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Abstract

In the last few decades, wind turbines have evolved, increasing their size, being more cost-
effective, and more Eco-friendly. As a consequence of this massive growth, design-engineers
encounter new challenges to continue the cost-effectiveness of turbines for all applications.
This dissertation proposes an original approach for the prediction of the fatigue lifetime of a
composite wind turbine blade considering wind speed uncertainty. The proposed probabilistic
approach is based on Monte Carlo simulations and a deep neural network to surrogate the
multi-physical simulation model and the multiaxial fatigue analysis of the blade. In order to
achieve this goal, several challenges have been taken on, including development of a regression
approach to model jump discontinuities, development of a methodology to calculate the global
sensitivity analysis of high dimensional problems, and development of an approach to estimate
the probabilistic fatigue lifetime by using a detailed fatigue damage analysis of the composite
wind turbine blades.

The regression model for jump discontinuities is developed by using the Gaussian mixture
model and a deep neural network. These discontinuities are found in the response of 10
minutes of aero-elastic simulations in steady and unsteady environmental conditions. The
proposed method is compared with other regression machine learning methods, and shows
more efficiency and presents a lower mean squared error.

To estimate the global sensitivity of the called load application methods used to transfer
the aero-elastic wind loads from a 1D beam to a 2D shell blade model, an original approach is
developed to calculate the Sobol indices based on a deep neural network surrogate model for
high dimensional problems. Two networks are developed, one to estimate the maximum aero-
elastic loads considering a 10 minutes mean wind speed, and the second network to estimate
the stresses at the blade root for given composite material thicknesses and the maximum
aero-elastic loads predicted from the first network.

Using the global sensitivity results, the load application method with the lower sensitivity
parameters is used to carry out the fatigue life prediction considering wind speed uncertainty.
A deep neural network surrogate model is trained to estimate the fatigue damage for a 10
minutes mean wind speed of unsteady aero-elastic simulations, employed to calculate the 10
minutes stress history of the 2D shell blade model and then the fatigue damage considering
the non-proportionality of the stresses.

The probabilistic fatigue life prediction is proposed by combining a deep neural network
surrogate model and Monte Carlo simulations for wind speed between cut-in and cut-out.
Finally, the probability density function of the fatigue lifetime is estimated at the maximum
damaged point composite layer of the blade.

Keywords : Fatigue damage of composite wind turbine blade, global sensitivity analysis,
fatigue lifetime prediction, wind speed uncertainty, deep neural network application, load
application method for blade 2D shell models.
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Résumé

Ces dernières années, les éoliennes ont beaucoup évolué, leurs tailles ont beaucoup augmenté
afin de les rendre plus rentables et plus écologiques. En raison de cette croissance massive, les
ingénieurs concepteurs sont confrontés à de nouveaux défis pour maintenir la rentabilité des
éoliennes, qu’elles soient terrestres ou maritimes. Ce travail de thèse propose le développement
d’une approche probabiliste de la durée de vie en fatigue d’une pale d’éolienne en matériaux
composites. Cette approche est basée sur l’apprentissage par un réseau de neurones profond
et les simulations de Monte Carlo en considérant l’incertitude de la vitesse du vent. Afin
d’atteindre cet objectif, plusieurs défis ont été relevés. Il s’agit des développements suivantes
: a) une approche de régression pour la prise en compte des discontinuités de saut ; b) une
méthodologie pour l’analyse de sensibilité globale des problèmes de haute dimension ; c) une
méthodologie pour estimer la densité de probabilité de la durée de vie en fatigue de la pale
d’une éolienne en matériaux composites.

Le modèle de régression développé pour prendre en compte les discontinuités de saut,
utilise le modèle de mélange gaussien (Gaussien Mixture) et les réseaux de neurones profonds
(Deep Neural Network). Ces discontinuités sont trouvées dans la réponse d’une simulation
aéro-élastique de 10 minutes en tenant compte d’un écoulement laminaire ou turbulent du
vent. La méthode proposée présente une erreur quadratique moyenne inférieure par rapport
à d’autre méthodes de régression et d’apprentissage automatique utilisées.

Une méthode originale pour l’analyse des sensibilités globales pour les problèmes de grande
dimension est développée pour estimer la sensibilité des méthodes d’application de charge
(LAM: Load Application Methods). Ces méthodes sont utilisées pour transférer les charges
sur la pale, issues des simulations aéro-élastiques 1D au modèle éléments finis en coque 2D.
L’approche développée vise à calculer les indices de Sobol en utilisant un modèle de substitu-
tion basé sur un réseau de neurones profond. Cette méthodologie est basée sur le développe-
ment de deux réseaux de neurones, le premier estime les charges aéro-élastiques maximales
pour une vitesse moyenne du vent sur 10 minutes, et le second consiste à estimer les contraintes
mécaniques au pied de la pale en tenant compte des épaisseurs des matériaux composites et des
charges aéro-élastiques maximales obtenues à partir du premier réseau de neurones. La durée
de vie en fatigue est estimée en utilisant la méthode d’application de la charge qui présente la
sensibilité la plus faible et l’analyse de fatigue multiaxiale. En outre, 10 minutes de simula-
tions aéro-élastiques en considérant un écoulement turbulent du vent pour estimer l’historique
des contraintes en utilisant un modèle par élément fini de coque, puis l’endommagement par
fatigue est calculé en tenant compte de la non proportionnalité des contraintes. Un modèle de
substitution basé sur un réseau de neurones profond est développé pour estimer le dommage
par fatigue à 10 minutes et puis à 20 ans. La densité de probabilité de la durée de vie en
fatigue au point d’endommagement maximal est obtenue en utilisant le modèle de substitution
basé sur un réseau de neurones profond et des simulations de Monte Carlo.

Mots clés: Dommage par fatigue de la pale d’éolienne en matériaux composites, analyse
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de sensibilité globale, estimation de la durée de vie en fatigue, application de réseaux de
neurones profonds, incertitude de la vitesse du vent, méthode d’application de charge pour les
modèles de coque 2D de pale.



Résumé étendu

Introduction générale

Au cours des dernières décennies, les éoliennes ont beaucoup évolué, leurs tailles ont beaucoup
augmenté afin de les rendre plus rentables et plus écologiques. Actuellement, cette technologie
de production d’énergie est devenue une tendance dans les politiques énergétiques à travers le
monde, pour réduire l’utilisation des centrales électriques à énergies fossiles et ainsi diminuer
l’effet de serre.

Conséquence de cette croissance massive, les ingénieurs concepteurs sont confrontés à de
nouveaux défis pour maintenir la rentabilité des éoliennes pour tous les sites, sur des sites
à faible vitesse de vent ou des fermes offshores, produisant de l’énergie en grande quantité.
De plus, il y a un manque d’expérience opérationnelle car ces éoliennes sont récentes. Par
conséquent, les concepteurs doivent s’appuyer sur des outils de simulation pour modéliser des
comportements complexes et prendre des décisions en fonction de ceux-ci, ce qui rend ces
tâches d’une importance capitale.

Les outils de simulation tels que FAST, développé par le NREL (National Renewable
Energy Laboratory) [Jonkman and Buhl Jr, 2005] et HAWC2 développé par DTU (Denmark
Technological University) [Larsen and Hansen, 2007] reproduisent la réponse dynamique des
systèmes éoliens. Ces outils couplent les modèles de l’aéro-élasticité, de l’électricité, du con-
trôle et de l’hydrodynamique à l’aide de la théorie simplifiée de la dynamique des éléments
de poutre et la théorie BEM (Blade Element Momentum theory). Ces outils de simulation
permettent de calculer la réponse dynamique temporelle non-linéaire des déplacements et des
chargements agissant sur l’éolienne dans les différentes conditions environnementales décrites
dans les normes de certification des éoliennes [Guideline and Lloyd, 2010]. En outre, une anal-
yse générale des pales d’éoliennes pourrait être effectuée en utilisant ces outils de simulation
(i.e. FAST), pour obtenir les déplacements, les modes et les fréquences de vibration et l’analyse
des charges extrêmes. Cependant, pour faire une analyse de contraintes ou de fatigue, il est
nécessaire d’utiliser un modèle aux éléments finis et des charges réparties agissant le long de
la pale. Le code CFD (Computational Fluid Dynamics) de FAST calcule l’interaction fluide-
structure dans un espace 2D ou 3D. Toutefois, ce code n’a pas intégré le calcul de la réponse
dynamique couplée de la pale modélisée en 2D. De plus, en fonction des conditions de mail-
lage, le temps de calcul CPU nécessaire pour les simulations de type CFD est prohibitif en
comparaison aux simulations aéro-élastiques de la pale modélisée en 1D. Pour cela, l’approche
utilisée pour considérer la réponse couplée de la pale d’éolienne est basée sur l’utilisation des
charges estimées par la simulation aéro-élastiques de FAST ; de les transférer en un champ de
chargement réparti équivalent au modèle d’éléments finis (FEM: Finite Element Method) de
coque 2D de la pale. Cette modélisation aux éléments finis permet d’obtenir une répartition
des contraintes tout au long de la pale.
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Différents auteurs [Bottasso et al., 2014, Hu et al., 2016b] définissent leur méthode pour
transférer les charges issues du modèle 1D au modèle 2D, pour calculer la durée de vie en
fatigue ou faire une optimisation de conception basée sur la fiabilité (RBDO: Reliability-Based
Design Optimization), la distribution des contraintes et les réponses des déplacements sur la
pale varient d’une méthode à l’autre. Ainsi, le choix de la méthode pour estimer la durée de vie
en fatigue ou effectuer une analyse de fiabilité de la pale d’éolienne est crucial. En effet, en fonc-
tion de la façon dont est répliquée le chargement de la simulation dynamique couplée sur une
coque 2D FEM de la pale, il y a le risque d’introduire des singularités qui peuvent introduire
des erreurs dans la réponse du modèle numérique. Les pales modélisées en utilisant la méth-
ode d’éléments finis (FEM) 2D ou 3D, permettent d’obtenir les répartitions des contraintes et
des déplacements sur toute la pale. Les auteurs [Morató et al., 2019, Teixeira et al., 2017] ont
utilisé le modèle de substitution de Krigeage (Processus Gaussien) pour remplacer le modèle
de simulation qui nécessite un temps de calcul considérable. En effet, l’analyse de fiabilité
ou les approches de propagation des incertitudes dans la durée de vie nécessitent l’utilisation
répétitive du modèle aux éléments finis. Cette procédure est impraticable car elle exige un
temps de calcul prohibitif. A cet égard, les modèles de substitution peuvent être utilisés pour
remplacer le modèle de simulation (MEF, analyse de fatigue, etc.) car ils peuvent prédire pré-
cisément la réponse de la structure après un apprentissage adéquat. D’ailleurs, cette prédiction
de la réponse est donnée en un temps de calcul réduit par rapport au modèle de simulation
initial. Actuellement, avec le développement croissant des nouvelles méthodes d’apprentissage
automatique et d’apprentissage profond, différentes stratégies et méthodologies peuvent être
explorées pour la substitution des simulateurs multi-physiques et l’obtention d’une solution
précise en moins de temps possible.

L’analyse de fatigue des pales d’éoliennes est un vaste domaine, nécessitant une approche
multidisciplinaire en raison de la combinaison de différents composants avec des fonctions
mécaniques et aérodynamiques. Par conséquent, avec un projet à durée limitée, la présente
thèse se concentrera sur l’étude et l’estimation probabiliste de la durée de vie en fatigue des
pales d’éoliennes en matériaux composites à l’aide d’un modèle de substitution basé sur un
réseau de neurones profond.

Objectifs

Le premier objectif de cette étude est de proposer une méthodologie d’estimation probabiliste
de la durée de vie d’une pale d’éolienne soumise à de l’endommagement par fatigue. Cette
analyse comprend : la simulation de 10 minutes du champ de vent à une vitesse moyenne,
l’analyse aérodynamique, l’analyse élastique et électrique couplée au contrôle de la pale, le
filtrage des charges aéro-élastiques, l’analyse des contraintes de la pale à l’aide d’un modèle
aux éléments finis et l’évaluation du dommage par fatigue en tenant compte d’un état de
contraintes multiaxial et non-proportionnel. Cependant, le temps de calcul nécessaire pour
l’estimation de cette durée de vie en fatigue est très élevé. En outre, l’estimation de la densité
de probabilité de la durée de vie en considérant l’incertitude de la vitesse du vent, en utilisant
le modèle de simulation original est impraticable. Pour cela, un modèle de substitution est
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proposé pour remplacer le modèle de simulation original, basé sur un réseau de neurones
profond. En utilisant la méthodologie proposée, un dommage par fatigue sur 10 minutes est
déterminé par une simulation aéro-élastique de 10 minutes à une vitesse moyenne donnée et
un modèle de turbulence normal pour les conditions environnementales. Différentes méthodes
d’application des charges pour le modèle aux éléments finis de coque 2D sont étudiées et
comparées dans une analyse des contraintes de la pale.

Le deuxième objectif vise à proposer une méthodologie d’analyse de sensibilité globale
pour les modèles de grande dimension. Nous proposons une approche basée sur deux modèles
de substitution de réseaux de neurones profonds. Cette méthode de sensibilité permet de
sélectionner la méthode d’application des charges avec les paramètres qui génèrent le moins
de sensibilité. Trois méthodes d’application de charges sont utilisées pour comparer leurs
réponses. Chacune d’entre elles a une approche différente pour appliquer les charges aéro-
élastiques au modèle de coque 2D, d’une distribution de pression simple à une distribution
réaliste sur toute la pale. Cette étude propose d’estimer les indices de sensibilité de Sobol en
utilisant un modèle de substitution à deux étapes, un modèle de réseau de neurones pour es-
timer les charges aéro-élastiques maximales dans des conditions environnementales laminaires
et un autre pour prédire les contraintes de Von Mises au pied de la pale.

Le troisième objectif est de proposer une méthode de régression basée sur les réseaux
de neurones profonds pour la prise en compte des discontinuités du modèle initial. Cette
méthode permet l’apprentissage et la prédiction de la réponse des modèles possédant des
discontinuités dans leur domaine d’étude. La méthodologie proposée présente une erreur
quadratique moyenne inférieure par rapport aux autres modèles de substitution utilisés.

Structure de la thèse

Cette thèse est structurée comme suit:

• Le but, les travaux précédents et les objectifs de la thèse sont résumés dans l’introduction.

• Le chapitre 2 présente les simulations aéro-élastiques couplées utilisées pour une pale
d’éolienne en matériaux composites. En outre, nous présentons les différentes spécifica-
tions de distribution des matériaux composites à travers la pale, le calcul des matrices
de rigidité des sections transversales, les modes et les fréquences propres de vibration.
De plus, il présente un état de l’art des méthodes d’application des charges utilisées
pour transférer les charges des outils de simulation 1D vers un modèle d’éléments finis
à coque 2D de la pale.

• Le chapitre 3 présente brièvement les réseaux de neurones profonds (DNN: Deep Neu-
ral Network) et les méthodes d’optimisation de ses hyperparamètres. Le DNN est le
principal modèle de substitution de cette thèse pour l’analyse des sensibilités et de
fatigue. Cette étude développe une nouvelle méthodologie pour traiter les discontinu-
ités de saut en utilisant les réseaux de neurones, par le classement des zones avec une
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réponse continue à l’aide d’un modèle de mélange gaussien (Gaussian Mixture Model) et
l’entraînement du réseau en ajoutant la valeur de la classification en tant que paramètre
d’entrée.

• Le chapitre 4 propose une nouvelle méthodologie pour l’analyse de sensibilité globale des
méthodes d’application des charges utilisées dans le modèle aux éléments finis de coque
2D de la pale. Cette étude propose deux modèles de substitution, le premier vise à prédire
les charges aéro-élastiques maximales simulées dans des conditions environnementales
laminaires, le second DNN remplace le modèle aux éléments finis de la pale pour prédire
les contraintes de Von Mises à partir des charges simulées précédemment et les épaisseurs
des matériaux comme paramètres d’entrée. Les charges aéro-élastiques sont appliquées
à l’aide de trois méthodes d’application des charges dans le modèle de coque 2D pour
calculer la contrainte de Von Mises sur le pied de pale. Le calcul des indices de Sobol
permet de donner la sensibilité des paramètres d’entrée de chaque méthode d’application
des charges. Cette étude compare les sensibilités des paramètres d’entrée de différentes
méthode d’application de charge pour déterminer celle qui introduit la moins de sensible
au problème numérique. Une analyse de Morris utilisant directement le modèle aux
éléments finis de coque 2D nous a permis de valider les résultats des indices de Sobol
obtenus à l’aide du réseau de neurones profond.

• Le chapitre 5 propose une méthodologie pour estimer le dommage par fatigue à partir
d’une simulation sur 10 minutes de la vitesse moyenne du vent. Une simulation de 10
minutes utilisant un modèle de turbulence normal est effectuée en couplant le comporte-
ment aérodynamique, élastique, électrique et de commande (servo) de l’éolienne pour
calculer les charges résultantes du modèle 1D. Les charges sont transférées au modèle
aux éléments finis de coque 2D en utilisant les méthodes d’application des charges afin
d’estimer l’historique des contraintes. Un critère de fatigue multiaxial est utilisé pour
l’estimation du dommage par fatigue afin de prendre en compte la non-proportionnalité
de l’état de contraintes. Les diagrammes de durée de vie constante estiment le nombre
de cycles jusqu’à la rupture à différentes amplitudes de contraintes et de contraintes
moyennes. La règle de Miner permet de cumuler les dommages par fatigue. Un modèle
de substitution basé sur un réseau de neurones profond est utilisé pour prédire les cy-
cles de dommages de fatigue par vitesse du vent en ajoutant la fonction de distribution
cumulative empirique de chaque distribution de dommage comme paramètres d’entrée.
Les hyperparamètres du réseau sont optimisés à l’aide d’un algorithme d’optimisation
basé sur un processus Gaussien. Le réseau de neurones profond est validé et testé pour
prédire une nouvelle distribution des dommages en utilisant un historique temporel de
champ de vent différent. Ensuite, l’analyse de la distribution d’endommagement de la
pale est effectuée au point où le dommage est maximal. Une estimation du dommage par
fatigue pour 20 ans est effectuée pour différentes couches des matériaux composites au
point sélectionné. Les simulations de Monte Carlo sont effectuées en utilisant le modèle
de substitution (DNN) pour estimer la distribution de probabilité de la durée de vie en
fatigue.

• Le chapitre 6 résume les conclusions les plus importantes de l’étude et propose des
perspectives à ces travaux de recherche.
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Chapitre 2

Ce chapitre explique les méthodes utilisées pour transférer les chargements obtenus d’une
simulation aéro-élastique à partir d’une modélisation poutre a un modèle de coque 2D de la
pale de l’éolienne. Le contenu du chapitre est résumé ci-dessous :

Méthodes de simulation pour l’éolienne

Pour simuler l’éolienne en considérant différentes vitesses moyennes du vent avec un niveau de
turbulence normal, des modèles aéro-élastiques sont utilisés pour déterminer le comportement
de l’éolienne en tenant en compte les effets aérodynamiques, élastiques et les effets produits
par le contrôleur de production d’énergie. La représentation simplifiée de l’éolienne est effec-
tuée en un modèle 1D où la pale est modélisée par des éléments finis de poutres qui permettent
d’obtenir les chargements résultant sur des nœuds localisés aux centres aérodynamiques. Pour
exécuter ces simulations, il faut déterminer les propriétés mécaniques de l’éolienne, ainsi que
les conditions environnementales auxquelles elle sera soumise. Cette partie explique comment
sont estimées les conditions environnementales en utilisant la méthode de Veer et la dépen-
dance entre la vitesse moyenne du vent et l’écart-type de la vitesse moyenne et l’intensité
de turbulence. Ce chapitre présente aussi la simplification de la distribution de matériaux
composites de la pale de l’éolienne 10 MW de référence développée par DTU, le calcul des
propriétés mécanique par section et ses modes de vibration.

Méthodes d’application des charges

Les méthodes d’application des charges (LAM: Load Application Methods) classifiées par Caous
[Caous et al., 2018] sont utilisées pour transférer les charges résultantes des outils de simula-
tion aéro-élastique dans une répartition équivalente des charges sur le modèle aux éléments
finis (FEM) de coque. La réponse du modèle FEM de coque doit être égale à celle calculée à
l’aide de l’outil de simulation aéro-élastique. La représentation de la pale par un modèle aux
éléments finis de coque permet de calculer la répartition détaillée du champ de contraintes
sur la pale en matériaux composites. Cette analyse des contraintes à l’aide d’un modèle FEM
permettra ensuite d’effectuer une analyse de fatigue multiaxiale.

Ces méthodologies sont classées par Caous [Caous et al., 2018] en fonction de la façon dont
les charges sont appliquées sur le modèle de coque en quatre groupes principaux :

• Application des charges par sections et sur un point de chaque section. [Forcier and Joncas, 2012],
[Haselbach et al., 2016],[Griffith and Ashwill, 2011],[Shokrieh and Rafiee, 2006],
[Lindgaard and Lund, 2010], [Lund and Stegmann, 2005].

• Application des charges ponctuelles, mais répartition physique sur la section.
[Bottasso et al., 2014], [Caous and Valette, 2014].
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• Application continue sur la pale d’une charge de surface orientée (pression orientée dans
une direction spécifique). [Forcier and Joncas, 2012], [Hu et al., 2012], [Sørensen et al., 2014],
[Dimitrov, 2013], [Berggreen et al., 2007], [McKittrick et al., 2001].

• Dissociation des charges inertielles et aérodynamiques avec application d’un champ
d’accélération et répartition de la pression sur toute la pale. [Chen et al., 2013],
[Grujicic et al., 2010], [Hu et al., 2016b], [Knill, 2005], [Caous et al., 2018].

Dans ce travail de thèse, nous avons sélectionné trois méthodes d’application des charges
(LAM) nécessaires pour l’analyse FEM de la pale : du groupe 1) la méthode des éléments de
corps rigide (RBE), du groupe 2) la méthode d’application des charges sur 4 nœuds (4NO) et
du groupe 4) la méthode de répartition de la pression définie par Caous (PD).

Ces méthodes sont appliquées et comparées au niveau des éléments du tenseur des con-
traintes de la pale. La méthode "PD" produit la distribution la plus réaliste des charges parmi
les trois méthodes étudiées.

Chapitre 3

Ce chapitre présente l’apprentissage des réseaux de neurones profonds (DNN: Deep Neural
Network) sur la réponse aéro-élastique simulée de la pale d’éolienne. Ensuite, l’utilisation de
ce réseau de neurones profond pour la prédiction des charges. Ces dernières années les réseaux
de neurones profonds ont été intensivement utilisés dans de nombreux domaines différents, y
compris des composants d’éolienne, l’énergie éolienne, la prévision de la vitesse du vent, etc.
Un état de l’art est présenté dans ce chapitre sur l’application de DNN sur les éoliennes.

Une introduction du fonctionnement et de l’architecture des DNN est présentée. Ainsi,
que les différents algorithmes d’optimisation pour l’apprentissage du réseau. Nous présen-
tons dans ce chapitre les problèmes de sur-apprentissage et les différentes approches pour les
éviter. Ensuite, un exemple académique est utilisé pour comparer les performances des algo-
rithmes d’optimisation des hyperparamètres du DNN. Cet exemple, montre que l’algorithme
d’optimisation bayésienne est plus efficace par rapport à l’algorithme de la recherche aléatoire
(random search algorithm [Bergstra and Bengio, 2012]).

Modélisation de la discontinuité des charges simulées des éoliennes

La simulation des écoulements laminaires et turbulents sur l’éolienne avec FAST produit des
sauts dans la réponse des chargements en fonction de la vitesse du vent. Ce comportement
produit une réponse avec une discontinuité, cela rend l’apprentissage des DNN plus difficile.
Cette discontinuité est produite par le contrôleur utilisé pour la pale. Ce contrôleur est
développé par HAWC2 [GL, 2015] et transformé en fichier compatible pour le logiciel FAST.
Cependant, ce contrôleur n’est pas optimisé, puisque les charges résultantes présentent un saut
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à partir de la vitesse du vent entre 16m/s et 17m/s. Dans cette plage de vitesse du vent, le
contrôleur met les pales en arrêt en prenant la valeur maximale de l’angle d’incidence de la pale
(pitch angle). Pour cela, une nouvelle méthode est proposée pour améliorer l’apprentissage
du DNN dans cette zone de discontinuité de la réponse aéro-élastique.

La méthode proposée nommée (ADM-DNN, Automatic Discontinuity Modelling - DNN )
consiste à déterminer la zone des discontinuités automatiquement dans le problème analysé, en
utilisant un modèle de mélange gaussienne (GMM: Gaussian Mixture Model). GMM permet
de classifier et d’étiqueter les différentes zones du domaine où la réponse est continue. Avec
cette classification, chaque valeur est étiquetée et elle est ajoutée comme une nouvelle variable
d’entrée du modèle. Ensuite, un modèle de DNN est entraîné et validé avec le changement
de dimension des paramètres d’entrée. Cette méthodologie proposée est utilisée et comparée
à d’autres méthodes d’apprentissage automatique pour la régression en utilisant un exemple
académique d’une part ; d’autre part à la prédiction des chargements résultant de la simulation
aéro-élastique de la pale. Les deux exemples montre l’efficacité de la méthode proposée par
rapport aux autres méthodes, où la prédiction de la réponse est réalisée avec le moins d’erreur.

Comparaison des méthodes de régression pour prédire le chargement aéro-élastique de la pale.

Chapitre 4

L’analyse de sensibilité des éoliennes est effectuée en utilisant différentes méthodologies en
fonction de la complexité du problème de conception. Les méthodes d’analyse de sensibilité
globale sont souvent basées sur la méthode des simulation de Monte Carlo (MCS), pour
l’estimation des indices de Sobol. Ces méthodes sont utilisées pour des problèmes de faible
dimension avec un modèle à coût de calcul élevé [Ziegler et al., 2015] ou pour des problèmes de
grande dimension avec un modèle à coût de calcul faible [Tran and Smith, 2018], ce qui signifie
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que de grands échantillons peuvent être produits avec un coût de calcul modéré. Cependant,
pour les problèmes liés à la modélisation de problèmes à grandes dimensions et à coût de
calcul élevé, ces méthodes sont inabordables. L’analyse de sensibilité peut-être effectuée dans
une grille de valeurs sélectionnées par l’utilisateur comme dans l’étude effectué par Geng et al.
[Geng et al., 2018], ces méthodes dites "locales" permettent à faible coût de calcul d’estimer la
sensibilité des paramètres d’entrée sur la réponse dans cet intervalle seulement. Toutefois, les
méthodes de sensibilité dites "globales" utilisent les simulations de Monte Carlo pour évaluer
la réponse du modèle en différents points du domaine. Pour cela, elles sont plus coûteuses en
temps de calcul,

L’une des méthodes de sensibilité dites "locale" est l’analyse de «criblage» de Morris
[Morris, 1991] ou One-at-a-Time (OAT) utilisée pour quantifier les effets de la sensibilité des
paramètres d’entrée sur le paramètre de sortie. Cette méthode est évaluée dans un sous-
ensemble du domaine des paramètres d’entrée et ne fait varier qu’une seule variable par itéra-
tion ; Velarde et al. [Velarde et al., 2019] présente une étude de criblage dans les charges
de fatigue des fondations d’une éolienne. Les résultats obtenus sont faciles à comprendre, et
comme le nombre d’itérations est linéaire par rapport au nombre de paramètres d’entrée, il
est fréquemment utilisé pour les problèmes de grande dimension. Cependant, la méthode de
Morris n’évalue pas l’interaction entre les variables de manière quantitative ; autrement dit, on
ne sait pas avec exactitude quelle est la valeur de l’effet de la sensibilité des variables d’entrée
sur la sortie. Pour cette raison, la méthode de Morris est utilisée comme une étape préalable
pour réduire le nombre de variables d’entrée et sélectionner les variables qui ont un effet de
la sensibilité élevé pour les utiliser par la suite dans une analyse de sensibilité basée sur la
variance ; Hübler et coll. [Hübler et al., 2017] présente un exemple de cette méthodologie.
Pour une analyse de sensibilité globale des éoliennes offshore basée sur des simulations aéro-
élastiques du domaine temporel. Premièrement l’étude commence avec plus de 50 paramètres
pour l’analyse de criblage de Morris et ensuite 20 paramètres les plus sensibles sont sélectionnés
pour l’analyse de sensibilité basée sur la variance.

Néanmoins, pour certains problèmes, les paramètres d’entrée peuvent avoir des inter-
actions entre eux. En ignorant certaines paramètres d’entrée après la réduction, leurs in-
teractions internes ne seront pas mesurées en utilisant l’analyse de sensibilité basée sur la
variance. Il existe différentes analyses de sensibilité basées sur la variance comme la méth-
ode Sobol [Sobol, 1993] et le test de sensibilité d’amplitude de Fourier [Cukier et al., 1973,
Cukier et al., 1975, Cukier et al., 1978]. Ces méthodes quantifient l’effet de sensibilité de
chaque paramètre d’entrée et leurs interactions en calculant des indices de différents degrés,
représentant l’effet sur la variance de sortie produite par les variables d’entrée et leurs interac-
tions. Par rapport à l’analyse de criblage de Morris, ces méthodes sont évaluées dans tout le
domaine des paramètres d’entrée, généralement à l’aide des simulations de Monte Carlo, ce qui
rend leur coût de calcul onéreux. Echevarria et al. [Echeverría et al., 2017] présente un étude
utilisant cette méthode pour estimer la sensibilité des variables de géométrie des pales sur les
performances de l’éolienne avec 21 paramètres d’entrée. D’autres auteurs utilisent un modèle
de substitution pour remplacer le modèle d’origine et estimer l’analyse de sensibilité globale
basée sur le modèle de substitution, réduisant ainsi le temps de calcul due à l’évaluation du
modèle d’origine. McKay et coll. [McKay et al., 2014] a étudié la sensibilité globale de la
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puissance de sortie des éoliennes en se basant sur des données expérimentales et en ne consid-
érant que huit paramètres d’entrée pour entraîner leur modèle de substitution. La dimension
des paramètres d’entrée de ce problème est petite (moins de 50 variables) et aussi les données
peuvent être obtenues par expérimentation, leur coût de calcul est plus faible que celui des
problèmes où les résultats des réponses sont obtenues à l’aide d’outils de simulation aéro-
élastique, où l’analyse de sensibilité doit être effectuée avec un grand nombre des paramètres
d’entrée (plus de 50 variables).

Cette étude présente une nouvelle méthodologie pour calculer la sensibilité globale des
problèmes de grande dimension sans la réduction du nombre de paramètres d’entrée. Cette
méthodologie est utilisée pour déterminer la sensibilité des méthodes LAM.

La méthode est divisée en deux étapes. La première étape consiste a l’apprentissage d’un
modèle DNN pour prédire le chargement aéro-élastique obtenu par FAST du modèle 1D de la
pale. Nous obtenons 54 chargements dans différents nœuds de la pale modélisée en 1D (modèle
de poutre). Ensuite, le second DNN est entraîné en utilisant les chargements précédents et la
distribution des matériaux composites de la pale (24 variables d’épaisseur) comme variables
d’entrée (78 en total) du modèle FEM pour calculer la contrainte de Von Mises au pied de la
pale. Une fois le DNN entraîné et validé, il est utilisé pour prédire le tenseur des contraintes.
En utilisant ce dernier modèle de DNN, la sensibilité des paramètres des méthodes LAM est
calculée par la méthode de Sobol.

Les résultats obtenus indiquent que la méthode LAM PD est la moins sensible, suivie
par RBE et enfin 4NO. LAM PD présente une sensibilité linéaire par rapport aux charges
appliquées entre le milieu et le bout de la pale dans la direction de la portance. Cependant,
RBE et 4NO présentent un comportement non-linéaire significatif indiquant l’impact des in-
teractions des variables d’entrée sur la sensibilité de la contrainte. RBE présente une plus
faible interaction non-linéaire que 4NO.

Pour valider et comparer les résultats obtenus avec la méthodologie développée, une anal-
yse de criblage de Morris est effectuée en utilisant directement le modèle FEM de coque 2D
de la pale. Les résultats de l’analyse de sensibilité de Morris montrent que les charges avec
l’effet élémentaire moyenne µ∗ le plus élevés sont les mêmes que celles trouvées par la méth-
ode proposée dans ce travail pour le calcul de l’indice total de Sobol. Ce qui indique que
l’apprentissage du modèle DNN a bien représenté la relation entre les variables d’entrée et de
sortie. Campolongo [Campolongo et al., 2007] a proposé une comparaison entre la méthode
de sensibilité de Morris qui est qualitative et la méthode de la décomposition de la variance
basée sur l’estimation des indices de Sobol. Cependant, il est utile de clarifier que la méthode
de Morris est réalisée sur un sous-domaine et les indices de Sobol sont estimés sur le domaine
entier, ce qui permet de quantifier l’interaction entre les variables.

La méthode LAM PD est ensuite utilisée pour la suite de la thèse dans l’analyse de fatigue
et l’estimation probabiliste de la durée de vie en fatigue de la pale en matériaux composites.
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Indices de Sobol d’ordre total en utilisant LAM RBE et 4NO pour estimer la contrainte au
pied de pale.

Indices de Sobol d’ordre total en utilisant LAM PD pour estimer la contrainte au pied de pale.

Chapitre 5

Ce chapitre propose une méthodologie d’estimation de la durée de vie probabiliste en fatigue
de la pale d’éolienne. Tout d’abord, un champ de vent considérant un écoulement turbulent
de 10 minutes est simulé en utilisant FAST et la méthode de Veers [Veers, 1988]. Le champ
de vent est utilisé dans une simulation aéro-élastique pour calculer l’historique des charges
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aéro-élastiques résultantes agissant sur le modèle 1D de la pale. Ensuite, ces charges sont
transférées vers un modèle FEM de coque 2D de la pale en utilisant deux méthodes LAM: 4
noeud et PD. Selon le LAM utilisé, les charges réparties sont appliquées au modèle de coque
de la pale pour l’analyse des contraintes. Le calcul des dommages de fatigue prend en compte
l’état des contraintes non-proportionnelles par un critère de fatigue multiaxiale, un comptage
de cycles par la méthode Range-Mean et la règle de Miner pour le cumul du dommage. Le
dommage par fatigue est calculé au niveau des couches du stratifié, ce qui indique la défaillance
à une position locale.

Après avoir étudié la distribution des contraintes et de la fatigue sur la pale, une méthodolo-
gie est développé pour permettre l’apprentissage du DNN afin de l’utiliser ensuite pour prédire
l’endommagement par fatigue pendant 10 minutes. Cette méthodologie consiste à trouver la
fonction de répartition empirique de l’endommagement pour chaque vitesse moyenne du vent
et à ajouter la valeur de la probabilité cumulée comme variable d’entrée. Cette approche
permet d’estimer l’endommagement par fatigue pendant 10 minutes avec une bonne précision.
Ce DNN est testé pour prédire l’endommagement pendant 10 minutes d’un historique du vent
à une vitesse moyenne différente de celle utilisée pour l’apprentissage. Les erreurs maximales
trouvées sont de moins de 14% pour la couche de matériau P2B et 9% pour la couche de
matériau QQ1.

En utilisant ce DNN, il est possible d’estimer la durée de vie probabiliste de la pale, où 10
000 échantillons de 10 minutes d’endommagement par fatigue sont générés pour chaque vitesse
du vent entre 4 et 24 m/s, soit pour un total de 210 000. Des données expérimentales du
projet open-data Engie Renewable à la Haute Borne, Grand Est, France [Engie, 2019] ont été
utilisées afin d’estimer les répartitions de chaque vitesse pendant une année. Ces données ont
été collectées pour une éolienne de 2 MW à une hauteur de moyeu (Hub) de 80m. L’éolienne
utilisée dans cette étude a une hauteur ou moyeu de 119m. Il est supposé que ce pourcentage
de durée de chaque vitesse du vent soit la même durant 20 ans.

