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Introduction

A major area in computational neuroscience aims at understanding the infor-
mation content of neural signals. From sensory to motor parts of the central
nervous system, these signals come in a standard form: a sequence of elec-
trical pulses called action potentials or spikes. To understand their meaning,
we need to understand the structure of spike patterns and unravel the rules
that would define what could be called the neural syntax. This approach
should reveal how we receive, process, store and transmit information from
the external world.

In the last several decades, advances in experimental techniques opened
new horizons for studying the neural code. Our ability to record the activity
of large populations of neurons has greatly improved. This is particularly
true in electrophysiology where silicon probes and microelectrode arrays now
provide a high number of densely packed recording sites. As a result, the vol-
ume of recorded neural data increased enormously and challenged traditional
data analysis processes.

A particularly suitable system to study how sensory neurons encode visual
information is the retina. This neural system transforms the light patterns
entering the eye into sequences of spikes which are sent to the brain. Visual
information is only carried by this sensory system with almost no feedback
from the brain, which allows us to study its visual processing in isolation.
Moreover the flatness of the retinal tissue makes it perfectly suitable to record
its activity with microelectrode arrays. The responses recorded from large
populations of ganglion cells, the output of the retina, are noisy and show a
high degree of complexity. In fact, around 30 different cell types have been
identified and each of them is supposed to encode a different feature of the
visual scene. These representations are often nonlinear and adapt to visual
statistics such as the mean luminance. These properties make the retinal
code hard to decipher and a matter of active research.

In this thesis work, I first review the signal processing algorithms that
have been proposed to reconstruct the electrical activity of individual neurons
from extracellular voltage traces recorded with high-density electrophysiolog-
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10 INTRODUCTION

ical devices. This inverse problem of source separation is referred to as spike
sorting. I identify the common properties and the main differences to finally
outline the issues that remain to be solved. In a following part, I present a
generic toolbox for online spike sorting based on a combination of density
clustering, greedy template matching and parallel computing. This allows us
to resolve the spike trains of each recorded cells in firm real-time.

In a last part, I present a specific application on the retina where online
spike sorting might be useful. Classically, ganglion cells are supposed to ex-
tract specific features from the visual scene such as increases or decreases of
luminance, ON or OFF cells respectively. However, retinal processing de-
pends on the visual context. Using a novel perturbative approach, I show
that the same cell can turn ON or OFF depending on the natural context. I
found that a convolutional neural network model fitted to the data can reca-
pitulate this context dependence. Online perturbations are thus a promising
tool to probe computations in the retina but also more widely in other sen-
sory systems.

This thesis is organized as follows:

Chapter 1 I begin with an introduction of the physiology of the
retina. I show that complex functions emerge from the cell type diversity
and the network structure of this sensory system.

Chapter 2 I review algorithms used to recover the activity of in-
dividual neurons from extracellular voltage traces recorded with dense and
large-scale microelectrode arrays.

Chapter 3 I present a generic toolbox for online spike sorting which
allows resolving the spike trains of each recorded cells in firm real-time.

Chapter 4 I study the stability of feature extraction by retinal gan-
glion cells in different natural contexts with fixed mean luminance and con-
trast. In particular, I show that some cells can respond selectively to small
increases of light in some contexts and to decreases in others.
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Chapter 1

Physiology of the retina

The eyes are our windows on the world. All the visual information we need
to interpret and to interact with our surrounding environment is received by
these sensory organs. Light patterns enter the eye through the cornea and
lens. They provide the refractive optics that project images onto the retina
lining the back of the eyeball. This light-sensitive neural tissue detects and
processes the incoming light into neural signals which are then sent to the
brain through the optic nerve (figure 1.1). As such, the retina is a bottleneck:
any visual information it loses can never be recovered further downstream.

1.1 Anatomy

1.1.1 Layers and cell types
The retina is a thin neural tissue, a few hundreds micrometers thick. It is
composed of five cell types precisely arranged in three nuclear layers sepa-
rated by two plexiform layers (figure 1.2). Relative to the center of the eye,
the outermost nuclear layer contains the photoreceptor cells which absorb
light and convert it into neural signals through phototransduction. The in-
ner nuclear layer contains the bipolar cells which receive and transform the
signals coming from the photoreceptors. At last, the innermost nuclear layer
contains the ganglion cells which in turn receive and transform the signals
from the bipolar cells. The final signals are sent through the axons of the
ganglion cells which form the optic nerve. In addition to the bipolar cells, two
other types of interneurons are located in the inner nuclear layer: horizontal
cells and amacrine cells which provide lateral connections in the outer and
the inner plexiform layer respectively. Note that displaced amacrine cells can
also be found in the ganglion cell layer.

13



14 1. PHYSIOLOGY OF THE RETINA

Figure 1.1: Anatomy of the eye (reprinted from (Kandel et al., 2000)).
Light from a fixation point is refracted by the cornea and lens and focused
onto the retina. Retina’s output is then sent to the brain through the optic
nerve. On a finer scale (such as the fovea, the very center of the gaze), light
hits photoreceptors which convey visual information to ganglion cells trough
bipolar cells. The axons of the retinal ganglion cells leave the eye cup through
the optic disk to form the optic nerve.
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Figure 1.2: Vertical organization of the retina. A. Phase-contrasted image
of a vertical section in the center of the fovea of a human retina. ONL:
outer nuclear layer. INL: Inner nuclear layer. RGL: Retinal ganglion layer.
(reprinted from (Boycott and Dowling, 1969)) B. Schematic of a vertical
section in the periphery of a human retina. RGCs: Retinal ganglion cells.
BCs: Bipolar cells. ACs: Amacrine cells. HCs: Horizontal cells. (reprinted
from (Baden, Euler, et al., 2019)) A-B. OPL: Outer plexiform layer. IPL:
Inner plexiform layer.



16 1. PHYSIOLOGY OF THE RETINA

1.1.2 Photoreceptors sample the visual image
The photoreceptor cells have a specialized region, called the outer segment,
which contains a light-transducing apparatus. There, absorption of photons
sets in motion the transduction cascade which can ultimately hyperpolarize
the cell. This decrease in membrane conductance slows the release of neu-
rotransmitter (i.e. Glutamate) at the synaptic terminal, which is the neural
signal transmitted to bipolar cells and horizontal cells.

There are two types of photoreceptors, rods and cones, distinguished by
their morphology and their function. Rods have a long and cylindrical outer
segment. They are associated with scotopic vision (e.g. dim light) because
they are highly sensitive to light such that they are even able to detect
single photon (Foster Rieke and Baylor, 1998). Cones have a shorter and
conical outer segment, and are only involved in photopic vision (e.g. day
light). Vertebrates present up to five types of cones distinguished by their
sensitivity spectra (Baden, Euler, et al., 2019). For example, primates have
L, M and S cones which respond to long-wave, medium-wave and short-wave
respectively, and form the basis of color vision.

There are approximately 100 millions rods and 6 millions cones in the
human retina, i.e. 17 rods for each cone. However, their spatial distributions
are different with the highest density of cones found in the fovea and de-
creasing towards the periphery, whereas the highest density of rods is found
around the fovea and decreases both towards the periphery or the center of
the fovea.

The photoreceptor spacing limits the sampling resolution of the visual
image. Interestingly, studies reported that the optical quality of the eye
along its optical axis, in particular the diffraction due to the pupil, imposes
a slightly stronger limit (Curcio and Hendrickson, 1991). This suggest that
photoreceptors sample light patterns in an optimal way.

1.1.3 Ganglion cells transmit the neural image
The ganglion cells are located in the innermost nuclear layer of the retina.
All their axons gather together at the optic disc to get out of the eye and
form the optic nerve. Typically, brief electrical impulses known as action
potentials or spikes are conducted by these nerve fibers towards the axon
terminals. Together, these signals form the neural image which is sent to the
brain.

To produce this neural representation of the visual image, ganglion cells
selectively take their input neural signals from bipolar cells and amacrine
cells to produce diverse response types. The very first functional distinction
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between ganglion cells has been proposed by H. K. Hartline (1938) based
on their responses to changes in light intensity. Some cells fire more spikes
in response to light increments while others to light decrements. They are
referred as ON cells and OFF cells respectively. Note that there also exist
ON-OFF cells which respond to both increments and decrements of light.

The use of a localized stimulation such as a small light spot revealed an
additional spatial organization (figure 1.3). Typically a ganglion cell is sen-
sitive to light projected on a limited region of the retina, called the receptive
field of the cell. This region present two areas where the effect on the re-
sponses are reversed: the center and the surround. For a typical ON cell,
the response increases when a small light spot hits its center and decreases
when it hits the surround. The highest increase in the response is seen when
the spot entirely shines the center. When the spot covers both the center
and surround, a weaker response is observed. It is possible to reach an even
higher response by increasing the light in the center of the receptive field
while decreasing the light in its surround. Note that the opposite is also true
for OFF cells. This antagonistic center-surround spatial organization of the
receptive field is particularly well suited to signal spatial contrast.

Functional classification of ganglion cells is not limited to this ON/OFF
distinction. For example, the temporal dynamic of the responses can be ei-
ther transient or sustained, meaning that the steady firing rate reached after
a prolonged light stimulation is equal to the resting firing rate or to another
firing rate respectively (Cleland et al., 1971). The full characterization of
functional types is still an active debate. For example, more than 30 differ-
ent types have been reported in the mouse retina (Masland, 2012; Baden,
Berens, et al., 2016) which have been linked to morphologically and geneti-
cally defined populations of cells such as alpha cells (Van Wyk et al., 2009),
ON direction-selective cells (W. Sun et al., 2006), JAM-B cells (I.-J. Kim et
al., 2008), W3 cells (Y. Zhang et al., 2012) and OFF suppressed-by-contrast
cell (Tien et al., 2015). Their spatial distribution is not uniform, W3 cells
are one of the most numerous and have therefore a higher resolution. Similar
observations have been made for other mammals (Dacey, 1993; Saito, 1983;
Enroth-Cugell and Robson, 1966). More details about the complex functions
implemented by ganglion cells will be given later in this chapter.

Around 1 million ganglion cells are present in the human retina (Watson,
2014). They are 100 times less numerous than the photoreceptors, which
means that there is a strong compression of the neural image between these
two populations. Since there is no feedback from the brain, the retina au-
tonomously processes the visual information and all the computations are
carried by the retinal network.
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Figure 1.3: Antagonistic receptive field structures of ON and OFF cells
(reprinted from (Kandel et al., 2000)). Idealized experiments where the stim-
ulus are spots of either light increments (yellow) or light decrements (black),
and receptive fields are decomposed in a ON area (red) and OFF area (blue).
A. ON cells are excited by a light increment in their center, OFF cells by a
decrement. Their firing rate increases at the onset of the stimulus, and de-
creases at its offset. B. They are suppressed if stimulated in their surround.
C. Simultaneous stimulation of their center and surround elicits a similar
but lower response compared to that of the center only. D. Stimulation of
their center combined with the opposite stimulation of the surround elicits a
similar and higher response.



1.1. ANATOMY 19

1.1.4 Interneurons shape the neural image

Horizontal cells are the outermost interneurons, have wide dendrites, and
form synapses with rods or cones. They receive the signals coming from
neighboring photoreceptors, and are electrically coupled with other horizon-
tal cells through gap junctions. Thus, they integrate the visual image over a
receptive field which is larger than the photoreceptors, and provide them an
inhibitory feedback proportional to the local mean luminance. In addition to
this regulatory role, lateral inhibition also contributes to the surround sup-
pression of ganglion cells. In fact, bipolar cells, which took their input from
both photoreceptors and horizontal cells, already present receptive fields with
an antagonistic structure.

They are 11 types of bipolar cells in the human retina, 10 cone bipolar
cells and only 1 rod bipolar cell, due to the later apparition of rods during
evolution (Baden, Euler, et al., 2019). Bipolar cells can also be distinguished
from their response to glutamate releases from photoreceptors: OFF bipo-
lar cells depolarize and ON bipolar cells hyperpolarize. These two classes
correspond to a complex stratification in the inner plexiform layer such that
ON bipolar cells connect to ON ganglion cells and OFF bipolar cells to OFF
ganglion cells. In fact, synaptic connections are distributed in at least 10
specific sublayers (S. M. Wu et al., 2000; Roska and Werblin, 2001). In other
words, ON and OFF pathways are already clearly established in the bipolar
cell layer.

Amacrine cells are the most diverse with up to 50 morphological types
(MacNeil and Masland, 1998). They are inhibitory neurons, usually axon-
less, which interact with ganglion and bipolar cells. They receive inputs
from bipolar and other amacrine cells. Like horizontal cells, amacrine cells
act laterally but are more specialized. For examples, starburst amacrine cells
are important in the computation of direction-selectivity (Euler et al., 2002),
and AII amacrine cells are essential for night-vision but is also recruited in
day-vision (Mills and Massey, 1995). More generally, the electrical coupling
observed for some types allow them to receive inhibition driven by distant
bipolar cells, similar to the lateral inhibition of photoreceptors. This in-
hibitory signals contribute substantially to the center-surround organization
of the receptive field of retinal ganglion cells. Thus, amacrine cells play a
crucial role in the retina, even if they are hard to characterise due to their
diversity and complexity in morphology, connections, functions.
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1.2 Computational models of retinal func-
tions

Since retinal ganglion cells were first recorded by Kuffler (1953) and Barlow
(1953), a fundamental goal of sensory neuroscience has been to build accurate
neural encoding models of ganglion cells. These computational models aim to
provide quantitative predictions of the responses to various visual stimuli and
most importantly to synthesize current understanding of retinal functions.
Progressive discovery of the diversity of ganglion cell responses and functions
yield many computational models of increasing complexity. Ultimately those
models would give a detailed description of ganglion cell processing. This
section starts with the description of idealized and simple computational
models before describing specific ganglion cell types which need more complex
models. The last part focus on the challenges posed to these models when
used with more naturalistic models.

1.2.1 Spatiotemporal receptive field and linear models
The simplest computational description of ganglion cells relies on experimen-
tal mappings of their receptive fields. Early mapping techniques used a spot
smaller than the whole receptive field to probe the different regions (H. K.
Hartline, 1940; Kuffler, 1953; Rodieck, 1965; Daw, 1968) (now known as the
“sparse noise” method), or spots of increasing size centered on the receptive
field to reach the saturation of the response (Wiesel, 1960; Enroth-Cugell
and Lennie, 1975; Peichl and Wässle, 1979). An alternative technique based
on drifting gratings have been developed for rapid measurement of spatial
receptive fields of multiple cells simultaneously (Enroth-Cugell and Robson,
1966). Nowadays, the most common technique relies on a spatiotemporal
white noise stimulus (Sakai, Naka, and Korenberg, 1988; Korenberg et al.,
1989; Sakai and Naka, 1992; Fred Rieke, Warland, et al., 1999; S. P. Brown
et al., 2000; Chichilnisky, 2001) which has the advantage to reveal fine spa-
tial and temporal structures. Recently, an additional method based on ran-
domly flashing bars have been proposed, the filter back-projection technique
(Johnston et al., 2014), which is faster than spatiotemporal white noise at
estimating the basic shape of the receptive fields.

All these methods provide a spatiotemporal description of receptive fields.
If linearity is assumed between the stimuli and the responses, computations of
ganglion cells can be modeled as spatiotemporal integrations of the stimulus.
Rodieck and Stone (1965a) was the first to devise such a model. Given a full
spatiotemporal description of the visual stimulation of the retina s(x, y, t),
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the firing rate of a ganglion cell λ(t) at time t is modeled as:

λ(t) =
∫∫∫

f(x, y, τ)s(x, y, t − τ) dx dy dτ (1.1)

where f(x, y, τ) represents the spatiotemporal receptive field of the cell
(i.e. a linear filter). For simplification, a common assumption is space-
time separability such that this filter can be decomposed in two terms:
f(x, y, τ) = f(x, y)h(τ) where f correspond to the spatial profile and f
to the temporal profile. Rodieck and Stone (1965a) provided mathemati-
cal expressions to describe idealized profiles. The idealized temporal kernel
is characterized by a transient change with exponential decay:

h(τ) = a e−τ/τd if τ ≥ 0 else 0 (1.2)

where a represent the magnitude of the change and τd the time constant of
the decay. And the idealized spatial kernel is assumed to have perfect radial
symmetry such that the spatial filter can be expressed as f(x, y) = f(r)
where r2 = x2 + y2, and thus can be simply characterized as a difference of
Gaussians:

f(r) = ac e−r2/r2
c − as e−r2/r2

s (1.3)

where ac and as corresponds to the amplitudes of the center and surround,
and where rc and rs represents their radii. Typically, these values are chosen
such that ac > as and rc < rs to specify a small and strong center and a
large and dim surround. Slight modifications and improvements are often
necessary to match actual responses such as the addition of spontaneous
firing rate, the addition of a sustained component in the temporal profile, or
the rectification of negative predictions of the firing rate.

This model was found useful to predict quantitatively the firing rate of
cat retinal ganglion cells in response to moving shapes of different sizes such
as moving bars (Rodieck and Stone, 1965a; Rodieck and Stone, 1965b). How-
ever some assumption doesn’t hold when confronted with experimental data.
For example, the space-time separability is often unsatisfied with response
to light falling in the surround delayed in comparison with the response to
light falling in the center. The main reason is that it recruits two different
pathways. In case of a surround stimulation, the pathway is longer and the
neural signal flows through horizontal or amacrine cells and passes across
additional synapses (Benardete and Kaplan, 1997; Enroth-Cugell and A. W.
Freeman, 1987; Sakai, J. Wang, et al., 1995). Another issue is the linearity
of the responses predicted by this model. If the magnitude of the stimulus
is multiplied by a given factor then the predicted firing rate is also multi-
plied by this factor. This is usually not the case since neurons can’t fire an
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A CB

Figure 1.4: Idealized receptive field as a difference of Gaussians (reprinted
from (Rodieck and Stone, 1965a)). A. Idealized temporal kernel with an
exponential decay. B. Idealized spatial profile as a difference of Gaussians.
C. Idealized 2D spatial kernel.

unlimited number of spikes in a limited time period. Nevertheless, such a
linear relation have been observed when the light modulations remain small
compared to the mean luminance (Benardete and Kaplan, 1997; Sakai, J.
Wang, et al., 1995). The assumption of a Gaussian shape for the spatial
receptive field is also problematic. Fine-scale structure have been measured
for ganglion cells in primate (Passaglia et al., 2002), mouse (G. W. Schwartz
et al., 2012) or salamander (Soo et al., 2011). In fact, G. W. Schwartz et al.
(2012) found that the fine-scale organization of the dendritic arbor can be
mapped to these fine-scale irregularities.

1.2.2 Pseudo-linear models
Pseudo-linear models are the prevalent models of light responses and solve the
main issues of the model presented in the previous section. For example, the
nonlinear (LN) model consists of a spatiotemporal filter which describes the
integration of the stimulus over space and time, and a nonlinear activation
function which maps the scalar output of the filter to the predicted instan-
taneous firing rate. Two techniques are used to fit the parameter of the LN
model: estimation of the spike-triggered average with spatiotemporal white
noise stimulation (Brenner et al., 2000; Chichilnisky, 2001; O. Schwartz et al.,
2006), or information-maximization or maximization of likelihood (Paninski,
2004; Sharpee et al., 2004).

The LN model can predict the responses to white noise stimulation of
some ganglion cells in the salamander and macaque retina (Chichilnisky,
2001). Surprisingly, Bomash et al. (2013) showed that responses to natural
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scenes can also be predicted in the mouse retina. However, this is rather the
exception than the rule and this pseudo-linear model is in practice unable to
predict responses for many combinations of stimuli and cell types.

Another example of pseudo-linear model is the generalized linear model
(GLM) (Pillow, Shlens, Paninski, et al., 2008) which has several conceptual
and technical advantages over the LN model and other pseudo-linear mod-
els, such as a noise model which accounts for bursting and refractoriness
(Berry and Meister, 1998), cross-coupling between cells to capture corre-
lations present in populations (Pillow, Shlens, Paninski, et al., 2008), and
robust estimation of the parameters through log-likelihood maximization
(Paninski, 2004).

GLM are also efficient to describe responses to artificial and stochastic
stimuli from macaque ganglion cells (Pillow, Shlens, Paninski, et al., 2008).
Nevertheless, this success may be partly due to the low spatial resolution
(pixel size of 120 µm) of the white noise stimulation. This imposes an im-
plicit assumption that signals from photoreceptors are linearly integrated
over space. J. Freeman et al. (2015) showed that this assumption does not
hold with stimuli of higher spatial resolution (pixel size of 3.4 µm). Heitman
et al. (2016) confirmed that the GLM can predict the responses to white
noise stimulation with medium resolution. However, they also showed that
the GLM was not able to generalize to predict responses to naturalistic stim-
uli. This was also the case when the model was trained and tested with
the naturalistic stimuli. This finding suggests that additional computational
mechanisms are necessary to predict responses to natural scenes.

1.2.3 More complex computations and models
Pseudo-linear models carry a simplified view of the retina’s function. They
characterize each ganglion cell as a simple filter which enhance local contrast
in space and time, combined with temporal mechanisms which induce refrac-
toriness, burstiness and adaptation. Nevertheless, this view fails to provide
any explanation to the diversity of cell types or the complexity of the connec-
tion patterns encountered in the retina. The idea that each ganglion cell type
computes something rather specific to the visual scene is now well established
(Meister and Berry, 1999; Roska and Werblin, 2001; Wässle, 2004; Gollisch
and Meister, 2010; Silveira and Roska, 2011). This is supported by detailed
characterization of specific ganglion cell types which are described in this
section. A large amount of work have been dedicated to nonlinear modelling
of these specific cells. An extensive review of the corresponding studies is
out of scope for this section. Instead, references to relevant nonlinear models
will be introduced when necessary.
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Direction-selective ganglion cells

Direction-selective ganglion cells (DSGCs) respond strongly to moving stim-
uli, such as moving bars, but only for a specific direction of motion (Barlow
et al., 1964; Taylor and Vaney, 2003; Demb, 2007). There are different types
of DSGCs distinguished by the polarity of their responses to light steps: ON,
OFF or ON-OFF. ON-OFF DSGCs detect motion in one of the four cardi-
nal directions while ON DSGCs detect movement in the dorsal, ventral and
nasal directions (Oyster and Barlow, 1967). OFF DSGCs have been discov-
ered later and detect upward motion in the visual scene (I.-J. Kim et al.,
2008). Note that a small movement of one tenth of the receptive field is
sufficient to elicit a response from a DSGC (Vaney et al., 2012). ON-OFF
DSGCs respond to a wide range of velocities whereas ON DSGCs respond
only to slow motions (Vaney et al., 2012). Overall direction-selective cells
are one of the typical example of highly nonlinear computations which occur
in the retina and need dedicated modeling effort (e.g. Reichardt-Hassenstein
model (Hassenstein and Reichardt, 1956; Borst and Euler, 2011)).

Orientation-selective ganglion cells

Orientation-selective ganglion cells are selective for either horizontal or ver-
tical bars (stationary or moving). They are characterized by a total absence
of response for bars presented orthogonally to their preferred direction. First
observed in the rabbit retina (Levick, 1967), they have also been found in
mouse retina (Nath and G. W. Schwartz, 2016; Baden, Berens, et al., 2016).
A model in which a circular excitatory center is combined with a larger but
oval inhibitory surround is able to capture responses (Caldwell et al., 1978).

