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Abstract

IN this work, we solve time-domain effective inverse problems to shape
the electromagnetic fields in linear and nonlinear media. Electromagnetic

active shaping is essential for imposing predefined fields at fixed positions
or suppressing undesired radiations and replace them with intentional ones.
In linear media, we improve and generalize the Linear Combination of
Configuration Field (LCCF) method to identify the temporal sources that
shape voltage/current or fields at one or more spatial points. In nonlinear
media, we propose alternative methods, namely Newton’s method and
the nonlinear least-squares solver, to shape electromagnetic fields after
showing the inefficiency of the LCCF in the presence of nonlinear elements.
Particularly, we apply these ideas in linear and nonlinear defective wiring
networks to introduce a new paradigm called the Software Correction (SC).
The SC cancels the unintentional perturbations resulting from both faults
inherent in the network lines and coupling external defects. It compensates
for their effects regardless of their number, position, and nature. With a view
to consider experimental tests in the linear case, constraints are added to the
LCCF problem to comply with some physical limitations encountered during
experiments. Practically, two main applications are conducted. The SC
process is first tested in faulty networks, then a three-dimensional application
for shaping electromagnetic fields is conducted to control the nanosecond
microwave plasma in a reverberant cavity.

Keywords: electromagnetic interference control, source identification,
time-domain analysis, fault, transmission line.





Résumé

DANS ce travail, nous résolvons des problèmes inverses non triv-
iaux dans le domaine temporel pour contrôler les champs

électromagnétiques dans des milieux linéaires et non linéaires. Le contrôle
actif électromagnétique est essentiel pour imposer des champs prédéfinis à des
positions fixes ou supprimer les radiations indésirables et les remplacer par
des radiations intentionnelles. Dans les médias linéaires, nous améliorons et
généralisons la méthode Linear Combination of Configuration Field (LCCF)
pour identifier les sources temporelles qui contrôlent la tension/courant ou les
champs en un ou plusieurs points spatiaux. Dans les milieux non linéaires,
nous proposons des méthodes alternatives, à savoir la méthode de Newton
et le solveur des moindres carrés non linéaires, pour contrôler les champs
électromagnétiques après avoir illustré l’inefficacité de la LCCF en présence
d’éléments non linéaires. En particulier, nous appliquons ces idées dans
des réseaux de câbles défectueux linéaires et non linéaires pour introduire
un nouveau paradigme appelé Software Correction (SC). Le SC annule les
perturbations non intentionnelles résultant à la fois des défauts inhérents aux
lignes du réseau et du couplage des défauts externes. Il compense leurs effets
quels que soient leur nombre, leur position et leur nature. En vue d’envisager
des tests expérimentaux dans le cas linéaire, des contraintes sont ajoutées
au problème LCCF pour se conformer à certaines limitations physiques
rencontrées lors des expérimentations. En pratique, deux applications
principales sont menées. Le procédé SC est d’abord testé dans des réseaux
défectueux, puis une application tridimensionnelle de contrôle actif des
champs électromagnétiques est conduite pour contrôler le plasma micro-onde
nanoseconde dans une cavité réverbérante.

Mots clés: contrôle des interférences électromagnétiques, identification
de sources, analyse temporelle, défaut, ligne de transmission.



Résumé Etendu en Français

Introduction

AVEC la prolifération de différents appareils électroniques,
divers problèmes liés au domaine de la Compatibilité Electro-

Magnétique (CEM) sont apparus. Ces appareils émettent des radiations
intentionnelles ou non intentionnelles qui peuvent interférer, entraı̂nant des
effets parfois catastrophiques. Pour cette raison, la nécessité de rendre
compatible leur fonctionnement et de gérer leurs rayonnements émissifs
devient nécessaire. Pour répondre à ce besoin, de nombreuses solutions ont
été proposées pour protéger les équipements et maintenir leurs performances
élevées telles que des blindages. De même, l’identification de source
électromagnétique qui produit les champs souhaités peut également être une
solution afin de remplacer les émissions indésirables par celles souhaitées ou
bien les radiations complexes par leurs équivalents.

Différentes méthodes ont été développées pour identifier les sources
électromagnétiques telles que les méthodes basées sur le principe
d’équivalence ou les algorithmes génétiques, les problèmes inverses,
l’optimisation, etc. Si ces méthodes se sont montrées efficaces pour résoudre
des problèmes dans le domaine fréquentiel, elles présentent néanmoins des
inconvénients (consommation de temps élevée, difficultés de mise en œuvre,
ou réalisations expérimentales impossibles). Comme solution alternative, la
méthode de Retournement Temporel (TR) (Figure 1) est parmi les méthodes
qui peuvent être plus simples et efficaces pour identifier le profil des sources
directement dans le domaine temporel. Les applications du TR sont nom-
breuses et ont été étudiées dans les réseaux de lignes de transmission et
les environnements réverbérants. Malheureusement, le TR se révèle moins

1



RÉSUMÉ ETENDU EN FRANÇAIS

efficace lorsqu’il s’agit de résoudre des problèmes avec pertes ou d’imposer
des conditions complexes sur les caractéristiques temporelles (durée ou la
forme) du champ électromagnétique imposé.

Source 

Recorded 

signals 

Emission of the 

time reversed  

signals 

Focusing 

point 

Figure 1: Principe du retournement temporel.

La plupart des travaux réalisés jusqu’à présent sur le TR soulèvent de
nombreuses questions sans réponse ou insuffisamment répondues. Notam-
ment, lorsqu’il s’agit d’identifier des sources sans connaissances préalables
des caractéristiques du milieu, de traiter des milieux non linéaires, ou
de contrôler simultanément les champs électromagnétiques en plusieurs
points spatiaux. Pour surmonter ces limitations dans cette thèse, nous
développons/utilisons des techniques alternatives qui identifient les sources
électromagnétiques dans le domaine temporel. L’objectif est de contrôler (im-
poser ou annuler) les champs électromagnétiques dans les milieux linéaires et
non linéaires. Différentes applications numériques et expérimentales ont été
menées dans les cas unidimensionnels (réseaux de câblage) et tridimension-
nels (cavités) pour valider les résultats.

Identification des sources dans des systèmes linéaires: la
méthode LCCF
La méthode Linear Combination of Configuration Field (LCCF) est une
méthode simple et efficace qui permet d’identifier le profil temporel d’une
source électromagnétique satisfaisant à des propriétés particulières pour une
cible donnée (champ, tension ou courant) dans un milieu linéaire. La LCCF
ne dépend ni de la topologie du système ni de ses caractéristiques, toute-
fois elle dépend uniquement de la réponse impulsionnelle du système entre

2



RÉSUMÉ ETENDU EN FRANÇAIS

le point source et le point récepteur. Le problème LCCF peut s’écrire sous
forme matricielle

Ax = F, (1)

où A est la matrice de caractérisation construite sur la base de la réponse
impulsionnelle, x est le signal à calculer et F est la cible à imposer au
point de réception. Au point source, nous injectons un signal calculé x
qui se propage, interfère et peut être déformé en raison de discontinuités
et d’inhomogénéités dans le milieu linéaire. Un récepteur placé à un autre
point enregistre le signal détecté dans le but d’obtenir F sur un temps cible
donné (Figure 2).

Source

Ω

Récepteur

t
F

Figure 2: Le principe de la méthode LCCF.

Nous avons amélioré et généralisé la méthode LCCF pour contrôler les
champs électromagnétiques en M points spatiaux sur le temps cible en util-
isant N générateurs de source. La méthode LCCF généralisée est basée sur la
résolution du système linéaire suivant:A11 · · · A1N

... . . . ...
AM1 · · · AMN


x1

...
xN

 =

F1
...

FM

 . (2)

Quelque soit i ∈ {1, · · · ,M} et j ∈ {1, · · · , N}, chaque sous-
matrice Aij est la matrice de caractérisation entre le point source j at le point
récepteur i, xj est le signal à calculer émise par le générateur j et Fi est
la cible souhaitée au point récepteur i sur le temps cible. Des illustrations
numériques dans des réseaux de câblage et des cavités (anéchoı̈ques et

3



RÉSUMÉ ETENDU EN FRANÇAIS

réverbérations) montrent que la LCCF est indépendant des phénomènes
physiques intervenant lors de la propagation (atténuation, dispersion,
réflexions multiples, absorption, etc.).