L’endommagement par fatigue pendant 20 ans est estimé sur les diffèrentes couches des
matériaux composites de la pale. Le niveau d’endommagement le plus élevé est située sur
la couche du matériau composite QQ1. Cette couche est utilisée pour estimer la durée de
vie d’un point de la pale. Nous avons fait l’hypothèse que la pale génère de l’électricité sans
s’arrêter pendant 20 ans. La distribution probabiliste de la durée de vie dans ce point suit une
loi de distribution normale. Les tests de Kolmogorov-Smirnov et d’Anderson-Darling n’ont
pas rejeté l’hypothèse de la distribution normale. La durée de vie estimée au fractile de 5%

en ce point est de 23,51 ans.

Conclusions

Dans ce travail de thèse, nous avons développé une procédure d’analyse de fatigue pour les
pales d’éolienne. Cette procédure est basée sur plusieurs outils de simulation : i) la simula-
tion par FAST du champ du vent turbulent, ii) simulation la réponse dynamique temporelle
couplée en utilisant des modèles aérodynamiques, des modèles de contrôle et de système élec-
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Estimation probabiliste de la durée de vie de la pale pour la couche QQ1 dans la position
Z = 51.257m de la longueur de la pale.

trique (servo) et structurels (élastiques) ; iii) transfert des charges obtenue par les simulations
aéro-élastiques 1D au modèle aux éléments finis de coque 2D de la pale ; iv) estimation des
historiques du tenseur des contraintes dans les différents plis des stratifiées des matériaux com-
posites de la pale ; v) analyse de fatigue multiaxial en tenant compte de la non proportionnalité
des contraintes.

Un modèle de régression est développé pour prendre en compte les discontinuités de saut.
Ces discontinuités de la réponse sont dues au fonctionnement du contrôleur des pales. Le mod-
èle proposé utilise le modèle de mélange gaussien (Gaussien Mixture) et les réseaux de neu-
rones profonds (Deep Neural Network). La méthode proposée présente une erreur quadratique
moyenne inférieure par rapport à d’autre méthodes de régression d’apprentissage automatique
utilisées.

Ce travail de thèse propose une méthode originale pour l’analyse de sensibilité globale pour
les problèmes à grande dimension. Cette approche est utilisée pour l’analyse des sensibilités
globale des méthodes d’application de charges (LAM), utilisées pour transférer les charges
du vent issues des simulations aéro-élastiques 1D au modèle aux éléments finis de coque 2D
de la pale. L’approche développée emploie la décomposition de la variance en estimant les
indices de Sobol. Ces indices de Sobol sont estimés en utilisant un modèle de substitution
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basé sur un réseau de neurones profond. Cette méthodologie est basée sur le développement
de deux réseaux de neurones, le premier estime les charges aéro-élastiques maximales pour une
vitesse moyenne du vent donnée et le second consiste à estimer les contraintes mécaniques au
pied de la pale à l’aide d’un modèle aux éléments finis, en tenant compte des épaisseurs des
matériaux composites et des charges aéro-élastiques maximales obtenues à partir du premier
réseau de neurones. Les résultats obtenus par cette analyse de sensibilité en utilisant un réseau
de neurones profonds sont validés et comparés aux résultats de la méthode de Morris.

De plus, les résultats de sensibilité obtenus des méthodes LAM testées montrent que la
méthode PD est la moins sensible par rapport aux autres méthodes (4NO ET RBE). Cette
étude a permis de sélectionner cette méthode d’application des charges pour l’analyse de
fatigue de la pale.

Ce travail de thèse propose le développement d’une approche probabiliste de la durée de
vie en fatigue d’une pale d’éolienne en matériaux composites. L’utilisation de la chaîne de
simulation décrite ci-dessus pour propager l’incertitude de la vitesse du vent dans la durée
de vie en fatigue est impraticable en utilisant les simulations de Monte Carlo. Pour cela, un
modèle de substitution basé sur le réseau de neurones profond est utilisé pour prédire la durée
de vie en fatigue de l’éolienne. L’apprentissage du réseau de neurones profond est effectué
en développant une approche originale, basée sur l’estimation de la fonction de répartition
empirique de l’endommagement pour chaque vitesse moyenne du vent, cette fonction de ré-
partition de probabilité cumulée est ajoutée aux variables d’entrée du réseau de neurones
profond. Les simulations de Monte Carlo en considérant l’incertitude de la vitesse du vent
sont alors effectuées en utilisant le modèle de substitution. La distribution probabiliste de
la durée de vie suit une loi de distribution normale et la durée de vie de la pale estimée au
fractile de 5% est de 23,5 ans.

Recommandations pour les travaux futurs

Plusieurs améliorations peuvent être apportées aux travaux de recherche développées. Pre-
mièrement, la méthode d’application de la répartition de la pression développée par Caous,
pourrait être implémentée dans une autre logiciel d’analyse par éléments finis où les forces
d’inertie pourraient être appliquées comme suggérées par l’auteur en tant que champs d’accélération.
Contrairement à l’implémentation qui a été faite dans ce travail dans le logiciel CODE-ASTER,
les forces d’inertie sont appliquées en utilisant des forces réparties proportionnelles à la sur-
face. De plus, comme le contrôle de la pale peut présenter un comportement énergétique
non-productif, le coefficient de pression à un angle d’attaque plus élevé, ce qui pourrait être
calculé à l’aide du logiciel 2D Xfoil. Dans cette étude, l’angle maximum calculé est ±32o

et après cet angle, le coefficient de pression est supposé être ce dernier. Pour les recherches
futures, le contrôle de la pale doit être optimisé afin d’assurer une simulation de la production
d’énergie pour toutes les vitesses du vent entre les vitesses d’enclenchement et de coupure.
Deuxièmement, la méthodologie d’analyse de sensibilité globale présentée dans cette thèse est
validée à l’aide d’une analyse de Morris, pour les recherches futures, il est recommandé de
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calculer la sensibilité globale en utilisant le modèle aux éléments finis de coque 2D de la pale
pour comparer et valider les indices de Sobol obtenues par l’approche proposée en utilisant le
DNN. L’utilisation d’un solveur GPU pour le modèle de simulation FEM afin d’effectuer un
calcul parallèle à haute performance. L’analyse de sensibilité a été réalisée en supposant des
conditions environnementales d’écoulement laminaire, pour les recherches futures, une étude
en tenant compte d’un écoulement turbulent pourrait produire des résultats différents intro-
duisant plus d’incertitude dans les charges du vent. Troisièmement, les modèles de substitution
utilisés pour l’analyse de fatigue ont été entraînés uniquement en considérant un écoulement
turbulent du vent et un seul historique temporel du champ de vent. Ce modèle de substitu-
tion a présenté une bonne prédiction par rapport à la quantité de données entraînées. Il est
recommandé pour les futures recherches d’augmenter le nombre d’échantillons d’apprentissage
en tenant compte les différentes conditions environnementales, différents historiques de champ
de vent et les différentes incertitudes des paramètres. Ainsi, le modèle de substitution peut
prédire le dommage par fatigue avec une meilleure précision et pourrait-être utilisé pour une
analyse de fiabilité.

Pour les travaux futurs, la méthodologie développée pour calculer la distribution proba-
biliste de la durée de vie en fatigue pourrait être utilisée pour une analyse de fiabilité, puis
une conception d’optimisation basée sur la fiabilité (RBDO) de la pale d’éolienne. Dans ce
cas, le poids ou le coût total de la pale est minimisé sous la contrainte que la probabilité
de défaillance de l’état limite de fatigue soit inférieure à une valeur cible. Cette approche
d’optimisation fiabiliste permettrait une distribution optimale des matériaux composites de la
pale.
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Chapter 1

Introduction

1.1 Context

In the last few decades, wind turbine machines have evolved, increasing their size, being
more cost-effective, more eco-friendly, and more reliable. Currently, this energy generation
technology has become trending in government policies worldwide, to reduce the use of fossil
fuel power plants and decrease the greenhouse effect.

As a consequence of this massive growth, design-engineers encounter new challenges to
continue the cost-effectiveness of turbines for all applications, at sites with low wind speeds
or offshore farms, producing energy at a large amount. Also, there is a lack of operational
experience because these wind turbines are brand new. Therefore, designers have to rely on
simulation tools to model complex behavior and make decisions based on them, making these
tasks of paramount importance.

Simulation tools as FAST developed by NREL (National Renewable Energy Laboratory)
[Jonkman and Buhl Jr, 2005] and HAWC2 developed by DTU (Denmark Technological Uni-
versity) [Larsen and Hansen, 2007] reproduce the coupled dynamic response of wind turbines.
Joining models for aerodynamic, electrical and control, and hydrodynamic using simplified
Blade Element Momentum (BEM) theory. This wind turbine model calculates the non-linear
time-domain response of displacements and loads acting in the machine under different en-
vironmental conditions testing all possible cases described in certification standards for wind
turbines [Guideline and Lloyd, 2010]. As these tools allow us to simulate numerous conditions
in a considered time, a general analysis for wind turbine blades could be performed, obtaining
the deflection, natural modes, and extreme load analysis. However, a detailed analysis of the
blade as fatigue or buckling analysis needs a tri-dimensional model and distributed loads act-
ing along the blade. Computational Fluid Dynamics (CFD) codes calculate the interaction of
fluid-structure in a 2D or 3D space. However, there will not be a coupled dynamic response,
also depending on the mesh conditions, it costs more CPU calculation time. To consider the
coupled response of the wind turbine blade is required to use the multi-body outputs, transfer
them as an equivalent distributed load field to the 2D shell finite element model (FEM), to
obtain a stress distribution along the blade.

As different authors [Bottasso et al., 2014, Hu et al., 2016b] define their method to transfer
loads and calculate the fatigue life or do a reliability-based design optimization (RBDO), the
stress distribution and displacement responses on the blade varies from one method to another,
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2 Chapter 1. Introduction

creating uncertainty by the type of method used. Selecting a method to estimate the fatigue
life or perform a reliability analysis of the wind turbine blade’s fatigue failure is crucial.
Because depending on how is replicated the coupled multi-body dynamic simulation on a 2D
shell FEM of the blade, increasing the complexity, and methods based on gradient would have
problems to converge, adding uncertainty to the evaluated model. Moreover, blades shell FEM
return distribution of stress and displacement all over the blade, and treating all these outputs
is a time-consuming task for reliability analysis. In this case, authors [Morató et al., 2019,
Teixeira et al., 2017] have used the Kriging (Gaussian process) surrogate model to replace a
high time-consuming model and being able to predict new outputs without the need of running
the original model, making the estimation of fatigue life, reliability, and fatigue analysis more
doable in terms of calls to the original model. Also, with the increasing development of new
machine learning and deep learning methods to create a surrogate model, different strategies
and methodologies could be explored to solve these problems with a faster and more accurate
solution.

Fatigue analysis of wind turbine blades is a broad field, requiring an approach of multiple
disciplines due to the combination of components with mechanical and aerodynamic functions,
and a corresponding variety of material and load conditions. Therefore, with a limited time
frame project, the present thesis will focus on narrowing the study’s scope to the probabilistic
fatigue life estimation of composite wind turbine blades using surrogate models.

1.2 Previous work

Different methodologies to analyze the fatigue damage on wind turbines have been approached
differently by some authors, with the most difference in applying the loads along the wind
turbine blade and the failure criteria applied. This state of the art presents only previous
works in the last decade. First, a structural reliability study and evaluation of wind turbine
blades made by Dimitrov [Dimitrov, 2013] is shown in figure 1.1.

Structural Reliability of Wind Turbine Blades

Constant 
pressure 

distribution 
on 3D FEM 

model

Ultimate and 
Fatigue 
analysis

Uncertainty 
Quantification

System 
Reliability

Figure 1.1: Methodology for analyzing the structural reliability of wind turbine blades
[Dimitrov, 2013].
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In this study, Dimitrov defined a constant uniform pressure distribution as a linear function
of the flap-wise bending moment and applied to the 3D FEM of a composite material wind
turbine blade. Then, using the Hashin criterion [Hashin, 1980] calculates the ultimate failure
of composite laminate, which involves the computation of four failure indices describing the
material conditions in fiber and matrix tension and compression. Moreover, the author used
a progressive failure analysis, following the development of matrix-related failure events, until
the first fiber failure occurs. In fatigue failure for laminates is used as a fatigue analog to
the static Hashin failure criterion [Hashin, 1981] with a progressive update of stiffness in the
laminates. Subsequently, treatment of uncertainty in different assessments as uncertainties in
wind climate variables in estimating extreme and fatigue loads, in the ultimate limit state,
and fatigue limit state. Finally, performing a reliability analysis for blade-tower collision and a
sandwich panel subjected to compression and traverse pressure. As the loads are applied using
a constant uniform pressure distribution, this force’s value is proportional to the surface area.
Its direction is not necessarily perpendicular to the element surface. However, it is oriented
in a specific direction, meaning that flap-wise and edge-wise behavior are studied separately
[Caous et al., 2018]. On the other hand, the main idea of the Hashin criterion is the failure
mechanism of the composite, making differences between failures of the fiber and matrix both
in tension and compression. However, for the matrix failure, the author proposes a quadratic
criterion because a linear criterion underestimates. The material’s strength and a polynomial
of higher degree would be too complicated to manage in his experience. This criterion was
developed based on logical reasoning to reach an applicable criterion, rather than to continue
with the mechanism of failure to establish the macro-variables associated with it and propose
a criterion based on them [París and Jackson, 2001].

Another study for the structural blade optimization was performed by [Bottasso et al., 2014]
as shown in figure 1.2. Divided into two main parts, first, a 2D FEM section and beam mod-
eling are optimized, and then a 3D FEM is used to update the constraints of the 2D FEM
optimization. In the first part, to analyze the wind turbine is necessary to define the sec-
tional design of the cross-section (airfoil) using code HANBA 2D FEM [Giavotto et al., 1983]
to compute the 6x6 stiffness matrices, to create a geometrically exact beam model. Subse-
quently, is defined as a complete HAWT (Horizontal Axis Wind Turbine) Cp-Lambda (Code
for Performance, Loads, AeroElasticity by Multi-Body Dynamic Analysis) multi-body model
[Bauchau et al., 2001, Bottasso, 2006] performing different DLCs (Design Load Conditions)
simulations and extracting: load envelope, DELs (Damage equivalent loads), and max tip
deflection.

Then, is minimized the cost (mass) of the wind turbine blade using the sequential quadratic
programming (SQP) method until convergence. Subsequently, it generates a 3D CAD model
using the optimized parameters to perform a detailed analysis: max tip deflection, max
stress/strain, fatigue, and buckling; founding a violation of the 3D FEM constraint, is updated
and relaunched the 2D optimization to Minimize both analyses under the defined constraints.

For the 3D FEM analysis, Bottasso has developed an approach to apply equivalent loads
from the beam multi-body model analysis to the 3D FEM blade by recovering the inertial
and aerodynamics resultants loads applied to all sectional nodes and the sole skin nodes, re-
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Figure 1.2: Methodology for structural blade optimization [Bottasso et al., 2014]

spectively. It computes the fatigue analysis by exploiting the linear superposition of static
unit load cases applied to the FEM with load histories obtained from the beam model, us-
ing rain-flow counting and the associated Markov matrices. As mentioned by the author, a
more realistic way of representing aerodynamics loads would be to reconstruct the chord-wise
pressure distribution, using experimental measurements or numerical models such as Xfoil
[Drela, 1989] that can calculate the pressure distribution on the airfoil. However, Xfoil could
not accurately predict the stall because of extensive flow separation and possibly unsteady
effects [Petrone et al., 2011].
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Figure 1.3: Methodology for reliability-based optimization of wind turbine blade
[Hu et al., 2016a]

A study for reliability-based optimization in wind turbine blades for fatigue life was made
by Hu [Hu et al., 2016a], as shown in figure 1.3. A wind load uncertainty model represent-
ing realistic spatiotemporal annual wind load variation represents a joint probability density
function (PDF) of 10-minutes mean wind speed and 10-minutes turbulence intensity. That



1.2. Previous work 5

estimate the lift, drag, and moment coefficients integrating Xfoil and aerodynamic code Aero-
Dyn [Moriarty and Hansen, 2005] for a different angle of attack for each blade section. Then,
a pressure distribution along the 3D FEM model of the blade is applied to calculate the
fatigue damage using a multi-axial fatigue damage model for isotropic and anisotropic mate-
rials [Liu and Mahadevan, 2007]. Due to the high amount of variables on his fatigue damage
model, the author used a Kriging surrogate model [Zhao et al., 2011] on defined hotspots, to
then estimate the reliability-based optimization of the wind turbine blade. The correction
made by the author, concerning lift, drag, and aerodynamic moment coefficients may differ
from final forces once applying the pressure because of blade geometry variations. Segments of
the blades defined in AeroDyn are beam FEM lead to a simplified geometry, which may differ
from the blade modeled with finite shell elements. These geometries differ in terms of local
chord length or twist, or terms of global dimension variation through the length, leading to a
radial force when pressure is applied [Caous et al., 2018]. Also, as specified by the author, the
method does not consider the aerodynamic force coefficient variation at one angle of attack.
Instead is used a fifth-order polynomial regression model.

Aero-servo- 
elastic 

simulations

Damage 
Equivalent 

Load

Fatigue 
Analysis

Kriging and 
PCE 

surrogate 
modeling

Surrogate 
model 

uncertainty 
Quantification

Surrogate model uncertainty in wind turbine reliability

Figure 1.4: Methodology for surrogate model uncertainty in wind turbine reliability assess-
ment.

A more recent study about surrogate models in wind turbine reliability assessment [Slot et al., 2020]
is presented in figure 1.4. In this study, the authors simulate the wind turbine using FAST
(Fatigue, Aerodynamics, Structure, and Turbulence) code [Jonkman and Buhl Jr, 2005] from
National Renewable Energy Laboratory (NREL) to obtain resultant loads in a beam FEM
of the wind turbine. Subsequently, Uses DELs implicitly assuming that a linear S-N curve
can model fatigue strength of materials. The Miner’s rule [Miner, 1945] is used to accumulate
fatigue damage. Subsequently, a surrogate model using two different approaches are used to
predict the damage at different location of the blade, Kriging [Santner et al., 2003] and PCE
(Polynomial Chaos Expansion) [Sudret, 2014]. Then, making quantification of the surrogate
model’s uncertainty for different conditions on the wind turbine blade outputs. Modeling
the wind turbine blade using beam FEM, the fatigue damage analysis is faster than using
a 3D FEM. However, there is no detailed information on stress distribution along with the
wind turbine, especially the blade, which has the most complex geometry, and estimating this
distribution is difficult to calculate.
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1.3 Proposed study

The first objective of this study is to propose a methodology for probabilistic life estimation
based on fatigue damage, which includes: wind field simulation, coupled aerodynamic, elastic,
and electrical and control (servo) analysis, filter aero-elastic loads, stress analysis by finite
element analysis, and fatigue damage evaluation based on deep neural network surrogate model
considering a multi-axial non-proportional stress state. Using the proposed methodology, a
10 minutes fatigue damage is determined by a 10 minutes aero-elastic simulation assuming a
normal turbulence model for the environmental conditions. Different load application methods
for the 2D shell finite element model are specially studied and compared in a stress and fatigue
analysis in this procedure. A methodology diagram is illustrated in figure 1.5.
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Figure 1.5: Proposed methodology for probabilistic fatigue damage estimation of a composite
wind turbine blade.

The second objective is to propose a methodology for sensitivity analysis for high dimension
models based on the neural network surrogate model to select the load application methods
that generate the least sensitivity, selecting this method as the primary approach for the fatigue
life estimation. Three load application methods are selected to compare their responses. Each
of them has a different approach to applying the aero-elastic loads to a 2D shell model from
simple to realistic pressure distribution across the whole blade. This study proposes to estimate
the Sobol sensitivity indexes, a two-stages surrogate modeling approach, one to estimate the
maximum aero-elastic loads in steady environmental conditions and another one to predict
the Von Mises stress at the blade root. This proposed methodology applies to other wind
turbine components as a tower and jacket.

The third objective is to propose an algorithm for modeling jump discontinuity using deep
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neural networks. This model the variables found to have jump discontinuities in their domain.
The proposed methodology presents an improvement in mean squared error and R2 metrics
using a benchmark problem and aero-elastic loads for sensitivity analysis.

1.4 Outline of the thesis

This thesis follows the structure presentd bellow:

Chapter 2 presents the coupled aero-servo-elastic simulations used for a composite wind
turbine blade, including all the specifications in material distribution across the blade, calcula-
tion of cross-section stiffness matrices, and natural frequencies modes. Moreover, it presents a
state of the art of the load application methods used to transfer the loads from the simulation
tools to a blade 2D shell finite element model.

Chapter 3 introduces the reader briefly to deep neural networks (DNN) and how to opti-
mize their hyperparameters. DNN is the primary surrogate model for this thesis for sensitivity
and fatigue analysis. This study develops a new methodology to deal with jump discontinuities
by using neural networks, classifying the zones with a continuous response using a Gaussian
Mixture Model, and training the network by adding the classification value as an input pa-
rameter.

Chapter 4 proposes a new methodology for sensitivity analysis of load application methods
used in the blade 2D shell finite element model. This study proposes two surrogate models
to predict the maximum aero-elastic simulated loads in steady environmental conditions used
as input parameters with the material thicknesses for the second surrogate model. The aero-
elastic loads are applied using three different load application methods in the 2D shell model
to calculate the Von Mises stress on the blade root. Another surrogate model replaces the
2D shell model to predict the Von Mises stress and is used to calculate each load application
method’s sensitivity using the Sobol method. This study compares all sensitivity analyses
to determine the least sensitive method. A Morris analysis is used in the 2D shell model to
validate the Sobol indexes’ results using neural networks.

Chapter 5 proposes a methodology to estimate the fatigue damage based on 10 minutes
simulation mean wind speed. 10-minutes unsteady simulation assuming a normal turbulence
model is performed coupling aerodynamic, elastic, and electrical and control (servo) behavior
of the wind turbine to calculate the resultant loads on a beam finite element model. Loads
are transferred to a 2D shell FEM using the least and most sensible load application method
to estimate the blade’s detailed stress time history. Then uses a multi-axial criterion for
fatigue analysis to take into account the non-proportionality of the stress state. Constant
life diagrams estimate the number of cycles to failure at different stress amplitude and mean
stress. Miner’s rule calculates the accumulated fatigue damage. A surrogate model based on a
deep neural network is used to predict the fatigue damage cycles per wind speed by adding the
empirical cumulative distribution function of each damage distribution as input parameters.
The network hyperparameters are optimized using an optimization algorithm based on a
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Gaussian process. The network is validated and tested to predict a new damage distribution
using a different wind field time history. Next, analyzing a blade damage distribution at
the hotspot where the damage is maximum due to the load application method strategy. A
20 years fatigue damage estimation is performed for different composite material layers at a
selected hotspot. It then performs a Monte Carlo Simulation, considering surrogate models
to estimate the fatigue life probability distribution.

Chapter 6 summarizes the most important conclusions from the study and suggests topics
for future research.
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Load application methods from beam
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To analyze wind turbine blade for different environmental design cases computational tools
estimate the forces and displacement of the blade. This response considers the aerodynamics,
elastic effect and the controller action on the blade. To use this tools is needed to define the
wind turbine characteristics for mechanics properties, geometry, environmental conditions.
This tools then, create a 1D beam finite element model of the blade to simulate this coupled
behavior in a reduced computational time. This chapter presents the simulation codes and
loads application methods used to analyze wind turbine blades. Section 2.1 presents the
aero-elastic simulation codes and pre-processor tools to model a wind turbine. This study
uses a wind turbine model as a reference and explains the modification in the composite
material distribution along the blade. An explanation and classification of the called load
application methods (LAM) are presented in Sections 2.2 and 2.3. Section 2.4 presents an
application of different load application methods in a composite wind turbine blade. As found
in the literature, these approaches applies the loads from the 1D aero-elastic simulations to
a 2D shell model, and depending their strategy it could be more realistic and also more time
consuming.
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2.1 Simulation codes for wind turbine

Wind turbine certification standards for design [Guideline and Lloyd, 2010] suggest differ-
ent design situation as power production, start-up, normal shut-down, emergency shut-down,
where different design load cases (DLC) could occur during the wind turbine life. Each DLC
specifies the type of analysis needed to perform, fatigue, or ultimate analysis. However, as
environmental conditions have uncertainties, the wind turbine must be analyzed at differ-
ent combinations of wind speed, intensity turbulence, and shear exponent, resulting in an
extensive, time-consuming task for design. Numerical simulation tools deal with this issue,
assuming a simplified representation of the wind turbine and coupling multi-physics behavior.

Some simulation codes run numerous simulations to evaluate DLCs in the wind tur-
bine. HAWC2 [Larsen and Hansen, 2007] (Horizontal Axis Wind turbine Code 2nd gen-
eration) developed by DTU (Denmark Technological University) Wind Energy, is an aero-
elastic code intended for calculating wind turbine response in the time domain. Cp-Lambda
[Bottasso, 2006] (Code for Performance, Loads, Aero-Elastic by Multi-Body Dynamics Analy-
sis). FAST [Jonkman and Buhl Jr, 2005] (Fatigue, Aerodynamics, Structure, and Turbulence)
code developed by NREL (National Renewable Energy Laboratory) is a multi-fidelity tool for
simulating the coupled dynamic response of wind turbines. Coupling computational modules
for aerodynamics, hydrodynamics, control, electrical system (servo) dynamics, and structural
dynamics enable coupled nonlinear simulation in the time domain. All of these simulation
codes have implemented the blade element momentum theory. However, the main difference
appears in how the multi-body formulation models the wind turbine; some use a finite element
implementation of the Timoshenko beam theory. Others make use of a response shape formu-
lation. The last one linearizes the response of the individual turbine elements (e.g., blades and
tower), excluding a subset of degrees of freedom that may be important for a large and flexible
wind turbine [GL, 2015]. In this study, the FAST simulation code analyzes the deflection and
loads (forces and moments) acting on the wind turbine blade.

2.1.1 Pre-processor tools for simulation codes

Before executing the simulation tool FAST to calculate the loads and displacement time
history, it is necessary to generate some input files that describe the wind conditions to analyze
and generates the properties that describe the wind turbine as a beam FEM.

2.1.1.1 Wind environmental conditions

Wind speed variation in time occurs in different scales, variation in location, and wind direction
follows. Inter-annual variation in wind speed occur over time scales greater than one year. The
annual variation shows the variation in seasonal or monthly averaged wind speed. Diurnal vari-
ation occurs in tropical and temperate latitudes due to differential heating of the earth’s surface
during the daily radiation cycle. Short-term variations over intervals of ten minutes or less
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that have a stochastic character represent turbulence in the wind speed. The fatigue damage of
wind turbines most frequently considers short-term variations intervals of 10-minutes averaged
wind speed [Griffith and Ashwill, 2011, Hu et al., 2016a, Dimitrov, 2013, Slot et al., 2020]. In
this study, a 10-minutes simulation at an averaged wind speed calculates the fatigue damage
on the wind turbine blade.

To generate a 10-minutes wind field is based on 10-minutes mean wind speed V10, 10-
minutes turbulence intensity I10, and shear exponent α. The 10-minutes turbulence inten-
sity is the ratio of the wind speed standard deviation to the mean wind speed, determined
from the same set of measured data samples of wind speed, and taken over a specified time
[Standard et al., 2005] as

I10 =
Σ10

V10
(2.1)

Where Σ10is the standard deviation of the mean wind speed.

To calculate the 10-minutes standard deviation there is a dependency with the V10described
in standard [Standard et al., 2005]. For normal turbulence model, this dependency is given by
the local statistical moments of σ1 as: E(σ1|WS) = TIref (0.75WS + 3.8) and V(σ1|WS) =

(1.4TIref )2. The parameters of the σ1 density probability distribution are given in the follow-
ing equations as a function of WS and Iref is the expected value of the turbulence intensity
at 15m/s depending on wind turbine class [Standard et al., 2005].

σσ1 =

[
ln

(
V(σ1|WS)

E2(σ1|WS)
+ 1

)]1/2

(2.2)

µσ1 = ln[E(σ1|WS)]−
σ2
σ1

2
(2.3)

The shear exponent αor power-law exponent express the assumed wind speed variation
with height above ground, taking into account topography and roughness [Standard et al., 2005].
Meaning that knowing the profile at different mean wind speeds is necessary to know the type
of wind field that analyzes the wind turbine, which is not always available. A simplified
correlation between V10and mean shear exponent αbased on a joint distribution defined by
Dimitrov et al. [Dimitrov et al., 2015] as

µα = 0.088(ln(V10)− 1) (2.4)

σα = (1/V10) (2.5)

Subsequently, this procedure utilizes stochastic, full-field, turbulent wind simulations named
Turbsim [Jonkman and Buhl Jr, 2006]. It numerically simulates time series of 3-dimensional
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wind velocity vectors at points in a regular vertical grid. The theory behind this tool, based
on Veer’s method [Veers, 1988], generates a 3-dimensional field from a power spectral density
(PSD) function and the coherence function. Veer’s method uses a general random process
simulation method developed by Shinozuka and Jan [Shinozuka and Jan, 1972]. To generate
the random time-series signal using the following equation:

u(t) = ū+

M−1∑
j=1

Ajcos(2πnjt+ φj) (2.6)

Aj =
√

2lj (2.7)

lj =

√[
S(nj) + S(nj+1)

2

]
(nj+1 − nj) (2.8)

A frequency interval has to be selected from the PSD between n1 to nM and then discretize
in M − 1 sub-intervals, each frequency nj correspond to a value Sj from the spectral density
function, ū is the average wind speed and φj is a random variable uniformly distributed
between 0 and 2π. For each node of the vertical grid and at every time instant observed, it
will consider the contribution of every frequency selected between n1 and nM .

As mentioned before, a spectral density function is needed to complete the random gen-
eration process. In Turbsim [Jonkman and Buhl Jr, 2006], there are several different models
available listed below:

• The IEC Spectral Models [Standard et al., 2005]: The IEC Kaimal Model is defined as:

fSk(f)

σ2
k

=

4fLk
Vhub(

1 + 6fLk
Vhub

)5/3
, (k = u, v, w and f > 0) (2.9)

where f is the frequency in Hertz; k is the index referring to the velocity component
direction (i.e u = longitudinal, v = lateral and w = upward); Sk is the single-sided
velocity component spectrum; Vhub is the mean wind speed at hub height; Lk is the
velocity component integral scale parameter, determined by

Lk =


8.1Λ1, k = u

2.7Λ1, k = v

0.66Λ1, k = w

(2.10)

where Λ1 is the longitudinal scale parameter at hub height given by 0.7z z ≤ 60m or
42m z ≥ 60m. σk is the velocity component standard deviation given by

σk =


σu, k = u

0.8σu, k = v

0.5σu, k = w

(2.11)
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where σu is calculated used equation 2.1.

The IEC Von Karman isotropic model [Standard et al., 2005]:Su(f) = 2Luσ2
u

π(1+(1.339Luf)2)5/6

Sk(f) = 2Lkσk(1+8/3(2.678Lkf)2

π(1+(2.678Lkf)2)11/6
, k = v, w

(2.12)

both spectral models are defined in the IEC standard, assuming neutral atmospheric
conditions.

• The RisøSmooth-Terrain Model (SMOOTH) based on work by Højstrup et al. [Højstrup, 1982,
Olesen et al., 1984], this spectral model shows more flexibility in the atmospheric con-
ditions than the IEC spectral models. This spectral model has separate equations for
stable/neutral and unstable flows. The SMOOTH model defines the velocity spectra
using local height and wind speed; this contrasts with the IEC models, which use the
hub’s wind speed and height to define the spectra at all points.

For stable and neutral conditions (Gradient Richardson Number ≥ 0), the SMOOTH
model velocity spectra for the three wind components, K, are given by

SK(f) = V Star2
S1,K( z

v̄φM
)( φEφM )2/3

1.0 + S2,K( fz
v̄φM

)5/3
(2.13)

V Star is the friction velocity input parameter, v̄ is the mean wind speed at height z,
and φE and φM are functions of the stability parameter.

• The NREL National Wind Technology Center Model [Kelley et al., 2002], for neutral
and stable flows, the spectra models are defined by adding scaled versions of the SMOOTH-
model spectra:

SK(f) =

NumPeaksK∑
i=1

pi,KSK,SMOOTH(Fi,Kf) (2.14)

where NumPeaksK = 2 for all wind components K. All of the pi,K and Fi,K scaling
factors are functions of gradient Richardson number.

• The NREL Great Plains Model Low-Level Jet Model [Kelley et al., 2004], defines vertical
profiles of stability and of shear velocity. For stable and neutral flows, the spectra are
defined by adding peaks from the form of the SMOOTH-model spectra:

SK(f) =
v2
∗

V Star2

NumPeaksK∑
i=1

pi,KSK,SMOOTH(Fi,Kf) (2.15)

Using the local stability parameter, z/L, to determine the values of functions φE and
φM (instead of using the Richardson number as the SMOOTH model does).
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Also a coherence function defined by the complex magnitude of the cross-spectral density
of the longitudinal wind velocity components at two spatially separated points divided by
the autospectrum function needs to be selected. The most commonly used spatial coherence
models are:

• Coherence for IEC Spectral Models: The root coherence function for the u-component
of the IEC spectral model is defined as

Cohj,k = exp

(
−b

√
(
fr

Vhub
)2 + (0.12

r

Lc
)2

)
(2.16)

where f is the frequency, r is the distance between points j and k, b is the coherence
decrement (either 12 or 8.8, depending on the IEC 61400-1 edition number), and Lc is
the IEC 61400-1 length scale.

The coherence function for the v- and w-components of the IEC spectral models is

Cohj,k =

{
1 j = k

0 j 6= k
(2.17)

• Coherence for non-IEC spectral models: The root coherence function for all three of the
wind components for non-IEC spectral models is:

Cohj,k = exp

(
−0.5b(

r

zm
)a
fr

Vm

)
(2.18)

where b is the input coherence decrement (it may be different for each wind component),
r is the distance between points j and k, zm is the mean height of the two points, a is
the input coherence exponent, and Vm is the mean wind speed of the two points.

After selecting the spectral model and the spatial coherence model, Turbsim generates an
output binary file with the full-field wind speed that will be interpreted by FAST to calculate
the loads and displacements in the wind turbine blade. The IEC spectral model Kaimal and
the IEC spatial coherence model are the primary models in this study.

2.1.2 Wind turbine blade model

The DTU 10MW reference wind turbine blade [Bak et al., 2013] is the model used in this
study. The design of this wind turbine was an upscaling of the NREL 5MW reference turbine
[Jonkman et al., 2009]. Table 2.1 shows the critical parameters of this wind turbine.

The DTU Wind Energy controller, as described by Hansen [Hansen and Henriksen, 2013],
was implemented as a DLL to interact with the FAST model. The controller enables both
partial and full load operation, with switching mechanisms that streamline the transition
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Table 2.1: Parameters of the DTU 10 MW Reference Wind Turbine [Bak et al., 2013]

Parameter DTU 10MW RWT

Wind Regime IEC Class 1A
Rotor Orientation Clockwise rotation - Upwind
Control Variable Speed, Collective Pitch
Cut in wind speed 4 m/s
Cut out wind speed 25 m/s
Rated wind speed 11.4 m/s
Rated power 10 MW
Number of blades 3
Rotor Diameter 178.3 m
Hub Diameter 5.6 m
Hub Height 119.0 m
Drivetrain Medium Speed, Multiple-Stage Gearbox
Minimum Rotor Speed 6.0 rpm
Maximum Rotor Speed 9.6 rpm
Maximum Generator Speed 480.0 rpm
Gearbox Ratio 50
Maximum Tip Speed 90.0 m/s
Hub Overhang 7.1 m
Shaft Tilt Angle 5.0 deg
Rotor Precone Angle 2.5 deg
Blade Prebend 3.332 m
Rotor Mass 227,962 kg
Nacelle Mass 446,036 kg
Tower Mass 628,442 kg

between the two modes of operation. The controller uses the collective blade pitch angle and
electro-magnetic generator torque to control the wind turbine based on proportional-integral
control with additional filters. However, no tuning modifications were carried out, and the
present implementation considers the same controller as that in HAWC2 [GL, 2015].