Suppressed-by-contrast ganglion cells

Suppressed-by-contrast (SbC) ganglion cells present a spontaneous firing rate
and reduce their activity in response to light increments (ON) and decrements
(OFF). They have been observed in the rabbit (Levick, 1967), cat (Rodieck,
1967), macaque (De Monasterio, 1978) and mouse (Tien et al., 2015) retinas.
The suppressive spike responses of SbC RGCs is linked to saccade-like eye
movements and blinks (Tien et al., 2015). Global image changes such as
shifts of random textures or blackouts elicit a strong inhibition of these cells.
This suggests that they indicate self-generated stimuli by eye movements and
blinks and may signal that other ganglion cells switch circuits to process the
refreshed visual scene.
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X and Y cells

Using fine gratings, Enroth-Cugell and Robson (1966) found that some gan-
glion cells, called the X cells, don’t elicit any response when there is a simul-
taneous increase of the luminance in half of the receptive field and a decrease
in the other half (figure 1.5A). This was the case both for the center and
the surround, and suggested linear integration of the spatial components of
the stimulus in these areas. However, responses were elicited for other cells,
called the Y cells (figure 1.5B), which suggested nonlinear spatial integration
in this case. The spatial frequency of the grating needed to distinguished X
and Y cells has to be smaller then the center of the receptive field (Demb
et al., 1999). Y cells are also selective to moving textured pattern, whatever
the texture and direction of motion are (Demb et al., 1999; Petrusca et al.,
2007). Overall X and Y cells are the examples that the assumption of linear
spatial integration doesn’t hold for all ganglion cells. Thus classical linear
and pseudo-linear models are not able to capture responses of Y cells. In-
stead a specific model, called the subunit model, is needed (Hochstein and
Shapley, 1976; Victor and Shapley, 1979; Victor, 1987). It gives quantitative
predictions of the responses to reversing gratings (Enroth-Cugell and A. W.
Freeman, 1987; Ölveczky et al., 2003). The subunit model can also accurately
predict responses to white noise stimuli and its inferred components reflect
the anatomy of the underlying neural circuitry (J. Freeman et al., 2015).
Note that different types of spatial integration can also be found within the
same cell with, for example, a linear integration in the center and a nonlinear
one in the surround (Deny et al., 2017).

Other ganglion cell types

Many other ganglion cell types which correspond to complex and nonlin-
ear computations have been observed. Object motion-sensitive (OMS) cells
are able to detect moving objects in the visual scene (Lettvin et al., 1959;
Ölveczky et al., 2003). They detect differential motions between small parts
of the visual image and the background. These ganglion cells elicit a strong
response when the apparent motion in the center of the receptive field is
different from the motion in the surround. Note that they are really different
from direction-selective cells which rather detect absolute motion than differ-
ential motion. The underlying circuits have been identified (Ölveczky et al.,
2003; Ölveczky et al., 2007; Baccus, Ölveczky, et al., 2008) and synthesized
in a subunit model which combined an excitatory signal from the center of
the receptive field and inhibitory signals coming from other motion-sensitive
cells in the neighborhood.
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Figure 1.5: Responses of X and Y cells to grating patterns with different
spatial phases (reprinted from (Enroth-Cugell and Robson, 1966)). A sinu-
soidal grating pattern was introduced and withdrawn as indicated by the
lowest traces. The different lines of the plot correspond to different spatial
shifts of the grating relative to the mid point of the receptive field center
as depicted on the right of the figure. A. Responses of an OFF-center X
cell to spatial gratings (spatial frequency: 0.13 cycle/deg). B. Responses of
an OFF-center Y cell to spatial gratings (spatial frequency: 0.16 cycle/deg).
This cell responds to spatial shifts for which the grating patterns lie with odd
symmetry about a diameter of the receptive field, and for which the changes
in luminance over one half of the receptive field are the exact inverse of the
changes over the other half (framed in red). This indicate nonlinear spatial
integration over the receptive field.
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Similarly, approaching motion-sensitive ganglion cells have responses
evoked preferentially by expanding bars which mimic approaching motion
such as looming predators (Münch et al., 2009). In addition to vertical and
horizontal motions, they provide motion detection along the third dimension.
The circuits that implement this function use the same strategy as the OMS
cells with inhibitory signals which suppress responses to the non-preferred
motion direction (Münch et al., 2009).

As a last example, there are also intrinsically photosensitive ganglion cells
in the retina (Provencio et al., 2000; Hattar et al., 2002). These ganglion cells
can transduce light into electrical signals like photoreceptors. They regulate
non-image forming functions such as the photoentrainment of the circadian
rhythms, the control of pupillary light reflex or sleep. Multiple subtypes have
been identified (Tu et al., 2005) which suggest several specific computations.

For these complex cell types, nonlinear modeling is necessary to provide
quantitative predictions of their responses and to synthesize current under-
standing of their functions. Nonlinear models have also been used to study
ganglion cells processing with less importance given to their functional types
but more to the recruited retinal pathways. For example, the first spike la-
tency after the onset of a flashed stimulus has been modeled with a subunit
model which recapitulate the convergence of the On and Off pathways on
ganglion cells (Gollisch and Meister, 2008b; Gollisch and Meister, 2008a).

1.2.4 Computations in naturalistic contexts
The computation of the different ganglion cell types mentioned previously
have been heavily studied with engineering tools (Rowe and Stone, 1980).
Artificial stimuli have been specifically designed to probe specific function
of the retina. In many cases, an antagonistic structure of the estimated
receptive fields was sufficient to explain the corresponding function. However
the choice of the stimulus can heavily conditioned the functions which are
recruited and active. For example, OMS ganglion cells well are characterized
by receptive fields with a center-surround organization when probed with
a spatiotemporal white noise. The detection of moving object, the specific
function of these cells, is unveiled when the appropriate stimulus is used
such as an image patch moving in the center of the receptive field while the
background remains static. When chosen carefully, artificial stimuli have
been particularly useful to investigate and quantify isolated function of some
ganglion cell types. Nevertheless, these artificial stimuli are quite different
from the stimuli which are actually encountered in a natural environment. In
this context, multiple functions may be active at the same time and compete
to relay the most relevant visual information to the brain.
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Adaptations to low order statistics

The retina operates under many different lightning conditions. Light inten-
sities vary over 10 orders of magnitude in a day (Sakmann and Creutzfeldt,
1969). In comparison, the dynamic range of the responses of ganglion cells
spans only 2 orders of magnitude. Thus, ganglion cells can not transmit
all the information but need to modulate their inputs and adapt their func-
tions depending on the mean luminance of the visual scene (figure 1.6). This
modulation is referred to as light adaptation (Fred Rieke and Rudd, 2009)
and affects the receptive field properties with. For example, the suppressive
surround becoming weaker in dim light (Farrow et al., 2013).

Another form of adaptation concerns the contrast of the visual scene, the
standard deviation of the luminance distribution. This modulation have been
observed by Smirnakis et al. (1997) in salamander and rabbit retinas. When
an increase of contrast is encountered, retinal ganglion cells change their
mean levels of activity. By doing so, they become less sensitive to the light
variations and respond more rapidly over time. In fact two time scales have
been distinguished (Baccus and Meister, 2002), with a fast change during
the first 100 ms where the sensitivity decreases and the kinetics increases,
and a slow change during multiple seconds where the sensitivity continues to
decrease.

A more complex adaptation to pattern have also been observed (Smir-
nakis et al., 1997). When a new spatiotemporal pattern with same mean
luminance and contrast as the previous one is encountered, ganglion cells
change their mean levels of activity. By doing so, they become less sensitive
to the pattern over time. For example, Hosoya et al. (2005) used horizon-
tal and vertical bars to trigger pattern adaptation in salamander and rabbit
retinas.

Response model for high order statistics

Natural scenes are not only characterised by their mean luminance and con-
trast but have considerable structure which correspond to many high order
statistics (Simoncelli and Olshausen, 2001). The statistical redundancy of
natural images have been pointed out by multiple authors (Attneave, 1954;
D. J. Field, 1987; Ruderman and Bialek, 1994).

Does the retina take advantage of the correlations in natural scenes?
Srinivasan et al. (1982) proposed that lateral inhibition found in the retina
might be a way to reduce spatial redundancies (Barlow, 1961), and provided
the first quantitative evidence for decorrelation in the compound eye of the
fly. This problem has also been investigated in the presence of noise (Atick
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Figure 1.6: Light adaptation in a cat’s retinal ganglion cell (reprinted from
(Sakmann and Creutzfeldt, 1969)). Responses of an ON-center ganglion cell
to uniform illuminations of its receptive field for different steady background
luminances. The peak firing rate is plotted against the logarithm of the spot
luminance. Each curve corresponds to a different background luminance
indicated in log cd/m².

and Redlich, 1992). More recently, the contribution of receptive field struc-
ture to the efficiency of the retinal code has been revised. In fact, most of the
decorrelation was found to be accomplished by nonlinear processing (Pitkow
and Meister, 2012) since linear receptive fields failed to decorrelate much.
Note that this theoretical framework based on information theory can also
describe the emergence of different types of ganglion cells (Kastner et al.,
2015) which is controlled by the amount of noise affecting neural responses.

To reveal the feature selectivity of different ganglion cell types, complex
naturalistic stimuli have been used such as natural movie scenes (Nirenberg et
al., 2001), even with eye movements (Turner and Fred Rieke, 2016). However,
the ganglion cell filters can’t be estimated with classical techniques such as
the spike-triggered analysis because of non-zero stimulus correlations. Some
adaptations allowed to use generalized linear models to capture responses
in the macaque retina with limited success (Heitman et al., 2016). Another
tool, called maximally informative dimensions (MID), has been developed
to search iteratively in the stimulus space the dimensions that maximize
the mutual information between the spike train and the stimulus (Sharpee
et al., 2004). However this method requires a lot of data and there is no
guarantee that the search procedure will find the optimal solution because
of local minimums. More recently, deep learning has been employed to build
models of retinal ganglion cell responses to natural scenes (McIntosh et al.,
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2016; Maheswaranathan, McIntosh, Kastner, et al., 2018). This approach
seems a promising solution to build a quantitative and interpretable model
of the retina which generalize to naturalistic stimuli.



Chapter 2

Spike sorting review

We have seen that the retina is a complex sensory system where ganglion cells
encode visual information. The flat structure of the retina makes these cells
particularly accessible for recordings with microelectrode arrays to access
their spiking activity. Over the last decades, technological advances improved
the sampling resolution of these devices. The spacing between electrodes
decreased from hundreds of microns down to tens of microns.

This improvement makes the voltage signals recorded from nearby elec-
trodes less independent. A spike from one cell is detected on several elec-
trodes and conversely one electrode detect spikes from multiple cells. This
cross-talk between neurons and electrodes challenges the traditional spike
sorting methods used to reconstruct the spiking activity of each neuron.
These methods generally fail to identify synchronous or near-synchronous
spikes whose voltage waveforms overlap (Pillow, Shlens, Chichilnisky, et al.,
2013).

Here, I review new algorithms used to recover the precise activity of in-
dividual neurons from extracellular voltage traces recorded with dense and
large-scale microelectrode arrays. I show that they follow the same strategy
even if they have been developed independently, I present their main differ-
ences, and I discuss the issues that need to be resolved by future spike sorting
methods.

This chapter corresponds to a review which was previously published as:

Baptiste Lefebvre, Pierre Yger, and Olivier Marre (2016).
Recent progress in multi-electrode spike sorting methods.
Journal of Physiology-Paris, 110(4), 327-335.
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Abstract
In recent years, arrays of extracellular electrodes have been developed and
manufactured to record simultaneously from hundreds of electrodes packed
with a high density. These recordings should allow neuroscientists to recon-
struct the individual activity of the neurons spiking in the vicinity of these
electrodes, with the help of signal processing algorithms. Algorithms need
to solve a source separation problem, also known as spike sorting. However,
these new devices challenge the classical way to do spike sorting. Here we
review different methods that have been developed to sort spikes from these
large-scale recordings. We describe the common properties of these algo-
rithms, as well as their main differences. Finally, we outline the issues that
remain to be solved by future spike sorting algorithms.

2.1 Introduction
Progress in neuroscience relies to a large extent on the ability to record si-
multaneously from large populations of cells, in order to understand how
information is represented among neurons. One of the most popular tech-
niques to measure such an activity is the use of arrays of extracellular elec-
trodes. With these devices, each electrode records the extracellular field in
its vicinity and can detect the action potentials emitted by the neighboring
neurons. In contrast to intracellular recording, those extracellular recordings
do not give a direct access to the neuronal activity: one needs to process the
recorded signals to extract the spikes emitted by the different cells around
the electrode. This process is termed spike sorting, and many algorithms
have been suggested to do it efficiently (see Lewicki, 1998 or Rey et al., 2015
for a review).

The first extracellular recordings were performed with a single electrode,
and could only give access to 3-5 neurons (Gerstein and Clark, 1964). A
recent study (Pedreira et al., 2012) highlighted that the maximal number of
accessible neurons should lie between 8 and 10 in that case. Over the last
decades, there has been a strong effort to increase the number of electrodes,
and therefore the number of recorded neurons. Spike sorting algorithms had
to be adapted to process this increasingly large amount of data. At first,
electrodes were spaced by hundreds of microns such that the spike of one cell
could only be detected on a single electrode (Jones et al., 1992; Shoham et al.,
2003). In that case, spike sorting on a large amount of electrodes could simply
be done by processing each electrode independently. The parallelization of
the problem for large amount of independent electrodes was relatively easy



2.2. THE CHALLENGE POSED BY LARGE-SCALE MULTI-ELECTRODE RECORDINGS TO CLASSICAL APPROACHES33

to address.
However, devices where electrodes are packed with a high density have

also been developed. The spacing between electrodes is much smaller (tens
of microns). As a consequence, a spike from a single cell can be detected
on several electrodes. Conversely, each electrode will detect the activity of
many cells, a property already encountered in the case of single electrode.
This increased density helps a lot to resolve single cells (Gray et al., 1995;
Franke, Pröpper, et al., 2015), but electrode signals could not be processed
independently. Spike sorting algorithms had to be adapted to this new type
of data. While for small numbers of electrodes (e.g. tetrodes), methods that
could be seen as adaptations of single electrode sorting worked very well
(McNaughton et al., 1983; Harris et al., 2000; Gao et al., 2012), this is not
the case with new devices designed with hundreds of electrodes all densely
packed. CMOS-based devices with thousands of electrodes have been tested
and are now frequently used (Berdondini et al., 2005; Fiscella et al., 2012;
Müller et al., 2015; Hilgen et al., 2016), calling for new algorithmic methods,
largely different from the usual sorting methods.

Here we review the different spike sorting algorithms that have been pro-
posed to process recordings from these novel high-density devices. We will
first explain the limitations of classical spike sorting approaches to process
these large-scale, dense recordings. Then, we will outline the main changes
introduced by these new algorithms compared to classical spike sorting ap-
proaches. We will emphasize that most of these new methods follow the
same global strategy, although they have been developed independently by
different groups. Therefore, we will outline the common properties shared
by these algorithms, before explaining and discussing their main differences.
Finally, we will discuss the issues that still need to be resolved by future
spike sorting algorithms.

2.2 The challenge posed by large-scale multi-
electrode recordings to classical ap-
proaches

Most of the classical approaches to spike sorting can be decomposed in two
main steps. First, some specific features of the spike waveforms are extracted
from the raw data. This allows each spike to be characterized by a small set
of features. Using these features, each spike can now be seen as a point in a
low dimension space, and the second step consists in clustering all the points
in this reduced space.
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For the first step, earliest methods only extracted the spike amplitude
(Hubel, 1957), and width (Meister, Pine, et al., 1994) of each spike. More
recently, some methods use the full waveform directly when the number of
electrodes remains small (Pouzat et al., 2002). Another standard technique
is to project each waveform on a set of basis functions (Litke et al., 2004;
Quiroga, Nadasdy, et al., 2004), that are either found by performing a prin-
cipal component analysis (PCA) on the entire set of waveforms (Egert et al.,
2002; Pouzat et al., 2002; Einevoll et al., 2012; Swindale and Spacek, 2015),
or by choosing a wavelet basis (Letelier and Weber, 2000; Hulata et al., 2002;
Quiroga, Nadasdy, et al., 2004). For a comparison between PCA and wavelet
based analysis, see (Pavlov et al., 2007). Note that the two can be combined
(Bestel et al., 2012).

Once the dimensionality has been reduced, to tackle the problem of the
clustering step, several approaches have been used, but the most standard
approach is to fit the clusters with a mixture of Gaussians (Wood et al., 2004;
Rossant, Kadir, et al., 2016; Kadir et al., 2014). However, one could also
find in the literature approaches such as paramagnetic clustering (Quiroga,
Nadasdy, et al., 2004), mean-shift clustering (Swindale and Spacek, 2014) or
even k-means clustering (Atiya, 1992; Chah et al., 2011). Another interesting
approach is to consider the most consensual clustering across an ensemble of
k-means solutions (Fournier et al., 2016).

Not all standard methods strictly follow this workflow. For example, lin-
ear filtering is an alternative approach which identifies the optimal linear
filter to distinguish one signal, of unknown temporal position but of known
waveform, from a finite number of other signals of known waveforms, ob-
served on noisy electrodes. This approach was first proposed by Roberts
and D. K. Hartline (1975), then by Gozani and Miller (1994) and more re-
cently by Franke, Natora, et al. (2010). This method is similar to template
matching approaches that we will describe later. An alternative approach is
Independent Component Analysis (ICA) where the first step demixes blindly
the data and extract the individual source signals from which spikes are iden-
tified (Takahashi et al., 2003; G. D. Brown et al., 2001; Jäckel et al., 2012).
Note that variants, such as the convolutional Independent Component Anal-
ysis (cICA) of Leibig et al. (2016), has been developed. However, there is no
guarantee that the independent components found by those algorithms are
indeed isolated neurons.

While all of these methods can be successful when one electrode captures
the signals from a only few cells, and when one cell is only recorded by one
or a small number of electrodes, it is not trivial to scale them up to process
a large number of densely packed electrodes. In recordings performed by
large and dense multi-electrode arrays, the spike waveforms live in a high
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dimensional space, and this makes the clustering challenging. We will review
below some suggested improvements to enable clustering on a large number
of electrodes.

Finally, a more fundamental problem with clustering-based approach is
that the extraction of features from one spike can be distorted by the presence
of other spikes nearby. As a consequence, most of the overlapping spikes are
not captured by clustering approaches, because they correspond to points in
the feature space that are far from the centers of the corresponding clusters.
This is a major challenge for clustering techniques (Bar-Gad et al., 2001), that
we will explain in more details below. In large scale and dense multi-electrode
recordings, overlapping spikes become the rule rather than the exception.
Solving this issue is one of the motivation behind new algorithms, based on
template matching, that we will review and discuss in a second part.

2.3 Improvements of the clustering
In order to be able to scale up and perform spike sorting for large number of
channels with the classical algorithms mentioned above, several refinements
of the clustering have been proposed by various groups.

2.3.1 Improved spike detection
Rossant, Kadir, et al. (2016) have proposed a method that pre-processes
the data to make clustering easier for multi-electrode sorting. As explained
above, the spike of a single cell can be detected on multiple electrodes. Con-
versely, spikes from several cells can be seen on the same electrode. They
designed a flood fill method to group together spikes detected on different
electrodes that correspond to a single cell. For this they connect together
spikes detected synchronously on adjacent electrodes. The exact algorithm
to connect adjacent events bears some similarity with standard image pro-
cessing algorithms, like the Canny contour detection. Spikes are therefore
defined as spatio-temporal events, with a given spatial extent, called a mask,
for each of them.

In a second step, for each of these events, they remove any voltage deflec-
tion outside of the mask, and replace it with noise. This masking removed
part of the distortion induced by other spikes when estimating the features,
and improved the performance of the clustering. While this improvement is
of great help for overlapping spikes that are distant enough in space, it is
less clear how it will help for spikes coming from two cells that are physically
close. In that case, some electrodes will detect spikes from the two cells, and
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their masks will strongly overlap. Therefore this masking process may only
help avoiding temporally overlapping spikes from distant cells.

2.3.2 Pre-clustering

Marre et al. (2012) and Swindale and Spacek (2014) use a method to break
down the clustering problem into multiple smaller parts. After detecting all
the spikes in the recording, waveforms are grouped in different subsets ac-
cording to the electrode where the highest voltage peak was found. Instead of
performing a single clustering algorithm on all the waveforms, this grouping
outputs N subsets, if N is the number of electrodes. Each subset contains
all the spikes peaking on the same electrode. A clustering is then performed
on each of these subsets independently.

Note that this pre-grouping does not assume that the spikes are only
detected on a single electrode, which would amount to multiple single elec-
trode sorting. Here, after this pre-grouping, a clustering is performed for
each group, and this clustering used the information available on all the elec-
trodes. This simplification allows reducing drastically the number of spikes
that have to be processed together. It also allows a simple parallelization
of the clustering, which is crucial for large-scale recordings with hundreds or
thousands of electrodes.

The main issue with this method is that a cell that is located between
two electrodes might emit spikes that peak alternatively on one or the other
electrode. In that case, the cell will be split between two different groups,
and subsequently in two different clusters. This strategy has therefore to be
combined with a later step where all the clusters that correspond to the same
cell are merged together. This method is therefore on the side of overcluster-
ing the spikes, and merging the different clusters later on. However, merging
clusters is usually easier than splitting them since there is one possible re-
sult for the first operation whereas the second one presents many possible
solutions.

2.3.3 Main issues associated with clustering

A complete review of all the clustering algorithms used for spike sorting is
beyond the scope of this review. However, we would like to outline the main
issues associated with the clustering step, that are common to almost every
clustering algorithm.
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Mathematical definition and non-linear optimization

Two of the main issues associated with any spike sorting solution relying
on a clustering approach can be found in the roots of the clustering per se.
Mathematically, the clustering suffers from a lack of problem statement and
problem resolution. First, one need to agree on a mathematical definition
of the notion of cluster to state the problem. Because there exists many
different cluster models (e.g. centroid models, distribution models, density
models), there are numerous notions of what a cluster is. It is not obvious if
one of these notions would fit appropriately to the biological reality. Hence,
the first problem is that the stated problem is an approximation of the true
problem. Thus, the solution to this clustering problem is an approximated
solution to the true problem. This is why it often requires the user to spend
a rather large amount of time in manual curation, because the solution to
the true problem is in the neighborhood of the approximated solution.

Second, solving a clustering problem brings additional issues. The dif-
ferent methods used to do clustering involve finding the minimum of an
objective function, and the solution landscape almost surely presents local
minima. As a consequence, running twice the same clustering algorithm with
two different set of parameters (i.e. internal parameters such as initial cen-
troids for the k-means algorithm) can lead to different results. The reason
is that the two runs can be trapped in two different local minima. In many
cases it takes several trials before converging to the global minimum, which
increases the computational cost. In practice, the algorithm may stop before
convergence because the more complex/challenging is the solution landscape,
the less likely is the convergence in a reasonable time.

