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Résumé

Le traitement des flux de données (DSP) est un paradigme établi de Big Data
qui permet de traiter et d’analyser les données en temps réel. Les applications
de streaming sont composées d’une série de tâches, répliquées et réparties sur
un cluster, qui effectuent des opérations sur les données entrantes, fournissant
des mises à jour continues des résultats. Un large éventail de travaux a abordé
plusieurs aspects du DSP : le placement des tâches, la tolérance aux pannes et la
gestion des états ne sont que quelques exemples parmi tant d’autres. Dans cette
thèse, on étudie les limites des plates-formes DSP actuelles, en se concentrant
sur les performances du point de vue de l’application.

Dans la première partie, nous analysons les mécanismes de fiabilité des mes-
sages dans les plateformes de streaming. On découvre l’étroite interdépendance
entre les mécanismes des plates-formes et les algorithmes d’ordonnancement
des tâches. En particulier lorsque ces mécanismes sont mis en œuvre en tant
que tâches non fonctionnelles. Ainsi, on présente deux algorithmes de planifi-
cation pour optimiser les performances des applications, en tenant compte de
l’impact du placement des tâches non fonctionnelles.

Dans la deuxième partie, on présente NAMB, un générateur de prototypes
d’applications pour pallier les insuffisances des tests actuels d’applications de
streaming. Tout d’abord, on introduit les principes fondamentaux sur lesquels
repose NAMB, en présentant les modèles de description de haut niveau utilisés
pour définir les applications de streaming. Ensuite, on illustre notre générateur
de prototypes d’applications, en détaillant les défis de sa mise en œuvre. Enfin,
on effectue une large évaluation, où l’on illustre de nombreux cas d’utilisation
possibles de notre outil, en démontrant ses caractéristiques en tant que solution
générique et flexible.

Mots-Clé: Traitement de flux de données, fiabilité des messages, mécanisme
d’acquittement, ordonnancement, prototype d’application, génération d’appli-
cations, description de haut niveau
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Abstract

Data Stream Processing (DSP) is an established Big Data paradigm that allows
to process and analyze data in real-time. Streaming applications are composed
of a series of tasks, replicated and distributed over a cluster, that performs op-
erations on the incoming data, providing continuous results updates. A wide
range of works tackled several aspects of DSP: task placement, fault tolerance
and state management are just some of many examples. In this thesis, we study
the limitations of current DSP platforms, focusing on performance from the ap-
plication point-of-view.

In the first part, we analyse message reliability mechanisms in streaming
platforms. We uncover the tight interdependency between platform mecha-
nisms and tasks scheduling algorithms. Especially when those mechanisms are
implemented as non-functional tasks. Thus, we present two scheduling algo-
rithms to optimize application performance, taking into account the impact of
non-functional tasks placement.

In the second part, we present NAMB, an application prototype generator to
tackle the shortcomings of current streaming application testing. First, we intro-
duce the fundamentals over which we base NAMB, presenting the high-level
description models used to define streaming applications. Then, we illustrate
our application prototype generator, detailing the challenges of its implemen-
tation. Finally, we perform a wide evaluation, where we illustrate numerous
possible use cases for our tool, demonstrating its characteristics as a generic
and flexible solution.

Keywords: Data Stream Processing, Message Reliability, Acking Framework,
Scheduling, Application Prototype, Application Generation, High-Level Descrip-
tion
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Chapter 1

Introduction

Contents
1.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Batch vs. Streaming . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Batch Processing . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Stream Processing . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Methodology and Contributions . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 8

A continuously increasing number of IT and non IT companies are heading
towards a data centric business model. In the entirety of the industrial land-
mark the importance of data, most specifically information, is well established.
In 2020, it is estimated that 4.5 billions users access the Internet via almost 30 bil-
lions devices [Cis20]. The amount of data generated has significantly increased
compared to the past years, reaching a volume of 44 ZettaBytes of data gener-
ated in the Internet [UI14]. Given the variety of data exchanged by users, com-
panies strive to exploit this data at best to obtain valuable strategic business
information. One of the examples that can be given is targeted advertising. Sev-
eral web-based companies exploit their users activity to analyze their behavior
and offer interest-based advertising [Goo20]. Data can be also used to under-
stand and predict the trends of the company, and get insights on its decisional
process.

One of the main paradigms in data management is the Extract-Transform-
Load (ETL), which describes the process of obtaining data, processing it and

1



2 CHAPTER 1. INTRODUCTION

storing the transformed value. Historically, ETL models relied on RDBMS (Re-
lational Database Management Systems). However, given the important quan-
tity of data generated nowadays, old ETL models to elaborate and analyze data
are not enough. The paradigm born to analyze and process this huge amount
and heterogeneity of data is called Big Data. This paradigm is nowadays widely
spread and an established core technology in the majority of data-driven com-
panies.

With new widely used Internet services (e.g. e-commerce, web search en-
gines and social networks), legacy relational databases are not able to keep up
with the amount of data to be stored and read. Consequently, Big Data ap-
plications required new data management methodologies to deal with these
new challenges. From a structured paradigm for data management, new mod-
els moved to unstructured data. The former relies on pre-defined data, tables
and fields, typically relational databases. The latter removes all the boundaries
of structured data, and support more generic data formats, like texts, images
or videos. To manage these formats non-relational databases (i.e. NoSQL) are
used, proposing different paradigms to store data: document-based (e.g. Mon-
goDB [MDB]), key-value (e.g. Redis [RED]), graphs (e.g. Neo4j [N4J]).