Figure 2.1 presents a uniform wind ramp simulation generated using IECwind pre-processing
tool from FAST, showing the behavior of the wind turbine controller. The wind speed starts
at 4m/s and increases 2m/s every 100s until it reaches the cut-out wind speed. The wind
turbine starts generating a rated power of 10MW after the wind speed is greater than the
rated wind speed. Also, the pitch control is adjusted to maintain this rated power as the wind
speed increases. Although the controller for this wind turbine blade is out of tune, it works
well with perturbation in the system.

The composite material distribution used on this wind turbine blade is glass fiber rein-
forced composites and balsa wood, which serves as a sandwich core material, assembling the
composite layup in terms of stacking-sequence of layers representing multi-directional plies.
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Figure 2.1: Wind ramp simulation results for the 10 MW DTU simplified wind turbine blade
using FAST.

Their apparent material properties were derived based on the constituent materials’ specific
properties using simple micro-mechanics equations from [Chamis, 1983]. The resultant prop-
erties for Uniax, Biax, Triax, and Balsa wood are summarized in table 2.2. The composite
layup divisions for the blade are 11 regions circumstantially 2.2, and the stacking sequence
varies in thickness along the blade length resulting in complex composite material distribution,
with a high dimensional thicknesses space. To simplify this complex distribution to estimate
the probabilistic fatigue life, the number of variables thicknesses where reduced.

Moreover, this study uses a new material composite for the blade, replacing Uniax, Biax,
and Triax by composite materials from DOE/MSU fatigue database [Mandell and Samborsky, 2016].



2.1. Simulation codes for wind turbine 17

These materials are QQ1, a glass fiber reinforced epoxy composed by Vantico TDT 177-155
epoxy resin, Saertex U14EU920-00940-T1300-100000 0’s and VU-90079-00830-01270-000000
45’s, and P2B a carbon/glass-hybrid-fiber-reinforced epoxy laminate composed by Newport
carbon NB307-D1-34-600 G300 prepreg 0o and glass NB307-D1-7781-497A [Mandell and Samborsky, 2016].
Also, retaining the balsa wood as the core material in the sandwich panel. These new mate-
rials were selected because of the existing experimental fatigue data at different stress ratios,
that the original composite materials used for DTU do not have.

Figure 2.2: Circumferential region division of the wind turbine blade for the composite material
distribution [Bak et al., 2013]

.

Table 2.2: Apparent mechanical properties of the multi-directional plies and core ma-
terial of reference 10MW [Bak et al., 2013] and fatigue database composite material
[Mandell and Samborsky, 2016].

Property Uniax Biax Triax Balsa QQ1 P2B Unit

Young’s modulus E1 41,63 13,92 21,79 0,05 33,1 101 Gpa
Young’s modulus E2 14,93 13,92 14,67 0,05 17,1 8,86 Gpa
Young’s modulus E3 14,93 13,92 14,67 2,73 17,1 8,86 Gpa
Shear modulus G12 5,047 11,5 9,413 0,01667 6,29 6,37 Gpa
Shear modulus G13 5,04698 4,53864 4,53864 0,15 6,29 6,37 Gpa
Shear modulus G23 5,04698 4,53864 4,53864 0,15 6,29 6,37 Gpa
Poisson’s ratio ν12 0,241 0,533 0,453864 0,5 0,27 0,22 -
Poisson’s ratio ν13 0,241 0,28 0,28 0,013 0,359 0,31 -
Poisson’s ration ν23 0,241 0,28 0,28 0,013 0,27 0,22 -
Mass density ρ 1915,5 1845 1845 110 1919 1570 kg/m3

The new layup configuration used in this study keeps the same stacking-sequence of
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layers as [Bak et al., 2013]. For all regions in the blade’s surface, the stacking sequence is
[P2B,QQ1, BALSA,QQ1, P2B] and for internal regions is [QQ1, BALSA,QQ1], both sym-
metrical and equal distribution for suction and pressure sides. Also, is regrouped the 11 regions
into four main regions that have the same composite material distribution:

• Leading Panel (LP): composed by leading panel and nose.

• Trailing Panel (TP): composed by trailing panel, tail A, B, C, and tail V.

• Shear Web (SW): composed by shear webs A, B, and C.

Furthermore, in the span-wise direction, the thickness of composite material was changed
to a constant thickness in three different sections: lower, middle, and upper (see figure 2.3).
These constant values are assumed to be the mean value in this section to simplify the complex
composite material distribution. The blade thickness distribution is summarized in tables 2.3
2.4 and 2.5.

Figure 2.3: Blade span-wise partition for a constant thickness composite material distribution
.

Table 2.3: Composite material distribution in trailing panel region along the blade.

Trailing Panel

Z-start Z-end P2B QQ1 BALSA QQ1 P2B
[m] [m] [mm] [mm] [mm] [mm] [mm]
2.8 31.301 7.5 8 50 8 7.5

31.301 60.665 5 4 60 4 5
60.665 89.166 2.5 4 25 4 2.5

As the composite material distribution on the blade has changed stiffness, inertia, and
mass properties, they are recalculated to recreate the beam model used in FAST.
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Table 2.4: Composite material distribution in leading panel region along the blade.

Leading Panel

Z-start Z-end P2B QQ1 BALSA QQ1 P2B
[m] [m] [mm] [mm] [mm] [mm] [mm]
2.8 31.301 5 8 25 8 5

31.301 60.665 2.5 4 25 4 2.5
60.665 89.166 2.5 2.5 10 2.5 2.5

Table 2.5: Composite material distribution in shear webs region along the blade.

Shear Webs

Z-start Z-end QQ1 BALSA QQ1
[m] [m] [mm] [mm] [mm]
2.8 31.301 2.5 55 2.5

31.301 60.665 5 30 5
60.665 89.166 2.5 10 2.5

2.1.2.1 Cross-section blade properties

Introducing the wind turbine blade and tower to FAST, computations of span-variant struc-
tural properties are needed. As the wind turbine blades use composite materials, the cal-
culation of these properties is complicated because of the change of layup for different re-
gions, and the use of different composite materials and stacking sequence. To calculate cross-
section stiffness properties, exists different numerical codes using a finite element based ap-
proach as PreComp by NREL [Bir, 2006], BECAS (BEam Cross-section Analysis Software)
by DTU [Blasques, 2012] and VABS (Variational Asymptotic Beam Section) by Yu et al.
[Yu et al., 2002]. As the wind turbine blade used as a reference is the WT 10MW DTU,
BECAS was selected to determine their cross-section properties.

BECAS can handle an extensive range of arbitrary section geometries, predicting correctly
inhomogeneous and anisotropy material effects. Based on a definition of the cross-section
geometry and material distribution. It can determine the cross-section stiffness properties
while accounting for all geometrical and material induced couplings, inertia properties, and
offsets of the blade shear center, tension center, and center of mass concerning the blade
pitch axis [Blasques, 2012]. BECAS bases on the theory initially presented by Giavotto
[Giavotto et al., 1983] for the analysis of inhomogeneous anisotropic beams. The theory leads
to the definition of two types of solutions. Following Saint-Venant’s principle, the non-decaying
solutions are the basis for evaluating the cross-section stiffness properties.

To use BECAS code, the airfoil coordinates, layup configuration, and material data is
input in Airfoil2BECAS python code [Bitsche, 2012], that generates a 2D-mesh of the cross-
section of the wind turbine blade with the corresponding material and orientation assignments
in BECAS format. Subsequently, the inputs files for BECAS are generated using python code
ShellExpander [Branner et al., 2012] based on information in a finite element shell model. It
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assumes that the finite element shell model uses layered shell elements and that the shell
model nodes have an offset to the layer’s outer surface.

Figure 2.4: Region definition and sequence ordering for airfoil section no21.

The airfoil nodes must be ordered in sequence, starting from the suction to pressure sides
(counterclockwise), then defined nodes represent each region of the airfoil, including shear
webs. Also, the definition of material properties and stacking sequence for each region and
each cross-section leads to a 2D representation of the wind turbine blade (e.g., figure 2.4).
After executing the BECAS code, all cross-sectional properties of the blade can be extracted
and compute them into inputs files for FAST code. As shown in figure 2.5, the mesh and
mass, elastic, and shear centers are calculated, including stiffness properties and material
distribution.

Figure 2.6 shows the mass distribution along the wind turbine blade. As can be seen,
there are jumps in the mass due to the simplified composite material distribution, having a
total mass of 44600.75kg, which is heavier than the reference 10 MW DTU model 41716kg.
Moreover, the change of composite materials made the highest impact in stiffness properties,
as shown in figure 2.7 both stiffness, flap-wise and edge-wise, were increased almost in all
sections of the blade, resulting in a more resistant wind turbine blade.

2.1.2.2 Blade vibration modes

The new composite material distribution on the blade also changed their shape modes, which
are recalculated and provided to FAST aero-elastic code. Currently, FAST uses uncoupled
modes for flap and edge-wise (lag) degrees of freedom (dof) of the blade and also for the fore
and lateral motions of the tower. It ignores the torsion dof and offsets of the shear center,
tension center, and center of mass, causing significant dynamic couplings. To overcome these
issues, BModes (Software for Computing Rotating Beam Coupled Modes) computes flap-edge-
torsion coupled modes by implicitly accounting for the torsion dofs and the offsets mentioned
earlier [Bir, 2005].



2.1. Simulation codes for wind turbine 21

Reference Elastic Shear Mass Ax. 1 Ax. 2

Centers and axes

Material number

2

2.5

3

3.5

4

a) b)

Figure 2.5: 2D representation of blade section no10 a) Elastic, shear and tension centers and
b) material distribution (2 = BALSA, 3 = QQ1 and 4 = P2B).

Figure 2.6: Blade mass distribution per sections.

BModes uses a finite-element approach in conjunction with analytical linearization and
a special finite-element assembly that accurately captures Coriolis and centrifugal effects
[Bir, 2005]. BModes currently offers only one boundary condition to calculate the shape
modes: a cantilever boundary condition at the blade root.

To execute BModes is required specification of rotor speed, blade geometry, pre-cone,
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a) b)

Figure 2.7: Stiffness distribution per section in a) edge-wise and b) flap-wise directions.

pitch control setting, and structural properties distribution along the blade for inputs. The
structural properties are specified in terms of the section location (sec_loc), structural twist
(str_tw), flap bending (flp_stff), edge bending (edge_stff), torsion (tor_stff), and axial stiff-
ness (axial_stff); mass density (mass_den); section moments of inertia flap and edgewise
(flp_iner, edge_iner respectively); and chord-wise offsets of the shear center (sc_offst), ten-
sion center (tc_offst), and center of mass (cg_offst) at each section along the blade. BECAS
calculates the cross-section properties used for the shape mode calculations.

Table 2.6 shows the result from BECAS to calculate the isolated blade natural frequency
and comparison with the frequencies of the reference 10 MW. the first and second shape modes
in flap-wise direction are similar to the reference model. However, for the other shape modes,
the simplified blade has a greater frequency.

Table 2.6: Comparison of natural frequencies between reference blade [Bak et al., 2013] and
simplified 10MW.

Mode Natural Frequency - [Hz]

10MW DTU 10MW Simplified
1st flap mode 0.61 0.603
1st edge mode 0.93 1.175
2nd flap mode 1.74 1.742
2nd edge mode 2.76 3.396
3rd flap mode 3.57 3.772

1st torsion mode 5.69 6.345

To define the wind turbine in FAST is needed to specify two shape modes in flap-wise
direction and one in the edge-wise direction in a polynomial representation of the shape.
The results obtained using BModes are calculated the flap, edge, and twist displacement as a
function of span location for each mode of the blade, choosing the direction with the maximum
displacement as the dominant model. They are used to calculate the polynomial coefficients
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to define the shape modes in the FAST code. The file of BModes contains an excel sheet
ModeShapePolyF itting.xls that calculates the polynomial coefficients for mode shapes given
deflection data and slope along the length of a flexible beam. After specifying the values for
each mode shape, the calculation of the coefficients uses different methods:

• Direct Method: does not depend on the given slope, and the resulting mode shape is
only valid for small deflections of the beam about the undeflected position. This method
is not accurate for all mode shapes and should be avoided when possible.

• Improved Direct Method: uses the entered slope and deflection at the bottom of
the beam to improve the fit relative to the Direct Method. Like the Direct Method, the
resulting mode shape is only valid for small deflections of the beam. If an accurate slope
is known and if the deflection data at the bottom of the beam is also accurate, this will
most likely be the preferred method for calculating the polynomial coefficients.

• Projection Method: depends on the entered slope, the deflection at the bottom of the
beam, and the entered factor of y. This method is the best when trying to find mode
shapes about a deflected position. Nevertheless, it is only accurate when the slope and
bottom deflection are known accurately.

The wind turbine blade’s representation is a cantilever beam, fixed at the bottom. The
slope and deflection at the bottom are known accurately, and the Projection Method result
for the 6th order polynomial coefficients. The calculation of the coefficients is until the ninth
order, but with a sixth-order polynomial, the Projection Method has an excellent fit of the
mode shapes (e.g., figure 2.8).

Finally, the blade model’s representation uses the defined FAST input file to simulate all
different design load cases described in IEC-64001 [Standard et al., 2005]. To analyze the wind
turbine blade’s behavior, as power production, maximum tip deflection, load uncertainties, and
control response. FAST offers different output values at ten span locations of the blade, which
can be defined by the user to extract the time series of deflection, loads (forces and moments)
of the blade [Jonkman and Buhl Jr, 2005].

However, these outputs are the resultant response applied in a node of the beam repre-
sentation, meaning that using these results for the fatigue analysis is an approximation of the
blade damage and not a detailed distribution of it. The next section explains how to recreate
a detailed analysis that needs to transfer this 1D loads to a 3D equivalent load distribution
on the blade.

2.2 Load Application Methods - LAM

Load Application Methods (LAM) defined by Caous [Caous et al., 2018] are the methodologies
defined to transfer the 1D resultant loads from aero-elastic simulation numerical tools into an
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Figure 2.8: Polynomial coefficient calculation for the 2nd shape mode of the blade.

equivalent distribution loads on the shell FEM. The response of the shell model must be equal
to the one calculated using the simulation tool. The blade’s representation is a shell FEM,
calculation of the detailed distribution of stress on the blade leads to buckling, or fatigue
analysis (figure 2.9).

2.3 Classification

These methodologies are classified by Caous [Caous et al., 2018] depending on how the loads
are applied on the shell FEM into four main groups:

• Group 1: Application of loads by sections and on one point of each section (figure
2.10(a)).

• Group 2: Application of loads by sections but physical distribution on sections (figure
2.10(b)).

• Group 3: Continuous application on the blade of an oriented surface load (pressure
oriented in a specific direction)(figure 2.10(c)).
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Figure 2.9: Wind turbine blade assessment process [Caous et al., 2018].

• Group 4: Dissociation of inertial and aerodynamic loads with application of an acceler-
ation field and pressure distribution across the whole blade (figure 2.10(d)).

Figure 2.10: Approaches for load application methods in a shell FEM of the blade
[Caous et al., 2018].
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2.3.1 Application of loads by sections and on one point of each section

In the first group, resultants load are applied directly to a small number of sections of the blade,
either through a master node which controls the whole section displacement by relations be-
tween nodes degrees of freedom ([Forcier and Joncas, 2012],[Haselbach et al., 2016]), directly
onto one node that has nearly the same position as the beam FEM node ([Griffith and Ashwill, 2011],
[Shokrieh and Rafiee, 2006]), or a small number of nodes of the section of the shell FEM
([Lindgaard and Lund, 2010], [Lund and Stegmann, 2005]).

When using master nodes to control the whole section displacement by relations between
node degrees of freedom, it constructs an undeformable section of the structure, called Rigid
Body Element (RBE). It imposes linear relationships between the degrees of freedom of the
nodes in the undeformable section that the relative displacement between these nodes is zero.

The linear relation is written in a vector form, translating a movement of a rigid body in
small rotations:

~u(M) = ~u(A) + ~θ(A)× ~AM (2.19)

WhereM is a slave node, A is the master node, ~u is the displacement, and θ is the rotation
vector [de France, ]. The resultant loads from fast are applied directly as equation 2.20 at each
selected section.

Figure 2.11: Loads distribution per section using Rigid Body Elements

{
FFasti (z) = FRBEi (z)

MFast
i (z) = MRBE

i (z)
(2.20)

This first group of approaches is mostly used to model full-scale tests on blades [Branner et al., 2007]
or for a fast and straightforward application of loads from the beam FEM to the shell FEM.
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These approaches apply load resultants without distinction between inertial and aerodynamic
loads [Caous et al., 2018].

2.3.2 Application of loads by sections but physical distribution on sections

In the second group (Figure 2.10(b)), resultant loads are no longer applied to sections di-
rectly by a few nodes or rigid body elements. However, they have a physical distribution
across the nodes of some sections. An example of such an approach was presented by
[Bottasso et al., 2014], applying inertial and aerodynamic loads separately through elements
that allow an interpolation according to a user law. The computation of identical loading
conditions for the FEM is performed by distinguishing between aerodynamic and inertial
loads. This way, realistic loading conditions for the blade can be established by limiting the
aerodynamic loads’ application to the external skin nodes.

Span-wise distributions of inertial loads are recovered by enforcing the equilibrium of a
blade portion. With reference to Figure 2.12(a), consider a blade segment η ∈ [ηi, ηi+1], where
η ∈ [0, 1] is the span-wise non-dimensional coordinate running along the beam reference line
passing through the sectional point E. The internal stress resultants on the (i+ 1)th section is
fi+1, and the moment resultant about E ismi+1, while the ones on the ith section negative face
are −fi and −mi, respectively. At the span-wise station η, per-unit-span aerodynamic forces
fA(η) and moments mA(η) are applied at the aerodynamic reference line passing through the
sectional point A, which is at a distance rA(η) from point E on the ith section. Similarly,
per-unit-span inertial forces f I(η) and moments f I(η) are applied at the beam reference line,
which is at a distance rI(η) from point E on the ith section.

The force and moment (about E) equilibrium conditions for the blade segment write.

− fi + fi+1 +

∫ ηi+1

ηi

(fA + f I)dη = 0 (2.21)

−mi +mi+1 +

∫ ηi+1

ηi

(mA +mI + rAxfA + rIxf I)dη + rxfi+1 = 0 (2.22)

By using a trapezoidal approximation for the span-wise integrals, one obtains

∫ ηi+1

ηi

f Idη ≈ ηi+1 − ηi
2

(f Ii + f Ii+1) (2.23)

Where f Ii and f Ii+1 are sectional inertial forces. By inserting (2.23) into (2.21), starting
from the blade tip, on may compute each sectional inertial force based on the sectional resul-
tants and aerodynamic loads. Similarly, from (2.22) one may compute each inertial moment.

Once recovering the sectional loads as explained, the application to the blade structure
employs RBE3 interpolation elements provided by FE solver MSC Nastran [Nastran, 2004].
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a) b)

Figure 2.12: Load application method 2: (a) Recovery of inertial and aerodynamic loads from
sectional beam FEM loads and (b) inertial load application to spar caps nodes using the RBE3
element [Bottasso et al., 2014]

Different sets of nodes can be associated with different interpolation elements, each one in
turn associated with a different set of forces and moments. In all cases, forces are distributed
to each node considering local user-defined weighting factors. At the same time, moments are
applied as a sum of equilibrated forces on dependent nodes. Figure 2.12(b) shows an example
of the application of loads to a shell 3D model’s spar cap.

Figure 2.13: Loads distribution on 4 nodes per section.

The second example presenting such an approach is by TENSYL company [Caous and Valette, 2014].
In this approach, the force and moment resultants are distributed between four nodes of each
section (e.g., figure 2.13), assuming simplified phenomenological laws. In this method, FAST’s
resultant loads are applied following the system of equations 2.24.
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where, FFx ast, FFy ast, FFz ast,MF
x ast,M

F
y ast,M

F
z ast are the resulting loads from the 1D

beam simulation FAST, F ix, F iy, F iz , i = (A,B,C,D) are the nodal forces applied to nodes
(A,B,C,D) and xi, yi, i = (A,B,C,D) are the distance from the center o to each node. In
order to have a unique solution, six other equations are required. The missing relations will
then be assumed as:


FA
x = FB

x = FC
x = FD

x

FA
y = 2FC

y

FC
y = FD

y

FA
z = FC

Z

(2.25)

These chosen relations ensure equal forces in the drag direction on all four nodes. The lift
is twice as high on the leading edge as the trailing edge and the middle of the suction side to
get a lift position close to the quarter-chord length. It depends on the location of point C and
D [Caous et al., 2018].

This group of approaches has the advantage of applying loads more continuously rather
than applying them to one node and not stiffening the blade numerically with rigid elements.
However, load application is restricted to sections at discrete positions, and loads are not
distributed across the whole blade.

2.3.3 Constant pressure application on the blade of an oriented surface
load

The third group (Figure 2.10(c)) allows the distribution of the whole blade, applying the aero-
dynamics loads with a unidirectional surface load. In other words, it applies a force to each
element. This force’s value is proportional to the element’s surface area, and its direction is not
necessarily perpendicular to the element surface but oriented in a specific direction. This group
consists of approaches where pressure on the blade is constant ([Forcier and Joncas, 2012];
[Hu et al., 2012]; [Sørensen et al., 2014]; [Dimitrov, 2013]) and is distributed through the blade
length, for example, according to the variation in pressure coefficient [Berggreen et al., 2007],
or distributed through the chord, for example, according to a bi-linear law which assumes a
maximal pressure at the quarter-chord point [McKittrick et al., 2001].
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In these approaches, surface loads are only applied to pressure or suction side or are
directed in a specific direction and only studies flap-wise and edge-wise behavior separately
[Caous et al., 2018].

2.3.4 Dissociation of inertial and aerodynamic loads with the application
of an acceleration field and pressure distribution across the whole
blade

The fourth group (Figure 2.10(d)) is used to describe the physics of the blade loading more
precisely. It is done by computing the pressure distribution as a function of the wind flow sec-
tion by section with two-dimensional (2D) aerodynamic codes as XFOIL [Drela, 1989], before
applying it to the whole blade surface ([Chen et al., 2013]; [Grujicic et al., 2010]). However,
calculating pressure distribution, not computed by the beam finite element aero-elastic simula-
tion code, may lead to differences between the shell and beam FEM load distributions. These
differences are due to potentially different assumptions between aerodynamic and aero-elastic
simulations: non-viscous flow versus viscous flow, steady-state versus transient or 2D versus
3D effect and different numerical models, and panel method versus blade element momentum
method [Caous et al., 2018]. Although it uses computed loads using the beam FEM because
they a critical tool and a blade certification body [Jonkman and Buhl Jr, 2005] may have even
validated their values. Computing a detailed analysis on a shell FEM with different loading
conditions directly using the loads validated as critical is not desirable [Bottasso et al., 2014].
For this reason, it is selected correct pressure distributions methods that induce aerodynamic
loads as close as possible to loads computed with the beam FEM, taking into account aero-
elastic behavior and control command of the whole blade [Caous et al., 2018].

In the literature are founded several pressure corrections methods. [Hu et al., 2016b] pro-
pose a pressure coefficient correction to match lift, drag, and aerodynamic moment coeffi-
cients obtained with the aero-elastic beam finite element simulation AeroDyn with XFOIL.
[Knill, 2005] corrects the pressure distribution given by the 2D aerodynamic code with a scalar
to obtain the same lift force as that given by the aero-elastic simulation. Then are corrected
the drag force by applying a force proportional to the surface area of the elements. Inertial
forces are applied with loads proportional to element surface area and not mass to simplify
load transfer.

The correction by [Hu et al., 2016b] concerns lift, drag, and aerodynamic moment coeffi-
cients, which may differ from final forces after applying the pressure because of blade geometry
variation. Segments of blades defined in an aero-elastic beam FEM lead to a simplified geom-
etry, which may differ from the blade modeled with finite shell elements. These geometries
differ in terms of local chord length or twist or global dimension variation through the length,
leading to a radial force when pressure is applied. It also uses the aero-elastic simulation Aero-
Dyn; it only takes into account dynamics stall and blade rotation. It does not take into control
and electrical (servo) or elastic effects as FAST does, meaning that in Hu study, the blade is
undeformed when calculating the aerodynamic wind load within AeroDyn [Hu et al., 2016a].
The correction proposed by [Knill, 2005] considers this geometry variation computed from the
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differences between lift and drag forces. However, the aerodynamic moment is not corrected.

The method proposed by [Caous et al., 2018] overcomes the limitations described through
a novel correction of pressure coefficients to match lift force, drag force, and aerodynamic
moment. Also, the correction of inertial loads is provided to recover bending moments. This
method applies the loads separately to the shell FEM, depending on their source:

• Application of Aerodynamic loading with surface loads.

• Inertial loads, including both gravity and rotational forces, are applied as body loads.

As described by Caous, the first step is to correct the lift force by a coefficient using the
method developed by TJ Knill [Knill, 2005]. The coefficient is calculated as:

cknill =
Lnode
Laero

=
Fnodex

F aerox

(2.26)

Where Lnode is the lift force from the beam FEM and the Laero is the lift force from
the pressure distribution of the selected section, calculating this coefficient at each selected
cross-section. Subsequently, modification in the pressure distribution using this coefficient as:

P = cpqcknill (2.27)

where cp is the pressure coefficient, q is the fluid dynamic pressure calculated as q =

1/2ρV 2
rel. This modification in the total pressure distribution is going to change both the lift

and drag forces. The 2D airfoil tool Xfoil [Drela, 1989] calculates the aerodynamic pressure
coefficient of cp. From 2D geometry, local wind incidence angle, and Reynolds number at each
span cross-section (i.e., airfoil), computing the aerodynamic pressure coefficient distribution on
the pressure and the suction side of the airfoil. It is used results obtained for pressure coefficient
from the reference 10 MW [Bak et al., 2013] to calculate the airfoil’s pressure distribution.
These cp are calculated for an incidence angle between ±32o. It then chooses the pressure
coefficient to calculate the pressure P as the one obtained with the closest incidence angle
calculated using Xfoil. If the incidence angle is greater than ±32o, it uses this last one. For
thick and nearly cylindrical profiles, for instance, near the blade root, a simplified law is used
based on experimental data [Roshko, 1954, Roshko, 1961]. This law assumes a constant cp
equal to −1 on the whole downwind surface and a linear variation on the upwind surface
from 1 at the upwind stagnation point to −1 at the two points where upwind and downwind
surfaces meet.

Once the pressure is calculated and corrected about Fx at each section, they are interpo-
lated on the shell FEM blade surface. Despite this correction, the resultant aerodynamic force
Fx computed on the shell FEM differs from the beam FEM target, as shown in Fig.2.14.
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Figure 2.14: Aerodynamic pressure computation and correction [Caous et al., 2018].

Thus, additional pressure is applied to correct the three aerodynamic forces Fx, Fy, and
Mz. Two oriented pressure loads are then applied in order to correct the aerodynamic forces
and moment:

• Constant pressure by section, oriented towards the X − axis, to correct the Fx forces.

• Chord location-dependent pressure, oriented towards the Y − axis, to correct the Fy
forces and the Mz moments.

Let us consider a section with x the location along the chord, pressure corrections Px
(along X − axis) and Py(along Y − axis) are applied according to the following equations:

{
Px(X) = Px = const

Py(X) = Py1 + x.Py2

(2.28)

In order to determine these two pressure, is necessary to compute the difference between:


∆Fx
∆Fy
∆Mz

 =


Fx
Fy
Mz


Node

−


Fx
Fy
Mz


Aero

(2.29)

From Eq. 2.28, the correction pressure for each component can be calculated as:


∆Fx =

∫
c(Px)ds

∆Fy =
∫
c(Py1 + x.Py2)ds

∆Mz =
∫
c ~op ∧ (Px~x+ Py~y)ds

(2.30)

equation 2.30 can be simplified to:
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∆Fx = ax.Px

∆Fy = ay1.Py1 + ay2.Py2

∆Mz = ay3.Py1 + ay4.Py2 + by.Px

(2.31)

and represented as a matrix form:


Px = ∆Fx

ax(
Py1

Py2

)
=

(
ay1 ay2

ay3 ay4

)−1(
∆Fx

∆Mz − by.Px

)
(2.32)

where, the six coefficients ax, ay1, ay2, ay3, ay4 and by are only dependent on the mesh and
geometry of the blade.

ax =
∫
c(~n.~x)ds

ay1 =
∫
c(~n.~y)ds

ay2 =
∫
c x.(~n.~y)ds

ay3 =
∫
c( ~op ∧ ~y)ds

ay4 =
∫
c x.( ~op ∧ ~y)ds

bx =
∫
c( ~op ∧ ~x)ds

(2.33)

Figure 2.15: Geometrical properties: chord, thickness, aerodynamic center (C, B and o) and
pressure components Px and Py (blue and red arrows respectively) of a segment in an airfoil.

Considering as reference the airfoil of Fig.2.15 and the definition of each coefficient: ax =

2B and ay1 = 2C. To calculate the coefficient ay2, let us define the distance from the nose to
point o (aerodynamic center of the beam FEM) as αC, then, the integral can be defined as:

ay2 =

∫ (1−α)C

−αC
yds = (2α2 − 2α+ 1)C2 (2.34)
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where α is the fraction of the distance from nose to the aerodynamic center. For coefficients
ay3 and by, let us develop only the coefficient ay3, because for both coefficient is the same.
Defining distance ~op =< rcos(θ), rsin(θ) > as r = | ~op| and θ the angle of the vector and
~x =< 1, 0 >, the vector product result as:

~op ∧ ~x =

∣∣∣∣∣∣
i j

rcos(θ) rsin(θ)

1 0

∣∣∣∣∣∣ = −rsin(θ) (2.35)

Substituting the defined integral of ay3 by it’s Riemann’s Sum and also adding the result
from Eq.2.35, is obtained:

ay3 =

n∑
i=1

−risin(θi)∆s (2.36)

Following the same steps for by is obtained:

by =

n∑
i=1

ricos(θi)∆s (2.37)

ri and θi depends of the size of the mesh of the selected section of the blade.

Last coefficient ay4 is calculated as:

ay4 =
n∑
i=1

−risin(θi)xi∆s (2.38)

In summary, to apply the distributed pressure over the blade surface and correct the
aerodynamic loads, it is calculated and corrected the lift force to match with the beam FEM
using TJ Knill’s method. Then, calculates the constant pressure Px and apply it to correct
the error introduced from the first method in the drag force. Afterward, Py1 is calculated and
applied, and finally, Py2 is applied to erase the error in the lift force and the aerodynamic
moment in Z-direction.

It is worth noting that aerodynamic loads were corrected according to FX , FY , and MZ .
By computing acceleration correction after applying aerodynamic loads, it is also possible to
correct any difference in bending moments observed after pressure correction. This difference
is due to the miss-align between the position of the blade beam’s pressure center and the shell
FEM.

The inertial load’s application follows a piece-wise linear law along the blade through body
loads, proportional to each element’s mass. It performs an acceleration correction by applying
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translational accelerations along X-axis and Y-axis. These accelerations AX and AY generate,
respectively, a force FX and a bending moment MY and a force FY and a bending moment
MX . Each internal bending moment, computed on a section, depends on accelerations applied
from this section to the blade tip.

The acceleration correction can be expressed by the following relation:

{
MNode
X (zi) =

∑n
j=i cij .AY (zj)

MNode
Y (zi) =

∑n
j=i dij .AX(zj)

(2.39)

where MX(zi) and MY (zi) are the internal bending moments, extracted at section i, in-
duced by the acceleration correction AX and AY and cij and dij are parameters which depend
only on the shell FEM (mesh and geometry).

In order to determine the value of cij and dij the equation 2.39 is going to be developed.
As definition is known that:

∆MX =

∫ z=zn

z=zi

z.m.AY dz (2.40)

As explained by Caous, this equation is a piece-wise linear function, defining a linear function
between two sections as:

AY = (1− w(z))AY (zi) + w(z)AY (zi+1) (2.41)

where w(z) is a linear function between two section:

w(z) =
z − zi+1

zi − zi+1
(2.42)

Using equations 2.41 and 2.42 in 2.40, this last one can be re-written as:

∆MX(zi) =
∫ zi+1

zi
(z − zi).m(z).((1− w(z).AY (zi) + w(z).AY (zi+1)dz + ...+∫ zn

zn−1(z − zn−1).m(z).((1− w(z).AY (zn−1) + w(z).AY (zn)dz
(2.43)

However, this system cannot be solved because j ranges from 1 (blade root) to n (blade
tip), whereas i ranges from 1 to n− 1. To solve the problem and guarantee the uniqueness of
the solution, an additional relation between acceleration correction values on two sections has
to be defined. A linear variation is then defined between the rotation point of the turbine,
where acceleration correction is chosen as null, and the first two sections of the blade. This
can be written in the following form:
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{
AY (z1) = z1−zrotation

z2−zrotation .AY (z2)

AX(z1) = z1−zrotation
z2−zrotation .AX(z2)

(2.44)

Once the internal bending moment corrections to be applied to ∆MX and ∆MY are deter-
mined section by section, and matrix C are computed, acceleration corrections are determined
according to:


AY (z1)

AY (z2)

...

AY (zn)

 =


1 − z1−zrotation

z2−zrotation 0 ... 0

c11 c12 c13 ... c1n
0 c22 c23 ... c2n
... ... ... ... ...

0 0 0 ... cnn


−1

0

∆MX(z1)

∆MX(z2)

...

∆MX(zn−1)


Given the limitations of the FEA Code_Aster software used in this study, the definition

of an acceleration piece-wise linear function is not possible. Only a uniform application of
acceleration is possible. In this study, the accelerations were applied proportional to the wind
turbine blade’s surface area and not proportional as the blade mass, using surface loads.

In summary, based on the above classification, the first two groups concern discrete load
application methods, while the third is continuous but with loads oriented along only one
direction. Suppose we need a method to apply a continuous loading, taking multi-axial loads
into account to calculate the fatigue damage. In that case, an approach from the fourth group
must be considered [Caous et al., 2018]. Caous compared three methods from groups 1, 2, and
4 regarding their differences in stress distribution using puck criteria [Puck et al., 2002] and
the blade tip deflection, concluding that depending on the load application method could have
minor consequences for the conclusion of structural analysis. Discrete load application meth-
ods could induce stress concentrations around nodes where loads are applied, thus decreasing
safety factors. Also, he noticed that the rigid element method stiffens the blade locally, which
influences blade deflection. Positives and negatives aspects of each method are summarized
in table 2.7.

Table 2.7: Advantages and disadvantages of load application methods [Caous et al., 2018]

Load application method Pros Cons

Group 1
- Easy to implement
- Fast analysis of the wind turbine blade
- Low computational cost

- Stress concentrations
- No distinction between inertial and aerodynamic loads

Group 2
- Load applied to several nodes on the section
- Physical distribution of the loads in the shell FEM
- Low computational cost

- Stress concentrations
- Loads are distributed in a section and not along the whole blade
- No distinction between inertial and aerodynamic load

Group 3
- Distribution of the loads along the whole blade
- No stress concentrations
- Medium computational cost

- Pressure applied only in one direction (flapwise or edgewise)
- No distinction between inertial and aerodynamic loads

Group 4

- Distribution of the loads along the whole blade
- Distinction between inertial and aerodynamic loads
- No stress concentration
- Pressure applied following a more precise blade loading physics

- Torsion loading not taken into account
- High computational cost
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However, the sensitivity induced by those load application methods has not yet been
analyzed by other authors, which could introduce more complexity to the blade’s reliability
analysis if a gradient has to be calculated, for example. Also, as each method differs in the
blade’s stress and tip deflection behavior, the variance in the response could have a part
corresponding to the method itself. In this case, a sensitivity analysis regarding the blade’s
stress and tip deflection could be a useful criterion to select which method is the most suitable
to realize a fatigue life estimation or a reliability analysis. It takes into account the stress
distribution on the blade and the sensitivity induced by the variation of their parameters.