Comme le contrôle actif des champs électromagnétiques est une tâche
commune des techniques TR et LCCF, nous positionnons la LCCF par rap-
port au TR. Les deux méthodes sont comparées pour montrer la supériorité
de la LCCF sur le TR. En général, cette comparaison est valable dans les
cas unidimensionnels (réseaux de câblage) et tridimensionnels (cavités). Le
Tableau 1 résume la comparaison du TR et de la LCCF.
``````````````̀Propriétés

Méthodes
TR LCCF

Points d’accès
≥ 2 (Surface de

Huygens en théorie)
2

Contrôler des champs complexes Pas efficace Efficace

Caractéristiques du médium
Dépendant et nécessite

des étapes
supplémentaires

Indépendante

Contrôler plusieurs points spatiaux Pas efficace Efficace

Table 1: Comparaison entre les techniques TR et LCCF.

Les caractéristiques temporelles de la source calculée par la méthode
LCCF peuvent parfois, en raison notamment de la fréquences très élevées,
empêcher son application expérimentale. Pour cette raison, nous proposons
deux manières pour diminuer la valeur de la fréquence maximale de la
source: filtration a posteriori et filtration a priori. La filtration a posteriori
consiste à filtrer la source après son calcul, alors que la filtration a priori
consiste à ajouter des contraintes au problème qui agissent comme un filtre
sur la source. Après comparaison des résultats, la filtration a priori se révèle
plus efficace que la filtration a posteriori en termes de calcul des sources plus
adaptées aux expérimentations avec de faibles erreurs relatives.

Enfin, comme certains équipements utilisent des signaux dont les ampli-
tudes se situent entre deux valeurs spécifiques, nous ajoutons un autre type
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de contraintes en utilisant le solveur linéaire des moindres carrés qui spécifie
l’amplitude maximale et minimale de la source. Après avoir comparé les
résultats de la résolution du problème LCCF avec et sans contraintes, nous
soulignons l’importance d’ajouter des contraintes au problème afin de calculer
des sources réalisables expérimentalement. L’utilisation de ces contraintes
dépend du type de problème traité.

Application du software correction
Inévitablement, les fils sont exposés à des contraintes naturelles, mécaniques
ou thermiques (par exemple, humidité, corrosion, échauffement, etc.) qui
réduisent leur durée de vie et causent leurs dégradations. Ces défauts peuvent
être francs (circuits ouverts et courts-circuits) ou non francs (frottements,
dommages d’isolation, fissures, effilochage, etc.) impactant le blindage,
l’immunité ou l’émissivité des fils (Figure 3).

Figure 3: Défauts francs (image de gauche) et non francs (image de droite)
apparaissant dans les réseaux de câblage.

Pour de nombreuses raisons telles que la sûreté, la sécurité et les per-
formances optimales des systèmes de câblage, de nombreuses techniques
(les techniques basées sur la réflectométrie et l’imagerie par retournement
temporel) ont été développées pour anticiper, détecter l’apparition ou lo-
caliser de défauts électriques dans les réseaux de câblage. Malheureusement,
le processus de détection et localisation des défauts, à savoir le processus
de dépannage ou hardware correction, entraı̂ne de nombreux inconvénients
(l’arrêt inattendu du système, une consommation excessive de temps et
d’argent, etc.). La situation s’aggrave lorsque les défauts sont localisés
dans des zones difficiles d’accès, telles que les zones radioactives dans
les centrales nucléaires ou les satellites dans l’espace, donc absolument
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inaccessibles aux processus de maintenance.

Alternativement, nous introduisons un nouveau paradigme appelé le
Software Correction (SC). Le processus du SC tolère les défauts et les gère
comme faisant partie de la topologie du réseau sans avoir besoin d’accéder
à leur emplacement ou de récupérer des informations les concernant. Il est
défini comme le traitement numérique permettant de tolérer à distance les
défauts de câblage des réseaux de communication sans aucune intervention
physique. Ce processus est indépendant des nombres, natures et positions des
défauts qui peuvent apparaı̂tre dans le réseau. Dans les réseaux de câblage se
comportant de manière linéaire, la méthode LCCF est utilisée pour amener le
SC au réseau de câblage défectueux.

Parfois le réseau fonctionne mal lorsqu’il est exposé à des défauts de
couplage externes. Il peut s’agir d’un champ électromagnétique externe qui
se couple le réseau le long d’une longueur de câble non blindé conduisant à
des surtensions/surcourants et à une dégradation des performances. Cepen-
dant, cela n’entrave pas le fonctionnement du SC qui reste applicable même
avec ce type de défauts. Le SC souffre de certaines limitations: les réseaux
de communication transférant des données sont considérés uniquement et
non les réseaux de puissance, en plus une connaissance préalable de la sortie
saine et l’accès à une extrémité libre pour brancher un récepteur sont toujours
nécessaires.

La LCCF montre une applicabilité élevée pour traiter les problèmes
linéaires afin de contrôler les champs électromagnétiques. Cependant, les
problèmes de compatibilité électromagnétique (CEM) sont principalement
non linéaires en raison de la présence massive de circuits non linéaires (par
exemple amplificateur de puissance, commutateur, multiplicateur, mélangeur,
etc.) basés sur des éléments passifs (par exemple des diodes) ou actifs (par
exemple des transistors). Malheureusement, notre étude montre que la LCCF
fonctionne mal une fois qu’un composant non linéaire est introduit dans le
système. Par conséquent, d’autres techniques sont nécessaires pour contrôler
les champs électromagnétiques dans les milieux non linéaires.
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Identification des sources dans des systèmes non linéaires:
méthode de Newton et le solveur NLLSQ

Dans les réseaux de câblage non linéaires, nous utilisons deux techniques, à
savoir la méthode de Newton (NM) et le solveur moindres carrés non linéaires
“nonlinear least-squares (NLLSQ)”, pour identifier le profil temporel des
sources qui produiraient un signal cible prédéfini sur le temps cible. NM
et NLLSQ sont des algorithmes itératifs qui convergent vers la source à
calculer. Pour les deux méthodes, on part d’un point de départ initial et on
s’arrête lorsque la variation est inférieure à un seuil fixe. En effet, NM est
basé sur le calcul des dérivées de la matrice jacobienne, alors que le NLLSQ
est basé sur l’algorithme Levenberg-Marquardt.

Nous voulons appliquer les mêmes idées présentées précédemment
pour le câblage des réseaux, mais cette fois, avec la présence d’éléments
non linéaires. En particulier, nous voulons contrôler les tensions/courants
dans les réseaux de câbles non linéaires et amener une Software Correc-
tion (SC) lorsque des défauts apparaissent dans leurs lignes. Des applications
numériques ont été illustrées pour montrer l’applicabilité des méthodes NM
et NLLSQ dans les réseaux de câblage avec pertes non linéaires.

Différents niveaux d’atténuation ont été considérés où NM et le NLLSQ
continuent de fonctionner correctement et imposent efficacement la ten-
sion/courant souhaité au temps cible. Les deux méthodes non linéaires
sont indépendantes de la topologie et des caractéristiques du réseau ainsi
que de son niveau de non-linéarité. Cela implique que les deux algo-
rithmes ne reposent ni sur la complexité du réseau (nombre de lignes et de
jonctions, caractéristiques, charges, etc.), ni sur les réflexions multiples inter-
venant lors de la propagation, ni sur les niveaux d’atténuations ou dispersions.

Après avoir comparé les méthodes NM et NLLSQ dans des conditions
similaires, le solveur NLLSQ semble être plus efficace que NM pour imposer
une cible spécifiée sur un temps cible fixe car il offre une précision plus
élevée avec moins de temps CPU. De plus, NM nécessite un point de départ
pas trop éloigné de la solution; sinon, l’algorithme diverge. Souvent, le signal
calculé est caractérisé par son profil complexe, ce qui rend difficile de deviner
le point de départ. Pour cette raison, nous nous appuyons sur le solveur
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NLLSQ uniquement pour le SC d’un réseaux de câblage non linéaires avec
perte défectueux.

Le SC dans le cas non linéaire est défini de la même manière que le cas
linéaire. En utilisant le solveur NLLSQ, nous voulons tolérer les défauts et
compenser leurs effets dans les réseaux défectueux avec perte se comportant
de manière non linéaire. Similaire au cas linéaire, le SC dans le cas non
linéaire est également indépendant des nombres, natures et positions des
défauts potentielles qui apparaissent dans les lignes du réseau. De plus, le
réseau peut parfois être perturbé par des défauts externes, mais cela n’entrave
pas le fonctionnement du SC.

Validation expérimentale dans les réseaux de câblage: la
méthode LCCF

Pour appliquer la méthode LCCF expérimentalement en milieux linéaires,
nous mettons à niveau la LCCF pour se conformer à certaines limitations
physiques rencontrées lors des expériences. Ces limitations sont représentées
par la difficulté à récupérer la réponse impulsionnelle résultant de l’injection
impratique du signal Dirac pour construire la matrice de caractérisation A.
Comme solution alternative, nous considérons la réponse de tout signal in-
cident qui pourrait être réalisé expérimentalement pour construire une autre
matrice Ã, la matrice LCCF dans la base non canonique. Cela signifie que
nous résolvons le système LCCF sur une base non canonique, puis en util-
isant des concepts simples d’algèbre linéaire, nous pouvons passer à la base
canonique par une matrice de passage. Le système LCCF à résoudre est alors{

Ãx̃ = F,

x = Px̃.
(3)

Dans un premier temps, nous présentons les équipements utilisés lors des
tests: le générateur de signaux arbitraires (AWG) et l’oscilloscope. Ensuite,
nous utilisons la méthode LCCF améliorée pour identifier le profil temporel
de la source dans un réseau simple de câbles coaxiaux sur un point fixe afin
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d’imposer le signal cible souhaité sur le temps cible. En considérant le même
réseau avec des caractéristiques plus complexes, nous identifions une autre
source qui imposerait le signal souhaité sur le temps cible. Malheureusement,
la source calculée nécessite des contraintes d’amplitude car elle dépasse la
limite maximale comprise par l’AWG. Pour cette raison, nous résolvons
ce problème LCCF avec des contraintes d’amplitude pour satisfaire cette
limitation intégrée de l’AWG.

Dans un autre test expérimental, nous augmentons la complexité de
la topologie du réseau en ajoutant plus de lignes et de jonctions pour
tester l’applicabilité expérimentale de la méthode LCCF lorsqu’il s’agit de
contrôler la tension/courant à plusieurs points du réseau. La LCCF a réussi à
imposer des signaux cibles identiques et différents à deux points spatiaux sur
un intervalle de temps prédéfini.

Dans les réseaux de câblage défectueux, nous considérons des réseau avec
des caractéristiques et des topologies différentes pour appliquer le proces-
sus SC. Un ou plusieurs défauts francs ou non francs sont introduits dans les
lignes des réseaux. La méthode LCCF présente une efficacité élevée pour la
rectification des sorties en deux points spatiaux différents malgré la présence
des défauts. Les résultats du SC expérimental montrent que les mêmes sig-
naux en deux points de mesure sont enregistrés avant et après l’introduction
d’un ou plusieurs défauts francs et non francs.

Validation expérimentale dans une cavité réverbérante: la
méthode LCCF
Dans le cadre d’une application expérimentale tridimensionnelle de la
méthode LCCF, elle peut être utilisée pour améliorer le contrôle des plasmas
micro-onde dans une cavité réverbérante. Ce travail est une collaboration
entre l’Université Clermont Auvergne (Institut Pascal) et l’Université Paul
Sabatier de Toulouse, France (laboratoires LAPLACE et ISAE-SUPAERO).
Après avoir présenté la configuration expérimentale de la cavité, on utilise
les deux techniques TR et LCCF pour contrôler les plasmas dans la cavité.
Les deux techniques sont ensuite comparées pour montrer les limites
de la méthode TR et comment elles pourraient être surmontées par la
méthode LCCF.
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Dans un premier temps, nous utilisons la technique TR pour contrôler
les plasmas en un point spatial de la cavité, noté rp. Cela peut être fait en
focalisant un champ électrique qui a une forme de pic à rp. En effet, le TR
montre une grande efficacité pour focaliser ce champ et générer des plasmas
au point souhaité. Malheureusement, le TR conduit inévitablement à une
augmentation de l’amplitude du champ électrique aux points voisins de rp,
noté rz, provoquant l’apparition de décharges parasites à rz (Figure 4). La
technique TR échoue à empêcher l’apparition de ces décharges à rz car cela
nécessite de contrôler le champ électrique à plusieurs positions spatiales, rp
et rz, simultanément.

 
rp 

rz 

Figure 4: Résultats expérimentaux: le TR réussit à activer les plasmas à rp et
échoue à empêcher leur apparition à rz.

Alternativement, nous utilisons la méthode LCCF (généralisée) en raison
de sa capacité à contrôler les champs électromagnétiques en plusieurs points
spatiaux simultanément. Cela peut être fait en imposant un champ électrique
élevé à rp et le niveau le plus bas possible de champ électrique à rz. La LCCF
active efficacement les plasmas à rp et empêche son apparition à rz (Figure 5).

Conclusion
L’objectif principal de cette thèse est de contrôler des champs
électromagnétiques dans le domaine temporel dans des milieux linéaires et
non linéaires. Cela se fait en développant/utilisant des méthodes numériques
pour identifier le profil temporel des sources qui, lorsqu’elles sont injectées,
produisent le signal souhaité à des points spatiaux donnés sur le temps
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rp 
rz 

Figure 5: Résultats expérimentaux: la méthode LCCF réussit simultanément
à activer les plasmas à rp et à empêcher leur apparition à rz.

cible prédéfini. Les méthodes ont été testées dans des conditions complexes
parfois dans des réseaux de câblage et d’autres fois dans des environnements
d’espace libre. En fait, elles montrent une grande efficacité de contrôler
des champs électromagnétiques indépendamment des topologies du milieu
étudiées en se basant uniquement sur le signal détecté par le point de
réception. Dans le contexte des réseaux de câblage défectueux linéaires et
non linéaires, le paradigme Software Correction (SC) a été introduit pour
compenser les effets des défauts. De plus, des validations expérimentales
ont été effectuées dans des réseaux de câblage linéaire pour tester à la
fois le contrôle actif des tensions/courants et le SC. Finalement, dans une
cavité réverbérante linéaire, nous améliorons le contrôle spatial des plasmas
micro-ondes en contrôlant les champs électromagnétiques aux positions
spatiales souhaitées.
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General Introduction

ELECTROMAGNETISM is an area of major importance in physical science
that involves all the phenomena of interaction between electricity and

magnetism. In 1865, after J. C. Maxwell introduced his equations, electro-
magnetism became an active field in scientific research. Numerous problems
have been resolved and many natural phenomena have been explained based
on Maxwell’s principles in different domains, such as optical, radio, and
electric technologies. In particular, diverse issues related to the field of
ElectroMagnetic Compatibility (EMC) have emerged, especially after the
proliferation of different electronic devices. These devices emit intentional
or unintentional radiations that may interfere, leading to catastrophic effects
(fires, damages, etc.). For this reason, the need to compatibilize their
functioning and manage their emissive radiations become necessary.

Many European governments have adopted strict laws since 1992, forcing
all the importers and manufacturers to certify that their electronic products
are electromagnetically compatible. In any electromagnetic environment,
the EMC is the ability of electrical devices and systems to function within
their tolerance range when exposed to unintentional generation and reception
of electromagnetic energy or when operational equipment is physically
damaged. Therefore, it is necessary to cancel or limit the level of these
undesired emissions and check the sufficient immunity of the devices to any
external interference to minimize their susceptibility.

A classical solution may be to use electromagnetic shielding to protect
the equipment from interfering radiations. Due to the heavyweights and high
expenses of the shields, some researchers and engineers have devoted much
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effort to model and characterize the radiated fields to improve the systems’
designs. Others developed theoretical studies and experiments to reduce (or
cancel, if possible) all kinds of electric or magnetic disturbances to protect
and maintain the high performance of the systems. For example, generating
electromagnetic fields in opposition to the disturbances can be a solution. For
that, the electromagnetic source identification that produces the desired fields
to substitute unintentional emissions by desired ones or complex radiations
by their equivalents is necessary [1–3].

Source identification problems have triggered the interest of scientists in
the last decades. In the frequency-domain analysis, different methods based
on the equivalence principle substitute complex real sources by equivalent
radiating electric or magnetic dipoles [4]. These methods characterize ele-
mental sources surrounding an electronic device to emit radiations equivalent
to that emitted by the device itself. More recently, genetic algorithm-based
techniques have been used to find a set of elemental electric or magnetic
sources that replace radiating dipoles [5]. Similarly, identifying electromag-
netic sources to replace any unintentional field with the desired one is also an
interesting challenge in inverse-source problems.

Inverse-source problems are the processes of estimating data that may not
be obtained by direct measurements. They are defined as computing, from a
set of observable results, the casual input parameters of the physical system
that produced them. Unfortunately, inverse-source problems have shown
signs of instability, ill-posedness, and ill-conditionality. Then, researchers
resorted to mathematical tools to solve optimization problems [6] and
partial differential equations that would successfully identify electromagnetic
sources. Although these methods have shown to be efficient in the frequency
domain [7], they have presented some limitations in the time domain [8].
However, developing time-domain methods has become essential due to
the large numbers of real-world time-dependent problems. Moreover,
nonlinearities, which are common EMC problems, are easier to handle in the
time domain.

Among the alternative methods that may be more simple and efficient at
determining the profile of the sources directly in the time domain is the Time-
Reversal (TR) method. In 1990, M. Fink and his team introduced the novel
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time-domain approach TR to refocus acoustic and electromagnetic waves by
reversing in time a system’s response signals [9]. The TR process consists of
two stages: in the first phase, an electromagnetic pulse is emitted at a point in
the space, and its resulting electromagnetic fields are recorded by an opening
array called the Time-Reversal Mirrors (TRM). Secondly, the recorded
fields are simultaneously re-emitted by the TRM in reverse chronology.
During the last three decades, in-depth TR analyses have been carried out
to study its aspects in different environments. By proposing the refocusing
of an electromagnetic wave, both spatially and temporally, this method
opens up a wide field of possible applications (electromagnetic attacks on a
target, detection, discrete communication, etc.). Particularly, among the in-
teresting applications of the TR is the active shaping of electromagnetic fields.

Despite the interesting results delivered by the TR, a surrounding source
surface is required to avoid information losses [10]. Due to the difficult emis-
sion of several signals simultaneously, many studies have been conducted
to maintain the high refocusing quality using as few sources as possible to
be placed at the optimal spatial positions in the medium. Unfortunately,
some positions may be located in hard-to-access areas for both emitting
and recording signals. If not, the equipment used in some experiments are
bulky or too large and allows conducting in situ measurements only; thus,
they cannot be placed at the optimal source positions. On top of that, the
TR demonstrates to be less reliable when tackling lossy problems or when
imposing complex conditions on the duration or the form of the imposed
electromagnetic field [11]. All these reasons result in poor refocusing quality
and justify the importance of developing new time-domain techniques to
shape electromagnetic fields independently of the topology of the medium
and the position of the source(s) or receiver(s) as well.

The applications of the TR are plentiful and have been investigated in
transmission line networks and reverberant environments [12]. In a rever-
berant cavity, refocusing electromagnetic fields using the TR has recently
been applied to real physical problems, such as plasma generation [13].
As a matter of fact, the aforementioned limitations of the TR appear more
clearly when shaping electromagnetic fields to enhance the local generation
of nanosecond microwave plasma. Although several types of surface-wave
launchers were proposed to generate large, dense, and uniform plasma, the
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location of the generated plasma is fixed once and for all, occupying the
entire cavity volume [14–24]. Instead, a new kind of microwave plasma
source was recently proposed by the authors in [13] to generate local plasma
at a predefined position using the TR method. In fact, the TR succeeds
in generating plasma locally; however, the generation of plasma elsewhere
remains uncontrolled. In other terms, the TR efficiently activates plasma
on the desired position, but it may not prevent the appearance of plasma at
the neighboring points. Thus, we emphasize the importance of developing
new time-domain techniques that simultaneously control the electromagnetic
fields in three dimensions at several spatial points.

The TR process may also deal with detecting and locating faults in power
line [25, 27, 136] and transmission line networks [28] due to their effect on
modifying the EMC characteristics of any system. Unavoidably, a cable in
a network will show signs of weakness attributed to either external factors
(mechanical aggression, chemical contamination, humidity, etc.) or internal
reasons (heating, corrosion, insulation damage, cracks, frays, etc.) affecting
the immunity and emissivity of the wires. The most common methods used
today for detecting and locating faults in transmission line networks are the
reflectometry-based techniques. Although they are generally well suited to
detect and locate electrical faults, reflectometry-based techniques show some
limitations when dealing with soft faults, complex, or lossy networks [29].
In many cases, the TR and reflectometry-based techniques detect and locate
faults that may not be repaired due to external factors such as hard-to-access
zones. For example, a network presenting faults at its parts located in a ra-
dioactive zone or a faulty network of a satellite in outer space. Alternatively,
new paradigms dedicated to tolerate the faults in cables become necessary.

Thesis objectives and scopes

Our study focuses on developing numerical methods to solve linear and
nonlinear inverse-source problems directly in the time domain. In linear
media, we improve the Linear Combination of Configuration Field (LCCF),
while in nonlinear media, we use Newton’s Method (NM) and the NonLinear
Least-SQuares (NLLSQ) solver. In complex linear and nonlinear media,
the developed numerical methods identify the temporal profile of source
signals to shape and impose desired electromagnetic fields or to suppress
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unintentional ones at some spatial points over a given duration. In all our
computations, we do not switch to the frequency domain, except for some
analyses and interpretations of the computed signals, to avoid numerical
difficulties resulting from the use of the Fast Fourier Transform (FFT) and its
inverse; the computations are carried out in reference to time only.

Practically, our contributions deals with the electrical faults appearing in
transmission line networks. Applications of the developed/used methods can
include the fault tolerance of faulty lossy wiring networks behaving linearly
or nonlinearly. The aim is not to locate or characterize these faults, but to
tolerate their appearance and treat them as a part of the network without
any physical intervention. We seek to tolerate the faults independently of
their number, position, and nature. This introduced paradigm is called the
Software Correction (SC).

In the linear case, the ultimate objective of our study is to experimentally
test and validate the time-domain electromagnetic shaping in one-dimensional
and three-dimensional environments. For this purpose, we add constraints
to the LCCF problem to modify the temporal characteristics of the source.
The modified sources comply with the built-in limitations of the equipment
used. In wiring networks, both the voltage/current active shaping and the
SC experiments are conducted. In a three-dimensional linear inverse-source
problem, our efforts focus on enhancing the controllability of nanosecond mi-
crowave plasma in a reverberant cavity using the TR and the LCCF methods.
The LCCF and the TR abilities are compared to shape electromagnetic fields
under complex conditions. This comparison shows the advantages that the
LCCF may bring over the TR.

Thesis outline

The following thesis is composed of five chapters:

Chapter 1 will be an overview of the context of our study. We will list
the different common methods used to identify electromagnetic sources in
both the time-domain and frequency-domain analyses, along with illustrating
their major advantages and limitations. Then, we will present the general
principles of the techniques used to detect, locate, and diagnose electrical

17



INTRODUCTION

faults in cables. We will focus on the importance of such techniques and the
limitations they encounter. The last section will describe the settings and
tools used in all the numerical simulations throughout this dissertation.

Chapter 2 will present the basic version of the LCCF method to shape
electromagnetic fields in the time domain at a single spatial point using one
source generator. After explaining its theory, the LCCF will be supported
by numerical examples in wiring networks and free space environments to
illustrate its applicability in any linear medium. After that, the LCCF will be
compared to the TR to show its superiority in shaping electromagnetic fields.
For future experimental considerations, we will finally add constraints to the
LCCF problem to modify the properties of the computed source.

Chapter 3 will provide an improvement of the LCCF method to control
several spatial points using one or more source generators. After presenting
the generalized theory, numerical examples will be illustrated in wiring
networks and free space environments to show that the generalized LCCF
is still efficient at shaping electromagnetic fields. An interesting application
of the LCCF method in the context of defective wiring networks will be
introduced. We will propose a new paradigm to compensate for the effects of
the defects regardless of their number, nature, and position.

Chapter 4 will show that the LCCF is inefficient at shaping electromag-
netic fields in nonlinear media. Alternatively, two methods will be proposed
to identify the temporal source that would impose a predefined voltage or
current at a single position on any wiring network over an interval of time.
After explaining the corresponding theories, both methods will be supported
by numerical examples to illustrate their efficiency in nonlinear media.
After comparing the two methods, the most efficient one will be selected
to compensate for the effects of the defects in nonlinear defective networks
regardless of their number, nature, and position.

Chapter 5 will deal with the experimental validation of the LCCF method
in one and three dimensions to test its robustness. For specific considerations,
the LCCF theory will first be adapted, then applied to different wiring
network configurations to shape electromagnetic fields. After simulating
faults of different natures and numbers in the lines of the wiring networks, we
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will show how the effects of these faults could be compensated to recover the
healthy outputs again. In a final interesting three-dimensional experiment,
the LCCF method is used to enhance the spatial control of nanosecond
microwave plasma in a linear cavity.

Remark: In this thesis, all the numerical simulations were conducted by
the multi-paradigm numerical computing software Matlab.
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1
Electromagnetic Source
Identification: State of the Art and
Context

WE begin the first chapter by reviewing the state of the art of the different
approaches developed earlier in the field of ElectroMagentic Compat-

ibility (EMC) to identify electromagnetic sources. In the frequency-domain
analysis literature, we recall the existing methods, such as the equivalent
source models and the inverse-source problems, then we state their advan-
tages and limitations. However, as we are more interested in the time-domain
analysis, we focus on existing time-domain methods based on the optimal
control of partial differential equations. We remind about the limitations of
the optimal control before stepping forward to recall other more efficient
and simple time-domain approaches, such as the time-reversal method to
shape electromagnetic fields at a point in a domain of interest. In detail, we
review the time-reversal progress over the last few years, its advantages, and
drawbacks.

An essential part of our work focuses on electrical faults that may appear
in wiring networks. That is why, in another section, we present the existing
wire diagnosis tools, namely the most common reflectometry-based tech-
niques and the time-reversal imaging methods, to detect, locate, and diagnose
electrical faults in wiring networks. We shed light on the importance of
these tools in diagnosing wires, the advantages they may provide, and the
limitations that may deteriorate their proper performance.
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1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

At the end of each section, we raise controversial (unanswered or not ade-
quately answered) questions that will be considered throughout the upcoming
chapters. These questions position our work in the state of the art described
in this chapter and highlight the objectives of this thesis. Finally, we describe
our work settings after reporting its context, then list the different tools to
be used during our numerical simulations. As this thesis is applied to elec-
tromagnetism, it is essential to present Maxwell’s equations that describe the
propagation of electromagnetic waves in any medium and the telegrapher’s
equations that govern the propagation of voltage and current in wiring net-
works. To solve Maxwell’s and the telegrapher’s equations, we describe the
numerical method preferentially used throughout this study, namely the finite-
difference time-domain method.

1.1 Source Identification Techniques

In electromagnetic theory, the source identification problem may be formu-
lated to find sources that produce a prescribed radiation pattern in a region
of interest. For a long time, source identification problems have been receiv-
ing considerable attention from researchers and have been arising in various
research studies and engineering applications [1–3]. Different methods were
developed in the literature to model few equivalent radiating electric or mag-
netic sources to predict, replace, or substitute real complex ones. This section
will present the different existing methods proposed earlier in EMC to iden-
tify electromagnetic sources in either the frequency-domain or time-domain
analysis. For each approach, we will determine the witnessed advantages and
limitations.

1.1.1 Equivalent source models

The equivalent source models characterize a set of equivalent elemental
sources encircling an electronic device that radiates the same electromagnetic
fields as the device itself. Several techniques based on the equivalence prin-
ciple were put forward by many scientists and engineers [4]. The equivalence
principle states that a field in a lossless region can be determined from a sur-
face enclosure of current densities. To give the equivalence principle’s main
lines, we consider Figure 1.1 where the electric E and magnetic H fields out-
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side a closed surface S are obtained by placing adequate electric and magnetic
current densities on S, taking into account the boundary conditions. The sur-
face S separates between the inner volume V1 surrounded by S and the outer
volume V2 outside S. In the initial problem, a source represented by an elec-
tric current density J1 and a magnetic current density M1 radiates in V1 to
produce E and H. According to the equivalence principle, this problem can
be replaced by an equivalent one: new sources (JS and MS) are placed on the
surface of S to produce the same fields E and H in V2 and null electromag-
netic fields in V1.

Initial problem Equivalent problem

V1 V1

V2 V2

S S

J1
M1

E, H

E, H E, H

JS

MS

Figure 1.1: Equivalence principle concept: the source inside the enclosed
volume V1 radiates to produce the electric E and magnetic H fields. This
problem is replaced by an equivalent one; we identify sources on the enclosure
of V1 that produce the same E and H in V2 after their radiation.

In antennas studies, a physical model based on the multipole expansion
was introduced to represent the electromagnetic emissions in system-level
analysis [30]. This model gives a convenient representation with a low num-
ber of parameters determined by measurements or simulations. Moreover,
neural networks were also applied to source identification problems to recog-
nize basic printed circuit board configurations using its magnetic near-field
spectra and radiated far-field emissions [31]. In other studies, researchers
relied on the equivalent current approach in antenna design to calculate the
far-field from the near-field radiation based on different methods, such as the
modal expansion, the integral equation, and the conjugate gradient [6,32–34].
Despite the interesting results, the systems solved by these models are
generally ill-conditioned; thus, they may be solved by different methods,
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such as the singular value decomposition or the iterative conjugate gradient.
Nonetheless, their main drawback, unfortunately, lies in their computational
costs [35]. In [36–38], matrix inversion methods were proposed to find the
parameters of the equivalent radiation model. Although they showed high
speed in calculations since only a linear system has to be solved, several
time-consuming measurements are required to find an accurate model that
may require different information beforehand.

Alternatively, the model parameters for EMC applications in many other
works were calculated based on optimization tools [5, 39–45]. In [5], the
binary genetic algorithm optimization method was used to simulate antennas
from near-field distribution by a set of infinitesimal dipoles. Regué et al.
used the genetic algorithms to identify the source distribution and predict the
far-field radiations [39]. De Daran et al. modeled the coupling phenomena
on an electronic board and evaluated the radiated emissions [40]. The
authors in [41] presented a methodology to substitute radiating dipoles for
real sources. Another methodology in [42] was introduced for radiating
source identification of power electronic devices based on substituting a
set of elemental magnetic dipoles for the natural systems. Moreover, other
genetic algorithm-based techniques were also developed to predict the
radiation from shielding enclosures using near-field scan data [43] or model
electromagnetic emissions of a printed circuit board [44]. Although a reduced
number of dipoles may construct these models, their computational time is
massive, especially when high numbers of dipoles are required. That is why
Benyoubi et al. proposed a fast technique taking advantage of the matrix
inversion and optimization methods to enhance the computational time [45].

Most of the equivalent source models, especially the matrix inversion
methods, may be viewed as solving inverse problems. In the next section, we
give a detailed definition of the inverse problems and particularly the inverse-
source problems from a mathematical perspective. Similar to what preceded,
identifying electromagnetic sources to replace any undesired field by a desired
one in inverse-source problems is also an interesting EMC issue [46, 47].
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1.1.2 Inverse-source problems
Inverse Problems (IPs) are the process to determine some physical param-
eters from recorded or desired measurements and observations of a studied
physical event. They are widely spread in different domains: acoustics,
radar, signal processing, EMC, etc. IPs usually start with the effects called
measurements or data and then calculate their causes called parameters.
More precisely, they determine an operator called measurement operator that
maps the data and parameters of the studied problem (see Figure 1.2).

Model Observables 

Forward problem 

Inverse problem 

Measurements, data 

Physical properties,  

unknowns 

Figure 1.2: Forward and inverse problems.

An injective measurement operator means that the acquired data uniquely
characterize the parameters. Often, this inversion amplifies errors in mea-
surements, which we refer to as noise, enhancing the instability of the model.
