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Abstract

Convolutional Neural Networks (CNNs) have been extensively used in many fields such as
image recognition, video processing, and natural language processing. However, CNNs are
still computational-intensive and resource-consuming. They are often constrained by the
limit performance and memory when deployed on embedded systems. This PhD research
project aims at proposing CNNs which are more suitable for embedded systems with low
computing resources and memory requirements.

We begin by integrating some of the more recent machine learning techniques (such as
dropout, batch normalization and different activation functions) into convolutional neural
networks and review the state-of-the-art compression and acceleration methods of CNNs.
After this literature review, we propose three methods to accelerate the operation of neural
networks: Selective Binarization, Quad-Approx Network and MinConvNets.

Selective Binarization combines layers with different precisions in CNNs to achieve an
acceptable speed and accuracy. As well an FPGA based hardware accelerator is proposed
for these optimized structures. We train the tiny-YOLO CNN with a drone object detection
dataset (DAC-SDC), and it is possible to achieve 1.68x improvement in runtime performance
incurring a tolerable 8.99% loss in precision measured by IOU (Intersection over Union).

With the proposed signed PArameterized Clipping acTivation Function (signed PACT)
, the CNNs are quantized into 3 bits, and then a loss-less network is established by using
approximate multiplier, which is named Quad-Approx Network. An approximate multiplier
for 3-bit multiplication also implemented in FPGA is proposed, which can achieve a 1.2x
speedup and 5.3x compression when applied to Quad-Approx Networks. In addition to
acceleration, what is more valuable is that Quad-Approx shows that CNNs are certain fault
tolerance systems, which leads us to propose the MinConvNets.

MinConvNet is a set of multiplication-less CNNs whose multiplications are replaced by
approximate operations. MinConvNet can achieve negligible loss of prediction compared to
exact image classification networks through transfer learning, meanwhile the multiplication
which is more resource consuming to implement is replaced by easier implemented opera-
tions. On the one hand, MinConvNets have abandoned the traditional compression idea and
proposed a new direction for acceleration of CNNs, that is to say, the approximate method
is directly applied on the operators instead of on operands as classic methods. On the other
hand, with the proposed criterion in this work, may be evaluate a compression/acceleration
method without validation on image-sets in the future, which may greatly save time.

Human is ushering the era of the artificial intelligence. In the meantime, the Internet
of Things (IoT) makes our lives more convenient. The works in this thesis have proposed
the optimization methods in the aspects of structure, operands and operators, so as to solve
one of the important challenges, that is, how to make the resource-consuming CNNs easier
deployed on the resource limited platforms. These works bring more complex intelligent
algorithms into the edge devices and helps us to create the era of Artificial intelligent Internet
of Things (AIoT).
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Chapter 1

Introduction

The unprecedented success of machine learning has ushered us into an era of artificial intel-
ligence. Neural networks, one of the best algorithms in machine learning, it has been used
to solve various problems, such as computer vision and speech recognition. These problems
are difficult to solve by traditional rule-based programming. However, there are still many
challenges for Neural Networks. The work in this thesis proposes the solutions for the one of
the important challenges, that is, how to make the resource consuming CNNs easier deployed
on the resource limited platforms.

1.1 Context
Although neural networks exist since the 1940s [4], the significant breakthrough dates back to
2012 when Alexnet [5] surpassed the human programmed approaches for image classification.
The major enabling factors behind this success are supposed to be the appearance of large
datasets in the cloud and the availability of enormous computing power (e.g GPUs). Since
then, there has been a steady growth of customized neural network accelerators research
and several architectures have been proposed [6, 7, 8, 9], and more recently TPU (Tensor
Processing Units) [10] have been commercialized by Google.

Nowadays, the powerful cloud cluster and its huge computing power have allowed machine
learning algorithms to be widely used in many fields such as data mining, securities market
analysis, and medical diagnosis. However, with the development of embedded platform such
as the Internet of Things, drones, smart cities, and wearable devices, CNNs have more
and more frequent been attempted to deploy on embedded systems and mobile terminals.
These applications often have real-time constraints and a very tight power budget. Due
to the limited computing resource of embedded systems, the CNNs are always pre-trained
offline and then implemented in embedded systems for the inference stage. However, most
of the neural network, such as Convolutional Neural Network (CNN) is still computationally
intensive and resource-consuming in the inference stage due to the convolution calculation
requiring a great number of multiply-accumulate (MAC) operations.

For example, AlexNet [5] requires about 1.5G multiplication operation in convolutional
layers to process a 224 × 224 image. For more complex tasks, such as object detection,
the number of multiplication operations is higher. Multiplication is always more difficult to
implement, or time-consuming in computing [11], therefore, several methods are proposed
to speed up or compress the network.

Quantization is a class of methods that make use of low-precision arithmetic [12]. [8]
proposes half-precision floating point, [10] uses 8-bit quantized weights, and [13, 14] propose
the use of binarized weights and feature maps. Compared with the original neural network
encoded in 32-bit, the quantized network is smaller, and fewer-bit multiplication may cost
fewer computing resources for some special platform.

Pruning networks is another widely discussed method to compress and speed up the
neural network. The main idea of pruning is to cut out the redundant neurons in neural
networks so that reduces the number of operations. Filter pruning methods that rank filters
then remove the less important filters are proposed in [15, 16, 17]. In weights pruning
methods [18, 19, 20], the less important weights in each filter are dropped off and set to 0,
so that sparse networks can be built and can be accelerated by sparse matrix calculator.

There are some other compression and acceleration techniques, which we will discuss in
detail in Chapter 4.

1



1.2 Problematic
Although lots of excellent works have made great progress in this field, there are still many
shortcomings for the compression and acceleration of convolutional neural networks. For
example, although the binary networks work well for image classification, they tend to lose
precision with more complex tasks, such as object detection which needs to localize the
objects in images.

However, more complex tasks are gradually being deployed in embedded systems, such
as drones that need to track the object, or auto-driving cars that need to locate pedestrians.
Since embedded systems are always with limited resources, compression, and acceleration
for these more complex tasks have become an attractive subject. To solve the deficiencies of
the current optimization of the neural networks and make it more widely used, the following
question have been proposed:

• Is it possible to optimize the existing methods or propose new directions to accelerate
and compress CNN, so that CNN requires less resources but can handle more complex
tasks?

The works in this thesis attempt to answer this question.
Although neural networks can have several different variations such as multi-layer per-

ceptrons, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNNs), Long
Short Term Memories (LSTM) etc. we limit our scope to accelerating Convolutional Neural
Networks (CNNs).

1.3 Contributions
In order to compress and/or accelerate the CNNs, three architecture are proposed: Selective
Binarization network, Quad-Approx network, and MinConvNets.

Selective Binarization combines layers of different precisions in CNNs to achieve an ac-
ceptable speed and accuracy. The contributions with selective binarization are as follows:

• CNN structure that consists of layers with multiple precisions is introduced. For
each convolutional layer, there are three different precision levels to choose from:
half-precision floating for feature maps and weights; half for feature maps and bi-
nary weights; and binary feature maps and weights. In the binary layer, multiply-
accumulate (MAC) operations are converted to addition or/and subtraction or XNOR-
popcount logic operations. As well, a new calculator instead of a traditional MAC
operator could be used to speed up the calculation.

• In this work, an architecture that is compatible with these three different precisions is
proposed. Different precisions can be chosen flexibly for each layer according to differ-
ent scenarios, then apply the appropriate implementation to accelerate the calculation.
To our knowledge, this is the first architecture that proposes such a choice.

• It has been proposed a method of architecture exploration to find the optimum use of
binary layers, which is called selective binarization. The aim is to use selective bina-
rization to increase performance and decrease power consumption, within a tolerable
precision loss. Then an adapted end-to-end streaming architecture for a deep learning
accelerator is proposed.

Quad-Approx networks are structures with the few-bit quantization and approximate
operator. The contributions are:

• The PArameterized Clipping acTivation Function (PACT) [21] method is applied to
our training process, and propose a Signed PACT method for quantization of fewer-bit
signed values.

• Based on this method we show that signed 3-bit quantization is good enough for object
detection tasks. It has already been shown by others [14, 22] that binarized networks
(1 bit) are good enough for classification tasks.

• An approximate multiplier circuit for 3-bit multiplication is proposed, which can
achieve a 1.2x speedup.
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• A training method where the multiplier approximations are back annotated to the
training process is proposed, which leads to no loss in overall precision.

Finally, the MinConvNets are proposed. But different from the classic methods intro-
duced in section 1.1 which accelerate multiplication or reduce the number of multiplication
operations, multiplication is abandoned directly in this work. Multiplication in CNNs is
replaced with lighter operations. The main contributions of this work are:

• A set of criteria to measure the degree of approximation between two operations is pro-
posed. Based on these criteria, an approximate operation to multiplication is proposed
for error-tolerant systems.

• On top of the proposed approximate operation, an approximate convolutional layer
without multiplication is explored to replace the traditional convolutional layer. Then
we build and train the CNN by using an approximate convolutional layer, named Min-
ConvNets. The benchmark is applied to MinConvNets to show that lossless accuracy
can be achieved in image classification tasks.

• This work shows that in addition to multiplication, other lighter operations can still
effectively extract image features. This provides a new direction for compressing or
accelerating CNNs in future works.

Selective Binarization is a structural optimization that combines and improves existing
compression methods. Quad-Approx Networks quantize the operands in CNNs to solve
some difficulties of the existing optimization methods and based on few-bit quantization the
approximate operators are applied. The work of MinConvNets uses approximate operators
directly and provides a new direction for compressing and accelerating CNNs. These three
works answer the question raised in section 1.2 by improving the structure, operands, and
operators of CNNs.

These works reduce the resources required by CNNs and makes them easier to be deployed
in systems with limited resources. On the one hand, this enriches the usage scenarios of CNN,
and on the other hand, it makes the embedded system more intelligent. We have already
ushered in the era of artificial intelligence, as well as the era of the Internet of Things. This
work can integrate these two fields and help us create the era of Artificial intelligent Internet
of Things.

1.4 Organization
The thesis is organized as follows:

• The history of machine learning, and the technologies of convolutional neural networks
is presented in Chapter 2.

• Chapter 3 describes the difficulties of CNNs and determines the task and the platform
to solve the difficulty.

• The state-of-the-art works are introduced in Chapter 4, while some of these methods
are implemented in Chapter 5 to measure the performance.

• Based on this, in Chapters 6, Chapter 7, and Chapter 8, Selective Binarization, Quad-
Approx Networks, and MinConvNets are proposed respectively to speed up the CNNs.

• In Chapter 9 the conclusion and the future work are discussed.
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Chapter 2

Machine Learning and Convolutional
Neural Networks

Machine learning and convolutional neural networks have been proposed and discussed since
the last century. After decades of development, the convolutional neural network is already
one of the powerful algorithms in the field of machine learning now. Machine learning,
especially convolutional neural networks is introduced in this chapter.

First, the history of the development of the neural networks and the basic technologies of
convolutional neural networks are introduced. Next, certain classic and important structures
of convolutional neural networks are discussed. Then we discuss and compare the widely used
neural network frameworks in this chapter. At the end of this chapter, they are summarized.

2.1 Machine Learning
Human beings have been trying to make machines intelligent, that is, artificial intelligence.
In the 1950s, peoples believed that if the machine acquired the ability to reason, the machine
would be intelligent. For example, Logic Theorist, a computer program written in 1956 by A.
Newell et al. [23] [24], was the first program deliberately engineered to perform automated
reasoning and is called “the first artificial intelligence program”. It would ultimately prove
38 of the first 52 theorems in Whitehead and Russell’s Principia Mathematica and find new
and more elegant proofs for some of them [23].

But even if the machine has reasoning ability, it is far from intelligence due to lack
of knowledge. Therefore, in the 1970s, the development of artificial intelligence entered a
“knowledge period”, that is, to summarize human knowledge and teaching it to machines so
that machines can gain intelligence. During this period, a great number of expert systems
have emerged and achieved a lot of achievements in many fields.

However, on one hand, people gradually realize that it is a gigantic workload project
for people to come to their knowledge and then teach it to the computer. On the other
hand, the computers operate in accordance with the rules and summarized knowledge set
by humans, which means they can never surpass their creators. To solve this problem, a
number of scholars thought that the machine could learn knowledge on its own. The concept
and method of machine learning have been proposed. Figure 2.1 shows the timeline for the
development of artificial intelligence as well as machine learning.

Machine learning is now a huge family involving many algorithms, tasks, and theories.
It includes but is not limited to algorithms such as decision trees, neural networks, support
vector machines (SVM), and Bayes classifiers. These algorithms attempt to discover the
hidden rules from a large amount of data and use them for prediction or classification.
More specifically, machine learning can be seen as algorithms to find a mapping function
between the inputs (sample data) and the outputs (the desired class), but this function is
too complicated to express in a convenient way.

2.1.1 Building a Machine Learning System
The process of obtaining this function is called training a machine learning system. Generally
speaking, there are three steps to training a neural network:
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Figure 2.1: The artificial intelligence timeline

Choose a suitable model

The model includes a function model and a dataset for training. Choosing a function model
usually depends on the actual problem, and the appropriate model needs to be selected for
different tasks. For example, both decision tree and SVM can resolve binary classification
tasks, while convolutional neural networks (CNN) usually are more powerful to process
images.

Most machine learning algorithms have some parameters to be configured. The perfor-
mance caused by different parameters is often significantly different. Even if we determine
the model used, the parameters of the model need to be constantly adjusted. This adjust-
ment is called parameter tuning.

Another important choice is the training dataset, which should contain a large variety of
samples. For example, when we want to train a network that can distinguish cat and dog
pictures, the training sample set should contain as many different images of cats and dogs
as possible. If the training set contains only the images with black dogs and white cats,
then the system may learn to recognize colors instead of animals. Of cause, if the dataset
contains only cats and dogs, the trained network will not recognize rabbits and horses.

It should be pointed out that the goal of machine learning is to make the learned function
well applicable for the “new samples”, not just perform well on training samples. The ability
of the learned function to apply to new samples is called generalization. To gain the ability
of generalization, the system should try to learn the general characteristics of samples. If a
machine learning system relies on the specific characteristics of samples, the generalization
ability will be reduced. That is called over-fitting.

Measure the performance of the system

Performance measures can reflect the quality of a model. For a given sample set D =
{(x1, y1), (x2, y2), ...(xm, ym)}, where yi is the ground truth of sample xi, when measuring
the performance of system f , it is necessary to compare the prediction result f(x) and ground
truth y. For example, mean squared error E(f,D) is the most commonly used performance
metric in regression task:

E(f,D) =
1

m

m∑
i=1

(f(xi)− yi)
2 (2.1)

Depending on the task, the measure criteria are different. For example, YOLO introduced
in section 2.3.6 can classify images and locate objects in the image. Therefore, measurement
criteria for YOLO should evaluate not only the correctness of classification but the accuracy
of the location of objects. Some measure criteria for classification and object detection tasks
are presented in section 3.2.3.
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Find the “best” function

When we build a machine learning system based on the measure criterion, we prefer to pick
out the best function to solve our problem. But in fact, it is not easy. For example, some
large convolutional neural networks may be nonlinear systems containing billions of param-
eters, and it is impossible to try these parameters one by one and get the optimal solution.
But we can build a loss function of the system, that can be expressed by the performance
metric. Then we adjust the parameters through dedicated algorithms to find the minimum
value of the loss function. In this way, we transform the problem of selecting parameters
into a numerical optimization problem. The next step is to use some optimization methods
to find the minimum value of the loss function. For example, the least-squares method can
be applied to optimize regression systems, while convolutional neural networks usually use
gradient descent algorithms to minimize their loss function and optimize their huge number
of parameters.

Based on these steps, a machine learning system can be trained for prediction. For
different tasks and methods, the implementations are also different.

2.1.2 Common Concepts and Methods
Next, we will introduce some concepts and methods that are often mentioned when building
a machine learning system. These may also be used in later chapters.

Regression, Classification, Structured Learning

These words express the different targets of machine learning systems.
The output of the regression model is the value of a quantitative variable. This model is

usually used to predict unknown cases based on well-known cases.
The classification model includes a binary classification and a multiclass classification.

The binary classification is the task of classifying the elements of a given set into two groups,
such as positive/negative. And multiclass is the problem of classifying instances into one
of three or more classes. Based on the different problems and results, the output and
measure criteria of binary classification are different. Table 2.1 shows the result of binary
classification. In this table, the column ratios are True Positive Rate TPR = TP/(TP+FN),
aka sensitivity or recall, with complement the False Negative Rate FNR = FN/(TP +FN);
and True Negative Rate TNR = TN/(TN +FP ), aka specificity or SPC, with complement
False Positive Rate FPR = FP/(TN + FP ). The row ratios are Positive Predictive Value
PPV = TP/(TP +FP ), aka precision, with complement the False Discovery Rate FDR =
FP/(TP +FP ); and Negative Predictive Value NPV = TN/(TN +FN), with complement
the False Omission Rate FOR = FN/(TN + FN). In diagnostic testing, the main ratios
used are the true column ratios, i.e., True Positive Rate and True Negative Rate, where they
are known as sensitivity and specificity. In informational retrieval, the key ratios are the
true positive ratios (row and column), i.e., Positive Predictive Value and True Positive Rate,
where they are known as precision and recall.

For multi-classification problems, the measure criteria often change based on the problem.
For example, cross-entropy is often used in image classification, and YOLO described in
section 2.3.6 uses the L2 norm of confidence to measure the performance of classification.

As to the structured learning, its output is no longer a fixed-length value. For example,
the output of the semantic analysis of the picture is the text description of the picture.

These three categories are not exclusive. For instance, the problem of object detection
in the image needs to find the location of the object in the image and classify them. We
can transform him into the regression analysis to determine the location and classification
information to determine the type of object.

Supervised Learning, Unsupervised Learning, Reinforcement learning

They are three basic machine learning paradigms.
Supervised learning is the machine learning task of learning a function that maps an

input to an output based on the example of input-output pairs. [25] It infers a function from
labeled training data consisting of a set of training examples [26]. In supervised learning,
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Table 2.1: The result of binary classification

Condition Positive (CP) Condition Negative (CN)
Test Outcome Positive (OP) True Positive(TP) False Positive(FP)
Test Outcome Negative (ON) False Negative(FN) True Negative(TN)

each sample is a pair consisting of an input object (typically a vector) and the desired output
value (also called the supervisory signal).

A supervised learning algorithm analyzes the training data and produces an inferred
function, which can be used for mapping new samples. Unsupervised learning is a type
of machine learning that looks for previously undetected patterns in a dataset with no
pre-existing labels and with a minimum of human supervision. In contrast to supervised
learning that usually makes use of human-labeled data, unsupervised learning, also known
as self organization allows for modeling of probability densities over inputs. [27]

Reinforcement learning focuses on the concept of how software agents ought to take
actions in an environment to maximize the notion of cumulative reward. Reinforcement
learning differs from supervised learning in not needing labeled input/output pairs to be
presented, and there is no need to explicitly correct sub-optimal actions. Instead, the focus
is on finding a balance between exploration of uncharted territory and the exploitation of
current knowledge. [28]

Hyperparameter

In machine learning, a hyperparameter is a parameter whose value is used to control the
learning process. By contrast, the values of other parameters (typically node weights) are
derived via training.

Hyperparameters can be divided into model hyperparameters and algorithm hyperpa-
rameters. Model parameters cannot be inferred while fitting the machine to the training set
because they refer to the model selection task. And algorithm hyperparameters in principle
have no influence on the performance of the model but affect the speed and quality of the
learning process. An example of a model hyperparameter is the topology and size of a neu-
ral network. Examples of algorithm hyperparameters are learning rate and mini-batch size,
introduced in section 2.2.

Transfer Learning

Transfer Learning is a research problem that focuses on storing knowledge gained while
solving one problem and applying it to a different but related problem [29]. For example,
the knowledge gained while learning to recognize cars could apply when trying to recognize
trucks. For training a YOLO network in section 2.3.6, convolutional weights pre-trained on
ImageNet [30] are used, which uses the transfer learning method. From the perspective of
practical standpoint, reusing or transferring information from previously learned tasks for
the learning of new tasks has the potential to significantly improve the sample efficiency of
a reinforcement learning agent [29].

Deep Learning

Deep learning is a class of machine learning algorithms, which uses multi-layer to progres-
sively extract higher-level features from the raw input [31]. For instance, in image processing,
lower layers may identify edges, while higher layers may identify the concepts relevant to a
human such as digits or letters or faces.

Data Augmentation

Data augmentation in data analysis are techniques used to increase data volume by adding
slightly modified copies of already existing data or newly created synthetic data from existing
data. This method is usually used when the training dataset is insufficient. It also helps to
reduce over-fitting [32]. Geometric transformations, flipping, color modification, cropping,
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rotation, noise injection and random erasing are used to augment the number of images in
deep learning.

2.2 Convolutional Neural Network
With the development of computer performance, how to make machines understand images
has gradually attracted people’s attention. Initially, pattern recognition technology was
applied. For instance, templates or patterns could be used describing objects’ structure.
There has an example, we can distinguish handwritten digits 3 and 8 by detecting whether
there is a closed circle. This is artificial intelligence in reasoning and knowledge mode.

Although the pattern recognition has achieved certain results, as mentioned above, man-
ual extracting knowledge is a heavy workload. With the development of machine learning,
people prefer to feed images to machines so that machines can analyze and recognize images
automatically.

Convolutional Neural Network(CNN), also called ConvNets, is one of the excellent im-
age processing models. Now, CNNs have been widely used in image classification, object
detection, video tracking and other fields. In this section, we will give a brief introduction
to CNNs.

2.2.1 Computational Primitives
In their most general form, neural networks can be interpreted as computational graphs
composed of primitive operations. The computational graphs allow for a rich set of primitive
operations and we will describe below the most used and most successful operations.

Matrix-vector Multiplication and Fully-connected Layer

Matrix-vector Multiplication is probably the most widely used primitive for deep learning
calculations. It is a linear operation (without nonlinear effects) and is used as an integral
part of the most successful neural network architectures.

Most commonly, the vector x ∈ Rn represents information previously processed by the
neural network and/or unprocessed (input) information. W ∈ Rm×n is a trainable matrix,
which means its entries are modifiable. The result of this operation is the vector y ∈ Rm:

y = W × x (2.2)

Usually, a vector of biases is added to the multiplication result and the previous equation
becomes:

y = W × x+ b (2.3)
Matrix multiplication is frequently used in CNNs. e.g, Fully-connected layers presented

in 2.2.1 in CNNs can be computed with a matrix multiplication followed by a bias offset.
In the context of CNNs, fully connected structures require too many parameters. In

CIFAR-10, seen in section 3.2.2, for a color images (3 channels for red blue, and green)
with size 32x32, a single fully-connected neuron in the first layer of a Neural Network would
already have 32*32*3 = 3072 weights. For a color image with size 200x200, 120K weights
are needed. Moreover, we almost certainly would like to have several such neurons, so the
parameters would add up quickly.

Spatial Convolution and Convolutional Layer

Convolution is a mathematical operation of two functions (f and g) that produces a third
function represents how the shape of one function is modified by the another. It is defined
as the integral of two functions where the one is reversed and shifted by another one. As
such, it is a particular kind of integral transform:

(f ⊗ g)(t) =

∫ +∞

−∞
f(τ) · g(t− τ)dτ (2.4)

The pixels of a given input image can be considered as a discrete ternary function
I(w, h, c), where w, h, c is the spatial coordinates of the pixel. Then a discrete spatial con-
volution applied to this ternary function is calculated as:
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Figure 2.2: An example of convolution for one filter with size=3x3x1

g[w, h, c]⊗ I[w, h, c] =
width∑
n1=1

height∑
n2=1

channel∑
n3=1

g[n1, n2, n3] · I[w − n1, h− n2, c− n3] (2.5)

where width, height, channel describe the size of images.
Traditionally, function g for convolution has the same number of channels to images

but the smaller width and height. The size of function g is noted as fw × fh × channel.
Usually for convenience, we will associate the function g with the weight filter matrix W ∈
Rfw×fh×channel, and then the convolution for the image is expressed as:

W [w, h, c]⊗ I[w, h, c] =

fw∑
l1=1

fw∑
l2=1

channel∑
l3=1

W [l1, l2, l3] · I[w + l1, h+ l2, c+ l3] (2.6)

Here, it is observed that the convolution of a pixel is to multiply the points around this
pixel by weights then accumulate them. The calculation in Figure 2.2 shows an example that
we calculate the convolution of one pixel with a filter with size 3x3x1. For the convolutions of
the whole image, the filter is moved to each pixel location. It can be considered as scanning
an image by the filter. The convolution of the image is always slide in 2 dimension (width
and height), without considering the direction of depth(channel), so the c in Equation 2.6 is
usually fixed to 0 and the output of the convolution is a 2 dimension tensor.

The convolution calculation does not look at a pixel isolated, but considers the pixel and
its neighborhood as an integrated structure. It is observed that for fixed weights, some pixels
can obtain bigger output values by the convolution operation, in other words, these pixels
are receptive to the filter.

The output of the convolution is a tensor recording the positions of receptive and non-
receptive area, called feature-map. Each filter can extract one feature, and when we need to
extract multiple features, more filters each produce a separate 2-dimensional feature-map.
We will stack these feature-maps along the depth dimension and produce the output volume.
The number of filters we would like to use is called depth. We call the number of filters that
we would like to use “depth”. It is a hyper-parameter.

The tiny filter will have a limited area of the perception field, therefore multiple layers
of filtering can be used, videlicet, send the results of the current filter to the next layer to
increase the area of the perception field. Intuitively, the filter will feel several types of visual
features such as an edge of some orientation or a blotch of some color on the first layer, or
eventually entire honeycomb or wheel-like patterns on higher layers of the network.

At this point in time, we can build a convolutional layer. Different from the fully con-
nected layers, the number of weights of the convolutional layer is not related to the size of
the image, so the size of the weights will be reduced.

Generally, apart from convolution, the convolutional layers (noted as CONV) usually
also use bias calculation, as follows:

CONV (X)[w, h, c] = W [w, h, c]⊗X[w, h, c] + bias (2.7)

where bias ∈ R is a trainable parameter for each filter.
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Non-Linear Function

As mentioned above, we can use deep neural networks to make the types of image recog-
nition more diversified. But if we only use linear layers, such as fully-connected layers and
convolutional layers, then we can always find a single-layer linear transformation to replace
the deep neural network. Intuitively, no matter how many linear operations are composed,
the entire system is no more powerful than a simple linear regression. As such, there is no
way to benefit from deep neural networks. Therefore, the non-linear function needs to be
inserted, so the deep neural network can establish non-linear relation between input and
output.

In neural networks, non-linearity is introduced using the concept of an activation function,
which is applied element-wise to the input. It can better perceive and express the image.

Historically, the most popular activation function used to be the sigmoid function:

σ(x) =
1

1 + e−x
(2.8)

Another activation function with a long history is the tanh function:

tanh(x) =
ex − e−x

ex + e−x
(2.9)

Obviously, there are 4 exponential operations in tanh. To simplify the operation,HardTanh,
a function approximated to tanh is also used:

HardTanh(x) =


1 if x > 1
x if −1 < x ≤ 1

−1 if x ≤ −1
(2.10)

Currently, one of the most successful activation functions is the Rectified Linear Unit
(ReLU) [5]

ReLU(x) =

{
x if x > 0
0 otherwise (2.11)

Compare to the sigmoid and tanh, there is no longer any exponential calculations, which is
easier for hardware implementation with limited resources.

Leaky rectified linear units (LReLUs or Leaky) [33] have been found to either match or
surpass ReLUs in performance by some authors:

Leaky(x) =

{
x if x > 0

αx otherwise (2.12)

α is the scaling factor and is fixed. Parametrized Rectified Linear Units (PReLU) [34] is
another rectified activation function, with the same equation as for LReLU. The difference,
though, is that α is a trainable parameter (through gradient-based optimization).

We introduced commonly used non-linear functions, which usually follow the convolu-
tional layers or fully connected layers, making these calculations non-linear. Non-linearity
makes neural networks, especially deep neural networks, more expressive.

Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Convolutional layers
in a CNN architecture. Its function is to gradually reduce the spatial size of the represen-
tation to reduce the number of parameters and computation in the network, and hence to
also control over-fitting. The Pooling Layer operates independently on every depth slice of
the input and resizes it spatially. The depth dimension remains unchanged.

The most common form is a pooling layer with filters of size 2x2 applied with a stride of
2 down-samples every depth slice in the input by 2 along both width and height, discarding
75% of the activations, and then every Max operation would in this case be taking the
maximum value over 4 numbers (little 2x2 region in some depth slice). Given input feature
map i, the output feature map o is given by:

o[m,n] = Max(i[2∗m, 2∗n], i[2∗m+1, 2∗n], i[2∗m, 2∗n+1], i[2∗m+1, 2∗n+1]) (2.13)
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Figure 2.3: A typical CNN architecture for classification

Besides, the pooling units can also perform other functions, such as average operation
or even L2-norm. Average pooling was often used historically but has recently fallen out
of favor compared to the max pooling operation, which has been shown to work better in
practice.

In addition to reducing the size, another notable usage of the pooling layer is to set the
stride as 1. The main motivation is to provide some robustness to the small images.

2.2.2 Building Convolutional Neural Networks
As we described above, a simple CNN is a sequence of layers, and every layer of a CNN
transforms one volume of activations to another through a differentiable function. We use
three main types of layers to build CNN architectures: Convolutional Layer(CONV) followed
by ReLU, Pooling Layer(POOL), and Fully-Connected Layer(FC).

Figure 2.3 shows an overview of the example CNN architecture for classification. More
details are described as follows:

• INPUT [32× 32× 3] will hold the raw pixel values of the image, in this case, an image
of width 32, height 32, and with three color channels R, G, B.

• CONV layer will compute the output of neurons that are connected to local regions in
the input, each computing a dot product between their weights and a small region they
are connected to in the input volume. This may result in volume such as [32x32x16] if
we decided to use 16 filters.

• RELU layer will apply an element-wise activation function, such as the max(0,x)
thresholding at zero. This leaves the size of the volume unchanged.

• POOL layer will perform a down-sampling operation along the spatial dimensions
(width, height), resulting in volume such as [16x16x16].

• We repeat the CONV-RELU-POOL as steps 2 to 3, but the input is the feature maps
of the last layer, as volume [16x16x16]. The output result is in volume such as [8x8x32]
if we use 32 filters in this CONV layer.

• FC layer will compute the class scores, resulting in a volume of size [1x1x10], where
each of the 10 numbers corresponds to a class score, such as among the 10 categories of
Cifar10, an image set presented in section 3.2.2. Just like an ordinary Neural Networks
and as the name implies, each neuron in this layer will be connected to all the neurons
in the previous layer.

In this way, CNNs transform the input images layer by layer from the original pixel values
to the final class scores. Note that some layers contain parameters and others do not. In
particular, the CONV/FC layers perform transformations that are a function of not only
the activations in the input volume but also of the parameters (the weights and biases of
the neurons). On the other hand, the RELU/POOL layers will implement a fixed function
without parameters. The parameters in the CONV/FC layers will be trained so that the
class scores that the CNN computes are consistent with the labels in the training set for
each image.
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2.2.3 Building the Loss Function
In the previous sections, we discussed various neural network architectures. Generally, all
of these architectures can be represented as parameterized functions f(x, θ), where by x
we denote the inputs and by θ we denote the trainable parameters. We can assume that,
initially, the parameters θ are randomly initialized, or are initialized in a particular way, for
example, with probability distributions.

Next, we will first introduce loss function L, which is used to quantify the quality of the
set of trainable parameters θ. The loss function is minimized by the optimization process,
which searches for the corresponding parameters θ. We then briefly discuss optimization in
the next section, the process of finding the parameters θ which minimize the loss function
L.

As described in section 2.1, performance measures can be used to evaluate the perfor-
mance of the machine learning system. For image classification, precision and recall intro-
duced in section 3.2.3 may be used to evaluate the performance. However, some common
encountered performance measures are often not differentiable, a property that is strongly
desirable. For this reason, we need to build a differentiable loss function and optimize the
machine learning system according to this loss function.

Taking the architecture in section 2.2.2 for Cifar10 image set as an example, we build
the loss function L.

For a given image set such as Cifar10 D = {(x1, y1), (x2, y2), ...(xm, ym)}, where xi is the
matrix that represents the pixel of ith image in this image set, and yi marked the category
number of this image, we build a CNN architecture:

Y = func(x, θ) (2.14)

where the output is a matrix Y ∈ R10. The jth element in the matrix Y represents the
predicted possibility that the image belongs to category j, that means Y (j) = P predict(yi =
j|xi) . For a classifier with high accuracy, for example, if yi = 4, then when we input the
image xi, in the output of the classifier, the value of the fourth element should be significantly
larger.

The loss function called cross-entropy, measuring the distance between Y and yi is build:

L(yi, Y ) = −
10∑
j=1

(1yi=j)log(Y (j)) (2.15)

More generally, cross-entropy is defined as following:

H(y, p) = −
∑
j

yjlog(pj) (2.16)

where y is the ground-truth as a one-hot encoding vector including a one at the class position,
and zeros elsewhere, p represents the predicted possibility. It indicates the distance between
what the model believes the output distribution should be, and what the original distribution
really is.

This loss function can be considered as a function of a given data (x, y) and a set of
parameters θ. It can be minimized through gradient-based optimization, by adjusting the
parameters θ, so that the accuracy of the classifier becomes higher for a given dataset.

2.2.4 Training Convolutional Neural Network
Backward propagation (also called backpropagation) method in conjunction with the opti-
mization algorithm is an iterative method for supervised learning such as CNNs. It starts
with an initial set of parameters θ0, which is iteratively refined so that the loss function is
gradually minimized. This is probably the most widely used method for optimizing machine
learning models.

The basic process flow of the backward propagation method is shown in Figure 2.4, in
which the optimization algorithm is the gradient descent. Actually, the forward propagation
phase is the prediction process of the model. When the predicted results of the convolutional
neural network do not match the expectation, the backward propagation process is performed
to train the network.

Gradient descent method is an iterative optimization algorithm for finding the minimum
value of a function. It performs two steps iteratively:
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Figure 2.4: The gradient descent training methods for CNNs

1. Compute the slope (gradient) that is the first order derivative of the function at the
current point.
For multi-layer networks, the output of the previous layer is used as the input of
the latter layer. In other words, the multi-layer convolution can be regarded as a
nested compound function. For nested functions, the direct derivation is complicated
to calculate. Hence the chain rule to compute the derivative of a composite function
is usually used to compute the gradient of the parameters in the deep networks.

2. Move a small step from the current point to the direction of the gradient descent.
To update the parameters θ using gradient descent, it must choose a learning rate η.
The naive process of updating the parameter θi when only one training sample passed
through the neural network is expressed as:

θit+1 = θit − η · ∂L
∂θit

(2.17)

where t is the index of iteration. For the different size of training sample and the
different variants of gradient descent, the specific implementation will be different,
that is discussed in below.

A widely used metaphor to describe the gradient descent process is that a blindfolded hiker
tries to reach the bottom of a hill by feeling the downward slope at the current location.
The core intuition behind this approach (instead of e.g., using random search) is that it can
be much easier to make a small improvement in the loss function than to come up with the
optimal parameters θ in a single step (as would be necessary for random search).

Depending on the number of training set samples used in each iteration, we get different
variants of the gradient descent.

• If a single example is selected randomly at every iteration, we obtain Stochastic Gra-
dient Descent (SGD). The details of SGD can be found in the work [35].

• If a fixed number of examples (e.g., 128) are selected at each iteration, we obtain
mini-batch gradient descent (the examples are denoted as a mini-batch).

• When all the examples in the training set are used for each iteration, we obtain batch
gradient descent.
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The trade-off between selecting more or fewer data points at every iteration goes as follows:
using more examples allows for more useful gradients for the optimization process, but they
also require more computation. Therefore, mini-batch gradient descent can be considered
as a compromise between SGD and batch gradient descent. It is the most commonly used
variant of gradient descent in deep learning, because it leads to less noisy gradients but not
as computationally intensive as batch gradient descent. As well, code that operates on the
mini-batch examples can be parallelized so that the computational cost is not much larger
than the cost of processing a single example.

Through the backward propagation and gradient descent methods, the parameters can be
updated iteratively. And the given network structure with trained parameters can achieve
more accurate predictions with smaller loss function for a specific dataset. For different
structures, the minimum value of the loss function is also different. An appreciated structure
can bring better prediction results. In the next chapter, we will discuss the classic CNNs
structure for different tasks.

2.3 Classic Convolutional Neural Networks
In the previous chapter, we have introduced the computational primitives. CNNs can be
regarded as computational graphs composed of these primitive operations. So how to build
high-performance computational graphs has become a valuable problem, and it is worth
studying. In this chapter, we introduce several classic CNN structures, which have achieved
excellent performance for their target tasks. Meanwhile, the methods and ideas proposed
along with these structures also provide support for more complex CNN models. It can be
said that they are milestones in the development of CNNs.