2.4 Application of LAM to a composite wind turbine blade

This study uses three LAM: rigid body elements (RBE), four nodes method (4NO), and Caous
method pressure distribution (PD) to apply the resulting loads from an aero-elastic simulation
at a constant speed of 11m/s carried out in the 10MW wind turbine blade with a simplified
composite material distribution described before.

It Uses a shell FEM of the blade with 30613 nodes and 46400 elements, nine rigid elements
used for the load application method RBE. Linear static FEA is run with Code_Aster,
assuming small perturbations.

2.4.1 Blade stress distribution

In this case of study, is shown the maximum and minimum stress distribution σ22 of the first
ply (P2B) of the laminate in figure 2.16, extracted at each Gaussian point along the blade
span-wise direction (Z-axis), the dash lines represents the position where the loads are applied
or corrected, and the cyan dash dotted line presents the position where the thickness change
abruptly. First, when using the LAM RBE, figure 2.16(a), the maximum stress magnitude
along the blade is higher at the tail A, B, C, and V (end of the trailing edge), and lower stress
between the shear webs. Also, the stress pattern presents jumps in stress level. This behavior
is due to the assumption of applying the loads at cross-sections acting as rigid bodies. As the
forces are applied directly to the section, all nodes have the same displacement, and the stress
will be maximum in the zones with the biggest change in geometry. In this case, the end of
the trailing edge and the shear webs A and B increase the stiffness on the flap-wise direction,
explaining the reduced stress produced in this area. Also there are jumps in stress level due
to the discontinuity created by the simplified material distribution. In this scenario there is
an abrupt change in thickness that creates a huge variation in stress.

Second, using LAM 4NO, figure 2.16(b), the stress along the blade presents points where
the stress increases abnormally. This resulting behavior is due to the approach used by
applying the loads directly in 4 nodes of a cross-section. Applying punctual nodes is generated
stress concentration on the local site of load application, multiplying the stress by a constant
that will depend on the magnitude of the force and the shell element’s area. This method
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presents the highest stress level of all three methods tested.

Third, using LAM PD, figure 2.16(c), the stress distribution along the blade is way different
from all other methods. In this case, as the loads are applied using a pressure distribution
corrected using the Caous method [Caous et al., 2018], the stress along the blade varies not
only in the span direction but also in the radial direction. In this case, high stress is found in
the middle of the blade leading panel section in the pressure side and decreasing towards the
blade tip and the leading edge. Similar to the stress level applying LAM RBE, there are jumps
in the stress level due to the change in thicknesses. This method presents a more realistic
representation of the stress acting on the blade. Compared with all other literature methods,
it is the most accurate to apply the loads from an aero-elastic simulation [Caous et al., 2018].
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a) Load application method: RBE

b) Load application method: 4NO

c) Load application method: PD

Figure 2.16: Maximum and minimum σ22 stress of first layer of composite material P2B of
10MW Wind turbine blade at Gaussian points.

Caous [Caous et al., 2018] presented a comparison of these three methods in a smaller
wind turbine blade, using the distribution of the Puck safety factor [Puck et al., 2002]. In his
study, LAM 4NO presented a location as the most damaged one different than LAM RBE
and PD. This result is similar, regarding the stress distribution.

Figure 2.17 shows the Von Mises plane stress at a fixed position of X coordinate (a)
X = −0.5 and b) X = 0) and varying Z coordinate and selecting only positive Y coordinate
(pressure side or the blade). As shown in the previous figure, the stress distribution is lower
for LAM PD, then follows RBE and the higher stress is found using 4NO. In this case is
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compared the exact position between all three methods. This indicates that methods RBE
and 4NO will produce a higher stress/fatigue damage compared to LAM PD for the same
wind conditions.

a) b)

Figure 2.17: Von Mises plane stress comparison for the LAMs at fixed coordinate a) X = −0.5

and b) X = 0.

Figure 2.18 shows a comparison of the deflection between the three LAMs and the aero-
elastic beam response. The deflection response in the flapwise direction at the blade tip
for all three methods are similar to the response of the aero-elastic simulation beam model
(see table 2.8. However, for the other points of the blade, the deflection calculated for all
three methods is greater than the aero-elastic simulation. RBE presents the higher deflection,
followed by 4NO and, finally PD. LAM PD is the method that estimates the closest deflection
behavior to the aero-elastic simulation compared to RBE and 4NO. These methods could be
improved not only regarding the loads but also the deflection along the blade ensuring the exact
behavior. These deflections differences could be produced due to the simplified beam model
used in the aero-elastic simulation and the 2D shell finite element software shortcomings to
correct acceleration. As mentioned by Caous [Caous et al., 2018] the pressure on the real blade
surface induces a radial effort that is not calculated in the beam FEM, or the case of FAST, the
torsional moment due to inertial loads is not considered in the beam element model. Therefore,
although differences may remain between the beam finite element servo-aero-elastic simulation
and the shell FEM loads, with the LAM PD, this method seems to provide a loading which
describes the physical phenomena better than the beam FEM. However, further investigation
on this subject should be carried out, including a comparison with a reference load distribution
taken from on-site measurements or computational fluid dynamics (CFD) analysis.

Table 2.8: Comparison of blade tip displacement

Method Blade tip displacement, flapwise (m)

Aero-elastic simulation 4.413
RBE 4.4898
4NO 4.36855
PD 4.36551
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Figure 2.18: Deflection comparison of LAM and aero-elastic response in flapwise direction.

2.5 Conclusions

The simplified wind turbine blade model developed in this chapter has a greater mass and
stiffness in both principal directions (flapwise and edgewise) than the original model developed
by DTU. These changes in mechanical properties increases the natural frequencies. Also, using
a simplified material distribution helps to reduce the computational time to create the blade
finite element model, moreover, this model is develop to be used in an optimization problem
to minimize the weight of the blade. However, this simplified material distribution introduces
discontinuities while changing between zones where the thicknesses are different.

The following study uses the three methods tested to estimate the stress in the simplified
wind turbine blade or fatigue damage. To clarify, LAM PD is the most accurate method to
transfer the aero-elastic loads in our study, and LAM RBE or 4NO are used to compare their
results with the primary method.





Chapter 3

Deep learning application for wind
turbine blade response

Sommaire
3.1 Deep learning in Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Introduction to deep neural network . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.4 Deep neural network optimizer . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.5 Overfitting problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Tuning hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Bayesian optimization for hyperparameter tuning . . . . . . . . . . . . . . 57

3.3.2 Random search vs. Bayesian optimization for hyperparameters optimization 59

3.4 Discontinuity modeling for wind turbine simulated loads . . . . . . . 61

3.4.1 Pitch control problems for steady and unsteady simulations . . . . . . . . 61

3.4.2 Automated Discontinuity Modeling Deep Neural Network (ADM-DNN) . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

The machine learning regression algorithms create a continuous surrogate model of data be-
havior. However, if this data has discontinuities jumps, their response is not longer continuous
in the domain but is continuous per region. Using a state of the art regression algorithm, it will
predict in between the discontinuity introducing error to the surrogate model’s response. Some
authors determine where the discontinuities are located and train various surrogate models for
each continuous region. Others make a combination of these surrogate models. Nevertheless,
these approaches need to train multiple surrogate models, and, after their combination, some
approaches present a continuous response. This chapter proposes a new methodology to model
discontinuity jumps in regression problems using deep neural networks, which automatically
determines the discontinuities and trains one surrogate model that predicts only the problem’s
continuous response. Section 3.2 presents an introduction, architecture, and optimization of
deep neural networks. Section 3.3 presents the optimization of hyperparameters in a deep
neural network. The discontinuity modeling approach is explained in Section 3.4 presents a
state of the art of different approaches, tests, and explains the methodology, comparing with
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other regression methods in a benchmark problem and an aero-elastic load estimation. The
proposed method outperforms all tested regression methods in both cases.

3.1 Deep learning in Wind Turbine

Deep learning (DL) proves to be an accurate and efficient alternative compared to classical
modeling techniques. DL is a branch of machine learning used for supervised and unsuper-
vised learning. DL’s architecture allows handling multiple inputs and outputs in one network,
giving an advantage over other machine learning algorithms to capture the behavior of high
dimensional problems. However, it needs a large amount of data to train, and the number of
parameters to train is more significant than all other machine learning algorithms. Nowadays,
DL applications in wind turbines are increasing due to their advantage in dealing with un-
certainty problems. Wind turbine uncertainties come from multiple sources as environmental
conditions, material properties, and manufacturing defects. In these cases, DL is an excellent
alternative to deal with these complex problems because testing a wind turbine is expensive
and time-consuming. Thus DL saves human-time and effort in experiments.

Numerous DL applications are found in the literature in the latest years in many differ-
ent fields, including wind turbine structure, optimization, wind power, wind speed forecast-
ing, and others. For wind turbine’s structural health monitoring (SHM), Dervilis Nikolaos
[Dervilis, 2013] investigated the SHM of wind turbine blades using neural networks. Sierra-
Perez et al. [Sierra-Pérez et al., 2016] introduced a hierarchical nonlinear principal component
analysis method for damage diagnosis in wind turbine blades. The authors demonstrated the
methodology’s effectiveness based on a composite 13.5m blade’s strain measurements and in-
vestigated pattern recognition for SHM. For wind energy forecasting problems, Sergio et al.
[Sergio and Ludermir, 2015] investigated the hourly average wind speed in Northeastern of
Brazil using a deep belief network and stacked auto-encoder: comparing with multi-layered
perceptron. Khodayar and Teshnehlab [Khodayar and Teshnehlab, 2015] proposed a stacked
auto-encoder neural network for ultra-short-term and short-term wind speed prediction. Liu
et al. [Liu and Zhang, 2016] presents an extensive empirical study of machine learning meth-
ods for wind power predictions of seven wind farms in Ontario, Canada. They have found
that the support vector machine, followed by DNN, has the best overall performance. Peng
et al. [Peng et al., 2016] predicted the wind power using a Multilayer Restricted Boltzmann
Machine (MRBM), a deep learning neural network with strong feature interpretation ability
reducing the mean squared error compared to a standard deep neural network. Wand et
al. [Wang et al., 2017] investigated convolutional neural network design for probabilistic wind
power forecasting. Liu et al. [Liu et al., 2018] presents a wind speed forecasting method based
on deep learning strategy using empirical wavelet transform, long short-term memory neural
network, and Elman neural network. Recently, Srivastava et al. [Srivastava et al., 2019] inves-
tigated the use of the recurrent neural network for predicting the unsteady aero-elastic response
of transonic pitching and plunging wing-fuel tank sloshing system. Li et al. [Li et al., 2019]
investigated the prediction of unsteady flow dynamics at different Mach numbers using long
short-term memory networks.
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However, more DL applications in a wind turbine have not been studied intensely, repre-
senting a research opportunity to develop more methodologies to apply DL to wind turbine
problems. This chapter explains how the deep neural networks work and how to optimize
their hyperparameters. Also is developed an approach to predicting the maximum loads of a
steady aero-elastic simulation. This approach is the first application of DL in this thesis.

3.2 Introduction to deep neural network

Scientists have always looked for inspiration in nature; birds inspire airplanes, whales inspire
serrated-edge wind turbines. As logical, to create intelligent machines, the inspiration comes
from the brain’s architecture being the main idea of artificial neural networks (ANNs).

ANNs were first introduced back in 1943 by the neurophysiologist Warren McCulloch and
the mathematician Walter Pitts [McCulloch and Pitts, 1943], they presented a simplified com-
putational model explaining how biological neurons might work together to perform complex
computations using propositional logic. This was the first architecture invented for ANN. Dif-
ferent architectures have been developed to solve problems as: recognize handwritten digits
or predict the weather at a desired time or even generating a new image with the style of
Leonardo da Vinci. Some of these architectures are listed bellow:

• Perceptron [Rosenblatt, 1957]

• Convolutional Neural Networks [Sermanet et al., 2012]

• Recurrent Neural Networks [Elman, 1990]

• Hopfield Network [Hopfield, 1982]

• Boltzmann Machine [Hinton et al., 1986]

• Autoencoders

• Generative Adversial Network [Goodfellow et al., 2014]

The only perceptron based architecture are described in this manuscript. The networks’
main task is to predict numerical outputs from numerical inputs; in other words, supervised
learning for regression problems. Also, perceptrons are used for classification problems.

3.2.1 Perceptron

The Perceptron is one of the simplest ANN architectures, invented by Frank Rosenblatt in
1957 [Rosenblatt, 1957]. It is based on a linear threshold unit (LTU): the inputs (x =

(x1, x2, x3, . . . , xn) and output (hw(x)) are now real numbers instead of binary values and
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Figure 3.1: Description linear threshold unit [Géron, 2019]

each connection is associated with a weight (see figure 3.1). The LTU computes a weighted
sum of its inputs connections (z = w1x1 + w2x2 + w3x3 + · · ·+ wnxn = wT · x).

Then applies a step function to the sum of the inputs z and gives as output the result:
hw(x) = step(wT · x). The Heaviside step function is the most common function used.

heaviside(z) =

{
0 if z < 0

1 if z ≥ 0
(3.1)

A Perceptron is composed of multiples LTUs with all inputs connected to each of them.
The inputs connect to a pass-through neuron (input neuron), giving the same value to the
output. Also, a Bias neuron is added, which always outputs the value x0 = 1 and connects
to each LTUs. A Perceptron with three inputs and one output is presented in figure 3.2.
This perceptron can predict a tri-dimensional problem’s output value by adding all outputs
in a final neuron. The same architecture can be used for classification problems without the
last neuron that sums all output values from each LTU. This network can classify instances
simultaneously into three different binary classes, in other words, a multioutput classifier.

However, each connection’s weight is unknown and must be learned from previously know
data presented to the network to train it. The Perceptron training algorithm proposed by
Frank Rosenblatt was inspired by Hebb’s rule [Hebb, 2005], suggesting that when a biological
neuron often triggers another neuron, their connection grows stronger. That is increasing the
connection weight between two neurons whenever they have the same output. Perceptrons
train by feeding one training instance at a time; for each instance, it makes its predictions. For
every output neuron that produced a wrong prediction, it reinforces the connection weights
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Figure 3.2: Perceptron diagram for regression [Géron, 2019].

from the inputs that contributed to the correct prediction, meaning that it considers the error
made by the network.

w
ti+1

i,j = wtii,j + η(ŷj − yj)xi (3.2)

Where, wi,j is the connection weight between the ith input neuron and the jth output
neuron, xi is the ith input value of the current training instance, ŷj is the output of the jth
output neuron for the current training instance, yj is the target output of the jth output
neuron for the current training instance, and η is the learning rate.

The decision boundary produced per each output neuron is linear, so Perceptrons are inca-
pable of learning complex patterns. However, some of the limitations of this architecture are
solved by stacking multiple Perceptrons. The resulting ANN is called Multi-Layer Perceptron
(MLP).

3.2.2 Multi-layer perceptron

An MLP is composed of one (pass-through) input layer, one or more layers of LTUs called
hidden layers, and one final layer of LTUs called the output layer (see figure 3.3). Every
layer except the output layer includes a bias neuron fully connecting each neuron to the next
layer. When an ANN has two or more hidden layers, it is called a deep neural network(DNN)
[Géron, 2019].
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Figure 3.3: Perceptron diagram for regression [Géron, 2019].

In 1986, Rumelhart et al. [Rumelhart et al., 1985] introduced the backpropagation train-
ing algorithm, finding a way to train MLPs with success. For each training instance, the
algorithm the network computes the output of every neuron in each consecutive layer (for-
ward pass). Next, it measures the network’s output error, the difference between the desired
output yj and the actual output of the network ŷj , and it computes how much each neuron
in the last hidden layer contributed to each output neuron’s error. This process continues to
measure each neuron’s error contributions in the previously hidden layer until the algorithm
reaches the input layer. This reverse pass measures the error gradient efficiently across all the
network connection weights by propagating the error gradient backward in the network.

In order for this algorithm to work properly, the authors made a change to the MLP’s
architecture, replacing the Heaviside function with the logistic function (eq. 3.3). This change
was essential because the Heaviside function contains only flat segments, so there is no gradient
to work with. In contrast, the logistic function has a well-defined nonzero derivative in the
entire domain, allowing some progress at every step.

σ(y) = 1/(1 + exp(−y)) (3.3)

However, in the backpropagation algorithm, gradients often get smaller as it progresses
to the lower layers. This is called the vanishing gradients problem, where training never con-
verges to a good solution because the gradient descent update leaves the lower layer connection
weights unchanged. Using a logistic activation function (see figure 3.4), when the output be-
comes large (positive or negative), the function has an asymptotic behavior approaching at 1 or
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0, meaning that the derivative is extremely close to 0. Then, when backpropagation encounters
this scenario, it has a little gradient to propagate back through the network, so there is really
no variation for the lower layers. But, in 2010 Glorot and Bengio [Glorot and Bengio, 2010]
introduced the weight initialization technique namely random initialization (before all weight
where initialized at 0) using a normal distribution with a mean of 0 and standard devia-
tion of σ =

√
2/(ninputs + nouputs when using logistic activation function, where ninputs and

noutputs are the number of input and output connections for the layer whose weights are
being initialized. With this strategy, the training is speeds up considerably.

The vanishing/exploding gradients’ problems were in part due to the activation function.
Choosing the sigmoid activation functions as biological neurons work, most people had been
choosing them. Other types of activation functions behave much better in deep neural net-
works, avoiding the saturation parts, and being faster to compute their gradient.

3.2.3 Activation functions

The backpropagation algorithm could use other activation functions, instead of the logistic
function. Different activation functions have been used in MLP, changing their architecture
and, by consequence, the network’s output prediction. Depending on the complexity of the
problem, some activation function may work better than others.

The most common activation functions are:

• The hyperbolic tangent function tanh
As the logistic function it has an S-shape (see figure 3.4), continuous and differentiable,
but its output value ranges from −1 to 1, speeding up the convergence by making each
layer’s output more or less normalized.

tanh(y) = 2σ(2y)− 1 (3.4)

• The rectified linear units (ReLU)
It is continuous but not differentiable at y = 0, the change of slope is abrupt, making
the gradient descent bounce around. However, in practice, the ReLu activation function
generally works better in ANNs, because it does not have a maximum output value as
the other activation functions [Géron, 2019].

ReLU(y) = max(0, y) (3.5)

ReLU activation function outperforms these other activation functions. However, they have
the problem known as the dying ReLUs: during the training of the network, some neurons
effectively die, meaning that the ReLU function always outputs 0. If a neuron’s weight gets
updated and the weighted sum wT · x is negative, the neuron will start outputting 0. If the



50 Chapter 3. Deep learning application for wind turbine blade response

Figure 3.4: Activation functions used in LTUs [Géron, 2019].

neuron reaches this state, it is unlikely to come back since the ReLU function’s gradient is 0
when its input is negative.

Some variants of the ReLU function have been developed to solve this problem, keeping
the advantages of fast convergence and solving the "deads" neurons. The first variant of this
activation function is the leaky ReLU . This function is defined as:

LeakyReLUα(y) = max(αy, y) (3.6)

The hyperparameter α defines the slope of the function for z < 0, and it is typically set
to small values like 0.01. This small slope ensures that leaky ReLUs functions never die. Xu
et al. [Xu et al., 2015] compared several variants of the ReLU activation function, and they
concluded that the variants of leaky ReLU function outperform the ReLU activation function.
Also, they tested different settings for α between high (huge leak) α = 0.2 and small (small
leak) α = 0.01, and high leak result in a better performance than a small leak. They also
evaluated the randomized leaky ReLU (RReLU), where α is selected randomly in a given
range during training, and it is fixed to an average value during testing. It also has a good
performance and seemed to act as a regularizer, reducing the risk of overfitting the network
in the training set. Finally, they evaluated the parametric leakyReLU (PReLU), where α
becomes a parameter that can be modified by backpropagation like the neuron’s weight. This
last variation outperforms ReLU on large image datasets, but on smaller datasets, it runs the
risk of overfitting the training set.

The improvement achieved by the variations of leaky ReLU function does not focus the
problem of not being differentiable at y = 0. Until 2015 when Clevert et al. [Clevert et al., 2015]
proposed a new activation function the exponential linear unit (ELU):
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Figure 3.5: Leaky ReLU activation function, alpha = 0.1 [Géron, 2019].

ELUα(z) =

{
α(exp(z)− 1) if z < 0

z if z ≥ 0
(3.7)

This activation function presents better performance than all the ReLU family, reducing
the training time, and the neural network performed better on the test set. In figure 3.6 is
represented the function with α = 1. The major differences compared to ReLU functions are:
First, it has a non zero gradient for y < 0, which avoids the dying units presented in ReLU,
Second, it return negative values if y < 0, which allows the unit to have an average output
closer to 0, and Third, the function is smooth in the entire domain, including around y = 0,
which helps speed up the gradient descent since it is differentiable in z = 0.

For all the ReLU family, He et al. [He et al., 2015] provided similar strategies as Glorot
and Bengio to initialize the hidden layer neurons’ connection weight.

In summary, to select an activation function for the hidden layers of a deep neural network,
in general, ELU > leaky ReLU (and its variants) > ReLU > tanh > logistic. If the network’s
training consumes high computational time, then leaky ReLU is preferred over ELU function
[Géron, 2019].

3.2.4 Deep neural network optimizer

A large deep neural network takes a lot of time to be trained. Some strategies have been
described to speed up training: using a good activation function and applying a good ini-
tialization strategy for the connection weights. Another strategy that can be useful is using
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Figure 3.6: ELU activation function, alpha = 1 [Géron, 2019].

different optimizer algorithm than the Gradient Descent. Some of the most popular optimizers
are presented next.

The Gradient Descent updates the weights θ by directly subtracting the gradient of the
cost function J(θ) with regards to the weights (∇θJ(θ) multiplied by the learning rate η. The
equation is:

θi+1 = θi − η∇θJ(θi) (3.8)

Selecting a low learning rate of η could lead to small steps and advance slowly to the
optimum taking a lot of steps and consuming huge computational time. Selecting a large
η could lead to not convergence of the algorithm, having big steps oscillating around the
optimum.

To improve the optimization problem’s running time, algorithms have been developed,
presenting a faster convergence than Gradient Descent. Some of the most popular algorithms
are presented below.

3.2.4.1 Momentum optimization

The momentum optimization algorithm is proposed by Polyak [Polyak, 1964], where the main
idea of this method is considering the momentum that could reach a ball rolling down a slope
of a surface: it starts slowly. But it will increase the velocity due to the inertial momentum
until it eventually reaches terminal velocity.
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Different than Gradient Descent, Momentum optimization takes into account the previous
gradients. At each iteration, it adds the local gradient multiplied by the learning rate η to the
momentum vector m, and it updates the weights by simply subtracting this momentum vector
(see algorithm 1). The algorithm introduces β as a new hyperparameter, called momentum.
To simulate a friction mechanism and create a resistance force that prevents the momentum
from growing too large, which can take values between 0 (high friction) and 1 (no friction).
Usually, it is set to β = 0.9

Algorithm 1 Momentum optimization algorithm
1: m← βm+ η∇θJ(θ)

2: θ ← θ −m

This optimization algorithm with β = 0.9 makes Momentum optimization run ten times
faster than Gradient Descent, allowing Momentum optimization to get out from plateaus faster
than Gradient Descent. In cases when the inputs have very different scales, the cost function
will look like an elongated bowl, The Gradient Descent goes down quickly in the steep slope,
but then it takes a very long time to go down the valley. In contrast, Momentum optimization
will roll down the bottom of the valley faster until it reaches the optimum [Géron, 2019].

The one disadvantage of Momentum optimization is that it adds another hyperparameter
to tune to the network.

3.2.4.2 Nesterov Accelerated Gradient (NAG)

A variant of the Momentum optimization is proposed by Nesterov [Nesterov, 1983], measuring
the gradient of the cost function not at the current position, but a little ahead int he direction
of the moment at θ + βm (see algorithm 2.

Algorithm 2 Nesterov Accelerated Gradient algorithm
1: m← βm+ η∇θJ(θ + βm)

2: θ ← θ −m

This small change in the evaluation of the cost function works because, in general, the
momentum vector is toward the optimum, meaning that it will be more accurate to measure
the gradient a bit closer to the optimum than measuring the gradient at the local position.
Adding up these small improvements, NAG is significantly faster than the regular Momentum
optimization[Géron, 2019].

3.2.4.3 AdaGrad

Introduced by Duchi et al. [Duchi et al., 2011], the AdaGrad algorithm focuses on solving the
problem of having different scales in the cost function dimensions, creating an elongated bowl.
For this problem is it is used Gradient Descent, it starts fast when the gradient is high and
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then goes slow when the gradient is low. AdaGrad detects this problem and scales down the
gradient vector along the dimension with a larger scale.

Algorithm 3 AdaGrad algorithm
1: s← s+∇θJ(θ)⊗∇θJ(θ)

2: θ ← θ − η∇θJ(θ)�
√
s+ ε

The AdaGrad algorithm (see algorithm 3) first step accumulates the square of the gradients
into the vector s (the ⊗ symbol represents the element-wise multiplication). This vectorized
form is equivalent to computing:

si+1 = si +

(
∂J(θ)

∂θi

)2

for each element si of the vector s. If the cost function presents a high slope in the ith
dimension, then si will get larger and larger at each iteration.

The second step is similar to Gradient Descent, but in this case, the gradient vector is
scaled down by a factor of

√
s+ ε, the � symbol represents the element-wise division, and ε

is a term used to avoid division by zero. The vectorized form presented in the second step of
the algorithm is equivalent to:

θi+1 = θi − η
∂J(θ)
∂θi√
si + ε

(3.9)

One advantage of this method is that it requires less tuning of the learning rate hyper-
parameter. However, AdaGrad often performs well for simple quadratic problems, but for
training neural networks, it often stops too early [Géron, 2019].

3.2.4.4 RMSProp

RMSProp [Tieleman and Hinton, 2012] solves the problem presented by AdaGrad that slows
down a bit too fast and never converges to the global minimum. RMSProp accumulates
only the gradients from the most recent iterations (as opposed to all the gradients since the
beginning of training). It is done by using an exponential decay in the first step (see algorithm
4).

Algorithm 4 RMSProp algorithm
1: s← βs+ (1− β)∇θJ(θ)⊗∇θJ(θ)

2: θ ← θ − η∇θJ(θ)�
√
s+ ε

The decay rate β is typically set to 0.9, it is a new hyperparameter to tune, but this default
value often works well. Except for very simple problems, this optimizer almost always performs
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much better than AdaGrad. It also generally performs better than Momentum optimization
and NAG [Géron, 2019].

3.2.4.5 Adam optimization

Kingman and Ba in 2015 [Kingma and Ba, 2014] introduces the called Adam algorithm, which
stands for adaptive moment estimation, combining the ideas of Momentum optimization and
RMSProp. From Momentum optimization, it keeps track of an exponential decay average of
the past gradients, and from RMSProp, it keeps track of an exponential decay average of past
squared gradients (see algorithm 5).

Algorithm 5 Adam Optimization algorithm
1: m← β1m+ (1− β1)∇θJ(θ)

2: s← β2s+ (1− β2)∇θJ(θ)⊗∇θJ(θ)

3: m← m
1−βT

1
. T is the iteration number, start at 1

4: s← s
1−βT

2

5: θ ← θ − ηm�
√
s+ ε

Steps 1,2, and 5 are similar to both Momentum optimization and RMSProp. The differ-
ence is found in step 1, which computes an exponentially decaying average rather than an
exponentially decaying sum. Steps 3 and 4 are used to boost m and s at the beginning of the
training since they are initialized at 0. Both hyperparameters are initialized to β1 = 0.9 and
beta2 = 0.999. Also, like AdaGrad, Adam is an adaptive learning rate algorithm, requiring
less tuning of the learning rate hyperparameter η. Adam outperforms all other optimization
algorithms and is the one used to train all deep neural networks in this research.

3.2.5 Overfitting problems

Depending on the size of a deep neural network can reach thousands of parameters. Having
this amount of parameters, a deep neural network can learn properly any kind of complex
behavior, training with the right amount of data. But some times as the network trying to
minimize the error in the training set, overfit its response. In other words, the network will
predict with minimal error data that was used from training or seen already, but for new data
(test set), the network performs poorly.

3.2.5.1 L1 and L2 regularization

Different strategies can be used to not leave the network to overfit in the training set. The
first strategy is to use regularization norms to constrains the connection weights. By adding
a parameter norm to the objective function J(θ)
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J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) (3.10)

Where, α is a hyperparameter that weight the contribution of the norm penalty Ω. If
α = 0, no regularization is applied, and the original cost function is obtained.

Two popular regularization norms are L2 and L1. L2 regularization is also known as
Tikhonov regularization, replacing the term Ω(θ) by:

Ω(θ) =
1

2
||w||22 (3.11)

Now the objective function 3.10 is written as:

J̃(w;X, y) = J(w;X, y) + α
1

2
||w||22 = J(w;X, y) +

α

2
wTw (3.12)

This term forces to keep the connection weights as small as possible while fitting the
training data. However, setting α too high will make the weights approach zero.

The L1 regularization is similar to L2, but the function omega has a slight change. It uses
the L1 norm of the weight vector instead of half the square of the L2 norms (see equation
3.13.

J̃(w;X, y) = J(w;X, y) + α||w||1 (3.13)

This regularization tends to completely eliminate the weights of the least important fea-
tures, setting them to zero. In other words, L1 regularization performs a feature selection and
outputs a sparse response.

3.2.5.2 Dropout regularization

Dropout [Hinton et al., 2012, Srivastava et al., 2014] is a technique used to prevent the over-
fitting of the neural network by taking out (dropout) random neurons of the network while
training. Every neuron (including input neurons but excluding output neurons) has a proba-
bility p of being temporarily ignored during a training step, but it may be active during the
next step. A new hyperparameter p is introduced and is called dropout rate, and is set to
50% normally.

Dropping out random neurons at every training step forces the network to not rely on
just a few input neurons. They take into account each of their input neurons. The Resulting
neural network ends up being less sensitive to slight changes in the inputs; in other words, a
more robust network[Géron, 2019].
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3.2.5.3 Early stoppage

One of the most simple techniques to avoid overfitting the training set is interrupt the training
when the performance of the network on the validation set reaches a minimum value or setting
a number of training steps (e.g., 1000 iterations), saving this last model and using it to predict
in the validation set[Géron, 2019].

3.3 Tuning hyperparameters

Deep neural networks are a powerful tool with too many hyperparameters to tune: activation
function, number of hidden layers, neurons per layers, optimization, regularization, etc. (Not
taking into account the network topology or how the neurons are connected). Depending
on the selection of these hyperparameters, the network could fit properly or not the data,
consuming many computational resources to train or not being able to predict with accuracy
the target value. Tuning the hyperparameters is the most important task because it will define
the performance of the network.

The most simple strategy to find the right hyperparameters is to use a grid search on a
searching space. Then, measuring their Mean Squared Error (MSE) at each hyperparameters
selecting the one that returned the minimum MSE in the validation set. This strategy is really
simple to implement. But since there are many hyperparameters to tune, it will explore a tiny
part of the searching space in a reasonable amount of time[Géron, 2019].

Other proposed strategies have a much better result than grid search, such as Random
search [Bergstra and Bengio, 2012]. Random search selects random points uniformly dis-
tributed inside the searching space of the hyperparameters. By only making these random
guesses, the number of trials is reduced compared to grid search and requires less computa-
tional time [Bergstra and Bengio, 2012].

However, if the model is extremely costly, doing random search becomes an inefficient
strategy to find good hyperparameters for the neural network. This inefficiency is because first,
the neural network is built, then it has to be trained, and finally, measure its performance in a
test set. In this case, another technique is better to implement called Bayesian Optimization.

3.3.1 Bayesian optimization for hyperparameter tuning

The Bayesian optimization developed by Louppe [Louppe, 2017]construct another model of
the searching space for hyperparameters. With this model is estimated how the performance
varies, changing the hyperparameters. Each point (a combination of hyperparameters) evalu-
ated is known by the model and its performance. The Bayesian optimization will then select
a new combination of hyperparameters that will improve the performance the most, in a new
region of the searching space that has not been explored yet or near the evaluated points.
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The optimization problem has interest in solving x∗ = argminf(x) under the constraints
that: f is a black box for which no closed form is known nor its gradients; f(x) is expensive
to evaluate; and evaluations of f(x) may be noisy.

A loop of 3 steps is performed for some iterations until the problems satisfy all the con-
straints.

for t = 1:T

• given observations (xi, yi = f(xi)) for i = 1:t, build a probabilistic model for the objective
f . Integrate out all possible true functions, using Gaussian process regression.

• Optimize a cheap acquisition/utility function u based on the posterior distribution for
sampling the next point. xt+1 = argmin u(x). Exploit uncertainty to balance explo-
ration against exploitation.

• Sample the next observation yt+1 at xt+1

Three different acquisition functions u(x) are defined by the users and they specify which
sample x, should be tried next:

• Expected improvement (selected for this study):

− EI(x) = −E[f(x)− f(x+
t )] (3.14)

• Lower confidence bound:

LCB(x) = µGP (x) + κσGP (x) (3.15)

• Probability of improvement:

− PI(x) = −P (f(x) >= f(x+
t ) + κ) (3.16)

Where x+
t is the best point observed so far, µGP and σGP are the mean value and the

standard deviation of the Gaussian process, respectively. In most cases, acquisition functions
provide knobs (e.g., κ) for controlling the exploration-exploitation trade-off.

• search in regions where µGP is high (exploitation).

• Probe regions where uncertainty σGP is high (exploration).

Bayesian optimization for hyperparameter tuning is presented as an algorithm by Pedersen
[Pedersen, 2016], used to optimize the hyperparameters of a Convolutional Neural Network for
a classification problem. This algorithm is taken as reference and then adapted for regression
problems (see algorithm 6).

Both techniques, Random search, and Bayesian optimization, are performed using open
source library Scikit-Optimize [Head et al., 2018] for sequential model-based optimization in
Python.
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Algorithm 6 Bayesian optimization for hyperparameter tuning
1: Definition of hyperparameter searching space
2: for i = 1 : n do
3: Sample Gaussian Model for hyperparameters
4: Create DNN using hyperparameters
5: Train the DNN
6: Evaluate performance of DNN
7: Calculate Root Mean Squared Error on validation set
8: Save the model with minimum RMSE
9: Update Gaussian Model

3.3.2 Random search vs. Bayesian optimization for hyperparameters op-
timization

Lets define a simple benchmark function:

f(x) = 20cos(x)sin(x) +N(0, 1) (3.17)

where, N(0, 1) is a normal random noise added to the function with mean 0 and standard
deviation 1 (see figure 3.7).

Figure 3.7: Benchmark function for training a Deep Neural Network.

This benchmark function will train a deep neural network and find the best combination
of hyperparameters for this specific problem using Random search and Bayesian optimization
and compare their performance. The hyperparameters to optimize will be: the learning rate,
number of hidden layers, number of neurons per hidden layers (equal at every hidden layer),
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and activation function (also equal for all neurons), the searching space boundary for each
hyperparameter is described in table 3.1.

Table 3.1: Hyper-parameter searching space.