Overlapping spikes

More importantly, as mentioned above, a major issue with clustering is that it
will miss many overlapping spikes. If two spikes are overlapping on the same
electrode, there will be a distortion in the feature estimation, that will drive
the spike beyond the limits of the cluster defined on isolated spikes. Note
that the superposition problem has been known for a long time (Prochazka
et al., 1972; Roberts and D. K. Hartline, 1975). The issue was apparent in
Harris et al., 2000: they showed that the error rate of the spike sorting is
strongly increased during spindle waves, which are epochs of synchronous
firing. False positive errors could change from 5% to almost 80%, and false
negative were also increased by at least 20%. The issue was more extensively
studied by Pillow, Shlens, Chichilnisky, et al. (2013), where they show that
synchronous spikes will be missed by a pure clustering approach. An addi-
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tional study of Franke, Pröpper, et al. (2015) confirms that clustering-based
methods perform poorly for overlapping spikes, as shown by Lewicki (1998)
and Quiroga, Nadasdy, et al. (2004). Template matching approaches have
been developed in order to deal with these overlapping spikes.

2.4 Template matching approaches
Several template matching approaches have been developed for spike sorting
(Pillow, Shlens, Chichilnisky, et al., 2013; Pachitariu et al., 2016; Marre et
al., 2012; Yger et al., 2016; Prentice et al., 2011). Note that historically
the use of template matching (Gerstein and Clark, 1964) predates the use of
clustering (Simon, 1965) and then experienced renewed interest. All these
methods usually assume that the extracellular signal can be decomposed as
a sum of so-called “templates” (one template is the average extracellular
waveform triggered by one neuron) plus some noise:

~s(t) =
∑
ij

aij ~wj(t − ti) + ~e(t) (2.1)

where ~s(t) is the signal recorded over the electrodes of the multi electrode
array and over multiple time points. ~wj(t−ti) is the spatiotemporal template
associated with each cell, which represents the average waveform triggered
on the electrodes by cell j (example in figure 2.1B). ti are all the putative
spike times over all the electrodes, aij is the amplitude factor for spike time
ti for cluster j, and ~e(t) is the background noise.

In this notation, the spike train associated with cell j is the set of times
ti where aij is different from zero. The template matching approach aims at
finding the right values for ~wj(t) and aij, i.e. to find where each cell spiked.
Almost all the template-matching based methods try first to find the value
of the templates, and then the values of aij. Depending on the algorithm,
the amplitude values can only be 0 or 1, or can take any continuous value.
We will review these methods in subsections 2.4.3 and 2.4.4.

2.4.1 Template extraction
To estimate the templates, most methods usually rely on clusters extracted
from the recording using one of the methods described above. Each cluster
corresponds to a set of snippets in the extracellular data. The snippets of a
given cluster are supposed to be realizations of action potential of a single
cell. We want to extract a canonical representative (i.e. a template). A
naive method would be to consider the average waveform of these snippets.



2.4. TEMPLATE MATCHING APPROACHES 39

However, because averaging is very sensitive to outliers, if some of the snip-
pets also include overlapping spikes from other cells, they might distort the
estimate of the template. Two solutions have been developed to circumvent
this issue. The simplest (and fastest) one is to take the median at each time
point instead of the mean (Marre et al., 2012; Yger et al., 2016). The median
is way less sensitive to outliers than the mean. This method usually solves
the issue of overlapping spikes.

Another solution is to model the extracellular signal from the clustering
result:

~s(t) =
∑
ij

bij ~wj(t − ti) + ~e(t) (2.2)

Notations are similar to equation 2.1, except that bij are binary variables
such that bij is set to 1 if ti is associated to cluster j, and to 0 otherwise.
Here the unknown variables are the templates ~wj(τ). Under these conditions,
it is possible to find the templates that will fit the extracellular data best,
by minimizing the following square difference (Pillow, Shlens, Chichilnisky,
et al., 2013; Ekanadham et al., 2014):

min
~w

∥∥∥∥~s(t) −
∑
ij

bij ~wj(t − ti)
∥∥∥∥2

2
(2.3)

The two methods seem to give similar results1 although, in theory, the first
approach is less sensitive to noise, whereas, the second one is less sensitive
to strong correlations between cells (i.e. overlapping spikes). This is due to
the fact that taking the median is a way to minimize the `1-norm between
the different snippets and the template, while equation 2.3 is a minimization
of a `2-norm.

2.4.2 Finding the spike trains
Once the templates are found, we need to find when they appear on the
extracellular signal. For this, template matching methods usually use algo-
rithms similar to projection pursuit (Friedman and Tukey, 1974), although
with different criteria for acceptance and stop). Most of them can be sum-
marized as an iterative greedy approach with the following steps, for a given
time chunk (illustrated in figure 2.1A):

1 Find the template that matches best the raw data. If amplitude is
allowed to be different from 1, find the best matching amplitude.

1See http://phy.cortexlab.net/data/sortingComparison/ for a direct comparison on
some synthetic ground-truth datasets
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Figure 2.1: The template matching approach. A. Illustration of the iter-
ative template matching approach. The extracellular signal (in blue, shown
for 20 electrodes) is matched iteratively with a sum of templates. At each
step, a template is added to the signal (red) to match better the data. At
the end, all the spikes are fitted by a template, and the sum of templates
(red) predict very well the data (blue). B. Example of a single template over
16 electrodes. C. Example of amplitude values fitted to the data for one
template, as a function of time. Gray lines represent the average amplitude
over time, and the minimal amplitude over time (see text for details).

2 Define a criterion to accept the template. It can either be about the
quality of the fit to the raw data, or about the value of the best ampli-
tude, or both.

3 If the template is accepted, subtract it from the raw data. Then go
back to the first step.

The different algorithms that have been proposed differ mostly in the accep-
tance criterion, and in the possibility to have amplitude different from 0 and
1 or not.

One common issue that needs to be mentioned before comparing the ap-
proaches is sampling jitter. When a cell emits a spike, the spike time may
peak at a time t + dt, where t is the closest time point sampled by the
data acquisition, and dt is the time difference between the true spike time
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and t, smaller than the acquisition period. As a result, in template match-
ing approaches, a template will be matched at time t to explain a spike that
occurred at t+dt. The compensation of this dt is necessary (McGill and Dorf-
man, 1984) when one does not use a high sampling frequency. For example,
Prentice et al. (2011) use linear interpolations, Pillow, Shlens, Chichilnisky,
et al. (2013) use local approximations based on Taylor expansions and Yger
et al. (2016) use similar expansions (see also (Marre et al., 2012) where this
issue is mentioned). Additional solutions, such as polar expansions, were
developed by Ekanadham et al. (2011).

2.4.3 Approaches with binary amplitudes
Segev et al. (2004), Pillow, Shlens, Chichilnisky, et al. (2013) and Franke,
Quiroga, et al. (2015) assume that the amplitude of a template is always equal
to 1 (aij ∈ {0, 1} in equation 2.1). Segev et al. (2004) keep a template if it
improved the prediction of the extracellular signal by the sum of templates,
i.e. if subtracting it to the raw data led to a reduction in variability that
passes a given threshold. This threshold is needed to avoid overfitting the
noise with small templates. Pillow, Shlens, Chichilnisky, et al. (2013) base
the criterion of acceptance on an objective function: the value of the function
had to be improved when fitting an additional spike. This function is the
sum of two terms: ∥∥∥∥~s(t) −

∑
ij

aij ~wj(t − ti)
∥∥∥∥2

2
−
∑

j

γj

∑
i

aij (2.4)

The first one is the square difference between the extracellular signal and
the sum of templates, in the metric defined by the noise covariance. It will
usually decrease if an additional spike is fitted to the signal. The second term
is a regularization on the average firing rate of each cell, and corresponds to
a cost per spike. This term decreases when an additional spike is fitted to the
signal, and reflects the prior that cells are more likely to be silent (i.e. respect
their firing rate) than to fire all the time. This second term is here to avoid
overfitting the noise with small templates. Note that, while this term is called
a prior by Pillow, Shlens, Chichilnisky, et al. (2013), it is based on the data
(on the measured firing rate for each cell). We will call it a regularization
term in the following. Conceptually, we can see that the two methods are
quite similar. If we whiten the extracellular signal before template matching,
then the first term in the objective function of Pillow, Shlens, Chichilnisky,
et al. (2013) is equivalent to the square difference between the extracellular
signal and the sum of templates, which is exactly what Segev et al. (2004) use.
When Segev et al. (2004) then compare the reduction of this square difference
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to a threshold, this threshold can be compared to the change of the second
term in the objective function of Pillow, Shlens, Chichilnisky, et al. (2013),
which reflects the regularization on the firing rate. The method of Pillow,
Shlens, Chichilnisky, et al., 2013 is more elaborate because the regularization
term can change from one cell to the other, while the method of Segev et al.
(2004) uses the same threshold for all cells. However, it seems that the exact
regularization values does not change much the results of the spike sorting
(Pillow, Shlens, Chichilnisky, et al., 2013). Therefore, we expect that these
algorithms should give similar results. More recently, Franke, Quiroga, et al.
(2015) used a relatively similar approach but allowed fitting two templates
at the same time. This additional feature leads to a better estimation in the
case of overlapping spikes.

2.4.4 Approaches with graded amplitudes
Other methods have assumed that a template can be scaled up or down ev-
ery time the cell spikes: they assume that the amplitude aij can take other
values than 0 or 1 in equation 2.1. Prentice et al. (2011) assume that the
spike amplitude for a given cell follows a Gaussian probability distribution,
whose mean is equal to 1. The standard deviation of the distribution is esti-
mated from the previously found cluster. Then, they maximized an objective
function that has two terms: the first one is the same as the one of Pillow,
Shlens, Chichilnisky, et al. (2013), i.e. the difference between extracellular
signal and the sum of templates in the noise covariance metric. The second
one is a regularization term that reflects two facts. First, an amplitude closer
to 1 is more likely than a very small, or a very big one. Second, a template
with a high firing rate is more likely than another one with a low firing rate.
By balancing these two terms, the optimization process avoid to add a lot of
templates with small amplitudes that are highly unlikely. It also avoid to add
a lot of templates associated to units with low firing rates. This second term
can thus be understood as a combination of two regularization constraints:
one over the amplitudes, and another one over the firing rates.

Marre et al. (2012) and Yger et al. (2016) also allow amplitude variations,
but the acceptance criterion was different: after having found the amplitude
that best matches the extracellular signal, the template was kept if the am-
plitude was between thresholds, amin and amax. At first sight, this criterion
seems surprising since it does not depend on the improvement in the quality
of the fit. In fact, the process of finding the best amplitude is by itself an
estimation of the improvement of the fit. For a given iteration, if we note
~r(t) the extracellular signal that remains to be fitted (i.e. after subtraction of
the templates fitted in the previous iterations), and ~w(t) the new candidate
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template that needs to be fitted, then the best matching amplitude a will
be found by minimizing (~r(t) − a~w(t))2. It can be shown that, if this tem-
plate is accepted, the square difference will decrease by a2(~w(t))2. In other
algorithms, this decrease of the square difference has to be larger than the
increase of the regularization term for the template to be accepted. Setting
a minimal amplitude is therefore equivalent to having a regularization term
that is different for each cell, but constant as a function of the amplitude of
the spike (similar to what was done by Pillow, Shlens, Chichilnisky, et al.
(2013)). The other threshold for maximal amplitude is less important, and
only plays a role to avoid very high, unrealistic values.

The advantage of having an amplitude threshold as a parameter, instead
of a threshold for improvement in the goodness of fit, is that this parameter
is much more intuitive for the user: we can figure out reasonably well what
a minimal amplitude of 0.4 or 0.8 means. Thresholds on goodness of fit are
less easy to understand. Furthermore, by looking at the set of amplitudes
fitted over time, we can get a sense of the right values for these amplitude
thresholds. If the minimal amplitude threshold is too low, the template is
also fitted on noise, with small amplitudes which are clearly different from
the amplitude of real spikes, that are close to 1. When we labeled the pairs
of spikes with refractory period violations, we often see that most of them
involve one of these spurious fits. It is therefore easy to readjust the threshold
to a correct value. These thresholds can also be made time dependent, as can
be seen in figure 2.1C. This gives more flexibility to process non-stationary
data while keeping understandable parameters. Of course, the disadvantage
of this method is that the algorithm is not expressed as the minimization of
a cost function.

2.4.5 Different algorithms correspond to different as-
sumptions about spike amplitude distributions

Can all these methods be expressed with an objective function having a sim-
ilar structure? As we showed before, all the three methods discussed above
(Prentice et al., 2011; Marre et al., 2012; Pillow, Shlens, Chichilnisky, et
al., 2013) aim at minimizing the square difference between the extracellular
signal and the sum of fitted templates. The difference lies in the regulariza-
tion term, which reflects an assumption about the possible amplitude for the
spike. More formally, the quantity we want to minimize is:

min
aij

∥∥∥∥~s(t) −
∑
ij

aij ~wj(t − ti)
∥∥∥∥2

2
− λ R

(
{aij}

)
(2.5)
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where the first term is the square difference between the data and the recon-
struction model, R denotes the regularization function over the amplitude
values aij and λ is a free parameter (i.e. trade-off between the two terms).

In (Prentice et al., 2011), the regularization term reflects an assumed
Gaussian distribution for the amplitude. In (Marre et al., 2012), the ampli-
tude thresholds might reflect an assumption of flat amplitude distribution
between the minimal and maximal amplitudes, and 0 elsewhere.

With a similar approach, Ekanadham et al. (2014) use a `1-minimization
algorithm to find the right amplitudes. This `1-minimization is equivalent
to assuming that the spike amplitude distribution that has the form of a
power law, i.e. 1/(ε + a)p. The form of this distribution gives an advantage
to small amplitudes. As a consequence, this algorithm outputs a lot of small
amplitude spikes, and this is later corrected by removing all the spikes whose
amplitude is smaller than a given threshold. The threshold is estimated a
posteriori by fitting a Gaussian distribution to the amplitude distribution
found empirically.

One way to summarize the difference between these three methods is
therefore to say that they differ in their assumption on the amplitude dis-
tribution. Prentice et al. (2011) assume a Gaussian distribution, Marre et
al. (2012) and Yger et al. (2016) assume a flat distribution between some
thresholds, Ekanadham et al. (2014) and Pachitariu et al. (2016) assumed a
power-law distribution in the core of the algorithm, but corrected it later on
with a Gaussian distribution.

2.4.6 Caveats when minimizing an objective function
While this is an intuitive way to explain the differences between the different
algorithms, it has to be noted that some sorting algorithms do not directly
minimize the objective function described above. For example, in both (Pren-
tice et al., 2011) and (Marre et al., 2012), during the iterative process, the
amplitude was chosen as the one that best matches the data, without taking
into account the regularization term on the amplitude values. Formally, the
amplitudes were chosen to be the solution of:

min
aij

∥∥∥∥~s(t) −
∑
ij

aij ~wj(t − ti)
∥∥∥∥2

2
(2.6)

A direct minimization of the total objective function, including the regu-
larization term, would have biased all the amplitudes towards 1 since the
amplitudes would have been the solution of:

min
aij

∥∥∥∥~s(t) −
∑
ij

aij ~wj(t − ti)
∥∥∥∥2

2
− λ

∑
ij

log
(

p(aij)
)

(2.7)
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where λ is a free parameter and p(aij) is the probability density function
of the amplitude values. This bias affects the quality of the fit, and can
lead to fitting other templates where templates have been fitted with biased
amplitudes. For example, figure 2.2A shows a comparison of several errors
function used while optimizing the amplitude of a given waveform, displayed
in figure 2.2B. As we can see, the choice of the error criteria can have a strong
impact on the “optimal” amplitude, leading to more or less pronounced resid-
uals (see figure 2.2C). To avoid this, it is necessary to take the amplitude
value that best matches the data, without any regularization, and only use
the regularization to decide afterwards whether this template should be kept
or not.
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Figure 2.2: Illustration of biased amplitudes toward 1 when minimizing the
log-likelihood. A. Comparison of the error function used for the optimiza-
tion of the amplitudes. Mean squared error of the residual, as described in
equation 2.6 (blue). Penalty which comes from a regularization with a Gaus-
sian distribution on the amplitude values (red). Log-likelihood, as described
in equation 2.7 (green). The dotted vertical lines indicate the minimum of
each of these error functions. B. Illustration of the results of the fit, with
optimal scaled waveforms for each error function superimposed onto the raw
data (gray), color-coded as in A. C. Residuals (fit minus raw data) for each
of those error functions, color-coded as in A.
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2.4.7 Assumptions behind the template decomposition

An important question is whether template matching algorithms can always
replace clustering algorithms, or if they have some intrinsic limitations that
make them less flexible than clustering. This is still an open question, and
only direct comparisons between the different approaches, in cases where
the true solution is known, will tell us what is the best approach (Yger et
al., 2016). Here we would like to give some intuition about how the main
assumptions of template matching approaches can translate in the feature
space that clustering approaches use.

In the template matching approach, the noise is supposed to be indepen-
dent of the templates. In the case where no amplitude variation is allowed,
it means that the variability in the snippets always comes from the same
noise source. In a given feature space, it means that all the clusters should
be elongated in the same directions. This is illustrated in figure 2.3A: while
the clusters have different centers, they are all ellipses extended in the same
directions.

If the spike amplitude is allowed to change, this means that, in a feature
space, each cluster has two sources of variability: a common one, which
corresponds to the noise, and another one that is specific to each template.
The second one is constrained to be in the direction of the template, which
is approximately the cluster center. Therefore, in a feature space, it means
that the clusters have now noise in common directions, but also an elongation
that will follow the arrow that connects the point 0 in the feature space, and
the center of the cluster (figure 2.3B). This is more realistic than the previous
assumption, but it is not clear whether this gives a good account of all the
variability found for each cluster.

If we were to use template matching only on isolated spikes, we could also
define areas in the feature space where a point is assigned to a given tem-
plate. A snippet is always assigned to the best matching template. In some
algorithms (Pillow, Shlens, Chichilnisky, et al., 2013), it means this template
is closest in the sense of the least square difference. In the feature space,
this means that a point will always be assigned to the closest centroid. We
can use this rule to define equivalent cluster borders (figure 2.3C). In other
algorithms (Prentice et al., 2011; Marre et al., 2012), only the spike shape is
used to define the best matching template, and then the algorithm decides
whether the best matching amplitude is plausible or not. This defines dif-
ferent shapes for the border: a straight line from the 0 point to separate the
regions of preferred spike shape and some circles to define the allowed ampli-
tudes, following the approach of Marre et al., 2012. Figure 2.3D illustrates
these shapes.
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Figure 2.3: Illustrations of the assumptions of the template matching in
the clustering space. A. Example of two clusters in the feature space, when
assuming that they are generated by templates with no amplitude variation.
B. Same than A, but now with the assumption that the template can vary
in amplitude according a Gaussian distribution. C. Equivalent borders (see
text) for the clusters for a template matching that chooses the template
closest to the spike. D. Equivalent borders in the case where the template is
chosen based on the spike shape, and that only a certain range of amplitude
is allowed. See text for details.

So the competition between the different templates defines some natural
borders. There is no guarantee that this is the best and proper definition for
the cluster borders. Future works will need to address this issue by comparing
the results of template matching and clustering algorithms. However, the
intuitions we have drawn here can be used to compare more intuitively pure
clustering-based versus template matching approaches.
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2.5 Conclusion: challenges ahead
The methods described here have enabled to sort spikes from a large number
of cells and electrodes (Yger et al., 2016; Pachitariu et al., 2016). However,
there are still several challenges that need to be overcome. First, most of the
algorithms described here have been tested on in vitro data, in the retina
(but see (Ekanadham et al., 2014; Franke, Quiroga, et al., 2015; Yger et
al., 2016) for in vivo tests). In vivo tests on silicon probes with a large
number of recording sites close apart will be necessary. A possible required
improvement is a better description of the cluster (Yger et al., 2016). As
we explained above, the template matching makes some assumptions about
the shape of the clusters, and it is not clear if these assumptions are verified
or not in vivo. A related issue with spike sorting is the need to have more
ground truth data, i.e. recordings where at least one cell is recorded with
another technique, so that we know when the spikes occur. These data are
essential to test spike sorting algorithms (Neto et al., 2016).

A second point is that template matching does not replace clustering. All
the methods described require a set of clusters, from which the templates can
be extracted. The clustering can do mistakes that can be tolerated, as long
as they do not distort the template estimation. But a decent performance in
clustering is nonetheless required. So one still needs an efficient way to clus-
ter. Ekanadham et al. (2014) and Pillow, Shlens, Chichilnisky, et al. (2013)
have proposed to do back and forth between template estimation and finding
the amplitudes. This is an extension of the approach we described previ-
ously: after finding the amplitudes, they are used to estimate the templates
again with a least square method. Then this new set of templates is fitted
once again to the data. Note that this global iteration does not remove the
need for an initial clustering, so that the templates are properly initiated (at
the very least, they need to be in sufficient numbers). The interest of doing
multiple iterations of template estimation and matching is not completely
clear. While Ekanadham et al. (2014) claim that it is crucial, Pillow, Shlens,
Chichilnisky, et al. (2013) mention that there is only a marginal improvement
after the first pass. Another modification of the iterative approach can be
found in a work of Franke, Quiroga, et al. (2015), where solutions beyond
this iterative approach have been developed that can lead to a better sorting
of synchronous spikes.

Another challenge is the time spent on manual curation. Even the best
clustering makes mistakes, and some cells will be represented by more than
one template. Finding all the pairs that need to be merged require a sig-
nificant amount of time for hundreds of electrodes. Methods need to be
developed to make this kind of tasks as automated as possible, so that the
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time spent by the user is reduced to a minimum (Yger et al., 2016).
Nowadays, new devices with CMOS components now allow recordings

from thousands electrodes simultaneously (Berdondini et al., 2005; Fiscella
et al., 2012; Müller et al., 2015; Hilgen et al., 2016), and it remains to be seen
it these algorithms can scale up and process such a large amount of data.
We need to be sure that the time spent on manual curation can remain small
enough that we can get thousands of spike trains in a decent amount of time
(see preliminary evidence that it might be the case by Yger et al. (2016)).

Finally, one problem that needs to be properly tackled by the new gener-
ation of spike sorting algorithms appears during long lasting chronic record-
ings (Nicolelis et al., 2003). It is indeed well known that because of tis-
sue changes, or because of experimental protocols, recordings can be non-
stationary and drifts in the neuronal waveforms can appear over long time
scales. For any template matching based approach, one should rather con-
sider spatio-temporal kernels that could evolve over time, and be distorted.
To some extent, some of these deformations can be dealt with by allowing
graded amplitudes for the templates (see for example figure 2.1C, where the
amplitude evolves over time). However, a more robust framework is required
for a better understanding of the drifts, especially because latest algorithms
(Yger et al., 2016; Pachitariu et al., 2016) seem to pave the way toward real-
time spike sorting. Such an understanding would be crucial in the context
of accurate online spike sorting.
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Chapter 3

Online spike sorting

We have seen that efficient algorithms have been developed to estimate the
individual spiking activity of multiple neurons from voltage traces recorded
with dense and large-scale microelectrode arrays. They are able to reach good
performances both on synthetic and real (in vitro and in vivo) ground-truth
recordings. While the associated software are now available as standardized
toolboxes, it is worthwhile noticing that all of them are meant to analyze the
data offline, i.e. after they have been recorded experimentally.

While spike sorting is a computationally expensive task, parallel and dis-
tributed computing allow analyzing recorded data in a time comparable to
the recording duration. This suggests that they could be analyzed online,
i.e. during the time course of the experiment. Online spike sorting would
open important possibilities to better probe dynamically the responses of
large-scale neuronal populations with closed-loop experiments.