2.3.1 LeNet

Max Pool 2x2, s2

Conv 5x5 s1, @6, tanh

Conv 5x5 s1, @16, tanh

Max Pool 2x2, s2

Conv 5x5, @120, tanh

FC @84

FC @10

Output 1x10

Input 28x28

Figure 2.5: The structure of LeNet, where
“Conv 5x5 s1, @6, tanh” means a convolu-
tional layer has 6 kernels with size 5x5 and
stride 1, and followed by tanh as activation
function

LeNet is a convolutional neural network
structure proposed by Yann LeCun et al.
in 1998. In general, LeNet refers to LeNet-
5 and is a simple convolutional neural net-
work.

In 1989, Yann LeCun et al. at Bell Labs
first applied the backward propagation algo-
rithm to practical applications and believed
that the ability to learn network general-
ization could be greatly enhanced by pro-
viding constraints from the task’s domain.
He combined a convolutional neural network
trained by backward propagation algorithms
to read handwritten numbers and success-
fully applied it in identifying handwritten
zip code numbers provided by the US Postal
Service. This was the prototype of what
later came to be called LeNet [36].

In 1990, their paper again described
the application of backward propagation
networks in handwritten digit recognition.
They only performed minimal preprocessing
on the data, and the model was carefully
designed for this task and it was highly con-
strained. The input data consisted of im-
ages, each containing a number, and the test
results on the postal code digital data pro-
vided by the US Postal Service showed that
the model had an error rate of only 1% and
a rejection rate of about 9% [37].
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 x x x x x x x x x x
1 x x x x x x x x x x
2 x x x x x x x x x x
3 x x x x x x x x x x
4 x x x x x x x x x x
5 x x x x x x x x x x

Table 2.2: The sparse connection of 6 inputs to 16 convolution kernels in C3 layer of LeNet-5

Structure

As a representative of the early convolutional neural network, LeNet possesses the basic
units of a convolutional neural network, such as the convolutional layer, pooling layer, and
full connection layer, laying a foundation for the future development of convolutional neural
networks. As shown in Figure 2.5, the LeNet-5 architecture consists of two sets of convo-
lutional and average pooling layers, followed by a flattening convolutional layer, then two
fully-connected layers and finally a softmax classifier. The detail of the structure is shown
below:

• Layer C1 is a convolutional layer with 6 convolution kernels of 5 × 5 and the size of
feature mapping is 28×28, which can prevent the information of the input image from
falling out of the boundary of the convolution kernel. For the convolutional layers of
LeNet, tanh function is followed as the non-linear activation function.

• Layer S2 is the subsampling/pooling layer that outputs 6 feature graphs of size 14×14.
Each cell in each feature map is connected to 2x2 neighborhoods in the corresponding
feature map in C1. The average pooling layer is applied in LeNet structure.

• Layer C3 is a convolution layer with 16 5 × 5 convolution kernels. In this layer, only
10 out of 16 feature maps are connected to 6 feature maps of the previous layer as
shown in Table 2.2. The primary reason is to break the symmetry in the network and
keeps the number of connections within reasonable bounds. That is why the number
of training parameters in these layers is 1516 instead of 2400 and similarly, the number
of connections is 151600 instead of 240000.

• Layer S4 is similar to S2, with a size of 2x2 and an output of 16 5x5 feature graphs.

• Layer C5 is a convolution layer with 120 convolution kernels of size 5x5. Each cell
is connected to the 5*5 neighborhood on all 16 feature graphs of S4. Here, since the
feature graph size of S4 is also 5x5, the output size of C5 is 1*1. Hence S4 and C5
are completely connected. C5 is labeled as a convolutional layer instead of a fully
connected layer because if LeNet-5 input becomes larger and its structure remains
unchanged, its output size will be greater than 1x1, that is not a fully connected layer.

• F6 layer is fully connected to C5, and 84 feature graphs are output.

• Finally, there is a fully connected softmax output layer with 10 possible values corre-
sponding to the digits from 0 to 9.

The research of LeNet achieved great success and aroused the interest of scholars in the
study of neural networks. While the architectures of the best performing neural networks
today are not the same as that of LeNet, the network was the starting point for a lot of
neural network architectures, and also brought inspiration to the field.

2.3.2 AlexNet
AlexNet is a convolutional neural network designed by Alex Krizhevsky and published with
Ilya Sutskever and Krizhevsky’s doctoral advisor Geoffrey Hinton [5].

AlexNet competed in the ImageNet Large Scale Visual Recognition Challenge [30] in
September 2012. The network achieved a top-5 error of 15.3%, more than 10.8% points lower
than that of the runner up. The primary result of the original paper was that the depth of
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the model was essential for its high performance, which was computationally expensive, but
made feasible due to the utilization of graphics processing units (GPUs) during training [5].
In fact, AlexNet is not the first network running on GPU. However, AlexNet is considered
one of the most influential papers published in computer vision, having spurred many more
papers published employing CNNs and GPUs to accelerate deep learning [38].

AlexNet contains 11 layers, shown as Figure 2.6. There are five convolutional layers,
some of them followed by max-pooling layers, and the last three are fully connected layers.
More details of the structure of AlexNet are described in [5]. This paper mainly introduces
the main innovations of this study:

Input

Max Pool 3x3, s2

Conv 11x11 s4, @96, ReLU

Local Response Norm

Conv 5x5 s1, @256, ReLU

Local Response Norm

Max Pool 3x3, s2

Conv 3x3 s1, @384, ReLU

Conv 3x3 s1, @384, ReLU

Conv 3x3 s1, @256, ReLU

Max Pool 3x3, s2

FC @4096, ReLU

FC @1000

Output 1x1000

FC @4096, ReLU

Figure 2.6: The structure of AlexNet, where
“Conv 11x11 s4, @96, ReLU” means means
a convolutional layer with 96 kernels of size
11x11 and stride 4. ReLU is used as activa-
tion function

• It used the non-saturating ReLU ac-
tivation function, which showed im-
proved training performance over tanh
and sigmoid.

• For propose of avoiding model over-
fitting, Data Augmentation to enhance
the training images set and Dropout to
randomly ignore a number of neurons
during training are used.

• Use overlapped maximum pooling on
CNN where the step size is smaller than
the kernel. Previously, average pooling
was commonly used in CNN, and the use
of maximum pooling can avoid the blur-
ring effect of average pooling. In the
meantime, overlapping effects can en-
hance the richness of features.

• The LRN (Local Response Normaliza-
tion) was proposed to create a competi-
tion mechanism for the activity of local
neurons so that the value with a larger
response becomes relatively larger, and
other neurons with smaller responses are
inhibited. That enhances the generaliza-
tion of the model.

2.3.3 Inception and GoogLeNet
The first version of GoogLeNet is proposed by Google in the work [1].

Generally speaking, the most direct way to improve network performance is to increase
the depth and width of the network, which brings a huge number of parameters. However,
a large number of parameters are prone to over-fitting and will greatly increase the amount
of calculation. The work [1] proposed the way to solve the above two shortcomings, that
is to convert full connections and even general convolutions into sparse connections, as the
sparse connections of the real biological nervous system. On the other hand, the work [39]
indicates that bloated sparse networks may be simplified without loss of performance.

Previously, in order to break the symmetry of the network and improve the learning
ability, traditional networks used random sparse connections, such as the layer C3 of LeNet
presented in section 2.3.1. However, the computational efficiency of computer software and
hardware for non-uniform sparse data is extremely poor, so the fully connected layer is
reused in some network such as AlexNet presented in section 2.3.2, for the purpose of better
optimization of parallel operations.

A great number of works show that sparse matrices can be clustered into denser sub-
matrices to improve computing performance. Based on this, the work [1] proposes a structure
called Inception, shown as Figure 2.7, that can not only maintain the sparsity of the network
structure but also utilize the high computational performance of the dense matrix.
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Previous layer

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Filter 
concatenation

Figure 2.7: The structure of Inception Naive version

Previous layer

1x1 convolutions

1x1 convolutions 1x1 convolutions 3x3 max pooling

Filter 
concatenation

3x3 convolutions 5x5 convolutions 1x1 convolutions

Figure 2.8: The structure of Inception V1

This structure stacks up the commonly used operations in CNNs, which are convolutions
with size 1×1, 3×3, 5×5 and pooling operations with size 3×3. By adjusting the padding,
the output of each operation has the same size. These outputs are connected as the output of
inception. Small filters in inception can extract detailed information of the input, and larger
filters can cover most of the input of the receiving layer. The pooling operation can reduce
the space size and reduce over-fitting. A ReLU operation is followed each convolutional layer
to increase the non-linearity of the network.

In this naive version of inception, the amount of calculation required by the inception,
especially for the convolution layer with largest 5× 5 filters, is too large. To avoid this case,
a 1× 1 convolution kernel is added before 3× 3, 5× 5, and after max pooling, to reduce the
thickness of the feature map, which forms the network structure Inception V1, as shown in
the Figure 2.8.

Based on the inception module, Google built GoogLeNet, which is the winner of the Ima-
geNet Large Scale Visual Recognition Challenge [30] in 2014. It has significant improvement
over ZFNet [40], the winner in 2013, and AlexNet [5], the winner in 2012, and has relatively
lower error rate compared with the VGGNet [41], the first runner-up in 2014.

The structure of GoogLeNet is shown as Figure 2.9. The details about GoogLeNet are
as follows:

• GoogLeNet uses inception as a module of the structure. The modular structure is
more convenient for modification;

• The network eventually replaces fully connected layers with average poolings. This idea
comes from work [42]. This replacement can increase the accuracy by 0.6%. However,
a fully connected layer is actually added at the end of the network, mainly for flexible
adjustment of the output;
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Conv 7x7 s2

Max Pool 3x3 s2
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Conv 3x3 s1

Local Response Norm

Max Pool 3x3 s2

Inception V1 (3a)

Inception V1 (3b)

Inception V1 (4a)

Inception V1 (4c)

Inception V1 (4d)

softmax2

Inception V1 (4b)

Average Pool 5x5 s3

Inception V1 (4e)

Inception V1 (5a)

Inception V1 (5b)

FC

SoftmaxActivation

Average Pool 7x7 s1

Average Pool 5x5 s3

Conv 1x1, s1
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Figure 2.9: The structure of GoogLeNet [1].
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Figure 2.10: A block of the residual network

• Although the full connection is removed, Dropout is still used in the network;

• In order to avoid the disappearance of the gradient, the network adds 2 additional
softmax layer to forward the gradient, called auxiliary classifiers. The auxiliary clas-
sifier uses the output of a certain middle layer as a classification and adds it to the
final classification result according to a small weight (0.3), which is very helpful for
the training of the entire network. For well trained networks, these two additional
soft-max operations will be removed.

In fact, Google improves the inception in their subsequent work, mainly focused on
optimizing the inner structure of the inception module.

The Inception V2 is proposed in the work [43]. In Inception V2, smaller convolution
kernels are used to replace a large convolution kernel. For example, two 3x3 convolution
kernel is used to replace a 5x5 convolution kernel. A large size convolution kernel can bring
a larger receptive field, but it also means that more parameters will be generated. For
instance, the 5x5 convolution kernel has 25 parameters, and the 3x3 convolution kernel has
9 parameters. The former is the back 25/9=2.78 times of the person. Hence the GoogLeNet
team proposed that a small network composed of two consecutive 3x3 convolutional layers can
be used to replace a single 5x5 convolutional layer, which reduces the number of parameters
while maintaining the range of the receptive field.

The Inception V3 proposed in the work [44] use the same idea, that a combination of
1x3 and 3x1 convolution kernels was used to replace a 3x3 convolution kernel. Actually,
the method of using small convolution kernels is also adopted by other networks such as
VGG [41] and SqueezeNet [45], and we also introduce this method in the chapter 4.

The Inception V4 proposed in the work [46] is a combination of the original Inception
and ResNet [47] network. The ResNet structure greatly deepens the network depth, and
greatly improves the training speed, while the performance is also getting improved. More
details of ResNet are presented in section 2.3.4.

2.3.4 ResNet
In the previous chapter, we introduced LeNet, Alexnet and GoogLeNet. Obviously, with
the gradual improvement of computing power, such as the wide use of GPUs, deeper and
deeper neural networks can be calculated. Although it is generally believed that deeper neu-
ral networks can bring richer recognition capabilities, deeper networks also bring problems.
For example, the experiments in the work [47] show that with the increase of the numbers
of layers in CNNs, the accuracy of the model continues to improve at the beginning. But,
in case of the number of layers is continuously increased, the training accuracy and test
accuracy decline rapidly. These experiments proved that the deeper network is more diffi-
cult to train. In fact, the neural network must continuously propagate the gradient during
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Figure 2.11: The concatenation of the different depth layers in ResNet

the backward propagation. However, due to the chain rule used to calculate the gradient,
the difference between the ground-truth and the prediction decreases gradually in backward
propagation. Therefore, when the network deepens, the gradient will gradually disappear
during the propagation, which makes it impossible to effectively adjust the weight of the
previous network layer. Under the circumstances, when the depth of the neural network
is continuously increased, the accuracy of the model will first increase and then reach sat-
uration, next, continuing to increase the depth of the network will cause the decrease of
accuracy.

To solve this difficulty, then such an assumption is discussed in work [47]: assuming that
a relatively shallow network has reached the saturation accuracy, then a deep network is
built by adding several identity mapping y = x whose output is equal to the input. The
identity mapping increases the depth of the network, but compared to the shallow network,
at least the error will not increase, and the accuracy will not get worse in the deep network.
The idea of using the identity mapping to directly transfer the output of the shallower layer
to the deeper layer is also the inspiration of the famous deep residual network (ResNet),
proposed in the work [47].

In the residual network, if it is difficult to train some layers because of the saturation of
the number of layers, then the identity mapping will become the main transmission channel
in the next learning, that makes the output close to the input, in order to avoid a decrease
of accuracy in the deeper layers. An example of a block of residual network composited of
several layers is shown as Figure 2.10, where the input of block is x and the expected output
is H(x). In this figure, a “shortcut connections” is built to make the input x directly passed
to the output as the initial result, and the output result is calculated as H(x) = F (x) + x.
When F (x) = 0, then H(x) = x, which is the identity mapping mentioned above. In the
case of saturation, the learning goal of this block is changed. It is no longer learning a
complete output, but the difference between the target value H(X) and input x, which is
called residual calculated as F (x) = H(x) − x. Videlicet, the following training goal is to
approach the residual result to 0, in this way, as the network gets deeper, the accuracy will
not decrease.

Normally, due to the different number of input channels, several residual neural networks
cannot be merged directly. Some 1× 1 convolutional layers are added to adjust the size, so
that convolutions of different sizes can calculate residuals, as shown in Figure 2.11. ResNet
is composed of multiple blocks of the residual network as shown in Figure 2.11. More details
of the structure of ResNet can be found in [47]

ResNet made a stunning appearance in the ILSVRC 2015 competition. It suddenly
increased the network depth to 152 layers and reduced the error rate to 3.57. In terms of
image recognition error rate and network depth, it has been greatly improved compared
with previous competitions. ResNet won first place in ILSVRC2015. Most importantly, this
residual jump structure breaks the traditional neural network’s convention, where the n− 1
layer output can only be used as input to n layers. In ResNet, the output of a certain layer
can directly cross several layers as the input of a later layer. It provides a new solution for
the problem that the error rate increases when deepening multilayer networks. At this point,
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Figure 2.12: The Fire Module in SqueezeNet

the number of layers of the neural network can surpass the previous constraints, reaching
dozens of layers, hundreds of layers or even thousands of layers, which provides feasibility
for more complex missions such as advanced semantic feature extraction and classification.

2.3.5 SqueezeNet
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Figure 2.13: The structure of SqueezeNet

As the neural network continues to deepen,
the volume of the parameter of the convo-
lutional neural network is getting increas-
ingly larger, and the calculation time gradu-
ally increases. In addition to the accuracy of
the prediction, the calculation speed and the
volume of the parameters have gradually at-
tracted attention. To compress the network
and accelerate the calculation, many meth-
ods have been proposed, that will be pre-
sented in chapter 4. At the same time, sev-
eral lighter structures have been proposed.
SqueezeNet proposed in [45] is one of the
lighten CNN structure.

The fire module shown in Figure 2.12 is
the core of SqueezeNet. In the fire mod-
ule, 1x1 convolution kernels are used as the
squeeze part. In the expand part, 1x1 con-
volution kernels and 3x3 convolution kernels
are used to scan the output of the squeeze
part. And the numbers of convolution ker-
nels with different sizes are hyperparame-
ters. To make convolution kernels with dif-
ferent sizes generate the same sized output,
for large convolutions kernel, a padding op-
erator is needed. Then the outputs gener-
ated by convolution kernels with different
sizes are concatenated.

The fire module is used to build
SqueezeNet. Figure 2.13 shows the global
view of SqueezeNet based on AlexNet. We
can see that the hidden convolutional layer

is replaced by the fire module, and the fully convolutional layer is removed. By using
SqueezeNet, compared with AlexNet, it has achieved a 50x compression in model size. In

21



the meantime, it reaches or exceeds the top-1 and top-5 accuracy of AlexNet.
The fire module uses 1x1 convolutional networks, which proves that small convolutions

can replace large convolution kernel convolutions, but at the same time, to keep the receptive
field of the module, the 3x3 convolution kernel has not been completely deleted. Interestingly,
the building of the fire module is a structural optimization method, which can be used
simultaneously with other compression methods introduced in chapter 4.

2.3.6 YOLO and YOLO’s family
We have introduced the classic structure and network used for CNNs, and they are milestones
in the development of convolutional neural networks. Most of them are proposed only for
image classification, or perform well in image classification. However, convolutional neural
networks are not only used for classification, but also other complex tasks, such as object
detection, object tracking, or semantic analysis. Most of the experiments presented in this
thesis are based on object detection systems. Therefore, we introduce CNNs for object
detection system in this section.

In comparison with classification, object detection requires more complex output, which
not only includes the classification of the objects but also their positions in the input image.
There are many excellent object detection systems, such as fast R-CNN [48], SSD [49] and
YOLO [2]. YOLO and YOLOv2 adopt the core ideas in other networks. For example,
YOLOv2 is inspired by SSD and applies anchors to locate the objects. Hence, we focus on
YOLO and its improved version in this section.

YOLO

Figure 2.14: The structure of YOLO [2]

You Only Look Once (YOLO)[2] is one of the approaches to object detection. It extracts
features from the entire image by using CNN to generate bounding boxes, shown as 2.14,
and each bounding box predicts a position of one detected object and the accuracy of the
prediction.

Figure 2.15: Image is divided into SxS grids
(S = 7 in this figure) [2]

As Figure 2.15 shows, the way YOLO
works as if it divides the input image into
S x S grids. If the center of an object falls
into a grid cell, that grid cell is responsi-
ble for detecting that object. Each grid cell
could generate B bounding boxes. Each gen-
erated bounding box consists of 5 predic-
tions: x,y,w,h and confidence C. The (x, y)
coordinates of the center of the object rel-
ative to the grid cell. The weight w and
height h predict the size of the box relative
to the whole image. And confidence C, de-
fined as Pr(Object) ∗ IOU truth

pred , presents the
probability of object falling into this bound-
ing box and intersection over union(IOU),
which is one of the measurement criteria and
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introduced in section 3.2.3. Each grid cell also predicts N conditional class probabilities
pi = Pr(Classi|Object), and N is the number of categories in the image set. In short, the
image is divided into S x S grid, each grid has (B∗5+N) value (as shown in Fig 2.16, YOLO
v1), and the prediction (output) of YOLO’s neural network is encoded as an S∗S∗(B∗5+N)
tensor. The final prediction will be made by the predictor with the highest IOU and the
bounding box.

During training, YOLO optimize a multi-part loss function shown as Equation 2.18,
where ⊮obj

i denotes if an object appears in grid i and ⊮obj
ij denotes that jth bounding box

predictor in grid i is responsible for that prediction. The first two parts in the equation
penalize the loss from bounding boxes coordinate predictions. The 3rd, 4th and 5th parts in
the equation penalize the loss from classification.
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2

+λnoobj

S2∑
i=0

B∑
j=0

⊮obj
ij (Ci − Ĉi)
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(2.18)

YOLOv2

YOLOv2[50] is a upgraded version of YOLO. Compared to YOLO (version 1), YOLOv2 has
the following improvements:

Figure 2.16: Content of the bounding
boxes

• Batch Normalization is used to improve
the convergence.

• In YOLOv2, fully connected layers are
removed, so that using images with the
varied resolution is possible. In order to
be robust to different resolution of the
image, during the training of YOLOv2,
the input image will be resized after each
10 batches.

• Anchor boxes are used to predict bound-
ing boxes. The prediction of each
bounding boxes is as shown in Fig-
ure 2.16. Thus, the prediction (output)
is encoded as a S ∗S ∗B ∗(5+N) tensor.
Referring to [50], B = 5 and S should be
odd.

YOLOv2 has raised the speed and accuracy of object detection to a new level through a
series of remarkably effective tricks. These tricks are not only extremely effective in YOLOv2,
but also have reference value for our other tasks, such as the application of high-resolution
transfer learning to semantic segmentation, and the application of multi-scale training to
image classification tasks.

Tiny-YOLO

Tiny-YOLO is a tiny version of YOLOv2, shown as Fig 2.17. It uses the same mechanism
to process the images and generate predictions, but with a smaller architecture: It contains
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Figure 2.17: The structure of tiny-YOLO

8 convolutional layers before the final output convolutional layer. Each convolutional layer
is followed by a batch normalization layer and leaky ReLu activation. (batch normalization
layer can be simplified as bias add layer during the inferring). We use S=13, B = 5 and N
=13, so the final convolutional layer output a tensor with shape 13 ∗ 13 ∗ 5 ∗ (5 + 13).

Due to its tiny size and limited computing resources, tiny-YOLO has become one of the
main networks we use. However, due to the limited depth, the accuracy of complex datasets
is not as good as the original YOLOv2 network.

YOLOv3 and More

YOLOv3 was proposed in work [51] a few years later after YOLOv2. Compared to version
2, there are several obvious advantages:

• The detection of small objects shows even better performance.

• The detection of dense objects or occluded objects has been improved.

• The generalization ability is better.

This is mainly due to the following updates:

• Multiple predictions layers with different sizes of up-sampling are added to make it
more sensitive to the small objects.

• Instead of softmax, logistic loss function is applied to YOLOv2, it brings better results
when facing the complex target categories.

• The network is deepened due to the approach as ResNet.

• The router mode is improved for some concatenate layer.

YOLOv3 has achieved amazing results both in speed and accuracy. However, it is worth
mentioning that the author stated that because YOLOs are used for military purposes and
privacy snooping, he thought it was immoral, and therefore no longer engages in computer
vision research. This statement has caused researcher to rethink the moral and ethical issues
of artificial intelligence.

2.4 Frameworks for Neural Networks
We introduced some classic neural network structures in section 2.3. Generally speaking,
these algorithms can be implemented through different programming languages. For ex-
ample, Python and MATLAB is a widely used language for scientific computing, that can
implement matrix operations relatively easily. Furthermore, the more hardware friendly lan-
guages, such as C/C++, and their math library, such as General Matrix Multiply (GeMM)
or Basic Linear Algebra Subprograms (BLAS), can be used to build or accelerate the basic
structure of convolution. However, most of the operations in neural networks are modular,
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and they are composed of some computational primitives, as introduced in chapter 2.2. Com-
mon operations can be encapsulated to form machine learning frameworks. Using mature
machine learning frameworks can bring some meaningful benefits, such as:

• Since most of the computational paradigms of machine learning are encapsulated in
frameworks, more complex networks can be constructed more easily.

• Most of the frameworks have proposed the option that executes in GPU, which allows
avoiding rewriting the GPU supported library, such as the code for CUDA [52] or
OpenCL [53].

• For conventional machine learning modules, if the backward propagation algorithm is
applied for training, the computing for gradients is normally provided by the framework
and no longer need to rewrite it.

• Some frameworks provide optimization methods for special devices, such as the com-
pression methods for embedded devices, that makes the neural network more conve-
nient to be transplanted.

In this section, some widely used frameworks are introduced. It should be noted that the
frameworks of neural networks are difficult to compare with each other, which means that
there is no best or worst framework, but it needs to make choices based on the purpose of
tasks. Meanwhile, the framework of the neural network is a commercial technology, they are
also developing rapidly, or are gradually eliminated by users. This is just an overview of the
framework as of the time of writing.

2.4.1 TensorFlow
TensorFlow [54] is one of the most popular deep learning frameworks today. This is an
open-source framework developed and maintained by Google. Many famous groups such as
Gmail, Uber, Airbnb, Nvidia are using it. Here we introduce some of its characteristics:

• Python is the most convenient client language for TensorFlow (With the development,
Python2 is no longer supported by TensorFlow). However, TensorFlow also provides
experimental interactive interfaces for JavaScript, C++, Java, Go, C#, and Julia.

• TensorFlow not only can be executed in a powerful computing cluster but also considers
the ability to run models on mobile platforms such as iOS and Android.

• TensorFlow has visualization tools (Tensor Board etc.) that can more intuitively see
the structure of neural network graphs and the distribution of data. This facilitates
scientific research.

• TensorFlow is still developing and iterating rapidly, so version compatibility issues
often occur.

• TensorFlow is very flexible because it provides a wealth of options for building deep
learning networks.

• The flexible proposed options also mean that more details need to be considered when
using it. Therefore, compared with other frameworks, TensorFlow is relatively more
cumbersome to use. In its new version TensorFlow 2.0, since the easy-to-use Keras
interface is used as the default interface, this issue has been significantly improved.

Due to its powerful functions, TensorFlow is widely used in the industrial field. As Google
continues to optimize and improve the framework, it can be sure that it will become more
powerful and easier to use.
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2.4.2 PyTorch
PyTorch [55, 56] is a deep learning framework based on Python and its Torch library written
in Lua. It was created by Facebook and is currently widely used in academia and industry.
As another well-known framework Caffe2 project merged into PyTorch, it is more widely
used in academia and industry field.

Based on the Auto-grad, a powerful gradient computing kernel in PyTorch, we can design
the network dynamically without having to pre-define a static network diagram to perform
calculations. Therefore, the PyTorch library is simple to use. As well, it is compatible with
Python library as NumPy and SciPy, PyTorch has quickly become the mainstream deep
learning framework in academia. But at the same time, the shortcomings of PyTorch have
also been criticized. It has been mentioned repeatedly by industrial developers that PyTorch
is difficult to deploy.

In general, compared to TensorFlow which makes the framework more powerful, PyTorch
pays more attention to make the framework simpler to use. As well, TensorFlow is more
popular in the industry, and PyTorch is used increasingly in academia. It is difficult to say
which one is better. It is interesting to note that with the update, both frameworks are
overcoming their shortcomings, which makes the two frameworks more and more similar. It
is foreseeable that the frameworks will be easier to use and more powerful in the future.

2.4.3 Darknet
Darknet [57] is an open-source neural network framework written in C and CUDA. It is fast,
easy to install, and supports CPU and GPU computation. YOLO’s authors developed and
used the Darknet framework to release YOLO.

On one hand, there is no complex API or code encapsulation like TensorFlow and PyTorch
in Darknet, so it is noticeably light and easy to modify. On the other hand, Darknet does
not require the special dependencies. Although it can support for OpenCV, CUDA and
CuDNN in GPU, it can still compile and run without these. Hence, Darknet is very suitable
for being modified and recompiled. This feature is suitable for studying the underlying
layer and can be more convenient to improve and extend it from the underlying layer. It is
worth mentioning that since Darknet does not require dependencies, it particularly easy to
be migrated, especially quite easy to deploy on embedded systems with few resources.

Since the experiments involved in this paper are mainly to study the impact of changing
the underlying computing structure of convolutional neural networks, Darknet has become
one of the main applied frameworks.

2.4.4 Other frameworks
In addition to the above-mentioned frameworks, there are other well-known frameworks.

• Theano is one of the oldest frameworks. It uses tensors to represent neural network
operators, instead of matrices, that is a template for the subsequent frameworks. Un-
fortunately, the project is no longer updated.

• Keras is a very concise framework, which hides a lot of complicated options. It is rather
a set of high-level APIs than a framework. Once Keras+Theano was an immensely
popular combination. Now, TensorFlow also provides Keras interfaces, so that more
users can quickly build the framework.

• Mxnet and its high-level API Gluon are highly effective in parallel on multiple GPUs
and multiple machines, especially in Amazon Web Services (AWS). In 2016, it was
chosen by AWS as the official deep learning platform for cloud computing.

• PaddlePaddle is one of China’s oldest framework developed by Baidu. Although it
is not as famous as TensorFlow and PyTorch, relying on excellent performance and
rich models, it still occupies a portion of the market share among Chinese developers.
Now PaddlePaddle grows up rapidly, and due to Baidu’s business promotion, the users
have rapidly increased and gradually formed a new deep learning ecosystem.

26



• Deeplearning4j, as his name, is a deep learning framework developed for Java. It is
compatible with any JVM language, such as Scala and Kotlin. Since Java is popular
in many mobile developments, such as Android, this framework is also often used.

Some of these frameworks are developing rapidly, and some have stopped updating.
When choosing these frameworks, we must consider the supported functions, development
complexity, development languages, as well as the life cycle of the framework itself. A suitable
and efficient deep learning framework according to the characteristics of the deep learning
project can achieve a multiplier effect.

2.5 Summary
In this chapter, the history and development of artificial intelligence are introduced. Then,
the convolution neural network, one of the most successful algorithms in machine learning,
and the classic structure and frameworks for CNN are also discussed.

In this chapter, the history and development of artificial intelligence are introduced.
Then, one of the most successful algorithms in machine learning, convolutional neural net-
works, as well as the classic structure and frameworks for CNN are also discussed.

Through the introduction to the building and different structures of CNN, a global view
of the development of CNNs has been constituted. It can be seen that CNN gradually
became deeper and more complex from the original LeNet model. At the same time, batch
normalization, ResNet, compressed convolution kernel, and other technologies have been
proposed and applied. Additionally, the more appreciate accelerators such as GPU has been
applied to execute CNN. All the technologies make CNNs more powerful for different tasks.

Nowadays, machine learning is widely used in data mining, computer vision, natural
language processing, biometrics, search engines, medical diagnosis, credit card fraud detec-
tion, stock market analysis, DNA sequence sequencing, speech and handwriting recognition,
strategic games, and robotics field, etc.
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Chapter 3

Motivation and Scope

Convolutional neural networks have been widely used in multiple domains. But it has also
brought difficulties when applied to some special use case. We introduce these difficulties in
this chapter. As well, we introduce the scope in which we work to solve the difficulties.

3.1 The New Challenges of Neural Networks
Neural network technology is more and more widely used in the fields of image recognition,
speech recognition, and signal processing. Their recognition accuracy is getting higher and
higher, and it has surpassed the traditional algorithm in many fields. In the meantime, the
size of the neural network is getting larger and larger, and the network is becoming more and
more complicated. Take image recognition as an example. In 2012, when deep learning and
convolutional neural networks were just beginning to attract attention, the winner of the
ImageNet competition [58] used an 8 layer neural network. Then in 2015, the network with
152 layers was used, and in 2016, it was a network with 1207 layers won the competition.
Until now, thousands of layers in deep neural networks are quite common. Complex neural
networks have gradually surpassed many traditional algorithms in many fields, but brought
many new challenges.

Excessive energy consumption is caused by complex algorithms. The problem of energy
supply and heat dissipation due to excessive energy consumption has always been a challenge
for large data centers. Fortunately, we can solve it by expanding the scale of equipment and
increasing heat dissipation, even if it will bring higher costs. However, for the smaller devices,
especially embedded devices which have limited energy and computing resource, the problem
is more difficult to solve. Some possible difficulties and challenges are as follows:

• The first is energy consumption. Large-scale neural networks require a lot of calcu-
lations and consume a lot of energy. Taking unmanned aerial vehicle (UAV) as an
example, it is difficult to say how low power consumption is acceptable, but smaller
batteries carried by UAV are always favorable than the bigger ones. Because this will
greatly reduce the burden on the UAV’s flight system. Therefore, compressing neural
networks is an issue worth considering.

• The second is computing resources and computing speed. Taking autonomous driving
as an example, we need to determine the color of traffic lights within a specified time
to make a decision. But for limited computing resources, an excessively large neural
network will be very time-consuming. Then, for time-sensitive systems, accelerating
neural networks is an inevitable problem.

• It is necessary to consider the cost of memory and communication. For a large-scale
neural network, due to its parameter volume, a large amount of memory is required. For
systems with insufficient memory, the weights can be saved in external storage, which
brings challenges to the bandwidth of external memory. In addition, as introduced
in section 3.3.1, the distributed systems with different accelerators can be used to
accelerate machine learning algorithms. This also imposes the requirements on the
communication bandwidth between different devices. Larger neural networks will not
only spend more time transmitting information but also consume much more energy
in transmitting. For all of the above, how to reduce the volume of neural networks is
gradually being discussed.
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In fact, due to the limited computing resources, embedded devices do not undertake
computing tasks in many cases. Many embedded devices are used as sensors, that is, they
are only responsible for collecting information, and the information is eventually transmitted
to the central server to calculate. However, in this paradigm, on one side the central server
needs to receive information from different edge devices and process them concurrently, which
brings challenges to the bandwidth and computing power, on the other side, a large number of
data streams are transmitted between different devices, which also leads to security risks [59].
Therefore, putting the preliminary calculation of data on the edge devices, thereby reducing
the pressure on the transmission network and on the server, is the trend of distributed
embedded systems now [59]. A compressed and accelerated neural network suitable for
embedded devices is needed.

It should be pointed out that the acceleration to CNNs is usually discussed from two
perspectives:

• The acceleration for training phase: that uses different training methods (e.g. SGD [35]
and ADAM [60]) to make the trained CNN find the optimal solution faster (faster
convergence).

• The acceleration for inferring phase: that focus on speed up the forward propagation
and reduce the computing resources used in inference.

Because of the limited computing resource of embedded systems, the CNNs are always pre-
trained offline in the cluster and then implemented in embedded systems for the inference
stage. Therefore, The acceleration of embedded machine learning discussed in this thesis
actually refers to the optimization for the inference phase.

3.2 Tasks and Approaches
The complexity and heaviness of the convolutional neural network is a common problem.
There are general proposed compression and acceleration methods for CNNs, which are
introduced in chapter 4. However, the same methods applied to different tasks may cause
different effects. For example, binary networks proposed in work [22] work well for the
classification of image, but when applied to the object detection, it leads to a big loss of
accuracy. For these, it is necessary to clarify the basic tasks of convolutional neural networks.

It should be noted that CNNs, as well as the compression and acceleration methods for
CNNs, can be used in many fields such as sound processing and signal processing, but we
mainly study it in image processing. On the one hand, because the image processing is widely
used and has a rich dataset, it is quite simple to establish a benchmark. On the other hand,
rich tasks with different difficulty also allow having a good performance measure of different
CNNs and their methods. In this section, we introduce the basic tasks of convolutional
neural networks in the image field and propose our work scope.

3.2.1 Tasks of Computer Vision
There are many different tasks with varied complexity in the field of computer vision. It is
generally believed that the following four tasks are the most basic and discussed issues:

Image Classification is an easier task in the field of computer vision. Given an input
image, the aims of image classification task is to determine the category of the image, shown
as Figure 3.1a. Each image can contain one or more objects. Most of the classic neural
networks introduced in section 2.3 such as LeNet, AlexNet, VGG, GoogLeNet, and ResNet
can be used for classification.

Object Localization and Object Detection are two more complicated tasks than clas-
sification. These tasks not only aim to classify objects, but also to find out the position and
relative size of the objects in the picture. In a general way, these objects are wrapped by
bounding box, as shown in Figure 3.1b. The difference between the two tasks is that the
number of objects in each image is known for localization but is unknown for detection. The
networks R-CNN, SSD, YOLO and their improved versions are the frequently used neural
network for these takes.
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(a) Image Classification (b) Object Localization and Detection

(c) Semantic Segmentation (d) Instance Segmentation

Figure 3.1: Examples of basic computer version tasks

Semantic Segmentation is a more advanced task of object detection. Semantic segmen-
tation needs to further determine which object each pixel belongs to, shown as Figure 3.1c.
In semantic segmentation, the output result generally has the same size as the input result,
which encodes the probabilities that each pixel belongs to. Therefore, convolution-then-
deconvolution is the commonly used method for semantic segmentation.

Instance Segmentation distinguish different instances belonging to the same category,
which is different from semantic segmentation, shown as Figure 3.1d. For example, when
there are multiple cats in the image, the pixels of two cats are predicted to be the category
“cat” in semantic segmentation tasks. But for instance segmentation, it needs to distinguish
which pixels belong to the first cat and which pixels belong to the second cat.