Hyperparameter Range Type
Learning rate [1e-5,1e-3] Real
No. hidden layers [1, 8] Integer
No. of nodes per layer [1,1000] Real
Activation function per neuron [ReLU, LeakyReLU, logistic, tanh] Categorical

The deep neural network model used to replace the benchmark function is a sequential
fully-connected network; Adam is used as the optimizer. The data-set contains 400 points
selected randomly from the function, 90% of the data is for training the network, and the
other 10% for validation. For regression problems, the Mean Squared Error is the most
commonly used metric (see equation 3.18). The MSE is calculated in the validation set, and
the model with the minimum MSE is the best model to replace our function.

MSE =
1

m

m∑
i=1

(ŷ − y)2 (3.18)

Both algorithms perform 30 calls, and each call, the network is trained at 100, 200, 300, 400,
and 500 epochs (forward and backward pass). For the Bayesian optimization, the acquisition
function is EI (Expected improvement). The initial hyperparameters are [0.02, 1, 100, logistic]

(learning rate, number of layers, number of neurons per layer, and activation function, respec-
tively).

Results after executing the hyperparameter optimization with both methods changing the
number of epochs to train the network are presented in table 3.2. For both methods, as the
number of epochs increases, the MSE is lower as expected. For Random search, the activation
function most frequently found was ReLU, but Bayesian optimization was LeakyReLU. The
number of hidden layers in Random search varies between 1 and 4 without an apparent
behavior, but for Bayesian optimization, the number of hidden layers increases as the epochs
are higher.

Table 3.2: Tuning hyperparameters using Random search and Bayesian Optimization varying
the number of training epochs with a fixed number of iteration = 30.

Random Search Bayesian Optimization

Epochs Hyperparameters MSE Hyperparameters MSE
100 [0.032543911150884904, 3, 581, ’lrelu’] 0.007822168 [0.0019661053770823576, 2, 1000, ’lrelu’] 0.0025471
200 [0.019567645053920467, 2, 62, ’relu’] 0.003011492 [0.0009423591698125554, 4, 465, ’lrelu’] 0.00284786
300 [0.0007949767776991855, 4, 913, ’relu’] 0.002568431 [0.0011291334428399334, 4, 465, ’lrelu’] 0.00209756
400 [0.004764743142679584, 1, 580, ’relu’] 0.002536315 [0.00018701621268708032, 6, 533, ’lrelu’] 0.00170228
500 [0.0001011533910949556, 3, 897, ’relu’] 0.001911177 [0.0003521327997465734, 8, 988, ’relu’] 0.00196455

Bayesian optimization tends to create a more complex DNN model. The number of epochs
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increases, meaning that to reduce the MSE, they search a model that will predict with more
accuracy, but without considering the training time. This problem can be solved by reducing
the searching space boundaries, forcing the algorithm to find a solution with less hidden layers.

Increasing the epochs to train the DNN makes a huge impact on the computational time
used. A second analysis changes the number of iteration made by the optimization algorithm,
leaving the training epochs constant at 100 iterations. Results are presented in table 3.3. By
increasing the number of iterations, both algorithms decreased the MSE. However, Bayesian
optimization presents the lowest MSE compared to random search. With more training points,
the Gaussian Process can construct a more accurate representation of the searching space
model and improve the network’s performance.

Table 3.3: Tuning hyperparameters using Random search and Bayesian optimization varying
the number of iteration with a fixed training epochs = 100.

Random Search Bayesian Optimization

Iterations Hyperparameters MSE Hyperparameters MSE
11 [0.02, 1, 100, ’relu’] 0.016739808 [0.02, 1, 100, ’relu’] 0.01995781
30 [0.032543911150884904, 3, 581, ’lrelu’] 0.007822168 [0.0019661053770823576, 2, 1000, ’lrelu’] 0.0025471
50 [0.001893412804339247, 4, 715, ’relu’] 0.004981555 [0.004141675453756694, 6, 341, ’lrelu’] 0.00211608

After comparing both algorithms, Bayesian optimization has a better performance than
random search [Pedersen, 2016]. However, this optimization method consumes a lot of com-
putational time and Hardware resources. A balance between the number of iteration, train-
ing epochs, and boundaries is the best way to reduce the calculation time and find a high-
performance network. Bayesian optimization algorithm tunes the hyperparameters of all the
networks used in this research.

3.4 Discontinuity modeling for wind turbine simulated loads

3.4.1 Pitch control problems for steady and unsteady simulations

The simulation tools FAST is a "black box" mathematical model that calculates the response of
the wind turbine represented as a beam model. This simulation tool couples the aerodynamic,
hydrodynamic, energy, and control models to calculate a dynamic response in the time domain.
The controller used in this study, as mentioned before, is not optimized for this specific case and
is adapted from the original version created for the HAWC2 simulation tool. This controller
works perfectly for FAST simulations when the wind field is uniform. However, using a steady
or unsteady wind field produces a different behavior in the blade pitch control, affecting the
wind turbine’s generated power for different wind speeds.

This effect appears regarding the maximum aero-elastic loads extracted at one node of the
beam model simulation. Figure 3.8 shows the load distribution acting in x-the direction of
the blade coordinate system in the span location 1 between wind speeds from 4 to 25m/s.
As the wind speed increases from cut-in to rated wind speed (from 4m/s to 11.4m/s). The
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load increases almost linearly until reaching a maximum value. Then it starts to descend
as the wind speed continues to increase until it reaches a jump discontinuity passed 16m/s,
continuing to decrease the load magnitude until reaching cut-out wind speed. This behavior
in the load is due to the tuning wind turbine blade’s control pitch.

Figure 3.8: Load Spn1FLxb1 (Span location 1, force in lift direction for blade 1) distribution
between wind speeds from 4m/s to 25m/s.

The same effect appears regarding the dynamic response in an unsteady simulation. Figure
3.9 shows the wind turbine not producing energy for a mean wind speed of 19m/s, meaning
that it is not rotating at a velocity of 9.6rpm. The controller sets the wind turbine to an angle
of 82o, whether the wind surpasses the cut-out speed. For the entire aero-elastic simulation,
the wind turbine has this constant pitch angle, but it has no breaks acting in the rotor,
meaning that the wind turbine continues to rotate but at a lower rpm.

These presented cases produce a jump discontinuity in the wind turbine blade response,
making the model’s prediction more complex. Surrogate models could approximate this black
box model, reducing the computational time to predict a new output. However, as the model
contains different behaviors per region, one surrogate model may not accurately predict its
discontinuity.

To solve the problem of jump discontinuities, Bettebghor et al. [Bettebghor et al., 2011]
trained surrogate models in different regions and combined their response using Gaussian
mixture models. Also, to select the regions to train, the authors used the unsupervised
learning algorithm Expectation-maximization clustering. The performance of the surrogate
model is increased using this model. However, the number of surrogate models increases with
the number of discontinuities, and this method predicts values inside a jump in the original
model.

Niutta et al. [Niutta et al., 2018] presents a different approach by identifying the disconti-
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Figure 3.9: Aero elastic simulation for 19m/s normal turbulence wind speed in X-direction,
power generated and pitch angle of the blade (from up to down respectively).

nuities using a support vector machine (SVM) for classification and then using local surrogate
models as Gaussian Process (Kriging) and a 2nd order regression. This method improves
the surrogate models’ global performance by not predicting values between discontinuities or
jumps from the original model. However, many surrogate models have to be trained in each
local region.

Another author to propose a different approach to solve this problem was Chen et al.
[Chen et al., 2018] in his work of "Rational Neural Networks for Approximating Jump Dis-
continuities of Graph Convolution Operator". The author integrates rational approximation
with a neural network to approximate jump discontinuities in two theoretical and real-world
scenarios. This method solves the problem of using multiples surrogate models by using one
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neural network. However, around the jump discontinuity, the neural network predicts wrong
values that do not exist in the original mathematical model.

A new approach for approximating models with jump discontinuity using deep neural
network is presented in this research. As done by the other approaches to measure the per-
formance of the proposed approach, it is compared against state of art regression surrogate
models:

• Linear Regression (LR)

• Polynomial Regression (PR) [Stigler, 1974]

• LASSO [Tibshirani, 1996]

• Epsilon-Support Vector Regression (SVR) [Vapnik et al., 1997]

• Ridge Regression (RR) [Ng, 2004]

• Regression Deep Neural Network (RDNN)

• Gaussian Process Regression with Radial Basis Function kernel (GP)

3.4.2 Automated Discontinuity Modeling Deep Neural Network (ADM-
DNN)

The proposed approach identifies the jump discontinuities by performing a classification of
the different regions using a Gaussian Mixture Model and trains a neural network, including
the inputs parameters and classification values.

3.4.2.1 Gaussian mixture model for discontinuity modeling

A Gaussian mixture model (GMM) is a probabilistic model that assumes that the instances
or features were generated from a mixture of several Gaussian distributions with unknown pa-
rameters. GMM parameters are estimated from training data using the iterative Expectation-
Maximization (EM) algorithm.

GMM’s equation is a weighted sum of N components Gaussian densities given by:

p(x|wi, µi,Σi) =

N∑
i=1

wig(x|µi,Σi) (3.19)

where x is a D-dimensional continuous-valued data vector, wi, i=1,...,N, are the mixture
weights and g(x|µi,Σi), are the component Gaussian densities. Each component density is a
D-variate Gaussian function of the vector form:
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g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

(3.20)

with mean vector µi and covariance matrix Σi. Depending on the assumptions of the
covariance matrix, GMM can have several variants. The Σi can be a full or diagonal matrix
or even having the same covariance matrix for all components. In this case, the covariance
matrix is full.

Once the training vector and GMM configuration are decided, the parameters has to be
estimated. There are different techniques for estimating the parameters of a GMM
[McLachlan and Basford, 1988]. From all this techniques the most popular and well-established
method is maximize the likelihood of the GMM. For a sequence of T training vectors X =

{x1, x2, ...XT }, the GMM likelihood, assuming independence between the vectors, can be
written as,

p(X|wi, µi,Σi) =

T∏
t=1

p(xt|wi, µi,Σi) (3.21)

To estimate the maximum likelihood parameters is used the iteratively algorithm Expectation-
Maximization (EM) [Dempster et al., 1977], it begins with an initial model with parameters
(wi, µi,Σi), to estimate a new model with parameters (ŵi, µ̂i, Σ̂i), such that p(X|ŵi, µ̂i, Σ̂i) ≥
p(X|wi, µi,Σi). The new model becomes the initial model for the next iteration until a stop-
ping criteria is reached.

3.4.2.2 Input parameter classification

Once the GMM algorithm is trained and has classified the regions, it labels the data points by
the number of clusters defined. The number of clusters is equal to the number of discontinuities
plus one.

After the data is labeled, this new vector is added as a feature or input parameter increasing
the input space domain. Finally, the neural network is trained using these new features (see
algorithm 7) by adding this new feature of labeled data points as input parameter constrains
the DNN to not predict in between the jump discontinuity.

Algorithm 7 Automatic Discontinuity Modeling using DNN Algorithm
1: Train Gaussian Mixture Model
2: Create new vector x̄ with classification label
3: Concatenate x̄ with x
4: Train Deep Neural Network using new x
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3.4.2.3 Benchmark example: comparison study

Let’s consider the function:
f(x) = a · sign(x) (3.22)

where, a is a constant of value 10 and sign(x) returns the sign of the value x. This function
is in R and has a discontinuity jump at x = 0 (see figure 3.10).

Figure 3.10: Benchmark function: 10sign(x)

First, is used GMM algorithm to cluster the data points (see figure 3.11. The GMM has
found two cluster with parameters :

µ1 = (−2.75,−10), Σ1 =

[
2.0625 0

0 1e− 06

]

µ2 = (2.75, 10), Σ2 =

[
2.0625 0

0 1e− 06

]
The mean value of each cluster corresponds to the center of the data. The covariance

matrix tells us that in x direction is found the data dispersion, for all other direction is almost
zero, meaning that the GMM is an ellipsis wider in x direction than y direction with zero
correlation between x and y, corresponding with the function model.

Once the model is classified into two cluster, each data point in the vector x is classified.
A new vector x̄ is created by labeling the vector x as 0 or 1, depending on the probability of
being inside each cluster. Then, both vectors x and x̄ are concatenated creating a R2 input
space. the first component has the coordinate and the second component the classification
label, as shown bellow:
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Figure 3.11: Gaussian mixture cluster classification.

x̂ = ((−5.0, 0), (−4.9, 0), . . . , (4.9, 1), (5.0, 1))

The neural network is trained using this new input space with a uniformly distributed
sample space between (-5,5) with a step of 0.1. The resulting prediction is then compared
with some state of art machine learning methods. The prediction results are compared using
the MSE and r2 metrics as criteria to determine each method’s performance.

r2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(3.23)

Where yi is the known value, ŷi is the predicted value, and ȳ is the mean value of the
known data.

Table 3.4: Regression comparison of a benchmark function. MSE represents the mean squared
error and r2 represents the coefficient of determination.

Method MSE r2

Linear Regression 25.002160 0.749977
Ridge Regression 25.002336 0.749976
LASSO 25.124482 0.748754
Polynomial Regression 9.796450 0.902035
SVR 11.268276 0.887317
GP(RBF) 1.313957 0.986860
DNN 1.139421 0.988606
ADM-DNN 0.000165 0.999998

As shown in figure 3.12, the ADM-DNN method is the most accurate method among
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Figure 3.12: Comparison of regression methods predicting a f(x) = 10sign(x)

all others. All other methods predict a continuous response along with the entire domain,
some of them presenting a good performance as DNN and Gaussian process with a Radial
Basis function as the kernel. However, they predict values inside the jump discontinuity.
This behavior is the contrary case of ADM-DNN; inside the jump discontinuity, no values are
predicted, decreasing the MSE to 1.65e−4 from a 1.14 (see table 3.4) of his counterpart DNN
method using the original inputs parameters.

3.4.2.4 Application of ADM-DNN to wind turbine blade response

This proposed method’s mechanical application case is on the maximum aero-elastic loads,
resulting in a steady simulation. The fast tool generates the wind turbine blade response by
simulating a grid of wind speed between [4, 25]m/s with a step of 0.02m/s giving a total of
1050 simulations. The network is composed of two hidden layers, each of them having 300
neurons. Figure 3.13 shows a comparison between the state of the art of machine learning
regression techniques. As can be seen, ADM-DNN has a better performance compared to all
other methods, dealing with the jump discontinuity (All other methods presents a continu-
ous response). A reduction on the mean squared error about 1.53 and having a r2 closest
to one (see table 3.5) shows the applicability of this methodology to mechanical problems
outperforming all others regression approaches.

The application problem used only has one discontinuity jump, meaning there are only
2 continuous zones. For problems with more discontinuities the proposed methodology will
work because it only depends on the classification of the discontinuities using the Gaussian
mixture model. To ensure a good prediction, it is recommended to verify that the clusters are
representative of the data and have located the discontinuity point. Also this methodology
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Figure 3.13: Comparison of regression methods predicting an aero-elastic load Spn1FLxb1 on
a wind turbine blade.

Table 3.5: Comparison of state of arts regression methods to predict discontinuity in loads
generated using aero-elastic simulation tools.

Method MSE r2

Linear Regression 2,7511E-02 4,8917E-01
Ridge Regression 2,7552E-02 4,8841E-01
LASSO 5,3856E-02 -5,4704E-06
Polynomial Regression 1,8292E-03 9,6604E-01
SVR 2,3669E-03 9,5605E-01
GP(RBF) 1,0934E-05 9,9980E-01
DNN 3,6024E-05 9,9933E-01
ADM-DNN 7,1429E-06 9,9987E-01

has been tested with low noise signals, in the case of high noise signals with discontinuities
there is needed to test more clustering methods to classify the continuous zones.

3.5 Conclusions

The proposed approach to model jump discontinuity shows a better performance compared
to other regression machine learning models. The case of maximum aero-elastic loads under
steady environmental conditions the proposed approach predicts more accurately the output
loads by not predicting values in between discontinuity contrary to state of art regression
machine learning models. Moreover, only one surrogate model needs to be trained to capture
the complete behavior including discontinuities. Showing the applicability of this approach to
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mechanical problems.

The ADM-DNN is the method selected to replace a model when a prediction problem has
jump discontinuities in their response as presented in the next chapter used in a global sen-
sitivity analysis. Also, all neural network hyperparameters are optimized using the Bayesian
optimization method.
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Load Application Methods (LAM) are used to transfer the loads obtained from an aero-
elastic simulation to a blade shell FEM, replicating the same behavior in both simulations.
However, to estimate the wind turbine blade’s fatigue life or reliability, authors describe the
LAM that distributes the loads as pressure distribution has a more realistic behavior in terms
of ultimate damage distribution or fatigue damage along the blade. However, there is no
criterion based on the LAM’s sensitivity that considers the sensitivity introduced to the LAM’s
original problem. Also, as the aero-elastic simulation gives a time-history response, LAMs are
used for each response time step to generate a time history stress distribution on the 2D shell
FEM. This transfer from the 1D model to the 2D FEM increases the total computational
calculation time, resulting in a high time-consuming process to implement. This chapter
presents the global sensitivity analysis of using load application methods to estimate the stress
distribution in a shell FEA of a composite wind turbine blade using deep neural networks.
Decreasing the computational time using deep learning surrogate model to replace the 2D shell
FEM to predict the stress. In Section 4.1 is presented different methodologies to calculate the

71
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sensitivity as screening and Sobol index analysis. A state of the art of sensitivity analysis in
a wind turbine is presented in Section 4.2. Section 4.3 is explained as a new methodology to
calculate the global sensitivity of high dimensional problems, applied in the sensitivity of load
application methods. Based on deep neural networks to replace the aero-elastic simulations
and the wind turbine shell FEM, creating a two-stage neural network to estimate the Von Mises
stress and calculate the Sobol indexes for different load application methods. The proposed
methodology calculates the global sensitivity using the Sobol method and is compared against
a Morris analysis using the blade 2D FEM, presenting good agreement between both analyses.

4.1 Introduction to sensitivity analysis

Sensitivity analysis is the study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of uncertainty in the model input
[Saltelli, 2002]. This analysis has numerous purposes: measuring the robustness of a model
under uncertainties, understanding of the interaction of input and output variables in a model,
input variables reduction by identifying the input variables that cause more uncertainty in the
output.

The sensitivity analysis can be categorized into three main groups: local, screening, or
global analysis. First, local sensitivity analysis is used only when the model analysis does not
require a crucial computational time to execute. This type of analysis gives information on
the model’s behavior only in a reference point neighborhood. It bases on the estimation of
partial derivatives of each input parameter. The derivative-based approach has the attraction
of being very efficient in computer time. However, it is inefficient in terms of the analyst’s
time. One has to intervene in the computer program, insert ad hot coding, and efficiently
perform it.

Nevertheless, a derivative-based approach’s fatal limitation is that it is unwarranted when
the model input is uncertain and has unknown linearity. The derivatives only give information
at the point analyzed and did not provide an exploration of the rest of the input domain space
[Saltelli et al., 2008]. Second, screening sensitivity analysis is used mostly to identify the input
parameters with less influence in the model output. The screening analysis provides qualitative
measures of sensitivity. In other words, it arranges the input parameters based on the measure
of their importance without quantification. Screening analysis explores the input space in
more points than the derivatives approach, staying numerically efficient. However, there is
no exploration in the entire domain space. This method can handle problems with a high
number of input parameters (from dozen to 100). Also, they are used before applying global
sensitivity analysis to reduce the number of inputs considered [Saltelli et al., 2008]. Finally,
global sensitivity analysis studies the effect of the input parameters in the model considering
the uncertainties all over its domain, and not only at a point neighborhood. The idea of global
analysis is to quantify the contribution of the relative variability of each input parameter over
the variability of the model output. In other words, it estimates the contribution of each input
parameter over the mathematical variance over the response of the model.



4.1. Introduction to sensitivity analysis 73

For this reason, they are often called Analysis of Variance (ANOVA). Global analysis
is computationally expensive compared to all other methods because they use Monte Carlo
simulation to explore the input space requiring thousand or millions of simulations. As this
research aims to explore the input space of our models, the two last methods are explained in
more detail.

4.1.1 Screening analysis

One of the most popular methods is Morris method [Morris, 1991] for sensitivity analysis
(i.e., screening analysis) or one-step-at-a-time method (OAT), is used to quantify the variance
effect of each input parameter in the output parameter. Also, screening methods are often
used as a ranking method for input parameters by their importance order. This characteristic
is intriguing in cases where the model analyzed has an actual number of inputs parameters.
The application of this study can be considered a pre-sensitivity analysis. Identifying the input
parameter with less influence and reducing the number of parameters considered in the next
sensitivity analysis. In this context, one of the methods most developed is the Morris method.
The main idea is to determine among all input parameters which affect: (a) negligible, (b)
linear and additive, or (c) nonlinear or interaction with other input parameters. This ranking
or classification is based on the notation of an elementary effect (explained below). This
classification is not performed directly from the elementary effect but from its statistics (i.e.,
mean and standard deviation) calculated from many samples. In fact, for a given input
parameter, a high value of it mean elementary effect shows the importance of this parameter
over the model output. In contrast, a high value of the elementary effect’s standard deviation
shows strong interactions between input parameters (see figure 4.1).

The method is very simple, consider a model with k independent input factors Xi, i =

1, 2, . . . , k, which varies across p levels. The input space is discretized in p-level grid Ω. To
quantify this effect, Morris has defined an elementary effect (EE) associated with the input
parameter Xi defined as:

EEi =
f(x1, ...xi−1, xi + ∆, xi+1, ..., xn)− f(x)

∆
(4.1)

where, p is the number of levels, ∆ is a value in 1/(p− 1), . . . , 1− 1/(p− 1),X = (x1, x2, . . . , xk)

in any selected value in Ω such that the transformed points (X + ei∆) is still in Ω for each
index i = 1, 2, . . . , k and ei is a vector of zeros but with a unit as its ith component.

The distribution of elementary effects associated with the ith input parameter is obtained
by randomly sampling different X from Ω and is denoted by Fi (i.e. EEi Fi). The Fi
distribution is finite and, if p is even and ∆ is chosen to be equal to p/(2(p− 1)), the number
of elements of Fi is pk−1[p−∆(p− 1)].

Realizing many random selections of point Xi, is obtained for each input parameter a
finite distribution of EEi. To characterize, in a statistical context, the distribution of EEi is
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calculated his mean and standard deviation values:

µi =
1

r

r∑
j

EEji (4.2)

σi =

√√√√1

r

r∑
j

(
EEji − µi

)2
(4.3)

Where r is the number of elements in the distribution of Fi.

The mean value µ estimates the global influence of the input parameters on the output.
The standard deviation σ estimates the ensemble of the input’s effects, whether there are
nonlinear or interactions with other parameters. In other words, a high value of µi indicates
that the input parameters have a significant overall influence on the output parameter. On
the other hand, a high value of the standard deviation of σi indicates that the input parameter
Xi has interactions with other parameters Xj . Campolongo et al. [Campolongo et al., 2007]
proposed replacing the use of µ with µ∗, which defines the estimation of the absolute mean
values of the elementary effects denoted with Gi (i.e., |EEi| Gi).

µi∗ =
1

r

r∑
j

|EEji | (4.4)

The use of µ∗ solves the problem of type II errors (failing to identify a parameter with
considerable influence on the model), to which the original measure µ is vulnerable. This
type of error occurs when the distribution Fi contains both positive and negative elements. In
these cases, come effects may cancel each other out when computing µ, thus producing q low
mean value even for an important parameter. To avoid type II errors, Morris [Morris, 1991]
recommended considering the values of µ and σ simultaneously, since a parameter with ele-
mentary effects of different signs would have a low value of µ but a considerable value of σ. A
graphical representation in the (µ, σ) plane allows a better interpretation of results by taking
into account at the same time, two sensitivity measures (see figure 4.1).

The method described has a total number of calls equal to Ns = 2rk, each elementary
effect EEi needs to evaluate the model two times. To measure the efficiency of the experimen-
tal procedure used, Morris [Morris, 1991] introduces a measure called economy, equal to the
number of elementary effects it produces divided by the number of the model experimental
runs. The economy of the described experiment before is rk/2rk = 1/2.

To reduce the cost of the calculation (i.e., the number of calls to the model), Morris
[Morris, 1991] has proposed a more economical procedure that builds r trajectories of (k+ 1)

points in the input space, each providing k elementary effects, one per input parameter, for a
total of r(k+ 1) sample points. The procedure is based on constructing a matrix denoted B∗
of k+ 1 rows and k columns, where each row represents a realization of vector x. The matrix
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Figure 4.1: Morris method classification of input parameters.

B∗, has the following property: for every column j = 1, 2, . . . , k, only two rows of matrix B∗
have different components. Due to this property, the k + 1 rows of matrix B∗, represents
k + 1 different points of vector x, resulting k + 1 values of the model response allowing to
calculate k elementary effect (i.e. one elementary effect for each input parameter). This new
procedure’s economy is k/k + 1, which is better than the original procedure. To create the
matrix B∗, Morris [Morris, 1991] has proposed that is more suitable to select an even p-level
and a ∆ = p/2(p − 1), ensuring that each pk−1[p − ∆(p − 1)] = pk/2 associated elementary
effect to an input parameter has the same probability to be selected.

A scheme to generate trajectories with the required properties explained before is as follows.
To build B∗, the first step is the selection of a matrix B , whose dimensions are (k+1)×k, with
elements that are 0’s and 1’s and the key property that every column index j, j = 1, . . . , k,
there are two rows of B that differ only in the jth entry. In this case B is stricktly lower
triangular matrix of 1’s:
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B =


0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0

. . . . . . . . . . . . . . .

 .
Then, the matrix B′, given by

B′ = Jk+1,kx∗+ ∆B,

Where Jk+1,k is a (k + 1)× k matrix of 1’s and x∗ is a randomly chosen base value of X,
is a potential candidate for the desired design matrix. However, it has the limitation that the
kth elementary effect it produces would not be randomly selected.

A randomized version of the sampling matrix is given by

B∗ = (Jk+1,1x∗+ (∆/2)[(2B− Jk+1,k)D∗+ Jk+1,k])P∗, (4.5)

WhereD∗ is a k-dimensional diagonal matrix in which each element is either +1 or −1 with
equal probability, and P∗ is a k-by-k random permutation matrix in which each row contains
one element equal to 1, all others are 0, and no two columns have 1’s in the same position.
Read row by row, P∗ gives the order in which factors are moved; D∗ states whether the factors
will increase or decrease their value along the trajectory. B∗ provides one elementary effect
per input, which is randomly selected. The following algorithm summarized the sampling
procedure proposed by Morris to rank the inputs parameters of a model.

Algorithm 8 Morris sensitivity analysis algorithm
1: Initialize: p, k, ∆

2: i← 1

3: while i ≤ k do
4: Random selection of point xi,∗ . xk ∈ {0, 1/(p− 1), . . . , 1−∆}
5: Build matrix B1,∗

6: Model evaluation at points B1,∗

7: Calculate the elementary effect EEi
8: i← i+ 1

9: Calculate elementary effect statistics µ and σ

In general, Morris’s approach is valuable, but it may become problematic in large mod-
els with multiple outputs [Campolongo et al., 2007]. On the other hand, µ∗ is a practical
and concise measure to use, especially when there are several output variables. Moreover, in
contrast, µ and µ∗ has the advantage that it can be adjusted to work with a group of param-
eters, i.e., to produce an overall sensitivity measure relative to a group [Saltelli et al., 2008].
Campolongo [Campolongo et al., 2007] have also shown that µ∗ is a good proxy of the total
sensitivity index ST discussed in next (4.1.2).
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In summary, The number of calls of this method is efficient compared to more demanding
methods for global sensitivity analysis because the number of simulation required is linear
to the number the model input parameters. Since the screening analysis goal is to rank the
influence of the input parameters in a sub-set of the whole input domain space, this method
only qualifies each input parameter’s sensitivity in three states: linear effect, nonlinear effect,
or neglected effect. In other words, it is not clear what contribution has one variable to the
output parameter, or how the input parameters interact between them, how many of them
interact. For these reasons, a more demanding sensitivity analysis must be used to analyze the
input parameters in their entire domain, giving a more accurate description of each parameter’s
influence and interactions.

4.1.2 Global sensitivity analysis

4.1.2.1 Variance decomposition

The sensitivity analysis based on variance study aims to determine the contribution of each
input random variable Xi in the variance V [Y ] of the response Y. Based on this idea, Saltelli
[Saltelli et al., 2010] have shown that this variance can be decomposed in the way:

V [Y ] =
∑

Vi +
∑

Vij +
∑

Vijk + ...+
∑

Vijk...N (4.6)

where Vi, Vij , Vijk, . . . , V(ijk...N) are called partial variance:

Vi = [E[Y |Xi = xi∗]] (4.7)

Vij = V [E[Y |Xi = xi∗, Xj = xj∗]] (4.8)

Vijk = V [E[Y |Xi = xi∗, Xj = xj∗, Xk = xk∗]] (4.9)

with E[Y |Xi = xi∗] the expected value of the random variable Y given the parameter Xi is
deterministic (i.e fixed to a particular value xi∗). It is often called conditional expectation of
first order. Having frozen one potential source of variation (Xi), the resulting variance Vi will
be less than the corresponding total or unconditional variance V [Y ]. Therefore, Vi could be
used to measure the relative importance of Xi, reasoning that the smaller Vi, the greater the
influence of Xi. Likewise, E[Y |Xi = xi∗, Xj = xj∗, Xk = xk∗] is the conditional expectation
of kth order, evaluated considering k input parameters as deterministic.

The partial variance Vi measures the contribution of the randomness associated with the
input parameter Xi in the response total variance Y, whereas the superior order variances
measure the interaction contribution between the different input parameters.
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4.1.2.2 Sensitivity Sobol indexes

To provide a straightforward Monte Carlo-based implementation of the concept, capable of
computing sensitivity measures for arbitrary groups of parameters. Given a square integrable
function f over ΩN , the N -dimensional unit hypercube,

ΩN = (X|0 ≤ xi ≤ 1; i = 1, . . . , N) (4.10)

Sobol [Sobol, 1993] has proposed the decomposition of the function f that represents the
model as a sum of functions of increasing dimensions. In other words, It is composed of a con-
stant term f0, uni-dimensional f(xi), bi-dimensional f(xi, xj) and so on. This representation
is written as:

f(x) = f0 +
N∑
i=1

fi(xi) +
N∑
i=1

N∑
j=1

fi(xi, xj) + · · ·+ f1,2,3,...,N (x1, x2, x3, . . . , xN ) (4.11)

Sobol [Sobol, 1993] proved, for uniform variables [0, 1], this representation exist, if and
only if the term f0 is constant ant the integral of the high order terms f1,2,...,s with respect to
one parameter xik is zero:

∫ 1

0
f1,2,...,s(x)dxik = 0, for1 ≤ k ≤ s (4.12)

Therefore, all the terms f1,2,...,s from decomposition defined in equation 4.11 are orthogonal.
If (i1, . . . , is) 6= (j1, . . . , jl), then:

∫
[0,1]N

fi1,...,is(x)fj1,...,jl(x)d(x) = 0 (4.13)

These terms can be calculated by the evaluation of the multidimensional integrals, as:

f0 =

∫
[0,1]N

f(x)d(x) (4.14)

f1 =

∫
[0,1]N−1

f(x)d(x−i)− f0 (4.15)

f2 =

∫
[0,1]N−2

f(x)d(x−ij)− fi(xi)− fj(xj)− f0 (4.16)
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where, d(x−i) and d(x−ij) indicate that the integral is done with respect to all the variables
except with respect to xi or with respect to xi and xj respectively. The high-order terms can
be calculated using the same procedure.

The equations 4.14 to 4.16 correspond respectively to conditional expectation of order 0, 1

and 2. They can be written as:

E[Y ] = f0 (4.17)

E[Y |Xi = xi∗] = fi(xi)− f0 (4.18)

E[Y |Xi = xi∗, Xj = xj∗] = fij(xi, xj)− f0 (4.19)

The same logic can be used for higher orders.

By definition, the variance of a random variable is:

V [Y ] =

∫
[0,1]N

f2(x)d(x)− f2
0 (4.20)

Replacing f in equation 4.20 and developing as equation 4.11, is obtained a decomposition
of the variance V [Y ] as defined in equation 4.6. By identification, partial variances Vi, Vij are
defined respectively as:

Vi = V [fi] =

∫
[0,1]

f2
i (xi)dxi (4.21)

Vij = V [fij ] =

∫
[0,1]2

f2
ij(xi, xj)dxidxj (4.22)

Generally, the partial variance Vi1,...,is correspond to the term fi1,...,is such as 1 ≤ i1 <

· · · < is ≤ N and s = 1, . . . , N , is obtained by:

Vi1,...,is = V [fi1,...,is ] =

∫
[0,1]s

f2
i1,...,is(xi1 , . . . , xis)dxi1 . . . dxis (4.23)

Normalizing this partial variances with respect to the total variance V [Y ], Sobol [Sobol, 1993]
has introduced a set of measures of sensitivity for different orders, called Sobol sensitivity in-
dexes. The first order Sobol index is defined by:
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Si =
Vi
V [Y ]

(4.24)

Furthermore, it represents the main effect contribution of the input parameter Xi in the
variable variance of Y . This measure is also called importance measure or correlation ratio.

The Sobol second order index is defined by:

Sij =
Vij
V [Y ]

(4.25)

Measuring the contribution of the interaction between input parameters Xi and Xj with
the variance of the output variable Y . In other words, the sensitivity Y that is not taken into
account in the effect of parameters Xi, Xj and Xk alone, neither in interactions two by two.

The Sobol index for higher orders are obtained in the same way. In general, the Sobol
indices Si1,...,is of order s, are defined by:

Si1,...,is =
Vi1,...,is
V [Y ]

(4.26)

As all Sobol indexes are positive and their sum is equal to one:

∑
i

Si +
∑
i<j

Sij +
∑
i<j<k

Sijk + · · ·+ S1,2,...,N = 1 (4.27)

The Sobol indices are easy to interpret, indexes with values closed to one; the variability
of an input parameter has a significant effect over the variability of the output parameter.

For a model with N input parameters, the number of evaluations for the Sobol index of
a different order is equal to 2N − 1. If N is enormous, the number of Sobol index increases
exponentially. In consequence, the computational time due to model evaluation is not possible.
In the case of models where the interaction between parameters does not affect the output,
this problem does not arise since the indices of first-order Sobol alone can quantify each
parameter’s effect on the model response. On the other hand, when the interactions between
the parameters have an influence on the response of the model, this problem arises seriously.

To solve this particular problem, Homma et Saltelli [Homma and Saltelli, 1996] have pro-
posed a new sensitivity measure, called the total sensitivity index ST . It is the sum of the
principal relative effect of the input variable Xi and the interaction effects in which this pa-
rameter appears. In other words, for the input parameter Xi, the total sensitivity index
corresponds to the sum of all indexes that interfere with the index i.
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STi = Si +
∑

Sij + ...+ Sijk...n = 1− V [E[Y |X−i]]
V [Y ]

(4.28)

whereX−i is a vector that represents all the parameters except the parameterXi. Referring
to the law of total variance, the variance of the output variable Y of the model is:

V [Y ] = V [E[Y |X−i]] + E[V [Y |X−i]] (4.29)

where V [E[Y |X−i]] and E[V [Y |X−i]] are the "unexplained" and the "explained" compo-
nents of the variance respectively.

Replacing V [E[Y |X−i]] in equation 4.28, the total index ST can be rewritten as:

STi =
E[V [Y |X−i]]

V [Y ]
(4.30)

The measure E[V [Y |X−i] is the expected value of the conditional variance V [E[Y |X−i]]
and can be estimated by Monte-Carlo simulations. The evaluation of total index ST is more
economical in terms of model runs concerning the classical procedure, which calculates the
different high order Sobol indices. The number of estimations is equal to M(N + 1), where
M is the number of simulations used to calculate the first-order Sobol index. Calculating the
first order and total order indices, the total cost is equal to M(N + 2).