Here I present a new generic toolbox for online spike sorting which al-
lows resolving the spike trains of each recorded cells in firm real-time, i.e.
infrequent deadline misses are tolerable. This toolbox is an extension of an
already well-established and highly used offline algorithm, called SpyKING
CIRCUS (Yger et al., 2018) to which I contributed. I present a modular and
distributed architecture which is necessary to split the task into multiple
processes and handle synchronous communications between them. Finally, I
validate the performance accuracy of this software with both synthetic data
and real ground-truth recordings.

This chapter corresponds to an article in preparation in collaboration
with Pierre Yger and Olivier Marre.
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3.1 Introduction
In recent years, multi-electrode arrays and large silicon probes have been
developed to record simultaneously from hundreds of electrodes packed with
a high density, both in vitro (Berdondini et al., 2005; Fiscella et al., 2012;
Lambacher et al., 2004) and in vivo (James J. Jun et al., 2017). Such record-
ings should allow neuroscientists to reconstruct, with the help of signal pro-
cessing algorithms, the individual activity of many neurons spiking in the
vicinity of those electrodes, and thus have access to the simultaneous activ-
ity of hundreds of cells, at the single spike resolution. However, obtaining
this information is a very complex problem of source separation, also known
as “spike sorting” (see (Lefebvre et al., 2016) for a review on the subject).
Driven by the constantly increasing density of the electrodes, newly devel-
oped algorithms (Pachitariu et al., 2016; James J Jun et al., 2017; Lee et al.,
2020; Yger et al., 2018; Hilgen et al., 2016) have focused on the need of repro-
ducibility, validation, speed and automation (Magland et al., 2020; Buccino
et al., 2019). Nowadays, many of these software are available as standardized
toolboxes with various pros and cons, depending on the implementation de-
tails that can strongly differ from one to the other. However, it is worthwhile
noticing that all of them are meant to work offline, i.e. to be launched after
the data have been acquired.

Online, automated and scalable spike sorting would open important pos-
sibilities to better probe dynamically the responses of large-scale neuronal
populations. Closing the loop between the recorded neurons and the ex-
ternal stimulation, allowing modulation of the experiment on-the-fly as a
function of the recorded responses, would open new types of experiments
(Benda et al., 2007; Bölinger and Gollisch, 2012; Gollisch and Herz, 2012).
These closed-loop paradigms can be very useful, for example for neurofeed-
back (Sitaram et al., 2017). So far, very few attempts have been made for
online spike sorting (Rutishauser et al., 2006; Franke, Natora, et al., 2010;
Nguyen et al., 2014). In most cases, online sorting was simply achieved by
deriving simple decision rules based on the spike templates (Guenther et al.,
2009), but none of them was applied in the context of high-density electro-
physiology. While online spike sorting would bring much more information
than naïve estimation of the average firing rate by voltage thresholding on
a single electrode (for example when decoding visual inputs from multiple
neurons in the human temporal lobe (Quiroga, Reddy, et al., 2007)), most
of the brain machine interfaces still rely on the latter, because of its simplic-
ity (Christie et al., 2015). Note that some authors have shown that voltage
thresholding can be sufficient for specific applications such as neuroprosthetic
control, thanks to the rather low dimensional neural activity (Fraser et al.,
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2009; Todorova et al., 2014; Trautmann et al., 2019).
The density of modern probes advocated for a change in the classical

pipeline of spike sorting algorithms (Lefebvre et al., 2016). Because channels
are recording the activity of many cells, the amount of so-called spatiotem-
poral overlaps between simultaneously firing neurons is now rather large in
the context of high-density probes. Therefore, all algorithmic approaches
solely based on clustering (Lefebvre et al., 2016; Einevoll et al., 2012) can-
not be applied online, or at the cost of very poor performance. This is for
example the case of fuzzy C-mean clustering (Oliynyk et al., 2012), or den-
sity stream clustering (Rutishauser et al., 2006)). Since these algorithms can
not solve the problem of overlapping spikes, to avoid this issue, other solu-
tions have been proposed, such as the use of linear filters (Franke, Natora,
et al., 2010; K. H. Kim and S. J. Kim, 2000; Wouters et al., 2018). However,
none of them has yet been properly tested and validated in the context of
high-density recordings.

Here we present a generic toolbox for online spike sorting of both in vitro
and in vivo recordings. It is an extension of an already well-established
and highly used offline algorithm, called SpyKING CIRCUS (Yger et al.,
2018), based on a combination of density-based clustering and greedy tem-
plate matching. In order to achieve online accurate spike sorting in the
context of high density electrophysiology, we designed a modular and dis-
tributed Python architecture to handle synchronous communication among
processes, identified as key computational step of our offline algorithm. We
then validated our online software first with synthetic data, before compar-
ing its performance with the one obtained by its offline counterpart, on real
ground-truth recordings (Spampinato et al., 2018).

3.2 Results

3.2.1 A distributed architecture
To better understand what the current problems with online spike sorting
are, one should note that most of the existing accurate approaches for offline
spike sorting (Pachitariu et al., 2016; James J Jun et al., 2017; Lee et al.,
2020; Yger et al., 2018) can be decomposed conceptually in two main steps
(see figure 3.1A). First, assuming data have been appropriately pre-processed
(mostly high pass filtered and whitened), a subset of the spikes is projected in
a low-dimensional space and characterized by a small set of numbers/features.
In such a reduced space, a clustering algorithm is launched on this subset in
order to identify the centers of the clusters. These centroids are the so-called
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“templates”, i.e. spatiotemporal motifs characterizing the effect of a single
spike on the nearby extracellular recordings. Second, once this dictionary of
templates has been found, the templates can be matched to the raw data
in an iterative and greedy manner in order to resolve the spatiotemporal
overlaps (Yger et al., 2018).

Some algorithms optimize both the spike times and the templates alter-
natively (Pachitariu et al., 2016), and thus need to do iterative passes over
the data before convergence. However, in the case of SpyKING CIRCUS, if
we assume that the dictionary of templates is available (figure 3.1A), assign-
ing labels to newly incoming spikes can be performed online and on-the-fly.
This property motivated all the previous approaches trying to implement
the templates as linear filters on Field Programmable Gate Arrays (FPGAs)
(Franke, Natora, et al., 2010; K. H. Kim and S. J. Kim, 2000; Wouters et al.,
2018). However, in this paper, we decided to tackle the problem from a differ-
ent angle, and adapt a well-established toolbox for spike sorting (SpyKING
CIRCUS, see (Yger et al., 2018)) in order to work online, with data buffers.
This assumes that the fitting procedure is fast enough to handle the stream
of newly incoming data buffers. To this aim, we identified the canonical com-
putations required by such a template-matching pipeline figure 3.1B. While
adapting the SpyKING CIRCUS algorithm was our primary goal, we wanted
to be as generic and flexible as possible, because there is no consensus on
what is the best workflow to perform spike sorting.

After we identified the computational blocks of our online spike sorting
pipeline (see figure 3.1B), we implemented a modular Python library to eas-
ily deploy and configure such a pipeline (see Material and methods). By
doing so, we created a distributed architecture able to turn every computa-
tion flagged in figure 3.1B into a standalone process, receiving some input
data, and sending results. Since the code has to be scalable and work in
an online context, we decided to use a Remote Procedure Call (RPC) archi-
tecture (Ben-Ari, 2006) in order to share the load among several machines
and control all processes from a single master node. More precisely (fig-
ure 3.1C), a manager can spawn Python processes Pi and distribute them
over a group of machines, depending on the load/architecture. Each process
implements what we are calling a block, i.e. a Python object able to receive
and send messages, either synchronously or asynchronously. The communi-
cations among the blocks are built on top of the ZeroMQ library (Hintjens,
2010), ensuring fast and efficient transmission of the messages. The manager
is able to control all the remote processes, and is in charge of establishing
the connection among them before the start of the algorithm.

All the blocks implemented by default are the ones needed to reproduce
the behavior of the SpyKING CIRCUS software (Yger et al., 2018) (see an
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Figure 3.1: Main computational steps of template matching based spike
sorting algorithm. A. Illustration of the canonical workflow of spike sorting
algorithms based on template matching. Extracellular signals are recorded
by a dense electrode, and then high-pass filtered to remove the Local Field
Potentials, and eventually whitened to remove spurious spatial correlations.
Then, a subset of all spikes is detected, aligned (possibly with up-sampling),
and projected into a lower dimensional space by feature extraction. A clus-
tering algorithm identifies the centroids, i.e. the templates, and constructs
the dictionary. Given the dictionary of templates, the signal is reconstructed
as a linear sum by greedy template matching methods, to obtain the spike
trains. B. The key computational steps are isolated in order to be imple-
mented in a modular manner. C. Schematic of the modular architecture
used to implement online spike sorting. Python processes can be distributed
over several machines, and communicate via ZMQ buffers.
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exhaustive list in table 3.1). To give a brief overview of the full pipeline,
illustrated in figure 3.2A, a preprocessing step (involving filtering the raw
data, then computing a whitening matrix) is followed by a spike detection
step. To detect the spikes, we need to estimate the median absolute devi-
ations θi for all channels (as running averages over time, see Material and
methods), and use these values to get the threshold crossings over all chan-
nels, called “peak times”. The peak times are then used during a clustering
step, in the following manner. First, snippets of data around these events are
collected on single channels, simply to get a picture of what typical wave-
forms look like. The snippets are up-sampled and realigned (see Material
and methods), and once enough have been found, a Principal Component
Analysis (PCA) is performed to reduce the dimensionality (see Material and
methods). Once the PCA matrix has been defined, aligned and reduced spa-
tiotemporal snippets are collected, pooled with respect to the channel where
they show the highest peak (as a divide and conquer approach, see (Yger
et al., 2018)), and independent density-based clusterings are launched when
enough snippets are collected for each pool/channel (figure 3.2A). As soon as
the independent clusterings are finished, templates (defined as the centroids
of the clusters) are sent to a template updater node, in charge of keeping the
dictionary of templates up-to-date, and discarding any possible duplicates.
This node works asynchronously, receiving templates on-the-fly when they
are sent by the clustering processes. Finally, the template matching step
is combining the peaks, the filtered data and the templates in order to re-
construct the signal as a linear sum of templates, and for each of the fitted
spikes, outputs a template identifier and an amplitude coefficient (see (Yger
et al., 2018)).

Since the code is meant to work online, it has to deal with data buffers
captured on-the-fly by the acquisition board. By definition, we are aiming
for what’s called “soft” real-time (see figure 3.2B): there is no hard limit for
the time devoted to process one data buffer (and thus there could be some
lag). However, on average, the code should process the data buffers on time.
Note that the size of the buffers can be customized or constrained by the
manufacturer, but in the following we always worked with incoming data
from a multi-channel acquisition board, setting 1024 data points per buffer,
at a sampling rate of 20 kHz (see Material and methods). Since the duration
of the buffer is an intrinsic limit for the lag of the system, in our case it
means that the minimal lag expected is around 50 ms. It is important to
stress that such a lag may prevent the use of such a template-matching based
architecture for experiment that may require very fast temporal resolution,
such as for example Spike Timing Dependent Plasticity (STDP) protocols
(Markram et al., 1997).
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In order to ensure the scalability of the code, we also offer the possibility,
for some identified nodes, to be multiplexed either in space or in time, with
a number of processes k controlled by the user. Indeed, we noticed that
some computation such as filtering, thresholding or even clustering (as long
as the spikes are pooled by channels) could easily be multiplexed in space,
i.e. several processes could be in charge of subgroups of channels (since the
processing are independent) (see figure 3.2C). By doing so, we can obtain a
linear speedup for these key operations. Similarly, for some operations that
may be time consuming and crucial, we offer the possibility to multiplex some
block in time, such as the peak detection or the fitters (see figure 3.2C). More
specifically, it means that instead of having one process working on all data
buffers, we have k processes and each of them is handling only 1 buffer out
of k. By devoting more processes to the computation, we are preventing any
spurious lag that could provoke successive deadline misses. This allows to
avoid congestion by having processes which work on less data that they can
handle, and deliver the results of the computations online as expected.

3.2.2 A scalable design
The modular design implemented with our Python processes is meant to
be scalable, thus offering a flexible and generic Application Programming
Interface (API) for any spike sorting pipeline that could be described with
a communication flow similar to the one of figure 3.2A. However, the major
bottleneck for online spike sorting in the context of dense probes is to ensure
that the fitting procedure (the fitter blocks) is fast enough to be able to
work in real-time. To check this, we first considered the situation where the
dictionary of templates is known, and we were only focusing on the speed
of the fitters. This is equivalent, in figure 3.2A, to remove the clustering
block (dash-dotted region) and provide directly the dictionary of template
to the fitters. Using synthetic data generated from a known set of templates
(similarly to MEAREC (Buccino et al., 2019), see Material and methods),
we tested our algorithm in two specific configurations, that could slow down
this fitting step. First, by increasing the number of channels, from 4 to 1024,
keeping the density of cell constant, to 0.25 cells per channels. Secondly, by
keeping the number of channel constants at 256 and increasing the density
of the cells.

To process data online, each node should process one second of data in
less than one second which defines a real-time limit. As can be seen in fig-
ure 3.3A, all the nodes involved in the online procedure are operating below
the real-time limit, when the number of channels is varied and the density
(i.e. the number of cell per channel is kept constant). For the blocks that
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Figure 3.3: Scalability and real-time performance. A. Duration (in second)
of all the key computational blocks implemented by the algorithm, as func-
tion of the number of channels. For some blocks (filter, detector, fitter), we
used 4 processes by multiplexing either in space or time. The density of cell
is kept constant, at 0.25 cells / channel. B. Same but when the total number
of cells is varied, while the number of channels is kept constant at 256.

have been multiplexed (filtering, peak detection and fitting), we indicated
the number of processes devoted, but more could be used if necessary. Com-
bined all together, the architecture is thus able to handle 1024 channels and
256 templates online, assuming all the processes involved (19 including the
reader which simulate the data acquisition) are properly distributed among
machines. It is important to note that the benchmark here is also assuming
“realistic” firing rates for the templates, i.e. 1 Hz. Similarly, we can see
in figure 3.3B that the software is able to perform online sorting when the
number of channels is kept fixed, at 256, and the cell density is varied. With
256 channels, the major bottleneck is the fitting procedure and it can work
online if 4 processes are devoted to the task, with up to ' 640 templates.

3.2.3 Validation with synthetic dataset
We benchmarked the performance of this online template-matching pipeline,
similar to what have been done in (Yger et al., 2018). This pipeline assumes
that the clustering procedure can be done once for all at the beginning of one
experiment to acquire all the templates. We generated synthetic recordings
where artificial templates are used to generate ground truth dataset, and
spike times are known and controlled by the user (see Material and methods,
and figure 3.4A, this is similar to what is done for example with MEAREC
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Figure 3.4: Performance of the greedy template matching procedure. A.
Generation of synthetic dataset. Artificial templates are generated (see Ma-
terial and methods), with spike times driven by inhomogeneous Poisson Pro-
cesses, and then added to noise at the appropriate times. B. 300 ms of
reconstruction (red curves) of the artificial dataset (gray curves) by the algo-
rithm, for a subset of channels, assuming the correct dictionary of templates
is provided to the template matching step. C. Error rates (see Material and
methods) for 768 artificial templates with various noise levels. D. Errors
obtained on the ground truth recordings by the online sorting and the offline
spike sorting algorithm SpyKING CIRCUS (left). Online errors as function
of the extracellular amplitudes of the spikes (right).

(Buccino et al., 2019)). Since all the computational blocks are very similar
if not identical to the ones of the offline algorithm, we do not expect a big
difference in term of quality of the sorting. Figure 3.4B shows the quality
of the reconstruction, superimposing raw data (gray curves) with the recon-
struction performed by the template matching algorithm (red curves). To
get a more quantitative result, we computed the error (defined as the aver-
age over false negative rate and positive predicted value, see Material and
methods) for 768 randomly generated templates injected with Poisson spike
trains (firing rates of 1 Hz), and recorded with 256 electrodes during 10 min
(sampling rate of 20 kHz). As shown in figure 3.4C, the average error rate is
at around 1 %, in line with numbers obtained for the offline implementation.
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3.2.4 Validation with ground truth dataset
In order to assess the performance of the software in a more realistic situ-
ation, we tested the software on ground-truth recordings already published
(Spampinato et al., 2018) (see Material and methods). These are 5 min long
recordings obtained with mice retina in vitro, and during which the activity
of one retinal ganglion cells is recorded juxtacellularly, simultaneously to the
extracellular recordings. Because the online pipeline might take some time
to obtain the templates, every recording was looped twice, and performances
were evaluated only on the second portion, where templates are considered
to be acquired. The error rate is quantified as described in the Material and
methods section, and in figure 3.4D, we compared the performances of the
online software, presented here, with the ones of the offline sorter already
published (Yger et al., 2018). As can be seen in the left panel, the perfor-
mances are roughly similar for the two sorters, with a slight advantage for
the online pipeline at the cost of a higher variability. In the right panel, we
show that the performances do not strongly depend on the amplitudes of the
spikes.

3.2.5 Drift tracking
In the previous sections, we always assumed that the dictionary of templates
can be acquired once for all at the beginning of the experiment. While
such an hybrid “offline/online” approach is in line with most of the solutions
implemented so far for online spike sorting relying on FPGAs or linear filters
(Valencia and Alimohammad, 2019; K. H. Kim and S. J. Kim, 2000; Wouters
et al., 2018; Saeed and Kamboh, 2013; J. Park et al., 2017; Navajas et al.,
2014), it requires strong assumptions. First, as can be seen in figure 3.5A
(top), it implicitly assumes that the recording are stationary enough such
that the dictionary of template can be valid during the whole course of the
experiment. Second, it also assumes that the dictionary of templates acquired
before the experiment is complete, i.e. that it represents the full diversity
of all the cells active afterwards. In a real online experiment, this can be
problematic, especially if users want to close the loop and display new stimuli
as function of the population responses (see figure 3.5A bottom). These new
stimuli may activate new cells, which are likely to not be present in the
dictionary.

To prevent such a situation, we implemented an extension of our density-
based clustering to work with data stream. In contrast with the previous
“offline/online” approach, this entire online mode can collect spikes on-the-
fly, and update the dictionary of templates over the course of the experiment.
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For this purpose, we relied on the concept of micro clusters (Silva et al., 2013;
T. Zhang et al., 1996; Aggarwal et al., 2003; Cao et al., 2006), offering a
compressed representation of the cluster feature, extended into the temporal
domain. More precisely, we adapted our clustering algorithm to the meth-
ods described in (Amini and Wah, 2011). After an initial clustering step,
every cluster is described by a set of so-called features CF (see Material and
methods). To summarize, the feature vector CF keeps track of how large
the cluster is, and what is its center and extend. A micro cluster simply
extends the definition of the feature vector CF into the temporal domain
by using a fading memory, giving more weights to the data points recently
added to the cluster (see Material and methods). Micro clusters can then be
divided into two categories: the core micro clusters, i.e. the ones that are big
enough, representing many spikes, and the outliers (few spikes). These out-
liers can be noise (and be pruned over time), or clusters that are building up,
and eventually will become core micro clusters over time, and thus be added
into the dictionary of templates. Figure 3.5B shows the representation of
cores and outliers micro clusters, with the underlying data points, weighted
as function of their arrival times. The later, the smaller the dots, and the
less they contribute to the estimation of the micro-clusters (see Material and
methods). The distinction between core and outliers is just made based on
a density criteria (see Material and methods).

Regularly, when enough new spikes have been collected, we looked at the
micro-clusters in order to decide if new templates have emerged, and/or if old
ones are drifting and should be updated. This is illustrated in figure 3.5C,
which depicts the results of the clustering at time t0 and then later on, at
time t1, after enough new events have been collected. The software provides
a module where users can specify how they want to ensure the continuity of
the labels over time, i.e. what are the rules that should be used to decide
if clusters at time t1 are new clusters, or drifting ones already visible at
t0. While in practice, as in (Shan et al., 2017), we could make use of the
history of the centroids to establish the matches, the default implementation
is simpler. As shown in figure 3.5C, we assume that between two clusterings,
performed on the core-micro clusters at two consecutive times, a cluster is
“drifting” if the position of its centroid ci at time t1 is close to a centroid cj

that was visible at time t0. If this is the case, then the template is updated.
Otherwise, if no centroids visible at t0 are found in the vicinity of ci at t1, then
we assumed this is a newly formed cluster, and it is added to the dictionary
of templates.
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Hybrid o�ine/online approach

time

Pure online approach

online spike sorting (matching)
obtain the dictionary (clustering)
data collection (thresholding)

core micro cluster
outliers micro cluster
weighted data points

same cluster iff
    | ci - cj | < r

                           new cluster added otherwise

core micro clusters at time t0
core micro clusters at time t1

Figure 3.5: Online tracking of the drifts. A. Illustration of the two strate-
gies for online spike sorting. Top: we sequentially collect data, then estimate
the dictionary of templates using the collected data, before launching the fit-
ting procedure, on-the-fly, with the static dictionary of templates obtained.
Bottom: data collection, estimation of templates and fitting are all running
simultaneously, such that newly collected data can modify the dictionary (up-
dates), and be propagated at the template matching level. B. Compressed
representation of the clusters, via the concepts of micro clusters. Every in-
coming spikes (black point) is either used to refine the definition of a core
micro-cluster (if close enough), or kept in memory. Influence of every spike
is weighted by a fading memory function (see Material and methods). Core
micro-clusters (red circles) are micro clusters that are dense, while outliers
micro clusters are the ones that are sparse (blue circles). C. Tracking of
clusters.
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3.2.6 Online visualization
In order to visualize the output of the algorithm, we built a modular Graphi-
cal User Interface (GUI) allowing the users to get a sense of what is happening
online. Because the algorithm had to deal with large amount of data in case
of thousands of channels, we decided to rely on a fast and optimize Python
library called VisPy (Campagnola et al., 2015), similarly to phy (Rossant
and Harris, 2013). The library is designed for high-level visualization of very
large dataset, harnessing the power of the Graphical Processing Unit (GPU),
using OpenGL (Shreiner et al., 2013). As can been seen in figure 3.6A, the
GUI is designed as an extra block in our Python architecture. This block
is meant to receive various data streams, listed in figure 3.6A, and adding
new visualizations should be straightforward. While several core views are
offered by the GUI, we anticipated that with online experiments, every proto-
col might require a specific view tailored to particular needs. Therefore, the
system needs to be flexible enough to ease the implementation of new views.
Figure 3.6B shows that some views are said to be “interactive”, i.e. the
content is dynamically adapted as function of the selection of the templates
made by the user, while some are not. Figure 3.6C shows a screen shot of
the online GUI, displaying some canonical properties of the fitted templates
such as firing rates, spike amplitudes or distributions of inter-spike-intervals.

3.3 Discussion
Pioneer work (Nguyen et al., 2014; Gollisch and Herz, 2012) already showed
how closed-loop optical neural stimulation can be coupled to extracellular
recordings with tens of channels and online spike sorting. However, in ad-
dition to not being properly validated with ground truth experiments, these
algorithms were not meant to be scaled up and cannot handle large numbers
of electrodes. In this work, we presented a distributed architecture allow-
ing online and accurate spike sorting for up to thousands of channels. The
software is able to reach the good performances obtained by the offline al-
gorithm SpyKING CIRCUS (Yger et al., 2018), both on synthetic and in
vitro ground-truth recordings. It thus offers the possibility to perform real
closed-loop experiments, assuming a lag of at most 100 ms is acceptable.
Results can be visualized online in a modular Graphical User Interface, and
used to modify dynamically the stimulus displayed during the course of the
experiment.

