction hypothesis.

Applying the induction hypothesis for P2, . . . , Pp to f̃ = ∑i>1 f̃i ◦ Pi, we find

η
(p−1)
ε such that

‖ f̃ ‖ < η
(p−1)
ε =⇒ ∃ f̂2, . . . , f̂p such that ∑

i
f̂i ◦ Pi = f̃ and ∀i ∈ J2, pK, ‖ fi‖ ≤ ε.

Using (4.2), we find η such that || f || ≤ η =⇒ || f̃1|| ≤ η
(p−1)
ε

2 max(1,|||P1|||2)
. Eventually,

using (4.3), for f such that || f || ≤ ηε = min(η, η
(p−1)
ε

2 ),

||∑
i>1

f̃i ◦ Pi|| ≤
η
(p−1)
ε

2
+

η
(p−1)
ε

2 max(1, |||P1|||2)
×max(1, |||P1|||2) = η

(p−1)
ε ,

which concludes the induction.

4.2.2 Existence of solutions for (GWB)

We show in the following that the primal minimization problem (GWB) has solu-
tions and that a solution is generally not unique. The duality is not used here.

Proposition 64. The problem (GWB) has solutions.
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Proof. First, assume that ∑
p
i=1 |Pi(x)|2 is coercive. Let νn be a minimizing sequence

for (GWB). It follows that the whole sequence W2(Pi#νn, νi) is upper bounded. For
any coupling (X, Y) of (Pi#νn, νi), we can write (using Cauchy-Schwarz)

E(|X−Y|2) ≥ [
√

E(|X|2)−
√

E(|Y|2)]2.

It follows that
√

E(|X|2) ≤
√

E(|X−Y|2) +
√

E(|Y|2) and this is valid for any
coupling (X, Y) of (Pi#νn, νi), in particular for a coupling which attains the minimum
of E(|X−Y|2). For this particular coupling, we get

ˆ
Rd
|x|2d(Pi#νn) = E(|X|2) ≤

(
W2(Pi#νn, νi) +

√ˆ
Rd
|x|2dνi

)2

The right terms are both bounded independently of n and since i takes only a finite
number of values, it can be upper bounded also independently of i. We call M such
an upper bound. It follows that

ˆ
Rd

p

∑
i=1
|Pi(x)|2dνn =

p

∑
i=1

ˆ
Rd
|x|2d(Pi#νn) ≤ Mp.

We have assumed that ∑
p
i=1 |Pi(x)|2 is coercive. It follows that for any ε > 0, we

can find a compact K such that ∀x /∈ K, ∑
p
i=1 |Pi(x)|2 ≥ Mp

ε . Thus,

νn(Rd \ K) ≤ ε

Mp

ˆ
Rd\K

p

∑
i=1
|Pi(x)|2dνn ≤ ε

Mp

ˆ
Rd

p

∑
i=1
|Pi(x)|2dνn ≤ ε.

Such a compact K can be found for any positive ε, so the sequence νn is tight. It
follows, by Prokhorov theorem, that there exists a probability measure ν and a sub-
sequence of (νn) which converges weakly to ν. Without loss of generality, we still
call this sequence (νn). It is easy to show that for each i = 1, . . . , p, Pi#νn also con-
verges weakly to Pi#ν, and thus W2(Pi#νn, νi) −→W2(Pi#ν, νi) since W2 metrizes the
weak convergence on P2(Rd). Thus, ν is a solution of (GWB).

If ∑
p
i=1 |Pi(x)|2 is not coercive, it means that some directions of Rd (all directions

in
⋂p

i=1 KerPi) are not seen by the projections Pi. In these directions, the minimizing
sequence (νn) has no reason to converge and could for instance oscillate between
different measures, without affecting the value of the cost ∑

p
i=1 λiW2

2 (νi, Pi#νn). In
this case, we can instead construct a solution ν of the problem in (

⋂p
i=1 KerPi)

⊥, since
∑

p
i=1 |Pi(x)|2 is coercive on this subspace. Any probability measure on the whole

space Rd with marginal ν on (
⋂p

i=1 KerPi)
⊥ is a solution of (GWB).