1.1 Big Data

Big Data has been precisely defined by IBM [Hub20] though the description of
the 4 V’s: Volume, Variety, Velocity and Veracity. It became quickly a standard
definition of what Big Data is and of the general challenges in the field. Through
the years, the evolution of data and applications that would rely on Big Data,
increased the number of challenges. It is common to extend the definition of Big
Data with new Vs, e.g. Elder Research listed up to 42 V’s [Sha17] in 2017. Some
of the most recurring are: Variability, Visualization and Value; this last one is
evident from the trend taken by the companies. Although the large set of Vs
can be useful to understand all the nuances of Big Data, an already extensive
and correct definition of the field is given by the original 4 Vs.

Volume The main reason why Big Data was needed can be attributed to the
rapidly increasing amount of data that needs to be processed. As we previously
stated, not only processing but storage as well are challenged by the volume of
data. Given the increasing value of stored data (the more the better), companies
cannot allow themselves to discard it. The collected data needs to be stored for
future historical analysis, e.g. estimate company trends of the last months.

When dealing with Big Data, it is common to distribute the storage over a
larger cluster rather than a single node. However, updating on-premises clus-
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ters comes at high-financial costs. Hence, data moved from a local storage to a
remote one with Cloud Computing. Cloud Providers (Amazon AWS, Microsoft
Azure and Google Cloud Platform are the main players [Gar]) allow compa-
nies to outsource data storage and processing capabilities (useful as well for the
challenges raised up by velocity) on remote clusters.

Variety Following the growth of relatively new Internet services, like Social
Networks, E-Commerce and Video Streaming Services, the diversity of data gen-
erated and that needs to be dealt with increased significantly. Based on the
service or the specific field, data can be structured, unstructured or even of mul-
timedia type. Examples are: streaming video chunks (e.g. video streaming both
on-demand and live), block of texts (e.g. posts or tweets), products metadata
(e.g. online shopping), images and so on.

Big Data systems need to be able to deal with this variety and to merge data
coming from different sources to obtain useful and valid information from it.
For instance, the so called Data Lakes systems, used to administer data with-
out following a common format, are implemented in Big Data solutions to store
diverse data formats coming from different sources, enabling a centralized man-
agement of data.

Velocity With the advent of IoT (Internet of Things), the network is accessed
by numerous devices of any kind (i.e. things). From smartphones to sensors,
every single device that can connect to the Internet is a potential data generator.
With IoT sensors, the amount of data generated per second increased exponen-
tially. IBM estimated that 50000 GB were generated per second in 2018 [Hub17].

Thus, velocity describes the speed of data, both in terms of production and
consumption of this data. New IoT applications are often reactive systems, that
continuously monitor a given environment and trigger operations based on sta-
tus changes. Sensitive applications, such as healthcare systems or security mon-
itoring solutions require a fast response to changes in the monitored data. Big
Data systems thus need to efficiently and quickly process the huge amount of
quickly generated data, ideally in a real-time fashion.

Veracity We mentioned before the value of data. It is however important to
first assess its correctness. In Big Data systems veracity is the aspect that defines
the uncertainty of data. Data flows through networks, clouds and private sys-
tems that are not foolproof. Devices may stop functioning or lose connectivity,
being unable to send data. Thus, data is subject to loss and incorrect retrieval.
An incorrect dataset, that may lack important sections, can cause great cost to
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a company. Such a dataset used for data analysis may generate wrong or in-
complete information. If this is the case, business decisions based over that
information can easily results in financial loss for the company.

It is thus important for a Big Data system and infrastructure to reduce any
possible flaw. At the same time, data analysis techniques should always con-
sider the possibilities for a non-consistent dataset. Hence, Big Data architectures
and processing paradigms aims to ensure consistent datasets (i.e. with neither
missing or incorrect data) and data processing correctness (i.e. no loss or wrong
computations in the processing task).

1.2 Batch vs. Streaming

To get useful information, raw data has to be processed and transformed. As we
saw, the main challenge when dealing with Big Data is to process high quantity
of data that may be quickly generated. Two principal processing methodologies
have been created to deal with such challenges. The first one is batch processing,
used to manage significant amounts of data stored in distributed environments.
The second one is stream processing, used to process quickly in almost real-time
the stream of generated data.

1.2.1 Batch Processing

In Big Data analytics, batch processing helps to analyze massive quantities of
stored, and commonly distributed, datasets. Batch processing spreads the work-
load over different distributed tasks that will run in parallel. The data is ana-
lyzed in batches by the different tasks. The distributed storage and the parallel
execution gives batch processing an advantage over old data management tech-
niques. Indeed, it allows more complex operations and an easier management
of higher volume of data to process. For such reason batch processing is used
for analytics of historical data, to get a global view of a fixed dataset.

MapReduce The paradigm over which batch processing is based on is MapRe-
duce. It follows three main steps of processing: map, shuffle and reduce. In the
map phase, each task analyzes the local data and applies the map function (e.g.
counting word occurrences). Results are temporary stored as a set of key-value
couples (e.g. word and count). During the shuffle phase, data is redistributed
over the tasks, grouping the results by key, so to have all the occurrences of
the same key processed by the same task. During the reduce phase, each task
merges in parallel the results received (e.g. sum the count value of every word
key).
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Figure 1.1: Batch Processing Workflow

The first public and most used platform to implement MapReduce is Hadoop
[HAD]. With the help of a distributed file system, HDFS [HDF], Hadoop spreads
the storage of data over the cluster, managing it as a unique source. To process
the data, Hadoop places several tasks over the cluster nodes, in order to have
them closer to the data sources.