In a simple use-case, the dictionary of templates (units) is computed after
an initial period of activity controlled by the experimentalist, and then spikes
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Figure 3.6: Online visualization of the spike sorting results. A. A visual-
ization block receives various heterogeneous data buffers, in order to display
meaningful information to the user, in real-time. B. Some views are interac-
tive, i.e. the user can select a subset of templates and thus control what is
displayed, while some other are not affected by this selection. C. Screenshot
of the online Graphical User Interface (GUI), where users can customize the
views for their needs.
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are labeled on-the-fly given this static dictionary. Using greedy template-
matching, the dense extra-cellular signals can thus be reconstructed online,
and spikes be available for online analysis. However, since we anticipated
that such a simple use-case may not be robust enough to cope with non-
stationary drifts and/or complicated close-loop protocols, we implemented
our clustering algorithm in a way that it can copes with data streams, and
modify/create new templates during the course of the experiment. This
is achieved via an hybrid “online/offline” approach, where newly incoming
spikes are used to either refine the already available centroids, or kept in
memory. While enough similar spikes have been gathered, a new template is
created and added into the dictionary.

The effective tracking of individual units in presence of drifts is still a hot
topic even for offline spike sorting algorithms (Pachitariu et al., 2016; James
J Jun et al., 2017; Shan et al., 2017). While no common answer to this
problem do exists, the denser the probe, the easier it is to potentially track
the neurons over time, and appreciate the distortions of the spike waveforms
over time. This is why we designed a simple but modular framework allowing
the dictionary of templates to be modified over time. While currently the
tracking of the templates is rather simple, one could think about more clever
ways to compensate for continuous drifts.

Closed-loop experiments with online spike sorting would open the door to
several new protocols. For example, it has been shown (Benda et al., 2007)
how adaptive sampling (instead of naïve, brute force sampling of a given
parameter space) could drastically optimize the design of some key standard
stimulation protocols that allows the researcher to identify or characterize a
sensory neuron, at the beginning of an experiment. In the visual system, this
may be the receptive field of a neuron, in the auditory system its threshold
curves over sound frequencies. A study assuming closed-loop spike sorting
(Lewi et al., 2007), shows how to measure receptive fields more efficiently
but more importantly suggests an approach to do so in an optimal and most
time-saving way.

3.4 Material and methods

3.4.1 Code
The code is written as a Python package, available as an open source software
https://github.com/spyking-circus/spyking-circus-ort. By default,
all blocks behave similarly to what have been described in (Yger et al., 2018),
since the code is built on the same template-matching based algorithm. Com-

https://github.com/spyking-circus/spyking-circus-ort
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munications between blocks is based on the ZeroMQ library (Hintjens, 2010)
allowing a fast and efficient scheme for message passing, either synchronous
or asynchronous.

We advise the reader to refer to the previously mentioned paper in order
to get the fine details of the algorithm, and only the key differences will be
summarized and/or highlighted in the following. We consider Nelec channels,
acquired at a sampling rate frate. Every channel k is located at a physical
position pk = (xk, yk) in a 2D space with k ∈ {1, · · · , Nelec} (extension to
3D probes would be straightforward). The aim of our online spike sorting
algorithm is to decompose the signal s defined over time and over all channels
as a linear sum of spatiotemporal kernels or “templates” such that:

s(t) =
∑
i,j

ai,jTj(t − ti) + e(t) (3.1)

where s(t) is the signal recorded over all the electrodes at time t, Tj is the
template associated to cell j which represents the waveforms triggered on all
the electrodes when this cell elicit an action potential, {ti}i represents the
putative spike times of the cell population, ai,j corresponds to the amplitude
factor for the ith spike time and jth cluster (note that this value can be
equal to 0), and e(t) is the background noise. The algorithm can be divided
conceptually into two main steps, described below. After a preprocessing
stage, we first run a clustering algorithm to extract a dictionary of “tem-
plates” from the recording. Second, we use these templates to decompose
the signal with a template-matching algorithm. We assume that a spike will
only influence the extracellular signal over a time window of size Nt (typi-
cally 3 ms for in vivo and 5 ms for in vitro data), and only electrodes whose
distance to the soma is below r (typically 100 µm for in vivo and 200 µm for
in vitro data). For every channel k centered on pk, we define Nk

neigh as the
ensemble of nearby channels such that ∀p ∈ Nk

neigh, ‖p − pk‖2 ≤ r. In the
following, we note s[t] the discrete-time signal obtained after sampling of the
continuous-time signal s(t), and we note sk[tmin : tmax] the temporal slice of
the signal recorded on channel k between tmin and tmax.

Below are the main building blocks of the algorithms (turned into inde-
pendent computational blocks), with algorithmic details for each of them.

3.4.2 Filtering
The channels were first individually high-pass filtered with a Butterworth
filter of order three and a cutoff frequency of 300 Hz, to remove any low-
frequency components of the signals. We then subtracted, for every chan-
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nel k, the median such that medt sk[t] = 0, where medt is the median over
time.

3.4.3 Whitening
To remove spurious spatial correlations between nearby recordings channels,
we performed a spatial whitening on the data. To do so, we collected 20
s of recordings and computed the covariance matrix of the noise Cspatial,
and estimated its eigenvalues {dk}k and associated eigenvectors. From the
diagonal matrix D = diag(1/

√
d1 + ε, · · · , 1/

√
dNelec + ε), where ε = 10−18

is a regularization factor to ensure stability, and from the square matrix V
whose columns are the eigenvectors, we computed the whitening matrix W
as VDVT. In the following, each time chunks of data are loaded and then
multiplied by W.

3.4.4 Threshold estimation and peak detection
We computed a spike threshold θk for every channel k such that θk =
α MADt sk[t], where MADt is the Median Absolute Deviation over time,
and α is a free parameter. We always used α = 6. For every channel k, we
detected some putative spike times {ti,k}i which correspond to all the local
minima of sk below −θk.

3.4.5 Basis estimation (PCA)
To identify the spatiotemporal waveforms embedded in the data, we need
to reduce their dimensionality. For each channel k, we collected up to Nw
spikes at times {ti,k}i. In order to compensate for sampling rate artifacts,
we upsampled all the collected waveforms by bicubic spline interpolation to
5 times the sampling rate frate, aligned on their local minima, and then re-
sampled at frate. We performed a Principal Component Analysis (PCA) on
these centered and aligned waveforms and kept only the first NPCA principal
components. In all the calculations, we used default values of Nw = 1000
and NPCA = 5. These principal components were used during the clustering
step.

3.4.6 Density-based clustering
In order to parallelize the problem, we used a divide and conquer ap-
proach (Marre et al., 2012; Swindale and Spacek, 2014). Each time
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a spike was detected at time ti,k on electrode k, we searched for elec-
trode φ where the voltage has the lowest value, i.e. such that φ =
arg mink′ sk′ [ti,k − Nt/2 : ti,k + Nt/2]. We replaced ti,k by ti,φ in the set of
collected spike times.

So for every electrode k we collected spikes peaking on this electrode.
Each of these spikes was represented by a spatiotemporal waveform of size
Nt×Nk

neigh. Note that this pre-grouping does not assume that the spikes were
only detected on a single electrode. This clustering performed on each spike
ensemble used the information available on all the neighboring electrodes. We
projected each waveform on the PCA basis estimated earlier to reduce the
dimensionality to NPCA×Nk

neigh. During this projection, the same upsampling
technique described in the previous section was used. For every channel k, we
collected Nk

spikes spikes, and each of them was a vector of size NPCA × Nk
neigh.

The maximal number of spikes collected is defined by the user as Nspikes, and
we used a default value of Nspikes = 1000.

To reduce dimensionality even further before the clustering stage, for ev-
ery channel k we performed a PCA on the collected spikes, and kept only the
first NPCA2 principal components (in all the paper, NPCA2 = 10). Therefore,
we performed a clustering in parallel for every channel, on at max Nspikes
described in a space of NPCA2-dimension.

Every electrode k performed a local density-based clustering, as described
in (Yger et al., 2018). If the software is use in an hybrid “offline/online” mode
(see figure 3.5A), then no major difference are noticeable. As soon as Nspikes =
2000 are collected for each channel, then the density-based clusterings are
launched, and the found templates are stored in a static dictionary used
afterwards during the template matching procedure (see the two following
sections). The major difference arise from the extension to data stream, if
activated by the user. In such a mode, every cluster is turned into a core
macro-cluster, and the dictionary of templates will be modified during the
course of the experiment (see Online clustering section).

3.4.7 Template estimation
At the end of the clustering phase, we pooled the clusters obtained from every
electrode and we obtained for every cluster j a list of spike times {ti,j}i. We
computed the template from the raw data as the pointwise median of all the
waveforms belonging to the cluster such that Tj(t) = medi s(t − ti,j) where
medi is the median taken over the collected spikes. Note that Tj is only dif-
ferent from zero on the electrodes close to its peak. This information is used
internally by the algorithm to save templates as sparse structures. Moreover,
during template estimation, we limited the number of spike times per tem-
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plate to a maximal value of 200 to avoid memory saturation. To enhance the
compression level of the template Tj, we set to 0 all the channels k where
∀t, |Tj,k(t)| < θk, with θk the detection threshold of channel k. This allowed
us to remove channels without discriminant information, and to increase the
sparsity of the templates. Once the template Tj had been extracted, we
computed its minimal and maximal amplitudes amin,j and amax,j based on
data used during the clustering, i.e. spike times limited to those collected for
this step. If T̂j is the normalized template, such that T̂j = Tj/‖Tj‖2, we
computed:

ai,j = (s ? T̂j)(ti,j) =
∫

s(t − ti,j)T̂j(t)dt

amin,j = medi ai,j − 5 MADi ai,j

amax,j = medi ai,j + 5 MADi ai,j

where s ? T̂j is the cross-correlation function between the signal and the
normalized template, and MADi is the MAD taken over the collected spikes.
Those boundaries are used during the template matching phase (see Template
fitter section).

3.4.8 Template updater
While templates are found by the independent density-based clustering,
they are sent to the template updater, in charge of maintaining an ex-
haustive dictionary of all the templates {Tj}j, and remove putative du-
plicates due to the divide and conquer approach. For example, a neu-
ron in between two electrodes would give rise to two very similar tem-
plates, one for each of these electrodes. Thus, for each newly incoming
template T, we computed its similarity with the ones already available in
the dictionary with CCmax(T̂, T̂j) = maxτ (T̂ ? T̂j)(τ), which find the lag
τ such that the cross-correlation between the templates is maximized. If
CCmax(T̂, T̂j) ≥ CCsimilar, we considered this new template to be redundant
and it is ignored. In all the following, we used CCsimilar = 0.975. Note that
we are computing the cross-correlations between normalized templates, such
that two templates that have the same shape but different amplitudes are
merged. As opposed to the offline implementation of SpyKING CIRCUS, we
currently can not afford to spot the putative mixtures of templates online,
since this is computationally prohibitive. However, in the online context we
could easily use a method similar to the one described in (Lee et al., 2020):
clusters with a high temporal variability are likely to be mixtures. This re-
lies on the hypothesis that if two cells are firing together, the probability of
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having the two spikes exactly aligned is lower, and thus the temporal vari-
ability of the snippets should on average be higher for such mixtures than
for isolated waveforms.

3.4.9 Template fitter
Combining the dictionary of templates {Tj}j and all the putative spike times
{ti}i, we now need to reconstruct the signal s by finding the amplitudes
coefficients ai,j described in equation 3.1. Note that most ai,j in this equation
are equal to 0. For the other ones, most ai,j values are around 1, because
the corresponding spike at time ti usually appears on electrodes with a shape
and an amplitude similar to template Tj. In this template matching step, all
the other parameters have been determined by template extraction and spike
detection, so the purpose is only to find the values of these amplitudes. To do
so, we used an iterative greedy approach to estimate the ai,j for subgroups
of successive putative spikes, which bears some similarity to the matching
pursuit algorithm (Mallat and Z. Zhang, 1993). The main idea is to find the
pair (i, j) which maximizes (s?Tj)(ti), then to set the amplitude ai,j equal to
(s ? T̂j)(ti), to check if the amplitude value is between amin,j and amax,j, and
finally to subtract the scaled template ai,j Tj shifted on ti from the signal s.
See (Yger et al., 2018) for more details.

3.4.10 Online clustering
In order to deal with online modification of the dictionary of templates,
we adapted our clustering algorithm to the concept of micro-clusters, as
described in (Amini and Wah, 2011). More precisely, a micro cluster is
a temporal extension of cluster feature CF explained in (T. Zhang et al.,
1996), that is a summarization triple maintained about a cluster. We have
CF = (N, LS, SS) where N is the number of data points in the cluster,
LS = ∑N

i xi is the linear sum of these data points, and SS = ∑N
i x2

i is their
squared sum. The methods are similar to what is done in the DenStream
algorithm (Cao et al., 2006), where the micro cluster extends the CF vector
into the temporal domain, and each data point is weighted by a memory
function f(t) = 2−λt where λ > 0. To be more explicit, for data points {x}i

collected at timestamps {T}i, a micro cluster is defined by the tuple (w, c, r)
where:

w =
N∑
i

f(t − Ti) (3.2)

c =
∑N

i f(t − Ti)xi

w
(3.3)
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r =
∑N

i f(t − Ti)‖xi − c‖2

w
(3.4)

w is the weighted sum of all the fading factors, c is the centroid of the cluster,
taken into account the fading memory, and r is the radius of the cluster, i.e.
its spatial extent. Basically, micro clusters are divided into two categories,
based on a density criteria. If w < βµ, the cluster is defined as an outlier
micro cluster, and if w > βµ as a core micro cluster. The terminology is
inspired by the DBSCAN clustering algorithm (Ester et al., 1996), where a
cluster is said to be dense when the weight w is higher than a value µ and the
radius r is below a fixed radius ε. In all our simulations, we fixed µ = 2 and
ε as the averaged radius of the first clusters obtained, on a given electrode.
The decay parameter for the fading function is fixed to λ = 10s. The β
parameter is set to 0.5.

In order to discover the clusters in an evolving data stream (the incoming
spikes), we maintain a group of core micro clusters and outliers micro-clusters
in an online way. All the outliers micro clusters are maintained in a separate
memory space, say an outlier buffer. When a new point x arrives (a spike),
the procedure of merging is described below (see Algorithm 1 for details in
(Cao et al., 2006)).

1 At first, we try to merge x into its nearest core micro cluster ccore. If
rcore, the new radius of ccore, is below or equal to ε, merge x into ccore.

2 Else, we try to merge x into its nearest outlier micro cluster coutlier. If
routlier, the new radius of coutlier, is below or equal to ε, merge x into
coutlier. And then, we check w the new weight of coutlier. If w is above
βµ, it means that coutlier has grown into a core micro cluster Therefore,
we turn coutlier into a new core micro cluster

3 Otherwise we create a new outlier micro-cluster coutlier by x. This is
because x does not naturally fit into any existing micro cluster. It
means that x may be an outlier or the seed of a new micro-cluster.

Pruning mechanisms are implemented such that outliers micro clusters that
do not get updated regularly are deleted, to keep the memory consumption
low (Cao et al., 2006). When enough new incoming spikes have been detected
(we usually use a fixed number Nspikes = 2000, we performed a density-based
clustering similar to the one done in (Yger et al., 2018) on the core micro
clusters, that have been maintained dynamically during the arrivals of the
spikes. This clustering (at time t1) results in a list of clusters, that can be
compared to the ones obtained in the previous clustering (obtained at time
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Block Inputs Outputs
writer raw data

filtering raw data filtered data
whitening filtered data whitened data
threshold whitened data thresholds
detector whitened data, thresholds peaks

clustering whitened data, peaks templates
template updater templates
template fitter whitened data, peaks, templates spikes
spikes writer spikes

Table 3.1: List of the main computational blocks available to perform
online spike sorting, with their default inputs and outputs.

t0). And here, we used a simple rule to ensure that clusters drifting over
time are “tracked”. For every new cluster obtained at time t1, we checked if
a centroid seen at t0 could be seen in its vicinity, given a radius ε. If this
is the case, then we update the template, and otherwise, a new template is
added in the dictionary.

3.4.11 Synthetic dataset
Generation of the templates

In order to test the performance of the software, we developed a modular
framework, somehow similar to the one described in (Buccino et al., 2019).
This framework was meant to benchmark all the possible situations encoun-
tered with online spike sorting. In an abstract manner, users can create cells
objects with time varying properties, such as firing rates, amplitudes and po-
sitions. More precisely, the waveform vk(t) triggered at a given channel k at
time ti by one cell is defined with a simple formula:

vk(t) = a

1 + (d/δ)2 sin(4π(t − ti))
(
(t − ti)e−(t−ti)/τ

)10
(3.5)

where a, δ and τ are fixed parameters modeling the attenuation of the wave-
forms as function of time and distance with the nearby channels, and d is the
euclidean distance between the soma of the cell (at position (x(t), y(t))) and
the position of the recording site for channel k. By default, we used a = −80
µV, δ = 45 µm and τ = 1.5 ms. In order to enforce the uniqueness of every
spatiotemporal template, a sparsification factor ε was introduced to control
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the proportion of the channels, selected randomly, that will have non-zero
waveforms. We used ε = 0.5.

Generation of the spike trains

Spike trains are generated as inhomogeneous Poisson spike Trains with a
time varying firing rate r(t). While in the current paper, this benchmark
pipeline had all the ingredients to assess the quality of online sorting in the
context of drifts/change of dynamics during the course of an experiment, we
used only fixed positions and firing rates in the current paper.

Generation of the noise

Finally, once templates and spike trains are created, we superimpose them
onto a Gaussian noise N (0, σ2) with σ2 = 4 µV.

3.4.12 Error rate
The error rate is computed as the mean between the False Negative Rate
(FNR) and Positive Predicted value (PPV). FNR is defined as the proportion
of all positives, true positives (TP) and false negatives (FN), that were flagged
as false negatives:

FNR = FN

FN + TP
(3.6)

Similarly, the PPV is the proportion of positive results, false positives (FP)
and true positives (TP), that are indeed true positives (TP):

TP = TP

FP + TP
(3.7)

Combining these two quantities, we defined the error rate ε as:

ε = FNR + (1 − PPV )
2 (3.8)

3.4.13 Ground truth recordings
We used the already published dataset (Spampinato et al., 2018) for the
ground truth recordings. More precisely, electrophysiological recordings were
obtained from ex-vivo isolated retinas of rd1 mice (4/5 weeks old). The retinal
tissue was placed in AMES medium (Sigma-Aldrich, St Louis, MO; A1420)
bubbled with 95 % O2 and 5 % CO2 at room temperature, on a MEA
(10 µm electrodes spaced by 30 µm; Multichannel Systemps, Reutlingen,
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Germany) with ganglion cells layer facing the electrodes. Borosilicate glass
(BF100-50, Sutter instruments) electrodes were filled with AMES with a final
impedance of 6-9 MΩ. Cells were imaged with a customized inverted DIC
microscope (Olympus BX 71) mounted with a high sensitivity CCD Camera
(Hamamatsu ORCA -03G) and recorded with an Axon Multiclamp 700B
patch clamp amplifier set in current zero mode.
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Chapter 4

A perturbative approach to the
retina

We have seen that online, automated and scalable spike sorting of high-
throughput electrophysiological data is accessible. This open the possibility
to perform closed-loop experiments to dynamically probe the spiking activity
of neurons. For example, this could significantly reduce the number of trials
needed to characterize neural responses by choosing the most informative
stimulus at each experimental step (Lewi et al., 2007).

Here, I present a specific application on the retina where online spike sort-
ing might be useful. Classically, retinal ganglion cells are supposed to extract
specific features from the visual image even if this processing is known to be
dependent on visual context. I study the stability of feature extraction in
ganglion cells in different natural contexts sharing the same mean luminance
and contrast. In particular, I show that some cells can respond selectively to
increases of light in some contexts and to decreases in others, and describe a
model that can recapitulate this effect.

This chapter corresponds to an article in preparation in collaboration
with Ulisse Ferrari, Alexander S Ecker, Yannick Andéol, Olivier Marre and
Thierry Mora.

77
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4.1 Introduction
Primates are able to recognize objects effortlessly (Logothetis and Sheinberg,
1996; DiCarlo et al., 2012). However multiple sources of variation in their
visual appearances make this task computationally difficult. For example, a
change in the orientation relative to the observer results in extremely different
input images for the visual system. In other words, object recognition solves
an important invariance problem.

To achieve object recognition, it has been proposed that each area of the
visual system extracts features from the visual scene, and that these features
are more and more abstract, allowing object recognition in higher order areas.
This feature extraction starts in the retina. Retinal ganglion cells, the output
of the retina, can be classified in different cell types (Baden, Berens, et al.,
2016). Each of them is supposed to extract one low-level visual feature
(Silveira and Roska, 2011). A classical example is the first-order classification
of ganglion cells between ON and OFF types. This distinction relies on
their response to step-like changes in luminance. ON cells are sensitive to
light increments whereas OFF cells are sensitive to light decrements. This
property is referred to as polarity and is considered as one of the basic features
extracted by retinal ganglion cells.

However, this feature extraction seems to depend on the visual context.
For example, Tikidji-Hamburyan et al. (2015) showed that the polarity is
not fixed but changes qualitatively for different background luminance. They
reported that over 80% of the cells had opposite polarities at different light
levels. A following study from Pearson and Kerschensteiner (2015) even iden-
tified three functional types that switch polarity in a luminance-dependent
manner. Transient variations of the polarity have also been reported by Gef-
fen et al. (2007). In this case, a grating of dark and light bars was used as a
peripheral image. Rapid contrast inversions of this grating were sufficient to
trigger the same effect. Over 16% of the cells presented this kind of polarity
reversal.

However, in these studies, retinal processing was mostly probed with ar-
tificial stimuli. It is not clear if the retinal code is also context-dependent
during natural stimuli, provided that contrast and luminance are stable. Re-
cently, Maheswaranathan, McIntosh, Kastner, et al. (2018) reported predic-
tions from deep learning models suggesting that retinal processing, and in
particular the polarity of ganglion cells, can quickly change during natural
scene stimulation. However, this was not tested experimentally.

Here we introduce a new experimental approach to investigate context-
dependent processing during natural stimulation, by measuring context-
dependent receptive field. We asked: given an average luminance and con-
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trast, are ganglion cells stimulated with natural images always selective to
increments or decrements of light no matter what the natural images are?

To answer this question, we adopted a perturbative approach. We stimu-
lated ganglion cells with natural images, and then added small checkerboard-
like perturbations on top of them. These perturbations evoked small changes
on the responses of retinal ganglion cells. For each cell and each image, we
estimated the perturbation that evoked on average the largest increase of
the response. We referred to this quantity as the local spike triggered average
(LSTA). We found that the LSTAs were highly dependent on the images.
For some cells, we even observed changes in polarity for different images.
This means that these cells could be sensitive to light increments for one
natural image and sensitive to light decrements for another one. We found a
nonlinear model that can account for these findings. This high dependence
on context suggest that luminance is probably not the feature which is reli-
ably extracted by these cells, but we found that this context dependence was
compatible with a robust extraction of contrast.

4.2 Results

4.2.1 A new experimental procedure to estimate re-
ceptive field locally

We created a visual stimulus to probe the receptive field of one cell in a
natural context. This stimulus is composed of a sequence of grayscale im-
ages and has been presented to isolated salamander retinas using a digital
projector. Each image has been flashed for a given period of time ∆t (fixed
to 300 ms since (Thorpe et al., 1996) reported that the human visual system
can analyse complex stimuli in less than 150 ms). We also added the same
period of time between each succession of flashes during which a uniformly
gray image was presented. This last precaution is necessary to make each
neural response to one flashed image independent from the image flashed just
before. Figure 4.1A (left) illustrates this stimulus design.