We don’t have uniqueness of the solution in general. Even if ∑
p
i=1 |Pi(x)|2 is

coercive, if ν is a solution, any probability distribution µ on Rd satisfying Pi#ν = Pi#µ
for all i = 1, . . . , p is also a solution of the minimization problem. The question of
the existence and uniqueness of probability measures with known and overlapping
marginals is a difficult and important problem in probability, see for instance the
recent paper Kazi-Tani and Rullière, 2019.

Observe that if one of the Pi is an isomorphism of Rd and the corresponding νi is
absolutely continuous, we have uniqueness since ν −→ ∑

p
i=1 W2

2 (νi, Pi#ν) is strictly
convex in this case.
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Figure 4.2 shows an example where the measures ν1, . . . , νp are several 1d pro-
jections of a discrete measure (in yellow) in R2. In this case, the problem (GWB)
has at least one solution given by the yellow distribution and for which the value of
the energy is 0. We show in black the reconstruction of a probability measure with
exactly the same projections. The algorithm used for this reconstruction will be ex-
plained in Section 4.4. We see that when the number of 1d projection increases, the
reconstructed measure tends toward the discrete yellow measure.

4.2.3 Link between (GWB) and multi marginal optimal transport

In the following, we write D = d1 + · · · + dp and we assume that ∑
p
i=1 λiPT

i Pi is
invertible. For ~x = (x1, . . . , xp) ∈ Rd1 × · · · ×Rdp , we define

B(~x) = B(x1, . . . , xp) = arg min
y∈Rd

p

∑
i=1

λi|xi − Pi(y)|2 =

(
p

∑
i=1

λiPT
i Pi

)−1 p

∑
i=1

λiPT
i (xi),

and we also define the cost c(~x) by

c(~x) =
p

∑
i=1

λi|xi − Pi(B(~x))|2.

We propose to study the multimarginal problem for the measures ν1, . . . , νp and cost
function c, i.e.

inf
{ˆ

Rd1+···+dp
c(~x)dγ(~x), γ ∈ Π(ν1, . . . , νp)

}
(MM)

Proposition 65. The infimum in (MM) and (GWB) are equal. If γ is a solution of (MM),
then ν = B#γ is a solution of (GWB).

Proof. Let γ ∈ Π(ν1, . . . , νp) and define ν = B#γ. For all i, we define πi the projection
from RD = Rd1 × · · · ×Rdp to Rdi such that πi(x1, . . . , xp) = xi, and define γi =

(πi, Pi ◦ B)#γ. We easily check that γi ∈ Π(νi, Pi#ν), since ∀A ∈ Rdi , γi[A×Rdi ] =
γ[(πi, Pi ◦ B)−1(A, Rdi)] = γ[{x, xi ∈ A}] = νi[A] and γi[R

di × A] = (Pi ◦ B)#γ[A] =
Pi#(B#γ)[A] = Pi#ν[A]. Thus,

W2
2 (νi, Pi#ν) ≤

ˆ
Rdi×Rdi

|x− y|2dγi(x, y) =
ˆ

RD
|xi − (Pi ◦ B)(~x)|2dγ(~x)

As a consequence, for all γ ∈ Π(ν1, . . . , νp),

∑
i

λiW2
2 (νi, Pi#ν) ≤

ˆ
RD

c(~x)dγ(~x).

This holds for any γ ∈ Π(ν1, . . . , νp) and thus (GWB) ≤ (MM).
Conversely, let µ ∈ F′ ∩M1

+(R
d) and ηi ∈ Π(νi, Pi#µ). By the disintegration

theorem, there exists a family of probability measures (ηy
i )y∈Rdi such that ηi = η

y
i ⊗
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FIGURE 4.2: In this example, the measures ν1, . . . , νp are several 1d
projection of a discrete measure (in yellow) in R2. The number of
projection varies from 2 to 5. The reconstructed generalized barycen-
ter is shown in black, illustrating the non uniqueness of the solution
(this black probability measure has exactly the same projections as
the yellow one). The more marginals there are, the more accurate is
the reconstruction. For 5 projections, the reconstructed generalized

barycenter is the same as the original distribution.
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(Pi#µ), which implies that for all f positive and measurable on Rdi ×Rdi

ˆ
Rdi×Rdi

f (xi, y)dηi(xi, y) =
ˆ

Rdi

(ˆ
Rdi

f (xi, y)dη
y
i (xi)

)
d(Pi#µ)(y)

=

ˆ
Rd

(ˆ
Rdi

f (xi, Pi(y))dη
Pi(y)
i (xi)

)
dµ(y)

==

ˆ
Rd

(ˆ
RD

f (xi, Pi(y))dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dµ(y).