We introduced the basic tasks in the field of computer vision. There are also some other
tasks, such as face recognition, object tracking, and counting of the dense crowd, etc. They
are generally considered as a special branch or a combination of basic computer vision tasks,
and could usually use common technology to solve problems. There are also more optimized
algorithms for this particular task, for example, the Fully-Convolutional Siamese networks
proposed in work [61] is a special network for object tracking. Due to the wide variety of
the extends and variants of these tasks, we will not go into details here.

In general, for the platform with limited resources, such as edge computing systems or
other embedded systems, only relatively naive tasks need to be performed. For example,
we do not need a general drone to accurately recognize the outline of a person, but just
locate and track. Normally these algorithms commonly used in embedded devices need to
be accelerated. Therefore, we focus on these naive tasks, such as classification and object
detection. As shown above, we know that classification is also one of the aims for object
detection. Hence, the scope of our work is object detection. We will use a CNN-based YOLO
architecture and its improved versions. Even though we mainly target applications such as
object detection, the methods proposed are generic for CNNs.

3.2.2 Image Sets
For industrial applications, there are special datasets for different tasks. But in the academic
field, some commonly used datasets are used to measure the performance of algorithms. We
introduce them subsequently. The methods proposed in the next chapter have been applied
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to different datasets, in order to prove that the methods have a good ability to generalization.

Image Set for Classification

Classification is one of the basic issues which is easier than object detection. The image
for classification usually contains one or more instances in each image, and the labels in
the dataset usually contain category information but not location information. We will
introduce MNIST, Cifar10/Cifar100, and ImageNet. The number of categories they contain
are gradually increasing, and the relative difficulty of classification is gradually increasing.

MNIST [62] is a set of handwritten digits images. It has a training set of 60,000 examples
and a test set of 10,000 examples. The digits have been size-normalized and centered in a
fixed-size image. It is a good database for people who want to try learning techniques and
pattern recognition methods on real-world data while spending minimal efforts on prepro-
cessing and formatting.

Cifar10 [63] , a set of 60000 32x32 color images belonging to 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. This is an image set
with small images. It is usually used to test a classifier. Cifar100 is a similar image set to
Cifar10 but contains 100 classes. It is more difficult to classify than Cifar10.

ImageNet [58] is an image database organized according to the WordNet hierarchy (cur-
rently only the nouns), in which each node of the hierarchy is depicted by hundreds and
thousands of images. Currently, there are over five hundred images per node on average. In
the following chapters, we did not use ImageNet to train the network. However, for training
a YOLO network, convolutional weights pre-trained on Imagenet are used.

Image Sets for Object Detection

The object detection system needs to pick up the object in images and then classify them.
Therefore, the dataset we use should contain different objects, as well, the dataset needs to
mark the location and size of different objects in the images. The most used dataset for
object detection is MS-COCO (also called COCO-2017) and Pascall VOC. SDC-2018 is also
an image set proposed for object detection in 2018. The details of these image sets are as
followed:

SDC-2018 [64] is an image dataset proposed for the 2018 System Design Contest. This
data-set contains 13 class of images and 95 sub-categories. 1 In this data-set, most of the
images have one small object occupied 1-2% of the captured images (640x360), which is the
main character of UAV-view images provided from DJI company, captured by unmanned
aerial vehicles (UAV). In this dataset, there is at most one object in each image. In chap-
ters 5 6 and chapter 7, we use 66K randomly selected images from this dataset for training
our proposed networks.

COCO-2017 [65] is a large-scale object detection, segmentation, and captioning dataset.
COCO has 80 object categories in 330K images. Each image in COCO contains one or more
objects, and 1.5 million object instances are contained in total for this image set. Since
the detection of many objects in COCO such as sunglasses, cellphones or chairs is highly
dependent on contextual information, it is important that detection datasets contain objects
in their natural environments. In the COCO dataset, the author strives to collect images
rich in contextual information. In chapter 8, we use 118287 randomly selected images from
the dataset for training the networks.

3.2.3 Performance Evaluation
For the different tasks, criteria for measuring network performance are also different. Dif-
ferent measure criteria for classification and object detection are discussed in this section.

1The latest version of the data contains only 12 classes of objects, but we still use the original version
which contains 13 classes for our experiments.
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(a) predicted bounding box (in red) and ground
truth (in blue).

IOU =
Area of Intersection

Area of Union

(b) IOU between two boxes (prediction and
ground truth)

Figure 3.2: An example of object detection and the illustration of IOU.

Measure Criteria for Classification

Classification task consists in determining the category of one object. For a given object, the
output of the classification system encodes the probabilities that the object belongs to each
category. Based on these probabilities, the two most intuitive criteria are adopted. These
two measure criteria are applied in the famous ImageNet ILSVRC competition [30].

Top-1 Error Rate : The frequency that the predicted category with the highest proba-
bility is not consistent with the truth label.

Top-5 Error Rate : The frequency that the predicted categories with the top five highest
probability does not contain the truth category.

Measure Criteria for Object Localization

Intersection over Union (IOU) is an evaluation metric used to measure the accuracy of an
object localization system on a particular dataset. We often see this evaluation metric used
in object detection challenges, such as [66] and [64]. Any algorithm that predicts bounding
boxes as output can be evaluated using IOU.

More formally, to apply Intersection over Union to evaluate an object detector we need:
the ground-truth bounding boxes and the predicted bounding boxes from our model, shown
as Figure 3.2a. In this example, the ground-truth bounding boxes are the smallest rectangle
that can wrap the object. It is hand-labeled, and it expresses where the image our object
is, as well as the size of the object. The predicted bounding box is the output of the object
detection system. Just like the ground-truth, it is a rectangle expressing the position and
the size of the object but generated by the prediction system.

The IOU is computed as shown in Figure 3.2b. In the numerator, we compute the area
of overlap between the predicted bounding box and the ground-truth bounding box. The
denominator is the area of the union, or more simply, the area encompassed by both the
predicted bounding box and the ground-truth bounding box.

We can see that the IOU considers not only the position of the detected object but its
size. If the predicted position and object size are close to the ground-truth, the IOU will be
high.

Measure Criteria for Multiple-Object Images

Both the top-x error rate and IOU are measure criteria for a single instance. When there
are multiple objects in one image, we can use the average of the IOU or error rate to express
the performance of the systems. Meanwhile, for multi-object images, more diverse measure
criteria can be applied.

For classification, if the predicted category with the top x highest probability is consistent
with the truth label, the prediction is considered as correct in top-x. Otherwise, it is incorrect.
For object detection, when the IOU is greater than a given threshold, the object is considered
as found correctly, and when IOU is less than the threshold, it is marked as not found
correctly. Average Precision (AP) criterion is a more common standard than IOU or top-x
when we care more about the correct rate instead of the accuracy of each object.
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Rank Correct? Precision Recall
1 True 1.0 0.2
2 True 1.0 0.4
3 False 0.67 0.4
4 False 0.5 0.4
5 False 0.4 0.4
6 True 0.5 0.6
7 True 0.57 0.8
8 False 0.5 0.8
9 False 0.44 0.8
10 True 0.5 1.0

(a) The truth table of the result of object
detection.(m = 5,n = 10)
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(b) The Precision-Recall Curve.

Figure 3.3: Recall Precision calculation for evaluating ranked object detection

Most of the criteria for multiple-object images are based on the error rate or IOU. Here
taking object detection system and IOU as an example, we express other criteria for multiple-
object images. The same method can be used for the classification system with the top error
rate.

In case that an object detection system finds n objects (some correct and others not)
from a batch of images, which contains a total of m objects, if k objects are correct, we can
get two indicators:

• precision = k/n represents the proportion of correctly found objects (aka. True Posi-
tive).

• recall = k/m represents the proportion of correctly found objects among all the objects
in this batch of images.

Figure 3.3 shows an example of these two indicators and demonstrate the calculation of
the average precision. In this example, the whole dataset contains 5 objects only (m = 5). We
collect all the predictions made for objects in all the images and rank them in descending
order according to the predicted confidence level. The second column indicates whether
the prediction is correct or not. In this example, the prediction is correct if IOU > 0.5
(threshold = 0.5). Let us take the row with rank #3 and calculate the precision and recall.
Precision is the proportion of TP = 2/3 = 0.67. The recall is the proportion of TP out of the
possible positives = 2/5 = 0.4. Recall values increase as we go down the prediction ranking.
However, precision has a zigzag pattern, where it goes down with false positives and goes
up again with true positives until the recall reaches 100%. Then, the recall-precision curve
can be constructed as shown in Figure 3.3. The general definition for the Average Precision
(AP) is finding the area under the precision-recall curve above.

AP =

∫ 1

0

p(r)dr (3.1)

where p is the precision and r the recall. AP is a criterion considering the precision as well
as recall, and the ranks of the detected objects.

The mAP (mean average precision), another frequently used measure criteria, is the av-
erage of AP. In some context, we compute the AP for each category separately and average
them. But in some context, the AP is calculated for all categories together, in this case, mAP
is the same as AP. For example, under the COCO context, there is no difference between
AP and mAP [65].

As presented above, we introduced different measure criteria for an object detection
system, such as IOU, precision, recall, AP. Generally speaking, these criteria are used to
measure the accuracy of prediction for one image. To measure the performance of the
network, it is necessary to use the network to process an evaluation dataset containing
multiple images, and then calculate the average value of this dataset.

In addition to the accuracy of prediction, other performances may be measured for specific
systems. For real-time systems, processing speed is a standard, which can be expressed using
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actual calculation time, or it can be inferred with the number of calculations. For embedded
systems and edge devices, measure criteria such as power consumption and the utilization
of computing resources should also be considered.

In the following, we will optimize object detection systems for embedded devices and
edge computing devices with limited resources. Hence, we will comprehensively consider a
variety of criteria.

3.3 Runtime Platforms for CNNs
When executing a neural network, a good runtime platform can provide a lot of help, such
as simplifying development or accelerating calculations. For example, with the proposition
of AlexNet, GPUs which have the powerful ability of parallelism are widely used to calculate
convolutional neural networks. In this section, we will briefly analyze the different platforms,
and then introduce the platforms used in this thesis.

3.3.1 Platforms and Accelerators for CNNs
The central processing unit (CPU) is the most versatile computer processing core. However,
most of the classic CPU is Single Instruction Single Data (SISD) system. For a classic
CPU, whether it is a Von Neumann or Harvard structure, it is necessary to read instructions
and data multiple times. Through the introduction in chapter 2, there are many repetitive
operations in convolutional neural networks, such as repeated multiply-accumulate (MAC)
operation. It causes waste to read repeated instructions many times in a SISD system.
Therefore, accelerators more suitable for CNNs need to be introduced. In this chapter, three
accelerators for CNNs are discussed: GPU, ASIC, and FPGA.

GPU: Single Instruction Multiple Data Accelerator

It is not difficult to see that there are many identical calculations in machine learning.
Taking CNNs as an example, it uses a lot of convolution calculations. As the introduction in
section 2.2, the convolution can be converted into a multiply-accumulate operation (MAC).
So the computer repeats the MAC many times but different input data. A SISD system
such as a classic CPU needs to read the same instructions multiple times so that takes a lot
of time.

The Graphics Processing Unit (GPU), especially General-Propose GPU (GPGPU), is a
Single Instruction Multiple Data (SIMD) system. The GPU will divide complex calculation
into millions of separate tasks to solve them at the same time. For the same MAC operation,
it reads instructions only once and then performs parallel operations on different data, which
undoubtedly increases the speed of operation. This feature makes GPU widely used in the
field of machine learning. The combination of CPU + GPU has also become one of the
most used accelerator architecture in the field of machine learning. In this combination, the
complex and non-repetitive work is placed on the CPU side, such as the reading and saving
of network parameters, while the repetitive work is placed on the GPU side, such as the
calculation of convolution.

Although the development of GPU components requires special programming languages
and tools, such as CUDA and its compiler for Nvidia GPUs, most machine learning frame-
works provide encapsulated interfaces for executing CNNs in GPU, which greatly simplifies
development. This is another reason for the widespread popularity of GPU accelerators.

ASIC: Powerful but Inflexible System

Since there are many identical operations, for accelerating the CNNs, the Application-Specific
Integrated Circuit (ASIC) is another option. The ASICs use a fixed circuit design and is
optimized for a specific algorithm, so that the ASIC can be better than GPU in terms of
calculation speed and energy consumption.

But ASICs also have shortcomings that cannot be ignored:

• Compared with general-purpose chips such as GPU and CPU, the ASIC chip devel-
opment process is relatively complex. As well, compared to software compilation,
tape-out for ASIC also requires a relatively long time and much more cost. Therefore,
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Figure 3.4: Mesh FPGA architecture. For more detail of FPGA architecture, see [3].

if ASIC ships cannot be mass-produced, it will bring excessive development cost and
time cost. This is a general weakness of ASIC.

• For the field of machine learning, he has other deficiencies. There are numerous differ-
ent algorithms in the field of machine learning, and the non-general hardware design
is difficult to adapt to all changing algorithms. For example, in embedded devices
as mobile phones, we need machine learning algorithms to achieve different functions,
such as speech recognition and face recognition. It is difficult to provide a separate
ASIC chip for each algorithm. Another difficulty is that the algorithm for machine
learning is updated extremely frequently, but ASIC is developed slowly. The ASIC
chip for the algorithm has not been completed, and the algorithm is out of date, which
is highly likely to happen. For example, at the beginning of my PhD project, YOLO
version 2 (YOLOv2) was the latest, but when I wrote a doctoral thesis, YOLO version
4 (YOLOv4) was already available.

The high development cost and inflexibility of ASIC make it not widely used in the field of
machine learning.

However, it should be noted that what we introduced here is the general situation of ASIC.
We should also see some excellent ASICs architecture for CNNs, such as Google’s TPU [10]
and Eyeriss framework [7]. With the development of ASIC, the mentioned difficulties may
gradually be overcome, and a more low-power, high-performance ASIC platform may be
proposed to the field of machine learning.

FPGA: Rising Star of CNN Accelerators

The specific hardware can speed up calculations and reduce energy consummation. But fixed
circuits such as ASICs are not flexible, which makes them not well used for CNN. We need
accelerators which can not only consider the high efficiency and low power consumption as
ASIC but also be dynamically updated. Field-Programmable Gate Arrays (FPGAs) are an
integrated circuits designed to be able to be reprogrammed to the desired application or
functionality requirements after manufacturing. Figure 3.4 shows the mesh FPGA archi-
tecture where the matrix of configurable logic blocks (CLBs) can be routed by configurable
switch to realize target functions. The components integrated in FPGA are introduced in
detail in section 3.3.2. It is observed that the calculation circuits are directly compiled and
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Figure 3.5: Pipeline Technology: Pipelining is a form of parallelization in which multiple
iterations of a repeated execute concurrently, like an assembly line. Consider the basic
processing with three stages and three iterations, shown in Figure 3.5a. A stage is defined
as the operations that occur in the repeated execution within one clock cycle. If each stage
of this repeated takes one clock cycle to execute, then this loop has a latency of nine cycles.
The Figure 3.5b shows the pipelining of the executions from the basic processing. The
pipelined processing has a latency of five clock cycles for three iterations (and six cycles for
four iterations), But there is no area trade-off. In the example of Figure 3.5b, during the
second clock cycle, the calculator for Stage 1 has finished the iteration 1 and it is processing
iteration 2. At this clock cycle, the calculator for Stage 2 is processing iteration 1, and Stage
3 is inactive. This repeated processing is pipelined with an initiation interval (II) of 1. An
II of 1 means that there is a delay of 1 clock cycle between the beginning of each successive
loop iteration. We can estimate the overall latency of the repeated execution of N iterations
with the following equation:

Latencye = (N − 1) ∗ II + Lantencyi (3.2)

where Latencye is the number of cycles the executions and Latencyi is the number of cycles
a single iterations takes to execute.
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generated according to the algorithms, that is directly used for calculation, without reading
instructions during execution like CPUs or GPUs. Therefore, FPGAs are able to as effi-
cient as integrated circuits, as well, it is flexible due to its ability to be reprogrammed. In
fact, due to its efficiency and flexibility, FPGA have already played an important role in
many fields, such as communication, control engineering, mathematics, cryptography, and
robotic [67, 68]. With the rapid development of machine learning, FPGA has gradually
attracted the attention of researchers in this field, and the combination of CPU + FPGA
provides new ideas for machine learning.

Another primary benefit of using an FPGA instead of a CPU is that FPGAs use a spatial
computing structure. A design can use additional hardware resources in exchange for lower
latency, which can take advantage of the spatial compute structure to accelerate the loops by
having multiple iterations of a loop executing concurrently, that is, unroll a loop execution.
Since the generated hardware computing resources can be reused multiple times, in addition
to parallel, FPGA is more convenient to use pipeline technology to accelerate processing,
as shown in Figure 3.5. Unlike unrolling computing, pipeline technology just rearranges the
allocation of computing resources without requiring more area.

Comparison of Different Accelerators

A few works such as [69, 70] made a quantitative comparison of different accelerators.
We present the usual conclusions here. For chips with the same specifications, such as
manufacturing process and area cost, three aspects are evaluated:

• In terms of computing capacity, FPGAs are better than CPUs but inferior to GPUs.
This means that for the same task, the calculation in FPGA is faster than that in CPU
but slower than in GPU.

• In terms of energy power, FPGAs consumed more energy than CPUs but less than
GPUs per unit time.

• But considering both energy consumption and computing capacity, performance per
watt for FPGA is better than GPU and CPU. In other words, FPGAs are more energy
efficient than CPU and GPU.

While CPU + GPU is the mainstream architecture in machine learning research, consid-
ering the issue of energy consumption, FPGA is a platform that deserves more investment.
For large data centers or large-scale cloud servers, FPGA can significantly reduce energy
consumption, which makes operation and maintenance costs lower. Therefore, some famous
PaaS and IaaS companies, such as Microsoft, Amazon EC2, as well as Alibaba and Baidu in
China are increasingly focusing on FPGAs. Another field that FPGAs have received much
attention is embedded systems. Low power computing is always preferred for systems with
limited energy.

The experiment described in this Ph.D thesis is based on the above concept. We use
GPU as a training platform since it is more convenient for development. But when the
neural networks are well trained, they should be deployed into an embedded system. The
FPGA platform which is more energy effective is more favorable in our works.

3.3.2 FPGA Platform and Development Tools
As mentioned in section 3.3.1, it is a common practice to use GPU to run machine learning
algorithms, and many frameworks also provide the interface for GPU compilation and execu-
tion. Therefore, the development with GPU is simple, and we will not introduce more detail
here. Relatively speaking, the FPGA development process is more cumbersome. For differ-
ent manufacturers, the architecture and development processes of FPGA are also different.
They are discussed in this section.

Ideally, there are a couple of FPGA vendors. However, most of the market share on
FPGAs is divided between Xilinx and Altra. Xilinx is an American technology company,
primarily a supplier of programmable logic devices. It is known for inventing the field-
programmable gate array (FPGA). Altera Corporation is a Silicon Valley manufacturer of
PLDs, reconfigurable complex digital circuits. Since all proposed approaches in this thesis
are realized targeting Xilinx FPGAs and tools, this thesis will introduce Xilinx FPGA and
the design environment in more detail.
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FPGA Reconfiguration

FPGAs are reprogrammed by generating the configuration bitstream corresponding to the
functionality implemented by the user. Ideally, configuration bitstream can be stored in
FPGA using various technologies. However, most FPGAs are based on RAM (SRAM).
Generally, FPGA reconfigurations are divided as total reconfiguration and partial reconfig-
uration. In total reconfiguration, the configuration bitstream, containing the FPGA con-
figuration data, provides the information regarding the complete chip and it configures the
entire FPGA. In partial reconfiguration, only a portion of the device is reconfigured, while
the rest of the hardware mapped on the FPGA can continue to operate transparently with
respect to the reconfiguration process. When the reconfiguration is performed while part of
the FPGA is running, then it is called run-time reconfiguration.

SRAM-based FPGAs SRAM-based FPGA stores logic cell configuration data in the
static memory (organized as an array of latches). Since SRAM is volatile and cannot keep
data without a power source, such FPGAs must be programmed (configured) upon start.
There are two basic modes of programming:

• Master mode: when FPGA reads configuration data from an external source, such
as an external Flash memory chip.

• Slave mode: when FPGA is configured by an external master device, such as a pro-
cessor. This can be usually done via a dedicated configuration interface or a boundary-
scan (JTAG) interface

SRAM-based FPGAs include most chips of Virtex and Spartan families designed by
Xilinx, as well as Stratix and Cyclone families designed by Altera.

Configurable Logic Blocks Architecture The configurable logic blocks (CLB) is the
backbone of the FPGA to store combinational and sequential functions. By turning on
some of the configurable switches within a configurable switch box, shown in Figure 3.4,
more complicated computing structure composited of CLBs and other resources can be
constructed. For higher speed interconnect, some FPGA architectures use longer routing
lines that span multiple logic blocks.

A classic CLB consists of m-input Look-Up Tables (LUTs), a full adder (FA), and a
D-type flip-flop (DFF) as shown in Figure 3.6. The LUTs are in this figure split into two 3-
input LUTs. In normal mode, those are combined into a 4-input LUT through the left mux.
In arithmetic mode, their outputs are fed to the FA. The mode selection is programmed into
the middle multiplexer. The output can be either synchronous or asynchronous, depending
on the programming of the mux to the right, in the figure example. In practice, entire or
parts of the FA are put as functions into the LUTs to save space.
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Figure 3.7: A 3-input logic operation
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Figure 3.8: A 3-input LUT for the logic operation

Look-Up Table The Look-Up Table (LUT) is used to store the possible outputs of the
combinational function for the specified inputs. Then, the inputs will be used as a multiplexer
to select the right output during run-time. In general, a LUT is basically a table that
determines the output of any given input(s). In the context of combinational logic, it is the
truth table. This truth table effectively defines how the combinatorial logic behaves. For
example, the logic circuit in Figure 3.7a can be implemented using 3-input LUT. First, the
truth table of the circuit is calculated as shown in Figure 3.7b. Then, the 3-input LUT for
the circuit will be configured as shown in Figure 3.8.

In fact, the number of input of LUT is different for different FPGA designs, as well as
different vendors. With the development of technology, manufacturers have moved to 6-input
LUTs in their high-performance parts, claiming increased performance. However, We would
like to emphasize is that even the available LUT is m-input, it is possible to implement any
combinational function with less than m inputs as well as any combinational logic function
with greater than m inputs. When the combinational logic function has fewer inputs than
the inputs of the LUT, the higher input will be set to zero and only the fraction of the LUT
will be used.

The lookup tables can also be customized based on the requirement. For example, a
table built for a complex mathematical function may work much faster than calculating
the value by following an algorithm. The table should be stored in RAM or ROM. This
brings us to viewing the LUTs simply as memory, where the inputs are the address, and the
corresponding outputs are the data stored in the given address.

Other Resources Modern FPGA families expand upon the above capabilities to include
higher-level functionality fixed into the silicon. Embedding these common function in silicon
reduces the required area and improves the speed of operation of these function. Having
these common functions embedded into the silicon reduces the area required and gives those
functions increased speed compared to building them from primitives. Examples of these
include multipliers, generic DSP blocks, embedded processors, high speed I/O logic, and
embedded memories. These cores exist alongside the programmable fabric, but they are
built out of transistors instead of LUTs. So they have ASIC level performance and power
consumption while not consuming a significant amount of fabric resources, leaving more of
the fabric free for the application-specific logic.

In this section, a brief introduction to FPGA is to explain the working mechanism of
FPGA, so as to better understand its advantages and disadvantages in machine learning
tasks. This is also a key factor in the choice of platform for the follow-up work. For more
detailed FPGA structure, see [71].

Xilinx FPGA Design Flow

This section provides an overview of working with the Vivado® Design Suite to create a new
design for programming into a Xilinx® device. It provides a brief description of various use
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Figure 3.9: Vivado Design Suite High-Level Design Flow

models, design features, and tool options, including preparing, implementing, and managing
the design sources and intellectual property (IP) cores.

The Vivado Design Suite offers multiple ways to accomplish the tasks involved in Xilinx
FPGA design, implementation, and verification. In addition to the traditional register trans-
fer level (RTL)-to-bitstream FPGA design flow, the Vivado Design Suite provides system
level integration flows that focus on intellectual property (IP)-centric design and C-based
design. IP can be instantiated, configured, and interactively connected into IP subsystem
block designs within the Vivado IP integrator environment. Custom IP and IP block designs
can be configured and packaged and made available from the Vivado IP catalog. High-level
Synthesis can be leveraged to quickly create and validate complex algorithms in C/C++,
synthesize them into RTL and process them through the traditional Vivado RTL flow. De-
sign analysis and verification are enabled at each stage of the flow. Design analysis features
include logic simulation, I/O and clock planning, power analysis, constraint definition and
timing analysis, design rule checks (DRC), visualization of design logic, analysis and mod-
ification of implementation results, programming, and debugging. Figure 3.9 shows the
high-level design flow in the Vivado Design Suite, followed by some explications:

• RTL Design: RTL source files can be specified to create a project and use these
sources for RTL code development, analysis, synthesis, and implementation. Xilinx
supplies a library of recommended RTL and constraint templates to ensure RTL and
XDC are formed optimally for use with the Vivado Design Suite. Vivado synthe-
sis and implementation support multiple source file types, including Verilog, VHDL,
SystemVerilog, and XDC.

• IP Design and System-Level Design Integration: The Vivado Design Suite pro-
vides an environment to configure, implement, verify, and integrate IP as a standalone
module or within the context of the system-level design. IP can include logic, embed-
ded processors, digital signal processing (DSP) modules, or C-based DSP algorithm
designs. Custom IP is packaged following the IP-XACT protocol and then made avail-
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able through the Vivado IP catalog. The IP catalog provides a quick access to the
IP for configuration, instantiation, and validation of IP. Xilinx IP utilizes the AXI4
interconnect standard to enable faster system-level integration. Existing IP can be
used in the design either in RTL or netlist format.

• IP Subsystem Design: The Vivado IP Integrator environment enables to stitch
together various IP into IP subsystems using the AMBA AXI4 interconnect protocol.
IP can by interactively configured and connected though a block design style interface
and easily connect entire interfaces by drawing DRC-correct connections similar to a
schematic. Connecting the IP using standard interfaces saves time over traditional
RTL-based connectivity. Connection automation is provided as well as a set of DRCs
to ensure proper IP configuration and connectivity. These IP block designs are then
validated, packaged, and treated as a single design source. Block designs can be used
in a design project or shared in other projects. The IP Integrator environment is the
main interface for embedded design and the Xilinx evaluation board interface.

• I/O and Clock Planning: The Vivado IDE provides an I/O pin planning envi-
ronment that enables I/O port assignment either onto specific device package pins or
onto internal die pads, and provides tables to let design and analyze package and I/O-
related data. Memory interfaces can be assigned interactively into specific I/O banks
for optimal data flow. The device and design-related I/O data can be analyzed by
using the views and tables available in the Vivado pin planner. The tool also provides
I/O DRC and simultaneous switching noise (SSN) analysis commands to validate the
I/O assignments.

• Xilinx Platform Board Support: In the Vivado Design Suite, an existing Xilinx
evaluation platform board can be selected as a target for the design. In the platform
board flow, all the IP interfaces implemented on the target board are exposed to
enable quick selection and configuration of the IP used in the design. The resulting
IP configuration parameters and physical board constraints, such as I/O standard and
package pin constraints, are automatically assigned and proliferated throughout the
flow. Connection automation enables quick connections to the selected IP.

• Synthesis: Vivado synthesis performs a global, or top-down synthesis of the overall
RTL design. However, by default, the Vivado Design Suite uses an out-of-context
(OOC), or bottom-up design flow to synthesize IP cores from the Xilinx IP Catalog
and block designs from the Vivado IP integrator. It can also be chosen to synthesize
specific modules of a hierarchical RTL design as OOC modules. This OOC flow lets
synthesize, implement, and analyze design modules of a hierarchical design, IP cores,
or block designs, out of the context of, or independent of the top-level design. The
OOC synthesized netlist is stored and used during top-level implementation to preserve
results and reduce runtime. The OOC flow is an efficient technique for supporting
hierarchical team design, synthesizing and implementing IP and IP subsystems, and
managing modules of large complex designs.

• Design Analysis and Simulation: The Vivado Design Suite analyzes, verifies, and
modifies the design at each stage of the design process. It can run design rule and
design methodology checks, logic simulation, timing, and power analysis to improve
circuit performance. This analysis can be run after RTL elaboration, synthesis, and
implementation. The Vivado simulator enables to run behavioral and structural logic
simulations of the design at different stages of the design flow. The simulator supports
Verilog and VHDL mixed-mode simulation, and results can be displayed in a waveform
viewer integrated into the Vivado IDE. Third-party simulators can also be used to be
integrated into and launched from the Vivado IDE.

• Placement and Routing: When the synthesized netlist is available, Vivado imple-
mentation provides all the features necessary to optimize, place, and route the netlist
onto the available device resources of the target part. Vivado implementation works
to satisfy the logical, physical, and timing constraints of the design. For challenging
designs, the Vivado IDE also provides advanced floorplanning capabilities to help drive
improved implementation results. These include the ability to constrain specific logic
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Figure 3.10: Zynq APSoC architecture

into a particular area, or manually placing specific design elements and fixing them for
subsequent implementation runs.

• Hardware Debug and Validation: Once implementation, the device can be pro-
grammed, then analyzed using a Vivado logical analyzer, or within the standalone
Vivado Lab Edition environment. Debug signals can be identified in the RTL design,
or inserted after synthesis and are processed throughout the flow. Debug cores can
be configured and inserted either in RTL, in the synthesized netlist, or in the imple-
mented design using incremental implementation techniques. The nets connected is
also replaceable for a debug probe or route internal signals to a package pin for external
probing using the Engineering Change Order (ECO) flow.

We have only briefly touched on some of the main steps of Vivado Design Suite and
design flow. For a more detailed discussion of the design process, see [72].

PNYQ Framework and PYNQ-Z1

Xilinx® makes Zynq® and Zynq Ultrascale+TM devices, a class of programmable System on
Chip (SoC) which integrates a multi-core processor (Dual-core ARM® Cortex®-A9 or Quad-
core ARM® Cortex®-A53) and a Field Programmable Gate Array (FPGA) into a single
integrated circuit. FPGA, or programmable logic, and microprocessors are complementary
technologies for the embedded systems. Each meets distinct requirements for embedded
systems that the other cannot perform as well.

Two circuit boards, PYNQ-Z1 integrated Zynq devices, and ZCU102 integrated Zynq
Ultrascale+TM devices are used in our work. These two development boards can be deployed
by the PYNQ framework. The introduction to them is shown in this section.

PYNQ Framework The primary aim of Python Productivity for Zynq (PYNQ) is to
make it easier for designers of embedded systems to exploit the unique benefits of Xilinx
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devices in their applications. Specifically, PYNQ enables architects, engineers, and program-
mers who design embedded systems to use Zynq devices, without having to use ASIC-style
design tools to design programmable logic circuits.

PYNQ achieves this goal in three ways:

• Programmable logic circuits are presented as hardware libraries called overlays. These
overlays are analogous to software libraries. A software engineer can select the overlay
that best matches their application. Overlay can be accessed through an application
programming interface (API). Creating a new overlay still requires engineers with
expertise in designing programmable logic circuits. The key difference, however, is in
building once and reusing the paradigm many times. Overlays, like software libraries,
are designed to be configurable and re-used as often as possible in many different
applications.

• PYNQ uses Python for programming both the embedded processors and the overlays.
Python is a “productivity-level” language. To date, C or C++ is the most common,
embedded programming language. In contrast, Python raises the level of programming
abstraction and programmer productivity. These are not mutually exclusive choices.
PYNQ uses CPython which is written in C, and integrates thousands of C libraries, so
that can be extended with optimized code written in C. Wherever practical, the more
productive Python environment should be used. And whenever efficiency dictates,
lower-level C code can be used.

• PYNQ is an open-source project that aims to work on any computing platform and
operating system. This goal is achieved by adopting a web-based architecture, which is
also browser agnostic. We incorporate the open-source Jupyter notebook infrastructure
to run an Interactive Python (IPython) kernel and a web server directly on the ARM
processor of the Zynq device. The web server proxy access to the kernel via a suite of
browser-based tools that provide a dashboard, bash terminal, code editors, and Jupyter
notebooks. Browser tools are implemented using a combination of JavaScript, HTML
and CSS and run on any modern browser.

PYNQ-Z1 The PYNQ-Z1 board is designed to be used with PYNQ framework, which
enables embedded programmers to exploit the capabilities of Xilinx Zynq All Programmable
SoCs (APSoCs) without having to design programmable logic circuits. Programmable logic
circuits are imported as hardware libraries and programmed through their APIs, basically
in the same way as software libraries are imported and programmed. To be mentioned, the
PYNQ-Z1 board is the first hardware platform for the PYNQ open-source framework.

The Zynq APSoC is divided into two distinct subsystems: The Processing System (PS)
and the Programmable Logic (PL). Figure 3.10 shows an overview of the Zynq APSoC
architecture, with the PS colored light green and the PL in yellow. Note that the PCIe Gen2
controller and Multi-gigabit transceivers are not available on the Zynq-7020 device.

The PL is nearly identical to a Xilinx 7-series Artix FPGA, except that it contains several
dedicated ports and buses that tightly couple it to the PS. The PL also does not contain the
same configuration hardware as a typical 7-series FPGA, and it must be configured either
directly by the processor or via the JTAG port.

The PS consists of many components, including the Application Processing Unit (APU,
which includes 2 Cortex-A9 processors), Advanced Microcontroller Bus Architecture (AMBA)
Interconnect, DDR3 Memory controller, and various peripheral controllers with their inputs
and outputs multiplexed to 54 dedicated pins (called Multiplexed I/O, or MIO pins). Pe-
ripheral controllers that do not have their inputs and outputs connected to MIO pins can
instead route their I/O through the PL, via the Extended-MIO (EMIO) interface. The pe-
ripheral controllers are connected to the processors as slaves via the AMBA interconnect and
contain readable/writable control registers that are addressable in the processors’ memory
space. The programmable logic is also connected to the interconnect as a slave, and designs
can implement multiple cores in the FPGA fabric that each also contains addressable control
registers. Furthermore, cores implemented in the PL can trigger interrupts to the processors
(connections not shown in Fig. 3) and perform DMA accesses to DDR3 memory.

The software running on the Arm®-A9 CPUs include a web server hosting the Jupyter
notebooks design environment, the IPython kernel and packages, Linux, and a base hardware
library and API for the FPGA devices.
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Figure 3.11: PYNQ-Z1

The PYNQ-Z1 natively supports multi-media applications with on-board audio and video
interfaces. It is designed to be easily extensible with Pmod, Arduino, and Grove peripherals,
as well as general-purpose IO pins.

The PYNQ-Z1 board can be also expanded with USB peripherals including Wi-Fi, Blue-
tooth, and Webcams.

Next, we enumerate the main interfaces and blocks integrated into PYNQ-Z1. That helps
us to understand this development board fully, although we have not used some of them in
the next experiments.

• PYNQ XC7Z020-1CLG400C:

– 650MHz dual-core Cortex-A9 processor
– DDR3 memory controller with 8 DMA channels and 4 high performance AXI3

slave ports
– High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO
– Low-bandwidth peripheral controller: SPI, UART, CAN, I2C
– Programmable from JTAG, Quad-SPI flash, and microSD card
– Artix-7 family programmable logic:

∗ 13,300 logic slices, each with four 6-input LUTs and 8 flip-flops
∗ 630 KB of fast block RAM
∗ 4 clock management tiles, each with a phase-locked loop (PLL) and mixed-

mode clock manager (MMCM)
∗ 220 DSP slices
∗ On-chip analog-to-digital converter (XADC)

• Memory:

– 512MB DDR3 with 16-bit bus @ 1050Mbps
– 16MB Quad-SPI Flash with factory programmed globally unique identifier (48-bit

EUI-48/64TM compatible).
– MicroSD slot

• Power:

– Powered from USB or any 7V-15V source

• USB and Ethernet:

– USB-JTAG Programming circuitry
– USB-UART bridge
– USB OTG PHY (supports host only)
– Gigabit Ethernet PHY

• Audio and Video:

– Electret microphone with pulse density modulated (PDM) output
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Figure 3.12: The devices and interfaces in ZCU102 board

– 3.5mm mono audio output jack, pulse-width modulated (PWM) format
– HDMI sink port (input)
– HDMI source port (output)

• Switches, push-buttons, and LEDs:

– 4 push-buttons
– 2 slide switches
– 4 LEDs
– 2 RGB LEDs

• Expansion Connectors:

– Two standard Pmod ports
∗ 16 Total FPGA I/O

– Arduino/chipKIT Shield connector
∗ 49 Total FPGA I/O
∗ 6 Single-ended 0-3.3V Analog inputs to XADC
∗ 4 Differential 0-1.0V Analog inputs to XADC

We have only briefly mentioned some of the most important characters of PYNQ-Z1. A
more detailed introduction regarding the board is provided in [73].