To generate perturbed natural images, we picked a reference image in
the Van Hateren dataset (Van Hateren and Schaaf, 1998), which provides a
strictly linear relationship between scene luminance and pixel value. We used
a normalization step to fix the mean luminance and the root mean square
(RMS) contrast of this reference image. We then added a dim checkerboard
pattern composed of randomly black and white checks, with no spatial struc-
ture, and a small contrast relative to the natural image (figure 4.1A, right).
By adding this perturbation, the parts of the image where a “black” check
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was added became slightly darker. The parts where a “white” check was
added became slightly brighter. We generated many perturbed images from
several reference images. All the images were randomly shuffled.

We recorded the activity from ganglion cells using microelectrode arrays
(MEAs) and collected the responses of each cell to each flashed image. For
each cell and each reference image, we estimated the spike-triggered average
of the perturbation patterns, defined as the average perturbation pattern
that elicited a spike. This is the sum of the perturbation pattern weighted
by the number of elicited spikes, divided by the total number of spikes. We
thus obtained a “local’’ spike-triggered average (named hereafter LSTA) for
each cell and each reference image (figure 4.1B). In the following we referred
to these reference images as the “natural contexts’’. Examples of two LSTAs
and their corresponding perturbed image are shown in figure 4.1C.

How does the analysis described previously relates to the white noise
analysis introduced in (Chichilnisky, 2001)? The two analyses are quite sim-
ilar however two differences are worth highlighting. First, the choice of the
reference image is different. In (Chichilnisky, 2001) this is the origin in the
stimulus space and a spatially uniform gray image of mean intensity. We
relaxed this constraint and considered that natural images are eligible as ref-
erence images. As a control, in the following we also used a spatially uniform
gray image as a reference image. Second, the perturbation amplitude is dif-
ferent. In (Chichilnisky, 2001) this corresponds to the contrast specified to
generate a white noise sequence. This contrast is rather high to maximize
the neural response. In our case, the perturbation amplitude is the lowest
that can still evoke some changes in the response. If the amplitude is too
low, we will not see any change in the response compared to the response
to the reference image. As a result, the LSTA will be flat. If the amplitude
is too high, the contrast of the checkerboard will be much higher than the
contrast of the image. As a result, the response would be dominated by
the checkerboard pattern, and the LSTA would not depend on the reference
image. We chose an amplitude that was between these two extremes.

4.2.2 Retinal ganglion cells can be sensitive to opposite
polarities in different natural contexts

For multiple ganglion cells, the LSTA changed polarity depending on the ref-
erence image. In particular, some LSTAs were either ON or OFF depending
on the natural context. For example, the cell illustrated in figure 4.2 can been
clearly identified has an OFF cell based on its estimated spatial and temporal
STAs (checkerboard stimulus). In other words, this cell is thought to increase
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Figure 4.1: Stimulation protocol to measure LSTAs. A. Stimulus design.
We flashed a randomized sequence of perturbed images. All flashes lasted
300 ms and were separated by 300 ms of gray equal to the mean luminance.
Perturbed images were generated by adding randomized checkerboard pat-
terns with lower contrast to reference images. B. LSTA calculation. The
sequence of perturbed images was presented, and spikes from the neuron
were recorded. The spikes in some time window corresponding to flashes
(red) were counted to weight the corresponding checkerboard patterns. The
weighted average (blue) gave the LSTA which indicated the small perturba-
tion that can change the most neuronal responses. C. Two example LSTAs,
measured for two example cells and the same perturbed image, show clear
OFF centers located at different positions.
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spiking activity in response to light decrements and not to light increments.
However we found that LSTAs were dramatically different across contexts
for this cell. The LSTA associated to the control context (i.e. the “gray”
image) was similar to the global STA in terms of polarity — both were OFF.
However, for two natural contexts (i.e. “building” image and “umbrella” im-
age) the LSTAs had an ON polarity. In these contexts, the same cell will
increase its spiking activity in response to an increase of luminance inside its
receptive field center. The LSTA of the last context (i.e. “branches” image)
was found to have OFF polarity. In summary, the polarity of the LSTA of
this cell in different natural contexts differed qualitatively.

The same observations can be made on figure 4.3 but for a different
ganglion. This cell is also identified as an OFF cell (figures 4.3B-C) but,
for three of the fourth contexts, LSTAs were measured with ON polarity
(figure 4.3E). These contexts can also be distinguished by the low level of
neural activity evoked by all the perturbed images (figure 4.3F). Their small
number of elicited spikes made the estimation of their LSTAs more noisy but
clear spatial structures could still be observed in the receptive field center.
We observed that these spatial structures were displaced compared to the
spatial STA (green ellipse) and were different from one context to the other.
This suggests that the position and shape of the LSTA of this cell vary across
natural contexts.

During preliminary experiments, a higher mean luminance have been
tested to measure the LSTAs. Figure 4.4 shows that some inversions of
the polarity could also be observed with two LSTAs having ON polarity (fig-
ure 4.4B). Interestingly, these two contexts are associated with similar raster
plots (figure 4.4C) which shows a peak of the firing rate around 100 ms after
the onset of the stimulus. The other raster plots show a peak of activity
which occurs earlier, 50 ms after the onset. In this case, the latency of the
response correlates with the polarity of the LSTA. This suggests that two dif-
ferent pathways are at play since this difference in latency could be explain
by their difference in length (number of synapses to be crossed). This obser-
vation has not been explored in more details, and a lower mean luminance is
assumed in the rest of this chapter.

4.2.3 Linear and nonlinear models
To better explain this change of polarity, we fitted linear and nonlinear re-
gression models to predict the activity from the stimulus, as well as the
LSTAs. The inputs to the regression models were unperturbed natural im-
ages which were briefly flashed on the retina (figure 4.5A; figure 4.5B, first
row). The linear regression model was a conventional linear-nonlinear model
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Figure 4.2: Variations of LSTAs over natural contexts (example cell 1).
A. Interspike-interval histogram indicating a rather low variability of neural
responses (5 ms refractory period violation: 0.4 %, scale bar: 10 ms, bin
size: 0.5 ms). B. Spatial spike-triggered average as a linear estimate of the
spatial profile of the receptive field (scale bar: 100 µm). The ellipse (green)
represents the position and shape of the spatial receptive field (3 standard
deviation contour of the 2D Gaussian fit). C. Temporal spike triggered
average as a linear estimate of the temporal profile of the receptive field
(scale bar: 100 ms). D. Reference images tested as contexts. (scale bar: 100
µm). E. LSTAs measured experimentally for each context. (scale bar: 100
µm). F. Rasters for each context (scale bar: 100 ms). Each line corresponds
to a randomized checkerboard pattern and each point corresponds to a spike.
The light gray area corresponds to the stimulus time (i.e. when the perturbed
images were flashed), and the dark gray region to the inter-stimulus time (i.e.
uniform gray displayed).
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Figure 4.3: Variations of LSTAs over natural contexts (example cell 2).
Same legend as figure 4.2 for a different ganglion cell.
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Figure 4.4: Same representation of LSTAs, corresponding reference images,
and rasters as in figures 4.2 and 4.3 except that rasters only show the stim-
ulus time (scale bars: 100 µm, 50 ms). This ganglion cell was recorded in
a preliminary experiment for which the mean luminance was significantly
higher. Note the changes in latencies over different natural contexts.
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(LN; Chichilnisky, 2001; Paninski, 2004). It filters the visual stimulus lin-
early, and then use a nonlinear function to transform the result of this filtering
into an output neural response (figure 4.5B, second row).

Additionally, we used two nonlinear encoding models implemented using
convolutional neural networks (CNN; LeCun et al., 1998). In these net-
works, a higher-level representation (i.e. feature maps) is extracted from the
visual stimulus before summing some of these features to predict neural re-
sponses. In both cases, our networks were composed of two layers: a feature
extraction layer followed by a readout layer. Each layer was composed of a
linear filter followed by a nonlinearity (i.e. ReLU or softplus). For the first
nonlinear model (figure 4.5B, third row), the feature extraction stage was a
convolutional layer with two 7 × 7 2D convolutional kernels. One kernel was
initialized with a positive 2D Gaussian profile while the other with a neg-
ative one. Both kernels were kept constant during the training phase. For
the second layer, we used a fully connected layer with a single output unit.
Multiple networks were trained independently for each ganglion cell. In the
following, we referred to this model as the linear-nonlinear linear-nonlinear
model (LN-LN). A similar model has been used by (Deny et al., 2017).

For the other nonlinear model (figure 4.5B, last row), the first layer was
a convolutional layer with four 21 × 21 2D convolutional kernels. Unlike
in the previous model, the filters were learned from the data. The readout
stage consisted of multiple fully-connected layers placed in parallel, one for
each ganglion cell. The weights of each of these layers were factorized in a 2D
spatial mask and a vector of feature weights (with one weight for each feature
extracted by the first layer) to decrease the number of model parameters
(see Material and Methods). This factorization technique has already been
successfully applied by (Klindt et al., 2017; Cadena et al., 2019). Note that
the filters of the first layer were common to all ganglion cells. A single
network was trained for all the ganglion cells. We referred to this model as
the convolutional neural network model (CNN) in the following.

For the LN-LN model, all hidden units and the output unit had para-
metric softplus activation (Dugas et al., 2001) and were optimized during
the learning procedure. For the CNN model, we used ReLU activation for
the hidden units. Batch normalization was applied to the output of the first
layer of the CNN model to make it more stable. For all models, a Poisson
error was used as the training loss function (see Materials and methods).
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Figure 4.5: Model training. A. We used a specific stimulus to train mod-
els. We flashed a randomized sequence of natural images (unperturbed). All
flashes lasted 300 ms and were separated by 300 ms of gray equal to the
mean luminance. We used normalized grayscale natural images taken from
the van Hateren’s Natural Image Dataset (Van Hateren and Schaaf, 1998)
downsampled by a factor of 8 to keep the number of parameters tractable
(scale bar: 500 µm). B. Schematic of the different architectures used to pre-
dict the responses of multiple retinal ganglion cells to a flashed image (first
row). The LN model (second row) is formed by a linear filter and nonlinear
function (not shown). The LN-LN model (third row) is formed by a convolu-
tional layer (fixed kernels) followed by a dense layer (readout weights). The
CNN model (last row) is formed by a convolutional layer (inferred kernel)
and a dense layer (readout weights factorized in spatial masks and feature
weights). We assumed Poisson noise distribution to determine the cost func-
tion to optimize for training and used additional regularization constraints
(see Material and methods).
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Figure 4.6: Comparison of the responses predicted by the models with the
responses observed experimentally for three different cells (responses in spike
counts). Each point corresponds to the mean spike count in response to 20
repetitions of the same image. The reported predictions are the mean spike
counts output by the models. Each point corresponds to one of the 30 images
of the testing set, lines correspond to linear regressions, and colors to models.

4.2.4 Prediction of neural responses using linear and
nonlinear models

Examples of observed versus predicted neural responses from the different
models are shown in figure 4.6 for three ganglion cells. The predictions of the
LN model (blue) were far from the actual responses for some specific cells.
This confirms that the LN model can’t capture accurately the variations
in the neural responses of ganglion cells to flashed natural images. The
responses predicted by the LN-LN model (orange) were more similar to the
observed responses than the predictions of the LN model. The predictions
of the CNN model (green) were even more similar than those of the LN-
LN model. This suggests that these nonlinear models are better suited for
accurate predictions.

To quantify the absolute performance across all cells, we calculated the
prediction accuracy (see Material and methods) between the predicted and
observed neural response for each model. Note that even if the model were
perfect, the accuracy could still be limited if the observed response is noisy.
To correctly estimate the performance, we thus need to compare the accu-
racy with the best performance reachable given the noise in the observed re-
sponses. To quantify the latter we estimated the reliability of these responses
(see Material and methods). The reliability corresponds to the maximum
proportion of explainable variance. For the LN model, the prediction accu-
racy is lower than the reliability for a large fraction of the cells (figure 4.7A,
first column). This is because these cells encoded the flashed natural images
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in a nonlinear manner, not captured by the LN model. We noticed that this
was particularly true for cells which have shown clear polarity reversals (red).
Figure 4.7A also shows the same comparison for the LN-LN model (second
column) and the CNN model (last column). These scatter plots show points
closer to the diagonal. This means that the prediction accuracy matches the
reliability for most of the cells. In particular, we observed that the CNN
model was relevant to predict the neural activity of cells with clear polarity
reversals (red).

To better quantify these relative improvements, we used R-squared values
instead of simple correlations (see Material and methods). Figure 4.7B shows
the R-squared values of the different models on a cell by cell basis along with
the limits imposed by the noise, and confirms that the nonlinear models
outperformed the LN model. This confirmation is even clearer in figure 4.7C
where the noise-corrected R-squared values of the CNN model are compared
with those of the LN model (first column). The points deviate significantly
from the diagonal. However, note that the prediction performance for the
CNN and LN-LN models were comparable (second column). Figure 4.7D
summarises performance evaluations at the population level by taking the
mean over ganglion cells.

Nonlinear models are thus necessary to make accurate predictions on the
stimulus ensemble composed of unperturbed natural images.

4.2.5 Prediction of LSTAs using linear and nonlinear
models

The previous section demonstrates that the nonlinear models predicted reti-
nal responses to flashed natural images well. However, it is not clear whether
these models could also reproduce the LSTAs obtained for different natural
images, and in particular the changes in polarity described previously.

LSTAs describe what would be the linear functions that would best ap-
proximate the stimulus-response function locally (Ferrari et al., 2017). As
such they are an experimental estimate of the local gradient of this function.
To predict the LSTAs with a model, we calculated the gradient of the model
output with respect to its input for each ganglion cell and each natural image
(see Material and methods). A drawback of this approach is that the gradi-
ent is not supposed to be exactly equal to the LSTA, but only proportional
to it. In future work we need to estimate the multiplicative constant to make
a fully quantitative comparison.

Figure 4.8 shows the comparison between the LSTAs observed experimen-
tally and the ones inferred by each model for a particular cell. The spatial
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Figure 4.7: Model evaluation. A. Comparison between model accuracy
and data reliability over the testing set (see Material and methods) for the
LN model (first column), the LN-LN model (second column) and the CNN
model (last column). Each point corresponds to a ganglion cell. B. Com-
parison of R-squared values between models on a cell by cell basis. Colors
correspond to different models and gray represent the maximum R-squared
value attainable by a model because of the noisy responses. C. Compari-
son of noise-corrected R-squared values between pair of models: CNN vs LN
(first column) and CNN vs LN-LN (second column). Each point correspond
to a ganglion cell. D. Mean noise-corrected R-squared value over cells for
the models (error bars: 95 % confidence interval). A,C. Highlighted points
(circled in red) correspond to ganglion cells which clearly presented LSTAs
of different polarity.
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component of the classical spike triggered average estimated with white noise
stimulation is shown on the top left corner, and characterizes this cell as an
OFF cell. We fitted an ellipse (green) to determine the spatial location of the
receptive field of this cell. This ellipse has been reported in all the subsequent
plots as a reference. The first column of figure 4.8 also shows the different
contexts around the receptive field of the cell. The first image corresponds
to the control context (uniform gray) while the three other images corre-
spond to the natural contexts. The second column of figure 4.8 represents
the corresponding LSTAs found experimentally. The LSTA for the control
context is similar to spatial component of the STA, both in terms of spatial
location and polarity. However the LSTAs shown in the second and fourth
rows clearly have ON polarity while the LSTA of the third row has OFF
polarity. This means that the LSTA polarity of this cell was not the same
across tested contexts.

The third column shows the predictions of the LSTAs by the LN model
across the different contexts. The most remarkable point is that the predic-
tion was always the same regardless the context. This is due to a fundamental
limitation of the LN model: the shape of the gradient is always the same, it
can only vary be a multiplicative factor. Thus, this model could not repro-
duce the observed changes in LSTAs.

The fourth column of figure 4.8 displays the same predictions for the
LN-LN model. First, for the control context (first row), we observed that
the predicted LSTA was more similar to the experimental one than with
the LN model. Second, for the natural contexts (remaining rows), we found
a good agreement between the predictions and the corresponding LSTAs.
In particular, the polarity was well predicted. However, while the shape
was quite similar inside the center of the receptive field (green ellipse), we
still noticed that additional structures appear in the surround for two of the
contexts (second and fourth rows).

Finally, the last column of figure 4.8 presents the predictions of the CNN
model. For each context, predicted LSTAs were very similar to the exper-
imental ones. In contrast with the LN-LN model, no spatial structure was
found in the surround of the receptive field. Overall, figure 4.8 shows that
the most accurate predictions of the LSTAs were given by the CNN model.
This result confirms the superiority of this model to predict both the LSTAs
and the neural responses to flashed natural images.

Figure 4.9 shows similar results for another example cell. In this exam-
ple, the polarity of the LSTA observed for the control context could not be
identified clearly (second column, first row) even if the cell was classified as
an OFF cell based on its STA (first column, first row). Nevertheless, the pre-
diction of the CNN model (last column, first row) reproduce accurately this
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observation by leaving the preferred polarity undetermined. Additionally,
the predicted spatial layouts of the LSTAs were more accurate for the CNN
model (last column). However, for one context (second row), the predicted
LSTA had a particularly high amplitude. This predicts that this cell should
have been more sensitive to this particular context. An aspect which was
missing from the visualisation of actual LSTAs (second column).

4.2.6 Description of the LSTAs learned by the CNN
model

We showed that the CNN model can accurately predict the LSTAs of reti-
nal ganglion cells in different contexts. However the accuracy was assessed
on a relatively small number of contexts tested experimentally. This hard
constraint was imposed by the limited duration for which we were able to
record from a healthy retinal tissue. However, it is important to note that
the CNN model wasn’t trained on these particular contexts. In other words,
this model has the ability to generalize. This validation encouraged us to
look at the prediction of the CNN model for additional reference images.

To investigate more largely the variations of LSTAs across contexts, we
visually inspected the LSTAs learned by the models over an increased num-
ber of natural images. Figure 4.10 shows the predictions given by the CNN
model. We observed large variations in the LSTAs depending on the ref-
erence image used for the prediction. Furthermore, we clearly identified
multiple images for which the LSTAs of the CNN model has ON polarity.
Figure 4.11 shows the same predictions for another example cell, with a simi-
lar result. This suggests that polarity reversals are more common than what
the experimental results suggest.

4.2.7 Interpretation of the components learned by the
CNN model

The previous analyses suggest that variations of the LSTAs of ganglion cells
in response to flashed natural images is rather the rule than the exception. To
understand how these polarity inversions are generated by the CNN model,
we inspected its internal components.

To determine the number of pathways necessary to make accurate pre-
dictions, we trained multiple CNN model with different number of features.
Figure 4.12A shows the noise corrected R-squared for 1 to 4 convolutional
kernels. We noticed that the performance doesn’t improve beyond 2 kernels
hence the optimal number of pathways. The internal components described
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Figure 4.8: LSTAs predicted by the different models (example cell 1).
A. Spatial STA for this cell. The ellipse (green) approximates its position
and shape, and is plotted in the same position in subsequent plots. B.
Reference images tested as contexts. C. LSTAs measured experimentally for
each context. D-F. Predictions of the LSTA by the LN, LN-LN and CNN
models for each context. (scale bars: 300 µm)
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Figure 4.9: LSTA predicted by the different models (example cell 2). Same
legend as figure 4.8 for a different ganglion cell.
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Figure 4.10: Predictions of LSTAs by the CNN model over several contexts
of the test set (example cell 1 already shown in figure 4.8). Each natural
image is shown above the corresponding LSTA prediction (scale bar: 250
µm). Ellipses (green) represents the position and shape of the spatial STA
of the ganglion cell.
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Figure 4.11: Predictions of LSTAs by the CNN model over several contexts
of the test set (example cell 2 already shown in figure 4.9). Same legend as
figure 4.10 for a different ganglion cell.
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in this section are those of the CNN model with only 2 convolutional kernels.
The first components are the convolutional kernels used by the first layer

(figure 4.12B). The first convolutional kernel shows a clear center-surround
organisation with strong positive weights in its center (red) and weak positive
weights in the surround (blue). In the following, we referred to this kernel as
the “ON kernel“ and its output as the “ON feature map”. The second kernel
also shows a clear center-surround organisation with negative weights in its
center (blue) and a dimmer surround with positive weights (red). Note that
this is exactly the opposite of the ON kernel, an “OFF kernel” which produces
an “OFF feature map”. These observations suggest that the CNN model relies
on these two parallel pathways working to make accurate predictions.

The readout weights of the second layer were factorized between the fea-
ture weights and the spatial masks, shown in figure 4.12C and 4.12D re-
spectively. The features weights allowed us to distinguish three cell groups.
First, some cells have high OFF weight and zero ON weight. They were all
classified as OFF cells. Second, one cell has high ON weight and zero OFF
weight, and is the only ON cell present in the dataset. Finally, all the other
cells that have both a non-zero OFF weight and a non-zero ON weight. For
these ganglion cells, the coexistence of the two pathways was necessary to
predict their neural responses. The cells for which we observed experimen-
tally different polarities among their LSTAs (highlighted in red) belong to
this last group. This suggests that the interplay between an ON pathway
and an OFF pathway may underlie the changes in polarity measured among
LSTAs.

4.2.8 Putative mechanisms revealed with pharmacol-
ogy

The ON and OFF kernels could be analogous to the ON and OFF bipolar
cell pathway. The model structure suggests that both pathways are neces-
sary to obtain polarity reversals. In preliminary experiments, we tested this
hypothesis by measuring LSTAs of ganglion cells before and after applying
LAP-4, which blocks selectively the ON pathway. In two example cells, we
noticed changes in LSTA polarity that disappeared after drug application
(figure 4.13). While these data are preliminary, it suggests that polarity
reversal in LSTA require the convergence of the ON and OFF bipolar cell
pathways onto the same ganglion cell.
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Figure 4.12: Internal components learned by the CNN model. A. Effect
of the number of features on the performance of the CNN model (error bars:
95 % confidence interval). B. Learned convolutional kernels (scale bar: 100
µm, size: 21 × 21 px). The color map is shared by the two kernels from
their minimum (blue) to their maximum (red). C. Learned feature weights
(scale bar: 300 µm). (left) Matrix representation where each row corresponds
to a ganglion cell and each column to a feature. (right) Scatter plot where
each point corresponds to a ganglion cell. (both) Highlighted elements (sur-
rounded in red) correspond to ganglion cells which clearly presented LSTAs
of different polarities. D. Learned spatial masks of three example cells (scale
bar: 300 µm, size: 88 × 88 px).