Campolongo [Campolongo et al., 2007] has found a relationship between Morris and Sobol
analysis, showing that µ∗ is a good proxy of the total sensitivity index ST discussed before.
STi is used when the goal is that of identifying non-influential parameters in a model (rather
than prioritizing the most influential ones). µ∗ is an adequate substitute for the total index
when the computational cost of ST is unaffordable [Saltelli et al., 2008].

4.2 Sensitivity analysis in wind turbine

Wind turbine sensitivity analysis is performed by using different methodologies depending
on the complexity of the design problem. Global sensitivity analysis based on Monte Carlo
simulation (MCS) for the wind turbine is used in low-dimensional problems with a high com-
putational cost model [Ziegler et al., 2015] or for high dimensional problems with a low com-
putational cost model [Tran and Smith, 2018], which means that large samples can be pro-
duced with a moderate computational cost. However, for problems with high-dimensional and
high computational cost problem modeling, these methods are unaffordable. Also, sensitivity
analysis is performed in a grid of values selected by the user as performed by Geng et al.
[Geng et al., 2018] for airfoil aerodynamics, contrary to MCS, the model is only evaluated in
some points of the entire domain resulting in a cheaper computational cost. However, the
sensitivity effect is not entirely captured with this type of methodology.



82 Chapter 4. Sensitivity of LAMs for wind turbine using surrogate models

Another method for sensitivity is Morris’s "screening" analysis [Morris, 1991] or One-at-
a-Time (OAT) used to qualify the sensitivity effects of the input parameters on the output
parameter. This method is evaluated in a subset of the entire domain of the input parameters
and only varying one variable per iteration; an example of this method in wind turbine foun-
dation fatigue loads by Velarde et al. [Velarde et al., 2019]. The results obtained are easy to
understand, and as the number of the iteration is linear to the number of input parameters
is frequently used for high-dimensional problems. However, the Morris method does not es-
timate the interaction between variables quantitatively; in other words, it is unknown which
variables correlate them and their sensitivity effect value quantity. For this reason, the Morris
method is used as a pre-step to reduce the number of input variables and subsequently use
variance-based sensitivity analysis; Hübler et al. presents an example of this methodology.
[Hübler et al., 2017] for global sensitivity analysis of offshore wind turbines based on aero-
elastic time-domain simulations starting with more than 50 parameters for screening analysis
and reducing it to near 20 parameters for variance-based sensitivity analysis.

Nevertheless, for some problems as the input parameters may have interactions between
each other, ignoring some inputs after the reduction, their inner interaction will not be
measured while using the variance-based sensitivity analysis. There are different variance-
based sensitivity analysis as Sobol method [Sobol, 1993] and Fourier amplitude sensitivity
test [Cukier et al., 1973, Cukier et al., 1975, Cukier et al., 1978]. That quantifies each input
parameter’s sensitivity effect and their interactions by calculating some indexes of different
degrees, representing the effect on the output variance produced by one or any combination
of input variables. Compared to screening analysis, these methods are evaluated in the entire
domain of the inputs parameters, generally using MCS, making their computational cost ex-
pensive. Some examples of these methods have been used on the blade geometry variables’
sensitivity on the wind turbine performance by Echevarria et al. [Echeverría et al., 2017] us-
ing 21 input parameters. Other authors use a surrogate model to replace their original model
and estimate the global sensitivity analysis based on this new model, reducing the model
evaluation’s computational time. McKay et al. [McKay et al., 2014] studied the global sen-
sitivity of wind turbine power output based on experimental data and only considering eight
input parameters to train their surrogate model. As this problem has low dimension input
parameters and data could be obtained from experimentation, their computational cost is less
expensive than problems where the data are generated using aero-elastic simulation tools. The
sensitivity analysis has to be performed in high dimensional input parameters (more than 50
variables).

This study presents a new methodology to calculate the global sensitivity of high dimen-
sional problems without reducing the number of inputs parameters and using computational
expensive calculation time aero-elastic simulations and finite element analysis for the wind tur-
bine blade model. This methodology and its application in structural mechanics is developed
bellow.
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4.3 Sensitivity analysis of high dimensional models using sur-
rogate models

As explained in chapter 2, Load Application Methods (LAM) are used to transfer the loads
obtained from an aero-elastic simulation to a blade shell FEM, replicating the same behavior
in both simulations. However, to estimate the wind turbine blade’s fatigue life or reliability,
authors describe the LAM that distributes the loads as pressure distribution has a more re-
alistic behavior in terms of ultimate damage distribution or fatigue damage along the blade
[Caous et al., 2018, Hu et al., 2016b]. However, there is no criterion based on the LAM’s
sensitivity that considers the sensitivity introduced to the original problem by the LAM it-
self. Also, as the aero-elastic simulation gives a time-history response, LAMs are used for
each response time step to generate a time history stress distribution on the 2D shell FEM.
This transfer from 1D model to 2D FEM increases the total computational calculation time,
resulting in a high time-consuming process to implement.

To measure the sensitivity of the LAMs, the author proposed a methodology based on
surrogate models to decrease the high computational cost of the model evaluation and man-
age a high input dimension model without reducing the input space. First, an aero-elastic
simulation is performed using a simplified model of the wind turbine blade that output the
resultant loads acting in different nodes of the blade. Adding the material distribution as
input variables and the loads from aero-elastic simulations is created a 2D shell FEM of the
blade. This study transfer of loads with three different LAM: rigid body element (RBE),
4 Nodes (4NO), and pressure distribution (PD) method by Caous [Caous et al., 2018] (see
chapter 2). The output from this FE analysis is the stress distribution of the wind turbine
blade. Finally, a global sensitivity analysis evaluates all input parameters: the aero-elastic
loads and the thickness of composite material distribution and output of the blade’s stresses.
As explained, executing this strategy is unaffordable because of the two high time-consuming
models, FAST and blade 2D shell FEM. In this case, both simulations model are replaced
with a surrogate model, as shown in Figure 4.2. With the increasing development of machine
learning methods in structural engineering [Salehi and Burgueno, 2018], deep neural network
(DNN) is the selected surrogate model technique to replace the wind turbine blade shell FEM
model, and FAST simulation tool.

4.3.1 Inputs parameters for surrogate models

To create the surrogate model to predict the blade root stress (Surrogate model 2 or High
dimensional DNN), their inputs parameter space must be defined. This study considers only
two types of uncertainties. Due to the wind conditions acting on the blade and uncertainties
in the distribution of composite materials along the blade. This study classifies two groups
of input variables: aero-elastic loads and material composite thickness. It is well known by
the author that other sources of uncertainty could be introduced in the model as uncertain-
ties by manufacturing defects, the orientation of the fibers, uncertainties on the mechanical
properties, uncertainty in the long term loads, uncertainty introduced by the surrogate model
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Figure 4.2: Simulation methodology to calculate and compare the Sobol global sensitivity
analysis of LAMs: 4 nodes (4NO),rigid body elements (RBE) and pressure distribution Caous
method (PD.

itself, and others. Complicating the model but having the closest behavior to reality. How-
ever, the authors only consider these two uncertainties variables to evaluate and validate the
methodology proposed.

4.3.1.1 Maximum aero-elastic loads: steady simulation

These loads are obtained at ten different locations (gages) in the blade span-wise direction
(see figure 4.3) by extracting the maximum value after 10 minutes simulation using FAST
code from a uniform and steady wind speeds between 4 and 25m/s. The value is extracted
after 300 simulated seconds after the beginning of the simulation to ensure that the response is
stationary for each wind speed, and the pitch control of the blade has obtained their setpoint
value (see figure 4.4). As nine gages are selected (excluding blade root gage in the cases LAM
RBE and 4NO), and at each gage, the loads act in 6 DOF (i.e., degree of freedom) of the
blade coordinate system. It considers 54 aero-elastic loads (3 forces and three moments) as
inputs parameters for surrogate model 2 or DNN Stress.

To identify each load is adopted the following nomenclature. First, is specified the span
location of the load along the blade. Second, the load can be the resultant force or a moment
acting at a span location. Third, the blade axis direction of the loads; y axis points towards
the trailing edge of the blade and parallel with the chord line; z axis is points along the pitch
axis towards the tip of the blade, and the x axis is orthogonal with the y and z axis such that
they form a right-handed coordinate system. Moreover, finally, all of them are extracted for
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Figure 4.3: Wind turbine blade cross section in the span-wise direction equally located at the
gages from FAST simulation.

one blade b1. For example, Spn2FLyb1 means, span location 2: force acting in the y-direction
of blade 1.

Figure 4.4: Load Spn1FLxb1 (Span location 1, force in lift direction for blade 1) maximum
value extraction for a steady simulation at 11m/s.

A FAST simulation must be executed for different wind speed to calculate their maximum
value to generate these loads. Since these simulations use steady wind conditions, and only
the maximum at the stationary phase. This process can be replaced by a surrogate model
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(Surrogate Model 1: Low dimensional or DNN Loads) that will predict 54 maximum loads
acting on the blade given the desired wind speed.

4.3.1.2 Composite material thickness distribution

The wind turbine used in this research is the reference 10MWWT from DTU [Bak et al., 2013].
However, the material distribution along the blade was simplified to work with a less com-
plicated model (refer to chapter 2). After making all these changes in the spatial material
distribution, the total material thickness input variables are 24 (6 shear webs, nine trailing
panels, and nine leading panels).

The nomenclature used to identify each thickness is: first, specify the cross-sections; sec-
ond, define the composite material; and finally, specify the region in the span-wise direction.
For example, LP_QQ1_3 means QQ1 composite material used in the leading panel at region
3 in the blade’s span direction.

4.3.1.3 Input parameter domain

For LAM RBE and 4NO, the total number of inputs parameters is 78, with 24 are composite
material thickness, and 54 are aero-elastic loads (forces and moments) distributed in the blade
span-wise direction. A uniform probability distribution at different ranges is selected for each
thickness with a variation of 10% from their mean value (see tables 2.3, 2.4, 2.5) presenting the
mean values of each thickness). A uniform distribution is used to give more probability to the
variation of thicknesses along the blade, however it is not taken into account uncertainties in
the manufacturing defects, fiber orientation or mechanical properties, the composite material
are consider homogeneous in the simulations. Concerning the aero-elastic loads, is used the
surrogate model 1 or DNN Loads to predict them. Lower and upper boundaries for all loads
and moments are presented in table 4.1.

In LAM PD, the input parameters have to be defined differently from the other methods.
This method corrects the pressure distribution along the blade in different steps, differentiating
the aero-elastic loads and inertial loads. The input parameters are selected as the quantities
that correct the pressure distribution. The aerodynamic correction selected as input parame-
ters: the TJ Knill lift coefficient C, the difference of the resultant forces in X-direction between
the beam aero-elastic model and the shell FEMDFX, and the difference of the resultant forces
in Y-direction between the beam aero-elastic model and the shell FEM DFY . For inertial
loads corrections are selected, the acceleration correction in X-direction AX and the acceler-
ation correction in Y-direction AY (see chapter 2). Each of these quantities is extracted from
10 gages along the blade span as the other methods, resulting in a total of 50 input parameters
for LAM PD. Adding these parameters to the 24 material thickness parameters, there is a
total of 74 input variables.

To extract each parameter’s boundaries values, the maximum wind speeds after 300 seconds
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Table 4.1: Lower and upper boundary for maximum steady aero-elastic loads for wind speed
between 4m/s and 25m/s.

Forces Lower Boundary Upper Boundary Moments Lower Boundary Upper Boundary

[kN ] [kN ] [kNm] [kNm]

Spn1FLxb1 162.1 615.5 Spn1MLxb1 691.9 14650.0
Spn1FLyb1 102.1 426.5 Spn1MLyb1 6929.0 30630.0
Spn1FLzb1 415.4 1747.0 Spn1MLzb1 -216.7 9.306
Spn2FLxb1 222.7 725.4 Spn2MLxb1 -8370.0 3345.0
Spn2FLyb1 175.8 583.4 Spn2MLyb1 5245.0 27070.0
Spn2FLzb1 343.8 1616.0 Spn2MLzb1 -209.0 1.669
Spn3FLxb1 192.4 635.8 Spn3MLxb1 -263.0 4886.0
Spn3FLyb1 39.52 341.2 Spn3MLyb1 4556.0 23060.0
Spn3FLzb1 272.1 1430.0 Spn3MLzb1 -176.7 -6.005
Spn4FLxb1 157.5 593.7 Spn4MLxb1 -169.6 4717.0
Spn4FLyb1 31.33 260.0 Spn4MLyb1 3626.0 19800.0
Spn4FLzb1 228.8 1290.0 Spn4MLzb1 -152.1 -5.448
Spn5FLxb1 109.1 507.2 Spn5MLxb1 37.5 3257.0
Spn5FLyb1 25.85 162.9 Spn5MLyb1 2046.0 13350.0
Spn5FLzb1 146.0 958.6 Spn5MLzb1 -105.7 -4.35
Spn6FLxb1 55.94 363.7 Spn6MLxb1 48.71 1489.0
Spn6FLyb1 15.68 87.17 Spn6MLyb1 764.7 6428.0
Spn6FLzb1 76.03 581.5 Spn6MLzb1 -73.39 -2.036
Spn7FLxb1 21.51 204.5 Spn7MLxb1 18.64 465.0
Spn7FLyb1 6.854 37.09 Spn7MLyb1 210.1 2073.0
Spn7FLzb1 30.87 269.6 Spn7MLzb1 -46.9 -0.6398
Spn8FLxb1 7.533 75.36 Spn8MLxb1 3.348 75.09
Spn8FLyb1 2.478 13.21 Spn8MLyb1 33.38 336.0
Spn8FLzb1 10.67 101.1 Spn8MLzb1 -16.03 -0.1125
Spn9FLxb1 0.2011 3.459 Spn9MLxb1 0.009084 0.1636
Spn9FLyb1 0.08318 0.4892 Spn9MLyb1 0.06526 1.291
Spn9FLzb1 0.3552 3.545 Spn9MLzb1 -0.5307 -0.002515

are extracted from a 10 minutes FAST simulation for integer values between 4 and 25 m/s. At
these points of maximum, wind speed is used the LAM PD to created the pressure distribution
on the blade shell FEM. After each correction step, maximum and minimum values obtained
estimates the boundaries of each parameter’s domain. In Table 4.2 are presented all boundaries
for each parameter.
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Table 4.2: Lower and upper boundary for LAM PD input parameter.

Aerodynamic Lower Boundary Upper Boundary Inertial Lower Boundary Upper Boundary

C0 -3.368509 24.176223 AX0 -105.0009 331.4767
C1 -3.368509 24.176223 AX1 -180.0015 568.2458
C2 -112.05878 5.433464 AX2 -884.635 443.0037
C3 -3.445245 46.991469 AX3 -516.4531 1095.643
C4 -37.796476 2.834009 AX4 -322.1667 121.1666
C5 -2.44472 37.255213 AX5 -118.0659 28.28159
C6 -26.237441 1.220251 AX6 -78.74321 295.0361
C7 -0.711944 23.541814 AX7 -316.7837 73.80315
C8 -9.407377 0.250142 AX8 -1197.934 434.8546
C9 -0.010792 0.767064 AX9 -2543.008 7451.595
DFX0 -355791.902084 473263.673336 AY0 -28.40739 277.1644
DFX1 -440608.986341 367762.970092 AY1 -48.69837 475.139
DFX2 -515250.997642 179050.887345 AY2 -891.5786 151.866
DFX3 -303970.564528 236151.182101 AY3 -201.0471 1099.18
DFX4 -233913.614991 218456.614617 AY4 -317.1137 57.21071
DFX5 -134209.981053 147713.943587 AY5 -112.4886 23.36589
DFX6 -41400.928272 95469.442316 AY6 -58.42417 285.4324
DFX7 -18058.178784 36789.483522 AY7 -300.5045 66.44489
DFX8 -4484.623867 16366.00083 AY8 -1167.492 209.1005
DFX9 -3930.281194 4488.128521 AY9 -1342.672 7270.382
DFY0 7218.059077 397259.535114
DFY1 -434529.665061 650037.60218
DFY2 -251539.191076 571963.960417
DFY3 -242072.240823 557112.48932
DFY4 -194423.920695 474083.946064
DFY5 -116080.975215 462909.81976
DFY6 -65719.258813 285909.28482
DFY7 -16949.46591 185261.08947
DFY8 -14917.773067 72688.463153
DFY9 -5614.305239 8602.720734
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4.3.2 Surrogate model 1: aero-elastic loads prediction

In LAMs RBE and 4NO, the input domain is a grid of wind speed between [4, 25]m/s with a
step of 0.02m/s giving a total of 1050 simulations. After extracting the maximum value for
each simulation, each load has a behavior concerning the wind speed.

The methodology developed for modeling discontinuities, ADM-DNN (refer to chapter
3), is used to predict all 54 loads given the wind speed due to the jump discontinuity that
these loads presents. The network is composed of two hidden layers, each of them having 300
neurons.

After the model is validated, it uses a probability density function (PDF) of wind speed
to determine the PDF of the corresponding steady aero-elastic loads. This last one will be
used as input parameters of the second surrogate model to predict the wind turbine blade’s
stresses.

To use a real scenario, measurements of wind speed during the last three years (2017-2019)
were extracted from open-data Engie Renewable project at La Haute Borne, Grand Est, France
[Engie, 2019]. This data is collected for a 2MW wind turbine at a hub height of 80m. The
wind turbine used in this study has a hub height of 119m and cut-in and cut-out wind speeds of
(4, 25) m/s respectively. In order to use this measurements, wind speed is translated to DTU
hub height using a power law [Touma, 1977] and Hellmann’s exponent coefficient q = 0.27 for
a condition of unstable air above human inhabited areas [Kaltschmitt et al., 2007]:

ū(z) = ū(zref )

(
z

zref

)q
(4.31)

The resultant predicted loads under each wind speed are obtained using 40, 924 wind speed
data point. Figure 4.5a shows the wind speed histogram, and figure 4.5b shows the predicted
load at one span location acting in the lift direction of the blade.

In LAM PD, there is no need to construct these surrogate models because it does not
use the loads directly from FAST as input parameters, different to LAM RBE and 4NO,
the parameter used is extracted after applying the method itself. The input parameters are
distributed uniformly between their boundary with 1000 samples for each parameter assumed
independent. It is assumed a uniform distribution for the parameters, to train the surrogate
model 2 or DNN stress.

4.3.2.1 Validation of DNN Loads

For the first surrogate model, the input parameter is the wind speed, and the outputs param-
eters are the aero-elastic simulated loads. After training the surrogate model, the validation
set uses different new points, giving a MSE = 1.82e − 05, resulting in a good correlation
between the predicted and simulated steady load (see figure 4.6).
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a) b)

Figure 4.5: a) Wind speed histogram at wind turbine hub height and b) prediction of load
histogram at span location 1 acting in X-direction.

Figure 4.6: Validation of all predicted aero-elastic loads.

As the same model predict all loads (forces and moments), the relative error of each output
is plotted in figure 4.7, the maximum relative error is less than eSpn5Mz = 0.08 or 8%. All
loads have an excellent fitting (less than 10% of relative error).

After predicting all loads using surrogate model 1, an empirical cumulative density func-
tion (ECDF) can be generated for each load and then use the inverse transforming sample
[Devroye, 2006] to generate samples with the same probability distribution. To generate a
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Figure 4.7: Relative error of all predicted aero-elastic loads.

new sample for each load is defined 54 uniform random variable (0, 1). The inverse of the
ECDF generates random aero-elastic variables corresponding to each load PDF. As shown in
figure 4.8, 2000 random points per each input parameter are generated and will be used to
train surrogate model 2, which will be used to predict the von misses stress at the blade root.
Finally, a global sensitivity will be performed using the prediction of surrogate model 2, taking
as input parameters the 54 aero-elastic and 24 material thickness (a total of 78 parameters).

4.3.3 LAMs for blade 2D shell model

As the loads are extracted from an aero-elastic simulation code, the blade is modeled by 1D
beam FEM, meaning that the extraction of loads is the resultant forces and moments acting
in one node of the 1D model. To transfer the 1D load distribution from the beam FEM to
a 3D load distribution to be applied to a shell FEM, Caous [Caous et al., 2018] has classified
the methods reviewed in the literature into four groups, as listed below:

• Group 1: Application of loads by sections and on one point of each section.

• Group 2: Application of loads by sections but physical distribution on sections.

• Group 3: Continuous application on the blade of an oriented surface load (pressure
oriented in a specific direction).

• Group 4: Dissociation of inertial and aerodynamic loads with an application of an
acceleration field and pressure distribution across the whole blade.
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Figure 4.8: Input parameters domain for surrogate model 2, material thickness and aero-elastic
loads.

This study compares three LAM: one from the group 1, applying the loads at nine span-
wise sections using rigid body elements (RBE), other from the group 2, applying the loads at
four nodes per section assuming simplified phenomenological laws [Caous and Valette, 2014],
and lastly, one from the group 4, state of the art Caous method creating a pressure distribution
across the whole blade [Caous et al., 2018], for further information about this method see the
chapter 2.

Lastly, the 1D beam model resulting loads are transferred to the 3D model. A shell
finite element model of the blade is created to apply the forces (see figure 4.9). Code-Aster
[de France, ] is used to perform the finite element analysis extracting the stress of each node
of the blade at the local coordinate system. The X axis is the principal direction, Y is the
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second direction, and the Z axis is normal to each shell element pointing to the inside of the
blade surface.

Figure 4.9: 10MW wind turbine blade and shell local coordinate system.

4.3.4 Output parameter for global sensitivity

The blade 2D shell model has many layers of composite material. From each layer can be
extracted three levels of stress: inferior, medium, and superior. Considering that the shell
model is discretized in 31,648 linear shell elements with 30,613 nodes (see mesh in figure 4.9),
the total number of output is more than 400, 000. Analyze each output requires a lot of com-
putational calculation time. To make this analysis possible, as found by Hu [Hu et al., 2016b],
maximum stresses are located either at the top or bottom layers of the composite laminate.
Both LAM methods introduce stress concentration at the applied load’s location; only nodes
at the blade root are analyzed. This case uses a node located at the top of the root section,
bottom layer, and inferior level stress to calculate the Von Mises stress with a general plane
stress state considering the stress acting in their local coordinate system.

σvm =
√

(σ2
11 − σ11σ22 + σ2

22 + 3σ2
12) (4.32)

Subsequently, Both LAMs (4NO and RBE) will be used to generate the data-set to train
and validate the surrogate model 2 (DNN Stress), used to predict the output value without
running the blade 2D shell finite element simulation, reducing its computational time.
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4.3.5 Surrogate model 2: stress prediction at blade root

Due to the high number of inputs parameters (78 variables and 74 variables for LAM RBE
and 4NO and LAM PD, respectively), the surrogate model selected for this problem is a deep
neural network (DNN). For training the DNN Stress, all inputs and output parameters were
scaled between (0, 1) to normalize all parameters magnitude, using 90% of the data to train
the model, and the left 10% for validating the model prediction. The DNN is a fully connected
network with four hidden layers; each has 250, 250, 200, 200 neurons. Also, all layers have a
rectified linear unit (Relu) activation function. For this regression problem, the weight and
bias for the DNN are optimized using Adam optimizer [Kingma and Ba, 2014] to minimize
the mean squared error of the difference between prediction and real value.

4.3.5.1 Validation DNN stress: high input dimension

Three different networks are used for each case, one for LAM 4NO, other one for LAM RBE
as shown in figure 4.10 and the last one for LAM PD shown in figure 4.11 . In all DNNs,
the normalized predicted stresses σ̂11, σ̂22 and σ̂12 are well correlated with their respective
simulated stress. The mean squared error (MSE) and R2 metrics for each DNN : MSERBE =

0.0016 and MSE4NO = 0.0011 and MSEPD = 0.0028, R2
RBE = (0.94, 0.89, 0.94), R2

4NO =

(0.97, 0.96, 0.97) and R2
PD = (0.89, 0.88, 0.96) for σ̂xx, σ̂yy and σ̂zz, representing a good fit for

each output by only using 1800 training points for RBE and 4NO and 900 for LAM PD.

a) b)

Figure 4.10: Validation of predicted and simulated stress for LAM a) RBE and b) 4 Nodes.

Having all DNN trained and validated, they can perform the Sobol Index sensitivity anal-
ysis of both LAMs on the blade root’s Von Mises stress.
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Figure 4.11: Validation of predicted and simulated stress for LAM PD.

4.3.6 Sobol sensitivity analysis using DNN stress

4.3.6.1 First order Sobol index: LAMs 4 nodes and RBE

The results showing the Sobol sensitivity analysis are presented next. These results are
obtained after generating 3 × 106 samples using Saltelli’s sample method. The first or-
der indexes for each variable are shown in figure 4.12, the input parameters that have the
highest value are forces (Spn6FLxb1, Spn7FLxb1, Spn8FLxb1, Spn9FLxb1) and moments
(Spn6MLyb1, Spn7MLyb1, Spn8MLyb1) for both methods, which are applied between the
center and the tip of the blade and acting in edge-wise direction, also only for RBE, moments
(Spn7Mzb1, Spn8MLzb1) presents linear interaction with the output.

4.3.6.2 First order Sobol index: LAM PD

The result obtained after generating 3× 106 samples using Saltelli’s method and transferring
the loads using LAM PD is shown in figure 4.13. The parameters that present the highest
sensitivity are (C5, C6, DFY 6, DFY 7, DFY 8, DFY 9). The location of these parameters cor-
rects the loads acting in the blade Y-direction (lift) are near the tip of the wind turbine blade.
For all other parameters used in this analysis, their sensitivity is closed to zero. The maximum
value is found in the parameter DFY 8 = 0.4086, more significant than all values found for
each LAM tested.

Comparing all LAMs, PD shows a more significant first order S1 interaction with the
output than RBE and four nodes methods. Meaning that aero-elastic loads applied using
PD have a more linear interaction with this output than applying the loads using RBE and
4 Nodes LAM. Nevertheless, only seeing S1 cannot be concluded that one method is less
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Figure 4.12: Comparison of first order Sobol index for RBE and 4NO methods to estimate
the detailed stress distribution in a blade shell FEM.

Figure 4.13: First order Sobol index using LAM PD to estimate the detailed stress distribution
in a blade shell FEM.

sensitive than others. For these reasons, the next step is to analyze the total order ST Sobol
index to calculate interactions between variables and their effect in the output.
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4.3.6.3 Total order Sobol index: LAMs 4 nodes and RBE

The total order Sobol index ST using LAMs RBE and 4NO is shown in figure 4.14. Equally
to the S1 indexes, the same input parameters are the ones that present the highest values and
presents substantially larger values than the first-order indices; then, there are likely higher-
order interactions occurring. LAM 4 nodes present a more significant higher-order interaction
between variables than LAM RBE. The total order presents all interaction of one variable
with each other is not clear with which input variables interact. Next, calculations of the
second-order (S2) Sobol index are presented to understand how the input parameters interact
by using each method.

Figure 4.14: Comparison of total order Sobol index using RBE and 4NO methods to estimate
the detailed stress distribution in a blade shell FEM.

4.3.6.4 Total order Sobol index: LAM PD

The total order Sobol index ST using LAM PD is illustrated in figure 4.15. Equally to the
S1 indexes, the same input parameters are the ones that present the highest values. However,
the ST values are slightly greater than indexes S1, with a maximum value at parameter
DFY 8 = 0.4261, meaning that most of the interactions in these methods are linear and a low
non-linear interaction between the interaction of parameters. The second-order Sobol index
is presented next to validate these results.

4.3.6.5 Second order Sobol index: LAMs 4 Nodes, RBE and PD

As the number of inputs variables is 78, a total number of 3003 combinations of two inputs
variables are possible. In LAM 4 Nodes, only the interactions greater than 0.003 are plot-
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Figure 4.15: Total order Sobol index using LAM PD to estimate the detailed stress distribution
in a blade shell FEM.

ted in figure 4.16. The highest values are presented in the interaction between these loads
(Spn7FLxb1, Spn8FLxb1, Spn6MLyb1, Spn7MLyb1). Some of these loads also present a low
interaction with input parameters with a low first and total index order.

Figure 4.16: Second order Sobol index for Von Mises stress at blade root using LAM 4 node.

To see the second-order indexes for LAM RBE, these are presented in figure 4.17. Only
the interactions greater than 0.003 are plotted, presenting a high interaction between loads
Spn6FLxb1, Spn7FLxb1, Spn8FLxb1, Spn6MLyb1, Spn7MLyb1, Spn8MLyb1. Using this method,
the interaction occurs between variables that have a high S1 Sobol index.
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Figure 4.17: Second order Sobol index for Von Mises stress at blade root using LAM RBE.

Finally, the second-order indexes for LAM PD are presented in figure 4.18. Only the
interactions greater than 0.002 are plotted due to the low Sobol index value, presenting a
high interaction between loads DFY 8, DFY 9, and AX and AY at different locations. The
maximum value of S2 is DFY 8 − DFY 9 = 0.00842, which is a short interaction compared
to LAM RBE and 4NO. These results show the low non-linear interaction, showing that only
the linear interaction of the parameter and the output is significant.

Figure 4.18: Second order Sobol index for Von Mises stress at blade root using LAM PD.
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4.3.7 Comparison of LAM’s sensitivity

Regarding the first-order Sobol index LAM PD has the highest value, then LAM RBE, and
lastly, LAM 4NO.

LAM 4NO presents a high value in higher-order interaction between variables than LAM
RBE and LAM PD; this is due to how each method applies the loads. LAM RBE limits the
degrees of freedom of each section that aero-elastic loads are applied. This method can give
a higher linear interaction between input and output parameters. Stronger linear interaction
than RBE is found using LAM PD, which applies a pressure distribution across the whole
blade. Differently to LAM 4 nodes that leave each section free to be deformed. The loads
are applied distributed in 4 points of the cross-section, resulting in an interaction between the
loads applied towards the output parameter.

This study presents only S2 Sobol index. Other higher-order interactions between input
parameters are missing. They could be estimated in the ST index as the S2 for LAM 4 nodes
has more high-order interactions with inputs parameters that do not present a significant S1

index. A surrogate model could be created with the most sensible variables (reducing the
number of inputs parameters) and used to calculate the wind turbine blade’s reliability. As
these variables interact with other variables, the total effect will be lost, and the surrogate
model will add uncertainty. Unlike LAMs RBE and PD, these last ones can be represented
with a surrogate model with only the most sensible parameters because all interaction oc-
curs between these variables. For reliability analysis or estimation of the fatigue life , this
representation will not introduce uncertainty by itself; only the problem’s uncertainty will be
present.

LAM PD is the method that introduces less sensitivity overall because it presents the less
non-linear interaction between variables compared to RBE and 4NO (RBE has the second-
lowest sensitivity). In other words, the method more suitable to transfer the loads from an
aero-elastic beam simulation to a blade shell model from a sensitivity point of view is LAM
PD, then RBE, and lastly, LAM 4NO. These results are similar to the one found by Caous
[Caous et al., 2018], comparing Puck’s damage using these LAMs, having LAM PD as the
method with the better damage distribution along the blade.

4.3.8 Morris Analysis: LAM 2D shell FEM

To validate the results found from Sobol analysis with a surrogate model for high dimension
problem, the ideal way is to analyze the Sobol sensitivity of the original model (i.e., blade
2D shell model), but this model is costly to run and to realize three millions of simulations
is unaffordable. In this case, as found by Campolongo [Campolongo et al., 2007], there is a
relationship between µ∗ and ST , a Morris "screening" analysis is performed in the 2D shell
FEM of the wind turbine blade, and will be used as validation of the results obtained by Sobol
analysis using surrogate models. In this analysis, all loads variables have an upper and lower
boundary with a ±10% of their mean value and are performed using 1000 samples for each
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input parameter. Subsequently, each sample is used to launch the 2D shell FE analysis that
gives the resultant stress on the blade root. Using these outputs, the Morris analysis gives the
results shown in figure 4.19. Both results are normalized between (0, 1) to compare then on
the same scale.

Figure 4.19: Morris sensitivity analysis for LAM: RBE, 4 nodes and PD.

As can be seen for methods RBE and 4NO, the most sensible variables are [Spn7FLxb1,

Spn8FLxb1, Spn6MLyb1, Spn7MLyb1, Spn8MLyb1] with a linear effect and for LAM PD
the most sensible variables are [TPQQ13, TPP 2B3]. Other variables present a less linear effect,
and most of them, their effect can be neglected. The fact that Morris analysis is a quantitative
method is performed in a subset of the input domain. Only one input variable is changed at
each time. The full sensitivity effect of each parameter cannot be estimated. For LAM PD at
this sub-domain, the load parameters do not introduce sensitivity, only material parameters,
showing in the Morris analysis less sensitivity than the other two methods (see figure 4.20).
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The interaction between two or more variables cannot be captured by this analysis, and these
interactions could help us to understand better the relationship between variables that affect
the sensitivity of the models and select the adequate LAM to estimate the fatigue life of the
wind turbine blade.

Figure 4.20: Zoom of Morris sensitivity analysis for LAM PD.

4.3.8.1 Validation of Sobol sensitivity analysis

Morris method is a qualitative method calculated using the blade shell FEM, and the Sobol
method is a quantitative method performed using a surrogate model of the blade shell FEM;
they estimate the results in different ways. However, their sensitivity results present the same
input variables to be the most sensible for µ∗ and ST , meaning that the estimation made by
the global sensitivity approach based on DNN is comparable to the obtained by using the
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2D blade shell FEM Morris analysis. If the Sobol analysis is performed using the 2D shell
blade FEM, the CPU calculation time will increase dramatically. Using the 2D shell FEM to
perform 1000 iterations FEA for Morris analysis, it takes near 72 hours, and for the Sobol
analysis was used 3× 106 iterations, meaning that it takes 216, 000 hours. This time could be
reduced by using distributed processing and a more robust and modern CPU. Compared to
training the DNN, it only takes 35-45 seconds, and for the Sobol analysis, it takes less than
5 minutes and shows a great advantage for high dimensional problems as the one treated in
this study.

The next chapter analyzes the fatigue damage of the composite wind turbine blade, in this
case, is used by LAM PD and LAM 4NO to compare their effectiveness in the fatigue damage
estimation.

4.4 Conclusions

The methodology proposed for calculating the global sensitivity using a deep neural network
as the surrogate model is applied to a mechanical case of load application methods sensitivity.
After trained and validated, both surrogate models presented a low mean squared error in low
and high-dimension input parameters. This methodology deals with the quantitative sensitiv-
ity of high-dimensional problems, representing an advantage over qualitative methods using
the same amount of samples. The result obtained using the deep learning based sensitivity
approach is validated using a qualitative Morris sensitivity analysis using the wind turbine
blade’s shell finite element model. This methodology could be used for other wind turbine
structure parts as the jacket and tower.
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The estimation of the fatigue damage of a wind turbine blade depends on how the loads
on the wind turbine blade are applied and the fatigue damage criteria. Some authors use
the loads directly from aero-elastic simulations and calculate a damage equivalent load that
estimates the damage at one node of the beam 1D blade model, which is not a detailed
analysis of the blade. Others create a blade 2D shell FEM but apply the loads as a constant
pressure equivalent to a maximum moment, which leads to the evaluation of one direction
of the blade. Others create a more realistic pressure distribution using computational fluids
dynamics models. However, these models do not consider the response of the blade pitch
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control or the dynamic behavior of the blade. On the other hand, fatigue criteria based on an
energy approach for composite materials are not accurate; for this kind of material, criteria
based on phenomenological events are more suitable.