Zynq UltraScale+ MPSoC ZCU102 The ZCU102 Evaluation Kit enables designers
to jumpstart designs for automotive, industrial, video, and communications applications.
This kit features a Zynq® UltraScale+TM MPSoC with a quad-core Arm® Cortex®-A53,
dual-core Cortex-R5F real-time processors, and a MaliTM -400 MP2 graphics processing unit
based on Xilinx’s 16nm FinFET+ programmable logic fabric. The ZCU102 supports all
major peripherals and interfaces, enabling development for a wide range of applications.

The FPGA chip Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC is integrated into
this board. The detailed features of this chip are as follows:

• 600k System Logic Cells
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• 32.1Mb Memory on Chip

• 2,520 DSP Slices

• 328 usable I/0 Pins.

In the experiments in this Ph.D thesis, we use Vivado and Vivado High Level Syntheses
for hardware design, and to generate bitstream finally. Next, bitstream will be loaded into
PYNQ-Z1 or ZCU102 and be programmed into FPGA device. The programmable logic part
receives data through the interface of shared memory, calculates, and returns the calculation
result. The programmable logic part can be called as APIs through the PYNQ framework.

3.4 Summary
In this chapter, we discussed the difficulties encountered with the development of convolu-
tional neural networks. And proposing solutions to these difficulties is the motivation of the
next work.

However, due to the widespread use of convolutional neural networks, it is impossible
to analyze all scenarios. Hence, we choose the scope of our work in this chapter, which
is focusing on the field of computer vision. Furthermore, by discussing the basic tasks of
computer vision, we determined image classification and object recognition as benchmark
tests for the next works. Based on this, we introduced the commonly used evaluation criteria
for these two tasks to build benchmark tests.

Next, the commonly used accelerators for convolutional neural networks are introduced.
In addition, and the platforms for our work are also selected. The convolutional neural
network is usually trained by CPU+GPU structure. At the same time, the architecture of
CPU+FPGA is more favored during deployment and testing. In the end, we discussed the
FPGA structure and development process, which helped us better solve the problem.

To sum up, this chapter puts forward the work motivation, determines the work scope
and work methods. These set the stage for the next chapters.
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Chapter 4

The State-of-the-Art of CNN
Compression and Acceleration

CNN-based systems are usually resource-consuming and computational-intensive. When
they are integrated into the resource-limited or real-time system, the challenges arise: on
one hand, the huge amount of calculation will prolong the calculation time, resulting in
some real-time scenarios are not applicable to CNNs. On the other hand, the large volume
of weights of the CNNs will also bring challenges to some embedded systems with limited
memory. Therefore, we need to compress them, by reducing the size of weight of the CNN,
as well as by reducing the amount of calculation.

In this chapter, frequently used methods to compress the CNNs and speed up the calcu-
lation are introduced.

4.1 Compact Design
When we talk about compression of CNNs, we often mention many “advanced” methods,
such as sparse matrix, or quantization, which will be introduced in the following section.
But we often overlook the simplest method, which is to use a simpler design.

4.1.1 The Shallower Deep Neural Networks
Typically, the designers experiment to find out how many hidden layers to use in deep
CNNs. Generally speaking, deeper convolutional layers bring higher accuracy. In fact, since
the ResNet [47] was proposed, deeper and deeper networks have been used. But these deep
networks bring heavy calculations. It is possible to make some adjustments for some special
scenarios. For example, if we need a time-sensitive but error-tolerant system, such as a real-
time gaming system, or we need more energy-efficient embedded equipment that requires
less computation, we can use a shallower CNNs to reduce the amount of calculation and
accelerate the system. As well, the same as the number of layers in CNNs, the number of
kernels in each convolutional layer can also adjust as needed.

In fact, tiny-YOLO presented in section 2.3.6 is a compressed version of YOLOv2 pre-
sented in section 2.3.6. It takes 9 convolutional layers instead of 24 layers as YOLOv2.
There is no doubt that this greatly reduces the amount of calculation. Some well-known
networks such as VGG [41] also proposed varied depth networks. For example, VGG-16 is
composited of 16 layers, but VGG-19 has 19 layers. Obviously, a fewer number of layers
reduces the volume of the neural network. But in a general way, it also reduces the accuracy
of the results.

We need to admit that this method is essentially a trade-off between precision and com-
putation. For many systems requiring high accuracy, this method is not applicable.

4.1.2 The Smaller Convolutional Kernels
In addition to the number of the convolutional kernels, the size of convolutional kernels in
each layer can also be adjusted. As a rule, large convolution kernels bring wider fields of
view, so that some networks such as the work [74] use convolution kernels with different sizes
to find different patterns. However, the larger convolutional filters often take more resources
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Figure 4.1: The fields of view of the 5× 5 kernel replaced by 3× 3 kernels

to compute. In order to reduce the amount of calculation, smaller but deeper convolution
kernels can be used to replace the larger kernel.

The VGG network [47] used 3 × 3 kernels to replace the 7 × 7 kernel in AlexNet. As
shown in Figure 4.1, two 3 × 3 kernels can get the same fields of view as one 5 × 5 kernel,
but only 18 parameters need to be saved, instead of 25 in a 5 × 5 kernel. Similarly, three
3 × 3 kernels can be used to replace one 7 × 7 kernel, but 1.8x compression is achieved.
For the Inception V2 proposed in the work [43], it is also introduced to use multiple 3 × 3
small convolution kernels to replace larger convolution kernels, which significantly reduces
the amount of calculation, but the calculation accuracy does not decrease. Furthermore,
the Inception V3 proposed in the work [44] also used multiple smaller kernels to replace the
larger one. In this work, the combination of 1 × 3 and 3 × 1 kernel is used to replace the
3× 3 kernel. Interestingly, the smaller kernels with size 1× 1 are used to replace some of the
3 × 3 weights in SqueezeNet [45]. Although the receptive field of some weights has become
smaller, the final accuracy in SqueezeNet has not changed significantly.

4.2 Quantization
In general, in fully numerical precision CNN, the data for convolution/multiplication is
represented as a 32 bits or 64 bits float-point. However, the higher-precision data will
require more memory to store and more bandwidth to transmit. For example, the memory
to store a 64-bit floating-point variable can save eight 8-bit integer variables. If we can use
lower-precision data for calculations, then we will also reduce the overall size of the network,
and for communication channels with the same bandwidth, more data can be transmitted.
Meanwhile, for some specific devices, the lower-precision multiplication calculator may use
fewer resources, and the calculation will spend less time.

Quantization is a major approach to reduce the numerical precision of CNNs. Through
quantization, fewer bits are used to represent high-precision values to achieve the compression
of CNN. This section describes quantification approaches.

4.2.1 Using Fixed-point instead of Floating-point
Figure 4.2a shows the format of a general single-precision floating-point variable in IEEE
standard 754 [75, 76], where the first bit [31:31] represents the sign, the bits [30:23] encode
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0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign exponent(8-bit) fraction(23-bit)

31 23 0

(a) Floating Point

0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign integer(8-bit) fraction(23-bit)

31 23 0

(b) Fixed Point

0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign integer(3-bit) fraction(4-bit)

7 4 0

(c) Drop off the less important bits

Figure 4.2: The formats of decimals in computers.

the exponent, and the bits [22:0] encode the faction. This expression is similar to scientific
notation but uses 2 as the base. Then, the result shown in the Figure 4.2a is calculated as:

• sign = 0, (+)

• fraction = 1 + (2)−1 + (2)−4 = 1.5625

• exponent = −127 + {10000001}{2} = 2

• result = (+1)× 1.5625× 22 = 6.25

Depending on the precision, the floating-point type can also be encoded with 64-bit or 16-bit,
which is called double-precision floating-point and half-precision floating-point respectively.

When fewer bits is used to express parameters, fixed-point numbers is more convenient.
Figure 4.2b shows the format of a general fixed-point variable. This fixed point number is
calculated as:

• sign = 0, (+)

• integet = {00000110}{2} = 6

• fraction = (2)−2 = 0.25

• result = (+1)× (6 + 0.25) = 6.25

In general, since the parameters in networks are not exceptionally large, fewer bits are
needed to express the integer part in fixed-point numbers. At the same time, in order to
reduce the volume of values, less important bits in the fraction part can be discarded, shown
as Figure 4.2c.

In essence, this discarding is a trade-off between precision and volume. However, in
practice, the limited discarding of bits has little effect on accuracy. Some works such as [77]
proposed methods to determine how many bits should be drop off and how to constitute
dynamic fixed-point numbers (DFP).

4.2.2 Using Integers to Represent Floating-point
Unlike fixed-point variables which integrates the integer and fraction parts, the parameters
can also be scaled directly to integers without fraction parts. Floating-point parameters can
then be represented as integers. In terms of precision, a fixed-point variable that uses 3 bits
as an integer and 5 bits as a fraction is equivalent to an 8-bit integer variable.

The method that scaling the variable into an integer can be considered as a linear trans-
formation. In this method, two floating-point variables store the minimum and maximum
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Input(float)

Quantize

Convolutional layer

Max-pool

Relu layer

...

Dequantize

Output(float)

data

8 bits xmin xmax

32 bits xmin xmax

32 bits xmin xmax

32 bits xmin xmax

32 bits xmin xmax

Figure 4.3: In continuous quantization, the quantized output, minimum and maximum float
could be used as input for the next layer directly, and the dequantize layer is as the end of
all quantized layer.

values of parameters, that correspond to the range of the parameters. Then the floating-
point parameters in the ranges are linearly mapped to the quantization interval. An example
that quantizes the parameters distributed in [-10.0,30.0] into 8-bit integers whose interval is
[0,255] is shown in table 4.1.

Quantized Float
8 bits 32 bits
0 -10.0 (min)
255 30.0 (max)
128 10.0 (other value)
163 15.5 (other value)

Table 4.1: The representation of float-point numbers

More generally, in the quantization, a float-point is represented as an n bits integer by
the followed linear transformation:

xq = (x− xmin)× (
max−min

xmax − xmin

) (4.1)

where max is the maximum integer expressed by n bits, min is the minimum integer ex-
pressed by n bits, xmax is the float represented by max, and xmin is the float represented by
min.

Due to the quantization, the multiplication of floating-point values can be converted to
multiplication of integers. We note that

scale =
max−min

xmax − xmin

x0 = (0− xmin)× scale

(4.2)

that shows the quantized value when x = 0. Then the multiplication of two float-point
values is represented as:

prod = x1 × x2 = prodq/scaleq (4.3)
where 

prodq = (xq1 − x01)× (xq2 − x02)

scaleq = scale1 × scale2

(4.4)
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Figure 4.4: Pruning of neural networks

With the definition of operation multiplication, the convolution composited by multiply–
accumulate operations can be calculated. To be mentioned that the scaleq is common for
all multiplication in one convolutional layer, so that we can calculate only once for one
convolutional layer.

Since the scaleq and x0 are known, for the given minimum input and maximum input, the
maximum and minimum of output can be calculated. As Figure 4.3 shown, these parameters
can be used as the input of the next quantized layer directly. Hence, for the deep quantized
convolutional neural network, the dequantize which generates prod by quantized product
prodq may be only calculated at the output of the quantized network.

Even though the quantize and dequantize layer cost computing resource, they are calcu-
lated only once at the beginning or end of the network. And obviously, it is more efficient
to multiply 8 bits integers than 32-bit floats. So if the network is deep, this quantization
data approach can significantly increase the speed of convolution.

Unlike the fixed-point multiplication which requires the special multipliers, 8-bit inte-
ger multipliers are generally integrated on general-purpose chips for integer multiplication.
Therefore the quantization by using integers is easier to implement than the quantization by
using fixed-point on the general proposed devices. Because of this, the frameworks such as
TensorFlow [54] that support GPU execution have supported for the quantization by using
8-bit integers.

4.3 Pruning and Sparse Neural Network
In addition to the compacting network and quantization methods introduced above, pruning
networks generating the sparse is another widely discussed method to compress and speed
up the neural network. It will be briefly introduced in this chapter.

The main idea of pruning was proposed by some works such as [78, 79, 80] in the 1990s.
Since the larger neural networks have been widely used in recent years, pruning methods
are also constantly developing. There are many parameters in the large neural network,
but some weights do not affect and contribute to the final result, in other words, they are
redundant. The basic idea of pruning is to cut out these redundant parameters.

The neural network is usually shown on the left of Figure 4.4: every neuron in the lower
layer is connected to the neuron in the upper layer, which means that we must perform a lot
of operations. When pruning the neural network, the unimportant connections are deleted.
We only need to connect each neuron with several other neurons, as shown in the right of
Figure 4.4, which greatly reduces the amount of calculation. This kind of neural network is
called a sparse neural network.

In fact, Figure 4.4 is just a schematic of pruning. In practical, there are generally two
levels for pruning the convolutional neural network, the structured pruning, and the weight
pruning. [81]
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4.3.1 Structured Pruning
As introduced in chapter 2.2, there are usually multiple convolution kernels for a certain con-
volutional layer. Normally, the convolutional kernels are different, and the shapes recognized
by different convolution kernels are also different. Different shapes have different importance
for the final prediction. Therefore, we can say that different convolution kernels contribute
differently to the final result. Then, deleting the convolution kernel that contributes less to
the final result can effectively reduce the volume of the neural network.

How to evaluate the contributions of weight is a widely discussed topic. The work [15]
discussed the greedy algorithm used to evaluate the quality of each parameter to obtain the
optimal solution. This brute force method can get the optimal solution, but it is prohibitively
costly to compute. Therefore this work also proposed a new method for ranking neurons
based on the first-order Taylor expansion model cost function. The method proposed in [16]
is more intuitive. In this work, all the convolutional filters are ranked by the l1-norm of
the weights in the convolution kernel. The convolution filters with the lowest l1-norm after
ranking are discarded to achieve the purpose of pruning. [17] proposed a similar process,
rank-then-delete, but with a different index of rank. It uses N particle filters to evaluate the
corresponding N convolutional filters. Each particle filter will be assigned a score based on
the accuracy of its influence model on the verification dataset, and the convolution kernel
with a low score will be discarded to achieve the purpose of pruning. The work [81] also scored
to each filter for ranking. But in this work, the scores, named scaling factors, are multiplied
to the output of that channel directly. If the score is small, whatever the convolution kernel,
the output multiply by the scores is small so that its impact on the final result is also small.
In other words, we can evaluate the impact of each kernel during the training, and the
network is automatically pruning during the training.

4.3.2 Weight Pruning
Similar to the structured pruning, the weight pruning also discards some unimportant pa-
rameters. The difference is that the structured pruning deletes the entire filter, while weight
pruning deletes the unimportant connections in each filter.

How to determine the importance of the connections is still an interesting topic. The
work [18] proposed to recognize the importance of each connection through training. All
connections with importance below a threshold are removed from the network. In [18], there
is no guidance for sparsity during training. [19] overcomes this limitation by explicitly
imposing sparse constraint over each weight with additional gate variables and achieve high
compression rates by pruning connections with zero gate values. The method of discard-
ing the connection whose importance is below the threshold is discussed. Meanwhile, the
work [20] discusses how to determine the threshold based on the sensitivity of the connection.
These excellent works have provided solutions for weight pruning.

To be mentioned is that for some special networks, they are more sensitive to the size of
activations, namely discarding some filters or some connections in the filter will change the
output volume, as what happened in work [17], and that will cause trouble for the subsequent
calculation. In this case, we can set the discarded convolution kernel or weight value to 0,
as done in the works [50, 18]. Some CPU or GPU can skip the multiplication of 0, without
calculation, that can also improve the calculation speed of the neural network. In fact, after
pruning, the sparse rate (the ratio that weight value is 0) of many deep neural networks is
high. Therefore, storage space can be reduced by storing models in a sparse format. This
compresses the volume of neural network parameters.

On the other hand, convolution is usually converted into General Matrix Multiply (GeMM)
by Image to Matrix method, seen in section 6.3.1. Many libraries such as Basic Linear Alge-
bra Subprograms (BLAS) library proposed by Nvidia provide the optimization for the sparse
matrix. That speeds up the calculation of sparse matrices and sparse convolutional layers.

It should be noted that for all the pruning methods introduced in this section, discarding
the weight will reduce the accuracy. Therefore, the weights after pruning need to fine-tune.
That is, after pruning, it is needed to retrain the network. For some methods, this pruning-
training cycle needs to be repeated many iterations.
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4.4 Using New Computational Primitives
Quantization and pruning are the most used for improving the performance of CNN. While
proposing optimizations for CNNs, researchers have also pointed out that the convolutional
layer composed of a large number of MAC is a resource-hungry computational primitive, and
easier computational primitives can be used to speed up CNNs. Interestingly, when the fully
connected layer is regarded as a resource-consuming calculation, the lighter convolutional
layer is a new computational primitive to replace part of the fully connected layer. Now, the
convolutional layer is also facing the same problem, so some new computational primitives
are proposed. This section takes Hit-or-Miss transform neural networks as example, to show
the lighter networks with new computational primitives.

In mathematical morphology, Hit-or-Miss transform is an operation that detects a given
pattern in a binary or grayscale image. Let f be a grayscale image, b a structuring element,
and f(x, y) the grayscale intensity at a location (x, y). The basic operations of Hit-and-Miss
transformation, dilation and erosion (of grayscale image), are defined as:

Definition (Grayscale Dilation [82]) The grayscale dilation of f by b, denoted as f ⊕ b,
is

(f ⊕ b)(x, y) = max{f(s− x, t− y) + b(x, y)|(s− x), (t− y) ∈ Df ; (x, y) ∈ Db} (4.5)

where Df and Db are the domains of f and b, respectively.

Definition (Grayscale Erosion [82]) The grayscale erosion of f by b, denoted as f ⊖ b,
is

(f ⊖ b)(x, y) = min{f(s+ x, t+ y)− b(x, y)|(s+ x), (t+ y) ∈ Df ; (x, y) ∈ Db} (4.6)

where Df and Db are the domains of f and b, respectively.

On a side note, there is a parallel between 2-D convolution and dilation/erosion, when sum
replaces product and when max/min replaces sum [83]. Based on the dilation and erosion,
gray scale hit-or-miss transform is defined as:

Definition (Grayscal Hit-or-Miss transform) The grayscale hit-or-miss transform is:

f ⊙ (h,m) = (f ⊖ h)− (f ⊕mr) (4.7)

where h is the set associated with the foreground or an object, m is a set associated with the
corresponding background, and mr is the reflection of m, i.e., mr(x, y) = m(−x,−y).

Let h andm be structuring elements with non-negative weights. The hit and miss structuring
elements together define the target pattern with hit indicating the foreground and miss
indicating the background. For example, if h(x, y) > m(x, y) at a location (x, y), then
that pixel is treated more as foreground than background and vice versa. With Hit-or-
Miss transform, the foreground or targeted object can be labeled, just like convolution in
convolutional layers. With the Hit-or-Miss transform, a morphology-based neural network
is proposed in [83], called Hit-or-Miss transform neural network.

Although the purpose of Hit-or-Miss transform neural network is to find a theoretical
explanation of pattern recognition rather than to speed up CNNs, it objectively constructs
a deep neural network without convolution. Compared with CNN, only comparison and
addition operations are used in Hit-or-Miss neural network, avoiding heavy multiplication
operations. Therefore, it can accelerate calculations on certain platforms that do not have
multiplication accelerators.

There is no doubt that Hit-or-Miss transform neural network uses a new computational
primitive, Hit-or-Miss transform, which makes a large number of multiplications to be re-
placed, thereby accelerating the network. Unfortunately, in order to improve prediction
accuracy, softmax and softmin operations are used to replace max and min in the final
version of Hit-or-Miss transform neural network, which may greatly reduce the calculation
speed [83]. Meanwhile, Hit-or-Miss transform neural networks have not reached the accuracy
of traditional CNNs [83].

In chapter 8, we will also propose a neural network only using comparison and addition,
from the perspective of approximate calculation, but its accuracy is higher than that of
Hit-or-Miss neural network.
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4.5 Others
In addition to the different optimization methods introduced above, there are also some
excellent compression and acceleration methods briefly introduced in this section.

4.5.1 Classic Compression Method
When we talk about compression, some classic compression methods can also be used to com-
press neural networks, for example, the most used lossless compression technology, Huffman
coding.

Huffman code is a particular type of optimal prefix code that is commonly used for lossless
data compression. The output from Huffman’s algorithm can be viewed as a variable-length
code table for encoding a source symbol. We can use prefix codes to find the original symbol
in the table. The algorithm derives this table from the estimated probability or frequency
of occurrence for each possible value of the source symbol, that is, more common symbols
are generally represented using fewer bits than less common symbols. In other words, the
total length of the message becomes smaller because most words in the message use shorter
expressions, videlicet, the message is compressed.

[84] uses the Huffman coding method to compress the neural network. In this work, the
pruning network presented in section 4.3 is used to set many weights with small values to
0. Then, the quantization method, presented in section 4.2 is applied to the network. After
quantization, the value of weights belongs to in a finite set, instead of an infinite real number
set. At this time, the compression problem becomes to compress a given set of symbols (the
weights) and their frequency. This is a typical Huffman code problem. Finally, the set of
weight values is compiled into a Huffman table according to the frequency of occurrence. This
method reduces the size of the weight, and the convolutional neural network is compressed.

This work is one of the most excellent methods proposed in 2015. Although this method
has not been widely used in industry, it still shows that some classic compression algorithms
in traditional computer science and information theory can play a role in neural network
compression

4.5.2 Low-rank Factorization
In a convolutional neural network, the convolutional layers can be converted into matrix
multiplication by the Image-to-Matrix method introduced in section 6.3.1, and the compu-
tational primitives of the fully connected layer are also matrix multiplication. In that way,
the traditional optimization method for matrix multiplication can be used to optimize the
calculation of the convolutional neural network. Matrix factorization, which is to decom-
pose a large matrix into multiple small matrices and use these small matrices for calculation,
thereby reducing the amount of calculation, is a method for matrix calculation compression
and acceleration, as shown in the following:

if C = AB
and B = UΛV T

then C = A(UΛV T )
= (AU)ΛV T

(4.8)

If we can estimate the parameter matrix with several small matrices, then the output matrix
can be obtained by the above formula.

The work [85] proposed to use low-rank matrix decomposition to approximates weight
matrix in neural networks with a low-rank matrix using techniques like Singular Value De-
composition (SVD). This method works especially well on fully-connected layers, yielding
3x model-size compression, however without notable speed acceleration, since computing
operations on CNN mainly come from convolutional layers. The work [86] also discussed the
Canonical Polyadic (CP) decomposition and Batch Normalization (BN) decomposition used
to find the low-rank matrix, and compared the compression rate and speed acceleration for
a CNN by using these low-rank matrices.

The advantage of the low-rank approximation method is that it does not change the
computational primitives in the network and does not require any new operations. The
decomposed network is still implemented by convolution operation, so its application is rela-
tively wide. There are various decomposition methods, any matrix or tensor decomposition
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method can be used. But generally, the decomposed network needs parameter tuning to
ensure the accuracy of the decomposed network model.

The low-rank estimation method has a problem to be solved. For example, it is not
clear how many ranks are reserved. Retaining too many ranks can guarantee the accuracy
rate, but the acceleration compression effect is not good. Retaining too little ranks, the
acceleration compression effect is good, but the accuracy rate is difficult to guarantee. Some
works proposed to train a low-rank parameter matrix first, that is, add the evaluation of the
parameter matrix rank to the loss function, and then make approximative decomposition
of the trained low-rank network. Since many column vectors in the parameter matrix are
linear related, so it can keep truly little rank for decomposition.

Other matrix decomposition can also be used to speed up convolutional neural networks.
For example, LU decomposition is used to convert the sparse matrix to a triangular matrix,
thereby reducing the amount of calculation. These transformation methods for matrices are
more about the mathematical direction than the machine learning direction, so we will not
introduce them in detail.

4.5.3 Spatial Mapping
Some works try to use fast Fourier transform (FFT) to convert convolution into matrix
multiplication, to reduce the amount of calculation. This is an interesting idea. However,
this method also brings some difficulties.

• Additional computations for FFT: However, the FFT of weights can be pre-calculated,
and the FFT of inputs only needs to be calculated only once, and can be used by all
the filters. Therefore, additional computations are not a big challenge for the system.

• Increased memory bandwidth requirements: The complex number generated by the
conversion and the larger kernel after the conversion will increase the memory band-
width requirements.

• The calculation is more complicated: if there is no special calculation unit or instruc-
tion, actually a complex multiplication requires four real multiplications and additions.

Since the output of FFT is relatively cost for memory bandwidth and calculation resource,
conventional FFT based convolution is cost-effective only for large filters. However, the
state-of-the-art convolutional neural networks use small filters, such as 3x3, that means the
FFT is not a valuable method.

But similar to the Fourier transform, [87] provides an acceleration algorithm for small
convolution kernels. We use an example to introduce the Winograd algorithm.

Example: Taking a 1-dimensional convolution as an example, the input signal
is d = [d0, d1, d2, d3]

T , and the convolution kernel is g = [g0, g1, g2]
T , then the

convolution can be written as the following matrix multiplication:

F (2, 3) =

[
d0 d1 d2
d1 d2 d3

]g0g1
g2

 =

[
r0
r1

]
(4.9)

For a general matrix multiplication, 6 multiplications and 4 additions is needed:

r0 = (d0 · g0) + (d0 · g0) + (d0 · g0)
r1 = (d1 · g0) + (d1 · g0) + (d1 · g0)

(4.10)

However, the matrix into which the input signal is converted in the convolution
operation is not an arbitrary matrix. In this matrix, a great number of repetitive
elements are regularly distributed, such as d1 and d2 in the first and second rows.
That makes optimization possible. The computation in Winograd algorithm is
as following:

F (2, 3) =

[
d0 d1 d2
d1 d2 d3

]g0g1
g2

 =

[
m1 +m2 +m3
m2 −m3−m4

]
(4.11)
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where
m1 = (d0 − d2) · g0
m2 = (d1 + d2) · (g0+g1+g2

2
)

m3 = (d2 − d1) · (g0−g1+g2
2

)
m4 = (d1 − d3) · g2

(4.12)

For calculate F (2, 3), we need 4 addition/subtraction for signal d, 4 addition/subtraction
and 2 division in filter g, and 4 multiplication and 4 addition/subtraction for out-
put m.
However, in the inference phase, the values of the convolution kernels are fixed.
So the operation on g can be calculated only once before the inference. So the
total number of operations required is for d and m. The number of operations
in total, that is, 4 multiplications and 8 additions.
Compared with the direct calculation of 6 multiplications and 4 additions, the
multiplier decreases, and the number of additions increases. In computers, mul-
tiplication is generally slower than the addition. By reducing the number of
multiplications and adding a small number of additions, acceleration is achieved.

When we need to deal with convolutions of other sizes, we can also convert it to the
calculation with fewer times of multiplications and more times of additions, as shown in
work [87]. We know that in hardware, multiplication consumes more resources than addition,
so this trade-off between multiplication and addition can reduce resource consumption.

As far as convolution is concerned, the Winograd algorithm is similar to FFT, which first
maps the input and filter to a new space through a linear transformation. After a simple
operation in that space, it is mapped back to the original space.

Compared with the commonly used paradigm, im2col + GEMM + col2im, the Winograd
algorithm achieves speedup by reducing the number of multiplications, but the number of
additions will increase accordingly. At the same time, additional transform calculation and
storage of the transformation matrix are required. Considering the cost of the addition,
transform, and storage, Winograd is generally only suitable for smaller convolution kernels.

4.6 Comparison and Conclusion
In the previous chapter, we discussed that even if machine learning is widely used, it still has
some difficulties for embedded systems, such as the challenges for memory bandwidth and
computing resources. In this chapter, we introduced some of the state-of-the-art solutions.

The first introduction is the simplest method, which is to use a compact architecture.
Most of the architectures of the convolutional neural network are not derived by theory,
otherwise, it needs to be obtained after many experiments. In this case, it is undeniable
that these convolutional neural networks have certain advantages or even over-fitting for
experimental datasets. It is not strange that classifiers for 9000 categories are not suitable
for a dataset with 2 categories. Therefore when we apply the CNNs to different tasks, it is
always possible to adjust the architecture of the neural network to adapt the target takes or
target dataset.

In terms of compression and acceleration, the more discussed methods are quantization
and pruning. Quantization is the method that uses fewer bits to re-express more bit values,
to speed up the calculations and compress the memory storage. The pruning method eval-
uates the importance of connections, then deletes unimportant connections to achieve the
effect of acceleration and compression. The two directions are independent but not contra-
dictory. The main purpose of pruning is to reduce the total amount of calculations, while
quantification makes each calculation smaller or faster. Therefore, I usually describe that
pruning reduces the “quantity” of calculation, and quantization is to reduce the “quality”.

Section 3.3.1 has already introduced that FPGA and GPU formed the mainstream ac-
celerators for machine learning. These two accelerators have some differences when imple-
menting pruning and quantization methods.

• when we want to quantify a network into m-bit for GPU accelerators, we need to
have a special multiplier for m-bit. At present, some GPUs have been equipped with
16-bit or 8-bit quantization multipliers for machine learning, to replace normal 32-bit
multiplication calculators. But when we use other bits, such as 3 bits, as will be used
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in chapter 7, the GPU will still use 8-bit multipliers for calculations, which cannot
take advantage of quantization. Therefore, GPU-based neural networks are usually
quantized to 8-bit or 16-bit. It is worth mentioning that FPGAs can better handle
bit-level operations so that the processing of different numbers of bits is more flexible
than GPUs.

• On the other hand, when it comes to pruning, as described in section 4.3, we usually
set the discarded weights to 0 when the size of the neural network is unmodifiable,
to generate the sparse networks. For sparse matrices, the powerful library such as
BLAS proposed by GPU optimizes the storage and I/O of memory, as well, optimizes
some special calculations such as multiplication of zero. The corresponding libraries
for FPGA are fewer so that the development is more difficult. Without sparse storage,
even for the value 0, it still needs to use 32 bits to store the values for a 32-bit
network. That does not down the size of networks. Moreover, the FPGA algorithm
is determined after compilation. Due to the pipeline technology, the FPGA needs to
perform fixed operations every cycle. That means it will not skip the multiplication of
0. Although some works have added a branch before multiplication to separate zero
and non-zero multiplications, these methods have not been widely used. In short, since
the application of FPGA in neural networks is still in its infancy, even though some
academic works have studied multiplication of sparse matrices for FPGA, in industrial
fields, FPGA-based sparse networks are still not widely used compared to GPUs.

Quantization and pruning are the most used optimizations for traditional CNNs, but the
method that uses new computational primitives attempts to replace the heavy calculation in
traditional CNN. In other words, while quantization and pruning reduce the “quality” and
“quantity” of calculation, this method tries to directly “replace” the calculation by an easier
operation. This method fundamentally solves the complicated calculation of convolution,
because it directly builds neural networks without convolution. This is a very interesting new
idea, but unlike other optimization methods, this method has not been widely discussed. This
is largely because convolution works extremely well in image processing, and it is difficult to
find alternatives that not only bring good accuracy but also do not consume more computing
resources.

In this chapter, we also introduced other methods.
Taking Huffman coding as an example, we introduced the application of traditional com-

pression algorithms. This is a capital idea, but it still needs to cooperate with pruning and
quantization to transform the neural network problem into an information coding problem.

On the other hand, we get ideas from matrix factorization to decompose a large matrix
into multiple small matrices, thereby reducing the amount of calculation. However, in gen-
eral, matrix factorization for matrix in CNNs is an approximate algorithm. This algorithm
also has an impact on the inference accuracy. Therefore, although this method is versatile,
it also necessary tunes many times to find a suitable decomposition method and to balance
the accuracy and speed.

Finally, we also mentioned the spatial mapping method. In simple terms, this method
projects the matrix into a new space, where the calculation is relatively simple. When the
calculation is completed, the result is projected back to the original space. This method
generally has advantages for certain specific convolutional neural networks, such as FFT
mapping works well for large convolution kernels, but Winograd algorithm for small convo-
lution kernels. But, as some new neural networks have been proposed, such as SqueezeNet
proposed in [45], they use a lots of 1x1 convolution kernels, which makes these two algo-
rithms not applicable. In short, this is an interesting idea, but there are many limitations
in practice.

Researchers have also proposed the optimization to CNN from other perspectives. For
instance, since a large amount of data reading and writing is one of the most time-consuming
operations in CNN, [88] apply “in-memory” or “near-memory” computing approaches to
achieve superior energy-efficiency by avoiding the von-Neumann bottleneck entirely. It is
worth mentioning that computing in memory is also one of the main directions of current
chip technology development. The spike neural network (SNN) [89] is another optimization
from the perspective of neuromorphic. Unlike traditional CNN which processes dense images,
SNN only processes impulse signals generated by image changes. This shows a strong ability
in the field of time-continuous signal processing such as video. Due to its sparsity, this kind
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of network is more energy-efficient. Because of its impulse-sensitive nature like the brain,
this kind of network is considered the direction of the next generation of neural networks [90].
Although these excellent works also optimize CNN in a broad sense, they are not the main
research direction of this thesis, so we will not introduce them in detail.
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Chapter 5

Fundamental Experiments

In the previous chapters, the state-of-the-art compression and acceleration algorithms for
CNNs are introduced. In this section, some of the introduced technologies are applied
to the tiny-YOLO network. The main purpose of the experiments in this chapter is to
quantitatively measure these methods and provide the references and foundations of the
next work. Therefore, the experimental results are still worth discussing.

The architecture of tiny-YOLO is shown in Fig 2.17. To make a difference with the later
modified version of tiny-YOLO, it is named as tiny-YOLO-v0.

5.1 Compact Design
Compact Design is a relatively simple optimization method. In this section, we propose
several designs of implementation and show the changes these designs bring to accuracy.

5.1.1 The Architecture Designs
Using lower resolution for inferring

The resolution of input images affects the number of multiplications. Using a lower input
resolution is an obvious method to reduce the number of calculations.

As presented in section 2.3.6, since tiny-YOLO can detect images with different input
resolution, smaller images are also adapted to a network trained by larger images. A higher
input resolution that contains more information can be used to train the network. Meanwhile,
a lower input resolution that needs less calculation is used to infer the detection.

Combining some layers

In architecture tiny-YOLO-v0, the 8th convolutional layer is the most computationally in-
tensive. It takes images with 1024 channels as input and generates 1024 feature-maps. Then
that feature-maps are used as input to generate 90 feature-maps in the 9th convolutional
layer. The size of filters in 9th convolutional layer is 1x1, which is used to resize the output
feature-maps of 8th layer. What we have done is combining the last two layers of architecture
tiny-YOLO-v0. As shown in table 5.1, we use 90 filters with size/stride 3x3/1 to generate
90 feature-maps directly. This architecture is named as tiny-YOLO-v1.

It should be noted that this combination is not equivalent to linear-transformation be-
cause of the nonlinear functions leaky are applied for the output of 8th convolutional layer in
tiny-YOLO-v0 but not for tiny-YOLO-v1. Before the combination, it needs 3.48G FLOP
of MAC to process one image with resolution 416x416. After this combination, the needed
capacity is reduced to 2.01G FLOP of MAC.

The combination of the last two convolutional layers is just an example of designing
compact. We could also reduce the number of filters in each convolutional layer to lighten
the network.

Using sparse max-pools

Even though varied input resolution for inferring is adapted, the smaller image contains less
information than the bigger one, which means using a lower input resolution could lead to
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Type Filters Size / Stride
Convolutional 16 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 32 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 64 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 128 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 256 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 512 3 x 3 / 1

Maxpool 2 x 2 / 1
Convolutional 1024 3 x 3 / 1
Convolutional 90 3 x 3 / 1
Detection

Table 5.1: Tiny-YOLO-v1

Type Filters Size / Stride
Convolutional 16 3 x 3 / 1

Maxpool 3 x 3 / 3
Convolutional 32 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 64 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 128 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 256 3 x 3 / 1

Maxpool 2 x 2 / 2
Convolutional 512 3 x 3 / 1

Maxpool 2 x 2 / 1
Convolutional 1024 3 x 3 / 1
Convolutional 90 3 x 3 / 1
Detection

Table 5.2: Tiny-YOLO-v2

a loss of precision of detection. the higher input resolution is still preferred. To use high-
resolution inputs but keep fewer calculations for the network, the down-sampling rate can
be increased to reduce the amount of computation. In other words, a sparser max-pool with
a bigger size and stride could be used, to accelerate the contraction of the neural network.