We define the probability measure θ by
ˆ

RD
f (~x)dθ(~x) =

ˆ
Rd

(ˆ
RD

f (~x)dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dµ(y).

By construction, θ ∈ Π(ν1, . . . , νp). Indeed,

ˆ
RD

f (xi)dθ(~x) =
ˆ

Rd

(ˆ
RD

f (xi)dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dµ(y)

=

ˆ
Rdi×Rdi

f (xi)dηi(xi, y) =
ˆ

Rdi
f (x)dνi(x).

Finally, for any distribution µ and η1, . . . , ηp in Π(ν1, P1#µ), . . . , Π(νp, Pp#µ), we have

∑
i

λi

ˆ
Rdi×Rdi

|xi − yi|2dηi(xi, yi) = ∑
i

λi

ˆ
Rd

(ˆ
RD
|xi − Pi(y)|2)dη

P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dµ(y)

=

ˆ
Rd×RD

∑
i

λi|xi − Pi(y)|2dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)dµ(y)

≥
ˆ

Rd×RD
∑

i
λi|xi − Pi(B(~x)))|2dη

P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)dµ(y)

=

ˆ
Rd

c(~x)dθ(~x) ≥ (MM)

So we have, for any µ ∈ F′ ∩M1
+(R

d),

∑
i

λiW2
2 (νi, Pi#µ) = inf

η1,...,ηp
∑

i
λi

ˆ
Rdi×Rdi

|xi − yi|2dηi(xi, y) ≥ (MM)

It follows that (GWB) ≥ (MM), thus (GWB) = (MM).
We have seen that if (MM) admits a solution γ, then defining ν = B#γ, we have

(GWB) ≤∑
i

λiW2
2 (νi, Pi#ν) ≤

ˆ
Rd

c(x)dγ(x) = (MM) = (GWB)

This yields
(GWB) = ∑

i
λiW2

2 (νi, Pi#ν)

The previous proposition clarifies the link between the (GWB) and the (MM)
problems. Since the (MM) can be solved by linear programming, we can derive
from this equivalence a way to solve (GWB). Before that, we give in the following
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FIGURE 4.3: Left: A-shaped original distribution (in yellow) and
three 1D projections. Center: Solution of the corresponding multi-
marginal problem (MM) for these three projections. The solution of
the multimarginal problem (MM) is supported by a plane, as shown

in Proposition 66. Right: Generalized barycenter (in black).

some insights on a specific case where all the probability measures νi are projections
from the same high dimensional probability measure ν.

Proposition 66. Assume that ν is in P2(Rd) and for each i in {1, . . . , p}, νi = Pi#ν.
Let P : Rd → Rd1+...dp be the linear application defined by P(x) = (P1(x), . . . , Pp(x))
∀x ∈ Rd. The probability measure ν is clearly a solution of (GWB), and γ = P#ν is a
solution of (MM). If d < D, γ is supported on a subspace of dimension d of RD.

Proof. The fact that ν is solution of (GWB) is obvious by definition of the νi. Also,
by definition of B, we have for each x ∈ Rd, B(P(x)) = x. For γ = P#ν, clearly
γ ∈ Π(ν1, . . . , νp) and we have

ˆ
Rd1+···+dp

p

∑
i=1

λi|xi − Pi(B(x)|2dγ(x) = 0,

which means that γ = P#ν is a solution of (MM). Since P is linear, and ν lives in Rd,
if D > d then γ lives in a subspace of dimension d of RD.

For instance, for a probability measure ν on the plane (d = 2) and three linear
projections on lines P1, P2, P3, then the solution γ = P#ν of the multimarginal prob-
lem (MM) on R3 will be supported by a plane.

4.3 Solutions of (GWB) for Gaussian distributions

When ν1, . . . , νp are normal distributions, we show below that the generalized Wasser-
stein barycenter can also be a normal distribution, and how its parameters can be
computed in practice.