In 1923, the French mathematician J. S. Hadamard introduced the idea of
well-posed inverse problems. Any mathematical model of a certain physi-
cal phenomenon should satisfy the following three properties to achieve its
well-posedness

1. A solution exists,

2. The solution is unique,

3. The solution behavior changes continuously with the initial conditions.

In mathematical modeling, IPs are often not well-posed or ill-posed in the
sense of Hadamard. An ill-posed IP is a problem in which at least one of the
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above conditions is not satisfied. In the scattering theory, IPs are categorized
into: Inverse-Medium Problems (IMPs), Inverse-Obstacle Problems (IOPs),
Inverse Equivalent Surface-Source Problems (IESSPs), Inverse-Source Prob-
lems (ISPs), etc. For fixed electromagnetic sources, the IMPs and the IOPs
rebuild the topology of the studied medium or determine the positions and
shapes of the built-in scatterers to obtain the desired radiation pattern at an
observation point based on the scattering of the incoming source radiations.
However, for fixed medium and scatterers, the IESSPs and the ISPs identify
a surface-source enclosure or some source-points in the space equivalent to
a real source. After radiation, the identified sources scatter to generate the
desired pattern at the observation point. Figure 1.3 represents the different
types of IPs; however, in this thesis, we are only interested in ISPs.

Generator

Inverse equivalent
surface-source problem

Medium

Scatterer

Inverse-obstacle
problem

Inverse-medium
problem

Receiver

t

Recorded field
Inverse-source

problem

Figure 1.3: Different inverse problems: inverse-medium problems, inverse-
obstacle scattering problems, inverse equivalent surface-source problems,
inverse-source problems.

ISPs have long been an active field of research in various scientific and
industrial areas, such as antenna design and synthesis, biomedical imaging,
and photo-acoustic tomography [48]. As an important research topic in the
inverse scattering theory, they have continuously attracted much attention
from many researchers and engineers. In essence, ISPs identify sources
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that would give rise to prescribed radiation fields at one or more spatial
positions. As a part of IPs or the so-called inverse crime [49, 50], ISPs are
equally ill-posed due to either the nonuniqueness or the instability of the
solution (conditions 2 and 3). In general, their solutions are not unique at
a fixed frequency due to the existence of nonradiating sources, where the
field is identically zero outside a finite region [51–53]. For this reason, the
source requires additional constraints to obtain a unique solution, such as
picking up the solution with a minimum L2 norm, i.e., minimum energy
solution [54]. Similarly, the instability of the solution is also a challenging
issue in mathematical computations, where a small data change might lead to
considerable errors in computations.

For a fixed frequency, researchers have invested much effort to solve the
ISPs for Helmholtz’s equation [55, 56]. The instability of such models refers
to the exponential decay of the singular eigenvalues of the forward operator.
Then, to overcome the complications of the nonuniqueness and instability
of the solution, an efficient alternative approach is to use multifrequency
data instead of a single frequency. By taking measurements at multiple
frequencies, a mathematical study was introduced on the stability of the ISP
for Helmholtz’s equation [57]. In what follows, we describe this study to
formulate the ISP for Helmholtz’s equation using multiple frequencies.

Let Ω be a smooth domain in Rd (d = 2 or 3) of boundary Γ = ∂Ω. For
all r ∈ Rd, denote by Bρ =

{
x ∈ Rd : |x| < ρ

}
the d-dimensional open ball

of radius ρ and center r (see Figure 1.4). We consider the ISP to determine an
unknown source S = S(r, t) of the homogeneous Helmholtz’s equation

∇2Φ + k2Φ = S, (1.1)

knowing that Φ = Φ(r, t) may be any radiated field (electric, magnetic,
sound, elastic, etc.) at a position r ∈ Ω and an instant t, whereas k is the
wavenumber of Φ. The source S = S(r, t) ∈ (L2 (Ω))

3 has a compact
support V0. The field Φ satisfies the Sommerfeld radiation condition

lim
|r|→+∞

|r|
d−1
2
(
∂|r|Φ− ikΦ

)
= 0. (1.2)

27



1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

R0

V0

Ω
Γ = ∂Ω

BR0

Figure 1.4: Problem geometry of the inverse-source problem.

We define the Green function G (x, k) in the whole space as

G (x, k) =


− i

4
H

(1)
0 (kx) if d = 2,

− e
ikx

4πx
if d = 3,

(1.3)

where H(1)
0 (kx) is the Hankel function of the first kind with order 0. Then,

there exists a unique solution Φ(r) satisfying both Helmholtz’s equation (1.1)
and the radiation condition (1.2)

Φ(r, t) =

∫
Ω

G (|r− x| , k) S(x, t)dx. (1.4)

The forward problem (1.4) allows to introduce the ISP for Helmholtz’s equa-
tion. Assuming that ∃R0 > 0 such that V 0 ⊂ BR0 ⊂ Ω, the multifrequency
ISP is to reconstruct the source from the measured radiated field Φ(r) on the
boundary Γ (r ∈ Γ), ∀k ∈ [0, k0], where k0 is a fixed frequency.

Further studies focused on increasing the stability for the ISP of the
three-dimensional Helmholtz’s equation [58, 59]. The introduced method is
based on the Huygens principle 1, limited to the assumption of a particular
form of the source, and requires the Dirichlet and Neumann boundary data to

1The field at any point of the domain may be computed from the fields on a closed surface
surrounding the sources.
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gain stability. These limitations were overcome by Li et al. after introducing
an alternative approach in [59] to obtain the same results for the two and
three-dimensional Helmholtz’s equation by removing the source assumption
and Neumann boundary data, i.e., it requires only Dirichlet data.

Studies on the stability of the ISP for Helmholtz’s equation were accom-
plished in various domains, such as elastics, acoustics, optics, etc., whereas
little work focused on the stability of ISP for electromagnetic waves. Based
on a low-frequency asymptotic analysis of the time-harmonic Maxwell’s
equations, the authors in [60] formulated and solved the ISP to reconstruct
dipole sources in a heterogeneous medium showing uniqueness and stability.
The uniqueness and nonuniqueness of the ISP for Maxwell’s equations were
argued by R. Albanese et al. in [46]. Other analyses on solving ISPs for
hyperbolic systems using Carleman estimates could be found in [61–64]. Un-
fortunately, no stability results were demonstrated for the ISP of Maxwell’s
equations in a general setting until 2019.

Recently, a new study initialized the mathematical analysis and provided
the first results on the stability of the ISP for electromagnetic waves [65].
This study was inspired by the ISP of Helmholtz’s equation to extend an ap-
proach that handles the more complicated Maxwell’s equations. They gave
a detailed theory about the uniqueness and the increasing stability of the ISP
to reconstruct the radiating electric current density from multiple frequencies
data. In a homogeneous medium, we consider the time-harmonic Maxwell’s
equations, where Φ is the electric E (in V/m) or magnetic field H (in A/m)

∇× E− ikH = 0, (1.5)
∇×H + ikE = J. (1.6)

Assume now that the source S is the electric current density J ∈ (L2 (Ω))
3

having a compact support V0. To make the direct problem well-posed, it re-
quires the Silver-Müller condition

lim
|r|→+∞

[(∇× E)× r− ik |r|E] = 0. (1.7)

After multiplying equation (1.6) by ik, we substitute equation (1.5) in (1.6)
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yielding the decoupled Maxwell’s system for the electric field E in R3

∇2E− k2E = ikJ. (1.8)

It is known that there is a unique solution that satisfies both Maxwell’s sys-
tem (1.8) and the Silver-Müller condition (1.7) [66]

E (r, t) =

∫
Ω

GM (|r− x| , k) J(x, t)dx, (1.9)

where GM (x, k) is the Green’s tensor for Maxwell’s system (1.8) defined
in [65]. In a similar way, if we eliminate the electric field E, we may prove
in R3 that

∆H + k2H = −∇× J. (1.10)

The system (1.10) has a unique solution

H (r, t) = −
∫
Ω

G (|r− x| , k) I3 · ∇ × J(x, t)dx, (1.11)

where I3 is the 3 × 3 identity matrix. The forward problems (1.9) and (1.11)
allows to introduce the ISPs for Maxwell’s equations. Assuming that
∃R0 > 0 such that V 0 ⊂ BR0 ⊂ Ω, the multifrequency ISP is to reconstruct
the electric current density from the measured fields E and H on the
boundary Γ (r ∈ Γ), ∀k ∈ [0, k0], where k0 is a fixed frequency.

G. Bao et al. addressed the uniqueness and nonuniqueness of the ISP
solution for the electromagnetic waves. They showed that the multifrequency
data can uniquely determine J if ∇ · J = 0. Then, they went further in
their analysis to discuss the uniqueness results by studying the variational
equation relating the unknown current density to the data. In detail, they
distinguished between the possible unique identification of J and its im-
possible identification using multiple frequencies and Dirichlet boundary
data. The stability estimations of the problem consist of the data discrepancy
and the high-frequency tail. Bao and his collaborators concluded that the
ill-posedness of the ISP decreases as the data frequency increases.

The stability of the ISP for electromagnetic waves is limited to data
available on the total border area (Huygens principle) and may not deal
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with limited aperture data. Add to that, the analytical Green tensors are not
available anymore in heterogeneous media; thus, the study may be applied
only in homogeneous media. Despite the few surveys on the uniqueness
and stability of ISPs in electromagnetism, their mathematical theories are
still complicated. The effect of this complication is the increasing price to
pay for the implementation complexities. In addition to that, the ISP for
electromagnetic waves was analyzed in the Frequency Domain (FD), and
according to the best of our knowledge, it was never investigated directly in
the Time Domain (TD), which is rather more difficult due to the requirement
of all frequency samples to gain better stability. Therefore, other alternative
techniques focusing on the time-domain analysis may be more suitable, such
as the optimal control of partial differential equations, for example.

What advantages may the time-domain analysis offer over the frequency-
domain analysis? In the TD, the wideband data are available from one model
computation; however, many frequency samples are required to obtain equiv-
alent data in the FD. The time-domain analysis allows us to avoid numerical
errors resulting from the use of the Fast Fourier Transform (FFT) and the
Inverse Fast Fourier Transform (IFFT) algorithms when switching from the
TD to the FD and vice versa. In fact, the electromagnetic fields may be con-
trolled in the TD at specified periods as opposed to the FD, where the control
occurs for the whole time process. Moreover, we are interested in analyzing
nonlinear systems that are difficult to handle in the FD, so the time analysis
seems more convenient.

1.1.3 Optimal control of partial differential equations

Partial Differential Equations (PDEs) may be used to describe a wide
variety of physical phenomena, such as sound, heat, diffusion, electrostatics,
electromagnetics, elasticity, gravitation and quantum mechanics, etc. The
optimal control drives the solution of the PDEs understudy to a predefined
state. The optimal control theory may be applied to the PDEs that govern the
propagation of waves, such as Maxwell’s equations. Besides fitting problems
in the FD [7], the optimal control theory may also deal with problems in
the TD. In 1988, J. L. Lions introduced a new time-domain method known as
the Hilbert Uniqueness Method (HUM) to build an appropriate control that
leads a system from its initial state to a rest state at a given time T > 0 [67].
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The HUM was illustrated numerically in [8], where the authors clearly
pointed out the transiency of the reached state. This transiency occurs when
reaching a nonrest state at a chosen time T , where the wave inevitably
continues propagating. Although the HUM method may find the right
control time sequence to drive the system from the initial state to the rest
state in simple settings, it is found that the HUM may not tackle realistic
and complex configurations. Similar to the numerical algorithms for the
boundary control of wave equations, the HUM approach depends on the
space discretization and starts to diverge as the step tends to zero due to
high-frequency oscillations [68]. Although several regularization techniques
have been proposed [68–70], the robustness of the HUM method for the
time T and the geometry discretization is still under study. Practically, the
concerned method starts to fail with ultra-high-frequency electromagnetic
fields due to the unreachable bandwidth of most common EMC generators
and amplifiers to achieve a reasonable control time T . Another limitation
could be the need for prior knowledge of the transient noise in the system,
which may not be achievable in practice.

The optimal control of PDEs is a general method that is difficult to imple-
ment due to the complex underlying mathematical theory. Moreover, it shows
intrinsic experimental limitations to shape electromagnetic fields in the TD.
For these reasons, the research work focused on other recent time-domain
methods that may be more simple and efficient at shaping electromagnetic
fields, such as the time-reversal method.

1.1.4 Time-reversal method
In 1990, the Time-Reversal (TR) method was first proposed in acoustics by
M. Fink and his team [9], then tends to focus more on EMC [12, 25, 71, 72].
The TR for the electromagnetic wave equation

1

c2

∂2Φ

∂t2
= ∆Φ (1.12)

(Φ stands for the electric E or magnetic H fields) is based on the principle of
their reciprocity in a lossless stationary medium. From a mathematical point
of view, if the equation (1.12) admits Φ(r, t) as a solution, then Φ(r,−t)
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is also a solution. This may be physically interpreted as the existence of
a “reverse” solution due to the absence of the first-order derivative in the
equation (1.12). In other words, the reverse of Φ(r, t) in the TD would
precisely retrace the path of the original wave back toward the source point;
the retro-propagation of the waves is based on the reversibility of the wave
equation (1.12) in time. The field Φ(r, t) is the divergent wave, which is
usually called the scattered field, whereas Φ(r,−t) is the convergent wave
that refocuses on the source point.

To better understand the concept of the TR in EMC, Figure 1.5 is
considered. A generator radiates an electromagnetic source that propagates
through an inhomogeneous and discontinuous medium. As a result, the
incident waves experience distortion before ending to an array of probes
surrounding the source, where each records the signal it detects over a long
interval of time. This is the first step of the TR, known as the recording step.
Following step one, the recorded signals are time-reversed and synchronously
re-emitted, each by its corresponding probe. Traveling back in time, the
emitted waves retrace the original path back through the medium and refocus
on the source point. This step is known as the time-reversal and re-emission
step.

Source 

Recorded 

signals 

Emission of the 

time reversed  

signals 

Focusing 

point 

Figure 1.5: Time-reversal principle: the source radiates through an inho-
mogeneous medium before ending to an array of probes surrounding the
source. The divergent waves are recorded, time-reversed, and synchronously
re-emitted to refocus on the source point.

Practically, the free space propagation is simulated by an Anechoic
Chamber (AC) that absorbs the electromagnetic waves through its walls [73].

33



1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

In ACs, a closed TR cavity is not feasible, even though it presents an ideal
refocusing concept through any inhomogeneous medium. From an experi-
mental point of view, the infinite number of probes enclosing the source has
to be limited to an opening array forming the Time-Reversal Mirrors (TRM).
Note that each probe has its own electronics (amplifier, generator, receiver,
digital memory, etc.) to synthesize the inverted temporal signals stored in
the memory. Compared to the original source, the quality of refocusing is
affected by the number of the considered probes; the decrease in the angular
aperture makes it possible to realize the TRM; however, it causes information
losses and poor refocusing quality. The TR of electromagnetic waves
was experimentally validated, presenting complexities and high costs [72].
Indeed, a simultaneous re-emission of several signals is a very difficult task
and may not be easily achieved; that is why, the TRM should be composed of
as few probes as possible without reducing the refocusing quality.

Considering a few probes in free space has to be substituted by an
increase in the medium complexity to collect much information on the wave
propagation in the first phase of the TR [10, 74]. Interestingly, in a reflective
cavity, such as the Mode Stirred Reverberation Chamber (MSRC) [75, 76], a
TRM composed of a single probe is enough to attain an excellent refocusing.
Actually, the characteristics of such a cavity allow us to benefit from the
multiple reflections and re-reflections experienced by the waves on the
metallic walls of the chamber. The information represented by the echoes
collected using a single probe is sufficient to realize a TR experiment.

Although the TR method is still applicable in a lossy reverberant cham-
ber [77–79], introducing wall losses should be carefully considered since
the environment is not completely reversible in this case [80]. Moreover,
the TRM efficiency may be improved in the MSRC mode by acting on the
recording duration of the incoming signals and identifying the optimal source
location [81, 82]. Apart from the refocusing quality, an important limitation
of the TR is the need for an emitting source at the refocusing position;
otherwise, there is no wave refocusing. This disadvantage is problematic for
different EMC applications when such a position is inaccessible. In general,
sources are not supposed to radiate intentionally; they are not active (transmit
mode) as described before, whereas they are defects that behave passively
(echo mode) to reflect an incident wave. This reality has been treated based
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on the equivalence principle described in Section 1.1.1 after adding extra
antennas called Equivalent Surface Network (ESN) and placed around the
passive source [83, 84] (see Figure 1.6).

ESN

Passive source
TRM

Cavity

Figure 1.6: Time-Reversal Electromagnetic Chamber: extra antennas are
placed around the passive source based on the equivalence principle.

This problem is called the Time-Reversal Electromagnetic Cham-
ber (TREC) and introduced by A. Cozza in [85] as an alternative approach
to the standard TR. The TREC uses the multipath propagation to control
wavefronts and their directions in complex environments. As opposed to
the standard TR, the TREC works well when it comes to controlling the
wavefront directions. Despite its interesting results, the TREC still presents
some limitations regarding the type or the number of antennas used to form
the ESN. Also, common testings in EMC, such as generating a plane wave
of any arbitrary direction, may not be achieved by the TREC; the transverse
shape of the refocused wavefronts is always cylindrical or spherical. Indeed,
although the back-propagated waves impinging the ESN will also impinge
the center of the inner volume, it is unfortunate that no guarantees were
provided about the accuracy in amplitude and shape of the wavefronts once
reaching the center of the inner volume.

Besides all the limitations mentioned above for the TR and TREC, some
general questions may also be raised.

• If no prior knowledge is provided about the characteristics of the

35



1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

medium (reverberating, lossy, dispersive, etc.), how could this influence
the TR applicability?

• What are the optimal positions of the source and the TRM to deliver
a high quality refocusing? If determined, how to attain the optimal
TR performance if these positions are inaccessible? It is worth noting
that many common EMC applications work in nondestructive testings,
where the probe could only be placed at one side of the cavity.

• Refocusing at the source point may generate unintentional electromag-
netic fields in its neighborhood. How can the TR simultaneously control
the electromagnetic fields at several points of the cavity to cancel these
fields?

• Wide variety of nonlinear problems occupy a substantial space of the
EMC applications. How can the TR behave in such a case with low and
high nonlinearity levels?

In this dissertation, we are interested in identifying electromagnetic
sources in the TD in guided wave and free space propagation. The objective
is to impose/cancel desired/undesired electromagnetic fields in linear and
nonlinear media. In the linear case, a new technique called the Linear
Combination of Configuration Field (LCCF) is developed in later chapters.
The LCCF will be examined in detail, then validated numerically and
experimentally. Interestingly, we will also compare the LCCF to the TR,
under the title “TR vs. LCCF”, in guided wave and free space propagation.
Such a comparison will show the superiority of the LCCF method to shape
electromagnetic fields in the TD. After proving the inapplicability of the
LCCF in nonlinear systems, other methods, such as Newton’s method and
the nonlinear least-squares solver, will be used to identify the temporal
sources that generate the desired field at a definite position in the nonlinear
medium. The developed/used techniques, for the linear and nonlinear cases,
are proposed as alternative approaches to overcome the above arguable
questions.

In guided wave propagation, the developed/used techniques in this thesis
are found to fit wire diagnosis problems, especially when electrical faults ap-
pear in wiring networks. In the following, we review the state of the art of
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the existing methods to detect, locate, and diagnose electrical faults in wiring
networks.

1.2 Wire Diagnosis
Unavoidably, wires are subjected to natural, mechanical, or thermal stresses
(e.g., humidity, corrosion, heating, etc.) that reduce their lifespan and
cause their damage [86]. Moreover, the degradation resulting from the
excessive use and maintenance of wires leads to the appearance of faults in
wiring networks. These faults may be hard ones (open and short circuits)
or soft ones (chafing, insulation damage, cracks, frays, etc.) impacting
the shielding, immunity, or emissivity of wires (see Figure 1.7). In fact,
maintaining soft or hard faults is of equal importance as soft faults will evolve
to hard ones sooner or later. This evolution is critical since hard faults may
jeopardize the functioning of the overall system causing data breaks and fires.

Figure 1.7: Hard (left image [source]) and soft (right image [source]) faults
appearing in wiring networks.

The increase in the length of cables makes it difficult, if not impossible,
to locate faults manually after being detected. That is why the researchers
turned their attention to develop different approaches to detect and locate
faults in wiring networks. In EMC, as the faults may modify the EMC prop-
erties of any system, fault detection and location in wires have occupied a
wide area in EMC studies [87–89]. In what follows, we will give the main
lines of the many different methods developed to detect and locate electri-
cal faults in wiring networks. This section will review the reflectometry-
based and the time-reversal imaging techniques, but it is worth mentioning
that other nonreflectometry-based approaches, such as the visual inspection,
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radiographic inspections, capacitive and inductive methods, etc. also exist.
Related results may be found in [89–92], where the authors pointed out the
limitations of these methods, such as the need for complete access to the net-
work, treatment of only one fault nature (either soft or hard and not both),
failure with complex networks, or cable disconnection from the network, etc.

1.2.1 Reflectometry-based techniques
Reflectometry is a high-frequency technique of investigation that has trig-
gered the interest of scientists in diverse applications, such as radar systems,
where it has been extensively used to detect and measure the distance to
a target (see Figure 1.8). The reflectometry concept consists of sending a
signal into the system to be diagnosed; this signal propagates in the medium,
where a portion of its energy returns back to the injection point once it hits an
obstacle. The reflected signal analyzed to the incident one carries information
about the system and the encountered obstacle.

Figure 1.8: Reflectometry principle in radar systems [source].

While numerous wiring diagnosis methods have been developed,
reflectometry-based techniques are still in the center stage of research and
applications to solve transmission lines problems. Similar to the three-
dimensional reflectometry, the reflectometry principle in wires is described
as follows: a high-frequency voltage signal Vinc is sent down the wire, where
it propagates, reflects due to the impedance discontinuities (faults), and re-
turns back to the point of incidence. Denoting by Vref the reflected voltage
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signal, the reflection is measured by the voltage reflection coefficient

Γ =
Vref

Vinc

=
ZL − ZC

ZL + ZC

, (1.13)

where ZC is the characteristic impedance of the line and ZL is the impedance
of the fault. The reflection coefficient lies in [−1, 1] such that −1 is the
reflection coefficient for a short circuit, whereas 1 is the reflection coefficient
for an open circuit. Multiplying the measured time delay between Vinc

and Vref by the velocity of propagation indicates the distance to the fault
from the point of incidence. The larger the reflection coefficient, the easier
it is to distinguish between the fault reflectometry signature and the noise.
Accordingly, open or short circuits may be observed by the reflectometry,
while soft anomalies may not [29, 93].

In the context of detecting and locating faults in wires, the reflectometry-
based methods are divided into two main categories: Time-Domain
Reflectometry (TDR) and Frequency-Domain Reflectometry (FDR). The
TDR methods use a short rise time voltage step or pulse as the incident signal
and rely on the analysis of the reflected signal in the TD [94–97], whereas the
FDR methods use stepped frequency sine waves to measure their frequency,
magnitude, and phase in order to find the distance to a fault [98–100]. The
different reflectometry methods differ in the form of the injected signal or in
the post-processing techniques used to extract information from the reflected
signal.

The TDR methods are more expensive than the FDR methods; however,
they are simpler to implement with higher noise immunity. Both TDR and
FDR techniques show limitations in locating soft faults since the amplitudes
of the signal reflected when reaching these faults are low enough and may be
comparable to the noise level. The complication arises when attenuations are
introduced to the problem as they lower the amplitudes of the reflected sig-
nal traveling toward the point of incidence. Add to that, reflectometry-based
techniques are well suited for single cable configurations and not for com-
plex ones since the reflections and re-reflections resulting from the junctions,
discontinuities, mismatched loads, etc., mask the echoes of the faults. Al-
though recent studies combine the reflectometry-based technique with neural
networks and genetic algorithms to detect, locate and characterize multiple
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soft faults in complex networks, they also present some limitations, such as
requiring prior knowledge of the network’s topology and the massive compu-
tational time for training the neural network [101]. We point out the necessity
to repeat the training once the network undergoes any modification. Then, to
address the soft faults in complex networks, the time-reversal imaging tech-
niques were introduced.

1.2.2 Time-reversal imaging techniques

The methods used in imaging scatterers in generic media may be adapted
to guided wave propagation analysis in wiring networks. Assume that we
define N test ports on the network, the time-reversal imaging for wiring
networks relies on finding a differential scattering matrix S to compute
the Time-Reversal Operator (TRO) K = SS†, such that † is the Hermitian
transpose. The scattering matrix (also called baselined scattering matrix) S
is the difference between the scattering matrices of the healthy and faulty
systems. The importance of baselining is to remove all the common echoes
(connectors, junctions, etc.) between the healthy and faulty networks and
keep only the echoes resulting from the potential faults [102]. As the last step,
the nonnegligible eigenvalues computed by the eigenvalue decomposition
of K gives the number of faults that appeared in the system.

After detecting the number of faults in the network, studies focused on
the analysis of the TRO to specify their location. The decomposition of
the time-reversal operator (DORT) (the French acronym of Décomposition
de l’Opérateur de Retournement Temporel) method was first transposed
to transmission lines in [103]. Although DORT technique shows to be
efficient at locating the most severe fault existing in the wiring system,
Kafal et al. highlighted its inability to resolve multiple faults separately
due to their strong coupling via guided wave propagation [104]. For this
reason, they improved the DORT method to an enhanced version- called
Enhanced DORT (EDORT)- in order to locate multiple soft faults in complex
networks [104, 105]. To better specify the fault location, the Time-Reversal
MUltiple SIgnal Classification (TR-MUSIC) was used to locate faults with
submillimeter precision [106]. TR-MUSIC is an efficient single-frequency
fault-detection technique capable of locating single or multiple soft faults
in complex networks. In [107], it was shown that the quality of MUSIC
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processing starts to degrade with noisy data. Unfortunately, in real-life
systems, the associated equipment is always subjected to natural noise or
signals, which may degrade the MUSIC processing quality. To overcome this
limitation, the authors in [108] have proposed an alternative multifrequency
TR-MUSIC processing to locate soft faults accurately despite the presence of
the noise.

Both EDORT and TR-MUSIC see the network as a black box during the
whole process, where the interventions occur only at the N extremities. These
techniques showed their ability to locate soft faults in complex networks and
were experimentally validated in the cited references above. Nevertheless,
the set of N extremities may frequently be located in hard-to-access areas
making it difficult to construct the parameters of S. Furthermore, EDORT
and TR-MUSIC may only address problems to locate soft faults and not hard
ones as opposed to reflectometry-based techniques.

Yet, wire diagnosis methods still raise the following questions:

• How could they locate identical or ambiguous faults in symmetric net-
works in the absence of information about their configurations and char-
acteristics?

• How do they perform when multiple soft and hard faults simultaneously
appear in networks?

• How could their performance be affected in the presence of losses, dis-
persion, or an entire corroded cable?

• Are they still applicable in networks behaving nonlinearly?

• What is the advantage of detecting and locating faults inaccessible to
maintenance processes?

In the following chapters, we will introduce a novel temporal paradigm to deal
with electrical faults in wiring networks called the software correction pro-
cess. We will give its detailed definition and show its applicability along with
the limitations it witnesses in linear and nonlinear media. In fact, the software
correction is an alternative process for locating faults in wiring networks
and does not raise any of the above controversial questions for wire diagnosis.
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As our work lies entirely in the TD, it seems essential to recall the time-
dependent equations of electromagnetic wave propagation. In free space envi-
ronments, we describe Maxwell’s equations that govern the behavior of elec-
tromagnetic fields in three-dimensional media. However, in wiring networks,
we review the telegrapher’s equations that describe the propagation of volt-
age and current in wiring networks. Equally important, we also describe the
numerical method used to numerically solve Maxwell’s and the telegrapher’s
equations as well as the considered boundary and stability conditions.

1.3 Settings: Electromagnetic Wave Propagation

1.3.1 Maxwell’s equations
J. C. Maxwell’s equations are a set of coupled partial differential equations
that form the base of classical electromagnetism governing the evolution of
electric and magnetic fields in a domain of interest. In fact, the charge and
the current density, together with the electromagnetic field, determine the
electromagnetic phenomena in any medium. At a space point r ∈ R3 and
an instant of time t, the electromagnetic field is determined by four-vector
fields, namely: the electric field E = E (r, t) (in V/m), the magnetic field
H = H (r, t) (in A/m), the electric flux density D = D (r, t) (in C/m2),
and the magnetic flux density B = B (r, t) (in T). Maxwell’s equations may
be divided into four laws

• Faraday’s law:

∇× E +
∂B

∂t
= 0, (1.14)

• Ampère’s law:

∇×H− ∂D

∂t
= J, (1.15)

• Gauss’s law:
∇ ·D = ρ, (1.16)

• and Gauss’s law for magnetism:

∇ ·B = 0. (1.17)
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The charge density ρ (in C/m3) and the electric current density J (in A/m2)
are linked by

∇ · J +
∂ρ

∂t
= 0. (1.18)

Constitutive laws link the fields and the flux densities; likewise, Ohm’s
law correlates the current density and the electric field. A linear medium is
characterized by the three functions ε = ε(r), µ = µ(r), and σ = σ(r)
representing the local electric permittivity (in F/m), magnetic permeabil-
ity (in H/m), and electric conductivity (in S/m) of the medium, respectively,
and defined as follows:

D = εE, (1.19)
B = µH, (1.20)
J = σE. (1.21)

Substituting equations (1.19) and (1.21) in (1.15) gives

∇×H = σE + ε
∂E

∂t
, (1.22)

where ε
∂E

∂t
is called the displacement current density. After combining equa-

tions (1.14) and (1.22), we obtain the following propagation equations of the
fields E and H in a linear medium:

∆E− µε∂
2E

∂t2
= µ

∂J

∂t
+

1

ε
∇ρ, (1.23)

∆H− µε∂
2H

∂t2
= −∇ · J. (1.24)

The equations (1.23) and (1.24) are usually solved numerically and not ana-
lytically in most cases. Doing so, various solvers were developed, such as the
finite-difference time-domain [109, 110], discontinuous Galerkin [111–113],
finite volume [114, 115], etc. In this dissertation, we use the finite-difference
time-domain scheme to solve the propagation equations.

43



1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

Finite-difference time-domain scheme

The Finite-Difference Time-Domain (FDTD) is an efficient method for
solving Maxwell’s equations numerically. This method makes it possible
to take into account the phenomena of propagation and interaction of
electromagnetic waves in complex homogeneous or inhomogeneous envi-
ronments in the presence or absence of conductive and/or dielectric scatterers.

Assume that any vector in R3 is written as U = (Ux, Uy, Uz). In a Carte-
sian coordinate system, Maxwell’s equations (1.14) and (1.22) are equivalent
to the following system of scalar equations:

∂Bx

∂t
=
∂Ey
∂z
− ∂Ez

∂y
,

∂By

∂t
=
∂Ez
∂x
− ∂Ex

∂z
,

∂Bz

∂t
=
∂Ex
∂y
− ∂Ey

∂x
,

∂Dx

∂t
=
∂Hz

∂y
− ∂Hy

∂z
− Jx,

∂Dy

∂t
=
∂Hx

∂z
− ∂Hz

∂x
− Jy,

∂Dz

∂t
=
∂Hy

∂x
− ∂Hx

∂y
− Jz.

(1.25)

Denote by ∆x, ∆y and ∆z the space steps in the x, y and z-
directions, respectively. Any triplet (i, j, k) ∈ N3 corresponds to
a grid point of the space (i∆x, j∆y, k∆z) in the orthonormal sys-
tem (Oxyz). For the sake of simplicity, we will use the notation
U (r, t) = U [(i∆x, j∆y, k∆z) ;n∆t] = Un(i, j, k), where ∆t is the
time step of discretizaion.

The system (1.25) is solved numerically using an explicit scheme of time
and space, such as the FDTD. Based on Taylor’s finite expansion, K. S. Yee
in [110] evaluated the derivatives by the central finite difference approxima-
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tions below

∂Un(i, j, k)

∂t
=

Un+ 1
2 (i, j, k)−Un− 1

2 (i, j, k)

∆t
+O

(
∆t2
)
, (1.26)

∂Un(i, j, k)

∂x
=

Un(i+ 1
2
, j, k)−Un(i− 1

2
, j, k)

∆x
+O

(
∆x2

)
. (1.27)

This scheme is a second-order scheme of time and space. The components
of E and H are shown in the schematic Figure 1.9 for a single cubic grid
voxel or the so-called Yee’s lattice.

Figure 1.9: Yee’s lattice [source].

The E-components are in the middle of the edges of the lattice, whereas
the H-components are in the center of the faces. All the components are

computed according to a Leapfrog scheme at time intervals separated by
1

2
∆t.

That is to say, if the E-components are computed at the instants n∆t, the H-

components are then computed at the instants
(
n+

1

2

)
∆t. Actually, the

finite difference equations for the first three equations of system (1.25) may
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be similarly constructed. As an example, we write for the first equation

B
n+ 1

2
x

(
i, j + 1

2
, k + 1

2

)
−Bn− 1

2
x

(
i, j + 1

2
, k + 1

2

)
∆t

=
En
y

(
i, j + 1

2
, k + 1

)
∆z

−

En
y

(
i, j + 1

2
, k
)

∆z
−
En
z

(
i, j + 1, k + 1

2

)
− En

z

(
i, j, k + 1

2

)
∆y

.

(1.28)
For the fourth equation of the system (1.25), the finite difference equation is

Dn
x

(
i+ 1

2
, j, k

)
−Dn−1

x

(
i+ 1

2
, j, k

)
∆t

=
H
n− 1

2
z

(
i+ 1

2
, j + 1

2
, k
)

∆y
−

H
n− 1

2
z

(
i+ 1

2
, j − 1

2
, k
)

∆y
−
H
n− 1

2
y

(
i+ 1

2
, j, k + 1

2

)
−Hn− 1

2
y

(
i+ 1

2
, j, k − 1

2

)
∆z

+

J
n− 1

2
x

(
i+

1

2
, j, k