Even though MapReduce is the most common paradigm in batch process-
ing, other platforms, like Spark [SPA], enhance the batch processing capabili-
ties. Spark includes the possibility to add intermediate steps in the processing
pipeline. In this way, batch processing is not limited anymore by two funda-
mental operations but it allows to process data through successive operations.

1.2.2 Stream Processing

Stream processing doesn’t target a fixed and stored dataset. Instead it processes
a continuous stream of unbounded data generated live by external sources. It
defines a sequence of tasks to be executed over data as it comes. The tasks are
paralleled and distributed over the cluster to optimize the computation. The
distributed and live processing paradigm allows for an almost real-time data
processing. A common example is the monitoring of the Twitter feed for a par-
ticular hashtag, producing real-time statistics such as number of tweets with
that specific hashtag or places of the world from where people are tweeting.

Data streaming commonly follows two stream processing paradigms: once-
at-a-time and micro-batch. The first one, used by systems like Apache Storm
[STOb], process data as it comes by quickly sending every received message
into the processing pipeline. The second one - an emblematic is Spark Stream-
ing [SST] - groups the incoming data in micro-batches, i.e. small buffers of
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Figure 1.2: Stream Processing Workflow

data, that are then continuously processed in a batch processing fashion. Both
paradigms have their pros and cons: once-at-a-time can achieve very low laten-
cies, i.e. time between data reception and results output; meanwhile micro-
batch reaches higher throughputs trading-off average latency, i.e. processes
high-quantity of data per second.

1.3 Research Methodology and Contributions

In this thesis we study the impact of design choices on streaming applications
performance. Different features of a DSP platform can influence the final appli-
cation efficiency. Hence, when developing a platform or a streaming applica-
tion, design choices are critical. At the platform level, they affect the implemen-
tation and optimization of the platform internal mechanisms. At the user level,
they influence the data processing pipeline implementation. In both cases, im-
proper design choices have a direct impact on the processing performance, that
is the amount of data and the speed at which it can be processed.

Our contributions tackle the problem at the two levels. In this thesis, we
study the platform design choices, analyzing internal platform mechanisms and
their impact on performance, such as the reliability mechanism. In particular,
its implementation as non-functional tasks and their placement problem. Like-
wise, we study how to help the user to better understand the application design
choices impact on performance. Specially, we target the lack of a flexible appli-
cation testing methodology.

Non-functional tasks (mis)placement The impact of the acking messages on
the application performance is studied in the first part of the thesis. We analyze
the relation between these non-functional tasks and the final application perfor-
mance, considering how those tasks are managed by the application scheduler.
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We uncover a recurrent misplacement of acking tasks in Storm, resulting in a
significant degradation of throughput and latency. In this thesis we made the
following contributions to this problem:

• First, we demonstrate the impact of non-functional tasks in a streaming ap-
plication. Taking Storm acking framework case as an example, we show
how an incorrect placement of the acker tasks may cause a significant
degradation on the application final performances;

• Second, we introduce a placement algorithm that takes into account the
non-functional tasks, in particular ackers, showing how an acking-aware
placement of the application can improve application performances in
terms both of processing latency and throughput.

Lack of flexible application testing We deal with the necessity of a tool that
could ease experimental phases. We envision a generic multi-platform proto-
type generator. This has to be easy to use for streaming platforms, and it should
provide a certain degree of customization, so to allow the study of different ap-
plication design choices in a quick manner. Our contribution to this problem
are:

• We devise a general description schema for streaming applications, that
is easy to use without requiring specific knowledge of the platform we
want to test the application on. To do so, we made a taxonomy of the
key characteristics of a streaming application, i.e. the ones that impact
the most performances; from those characteristics we built two high-level
description schemas:

– A generic description, that enables to specify the application through
general characteristics;

– A task-specific description, that allows an higher level of granularity
to describe the application.

• We also develop an application prototype generator, which translates an
high-level description into application code automatically; the generator
can be adapted to different platforms so to test the same application be-
haviors and design choices over different environments, without having
to write platform-specific code.
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1.4 Thesis Outline

In this chapter we provided a general overview of Big Data characteristics and
paradigms. We pictured the context and motivations of our work, listing the
main contributions presented in the following chapters. Hence, below we pro-
vide a brief outline of the content of the rest of the thesis:

Chapter 2 introduces the main concepts of data stream processing, defining
the main challenges currently addressed in literature. We give an overview of
the wide spectrum of available platforms in the market, with a specific descrip-
tion of the platforms used in this thesis: Storm and Flink. Finally, we illustrate
and compare their architecture and scheduling algorithms.

Our first contribution is presented in Chapter 3, where we further study the
scheduling algorithms. We explore message reliability in DSP platforms, with
particular focus on the Storm’s acking framework. We expose the impact of ack-
ing on the application performance with regard to placement algorithms. We
then propose two novel scheduling algorithms that optimize the placement of
Storm tasks. Finally, we evaluate our solution by demonstrating the improve-
ment in terms of application throughput and processing latency.