Proposition 67. If ν1, . . . , νp are all non-degenerate Gaussian distributions with ∀i ∈
J1, pK, νi = N (µi, Si) and ν is a Gaussian distribution with expectation µ and covariance
S, with

µ = B(µ1, . . . , µp)

and S a symmetric positive definite solution of

S1/2

(
∑

i
λiPT

i Pi

)
S1/2 = ∑

i
λi

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

, (4.4)
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then ν is a generalized Wasserstein barycenter for the GWB problem associated with the νi.

Proof. The quadratic transport cost between two distributions η and η′ is equal to

W2
2 (η, η′) = |E[η]−E[η′]|2 + W2

2
(
η −E[η], η′ −E[η′]

)
.

Therefore, we have

E[ν] = inf
x ∑

i
λi|Pi(x)−E[νi]|2 = B(µ1, . . . , µp).

and we can assume that the νi have 0-mean.
Let S be a symmetric positive definite solution of (4.4) and let ν = N (0, S). We

know from Villani, 2003 that there exist convex potentiels ψi such that ∇ψi is the
Brenier’s map transporting νi to Pi#ν and from Knott and Smith, 1984 that ∇ψ∗i is a
linear map represented by the matrix

Ti = S1/2
i

(
S1/2

i PiSPT
i S1/2

i

)−1/2

S1/2
i .

Let Ki = S1/2
i and Li = S1/2PT

i . Using the identity(
LiK2

i LT
i

)1/2

= LiKi

(
KiLT

i LiKi

)−1/2

KiLT
i ,

we can rewrite Equation (4.4) as

∑
i

λiLiKi

(
KiLT

i LiKi

)−1/2

KiLi = S1/2

(
∑

i
λiPT

i Pi

)
S1/2,

which gives

∑
i

λiS
1/2PT

i S1/2
i

(
S1/2

i PiSPT
i S1/2

i

)−1/2

S1/2
i PiS

1/2 = S1/2

(
∑

i
λiPT

i Pi

)
S1/2,

and then, since S is invertible,

∑
i

λiPT
i TiPi = ∑

i
λiPT

i Pi.

So we have,

∑
i

λi∇(ψ∗i ◦ Pi) = ∑
i

λi∇
|Pi(.)|2

2
.

Integrating the previous equality, we have a constant C ∈ R such that

∀x ∈ Rd, ∑
i

λi

(
|Pi(x)|2

2
− ψ∗i (Pi(x))

)
= C.

By Kantorovitch duality, we have

1
2

W2
2 (νi, Pi#ν) =

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) +

ˆ
Rdi

(
|yi|2

2
− ψ∗i (yi)

)
dPi#ν(yi)

=

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) +

ˆ
Rd

(
|Pi(x)|2

2
− ψ∗i (Pi(x))

)
dν(x)



134 Chapter 4. Generalized Wasserstein Barycenter

Therefore, summing over i we have

1
2 ∑

i
λiW2

2 (νi, Pi#ν) = ∑
i

λi

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) +

ˆ
Rd

∑
i

λi

(
|Pi(xi)|2

2
− ψ∗i (Pi(x))

)
dν

= ∑
i

λi

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) + C.

Now, let µ ∈ F′ ∩ P(Rd). For i ∈ J1, pK, using the conjugate inequality 〈xi, yi〉 ≤
ψi(x) + ψ∗i (y), we have

|xi − yi|2
2

≥ |xi|2
2
− ψi(xi) +

|yi|2
2
− ψ∗i (yi)

which gives after integration

W2
2 (νi, Pi#µ)

2
≥
ˆ

Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) +

ˆ
Rd

(
|Pi(x)|2

2
− ψ∗i (Pi(x))

)
dµ(x).

Summing over i, we obtain

1
2 ∑

i
λiW2

2 (νi, Pi#µ) ≥∑
i

λi

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) +

ˆ
Rd

∑
i

λi

(
|Pi(x)|2

2
− ψ∗i (Pi(x))

)
dµ(x)

≥∑
i

λi

ˆ
Rdi

(
|xi|2

2
− ψi(xi)

)
dνi(xi) + C

≥ 1
2 ∑

i
λiW2

2 (νi, Pi#ν),

which proves that ν is a generalized Wasserstein barycenter.
�

Proposition 68. Keeping the same notations as the previous proposition, if the equality
∑i λiPT

i Pi = δId holds, with δ > 0, then Equation (4.4) has a symmetric definite positive
solution.