4.2. RESULTS 99

control LAP-4
A

pa
tte

rn
s

time

B

F G

D E

C

ce
ll 

1
ce

ll 
2

ce
ll 

3

Figure 4.13: Effect of LAP-4 application on LSTAs. A. Reference images
tested as contexts. B. LSTAs (left) and rasters (right) of an example cell be-
fore LAP-4 application (scale bars: 500 µm, 50 ms). The highlighted LSTA
(surrounded in red) has ON polarity unlike the other LSTAs. For rasters,
each plot corresponds to a context, each line to a randomized perturbation
pattern, and each point to a spike. C. Same as B. but with LAP-4 ap-
plication. The polarity of the highlighted LSTA (surrounded in red) is no
longer visible because of the disappearance of responses (right). D-E. Same
as B-C. for another example cell. The highlighted LSTAs (surrounded in
red) show variations in shape and polarity. F-G. Same as D-E. for a last
example cell for which LAP-4 application didn’t have any effect.
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4.3 Discussion

4.3.1 Variations in LSTAs suggest that ganglion cells
code more abstract features like contrast

To better understand these variations in LSTAs with natural images pre-
dicted by the CNN model, we performed a principal component analysis
(PCA) on the ensemble of LSTAs predicted by the model for all the ∼3000
images used as a stimulus. For most cells, the first two principal compo-
nents accounted for more than 90% of the variance of these LSTAs. We thus
projected all the LSTAs, as well as the natural images themselves, in the
2D space formed by these two first principal components. We represented
each image as a point in this 2D space, and the associated LSTA as a vec-
tor. We chose this vector field representation because LSTA represents the
best change in the reference image to increase the firing rate of the ganglion
cell. As such, it represents the gradient of the stimulus-response function.
For readability, we binned this 2D space and averaged all the images and
corresponding LSTAs that fall in the same bin.

For some ganglion cells this representation shows that the direction of
the LSTAs in this 2D space is almost always pointing in the same direction
(figure 4.14A). This corresponds to a cell with little variation of the LSTA
shape. In this case, an increase of firing rate will always signal a change
in the same direction, no matter what the reference image is. This single
direction represents a change of the luminance averaged over the receptive
field of the cell. As a result, it should be possible to decode local luminance
from the activity of this cell.

On the contrary, other ganglion cells show large variation in the direction
of the LSTA (figure 4.14B). This corresponds to important changes in the
LSTAs, like polarity inversions. In this case, without knowing the reference
image, it is impossible to tell if an increase of firing rate corresponds to an
increase or a decrease in local luminance. It is thus likely that the activity
of this cell contains little information about luminance. However, the vector
field representation reveals an interesting structure about the relation be-
tween reference image and LSTA shape: there is a region where the LSTA
seems to vanish, and in other places, the LSTA point towards a direction
that is always opposite to this region. Since LSTA corresponds to a gradi-
ent, this corresponds to a local extremum of the stimulus-response function.
The single extremum, and the structure of the vector field, is reminiscent of
the one produced by a quadratic function. We hypothesized that this vector
field could be produced by a cell whose response would be proportional to
the contrast inside the receptive field center, where contrast is defined as the



4.3. DISCUSSION 101

-20 -10 0 10 20

-10

0

10

20
A

-20 -10 0 10 20
-20

-10

0

10

20
B

-20 -10 0 10 20
-20

-10

0

10

20

C

PC 1

PC
 2

cell 1 cell 2 model (contrast)

Figure 4.14: Principal components of the LSTAs on the training set. For all
subsequent plots, we considered the 2D space formed by the first two principal
components of all LSTAs. Each vector correspond to a pair composed of an
image and the corresponding LSTA where its origin correspond to the image
and its direction and length to the LSTA. For clarity, this 2D space is binned
and all the images and corresponding LSTAs that fall in the same bin are
averaged. A. A first example cell for which all the LSTAs point in the same
direction. B. A second example cell for which the LSTA directions vary a
lot. C. Vector field generated from a local contrast function.

square difference between the luminance value and the mean luminance, aver-
aged over the receptive field center. We have generated the same vector field
for a local contrast function (see Material and methods, and figure 4.14C).
The two vector fields looked qualitatively similar, suggesting that the local
contrast could be decoded unambiguously from this cell. While this analysis
would need a proper quantification using a mutual information estimation,
this vector field representation shows that the variation in LSTA are highly
structured. The changes in polarity of the LSTA suggest a very context-
dependent code, which is incompatible with a robust encoding of luminance.
However, our results suggest that it is compatible with the robust encoding
of more abstract features like contrast. Probing LSTAs is thus not only a
way to test quantitative models of retinal processing, it can also be a tool to
test which features of the image can be robustly coded by a ganglion cell.

4.3.2 Related work
Previous works have shown that OFF ganglion cells can respond selectively to
light increase in specific conditions. Tikidji-Hamburyan et al. (2015) showed
that an OFF ganglion cell can do so when changing the background lumi-
nance by at least one order of magnitude. The change in polarity was due
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to the adaptation of the background luminance. Here we have measured the
ON/OFF selectivity of ganglion cells for natural images where the overall
background luminance was kept constant. Furthermore, in our stimuli all
the image presentations, with and without perturbations, were interleaved
to avoid any adaptation to the specific statistics of a natural image. The
changes in polarity cannot be attributed to adaptation to the background
luminance.

Geffen et al. (2007) reported that OFF ganglion cells can switch to ON
polarity during and slightly after a sudden shift of a large grating present
in the surround. Compared to our study, here the change was linked with a
transient and dynamical change in one stimulus property, while we measured
the LSTAs for natural images flashed at a constant pace. The results of
Geffen et al. (2007) suggest that extending our paradigm to a spatio-temporal
case, by applying perturbations on top of a scene with natural dynamics
(natural motion, but also saccadic-like movements), could reveal even more
complexity in the LSTA dependence on context.

Maheswaranathan, McIntosh, Kastner, et al. (2018) learned a deep net-
work model on retinal responses to natural movies and noticed that the
gradient of of the stimulus-response function, estimated with their network
model, could change polarity depending on the content of the natural scene.
The gradient they calculated is the equivalent of our LSTA. They observed
the same context-dependency. The main difference with our approach is
that they only measured it on a model, while our estimation of the LSTA
allows for a direct experimental measure of how retinal processing can be
context-dependent. This LSTA measure can be used to validate models. We
observed some models predicted them well, while others did not. It can show
a qualitative difference between different model classes, and can highlight
the strength or weaknesses that classical testing strategies, where the model
performance is quantified by its prediction of the responses to a testing set,
could miss. For example, we showed that the prediction performance of
LN-LN and CNN models were close, but for some cells LSTA were better
predicted by the CNN model.

Beyond its use as a way to validate a model, our perturbative approach is
useful to probe selectivity during natural scene stimulation. We have shown
how this might help understanding what a given cell is encoding. We assumed
that this encoding must be robust to change in the reference image. In our
case, this excluded that ganglion cells showing a polarity inversion in the
LSTAs could code for local luminance. However, our analyses suggest that
they could still code for contrast.

This perturbative approach could also be applied in other sensory systems
to refine models or test hypotheses about what features are extracted from
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the sensory input. Related works in the visual cortex have learned deep net-
works online to then find the stimulus that maximized the neuronal response
(Bashivan et al., 2019; Ponce et al., 2019). This approach is complementary
to ours: while they looked for the “maximizing” stimulus, LSTAs can be seen
as the “locally maximizing” stimulus, i.e. the local change that will be best
at increasing the response. An interesting outcome of our study is that these
local changes do not always point in the same direction. In cells showing
polarity inversion, our results suggest that this direction can systematically
vary with the reference image. Our vector field representation suggests that
this is consistent with the coding of a more non-linear feature, e.g. contrast.
Our results thus show that the processing performed by one cell on the visual
scene cannot be summarized by one maximizing stimulus. This might sug-
gest that most of the processing can be modeled by projecting the stimulus
on a single direction, which corresponds to a “template matching” approach.
A more complete understanding can be obtained by measuring many LSTAs,
which can be considered as “locally maximizing” stimuli. They show that
for many cells, projection on a single direction cannot give a good account
of the processing performed by these cells.

Similarly, a related work by Keshishian et al. (2020) in the auditory cor-
tex, using deep network models learned on data, summarized processing by
describing 3 different STAs for one cell, and each of them is supposed to
tile a different region of the stimulus space. Similarly to (Maheswaranathan,
McIntosh, Kastner, et al., 2018), this study did not measure them experi-
mentally. More importantly, our results show that even in the retina, some
ganglion cells cannot be reduced to a small number of STAs because they
code for a more abstract feature, which results in systematic changes in the
LSTA depending on the reference image.

One limitation is that our experimental approach allowed us so far to
measure LSTA for only a few reference images. However, strategies have been
designed to estimate STA with limited amount of data, making it possible to
measure them on more reference images. Applying our online spike sorting
might also be a way to test more points using active learning strategies, where
the stimulus is modified depending on the previous responses, to optimize
the exploration of the stimulus space.
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4.4 Material and Methods

4.4.1 Electrophysiology

All the electrophysiological data were obtained from an isolated retina from
an adult axolotl salamander (Ambystoma mexicanum, pigmented wild-type).
The experiment was performed in accordance with institutional animal care
standards of Sorbonne Université. After killing the animal, the eye was
enucleated and dissected under dim light condition. We hemisected the eye
along the edge of the cornea. We removed the vitreous humor. We separated
the retina from the eyecup. We removed the pigment epithelium. We cut it in
half. We strechted beforehand a perforated dialysis membrane over a circular
plastic holder. We mounted one of the retina halves onto the membrane such
that the photoreceptors were facing the membrane. We manipulated the
holder to position the retina onto a microelectrode array (MEA) so that
the retinal ganglion cell layer laid over the electrodes of the MEA. During
dissection and recordings, the tissue was perfused with oxygenated Ames
solution and a peristaltic perfusion system with 2 independent pumps: PPS2
(Multichannel Systems GmbH). The retina was kept at room temperature
during the whole experiment.

4.4.2 Data acquisition

The data acquisition system (from Multichannel Systems GmbH) included
a microelectrode array (256MEA30/8iR-ITO), an amplifier and data ac-
quisition hardware (USB-MEA256-System) and a data acquisition software
(MC_Rack). The MEA had 256 circular electrodes arranged in 16 × 16 grid
layout with 8 µm diameters and 30 µm inter-electrode distances. Extracel-
lular voltage signals of retinal ganglion cells were recorded from 252 active
electrodes. The data sampling rate was 20 kHz per electrode. We high-
pass filtered the raw data at 200 Hz, and isolated the spikes using SpyK-
ING CIRCUS (Yger et al., 2018). Subsequent data analysis were done with
custom-made Python codes.

We extracted the activity of a total of 27 neurons for a single experi-
ment which satisfied multiple constraints. We kept cells with a low number
of refractory period violations and whose template waveform could be well
distinguished from the template waveforms of other cells. These constraints
ensured a good quality of the reconstructed spike trains. In addition, we
discarded neurons that show no or almost no responses to flashed images
preventing the estimation of LSTAs.
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4.4.3 Visual stimulation
We used a white mounted LED (MCWHLP1, Thorlabs Inc.) as a light source,
and controlled the light intensity with a LED driver (LEDD1B, Thorlabs
Inc.). We used a dim mean light level which corresponds to mesopic vi-
sion. The stimuli were displayed using a Digital Mirror Device (V-Module,
ViALUX GmbH) and focused on the outermost layer of the retina, where the
photoreceptors are localised, using standard optics. We displayed a random
binary checkerboard during 1 hour at 30 Hz to map the receptive fields of
ganglion cells (check size: 73.5 µm, checkerboard size: 50 × 50 checks). All
the other stimuli are described in subsequent method sections.

4.4.4 Natural image stimuli
We used the van Hateren’s Natural Image Dataset (Van Hateren and Schaaf,
1998). This dataset consists of 4212 monochrome and calibrated images
taken in various natural environment (wood, open landscapes and urban
area). The calibration ensure that there is a strictly linear relationship be-
tween scene luminance and pixel value. These images are known to be slightly
blurred by the point-spread function of the camera (optics of the lens). We
didn’t discard any images based on this criterion. It is also known that the
global statistics of these images (considered sequentially) may change reg-
ularly since they were taken in typical series of 100-200 consecutive images
where each series correspond to a different natural environment. This aspect
was more problematic because the retinal system is known to adapt its sensi-
tivity to the range of light intensities encountered in different environments.

To avoid that these adjustments alters the rules by which a neuron re-
sponds to sensory input, we devised a preprocessing step to overcome this
problem. First, we identified the images with a significant number of pixels
which have reached saturation. To do so we defined a saturation level as the
proportion of pixels above a given threshold value (6266 for ISO 200, 12551
for ISO 400 and 25102 for ISO 800, these values where found manually by
inspection of the image histograms). If the saturation level was above 2%
then we decided to discard the image. The discarded images were found to
present surfaces with high albedo (e.g. snow, clouds). This resulted with a
total of 3190 images with acceptable saturation level. Second, we cropped the
central part of each image (initial size: 1536 × 1024 px, final size: 864 × 864
px) to match the targeted field of view (3.024 × 3.024 mm² with a pixel pro-
jection of 3.5 µm). Third, for each image, we converted the pixel values to
luminance with the conversion factor provided by the calibration. Fourth, we
normalized the images with a custom procedure to fix the mean luminance
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and the root mean square (RMS) contrast. We replaced the linear scale by a
log scale. We centered and scaled the distribution of pixel values. We came
back to the linear scale where we centered and scaled the distribution of pixel
values for a second time to fix the mean luminance to 0.25 and the standard
deviation to 0.05. We clipped the pixel values below 0 to 0, and those above
1 to 1.

Unperturbed natural image stimulus The dataset contains the 3190
images obtained after the preprocessing step described in the previous para-
graph. This dataset has been used to create multiple models of the response
of ganglion cells to natural images. We distinguished 30 images which were
presented multiple times (20 repetitions each) to create the test dataset. 10
% of the remaining images were allocated to the validation dataset while the
rest of the images composed the training dataset.

Perturbed natural image stimulus The generation of the perturbed
natural image stimulus consisted in superimposing reference images with
multiple perturbation patterns. We choose 3 reference images among the
preprocessed Van Hateren images. We set the perturbation patterns as
checkerboard patterns without spatial structure (i.e. uncorrelated). Each
check (i.e. spatial location) is associated with a random and independent
value, either −1 or +1 (with equal probability). Given a perturbation ampli-
tude, these perturbation patterns are scaled and then independently added
to the reference image to result with the grayscale images to be flashed. We
used a check size of 52.5 µm and the checkerboard had 56 × 56 checks (i.e.
2.94 × 2.94 mm²). The perturbed area was slightly smaller than the targeted
field of view, and was added at its center. We used a perturbation ampli-
tude of 0.03125 in normalized luminance which correspond to a perturbation
amplitude of 8 gray levels using a 8-bit grayscale. This amplitude has been
chosen based on preliminary experiments with amplitude ranging from 2 to
30 gray levels have been tested (data not shown).

4.4.5 Linear-nonlinear model (LN)
We implemented a regularized LN model. This model is fitted for each neuron
separately and consists of: a) linear filter weights wi,j that compute a dot
product with the input images (where i and j index space), b) a pointwise
nonlinear function fθ that converts the filter output into a non-negative spike
rate, and c) a Poisson noise model for training (since spike counts are assumed
to be generated through a Poisson process). We chose fθ to be a parametric
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softplus function such that:

fθ(x) = α ln
(

1 + exp
(
βx + γ

))
where θ = {α, β, γ} (4.1)

The spiking rate r of a neuron given an input image X will follow:

r(X) = fθ

∑
i,j

wi,jxi,j

 where X = (xi,j) (4.2)

Regularization Additionally, two types of regularization were applied:

• L1 regularization to induce sparsity since we expected the spatial pool-
ing to be localized:

LL1 =
∑
i,j

|wi,j| (4.3)

• Laplacian regularization to induce smoothness since we expected the
spatial pooling to be localized on contiguous pixels:

L∆ =
√∑

i,j

(W ∗ ∆)2
i,j where W = (wi,j) and ∆ = 1

4

1 2 1
2 −12 2
1 2 1


(4.4)

with zero padding such that W ∗ ∆ had the same spatial dimensions
as W.

Constraint Moreover the following constraints were applied: a) force
weights to have at most unit norm, b) force α to be non-negative (to guaran-
tee non-negative firing rates), and c) force β to be non-negative (to guarantee
that neuron polarity is only captured by the filter).

Initialization To initialize the weights, we took the ”normalized” spike-
triggered average (STA) for each neuron as our initial guess and added, for
each weight, a random component sampled from a truncated normal distri-
bution with mean zero and standard deviation 0.01. It is supposed to help
and accelerate the convergence to the trained model. The initialization of
the nonlinear function was identical for all neurons with α set to 1, β set to
1 and γ set to 0.
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4.4.6 Linear-nonlinear linear-nonlinear model (LN-
LN)

This model was also fitted for each neuron separately. It is composed of two
layers. Each layer performs a linear combination of its inputs followed by
a nonlinear transformation. We can think of the first layer as a collection
of two LN units which are convolved in space. Thus the output of the first
layer corresponds to two feature maps, one for each unit. The second layer
is a single LN unit taking this output as input.

More precisely, the model consists of: a) convolutional kernel weights kon
i,j

and koff
i,j that compute two convolutions with the input images (where i and j

index space), b) two pointwise nonlinear function fθon and fθoff that converts
the convolutional outputs into non-negative activation values, c) linear filter
weights won

i,j and woff
i,j that compute a dot product with the activation maps,

d) a pointwise nonlinear function fθ that converts the filter output into a non-
negative spike rate, and e) a Poisson noise model for training. The pointwise
nonlinear functions were chosen to be parametric softplus functions with
possibly different value for their parameters θon, θoff and θ.

The outputs of the ON unit and the OFF unit of the first layer were
therefore:

Aon = fθon (Kon ∗ X) and Aoff = fθoff

(
Koff ∗ X

)
(4.5)

Thus the spiking rate r of a neuron given an input image X was:

r(X) = fθ

∑
i,j

won
i,ja

on
i,j +

∑
i,j

woff
i,jaoff

i,j

 (4.6)

Regularization We used the same kinds of regularization as those used
for the LN model. The L1 and Laplacian regularizations were only applied
on the linear filters of the second layer since the kernels of the first layer
were kept constant. The Laplacian regularization was adapted to apply to
the linear filter weights for each feature:

L∆ =
√∑

i,j

(Won ∗ ∆)2
i,j +

∑
i,j

(Woff ∗ ∆)2
i,j (4.7)

where Won =
(
won

i,j

)
, Woff =

(
woff

i,j

)
, and ∆ is the discrete Laplace operator

already described in equation 4.4.

Constraints We used the same constraints as those used for the LN model.
The max norm constraint was applied independently to Won and to Woff.
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Initialization To initialize the convolutional kernels, we used 2D Gaussian
spatial profiles of opposite polarity but sharing the same spatial scale such
that:

Kon
i,j = 1

2πσ2 e−
∆2
(

(i−i0)2+(j−j0)2
)

2σ2 and Koff
i,j = −Kon

i,j (4.8)

where σ = s
∆ with s = 30 µm the targeted spatial scale and ∆ = 28 µm the

size of one pixel (after downscaling, i.e. 8 × 3.5 µm). The spatial scale was
chosen to match theoretically this profile with the profile of a typical bipolar
receptive field found in the salamander retina. We initialized the linear filters
with weights sampled from a truncated normal distribution with mean 0 and
standard deviation 0.01. For this model, we didn’t use an initial guess related
to the “normalized” spike triggered average (STA) to try to speed up the
convergence during the training procedure. About the pointwise nonlinear
functions, theirs initializations were identical to the one described for the LN
model.

4.4.7 Convolutional neural network model (CNN)
The design of this model has been inspired by previous work. First, by
the deep convolutional neural network model described in (McIntosh et al.,
2016; Maheswaranathan, McIntosh, Kastner, et al., 2018; Maheswaranathan,
McIntosh, Tanaka, et al., 2019) where authors show that this kind of model
can capture retinal responses to natural scene stimuli. Second, by the novel
architecture of deep neural networks described in (Klindt et al., 2017; Ca-
dena et al., 2019) where a deep convolutional neural network is meant to
learn a convolutional feature space shared across cells, and where a sparse
readout layer (which factorizes the spatial and feature dimensions) allows for
separating the inference problem of each cell’s receptive field location and
type from the inference of the feature space.

This model is rather different from the previous ones since its training
phase doesn’t consider each cell one by one but all the cells at once instead.
It is composed of two layers. Multiple LN units are convolved in space in
the first layer resulting in multiple activation maps. Then the second layer
implements the readout mechanism. For each cell, the activation maps are
filtered by readout weights which are specific to this cell and factorized in
space and feature. Finally, the resulting activation value passes through the
final nonlinear activation function associated to this cell to give the predicted
spiking rate.

More precisely, the model consist of: a) convolutional kernel weights ki,j,k

that compute convolutions with the input images (where i and j index space
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and k index kernels), b) pointwise nonlinear functions f
θ

[1]
k

that convert the
convolutional outputs into non-negative activation values. And in addition
for each neuron n: c) readout weights wi,j,k,n which can be factorized as
wi,j,k,n = ui,j,nvk,n where ui,j,n represent the spatial weights and vk,n the
feature weights, d) a pointwise nonlinear function f

θ
[2]
n

, and e) a Poisson
noise model for training. We choose f

θ
[1]
k

and f
θ

[2]
n

to be parametric softplus
functions with possibly different value for their parameters.

The outputs of the kth unit of the first layer were:

A:,:,k = f
θ

[1]
k

(K:,:,k ∗ X) (4.9)

Such that the spiking rate rn of the nth neuron given an input image X was:

rn(X) = f
θ

[2]
n

∑
k

∑
i,j

ui,j,nvk,nai,j,k

 (4.10)

Additionally, batch normalization was applied to the outputs of the first layer
for stability of the learning phase.

Regularization We used a Laplacian regularization on the convolutional
kernels of the first layer, and we used L1 regularization on the spatial weights
and on the feature weights of the second layer such that:

L∆ =
√∑

k

∑
i,j

(K:,:,k ∗ ∆)2
i,j and LL1 = λs

∑
i,j,n

|ui,j,n| + λf

∑
k,n

|vk,n|

(4.11)

Constraints We constrained the spatial weights and the features weights
to be positive. This constraint was applied independently on U and V. We
initialized the linear filters

Initialization To initialize the convolutional kernels, we initialized each
weight with a truncated normal distribution with mean 0 and standard devi-
ation 0.01. The spatial weights were initialized with the “normalized” spatial
spike triggered average (STA) of each neuron (with their amplitude set to
0.1) corrupted with a small Gaussian noise (with mean 0 and standard de-
viation 0.01). The feature weights were initialized with a truncated normal
distribution with mean 0 and standard deviation 0.01. This initialization is
supposed to speed up the convergence during the training procedure. The
pointwise nonlinear functions were initialized in the same way as before.
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4.4.8 Model training and cross-validation
Model fitting Considering the n recorded image-response pairs
(X1, y1), . . . , (Xn, yn) for one neuron, the resulting loss function is given by:

L =
(

1
n

n∑
k=1

r (Xk) − yk log r (Xk)
)

+ λL1LL1 + λ∆L∆ (4.12)

where the first term corresponds to the negative log-likelihood of the Pois-
son loss and where λL1 and λ∆ are the hyperparameters which controls the
importance of the regularization terms.

We fitted the model by minimizing this loss using the Adam optimizer on
the training set. The training set was composed of 2910 natural images and
the associated responses (i.e. number of spikes elicited between the onset and
the offset of the flash). We fixed the batch size to 64. We used a learning
rate initially equal to 0.002 and added a decay of the learning rate, when
10 consecutive training epochs did not improve the validation loss we came
back to the first epochs and divided the learning rate by 4 a factor of two.
In addition, we used early stopping with a patience of 15 training epochs.
These two mechanisms prevented overfitting.