For example, as shown in table 5.2, the size/stride of the first max-pool is set as 3x3/3.
To process an image with resolution 288x288x3, the architecture tiny-YOLO-v1 needs 9.63e8
multiplications, where tiny-YOLO-v2 only needs 4.48e8 multiplications. It can be seen that
with a sparser max-pool, we can significantly reduce the amount of computation.

The main ideas of the approaches, using lower inputs resolution and using bigger max-
pool, are both abandoning part of the information by resizing the images/feature maps.
Using a lower input resolution means to discard the less important information of images
before entering the detection network, while the max-pool retains important information
for the network and drops off the information less important during detecting. It should
be noted that these two methods are not contradictory but complementary. Due to the
mechanism of YOLO, the size of the generated tensor should be odd. Therefore when we
change the size of max-pool, we need to change the size of the input resolution accordingly.

5.1.2 Experiments and Analyzes
Essentially, the modification of architecture is trade between accuracy and speed. What we
want is to reduce the loss of accuracy, while increasing the speed as much as possible. For
our simulation, the accuracy is shown as IOU, the speed is represented by GFLOPS (Giga
FLoat-point Operation Per Second). In this section, we simulate the methods mentioned in
the section 5.1.1 and make comparisons. The SDC-2018 image set introduced in section 3.2.2
is used to train and valid the network.

Different Resolutions for tiny-YOLO

train

IOU infer
416x416 224x224 160x160

416x416 63.36% 48.31% 33.91%
224x224 47.38% 32.10% 28.19%

Table 5.3: IOU of varied resolutions

As we know, tiny-YOLO can detect the object in images that have different input resolu-
tions than the training image set. So the first question we need to know is which resolution
we use for the training and inferring. To evaluate the influence of different input resolutions
on the detection accuracy, we simulated the detection with a different input resolution of
training and inferring, then compared the IOU. The architecture we used is the tiny-YOLO-
v0, and the weights are trained with 193 epochs. The result is shown in table 5.3.
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Down 13x13x90 7x7x90 5x5x90
Architecture Sampling GFLOPS IOU GFLOPS IOU GFLOPS IOU

tiny-YOLO-v0 32 17.4 63.36% 5.044 48.31% 2.57 33.91%
tiny-YOLO-v1 32 10.0 59.92% 2.913 46.28% 1.49 38.95%
tiny-YOLO-v2 48 10.5 54.30% 3.048 40.70% 1.56 34.25%

Table 5.4: The performances of different architectures

It can be seen that the higher resolution of training and inferring leads to more accurate
detection. In order to assure the speed of calculation, we can not use the highest resolution
for inferring, but it is possible to use high resolution for training while a low resolution for
inferring.

In addition, it should be noted that YOLOv2 and tiny-YOLO can adapt different input
resolution for inferring, because they use varied input resolution during training. If we use
a different way to train YOLO, the result may be different.

Varied Architectures of tiny-YOLO

Subsequently, the accuracy and the speed of different architecture presented in section 5.1.1
are compared.

As we know, with the different resolution, accuracy and speed are varied. The images
with different resolutions contain different information. Intuitively, it is unfair to compare the
performances of network structures by using different size images. However, the architectures
have different down-sampling rate (sizeoutput/sizeinput), Feeding the image with the same
size to different architectures may cause the output size to change so that not meet the
detection mechanism of tiny-YOLO. Instead, with different architecture and its matching
resolution, the generated output tenser can be unified into the same size. In order to ensure
the comparability of different architecture and the detection mechanism of tiny-YOLO, the
comparison of different architecture is performed under the condition that the generated
outputs have the same size.

As the result shown in section 5.1.2, a higher resolution of training makes better detection.
So for the test, the resolution brings the output 13x13x90 is used for training, and the size
shown in the table 5.4 is the output size for inferring.

For comparison, we list the down-sampling rate (sizeoutput/sizeinput) of different archi-
tecture. For example, if the size of output tensor is 13 × 13 × 90, with down-sampling is
32, the input (width, high) is calculated as (13 × 32, 13 × 32), that to say the resolution is
416x416. The result is shown in table 5.4.

From the table 5.4, it serves to show that with the designing compact (v0 to v1), the
GFLOPS needed is reduced by 42.5%, at the same time, the accuracy has not dropped a
lot. Even though IOU in architecture tiny-YOLO-v1 has reduced, but it has reduced the
amount of calculation significant. However, by modifying the size of the max-pool (v1 to
v2), the GFLOPS is increased but the IOU decreases. architecture tiny-YOLO-v2 leads to
much more loss of accuracy.

5.2 Quantization of tiny-YOLO
Quantization data by representation can speed up the convolutional network. In architecture
tiny-YOLO, the weights of convolution are distributed in the interval [−1, 1]. Therefore, a
more simplified and efficient method can be applied to represent the float by using 8 bits
integer. In our proposed method, the linear transformation from the float-point to integer
represented by 8-bit integer is:

xq = int(x× scale) (5.1)
where scale is the ratio of expansion from [xmin, xmax] to [−127, 127], calculated as:

scale = min(abs( 127
xmax

), abs(
−127

xmin

)) (5.2)

Since quantization is only expansion of the value, it is easily to dequantize by contraction,
as followed:

x = xq/scale (5.3)
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Input(float)

Quantize
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Alleviate layer

Bias add layer
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Dequantize
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n bits scale

32 bits maxscale

n bits scale

n bits scale

n bits scale

n bits scale

n bits scale

Figure 5.1: The network design for quantization

More generally, it is also possible to increase the number of bits to represent the floating-
point, as following definition:

scale = min(abs(2
n−1 − 1

xmax

), abs(
−2n−1 − 1

xmin

)) (5.4)

Same as the approach above, the quantized computational layers are used to accelerate the
computation, and the inputs and the outputs of these layers are quantized data and its
related scales. The quantization and dequantization can be calculated only once at the
beginning and the end of the neural network

Subsequently, the computation layer in tiny-YOLO based on this quantization is intro-
duced.

5.2.1 Network Design
The details of the different layers in convolutional neural networks are introduced subse-
quently.

Convolutional Layer Convolutional layers calculate the convolution 2D of input and
filter, as

conv = input ∗ filter (5.5)
where ∗ is the convolution operator. The operands of convolution are constituted by quan-
tized data as:

input = inputq/scaleinput

filter = filterq/scalefilter
(5.6)

Therefore, the convolution can be calculated as:

conv =(inputq/scaleinput) ∗ (filterq/scalefilter)
=(inputq ∗ filterq)/(scaleinput × scalefilter)

=(convq)/scaleconv

(5.7)

Therefore, the couple {convq, scaleconv} in convolutional layer is defined as:

convq = inputq ∗ filterq
scaleconv = scaleinput × scalefilter

(5.8)
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During calculating the convolution, it is needed to find the maximum value of output matrix
convq, note as max. This value is used to reduce the size of the convolutional result in
alleviate layer.

Equation 5.8 shows that the convolution of 32 bits floats by calculating the convolution
of 8 bits integers, which achieves 4x compression. To be mentioned that the scaleinput or
scalefilter are shared by all the values in inputs or the values in the filter in one convolutional
layer, so that we can calculate only once for one convolutional layer.

Alleviate layer The alleviate layer is a special layer for quantized computation. To avoid
the overflow of the convolution, we need 32 bits integer as the output of the convolution
layer. However, as we have seen, 32 bits integer takes much more bandwidth as well as the
computing resource. Thus, we create a alleviate layer to reduce the integer from 32 bits to
8 bits.

What we need to retain are the heaviest 8 bits. Hence, we need to calculate how many
bits are used for representing the maximum value max in convq matrix, note as x, then drop
out the lightest x− 8 bits by shifting values.

The output of this layer is defined as:
outputq = inputq >> (⌈log2(max)⌉ − 8)

scaleconv = scaleinput >> (⌈log2(max)⌉ − 8)
(5.9)

Bias-add layer Bias add layer is defined as:

output(k) = input(k) + bias(k) (5.10)

where k is the number of channel of input image or the number of input feature-maps. By
using quantized data, it is transformed to:

output(k) = input(k)q /scaleinput + bias(k)

=
input

(k)
q + bias(k) × scaleinput

scaleinput

(5.11)

Therefore, the quantized bias add layer is defined as:

output(k)q = input(k)q + bias(k) × scaleinput

scaleoutput = scaleinput
(5.12)

The quantized bias-add layer calculates the more multiplication. But only one multiplication
should be calculated in each convolutional kernel, which does not bring a big load and it is
acceptable.

Leaky ReLU layer Leaky ReLU layer is defined as:

output =

{
input if input >0
0.1× input otherwise

(5.13)

That is represented by quantized data as:

output =

{
inputq

scaleinput
if inputq/scaleinput >0

0.1× inputq
scaleinput

otherwise
(5.14)

According to the definition and the calculation chain of scaleinput, scaleinput is always positive.
So the output can be represented as:

output =
1

scaleinput
×

{
inputq if inputq >0
0.1× inputq otherwise

(5.15)

Therefore, the quantized leaky ReLU layers is defined as:

outputq =

{
inputq if inputq >0
0.1× inputq otherwise

scaleoutput = scaleinput

(5.16)

The quantized leaky layer by this quantization approach takes fewer computation resources
than using the quantization in Equation 4.1.
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Max-pool Max pooling is realized by applying a max-filter to subregions of the initial
representation. For each of the subregions represented by the filter, we will take the maximum
value of that subregion and create a new output matrix where each element is the maximum
of the original input neutron subregion.

Since scale is positive and the same for all the value of the input, a value x is maximum if
and only if its quantized integer xq is maximum. To take the maximum float of a subregion
in an input matrix, we just take the maximum integer in that subregion in its quantized
matrix.

Therefore, the quantized max-pool is defined as:

outputq = maxpool(inputq)

scaleoutput = scaleinput
(5.17)

For the mathematical expression, there is no difference between quantized max-pool layer
and the normal max-pool layer. However, the quantized max-pool compares the integers
while the normal max-pool compares the floats. They have different hardware implementa-
tions.

Compared to the approach in TensorFlow, this approach is only applicable to neural
networks whose parameters are concentrated to 0. Such as YOLO, it uses a percentage
to express positions information so that the parameters converge to the interval [−1, 1].
However, it reduces the amount of computation. For multiplication/convolution, it need not
subtract the offset value, the quantized value of 0, that makes multiplication more efficacy.
As well, this representation keeps the sign of the original value, so leaky ReLU function is
more concise than quantization in TensorFlow.

5.2.2 Experiments and Results
The quantization implementations proposed in section 5.2.1 are applied to the architecture
tiny-YOLO-v1 for the benchmark test. The result is shown in table 5.5. Two input resolution,
416x416 and 224x224. are used for the test. The first row in table is the IOU when we used
32 bits float point, as reference for quantized calculation. Then we use different number of
bits to represent the float and note the IOU with these different configuration.

Bit
Reso. 416x416 224x224

32 float 59.92% 46.28%
8 int 50.78% 37.64
9 int 55.49% 41.01%
10 int 60.03% 46.58%
11 int 60.40% 46.96%
12 int 60.06% 46.45%

Table 5.5: The impact of data quantization

We can see that more bits used, the more accurate the results. When we use 10 bits
signed integer to calculate, the result is as the same as 32 bits float, but the size of data
reduces 68.8%. The accuracy began to decrease when fewer than 10 bits are used. Even if it
is reduced to 8 bits, the accuracy of the network is acceptable. But when the used bits are
less than 7, the network cannot converge so that cannot be trained.

5.3 Conclusion
In this chapter, the methods which modify the architecture of the network and quantizes the
network are applied to the tiny-YOLO network.

It is a good practice to use different structures, which can give a better understanding
of the influence of some hyper-parameters of the network, such as the depth of the network
or the size of the pooling layer. But this method is more trade-off than optimization. For a
specific use scenario or a specific image set, this method can exchange efficiency and precision.
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In contrast, quantization brings more significant optimization. Based on the architecture
tiny-YOLO-v1 presented in section 5.1, the quantization greatly reduces the size data. But
when the number of quantized bits is greater than 8 bits, the accuracy of the network is not
reduced or is reduced little.

However, there are still some difficulties for quantization data:

• The first problem is that the alleviate layer takes more computing resources. The
alleviate layer needs to know the maximum value of the output of the previous convo-
lutional layer, which means that we need to wait for the entire convolution completed
then begin the alleviate layer, therefore pipeline does not work in this situation.

• In some hardware such as FPGA, shift the data with a fixed bit is efficacy. However,
as equation 5.9 shown, the number of bits to shift (log2(max) − 8) is variable. The
implementation of the dynamic shift operator is a great challenge.

• Another problem is the multiplier. If the multiplier in the accelerator can not handle
10-bit integer multiplication, the 10-bit operand is treated as a 16-bit integer. Even
though it is still faster than 32 bits float, we still want to be able to calculate with a
more efficient 10-bit multiplication instead of 16-bit.

As seen in the experiment, a network with weight and input less than 8-bit will bring a lot
of accuracy loss. But this conclusion is only for the post-training quantization method [12],
in which there is no retraining after quantization. We can still compress the network through
special training methods. A binary neural network, which is a special quantization network
that uses only 1 bit for calculation, it can be built by retraining the network with special
methods. The binary network can bring a higher compression rate and faster calculation
speed. But it will also bring about the problem of reduced accuracy. We will discuss it in
depth in chapter 6.

In chapter 7, another quantization method with less than 8-bit integers is discussed.
Different from the method introduced in this chapter, it also needs to retrain the network.
The accuracy loss is lower than the binary network, but can deliver a higher compression
ratio than the methods described in this chapter.

In total, the experiments in this chapter give the reference for the subsequent works.
And in the next two chapters, some solutions are proposed to solve the difficulties in this
chapter.
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Chapter 6

Selective Binarization Networks

In section 5.2, we introduced the quantization methods in which 8-bit integers are used to
re-express floating-point variables. Based on this, we still hope to reduce the number of bits
used in the value for calculation. Some works as [22, 91], have proposed the use of binary
networks, that is, use 1 bit to re-express the floating-point variables in convolutional neural
networks.

When the binary network is used, compared to the original 16-bit floating-point value
(half-precision floating-point value), 16x data is transmitted with the same bandwidth. If
compared to the original network using 32-bit or 64-bit floating-point (Single-precision or
double-precision floating-point) values, the compression rate is higher. Moreover, the arith-
metic operations for 1 bit can be simply converted into logical operations, which is very
friendly to the hardware.

But as introduction in 5.2, when it is lower than 8 bits, the accuracy will suddenly drop-
down. Therefore, we need special training methods for building binary networks. In this
chapter, we will introduce how to build a binary network, discuss the challenges for the
binary networks, as well, propose the solution for these challenges.

6.1 Binarization Methods
Binarization is a special quantization method in which +1 and -1 are used to re-express the
original floating-point value. In an electronic circuit, binary can be expressed by the high
and low electrical potential in 1 bit, which is friendly to hardware.

In this section, we will introduce the method of binarization, and how to build a binary
neural network.

6.1.1 Binarization Function
In order to constrain a convolution operation X⊗W to have binary operands, taking weights
as an example, the real-valued weights W ∈ Rfw×fh×C are replaced by binary weights W b ∈
{+1,−1}fw×fh×C . There are two different binarization functions proposed in work [92].

The first binarization function is deterministic:

wb = Sign(w) =

{
1 if w ≥ 0

−1 otherwise (6.1)

where wb is the binarized variable and w the real-valued variable. It is very straightforward
to implement and works quite well in practice.

The second binarization function is stochastic:

wb =

{
1 with probability p = σ(w)

−1 with probability 1− p
(6.2)

where � is the “hard sigmoid” function:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (6.3)

The stochastic binarization is more appealing than the sign function, and some outstand-
ing works such as [93] have also implemented the stochastic binary network in ASIC, and
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Operation Function plots Derivative plots
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Table 6.1: The summary of activation functions used to build a binary network.

based on this, a full binary network in ASIC was established. But in our experiments, we
still use the deterministic binarization function which is more easier to implement.

In addition to the binarization function, a real scaling factor α = 1
n
||W ||l1 where n =

fw × fh × C is used to approximate the convolution operation as:

X ⊗W ≈ α(X ⊕W b) (6.4)

where, ⊕ indicates a convolution without any multiplication. Since the weight values are
constrained to +1,−1, the MAC in convolution can be implemented with additions (multiply
by +1) and subtractions (multiply by -1).

As well, if this binarization function is used to binarize the inputs, a convolution opera-
tions can be approximated by:

X ⊗W ≈ αβ(Xb ⊙W b) (6.5)

where Xb = Sign(X), β = 1
n
||X||l1, and ⊙ indicates a convolution without any algebraic

operation, which are replaced by logical operations XNOR-popcount.

6.1.2 Propagating Gradients Through Discretization
We still need to use gradient descent and backward propagation algorithms to train a binary
neural network, as introduced in 2.2.4. However, the derivative of the sign function is zero
almost everywhere, shown in Table 6.1, making it apparently incompatible with backward
propagation. In order to train a binary network, an estimator function of binarization is
used to calculate the estimator of the gradient of binarization.

The work [94] studied the question of estimating or propagating gradients through
stochastic discrete neurons. They introduced a “straight-through estimator” to cope with
this problem. [92] used a similar estimator in a deterministic way, which shown as a Hard
Tanh function:

HardTanh(x) =


1 if x > 1
x if −1 < x ≤ 1

−1 if x ≤ −1
(6.6)

In fact, other estimator such as the Tanh function can also be used to calculate the
gradient. But HardTanh is relatively simple which is better than other options. Therefore,
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the estimator of gradient for Sign(x) can be calculated by using the estimator function:

grad(est(Sign(x))) = grad(HardTanh(x)) =


0 if x > 1
1 if −1 < x ≤ 1
0 if x ≤ −1

(6.7)

More intuitively, we summarize the functions and their derivatives used or mentioned to
build binarization functions and networks in this section, as shown in Table 6.1

6.1.3 Building Binarization Networks
Now, by applying the binarization function to the weights and inputs, we can binarize and
train neural networks. Then a binary network can be built. In order to distinguish, the
network that only the weights are binarized is called binary weights network (BWN), and
the network with both the binary weights and binary inputs is called XNOR-Net due to
XNOR logic operation replaces multiplication in this network. We use the method proposed
in [22] to build a binary Network. The method is shown in Algorithm 1.

Algorithm 1 Training an L-layers CNN with binary weights
Input: A batch of inputs and targets (I, Y ), cost function C(Y, Ŷ ), current weight W t

and current learning rate ηt.

Output: updated weight W t+1 and updated learning rate

ηt+1.

1: //Forward propagation

2: Binarizing weight filters:

3: for l = 1 to L do

4: for kth filter in lth layer do

5: αlk =
1
n
||W t

lk||l1
6: WB

lk = sign(W t
lk)

7: W̃lk = αlkW
B
lk

8: Ŷ =BinaryForward(I, W̃l) // standard forward propagation except that binarized

weights are used for convolutions

9: //Backward propagation

10: ∂C

∂W̃
=Backward(∂C

∂Ŷ
, W̃ ) // standard backward propagation except that gradients are

computed using W̃ instead of W̃ t

11: W t+1 =UpdateParamters(W t, ∂C

∂W̃
, ηt) // Any update reuls (e.g., SGD or ADAM)

12: nt+1 =UpdateLearningrate(ηt, t) // Any learning rate scheduling function

The work [22] also introduced the compression rate for memory and speed up for cal-
culation. In our experiments, the networks with different precision are also applied to the
object detection network, tiny-YOLO. The results and comparison are shown in Table 6.2.

It can be seen from the Table 6.2 that binary networks, especially XNOR-Net, have
significant advantages in compression rate and calculation speed. At the same time, binary
networks also bring acceptable accuracy in classification tasks. However, for object recogni-
tion tasks, XNOR-Net showed obvious shortcomings which is a significant decrease in object
detection accuracy. In the next section, a solution is proposed for this shortcoming.

6.2 Architecture and Simulation
Many works are discussing binary neural networks. The work [22] uses the XNOR network
for classification and achieves good accuracy. In the work [95], it applied BWN to the
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Standard CNN Quantization (8bit) BWN XNOR-Net
Operands R32bits ⊗ R32bits I8bits ⊗ I8bits R16bits ⊗ B B ⊗ B
Operations × + × + + - XNOR Bit-count

Memory Saving 1× 4× ∼ 32× ∼ 32×
Computation Saving [22] 1× - ∼ 2× ∼ 58×

Accuracy on Classification [22] 56.7% - 56.8% 44.2%
Accuracy on Object Detection 46.28% 37.64% 35.00% 7.00%

Table 6.2: The comparison of standard CNN, quantized CNN (8-bit), BWN, and XNOR-
Net. The computation speed and the accuracy on classification are generated by Alexnet
applied to ImageNet, and the accuracies on object detection is the IOU of the tiny-YOLO
applied to SDC-2018 image set with resolution 224×224.

× 1 -1
1 1 -1
-1 -1 1

(a) Multiply Op.

⊙ True False
True True False
False False True
(b) XNOR Logic Op.

Table 6.3: The transformation from multiplication to XNOR

YOLO-based object detection system. When binarization is applied for object detection,
the accuracy of object positioning will be serious damage. Therefore, the XNOR-net for
object detection has not been widely used.

In this section, a method by which most calculations can be binarized within an accept-
able loss of accuracy is proposed.

6.2.1 Architecture Exploration
As discussed in section 6.1, XNOR-net and BWN are two types of binary convolutional
neural networks which can effectively improve the computing speed and down the size of
data. When these binarization methods are applied to only one layer instead of all the
network, three different kinds of layers can be found:

• HH layer: Both input feature maps and weights are both Half floating-point precision.
Compared to neural networks that originally used a single floating point or double
floating-point, networks with half floating-point that uses 16-bit to express the real-
value are already compressed. But as described in section 4.2, this compression does
not require special methods, such as re-express the value or retraining the network,
nor does it affect the accuracy of detection, so this compression method can be applied
for any neural network, and this widely used compressed network can be seen as the
start point of our experiments. For the convenience of the description, the network
composited of the HH layer is called HH-ALL in this section.

• HB layer: Input feature maps are in Half precision and weights are Binary. As
mentioned in section 6.1.3, the neural network composed of the HB layer is called
BWN. For the convenience of description, it is also called HB-ALL in this section.
Compared to HH layers, the weights of HB layers are constraint to {+1,−1}. And
the floating-point multiplication is simplified to multiply by 1 or -1. That means the
multiply-accumulate operation (MAC) is reduced to addition (when multiplied by 1
then accumulate) and subtraction (when multiply by -1 then accumulate). Generally
speaking, the multiplication requires more time to perform calculations than the ad-
dition/subtraction. Since the convolution contains a great number of multiplication
operations, replacing them can significantly speed up the calculation. On the other
hand, the memory required to store each weight is also smaller, namely, 16x weights
can be stored in on-chip memory.

• BB layer: Both input features maps and weights are Binary. Since all multipliers in
this convolution belong to {+1,−1}, the multiplication is converted to XNOR logic
operation, as shown in Table 6.3. Therefore, the MAC operations are reduced to
an XNOR-popcount operation, that is, calculate XNOR of operands and count the
number of true. For general-purpose calculators, such as GPUs or CPUs, compared
to floating-point algebra operations, even addition, and subtraction, logical operations
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are faster. For computing circuits such as ASICs or FPGAs, logic operations use fewer
resources. This means with the same computing resources, more parallel operations
can be set. Also, we know that when we use accelerators, even if the weights can be
stored in on-chip memory, the inputs must be sent from the CPU. With 1 bit input,
16x data can be communicated with the same bandwidth.

Each layer has a different rate of computation. As well, the accuracy of the inferring
varies.

To speed up the calculation and decreases the resource consummation within a tolerable
precision loss, depending on the usage scenario, I propose to mix up these three kinds of
layers to build a hybrid system, called selective binarization network. To find a suitable
hybrid structure, we deploy the next experiment.

6.2.2 Building the Selective Binarization Networks
As mentioned above, the HH layer should be the start point of our experiment, however,
several works as [95, 96] have proposed methods to make the accuracy of binary weights
network (HB-ALL) close to floating-point weights network (HH-ALL). In addition, to reduce
the variables in the experiments, and to better study to the impact of the accuracy of each
layer, we prefer to fix the weights as binary and change the precision of inputs. Therefore, the
whole HB layer network (HB-ALL) is considered as the baseline architecture to conduct the
experiments. And then I binarize the feature map of each layer, to speed up the computation
with a tolerant loss of accuracy. Since there are no more HH layers in the network, we do
not discuss the deployment of the HH layer.

In order to find which layers should be binary, the grid search method is used: It replaces
one or two HB convolutional layer(s) by BB layer(s) in sequence. The generated networks
are hybrid structures composed of HB and BB layers. Normally the last layer does not take
up lots of resources but encodes the final result, so the precision of the last layer is kept as
floating-point, which is as an HB layer.

Through the above method, we can build many hybrid networks composed of HB and
BB layers and train them. The aim of build these networks is to find the impacts of using
binarized layers in different depths. This is an exhaustive method. Therefore, this method
can be applied to the small neural network with a shallow depth, for which the requirements
for computing resources are relatively small. In the next section, we will conduct experiments
based on the small object detection system, a tiny-YOLO network.

The implementation details for each kind of layer are described below:

Building the HB Layer

For the forward propagation in the HB layer, we used the method described in section 6.1.1.
The binary weights W b and the factor α is calculated from the original weights W . Theo-
retically, the MACs in convolutions are converted to additions/subtractions depends on the
W b. When the convolutions are completed, the values in output are multiplied by α. This
is exactly what we do for the inference phase, and we will see the design for the inference
phase in section 6.3. But in fact, the calculation speed for the training phase is less im-
portant. Therefore, in practice, we do not change the framework Darknet, which directly
applies libraries proposed by Nvidia (such as CUDA and CUDNN) to compute convolutions.
To build a binary network, we need construct a new matrix,

W̃ = α ·W b (6.8)

. W̃ is used for the normal convolution with the input matrix X to obtain the result of
binary convolution, as following:

X ⊗W ≈ (X ⊗ W̃ ) (6.9)

To be mentioned, the convolutional layers will be followed by max-pooling and batch normal-
ization layers if necessary. As the same as the forward propagation, the backward propaga-
tion computes the gradients by using W̃ as normal convolutions, then applies these gradients
to update the original weights W .
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Table 6.4: 12 architectures of mixed tiny-YOLO networks .

Conv Layer 1 2 3 4 5 6 7 8 9
HH-ALL HH HH HH HH HH HH HH HH HH
HB-ALL HB HB HB HB HB HB HB HB HB

BB-1 BB HB HB HB HB HB HB HB HB
BB-2 HB BB HB HB HB HB HB HB HB
BB-3 HB HB BB HB HB HB HB HB HB
BB-4 HB HB HB BB HB HB HB HB HB
BB-5 HB HB HB HB BB HB HB HB HB
BB-6 HB HB HB HB HB BB HB HB HB
BB-7 HB HB HB HB HB HB BB HB HB
BB-8 HB HB HB HB HB HB HB BB HB

BB-1,2 BB BB HB HB HB HB HB HB HB
BB-3,4 HB HB BB BB HB HB HB HB HB
BB-5,6 HB HB HB HB BB BB HB HB HB
BB-7,8 HB HB HB HB HB HB BB BB HB

Building the HH Layer

For the BB layer, we use the same method to build the binary weights W b and Xb, as well
as the factor of weights α. But the factor of inputs beta is no longer needed for convolution.
The binary convolution is also approximated as:

X ⊗W ≈ Xb ⊗ W̃ (6.10)

where W̃ = α · W b. The reason for deprecating factor β is that β is calculated by the
l1 − norm of the input values, which means that we need to read all the inputs (or all the
inputs in one channel) to calculate β. That is time-consuming for the pipeline structure in
FPGA. Although the β is discarded, we still consider the scale factor of the inputs. The
scale factor of inputs is regarded as a trainable parameter, and it can be integrated into W
and its scale factor α. We can simply understand that when a larger input is simplified to
±1, in order to keep the convolution result constant, W needs to become larger, and that
can be achieved through training. More formally, we can describe that the trained weights
W = β · Ŵ , where β and Ŵ are the trainable scale factor of inputs and weights used in the
convolution introduced in section 6.1.1. For the backward propagation of BB layer, it is the
same as HB layers that computing the gradients by using W̃ but applied the gradients to the
original W . For calculate the gradients of input for propagation, the estimator HardTanh
presented in section 6.1 is used to estimate the Sign function. This avoids a situation where
zero is everywhere.

Updating Parameters

When the forward and backward propagations for all the layers are completed, the parame-
ters such as the weights can be trained by any update rules (e.g., SGD or ADAM). At the
end of some training iteration, the hyper-parameters such as the learning rate can also be
updated according to the different strategies.

6.2.3 Simulation
For faster training and more convenient on-chip integration, we still take the small network,
tiny-YOLO as an example. The image set SDC-2018 and the metric IOU presented in
section 3.2 are used to evaluate the performance of proposed methods.

As mentioned earlier, we replace one or two HB layers (except the last layer) with the
BB layer in sequence. Since tiny-YOLO has 8 layers that can be replaced, 12 mixed CNN
architectures composed of HB and BB layers are generated, as shown in Table 6.4. They
are divided into two groups according to the number of BB layers they include (one or two).
According to the position of BB layers, the architectures are named as {BB-x} or {BB-x,y},
that means xth or xth&yth layer is set as BB layer.

The training for these networks is launched in a hardware platform composed of 12 IBM
Power server compute nodes. Each node has 4 Tesla P100 GPU, with 3584 CUDA cores
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inside. We use 3 nodes which include 12 GPU to training 12 mixed tiny YOLO at the same
time. Each training task is affined to one exclusive GPU (GPU not shared by others).

Prepossessing Images

Before fed into the network, the images are preprocessed by Darknet. The inputs for tiny-
YOLO are images with resolution 416x416, while resolutions of the images in SDC2018 are
1024x768. In order to make the images match the input of tiny-YOLO, we first resize the
input image to 416x312, and then merge a 416x52 black rectangle (all colors are 0) on the
top and bot of the picture to make the picture size 416x416. Compared to resize to 416
directly, the advantage of resize+merge is that the picture won’t be distorted due to the
different scaling dimensions in the directions of length and width. The disadvantage is to
increase the amount of useless calculation, even if it is a multiplication of zero (with black
color), this is still resource-cost and time-consuming.

In addition to the resizing of pictures, we also used image augmentation technology.
Image augmentation is one of the data augmentation method that presented in section 2.1.2.
Image augmentation technology is to add appropriate noise to the picture, such as adjusting
the brightness of the image randomly, as well as rotating or moving the picture randomly,
so that similar copies of the original picture are generated. By image augmentation, more
different samples can be used for training. This method is usually used when there are not
enough images for training. At the same time, because the images are enhanced randomly,
image augmentation can also reduce over-fitting for a specific training dataset. For the image
augmentation, Darknet adds a variation within the range of ±0.1 to the hue of images.
Darknet also randomly adjusts exposure and saturation of the image by up to a factor of
1.5 in the HSV color space. Tiny-YOLO can process images of different sizes, but we are
not studying the effect of different resolutions on images here, so we keep a uniform input
size during the training. Rotation and translation of images will change the position and
the bounding box of objects. Therefore, rotation and translation are not used in image
enhancement.

Training the Networks

For the hyper-parameters throughout training, a batch size of 128, a momentum of 0.9, and
a decay of 0.0005 are used. The learning rate is fixed to 1e− 5. The networks were trained
up to 100K batches, which is about 190 epochs. The training of 190 epochs of images takes
about 220 hours.

The IOU along the training epoch is shown in Figure 6.1. The figure does not contain
architecture BB-1 and BB-1,2 which binarizes the input image in the first layer. Since their
IOUs are close to 0 until 60 epochs, the training was abandoned. For architecture HB-ALL,
50% IOU can be achieved by continuing the training up to about 500 epochs. But the
trainings of other architectures are stopped at 190 epochs because of the limited resource.

It should be noted that YOLO can not only achieve positioning the objects, but also
classification. In our experiments, we discussed only IOU, the result of binary object position,
but not the effect of classification. That is because binary classification has been widely
discussed, such as in the work [22] and [91], the conclusion in our experiments is similar,
that is, the binary network does not significantly reduce the accuracy of classification, but
it may take longer time to train. Another reason for us to stop studying classification is
that our images for experiments are taken by drones. There is only one small object in
each image, and every object has a suitable background. Different environments will affect
the results of object classification. For example, it recognized a river but said it is a boat
and recognized the sky but said it’s flying birds. Therefore, this image set can be used for
classification, but we do not think it is a good option.

6.2.4 Analyzes and Conclusion
But in these experiments, when the deeper layer (the layer closer to the output) is binarized,
the drop in IOU is relatively smaller. I offer some reasonable guesses that will require more
experimentation to verify.

• The deeper layers have more filters, so more information can still be detected and
retained after binary. In other words, the deeper layer contains more redundancy
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Figure 6.1: IOU along the training of the 12 architecture on the DAC dataset.

information than what we need in the final prediction. In some works of the pruning
methods, they are also mentioned that there are more unimportant connections that
can be discarded in the deeper than that in the shallower layers.

• We also propose a hypothesis that the binarization used in the shallower layer may
throw away too much information, resulting in the deeper layers also unable to com-
plete the detection even though the layer is in higher precision. That is because the
deeper layers take the output of the shallower layer as input. When the input image
is binary (as architecture BB-1 and BB-1,2), the entire neural network cannot work.
This phenomenon can be explained by this hypothesis.

• We have also proposed that the number of layers that are more suitable for being
binarized may have a smaller variance or information entropy, so that they can be
better assigned to the binary value. Unfortunately, this hypothesis was proved wrong
by my experiment, and we are not discussing it.

There may be other more reasonable hypotheses, more experiments are needed to verify
them. However, the resources consumed to conduct the experiments are large, so we have
not yet conducted all the verification experiments.

According to the experimental results, we can make some reasonable conclusions:

• In the work [95], it is proposed an assumption that the shallower layer of YOLO is
mainly responsible for classification, and the deeper is responsible for positioning. So
low precision weights are used in the shallower layer and high precision is used in the
deeper layer. But, through our experiments, we found that, for the precision of the
inputs, the deeper layer should be set with a lower precision, which has less effect
on the final result. This is a conclusion to discuss the precision of input, which is not
inconsistent with the work [95] who research the precision of weights. But interestingly,
we use lower precision in the deeper layers, which has less impact on position accuracy.
If we follow the inferences in the work [95], we can take for the shallower layers are
responsible for positioning. This is contrary to its assumption. Through the above
analysis, I think convolutional neural networks, at least YOLO and its family, are
a whole. For a neural network, the role of each connection or neuron in the neural
network is still a subject worth exploring, and we cannot easily conclude.

• In total, the proposed compression method is valuable. First, almost all weights become
binary. This makes the weights compressed to storage in on-chip memory seen in
section 6.3, as well, the multiplication is replaced by addition and subtraction to speed
up the calculation. Based on the first optimization, taking BB-7,8 as an example, the
IOU of BB-7,8 is close to the baseline HB-ALL. The IOU of HH-ALL can reach 28.47%,
while the IOU of BB-7, 8 is 25.91%. The IOU of BB-7,8 is reduced by 8.99 % compared
to baseline. This is a loss that cannot be ignored, but it is worth because the 68.8
% of the multiplication is in the 7th and 8th layers, and they are replaced by XNOR
operation in architecture BB-7,8. Therefore, this architecture will significantly increase
the speed of calculation. More results of execution times for different architecture will
be discussed in section 6.3.3.
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To sum up, we proposed a compression method that can replace almost all calculations
with binary, and 68% of binary calculations are XNOR logical operations, with an 8.99% loss
of accuracy. This compression method can be applied to systems that do not require high
accuracy but require computational speed, such as drone tracking systems. We continue to
propose hardware accelerators in section 6.3, and introduce experimental results based on
such hardware in section 6.3.3.

6.3 Hardware Design and Implementation
The architectures presented in section 6.2 reduces the number of multiplications in the
network with an acceptable loss of precision. An accelerator is proposed in this section
for the architectures presented in section 6.2. The accelerator architecture is suitable for
computing one convolutional layer followed by a max-pooling layer if necessary.

6.3.1 Hardware Design

CPU1

L2 CACHE (512KB)

Processor Subsystem (PS)

L1 CACHE (32KB)

CPU0

DMA - STREAM

DMA - STREAM

STREAM - DMA

STREAMING
ACCELERATOR

INPUT FEATURE STREAM

WEIGHT FILL/ COMMAND STREAM

OUTPUT FEATURE STREAM

Configuration Registers
Intercon

DRAM

Figure 6.2: The overall of hardware architecture .