Proof. In this case, Equation (4.4) becomes

S =
1
δ

p

∑
i=1

λi

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

.

Let αi and βi be the lowest and highest eigenvalues of Si and α, β such that

0 < α ≤
mini λ2

i αi

δ
and

(
∑

i

√
βiλi

δ

)2

≤ β.

We define Kα,β the convex and compact set of symmetric matrices S such that
αI ≤ S ≤ βI. For S ∈ Kα,β, we define

F(S) =
1
δ

p

∑
i=1

λi

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

.
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We know that ∑i λiPT
i Pi = δId, so we have for all y ∈ Rd,

∑
i

λi|Pi(y)|2 = δ|y|2.

Therefore, ∀y ∈ Rd, ∃j ∈ J1, pK such that |Pj(y)| ≥
√

δ|y| and ∀y ∈ Rd, ∀j ∈
J1, pK, |Pj(y)| ≤

√
δ
λj
|y|.

Now, let x ∈ Rd and j such that |Pj(S
1/2x)| ≥

√
δ|S1/2x|. We have

|xTS1/2
(

PT
j SjPj

)
S1/2x|2 ≥ |Pj(S

1/2x)|2 × αj ≥ δαj|S
1/2x|2 ≥ δαjα|x|2.

So we have

1
δ ∑

i
λi

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

≥

√
α

(
mini λ2

i αi

δ

)
Id ≥ αId.

Similarly, we have, for all x ∈ Rd and i ∈ J1, pK,

|xTS1/2
(

PT
i SiPi

)
S1/2x| ≤ |Pi(S

1/2x)|2 × βi ≤
βiδ

λi
|S1/2x|2 ≤ δβiβ

λi
|x|2,

so
1
δ ∑

i
λi

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

≤∑
i

√
λiβiβ

δ
Id ≤ βId.

Eventually, we showed that

∀S ∈ Kα,β, αI ≤ F(S) ≤ βI

So F is a continuous self-map of Kα,β. So, from Brouwer’s fixed-point theorem, it
exists a solution to (4.4) which is symmetric definite positive.

The condition ∑i λiPT
i Pi = δId is quite restrictive. Figure 4.7 shows an example

where such a condition is satisfied. If the Pi are orthogonal coordinate projections,
then it means that each coordinate must be represented the same number of times.
In general, it is not satisfied. However, we can still recast Equation (4.4) into the
following fixed point equation:

S =

(
∑

i
λiPT

i Pi

)−1

∑
i

λiS−
1/2
(

S1/2
(

PT
i SiPi

)
S1/2
)1/2

S1/2, (4.5)

or formally into (up to the square root unicity)

S =

(
∑

i
λiPT

i Pi

)−1

∑
i

λi

((
PT

i SiPi

)
S
)1/2

. (4.6)

using the identity(
S−1/2

(
S1/2

(
PT

i SiPi

)
S1/2
)1/2

S1/2

)2

=
(

PT
i SiPi

)
S.
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Equation (4.5) and (4.6) could both lead to an iterative fixed point algorithm. How-
ever, these fixed point equations no longer being symmetric, we were unable to
prove existence of symmetric solutions. In practice, we tried to iterate on Equation
(4.6) (using the algorithm of Deadman, Higham, and Ralha, 2012 to compute square
root of matrices with no negative eigenvalues), alternatively with a symmetrization
of S, and this seems to converge toward a satisfying result. This is the algorithm
used to compute Gaussian solutions of (GWB) in Section 4.4.

4.4 Experiments

This section gathers some experiments illustrating the behavior of the generalized
Wasserstein Barycenters. Thanks to Proposition 65, we can compute the Generalized
Wasserstein Barcyenter for discrete distributions using the multi-marginal Sinkhorn
algorithm presented in Section 3.6.5. When the considered distributions are Gaus-
sian, we use the fixed-point equation algortihm as presented in Section 4.3. We first
show several results of generalized barycenters between disagreeing projections in
3 dimensions, illustrating how (GWB) solutions find a compromise between several
distributions which do not coincide on their common subspaces. The section con-
cludes with experiments on Gaussian distributions, first in low dimension and then
in larger dimension with experiments on image patches.