)
,

(1.29)
and the finite difference equations for the last two equations of system (1.25)
are constructed in the same way as the equation (1.29).

Stability conditions

Because of its explicit nature, the FDTD method requires a stability condition.
For computational stability, it is necessary to satisfy a relation between the
time and space steps called Courant-Friedrichs-Lewy (CFL) condition that
states

∆t ≤ 1

c

√
1

∆x2
+

1

∆y2
+

1

∆z2

, (1.30)

where c is the speed of the wave propagation in the considered medium.

Despite the existence of many improved FDTD versions, such as the un-
conditional stable FDTD [116–122], conformal FDTD [123–125], etc., we
use the basic FDTD scheme developed in Matlab within the EMC group to
illustrate all the numerical methods and their applications described in this
thesis.
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Boundary conditions

Boundary conditions control the behavior of electromagnetic waves at the
frontier of the domain of interest. One of the most common boundary condi-
tions used in EMC is the Perfect Electric Conductor (PEC), which encloses
the electromagnetic waves in the domain and causes their total reflection once
reaching the boundary. In our work, the PEC condition takes the form{

n× E = 0,

H · n = 0,
(1.31)

where n is the outward normal unit vector to the boundary.

Another boundary condition type is the Absorbing Boundary Condition
(ABC) that absorbs the waves as soon as they reach the border of the do-
main, preventing any type of reflection. In this thesis, we use the Mur ABC
to simulate the free space environment [126]. Mur’s technique adds multi-
plying coefficients to the borders of the domain to cancel the reflected waves
and, therefore, simulate the free space environment. The performance of this
condition is relatively modest (spurious reflected waves); however, it is still
simple to implement. Also, we point to the existence of more recent bound-
ary conditions methods, such as the perfect-matched layer [127]; nevertheless,
Mur’s technique remains adequate as long as the methods used/developed in
this work function properly.

1.3.2 Telegrapher’s equations
The emergence of electrical operations has geared the indispensable use of
electrical cables in nearly all modern systems. Electrical cables are exten-
sively used nowadays for the functioning of most systems and devices by
transferring necessary information (power, signals, commands, etc.) to their
destinations to guarantee the normal functioning and optimal performance of
the system.

Simple time-domain wiring models may be implemented in three-
dimensional codes, such as Richard Holland’s thin wiring model [128].
The associated equations of each model may be discretized either by
the finite difference or finite volume [114] schemes. More sophisticated
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transmission-line models may be considered, but combining them with
three-dimensional codes is complex as they mainly deal with wired problems.
In the context of our work, we consider, the simplest case of Transmission
Lines (TLs) without spatial coupling. The objective is to illustrate the rel-
evance of the numerical methods used/developed in guided wave propagation.

The formalism of the TLs is based on the computation of the Transverse
ElectroMagnetic (TEM) wave propagation modes. More precisely, it is based
on the computation of the quasi-TEM mode of the waves along wires. That is
to say, the electromagnetic fields, modeled by this approach, are all restricted
to directions normal to the direction of propagation. This assumption implies
that the transverse dimensions of the cables are small compared to the
wavelength. The unknowns of the electromagnetic field E and H are then
replaced by the more intuitive notions in the case of TLs: the voltage V and
the current I . The numerical study is then carried out on the evolution of
these quantities as a function of time and their curvilinear abscissas.

At high frequencies, a single TL may be modeled by four parameters that
form the distributed-element model [129]. The propagation and coupling
phenomena are represented by the distributed components: the inductance L
and the capacity C, whereas the losses phenomena are represented by the
resistance R and the conductance G. The length of each elementary compo-
nent (a short segment of the TL) is denoted by ∆z and supposed to be small
enough with respect to the emitted wave wavelength. The four parameters
of the distributed-element model called the primary line constants, rule
the behavior of a TL at high frequencies. In general, they depend on the
frequency; however, in the context of our work, the primary line constants
are considered frequency-independent. We note that the two-conductor line
model in Figure 1.10 extends to multiwire lines without any difficulties [130].

We apply Kirchhoff law on V and I of the circuit of Figure 1.10 to obtain
the differential equations that describe their instantaneous evolution in the TL

∂V

∂z
+ L

∂I

∂t
+R× I = 0, (1.32)

∂I

∂z
+ C

∂V

∂t
+G× V = 0, (1.33)
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𝑅∆𝑧 𝐿∆𝑧 

𝐺∆𝑧 𝐶∆𝑧 

Figure 1.10: Schematic representation of the elementary component of a
transmission line.

where V = V (z, t) [resp. I = I (z, t)] is the voltage (resp. current) at a posi-
tion z and an instant t. After combining the two equations (1.32) and (1.33),
we obtain the telegrapher’s equations

∂2V

∂z2
= LC

∂2V

∂t2
+ (RC + LG)

∂V

∂t
+RGV, (1.34)

∂2I

∂z2
= LC

∂2I

∂t2
+ (RC + LG)

∂I

∂t
+RGI. (1.35)

The equations (1.34) and (1.35) have been solved using many analytical and
numerical methods. In the next section, we use the one-dimensional FDTD
scheme to solve the telegrapher’s equations in the TD numerically.

One-dimensional FDTD scheme

By keeping the same notation for the space and time steps as in Sec-
tion 1.3.1, we denote by V n(k) [resp. I = In(k)] the voltage (resp. current) at
a point k∆z and an instant n∆t. Here, as for the fields E and H of Maxwell’s
equations, V and I are defined according to a grid of points in time and space.
Then, Taylor’s finite expansion is used again to write the equations (1.32)
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and (1.33) as follows:

V n+1(k) = − 2∆t

(G∆t+ 2C)∆z

[
In+ 1

2 (k)− In+ 1
2 (k − 1)

]
− G∆t− 2C

G∆t+ 2C
V n(k),

(1.36)

In+ 1
2 (k) = − 2∆t

(R∆t+ 2L)∆z
[V n(k + 1)− V n(k)]− R∆t− 2L

R∆t+ 2L
In−

1
2 (k).

(1.37)

Stability conditions

As in three dimensions, ∆t and ∆z must satisfy a stability criterion given by

∆t ≤ ∆z

c
. (1.38)

The numerical tools used in this thesis have been presented and will be used
in all the simulations and applications illustrated in the next chapters.

1.4 Conclusion

In this chapter, an overview of different methods developed earlier to identify
electromagnetic sources in both the frequency-domain and time-domain
analysis was presented. The proper functioning along with the limitations
of each method were described. Then, we compared the facilities provided
by the time-domain analysis to that of the frequency-domain analysis and
showed the importance of identifying electromagnetic sources in the time
domain rather than the frequency domain. In another section, as dealing with
faulty wiring networks is an essential part of this thesis, we presented the
main well-known methods to detect, locate, and diagnose electrical faults
in wiring networks, especially the reflectometry-based and time-reversal
imaging techniques. Although they show excellent performances to locate
faults, the proper functioning of each technique is confined to specific nature
of the detected faults, whether hard or soft. Each section was ended by a
set of unanswered or partially answered questions about the applicability
and the functioning of the existing methods. Different techniques will be
proposed in the upcoming chapters to overcome these questions in linear and

50



1. ELECTROMAGNETIC SOURCE IDENTIFICATION: STATE OF THE ART AND
CONTEXT

nonlinear media.

Finally, we presented all the necessary tools employed during this thesis.
We recalled the time-dependent Maxwell’s and telegrapher’s equations that
govern the propagation of electromagnetic fields in free space environments
or voltage/current in wiring networks. We also described the finite-difference
time-domain solver used throughout all our numerical simulations to solve
Maxwell’s and the telegrapher’s equations numerically.
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2
Source Identification in Linear
Systems: The LCCF Method

IN this chapter, we present the Linear Combination of Configuration
Field (LCCF) method that provides a way to identify the temporal profile

of an electromagnetic source satisfying particular properties for a given
target (field, voltage, or current) in a linear medium. At first, we present
the theoretical part of the method and show how one could control an
electromagnetic field at a single spatial point over a time interval. Then, we
run numerical simulations in lossless and lossy wiring networks as well as
anechoic and reverberant three-dimensional environments to illustrate the
applicability of the LCCF method.

As shaping electromagnetic fields is a common task for the Time-
Reversal (TR) and the LCCF techniques, both methods are compared to show
the superiority of the LCCF over the TR. Mathematically, the LCCF may al-
ways compute a source, if it exists; however, this source may not physically be
satisfying due to some physical inconveniences. For this reason, constraints
are added to the LCCF problem to improve the physical properties of the
source. In the last section, we address a useful application of the constrained
LCCF method to replace an undesired field by a desired one. Finally, we con-
clude this chapter and open the horizons to improve and generalize the LCCF
technique and consequently widen its applications in the next chapter.
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2.1 LCCF Concept

Let [0, tn] be the time interval during which a signal is emitted and re-
ceived, where tn = n∆t > 0 (n ∈ N∗) is the last instant of time to
be specified. For all t ∈ [0, tn], the source generator G emits a discrete
signal x = [x(0), x(1), · · · , x(n)] ∈ Rn+1 that propagates, interferes, and
may be distorted due to discontinuities and inhomogeneities in the linear
medium Ω. A receiver R, placed at a fixed point called the receiver point,
records the detected discrete signal y = [y(0), y(1), · · · , y(n)] ∈ Rn+1

over [0, tn].

Assume that we want to identify x that controls y at an instant of
time tq. Controlling y at tq means to impose a predefined target field F at
tq, i.e., y(q) = F . For physical considerations, tq � 0; tq may be any instant
of time after R starts to detect signals. The process to impose F is detailed as
follows:

• In Ω, we inject the unit impulse (also called the standard basis vector)
e1 = [1, 0, · · · , 0] at t0 = 0 by G. At the R-level, the scalar value of the
impulse response h1 at tq is recorded and denoted by h1(q).

• Similarly, we inject the same impulse as before, but delayed by one step
of time (t0 + ∆t), i.e., e2 = [0, 1, 0, · · · , 0]. Then, the second scalar
value of the impulse response h2 is recorded at tq and denoted by h2(q).
...

• Similarly, we inject the same impulse as before, but delayed by n steps
of time (t0 + n∆t), i.e., en+1 = [0, · · · , 0, 1]. Then, the (n + 1)th
scalar value of the impulse response hn+1 is recorded at tq and denoted
by hn+1(q).

• Finally, due to the linearity of the time-invariant system, injecting the
impulses e1, e2, · · · , en+1 simultaneously (e1 + e2 + · · ·+ en+1)
produce the sum of the impulse responses h1(q)+ h2(q)+ · · ·+ hn+1(q)
previously obtained at tq.

The problem to be solved is represented in an inverse form. We
generate a target scalar field F at tq from a linear combination of
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the fields h1(q), h2(q), · · · , hn+1(q) recorded after injecting the impulses
at different instants of time separated by ∆t. In other words, we
look for unknown scalars λ0, · · · , λn that satisfy the linear relation
F = λ0 · h1(q) + · · · + λn · hn+1(q). Assume that λ0, · · · , λn ex-
ist, then the quantity F may be obtained after the emission of a source
x = λ0 · e1 + · · ·+ λn · en+1. This implies that the scalars λ0, · · · , λn are
the components of x, i.e., x(0) = λ0, · · · , x(n) = λn. Hence, we write

F =
[
h1(q) h2(q) · · · hn+1(q)

]

x(0)
x(1)

...
x(n)

 . (2.1)

The linear combination of equation (2.1) is not unique as different ampli-
tude superimposition scenarios may be built to produce the target F . To
demonstrate the nonuniqueness of the solution, we consider this simple coun-
terexample: given the impulse responses h1(q) = h2(q) = 1 and h3(q) = −1,
suppose that the desired target amplitude at tq is F = 2, then different
solutions for x may be (0, 1,−1) or (2, 0, 0). As a result, source x is not
unique.

In a linear medium, identifying a source to create a scalar field at an in-
stant tq seems easy and trivial. On the other hand, if the objective is to create
a field at an interval of time and not only an instant, the problem becomes
more complicated. Recently, a new approach called the LCCF method was
designed to impose a predefined field over a given duration of time. We first
start by describing the settings of the problem, then give a detailed formula-
tion of the LCCF method.

2.1.1 Basic LCCF method

In [131, 132], the authors introduced a novel technique called the Linear
Combination of Configuration Field (LCCF) to identify the temporal source
that would shape electromagnetic fields in any linear medium at an inter-
val of time. This time interval is called the target time and denoted by
[tq, tf ] = [q∆t, f∆t] ⊆ [0, tn], (q, f) ∈ N∗ × N∗. To understand the
concept of the LCCF method, we consider its schematic setup represented
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below in Figure 2.1.

G

t

∆t ∆t

1
Ω

R
tq

t
tf

tq
t

tf

tq
t

tf

tq tf
t

Figure 2.1: LCCF concept: the desired field is a linear combination of the
impulse responses obtained over the target time [tq, tf ].

We endeavor to find a source x that imposes a target
field F = (F0, · · · , Ff−q) over [tq, tf ], i.e., y/

[tq,tf ]
= F, where

y/
[tq,tf ]

= [y(q), · · · , y(f)] are the amplitudes of y over [tq, tf ]. Based on

the interpretation given to yield equation (2.1), similar justifications can be
considered to compute x, the solution of the following system of equations:

F0 =x(0) · h1(q) + x(1) · h2(q) + · · ·+ x(n) · hn+1(q),

F1 =x(0) · h1(q + 1) + x(1) · h2(q + 1) + · · ·+ x(n) · hn+1(q + 1),

...
Ff−q =x(0) · h1(f) + x(1) · h2(f) + · · ·+ x(n) · hn+1(f).

(2.2)

To reduce the dimension of the system (2.2), and consequently the compu-
tational costs, the amplitudes x(f + 1), · · · , x(n) of x emitted at t ∈ ]tf , tn]
are set to 0. This is due to the fact that x(f + 1), · · · , x(n) hit R at an in-
stant t > tf ; thus, they have no impact on y over [tq, tf ]. To control y
over [tq, tf ], the longest possible duration to emit x is [0, tf ], that is to say
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x = [x(0), · · · , x(f), 0, · · · , 0]. Henceforth, we denote by x the part of the
signal which is not identically zero, i.e., x = [x(0), · · · , x(f)]. In a matrix
form, we write

h1(q) h2(q) · · · hf+1(q)
h1(q + 1) h2(q + 1) · · · hf+1(q + 1)

...
...

...
h1(f) h2(f) · · · hf+1(f)


︸ ︷︷ ︸

A∈ M(f−q+1)×(f+1)


x(0)
x(1)

...
x(f)

 =


F0

F1
...

Ff−q


⇐⇒ Ax = F.

(2.3)

The system (2.3) is called the LCCF linear system. Practically, only one
simulation is required to construct A. We emit e1 by G and record, by means
of R, the impulse response h1 for the entire time interval [0, tn], referred
to as the configuration field. The recorded amplitudes h1(q), · · · , h1(f)
are set to the first column of A. For k = {2, · · · , f + 1}, the rest
columns [hk(q), · · · , hk(f)]T are the delay of [h1(q), · · · , h1(f)]T by (k−1)-
zeroes, i.e.,hk(q)...
hk(f)

 =

{
[h1(q − k + 1), · · · , h1(f − k + 1)]T for 1 ≤ k ≤ q + 1,

[0k−q−1, h1(0), · · · , h1(f − k + 1)]T for q + 1 ≤ k ≤ f + 1,

where 0k−q−1 is the zero vector of length k − q − 1. Explicitly, A may be
written as

A =


h1(q) h1(q − 1) · · · h1(0) 0 · · · 0

... h1(q)
... h1(0)

. . . ...
...

...
...

... . . . 0
h1(f) h1(f − 1) · · · h1(f − q) h1(f − q − 1) · · · h1(0)

 .

(2.4)

The matrix A of the LCCF system characterizes the medium between the
two fixed G-point and R-point. Actually, the number of rows of A represents
the duration of the target time [tq, tf ], whereas the number of its columns

57



2. SOURCE IDENTIFICATION IN LINEAR SYSTEMS: THE LCCF METHOD

represents the duration of the source x. The matrix A is not square (more
columns than rows) and said to be rank-deficient. Thereupon, the system (2.3)
may be solved for x in the least square sense by premultiplying both sides
by AT , the transpose of A. The matrix ATA is ill-conditioned; thus, its
inversion

(
ATA

)−1 is numerically unstable due to its large condition num-
ber κ(ATA). A large κ(ATA) indicates that a small change in the coeffi-
cients of A may lead to larger changes in the output F. To stabilize the new
LCCF system, a convenient solution may be to use Moore-Penrose Pseudo-
Inverse (MPPI) in order to minimize the norm

∥∥ATAx−ATF
∥∥ [133].

Among the infinite solutions, MPPI picks a source x of the smallest norm
(lowest possible amplitudes), which seems to be a reasonable choice from an
experimental point of view. However, numerical tests have shown that MPPI
computes a source of an amplitude order O(103) to create an electric field of
an amplitude order O(1). Alternatively, a better solution would be to regular-
ize the matrix A using the Tikhonov regularization technique [134], then the
system becomes (

ATA + εI
)
x = ATF, (2.5)

where I is the identity matrix. The Tikhonov parameter ε > 0 is heuristically
chosen to be small enough so as not to distort the solution. We note that
much work has been achieved for designing strategies to find optimal
values of ε, in certain senses, and solve other problems related to Tikhonov
regularization [70], but this is not our objective in this thesis.

Remark: In this chapter, voltage signals are considered for illustrations
and applications in wiring networks; however, current signals could be con-
sidered in a similar way.

2.1.2 Numerical illustrations in wiring networks

Identifying sources may be applied to any medium, such as wiring networks.
In guided wave propagation, we seek to identify the temporal profile of a
source that leads to imposing a given target voltage at a point of the network
over a predefined target time. For illustration purposes, after describing the
network setup, the LCCF process is first applied to a lossless network, then
we go one step further to introduce different attenuation levels and show that
the LCCF remains applicable.
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Problem settings

The considered medium of propagation is an aerial network Ω made up of
unshielded two-conductor uniform cables. The topology and characteristics
of Ω (number, lengths, impedance, loads of lines, etc.) are chosen arbitrarily.
For example, let Ω be the network of Figure 2.2 composed of two nodes and
five point-to-point Transmission Lines. Table 2.1 displays their respective
number l, length z, characteristic impedance Z l

C, and load impedance Z l
L

for l ∈ {1, ..., 5}.

G
Z1

L

Z2
L

R
Z4

L

Z5
L

1

2

3

4

5

Figure 2.2: Network configuration.

Line Nb. l z (in m) Z l
C (in Ω) Z l

L (in Ω)
1 7 50 50
2 6 50 0
3 7 50 -
4 3 50 50
5 5 50 30

Table 2.1: Characteristics of the network.

Considering an RLCG model, a standard one-dimensional FDTD scheme
is used to solve the telegrapher’s equation (see Chapter 1 Section 1.3.2).
The total duration of the simulations is [0, tn] = [0, 1422∆t]. The time
step ∆t = 3.16× 10−10 s and the space step ∆z = 0.1 m are selected in a
way that satisfies the stability criterion (1.38).

The generator G and the receiver R are respectively placed at the start node
of line 1 and the termination of line 4, knowing that they can still be placed
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at any point on the network. Actually, any target time and target signal may
be chosen to apply the LCCF method. Here, we choose to impose a Gaussian
pulse over the target time [tq, tf ] = [500∆t, 920∆t], for example. The Gaus-
sian pulse is denoted by G1 (F = G1) and has maximum amplitude +1 V.
A Gaussian function of maximum amplitude β is denoted by Gβ and has the
following form:

Gβ(t) = β. exp

[
−
(
t− tc
σ

)2
]
, (2.6)

where tc is the position of the center of the peak and σ controls the width of
Gβ = [Gβ (0) , · · · , Gβ (f − q)]. By taking tc = 210∆t and σ = 20∆t, G1

is plotted in blue sky in Figure 2.4b. The considered Tikhonov parameter for
the LCCF method is ε = 10−9.

Lossless network

For the sake of simplicity, assume that no losses are added to the lines of Ω
(R = G = 0). We apply the LCCF method to identify the signal x injected
by G that propagates in Ω, leading R to record G1 over [tq, tf ]. Then, we
build the characterization matrix A according to formula (2.4) before solving
the simple LCCF linear system(

ATA + εI
)
x = ATG1. (2.7)

The image of A represented in Figure 2.3 shows its diagonal constancy,
where each of its descending diagonals from left to right remains constant.

We solve system (2.7) and show the computed nontrivial source x in Fig-
ure 2.4a. After its emission, the voltage y is recorded by R and represented
in Figure 2.4b. Obviously, y/

[tq,tf ]
= G1 for t ∈ [tq, tf ] lying between the

two dashed lines in the same figure. We may define the Relative Error (RE)
between any target field F and an obtained field y/

[tq,tf ]
as

RE
(

F,y/
[tq,tf ]

)
=

∥∥∥∥F− y/
[tq,tf ]

∥∥∥∥
2

‖F‖2

, (2.8)
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Figure 2.3: Image of the LCCF characterization matrix A.

where ‖.‖2 is the Euclidean norm. In this example, the relative er-
ror between the target voltage G1 and the obtained voltage y/

[tq,tf ]
is

about RE = 2.85× 10−7. We point out that the voltage y is uncontrolled for
all t ∈ [0, tn] \ [tq, tf ].

Lossy network

Losses in any medium are inevitable in reality; that is why it is vital to
show the applicability of the LCCF in the presence of losses. In wiring
networks, the signals attenuate while propagating from one point to another,
causing amplitude reductions. In this section, we demonstrate the fact that
the LCCF method remains efficient when the lines of Ω are resistive (R 6= 0)
without taking into account the frequency-dependent losses. For the different
attenuation levels, we show that the LCCF successfully generates G1 at the
R-point without any additional treatments or excessive computational costs
in comparison to the lossless problem illustrated previously. The considered
attenuation levels are represented in the first two columns of Table 2.2; the
first column indicates the chosen level of attenuation, while the second one
shows the amplitude reductions resulting from each level.

For each attenuation level, we characterize Ω by constructing the new
LCCF matrix A based on the new impulse response of the lossy network. Re-
call that we may not reuse the impulse response of the lossless network as the
system has to be re-characterized once it undergoes any modification (losses
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(a) Source x computed by the LCCF method.
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(b) Voltage signal y recorded after injecting x.

Figure 2.4: Signal x propagates through the lossless network to control the
voltage at the termination of line 4. After its emission, the receiver R records
the signal y, where the desired target voltage G1 is recorded over the target
time [tq, tf ] = [1.58× 10−7, 2.9× 10−7] lying between the two dashed lines.

in this case). Theoretically, we expect that the LCCF computes sources of
the same profile as the source of the lossless problem (Figure 2.4a), but with
higher amplitudes relative to the attenuation levels to compensate for the
amplitude reductions.

For the lossy problem, the dimension of the LCCF system is equal to the
dimension of the system for the lossless problem. In fact, this dimension de-
pends only on the duration of the target time [tq, tf ] taken the same in both
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problems. Therefore, no excessive computational costs or additional treat-
ments are required to apply the LCCF method after introducing losses. The
only difference between the lossless and the lossy problems is the need to
record different impulse responses. After separate LCCF processes at dif-
ferent attenuation levels, the sources are computed and represented in Fig-
ure 2.5a. The receiver R records the output voltage signals represented in
Figure 2.5b.
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(a) Sources x computed by the LCCF method at different attenuation levels.
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(b) Voltage signals y recorded after separately injecting the sources x at different
attenuation levels.

Figure 2.5: After several LCCF processes at different attenuation levels, the
signals x separately propagate through the lossy network to control the volt-
age at the termination of line 4. After their emissions, the receiver R records
the signals y, where the desired target voltage G1 is obtained over the target
time [tq, tf ] = [1.58× 10−7, 2.9× 10−7] lying between the two dashed lines.
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The LCCF processes successfully produce G1 at the R-point over [tq, tf ]
with the REs represented in the last column of Table 2.2. We note that the
dispersion is treated similarly as attenuation, where the LCCF keeps its proper
functioning to generate the desired target voltage over the target time.

Resistance (in Ω/m) Amplitude reductions (in %) RE
(

G1,y/
[tq,tf ]

)
0.5 8.53 3.36× 10−7

4 50.13 3.74× 10−7

8 74.42 2.77× 10−7

15 91.66 1.96× 10−6

Table 2.2: Effect of the different attenuation levels on the LCCF method.

2.1.3 Numerical illustrations in free space environments
The LCCF method may also be applied to free space environments. In free
space propagation, we want to identify the temporal behavior of a field source
to impose a predefined target field at a spatial point over a target interval of
time. In what follows, anechoic and reverberant cavities are considered to
show that the LCCF is a general method with the possibility to be applied in
any linear medium.

Problem settings

For example, the considered medium is a 5 cm × 4 cm × 3 cm cavity
denoted by Ω and represented in Figure 2.6, where ten scatterers are
placed arbitrarily. The FDTD scheme (see Chapter 1 Section 1.3.1) is
used to solve Maxwell’s equations. The total duration of the simulations is
[0, tn] = [0, 1422∆t]. The time step ∆t = 3.85× 10−12 s and the space step
(∆x,∆y,∆z) = (0.2 cm, 0.2 cm, 0.2 cm) are selected in a way that satisfies
the stability criterion (1.30). Without loss of generality, any component of
the electric E = (Ex, Ey, Ez) or magnetic H = (Hx, Hy, Hz) field may be
considered to illustrate the LCCF method. Accordingly, we choose the first
component of the electric field Ex for this purpose.
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Figure 2.6: Cavity configuration used in simulations.

The generator G is placed at (6∆x, 12∆y, 11∆z) (see the black point in
Figure 2.6) and the receiver R is placed at (11∆x, 10∆y, 12∆z) (see the red
point in Figure 2.6), although they could still be placed at any point in the
cavity. For example, the duration of the target time is about 420-time steps,
i.e., [tq, tf ] = [500∆, 920∆t]. The target electric field is chosen to be the
Gaussian pulse G1 (2.6) represented by the blue sky signal in Figure 2.7b.
The considered Tikhonov parameter for this problem is ε = 10−12.

Anechoic cavity

Firstly, we consider the cavity with absorbent walls. The LCCF method is
used to identify the signal x injected by G that propagates in Ω, leading R
to record G1 over [tq, tf ]. After characterizing the cavity by the impulse re-
sponse to construct the matrix A, we solve the simple linear system(

ATA + εI
)
x = ATG1. (2.9)
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Figure 2.7a shows the source x computed by the LCCF method. The
source x is simple but nontrivial as to compensate for the reflections and re-
reflections resulting from the scatterers. After its emission, the electric field
y = Ex = [Ex(0), · · · , Ex(n)] is recorded by R and represented in Fig-
ure 2.7b. Obviously, y/

[tq,tf ]
= G1 for t ∈ [tq, tf ], where [tq, tf ] lies between

the two dashed lines in the same figure. The relative error (2.8) between the
target and the obtained electric fields is estimated at RE = 1.14× 10−8.
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(a) Source x computed by the LCCF method.
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(b) Electric signal y recorded after injecting x.

Figure 2.7: Signal x propagates through the anechoic cavity to control the
electric field at the receiver point. After its emission, the receiver R records
the signal y, where the desired target electric field G1 is recorded over the
target time [tq, tf ] = [1.92× 10−9, 3.54× 10−9] lying between the two dashed
lines.
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Reverberant cavity

Let Ω be the reverberant cavity where the waves perfectly reflect once reach-
ing its walls. Still, the LCCF efficiently generates the target field G1 at the
R-point without any additional treatments or excessive computational costs
compared to the problem of the anechoic cavity. After re-characterizing Ω,
the new computed source is represented in Figure 2.8a. The receiver R records
the electric signal represented in Figure 2.8b with an RE = 7.1× 10−9 (2.8).
The LCCF, in this case, computes a more complex source to compensate for
the reflections resulting from the scatterers and the walls of Ω as well. We
note that y is uncontrolled for all t ∈ [0, tn] \ [tq, tf ].

One and three-dimensional examples were illustrated to show that the
LCCF method may identify the temporal source to control the voltage/current
or field at a point of any linear media. The complexity of the computed
sources refers to the occurring multiple reflections and re-reflections. It is
also important to highlight that the LCCF is independent of the topology
of the studied media: cartography, number or length of lines, characteristic
impedance, load impedance in networks, and position of scatterers, envi-
ronments in cavities. Moreover, the LCCF is independent of the numerical
technique used for temporal or spatial discretizations. In fact, the studied sys-
tem may be viewed as a black box regardless of all the physical phenomena
occurring during propagation (attenuation, dispersion, multiple reflections,
absorption, etc.). The LCCF relies on nothing else than the impulse response
between the source-receiver points.

As a matter of fact, the LCCF performs better in complex media than
with simple ones, such as networks composed of a single cable. To better
understand the reason behind this kind of performance, we should differen-
tiate between the complex and simple media from an LCCF point of view.
This difference lies in the reflections and re-reflections taking place in these
media, knowing that in complex media more reflections and re-reflections
occur due to junctions and ramifications in wiring networks or scatterers in
cavities. After emitting the unit impulse to construct the LCCF matrix A, the
LCCF method benefits from these reflections to recover a nonsparse or “rich”
impulse response that better characterizes the system. Consequently, a rich
impulse response reduces the sparsity of A. From a mathematical point of
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(a) Source x computed by the LCCF method.
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(b) Electric signal y recorded after injecting x.

Figure 2.8: Signal x propagates through the reverberant cavity to control the
electric field at the receiver point. After its emission, the receiver R records
the signal y, where the desired target electric field G1 is recorded over the
target time [tq, tf ] = [1.92× 10−9, 3.54× 10−9] lying between the two dashed
lines.

view, as the sparsity of A decreases, the chance to obtain zero columns in A,
thus in ATA, decreases as well. A kth zero column in ATA means that the
component x(k− 1) of the source x does not contribute to the solution of the
LCCF system (2.5) and may be set to zero. We recall that the number of rows
or columns of the square matrix ATA represents the duration of the source x.
Assuming that some columns of ATA are zeroes, then some components
of x corresponding to these columns are also zeroes. As a result, the sparsity
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of x increases. A sparse source x faces difficulties in producing the target F
over [tq, tf ].

In Chapter 1, we presented the TR technique to refocus waves at a spatial
point to generate the desired field. This common objective with the LCCF
makes it interesting to compare both methods. In the next section, we list the
limitations of the TR and the advantages that the LCCF method could bring
over the TR in wiring networks with lossless and lossy lines. The carried
out comparison and the obtained results may also be generalized to three-
dimensional problems.

2.2 TR vs. LCCF
This section compares the Time-Reversal (TR) method to the LCCF method
in wiring networks. For this purpose, we consider the same network Ω with
the same cartography and characteristics as Section 2.1.2 (Figure 2.2 and Ta-
ble 2.1).

2.2.1 Lossless network

1

2

3

4

5

GLCCF

G1 − R1

G2 − R2

G3 − R3

GTR

Rout

Figure 2.9: Placement of the generators and receivers for the TR and the
LCCF processes.

First of all, no losses are considered in the lines of Ω (R = G = 0) to
show that the weak points of the TR are not limited to lossy problems only.
Here, the TR and LCCF methods are compared to produce a predefined target
voltage over a duration of 120∆t. For the TR process, we use a generator GTR
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placed at the midpoint of line 3 to inject a signal represented by the Gaussian
pulse G1 (2.6) with tc = 30∆t and σ = 5∆t (see the blue sky signal in
Figure 2.10b). The pulse G1 propagates, reflects, and re-reflects through Ω

due to the mismatched loads, ending to the three receivers R1, R2, and R3

placed at the three extremities of the network, as indicated in Figure 2.9. We
point out that no recordings are required for the TR process at the end of
line 2 since the signal totally reflects once reaching this termination; thus,
no information is lost at this extremity. The recorded signals are reversed
in time, then re-emitted simultaneously by the generators G1, G2, and G3,
each placed at the same level of the corresponding receiver. The re-emitted
signals retrace the path of the source back through Ω to refocus G1 at
the midpoint of line 3. The time-reversal refocusing of G1 is recorded
over [tq, tf ] = [620∆t, 740∆t] by the receiver Rout and represented in red in
Figure 2.10b. The relative error (2.8) between the target and the refocused
signal is about RE = 7.16 × 10−3. On the other hand, we assume for
the LCCF method that the source generator GLCCF is placed the start node
of line 1. After solving the LCCF linear system to compute the source x
represented in Figure 2.10a, the output voltage is recorded by Rout and
represented in dark blue in Figure 2.10b. The relative error (2.8) for the
LCCF process is estimated at RE = 2.04× 10−9.

In general, the interventions at all the extremities of Ω are required
for the TR method to work properly (Huygens surface). We note that it is
unnecessary to intervene at the open-circuited or short-circuited extremities,
where the voltage is perfectly reflected, such as the termination of line 2 in
the above example. In this case, prior knowledge of the characteristics of the
network is required to specify the intervention points. Practically, the TR
malfunctions if at least one of its extremities absorbs the voltage partially
or totally and is found to be inaccessible or accessible with an impossible
placement of any equipment (generator or receiver) due to their heavyweight
or voluminousness, for instance. Nevertheless, the LCCF method still works
properly with access to only one point of the network corresponding to the
source point that may be placed anywhere and without the requirement of
neither Huygens surface nor prior knowledge of the impedance character-
istics. Actually, these characteristics are included in the impulse response
used to characterize the network. In the considered example, the points of
access (generators and receivers) of Ω for the TR are represented by red
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(a) Source x computed by the LCCF method.
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(b) Voltage signals y recorded after injecting the LCCF source x and the TR back-
propagated signals.

Figure 2.10: TR back-propagated signals and the LCCF signal x propagate
through the lossless network to refocus/control the voltage at the midpoint of
line 3. After their separate emissions, the receiver Rout records the signals y,
where the desired target voltage G1 is obtained over the refocusing/target
time [tq, tf ] = [1.95× 10−7, 2.34× 10−7] lying between the two dashed lines.
The small figure represents the signals zoomed over [tq, tf ].
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circles, whereas the point of access of the LCCF is chosen to be an extremity,
for instance, and represented by a green circle in Figure 2.9. Generally, not
considering all the extremities to apply the TR method causes information
losses and leads to an improper refocusing of G1. Figure 2.11 refers to the
deteriorated refocusing of G1 when considering 1, 2, and 3 extremities of Ω
successively during a numerical TR process. We may note that the LCCF is
less expensive than the TR in terms of equipment from an experimental point
of view.
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Figure 2.11: During separate TR processes in a lossless network, not consid-
ering all the absorbent extremities causes information losses and leads to an
improper refocusing of G1. The small figure represents the signals zoomed
over the refocusing time [1.95× 10−7, 2.34× 10−7].

To produce a simple target voltage, such as G1 in a lossless network Ω,
the TR and the LCCF have shown to be remarkably effective. However, this