The next two chapters concentrate on our prototyping solution: NAMB.
Chapter 4 depicts the lack of a general solution when it comes to evaluate or
test streaming platforms from an application point-of-view. We firstly list all the
fundamental characteristics of streaming applications that would impact their
performances. Then, we introduce two high-level description models used to
describe a streaming application. We present the deriving framework NAMB,
Not only a micro-benchmark, a tool that overcomes the lack of a general solu-
tion for platform testing. The chapter illustrates in detail the architecture and
the main components of the application prototype generator. It accurately de-
scribes the main implementation challenges. Moreover, it shows the modular
nature of NAMB and its ability to be extended to support of more platforms.

In Chapter 5 we perform an extended evaluation of the system. We present
several scenarios where one can exploit NAMB capabilities. We demonstrate
that our proposed framework covers the initial requirements defined for a gen-
eral testing solution. With the set of presented experiments we show that NAMB
is: (i) flexible and quickly adaptable to several contexts, (ii) able to reproduce
and simulate realistic applications, (iii) not bound to a single platform or envi-
ronment and (iv) openly distributed.
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The manuscript is finally concluded in Chapter 6, where we summarize
all the contributions presented in the document and introduce possible future
work.





Chapter 2

Background on Data Streaming
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2.1 Data Stream Processing

Data Stream Processing (DSP) draws its fundamentals from database manage-
ment systems and distributed systems. Initial data stream concepts date back
to early 90s, when the database community started discussing about continuous
query [TGNO92]. Successive research lead to the first real streaming foundations
and paradigms in the early 2000s [FCKK20].

Initially exploited for Complex Event Processing (CEP), stream processing
had to process data from multiple sources and perform combined queries. In

11
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the context of CEP, the first systems were already able to rapidly process data
coming from multiple sources. They merge the received data to compute data
relations. The output of stream processors were the actions (i.e. triggers) to be
taken in response to the monitored event.

Recently, with the onset of cloud computing, streaming architectures evolved.
Modern DSP systems evolved to more distributed architectures that seek to
scale systems by leveraging the capabilities of parallel data computation. Novel
features such as state management and fault tolerance for higher processing
guarantee became desirable properties. A wide spectrum of solutions (Sec-
tion 2.1.3) from industrial to open source became available to perform data an-
alytics. The variety of platforms was the result to an always wider application
range that tackle newly rising challenges.

2.1.1 Applications

A streaming application is commonly composed of three phases. The first com-
prises the data sources, with connectors to the physical data generators, e.g. mon-
itoring sensors that send updates or collectors of user activities on web services.
Data sources continuously receive messages, namely tuples, containing the gen-
erated raw data. The source tasks will then inject data in the real application
workflow. This workflow is commonly a pipeline of one or more processing tasks,
that define the computed query. The query may consist of several branches.
Data can be divided or merged to/from different branches, that finally merge
towards the sink tasks. The sinks are used to manage the final result, i.e. elabo-
rated data. The sink can be represented by simple logs, permanent storages (e.g.
databases), as well as connections to other application source tasks.

To ease its management, a streaming application is commonly represented
as a Directed Acyclic Graph (DAG). This allows to see each task as an inde-
pendent entity (i.e. graph vertex), with incoming and outgoing edges. The
application is managed as a job to be placed in the cluster. Tasks are individ-
ual processes that run on the cluster machines. The edges characterize the data
communication between tasks. In this manner the tasks are distributed over the
cluster, and network connections enable the data to flow from the source to the
sink of the deployed application.

2.1.2 Challenges

Modern DSPs are distributed and scalable. This nature poses a wide set of chal-
lenges to be faced [FCKK20], e.g. processing guarantees, fault reliability and
state management. Below, we list the challenges that most relate to the content
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of this thesis. Although some of them are not directly tackled, they constitute
the context around which our work operates.

Windowing, Out-of-Order Processing, State

Data is processed as it arrives, one tuple at a time. This paradigm compli-
cates keeping track of past events to compute historical relations. One of the
fundamental principles in stream processing is windowing. Windowing (Sec-
tion 4.3.1) allows to specify a period of time over which the system would keep
memory of the occurred events. This enables over time statistics and not just
live status. Moreover, it allows to perform computations based also on past
events. The implementation and management of windows rise several chal-
lenges [FCKK20], especially:

• The implementation of the temporary storage in memory, which could be
limited.

• The computational complexity to continuously re-elaborate the current
status at every update.

• The semantic of how the window is defined, giving temporal or tuple-
based boundaries.

Another major challenge is to process out-of-order tuples [ABC+15]. Given
the distributed nature of stream processing, messages may arrive in a wrong
order or may be lost. It can occur that at high rates and flowing through the
network, messages be lost and never processed. Alternatively, taking different
paths, or given the complex management of buffers, data may reach the appli-
cation in a different order than it was generated. An important challenge of
modern DSP is to take into account this behavior. Indeed, the main challenge
and objective of data streaming is to achieve processing correctness, that guar-
antees to process all the generated data without loss. DSP systems try to use
windows and watermarks [ABC+15] to wait for all the tuples to arrive. In re-
cent applications, e.g. microservices and large-scale ETL, the state of the stream
processor increased in importance. It needs to be kept and to be visible by ex-
ternal components [FCKK20], as the relation between new and past events may
affect the result of the computation. A consistent state can be kept only having
a consistent dataset, that is with no missing incorrect, or incomplete data. Thus,
it needs support of fault tolerance and processing guarantee mechanisms. As
a consequence, another major challenge is the architectural implementation of
the state manager.
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Processing Guarantees, Fault Tolerance, High-Availability

A stream processor shall provide guarantees on data processing. The three se-
mantics of processing guarantee are: at-most-once, where there is no checking
over the message processing and a tuple may be lost and never considered in
the dataset; at-least-once, where each tuple is surely processed but a replay mech-
anism may duplicate them; exactly-once where every tuple is assured to be pro-
cessed only one time. Modern DSPs implement the last two, so as to minimize
the loss of data. In addition, to ensure processing correctness, a DSP engine
needs other internal mechanisms. Fault tolerance and high-availability mecha-
nisms are used to deal with random failures in the cluster. It can happen that a
node in the cluster stops working, or a crash of the application may block a task
from processing data.