4.4.1 Generalized barycenters in 3 dimensions between disagreeing marginals

Figures 4.4, 4.5 and 4.6 show several generalized barycenters computed with the
Sinkhorn agorithm between different sets of disagreeing marginals. In Figures 4.4
and 4.5, we show on the left the three dimensional barycenter ν (black dots) between
the original two dimensional distributions νi (colored dots, each color corresponding
to a different i). On the right, we show for each i the superposition of Pi#ν (black)
and νi. For instance, in the top row experiment, the red square is narrower than
the blue heart in their common dimension, and the barycenter has to compromise
between these two shapes on this dimension.

4.4.2 Generalized Gaussian barycenters

We are able to compute solutions for (GWB) between discrete distributions with a
few marginals, and between Gaussian distributions using the results of Section 4.3.
Figure 4.7 shows two examples of a three dimensional Gaussian barycenter between
2D dimensional Gaussian projections. For the 3d distribution ν = N (µ, S), we show
only an ellipse corresponding to a level line of ν. In the experiment on the left,
the three projections satisfy ∑i λiPT

i Pi = Id, but the condition is not satisfied by the
four projections in the experiment on the right. Both barycenters are computed by
solving the fixed-point equation (4.6) which, in the left one, gives the same result as
Equation (4.4).

4.4.3 From patch distributions to image distributions

As explained in the first part of this manuscript, it is usual to assume stochastic
prior models on image patches (small square image pieces), and to use such priors
in a Bayesian setting for image restoration or synthesis. In most situations, these
models are infered independently on all overlaping patches and do not coincide on
their overlaps. In order to reconstruct a distribution on the whole image domain, we



4.4. Experiments 137

FIGURE 4.4: Generalized barycenters between disagreeing 2d distri-
butions. Each line corresponds to an experiment. On the left, the
three dimensional barycenter ν (black dots) between the original two
dimensional distributions νi (colored dots, each color corresponding
to a different i). On the right, for each i, we show the superposition of

Pi#ν (black) and νi.
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FIGURE 4.5: Generalized barycenters between disagreeing 2d distri-
butions. Each line corresponds to an experiment. On the left, the
three dimensional barycenter ν (black dots) between the original two
dimensional distributions νi (colored dots, each color corresponding
to a different i). On the right, for each i, we show the superposition of

Pi#ν (black) and νi.
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FIGURE 4.6: Exemple of 3d barycenter between 2d marginals.

FIGURE 4.7: Exemple of generalized 3d Gaussian barycenter between
2d Gaussian distributions on different subspaces. In the experiment
on the left, the three projections satisfy ∑i λiPT

i Pi = Id, but the con-
dition is not satisfied by the four projections in the experiment on
the right. Both barycenters are computed by solving the fixed-point

equation (4.6).
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FIGURE 4.8: We wish two compute a patch distribution on the rect-
angle below from two patch distributions on the squares above. The
rectangle is obtained here by fusioning the squares with an overlap of

a few columns.

need to compromise between all of these patch distributions and we propose to use
the generalized Wasserstein barycenters in this aim.

We focus here on simple experiments that can be seen as a proof of concept for
this application. Assume that we have two square patches with an overlap of a few
columns, as shown in Figure 4.8. Each patch i has its own Gaussian distribution νi,
and we wish to compute the Gaussian generalized barycenter νGWB of these νi on
the rectangle obtained by fusing the two squares on their overlap. This process shall
be called the GWB aggregation. As a comparison, we also show the results obtained
by computing the uniform average, νuni f between the two distribution (the mean
and covariances are averaged on their overlap) called uniform aggregation, and the
distribution ν f usion obtained by fusion between the distributions (see Chapter 2 for
more details) called fusion aggregation.

The first experiment uses synthetic Gaussian patch models with a constant mean
and covariances shown on the left of Figure 4.9. The same Figure shows the covari-
ances computed for νuni f , ν f usion and νGWB. Figure 4.10 shows some samples of the
same distributions.