cannot be generalized to produce any target voltage, especially complex ones.
Let us denote by S1 the 1–periodic sinusoidal signal of maximum ampli-
tude +1 V. The general form of a sinusoidal function Sβ(t) of maximum
amplitude β is

Sβ(t) = β sin(2πft), (2.10)

such that f denotes the frequency of the function and
S1 = [S1(0), S1(1), · · · ]. By taking f = 31.6 MHz, we now con-
sider G1 followed by S1 as the new complex target voltage. The new target
voltage is denoted by G1S1 and represented in blue sky in Figure 2.12b. After
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applying the TR and the LCCF processes, their output signals are respectively
displayed in red and dark blue in Figure 2.12b, while Figure 2.12a represents
the computed LCCF source x.
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(a) Source x computed by the LCCF method.
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(b) Voltage signals y recorded after injecting the LCCF source x and the TR back-
propagated signals.

Figure 2.12: TR back-propagated signals and the LCCF signal x propagate
through the lossless network to refocus/control the voltage at the midpoint
of line 3. After their separate emissions, the receiver Rout records the sig-
nals y. For the LCCF process, the desired complex target voltage G1S1 is
obtained over the target time [tq, tf ] = [1.95× 10−7, 2.34× 10−7] (the inter-
val between the two dashed lines), whereas the TR fails in refocusing G1S1

over [tq, tf ]. The small figure represents the signals zoomed over [tq, tf ].

Obviously, the LCCF succeeds in generating the desired complex target
voltage, unlike the TR that fails in refocusing G1S1 at the midpoint of line 3.
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The relative error (2.8) between the target signal and the signal obtained by
the LCCF over [tq, tf ] = [600∆t, 770∆t] is about RE = 8.66 × 10−4. As a
result, the TR shows to be inefficient at refocusing a complex target voltage
at a single point in a lossless network. Unlikely, the LCCF method succeeds
in generating any voltage profile at any fixed point on the network.

In general, the comparison “TR vs. LCCF” remains valid in three-
dimensional cases, where the Time-Reversal Mirrors (TRM) could not be
placed at the optimal positions due to inaccessible volumes inside the cavity,
for example, leading to poor refocusing quality. An alternative solution could
be to work remotely using the LCCF method, where only one source point is
required with the possibility to be placed anywhere. Often, when working in
irreversible media, a single TRM is not sufficient to obtain a good refocusing
due to the absorbent walls, but one probe is enough for the LCCF method to
generate the desired target field as demonstrated in Section 2.1.3. Hence, still
in three dimensions, the LCCF is less costly than the TR in terms of equip-
ment needed to realize experimental manipulations. Another key point, the
LCCF may generate more complex target fields that may not be feasible by
the TR. In the next section, we go further and introduce arbitrary losses to the
problem to compare the TR and LCCF methods.

2.2.2 Lossy network

Comparing the TR and the LCCF in lossy media is also an interesting
problem. It is important to distinguish between the amplitude losses resulting
from the signal propagation and the information losses resulting from the
irreversibility of the media due to the absorbent walls (extremities in the
wiring networks) treated in the previous section. These types of losses could
not be treated in the same way; we have shown in the previous section the
need to access each leaky extremity of the voltage in a TL network to obtain
a good refocusing when dealing with information losses. In this section, we
only focus on amplitude losses to prove the superiority of the LCCF over the
TR without claiming that the TR does not work in this case [135]. We apply
and compare the TR and the LCCF methods for generating a simple target
voltage in a lossy medium after both methods have proven their efficiency
in lossless media. We show that the TR requires additional treatments to
compensate for the amplitude losses, unlike the LCCF, where no additional

74



2. SOURCE IDENTIFICATION IN LINEAR SYSTEMS: THE LCCF METHOD

steps are required.
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(a) Source x computed by the LCCF method.
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(b) Voltage signals y recorded after injecting by the LCCF source x and the TR
back-propagated signals.

Figure 2.13: TR back-propagated signals and the LCCF signal x propagate
through the lossy network to refocus/control the voltage at the midpoint of
line 3. After their separate emissions, the receiver Rout records the signals y,
where the desired target voltage G1 is recorded over the refocusing/target
time [tq, tf ] = [1.95× 10−7, 2.34× 10−7] lying between the two dashed lines.
Unlikely, the TR fails in refocusing G1. The small figure represents the signals
zoomed over [tq, tf ].

Here, losses are introduced to the lines of Ω by modifying the values of
the resistance R = 0.1 Ω/m and the conductance G = 0.001 S/m, causing
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amplitude reductions by 36.68%. For the sake of simplicity, we do not
take into account frequency-dependent losses. We compare the LCCF and
the TR methods for generating the same target voltage G1 (2.6) at a single
point of Ω. The TR technique fails in refocusing G1 due to the amplitude
reductions resulting from the losses after the propagation back and forth
of the signals (see the red signal in Figure 2.13b). Such losses result in
lowering the amplitudes of the refocusing peak at the midpoint of line 3.
In contrast, the LCCF method computes the new source of Figure 2.13a to
be emitted by GLCCF, leading the receiver Rout to record the voltage repre-
sented in dark blue in Figure 2.13b. The LCCF successfully produces G1

at the midpoint of line 3 over [tq, tf ]. The relative error (2.8) between G1

and the obtained voltage by the LCCF over [tq, tf ] is about RE = 3.95×10−9.

For the TR method, a simple solution, in this case, is to increase the
energy of the detected signals at the receiver points in the first phase;
however, this requires prior knowledge of the attenuation level presented
in Ω. In many experimental tests, it may not be possible to increase the
amplitudes of the back-propagated signals due to equipment limitations.
Another solution is to use lossy back-propagation models to compensate for
the effects of losses [136]. The situation worsens for the TR when dealing
with lossy-dispersive media as dispersion may distort the form of the signal;
therefore, different treatments are required. Without additional treatments,
it is not possible to refocus a proper target voltage/current or field at the
source point using the standard TR method. In general, the TR method
requires prior knowledge of the characteristics of the medium, whether it is
lossy, dispersive, reversible, absorbent, etc. to select (or not) the appropriate
treatments to be taken. However, the LCCF is totally independent of the
medium characteristics. As a matter of fact, the impulse response used to
characterize the system implicitly includes all these propagative information
to be compensated during an LCCF process. To sum up, Table 2.3 below
summarizes the “TR vs. LCCF” comparison and shows the advantages of the
LCCF over the TR to shape electromagnetic fields at a spatial point over a
time interval.

The computational results in Sections 2.1 and 2.2 are encouraging enough
and may pave the way for experimental validation, as we will see in the last
chapter of this dissertation. Nonetheless, not all the computed sources by the
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XXXXXXXXXXXXProperties
Methods

TR LCCF

Access points∗
≥ 2 (Huygens surface

in theory)
2

Shaping complex fields Not efficient Efficient

Medium’s characteristics
Dependent and requires

additional steps
Independent

(∗): The access points correspond to the required number of points used to
place generators and receivers.

Table 2.3: Comparison between the TR and the LCCF techniques.

LCCF may experimentally be realized due to their physical characteristics
(amplitudes, frequencies, etc.); otherwise, they become costly or even exper-
imentally unachievable. To fill this gap between numerical and experimental
validation, we take an intermediate step towards improving the sources by
adding constraints to the LCCF problem, as we will see in the following.

2.3 Source Properties Modifications

This section is dedicated to showing that the LCCF method still gives inter-
esting results under certain conditions, namely constraints, to be satisfied by
the computed solution. These constraints may modify the source properties to
obey some limitations one may encounter during experiments. At first, we ad-
just the source period of emission by specifying the first and the last emission
instants. Further, constraints are added to the problem to filter the source, then
restrict its amplitudes between two predefined maximal and minimal values.

2.3.1 Duration of source emission

Let tp = p∆t and tz = z∆t [(p, z) ∈ N2] be the first and the last instants
of the source emission, respectively. In Section 2.1.1, the LCCF method has
been presented to identify the source x ∈ R(f+1) emitted for the longest
possible time duration from tp = 0 to tz = tf . Only in this section we will
employ the notation x = x0→f to put this feature in appearance. We develop
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the LCCF technique to identify the source xp→z emitted over [tp, tz], where
0 ≤ tp � tq and tp � tz ≤ tf . Doing so, we modify the LCCF matrix A in a
way to satisfy this condition. To start emitting the source at tp, we inject the
unit pulse ep+1 = [0, · · · , 0, 1, 0, · · · , 0] to record the impulse response hp+1

that will be used to build the first column of A. Then, we proceed exactly
in the same diagonal constancy as previously described in formula (2.4) to
build the rest columns. In particular, the case of p = 0 refers to the theory of
Section 2.1.1, where the unit pulse e1 is injected to record h1. Concerning the
emission duration of the source, it is represented by the number of columns
of A. Then, it is sufficient to choose the first z − p + 1 columns. Therefore,
the matrix A ∈ M(f−q+1)×(z−p+1) may generally be written as

Aij =


hp+1(q) hp+1(q − 1) · · · · · · · · · hp+1(q + p− z)

... hp+1(q)
. . . ...

...
... . . . ...

hp+1(f) hp+1(f − 1) · · · hp+1(q) · · · hp+1(f + p− z)

 .

(2.11)
The matrix A should not extend straight up, i.e., the number of rows should
not exceed the number of columns. In fact, the integers p and z could not
be chosen randomly, at least they should be selected in a way that allows a
physical computation of the source to impose the target field F. That is to
say, the duration of emitting the source is long enough to cover the entire
duration of the target time (z − p+ 1 ≥ f − q + 1). After regularization, the
LCCF system to be solved is(

ATA + εI
)
xp→z = ATF. (2.12)

Emitting xp→z leads the receiver R to recording the signal yp→z, such that
yp→z/

[tq,tf ]
= F.

Problem settings

Assume that the network Ω has the same cartography as before but with
different characteristics, as seen below in Figure 2.14 and Table 2.4. The
reason behind changing the characteristics of Ω is to show that any arbitrary
length of lines, load, and impedance characteristics may be considered to
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Figure 2.14: Network configuration.

Line Nb. l z (in m) Z l
C (in Ω) Z l

L (in Ω)
1 5 50 50
2 6 50 0
3 4 50 0
4 5 50 50
5 8 50 0

Table 2.4: New characteristics of the network.

apply the LCCF method. Losses are added to the lines of Ω by taking
R = 0.1 Ω/m and G = 0.001 S/m, causing amplitude reductions by 36.68%.
For the sake of simplicity, we do not take into account frequency-dependent
losses. The network Ω, with its new characteristics, will be used in the
numerical applications in the rest of this chapter.

The source generator G is placed at the start node of line 1 and a receiver R
is placed at the termination of line 4. The target voltage is chosen to be the
Gaussian pulse G1 (2.6) with tc = 75∆t, σ = 10∆t (see the blue sky signal
in Figure 2.15b) and the target time [tq, tf ] = [450∆t, 600∆t]. We first apply
the LCCF method to identify the source x0→f that leads R to recording G1

over [tq, tf ] without any constraints. Figure 2.15a shows the computed source
and its output signal y0→f recorded by R is represented in Figure 2.15b. In
this case, the relative error (2.8) is about RE = 1.43× 10−6.
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(a) Source x0→f emitted over [0, f∆t].
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(b) Voltage signal y recorded after injecting x0→f .

Figure 2.15: After the emission of the source x0→f , the receiver R
records the signal y, where y/

[tq,tf ]
= G1 over the target time

[tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between the two dashed lines.

Numerical applications

We have seen in Figure 2.15a how the LCCF method could compute a
source x0→f emitted over the time interval [0, tf ] = [0, f∆t] to generate G1

over [tq, tf ]. In the next step, the LCCF is applied to compute a source xp→z
to be emitted between two specified instants p∆t and z∆t, such that after its
emission, the output signal yp→z = G1 over [tq, tf ]. Here, we present the first
example with a short source emission duration and a second example with a
shorter duration.

80



2. SOURCE IDENTIFICATION IN LINEAR SYSTEMS: THE LCCF METHOD

Example 1: We set p = 100 and z = 400, then the LCCF computes a
source x100→400. Its emission by G leads to recording the signal y100→400

that matches G1 over [tq, tf ]. The signals x100→400 and y100→400 are
represented in red in Figure 2.16. The relative error (2.8) in this example
is RE = 2.86× 10−6.

Example 2: We set p = 200 and z = 360 to compute the source x200→360.
Its emission generates the signal y200→360 that matches G1 over [tq, tf ]. The
signals x200→360 and y200→360 are displayed in gray in Figure 2.16. The
relative error (2.8) in this example is RE = 8.02× 10−4.

To analyze our results, the sources x100→400 and x200→360 seem to be
chaotic. Using the Fast Fourier Transform (FFT), the frequency spectra
of x100→400 and x200→360 are computed and plotted in Figure 2.17 to show
their frequencies. The presented high frequencies raise our attention to go
deeper into our study as they result in costly or unachievable sources during
experimental validation. Up to now, the LCCF technique does not take into
account the physical characteristics of the computed source (frequencies,
amplitudes, etc.). In fact, the LCCF with a short source emission duration
usually finds a mathematical true solution; however, this solution may not
necessarily be considered in experiments due to physical considerations or
equipment limitations.

Moreover, shortening the source emission duration may lead to computing
sources of high amplitudes compared to the amplitudes of the desired target
voltage. In Example 2, the amplitudes of x200→360 are not in the same order
of magnitude as G1; they vary over a wide range −89.88 and +67.73 V to
generate G1 of maximum amplitude +1 V. Not only the source amplitudes
suffer from this disorder, but also the output voltage y200→360 does not remain
in the same order of magnitude as G1 in the neighborhood of [tq, tf ], i.e., they
vary between −11.53 and +11.19 V, ∀ t ∈ [0, tn] \ [tq, tf ].
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(a) Source x100→400 emitted over [100∆t, 400∆t].
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(b) Source x200→360 emitted over [200∆t, 360∆t].
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(c) Voltage signals y recorded after injecting y100→400 and y200→360.

Figure 2.16: After the separate emission of the sources x100→400 and x200→360,
the receiver R records the signals y, where y/

[tq,tf ]
= G1 over the target time

[tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between the two dashed lines. The
small figure represents the signals zoomed over [tq, tf ].
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Figure 2.17: Spectra of the signals x100→400 and x200→360.

Accordingly, to avoid these undesirable behaviors, we may improve the
signals x100→400 and x200→360 in a way to satisfy all the following four condi-
tions:

1. Low relative error between the target and the obtained voltages,

2. Low maximum frequency of the source,

3. The amplitudes of the source are in the same order of magnitude as the
target voltage,

4. The amplitudes of the output signal obtained in the neighborhood
of [tq, tf ] are in the same order of magnitude as the target voltage im-
posed over [tq, tf ].

We put signal x100→400 understudy and propose two possibilities of im-
provement to satisfy the above conditions. Then, the best possibility will be
selected and applied to signal x200→360 to show the efficiency of the LCCF at
computing signals that are experimentally realizable.

Remark: In the rest of this chapter, we will only deal with signals with
restricted emission duration between p∆t and z∆t. Then we will assume
that x = xp→z and y = yp→z to avoid complex notation.
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2.3.2 Source filtering
In this section, we present two types of filtering: a posteriori filtering and
a priori filtering. First, we start by presenting the theoretical part of each
process, then we reconsider Example 1 to filter the computed source x100→400.

After solving the LCCF system (2.12), the source x = xp→z is computed,
then filtered using a moving average filter, which typically takes the form:

x(ρ)(k) =
1

ρ

[
x
(
k − ρ

2

)
+ · · ·+ x (k − 1) + x (k + 1) + · · ·+ x

(
k +

ρ

2

)]
,

(2.13)

where

• x(ρ)(k) is the smoothed value for the kth data point,
∀k ∈ {0, · · · , z − p},

• ρ > 0 is an even integer to be heuristically chosen. It represents the
number of neighboring points on both sides of x. The parameter ρ is
called the linear filtering level or span.

Note that the choice of ρ is a compromise between the smoothness of x(ρ)

and the resulting relative error. In essence, increasing the filtering level
of x(ρ) leads to an increase in the degradation of the obtained voltage y(ρ)

(y = yp→z) over [tq, tf ]. As a consequence, the relative error increases
relatively.

In Example 1, we apply the formula (2.13) to the computed source x

with ρ = 2. The filtered signal x(2) = x
(2)
100→400 is computed and represented

in blue in Figure 2.18a. After its injection, the obtained voltage y
(2)
100→400 is

recorded by the receiver R and displayed in blue in Figure 2.18b. A posteriori
filtering keeps the amplitudes of x(2) and y(2) in the same order of magnitude
as G1; the amplitudes of x(2) vary between −2.66 and +5.2 V, while the am-
plitudes of y(2) vary between −0.29 and +0.22 V over [0, tn] \ [tq, tf ]. By the
FFT, the spectrum of x(2) is computed and displayed in blue in Figure 2.19.
Notably, a posteriori filtering did not lead to significant progress in comput-
ing a source x(2) whose maximum frequency is less than that of x. More
importantly, the relative error (2.8) between the target voltage G1 and y(2)
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has remarkably increased from 2.86 × 10−6 to 3.58 × 10−2 with the lowest
span (ρ = 2). Increasing ρ would compute a smoother source with a lower
maximum frequency; however, it may highly deform the output voltage be-
tween tq and tf after its injection. The increase in the relative error contradicts
condition (1) and highlights the impractical improvement of x using a poste-
riori filtering.
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(a) Source x100→400 before filtering, and after a posteriori and a priori filtering. The
small figure shows the effect of a posteriori filtering on x100→400.
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(b) Voltage signal y100→400 recorded after injecting x100→400 before and after filter-
ing.

Figure 2.18: After separate emissions of the filtered sources, the receiver R
records the signals y

(2)
100→400, which are similar to G1 over the target time

[tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between the two dashed lines.
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Alternatively, constraints are then added to the LCCF system (2.12), act-
ing as a filter on the source x. These constraints satisfy the filter of for-
mula (2.13) and compute a smooth and low-frequency source. Such con-
straints may be written in a matrix-vector form Bx(ρ) = 0 (B is the squared
matrix of filtering) and added to the system (2.12), which becomes(

ATA + BTB + εI
)
x(ρ)
p→z = ATF. (2.14)

By referring to Example 1, we choose ρ = 2, similar to a posteriori
filtering, to obtain comparable results. In this case, B is a tridiagonal matrix
with 1 on its diagonal and −1

2
on its upper and lower diagonals. The filtered

source x(2) is then computed and displayed in green in Figure 2.18a. After
its emission, the voltage signal y(2) is recorded at the receiver point and
represented in green in Figure 2.18b. Similar to a posteriori filtering, the am-
plitudes of x(2) and y(2) remain in the same order of magnitude as G1 varying
between −3.71 and +4.87 V for x(2), whereas they vary between −0.42
and +0.45 V for y(2) over [0, tn] \ [tq, tf ]. As opposed to a posteriori filtering,
the relative error (2.8) with a priori filtering stands at RE = 3.42 × 10−4,
which highlights acceptable degradation over [tq, tf ]. After plotting the
frequency spectrum of x(2) (see the green signal in Figure 2.19), adding
filtering constraints to the LCCF system computes a source x(2) whose
maximum frequency is less than that of x.
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Figure 2.19: Spectra of the signal x100→400 before filtering, and after a poste-
riori and a priori filtering.
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Accordingly, a priori filtering satisfies the conditions (1), (2), (3), and (4)
and shows to be an efficient improvement of the source x. As observed in
Figure 2.19, with a priori filtering, the maximum frequency of the solution
decreases more significantly than with a posteriori filtering. Then, a priori
filtering is selected as the best choice and applied to more critical cases, such
as Example 2. A priori filtered source x(2) = x

(2)
200→360 and its produced

voltage y(2) = y
(2)
200→360 are represented in green in Figure 2.20.
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(a) Source x200→360 after a priori filtering.
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(b) Voltage signal y200→360 recorded after injecting x200→360 before and after a pri-
ori filtering.

Figure 2.20: After the emission of a priori filtered source x
(2)
200→360, the re-

ceiver R records the signal y
(2)
200→360, which is similar to G1 over the target

time [tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between the two dashed lines.
The small figure represents the signals zoomed over [tq, tf ].
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After a priori filtering, the amplitudes of x(2) vary between −9.87
and +7.7 V, while they varied between −89.88 and +67.73 V be-
fore. Similarly, the amplitudes of y(2) vary between −1.3 and +0.95 V
over [0, tn] \ [tq, tf ], whereas they varied between −11.53 and +11.19 V
before. This implies that the amplitudes of x(2) and y(2) remain in the same
order of magnitude as G1 (+1 V). In this example, the relative error (2.8)
is about RE = 1.4 × 10−2, indicating adequate accuracy. To check the
maximum frequency of x(2), we plot its frequency spectrum in green in
Figure 2.21. As expected, a priori filtering computes a source x(2) whose
maximum frequency is less than that of x200→360. As aforementioned,
the LCCF method with filtering constraints is efficient at computing low-
frequency sources. This fact is illustrated more clearly in Example 2, as the
unconstrained source x200→360 is highly chaotic.
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Figure 2.21: Spectra of the signal x200→360 before and after a priori filtering.

Table 2.5 sums up the general results obtained by a posteriori filtering and
a priori filtering to improve any computed source. Although a priori filtering
may modify the amplitudes and reduce the maximum frequency of the com-
puted source, these modifications stay random and uncontrolled. For the mo-
ment, we could not solve the LCCF system for a source whose amplitudes are
restricted to specified minimal and maximal values. Unfortunately, it happens
sometimes that adding filtering constraints to the LCCF method reduces the
amplitudes of the smooth source, but this reduction is not always sufficient.
In such a case, adding another type of constraint that specifies the minimal
and maximal amplitude values of the source could be necessary.
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filtering
Condition

(1)
Condition

(2)
Condition

(3)
Condition

(4)
A posteriori 7 7 3 3

A priori 3 3 3 3

Table 2.5: General comparison between a posteriori and a priori filtering to
improve the computed source.

2.3.3 Amplitude constraints
Subsequently, we show how the amplitudes of the signal may be restricted
between two predefined lower and upper vector bounds denoted by lb and ub,
respectively. Solving the LCCF system (2.14) with amplitude constraints is
equivalent to find a source that minimizes∥∥(ATA + BTB + εI

)
x(ρ)
p→z −ATF

∥∥2

2
, such that lb ≤ x(ρ)

p→z ≤ ub. (2.15)

This problem may be solved using the linear Linear Least-SQuares (LLSQ)
solver with bound constraints. The LLSQ solver uses the trust-region-
reflective algorithm, which is a subspace trust-region technique based on the
interior-reflective Newton’s method [137]. The algorithm generates strictly
feasible iterations converging, in the limit, to a local solution. Each iteration
involves the approximate solution of a large linear system using the method
of preconditioned conjugate gradients.

In Example 1, after a priori filtering of the source, we assume that we
are only interested in a source whose amplitudes lie in [−3, 4], i.e., lb = −3
and ub = 4. The LLSQ algorithm converges with 1809 iterations to compute
the new source x

(2)
CSTR represented by the magenta signal in Figure 2.22a. Af-

ter its injection, the voltage y
(2)
CSTR is recorded by R and displayed in magenta

in Figure 2.22b. The computational time taken by the algorithm to achieve
convergence is 25.5 s with an relative error (2.8) about RE = 2.8× 10−2.

Recalling about the definition of x
(2)
CSTR, it is a source that is emitted

over a predefined duration, filtered, and constrained to specified upper and
lower bounds. In the presence of all these restrictions, an relative error (2.8)
equivalent to 2.8 × 10−2 might be accepted. Imposing amplitude constraints
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(a) Source x
(2)
100→400 before and after adding amplitude constraints.
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(b) Voltage signal y(2)
100→400 recorded after injecting x

(2)
100→400 before and after adding

amplitude constraints.

Figure 2.22: After the emission of the amplitude-constrained source x
(2)
CSTR

over [100∆t, 400∆t], the receiver R records the signal y
(2)
CSTR, which is similar

to G1 over the target time [tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between
the two dashed lines.

on x
(2)
100→400 is not that easy since the latter already obeys two restrictions

on its emission duration and smoothness. Then, adding severe amplitude
constraints in such a case would highly increase the relative error and deform
the voltage obtained over [tq, tf ]; that is why we chose nonstrict constraints
on the amplitudes. Another LCCF problem with stiffer amplitude constraints
might be found in [138].
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Imposing stiffer constraints on the amplitudes requires removing other
restrictions or reducing their severity. In a nutshell, we have to compromise
between the source emission duration and added constraints to satisfy the
four conditions (1), (2), (3), and (4) mentioned earlier in this section. The
constraints of the LCCF method may serve as tools that can be used when
necessary. The use of such constraints is problem-dependent.

2.4 Composed Sources and Complex Targets

Identifying sources to replace a field by another one could also be an interest-
ing application for the LCCF. Here, we show that such a technique may pro-
duce not only simple target fields (such as Gaussian or sine pulses), but also
complex ones over longer periods. Denote by sinit an initial source placed
anywhere in the medium, emitted over [0, r∆t], and excites the medium at
every single point. The receiver R records the output signal yinit produced
by sinit, where the set of amplitudes of yinit over [tq, tf ] is denoted by U(

yinit/
[tq,tf ]

= U

)
. We want to identify the source emitted after sinit, such

that the output voltage yinit/
[tq,tf ]

= F, i.e., we replace U by F. Basically,

applying the LCCF as previously described fails in doing so as the computed
source interferes with the reflected and re-reflected signals resulting from the
injection of sinit. Before generating F over [tq, tf ], we take an earlier step to
cancel U created by sinit over [tq, tf ]. Due to the superposition theorem that is
always valid in linear media, the LCCF system (2.12) is modified as follows:(

ATA + εI
)
xp→z = AT (−U + F) . (2.16)

Considering the same settings and setup as Section 2.3.1, we assume
that Ω is excited by sinit = G1 (2.6) with tc = 75∆t and σ = 10∆t emitted
over [0, 130∆t] (r = 130) by the generator G, for example (see the black
signal in Figure 2.23b). After injecting G1, its output voltage yinit is recorded
by the receiver R and represented in Figure 2.23a. Assume that the complex
target voltage F is the blue sky signal of Figure 2.23a to be imposed over the
target time [tq, tf ] = [450∆, 987∆t]. Then, we look for the source emitted
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after G1 to cancel U and impose F over [tq, tf ].

For tp = 160∆t and tz = f∆t, the source x = x160→f is com-
puted and represented in red in Figure 2.23b. Injecting x after G1 re-
places the voltage U by F over [tq, tf ], as illustrated in Figure 2.23c with
an RE = 1.07 × 10−3 (2.8). In this case, the signal x is chaotic; thus, low-
ering its maximum frequency requires filtering constraints. After adding such
constraints to the problem, the signal x(2) (blue signal in Figure 2.23b) is com-
puted, which in turn produces the blue signal in Figure 2.23c at the R-level.
With a priori filtering, the relative error (2.8) slightly increases to 8.69×10−3.
We note that this problem does not necessitate amplitude constraints.

2.5 Conclusion
We began this chapter by recalling the main lines of the LCCF technique,
which is capable of effectively identifying a source to control a field in any
linear medium over a specified time interval. This idea was supported by
numerical applications in lossless and lossy wiring networks as well as ane-
choic and reverberant free space environments. Later, we compare the LCCF
and the time-reversal for shaping electromagnetic fields in a linear medium,
then present the advantages that the former could bring over the latter. Due
to some limitations encountered during experiments, constraints are added to
the LCCF problem to control the first and last instants of the source emission,
reduce the maximum frequency of the source by filtering, and control its max-
imal and minimal bounds. We gathered all the necessary ideas together in an
interesting application for the LCCF method in the last section. We showed
that the LCCF method might substitute an undesired voltage by an intentional
one with and without filtering constraints. The idea of this application will be
used in the next chapter after improving the LCCF method. More applications
will be presented to show the interest of the generalized LCCF when applied
to electromagnetic interference problems.
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(a) Voltage signal yinit recorded after injecting the initial pulse G1.
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(b) Composed source G1 + x160→f before and after a priori filtering.
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(c) Voltage signals recorded after injecting G1 + x160→f before and after filtering.

Figure 2.23: After the emission of the composed source G1 + x160→f before
and after a priori filtering, the receiver R records a signal, which is similar
to G1 over the target time [tq, tf ] = [1.42× 10−7, 1.9× 10−7] lying between
the two dashed lines.
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3
Generalized LCCF and Software
Correction Application

THE Linear Combination of Configuration Field (LCCF) method is
generalized to identify several temporal sources that control the

voltage/current or field at one or more spatial points in the time domain.
The generalized LCCF technique is first presented, followed by numerical
illustrations in lossy wiring networks as well as anechoic and reverberant
three-dimensional environments.

Electrical wires deliver safety and control operations to various wiring
systems, so any shortening in their performance due to the appearance of
faults might be dreadful from an economic point of view or in terms of lives.
For this reason, researchers innovated and developed various wire diagnosis
techniques to detect, locate, and diagnose the different faults in communi-
cation networks. Sometimes, these techniques are inefficient or suffer from
limitations that reduce their proper functioning. Here, we introduce an in-
teresting application for the generalized LCCF method called the Software
Correction (SC) in wiring networks. The SC suppresses any unintentional
perturbation resulting from the presence of any number of faults regardless of
their position and nature. The acronym “LCCF” may refer to both the basic
and the generalized versions of the LCCF method without specifying the used
LCCF version. Simply, as long as we deal with one source generator and one
receiver, we use the basic LCCF; otherwise, we use the generalized LCCF.
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3.1 Generalized LCCF Method

Ω

G1

...

GN

RM

t

...

R1

t

Figure 3.1: Schematic setup of the LCCF method: the source generators emit
signals that propagate and interfere through a linear medium, and perhaps
being distorted by inhomogeneities in the medium. Each receiver records the
signal it detects.

Consider the schematic setup of the generalized LCCF method repre-
sented in Figure 3.1. For all t ∈ [0, tn], the source generators G1, · · · ,GN

emit N ∈ N∗ nonnull input signals x1, · · · ,xN , respectively. For
all j ∈ {1, · · · , N}, xj = [xj(0), · · · , xj(n)] ∈ Rn+1. The sig-
nals x1, · · · ,xN propagate, interfere and may be distorted due to disconti-
nuities and inhomogeneities in the linear medium. A set of M ∈ N∗ re-
ceivers R1, · · · ,RM are placed at M distinct points, where each records the
signal it detects over [0, tn]. Let y1, · · · ,yM ∈ Rn+1 be the output signals de-
tected by R1, · · · ,RM , respectively. The general aim of the LCCF method is
to identify x1, · · · ,xN that may simultaneously control y1, · · · ,yM over the
target time [tq, tf ] = [q∆t, f∆t]. Controlling y1, · · · ,yM means to impose
predefined target fields F1, · · · ,FM at the M points over [tq, tf ]. That is to
say, yi/

[tq,tf ]
= [yi(q), · · · , yi(f)] = Fi, where yi/

[tq,tf ]
are the amplitudes

of yi over [tq, tf ], ∀i ∈ {1, · · · ,M}. To reduce the computational costs,
we avoid the calculation of xj/

]tf ,tn]
and set them to 0 since they reach the

receiver points after tf having no influence over [tq, tf ]. For the sake of sim-
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plicity, we denote by xj the part of the signal that is not identically zero, i.e.,
xj = [xj(0), · · · , xj(f)]. The generalized LCCF method is based on solving
the following linear system:

Ax = F, (3.1)

where

• x = (x1, · · · ,xN) with xj ∈ Rf+1 the vector to be computed contain-
ing the discrete data of the source emitted by Gj ,

• F = (F1, · · · ,FM) with Fi ∈ Rf−q+1 the vector representing the dis-
crete data of the target field imposed at Ri-point over [tq, tf ] after emit-
ting x1, · · · ,xN ,

• A =

A11 · · · A1N
... . . . ...

AM1 · · · AMN

 is a block matrix with

Aij ∈ M(f−q+1)×(f+1) the rectangular real matrix that charac-
terizes the medium between the two fixed Gj-point and Ri-point.
Each Aij is constructed according to the formula (2.4) based on the
impulse response (h1)ij recorded by Ri after Gj injects e1. In general,
the total number of simulations required to construct A is N ×M .

Similar to the basic LCCF, the generalized LCCF system (3.1) is also not
square and may be solved for x in the least square sense by premultiplying
both sides by AT . Then, we use Tikhonov regularization [134] to stabilize the
new LCCF system (

ATA + εI
)
x = ATF. (3.2)

Remark: In this chapter, voltage signals are considered for illustrations
and applications in wiring networks; however, current signals can be consid-
ered in a similar way.

3.1.1 Numerical illustrations in wiring networks
We consider an aerial network Ω made up of unshielded two-conductor
uniform cables. The topology and characteristics of Ω (number, lengths,
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Figure 3.2: Network configuration.

Line Nb. l z (in m) Z l
C (in Ω) Z l

L (in Ω)
1 5 50 50
2 6 50 0
3 4 50 -
4 5 50 50
5 8 50 50

Table 3.1: Characteristics of the network.

impedance, and loads of lines, etc.) may be chosen arbitrarily. For example,
assume that Ω is the network of Figure 3.2 composed of two nodes and
five point-to-point transmission lines. Table 3.1 represents their respective
numbers l, lengths z, characteristic impedance Z l

C, and load impedance Z l
L

for l ∈ {1, ..., 5}. For the sake of simplicity, no losses are considered in
the lines of Ω. Losses are added to the lines of Ω by taking R = 4 Ω,
causing amplitude reductions by 50.13%. Here, we do not take into account
frequency-dependent losses.

As in the previous chapter, we consider an RLCG model, where a stan-
dard one-dimensional FDTD scheme is used to solve the telegrapher’s equa-
tion (see Chapter 1 Section 1.3.2). The time step ∆t = 3.16× 10−10 s and
the space step ∆z = 0.1 m are selected in a way that satisfies the stability
criteria (1.38). The total duration of the simulations is [0, tn] = [0, 1422∆t].
We illustrate the generalized LCCF technique with two numerical examples.