Stream Processing Engines (SPEs) has to be ready to immediately deal with
that occurrence. SPEs thus need to ensure the high-availability of the applica-
tion, with minimum down times. Given the high rate and high volume of data,
a second of downtime may results in millions of lost tuples. For such reason
fault-tolerance mechanisms – i.e. automatic task re-placement or task replica-
tion [CGLPN17a,CGLPN17b,SZ16] – are commonly implemented. Moreover, a
reliability mechanism has to be implemented to ensure message processing, e.g.
check-pointing [CFE+15], ack mechanism [TTS+14].

Semantics and Query Language

The wide platforms marketplace generated a diverse semantic definition of pro-
cessing methods and non-standard query languages. This resulted in a lack of
a common parallel processing model in data stream platforms [FCKK20]. As
an example, where a platform may have tuple-based windows, others can de-
cide to have them time-based, or if some process messages as they arrive (i.e.
real-time), others may use micro-batches. These differences complicate system
configuration and application development. For every different platform it is
necessary to understand how it behaves under certain conditions. In addition,
some platforms may feature mechanisms that others lack, so that a same appli-
cation over different systems cannot implement the same feature.

As a consequence, each platform comes with its API. Some platforms may
require the definition of each task, specifying also the internal operations, others
may provide a preset of operations that can be built together.

Thus, a major lack in the DSPs landscape is common processing semantics
and query languages. Recent research efforts try to address this requirement
for a common semantic behind data streaming. This would allow for future
DSPs to advance in the same direction. A major work in this subject is from
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Google [ABC+15], where they propose a common semantic for windowing and
a common API set for all streaming platforms. Concerning the query language,
modern platforms are exposing specific APIs which follows a more familiar
SQL-style query language, as early introduced in [ORS+08].

Scalability and Scheduling

One of the V’s of Big Data is Volume, and stream processing is facing this issue
as well. New applications such as sensor networks, where thousands of sensors
are deployed around a city, or Internet services like social networks, where mil-
lions of users post and upload media, generate high flows of live data that need
to be quickly analyzed. Thus, an SPE has to be able to process an high volume
of data.

A first solution to this problem is task scheduling. Leveraging on the dis-
tributed system characteristics, the SPE can spread the tasks of an application
over the nodes of the cluster. This enables parallel computation of a higher
quantity of data, than just processing it on a single machine. However, task
scheduling itself is not enough. The application may need to be scaled to effi-
ciently consume the incoming stream. A first and established solution is task
parallelism. Replicating the same task, and load balancing data between the
different instances, allows to extend the computational capabilities of an appli-
cation, e.g. three task counting words can (optimally) process three times the
data of a single task.

Both these solutions need to be optimized together. An application is com-
posed by several tasks with several instances each. For an optimal placement
of the application, it is needed the use a proper scheduling algorithm. This
algorithm should take into account several characteristics of the underlying
system, e.g. available and required resources, cluster composition, application
characteristics, etc. Furthermore, recent works [dAdSVB18,CGLPN17b] that au-
tomate the scale up and re-allocation of the application at runtime adds more
challenges, calling for a need of live task schedulers.

Evaluation and Benchmarking

As a result of all the challenges discussed up to now, the choice of the best
fitting platform becomes a challenge itself. Applications and platforms require
a prior evaluation. To have a basic understanding of a platform behavior and
performances, one needs to know its internals, the specific semantics and the
specific API set to write a basic application.

Benchmarking applications are used for such a task. Benchmarks are com-
monly ad-hoc workflows, used to evaluate the performances of an application
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on a specific platform. A major challenge is the design of a comprehensive
and efficient benchmarking application. A benchmark application should en-
close all the necessary characteristics of the system that need to be evaluated.
Commonly, the evaluated characteristics depends on the application context
(e.g. field of study, platform evaluated, etc.) and user needs (e.g. processing
reliability, fast results, etc.).

2.1.3 Platforms

The lack of a common semantic lead to the birth of several stream processing
platforms, each of them implementing their own architecture and set of APIs.
There is a wide choice of both open source and industry solutions. The major-
ity of these platforms have been developed specifically for stream processing.
However, other platforms already present in other fields (i.e. batch processing
or messaging), adapted their programming models and executions semantics
to include streaming capabilities. In a similar manner, there are streaming plat-
forms born for streaming that are as well able to perform also batch computa-
tions, following the streaming paradigm by means of windows [ABC+15].