For the second experiment, we use Gaussian models infered from real images Zo-
ran and Weiss, 2011. Covariances and samples are shown on Figures 4.11 and 4.12.

The fusion aggregation forces the distribution to have the same value on their
overlap. In Figure 4.10, it makes the right side of the patch uniform, making the
horizontal border vanish, as it is the only way for the two patches to coincide. In
the experiment with real models, it gives more weight to the patch with the lowest
variance (the left one), leading to ignore the right one on the overlap.

The GWB aggregation and the uniform aggregation give quite similar results. It
can indeed be shown that if the covariance matrices S1 and S2 commute, the two
solutions νGWB and νuni f will coincide. However, behaviour differences can still be
observed. As we can see in Figures 4.9 and 4.11, the resulting covariances of the
GWB aggregation has more intermediate values. This implies more smoothness and
coherence in the results. In Figure 4.10 for instance, we can see that both methods
divide the domain of the patch on the right into 4 blocs. As in the uniform aggre-
gation, they all seem independent, while they tend to agree more horizontally in
the GWB aggregation. This effect is however less perceptible with messier models,
like the one in Figure 4.12. Yet, in this experiment, the uniform aggregation makes
appear straight line that divides the patch in 3 blocs (we clearly see the distinction
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(A)
ν1

(B)
ν2

(C)
νuni f

(D)
ν f usion

(E)
νGWB

FIGURE 4.9: Covariances of the different models for the first experi-
ment.

(A)
ν1

(B)
ν2

(C)
νuni f

(D)
ν f usion

(E)
νGWB

FIGURE 4.10: Set of independent samples for each distribution for the
first experiment.
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(A)
ν1

(B)
ν2

(C)
νuni f

(D)
ν f usion

(E)
νGWB

FIGURE 4.11: Covariances of the different models for the second ex-
periment.

between where the patches overlap and where they do not) that are not present in
the GWB aggregation, giving a slightly nicer visual result.

4.5 Conclusion

In this chapter, we have introduced a generalization of the Wasserstein barycenters
to a case where the initial probability measures live on different subspaces of Rd. We
have studied the existence of this barycenter, its dual formulation and shown how
it is related to a larger multi-marginal optimal transport problem and a fixed-point
equation in the Gaussian case. We applied our results on small examples related to
the original motivations of this thesis. It appears that GWB behaves nicely in practice
on point clouds, and gives interesting reconstruction from different marginals, but
the patch application is not completely satisfying: the W2 norm appears to be a poor
choice to compare patch models. However, this study gives a basis for investigations
on generalized barycenters with different norms or costs, as particular problems
arise from the utilization of projections.
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(A)
ν1

(B)
ν2

(C)
νuni f

(D)
ν f usion

(E)
νGWB

FIGURE 4.12: Set of independent samples for each distribution for the
second experiment.
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Conclusion and perspectives

Patch-based algorithms are an efficient solution to the image denoising problem,
and more generally to image restoration. They have been widely studied in the past
years and still have a lot of potential, and we believe that patch aggregation should
play a big role in their future development.

We focused in this PhD on the conceptual study of patch aggregation. The first
part proposed a new formalization of the aggregation step and a new way of com-
puting it, and the second part is a direct extension of this work aiming to design new
fusions with optimal transport theory.

The first proposed fusion operation has an interesting behavior but still suf-
fers from some limitations. We intended to improve and develop the idea using
quadratic optimal transport theory. However, as explained in Chapter 2, the quadratic
norm is not the most appropriate norm for patch models application. Unsurpris-
ingly, the experimental results of chapter 4 are not completely convincing. This work
still represents a first step toward an aggregation theory, raising some unexpected
problems, that would be interesting to explore in the future.

Wider class of restoration problems

Even if it is not fully satisfying, the proposed fusion of Chapter 2 showed some in-
teresting behaviors. We focused on the denoising problem for the sake of simplicity,
but this could be applied to a wider class of image restoration problem.

The classical linear degradation û = Au + ε does not change the setup. This ex-
tension concerns more the editing step, which similarly provides a posteriori patch
models that we can merge in a similar fashion.