In this section, a hardware design is proposed for selective binarization networks.
Figure 6.2 presents the overall system architecture. Before launcher the computations,

the configuration that contains the hyper-parameters as image size and convolution depth is
written to the related register of the accelerator. The device driver running on the processor
handles the tasks of resizing, preprocessing images, pre-loading weights into the accelerator,
etc. Then, the image is sent to the accelerator through the input feature stream channel.
The images and weights are used to calculate the convolution. When the convolution is
calculated, the result is returned and write to the main memory.

From the perspective of the transmitting images and weights, there are still some details
to be introduced.

Image-to-Matrix Transformation

The image is a tensor in the three dimension of height, width, and channel. There are usually
two formats to transmit it:

H

W

C

H x W

fh x fw x C

fw

im2col

Figure 6.3: Image to Matrix (im2col) Transformation.
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• CHW that groups the value according to their channels, then read the value in each
channel from top to bottom, from left to right. The output is in the format as:

[R00, R01, R02...], [G00, G01, G02...], [B00, B01, B02...] (6.11)

where Rxy (Gxy,Bxy) means the value in Red (Green, Blue) channel at the x row and
y column.

• HWC that groups the value in the same position (height and width), then read the
value in each channel. The output is in the format as:

[R00, G00, B00...], [R01, G01, B01...], [R02, G02, B02...] (6.12)

Considering that it is possible to transmit multiple images one by one, there are formats
NCHW and NHWC where N means the number of images.

However, convolutional layer does not read pixels in the expressed order. Convolution
is usually read the pixels scanned by the filter. Images steam cannot directly be computed.
That means, when the image is read from the memory, it needs to be reordered before sent
to computing unit.

In order to reorder the pixels, the images or activations with C channels of dimension
(H × W × C) is converted to a 2D matrix contains H × W vectors of size (fh × fw × C),
where fh and fw are the height and weight of filter, respectively, shown in Figure 6.3. Each
vector in this matrix contains a set of variables required for multiply-accumulation (MAC)
operation in convolution. If we rearrange the filters as a vector of size fh×fw×C, the MAC
in convolution can be seen as the dot product of image vector and weight vector. There are
H × W vectors in the converted matrix, and Cout filters in one convolutional layer. That
means the convolutions in the convolutional layer are converted to a multiplication of the
matrices. This transformation is a standard method in all GPU implementations and some
accelerators [10], called image-to-matrix or im2col.

According to the system introduced in Figure 6.2, the image-to-matrix transformation can
be done in both processor and accelerator. When image-to-matrix is done in the processor
part, we will send the converted matrix to the accelerator, that is larger than original images
and takes more bandwidth. We can also just send original images and convert them on
the accelerator side. For this, more memory is needed in the accelerator part to cache the
received images, at least part of the received images.

In this chapter, we place image-to-matrix on the software side. As it can be seen in
Figure 6.7, for convolutional layers with large number of channels, the execution time on
the processor is not exceedingly high. This is because with large row, the transformation is
mainly done in the cache memory. But for smaller rows, the processor has to fetch several
non-contiguous lines and spends much more time to access main memory.

Iterations of Weights

The input feature map matrix for a convolutional layer is streamed into the accelerator.
When finishing the calculating, the pixels can be discarded. But the weights need to be kept
until the last pixel is calculated. Therefore, during the convolution, all the weights involved
in the calculation need to be saved in on-ship memory. Due to limited on-chip memory, only
a part of the weights matrix can be loaded at one time (32 filters in the experiments) and it
is necessary to use several iterations for convolutional layers with a large number of filters.
For example, for a convolutional layer with 256 filters, 8 iterations are necessary.

Streaming Accelerator

There is a configurable image-to-matrix transformation stage which is only used for layers
with very few channels (But we do not use this part). The input feature stream is then
broadcasted to all the convolutional lanes. Since each convolutional lane corresponds to one
filter, the N filter weights are distributed to N lanes from the on-chip weight RAM. As it
can be noticed, there is a lot of data reuse (often expressed in terms of MAC/data [4]). In
this case, the input feature stream has data reuse of N MAC/data and the weight has data
reuse of H ×W MAC/data.

The streaming accelerator has N convolutional lanes which perform an inner product
between the incoming input feature and weights streams. As shown in Figure 6.5, the stream

75



FEATURE

COMMAND STREAM OUTPUT

WEIGHT RAM

SWITCH

IM2COL

WEIGHT DISTRIBUTOR

MAXPOOL

MAXPOOL

MAXPOOL

MAXPOOL

CONV LANE 1

CONV LANE 2

CONV LANE 3

CONV LANE N

COMMANDS

INPUT

STREAM

WEIGHT FILL/

B
R

O
A

D
C

A
ST

M
E

R
G

E

FEATURE
STREAM

b

b

b
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Figure 6.5: The detailed architecture of the convolutional lanes.

computing element performs an inner product of the input streams. The input streams are
redirected to one of the three lanes according to the chosen precision. As mentioned earlier,
it supports three precision: HH, HB, and BB.

The output of the convolutional lane unit is arranged in the format of HWC. The output
stream can be sent to max-pool if configured. However, for the max-pool, taking a filter of
size 2x2 as an example, we need to cache 2 rows and 2 columns of output stream in the
max-pool for the comparison. Another feasible method is that we calculate the convolution
of two adjacent rows at the same time and send them to the max-pool to compare. This
method requires one more input channel, but by this method, max-pool only needs to cache
two convolution results, which reduces the required memory. We adopted the second method
for the experiments in this section.

Finally, the output in HWC format is regrouped and streamed back to main memory.
For convolutional layer with Cout channels, Cout

N
iterations are necessary.

6.3.2 Implementation on PYNQ-Z1
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Figure 6.6: The architectural choices and their expla-
nation with roofline.

The experiments here were con-
ducted on the PYNQ-Z1 board [97],
which integrates Z7020 FPGA. Ta-
ble 6.5 shows the resource utiliza-
tion of my implementation with
the Z7020 FPGA. The image-to-
matrix transformation part is car-
ried out in the processor.

The main limiting factor is the
on-chip memory. Because of the
limitation of on-chip memory, only
32 lanes of convolution with half-
precision floating-point running at
150 MHz can be implemented.
Here a MAC operation is consid-
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(a) HB-ALL: IOU:28.47%,
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(b) BB-8: IOU: 26.56%,
time=1.64962912s
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Figure 6.7: The execution time of proposed architectures.The BB-8 and BB-7,8 achieve 1.18x
and 1.68x speedup respectively. If considering convolution time only a 2.5x speedup can be
achieved.

ered as 2 flops, then the maximum
performance of this implementa-
tion is 9.6 Gflops/S.

The utilization of Resource is shown as table 6.5.

Table 6.5: The resource utilization in PYNQ-Z1 board with Zynq 7020 FPGA.

Site Type Used Available Util
Slice LUTs 43167 53200 81.14 %

Block RAM Tile 131.5 140 93.93 %
DSPs 64 220 29.09 %

Based on this limitation we have explored other architectural choices:

• Choice Weights_in_FPGA: Feature Maps (FMs) are stored in main memory, and 32
filter weights are stored in FPGA on-chip memory.

• Choice Weights_in_DRAM: Both Feature Maps (FMs) and the weights are stored in
the main memory.

With the help of a roofline diagram, Figure 6.6, we show the performance limits of our
choices. The roofline for HH and HB are the same, and the roofline for BB is 16x higher
performance. We have plotted the points corresponding to the last layer (most compute-
intensive) on the roofline. For the HH-Weights_in_FPGA architecture the weights (2
bytes) are stored on-chip, but in practice, it is only possible for the first layer with few
weights. The HH-Weights_in_DRAM architecture is limited by memory bandwidth as for
each MAC operation we have to stream 66 bytes of data. Both HB-Weights_in_FPGA
and HB-Weights_in_DRAM can achieve the performance limit, but we prefer to store the
weights on-chip to reduce power consumption. Similarly, BB-Weights_in_FPGA with on-
chip storage can achieve the performance limit but BB-Weights_in_DRAM is limited by
memory bandwidth.

6.3.3 Experiments and Results
As mentioned in section 6.2, the 68.8% of the multiplication is in the 7th and 8th layers,
on the other hand, BB-8 and BB-7,8 get a good IOU shown as Figure 6.1. Therefore, the
architectures BB-8 and BB-7,8 are analyzed, which binarize the 7th and 8th layers.

Figure 6.7 shows the detailed execution time for each layer of baseline and BB-8 and
BB-7,8 as well as the IOU with 190 epochs images trained. In fact, for architecture BB-7,8
a 1.68x speedup is achievable with an 8.99% loss of IOU.

6.4 Conclusion
In this chapter, we presented methods and architectures to implement CNNs with varied
precisions. We proposed an exhaustive search method to retrieve the optimum configuration
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of layers, where the precisions can be chosen to be HH, HB, or BB. We also proposed a
streaming deep learning architecture where the feature maps are directly streamed to the
accelerator and the output stream is stored in the main memory. The advantage of streaming
architecture is the pipelined nature of operations where each stage is working in parallel.

This is a subject that can still be studied further. First, the search method for selective
binarization should be enhanced from a simple exhaustive search. Next, some of the image-
to-matrix transformations can be moved into the accelerator slide, which will considerably
reduce the memory bandwidth. It is also interesting to add support for arbitrary precisions.

As a matter of fact, in the next chapter, the implementation of image-to-matrix in the
FPGA part is proposed, and a new quantization structure that supports arbitrary precisions
and related hardware design is discussed.
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Chapter 7

Quad-Approx Networks

In chapter 6 we have proposed the selective binarization method which mixed up HB layers
and BB layers. Even though selective binarization improved the speed of calculation signif-
icantly, the accuracy of detection is still not as good as the other real-time object detection
systems [95].

If HB layers are called as 8+1 layers since 8 bits for inputs and 1 bit for weights in these
layers, BB layers are called as 1 + 1 layers. Moreover, in addition to 8 + 1 and 1 + 1 layers,
there are other precisions to choose from. In this chapter, we propose networks composited
of 3+3 layers where 3 bits for both inputs and weights. Although this leads to an increase in
the weight size compared to 8+1 layers, the size of the inputs is greatly reduced compared to
8 bits. And interestingly enough, the weight is usually much smaller than the inputs, and the
weights are pre-loaded into the on-chip memory before calculation. Therefore, compressed
inputs are more attractive than compressed weights. Due to the reduction of the size of the
image, 3+3 layers still reduce the bandwidth significantly compared to 8+1 layers proposed
in selective binarization.

Obviously, the multiplication replacement proposed in selective binarization cannot be
applied in the new proposed layer. In this chapter, we will also propose different calculation
units for the 3 + 3 layer to process the traditional multiplication.

7.1 Quad and Quad-Approx Network
In this section, we propose a quantization method that uses 2-bits for the value and 1 bit
for the sign for both of the inputs images/feature maps and weights for convolutional layers.
Moreover, some of the convolutional layers use ReLU as an activation function, and all the
output values are positive. In this case, only 2 bits are needed to represent the entire value
without the bits for the sign. Only four values {0, 1, 2, 3} can be represented by 2 bits,
therefore, we call this Quad network.

The works such as [98] have proposed special multipliers for the few-bits integer matrix
multiplication. That can be used to implement the Quad network. However, in this section,
we propose the method that uses an approximate multiplier which may cause a tolerable
error during the calculation, to replace the correct multiplier and to speed up the calculation
or reduce the requirement of calculation resource. We call this quad-approx network.

Subsequently, we present how to build a quad-approx network.

7.1.1 PACT for Building a Quad Network
As presented in section 4.2, quantization is a widely used method to compress neural net-
works. When using quantization, a floating-point value is represented by n bits fixed-point
value, or n bits integer value. It can be proved that the two methods are mathematically
equivalent. For this point, 2 bits integer is used to represent the value of a floating-point.

The Difficulties of Fewer-bit Quantization

Although quantization has been widely used, the network usually needs to be quantized to
8 bits only in practice. On the one hand, lower-bit quantization requires retraining after
quantization. On the other hand, when fewer bits are used, some difficulties shown as the
following arise:
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Figure 7.1: Nonuniform distribution of values causes large accuracy losses

• On one side, the activations in the format of floating-point numbers are signed and un-
bounded, while n-bit integers are always limited. Taking the example of representing
floating-point numbers to 8-bit signed integers, the minimum value needs to be rep-
resented by -128, while the maximum value is 127. However, in the hidden layer, the
activation comes from the calculation result of the previous layer. In other words, to
calculate the maximum value and minimum value, we need to wait for all the calcula-
tions in the previous layer. This is very time-consuming for a pipeline-based computing
system as FPGA.

• On the other side, the distribution of values is not uniform, both for weights and
activations. It can often be seen that most of the values in convolutional layers are
truly small, but a few are excessively large. When a high dynamic range is used, the
floating-point value can be mapped into the integers. But when reduce the quantization
bits, and thus reduce the range, many floating-point values will be directly mapped into
0, thus losing the characteristics of the activations and weights. As the example shown
in Figure 7.1, the bounded floating-point activation in the interval [0, 30] quantized into
2-bit integers [0, 3], most of the parameters are less than 0.5 and directly quantized to
0. This is particularly problematic when the target bit-precision is 2-bits.

Quantization with Signed PACT

Building on these insights, we use PArameterized Clipping acTivation Function (PACT)
presented in the work [21] and the methods presented in [99] to quantize the activation.
PACT is an activation quantization scheme in which the activation function has a parame-
terized clipping level, α. In PACT, the ReLU activation function in CNN is replaced with
the following:

y = 0.5(| x | − | x− α | +α) =


0, x ∈ (−∞, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞)

(7.1)

The output of ReLU is always positive. But some other activation functions such as leaky
ReLU used in YOLO may product the negative value as output. Therefore, we propose a
different PACT for the signed activation function. It is presented as follows:

y =


−α, x ∈ (−∞,−α)
x, x ∈ [−α, α)
α, x ∈ [α,+∞)

(7.2)

By the PACT method, the activation range is known before the calculation starts,
[−α,+α]. This is also the quantization range using to quantize data for the next layer
without waiting for all calculations completed. At the same time, the PACT method dis-
cards excessively large values, so that most smaller values can be relatively scattered in the
interval [−α,+α].

Now, 3-bits signed integers will be used to represent floating point numbers in the interval
[−α,+α]. In fact, that means scaling [−α,+α] to [−3,+3]. It should be noted that the range
of 3-bit signed integer should be [−4, 3]. However, due to the integer is relatively small, the
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difference between the scale factor of the positive and negative cannot be ignored. We
discard the integer -4 to ensure that the positive and negative values have the same scale
factor. The clipped activation output is then linearly quantized to 3-bits for the convolution
by the method following:  xq = Q(y) = round(y × 3

α
)

scalex =
α

3

(7.3)

where the function round returns the nearest integer of a real value. As y ∈ [−α, α] , xq is
an integer in [−3, 3], which can be encoded by 2 bits of value, and 1 bits of sign.

The same strategy is applied as the work in [99] for the value α: every quantized layer
in the quad network has its own α, which is shared by all the values in the activation. But
different from [99], to find the α for each layer, the hyper-parameters of other layers are kept
unchanged, and then the exhaustive method is used to find the integer which gives the best
detection accuracy as α.

Similarly, we apply the quantization method to process the weights. But different from
inputs, the trained weights are determined before inference. Hence, we can choose an ap-
propriate α for PACT that is related to the values of the weights, instead of an independent
value like what to do for the inputs. In fact, we have tried 2 different thresholds to clip the
weights: the maximum of weights, and the 2 times the mean of weights. Using maximum
value means that quantizes the weights directly without PACT. However, as shown in Fig-
ure 7.1, the too-large range caused by maximum value makes the smaller weights tend to
zeros, that causes problems while doing quantization. So we use 2× w̄ as the α for PACT,
where w̄ is the means of the filters in weights, and the α is shared by the values in the same
filters. Therefore, the clipped weights wc is calculated as:

wc =


−2w̄, w ∈ (−∞,−2w̄)
w, w ∈ [−2w̄,−2w̄)
2w̄, w ∈ [2w̄,+∞)

(7.4)

And the quantization of weights is shown as the following:
wq = round(wc ×

3

2w̄
)

scalew =
2w̄

3

(7.5)

Building the Quad Network

Now, the real-valued of input X ∈ RW×H×C can be replaced by the product of quantized
input Xq with Xq ∈ {0,±1,±2 ± 3}W×H×C and its real scaling factor scalex. As well, the
real-valued weights W ∈ Rfw×fh×C can be replaced by the product of quantized weights W q

with W q ∈ {0,±1,±2 ± 3}fw×fh×C and its real scaling factors scalew. It should be noted
that the factor is a set of real values. In a convolutional layer, the value of the factor used
by each filter is independent.

Then the convolution is approximated as:

X ⊗W ≈ (scalexX
q)⊗ (scalewW

q)
= (scalex × scalew)(X

q ⊗W q)
= β(Xq ⊗W q)

(7.6)

where β is noted as the scale of layer.
All the multiplication in the convolutional layer is replaced by the multiplication between

{0,±1,±2± 3}. We named these networks as Quad Network.

7.1.2 Training the Quad Network
The function y = round(x) used in quantization is a discontinued function and the deriva-
tive is almost zero everywhere. This means that we can hardly use backward propagation
algorithms to train the quad network.

In order to train the quad network, an estimator function of quantization is used to
calculate the estimator of the gradient of quantization. This idea is similar to the method of
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Figure 7.2: An approximate 2 bits unsigned multiplier.

training a binary neural network introduced in chapter 6. In our experiments, the function
y = x is used as the estimator the function y = round(x). And the following estimator for
quantization is proposed and used:

Est(Q(y)) = y × 3

α
(7.7)

Therefore, the estimator of gradient of Q(x) is calculated as following:

Est(grad(Q(x))) =
Q(y)

dy

dy

dx
=


0, x ∈ (−∞,−α)
3
α
, x ∈ [−α, α)

0, x ∈ [α,+∞)
(7.8)

To train a quad network, back-propagation can be applied, where the gradients are
computed with respect to the estimated values. And the parameters and the learning rate
can be updated by an update rule, e.g., SGD [35] update with momentum or ADAM [60].

In fact, during the training phase, the original floating-point weights are still kept. In
each training iteration, the gradient calculated by using quantized weights and quantized
inputs but is applied to update the original weights. At the start of the next iteration, the
updated original weights are re-quantized again and used for training. For a well-trained
neural network, we can directly use the quantized weights for inference without the kept
original weights.

7.1.3 Quad-Approx Network
In a quad network, the input for multiplication is represented by 2 bits of value and 1 bit
of sign. As mentioned in chapter 6, the bit for the sign can be calculated as the XNOR
gate. Hence, we will not discuss the sign of the multiplication. In order to facilitate the
discussion, we use sign-and-magnitude code instead of two’s complement code to express
negative integers, that makes us only consider numerical calculations without discussing the
sign of values.

In chapter 6, we used addition/subtraction or XNOR-popcount to replace binary MAC
operation in binary convolutional layer. However, since all the operands are represented
by 2/3 bits in the quad network, this acceleration is no longer applicable. Even though
some works as [98] proposed the multiplier for few bits matrix multiplication, which can
implement and speed up the calculation of quad networks, we still want a more streamlined
multiplication calculator for the quad network.

We see that excellent neural networks are generalized, that is, they can be applied to
images different from the training set. This proves that the neural network is a robust and
fault-tolerant system. Based on this phenomenon, we propose a hypothesis: When there
are some tolerable errors in the calculator results, the convolutional neural network can still
work. The calculator with errors is called an approximate calculator. And the key point of
this hypothesis is to choose a suitable approximate calculator. If the approximate calculator
takes less resource or faster than the original calculator, it can be used to replace the original
calculator, to achieve the result of speeding up and saving resources with a tolerant loss of
accuracy.

We proposed an approximate multiplier to replace the original multiplier in this section.
We will verify and discuss the effect of these approximate multiplier through experiments in
section 7.2.

Figure 7.2 shows one of the approximate multiplier between a[1:0] and b[1:0], the output
is encoded in c[2:0]. The calculation results are listed on the right of the image. Compared
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Figure 7.3: One of the standard mulitpler for 2 bit operands

to the exact multiplier, such as the example shown in Figure 7.3, it takes only 5 logic gate,
which is far less than the logic gates required by the exact multiplier.

In the approximate multiplication, a mistake occurs when a = 3 and b = 3, that the
result is 7 instead of 9. This mistake may bias the result of the convolutional neural network.
Therefore, When the approximate multiplier is applied, we need to retrain the network. The
bias caused by the approximate multiplier can be compensated when retraining the network.
For example, the bias that the output is less than the actual value can be compensated by
increasing the value of the weights during the retrain.

During training neural networks, we still use the derivative of the original multiplication
to calculate the gradient. The approximate multiplier will result in a difference between the
real gradient and the calculated gradient. However, in some training algorithms, such as
stochastic gradient descent, the calculated gradient is also different from the batch gradient.
Therefore, this difference caused by an approximate multiplier can be regarded as a stochastic
difference. Since the approximate multiplication is still monotonous, the impact of the
difference caused by the approximate multiplier on the gradient is limited.

It is observed that the approximate multiplier affects the results of the inference phase
but also the training phase of CNNs. However, the impacts are limited and tolerant. At the
same time, it can bring some benefits. Part of the benefits of this approximate multiplication
are:

• For ASIC implementation, there is only logic calculations, that is much faster than
algebraic operation.

• For FPGA implementation, the output of 3 bits signed multiplication is encoded in 4
bits, instead of 6 bits, that saved 33% LUT; the output of 2 bits unsigned multiplication
is encoded in 3 bits, instead of 4 bits, that saved 25% LUT.

• Generally, this architecture does not need a special DSP for multiplication. It requires
less computational resources for each operator. So it is easier to calculate in parallel
than with a traditional multiply operator.

Based on quad networks, approximate multiplication is used to replace original multipli-
cation, and the quad-approx networks can be built.

7.2 Simulation
In the experiments, the tiny-YOLO network is used to detect the single-object detection
SDC-2018 image set. The resolution of input images is 416 × 416. Three steps are needed
to train a quad-approx network: 1) selective αx for each layers; 2) train a quad network; 3)
train a quad-approx network.

As mentioned in 7.1, exhaustive method is used to find αx. In a tiny-YOLO network, the
first layer reads the input images, and the last layer generates the prediction result. They
need higher precision, so they are kept as fully precision layers. Other convolutional layers
are quantized to 3 bits, and the value αx are shown in the PACT part in table 7.1.

For training the quad network, we use the framework Darknet [57] executed in Nvidia
Tesla V100 GPU. For image augmentation, Darknet adds a variation within the range of
±0.1 to the hue of images. Darknet also randomly adjusts exposure and saturation of the
image by up to a factor of 1.5 in the HSV color space. Throughout training a batch size of
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Table 7.1: The architecture of tiny-YOLO network and the α for clipping

General PACT
Type H x W C fh x fw / S N αx

Conv. 416 x 416 3 3 x 3 / 1 16
Maxpool 416 x 416 16 2 x 2 / 2 16
Conv. 208 x 208 16 3 x 3 / 1 32 54

Maxpool 208 x 208 32 2 x 2 / 2 32
Conv. 104 x 104 32 3 x 3 / 1 64 27

Maxpool 104 x 104 64 2 x 2 / 2 64
Conv. 52 x 52 64 3 x 3 / 1 128 18

Maxpool 52 x 52 128 2 x 2 / 2 128
Conv. 26 x 26 128 3 x 3 / 1 256 12

Maxpool 26 x 26 256 2 x 2 / 2 256
Conv. 13 x 13 256 3 x 3 / 1 512 7.5

Maxpool 13 x 13 512 2 x 2 / 1 512
Conv. 13 x 13 512 3 x 3 / 1 1024 6
Conv. 13 x 13 1024 3 x 3 / 1 1024 6
Conv. 13 x 13 1024 1 x 1 / 1 90
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Figure 7.4: IOU of quad network and then
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Figure 7.5: IOU of quad-approx network ap-
plied at the beginning of training, baseline
correspondence to original tiny-YOLO.

128, a momentum of 0.9 and a decay of 0.0005 are used. The learning rate is fixed to 1e− 4.
The networks were trained up to 400K batches, which is about 800 epochs.

The IOUs along the training epoch are shown in Figure 7.4. After training with 80K
batches (155 epochs), IOU increases slowly. The approximate multiplication is applied to
the quad network and a quad-approx network is built. It can be seen in Figure 7.4 that
IOU decreases and increases soon at 155 epochs since the exact multiplier is replaced by the
approximate multiplier.

In fact, for training quad-approx networks, the step that pre-train a quad network is not
necessary. The approximate multiplier can be applied at the beginning of training. Fig. 7.5
shows the IOU along with the training epoch when a quad-approx network is built at the
beginning of the training. The results are almost as good as Fig. 7.4. In other words,
the approximate multiplier takes less impact. It is observed that the quad-approx network
gives a good accuracy of detection even compared to the original tiny-YOLO shown as the
reference. In fact, the quad-approx network almost does not cause loss of accuracy in these
experiments.

Through these experiments, we also proved that quantization to 3 bits can achieve lossless
compression for the CNN based object detection system as tiny-YOLO.

The tiny-YOLO is used in our experiments because this small network is easy to train
and easy to implement on hardware, but to prove the generalizability of the method, we
applied the quad-approx network to a larger neural network YOLOv2 and other image sets.
In some image sets, there are more than one object in one image. Therefore, mAP instead
of IOU is used as the evaluation criterion. These mAP are shown in Table 7.2. We can see
that the quad network brings a loss of accuracy. YOLOv2 is larger than tiny-YOLO, and
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Table 7.2: Quad-Approx Network for YOLOv2 and varied image sets

mAP (%) YOLOv2 Quad Quad-Approx
SDC-2018 [64] 90.20 80.52 80.33
COCO-2017 [65] 37.77 30.90 30.82
Pascal VOC [66] 80.07 76.94 76.08

due to limited resources, we did not find the scale factor for each layer, but the scale factor is
shared by every three layers. We think this is the main reason for the decrease in accuracy.
However, it shows that there is almost no loss of accuracy when applying the approximate
multiplier to the network.

7.3 Hardware Design and Implementation
In this chapter, we propose a hardware design adapted to the quad-approx network. The
hardware presented in this chapter is completely different from the design in chapter 6. It
uses the HLS language to achieve a more complex design. Therefore, we also compare the
two hardware designs in this section.

7.3.1 High-level language and Vivado HLS
As shown in Figure 3.9, the Hardware Description Language (HDL), such as Verilog and
VHDL can be used to create the representations of a circuit, to then generate the register-
transfer level (RTL) circuit designs. In addition, certain high-level languages can also be
used to describe the hardware design, such as openCL, SystemC, etc. The code written
by the high-level language is then compiled to RTL circuit design. High-level languages
require compilers to generate RTL designs, which means that for specific high-level languages,
different compilation methods may bring different efficiency and quality. Since high-level
languages describe more about the function of the circuit instead of the circuit design, the
high-level language is not close to the hardware, and it may lead to more computing resources
cost. But high-level languages are easier to write more complex algorithms, as well, it is much
easier to be ported between different platforms.

The Vivado High-Level Synthesis (Vivado HLS) compiler enables C, C++, and SystemC
programs to be directly targeted into Xilinx devices without the need to manually create
RTL. Vivado HLS is widely reviewed to increase developer productivity and is confirmed to
support C++ classes, templates, functions, and operator overloading. In this chapter, to
realize the complex algorithm such as image-to-matrix in the part of the hardware, we use
C/C++ and Vivado HLS for hardware design and development.

7.3.2 Hardware Design
The global view of the system is shown as Figure 7.6 Before launching the computation,
the configuration that contains the parameters, such as image size and convolution depth
is written to the related register of the accelerator. Different from the architecture in chap-
ter 6 who has 2 input stream, there is only one input stream from DRAM to Accelerator.
Compared to the architecture presented in Figure 6.2, the architecture for the quad-approx
network only has one input stream, that need to pre-write the weights and other factors.
The advantage of this design is that takes up less bandwidth. For each calculation, the
weights are sent to the accelerator through this channel in advance, and they are stored in
the on-chip memory. After the weights are sent, the pre-processed image is also transmitted
through the same input channel. In this design, the image-to-matrix is calculated at the
part of the accelerator. Hence, the image is sent directly through the NHWC format with-
out reordering. The accelerator reads the stored weights from the on-chip memory, and then
performs convolution operations with the image stream from the input channel. The result
of the convolution is returned to the main memory through the output stream.

The detailed structure of the accelerator is shown in Figure 7.7. Since the weights and
images are transmitted through the same input channel, the accelerator needs to determine
the input type according to the configuration. The weights are stored in the block RAM,
while the images signal are sent to the im2col module. With im2col operation, the image
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is reordered, so that the convolution calculation is converted to matrix multiplication. The
matrix multiplication is broken down into the dot-product of multiple vectors. In practice,
the image is read row by row, and these rows are assigned to the module for calculating
the dot product operation with the corresponding weights. When the dot products are
completed, the results are merged and reordered, and the convolution is completed. Then,
the pooling module is followed if necessary. Then the calculation result is returned through
the output stream. In addition to the introduction of the overall design, some details will
be discussed subsequently.

Image-to-Matrix in FPGA Part

The limited memory is the main challenge for Image-to-Matrix modules. We cannot receive
and save all the pixels of images because that takes up too much memory. And if the reorder
operation starts at the time when all pixels have been received, the waiting time is too
long. Therefore, the cache on the accelerator side only holds the minimum pixels required to
convert the image. As shown in Figure 7.8, it takes fw × fw × C pixels to generate the first

H

W

C

H x W

fh x fw x C

fw

im2col

Figure 7.8: Image to Matrix in FPGA Part
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row of matrix (the green part). However, since the image is transmitted in NHWC format,
(fh−1)×W×C+fw×C th pixel (the yellow area) have been transmitted when the last pixel
in this row is received. The transmitted pixels are used to generate the next row, so they
need to be saved before the first row is completed. Therefore, a cache larger than the size of
these received pixels is needed. For convenience, the size of the cache memory is usually set
to hf ×W × C. When these pixels are received, the hardware reads the pixels and reorders
them according to different settings, such as filter size and stride. Pixels that are no longer
in use should be discarded to free up the cache memory for new pixels.

From the perspective of this design, the Image-to-Matrix is converted to a producer-
consumer model with limited cache memory, where the producer receives the pixels and put
them into cache one-by-one, and the consumer read the memory according to the convolu-
tional operands’ order. Pixels that are no longer consumed will be discarded.

On one hand, this design does not need to save all the pixels of images. On the other
hand, since receiving pixels, writing to memory, reordering, and sending to the next module
are performed independent, when the memory conflicts are well handled, they can work in
parallel and pipeline, thereby increasing the speed of calculation.

Block Matrix Multiplication

Through the Image-to-Matrix module, the images are reordered, and the generated images
matrix is used to do the matrix multiplication with weights matrix. To process the matrix
multiplication, it is needed to use each column in the weights matrix to multiply each row
of images matrix, which is a dot product of vectors.

However, if the weight is too large, or too deep, the vectors will occupy too much memory.
But for certain small FPGAs, the too-big buffer brings difficulty to on-chip memory. For
resolving this difficulty, the block matrix multiplication is applied in our design. The large
matrix is divided into smaller matrices, avoiding the dot product of oversized vectors. For
large vectors, the divided matrices can also significantly reduce the required memory. When
the matrix is small enough, the matrix can be calculated directly without dividing, which
means the number of the block is 1.

In the example shown in Figure 7.9, the images matrix is generated row by row from
image-to-matrix module, and finally formed a new 2-D matrix by image-to-matrix module
with size {W ×H,Wf ×Hf ×Cin}. Each row of the image matrix is divided into InputFold
parts, and there are InP pixels in one part stored in the same buffer. In other words, the size
of the block matrix of the image is 1× InP . Meanwhile, Cout filter kernels are divided into
OutputFold groups, and each group has OutP filters. Each filter contains Wf × Hf × Cin

weights as operands of multiplication. These operands are divided into InputFold groups,
and there are InP operands in each group. The size of the block matrix of weight kernels
is InP ×OutP These divided small matrices are used for block matrix multiplication. The
original big multiplication between matrices with sizes 1, fh×fw×C and fh×fw×C,Cout is
converted into many small multiplication between matrices with sizes 1, InP and InP,OutP .

The calculation is performed in the algorithm 2. The loop in line 2-3 and loop in line 6-9
can be combined as a pipeline to speed up the calculation.

Algorithm 2 Block matrix multiplication
Input: A Matrix W that divided as shown in Figure 7.9; A stream ins that send the Matrix X.
Output: The result of multiplication W · X write into stream outs

1: for k = 1 to H ×W do
2: for i = 1 to InputFold do
3: Read InP values from stream ins, save into vector vec[i] with size InP
4: for j = 1 to OutputFold do
5: Set values in vector W to 0, where W is a vector with size OutP
6: for i = 1 to InputFold do
7: Read the block Aj,i with size InP ×OutP from memory.
8: Do multiplication and accumulation: W+ = vec[i] ·Aj,i.
9: Write the OutP value in vector W into outs in sequence.
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Figure 7.9: Matrix divided into block

88



Calculation in Parallel

As can be seen from Algorithm2, most of the multiplication and accumulation are calculated
by line 8, where a InP vector multiplied by a matrix with size InP × OutP . The matrix
can be considered as OutP vectors with size InP , and they do dot product operation with
the image vector with size InP . For calculating the dot product of these two vectors, InP
multiplication can be processed in parallel. In the proposed hardware design in Figure 7.7,
the module for the dot product of 2 vectors with size InP is the minimum calculation
unit, named DOT module. Also, there are OutP DOT modules instanced to process the
different OutP weight vectors in line 8. Since the DOT instantiation is in parallel, there are
InP ×OutP multiplication calculated in parallel in total.

If the quantization method is not applied, InP × OutP DSPs will be used to calculate
the multiplication. If quantized, these DSPs can be replaced by LUTs for a few-bits multipli-
cation. For different FPGAs, according to their different computing resources and memory,
InP and OutP can be modified dynamically to change the scale of parallelism, as well as
the requirement of computing resources.

Memory Design

The parallel calculation of the block matrix as described above requires a corresponding
memory design for weights RAM. The strategy we use is that the weight values for the same
DOT module with size InP are stored in the same piece of content. These InP values are
read and write together, called an atomic unit of weights. Since OutP DOT modules are
instanced for computing in parallel, there are OutP atomic units being read simultaneously.
In order to avoid the conflict, OutP RAM blocks are instanced. The OutP atomic units
are read from OutP the RAM blocks respectively and distributed to related calculate units,
DOT modules. They are broken up and calculated inside the DOT module. It can be simple
calculated that there are InputFold×OutputFold atomic units stored in each RAM block.

In actual operation, the situation will be more complicated: In order to save resources,
the instanced RAM block should be used by different layers in a network. But, for memory
blocks implemented in FPGAs, the read and write bandwidth (also the size of atomic units)
is fixed. The size of an atomic unit is sizew_unit = WBit× InP , where WBit is the number
of bits of stored weights value. When the Wbit varied, InP needs to be adjusted accordingly.
Taking tiny-YOLO Quad-Approx network presented in section 7.1 as an example, the first
and last layers are retained high precision which need at last 8 bits precision, but other
layers use 3 bits precision for input images and weights. To maximize the use of memory,
the sizew_unit should be the least common multiple of 3 and 8, or an integer multiple of
it, for example, sizew_unit = 48. Then the corresponding InP for the layer with 3-bits and
layer with 8-bits are 16 and 6 respectively. To share the memory, the InP for layers with
different bits is constrained. This may reduce the parallel scale of computing units for high-
bit precision layers. However, the calculation of the first layer and the last layer is not large.
This has little effect on finally calculation speed.

In fact, there is the same problem with OutP . Since the bandwidth of output is the
same, videlicet, OutP × Abit should remain the same, where Abit is the number of bit for
output. Therefore, when Abit is different, OutP will also adjust accordingly. But since no
memory is involved, we can also use redundant methods, that keep maximum bandwidth for
different layers.

Packed Activation Function

When the convolution calculation is finished, there are still some operations to follow:

• Multiplied by scale factor β, y = βx. As shown in equation 7.6, it needs to be multiplied
by the scale factor β after the quantization convolution calculation is completed.

• Bias operation or batch normalization. These operations always appear in linear form
as z = ay + b where y is the output of convolution with scale factor, a and b are the
parameters of bias operator or batch normalization.

• Activation function. Taking leaky Relu as an example, all negative numbers are mul-
tiplied by 0.1.
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• Quantization for the next layer. For the quad-approx network, the calculation results
of the input layer and the hidden layer will be sent to the next layer. Then these data
need to be quantified by the PACT method shown in equation 7.2 and 7.3. In our
experiments, the clipping factor is noted as α, and it is quantized to [-3,3].