The first production-ready platform for stream processing, Storm [STOb],
has been developed by Twitter. It is now part of the Apache project. Storm is
the first real-time processor with high scalability. As Storm, the majority of open
source platforms are today developed as an Apache project. Spark, originally
an alternative to Hadoop for batch processing, implemented an extension called
Spark Streaming [SST], that through micro-batches is able to run streaming ap-
plications. Flink [FLI] is based on the dataflow model semantics [ABC+15]. It fo-
cuses its architecture mainly on the design of windowing mechanisms and out-
of-order processing. Kafka [KAF], originally a publish/subscribe message bro-
ker, evolved to enclose streaming capabilities (becoming an actual DSP), used
mainly for micro-services. Other notable Apache platforms are Samza [SAM]
and Ignite [IGN]. The first is a stateful streaming processor. The second is an
in-memory framework that, in addition to stream computations, also includes
in-memory storage and machine learning capabilities. Outside of the Apache
foundation, but currently incubated, there is Twitter Heron [HER]. Heron has
been developed as an alternative to Storm. With in mind the limitations of the
latter, Twitter developed an ameliorated version of the popular stream proces-
sor, based on a lower level language (C instead of Java) and new technologies
such as containerization.

Present-day streaming processing is commonly scaled using the cloud. This
allows a better management and higher availability of resources. For such rea-
son every major cloud providers now offer a stream processing service in their
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suite. Google introduced Dataflow, known in the past as Millwheel [ABB+13].
Like Flink, it is directly built over the dataflow model. Amazon AWS offers Ki-
nesis [KIN]. On Microsoft Azure, we can find Stream Analytics [AzS]. Beside
these streaming-as-a-service platforms, we can find standalone industry solu-
tions, like StreamSets [STS].

As can be seen, the streaming platform marketplace is rich. Several plat-
forms can be used for different scenarios, some of them focusing on specific
features that can be useful in very specific domains. The work presented in this
thesis is principally done using Apache Storm and Apache Flink. The choice
has not been done on the specific features offered by the platforms, but rather
based on the popularity and novelty of the platforms. Thus, in the remaining
of this chapter, we will give an overview of Storm and Flink, with details on
their internal architectures, and a generic view of their most significant seman-
tic properties.

2.2 Apache Storm

2.2.1 Architecture Overview

Storm is a distributed data stream processing system that relies on ZooKeeper
[HKJR10] to manage the coordination between all its components and the clus-
ter resources. Storm implements a master-slave design to manage the cluster
and application execution.

The controller node, called Nimbus, manages the status of the cluster. It is in
charge of managing new topologies to be scheduled, fault-tolerance and directly
communicates with ZooKeeper. When a new application is submitted to the
cluster, Nimbus will run the scheduling algorithm (Section 2.2.3) and place the
application on the slave nodes.

The slave nodes are called Supervisors. Each Supervisor provides to Nimbus
a set of Java Virtual Machines (JVM), called workers. Each worker is assigned a
communication port and can contain several threads, known as executors, be-
longing to the same application. The communication port is both used as an
identifier for the worker, as well as TCP port to create the connection used to
transmit data between tasks.

Runtime examples of the Stom architecture will be shown in Section 2.2.3 in
Figs. 2.2a and 2.2b.
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2.2.2 Application

As with the majority of DSP platforms, the topology of the application is rep-
resented by a Directed Acyclic Graph (DAG), where the components are the
vertices and the edges are the connections between components.The applica-
tion running on the cluster is made of two types of components, Spouts and
Bolts. Spouts represent data sources and inject streams of tuples into the work-
flow. Bolts can act in two ways: they can encapsulate simple operations to be
performed on input tuples; or alternatively, they can act as sink tasks. Each
component has its own level of parallelism (i.e. multiple instances of the same
task) and can span multiple workers and executors to scale and distribute the
application.

Spouts and Bolts are connected via several communication methods, called
stream groupings [Stoc]. Shuffle grouping balances the load in a round-robin
fashion over the destination executors. Field grouping decides the destination
based on a key hashing function, ensuring that the same key will always be
processed by the same executor, thus allowing the implementation of stateful
components. Partial-key grouping [NMGS+15] improves on the previous one by
trying to also enforce load balancing based on the incoming tuples frequency.
Finally, all grouping performs a multi-cast, sending the same to all the following
task instances, and global grouping redirect of all the tuples to a single instance
of a component.

A sample topology, composed of one spout and three bolts, is shown in
Fig. 2.1. All components except bolt B3 have a parallelism level of 2 which
means they will take 2 executors at runtime.

S

B1

B2

B3

Component Flow 
Connection

Parallelized
Component

Figure 2.1: Example of Storm topology: one spout; two bolts (split); one final
bolt (join). The last component has a parallelism level of 1, the others of 2
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2.2.3 Scheduling and Task Placement

After submitting a topology, Nimbus will take care of its placement in the clus-
ter applying a scheduling algorithm. The initial versions of Storm were released
with an Even scheduler, which is still today the default option. Another sched-
uler, called the Resource-Aware Scheduler (RAS) and based on [PHH+15] is also
available.

SUPERVISOR A SUPERVISOR B
WORKER 1

S B1

WORKER 2

B1 B2

SLOT 3
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SLOT 2

SLOT 3

B3

Executors

S

(a) Even Scheduling: placement example
with 3 total workers; 2 executors per
worker
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WORKER 1

S B1
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WORKER 3

SLOT 1

B3

SLOT 2

SLOT 3

B2

B2 Executors

(b) RAS: placement example with a con-
figuration that allows 3 executors per
woker; 3 workers used, 3 executors per
worker

Figure 2.2: Example of Storm different ways of scheduling

Even scheduler

The Even Scheduler distributes the tasks following a round robin manner on a
set of workers. The number of workers to use is specified by the user (default
is 1), limited to the slots currently available. With this algorithm the executors
are balanced over the supervisors, and so is the computation, if tasks have ho-
mogeneous CPU requirements.