The strength of the fusion is its flexibility and its coherence. We think that the
presented ideas could be used to merge patch models in more exotic fashions, for
example when dealing with missing data and in a multi resolution framework. This
would obviously depend of the considered fusion, but maybe some general ideas
could emerge from these considerations and lead to interesting developments.

Development of an aggregation theory

In part II, we introduced the generalized Wasserstein problem, following the dis-
cussion of part I. As we saw, this problem has lots of similarity with the classical
barycenter problem, but raises new issues and theoretical question. This could be
the starting point of a hypothetical aggregation theory that would study the interac-
tion of overlapping objects.

In particular, the formulation of Assumption 1 is very simple but turns out to be
surprisingly tedious to prove. We managed to prove it in a particularly convenient
case, but it seems that this proof can not be generalized, as the problem is completely
different without the coordinate basis assumption. It appears that the problem is
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deeply related to the space F (defined in Section 4.2.1). In the coordinate basis as-
sumption, we are able to create functions of F thanks to the input functions fi. In
general, it is not possible and the problem appears to be somewhat degenerated.

In the simple case with 3 marginals and 2 variables, and with P1(x, y) = x,
P2(x, y) = y and P3(x, y) = x + y, the space F reduces to

F = {(λIX1 , λIX2 ,−λIX3); λ ∈ R}

It means that in the conditions of Assumption 1, we have to show that

∀i ∈ {1, 2, 3}, ∃λ ∈ R; ∀xi ∈ Xi = R, fi(xi) = λxi + f̃i(xi) with || f̃i|| ≤ ε,

which is already tricky and difficult to prove.
We believe that Assumption 1 holds more generally. It seems that the prob-

lem, even if it does not look difficult at first glance, might be too hard to be tackled
frontally and must be formulated otherwise. We would be curious to shove in this
direction.

Application to GMM

All the algorithms presented in this thesis apply to single Gaussian distributions.
However, most of the models used in image restoration procedure are GMMs. We
chose to select the most likely components of the mixture, which may seem reason-
able (and justified by the success of NL-Bayes for instance), but we believe that this
is only valid in a context of uniform aggregation. One of the strength of the patch
model fusion is to keep track of the model. We believe that merging the GMMs
instead of the most likely Gaussian distributions can lead to a huge improvement
in performance. Indeed, it would give much more flexibility to the reconstruction
and enable to give more weight to the unlikely and unprecise components which are
mainly the borders. Delon and Desolneux, 2020 introduced a Wasserstein type dis-
tance restricted to GMMs, by imposing the transport plan to be a Gaussian mixture
as well:

MW2
2 (µ, ν) = inf

γ∈Π(µ,ν)∩GMM2d

ˆ
|x− y|2dγ(x, y),

where GMM2d is the space of all Gaussian mixture models of dimension 2d and
µ and ν belong to GMMd. They showed that if we have µ = ∑K

k=1 αkµk and ν =

∑L
l=1 βlνl , then

MW2
2 (µ, ν) = min

w∈Π(α,β)
∑
k,l

wk,lW2
2 (µk, νk).

This distance could be used to perform a generalized barycenter for Gaussian
mixtures, roughly by replacing W2

2 by GWB in the previous equation. This would be
more adapted to our application, since working with single Gaussian is a big limita-
tion of patch model aggregation. However, it cannot be applied as such in the actual
fusion framework, as the number of components would explode exponentially in the
number of fusion. One needs to find a way to restrain the number of components of
the GMMs. This is a direct path of development that I intend to explore.
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Other costs

The l2 norm is useful for its convenience and the well-understanding of its behav-
ior. It has lots of practical and theoretical advantages, but its behavior is far to be
ideal, as it for instance separates the expectation from the covariance. It was a good
starting point to study the generalized Wasserstein problem, but the application that
motivated it would benefit from extension to other costs, like the l1 norm. Some re-
sults presented in Chapter 4 can be written with more general costs. For instance,
the proof of the correspondence between GWB and the multimarginal formulation
(Proposition 65) does not use any specificity of the l2 norm, except for the well-
definition of B. However key results like the duality relation or the existence of
solutions rely on the particularity of the square norm, and we don’t know how they
could be generalized. This study should come along with the developments of the
regular Wasserstein problem and an hypothetical aggregation theory. It would, in
any case, be of major interest for the application to the aggregation step.
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