For the above-mentioned operations, they can be packed together, as a format:

Q =


3, if ax > (α− b)/β
3(aβx+ b)/α, if −b/β < ax ≤ (α− b)/β
0.3(aβx+ b)/α, if (−10α− b)/β < ax ≤ −b/β
−3, if ax ≤ (−10α− b)/β

(7.9)

Even the equation 7.9 seem complicated, β α a and b in this equation are constants.
Therefore, it can be simplified to the equation as followed:

Q =


3, if ax > S1

Ax+B, if S2 < ax ≤ S1

0.1Ax+ 0.1B, if S3 < ax ≤ S2

−3, if ax ≤ S4

(7.10)

where A,B, and Si can be pre-calculated. This equation packs the four calculations after
quantized convolution, therefore called the packed activation function. In fact, for a given
convolutional layer, a can also be determined. So the output of the quantized convolution
module, x, can be directly distributed into the corresponding calculation module according
to the interval, then complete the packed activation function.

Similarly, the parameters of the packed activation function also need to be stored in
on-chip-memory. As the memory design presented above, they will be placed in OutP RAM
block, and each block stores Cout/OutP group of parameters.

7.3.3 Hardware Adaptation
In order to make the neural network more friendly to the hardware, modifications are pro-
posed and applied to the network. In this chapter, we still take tiny-YOLO as an example
to introduce these modification methods. It has been proved through experiments that the
loss caused by these modifications on the accuracy is negligible, or the network can regain
the original accuracy through short retrain.

Leaky ReLU for Hardware

The Leaky ReLU is introduced in section 2.2.2. For Leaky ReLU, when the input is negative,
it is multiplied by α. The activation function Leaky ReLU used tiny-YOLO is a special case
of Leaky ReLU where α = 0.1. We need a floating-point multiplication calculator to calculate
the Leaky ReLU function. Even in the packed activation function presented in section 7.3.3,
the multiplication of 0.1 is still inevitable.

However, all the inputs of Leaky ReLU are the output of convolution, which are integers.
We can use a shift operator to replace floating-point multiplication. First, we adjust the
parameters to α = 0.125. It is obvious that for positive integers, the multiplication can by
replace as the equation followed:

int(0.125 · x) = x >> 3 (7.11)

However, it does not hold when x is negative. That is because the maximum value of shift
operation for negative value is −1 according to the machine code. To process this problem,
the Leaky function in tiny-YOLO is modified as equation followed:

Leaky(x) =


x if x ≥ 0
0 if − 8 < x < 0

0.125x otherwise
(7.12)

It should be noted that these changes are made on the software side for training tiny-YOLO.
According to the Darknet framework used for training, x is represented by a floating-point
number. In the hardware side, the implementation is shown as followed:

Leaky(x) =

{
x if x ≥ 0

x >> 3 otherwise (7.13)
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where x is integer encoding in 16 bits. This change avoids the heavier multiplication on the
hardware side but uses faster shift operations to complete Leaky ReLU.

In fact, we have made three changes.
There are three changes for leaky ReLU:

• The parameters α are changed to 0.125. Based on the fault tolerance of CNN, this
change hardly affects the accuracy.

• The maximum value of negative leaky is set to -1. This step makes the accuracy
slightly lower, but the accuracy quickly rebounds after a short training.

• Since the integer is used instead of floating-point, the shift operator discards the deci-
mal part of leaky. However, as introduced in section 7.3.3, the leaky in tiny-YOLO is
implemented as a packed activation function and is quantized into an integer eventu-
ally. So this discarding does not bring a decrease in accuracy.

High-precision Layers

For the quad-approx network, quantization is applied for all hidden layers, but two high-
precision layers are retained, the first and last layers. In practice, these two high-precision
layers are also quantized to 8 bits by symmetry post-trained quantization proposed in
work [12]. Compared with the 32-bit original layers, the high precision has achieved 4x
compression, which saves bandwidth and memory. At the same time, we can use the 8-bit
multiplier instead of 32-bit. Regarding the memory design of 8bit weight, we have already
introduced it in the section 7.3.2.

As introduced in the hardware design, each layer is sent to the accelerator and calcu-
lated separately. To save resources, only one convolutional layer that can calculate 8-bit
multiplication is instanced, which is shared by the first and last layers.

However, we know that an image encoded in RBG format can be represented by an 8-
bit unsigned integer, that is, integers from 0 to 255. But the input of the last layer is the
output of the hidden layer and encoded in 8-bit signed integers, that contain negative values.
To build a general structure for the two layers, we need to build a layer that can handle
convolution of 8-bit signed integers, which means that the range of value is [−128, 127]. In
order to make the images match this range, an offset operator y = x − 128 is set during
pre-processing of the image, which transforms the unsigned 8-bit integer into signed. This
processing will cause a significant decrease in accuracy, but after short retraining, the neural
network can correct this linear offset to achieve the original accuracy.

In this subsection, we introduce the methods to make the network adapt to the hardware
design. The main idea is to modify the network in software, especially during training, to
make it easier to implement in the hardware part. The methods introduced above is not only
applicable to tiny-YOLO, but also can be more widely used in the hardware implementation
of other CNN networks.

7.3.4 Implementation and Experiment Results
The experiments are conducted in the Zynq UltraScale+ MPSoC ZCU102 board with a
target frequency of 400MHz. We compare three different architectures.

• Arch. Normal quantized to 8 bits by post-training quantization presented in work [12].

• Arch. Quad quantized to 3 bits with exact multiplication.

• Arch. Quad-Approx quantized to 3 bits with approximate multiplication.

All architectures have the same structure except for the DOT module that calculates the
dot product of the vector. We present the results of synthesis and simulation in Table 7.3.

Quad-Approx network uses LUTs instead of DSP to calculate multiplication. Therefore,
more LUTs are used but the utilization of DSPs is reduced. Due to the use of 3bit instead of
16bit for weights, the size of the weights is compressed by 5.3x. The Block RAM in this table
shows the total utilization of RAM, including the RAM for weights and for other expressions.
Therefore, we can conclude that utilization of RAM has been significantly reduced for Quad
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Network Type Normal(16 bits) Quad Quad-Approx

Resources
Slice LUTs 24771 22945 29743
Block RAM 120 84 84

DSPs 221 226 82

Performances

Precision 1x 1x 1x
Cycles for DOT 9 9 4

Speedup 1x 1x 1.2x
Compression 1x 5.33x 5.33x

Table 7.3: The utilization and execution time

and Quad-Approx network even normal architecture has already been quantized to 8bit. In
addition, since the LUTs are used to calculate the 3bit multiplication, the multiplication in
the Quad Approx network costs less time. As well, the MAC operations in Quad Approx
networks also take fewer cycles. In syntheses, the DOT module by using DSPs takes 9 cycles
while the DOT product in the Quad Approx network takes 4 cycles. For the execution time,
the Quad Approx network brings 1.20x speed up.

7.4 Conclusion
It is always a topic worthy of attention to quantize neural networks to few bits. As describe
in work [12], conventional quantization can reduce the precision to 8 bits. For fewer-bit
quantization, binary network discards the value of activations and/or weights, and directly
use the sign function to quantize the network. But the binary system cannot lead to a good
detection accuracy in the object detection system. Under the circumstances, we try to retain
a part of the value to achieve quantization with few bits.

The signed PACT method we proposed solves the two main problems of the few bit
quantization: unbounded activations and uneven weight distribution, so that we can quantize
the neural network to fewer bits.

By signed PACT, we can build Quad Network, where the weights and activation of the
network are quantized into 3 bits. Compared to the original 16-bit floating-point network,
the quad network achieves 5.3x compression of weights and activations. The quad network
is a special case of low-bit quantization, but our experiments have proved that using 3 bits
can completely perform lossless compression for the object detection system.

The proposed experiments prove that in CNNs, multiplication can be replaced by other
approximate operations. Then an approximate multiplier is used to compress and speed up
the quantized CNNs. The Quad-Approx networks which take approximate operations bring
different benefits, for example, fewer computation resources cost, such as look-up table and
DSPs for multiply.

These works are still in progress and various improvements are part of future research. At
first, the method that finds the scale factor for PACT in the quad-approx network should be
enhanced from a simple exhaustive search. Furthermore, other approximate calculators can
be applied. Some other more valuable approximate calculators may bring greater acceleration
and structural optimization.
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Chapter 8

MinConvNets

In chapter 6, selective binarization is used to speed up the CNNs. With binarized weights,
multiplication is converted into addition/subtraction. If the activations are also binary,
multiplication is calculated as XNOR gate. In chapter 7, 3-bit quantization is proposed,
followed by the approximate calculation for 3 bits multiplication.

Summarizing, the methods introduced in chapter 6 and 7 are quantizing the operands
first, then proposing the related accelerated multiplier to speed up the computing. Can we
propose a way to directly improve the multiplication without quantization of the operands?
In this chapter, we will discuss this issue further.

Firstly, we discuss the approximate calculation of multiplication in section 8.1. In this
work, we define similar operations and approximate operations, which can generate results
approximate to multiplication under certain constraints, such as the constraints to expected
value or variance of multiplication operands. Approximate operations are based on sim-
ilar operations and have more stringent constraints. The approximate operations can be
used to replace the multiplication operations in the error-tolerant systems which meet the
constraints.

However, an arbitrary CNN cannot always meet the constraints of approximate operation.
Therefore, certain transformations are applied to the general CNN to make them meet
the constraints. Then, the approximate operations proposed in the section 8.1 can replace
the multiplication operations in the convolutional layers, thereby building CNNs with this
approximate convolutional layers, named MinConvNets. Section 8.2 describes the methods
to build and train MinConvNets. Then, the proposed architecture is applied to common
networks and datasets to analyze the feasibility by the accuracy rate. Section 8.3 focuses
on the experimental results of the approximate network, while section 8.4 compares the
proposed architecture with other related works. Finally, the conclusion and the future work
are discussed in section 8.5.

8.1 Approximate Operations to Multiplication
Similar operation and approximate operation to multiplication are proposed in this section.
The similar operation can replace multiplication if followed by a linear transformation, while
the approximate operation based on similar operation can directly replace multiplication
without transformation.

8.1.1 Similar Operations
Taking a 2D spatial convolution convolution Z = X ⊛ W in convolutional layers as an
example, the elements in Z are calculated as:

zu,v =

fh∑
i=1

fw∑
j=1

xu+i,v+j · wi,j (8.1)

where (u, v) shows the coordinate of pixels in the image, and fh, fw are the height and width
of convolutional kernel. If the 2D arrays x and w are unfolded to 1D vectors depends on
their coordinate, Equation 8.1 can be transformed into a multiply-accumulate operation as
following:

zu,v =
N∑

n=1

x(n) ·w(n) (8.2)
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Figure 8.1: The convolutional layer is considered as a system.

where w is the vector of W , x is the vector corresponding to the images pixels scanned
by this filter at position (u, v), and N represents the length of the vector calculated as
N = fw · fh. Equation 8.2 can be seen as a system H which takes two spatial signal x and
w, then multiply them and generated the signal h[n] = H(x[n], w[n]) = x[n] · w[n] orderly,
followed by an accumulation operation. From a perspective of system, this is a module of a
convolutional neural network system, shown as Figure 8.1.

If there is another system g[n] = G(x[n], w[n]), the dependence of the output signals h
and g with the same input signals is an indicator of the similarity between the systems H
and G. The most familiar measure of dependence between two quantities is the Pearson
product-moment correlation coefficient (PPMCC), commonly called simply “the correlation
coefficient”. The correlation coefficient between two signals h and g is defined as follows:

ρ(h, g) =
cov(h, g)√
var(h)var(g)

(8.3)

where cov(h, g) is the covariance of h and g, and var(h) is the variance of h. The correlation
attempts to establish a line of best fit through two signals, and the correlation coefficient
indicates the degree of the linear fit of the two signals [100]. In other words, signals with
strong correlation can generate approximate signals to each other by linear transformation.

Definition (Similar Operations) Let two systems take the same input signals, they are
similar systems if they can generate strong correlation signals, and the corresponding oper-
ations are similar operations.

For the system shown as Figure 8.1, the multiplication subsystem can be replaced by a
similar system followed by a linear transformation, to generate the approximate output. Even
though the approximate output brings errors, some works on few-bits quantization as [21, 99]
have shown that CNNs are error-tolerant systems and the limited errors can be accepted.
It should be noted that in the forward propagation, the approximate output is considered
as a result of exact operations with some errors, therefore it is still the exact operations
that are used to calculate gradients in backward propagation. The widely used training
method SGD [35] uses the approximate gradient to replace the real gradient of the forward
propagation, which shows that the operations in forward propagation and the operations
used to calculate gradient during backward propagation can be different. Therefore, even if
the real gradient of the forward propagation is different from the calculated gradient in the
backward propagation in approximate convolution, we believe that errors caused by similar
operations have a limited impact on the training of CNNs.

Let µh and µg be the expected values of the signals h[n] and g[n], the covariance and
variances for an input with a convolution kernel size of N are calculated as follows:

cov(h, g) =
N∑

n=1

(h[n]− µh)(g[n]− µg)

var(h) =
N∑

n=1

(h[n]− µh)(h[n]− µh)

(8.4)

But what we need is to build approximate systems for arbitrary convolutions instead of
for one determined convolution with fixed weights and images. Therefore, x and w can be
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Correlation with min-selector addition max-selector

h[n] = |w[n] · x[n]| g[n] =

{
|w[n]| if |w[n]| ≤ |x[n]|
|x[n]| if |w[n]| > |x[n]| g[n] = |w[n]|+ |x[n]| g[n] =

{
|x[n]| if |w[n]| ≤ |x[n]|
|w[n]| if |w[n]| > |x[n]|{

x ∼ N(0, 1)
w ∼ N(0, 1)

0.908 0.882 0.673{
x ∼ N(0, 1)
w ∼ N(0, 10)

0.692 0.683 0.624{
x ∼ N(0, 10)
w ∼ N(0, 1)

0.692 0.683 0.624{
x ∼ U(0, 1)
w ∼ U(0, 1)

0.962 0.926 0.641{
x ∼ U(0, 10)
w ∼ U(0, 1)

0.716 0.717 0.655{
x ∼ U(0, 1)
w ∼ U(0, 10)

0.716 0.717 0.655

Table 8.1: The correlation coefficient of absolute values, where N(µ, σ) means a normal
distribution with expected value µ, and variance σ2, and U(a, b)means a uniform distribution
in a closed interval [a, b].

modelled as random variable with a probability distribution, hence g and h are random
variable, too. For commonly used image sets, the images are usually independent of each
other. If the images for each training iteration are randomly selected, the probability of
images used in a new iteration has no relation to the weights trained in the previous iteration.
As well, the new images do not affect the probability distribution of the weights trained in the
previous iteration, too. Therefore, the weights and the images are considered as independent
variables in each iteration. Let px(x) and pw(w) be the probability density functions of x
and w respectively, for the two given systems h = H(x,w) and g = G(x,w), the covariance
and variances of h and g are calculated as:

cov(h, g) =
∫
ξ

∫
η
(H(ξ, η)− µh)(G(ξ, η)− µg) · px(ξ)pw(η)dξdη

var(h, h) =
∫
ξ

∫
η
(H(ξ, η)− µh)(H(ξ, η)− µh) · px(ξ)pw(η)dξdη

(8.5)

where µh and µg is the expected values of h and g.
Three operators are used to compare the similarities with multiplication: min-selector,

addition, and max-selector. In order to maintain the same monotonicity, that magnitudes
and signs are treated separately, i.e. all the operations take absolute values of operands
only, thereby avoiding negative numbers which make multiplications monotonically decreas-
ing. The signs can be calculated by the XNOR gate independently, as introduced in [22].
According to different operators and their distributions, their similarities are shown in Ta-
ble 8.1. From this table, it can be seen that:

• The correlation coefficients are all greater than 0.5. In statistics, these signals can
be called correlation signals. We believe that this correlation is mainly due to their
monotonous increase.

• In case that x and w follow the probability distribution N(0, 1) and U(0, 1), both min-
selector and addition show strong correlation, and min-selector is better than addition.
Since the calculation is all for absolute value, the variance in normal distribution
or interval in uniform distribution can be reflected by the average of the absolute
value. We note the above constraint that makes min-selector and multiplication strong
correlation as µ|x| = µ|w|, which means that the expected value of the absolute values
of x and w are equal.

• When the absolute values of x and w are more different, the correlation is weaker.

The probability distribution of weights is still a subject under study [101, 102, 103,
104, 105]. But normal and uniform distribution are commonly used initialization weight
distributions [106, 34, 47]. Meanwhile, [107] shows that many weights may fit the t location-
scale distribution. When w follows the above distribution, h and g bring strong correlation
with the constraint µ|x| = µ|w|. In fact, the µ|x| = µ|w| is not only a constraint mathematically
or experimental, but it also needs to be maintained in the point of view of the convolutional
layer in CNN:
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Figure 8.2: The approximate multiplication system constructed by the min-selector.

• If most of the values in w(n) are smaller than x(n), min-selector will highly probably
select the value in w, therefore the features in x lost.

• On the contrary, if most of the values in w are larger than values in x(n), no matter
what w is, min-selector will highly probably select the value in x, so that w cannot
distinguish the pattern in images.

In brief, the constraint µ|x| = µ|w| makes w and x comparable, which is a guarantee for w
extracting the information in x by using min-selector.

Since multiplication and min-selector are similar operations with the constraint µ|x| =
µ|w|, a subsystem as shown in Figure 8.2 composed of min-selector and followed linear trans-
formation can be built to replace the multiplication in the convolution system. In this
subsystem, the g1[n] takes the minimum absolute value of x[n] and w[n], and then keeps the
sign consistent with the multiplication, that is strongly correlated with exact signal h[n].
Then, a linear transformation g2 is followed to generate the result approximate to h[n].
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Figure 8.3: The convolution images by exact and ap-
proximate operations

We make a comparison of exact
and similar one-dimensional convo-
lutions as an example. x and w are
randomly generated according to
the distribution x,w ∼ U(0, 1) and
the convolution Z = conv(x,w) is
calculated by exact multiplication
or similar operations. Since the pa-
rameters of the linear transforma-
tion are unknown, data standard
method z-scores shown as Equa-
tion 8.6 is applied to both the out-
puts of exact and similar convolu-
tions to scale data and better com-
pare the two signals.

Zstd =
Z − µZ

σ(Z)
(8.6)

In Equation 8.6, µZ and σ(Z) are the expected value and the standard deviation of Z. The
two standardized signals are shown in Figure 8.3. It is observed that the similar signal has
similar trends to the exact signal, and after the data standard method, their values are
closed.

It should be noted that, although the data standard method as Equation 8.6 can be
applied to both similar and exact convolution, there are problems during training. In fact,
the batch normalization layer BN shown in Figure 8.1 is a data standard process by using the
average and variance of similar convolutions. However, although the convolution and batch
normalization in the forward propagation is replaced by the similar calculations, the result
generated is considered as an approximation of the original calculation. So the gradient in the
backward propagation is still calculated from original convolution and batch normalization,
which means that when training the batch normalization layer, the average and variance of
the original convolution is needed. In other words, the average and variance used by the
data standard method in propagation are from the similar convolution, but the average and
variance of the exact convolutional result are needed for the backward propagation of the data
standard method. Therefore, the parameters for training the data standard method cannot
be obtained through the forward propagation, as well, we cannot use the data standard
method during training a similar network.
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8.1.2 Approximate Operations
The similar signal is approximate to the exact signal if followed by a linear transformation
as g2 = A(g1) + B. However, the parameters A and B in this transformation are unknown.
To overcome this, we propose two directions:

• The parameters in linear transformation can be found through linear regression or
machine learning. Methods for fitting linear models have been discussed in many
works [108, 109, 110]. But this means that in every iteration in the training stage,
it needs to calculate the exact signal and approximate signal, then perform linear
regression calculation to obtain A and B, so this is a costly method. We will not
discuss the details.

• Supplementary constraints for similar operations should be proposed so that the linear
transformation is not required in the approximate system. The correlation coefficient
only reflects the consistency of the changing trend by the degree of linear fitness of two
signals, regardless of their difference. In order to make the similar signal replace the
exact signal without linear transformation, the difference between the signals should
be as small as possible. Next, we discuss the supplementary constraint that makes the
difference between two similar operations g(n) and h(n) small.

Definition (Approximate Operations) Two similar systems are approximate if they
have a small difference so that they can replace each other in a fault-tolerant system, and
the corresponding operations are approximate operations.

We use the relative error between the approximate signal and the exact signal as a
measure of their difference. For a convolution with determined weights and images, the
related error between h[n] and g[n] is calculated as following:

L(h, g) =
∑
n

∣∣∣∣g[n]]− h[n]

h[n]

∣∣∣∣ (8.7)

For arbitrary convolution systems, it is needed to consider the probability distribution
of the input signals. Let px(x) and pw(w) be the probability density function of x and w
respectively, the difference between signals h = H(x,w) and g = G(x,w) is calculated as :

L(h, g) =
∫
ξ

∫
η

∣∣∣∣H(ξ, η)−G(ξ, η)

H(ξ, η)

∣∣∣∣ · px(ξ)pw(η)dξdη (8.8)

The supplementary constraints need to make L(h, g) as small as possible, where h and
g are similar signals. We take the similar signal h = H(x,w) = |w · x| and g = G(x,w) =
min(|w|, |x|) as example, where w and x follow normal distributions. In order to ensure
the constraint of similar operation µ|x| = µ|w|, we set that x and w have the same averages
and related small variance. Therefore, w, x ∼ N(k, v) where N(k, v) means the normal
distribution with average k and variance v. With these conditions, L(h, g) is a function
about (k, v), and the task of finding the supplementary constraint is transformed into an
optimization problem, that is, finding the values of (k, v) which minimize L(k, v).

When ξ = 0 or η = 0 there are singularities in Equation 8.8 because of the division by
H(ξ, η) = 0. Therefore, the points which make H(ξ, η) = 0 are break-points and are removed
from integration interval. In fact, if ξ or η is zero, H(ξ, η) = H(ξ, η) = 0, so there is no
error between the two signals. Figure 8.4a shows the the function L(k) with varied variance
v. It shows that L achieves a minimum value when k is around 1. Figure 8.4b shows the k
that makes L(k, v) minimum with different variances v. It is observed that the value of k is
always concentrated around 1 if the variance is less than 1.5. In other words, a quantitative
relationship can be obtained: the more values of the operands are concentrated to 1 (or −1
for negative), the more approximate the signals h and g are. In fact, with the application of
the batch normalization, the inputs of hidden layers in the CNNs have been standardized,
so that we assume x distributed as x ∼ N(0, 1). Since the variance v can be changed by
simply multiplying by a constant, we study the effect of the variance v on L. Figure 8.4c
shows how the value of L changes with variance when k = 0. It shows that when v = 1.57,
L takes the minimum value. For the normal distribution, the average value of the absolute
value at v = 1.57 can be calculated by its variance, µ|x| = 1.25, that is not far from 1.
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smin(a, b) |a| ≤ |b| |a| > |b|
sign(a) = sign(b) |a| |b|
sign(a) ̸= sign(b) −|a| −|b|

Table 8.2: The operation smin(a, b).

Based on the above analysis, we propose a constraint of approximation that the absolute
value of operands should be concentrated around 1. Considering the constraint of similarity,
we mark the constraint with which min-selector is approximate to multiplication as µ|x| =
µ|w| = 1, i.e., the values of the two input parameters are as close as possible, and concentrated
to 1 or −1. This is not an exact mathematical condition, but it is the main guide for building
a multiplication-less CNN with min-selectors in the next section.

8.2 Building Approximate Networks
In section 8.1, we propose min-selector which is an approximate operation to multiplication
with the constraint µ|x| = µ|w| = 1. However, the multiplication in arbitrary neural networks
does not always meet the constraint. Therefore, in this section, we simply transform the
convolutional layer to make it meet the constraints, and then use approximate operations to
construct the convolutional layer without multiplication.

8.2.1 Building the Approximate Convolution
Next, we proposed the transformation to make an arbitrary multiplication z = x · w meet
the approximate constraint µ|x| = µ|w| = 1. To keep the same monotonicity between multi-
plication and min-selector, the value and sign of output results are processed separately.

The first step is to set the expected value of the absolute value of the operands to 1:

|z|
µ|x|µ|w|

=
|x|
µ|x|

· |w|
µ|w|

(8.9)

where µ|x| and µ|w| are the expected value of |x| and |w|. At this point, the two operands for
multiplication are |x|

µ|x|
and |w|

µ|w|
, and their expected values are both 1. Then, the min-selector

can be used to replace the multiplication to generate an approximate value, as shown below.

|z|
µ|x|µ|w|

≈ min(
|x|
µ|x|

,
|w|
µ|w|

) (8.10)

According to the nature of min-selector and multiplication, the Equation 8.10 is trans-
formed to obtain the following equation:

|z| ≈ µ|x| · µ|w| ·min(
|x|
µ|x|

,
|w|
µ|w|

)

= µ|x| · µ|w| · (
1

µ|x|
·min(|x|,

µ|x|

µ|w|
· |w|))

= µ|w| ·min(|x|,
µ|x|

µ|w|
· |w|)

(8.11)

Since the sign of min-selector should be consistent with multiplication, the approximate
calculation for the signed operands is:

z ≈ µ|w| · smin(x,
µ|x|

µ|w|
· w) (8.12)

where smin(a, b) is for signed operands and calculated as Table 8.2. It can be seen that
smin(a, b) is calculated by comparing the values and signs of operands separately. And there
are only four possible outputs according to the comparison, so that can be implemented in a
4-to-1 multiplexer with comparators, which is friendly to some platforms such as FPGA [11].

For a well-trained neural network, the weights W and µ|w| are known. Inspired by [43]
which uses moving averages in batch normalization to fix the averages and variances during
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inference, the moving µ|x| obtained through training is used to fix µ|x| as a constant during
inference. Therefore, for a well-trained network, µ|x| and µ|w| are known, so we can generate
new weights W̃ where the elements are calculated as:

w̃ =
µ|x|

µ|w|
· w (8.13)

which can be directly used for comparison with the inputs without recalculation during the
inference.

Then the convolution in Equation 8.1 can be calculated by approximate operations as
follows:

zu,v ≈
fh∑
i=1

fw∑
j=1

(µ|w| · smin(xu+i,v+j, w̃i,j))

= µ|w| ·
fh∑
i=1

fw∑
j=1

smin(xu+i,v+j, w̃i,j)

(8.14)

Although there is still 1 multiplication operation in Equation 8.14, it is much fewer than
the fh · fw multiplication operations in Equation 8.1. Since many convolutional layers are
followed by the bias layer or the batch normalization layer, the multiplication in Equa-
tion 8.14 can be integrated into these following layers, thereby constructing an approximate
convolutional layer that does not require multiplication.

8.2.2 Training Approximate Convolutional Layers
Based on the approximate convolution constructed in section 8.2.1, we can build an ap-
proximate convolution layer. We call the neural network composed of the approximate
convolutional layers MinConvNets. Algorithm 3 shows how to train a MinConvNets. Some

Algorithm 3 Training an L-layers CNN with approximate convolutions.
Input: A batch of inputs and targets (X,Y ), cost function cost(Y, Ŷ ), current weight

W t and current learning rate ηt.
Output: updated weight W t+1 and updated learning rate ηt+1.

1: //Forward propagation

2: for l = 1 to L do

3: µr
|xl| = γ · µr

|xl| + (1− γ) · µ|xl|

4: Xc
l = clip(X t

l , 2µ|xl|)

5: for kth filter in lth layer do

6: W c
lk = clip(W t

lk, 2µ|wlk|)

7: W̃lk =
µ|xlk|

µ|wlk|
·W c

lk

8: Ŷl =ApproxForward(Xc
l , W̃l)

9: //Backward propagation

10: C = cost(Y, ŶL)

11: for l = L to 1 do

12: ∂C
∂Xc

l
, ∂C
∂W c

l
=ExactBackward( ∂C

∂Ŷl
,W c

l , X
c
l )

13: ∂C
∂W t =

∂C
∂W c

l
· ∂W c

l

∂W t
l

14: ∂C

∂Ŷl−1
= ∂C

∂Xt =
∂C
∂Xc

l
· ∂Xc

l

∂Xt
l

15: //Update Patameters

16: W t+1 =UpdateParamters(W t, ∂C
∂W t , η

t)

17: nt+1 =UpdateLearningrate(ηt, t)

more detailed introductions are as follows:
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• At the beginning of forward propagation, the moving expected value is used to record
the average of the absolute value µr

|x|, where γ is the momentum of moving value.
While µ|x| is used during training, a well trained µr

|x| can be used to replace µ|x| during
the inference phase to avoiding calculations.

• X and W are clipped by clip function, and clip(X,α) means ∀x ∈ X the calculation
following is applied:

clip(x, α) =


α if x > α

−α if x < −α
x otherwise

(8.15)

Correspondingly, the gradient is calculated as follows:

grad(clip(x, α)) =

{
0 if x > α or x < −α
1 otherwise (8.16)

The main purpose of the clip function is to avoid excessive variance caused by excessive
values which may reduce the approximation of operations. For a well-trained network,
the pre-clipped weights can be used for the inference stage. And the inputs do not
need to be clipped during the inference stage, because with the clipped weights, too
large input values will not be selected by min-selector. Therefore, the clip function is
a method to ensure that the network converges, but it does not increase the amount
of calculation during the inference stage.

• ApproxForward is a standard forward propagation, except that the matrix multipli-
cation calculated as shown in Equation 8.14. The result of the convolution needs to
be multiplied by the constant µ|w|. As mentioned in section 8.2.1, this operation can
be done directly or integrated into subsequent layers.

• TheApproxForward uses {Xc
l , W̃l} to calculate the approximate convolution of {Xc

l ,W
c
l }.

Therefore, it still calculates the gradient of an exact convolution for backward propa-
gation, i.e., {Xc

l ,W
c
l } are used as inputs instead of {Xc

l , W̃l}.

• Any update rules (e.g., SGD or ADAM) and learning rate scheduling functions can be
applied to update the parameters and learning rate at the end of the algorithm.

8.3 Experiments
In order to compare our multiply-less architecture with standard results, we build different
networks and apply them to different datasets.

8.3.1 Networks and Image Sets
LeNet and mini_cifar are used to build approximate networks. LeNet shown in Table 8.3 is
a small convolutional network for image classification. In order to measure the performance
for negative operands, leaky ReLU [50] instead of ReLU is used in convolutional layers as
the activation function. The mini_cifar shown in Table 8.4 is a network deeper than LeNet.
There are 6 convolutional layers, but three of them are 1x1 convolutional layers, mainly used
to adjust the size of the network.

The image sets used were: MNIST and Cifar10. MNIST [62] is a images-set of handwrit-
ten digits with 60,000 examples in the training set and 10,000 examples in the test set. On
the other hand, Cifar10 [63] is a data-set of 60000 colored images in 10 classes with 50000
training images and 10000 test images. The details of these image set are introduced in
section 3.2.2.

8.3.2 Approximate Networks
The accuracy of different networks and image sets are shown in Table 8.5. In order to evaluate
the training speed easily, we recorded the accuracy increasing along with the training epoch,
as shown in Figure 8.5, Figure 8.6, and Figure 8.7.

Since MNIST is a relatively simple database, it is usually used to test whether the neural
networks work. Although its accuracy is reduced by 0.65% compared with the exact LeNet,
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Layer Size
Input image 28x28x3

Conv.+ leaky ReLU 5x5x32
MaxPool. 2x2

Conv.+ leaky ReLU 5x5x64
Fully Connected+ReLU 1024

drop out 50%
Fully Connected 10

Table 8.3: LeNet network.

Layer Size
Input image 28x28x3

Conv.+ leaky ReLU 3x3x32
MaxPool. 2x2

Conv.+ leaky ReLU 1x1x16
Conv.+ leaky ReLU 3x3x64

MaxPool. 2x2
Conv.+ leaky ReLU 1x1x32
Conv.+ leaky ReLU 3x3x128
Conv.+ leaky ReLU 1x1x64

Fully Connected+ReLU 1024
drop out 50%

Fully Connected 10

Table 8.4: mini_cifar network.

Architecture LeNet-MNIST LeNet-Cifar10 mini_cifar-Cifar10
Standard Network 99.06% 75.26% 77.30%

Approximate
170 epoch 98.42%
512 epoch 64.18% 71.46%
2048 epoch 65.54% 72.89%

Transfer Learning 512 epoch 74.92% 77.01%
1024 epoch 75.10% 77.26%

Table 8.5: Accuracy for different architectures and image sets.

the approximate LeNet achieves good accuracy. It proves that the approximate network can
converge and be used for image classification.

Compared with MNIST, Cifar10 is more complex. Two networks are applied to Cifar10,
with exact or approximate convolution. The accuracies of different networks are shown in
Table 8.5. It can be seen that for more complex datasets, approximate networks have brought
errors compared with exact networks. Figure 8.6 and Figure 8.7 show the accuracy along
with training. After 512 epoch, the accuracies of standard networks have already stopped
increasing, while the approximate networks are still slowly rising. On the one hand, this
reflects the slower training of the approximate network. On the other hand, it also shows
that the accuracy of the approximate network can be better with more training. In fact, we
continue training the approximate networks until the 2048 epoch, in which the increase is
much slower, the results are shown in Table 8.5. Continued training brings a related better
result, but it did not change our conclusion, that is, compared with the exact network,
the training of approximate network is slower, and depending on the dataset and network
structure, the approximate network will bring different degrees of error.

8.3.3 Transfer Learning
Since MinConvNets are approximate to exact networks, we believe that the weights which
have been well-trained on the exact networks can accelerate the convergence of the approx-
imate network. Therefore, the transfer learning method is applied to train the approximate
network.

The weights trained after 512 epoch in the standard network are used as the initial weights
of the approximate network. Then the top-1 accuracy along with the training epochs are
shown in Figure 8.6 and Figure 8.7. It can be seen from these figures that transfer learning
can speed up the training of approximate networks. After 512 epoch training, the accuracy
levels of the approximate network are almost the same as the exact networks. In addition,
as shown in Table 8.5, with more training, such as 1024 epochs, the accuracy is closer to the
standard network. In other words, there is negligible loss of accuracy in the approximate
CNNs.

8.4 Comparison
Quantization reduces the consumption of each multiplication while pruning reduces the num-
ber of multiplications. However, but both are still necessary to calculate the multiplication.
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Figure 8.5: Top-1 accuracy of LeNet applied to MNIST.
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Figure 8.6: Top-1 accuracy of LeNet applied to Cifar10.
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Different from these methods, we abandon multiplication directly. The comparison opera-
tion which is less time-consuming and easier implemented is proposed in our works to replace
multiplication in CNNs.

Some works have also proposed multiplication-less networks. In [111], the weight is
quantized to 1 bit, which allows multiplication to be converted into addition/subtraction.
Furthermore, when the activation is also quantized to 1 bit, as introduced in [22, 14], multi-
plication is converted to XNOR logic gate. These methods fix one or more multipliers to ±1,
thereby simplifying the calculation. Moreover, there are also some networks that break away
from multiplication. [83] uses the hit-and-miss transformation composed of comparison and
addition to construct a network. Our work also uses comparison and addition operations,
but the network with hit-or-miss transformation has brought a considerable loss of accuracy,
while the networks in our work have not lost accuracy.

8.5 Conclusion
In order to speed up the CNNs, we reinterpret CNNs from the perspective of signals and
systems. and propose a new structure named MinConvNets. In the convolutional layers
of MinConvNets, the multiplication is approximated by an operation based on a minimum
comparator, which is easier to be implemented or faster to be calculated. MinConvNets
bring negligible loss of accuracy in the benchmark test.

Furthermore, the MinConvNets have shown that operations with errors can also generate
good global inference results for CNNs, so that multiplication can be replaced by some
simpler operation. This work shows that other operations can also extract features from
images and provides a new research direction for the acceleration technologies for neural
networks.

This work is still in progress and various improvements are parts of future research. First,
the main contribution of this work is to propose a new architecture, but do not measure the
runtime performance. The proposed approximate operation can be implemented in differ-
ent platforms, and it is necessary to measure the runtime performance on these platforms.
Next, other approximate calculators can be applied. Some other more valuable approxi-
mate calculators may bring greater acceleration and structural optimization. Furthermore,
MinConvNets are still based on original neural networks, such as using the same training
methods as original ones. Since other operations can also extract features, it is possible
to get out of the original framework and propose a lighter image processing system in the
future.
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Chapter 9

Conclusions and Future work

CNN is one of the best machine learning algorithms. However, the huge parameter volume
and complex calculations have brought challenges when CNNs are deployed on embedded
systems. To overcome these shortcomings, the primary works described in this thesis put
forward the optimization to convolutional neural networks on top of the related literature. On
the one hand, the parameters of the neural network are compressed to make it less requiring
on memory. On the other hand, the approximation applied to structure, operands, and
operators, which makes the calculation faster on real-time platforms with limited computing
resources. Next, we summarize these works and then provide a more speculative perspective
on the subjects discussed in this thesis.