The objective is to show that the LCCF method still gives excellent results
when several source generators or signal receivers are introduced to Ω. The
considered Tikhonov parameter for the LCCF method is ε = 10−9.
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One source generator and two receivers

The first illustration shows that the LCCF may simultaneously control mul-
tiple points of Ω over [tq, tf ] using a single source. Assume that a source
generator G is placed at the start node of line 1 and two receivers, R and R′,
are respectively placed at the terminations of lines 4 and 5 (see Figure 3.2).
The aim is to identify a voltage source x that propagates through Ω, driving
R and R′ to record two different target signals over [tq, tf ] = [450∆t, 600∆t].
For R, we choose the Gaussian target voltage G1 (2.6) to be the correspond-
ing target voltage, where tc = 210∆t and σ = 20∆t, whereas we choose
the sinusoidal signal S1 (2.10) for R′, i.e., F1 = G1 and F2 = S1. The LCCF
system (3.2) is then reduced to[(

A11

A21

)T (
A11

A21

)
+ εI

]
x =

(
A11

A21

)T (
G1

S1

)
. (3.3)

The LCCF characterization matrix A =

(
A11

A21

)
is represented in Figure 3.3.

Figure 3.3: Image of the LCCF characterization matrix A (1 generator
and 2 receivers).

After solving the above system (3.3), the complex source x is com-
puted and represented in Figure 3.4a. Its emission by G leads R (resp. R′)
to recording the voltage signal y (resp. y′) represented in Figure 3.4b
(resp. 3.4c). The small figures represent y and y′ zoomed over the target
time [tq, tf ] = [1.42× 10−7, 1.9× 10−7]. It is obvious that y[tq ,tf ] = G1
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(a) Source x computed by the LCCF method.
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(b) Voltage signal y recorded after injecting x.

0 1 2 3 4

Time (s) 10
-7

-10

-5

0

5

10

V
o
lt
a
g
e
 (

V
)

1.42 1.9

10
-7

0

1

(c) Voltage signal y′ recorded after injecting x.

Figure 3.4: Source x propagates through the network to control the voltage
simultaneously at the terminations of lines 4 and 5. After its emission, the
receiver R (resp. R′) records the signal y (resp. y′) where the desired target
voltage G1 (resp. S1) is recorded over the target time.
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and y′
[tq ,tf ]

= S1. The Relative Errors (REs) (2.8) in this case are

RE
(
G1,y[tq ,tf ]

)
= 1.89× 10−4 and RE

(
S1,y

′
[tq ,tf ]

)
= 1.26× 10−3.

Two source generators and two receivers

Considering a more complex problem, we show how the LCCF technique may
identify multiple sources to control multiple receiver points of Ω by imposing
distinct target voltages. A second generator G′ is placed at the start node of
line 2. We determine the temporal profiles of two sources x and x′ generated
by G and G′, respectively. The considered target signals are still the same at
the R and R′-levels as previously described. The LCCF system (3.2) becomes[(

A11 A12

A21 A22

)T (
A11 A12

A21 A22

)
+ εI

](
x1

x2

)
=

(
A11 A12

A21 A22

)T (
G1

S1

)
.

(3.4)

The corresponding LCCF characterization matrix A =

(
A11 A12

A21 A22

)
is rep-

resented in Figure 3.5.

Figure 3.5: Image of the LCCF characterization matrix A (2 generators
and 2 receivers).

The above system is solved, then two complex sources, x and x′, are com-
puted and represented in Figures 3.6a and 3.6b. After emitting x and x′ si-
multaneously, R (resp. R′) records the voltage y (resp. y′) represented in
Figure 3.6c (resp. 3.6d). The small figures represent y and y′ zoomed over
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(a) Source x computed by the LCCF method.
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(b) Source x′ computed by the LCCF method.
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(c) Voltage signal y recorded by R after injecting x and x′ simultaneously.
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(d) Voltage signal y′ recorded by R′ after injecting x and x′ simultaneously.

Figure 3.6: Sources x and x′ propagate through the network to control the
voltage simultaneously at the terminations of lines 4 and 5. After their emis-
sion, the receiver R (resp. R′) records the signal y (resp. y′) where the desired
target voltage G1 (resp. S1) is recorded over the target time.
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the target time [tq, tf ] = [1.42× 10−7, 1.9× 10−7]. The signals impose G1

and S1 at the terminations of lines 4 and 5, respectively. The relative er-
rors (2.8) recorded in this example are RE

(
G1,y[tq ,tf ]

)
= 1.57× 10−3 and

RE
(

S1,y
′
[tq ,tf ]

)
= 1.92 × 10−3. We note that any attenuation level may

still be selected without affecting the applicability of the generalized LCCF
method. This idea was successfully tested in Chapter 2 Section 2.1.2. We
have shown the existence of a linear relation between the sources computed
at different attenuation levels.

3.1.2 Numerical illustrations in free space environments
In the 5 cm×4 cm×3 cm cavity Ω represented in Figure 3.7, we use the FDTD
scheme (see Section 1.3.1) to solve Maxwell’s equations. The total duration of
the simulations is [0, tn] = [0, 1422∆t]. The time step ∆t = 3.85× 10−12 s
and the space step (∆x,∆y,∆z) = (0.2 cm, 0.2 cm, 0.2 cm) are selected
in a way that satisfies the stability criteria (1.30). As an example, the first
component of the electric field Ex is chosen to illustrate the LCCF method;
however, any electric or magnetic component may still be considered.

Assume that two source generators G and G′ are placed
at (6∆x, 12∆y, 11∆z) and (15∆x, 5∆y, 13∆z) (see the black points in Fig-
ure 3.7), whereas two receivers R and R′ are placed at (11∆x, 10∆y, 12∆z)
and (4∆x, 12∆y, 7∆z) (see the red points in Figure 3.7). The generators
and the receivers may be placed anywhere in the cavity. We use the LCCF
method to identify electric sources x and x′ in the TD to impose the target
electric field G1 (2.6) (tc = 210∆t and σ = 20∆t) at two different spatial
points over [tq, tf ] = [500∆, 920∆t]. The target signal G1 is represented in
blue sky in Figures 3.8c and 3.8d (F1 = F2 = G1). Here, the Tikhonov
parameter for the LCCF method is ε = 10−12.

Anechoic cavity

After applying the LCCF process, the sources x and x′ are computed and rep-
resented in Figures 3.8a and 3.8b, respectively. After a simultaneous emission
of the sources, each by its corresponding generator, the electric fields y and y′

are recorded by R and R′, then represented in Figures 3.8c and 3.8d. The small
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Figure 3.7: Cavity configuration used in simulations.

figures represent y and y′ zoomed over [tq, tf ] = [1.92× 10−9, 3.54× 10−9].
In fact, y/

[tq,tf ]
= y′/

[tq,tf ]
= G1 for t ∈ [tq, tf ], where [tq, tf ] lies between

the two dashed lines in Figure 3.8. The relative errors between the target and
the obtained electric fields are 4.15× 10−6 for R and 3.38× 10−6 for R′.

Reverberant cavity

Let Ω now be the reverberant cavity in which the waves are totally reflected
once reaching the walls. We re-characterize Ω to compute the new sources x
and x′ represented in Figures 3.9a and 3.9b. The receivers R and R′ record the
electric signals y and y′ represented in Figure 3.9c and 3.9d. The small figures
represent y and y′ zoomed over [tq, tf ] = [1.92× 10−9, 3.54× 10−9]. It is
obvious that y and y′ are almost the target signal G1 over [tq, tf ]. The relative
errors between G1 and the obtained electric fields are estimated at 2.77× 10−6

for R and 1.37× 10−5 for R′.
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(a) Source x computed by the LCCF method.
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(b) Source x′ computed by the LCCF method.
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(c) Electric signal y recorded by R after injecting x and x′ simultaneously.
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(d) Electric signal y′ recorded by R′ after injecting x and x′ simultaneously.

Figure 3.8: Signals x and x′ propagate through the anechoic cavity to control
the electric field at the receiver points. After their emission, the receivers R
and R′ record the signals y and y′ where the desired target electric field G1

is recorded over the target time.
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For each case of the anechoic or reverberant cavity, the two sources
computed by the LCCF are nontrivial as it is difficult to define a trajectory
for their interference and interaction inside the cavity. In both cases, y and y′

are uncontrolled ∀ t ∈ [0, tn] \ [tq, tf ]. However, in a reverberant medium,
the LCCF computes more complex sources to compensate for the reflections
resulting from the scatterers and the walls of Ω as well.

The advantages of the generalized LCCF are similar to its basic ver-
sion discussed and analyzed in Chapter 2. Whether in its basic or general-
ized forms, the LCCF is always independent of the topology of the studied
medium. The medium is always viewed as a black box without any prior
knowledge of all the occurring physical phenomena (attenuation, dispersion,
multiple reflections, absorption, etc.). The LCCF relies solely on the impulse
responses between the source points and the receiver points. Interestingly,
the LCCF may be applied to many activities in EMC. In particular, it maybe
used with communication systems that are often exposed to faults, causing
their malfunctioning. In the following, we introduce a new process called
the software correction to address such faults. Then, numerical examples are
illustrated to show the applicability of such a process.

3.2 Software Correction of Faulty Lossy Linear
Networks

For many reasons such as safety, security, and optimal performance in wiring
systems, numerous techniques have been developed to anticipate or detect
the occurrence of electrical faults in wiring networks. Fault detection is often
used to shut down electrical systems and prevent exposure to all kinds of risks
or damages. After detecting the faults, the intervention of other methods, such
as the reflectometry-based [99], TR-imaging [103], and FasTR [139] tech-
niques, adopted to locating and diagnosing faults in power and transmission
line networks becomes essential. The ultimate objective behind wire diagno-
sis is to repair these faults to preserve the optimal performance of the system
in the shortest time and with the smallest investment. This process is called
the hardware correction or troubleshooting as it requires a close-up physical
treatment.
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(a) Source x computed by the LCCF method.
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(b) Source x′ computed by the LCCF method.
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(c) Electric signal y recorded by R after injecting x and x′ simultaneously.
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(d) Electric signal y′ recorded by R′ after injecting x and x′ simultaneously.

Figure 3.9: Signals x and x′ propagate through the reverberant cavity to con-
trol the electric field at the receiver points. After their emission, the receivers
R and R′ record the signals y and y′ where the desired target electric field G1

is recorded over the target time.
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Unfortunately, many drawbacks can be highlighted from the troubleshoot-
ing process. Firstly, after detecting the presence of the faults, unexpected
shutdown of the system during the detection-maintenance period may waste
time and money. Secondly, repairing the faults is also money and time con-
suming, such as the drilling or submarine processes needed to access faults
inherent in underground or undersea cables. Thirdly, the situation worsens
when faults are located in hard-to-access areas, such as radioactive zones
in nuclear plants or satellites in outer space, thus absolutely inaccessible to
maintenance processes.

Alternatively, other paradigms are required, such as the Software Cor-
rection (SC) process, to tolerate the faults and handle them as a part of the
network’s topology without the need to access their location or to recover in-
formation about them. The SC can be achieved by adding new input signals
to the faulty networks to satisfy the following:

• Compensate for the effects of the faults,

• Ensure a proper signal transmission to preserve the optimal perfor-
mance of the networks,

• Force the faulty networks to function as the healthy ones.

The SC is defined as the digital processing to remotely tolerate the faults
in wiring communication networks without any physical intervention. It may
be used in the following two cases:

• Faults that can be located by the wire diagnosis techniques, but

– Not immediately accessible to maintenance processes, such as
faults in underground or undersea cables. Once the faults are de-
tected, shutting down the system is no longer necessary during
the detection-maintenance period. However, the SC can serve as
a temporary solution and preserve the optimal performance of the
system away from any critical consequence during this period.

– Inaccessible to maintenance processes, such as faults located in
radioactive zones in nuclear plants or satellites in outer space.
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• Faults that may not be located by the wire diagnosis techniques due to
many reasons such as the ambiguity in symmetric networks, complex
networks, “blind spot1”, etc.

The SC process is independent of the topology of the studied network
regardless of its linear behavior (resistors, capacitors, inductors, etc.). We
emphasize that the independence of the network’s topology and character-
istics includes its complexity (cartography, number of lines, and junctions),
impedance (characteristic and load), as well as the multiple reflections, atten-
uation, and dispersion occurring in the network during signals propagation.
Moreover, the SC is also independent of the number, nature, and location of
the potential faults that may appear in the network. During the SC process,
the tested network is considered as a black box during the whole process,
where the interventions occur only at the source point(s) and the receiver
point(s).

In the sequel, the LCCF method is used to bring an SC to the faulty net-
work denoted by Ω′ with resistive loads. The faulty network Ω′ has the same
topology and characteristics as the healthy network Ω, but with the presence
of one or more faults inherent in its lines. In this section, we illustrate the SC
with three examples when Ω′ presents a soft fault, a hard fault (short circuit or
open circuit), and multiple faults (hard and soft) placed at random positions to
show that the SC process is independent of the nature, number and position of
the fault(s). Then, we show that the applicability of the SC process is not only
confined to faults inherent in the network’s lines, but defects resulting from
external sources can also be compensated. In these illustrations, we consider
voltage signals to apply the SC process; however, current signals can also be
considered in a similar way.

Problem settings

For example, we assume that Ω is the complex network represented in
Figure 3.10 composed of two nodes and six point-to-point lines with the

1In the avionic industry, a significant source of error in reflectometry is referred to as the
“blind spot” that occurs with cables of relatively short lengths. This is usually caused by the
fact that the reflected signal overlaps the incident one as a result of the momentary time delay.
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characteristics represented in Table 3.2 (line number l, line length z, char-
acteristic impedance Z l

C, load impedance Z l
L) and losses chosen arbitrarily,

the resistance R = 0.025 Ω/m for instance. For the sake of simplicity, we do
not take into account frequency-dependent losses. Actually, any attenuation
level may certainly be considered, although the chosen value of the resistance
provides a low level of attenuation coefficient (α = 0.0022 dB/m), causing
information losses by 5.36%. As a matter of fact, the higher the attenuation
level, the better the SC works since high losses completely attenuate some
reflections resulting from the faults before reaching the receiver point,
especially those of low amplitudes. Consequently, it limits the liability of
the SC to cancel the anomalies. For illustration purposes, assume that the
attenuation level introduced to the network is high enough in which a signal
sent down the wire is completely attenuated before reaching the receiver
point. Then, the recorded signals at this point in the presence or absence of
the faults are null. As a result, the SC is ineffective in such particular case.
This can easily be noticed when addressing soft faults with high losses as
they create only small impedance changes on the wire.

Considering an RLCG model, the telegrapher’s equations are solved
using a standard one-dimensional FDTD scheme, as described in Chapter 1
Section 1.3.2, to compute the voltage at the receiver points. The total
duration of the simulations is [0, tn] = [0, 1422∆t] (n = 1422), where
∆t = 3.9× 10−9 s and ∆z = 0.1 m are chosen in a way that satisfies
the stability criteria (1.38). The SC may be applied over any target time
[tq, tf ] ⊆ [0, tn]; however, in this chapter, the SC process is addressed
over the entire time interval ([tq, tf ] = [0, tn]), which is significantly more
complicated than considering a short period of time.

We discuss the linear SC process by using one source generator G and two
receivers (R and R′) that may be placed at any points on Ω. For instance, we
choose the start node of line 1 and the terminations of lines 4 and 5 as the
positions of G, R, and R′, respectively. The Tikhonov parameter considered
in this section is ε = 10−9. To show the impact of the fault(s), we record
the voltage signals at the receiver points after two separate injections of a
Gaussian pulse G2 (2.6) (tc = 40∆t and σ = 8∆t) in the healthy Ω and
the faulty Ω′ networks. For λ = {1, 2}, we denote by Vλ

H the healthy voltage
signal recorded by the receivers after injecting G2 in Ω; however, we denote
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Figure 3.10: Configuration of the linear network used during the SC process.

Line Nb. l z (in m) Z l
C (in Ω) Z l

L (in Ω)
1 1 50 50
2 3 50 ∞
3 4 50 -
4 8 50 50
5 5 50 50
6 7 50 0

Table 3.2: Characteristics of the healthy linear network.

by Vλ
F the faulty voltage signal recorded by the receivers after injecting G2

in Ω′.

3.2.1 Soft fault
Assume that a soft fault has appeared in line 2 at 2.5 m distance from the first
junction of Ω. The fault is represented by a gray X-mark in the network of
Figure 3.10. The healthy signals V1

H and V2
H are respectively displayed in

green in Figures 3.11b and 3.11c, while the faulty signals V1
F and V2

F are
represented in blue in the same figures. These slight output distortions at the
receiver levels refer to the effect of the soft fault. Using the LCCF method,
we now solve the linear system[(

A11

A21

)T (
A11

A21

)
+ εI

]
x =

(
A11

A21

)T (
V1

H

V2
H

)
. (3.5)
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for x. The new signal x is the source to be identified and added to G2 to elim-
inate the disturbances caused by the fault (see Figure 3.11a). After its injec-
tion, the corrected voltage signals V1

C and V2
C are recorded by R and R′, then

represented in red in Figures 3.11b and 3.11c, respectively. For all λ, the sig-
nal Vλ

C is similar to Vλ
H with relative errors (2.8) RE (V1

H,V
1
C) = 1.46× 10−7

and RE (V2
H,V

2
C) = 1.43× 10−7.

3.2.2 Hard fault

In Ω, a hard fault is simulated by modifying the load impedance Z6
L from 0

to∞Ω (see the red X-mark in Figure 3.10), then Ω′ is the short-circuited net-
work at the termination of line 6. After injecting G2, the healthy signal V1

H

(resp. V2
H) and the faulty signal V1

F (resp. V2
F) are respectively displayed in

green and blue in Figure 3.12b (resp. 3.12c). In fact, the hard faults generate
perturbations of greater amplitudes than those of soft ones; that is why it is
important to rectify the outputs in such cases. Accordingly, the same LCCF
system (3.5) is solved after re-characterizing Ω′. Hence, the new source x is
identified (see Figure 3.12a) and sent down in Ω′ to produce the corrected sig-
nals V1

C and V2
C. Notably, Vλ

H and Vλ
C are almost identical with the relative

errors (2.8) RE (V1
H,V

1
C) = 1.54× 10−7 and RE (V2

H,V
2
C) = 1.51× 10−7.

3.2.3 Multiple faults

The situation worsens when multiple faults appear in Ω. We assume that
two soft faults are inherent in lines 2 and 3 at 2.5 m and 1.5 m distances
from the first junction, respectively. Add to that, a hard fault (open cir-
cuit) is simulated at the termination of line 6. The soft faults are repre-
sented by gray X-marks, while the red X-mark in Figure 3.10 represents
the hard fault. The disturbances resulting from the faults are shown in Fig-
ures 3.13b and 3.13c as the differences between the healthy and the faulty
signals. After re-characterizing Ω′ to solve the LCCF system (3.5), the new
source x is computed and represented in Figure 3.13a. Its injection in Ω′

leads to recording the corrected signal V1
C by R and V2

C by R′. Remark-
ably, V1

H and V1
C coincide for the entire time domain with a relative error (2.8)

RE (V1
H,V

1
C) = 4.33 × 10−7. Similarly, V2

H and V2
C are indistinguishable

with RE (V2
H,V

2
C) = 4.24× 10−7.
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(a) Source x to tolerate the soft fault.
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(b) Healthy, faulty and corrected voltage signals at the R-level.
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(c) Healthy, faulty and corrected voltage signals at the R′-level.

Figure 3.11: Software correction of a faulty network presenting a single soft
fault.
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(a) Source x to tolerate the hard fault.
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(b) Healthy, faulty and corrected voltage signals at the R-level.
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(c) Healthy, faulty and corrected voltage signals at the R′-level.

Figure 3.12: Software correction of a linear faulty network presenting a single
hard fault.
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(a) Source x to tolerate the multiple faults.
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(b) Healthy, faulty and corrected voltage signals at the R-level.
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(c) Healthy, faulty and corrected voltage signals at the R′-level.

Figure 3.13: Software correction of a linear faulty network presenting multi-
ple faults.

115



3. GENERALIZED LCCF AND SOFTWARE CORRECTION APPLICATION

3.2.4 External defect
A defect may be any type of transient voltage perturbation. It could be an
external electromagnetic field that couples the network along an unshielded
cable length, leading to overvoltages and degradation in performance. As-
sume that a defect is generated by an external radiator and couples Ω at 1 m
distance from the first junction along the second line, as represented in Fig-
ure 3.10. In fact, we deal with defects of constant profiles, i.e., the radiator
keeps emitting the same signal without any changes. These defects can take
any form; for example, we suppose that the defect is the red signal represented
in Figure 3.10. The distortions caused by this interference at the receiver lev-
els are represented in Figures 3.14b and 3.14c. Using the LCCF, we correct
the faulty outputs by identifying the temporal source to be emitted by G (see
Figure 3.14a). The relative errors (2.8) between the healthy and the corrected
signals are RE (V1

H,V
1
C) = 8.89× 10−6 and RE (V2

H,V
2
C) = 8.78× 10−6.

3.2.5 Multiple faults and external defects
When faults and defects meet together to perturb Ω, the SC process remains
applicable. Assume that Ω suffers from the multiple faults described earlier
and a defect coupling the network at 1 m distance from the first junction
along line 2. The SC process is displayed in Figure 3.15 where the outputs
are corrected despite their high distortions. The relative errors (2.8) in this
case are RE (V1

H,V
1
C) = 4.02× 10−4 and RE (V2

H,V
2
C) = 3.96× 10−4.

The SC process may be applied to any defective system regardless of the
number, nature (soft/hard or external), and position of the faults or defects.
In [140–142], we considered other network topology and successfully cor-
rected the faulty outputs in the presence of faults and defects of different na-
ture and position. Only communication networks transferring data are consid-
ered for rectifications and not power systems that transmit electrical energy.
Although no information about the network topology is required for the SC,
prior knowledge of the healthy output and a free extremity to branch a receiver
are always needed. It is interesting to highlight the possibility of adding con-
straints (see Chapter 2 Section 2.3.2) to the SC problem to filter the source
when defects couple the network and distort its outputs [142]. When a hard
fault appears on the linking source-receiver path, the SC stops working as no
signal is detected by the receiver. For example, if line 3 is cut at any of its
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(b) Healthy, faulty and corrected voltage signals at the R-level.
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(c) Healthy, faulty and corrected voltage signals at the R′-level.

Figure 3.14: Software correction of a defective network coupled by an exter-
nal interfering signal.
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(a) Source x to tolerate the inherent faults and the external defect.
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(b) Healthy, faulty and corrected voltage signals at the R-level.
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(c) Healthy, faulty and corrected voltage signals at the R′-level.

Figure 3.15: Software correction of a defective network coupled by an inter-
fering signal with multiple faults inherent in its lines.
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points, the SC process is not applicable anymore, in such a particular case, and
other alternative wire diagnosis techniques are required to locate the fault(s).
These techniques may necessitate prior knowledge of the network’s topology.
Not only the SC process may be an application for the LCCF method, but
such a technique may also be applied in the field of signal integrity. A simple
example is illustrated in [138].

3.3 Conclusion

We generalized the LCCF method in a way to identify the temporal behaviors
of one or more sources to control one or more voltage/current or field signals
in any linear media. General numerical applications in lossy networks as
well as anechoic and reverberant chambers were illustrated to show the
applicability of the generalized LCCF independently of the topology of the
studied medium. In another section, we described an interesting application
for the LCCF method in faulty networks, called the software correction,
to tolerate the faults and compensate for their effects. Three numerical
examples were treated to address the different aspects of faults inherent in
the lines of the wiring networks (soft, hard, or multiple faults). Furthermore,
we showed that the software correction process remains applicable when the
networks are exposed to external interfering defects. In essence, the software
correction is independent of the position, number, and nature of the potential
faults or defects.

The results obtained in this chapter are encouraging enough and show
that the LCCF is a promising method that paves the path for two additional
studies. The first study discusses the possibility of realizing the LCCF
method and its applications experimentally. Further researches are required
on the sensitivity of the LCCF in the presence of noise, although few results
have been obtained in [143]. This study will be addressed in the last chapter
of this dissertation, where a detailed analysis will be given about the LCCF
method’s robustness in one and three-dimensional environments.

Due to the importance of nonlinear EMC problems, the second study
identifies the temporal sources in nonlinear media. For this reason, we test
the LCCF method when nonlinear elements are introduced to the wiring net-
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works. The next chapter will reveal whether the LCCF remains valid in non-
linear wiring networks or not. If not, we will try to propose other alternative
methods that may resolve nonlinear problems in EMC. The Chapters 3 and 4
are identically designed except that the former tackles linear wiring networks,
whereas the latter deals with nonlinear ones.
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4
Source Identification in Nonlinear
Systems: Newton’s Method and the
NLLSQ Solver

PROBLEMS in ElectroMagnetic Compatibility (EMC) are mainly nonlinear
due to the massive presence of nonlinear circuits (e.g. power amplifier,

switch, multiplier, mixer, etc.) based on passive (e.g. diodes) or active (e.g.
transistors) elements. Different methods have focused on characterizing
systems and objects of those problems [144–146]. In this chapter, Newton’s
Method (NM) and the NonLinear Least-SQuares (NLLSQ) method are used
to identify the temporal profile of an electromagnetic source that satisfies
particular properties for a given target (field, voltage, or current) at a single
spatial point of the medium over a time interval. Although both techniques
may be described for any nonlinear medium, our illustrating examples are
only confined to wiring networks. First of all, we test the Linear Combination
of Configuration Field (LCCF) method presented previously to show its mal-
functioning once nonlinear elements are introduced to the system. Afterward,
numerical applications show the applicability of NM and the NLLSQ solver
in lossless and lossy wiring networks to determine the effect of low and high
attenuation levels on their applicability.

We gather our ideas to bring a Software Correction (SC) to faulty nonlin-
ear complex networks with losses introduced to its lines. We highlight our
ability to correct the faulty outputs during the SC process regardless of the
numbers, positions, and nature of the potential faults. In the last application,
we apply the SC in the presence of signals emitted by a radiating source which
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couple the network at unshielded parts. Finally, the chapter draws some con-
clusions and gives some perspectives.

4.1 Time-Domain Source Identification in Non-
linear Media

Here, we present NM and the NLLSQ to solve NonLinear Problems (NLPs)
in EMC. We first describe both techniques, then present numerical illustra-
tions in lossless and lossy networks to show their applicability with different
attenuation levels. As NM and the NLLSQ may be applied to any nonlin-
ear system, their general principles are presented for any nonlinear mapping
between the inputs and the outputs.

4.1.1 Theory: Newton’s method and the NLLSQ solver

G R

t

Ω
(nonlinear)

Figure 4.1: Schematic setup of the general nonlinear problem.

To grasp the main lines of Newton’s Method (NM) and the NonLinear
Least SQuares (NLLSQ) solver, we consider the schematic setup of Fig-
ure 4.1. Let [0, tn] be the time interval during which a signal is emitted
and received, where tn = n∆t > 0 (n ∈ N∗) is the last instant of time
to be specified. For all t ∈ [0, tn], the source generator G emits a discrete
signal x = [x(0), x(1), · · · , x(n)] ∈ Rn+1 that propagates, interferes, and
may be distorted due to discontinuities and inhomogeneities in the nonlinear
medium Ω. A receiver R placed at a fixed point records the detected
discrete signal y = [y(0), y(1), · · · , y(n)] ∈ Rn+1 over [0, tn]. Similar
to the LCCF method in linear systems, the aim of NM and the NLLSQ

122



4. SOURCE IDENTIFICATION IN NONLINEAR SYSTEMS: NEWTON’S METHOD
AND THE NLLSQ SOLVER

is to identify the temporal source x that may control y at a predefined
target time [tq, tf ] in the nonlinear Ω. The source x is emitted from 0
to tp = p∆t (x(j) = 0, for all j > p ∈ N) and controls y over [tq, tf ], i.e.,
y/

[tq,tf ]
= [y(q), · · · , y(f)] = v, where v = [v(q), · · · , v(f)] is the target

field to be imposed over [tq, tf ].

The nonlinear transformation between the G-point over [0, tp] and the R-
point over [tq, tf ] may be represented by the following nonlinear function:

ϕ : Rp+1 → Rf−q+1

x 7→ ϕ (x) = [y(q), · · · , y(f)] .
(4.1)

We solve the NLP to compute the source x that produces a given v at
the R-point over [tq, tf ]. For this purpose, we formulate the problem to
determine x such that ϕ (x) = v. More precisely, if we denote by
F(x) = ϕ(x) − v, we calculate the amplitudes x(0), · · · , x(p), such
that F(x) = [F0, · · · , Ff−q] = 0, explicitly written as

F0 = y(q)− v(q) = 0,
...
Ff−q = y(f)− v(f) = 0.

(4.2)

Newton’s method

The system (4.2) may be solved using NM for general NLPs. Assume that we
have a starting point x(0) not too far from the unknown solution x, then the
algorithm writes {

J
[
x(ξ)
]

∆x = −F
[
x(ξ)
]
,

x(ξ+1) = x(ξ) + ∆x,
(4.3)

where

1. (J)0≤i≤f−q,0≤j≤p is the Jacobian matrix defined by

(J)ij =
∂Fi

∂[x(j)]
(x) ,
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2. ∆x is the vector to be calculated by solving a linear system,

3. x(ξ) is the sequence of vectors that converges to the solution x.

At the iteration ξ, each entry of the Jacobian matrix (J)ij is the directional
derivative of F (i) along x(j). This derivative is computed by taking the limit
as ε → 0 of the difference quotient between the fields produced by inject-
ing x(ξ) and x

(ξ)
ε =

[
x(0)(ξ), · · · , x(j)(ξ) + ε, · · · , x(p)(ξ)

]
,

(J)ij =
∂Fi

∂[x(j)]

[
x(ξ)
]

= lim
ε→0

Fi

[
x

(ξ)
ε

]
− Fi

[
x(ξ)
]

ε
. (4.4)

The iterative algorithm may be stopped when ‖∆x‖2 is less than a given
threshold εtol, indicating its convergence to the solution x. In general, the
system (4.3) is not square; however, it may be solved in the least-squares
sense. We note that such problems are usually ill-posed, and accordingly
require to be regularized. Here, Tikhonov regularization for nonlinear ill-
posed problems [147] is used and the system (4.3) becomes{[

φξI + JT
[
x(ξ)
]
J
[
x(ξ)
] ]

∆x = −JT
[
x(ξ)
]
F
[
x(ξ)
]
− φξx(ξ),

x(ξ+1) = x(ξ) + ∆x,
(4.5)

where I is the identity matrix of size p and (φξ) is a real decreasing sequence
with lim

ξ→0
φξ = 0.

The nonlinear least squares solver

An optimization problem may be used to find the solution x of the
nonlinear system of equations F(x) = 0. The NLLSQ method is
used to fit a set of (f − q + 1) observations F0, · · · , Ff−q with a
nonlinear model in (p + 1) unknown parameters x(0), · · · , x(p). The
solution x = [x(0), x(1), · · · , x(n)] produces, when injected, the target
voltage v at [tq, tf ]. The minimization problem to be solved is: find x ∈ Rp+1

that minimizes ‖F(x)‖2
2 =

[
F 2

0 (x) + · · ·+ F 2
f−q(x)

]
. In fact, the NLLSQ

relies on the Levenberg-Marquardt algorithm to solve the nonlinear undeter-
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mined problem.

Remark: In this chapter, voltage signals are considered for illustrations
and applications in wiring networks; however, current signals could be con-
sidered in a similar way.

4.1.2 Numerical illustrations in wiring networks

We first show the inapplicability of the LCCF method when applied to simple
nonlinear systems, such as a nonlinear network with matched resistive loads.
Alternatively, NM and the NLLSQ are used to identify the temporal sources,
even when losses are introduced to the wiring network lines. Then, we go
further and consider a more complex network with unmatched resistive loads
to illustrate the fact that NM and the NLLSQ are still applicable in the occur-
rence of multiple reflections. Eventually, we compare NM and the NLLSQ
solver to reveal the superiority of the latter over the former after taking the
accuracy and the CPU time as criteria.

Problem settings

We consider an unshielded coaxial network Ω of arbitrary topology and
characteristics (number, lengths, impedance, and loads of lines, etc.). For
illustration purposes, let us consider the network of Figure 4.2 composed of
two nodes and five point-to-point TLs. Table 4.1 displays their respective
number l, length z, characteristic impedance (Z l

C), and load impedance
(Z l

L) for l ∈ {1, ..., 5}. The load placed at the termination of each line
may be a resistor Z l

L = 50 Ω, diode, or varistor. To further complicate the
problem, arbitrary losses are introduced to the lines of Ω (R = 0.025 Ω/m,
for example). The considered value of resistance causes 5.36% information
losses. In general, any attenuation level may certainly be selected, as we will
see later in this chapter.

An RLCG model of Ω is considered in which the telegrapher’s equations
are solved using a standard one-dimensional FDTD scheme (see Chapter 1
Section 1.3.2). The total duration of the simulations is [0, tn] = [0, 1422∆t].
The time step ∆t = 3.904× 10−9 s and the space step ∆z = 0.1 m are
selected in a way that satisfies the stability criterion (1.38). In what follows,
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Figure 4.2: Nonlinear network configuration.

Line Nb. l z (in m) Z l
C (in Ω) Load

1 1 50 Resistor
2 3 50 Diode
3 4 50 -
4 5 50 Resistor
5 8 50 Varistor

Table 4.1: Characteristics of the nonlinear network.

we assume that a source generator G is placed at the first node of line 1 and
a receiver R is placed at the termination of 5, although they could still be
placed anywhere on the network. The target time [tq, tf ] may be any time
interval after the signal x reaches the receiver R, for example, tq = 500∆t
and tf = 620∆t. The target v is chosen to be a sinusoidal signal S0.1 (2.10)
of maximum amplitude +0.1 V, such that f = 6.3 MHz.

To guarantee a nonlinear behavior of Ω, two electronic components,
a diode and a varistor, are respectively placed at the terminations of
lines 2 and 5. The current-voltage (I − V) characteristic of the diode
is I = Is exp (V/VT − 1), where Is is the reverse bias saturation current
and VT is the thermal voltage. The (I − V) characteristic of the varistor
is I = I0V

γ , where I0 is a constant and γ is the nonlinear voltage expo-
nent. For instance, the diode parameters are chosen to be Is = 10−12 A
and VT = 0.026 V, whereas the varistor parameters are set to I0 = 0.1 A
and γ = 5. We note that the chosen characteristics of Ω may not correspond
to a practical approach for testing networks as we suppose that all the