The algorithm is based on a simple strategy as shown in Algorithm 1. Step
1: The available slots are sorted taking the supervisors in round-robin manner,
e.g. if we have 20 slots in 5 supervisors, the first five slots will be each from a
different supervisor. Then, the workers are assigned to the slots following the
sorted slot list. Step 2: The topology executors are sorted by ID which by default
entails to spouts first, then first bolt, etc., traversing the DAG in a breadth-first
fashion. Step 3: The executors are finally assigned one by one to the workers,
sorted as in Step 1.
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For example, if a user requests 3 workers for the sample topology (Fig. 2.1)
on a cluster composed of 2 supervisors with 3 slots each, the demand will be
scheduled as follows. First, the slots will be sorted by worker and supervisor
giving the following list: (Worker 1/Sup A, Worker 1/Sup B,Worker 2/Sup A...).
The first 3 will be selected and the algorithm will then iterate over the compo-
nents. The first spout component will be placed on 1/A, the second on 1/B...
leading to the scheduling shown in Fig. 2.2a.

Algorithm 1: Even Scheduler
1 slots←sortFreeSlotsBy(slot#, supervisor);
2 n←min(requestedWorkers, availableSlots);
3 workers←getFirstN(slots, n);

4 for e in topologyExecutors do
5 worker← getNext(workers);
6 assign e to worker;

Resource Aware Scheduler (RAS)

The RAS scheduler aims at optimizing the resource utilization on the nodes
while minimizing the network distance between tasks. In [PHH+15], the au-
thors have defined the concept of network distance: inter-rack and inter-node
connection are the slowest due to the network link, intra-node (i.e. inter-worker,
through TCP) connection is faster, intra-worker (using serialization) is the fastest.
Placing tasks with a higher connection level closer to each other should reduce
the communication load and thus the latency. Moreover, this scheduler intro-
duces the notion of memory and cpu resources provided by the cluster. The
first one is specified as the amount of memory in megabytes. The second one,
specified as cpu units, represents the computational power of a node and is nor-
malized to 1 core = 100 cpu units. The available resources per node has to
be specified in the Storm configurations. When submitting a topology, a user
can thus specify its resource requirements. If the scheduler is enabled but no
requirement is specified, default values are used.

The RAS scheduler allows the definition of external scheduling strategies.
The one in use by default is the DefaultResourceAwareStrategy, shown in Al-
gorithm 2. Step 1: The strategy begins by first sorting components by the sum
of their input and outputs connections. Step 2: Then, it selects the first executor
of the first component in the list and assigns it to a worker. Step 3: it performs
an ordering of its neighbors – always based on connections level – and places
one executor for each of them. The loop is repeated until executors exhaustion.
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Algorithm 2: Default RAS Strategy
1 components←sortByInOutConn(topo)

2 for c in components do
3 repeat

4 e←getNextExecutor (c);
5 worker←getBestWorker(c);
6 assign e to worker;

7 nghbrs←sortByInOutConn(C nghbrs);
8 for n in nghbrs do
9 e←getNextExecutor (n);

10 if e is not null then
11 worker←getBestWorker(n);
12 assign e to worker;

13 until e in c;

To select the best fitting worker for an executor, the algorithm sorts them
by their network distance (racks or nodes) and the available resources, giving
priority to the location where some other components of the same topology
are already placed. At each executor placement, the scheduler decrements the
occupied resources from executors.

In conclusion, the basic principle is to place as much executors as possible in
the same worker; when this worker is full, it continues by filling other workers
on the same node. If all the executors don’t fit the same node, a new node in the
same rack will be chosen, and so on. In this manner, the highest connected tasks
will be placed the closest to each other as possible, reducing communication
latency.

Applying the RAS scheduler to the sample topology of Fig. 2.1 will lead to
the deployment in Fig. 2.2b. First it will compute the in-out degree of each
components, taking into account the parallelism level. Spout S has 0 in links
and 2 out links on the schema. Each out-link of S connects to components with
a parallelism level of 2, the same as S. Hence, the total number of out-links is
2× 2× 2 = 8. Bolt B1 has 2 in links from S, combined with its parallelism level
this gives 2 × 2 = 4 in links, and 2 × 1 = 2 out links. Once sorted, S will be
the first to be scheduled, and then it will be its neighbors B1 and B2. Since the
algorithm gives priority to the smallest network distance, the components will
all be placed in Supervisor A, i.e. the same node.
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2.3 Apache Flink

2.3.1 Architecture Overview

From an architectural point-of-view, we can find several similarities between
Flink and Storm. The distributed architecture of Flink follows as well a master-
slave design. The master node is the Job Manager. It keeps the logic view of
the applications in the cluster and runs the scheduling algorithm when a new
application is deployed. Moreover, it manages the global status of the cluster,
as well as other fundamental functions such as check-pointing and restore.

The slave nodes are called Task Managers. These nodes are where the appli-
cation tasks will be placed and run. Each Task Manager contains a number of
Task Slots, normally one per CPU core, to optimize the scheduling of tasks (Sec-
tion 2.3.3). As Storm, also Flink is based over a Java runtime environment, thus
the Task Slots are Java Virtual Machines.

2.3.2 Applications

The resulting logical view of a Flink application is always a DAG. As we said,
it eases the scheduling and placement process. The two main components of
Flink applications are: Connectors and Operators. Connectors are the source
tasks that receive the flow of data from the internet and send it to the Operators.
Operators are queries or custom operations performed over the data. They can
also act as sinks. Similarly to Storm these operators can be parallelised to scale
the application processing capabilities.