We cross-validated the hyperparameters λL1 and λ∆ for each neuron in-
dependently by performing a random search. For each hyperparameter λ, we
used 128 values sampled from the corresponding continuous random variable
Λ defined over [λmin, λmax] such that log(Λ) ∼ U [log(λmin), log(λmax)]. For
λL1 we usually searched over [1e − 6, 1e − 1] and for λ∆ we searched over
[1e − 6, 1e + 2].

When fitting models, we used the same split of data for training, valida-
tion, and testing across models.

4.4.9 Model evaluation
To evaluate the performance of the models, we used a testing set of 30 dif-
ferent stimuli where each stimulus have been repeated 20 times. These rep-
etitions allowed to separate prediction error in two parts. The error due to
the limitations of the model and the error due to the intrinsic noise in the
response.

Given n responses to the same stimulus, y1, · · · , yn, we averaged them
over odd and even numbered trials to get estimates of the actual mean re-
sponse, ȳo and ȳe. We defined the reliability as the correlation between these
estimates, rȳo,ȳe . Then, given the prediction of one model, ŷ, we defined the
accuracy as the correlation between the prediction and one the two estimates
of the mean response, rŷ,ȳo .
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Without noise correction, we reported the R-squared of the correlation,
R2 := r2

ŷ,ȳo
. Following the methods of (Schoppe et al., 2016; Hsu et al., 2004),

we estimated the maximum correlation attainable by a model:

rmax :=
√√√√√ 2

1 +
√

1
r2

ȳo,ȳe

(4.13)

and reported the corresponding upper bound, R2
max := r2

max.
With noise correction, we estimated the noise-corrected correlation:

rnc :=
1
2 (rŷ,ȳo + rŷ,ȳe)√

rȳo,ȳe

(4.14)

similar to the methods used by (Keshishian et al., 2020). We reported the
corresponding noise-corrected R-squared, R2

nc := r2
nc.

4.4.10 LSTA prediction
Given a model which predicts the firing rate r(X) of a neuron in response to
image X, we predicted the LSTA with:

LSTA(X) := ∂r(X)
∂X

=
(

∂r(X)
∂xi,j

)
(4.15)

the gradient of the model output with respect to the input image. This
quantity is also referred as the data Jacobian matrix (S. Wang et al., 2016).
Computing the quantity is particularly straightforward for deep convolutional
neural networks. These networks can be viewed as a sequential composition
of convolutions and nonlinear functions. The gradients of these components
taken individually can be easily calculated. Then, the application of the
chain rule allows to compute the gradients of the composite function. Modern
machine learning libraries such as TensorFlow (Abadi et al., 2016) or PyTorch
(Paszke, Gross, Massa, et al., 2019; Paszke, Gross, Chintala, et al., 2017)
provide automatic differentiation systems which allows to avoid the manual
calculation of these gradients. Since all our models were implemented with
TensorFlow, we took advantage of automatic differentiation to calculate the
LSTAs.

One issue with this method is that the gradient is equal to the LSTA up
to a constant multiplier. This constant is determined by the amplitude of
the perturbations used to measure the LSTA and by the standardization of
images used to train the models. In future work we need to estimate this
constant to make a fully quantitative comparison.
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Modern electrophysiology

Recording techniques to access the spiking activity of large populations of
neurons greatly improved over the last decades. Although the work presented
in this thesis mainly focused on dense and large-scale microelectrode arrays,
this is not the only way of measuring neuronal activity. Imaging techniques
are the main alternative to electrical techniques. They rely on fluorescent
markers placed in neurons whose light emissions are linked to their electrical
variations. Their emitted light can be imaged with an optical microscope to
give an indirect measure of the spiking activity. Two-photon calcium imaging
is probably the most widely used imaging technique (Garaschuk et al., 2000;
Stosiek et al., 2003). Alternatively, voltage sensitive dyes (VSDs) have been
developed (Grinvald and Hildesheim, 2004). In both cases, tens of thousands
of cells can be recorded simultaneously. However, the temporal resolution
is limited and doesn’t generally allow for resolving individual action poten-
tials (Theis et al., 2016). Recently, genetically-encoded voltage indicators
(GEVIs) appeared as a promising solution to this kinetic problem (Lin and
Schnitzer, 2016; Chamberland et al., 2017).

There are some limitations to imaging techniques over electrical tech-
niques. A first limitation is light scattering through biological tissues which
imposes a depth constraint. Even if multi-photon fluorescent microscopy
can partly relax this constraint, deep brain structures remains inaccessible
for imaging (Zipfel et al., 2003). Another limitation is that the microscope
systems used to image the fluorescent activity are not portable. As a con-
sequence, animals have their head fixed during the imaging and visual and
auditory stimuli are used to recreate virtual environments. Thus, these con-
ditions are not suitable for chronic recordings of freely moving animals which
are of particular interest for behavioral studies. Head-mounted and miniature
microscopes have been constructed but without comparable capabilities (Cai
et al., 2016). This is not the case for brain implants such as silicon probes
which are of particular interest for medical purposes like the restoration of
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some brain functions after a stroke or other head injuries. Thus, the recent
development of imaging techniques is unlikely to supplant the electrical tech-
niques. Instead they will certainly both provide an unprecedented amount
of recorded data from various neural systems which will help understand the
governing principles and mechanisms of the brain. There will be an increased
need for an accurate, efficient and automated spike sorting procedure that
scales with the number of microelectrodes.

Spike sorting of non-stationary data
One of the main assumptions shared by spike sorting algorithms is the sta-
tionarity of the data. When a neuron elicit a spike, it is supposed to evoke
the same spatiotemporal voltage pattern (i.e. template) at the tips of the
microelectrodes. However, this assumption doesn’t always hold. In the case
of the retina, the tissue can slightly relax over time and there is a progressive
and irremediable degeneration of cells for recording of several hours (more
than 4 hours). Some ganglion cells drift weakly in space which change their
electrical footprints seen by the recording device. For examples, if the cell
drifts a bit away from the microelectrodes then the amplitude of its tem-
plate decreases, and if the cell drifts a bit along the microelectrodes then the
template can be shifted over the electrodes.

One solution mentioned in this thesis to deal with this kind of drift is to
use a template matching procedure where templates can be scaled in ampli-
tudes to some extent. If the scaling is made time dependent then the activity
of the cells which are drifting away can be better reconstructed. Another so-
lution has been proposed with the development of the online spike sorting.
Using an online clustering algorithm, the dictionary of templates can be up-
dated continuously as spikes are collected through the experiment. If a cell
drifts slowly then the corresponding template will slowly change accordingly.
However, it is important to note that this method has not been extensively
validated yet. Ground-truth dataset of ganglion cells used to validated offline
spike sorting algorithms are often too short to show challenging drifts (less
than 20 minutes). The generation of synthetic dataset with simulated drifts
could compensate this lack with a careful design to keep realistic scenarios.
Therefore, a future effort will tackle the extensive validation of the tracking
of drifts.

It is more difficult to handle drifts when silicon probes are used to record
neurons in the cortex. The brain floats inside the skull and any movement
from the animal make it move. These movements can be fast and provoke
brief drifts of tens of micrometers which add up with slow drifts. Fast drifts
are not a problem if the animal is not behaving but most neuroscience exper-
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iments typically involve some motor actions to perform a task. The approach
mentioned previously to resolve drifts is not sufficiently mature to be used in
this context. Further research and development will be required to enforce
robustness to those fast and transient non-stationarities.

A more important and less explored source of non-stationarity is due to
the use of pharmacology. In this work, L-2-amino-4-phosphonobutyric acid
(L-AP4) have been used to eliminate light response of ON bipolar cells. For
some cells, the spike sorting algorithm identifies a template for the spikes
elicited before the application of the pharmacology and another template
during its application. Even if this kind of pair of templates can be merged
during the manual curation, a dedicated procedure would be required to cope
with this non-stationary process and to have a fully automated spike sorting
procedure in this specific condition.

Adaptive sampling with online spike sorting
Neurophysiological experiments often seek to unravel the function of a bio-
physical system seen as an input-output system. For example in the retina,
the inputs are the spatiotemporal patterns of light which enter the eye while
the spike trains of retinal ganglion cells are the outputs. The experimental
time is often limited and constrains the number of test inputs that can be
used to probe the system. Usually a predefined set of inputs or inputs drawn
from a predefined probability distribution are used. In the end, the amount
of information provided by some inputs on the system is lower than others.
For instance, ganglion cells may not elicit any response to stimuli belonging
to a specific region of the stimulus space. In this case, a significant amount
of time is wasted to test not very informative inputs.

Instead, given the ability to measure the output during the time course
of the experiment, one could start with a small number of initial inputs to
acquire the first data about the system. Once some initial information have
been obtained, the choice of the inputs can be reconsidered to focus on the
most useful to test, and that depends on the objective of the experimenter.
Initially, the mutual information between the stimulus and the response has
been proposed as an optimal criterion (Machens, 2002). This method has
been successfully applied on single-unit recordings of locust and grasshopper
auditory receptor neurons (Edin et al., 2004; Machens et al., 2005). This tech-
nique allows to find optimal stimulus ensembles under specific constraints.

Another possible objective is to learn a model adaptively. Given a pa-
rameterized set of models, the optimal criterion is based on the mutual in-
formation between stimulus-response pair and the parameters of the model
(Paninski, 2005). However, this Bayesian and information-theoretic approach
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needs some adaptations to scale well in high dimensions which is critical for
real-time applications (Lewi et al., 2009). In the case of receptive field estima-
tion, the exploitation of structured prior knowledge such as the smoothness
and sparsity of receptive fields in space and time provides additional speed
up (M. Park and Pillow, 2012). This last method has been used successfully
to estimate the receptive fields of simple cell recorded in primate V1 for a
simulated experiment, i.e. offline analysis of real neural data (M. Park and
Pillow, 2012).

So far, all the techniques mentioned previously relied on single cell record-
ings but the same adaptive methods can be applied to populations of neurons
in live experiments. In this case, objective functions need to be rephrased to
apply to ensembles of cells, and result in different stimulus selection. A first
example is to choose stimuli that maximize the responses of a specific neu-
ron in the population, which is not that different from a single cell method.
Another possibility is to maximize the responses of all the neurons. A last
example is to choose stimuli that maximize the scatter of the population re-
sponses. All these three objective functions have been considered by Cowley
et al. (2017) and used for adaptive sampling of populations of V4 neurons
(rhesus macaques). This results in a principled way to find a set of natural
images which evoke higher mean responses and elicit a larger diversity of
responses.

Recently, this approach gained a particular interest to investigate the
feature selectivity of neural systems about which we understand much less
such as the visual area 4 (V4). Multiple systems have been proposed to
generate natural images rather than selecting them from a pre-existing pool
of candidate images such as Cowley et al. (2017). These systems relies on
models of the statistics of natural images which allow to represent a larger
image space, and make it possible not to constrain the adaptive search. The
addition of these generative systems was key to find the optimal images with
respect to the objective functions. For example, Ponce et al. (2019) inves-
tigated neuronal selectivity in the inferotemporal cortex of rhesus macaques
using chronic microelectrode arrays. Bashivan et al. (2019) manipulated the
spiking activity of populations of V4 neurons also recorded in the visual cor-
tex of rhesus macaques with microelectrode arrays. In particular, in addition
to driving the response of a targeted neural unit to its maximum, they si-
multaneously kept the responses of all other units low. This results in the
generation of images with specific features which are supposed to be those to
which V4 neurons are selective. Walker et al. (2019) used a similar approach
for V1 neurons recorded in mice using two-photon imaging.

This kind of investigations which use chronic micro-electrode arrays usu-
ally rely on multi-unit activity rather than single-unit activity. They don’t
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drive the responses of single neuron but of small group of neurons. These
neurons might be of different type and thus selective to different visual fea-
tures. In this case, pooling the activity of multiple cells might obfuscate their
selectivity. The online spike sorting framework presented in this thesis can
solve this issue by providing the activity of individual neurons.

Further research could use this approach for retinal ganglion cells, which
show a high diversity of cell types. The simplest objective function to test
would be the maximization of the response of a single cell. Since Walker et al.
(2019) showed that the most exciting inputs of V1 neurons deviate substan-
tially from the classical notion of Gabor-shaped receptive fields, it would be
particularly interesting to see if stimuli that maximally drive ganglion cells
deviate substantially from the antagonistic receptive field structure usually
found in the retina. At the same time, the results presented in the last part
of this thesis show that the stimulus that maximally drive a ganglion cell is
a moving target, and depends on the visual context. Thus, the choice of the
objective function should be reconsidered to integrate this contextual aspect.
With this modification, one may find a good agreement between the optimal
stimulus ensemble and the expected shape of the receptive fields in the retina
or in V1.

Another application of adaptive sampling with online spike sorting con-
cerns the measurement of LSTAs. Currently, the main limitation is the small
number of natural contexts that can be explored during one experiment.
Adaptive sampling associated to a tailored objective function could be used
to speed up the estimation of LSTAs similar to what have been done for the
receptive field estimation with an information-theoretic approach mentioned
previously (M. Park and Pillow, 2012). This method would significatively
increased the number of natural images that could be tested as natural con-
texts in a single experiment. It would also make possible a more extensive
validation of the prediction of LSTAs by the CNN model.

Another issue with the experimental observation of LSTAs is that a gan-
glion cell can elicit no spike at all for a given natural image. This means that
the activation of the cell is completely rectified for this specific stimulus and
that any small perturbation of the stimulus is likely to evoke the same lack
of response. In this case it might not be worth spending too much experi-
mental time measuring the corresponding LSTA. In other words, online spike
sorting could be used to explore multiple natural images and choose those
which evoke responses in most ganglion cells. This strategy would make it
possible to then use perturbed natural images to measure LSTAs among a
large fraction of the population.
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LSTAs as a model free approach to neural computations
In this thesis a new perturbative approach has been introduced to probe
selectivity of retinal ganglion cells during natural scene stimulation. This
approach finds the perturbed stimulus that locally maximizes the neuronal
responses. Interestingly, the perturbations found are different from one image
to the other. Even if the actual number of natural images that can be tested
experimentally is limited, further optimizations of the experimental protocol
should be able to increase significantly this number. In this case, the ability
to measure many locally maximizing perturbations would lead to a model-
free characterization of the processing performed by the cell. The use of a
convolutional neural network model as a proxy for measuring LSTAs might
no longer be necessary and direct measurements could be used to test which
features of natural images can be robustly coded by retinal ganglion cells.

Instead of using flashed natural images, one could think of using stimuli
with temporal dynamics such as movie clips of natural scenes. However, this
kind of stimulus would increase the dimension of the perturbation space and
the number of perturbed stimuli needed to accurately estimate the LSTAs.
Even with optimizations such as adaptive sampling of the perturbations, it
is not clear if LSTAs can be measured without a model given the limited
experimental time.
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Conclusion
We have presented different approaches to reconstruct the activity of popula-
tions of neurons at a single cell resolution from extracellular voltage record-
ings. Template matching based methods are particularly efficient to deal
with overlapping spikes which are not rare events since synchronous activity
is often observed between nearby neurons. Distributed computing is another
key aspect to scale with the ever increasing number of microelectrodes of lat-
est electrophysiological devices. We have presented an online spike sorting
algorithm which extend an already well-established and highly used offline
algorithm (SpyKING CIRCUS). We have shown that the spike trains of mul-
tiple neurons can be reconstructed in firm real-time. This new technology
open the possibility to use adaptive sampling in closed-loop experiments to
probe the spiking activity more efficiently. We presented a specific applica-
tion on the retina where online spike sorting might be useful. We probed the
selectivity of retinal ganglion cells to multiple perturbations in natural con-
texts. These results could be of great help for the design of neural prostheses
such as artificial retinas. They could provide a better understanding of how
the sensory neurons encode the information, which neural representation do
they carry about the visual scene, and what are the visual features which are
behaviorally relevant.
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Summary in French

Introduction

Les neurosciences computationnelles cherchent à comprendre l’information
que contiennent les signaux neuronaux. Des zones sensorielles aux zones
motrices du système nerveux central, ces signaux se présentent sous une forme
standard : une séquence d’impulsions électriques appelées potentiels d’action.
Pour comprendre leur signification, nous devons comprendre la structure de
ces séquences et élucider les règles qui définissent ce que l’on pourrait appeler
la syntaxe neurale. Cette approche devrait révéler la manière dont nous
recevons, traitons, stockons et transmettons les informations provenant du
monde extérieur.

Au cours des dernières décennies, le progrès des techniques expérimen-
tales ont ouvert de nouveaux horizons pour l’étude du code neural. Notre
capacité à enregistrer l’activité d’une grande population de neurones s’est
considérablement développée. C’est particulièrement vrai en électrophysiolo-
gie, où les implants en silicium et les réseaux de microélectrodes fournissent
désormais un grand nombre et une forte densité de sites d’enregistrement.
En conséquence, le volume de données neuronales enregistrées a énormément
augmenté et remet en question les processus d’analyse de données utilisés
habituellement.

Dans ce travail de thèse, je passe en revue les algorithmes de traitement
du signal qui ont été proposés pour reconstruire indiciduellement l’activité
électrique des neurones à partir des traces de potentiel extracellulaire enreg-
istrées avec ces nouveaux dispositifs. Ce problème inverse de séparation de
sources est appelé ”tri de potentiel d’actions”. J’identifie les propriétés com-
munes et les principales différences de ces algorithms pour ensuite identifier
les problèmes qui restent à résoudre. Dans la partie qui suit, je présente
un outil générique pour le tri des potentiels d’actions en ligne, basée sur une
combinaison de méthodes : le partitionnement par densité, la correspondance
de motifs et le calcul parallèle. Cet outil permet de résoudre les trains de
potentiels d’actions de chaque cellule enregistrée en temps réel.
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La rétine est un système particulièrement adapté pour étudier comment
les neurones sensoriels codent l’information visuelle. Ce système neuronal
transforme les motifs lumineux qui entrent par l’oeil en séquences de poten-
tiels d’actions qui sont ensuite envoyées au cerveau. L’information visuelle
est transportée par ce système sensoriel avec quasiement aucune rétroaction
de la part du cerveau, ce qui permet d’étudier le traitement visuel qu’il réalise
de manière isolée. De plus, la planéité du tissu rétinien permet d’enregistrer
facilement son activité à l’aide de réseaux de microélectrodes. Les réponses
enregistrées à partir de grandes populations de cellules ganglionnaires, la
sortie de la rétine, sont bruitées et présentent un degré de complexité élevé.
En pratique, environ 30 types de cellules différents ont été identifiés et cha-
cun d’entre eux est supposé coder une caractéristique différente de la scène
visuelle. Ces représentations sont souvent non linéaires et s’adaptent aux
statistiques visuelles telles que la luminance moyenne. Ces propriétés ren-
dent le code rétinien difficile à déchiffrer et font l’objet d’une recherche active.

Dans une dernière partie, je présente une application spécifique sur la
rétine où le tri en ligne des potentiels d’actions pourrait être utile. Classique-
ment, les cellules ganglionnaires sont supposées extraire des caractéristiques
spécifiques de la scène visuelle telles que l’augmentation ou la diminution
de la luminance, cellules ON ou OFF respectivement. Cependant, le traite-
ment effectuée par la rétine dépend du contexte visuel. En utilisant une
nouvelle approche perturbative, je montre qu’une même cellule peut être ac-
tive ou inactive en fonction du contexte naturel. J’ai construit un modèle de
réseau de neurones convolutionnel ajusté aux données qui peut récapituler
cette dépendance au contexte. Les perturbations en ligne sont donc un outil
prometteur pour étudier les calculs effectués au niveau de la rétine mais aussi
plus largement dans d’autres systèmes sensoriels.

Cette thèse est organisée comme suit :

Chapitre 1 Je commence par une introduction de la physiologie de la
rétine. Je montre que des fonctions complexes émergent de la diversité des
types cellulaires et de la structure en réseau de ce système sensoriel.

Chapitre 2 Je passe en revue les algorithmes utilisés pour reconstru-
ire individuellement l’activité des neurones à partir de traces de potentiel
extracellulaire enregistrées avec des réseaux de microélectrodes denses et de
grande échelle.
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Chapitre 3 Je présente un ensemble générique d’outils pour le tri en
ligne de potentiels d’action qui permet de reconstruire les trains de potentiel
d’actions de chaque cellule enregistrée en temps réel.

Chapitre 4 J’étudie la stabilité de l’extraction de caractéristiques
visuelles par les cellules ganglionnaires de la rétine dans différents contextes
naturels avec une luminance et un contraste moyen fixes. En particulier,
je montre que certaines cellules peuvent répondre de manière sélective à de
petites augmentations de lumière dans certains contextes et à des diminutions
dans d’autres.
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Résumé

Les neurones sont les unités de calcul fondamentales du système nerveux central. De

récentes avancées technologiques permettent d'enregistrer simultanément l'activité de mil-

liers de cellules. Le développement de réseaux de microélectrodes qui possèdent des

milliers d’électrodes groupées densément en est un exemple typique. Il renouvelle le défi

du tri des potentiels d’actions des signaux enregistrés. Je passe d'abord en revue les prob-

lèmes associés aux méthodes de tri, et je compare les algorithmes qui ont été proposés.

Je présente ensuite un nouvel algorithme permettant de trier les potentiels d’action en ligne

pour des enregistrements à grande échelle. Le partitionnement en ligne basé sur la densité

et l'appariement de motifs sont essentiels pour obtenir de bonnes performances. Le logiciel

a été validé sur des enregistrements synthétiques et des données réelles de vérification.

Finalement, je présente une application spécifique sur la rétine où le tri des potentiels d’ac-

tion en ligne pourrait être utile. Classiquement, les cellules ganglionnaires, la sortie de la

rétine, sont supposées extraire des caractéristiques spécifiques de la scène visuelle telles

que des augmentations ou des diminutions de luminance (cellules ON ou OFF). Cependant,

le traitement de la rétine dépend du contexte visuel. En utilisant une nouvelle approche per-

turbative, je montre que la même cellule peut être alternativement ON ou OFF en fonction

du contexte naturel. Je montre qu'un modèle de réseau neuronal convolutif ajusté aux don-

nées peut récapituler cette dépendance au contexte. Les perturbations en ligne sont donc

un outil prometteur pour sonder les calculs neuronaux des systèmes sensoriels.

Mots Clés

Neurosciences computationnelles – Électrophysiologie – Tri de potentiels d'action – Rétine

Extraction de caractéristique – Dépendance au contexte

Abstract

Neurons are the fundamental computing units of the central nervous system. Recent tech-

nological advances have made it possible to simultaneously record the activity of thousands

of cells. A typical example is the development of microelectrode arrays with thousands of

electrodes packed with a high density. A renewed challenge is to spike sort their recorded

signals, by extracting the spiking activity of each neuron. I first review the issues associated

with spike sorting methods, and compare the algorithms that have been proposed. I then

present a new algorithm to sort spikes online from large-scale recordings. Online density-

based clustering and template matching are key to reach good performances. The software

has been validated on both synthetic and real ground-truth recordings. Finally, I present a

specific application on the retina where online spike sorting might be useful. Classically,

ganglion cells, the retinal output, are supposed to extract specific features from the visual

scene such as increases or decreases of luminance (ON vs OFF cells). However, retinal

processing depends on the visual context. Using a novel perturbative approach, I show

that the same cell can turn ON or OFF depending on the natural context. I found that a

convolutional neural network model fitted to the data can recapitulate context-dependence.

Online perturbations are thus a promising tool to probe computations in sensory systems.

Keywords

Computational neuroscience – Electrophysiology – Spike sorting – Retina

Feature extraction – Context dependency
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