network’s extremities are accessible (placement of generators, receivers,
diodes, varistors and matched loads); however, any other network of different
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characteristics and cartography could be considered, as shown later. Here,
the aim is nothing else than illustrating and comparing NM and the NLLSQ
solver.

To test the nonlinearity level of the system, two independent simulations
are carried out by injecting a Gaussian pulse G2 (resp. G1) (2.6) of maximum
amplitude +2 V (resp. +1 V), where tc = 40∆t and σ = 8∆t. The output
voltages recorded by R are denoted by y2 for G2 and y1 for G1. Figure 4.3
represents the quotient |y2/y1| and shows that they are disproportional,
indicating a high nonlinear level of the considered case. If the system is
linear, we would obtain two proportional voltage signals at the R-point with
a ratio r = 2, i.e., y2 = 2y1. In Figure 4.3, we notice that the quotient
value |y2/y1| for the nonlinear case is constant at the beginning, indicating a
linear output. This is due to the signal propagating directly from the G-point
to the R-point before reflections and re-reflections occur once reaching the
diode and the varistor. Such reflections enable the nonlinearity of the system.

0 1 2 3 4 5

Time (s) 10
-6

0.01

0.1

2

10

100

1000

10000 Linear case

Nonlinear case

Figure 4.3: Amplitude ratios of |y2/y1| to show the nonlinearity of the system.

Newton’s iterative algorithm (4.5) is solved by taking x(0) = 0 as an
initial guess, φξ = 10−2(ξ+1) as the real sequence of regularization, and
a stopping criterion εtol = 10−10. Similarly, the initial guess of the opti-
mizing NLLSQ solver is set to zero, whereas its function tolerance is cho-
sen to be 10−6.
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Malfunctioning of the LCCF method

The LCCF method is no longer efficient at handling nonlinear problems; thus,
its performance starts to deteriorate once nonlinear elements are introduced to
the system. Here, we apply the LCCF method to the nonlinear network Ω and
show that the LCCF is inefficient when it comes to controlling the voltage
at the R-point. By solving the linear system Ax = S0.1, the source x is
computed. As expected, x fails in producing S0.1 at the level of R over [tq, tf ],
as seen in Figure 4.4, where y/

[tq,tf ]
6= S0.1.
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Figure 4.4: In nonlinear systems, the LCCF fails in identifying the temporal
source that produces the desired target voltage at the target time.

Lossy network

Two different sources xNM and xNLLSQ are respectively computed by NM and
the NLLSQ, then represented in Figure 4.5a. The two techniques compute
different nontrivial solutions for the same emission duration, tp = 520∆t.
The separate injection of these two signals by G generates the output
signals y, where y/

[tq,tf ]
= S0.1 at [tq, tf ], as shown in Figure 4.5b.

For t ∈ [0, tn] \ [tq, tf ], the signals are uncontrolled.

To carry out a comparison between NM and the NLLSQ solver, in this
case, we consider as criteria the number of iterations for convergence, the
Intel R© CoreTM i7 CPU time, and the Relative Error (RE) (2.8) between S0.1
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(a) Sources xNM and xNLLSQ computed respectively by NM and the NLLSQ.
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(b) Voltage signals recorded after injecting xNM and xNLLSQ.

Figure 4.5: Signals xNM and xNLLSQ propagate through the network to con-
trol the voltage at the termination of line 4. After their separate emissions, the
receiver R records the signals y where the desired target voltage S0.1 is ob-
tained at the target time [tq, tf ] = [1.95× 10−6, 2.42× 10−6] lying between
the two dashed lines.

and y/
[tq,tf ]

. The studied case corresponds to the second row of Table 4.2

for an attenuation level R = 0.025. NM requires 7 iterations for an estimated
time 15.53 min to achieve convergence with an RE = 4.94×10−11 (2.8). Oth-
erwise, the NLLSQ takes 13.15 min to converge with fewer iterations (6 iter-
ations) and higher accuracy RE = 9.38× 10−14 (2.8).
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Attenuation
level
(in Ω/m)

Losses
percentage
(in %)

RE
(

S0.1,y/
[tq,tf ]

)
CPU time (min)

NM NLLSQ NM NLLSQ

R = 0 (∗) 0 1.2× 10−11 2.69× 10−14 14.82 12.01

R = 0.025 5.36 4.94× 10−11 9.38× 10−14 15.53 13.15

R = 0.04 8.34 1.43× 10−11 5.32× 10−14 15.58 13.17

R = 0.5 56.51 1.73× 10−10 1.97× 10−13 15.5 13.89

R = 0.8 70.07 1.14× 10−10 3.89× 10−13 15.44 14.3

R = 3 95.39 1.09× 10−4 2.93× 10−6 15.81 15.55

(∗): lossless network

Table 4.2: Comparing the results of Newton’s method and the NLLSQ solver
with respect to the different attenuation levels.

In Figures 4.6 and 4.7, we see that NM and the NLLSQ solver always
succeed in generating S0.1 independently of the attenuation levels. In
Figures 4.6a and 4.7a, we respectively plot the sources xNM and xNLLSQ,
while their output voltage signals are represented in Figures 4.6b and 4.7b.
Table 4.2 illustrates that both techniques are independent of any low, average,
or high attenuation level, where they still produce the desired S0.1 at [tq, tf ]
with a quite low RE. It should be noted that the relation between the sources
seems to be linear from the first sight, but this is not true in general.

The NLLSQ solver seems to be more efficient than NM at imposing a
specified target voltage over a fixed target time as it provides higher accuracy
with less CPU time. Moreover, NM requires a starting point not too far from
the solution; otherwise, the algorithm diverges. Often, the computed signal is
characterized by its complex profile, making it difficult to guess the starting
point.
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(a) Sources xNM computed by NM.
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(b) Voltage signals y recorded after separately injecting the sources xNM at different
attenuation levels.

Figure 4.6: After Newton’s simulations at different attenuation levels, the sig-
nals xNM separately propagate through the lossy network to control the volt-
age at the termination of line 4. After their emissions, the receiver R records
the signals y, where the desired target voltage S0.1 is obtained at the target
time [tq, tf ] = [1.95× 10−6, 2.42× 10−6] lying between the two dashed lines.

131



4. SOURCE IDENTIFICATION IN NONLINEAR SYSTEMS: NEWTON’S METHOD
AND THE NLLSQ SOLVER

0 1 2 3 4 5

Time (s) 10
-6

-5

0

5
V

o
lt
a
g
e
 (

V
)

(a) Sources xNLLSQ computed by the NLLSQ.
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(b) Voltage signals y recorded after separately injecting the sources xNLLSQ at dif-
ferent attenuation levels.

Figure 4.7: After NLLSQ’s simulations at different attenuation levels, the sig-
nals xNLLSQ separately propagate through the lossy network to control the
voltage at the termination of line 4. After their emissions, the receiver R
records the signals y, where the desired target voltage S0.1 is obtained at
the target time [tq, tf ] = [1.95× 10−6, 2.42× 10−6] lying between the two
dashed lines.

Multiple reflections

In the previous section, we focused on the applicability of NM and the
NLLSQ solver in the presence of losses. For illustration purposes, a network
with matching resistive loads was considered. As aforementioned, this
network may not refer to a practical approach since not all the network’s
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extremities may be accessible in reality. To clear up all the doubts concerning
the applicability of NM and the NLLSQ in the presence of multiple reflec-
tions, we keep the same network as described in the problem settings of this
section with two additional lines connected to its second node, where the volt-
age perfectly reflects when reaching their terminations. The new network Ω

along with its new characteristics are represented in Figure 4.8 and Table 4.3.
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Figure 4.8: Configuration of the nonlinear network with multiple reflections.

Line Nb. z (in m) Z l
C (in Ω) Z l

L (in Ω)
1 1 50 50
2 3 50 Diode
3 4 50 -
4 5 50 50
5 8 50 Varistor
6 1 50 0
7 3 50 ∞

Table 4.3: Characteristics of the nonlinear network with multiple reflections.

The results are represented in Figure 4.9, where both techniques success-
fully generate the desired target voltage S0.1 at [tq, tf ]. Increasing the com-
plexity of the system does not enhance the divergence of NM or the NLLSQ.
Otherwise, both approaches are independent of the topology of the network
as well as its nonlinearity level. This implies that the two algorithms do not
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rely on either the complexity of the network (number of lines and junctions,
characteristics, loads, etc.), the multiple reflections occurring during propaga-
tion, or the level of attenuation. We note that the dispersion is treated in the
same way as the attenuation for which NM and the NLLSQ continue to work
properly for any level of dispersion. On the other hand, the applicability of
both techniques always requires a free extremity to branch a receiver.
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(a) Sources xNM and xNLLSQ computed respectively by NM and the NLLSQ.
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(b) Voltage signals recorded after injecting xNM and xNLLSQ.

Figure 4.9: Signals xNM and xNLLSQ propagate through the complex net-
work (Figure 4.8) to control the voltage at the termination of line 4.
After their separate emissions, the receiver R records the signals y,
where the desired target voltage S0.1 is obtained at the target time
[tq, tf ] = [1.95× 10−6, 2.42× 10−6] lying between the two dashed lines.
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4.2 Software Correction of Faulty Lossy Nonlin-
ear Networks

In Chapter 3 Section 3.2, a detailed description of the Software Correc-
tion (SC) process was given, where it was introduced to compensate for the
effects of the faults in faulty communication systems. Earlier in this chapter,
we have shown that the LCCF is inefficient at controlling the voltage/current
in nonlinear networks; consequently, it is not designed to bring an SC to
nonlinear networks. As an alternative solution, NM and the NLLSQ may be
used as they have shown high efficiency at controlling the voltage/current in
nonlinear networks in Section 4.1. However, as demonstrated, the latter is
more efficient than the former both from accuracy and computational point of
view; as a result, we rely on the NLLSQ solver only to bring an SC to faulty
lossy nonlinear wiring networks. Although NM requires an initial guess not
too far from the real solution, which is not always easy for assumption, NM
may also bring an SC to faulty lossy nonlinear networks when the initial
guess may be hypothesized.

We discuss the SC process in networks presenting soft, hard, and multiple
faults (soft and hard) such as the complex network Ω of Figure 4.8. Further-
more, we examine how we can bring an SC to Ω when exposed to external
defects coupling Ω at unshielded parts. To show the impact of the fault(s)
or defect(s), we record the voltage signals at the R-point after two separate
injections of the initial Gaussian pulse G2 (2.6) (tc = 40∆t and σ = 8∆t)
of maximum amplitude +2 V in the healthy Ω and its faulty version Ω′. We
denote by VH the healthy voltage signal recorded by R after the injection of
G2 in Ω and by VF the faulty voltage signal recorded by R after the injection
of G2 in Ω′. The effects of the fault(s) or defect(s) are represented by the
differences between the two outputs VH and VF.
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Figure 4.10: Configuration of the nonlinear network used during the SC pro-
cess.

4.2.1 Soft fault
The soft fault is simulated at 2.5 m distance from the first junction along line 2
and represented by the gray X-mark in Figure 4.10. After injecting G2, the
healthy and the faulty signals, VH and VF, recorded at the R-level are re-
spectively displayed in green and blue in Figure 4.11b. Slight output dis-
tortions are noticed as a result of the soft fault. Using the NLLSQ solver,
we identify the new the source x represented in Figure 4.11a that minimizes
‖F(x)‖2

2 =
[
F 2

0 (x) + · · ·+ F 2
n−1(x)

]
. After the injection of x in Ω′, the

corrected voltage signal VC is recorded by R, then represented in red in Fig-
ure 4.11b. The signal VC is similar to VH with an RE (VH,VC) = 4.17 ×
10−4 (2.8).
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(a) Source x to tolerate the soft fault.
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(b) Healthy, faulty and corrected voltage signals recorded by R.

Figure 4.11: Software correction of the nonlinear faulty network presenting a
single soft fault.

4.2.2 Hard fault

The hard fault is simulated by an open circuit at the termination of line 6
represented by the red X-mark in Figure 4.10. The simulated fault is im-
plemented by modifying the load impedance from 0 to ∞Ω. After inject-
ing G2, the healthy VH and the faulty VF signals are respectively displayed
in green and blue in Figure 4.12b. Using the NLLSQ solver, the new source x
is identified (see Figure 4.12a) and sent down in Ω′ to generate the cor-
rected signal VC. We note that VH and VC are almost identical with an
RE (VH,VC) = 2.77× 10−4 (2.8).
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(a) Source x to tolerate the hard fault.
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(b) Healthy, faulty and corrected voltage signals recorded by R.

Figure 4.12: Software correction of the nonlinear faulty network presenting a
single hard fault.

4.2.3 Multiple faults

Two soft faults are respectively simulated along the lines 2 and 3 at 2.5 m
and 1.5 m distance from the first junction. Also, a hard fault (open circuit) is
simulated at the termination of line 6. The faults are represented by the gray
and red X-marks in Figure 4.10. By the NLLSQ method, the new source x is
computed and displayed in Figure 4.13a. Its injection in Ω′ leads R to record-
ing the corrected signal VC. Remarkably, VH and VC are indistinguishable
for the entire time domain with an RE (VH,VC) = 2.92× 10−4 (2.8).
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(a) Source x to tolerate the multiple faults.
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(b) Healthy, faulty and corrected voltage signals recorded by R.

Figure 4.13: Software correction of the nonlinear faulty network presenting
multiple faults of different nature (soft and hard).

4.2.4 External defect

In what preceded, we applied the SC process using the NLLSQ method to the
faulty network behaving nonlinearly with faults inherent in its lines. How-
ever, in many cases, wiring networks may be distorted by external defects
resulting from radiating sources that couple the network along an unshielded
length of its cables. In the following, we deal with a network exposed to a
defect to show that the SC process is still applicable in such a case. We note
that the treated defects are constant signals resulting from an external radiator
without changing their profiles. The defect signal may take any form; we may
consider the red signal represented in Figure 4.10, for example.
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Assume that the coupling occurs at the midpoint of line 3. This inter-
ference distorts the output signals, as represented in Figure 4.14b. By the
NLLSQ, the outputs are corrected after identifying the correcting source
x represented in Figure 4.14a. The relative error (2.8), in this case,
is RE = 7.26× 10−5.
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(a) Source x to tolerate the defect.
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(b) Healthy, defective and corrected voltage signals recorded by R.

Figure 4.14: Software correction of a nonlinear defective network coupled by
an external interfering signal.

4.2.5 Multiple faults and external defects
Even if faults and external defects distort the network Ω at the same time, the
SC remains applicable. Here, we assume that Ω is distorted by the multiple
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faults described earlier as well as the two defects coupling Ω at the midpoint
of line 3 and 6 m distance from the second junction along the fifth line. The
occurring distortions are represented in Figure 4.15b. Using the NLLSQ, we
correct the outputs by identifying the new source to be injected by G (see
Figure 4.15a). After its emission, the receiver R records the corrected signal
displayed in red in Figure 4.15b. The relative error (2.8) between VH and VC

is RE = 6.28× 10−3.

The SC process may be applied to any defective communication system
regardless of the number, nature (soft/hard or external), and position of the
faults or defects [148]. The SC in nonlinear systems encounters the same
limitations as in the linear case. It always requires prior knowledge of the
healthy output and the need for a free extremity to branch a receiver. It is
worth mentioning that when a hard fault appears on the linking path between
the source point and the receiver point, the SC does not work anymore as no
signal is reaching the receiver. For example, if line 3 is cut at any of its points,
then the SC process is not efficient anymore in such a particular case.

4.3 Conclusion

We used NM and the NLLSQ solver to identify the temporal profile of an
electromagnetic source that produces a predefined voltage/current or field
at a single spatial point of the nonlinear network over a fixed time interval.
After considering a wiring network, we showed that the LCCF method
malfunctions when nonlinear elements are introduced to the system. As
an alternative solution, we demonstrated the applicability of NM and the
NLLSQ in nonlinear lossy and lossless wiring networks. For any chosen level
of attenuation, it was shown that the applicability of the nonlinear techniques
is not affected at all. In a second step, NM and the NLLSQ were compared
in terms of accuracy and CPU time to show the superiority of the latter over
the former. Due to its excellent performance, the NLLSQ was then used to
bring a software correction to a faulty nonlinear complex network with losses
introduced to its lines. We removed all the doubts concerning the capability
of the software correction process to correct the faulty outputs regardless of
the number, position, and nature of the potential faults. Furthermore, we also
demonstrated that the software correction might equally be applied when
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(a) Source x to tolerate the inherent faults and the external defects.
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(b) Healthy, defective and corrected voltage signals recorded by R.

Figure 4.15: Software correction of a nonlinear defective network coupled by
two external interfering signals with multiple faults inherent in its lines.

signals caused by a radiating source couple the network at unshielded parts.
A general example was presented for a quite complex network presenting
two soft faults, one hard fault, and two defects where the obtained results
were always satisfactory.

The next chapter is devoted to validating the results of Chapter 3 exper-
imentally; however, nonlinear experiments will not be considered. Adding
constraints to the nonlinear problem is an essential step before conducting
experimental trials. Such constraints may modify the source properties (fre-
quencies, amplitudes, etc.) witnessed during experiments; otherwise, the ex-
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perimental realizations are not possible. As a proactive step, it seems neces-
sary to reduce the high frequencies and amplitudes of the computed source to
become experimentally achievable. For example, the rapid oscillations of the
source of Figure 4.15b generate high frequencies that may not be included in
the bandwidth of the devices used in experiments. On the other side, the non-
linear tests may require modeling the tested network to calculate the Jacobian
matrix derivatives. Once these gaps are filled, experimental tests for nonlinear
networks will then be possible.
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5
Experimental Validation: The LCCF
Method

THIS chapter is dedicated to applying the Linear Combination of Con-
figuration Field (LCCF) method experimentally after it was described,

developed, and numerically illustrated in previous chapters. Yet, the LCCF
method, as previously presented, is not ready for practical applications due to
some physical limitations. Firstly, we upgrade the LCCF to satisfy such limi-
tations. After describing the equipment used in testings, the LCCF method,
in its upgraded version, is invested in carrying out experiments in wiring
networks and a reverberant cavity. This chapter is divided into two main parts.

The first part determines the temporal sources in wiring networks. In
simple and complex network configurations, we identify the sources that
impose any desired target signal at one or more spatial points during a
given time interval. Sometimes, built-in equipment or budget limitations
prevent the upgraded LCCF method from generating the target output;
therefore, constraints are added to the problem to overcome these limitations.
Furthermore, we experimentally show the applicability of the LCCF method
to bring a software correction to faulty communication networks when single
or multiple faults appear in their lines regardless of their nature and position.

The second section is the result of a collaboration between Clermont Au-
vergne University (Institut Pascal) and Paul Sabatier University in Toulouse,
France (LAPLACE and ISAE-SUPAERO laboratories). This work shows that
the LCCF method could also fit three-dimensional applications in a rever-
berant cavity. In this part, we apply the Time-Reversal (TR) and the LCCF
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methods to enhance the spatial control of nanosecond microwave plasma by
controlling the electromagnetic fields inside the cavity. After comparing the
results, we illustrate the superiority of the LCCF method over the TR to gen-
erate plasma at specified positions only, unlike the TR, where unintentional
parasitic discharges appear elsewhere.

5.1 Experimental LCCF method

In Chapters 2 and 3, we presented and developed the LCCF method before it
was illustrated numerically. As previously described, the LCCF may not be
considered to conduct experimental tests due to physical limitations encoun-
tered during experiments. These experiments may not be carried out unless
the LCCF is modified to comply with such limitations. Indeed, the recorded
impulse responses used to build the LCCF characterization matrix A may be
theoretically and numerically convenient, but not experimentally. The emis-
sion of the unit impulse e1 is impractical for experimental tests. As an alter-
native solution, A is built by considering the responses of any incident signal
α = [α(0), · · · , α(n)] 6= e1 that could experimentally be realized. Let Ã be
the matrix constructed exactly in the same way as A (2.4), but this time, based
on the responses of α and not the impulse responses. Using the new notation,
the LCCF system becomes after regularization(

ÃT Ã + εI
)

x̃ = ÃTF. (5.1)

The system (5.1) is solved and the sources x̃ = (x̃1, · · · , x̃N) are computed.
For all j = {1, · · · , N}, each source x̃j is the expression of the correspond-
ing solution xj , a source associated with A characterizing the real system,
computed in another basis. Injecting the sources x̃j simultaneously, each by
its generator, does not produce the target signals F1, · · · ,FM (M is the num-
ber of the receiver points) at the levels of the receivers since Ã is not the char-
acterization matrix of the system. That is why it is necessary to compute xj
from x̃j using basic concepts of linear algebra. For all k ∈ {1, · · · , f + 1},
let αk be a signal, such that αk = [0k−1, α(0), · · · , α(f − k + 1)], where 0k
is the zero-vector of length k. We denote by C = {e1, · · · , ef+1} the canon-
ical basis of the vector space Rf+1. Assuming that B = {α1, · · · ,αf+1}
forms also a basis of Rf+1, then there exists an invertible matrix P called the
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transition matrix from C to B, such that αk = Pek, where

P =
[
α1 · · · αf+1

]
=


α(0) 0 · · · 0

... . . . . . . ...

... . . . 0
α(f) · · · · · · α(0)

 . (5.2)

Each vector xj is a linear combination of x̃j(0), · · · , x̃j(f) in
(
Rf+1,B

)
and

may be written in
(
Rf+1,C

)
as

xj =

f+1∑
k=1

x̃j(k − 1)αk = P

f+1∑
k=1

x̃j(k − 1)ek = Px̃j

=⇒ x =


P

. . . 0
0 . . .

P

 x̃.

(5.3)

Note that, if α = e1, then P is the identity matrix and x = x̃.

Sometimes, before switching to the canonical basis, the elements of the
matrices cannot be stored in the memory because of their large dimensions.
To address this problem, we can use the convolution product to build the
LCCF system (5.1). Let u and v be two vectors in Rn and Rm, respectively.
Then, w = conv(u,v) is the vector of length m+n−1 whose kth element is

w(k) =

min(k,m)∑
l=max(1,k+1−n)

u(l)v(k − l + 1). (5.4)

For the sake of simplicity, we show how to build the LCCF matrix using
the convolution product in the case of one generator and one receiver. That is
to say, we solve the large-scale linear system (5.1) with x̃ = x̃1, and F = F1,
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and Ã = Ã11, knowing that

Ã =


hα(q) hα(q − 1) · · · hα(0) 0 · · · 0

... hα(q)
... hα(0)

. . . ...
...

...
...

... . . . 0
hα(f) hα(f − 1) · · · hα(f − q) hα(f − q − 1) · · · hα(0)

 ,

(5.5)
where hα is the response recorded after the emission of α. Explicitly, for the
right side of the LCCF system (5.1), we have

ÃTF =


hα(q) · F0 + · · ·+ hα(f) · Ff−q

hα(q − 1) · F0 + · · ·+ hα(f − 1) · Ff−q
...

hα(0) · Ff−q−1 + hα(1) · Ff−q
hα(0) · Ff−q



=



f∑
l=q

hα(l)Fl−q

f−1∑
l=q−1

hα(l)F1+l−q

...
1∑
l=0

hα(l)Ff−1+l−q

0∑
l=0

hα(l)Ff+l−q


= conv← (hα,F

←) , for 1 ≤ k ≤ f + 1,

(5.6)

where for any vector a, a← is the same vector as a reversed with the order
of elements. Similarly, for the left side of the system (5.1), we first use the
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convolution product to compute the vector

Ãx̃ =


hα(q) · x(0) + hα(q − 1) · x(1) + · · ·+ hα(0) · x(q)

hα(q + 1) · x(0) + hα(q) · x(1) + · · ·+ hα(0) · x(q + 1)
...

hα(f) · x(0) + hα(f − 1) · x(1) + · · ·+ hα(0) · x(f)



=



q∑
l=0

hα(l)x(q − l)
q+1∑
l=0

hα(l)x(q − l + 1)

...
f∑
l=0

hα(l)x(f − l)


= conv(hα,x), for q ≤ k ≤ f.

(5.7)

Then, the resulting vector reversed with the order of elements conv←(hα,x)
is convolved with hα, for 1 ≤ k ≤ f + 1, to compute ÃT Ãx̃. The Linear
Least SQuares (LLSQ) method is used with a function handle to solve this
large-scale linear system. The function handle computes ÃT Ãx̃ using con-
volution products. As a result, we just need to store the vectors hα and ÃTF.
Then, the LLSQ solver finds a least squares solution for x̃ that minimizes∥∥∥(ÃT Ã + εI

)
x̃− ÃTF

∥∥∥2

2
.

5.2 Source Identification in Wiring Networks

The experimental setup and the equipment used in testings are first presented.
Then, we apply the LCCF method with and without constraints to identify
the temporal voltage source that would produce a specified target signal at a
single point of the network. After that, we test more complex and ramified
networks for imposing the same or different target signals at two points over
a given target time.
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5.2.1 Experimental setup

To test the LCCF method experimentally, any network of any arbitrary
topology can be considered. In this section, we select two different network
cartography made up of standard 50 Ω coaxial cables as transmission lines.
Although coaxial cables are not routinely found in practical networks, they
were chosen due to their excellent stability to ensure the reproducibility of
the results. However, the LCCF process is general and independent of the
type of lines used; therefore, the derived conclusions are not related to the
type of lines.

(a) Arbitrary waveform generator. (b) Oscilloscope.

Figure 5.1: Equipment used in experiments.

A Tektronix AWG70002A Arbitrary Waveform Generator (AWG) 1

(Figure 5.1a) is connected to the network at one of its ports to gener-
ate any arbitrary shape signal of amplitudes varying between −250 mV
and +250 mV. The receiver points are represented by the terminations of the
network and connected to the channels of the oscilloscope. The oscilloscope
used is a LeCroy WaveRunner 640Zi (Figure 5.1b) with a frequency range
from 400 MHz to 4 GHz. It is responsible for displaying the variation of the
voltage signals as a function of time. The signal emissions and recordings are
synchronized using a trigger signal.

1The AWG was supported by the CPER MMASYF of the Auvergne-Rhône Alpes Region
and the European Commission (FEDER Auvergne Fund).

150



5. EXPERIMENTAL VALIDATION: THE LCCF METHOD

As reported earlier, it is not possible to record the impulse response ex-
perimentally due to the impractical excitation of a Dirac signal. However, we
may rely on the response of any other incident pulse α. As an example, the
chosen pulse is a double Gaussian α that obeys the amplitude limits of the
AWG. The signal α is represented in Figure 5.2 and satisfies the following
formula:

α(t) = +0.25 exp

[
−
(
t− tc1
σ

)2
]
− 0.25 exp

[
−
(
t− tc2
σ

)2
]
, (5.8)

where tc1 = 25∆t, tc1 = 75∆t, σ = 7∆t, and ∆t = 3.9 × 10−9. The
responses of α at the receiver points must be recorded again once the network
undergoes any single modification.
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Figure 5.2: Incident signal α used instead of the Dirac signal.

5.2.2 Simple network configuration
The first configuration of the network Ω considered in our experiments is
represented in Figure 5.3a. Figure 5.3b shows the schematic diagram of Ω
composed of four coaxial cables with perfectly matched loads at all its
terminations.

The termination of the 1-meter cable is the receiver point connected to
the first channel of the oscilloscope and denoted by CH1. The coupling at
CH1 is chosen to be 1DC MΩ. In fact, any other coupling may certainly
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(a) Simple network configuration used in experiments.

Matched load

AWG CH1

Matched load

1.2 m

3 m

1.2 m

1 m

(b) Schematic diagram of the network.

Figure 5.3: Simple experimental configuration of the network with matched
loads.

be selected as it is included in the network’s characteristics of which the
LCCF is independent. The idea behind starting from a simple example
is the ease of guessing the solution before running any simulation. After
applying the LCCF method, we compare and show that the computed solution
perfectly matches our expectations. Obviously, a simple analysis of the wave
propagation in Ω shows that multiple reflections do not occur in the cables
due to the matched loads at all the extremities of Ω. As a result, the only
signal reaching the oscilloscope is the one propagating directly through the
linking path between the AWG and CH1.

As an example, we seek to identify the source x that generates the
sinusoidal target signal F represented in green Figure 5.4 over the target
time [tq, tf ] = [0.2× 10−7, 2.16× 10−7]. Theoretically, it is sufficient to
inject a signal x having the same profile as F, but with higher amplitudes,
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i.e., x = γF (γ > 1). The increase in the amplitudes will be reduced during
propagation due to the inevitable losses presented in the lines of Ω.
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Figure 5.4: Response of α used instead of the impulse response to character-
ize the network of Figure 5.3 at CH1.

After injecting α, the signal recorded by the oscilloscope at CH1 is dis-
played in red in Figure 5.4 and used to construct the matrix Ã = Ã11. Two
computational steps are required in Matlab to compute the new source x. At
first, we solve the linear system (5.1) for the source x̃ in the noncanonical
basis. Secondly, using the formula (5.3), the multiplication of x̃ by the corre-
sponding transition matrix P yields the computation of the desired source x
represented in Figure 5.5a. Injecting x by the AWG leads the oscilloscope to
recording the signal y for the entire time interval (see Figure 5.5b). Notably, y
is almost the sinusoidal target signal over [tq, tf ]. As expected, the source x
is simple and trivial with the same profile as F but with higher amplitudes to
compensate for the losses in Ω.
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(a) Source computed by the LCCF method.
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(b) Voltage signal y recorded at CH1 after injecting x.

Figure 5.5: Signal x propagates through the network (Figure 5.3b) to con-
trol the voltage at CH1. After its emission, the oscilloscope records the
signal y, where the sinusoidal target signal is obtained at the target time
[tq, tf ] = [0.2× 10−7, 2.16× 10−7] lying between the two dashed lines.

Amplitude constraints

Considering now the same network cartography but with more complex
characteristics, we assume that the loads at the terminations of the 3-meter
and 1.2-meter lines are open circuits (see the images of Figure 5.6). Assume
that we look for the source x that generates the new target Gaussian signal F
represented in green in Figure 5.7 over [tq, tf ] = [0.8× 10−7, 2× 10−7]. We
note that the multiple reflections occurring in Ω make it difficult to guess the
solution. After re-characterizing the system by the new response of α (see
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(a) Open circuits. (b) Simple network configuration used in experi-
ments.

Figure 5.6: Simple experimental configuration of the network with open-
circuited loads. Figure 5.6a is the zoom of Figure 5.6b over the red-bordered
area.

the red signal in Figure 5.7), we compute the source x represented in red in
Figure 5.8a. Injecting x in Ω drives the oscilloscope to record the signal y
at CH1 for the entire time interval, as shown by the red signal in Figure 5.8b.
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Figure 5.7: Response of α used instead of the impulse response to character-
ize the network of Figure 5.6 at CH1.

Over [tq, tf ], the output signal y has the same profile as the target sig-
nal F, but with lower amplitudes. This may be explained by the fact that the
maximum amplitude of the LCCF computed source x (+0.3 V) exceeds the
maximal limit of the AWG (+0.25 V). In this case, the AWG multiplies x by
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(a) Source x before and after adding amplitude constraints.
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(b) Voltage signals y and yCSTR recorded after injecting x and xCSTR, respectively.

Figure 5.8: Unconstrained LCCF problem: after the emission of the uncon-
strained source x, the oscilloscope records the signal y similar to the Gaus-
sian target signal over [tq, tf ] but with lower amplitudes due to equipment
limitations. Constrained LCCF problem: after the emission of the amplitude-
constrained source xCSTR, the oscilloscope records the signal yCSTR that al-
most coincides with the Gaussian target signal over [tq, tf ]. The target time
[tq, tf ] = [0.8× 10−7, 2× 10−7] is the interval between the two dashed lines.

the scalar c = 0.25/max(x) (c < 1) before emitting the new rescaled source
x′ = cx. After its emission, the amplitudes of y proportionally decrease due
to the linearity of Ω, i.e., y ≈ cF. This explains the difference in amplitudes
between F and y over [tq, tf ]. A solution would be to use an amplifier to
amplify the amplitudes of x′ after its emission by the AWG. As an alternative
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solution, we seek to identify a new source xCSTR that generates F, such that
the amplitudes of xCSTR do not exceed the maximal and the minimal limits
of the AWG. In what follows, we add amplitude constraints described in
Chapter 2 Section 2.3.3 to treat this problem.

For this purpose, we use the LLSQ method to solve the constrained LCCF
system. As the solution is not unique, the LLSQ solver computes a new
source xCSTR with a different energy distribution, such that xCSTR satisfies
the constraint condition −0.25 ≤ xCSTR ≤ +0.25. In Figure 5.8a, the
source xCSTR and its output voltage signal yCSTR are represented in blue. As
noticed, the amplitudes of yCSTR over [tq, tf ] are almost the same as F.

5.2.3 Complex network configuration

(a) Ramified network configuration used in experiments.

Open circuit

AWG

Open circuit

Open circuit
1.2 m

1.2 m

2 m

1 m

5.5
m

3 m

2 m

CH1

CH2

(b) Schematic diagram of the network.

Figure 5.9: More complex experimental configuration of the network with
more ramifications.
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Let Ω be the complex ramified network represented in Figure 5.9. In
addition to the complex configuration of Ω, its chosen characteristics enhance
its complexity due to the occurring multiple reflections.

Same target signals (F1 = F2)

In this section, we simultaneously apply the LCCF method to impose the tar-
get Gaussian signal F1 represented in green in Figure 5.10 at the two termi-
nations, CH1 and CH2, over [tq, tf ] = [4× 10−7, 4.8× 10−7]. After inject-
ing α, its responses are recorded at CH1 and CH2 and respectively displayed
in red and blue in Figure 5.10.
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(a) Response of α at CH1.
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(b) Response of α at CH2.

Figure 5.10: Response of α used instead of the impulse response to charac-
terize the network of Figure 5.9 at CH1 and CH2.
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The two responses are used to construct the LCCF transfer matrices Ã11

and Ã21 between the AWG and the receiver points. Then, we solve the LCCF
system (5.1) after switching to the canonical basis through the formula (5.3).
The source x is computed and represented in Figure 5.11a. The emission
of x leads the oscilloscope to recording the signals y1 and y2 at CH1 and
CH2 represented in red and blue in Figures 5.11b and 5.11c, respectively. As
expected, y1 and y2 are almost the Gaussian signal F1 over [tq, tf ].

Different target signals (F1 6= F2)

Considering the same setup and settings as Ω, assume that we want to
identify the temporal source that imposes two distinct target signals F1 and
F2 at CH1 and CH2, respectively, over [tq, tf ] = [4× 10−7, 4.8× 10−7]. Let
F1 be the Gaussian signal represented in green in Figure 5.12b and F2 = 0.