In Chapter 2, we introduced the history of machine learning, especially with the develop-
ment of convolutional neural networks. The convolutional neural network has experienced
rapid development several times. Until now, many classic CNN models are proposed. With
the progress of technology, more accurate models, or models capable of handling more com-
plex tasks have been proposed, but the excellent design of these classic models provides a
reference for follow-up work. Meanwhile, a richer development framework also makes today’s
machine learning easier to develop and use. At the end of this thesis, we are incredibly pleased
to say that artificial intelligence is ushering in a new era with the efforts of predecessors,
while later generations will continue to write this story.

In Chapter 3, we discussed the new challenges of convolutional neural networks. For the
embedded systems which have limited resources, the huge amount of calculation in CNNs
brings difficulties on the calculation resource and communication bandwidth. According to
the application scenario, we focused on the tasks as image classification and object detection,
which are more likely to be deployed on the embedded platform. As well, we also introduced
the runtime platforms for CNNs and determined our work scope after evaluating their per-
formance. Chapter 4 has shown some state-of-the-art solutions for the introduced difficulties
and Chapter 5 has implemented some of these solutions. Through analysis and experiment,
we found that even if there is a lot of excellent works in this field, the technologies still have
many shortcomings.

In Chapter 6, we proposed Selective Binarization. Naive binarization is a classical method
that is widely discussed, but we have proposed a new possibility, that is, mixing binary and
fully-precision layers. This method greatly reduces the amount of calculation thus improves
the calculation speed. However, the essence of this method is the exchange of performance
and accuracy, especially for more complicated tasks, such as object detection systems. it is a
good choice for error-tolerant real-time systems. Nevertheless, for systems that require high
precision, this method still has limitations.

Different from Selective Binarization, Quad-Approx proposed in Chapter 8 brings a loss-
less compression for object detection. Fewer-bit quantization is realized through proposed
signed PACT methods. Then an approximate multiplier for 3 bits signed operands is applied
to speed up the calculation. The contributions of this work are not only in compression and
acceleration but also shows that the CNNs can accept incorrect calculation.

Since CNNs are fault-tolerant systems, approximate calculations can be applied to CNNs
without compression by classic methods. In Chapter 8, we proposed a criterion to measure
the approximation of two operations, and based on this criterion, an approximate operation
to multiplication based on the comparator is proposed. Then, approximate convolutional
layers in which the multiplication are replaced by the approximate operation have been
built. And MinConvNets are constructed by approximate convolutional layers. Since the
comparator is easier to be implemented than multiplication in the varied platform, MinCon-
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vNets lighten the convolutional neural network.
The methods proposed in this thesis give answers to the question proposed in section 1.2.

Selective Binarization optimize existing binary methods, Quad-Approx Network proposed a
novel approximate computing method based on low-bit quantization, and MinConvNets
proposed a new perspective to improve CNNs. Overall, these works reduce the resources
required by CNNs and make them easier to be deployed on systems with limited resources,
which bring a wider range of usage scenarios for CNNs and also make the embedded system
more intelligent.

Throughout the whole thesis, the optimization method we discussed do something sim-
ilar, that is, simplify the calculation within a tolerant loss of accuracy through different
approximations methods: binarization, quantization, approximate operators, etc. Proposing
more new methods is always valuable, but the criterion proposed in Chapter 8 seems to be
more meaningful. This criterion can evaluate the approximate methods not only we have
proposed and but also introduced in the state-of-the-art, whether the approximate comput-
ing is applied to the structure, the operands, or the operators. A satisfactory criterion can be
applied to various approximation methods then measure the approximate level of different
methods used in CNNs, so that the loss of accuracy by using the approximate methods can
be predicted before the validation in the dataset. This greatly reduces the time required
to optimize the CNNs. Therefore, an extremely attractive work in the future is to use the
proposed criterion to evaluate the proposed approximation approach, not only in this works
but also in the other classic methods as quantization and pruning, then to modify the cri-
terion to better fit the experimental results, and finally to propose a more universal law. I
believe that this will provide a new and useful tool for the approximate calculation of neural
networks.
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Appendix A

Scientific Production

The work carried out during this PhD led to the preparation of the following articles:

Published papers:

• Xuecan YANG, Sumanta Chaudhuri, Lirida Naviner, Laurence Likforman-Sulem, ”Quad-
Approx CNNs for Embedded Object Detection Systems”, The 27th IEEE International
Conference on Electronics Circuits and Systems (ICECS 2020), Virtual Conference,
Nov 2020

• Xuecan YANG, Sumanta Chaudhuri, Lirida Naviner, Laurence Likforman-Sulem, ”Ac-
celerating CNNs on FPGAs with Selective Binarization”, Journées Nationales du
Réseau Doctoral en Micro-nanoélectronique (JNRDM 2019), Montpelier, Jun 2019

• Xuecan YANG, Sumanta Chaudhuri, Lirida Naviner, Laurence Likforman-Sulem, ”A
streaming deep learning accelerator with selective binarization”, Emerging Deep Learn-
ing Accelerators workshop (EDLA 2019), Valencia, Jan 2019

• Xuecan YANG, Sumanta Chaudhuri, Lirida Naviner, Laurence Likforman-Sulem, ”Ob-
ject Detection with Embedded Machine Learning”, International Workshop on Machine
Learning & Artificial Intelligence, Paris, Sep 2018

In preparation paper:

• ”MinConvNets: A new class of multiplication-less Neural Networks”,
• Approximate operators applied to object detection systems
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Appendix B

Résumé étendu en Français

B.1 Introduction
Les réseaux neuronaux (NN) existent depuis les années 1940s, et les réseaux de neurones
convolutifs (CNNs) ont également été utilisés avec LeNet [37]. Aujourd’hui, les réseaux
de neurones convolutifs ont été largement utilisés dans de nombreux domaines tels que la
reconnaissance d’image, le traitement vidéo et le traitement du langage naturel. Mais en
revenant sur l’historique de développement des réseaux de neurones convolutifs, la percée
majeure est présenté à 2012 quand le CNN AlexNet [5] a été proposé pour la classification
d’images. Les principaux facteurs favorables à ce succès sont censés être l’apparition de
grands ensembles de données dans le cloud et la disponibilité d’une énorme puissance de
calcul (par exemple, sur GPU). C’est aussi parce que ces plates-formes de puissance de calcul
sont largement utilisées que les réseaux de neurones deviennent de plus en plus grands [41,
1, 49, 2, 47].

En fait, les CNN sont toujours gourmands en calculs et en ressources, car ces calculs
nécessitent un grand volume d’opérations de multiplication et d’accumulation (MAC). Mais
dans certains cas, le cloud et le calculateur avec puissance n’est pas toujours disponible.
Par exemples, on souhaite effectuer des opérations CNN sur des appareils informatiques
de périphérie IoT. Donc les CNNs sont souvent limités par les performances et la mémoire
limitées lorsqu’ils sont déployés sur des systèmes embarqués. Même si des services sur cloud
sont disponibles, les CNNs plus légers, plus rapides et économes en énergie sont toujours
plus favorables.

En considérant ces problèmes, ce projet de recherche doctorale vise à proposer des CNNs à
faibles besoins en ressources informatiques et en mémoire, qui sont plus adaptés aux systèmes
embarqués.

L’algorithme de réseau de neurones se compose généralement de deux phases, l’apprenti-
ssage et l’inférence. Les méthodes proposées dans cette thèse sont principalement utilisées
pour accélérer la phase inférence. Les principale tâches de recherche sont la classification
d’images et la détection d’objets dans les images, qui sont plus susceptibles d’être déployées
sur des systèmes embarqués. Mais les méthodes d’optimisation proposés peuvent également
être utilisées dans d’autres tâches réalisé par CNN.

B.2 State de l’Art d’Accélération et de Compression
Comme les CNNs deviennent de plus en plus complexes, certaines techniques d’optimisation
sont progressivement valorisées. Les contributions de ces technologies d’optimisation sont
d’accélérer la vitesse de calcul de CNN, ou de réduire la taille de CNN. Ils seront brièvement
présentés dans ce chapitre.

B.2.1 Design Compact
Comparée à de nombreuses méthodes ”avancées”, la méthode ”l’utilisation d’un design com-
pact” est souvent négligée. Cependant, l’utilisation d’un design compact est en effet l’une
des méthodes les plus efficaces et les plus simples à réaliser.

D’une part, les structures de CNN bien connues et largement utilisées sont généralement
conçues sur certains ensembles de données spécifiques. Mais la tâche réelle peut être moins
compliquée que ces ensembles de données. Sur cette base, une réduction appropriée de la
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Réseau d'origine Réseau d'élagage Réseau de quantification

Figure B.1: Réseau d’élagage et Réseau de quantification

complexité de certains réseaux peut entraîner des performances de coût plus élevées. D’autre
part, l’utilisation d’une série de plusieurs noyaux de convolution plus petits pour remplacer
les plus grands peut non seulement réduire la quantité de calcul, mais également apporter
plus de non-linéarité au réseau.

B.2.2 Réseaux de Quantification
La quantification est l’une des méthodes d’accélération les plus couramment utilisées dans le
domaine industriel. L’idée principale de la quantification est d’utiliser les valeurs avec moins
de nombres de bits pour remplacer des variables à virgule flottante plus précises.

Par exemple, des virgule flottante 16 bits et des entiers 8 bits dans TensorFlow [54] sont
fournis pour remplacer les variables à virgule flottante 32 bits, et les variables à virgule
fixe qui est plus court que virgule flottant peut apporter des calculs plus efficaces dans un
FPGA [77].

En allant plus loin, certains travaillent à utilisent seulement 1 bit pour construire le
réseau. Ces réseaux appelé réseau binaire convertit la multiplication en opérations logiques
XNOR, accélérant ainsi le calcul. Mais ce type de réseau perd beaucoup de précision dans
la tâche de la détection d’objets, et une solution va être proposés dans le chapitre suivant.

B.2.3 Réseau d’Elagage
Les CNNs sont généralement redondants. Par conséquent, la suppression de connections
sans importance peut accélérer le calcul du réseau avec peu de perte de précision. Cette
méthode s’appelle l’élagage.

Le réseau d’élagage est généralement divisé en deux catégories, l’élagage de la structure et
l’élagage du poids. L’élagage de la structure consiste généralement à supprimer directement
la connexion peu importante, et qui sont les filtres qui contribuent le moins dans une couche
de convolution. Certains travaux sont proposés pour évaluer la contribution des filtres [15,
16, 81]. L’élagage du poids ne change pas la structure du réseau, mais les poids qui sont
plus petits que le seuil sont directement mis à 0 grâce à cette méthode. Certains travaux
discutent de la façon de mettre à 0 et la façon de trouver le seuil de l’élagage [18, 19, 20].

Certaines autres solutions sont également discutées dans cette thèse [84, 85, 86, 87, 87, 83].
Mais l’élagage et la quantification représenté dans la figure B.1 sont les deux directions les
plus discutées en plus du design de la structure. La quantification est également le point de
départ des travaux de cette thèse.

B.3 Selective Binarization
Le réseau binaire peut convertir la multiplication en opération logique XNOR, ce qui est
plus convivial pour le matériel. Mais pour des tâches plus complexes, telles que la détection
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d’objets, le réseau binaire entraînera une perte de précision. Par conséquent, nous proposons
une structure hybride de CNN, qui est composée de couche HH, couche HB et couche BB.

• HH: des couches de convolution où l’activation et le poids sont à virgule flottante
demi-précision.

• HB: des couches de convolution où l’activation est en virgule flottante demi-précision,
mais le poids est binaire.

• BB: des couches de convolution où l’activation et le poids sont binaires.

Dans cette structure, une partie du CNN est binaire, et d’autres parties conservent toujours
une précision en virgule flottante.

Évidemment, le binaire apporte une vitesse de calcul plus rapide, mais il entraîne égale-
ment une perte de précision. Autrement dit, c’est un échange entre la vitesse et la précision.
Et ce travail montre à travers des expériences que le taux d’échange est différent lorsque le
binaire est utilisé dans différentes positions. Nous prenons tiny-YOLO comme exemple pour
montrer la structure hybride avec le taux d’échange diffèrent en utilisant la binarisation dans
la position différente. Nous appelons cette structure le Sélective Binarisation. La Sélective
Binarisation combine des couches avec différentes précisions dans les CNNs pour obtenir une
vitesse et une précision acceptables.

De plus, un accélérateur basé sur FPGA est proposé pour ces structures optimisées. Par
rapport à l’accélérateur du réseau original, l’accélérateur pour Sélective Binarisation peut
traiter différentes structures.

• HH: Des multiplicateurs et des additionneurs sont utilisé pour les multiplications-et-
accumulations (MACs).

• HB: Les valeurs de poids w ∈ {±1}. Ainsi, les MACs sont convertis en addition (si
w = 1) ou soustraction (si w = −1).

• BB: XNOR porte logique sont utilisés pour multiplication binaire. Dans le même
temps, comme 1bit utilise moins de bande passante et XNOR porte logique utilise
moins de ressources, couche BB peut être mieux organisée en parallèle, de sorte que
sa vitesse de calcul est plus rapide.

Enfin, nous utiliserons le binaire pour les 7ème et 8ème couches de tiny-YOLO Network,
puis on l’applique sur des images de détection d’objet de drone (DAC-SDC). Il est possible
d’obtenir une amélioration de 1,68x des performances ce qui entraîne une perte de précision
tolérable de 8,99 % mesurée par IOU (Intersection over Union).

B.4 Quad-Approx Networks
Bien que le binaire accélère les calculs, il entraîne toujours une perte de précision dans les
tâches complexes. Dans ce cas, nous pouvons utiliser 2 bits ou plus pour la quantification.
Différent du binaire utilisant uniquement des symboles (positive ou négative) pour quantifier
les paramètres, quand il s’agit de la quantification des valeurs, certains problèmes se posent.

• Les paramètres du réseau sont non-uniforme distribués. Dans la quantification d’entiers
traditionnelle, des paramètres relativement petits peuvent être mappés à des entiers
relativement petits. Mais dans la quantification à faible bit, de nombreux petits
paramètres sont directement mappés à 0. Cela a entraîné la perte de nombreuses
informations.

• La quantification traditionnelle nécessite le calcul de la plage d’activation, ce qui signifie
qu’il faut attendre la fin de tous les calculs pour commencer la quantification. Cela
viole évidemment le principe de la conception du pipeline, et réduit la vitesse de calcul.

L’approche PArameterized Clipping acTivation Function signé (PACT signé) est proposée
dans notre travail. Avec PACT signé, les valeurs trop grandes sont directement saturées
et mappé à paramètre configuré (seuil paramètre). De cette manière, les activations sont
limitées à une plage claire. Dans le même temps, étant donné que des nombres trop grands
sont supprimés, les petites valeurs peuvent être mappées à des valeurs non nulles. Avec
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Figure B.2: L’approximation de deux signaux aléatoires

PACT signé, CNN peut être quantifié en utilisant 2 bits (non-signé) ou 3 bits (signée), ce
qui permet au moins une 10.6x compression par rapport aux réseaux 32 bits.

Bien qu’il existe de nombreuses calculatrices de multiplication à faible bit, ces multipli-
cateurs sont encore compliqués. Par conséquent, nous proposons d’utiliser des calculatrices
approximatives au lieu de calculatrices précises. Ce calcul approximatif utilise moins de
ressources pour calculer la multiplication à 2 bits, mais donne des résultats inexacts : le
résultat de 3 fois 3 est 7 au lieu de 9. Bien que certains calculs soient inexacts, après un
entraînement avec la méthode proposée, il n’y a pas de perte de précision dans l’inférence
finale pour des tâches telles que la classification et la détection d’objets. Nous avons con-
struit un réseau quantitatif qui utilise moins de ressources de calcul, mais ne réduit pas la
précision. Ce réseau s’appelle Quad-Approx Network.

Un 3 bits multiplicateur approximatif implémenté dans FPGA est proposé, qui peut
atteindre une accélération de 1,2x et une compression de 5,3x lorsqu’il est appliqué aux
Quad-Approx Networks.

En plus de l’accélération, il est plus précieux que Quad-Approx montre que les CNNs
sont des systèmes de tolérance aux pannes, ce qui nous conduit à proposer les MinConvNets.

B.5 MonConvNets
Le calcul de multiplication nécessite souvent des ressources spéciales, telles que Processeur
de signal numérique (DSP), sinon le calcul sera très lent. L’une des principales raisons
du calcul lourd de CNN est qu’il existe de nombreuses multiplications. Par conséquent,
nous continuons à adopter l’idée Quad-Approx et à utiliser des calculs de multiplication
approximative qui est plus légers mais inexacts au lieu de calculs de multiplication précis.

Nous voulons trouver des opérateurs approximatifs de multiplication, mais il est souvent
difficile de définir l’approximation des opérateurs. Afin d’évaluer l’approximation des deux
opérateurs, nous modélisons les opérations à deux systèmes qui ont les mêmes signaux entrés.
Lorsque le signal de sortie de ces deux systèmes sont plus approximatives, les deux opérateurs
sont plus approximatifs.

Il y a nombreuses méthodes pour évaluer l’approximation des signaux. Nous proposons
ici deux critères d’évaluation :

• La tendance des changements illustrée à la Figure B.2a : des signaux approximatives
devraient avoir des tendances de changement similaires, qui est mesuré par le coefficient
de cohérence dans notre proposition.

• La distance des valeurs illustrée à la Figure B.2b : la valeur absolue de deux signaux
approximatifs doit être aussi proche que possible. Nous utilisons l’erreur relative pour
le mesurer.

Nous espérons trouver une opérations op approximative à multiplication : lorsque des vari-
ables aléatoires ξ, η sont données comme entrées de système, sa sortie yi = op(ξ, η) est
approximative à la sortie de la multiplication x = ξ · η. C’est-à-dire qu’elle a une tendance
similaire et une distance relativement petite entre le signal yi et z. Après l’analyse, nous
avons constaté que min-selector ymin = min(ξ, η) est approximative à la multiplication dans
certaines contraintes. Nous déformons le CNN d’origine pour respecter ces contraintes, puis
utilisons les opérateurs approximatifs pour remplacer les multiplications dans CNN et puis
établir MinConvNet.
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MinConvNet peut obtenir une perte de prédiction négligeable par rapport aux réseaux de
classification d’image exacte grâce à l’apprentissage par transfert, tandis que la multiplication
difficile à mettre en œuvre est remplacée par des opérations plus faciles à implémenter.
D’une part, MinConvNets a abandonné l’idée de compression traditionnelle et a proposé une
nouvelle direction pour l’accélération des CNNs. D’une autre part, avec le critère proposé
dans ce travail, il peut être possible d’évaluer une méthode de compression ou accélération
sans validation sur des ensembles d’images dans le futur, ce qui peut grandement faire gagner
du temps. Par conséquent, même si MinConvNet n’a pas été implémenté dans une plate-
forme d’exécution telle que la Selective Binarization et les Quad-Approx Networks, c’est
toujours un travail très intéressant.

B.6 Conclusion
D’une part, l’humain inaugure l’ère de l’intelligence artificielle. D’un autre côté, l’Internet des
Objets (IoT) nous facilite la vie. Cependant, dans de nombreux cas, les réseaux d’intelligence
artificielle sont très complexes et lourds, ce qui pose des défis aux applications d’IoT, car
l’IoT est généralement mis en œuvre sur des plates-formes embarquées avec des ressources
limitées, telles qu’une mémoire limitée et des ressources informatiques limitées.

Les travaux de cette thèse ont proposé les méthodes d’optimisation dans les aspects
système, opérandes et opérateurs, afin de répondre à l’une des questions importantes des
CNN, à savoir comment faciliter le déploiement des CNN consommateurs de ressources sur
les plates-formes à ressources limitées. Ces travaux apportent des algorithmes intelligents
plus complexes dans les appareils de périphérie et nous aident à créer l’ère de l’Internet des
objets artificiel et intelligent (AIoT).

112



Bibliography

[1] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[3] Adrien Blanchardon, Roselyne Chotin-Avot, and Habib Mehrez. Générateur d’architecture
de fpga. In Colloque GDR SOC-SIP, pages 1–3, 2012.

[4] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[6] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun. Neuflow: A
runtime reconfigurable dataflow processor for vision. In CVPR 2011 WORKSHOPS, pages
109–116, June 2011.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, pages 367–379, Piscataway, NJ, USA, 2016.
IEEE Press.

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier
Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning. In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’14, pages 269–284, New York,
NY, USA, 2014. ACM.

[9] Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Eyeriss v2: A flexible and high-performance
accelerator for emerging deep neural networks. CoRR, abs/1807.07928, 2018.

[10] Norman P. Jouppi et. al. In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA
2017, Toronto, ON, Canada, June 24-28, 2017, pages 1–12, 2017.

[11] Jean-Pierre Deschamps, Gustavo D Sutter, and Enrique Cantó. Guide to FPGA implemen-
tation of arithmetic functions, volume 149. Springer Science & Business Media, 2012.

[12] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[13] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65–74, 2017.

[14] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[15] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning con-
volutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440,
2016.

113



[16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[17] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional
neural networks. ACM Journal on Emerging Technologies in Computing Systems (JETC),
13(3):1–18, 2017.

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[19] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 138–145, 2017.

[20] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini. Learning sparse
neural networks via sensitivity-driven regularization. In Advances in neural information
processing systems, pages 3878–3888, 2018.

[21] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quan-
tized neural networks. arXiv preprint arXiv:1805.06085, 2018.

[22] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural networks. In European Conference on
Computer Vision, pages 525–542. Springer, 2016.

[23] Pamela McCorduck and Cli Cfe. Machines who think: A personal inquiry into the history
and prospects of artificial intelligence. CRC Press, 2004.

[24] Daniel Crevier. AI: the tumultuous history of the search for artificial intelligence. Basic
Books, Inc., 1993.

[25] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learn-
ing. MIT press, 2018.

[27] Geoffrey E Hinton, Terrence Joseph Sejnowski, Tomaso A Poggio, et al. Unsupervised learn-
ing: foundations of neural computation. MIT press, 1999.

[28] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[29] Jeremy West, Dan Ventura, and Sean Warnick. Spring research presentation: A theoreti-
cal foundation for inductive transfer. Brigham Young University, College of Physical and
Mathematical Sciences, 1(08), 2007.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[31] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and Trends®
in Signal Processing, 7(3–4):197–387, 2014.

[32] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):60, 2019.

[33] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[35] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

114



[36] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recog-
nition. Neural computation, 1(4):541–551, 1989.

[37] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a back-
propagation network. In Advances in neural information processing systems, pages 396–404,
1990.

[38] Adit Deshpande. The 9 deep learning papers you need to know about (understanding cnns
part 3). adeshpande3. github. io. Retrieved, pages 12–04, 2018.

[39] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning
some deep representations. In International Conference on Machine Learning, pages 584–592,
2014.

[40] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[42] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[43] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[45] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[46] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261,
2016.

[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[48] Ross Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015.

[49] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference on
computer vision, pages 21–37. Springer, 2016.

[50] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint, 2017.

[51] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[52] Nvidia cuda home page, 2020.

[53] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. Opencl as
a unified programming model for heterogeneous cpu/gpu clusters. ACM SIGPLAN Notices,
47(8):299–300, 2012.

[54] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[55] Serdar Yegulalp. Facebook brings gpu-powered machine learning to python. InfoWorld, 19,
2017.

[56] Nikhil Ketkar. Introduction to pytorch. In Deep learning with python, pages 195–208.
Springer, 2017.

115



[57] Darknet: Open Source Neural Networks in C, Last accessed 13/01/2019.

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[59] Junior Dongo, Ludovic Foltete, Charif Mahmoudi, and Fabrice Mourlin. Distributed edge
solution for iot based building management system with ndn. In 2019 Global Information
Infrastructure and Networking Symposium (GIIS), pages 1–5. IEEE, 2019.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[61] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr.
Fully-convolutional siamese networks for object tracking. In European conference on computer
vision, pages 850–865. Springer, 2016.

[62] Li Deng. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[63] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[64] Xiaowei Xu, Xinyi Zhang, Bei Yu, X Sharon Hu, Christopher Rowen, Jingtong Hu, and Yiyu
Shi. Dac-sdc low power object detection challenge for uav applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[65] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[66] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[67] Johannes Romoth, Mario Porrmann, and Ulrich Rückert. Survey of fpga applications in the
period 2000–2015 (technical report). 2017.

[68] Khadija Bousmar, Fabrice Monteiro, Zineb Habbas, Sofiene Dellagi, and Abbas Dandache. A
new fpga-based dpll algorithm to improve sat solvers. In 2015 27th International Conference
on Microelectronics (ICM), pages 287–290. IEEE, 2015.

[69] Karl Pauwels, Matteo Tomasi, Javier Diaz Alonso, Eduardo Ros, and Marc M Van Hulle. A
comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image
features. IEEE Transactions on Computers, 61(7):999–1012, 2011.

[70] Pooja Jawandhiya. Hardware design for machine learning. International Journal of Artificial
Intelligence and Applications (IJAIA), 9(1):63–84, 2018.

[71] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Fpga architectures: An overview. Tree-
based heterogeneous FPGA architectures, pages 7–48, 2012.

[72] Vivado design flow overview, 2020.

[73] Pynq z1 reference manual, 2020.

[74] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd
counting via multi-column convolutional neural network. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 589–597, 2016.

[75] William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture Notes on the
Status of IEEE, 754(94720-1776):11, 1996.

[76] Roselyne Chotin and Habib Mehrez. A floating-point unit using stochastic arithmetic com-
pliant with the ieee-754 standard. In 9th International Conference on Electronics, Circuits
and Systems, volume 2, pages 603–606. IEEE, 2002.

116



[77] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi
Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolu-
tional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 26–35. ACM, 2016.

[78] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
neural information processing systems, pages 598–605, 1990.

[79] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–
747, 1993.

[80] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal
brain surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[81] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2736–2744, 2017.

[82] Rafael C Gonzalez and Richard E Woods. Digital image processing. 2002. Google Scholar
Google Scholar Digital Library Digital Library, 2007.

[83] Muhammad Aminul Islam, Bryce Murray, Andrew Buck, Derek T Anderson, Grant J Scott,
Mihail Popescu, and James Keller. Extending the morphological hit-or-miss transform to
deep neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[84] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[85] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. In Advances in neural
information processing systems, pages 1269–1277, 2014.

[86] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[87] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4013–4021,
2016.

[88] Axel Laborieux, Marc Bocquet, Tifenn Hirtzlin, J-O Klein, L Herrera Diez, Etienne Nowak,
Elisa Vianello, J-M Portal, and Damien Querlioz. Low power in-memory implementation of
ternary neural networks with resistive ram-based synapse. In 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 136–140. IEEE,
2020.

[89] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

[90] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

[91] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations con-
strained to +1 or -1. arXiv preprint arXiv:1602.02830, 2016.

[92] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[93] Tifenn Hirtzlin, Bogdan Penkovsky, Marc Bocquet, Jacques-Olivier Klein, Jean-Michel Por-
tal, and Damien Querlioz. Stochastic computing for hardware implementation of binarized
neural networks. IEEE Access, 7:76394–76403, 2019.

[94] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

117



[95] Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. A lightweight
yolov2: A binarized cnn with a parallel support vector regression for an fpga. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 31–40. ACM, 2018.

[96] Jiaolong Xu, Peng Wang, Heng Yang, and Antonio M López. Training a binary weight object
detector by knowledge transfer for autonomous driving. arXiv preprint arXiv:1804.06332,
2018.

[97] Zynq-7000 AP SoC Family Product Tables and Product Selection Guide - zynq-7000-product-
selection-guide.pdf, September 2017.

[98] Yaman Umuroglu, Lahiru Rasnayake, and Magnus Sjalander. Bismo: A scalable bit-serial
matrix multiplication overlay for reconfigurable computing. In Field Programmable Logic and
Applications (FPL), 2018 28th International Conference on, FPL ’18, 2018.

[99] Jungwook Choi, Swagath Venkataramani, Vijayalakshmi Srinivasan, Kailash Gopalakrish-
nan, Zhuo Wang, and Pierce Chuang. Accurate and efficient 2-bit quantized neural networks.
In Proceedings of the 2nd SysML Conference, volume 2019, 2019.

[100] Shirley Dowdy, Stanley Wearden, and Daniel Chilko. Statistics for research, volume 512.
John Wiley & Sons, 2011.

[101] I Bellido and Emile Fiesler. Do backpropagation trained neural networks have normal weight
distributions? In International Conference on Artificial Neural Networks, pages 772–775.
Springer, 1993.

[102] Marcus Gallagher and Tom Downs. Weight space learning trajectory visualization. In Proc.
Eighth Australian Conference on Neural Networks, Melbourne, pages 55–59, 1997.

[103] Jinwook Go and Chulhee Lee. Analyzing weight distribution of neural networks. In IJCNN’99.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339),
volume 2, pages 1154–1157. IEEE, 1999.

[104] Lior Deutsch, Erik Nijkamp, and Yu Yang. A generative model for sampling high-performance
and diverse weights for neural networks. arXiv preprint arXiv:1905.02898, 2019.

[105] Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural
networks. arXiv preprint arXiv:1901.11058, 2019.

[106] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[107] Muhammad Atta Othman Ahmed. Trained neural networks ensembles weight connections
analysis. In International Conference on Advanced Machine Learning Technologies and Ap-
plications, pages 242–251. Springer, 2018.

[108] Mansfield Merriman. A List of Writings Relating to the Method of Least Squares: With
Historical and Critical Notes, volume 4. Academy, 1877.

[109] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[110] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[111] Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. A lightweight
yolov2: A binarized CNN with A parallel support vector regression for an FPGA. In Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA 2018, Monterey, CA, USA, February 25-27, 2018, pages 31–40, 2018.

[112] Saralees Nadarajah and Samuel Kotz. Exact distribution of the max/min of two gaussian ran-
dom variables. IEEE Transactions on very large scale integration (VLSI) systems, 16(2):210–
212, 2008.

[113] Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.

118



[114] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[115] Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333–1340, 2001.

[116] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep
convolutional networks. In International Conference on Machine Learning, pages 2849–2858,
2016.

[117] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 580–587, 2014.

[118] Peng Li and David J Lilja. Using stochastic computing to implement digital image processing
algorithms. In Computer Design (ICCD), 2011 IEEE 29th International Conference on, pages
154–161. IEEE, 2011.

[119] H. Yonekawa and H. Nakahara. On-chip memory based binarized convolutional deep neural
network applying batch normalization free technique on an fpga. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 98–105, May
2017.

[120] FPGA-based neural network inference, Last accessed 13/01/2019.

[121] Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide - zynq-ultrascale-
plus-product-selection-guide.pdf, September 2017.

[122] DAC-HDC-2018, September 2017.

[123] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-bnn: Binarized
neural network on fpga. Neurocomputing, 275:1072–1086, 2018.

[124] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell, and V. Leroy. Scalable
high-performance architecture for convolutional ternary neural networks on fpga. In 2017
27th International Conference on Field Programmable Logic and Applications (FPL), pages
1–7, September 2017.

[125] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr.
Fully-convolutional siamese networks for object tracking. CoRR, abs/1606.09549, 2016.

[126] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’15, pages 161–170, New York, NY, USA, 2015. ACM.

[127] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 FPS with
deep regression networks. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I, pages 749–765, 2016.

[128] Laurence Likforman Xuecan Yang, Sumanta Chaudhuri and Lirida Naviner. A streaming
deep learning accelerator with selective binarization. In EDLA 2019 WORKSHOPS, January
2019.

[129] H. T. Kung. Why systolic architectures? Computer, 15(1):37–46, January 1982.

[130] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, January 2015.

[131] Miguel de Prado, Maurizio Denna, Luca Benini, and Nuria Pazos. Quenn: Quantization en-
gine for low-power neural networks. In Proceedings of the 15th ACM International Conference
on Computing Frontiers, pages 36–44. ACM, 2018.

[132] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural network infer-
ence with floating-point weights and fixed-point activations. arXiv preprint arXiv:1703.03073,
2017.

119



[133] Wenjia Meng, Zonghua Gu, Ming Zhang, and Zhaohui Wu. Two-bit networks for deep learning
on resource-constrained embedded devices. arXiv preprint arXiv:1701.00485, 2017.

[134] Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas Preusser, and Magnus
Sjalander. Optimizing bit-serial matrix multiplication for reconfigurable computing. ACM
Transactions on Reconfigurable Technology and Systems, 2019.

[135] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and Kaushik Roy.
Design of power-efficient approximate multipliers for approximate artificial neural networks.
In Proceedings of the 35th International Conference on Computer-Aided Design, pages 1–7,
2016.

[136] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy. Multiplier-less artificial
neurons exploiting error resiliency for energy-efficient neural computing. In 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 145–150, 2016.

[137] Thommen George Karimpanal and Roland Bouffanais. Self-organizing maps for storage and
transfer of knowledge in reinforcement learning. Adaptive Behavior, 27(2):111–126, 2019.

[138] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In Advances in neural information
processing systems, pages 3844–3852, 2016.

120



Titre : Calcul Approximatif pour l’Apprentissage Automatique Embarqué
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Résumé : Les réseaux de neurones convolutifs
(CNN) ont été largement utilisés dans de nombreux
domaines tels que la reconnaissance d’image, le trai-
tement vidéo et le traitement du langage naturel. Ce-
pendant, les CNN sont toujours gourmands en cal-
culs et en ressources. Ils sont souvent limités par les
performances et la mémoire limitées lorsqu’ils sont
déployés sur des systèmes embarqués. Ce projet
de recherche doctorale vise à proposer des CNNs
à faibles besoins en ressources informatiques et en
mémoire, qui sont plus adaptés aux systèmes em-
barqués.
En plus de la revue de la littérature, trois méthodes
pour accélérer les CNNs sont proposées : Selec-
tive Binarisation, Quad-Approx Networks et MinConv-
Nets :
La Selective Binarisation combine des couches avec
différentes précisions dans les CNNs pour obtenir
une vitesse et une précision acceptables. De plus,
un accélérateur basé sur FPGA est proposé pour ces
structures optimisées.
Avec le PArameterized Clipping acTivation Function

signé proposé (signed PACT), les CNN sont quan-
tizées en 3 bits, puis le multiplicateur approximatif
est utilisé pour construire un réseau sans perte les
précisions de détection, appelé Quad-Approx Net-
work. En plus de l’accélération, il est plus précieux
que Quad-Approx montre que les CNN sont des
systèmes de tolérance aux pannes, ce qui nous
conduit à proposer les MinConvNets.
MinConvNet est un ensemble de CNN sans mul-
tiplication dont la multiplication est remplacée par
une opération approximative. MinConvNet peut ob-
tenir une perte de prédiction négligeable par rapport
aux réseaux de classification d’image exacte grâce à
l’apprentissage par transfert, tandis que la multiplica-
tion difficile à mettre en œuvre est remplacée par des
opérations plus faciles à implémenter.
D’une part, l’humain inaugure l’ère de l’intelligence ar-
tificielle. D’un autre côté, l’Internet des objets (IoT)
nous facilite la vie. Ces travaux apportent des algo-
rithmes intelligents plus complexes dans les appareils
de périphérie et nous aident à créer l’ère de l’Internet
des objets artificiel et intelligent (AIoT).

Title : Approximate Computing for Embedded Machine Learning
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Abstract : Convolutional Neural Networks (CNNs)
have been extensively used in many fields such
as image recognition, video processing, and natu-
ral language processing. However, CNNs are still
computational-intensive and resource-consuming.
They are often constrained by the limit performance
and memory when deployed on embedded systems.
This PhD research project aims at proposing CNNs
which are more suitable for embedded systems with
low computing resources and memory requirements.
Based on literature review, we propose three methods
to accelerate the operation of neural networks : Se-
lective Binarization, Quad-Approx Network and Min-
ConvNets.
Selective Binarization combines layers with different
precisions in CNNs to achieve an acceptable speed
and accuracy. As well an FPGA based hardware ac-
celerator is proposed for these optimized structures.
With the proposed signed PArameterized Clipping ac-
Tivation Function (signed PACT), the CNNs are quan-

tized into 3 bits, and then a loss-less network is esta-
blished by using approximate multiplier, which is na-
med Quad-Approx Network. In addition to accelera-
tion, what is more valuable is that Quad-Approx shows
that CNNs are certain fault tolerance systems, which
leads us to propose the MinConvNets.
MinConvNet is a set of multiplication-less CNNs
whose multiplications are replaced by approximate
operations. MinConvNet can achieve negligible loss of
prediction compared to exact image classification net-
works through transfer learning, meanwhile the multi-
plication which is more resource consuming to imple-
ment is replaced by easier implemented operations.
Human is ushering the era of the artificial intelligence.
In the meantime, the Internet of Things (IoT) makes
our lives more convenient. These works bring more
complex intelligent algorithms into the edge devices
and helps us to create the era of Artificial intelligent
Internet of Things (AIoT).
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