This chapter presents a fatigue damage procedure for a composite wind turbine blade using
a deep neural network to estimate 10 minutes of damage and the probabilistic estimation of the
fatigue life until failure, which includes: wind field simulation, coupled aerodynamic, elastic,
and electrical, and control (servo) analysis, filter aero-elastic loads, stress analysis by finite el-
ement analysis, and fatigue damage evaluation based on deep neural network surrogate model
considering a multi-axial non-proportional stress state. Using the proposed methodology, a 10
minutes fatigue damage is determined by a 10 minutes aero-elastic simulation assuming a nor-
mal turbulence model for the environmental conditions and used to estimate the probabilistic
fatigue life. In Section 5.1 is presented the aero-elastic simulations for unsteady conditions
of a composite wind turbine blade. The stress distribution on the wind turbine blade shell
FEM using load application methods: 4NO and PD are presented in Section 5.2. In Section
5.3 is presented the methodology to calculate the fatigue damage using multi-axial criteria
for non-proportional loading using constant life diagrams for composite materials. Section
5.4 explains the methodology to estimate 10 minutes of fatigue damage using a deep neural
network. Also, the estimation of 10 minutes of damage for different wind turbine blade loca-
tions is compared to the fatigue damage obtained by using different load application methods.
Section 5.5 presents the fatigue damage of the blade for 20 years for different composite plies,
and Section 5.6 presents the estimation of the fatigue life of the composite wind turbine blade.
The node with the maximum fatigue damage follows a normal distribution for its fatigue life.

Figure 5.1 presents the methodology to estimates the fatigue damage in 10 minutes followed
in this study.

Aero-servo-elastic 
simulations

Filtered 
aero-servo-elastic 
maximum loads

LAM: equivalent load 
distribution to 3D 

FEM

Stress and fatigue 
analysis of composite 

material

DNN training and 
validation surrogate 

model

10 minutes damage 
prediction

10 minutes Damage estimation using deep neural network (DNN)

Figure 5.1: Methodology proposed for 10 minutes fatigue damage estimation.

5.1 Aero-elastic unsteady simulation

5.1.1 Environmental conditions

Measurements of wind speed during the last three years were extracted from the open-data
Engie Renewable project at la Haute Borne, Grand Est, France [Engie, 2019]. This data is
collected for a 2MW wind turbine at a hub height of 80m. The wind turbine used in this study



5.1. Aero-elastic unsteady simulation 107

has a hub height of 119m and cut-in and cut-out wind speeds of [4, 25] m/s, respectively. The
same translation is done as in the sensitivity analysis (see chapter 4).

The dependency between wind speed (WS) and the standard deviation of the wind speed
(σ1) is defined in the Normal Turbulence Model described in the IEC 61400-1 [Standard et al., 2005].
In our study case is used a reference ambient turbulence intensity of a site Class 1A: TIref =

0.16. This dependency is given by the local statistical moments of σ1 as: E(σ1|WS) =

TIref (0.75WS + 3.8) and V(σ1|WS) = (1.4TIref )2.

The parameters of the σ1 density probability distribution are given in the following equa-
tions as a function of WS.

σσ1 =

[
ln

(
V(σ1|WS)

E2(σ1|WS)
+ 1

)]1/2

(5.1)

µσ1 = ln[E(σ1|WS)]−
σ2
σ1

2
(5.2)

The correlation between WS and mean shear exponent α is based on the simplified joint
distribution defined by Dimitrov et al. [Dimitrov et al., 2015].

µα = 0.088(ln(WS)− 1) (5.3)

σα = (1/WS) (5.4)

In table 5.1 is summarized all inputs parameters for the fatigue analysis with their corre-
sponding probability density function (PDF) and their parameters.

Table 5.1: Wind turbine surrogate model inputs parameters.

Input Parameter PDF PDF Parameter

10-min mean hub height wind speed Weibull E(WS) = 7.28m/s

Std. of the wind speed during the 10-min simulation Lognormal µσ1(WS), σσ1(WS)

10-min mean shear exponent Normal µα(WS), σα(WS)

The 10-minute turbulence intensity is defined as the ratio of the standard deviation of
wind speed to the mean wind speed, determined from measured data of wind speed in 10
minutes [Commission et al., 2019] as

I10 =
σ10

WS10
(5.5)



108 Chapter 5. Fatigue life estimation of wind turbine blades using DNN

Figure 5.2: environmental condition parameters distribution.

As found in the sensitivity analysis (see chapter 4) the most sensible variables are found
in the short term wind loads applied on the blade, rather than the material thicknesses. In
this case, for the fatigue analysis only uncertainties on the wind loads are consider. Other
studies [Slot et al., 2020] take into account variation in multiple variables of the wind con-
dition as: mean wind speed, standard deviation of the wind speed, shear exponent, wind
direction, miss-align angle. This study only considers uncertainties in the 10 minutes mean
wind speed to decrease the complexity of the problem and also reduce the sample size of
simulations, decreasing the computational time. This simplification could lead to an under
estimation of the fatigue damage of the wind turbine, however it is consider as a initial step
to evaluate and validate the proposed methodology. For the generation of the 3D wind field
the turbulence intensity and the shear exponent are constant defined in the IEC standard
[Standard et al., 2005].

5.1.2 FAST simulation with filtered response

The environmental conditions described before are inputs to FAST [Jonkman and Buhl Jr, 2005]
and an effective 10 mins unsteady study (i.e., neglecting the simulation start due to abrupt
response) with a time step ∆t = 0.015s (see figure 5.3) is launched for wind speeds between
[4, 25]m/s generated using inverse method sampling from the measured wind speed. A tur-
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bulent simulation using the design load case (DLC) 1.2 for normal turbulence model (NTM)
[Standard et al., 2005] is made using a full-field flow that contains a proper spatio-temporal
turbulent velocity field generated using TurbSim [Jonkman and Buhl Jr, 2006] with an IEC
Kaimal spectral model and a coherence function for IEC spectral models (refer to chapter
2). Afterward, the generated wind field is used as a FAST input to simulate the turbulent
inflow environment that incorporates many of the important fluid dynamic features known to
adversely affect turbine aero-elastic response and loading. The number of simulations realized
is 1 per each integer wind speed in the range [4, 25)m/s (i.e., not including 25m/s), resulting
in a total of 21 FAST simulations.

Figure 5.3: Turbsim wind field generation for wind speed 11m/s and normal turbulence, DLC
1.2.

Subsequently, a time history response of the forces and moments acting on ten nodes of
the blade is extracted as outputs from the FAST model, resulting in 60 outputs variables.

After 200 simulated seconds, these loads are re-sampled to reduce the time step to ∆t =

0.63s of the resulting time history for each wind speed (see figure 5.4. Then, it applies each
time instant to the 2D FEM blade to create a high fidelity response resulting in 21,000 finite
element analysis.

The filter used to re-sample the aero-elastic response is based on the Discrete Fourier
Transformation (DFT) [Arfken and Weber, 1999, Weisstein, 2002]. The DFT is the equivalent
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of the continuous Fourier Transformation (FT) for signals only knowing at N instants separated
by sample times T, a finite number of data points. The FT of an original signal, f(t), would
be

F (jω) =

∫ inf

− inf
f(t)e−jwtdt (5.6)

Considering N samples denoted as f(0), f(1), . . . , f(k), f(N − 1). Each sample f(k)

could be regarded as an impulse having area f(k). Then, since the integrand exits only at the
sample points the DFT could be defined as

F (jω) =
N−1∑
k=0

f(k)e−jwkT (5.7)

This method is used to down-sample the original signal by assuming is periodical, changing
the sample space from dt to dt · length(T )/M , where M is the new sample number. After re-
sampling the loads, there is little reduction in the maximum and minimum value of the output,
also the low frequencies of the signal are eliminated, which will underestimate the total damage
produced by this loads. However, this reduction is not important for the magnitude of the
loads and as only the low frequencies are eliminated the signal response is well represented for
the fatigue analysis. The filtered signal is used for further analysis.

5.2 LAM wind turbine blade 2D shell FEM for stress analysis

Two approaches are selected to analyze the stress on the blade 2D shell model: from group 2,
LAM 4 Nodes (LAM 4NO), and group 4, the Caous method for pressure distribution (LAM
PD). Both methods transfer the aero-elastic loads of time history to the blade 2D shell model.
The 2D shell FEM is used for each time step to calculate the blade’s stress time history.

The open-source FEA Code_Aster calculates the stresses by applying the load conditions
from the aero-elastic simulation at each time instant after re-sampling the load-time history.
Shell DST elements are used to calculate the plane stress components. It is fixed six degrees
of freedom of the blade root boundary in the FEA.

In this study, the stress distribution is calculated at layer positions, indicating specific
locations through the laminate thickness. Each layer has three different positions to extract
the stress: superior, middle, and inferior (SUP, MID, INF, respectively). Meaning that for a
node in the shell FEM is associated multiples layer position starting from the surface of the
blade shell towards the blade center.
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a) b)

Figure 5.4: FAST load output time history for Spn1FLxb1 at 11m/s with a time step of
0.015s and re-sampled to a time step of 0.63s, and a zoom between 200 and 300 seconds.

5.2.1 Stress analysis: LAM 4NO

As an example, the longitudinal σ11 stress distribution through node 606 of the blade root
(see figure 5.5 using LAM 4NO approach is presented in figure 5.6, the stress distribution is
analyzed for different wind speed. It is found that the stress is piece-wise linear varied at
each ply of the laminate thickness, which is consistent with the classical laminate theory of
composite materials. Also, almost all wind speed, the maximum stress at positions located
in the second and fourth ply, has QQ1 as material (see figure 5.6a). However, for some wind
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speed, the stress distribution has strong variations at each ply, regarding from a middle point
(i.e., Third layer, MID position). In this case, no assumption could be made to select a layer
where the stress is always maximum needs to analyze all layers of positions (see figure 5.6b).

Figure 5.5: Location node 606 on blade root.

In the same node of the blade root is illustrates the stress time history at the second ply
(QQ1 material) at an inferior level (see figure 5.7). As can be seen, for each of the directions in
the shell’s local coordinate system, the stresses magnitudes are different and changing through
time, presenting a complex multi-axial stress behavior. However, they have an harmonic
response at each direction. This response is mainly due to the rotation of the blade because
as the wind speed signal was filtered some high frequencies that produce turbulence in the
model are neglected, creating a less turbulent wind field. To have a fully turbulent field is
recommended to use the original wind speed signals but it will increase the computational
time.

5.2.2 Stress analysis: LAM PD

At the same node is analyzed the σ11 stress distribution using the LAM PD approach for
different wind speeds. In LAM 4NO, the stress is piece-wise linear varied at each ply of the
laminate thickness. Moreover, the absolute maximum stress location is always at the second
ply at the INF position (QQ1 material) for all wind speed.

Also, as LAM 4NO, LAM PD presents a similar behavior. However, its stress magnitude
is smaller. The maximum stress for both LAM is found acting in the transversal direction of
the local coordinate system σ22.

Both methods are consistent with the classical laminate theory of composite material.
However, the stress distribution is different in magnitude and for some wind speed also in
variation through the laminate thickness. These differences may lead to different fatigue
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a) b)

Figure 5.6: Longitudinal σ11 stress distribution through laminate thickness at node 606 using
LAM 4NO for a) wind speed 11m/s and b) wind speed 16m/s.

Figure 5.7: Stress history at node 606, second ply, inferior position at wind speed 11m/s using
LAM 4NO.
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a) b)

Figure 5.8: Stress distribution through laminate thickness at node 606 using LAM PD for a)
wind speed 11m/s and b) wind speed 16m/s.

Figure 5.9: Stress history at node 606, second ply, inferior position at wind speed 11m/s using
LAM PD.



5.3. Multi-axial fatigue criteria for composite materials 115

damage values depending on the approach selected.

The resulting stress can be extracted at each node and each position of every ply (3
positions per ply), these results in a total of more than 450, 000 output values per time
instant. In this case, to reduce the size of the output domain is only analyzed the inferior
position of the two first plies of 4 nodes per cross-section. The forces are applied using LAM
4NO, as these are the position where stress concentration can be found by applying the loads
directly.

5.3 Multi-axial fatigue criteria for composite materials

The stress time history obtained in section 5.2 shows that the blade bears non-proportional
multi-axial complex stress states of variable amplitude and mean, which is similar to the same
result obtained by [Hu et al., 2016b]. Stress history of longitudinal normal stress σ11, trans-
verse normal stress σ22 and shear stress σ12 of blade root node 606, are shown in figure 5.5.
Nussbaumer et al. [Nussbaumer et al., 2012] explained the differences between proportional
and non-proportional cyclic loads. Proportional stresses usually result from a single loading,
varying with time, acting on the structure. All multi-axial stresses vary proportional to the
loading and proportionally to each other, which is also true concerning their ranges and mean
values. On the other hand, non-proportional stresses usually result from the action of at
least two loadings that vary non-proportionally with time in a different manner. Also, They
can result from one constant combined with one moving load. The non-proportional stresses
in wind turbine blades are because the wind load, gravity load, and centrifugal load vary
non-proportionally with time [Hu et al., 2016a].

To count cycles for the non-proportional multi-axial complex stress states, the realization
of 900 seconds using the FAST simulation is executed. After neglecting the first 200 seconds,
the next 600 seconds (10 min of an effective simulation) are used to count peaks and valley
for each stress component. A range-mean counting method described by ASTM Committee
[ASTM, 2003] is applied to count all the half cycles, allowing a cycle-by-cycle fatigue analysis.
The stress path from one stress state to the next following stress state is counted as a one-half
cycle. As an example, in figure 5.10 is shown a time history of loads units to explain how
the range-mean counting works. The most common method to count cycles for wind turbine
fatigue is Rainflow, however this approach breaks the sequence of cycles creating a new signal
with equivalent damage. In this study is keep the original sequence of cycles to determine the
damage suffer by the wind turbine at each moment and the range-mean approach could solve
this problem.

This method defines a range as the difference between two successive reversals. The range
is positive when a valley is followed by a peak (i.e., A-B) and negative when a valley is
followed by a valley (i.e., D-E), counting both positive and negatives ranges. If only positive
or negative ranges are counted, then each is counted as one cycle. If both positive and negative
are counted, then each is counted as a one-half cycle. Also, considering their mean value at
every range, the results are presented in a matrix (see table 5.2).



116 Chapter 5. Fatigue life estimation of wind turbine blades using DNN

Figure 5.10: Range-mean cycle counting example.

Table 5.2: Example Range-Mean Counting

Mean Units
Range Units -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10 - - - - - - - - -
9 - - - - - - - - -
8 - - - - 0.5 - 0.5 - -
7 - - - 0.5 - - - - -
6 - - - - - - 0.5 - 0.5
5 - - - - - - - - -
4 - - 0.5 - - - 0.5 - -
3 - - - 0.5 - - - - -
2 - - - - - - - - -
1 - - - - - - - - -

According to the Tsai-Hill criterion [Jones, 1998], a multi-axial fatigue damage index
[Liu and Mahadevan, 2005] caused in a half cycle under a stress amplitude level σi11, σ

i
22 and

σi12 is computed as:

Di = 0.5

√
1

(N i
11)2

+
1

(N i
22)2

+
1

(N i
12)2

+
1

N i
11N

i
22

(5.8)

where N i
11, N

i
22 and N i

12 are the number of allowable cycles under pure stress components
σi11, σ22i and σi12, respectively. The coefficient 0.5 indicates the half cycle. This procedure to
calculate fatigue damage is the same as used by Hu et al. [Hu et al., 2016a].
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5.3.1 S-N curves model

The S-N curves or Wöhler diagram [Wöhler, 1870] are used to represent the fatigue properties
of structures in terms of a damage accumulation law. In this representation, the number of
cycles to failure is given as a function of the stress cycle’s amplitude. In its typical form, the
S-N fatigue life model [E73910, 2015] is provided by the relation:

Nij = aijS
bij
ij (5.9)

where Sij is the stress amplitude, Nij is the number of cycles to failure, aij and bij are
fatigue strength coefficients corresponding to a stress ratio R.Taking logarithm of both sides
and rearranging terms, is obtained

log(Nij) = log(aij) + bijlog(Sij) (5.10)

the above equation describes a linear relation between log(Nij) and log(Sij), with log(aij)

as the intercept and bij as the slope. This relationship describes very well the fatigue life
of materials over a wide range of stress amplitudes, except when the stress amplitude ap-
proaches the static strength of the specimen, or the fatigue threshold level (the endurance
limit) [Dimitrov, 2013]. In this study is only considered stress amplitudes that produce cycles
to failure of N = 1e2. The stress ratio R is equal to the ratio of the minimum cyclic stress to
the maximum cyclic.

R =
σmin
σmax

(5.11)

ASTM standards [E73910, 2015] suggest to treat statistically the fatigue strength coeffi-
cient used to construct the S-N curve to represent a 95% survival probability with a confidence
interval of 95%. The S-N curve of material QQ1 in the longitudinal direction at a stress ratio
of −0.5 is shown in figure 5.11, retaining the lower bound confidence interval to calculate the
cycles to failure at any stress amplitude for all composite materials.

However, S-N curves only capture the failure behavior at a constant ratio R, which is
used for constant amplitude stress. In this case, the stress amplitude is variable through
time, meaning that failure cycles at different ratios must be estimated. In this case, is used a
constant life diagrams [Vassilopoulos and Nijssen, 2010].

5.3.2 Constant Life Diagrams - CLD

The constant life diagram (CLD) is a model used to predict the number of cycles to failure as
a function of cycle amplitude S and mean stress values by interpolating between S-N curves
obtained from constant amplitude with different load ratios. CLD for composite materials
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Figure 5.11: 95% confidence band for the S-N curve of QQ1 in longitudinal direction with
R = −0.5.

QQ1 and P2B for longitudinal and transversal direction are constructed using fatigue test data
extracted from SNL/MSU/DOE composite material database [Mandell and Samborsky, 2016].
This test include maximum stress, minimum stress and cycles to failure for each material
tested at ratios R = [−2,−1,−0.5, 0.1, 0.5, 0.7, 10]. The amplitude stress and mean stress are
calculated using the equations:

Sij =
σmax − σmin

2
(5.12)

σmij =
σmax + σmin

2
(5.13)

The constant life diagram is constructed from the 95% lower bound S-N curves. Vas-
silopoulos [Vassilopoulos et al., 2010] studied the influence of the CLD formulation and con-
cluded after analyzing different approaches that piece-wise linear is the most accurate of the
approaches when using a reasonable number of S-N curves (> 3). The piece-wise linear CLDs
of QQ1 and P2B are illustrated in figures 5.12, 5.13, 5.14 and 5.15. The range of a number of
cycles to failure goes from 102 to 108.
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To generate the CLD for each composite material QQ1 and P2B, the module scipy optimize
[Jones et al., 01 ] estimates the parameters of a function given the data using a non-linear
least squares to fit the function. This is used to fit the S-N curves for each tested ratio at
longitudinal and transverse direction for both materials. Subsequently is created a piece-wise
linear function for both materials in both directions using bi-dimensional interpolation tool
from scipy [Jones et al., 01 ].

Figure 5.12: Constant life diagram of QQ1 in longitudinal direction using lower bound 95%

S-N curves.
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Figure 5.13: Constant life diagram of QQ1 in transversal direction using lower bound 95%

S-N curves.
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Figure 5.14: Constant life diagram of P2B in longitudinal direction using lower bound 95%

S-N curves.
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Figure 5.15: Constant life diagram of P2B in transversal direction using lower bound 95% S-N
curves.

For CLD QQ1 in the longitudinal direction (figure 5.12), the damage done by a cycle
with some amplitude is susceptible to the mean stress at reversed loading R-values. Tension
is much more damaging than compression at high cycles, much less so at low cycles. The
transverse QQ1 CLD (figure 5.13) is distorted toward higher strength and fatigue resistance
in compression, as is typical for the transverse direction of composites. These results may
be used to predict matrix cracking in blades. CLD P2B in the longitudinal direction (figure
5.14) reflects a similar ratio of compression to tensile strength compared with fiberglass QQ1
but improves fatigue resistance at all R values. The CLD P2B in transversal direction (figure
5.15) is similar in shape to that for fiberglass material QQ1 transversal, also tested in the
transverse direction. As noted earlier, QQ1T has higher strength values due to the different
contents of plies in various directions and the higher transverse modulus for glass versus carbon
[Mandell et al., 2010].

To calculate the number of failure cycles in the shear direction is needed, the CLD in shear
direction for QQ1 and P2B. However, fatigue test data is not available in the composite mate-
rial database [Mandell et al., 2010]. To estimate missing test data for shear fatigue strength of
composite materials, Philippidis and Vassilopoulos [Philippidis and Vassilopoulos, 2002] shows
that shear fatigue strength values are calculated as 1/2.2 of the fatigue strength of a flat coupon
cut off-axis at 45o and loaded uniaxially, adequately fit most of the experimental data. Liu
and Mahadevan [Liu and Mahadevan, 2005] considered the average value of the S-N curve
slopes corresponding to the longitudinal and transverse directions tests as the slope of the S-N
shear fatigue curve. Hu et al. [Hu et al., 2016a] approximated the fatigue shear strength by
dividing the average fatigue strength in the longitudinal and transverse direction by a con-
stant. The calculated constants for QQ1 and P2B are 3.4628 and 5.3157, respectively. This
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last approximation is used to estimate the shear CLD of QQ1 and P2B, illustrates in figure
5.16 and figure 5.17.

Figure 5.16: Constant life diagram of QQ1 in shear direction using lower bound 95% S-N
curves.

Figure 5.17: Constant life diagram of P2B in shear direction using lower bound 95% S-N
curves.
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5.3.3 Fatigue damage accumulation

To continue the fatigue analysis is necessary to select the estimation of the fatigue dam-
age accumulation, which is non-linear under variable amplitude non-proportional multi-axial
loading. A comparative study of non-linear damage accumulation in stochastic fatigue FRP
(fiber-reinforced plastics) laminates by Sarkani [Sarkani et al., 2001] presents different non-
linear methods versus a linear method and all of them predicted fatigue lives that were com-
parable to those predicted by the linear damage accumulation rule. Miner’s rule [Miner, 1945],
the most used method to predict fatigue damage of wind turbine blades, assumes a linear dam-
age accumulation [Guideline and Lloyd, 2010]. The fatigue damage in 10 minutes simulation
is calculated as

D10 =

n∑
i=1

Di = 0.5

n∑
i=1

√
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+
1

(N i
22)2
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11N

i
22

(5.14)

The study uses this linear model for damage accumulation.

5.4 DNN: 10-minutes damage

5.4.1 Input domain

The inputs parameters to generate the environmental conditions are the 10 minutes mean
wind speed, 10 minutes turbulence intensity, and 10 minutes mean shear exponent. Only one
simulation per wind speed between (4, 25)m/s was performed, resulting in a total of 21 stress
time history used to calculate the damage caused in a half cycle Di per wind speed WS, for
a unique value of WS multiple values of Di are correlated as shown in figure 5.18(a). As can
be seen, if a neural network is used to predect the damage, it only predicts a mean value per
wind speed, resulting in a bad prediction of Di. In order to predict the 10 min damage D10 is
added as the second input parameter, the empirical cumulative distribution function (ECDF)
of Di per each wind speed ordered as a increasing function, using python package statsmodel
[Seabold and Perktold, 2010]. Adding this second input parameter, the damage prediction for
D10 is estimated by selecting the desired wind speed and generating a uniform distribution
function [0, 1], of size equal to the number of half-cycles in a 10 min stress history (i.e., count
of ranges of stress).

The ECDF is a step function with a step size equal to 1/nobs where nobs is the number of
observed data points. Its value at any specified value of the measured variable is the fraction
of observations of the measured variable that are less than or equal to the specified value.

Let X1 . . . Xn be a random sample from a distribution F on the real line. The empirical
cumulative distribution function is defined by Van [Van der Vaart, 2000] as:
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a) b)

Figure 5.18: a) Damage distribution Di per wind speed and b) ECDF per wind speed of
Damage using LAM 4NO at Node 506.

F̄n(t) =
1

n

n∑
i=1

1{Xi ≤ t} (5.15)

where 1{Xi ≤ t} is the indicator of the event {Xi ≤ t} for a fixed t is a Bernoulli random
variable with parameter p = F (t); hence nF̄n(t) is a binomial random variable with mean
nF (t) and variance nF (t)(1 − F (t)). This implies that F̄n(t) is an unbiased estimator for
F (t).

The use of ECDF in this problem is motivated from the idea of the inverse transform
method [Devroye, 2006], the theorem implies that, If F is a continuous distribution function
on R with inverse F−1 defined by

F−1(u) = infx : F (x) = u, 0 < u < 1

If U is a uniform [0, 1] random variable, then F−1(U) has distribution function F . Also,
if X has distribution function F , then F (X) is uniformly distributed on [0, 1]. This theorem
can be used to generate random variables with an arbitrary continuous distribution function
F provided that F−1 is explicitly known.

As shown in figure 5.18 sorting the damage from lowest to highest, each value of Di per
wind speed has a corresponding value of F̄ , which gives the network a better representation
of the behavior of the damage.
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5.4.2 DNN description

For training the DNN, all inputs and output parameters were scaled between (0,1) to normalize
all parameters magnitude. The literature suggests only to normalize the input parameters if
their scales have huge magnitude differences that can lead to retard the convergence of the
optimization algorithm for the hyper-parameters [Géron, 2019]. However, in this case, the
output is normalized because it is close to 0 (i.e., magnitude 1e-9), and the DNN will always
predict 0. After normalization, the data is shuffled, taking 90% of the data to train the model
and the left 10% for validating the model prediction. The DNN is a sequential, fully connected
network having a total of 6 hidden layers; each of them has 296 neurons. Also, all layers have a
rectified linear unit (Relu) activation function and a learning rate of 0.0012. For this regression
problem, the weight and bias for the DNN are optimized using Adam optimizer to minimize
the mean squared error of the difference between prediction and real value.

These hyper-parameters are the result of a tuning optimization explained next.

5.4.3 DNN damage: hyperparameters optimization

To begin the optimization problem, the hyper-parameters space needs to be defined. The
DNN topology is a sequential, fully connected network, and the hyper-parameters that will be
optimized are presented in table 5.3. Only these hyper-parameters are selected to be changed
by the optimization problem. It could be added to the number of nodes or the activation
function different for each layer. However, these add more dimensions to our problem, and it
would need more calculation time to explore/exploit the whole hyper-parameter space.

Table 5.3: Hyper-parameter searching space for DNN Damage.

Hyper-parameter Range Type
Learning rate [1e-2,1e-5] Real
No. hidden layers [4, 10] Integer
No. of nodes per layer [1,1000] Real
Activation function per layer [ReLU, LeakyReLU, Sigmoid] Categorical

After defining our DNN model, the optimization algorithm search for the parameters that
minimize the validation mean squared error of the DNN for 30 calls. At each call, the DNN
trains for 100 epochs. When the best result is founded, the algorithm is relaunched, but this
time the initial hyper-parameters are the best result from the previous analysis. If there is no
change in the validation mean squared error, these hyper-parameters are selected to train the
DNN. They ensure the lowest error in the validation set in less training iterations.

In figure 5.19 (a) is shown the first run of the hyper-parameters optimization and in figure
5.19 (b) the second run to ensure that no other minimum was found. As a result, it is found
that the best learning rate, number of hidden layers, number of nodes per layer, and activation
function are [0.001, 6, 296, ReLU ], respectively.
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a) b)

Figure 5.19: Convergence curve of hyper-parameter optimization a) first run b) second run
starting from optimum of first run.

Training only 100 epochs per call is not enough for the DNN to learn the pattern in the
training data; the results founded gives the configuration that has the minimum error at this
amount of epochs. Using at least 1000 epochs per call to train the DNN, a lower RMSE could
be achieved, and these results could change the hyper-parameters values.

Subsequently, the DNN is built with the optimized hyper-parameters and trained. The
stopping criteria were a maximum iteration of 3000 epochs or an absolute error of validation
mean squared error between two subsequent epochs.

5.4.4 DNN: 10-Minutes damage prediction

After finding the optimized hyper-parameters for the DNN, the training phase starts, then the
neural networks are validated. Ten neural networks per LAM approach are trained to predict
the damage of all levels of composite material QQ1 and P2B at ten nodes where the LAM
4NO applies the maximum load (i.e., FCi , i = x, y, z), where may occur the maximum stress
concentration. At each node are found four layers of composite material (excluding Balsa
wood, not analyzed) and per each layer three levels (INF, MID, SUP), resulting in a total of
12 damage output per neural network. As shown in table 5.4, DNN for both LAMs presents
an excellent fit to the simulated damage with an MSE between 1.38E − 4 to 6.10E − 7.

This prediction is made by training the DNNs using only one aero-elastic simulation that
generates a time history response. This history response depends on a random signal genera-
tion. For this simulation, the random seed was fixed, meaning that for the same environmental
conditions and a different random seed, the wind field time history will result differently.
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Figure 5.20: Hyper-parameters space search points for DNN 10 Minute Damage.

To test these DNNs, a new 3D wind field is generated using a different seed number selected
randomly and used to run the aero-elastic simulation to generate the time history of the wind
turbine blade’s behavior. Subsequently transferred to the blade shell FEM using only LAM
4NO and calculated the 10 minutes damage at the blade nodes where load FCi is applied per
each wind speed. Only LAM 4NO is used as a test method because it is less time consuming
than LAM PD, about six times faster.

In table 5.5 is presented the average error of the 10 minutes damage prediction of DNN,
to calculate this error is used the following equation:
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Table 5.4: MSE of DNNs Damage using LAM 4NO and LAM PD.

LAM 4NO LAM PD
Z Coordinate – [m] Node MSE MSE

2,8 N606 1,38E-04 2,12E-04
4,8 N603 3,60E-05 3,49E-04

11,658 N595 5,65E-05 4,32E-04
19,267 N586 6,91E-05 3,50E-04
24,156 N580 2,25E-04 2,00E-04
35,519 N567 1,92E-05 8,39E-06
51,257 N549 7,95E-05 6,10E-07
66,516 N531 6,76E-05 3,72E-05
79,034 N516 1,69E-04 2,61E-05
89,166 N506 7,03E-05 1,12E-04

eavg =
1

M

M∑
i=1

abs(DNS
10 (i)− D̂10(i))

DNS
10 (i)

∗ 100% (5.16)

Where D̂10 is the 10-minute damage predicted by the DNN, DNS
10 is the damage calculated

using LAM 4NO 2D shell FEM, and i is the number of nodes where the damage is extracted on
the blade, in this case, is extracted the damage at the inferior level of the corresponding layer.
These DNS

10 is used to test the response of the trained DNN to predict D̂10. In this case is
neglected the prediction on nodes 595 and 586 due to the high-stress concentration presented,
inducing a significant amount of error, and only are considered all other eight nodes, where
the stress level is homogeneous (i.e., M = 8). The maximum relative percent error was found
at wind speed 22 m/s for P2B and 12m/s for QQ1 composite material. The error is less than
14%, meaning that our DNN can accurately predict the accumulated damage at 10-minutes
for different time history wind speed by using one time history to train the network.

By only training these networks with one time history, they can generate the half-cycle
damage of different time history, having the same environmental conditions. These results are
obtained by using DNN LAM 4NO. It assumes that for LAM PD, the results will be similar
because there is no stress concentration. The damage distribution is much better than using
LAM 4NO, which will result in a better prediction of the 10 minutes fatigue damage.

Another test performed with this network was to predict missing wind speed in the training
set. In this case the network is trained without a given wind speed and then is used to predict
the damage at this exact wind speed. For this test is used the LAM PD at first and second
composite layer (P2B and QQ1, respectively) at the inferior level to predict the damage at the
blade root node N606. Results are presented in table 5.6 where is illustrated, the simulated
damage at the missing or skipped wind speed, the damage predicted by the network and
the relative error in percentage per each wind speed. To obtain each value the network is
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Table 5.5: Average relative error for LAM 4NO 10 minutes damage prediction testing using a
different seed number for generation of the 3D wind.

10 Minutes Damage Error
Wind Speed - [m/s] P2B QQ1

4 4.746% 5.205%
5 6.868% 4.507%
6 6.735% 3.320%
7 3.621% 3.156%
8 5.466% 6.372%
9 9.128% 6.635%
10 1.642% 6.058%
11 3.005% 8.042%
12 7.021% 8.783%
13 2.065% 7.119%
14 2.020% 6.148%
15 4.684% 7.415%
16 2.624% 4.274%
17 4.094% 1.486%
18 3.753% 2.009%
19 3.972% 3.024%
20 4.676% 3.596%
21 5.510% 0.890%
22 13.199% 8.568%
23 5.044% 1.204%
24 4.406% 0.964%

re-trained without the wind speed analyzed. The layer P2B shows the greater relative error at
missing wind speed 12m/s which is closed to the rated wind speed, and all other wind speed
has an error lower than 5%. The layer QQ1 shows the greater error at missing wind speeds 16

and 17m/s, this is due to the pitch control behavior that turns the blade between these wind
speeds creating a change in the behavior of the blade, however for the others wind speed the
error is lower than 10% in the worst case. These results shows that this methodology can also
predict damage values in between wind speeds without being simulated, predicting this values
with an acceptable relative error. In this case, the discontinuity problem is not tackled by the
ADM-DNN approach developed in chapter 3 because the fatigue damage prediction is not a
continuous function of the wind speed. But it is only evaluated at the simulated wind speed,
meaning that the discontinuity does not affect the response given by the neural network.
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Table 5.6: 10 minutes damage prediction for a missing wind speed using LAM PD at blade
root node for P2B and QQ1 layers at inferior level.

P2B QQ1
Missing Wind Speed - [m/s] Damage simulated Damage Predicted Error - [%] Damage simulated Damage Predicted Error - [%]

5 2.08368e-09 2.09732e-09 0.65436 4.22951e-07 4.36328e-07 3.16275
6 1.92903e-09 1.92261e-09 0.33294 4.15519e-07 4.051840e-07 2.48729
7 2.11990e-09 2.11008e-09 0.463124 4.63673e-07 4.61568e-07 0.45392
8 1.77269e-09 1.80708e-09 1.94036 3.74536e-07 3.92229e-07 4.72390
9 2.28704e-09 2.22766e-09 2.59631 4.58177e-07 4.43849e-07 3.12728
10 2.11294e-09 2.15022e-09 1.76401 4.14194e-07 4.40371e-07 6.32009
11 2.33139e-09 2.37313e-09 1.79065 4.64537e-07 4.48154e-07 3.52689
12 2.80975e-09 2.68793e-09 4.33584 5.10204e-07 4.89535e-07 4.05105
13 3.02754e-09 3.13410e-09 3.51975 4.82082e-07 5.10898e-07 5.97732
14 2.87157e-09 2.79734e-09 2.58521 4.58418e-07 4.49535e-07 1.93773
15 2.72282e-09 2.76014e-09 1.37074 4.29057e-07 4.24736e-07 1.00709
16 3.16152e-09 3.22820e-09 2.10891 5.17371e-07 8.15514e-07 57.62636
17 7.708697e-09 7.53175e-09 2.29536 2.95702e-06 1.76823e-06 40.20226
18 8.60202e-09 8.55422e-09 0.555669 3.16936e-06 3.45968e-06 9.16016
19 5.94937e-09 6.07155e-09 2.05369 2.32489e-06 2.17627e-06 6.39247
20 7.45447e-09 7.32073e-09 1.79410 2.71307e-06 2.85448e-06 5.21216
21 3.98562e-09 4.04078e-09 1.38397 1.54475e-06 1.5078e-06 2.39087
22 1.08506e-09 1.11895e-09 3.12348 4.19524e-07 4.10399e-07 2.17493
23 7.22244e-09 7.08789e-09 1.86292 2.72399e-06 2.76120e-06 1.36613

5.4.5 Blade damage distribution

To determine the effect of using different LAMs, the blade’s damage distribution is extracted
at ten nodes, one per each cross-section where the LAM 4NO applied the loads directly (see
figure 5.21). These nodes are the ones where the forces FCi are applied because it has a greater
amplitude according to the physical law distribution. As the load is applied directly to the
node, it may introduce stress concentration. Also, as there are many layers of composite mate-
rials, LAM PD results are extracted only on the two first layers (P2B and QQ1, respectively)
at their inferior level because these layers at this position presented the absolute maximum
stress if compared with their symmetrical layer position. These layers are the two closets to
the blade shell.