As Ω does not undergo any modification, then the same matrices Ã11 and
Ã21 could still be used in the LCCF system (5.1). Solving again this system
with the new targets gives the source x represented in Figure 5.12a. After
its emission, the oscilloscope records the signals y1 and y2 that are almost
identical to F1 and F2 over [tq, tf ], as shown in Figures 5.12b and 5.12c.

In this part of the chapter, we have adapted the LCCF method to pave the
way for experimental implementations. Then, the LCCF has been illustrated
experimentally to identify the temporal profile of a source that would generate
the same or distinct target voltage signals at one or more terminations of the
network over a predefined target time. In Chapters 2 and 3, we stated that the
LCCF method relies on the impulse response of the network whose geometry
and characteristics may be chosen arbitrarily. This may be generalized to say
that the LCCF is uniquely dependent on the response of any nonnull signal
and not necessarily the Dirac excitation. After that, we also showed how
the constrained LCCF method could be applied when limited equipment or
budget abilities are encountered during testings. In the next part, we will
experimentally show the applicability of the software correction process when
one or more faults of any nature appear at any point on the wiring network
lines.
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(a) Source x computed by the LCCF method.
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(b) Voltage signal y1 recorded at CH1 after injecting x.
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(c) Voltage signal y2 recorded at CH2 after injecting x.

Figure 5.11: Signal x propagates through the network (Figure 5.9) to control
the voltage at CH1 and CH2. After its emission, the oscilloscope records the
signal y1 and y2, where the Gaussian target signals are obtained at the target
time [tq, tf ] = [0.2× 10−7, 2.16× 10−7] lying between the two dashed lines.
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(a) Source x computed by the LCCF method.
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(b) Voltage signal y1 recorded at CH1 after injecting x.
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(c) Voltage signal y2 recorded at CH2 after injecting x.

Figure 5.12: Signal x propagates through the network (Figure 5.9) to control
the voltage at CH1 and CH2. After its emission, the oscilloscope records the
signal y1 and y2, where different target signals are obtained at the target time
[tq, tf ] = [0.2× 10−7, 2.16× 10−7] lying between the two dashed lines.
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5.3 Software Correction in Wiring Networks

In the following, we experimentally apply the LCCF method to bring a
Software Correction (SC) to a faulty network regardless of the number,
nature, and position of the presented faults. A detailed description of the
SC process can be found in Chapter 3 Section 3.2. Here, we keep the
same experimental setup and equipment as that of Section 5.2.1. For the
sake of clarity, we consider the same notation as the numerical examples
in Chapters 3 and 4 for the signals: VH (healthy), VF (faulty), and VC

(corrected). We also recall that Ω and Ω′ are the notation of the healthy
and faulty networks, respectively. The network Ω′ differs from Ω in the
fault(s) presented in its lines. As a first step, we record the healthy volt-
age signals of Ω, V1

H and V2
H, at the channels CH1 and CH2 after injecting α.

We start by testing the SC process in a simple network presenting a sin-
gle soft fault. Afterward, we go further in our experiments to test a complex
network with a hard fault introduced at one of its terminations. The last ex-
periment is quite general and shows the applicability of the SC in the presence
of multiple faults regardless of their number, nature, and position. The dis-
tortions resulting from the fault(s) after successively injecting α in Ω and Ω′

are examined as the differences between Vλ
H and Vλ

F (λ = 1, 2) displayed in
green and blue, respectively, in the figures corresponding to each of the three
addressed cases.

5.3.1 Soft fault
The same simple network as that of Figure 5.3b is considered, but, this
time, the oscilloscope is connected to two of its terminations, as shown
in Figure 5.13. A soft fault has been simulated by locally modifying the
matched load impedance at the end of the 3-meter cable (see the gray
X-mark in Figure 5.13). This modification is modeled by replacing the 50 Ω
resistor by an 82.5 Ω resistor, as shown in the images of Figure 5.14. Such
implementation creates a soft fault without deforming any cable, even though
the soft fault may still be located anywhere in the network. For illustration
purposes, this case is quasisymmetric, so the signals obtained at CH1 and
CH2 are almost similar.
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Matched load

AWG CH1
1.2 m

3 m

1.2 m

1 m

CH2

Figure 5.13: Configuration of the network used for the SC process of the single
soft fault.

(a) Healthy termination. (b) Faulty termination.

Figure 5.14: Simulating a soft fault at the termination of the cable by replac-
ing the 50 Ω resistor by an 82.5 Ω one.

In Figures 5.15b and 5.15c, the soft fault slightly distorts the outputs at
CH1 and CH2. Apparently, these simple distortions, represented by the small
blue peaks, facilitate the prediction of the correcting source x. Logically, x is
the initial signal α with additional peaks opposite to the sign of the distortion,
i.e., x = α−

(
Vλ

F −Vλ
H

)
. In fact, the added peaks and the distortions inter-

sect at the appropriate instants of time to cancel one another out according to
the superposition theorem. After solving the LCCF system (5.1), the source x
represented in Figure 5.15a perfectly meets our expectations. After its injec-
tion, the corrected signals V1

C and V2
C are recorded and found to match the

healthy outputs. In the next section, we show that the SC is not restricted to
simple cases.
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(a) Source x to tolerate the soft fault.
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(b) Healthy, faulty and corrected voltage signals at CH1.
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(c) Healthy, faulty and corrected voltage signals at CH2.

Figure 5.15: Experimental software correction of the faulty network present-
ing a single soft fault.
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5.3.2 Hard fault
To show that the SC process via the LCCF method is applicable to more com-
plex cases, we consider the network of Figure 5.16 composed of nine cables
and three junctions.

(a) Complex network configuration.

Open circuit

AWG

Matched load Matched load
Open circuit

CH1

1 m

1.2 m

0.8
m

1.2 m

2 m

3 m

2 m

1 m

1.2 m

CH2

(b) Schematic diagram of the network.

Figure 5.16: Configuration of the network used during the SC process of a
single hard fault and multiple faults.

Also, a stiffer fault, ultimately a hard one, is implemented by removing
the 50 Ω resistor at the extremity of the 0.8-meter cable, as shown in Fig-
ure 5.17. The fault position is represented by a red X-mark in Figure 5.16b.
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(a) Healthy termination. (b) Faulty termination.

Figure 5.17: Simulating a hard fault at the termination of the cable by remov-
ing the 50 Ω resistor.

The hard fault strongly distorts the outputs between the healthy and the
faulty states, as illustrated in Figures 5.18b and 5.18c. The SC correction
is then repeated to correct the outputs at CH1 and CH2 despite this discon-
nection. The computed source x of Figure 5.18a is complex and may not be
predicted due to the multiple reflections resulting from the complexity of the
studied network. After generating x by the AWG, the outputs are properly
corrected, as seen in Figures 5.18b and 5.18c.

5.3.3 Multiple faults

To illustrate the case of multiple faults, we keep the same setup and settings
as that of Section 5.3.2. In addition to the hard fault, a soft fault located at
the extremity of the 1-meter cable is added by modifying the load impedance
from 50 Ω to 82.5 Ω (see the gray X-mark in Figure 5.16b). The results in
Figure 5.19 show that the SC process efficiently cancels the effects of the
multiple faults. It should be emphasized that it is still possible to introduce
faults of any nature at any position on the lines of the network as long as the
oscilloscope receives signals.

We have experimentally validated the SC process when faults appear in
linear faulty communication networks regardless of their topology as well as
the number, nature, and position of the potential faults. Not only the LCCF
may be applied to wiring networks, but also it may tackle three-dimensional
problems to control the electromagnetic fields inside a cavity. Next, we
present a three-dimensional application of the LCCF method to control the
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(a) Source x to tolerate the hard fault.
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(b) Healthy, faulty and corrected voltage signals at CH1.

0 1 2 3 4 5 6

Time (s) 10
-7

-0.05

0

0.05

V
o
lt
a
g
e
 (

V
)

Healthy signal

Faulty signal

Corrected signal

(c) Healthy, faulty and corrected voltage signals at CH2.

Figure 5.18: Experimental software correction of the faulty network present-
ing a single hard fault.
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(a) Source x to tolerate the multiple faults.
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(b) Healthy, faulty and corrected voltage signals at CH1.
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(c) Healthy, faulty and corrected voltage signals at CH2.

Figure 5.19: Experimental software correction of the nonlinear faulty network
presenting multiple faults of different nature (soft and hard).
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electric fields inside a reverberant cavity in order to enhance the control of
microwave plasma. More details are discussed in the next part.

5.4 Enhanced Spatial Control of Microwave
Plasma in a Reverberant Cavity

This work was accomplished through collaborative work with Paul Sabatier
University in Toulouse, France (LAPLACE and ISAE-SUPAERO labora-
tories). In [13], they have proposed a novel paradigm to develop a new
kind of microwave plasma source called the plasma brush. As opposed to
many existing microwave plasma sources [14–24], the idea is not to create
a plasma occupying the entire volume of a large plasma vessel, but rather to
generate a local plasma whose position is controlled in real-time for local
material processing of large objects. Thus, practical implementation requires
generating and controlling arbitrarily shaped electromagnetic fields in the
plasma vessel. In the following, we briefly explain how the Time-Reversal
(TR) method could be used to generate plasma at a fixed position. The reader
may refer to [13] for further explanations.

Later, we show that some limitations may deteriorate the performance of
the TR process when plasma breakdown occurs at other neighboring points,
namely parasitic discharges. As an alternative solution, the LCCF method is
used to generate plasma at the desired position and prevent the appearance
of discharges elsewhere. These discharges result from the enhancement of
the electric field by the geometry of some elements inside the cavity, such
as the corners and wedges of the sample holder, or the presence of screws,
defects, gaps, and metallic grids. First, we present the experimental setup of
the problem, then we show that the TR and the LCCF can be used together to
efficiently activate plasma at a fixed point. On the other hand, we illustrate the
superiority of the proposed method over the TR when it comes to preventing
the appearance of parasitic discharges at the neighboring points.

5.4.1 Experimental setup
This experiment takes place in a 0.6 m× 0.6 m× 0.3 m plasma reactor, called
a reverberant metallic cavity, filled with argon at a working pressure 133 Pa.
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(a) Schematic diagram of the TR exper-
iment at rp. The time-reversed experi-
mental impulse response sTR between rp
and r0 allows to obtain an 8 ns peak
at rp. In this experiment, the level
of the signal transmitted to the cavity
is high enough to obtain plasma break-
down near rp. Unfortunately, parasitic
discharges are simultaneously generated
near rz . In fact, the microwave level
at rz is high enough to reach the mi-
crowave plasma breakdown threshold.

 

rp 

rz 

sLCCF 

 

(b) Schematic diagram of the LCCF ex-
periment at rp and rz . After inject-
ing the source sLCCF, the received sig-
nal at rp corresponds to the target sig-
nal ETR measured at the same monopole
during the TR experiment. However, the
target signal at rz is set to zero. As de-
sired, the peak obtained at rp is similar
to ETR. Interestingly, the signal level
at rz is reduced enough when compared
to the signal obtained at the rz during the
TR experiment.

Figure 5.20: TR and LCCF experimental results to enhance the spatial control
of microwave plasma.

The cavity dimensions are about 5λ0 × 5λ0 × 2.5λ0 at the microwave carrier
frequency f0 = 2.45 GHz. The microwave devices controlling the signal
waveform manipulate high power microwave signals with a maximum band-
width of 0.25 GHz on either side of f0. The plasma discharges and the elec-
trical feedthroughs of the microwave signals are observed through a faradized
window.
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Considering Figure 5.20a, two coaxial probes acting as monopoles are in-
serted into the cavity and represented in black and red. The black monopole is
located in an appendix connected to the cavity by a glass window at the atmo-
spheric pressure to prevent the gas breakdown in its vicinity while emitting
high power signals. The termination of the black monopole, denoted by r0,
represents the source, whereas the termination of the red monopole, located
anywhere in the main cavity, is denoted by rp and represents the receiver
point. The reason behind employing the notation rp refers to our purpose
of generating plasma at the red monopole, where the subscript ‘p’ refers to
“plasma”. Doing so, we use the TR technique, as illustrated in the next sec-
tion.

5.4.2 Plasma control by the TR method

The spatial control of microwave plasma using the TR method has already
been presented in [13]. Firstly, the experimental impulse response sTR is
recorded between rp and r0, then reversed in time (see the black signal in
Figure 5.20a). This signal is amplified using a 2 kW traveling wave tube
pulsed power amplifier (TMD PTC7353) with a repetition period of 16.6µs
and transmitted to the cavity by r0. After emitting sTR, it finally generates a
spatio-temporal refocusing of the electromagnetic energy at rp represented
by the red signal ETR in Figure 5.20a. Generating an electric signal of such a
peaky form leads to plasma activation at rp.

Unfortunately, when increasing the power injected by the amplifier, the
TR inevitably leads to a relative increase in the electric field magnitude in
the neighborhood of rp, causing parasitic discharges or plasma breakdowns
at undesired positions. These discharges may result from the presence of
screws, defects, gaps, or metallic grids in the cavity [149]. Assume that a
third coaxial probe or monopole is inserted near rp. Its termination is denoted
by rz and represented in blue in Figure 5.20a. In this case, rz is chosen with a
sharp tip to model an irregularity inside the cavity; thus, it allows the monitor
of the temporal field evolution at its position.

Repeating the same process, the TR refocuses the electromagnetic energy
again at rp; meanwhile, the magnitudes of the electric field are high enough
at rz to reach the plasma breakdown condition. The electric field at rz is
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represented by the blue signal in Figure 5.20a. This implies that plasma is
activated at rp and undesired parasitic discharges also appear at rz at the
same time. Figure 5.21a better visualizes the signals received at rp and rz
after the TR process. Signals of such profiles activate plasma at rp and result
in the appearance of parasitic discharges at rz, as illustrated in Figure 5.21b.
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(a) Signals received at rp and rz .
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(b) Plasma is activated at rp and parasitic discharges appear at rz .

Figure 5.21: TR Experimental results: the TR succeeds in activating plasma
at rp, while it fails in preventing the appearance of parasitic discharges at rz
during the entire time of the experiment.

Using the TR technique, the position of the plasma rp may be controlled
by manipulating the signal waveform only. Although the TR is efficient
at controlling the position of the microwave plasma inside the cavity, it in-
evitably leads to an increase in the magnitude of the electric fields elsewhere.
This increase may be high enough to reach the plasma breakdown condition
causing the appearance of parasitic discharges. Avoiding such discharges re-
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quires advanced transient electric field shaping methods to cancel or at least
reduce the electric field at rz during the entire time of the experiment. An
effective way is to use the LCCF method due to its ability to control the elec-
tric field at several spatial points simultaneously as described in Chapter 3
Section 3.1.2 [150].

5.4.3 Plasma control by the LCCF method
The LCCF method was described for any linear function, mapping the inputs
and the outputs. In this application, the operator is represented by the linear
time-dependent Maxwell’s equations

ε
∂E

∂t
= ∇×H− σE− J, (5.9)

µ
∂H

∂t
= −∇× E, (5.10)

that govern the evolution of the electric E = E (r, t) and the mag-
netic H = H (r, t) fields at any point r in the cavity and instant t. The
parameters ε = ε(r), µ = µ(r), and σ = σ(r) are the local permittivity,
permeability, and conductivity of Ω, respectively. The boundary conditions
are defined by the walls of the cavity, but generally, arbitrary boundary
conditions may be considered as the LCCF is independent of the topology of
the medium. The LCCF method identifies a temporal current density source J
to control E at the two spatial points rp and rz over the target time [tq, tf ].

We recall that the LCCF has been presented to control the voltage
and/or current in wiring networks, or any electric (Ex, Ey, Ez) and/or
magnetic (Hx, Hy, Hz) field in free space environments. To remove the
parasitic discharges, we are interested in controlling the component Ex. Then
we look for the source Jx that controls the electric fields at rp and rz. For the
sake of simplicity, the source Jx is denoted by sLCCF.

Generating plasma at rp usually requires imposing the target electric sig-
nal denoted by Ep

x = [0, . . . , 0, a1, . . . , am, 0, . . . , 0], where a1, . . . , am � 0.
The signal Ep

x is a null except for a short interval of time, where it reaches
a peak at am/2. Meanwhile, we prevent the appearance of any parasitic
discharges at rz, i.e., the electric field at rz denoted by Ez

x is set to 0. It is
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easily conceivable that this configuration may not be realized in practice,
at least in our experimental conditions, as it would come up against some
physical limitations. For this application, the wave refocusing is crucial
to obtaining a local electric field strong enough to generate plasma at rp.
In the time domain, it is complicated, if not impossible, to understand the
spatial refocusing of the waves on the shape of the measured signals. For this
reason, we proceed from imposing the signal ETR obtained by the TR at rp,
i.e, Ep

x = ETR. The signal Ep
x may suit a refocusing of the waves and fit the

physical constraints of the experiment.

After specifying the target signal Ep,z
x =

(
Ep
x

Ez
x

)
=

(
ETR

0

)
, we construct

the LCCF matrix Ã =

(
Ã11

Ã21

)
, where Ã11 (resp. Ã21) is the transfer matrix

between r0 and rp (resp. rz). The matrix Ã is built by recording the responses
of a Sine-Gaussian signal, for example, at rp and rz. Then, the LCCF system
to be solved is

Ãs̃LCCF = Ep,z
x . (5.11)

We use the LLSQ solver with function handle to solve this large-scale linear
system for s̃LCCF, as described in Section 5.1, then we switch to the canon-
ical basis to compute sLCCF. We note that the electric field behavior inside
the cavity may be controlled or monitored through the voltage signals mea-
sured at rp and rz in our experimental setup. By solving the above system, the
source sLCCF is computed and represented in black in Figure 5.20b. After its
injection, the output signals recorded at rp and rz, yp and yz, are represented
in red and blue in Figure 5.20b. Indeed, the outputs yp and yz are satisfactory
to activate plasma at rp and prevent the appearance of parasitic discharges
at rz. The advantage that the LCCF method could bring over the TR is its
capability to produce a signal similar to ETR at rp and simultaneously reduce
the signal magnitude at rz for the entire time interval. As a result, plasma is
activated at rp and parasitic discharges are avoided at rz during the entire time
of the experiment. Figure 5.22a shows again the signals received at rp and rz
after the LCCF process. Signals of such profiles activate plasma at rp and pre-
vent the appearance of parasitic discharges at rz, as illustrated in Figure 5.22b.
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(a) Signals received at rp and rz .
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(b) Plasma is activated at rp without parasitic discharges appearing at rz .

Figure 5.22: LCCF Experimental results: the LCCF simultaneously succeeds
in activating plasma at rp and preventing the appearance of parasitic dis-
charges at rz during the entire time of the experiment.

Obviously, as the waves propagate inside the cavity, they often hit rz,
so it would certainly be physically impossible to impose an identical zero
signal during the entire time of the process. However, the LCCF method
gives a configuration close to the identical zero signal in the least square
sense, as long as it is physically realizable. Accordingly, the LCCF method
synchronously generates yp similar to ETR at rp and yz with the lowest
possible level at rz. The most important point is that the microwave power
contained in the peak of yp is high enough to reach plasma breakdown
condition, whereas the microwave power of yz is quite low to prevent the
appearance of parasitic discharges. The difference between the target signals
and the obtained ones is due to the use of the LLSQ solver to compute the
optimal sLCCF after regularizing the problem. In fact, we look for the optimal
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source sLCCF that minimizes the quantity
∥∥(ATA + εI

)
sLCCF −ATEp,z

x

∥∥2

2
.

We note that such a difference is also enhanced by the inevitable noises one
encounters during experiments.
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(a) Signals received at rz after the TR and LCCF experiments.
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Figure 5.23: After separate TR and LCCF experiments, the signal received
at rz for the TR process is higher in magnitude than the signal received by
the LCCF at rz. This implies that parasitic discharges appear during the TR
process, unlike the LCCF method which prevents their appearance at rz. The
multimodal property at the used bandwidth in the frequency domain justifies
the reason behind receiving a nonidentical zero signal at rz after the LCCF
experiment. This is due to the many modes excited during the experiment.
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After the TR and LCCF processes, the measured signals at rz are repre-
sented in Figure 5.23a. The level obtained at rz during the LCCF experiment
is lower than the level obtained during the TR experiment. However, both
signals are far from the identical zero signal. To understand the origin of this
difference, we look at these signals at the used bandwidth [2.2 GHz, 2.7 GHz]
in the frequency domain, as shown in Figure 5.23b. The purpose is to observe
the multimodal property of the cavity for this bandwidth to check the proper
functioning of the TR and the LCCF methods. Here, we notice the difficulty
that prevents the LCCF from imposing an identical zero target signal. In
fact, the impossible imposition of an identical zero signal is due to the
many modes excited during the experiment. Nevertheless, the LCCF method
manages to find a solution, where the influence of the mode with the highest
amplitude, namely around 2.5 GHz, is considerably reduced. Interestingly,
we may note that the plasma breakdown is a threshold phenomenon. After
emitting the LCCF source, although the level of the signal measured at rz
is not identically zero, its level is low enough so as not to reach the plasma
breakdown condition.

In other TR and LCCF experiments, we switch the notation rp and rz. We
denote now by rp the termination of the blue monopole and by rz the termina-
tion of the red monopole. In other words, we carry out the same experiments,
but the objective here is to activate plasma at the blue monopole and avoid
discharges at the red one. Similar to what preceded, the same interpretations
and analyses may be conducted. We clearly observe that the TR fails to pre-
vent the appearance of parasitic discharges at the red monopole, unlike the
LCCF that efficiently generates plasma at the blue monopole and prevents
the appearance of discharges at the red one. The plasma activation of these
experiments is illustrated in Figure 5.24.
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Figure 5.24: TR fails in preventing the appearance of parasitic discharges
at rz, unlike the LCCF that efficiently generates plasma at rp and prevent the
appearance of discharges at rz.

To sum up, we compare the TR and the LCCF methods. Table 5.1 outlines
their similarities and differences to enhance the spatial control of microwave
plasma.

Method TR LCCF

Plasma activation at rp 3 3

Prevent parasitic discharges at rz 7 3

Control multiple spatial points 7 3

Table 5.1: Comparison between the TR and the LCCF methods for the spatial
control enhancement of microwave plasma.

5.5 Conclusion

The LCCF method has shown remarkable robustness in the presence of
noise and proved to be efficient in noisy measuring environments. In
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Section 5.1, we firstly adapted the LCCF to make it experimentally feasible.
Then, experimental tests were conducted in wiring networks to identify the
temporal profile of the source that would impose a desired target signal at
a specified target time in different network topology. Sometimes, the use
of the constrained LCCF method is necessary due to built-in equipment or
budget limitations for experiments. For this reason, we demonstrated the
applicability of the constrained LCCF method to obey such limitations. As
faults may often appear in the lines of the wiring networks, we also showed
how we could experimentally bring a software correction to the faulty
network regardless of the number, nature, and position of the faults. For both
the source identification and the software correction experiments, simple,
ramified, and complex networks were considered to prove the generality of
the LCCF and its independence of the network’s topology and characteristics.

In the last section, we experimentally investigated the capabilities of the
LCCF method to generate and control nanosecond microwave plasma in an
all-metal plasma reactor. We showed that the LCCF can prevent the appear-
ance of parasitic discharges by controlling the electric field at several positions
in the plasma reactor during the spatio-temporal focusing operation. The mi-
crowave control capabilities of the LCCF method make it a good candidate for
the sophistication of the recently developed plasma source [13]. This three-
dimensional transient electric field shaping method clearly pushes back the
capabilities of this source as a promising microwave plasma brush. In what
was reported in this chapter, the duration of the plasma generated at a single
spatial point was very short; therefore, the problem was viewed as linear. Nev-
ertheless, this will not be the case anymore for the plasma brush, where the
nonlinear effects could no longer be ignored. The nonlinear methods repre-
sented in Chapter 4 to control the electromagnetic fields in nonlinear systems
seem to be promising to enhance the spatial control of nanosecond microwave
plasma in nonlinear cavities.
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General Conclusion and Perspec-
tives

THE research conducted in this thesis aims to develop new techniques to
identify the profile of electromagnetic sources in the time domain that

would shape electromagnetic fields in a zone of interest. After their emission,
they propagate, interact, and finally reach the receivers with the desired field
profile over a predefined time interval. The need to replace or substitute
unintentional sources by desired ones, or complex sources by equivalents,
has been emphasized and explained while showing the limitations that the
existing methods face in the time domain.

The Time-Reversal (TR) adopted from acoustics showed its ability to
shape electromagnetic fields; however, its performance starts to degrade
when tackling lossy problems or performing under complex conditions. Thus
other techniques are required that may overcome such limitations, such as
the Linear Combination of Configuration Field (LCCF) method.

In linear media, we recall the main lines of the LCCF and its efficiency at
imposing the desired field at a specific spatial point over a given time interval.
The LCCF method collects all the propagative information of the medium
through the impulse response recorded at the receiver point after exciting a
Dirac signal at the source point. It shows to be independent of the topology
of the medium, multiple reflections, losses. The LCCF was compared to
the TR in one dimension to impose simple and complex target signals in
a lossy network. The LCCF showed its superiority over the TR to shape
electromagnetic fields in any linear medium using only one source generator.

These results incited us to improve the LCCF method to modify the
temporal properties of the source in order to obey some constraints encoun-
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tered during experiments. At first, we added filtration constraints to compute
smooth sources, and consequently reduce its maximum frequency. Then,
amplitude constraints we added to compute a source whose maximal and
minimal amplitudes are included between two predefined bounds. At the end
of Chapter 2, we presented an application of the LCCF method to replace one
field by another.

After that, we generalized the LCCF method that became able to control
several spatial points simultaneously. The generalized version of the LCCF
allowed us to use several source generators to impose target fields at several
receiver points. After computing the source signals, they propagate, interfere,
and interact in the linear medium, ending up to the set of the receivers to
impose the desired fields over the target time. Like its basic version, the
generalized LCCF is also independent of the medium’s topology and the
physical phenomena occurring inside.

After introducing nonlinear components to the medium, we showed that
the LCCF performance deteriorates in this case. Therefore, alternatives
methods were required to shape electromagnetic fields in nonlinear media,
such as Newton’s Method (NM) and the NonLinear Least-SQuares (NLLSQ)
solver. The general principles of both techniques were presented for any
nonlinear problem and they showed to be independent of the medium’s
topology. Our nonlinear applications were restricted to impose a specific
target signal at a single point of the networks over a given target time. In
terms of accuracy and CPU time, NM and the NLLSQ were compared to
show the superiority of the latter over the former.

We gathered all these ideas together to introduce a new process in the
context of faulty wiring networks called the Software Correction (SC). The
SC correction drives the system from its faulty state to the healthy state de-
spite the presence of the faults. It identifies the new inputs added to the faulty
network to recover the healthy outputs again at the receiver points. Notably,
the SC is independent of the number, position, and nature of the faults. To
apply the SC process, The LCCF was used in linear faulty networks, whereas
the NLLSQ solver was used with faulty networks behaving nonlinearly.

The obtained results in linear wiring networks paved the way for carrying
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out experimental validations. After adapting the LCCF theory to make
it experimentally feasible, we considered different network topology to
identify the temporal sources that impose given target signals. The LCCF
experimental tests also showed the possibility of adding amplitude constraints
to the computed source in order not to exceed the boundary limits of the used
generator. Moreover, the SC was also applied experimentally to different
network cartography presenting faults in its lines. Practical applications for
the SC in the presence of soft, hard, and multiple faults were successfully
conducted. In three dimensions, the LCCF method was applied to enhance
the spatial control of nanosecond microwave plasma in a reverberant cavity.

These results give credibility to the practical use of the LCCF method in
real-life configurations. A critical concern that might influence the practical
implementation of the method in real-life applications, namely noise, is in-
vestigated. The LCCF has shown to be robust with good performances when
dealing with noisy collected data.

Perspectives

We opted to work in this thesis on identifying the temporal sources that shape
electromagnetic fields in a domain of interest. Efficient and significant results
have been obtained in linear and nonlinear media using different numerical
methods. further study could be carried out to continue or handle other fea-
tures that have not been addressed in our work. Some of these perspectives
are listed in the following:

• In the linear case, when modifying the temporal properties of the com-
puted source by the constrained LCCF method, the obtained results to
reduce the maximum frequency after filtering the source seem inter-
esting. However, our work may not compute a source whose maxi-
mum frequency is specified beforehand. It would be interesting that
the LCCF will be able to compute sources with frequencies lying in a
predefined bandwidth.

• When testing the LCCF experimentally, experiments were applied to
coaxial cables and have shown interesting and promising results. An-
other line of research for these methods could be conducted to bring
an SC, such as twisted pair cables.
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• In the nonlinear case, three-dimensional numerical applications may be
simulated in the future as our simulations were only limited to wiring
networks. Moreover, constraints may be added to the nonlinear prob-
lem to modify the temporal properties of the source (smoothness, am-
plitudes, bandwidth, etc.) to pave the way for future experimental tests.
These tests may also include the SC in nonlinear faulty wiring networks.

• The active shaping in linear and nonlinear problems was solved when
the topology of the medium is constant. Other studies may focus on
developing the proposed methods for applications in dynamic systems.
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[23] M. Füner, C. Wild, and P. Koidl,“Novel microwave plasma reac-
tor for diamond synthesis,” Applied Physics Letters, vol. 72, no. 10,
pp. 1149-1151, March 1998.

[24] J. J. Su, Y. F. Li, X. L. Li, P. L. Yao, Y. Q. Liu, M. H. Ding, and
W. Z. Tang, “A novel microwave plasma reactor with a unique structure
for chemical vapor deposition of diamond films,” Diamond and Related
Materials, vol. 42, pp. 28-32, February 2014.

[25] A. Codino, Z. Wang, R. Razzaghi, M. Paolone, and F. Rachidi, “An
alternative method for locating faults in transmission line networks based
on time reversal,” IEEE Transactions on Electromagnetic Compatibility,
vol. 59, no. 5, pp. 1601-1612, October 2017.

187



BIBLIOGRAPHY

[26] R. Razzaghi, G. Lugrin, H. Manesh, C. Romero, M. Paolone, and
F. Rachidi, “An efficient method based on the electromagnetic time re-
versal to locate faults in power networks,” IEEE Transactions on Power
Delivery, vol. 28, no. 3, pp. 1663-1673, July 2013.

[27] Z. Wang, R. Razzaghi, M. Paolone, and F. Rachidi, “Time reversal ap-
plied to fault location in power networks: Pilot test results and analyses,”
International Journal of Electrical Power & Energy Systems, vol. 114,
pp. 105382, January 2020.

[28] L. El Sahmarany, L. Berry, N. Ravot, F. Auzanneau, and P. Bonnet,
“Time reversal for soft faults diagnosis in wire networks,” Progress In
Electromagnetics Research M, vol. 31, pp. 45-58, 2013.

[29] C. Furse, Y. Chung, C. Lo, and P. Pendayala, “A critical comparison of
reflectometry methods for location of wiring faults,” Smart Structures and
Systems, vol. 2, no. 1, pp. 25-46, 2006.

[30] P. Kralicek, W. John, and H. Garbe, “Modeling electromagnetic emis-
sion of integrated circuits for system analysis,” In Design, Automation
and Test in Europe, Munich, Germany, March 2001.

[31] K. Aunchaleevarapan, K. Paithoonwatanakij, W. Khan-ngern, and
S. Nitta, “Novel method for predicting PCB configurations for near-field
and far-field radiated EMI using a neural network,” IEICE Transactions
on Communications, vol. E86-B, no. 4, pp. 1364-1376, April 2003.

[32] P. Petre and T. K. Sarkar, “Differences between modal expansion and in-
tegral equation methods for planar near-field to far-field transformation,”
Progress In Electromagnetics Research, vol. 12, pp. 37-56, 1996.

[33] P. Petre and T. K. Sarkar, “Planar near-field to far-field transformation
using an equivalent magnetic current approach,” IEEE Transactions on
antennas and Propagation, vol. 40, no. 11, pp. 1348-1355, 1992.

[34] A. Taaghol and T. K. Sarkar, “Near-field to near/far-field transforma-
tion for arbitrary near-field geometry utilizing an equivalent magnetic
current,” IEEE Transactions on Electromagnetic Compatibility, vol. 38,
no. 3, pp. 536-542, August 1996.

188



BIBLIOGRAPHY
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