First, the resulting 10 minutes damage accumulation obtained using LAM 4NO in the first
layer (P2B material) is illustrated in figure 5.22. The first thing to notice is that the damage
along the blade Z-coordinate from blade root (i.e., section 1) to section 3 increases drastically,
the high damage produced at section 3, node 595, Z = 11.658 has a magnitude order of
D10 = 1e− 6. After this position, the damage decreases to magnitudes D10 = 1e− 8 for the
rest of the wind turbine, making node at S3, the location with the highest probability of failing.
As a function of the wind speed, for almost all P2B layer at each node, the damage starts low
and increases proportionally as the wind speed increases to reach the rated wind speed. After
this wind speed, the damage increases drastically for some nodes at (S1, S2, S3, S4, S5, S9).
At the other locations, the damage increases. The damage distribution is illustrated separately
in appendix A for a better comprehension of the damage distribution.

Results obtained at the second layer (QQ1 material) using LAM 4NO are shown in Figure
5.23. In this case, the maximum damage is located in node 586 of section 4 Z = 19.267 with
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Figure 5.21: Blade nodes (red dots) where the damage is calculated using LAMs 4NO and
PD.

a magnitude of D10 = 0.001, the highest of all layers, the second maximum damage is found
in node 595 at section 3 with a damaging magnitude of D10 = 0.0001. All other damages
have a magnitude of D10 = 1e − 6 greater than the damage found in P2B. In other words,
the layers with QQ1 composite material will fail faster than P2B using this stacking sequence
and thicknesses. Regarding the damage as a function of the wind speed, it is noticed that for
almost all nodes, the damage increases at wind speed greater than 16, having a similar value
for other wind speed. Except for sections 3 and 4, where the maximum damage is found at
12m/s (close to the wind turbine blade’s rated wind speed).

Second, the resulting 10 minutes damage accumulation obtained using LAM PD in the
first layer (P2B material) is presented in figure 5.24. Using this LAM, the maximum damage
is located at node 586 of section 4 with a damaging magnitude of D10 = 1e−6; all other nodes
have a lower damage with magnitudes between [1e− 9, 1e− 8]. The damage as a function of
the wind speed has almost a constant behavior for all nodes at different wind speeds.

In the case of the second layer (QQ1 material) using LAM PD, results are shown in figure
5.25. The damage distribution along the blade z-coordinate has the same damage amplitude
D10 = 1e− 6 for all nodes, which is higher than the P2B layer for all sections. Regarding its
distribution as a function of wind speed for all nodes, there is an increase in the damage after
wind speed passes 17m/s for all blade locations.
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Figure 5.22: 10 minutes damage distribution along the blade Z coordinate as a function of the
wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure 5.23: 10 minutes damage distribution along the blade Z coordinate as a function of the
wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure 5.24: 10 minutes damage distribution along the blade Z coordinate as a function of the
wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure 5.25: 10 minutes damage distribution along the blade Z coordinate as a function of the
wind speed at second layer (QQ1), inferior level by using LAM PD.
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Comparing both methods LAM, The overall damage is higher when the loads are pro-
jected using LAM 4NO than when using LAM PD, which is similar to the results found by
[Caous et al., 2018] when compared the methods using a Puck’s damage criteria [Puck et al., 2002].
For layer P2B, LAM PD presents a more constant damage distribution as a function of the
wind speed than LAM 4NO, which varies considerably with the wind speed. Also, LAM PD
estimates the highest damage located in section 4, when LAM 4NO estimates the most signif-
icant damage in section 3. On the other hand, layer QQ1 using LAM 4NO presents a higher
magnitude value in sections 3 and 4 than LAM PD, about 120 and 1000 times higher, which
means that in these locations, LAM 4NO has stress concentrations. For the other nodes, the
stress magnitude is similar, and also, both LAM presents the same behavior of increases of
the damage to wind speed greater 17m/s.

Depending on the method used to transfer the loads, different damage magnitude are
estimated and can lead to miss calculations. LAM 4NO is a more straightforward method to
implement than LAM PD; computationally, it is less expensive, about six times faster, but
for damage, analysis is not worth it due to the overestimation of the damage.

Regarding the results obtained using LAM PD, for all nodes, there is an increase of damage
after wind speed of 17m/s. As mentioned in Chapter 3 Regarding the aero-elastic simulation
results for 19m/s using a wind 3D field with normal turbulence the wind turbine is not
producing energy. The controller is set to an angle of 82o. For the entire aero-elastic simulation,
the wind turbine has this constant pitch angle, but it has no breaks acting in the rotor,
meaning that the wind turbine continues to rotate but at a lower rpm. This condition creates
constant oscillations in the edge-wise direction. On the nodes analyzed on the local coordinate
system, this direction corresponds to the composite materials’ transversal direction, which is
the weakest of both directions. For this reason, the damage is more significant when the wind
speed reaches these values.

After analyzing these results, wind turbine blades have to be analyzed in more than one sit-
uation or design load cases (DLC) specified by the certification guides [Guideline and Lloyd, 2010].
To determine the damage distribution under different situations to ensure that the wind tur-
bine blade will withstand these conditions. Also, this methodology has some limitations, first
it can not be used to predict one exact value, because when is introduced the ECDF as the
second input variable, each damage Di correspond to a value of accumulated probability and
by generating an uniform random variable it cannot be selected the correct one, however when
is regarded the distribution of damage this method predicts this distribution and in the pre-
sented case the sum of Di represents the 10 minutes damage. Another limitation correspond
to the data used to train the network, with more data the surrogate model could predict more
variations in the damage, in other words, more data, better predictions.
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5.5 20 years fatigue damage estimation using DNN

The 20-year fatigue damage is calculated using surrogate model developed before to estimate
10 minutes damage Eq. 5.14, assuming that the 10 minutes fatigue damage is constant through
the entire lifespan.

Di
20 years = 20× 52560×Di

10 (5.17)

where Di
10 is the 10 minutes damage per wind speed i = [4, 24], 52560 transform the 10

minutes damage to one-year damage and 20 estimates the 20 years damage. The 20 years
fatigue damage should be smaller than 1; otherwise, the blade has failed at this point. Using
this equation, the damage is calculated per wind speed, assuming that this one is constant
throughout the lifespan. To correct this assumption and create a more realistic case, the
damage calculated per each wind speed is proportional to a weight representing the proportion
of wind speed acting in a year. In this case, the wind speed during 2017 at la Haute Borne,
Grand Est, France [Engie, 2019], and translated to the hub height of DTU wind turbine is
assumed to be acting for the entire wind turbine life. To Equation 5.17 is added a weight
constant depending on the wind speed proportion as

Di
20 years = 20× 52560× wiwsDi

10 (5.18)

Finally, the accumulated 20 year damage is the sum of the damage per wind speed.

D20 years =
24∑
i=4

Di
20 years (5.19)

To wind speed weight, wiws are estimated at each wind speed, dividing the number of times
that a selected range of wind speed by the total number of times winds speed measurements.
Table 5.7 shows that the weight per wind speed range; the highest proportion of wind speed
is between 4 and 8m/s; after this wind speed, the proportion decreases.

The 10 minutes fatigue damage DNN was tested to predict the damage of a new time
history of the wind 3D field for the same environmental conditions and presented a maximum
error of 5%, meaning that this network can simulate different time history distribution of
damage per sample. The number of 10-minute damage samples generated per wind speed
is 10, 000 each representing a different wind field time history. To generate a sample, the
DNN needs a wind speed value between [4, 25]m/s and a uniform variable distribution [0, 1]

with a size equal to the number of damage cycles Di per wind speed. Each generation of
the uniform variable is independent. Using Eq. 5.18 and Monte Carlo Simulation (MCS)
[Rubinstein and Kroese, 1981] is generated each sample to estimate the probabilistic fatigue
damage in 20 years.
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Table 5.7: Wind speed proportion distribution over a measured year at la haute borne, France

Wind Speed Weight

3.5 ≥WS < 4.5 0.08844
4.5 ≥WS < 5.5 0.18730
5.5 ≥WS < 6.5 0.23074
6.5 ≥WS < 7.5 0.19845
7.5 ≥WS < 8.5 0.11395
8.5 ≥WS < 9.5 0.05738
9.5 ≥WS < 10.5 0.04038
10.5 ≥WS < 11.5 0.02800
11.5 ≥WS < 12.5 0.02037
12.5 ≥WS < 13.5 0.01521
13.5 ≥WS < 14.5 0.01005
14.5 ≥WS < 15.5 0.00511
15.5 ≥WS < 16.5 0.00240
16.5 ≥WS < 17.5 0.00110
17.5 ≥WS < 18.5 0.00056
18.5 ≥WS < 19.5 0.00032
19.5 ≥WS < 20.5 0.00012
20.5 ≥WS < 21.5 0.00005
21.5 ≥WS < 22.5 0.00005
22.5 ≥WS < 23.5 0.000002
23.5 ≥WS < 24.5 0.000001

One point to clarify is that the uncertainty of the laminate thickness due to manufacturing
procedures has not been considered to calculate the fatigue life estimation. Only the uncer-
tainty due to the generation of the time history wind 3D field at an environmental condition
is considered for the probabilistic fatigue damage in 20 years.

The 20 years fatigue damage analysis of the wind turbine DTU 10MW with a simplified
composite material distribution is carried out using LAM PD. The wind turbine blade has a
total of 30613 nodes, where 5575 nodes belong to the three shear webs on the blade and the
rest of the nodes to the leading and trailing panels. The laminate in the shear webs comprises
three layers and the leading and trailing panels by five layers, each remembering that each
layer can be extracted three levels of stress (inferior, middle, superior). The total number of
points to evaluate the fatigue damage is equal to 425745.

In this study, only ten nodes along the blade are used to estimate the 20 years fatigue
damage LAM PD. The nodes selected are the ones where the force FCi is applied when using
LAM 4NO. At this position is applied the forces with a higher magnitude as defined by its
physical distribution of loads per section (see chapter 2), meaning that in this point may
occur the greater stress concentration due to the application of the load directly to the nodes.
However LAM 4NO is not used in the continuation of this damage analysis because of the
high level of damage presented for 10 minutes damage.
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Using LAM PD, the absolute maximum value of stress in a level for different nodes are
found in the inferior level of QQ1 composite material stacked in the second layer. For this
reason is selected only the two first layers of the laminate (P2B and QQ1 respectively) at
the inferior level to analyze their 20 years fatigue damage, resulting in a total of 20 points to
evaluate.

The number of 10 minutes damage generated using 10 minutes DNN damage is 10000 per
wind speed, resulting in a total of 210000 realization; as explained earlier, each realization
represents a different time history wind field for the same environmental condition.

The computational time to generate 1000 FEM evaluations per each wind speed using
LAM 4NO is about three days calculating each wind speed in parallel computation. Using
LAM PD for the same number of FEM evaluations, it takes 21 days. However, using these
simulation data to train the DNNs only takes less than 40 seconds and less than 6 minutes to
generate the 210000 realization, making the fatigue life distribution estimation computational
affordable when using a DNN surrogate model. This time may increase if all points are used
to estimate the fatigue life distribution, but it will continue to be computationally affordable.

5.5.1 20 years fatigue damage results for LAM PD

A probabilistic estimation of 20 years fatigue damage is performed in the wind turbine by
using LAM PD. First, the damage at 20 years per wind speed is illustrated in figure 5.26
for node 606 in the first layer P2B at the inferior level. In this case, the higher damages are
founded at low wind speed, where there is more probability of occurrence then its descend
as the wind speed increases. Also, at wind speeds between 11 and 13m/s, there is a slight
increase in the accumulated damage.

The 20 year accumulated fatigue damage per location along the blade z-direction is shown
in figure 5.27. The maximum accumulated damage is found near the blade tip also some
other node in the middle [516, 549]. The standard deviation for almost all locations is similar,
presenting a low variance from the mean value. After the node, 516, Z = 79.034, the damage
values found are not retained in the following calculations because the blade shell model is
provided by DTU [Bak et al., 2013] is not closed at the blade tip. The analysis made in the
DTU report considers the blade open, saying that this geometry does not impact the results.
However, applying the aero-elastic loads as pressure distribution creates a high-stress level due
to the open geometry. This layer’s accumulated damage does not reach a failure condition in
20 years life span.

Second, the damage at 20 years per wind speed is illustrated in figure 5.26 for node 606
in the second layer QQ1 at the inferior level. In this case, the damage distribution is similar
to the first layer P2B, but the confidence interval at low wind speeds is greater for QQ1.
Also, the damage magnitude for QQ1 is greater than P2B in all cases, meaning that this layer
of composite material QQ1 will fail faster than P2B. However, in this case, after 8m/s, the
damage continues to decrease, and only in node 506 (blade tip), there is a slight increase in
damage at 12m/s. As said before, All damage distribution per wind speed can be found in
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Figure 5.26: 20 years damage distribution at node 606, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure 5.27: 20 years damage distribution along the blade in Z-direction at first layer (P2B),
inferior level by using LAM PD.

appendix B.

In figure 5.29 is presented the accumulated damage at 20 years per location along the blade.
As can be noticed, it presents a similar distribution as P2B but with higher accumulated
damage. Similar to P2B, the blade tip is not considered in this analysis. In this case, all other
examined locations, none of them reached a failure condition before 20 years.
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Figure 5.28: 20 years damage distribution at node 606, section 1 of the blade as a function of
the wind speed at first layer (QQ1), inferior level by using LAM PD.

Figure 5.29: 20 years damage distribution along the blade in Z-direction at first layer (QQ1),
inferior level by using LAM PD.

Comparing both composite layers, QQ1 presents a greater damage overall nodes than
P2B. Also, the node with the highest damage is found for both method to be positioned at
Z = 51.257m of the blade length. For further analysis is only considered this node at layer
QQ1 because all other nodes have a lower damage and this one will be the first one to fail.
To determine the time to failure a probabilistic estimation of the fatigue life is analyzed next.
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5.6 Probabilistic fatigue life estimation for LAM PD

After analyzing the accumulated damage distribution at 20 years along the blade, the proba-
bilistic fatigue damage life until can be calculated using equation 5.20, similar as done by Hu
et al. [Hu et al., 2016a]:

Lfatigue =
20

D20
(5.20)

Once the lifespan distribution to failure is calculated, a Kolmogorov-Smirnov test [Massey Jr, 1951]
is performed to determine the best fit probability distribution function (PDF). Statistics SciPy
library [Jones et al., 01 ] is used to perform this test overall defined PDF on the library. The
KS-test return two metrics, the test statistic and the p-value. The test statistic is the maximum
absolute difference between the empirical cumulative distribution function (CDF) calculated
from x and the hypothesized CDF. The p-value is the probability of observing a test statistic
as extreme or more extreme than the observed value under the null hypothesis. Small values
of p-value cast doubt on the validity of the null hypothesis. In figure 5.30 is shown the KS-test
result for the lifetime to failure distribution of node 549 of material QQ1. In this case, the
best fit is obtained using a Weibull-exponential distribution. However, the differences between
the best PDFs found by the KS-test are minimal meaning that all of this PDF can represent
our data, as presented in table 5.8. The best fit are found for a normal distribution, An ex-
ponentially modified Normal continuous (Exponnorm), An exponentiated Weibull continuous
(Exponweib) and a log-normal distribution (see [Jones et al., 01 ] for the explanaiton of these
continuous distributions).

a) b)

Figure 5.30: Kolmogorov-Smirnov test for fatigue life estimation distribution of node 549 at
position Z = 51.257m and material QQ1 a) CDF and b) PDF.

To prove that the probabilistic fatigue life follows a Normal distribution a less conservative
approach is tested. The Anderson-Darling test [Stephens, 1974, Stephens, 1976] is used to test
if a sample of data comes from a specific distribution. It is a modification of the KS-test and
gives more weight to the tails of the distribution than does the KS-test. The KS-test is
distribution free in the sense that the critical values do not depend on the specific distribution
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Table 5.8: Kolmogorov-Smirnov goodness fit test for fatigue life estimation distribution of
QQ1 node at Z = 51.257

PDF Parameters Statistics P-value

Normal 23.6283133 0.07242199 - - 0.0062011 0.83658789
Exponnormal 0.03073069 23.6260887 0.07238776 - 0.00619846 0.83696514
Exponweib 13.0963707 124.440019 -0.07963451 23.5016492 0.00517517 0.951623
Log-Normal 0.00305343 -0.08881627 23.7170217 - 0.00584435 0.88419696

being tested. This test returns a statistic that is compared to different critical values at
different significance levels. If the statistics value is greater than a certain critical value the
hypothesis that the tested data comes from the selected PDF is rejected. Table 5.9 shows
the results of performing Anderson Darling test assuming that the data comes from a normal
distribution. The statistic value is lower than the critical value at 1% significance level (also
all others values), meaning that the hypothesis that our data comes from a normal distribution
is true for this significance level.

Table 5.9: Anderson-Darling test for fatigue life estimation distribution of QQ1 node at Z =

51.257m

PDF Statistics Critical Values Significance Levels

0.576 15
0.656 10

Normal 0.2507 0.787 5
0.918 2.5
1.092 1

Once is proven that the fatigue life for composite layer QQ1 at position Z = 51.257m

follows a Normal distribution, the central limit theorem is used to estimate the fatigue life
corresponding to a significance level of 5%.

The fatigue life to failure of this point is equal to 23.509 years which is greater to the 20
years goal. Meaning that the wind turbine blade does not fail after 20 years of continuous
usage at this point where is located the maximum fatigue damage.

This simplified material composite wind turbine blade probabilistic fatigue life estimation
methodology using LAM PD could be used for other wind turbine components as the tower and
the jacket when a detailed analysis is required using shell FEA. Also, the material thickness
values used need to be optimized to reduce the mass and wind turbine blade cost. For example,
material P2B has a long life until failure meaning that a better distribution of this material
in the wind turbine could be found.
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5.7 Conclusions

The stress distribution throughout the composite laminate differs in magnitude and direction
depending the load application method used to apply the loads. The same result is found for
the fatigue damage for 10 minutes. LAM PD is the method that presents the best results for
stress and damage distribution along the blade. The deep neural network used to predict this
10 damage can predict a new 10 minutes damage from another wind field time history with
an error less than 14% for P2B and 9% for QQ1 by only using one time history as training
data. Validating the applicability and efficiency of the proposed methodology. The fatigue life
distribution of the node with the maximum damage is a normal distribution and the estimated
life with a significance level of 5% is 23.51 years, meaning that the blade does not fail before
20 years.





Chapter 6

Conclusions

In this chapter, the conclusions of the thesis and future recommendations are presented. Sec-
tion 6.1 presents conclusions about the load application methods for wind turbine blades, the
discontinuity modeling using deep neural network, the fatigue analysis procedure for composite
wind turbine blades using aero-elastic simulations, and the probabilistic fatigue life estimation
of the wind turbine blade. Future recommendations are provided in Section 6.2.

6.1 Conclusions

A fatigue analysis procedure for composite wind turbine blades, including unsteady wind 3D
field simulation, the coupled dynamic response joining aerodynamic models, control and elec-
trical system (servo), and structural (elastic) dynamics models to enable nonlinear simulation
in the time domain. Detailed stress analysis in wind turbine blade shell FEM and fatigue
damage evolution is proposed in this thesis. The wind field simulation applies Veer’s method
to simulate 10 minutes wind field based on a 10 minutes mean wind speed WS10, 10 minutes
turbulence intensity I10, and 10 minutes mean shear exponent α. Using the simulated wind
field realization, an aero-elastic-servo simulation using beam FEM is carried out in a simplified
version of the 10 MW DTU wind turbine with a simpler composite material distribution to
calculate the time history of loads and displacements on the wind turbine blade. These time
history responses are transferred from the beam FEM to a shell FEM of the wind turbine
blade using the called load application method. These methods try to recreate the same be-
havior found in the beam FEM in the shell FEM by different strategies, The one used in this
thesis recreate a pressure distribution along the blade correcting the aerodynamic loads and
the inertial loads of the wind turbine blade. Also, this load application method is compared
with another method with a different approach to analyze in detail the stress distribution
of a composite wind turbine blade, including the stress per layers of composite laminate at
different wind speeds. A fatigue failure criterion is used to consider the non-proportionality
multi-axial stress states with variable amplitude and mean value. Finally, 10 minutes of fa-
tigue damage at levels per layers of laminate nodes are calculated using the fatigue damage
criterion. This study also includes a detailed composite laminate schedule and the structural
properties comparison with the reference 10MW model and fatigue constant life diagrams for
the composite material used in the wind turbine blade model extracted from the real fatigue
test database. This 10 minutes fatigue damage is replaced by a surrogate model based on
deep neural networks, validated and tested to estimate the 10 minutes damage for a different
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wind 3D field simulation, which has been used in the probabilistic estimation of the fatigue
life of composite wind turbine blades.

A load application methods comparison in the stress distribution over a composite wind
turbine blade shell FEM presents that methods that apply the aero-elastic loads using nodal
forces or rigid body elements introduce a certain level of stress concentration in the zone
where the loads are applied. Contrary to methods that not only apply the loads as pressure
distribution but make a difference in aerodynamic loads and inertial loads, recreating a more
accurate and realistic load case as founded similar to various authors [Caous et al., 2018,
Bottasso et al., 2014].

However, load application methods are only compared in the stress or damage distribution
along the blade but they are not studied to measure the uncertainty introduced by the load
application methodology itself. A sensitivity study is performed in a composite wind turbine
blade by using different load application methods: rigid body elements (RBE) 4 nodes loads
distribution (4NO) and pressure distribution Caous method (PD). To perform these sensitivity
studies a two-stage surrogate model methodology is developed to handle the high number of
input parameters that each load application method presents. First, a surrogate model based
on a deep neural network is constructed to predict the maximum aero-elastic simulation loads
for a steady wind condition. For this surrogate model, a methodology is proposed in this
thesis, to deal with discontinuity jumps in the model response. Compared with other state of
art regression methods, the one proposed outscores the other methods having a lower MSE
and higher R2 metrics by not predicting a continuous response as most of the other methods
and also by training one surrogate model for the entire domain. This surrogate model has
a different relative error per output load prediction, with a maximum error of 8% present-
ing a good fitting of the outputs parameters. This surrogate model is used to quantify the
uncertainties produced in the aero-elastic simulation loads generating the probability density
function for each load based on measured wind speed distribution for one year. Second, these
aero-elastic loads distributions and uniformly distributed material thicknesses of the compos-
ite wind turbine blade are used as input parameters (78 in total, 54 aero-elastic loads and
24 thicknesses) only for LAM 4NO and RBE, In the case of LAM PD, the number of input
parameters is 74, where 50 parameters are selected from correction variables of the method
itself (for this method the first surrogate model is not used). These loads are transferred to
the blade 2D shell finite element model using a load application method, allowing a detailed
stress distribution on the wind turbine blade. Subsequently, it is extracted the Von Mises
plane stress state at the blade root as an output parameter for the sensitivity analysis. Due
to the high computational cost of performing a global sensitivity analysis using the blade 2D
shell model, a surrogate model based on a deep neural network was constructed to predict
the Von Mises plane stress considering all input parameters. A surrogate model was built for
two load application methods and then used to estimate the global sensitivity using the Sobol
index method. Comparing both Sobol sensitivity analysis can be concluded that:

• LAM PD is the method that introduces less sensitivity, having a great linear interaction
and a low high-order interaction than all other load methods.
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• Forces and moments between the middle and blade tip acting in the edge-wise direction
has the most sensible effect on output Von Mises stress at the blade root.

• LAM 4 Nodes presents a lower first order S1 indexes value than load method RBE and
PD, but load method 4 Nodes has a higher total order ST indexes with high order
interactions with input parameters that do not present high sensitivity index, contrary
to load method RBE and PD, that all high-order interactions occur between variables
that have a high sensitivity index.

To validate the results obtained using the two-stage surrogate models, a Morris sensitivity
analysis is performed without using surrogate models. In this case, is used directly to the
blade 2D shell finite element model to estimate the Von Mises stress. Comparing these results,
both sensitivity methods present the same input parameters that produce a high sensitivity
ST Sobol index and µ∗ for Morris analysis, validating the results obtained using surrogate
models. Comparing the execution time of Morris analysis and two-stages surrogate model
global sensitivity, considering the training of the network and Sobol index analysis is 720
times faster (without considering the data generation for training). Also, this methodology
can be applied to other structural components of the wind turbine as a tower or jacket to
calculate their global sensitivity. These findings confirm that the load application method
used to transfer the wind load variation plays a critical role in the blade stress estimation and
uncertainties in wind load have a higher impact than uncertainties in material thicknesses and
most be considered in the fatigue life estimation of the wind turbine blade.

For the fatigue analysis, load application methods: 4 nodes distribution and pressure dis-
tribution Caous method (PD) are compared, to show the impact of selecting a load application
method in the fatigue life estimation of a wind turbine blade. First, the stress distribution
varies depending on the load method used. load method PD presents a more consistent stress
distribution along with the blade composite laminate, where symmetrical ply positions with
the same material present a similar behavior (both in compression or tension) but with dif-
ferent stress magnitude. On the other hand, load method 4 nodes, at points where the loads
are applied, symmetrical ply positions present different behavior (one tension and another
compression) resulting in a more complex stress state, also the stress magnitude using load
method 4 node is much higher than load method PD. All these changes are due to the stress
concentration of applying the loads directly to the node. Using the stress time history, the
fatigue damage can be calculated for a 10 minutes aero-elastic simulation. Then, to predict 10
minutes of fatigue damage using different wind field distribution is used as a surrogate model
based on a deep neural network. This network predicts takes as input value the mean 10
minutes wind speed and a random variable uniformly distributed that represents the number
of ranges counted in the stress time history, to determine the 10 minutes damage distribution.
This network is validated by predicting fatigue damage calculated for another wind field with
a maximum 13.2% error in a ply with P2B composite material and 8.8% error in QQ1 ply,
resulting in a good prediction considering that training is only used one wind field distribution
at one wind environmental condition. The fatigue damage is predicted only in nodes where the
loads are applied directly to the node, to measure the impact in the most critical zones of the
load application method. Load method PD, for all positions along the blade span direction,
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presents lower and realistic fatigue damage compared to LAM 4NO. Load method PD presents
the higher damage at position Z = 19.267 for ply of P2B composite material, however, for
QQ1 ply the damage along the blade span direction presents a similar magnitude. At position
Z = 19.267 the ratio factor between QQ1 and P2B is 1.01 and for all other positions is about
300 meaning that this method does not produce stress concentration and these differences are
due to geometrical and material properties. Another important aspect is founded by looking
at the fatigue damage as a function of the wind speed, for load application method PD, in
ply QQ1, there is an increase in the fatigue damage after wind speed 17m/s due to the pitch
control of the blade, after reaching this wind velocity and having a normal turbulence envi-
ronmental condition, the control put the wind turbine at a pitch angle of 82o, does not apply
breaks in the rotation bearing and does not produce energy, creating a more dangerous stress
state in the blade where the shear webs do not stiff the blade. In the case of load method 4
nodes, this increase in fatigue damage is not observed, due to the assumptions in the physical
load distributions where the lift in point C most be twice the lift force in point A to ensure
a pressure center near the shear webs, which in this state is not the case. This finding shows
the critical impact of selecting a load application method and also adding the pitch control
of the wind turbine blade introduces a realistic behavior, leading to more conservative fatigue
damage. This result shows the impact of using different load application methods. The re-
sponse obtained using 4 nodes methods is less conservative than load method PD, resulting in
a more damaged blade. Using 4 nodes method for a wind turbine blade optimization may lead
to a more heavy and expensive blade, because the life estimation needed to be increased more
than load method PD, and more material will be added to mitigate the stress concentration
induced by the method.

Using this deep neural network for predicting 10 minutes damage for different wind field
time history, a 20 years fatigue damage is calculated assuming a linear fatigue damage ex-
trapolation but adding a weight coefficient as a function of the wind speed. This weight is
calculated from a wind speed distribution measured in 1 entire year and assumed that for each
year during 20 years life span the same wind speed distribution is the same. For both load
application methods, the maximum 20 years fatigue damage is produced at low wind speeds
as these have a greater probability of occurrence during the 20-year life span than high wind
speeds, similar results are found by Hu [Hu et al., 2016a].

A probabilistic fatigue life estimation using the sampling-based method Monte Carlo simu-
lation is performed by generating 10, 000 samples per wind speed resulting in a total of 210, 000

samples per each loading method. Then from the MCS is used two tests to determine the
corresponding probability density function of the node with the maximum fatigue damage:
the Kolmogorov-Smirnov goodness test and the Anderson-Darling test. Both tests accept the
hypothesis that fatigue life distribution is a Normal distribution for these nodes. Using the
central limit theorem, the resulting fatigue life to failure is 23.51 years with a significance
level of 5%, in other words, the blade does not fail before 20 years of continuous energy pro-
duction. The developed fatigue and fatigue life estimation could apply to other wind turbine
components as a tower and jacket.
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6.2 Recommendations for future works

Some areas can be improved in the future in the procedures developed in this thesis. First, the
load application method of pressure distribution developed by Caous could be implemented
in another software for finite element analysis where the inertial forces could be applied as
suggested by the author as acceleration fields and not by using distributed forced proportional
to the surface area, as applied in this research using Code_Aster. Also, as the pitch control
of the blade can present a non-producing energy behavior, the pressure coefficient at a greater
angle of attack could be calculated used 2D software Xfoil. In this study, the maximum angle
calculated is ±32o and after this angle, the pressure coefficient is assumed to be this last
one. For future research, the blade pitch control must be optimized for this wind turbine
blade to ensure an energy production simulation for all wind speeds between cut-in and cut-
out. Second, the global sensitivity analysis methodology presented in this thesis is validated
using a Morris analysis, for future research is recommended to calculate the global sensitivity
using the blade 2D shell finite element model to compare and validate the Sobol index values
obtained. One method may be using GPU solver for finite element analysis to carry out parallel
computation at high performance. The sensitivity analysis was performed by assuming steady
environmental conditions, for future research an unsteady study could produce different results
introducing more uncertainty due to the wind loads. Third, the surrogate models used for the
fatigue analysis were only trained using one unsteady environmental condition and one wind
field time history. This surrogate presented a good prediction for the amount of data trained,
is suggested for future research to increase the number of samples for different environmental
conditions and different wind field time history, to create a surrogate model that can predict
more wind loads conditions and be used for reliability analysis. These recommendations could
be order by their time to implement, in this case first the sensitivity analysis related, then the
load application method related and finally the fatigue analysis related because this last one
depends on the others.

For future works, the methodology developed to calculate the probabilistic fatigue life
distribution could be used for reliability analysis and then a reliability-based optimization
design (RBDO) for the wind turbine blade, to minimize the total cost or weight of the blade,
or both. A more complex composite material distribution along the blade as used by the
reference DTU 10MW wind turbine could be used for the optimization problem or substituting
the discrete composite material distribution for a continuous spline function to represent the
thickness distribution along the blade. This composite material distribution would lead to a
more realistic wind turbine blade optimized design.





Appendix A

Damage Distribution per Layer

A.1 LAM 4NO 10 minutes Damage P2B Layer: Inferior Level

Figure A.1: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure A.2: 10 minutes damage distribution at node 603, section 2 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.

Figure A.3: 10 minutes damage distribution at node 595, section 3 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure A.4: 10 minutes damage distribution at node 586, section 4 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.

Figure A.5: 10 minutes damage distribution at node 580, section 5 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure A.6: 10 minutes damage distribution at node 567, section 6 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.

Figure A.7: 10 minutes damage distribution at node 549, section 7 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure A.8: 10 minutes damage distribution at node 531, section 8 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.

Figure A.9: 10 minutes damage distribution at node 516, section 9 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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Figure A.10: 10 minutes damage distribution at node 506, section 10 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.

Figure A.11: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM 4NO.
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A.2 LAM 4NO 10 minutes Damage QQ1 Layer: Inferior Level

Figure A.12: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.

Figure A.13: 10 minutes damage distribution at node 603, section 2 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure A.14: 10 minutes damage distribution at node 595, section 3 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.

Figure A.15: 10 minutes damage distribution at node 586, section 4 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure A.16: 10 minutes damage distribution at node 580, section 5 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.

Figure A.17: 10 minutes damage distribution at node 567, section 6 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure A.18: 10 minutes damage distribution at node 549, section 7 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.

Figure A.19: 10 minutes damage distribution at node 531, section 8 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure A.20: 10 minutes damage distribution at node 516, section 9 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.

Figure A.21: 10 minutes damage distribution at node 506, section 10 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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Figure A.22: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM 4NO.
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A.3 LAM PD 10 minutes Damage P2B Layer: Inferior Level

Figure A.23: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure A.24: 10 minutes damage distribution at node 603, section 2 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure A.25: 10 minutes damage distribution at node 595, section 3 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure A.26: 10 minutes damage distribution at node 586, section 4 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure A.27: 10 minutes damage distribution at node 580, section 5 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure A.28: 10 minutes damage distribution at node 567, section 6 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure A.29: 10 minutes damage distribution at node 549, section 7 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure A.30: 10 minutes damage distribution at node 531, section 8 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure A.31: 10 minutes damage distribution at node 516, section 9 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure A.32: 10 minutes damage distribution at node 506, section 10 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure A.33: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at first layer (P2B), inferior level by using LAM PD.
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A.4 LAM PD 10 minutes Damage QQ1 Layer: Inferior Level

Figure A.34: 10 minutes damage distribution at node 606, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure A.35: 10 minutes damage distribution at node 603, section 2 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure A.36: 10 minutes damage distribution at node 595, section 3 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure A.37: 10 minutes damage distribution at node 586, section 4 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure A.38: 10 minutes damage distribution at node 580, section 5 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure A.39: 10 minutes damage distribution at node 567, section 6 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure A.40: 10 minutes damage distribution at node 549, section 7 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure A.41: 10 minutes damage distribution at node 531, section 8 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure A.42: 10 minutes damage distribution at node 516, section 9 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure A.43: 10 minutes damage distribution at node 506, section 10 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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20 years Damage per Wind Speed

B.1 LAM PD 20 years Damage P2B Layer: Inferior Level

Figure B.1: 20 years damage distribution at node 603, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure B.2: 20 years damage distribution at node 595, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure B.3: 20 years damage distribution at node 586, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure B.4: 20 years damage distribution at node 580, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure B.5: 20 years damage distribution at node 567, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure B.6: 20 years damage distribution at node 549, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure B.7: 20 years damage distribution at node 531, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.
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Figure B.8: 20 years damage distribution at node 516, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.

Figure B.9: 20 years damage distribution at node 506, section 1 of the blade as a function of
the wind speed at first layer (P2B), inferior level by using LAM PD.
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B.2 LAM PD 20 years Damage QQ1 Layer: Inferior Level

Figure B.10: 20 years damage distribution at node 603, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure B.11: 20 years damage distribution at node 595, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure B.12: 20 years damage distribution at node 586, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure B.13: 20 years damage distribution at node 580, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure B.14: 20 years damage distribution at node 567, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure B.15: 20 years damage distribution at node 549, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure B.16: 20 years damage distribution at node 531, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.

Figure B.17: 20 years damage distribution at node 516, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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Figure B.18: 20 years damage distribution at node 506, section 1 of the blade as a function
of the wind speed at second layer (QQ1), inferior level by using LAM PD.
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