A major difference between Storm and Flink applications are on the Bolt and
Operators implementation. In Storm each Bolt contains custom operations and
are not constrained by default queries. Flink, on the other hand, in addition to
custom operators, exposes a set of standard queries that can be performed over
the data. Two main advantages of this solution are easier application develop-
ment and optimization at system level for the query.

As any distributed system, data has to be transferred between tasks. The ap-
plication can specify to which task data has to be assigned through connection
strategies, same as Storm. Flink can load balance the tuples between tasks using
the rebalance method, which will distribute data equally between processes. If
we need to have all tuples of a certain kind processed by the same task, two
tasks can be connected with the keyBy method. A key for each tuples is spec-
ified, so to send the same key always to the same task instance. In addition
to methods similar to the ones we have in Storm, Flink supports also a direct
connection method. If two tasks are directly connected (i.e. no rebalancing or
grouping method is used), it creates a task-to-task connection. This connection



2.3. APACHE FLINK 23

methodology will come in hand at the moment of task scheduling, as we will
see in the next section.

2.3.3 Scheduling and Task Placement

Flink has only one default scheduler. Unlike Storm, it doesn’t allow for an easy
plug-in for external schedulers, except for customized versions like Alibaba’s
Blink [Tec18]. However, Flink’s default scheduler, as opposed to the default
one in Storm, tries to take advantage of application characteristics and cluster
resources.

In Flink available resources are defined through Task Slots. A Task Manager
is a JVM, thus it has a certain amount of memory assigned. Task Slots equally
split the memory resources available in the task manager; e.g. if a Task Manager
is configured with 1GB of RAM, and it has 4 slots (generally 1 slot per core), each
slot will have access to 250MB of RAM. In this manner it ensures a certain level
of resource isolation.

Tasks Placement

In each Task Slot, Flink places a pipeline of successive task instances. If an
application has a defined parallelism level, each parallel pipeline is placed in
a different task slot. The higher the parallelism level of the application, the
higher the number of used slots. Consequently, the maximum parallelism level
of a Flink application is limited by the number of available slots.

Flink places tasks from the same application close to each other. If multiple
pipelines from the same application have to be placed, they will be placed in
slots from the same Task Manager, to optimize communication latency, as with
the RAS scheduler of Storm. Nevertheless, if we have to place more pipelines
than the slots available in a Task Manager, the application will be spread over
different Task Managers, spanning over the cluster nodes.

We take as example an application composed of 4 successive tasks connected
in a direct manner, with no parallelism set. The 4 tasks will be placed all to-
gether inside the same slot. If the parallelism level for each task is 3 (Figs. 2.3a
and 2.3c), we will have 3 different pipelines of 4 tasks each, placed in 3 different
slots. However, if we have tasks of different parallelism levels, the pipelines
to be placed will be of different length. If, among the 4 tasks: the first 3 has a
parallelism of 4 and the last one a parallelism of 3 (Figs. 2.3b and 2.3d), Flink
will have to place 3 pipelines of 4 tasks and one of 3 tasks (i.e. the first three task
excluding the sink, as the three instances are already part of the other pipelines).
The four pipelines will be regularly placed on four slots.
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Figure 2.3: Example of Flink scheduling of a pipeline of 4 tasks

Operators Chaining

In Flink, each operator is a thread, so that they can be run in parallel. To op-
timize data processing and additionally reduce communication latency, Flink
has an operator chaining mechanism. Operators, directly connected to each
other (i.e. neither rebalance nor key grouping), form a chain of sub-tasks that
can communicate directly, bypassing the network layer. A chain is treated as a
single task (i.e. a single thread) and scheduled as such.

As shown in Fig. 2.4, if we have a 4 operator application, instead of having
4 different tasks, the ones directly connected will be merged together in a single
task. If all 4 of them are directly connected (Fig. 2.4a), Flink will schedule it as a
single task. If we have a more complex connection, e.g. rebalance or key group-
ing, the chain will be split where this connection happens. In Fig. 2.4b, we have
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Figure 2.4: Flink task sub-chaining with different connections

a two-task application composed by the source task, and a single task merging
the successive 3 operators. Once the logical view of the tasks is computed, the
scheduling is performed as explained above.
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and distributed over the cluster to scale the application, increasing throughput
capacity. The task scheduling algorithm plays an important role to optimize
the task placement, trying to balance the computation load and minimize the
end-to-end latency. Following the distributed paradigm, every DSP engine im-
plements, in its own manner, non-functional components which implements
mechanisms such as monitoring, logging or message processing guarantee. Re-
garding the latter, most middlewares propose a way to perform exactly-once
processing, while all of them offer at-least-once. Message reliability can some-
times hurt the application performance [CDE+16a] as enforcing delivery guar-
antees on messages can come at the price of a reduced throughput or an in-
creased processing latency.

Several works concentrate on the fault tolerant and reliability aspect of stream
processing applications (Section 3.1). Every DSP engine proposes its own ap-
proach to the problem, optimizing the offered delivery paradigm. A large set
of efforts focuses on improving fault tolerant checkpointing systems. However,
to the best of our knowledge, no work has ever precisely analyzed the impact
of message guaranteeing on the performance of DSP applications, especially,
acknowledgment based systems.

In this chapter we show how an ack-based framework offering message de-
livery guarantee can have an unexepected impact to the performance of a DSP
application. The two main systems implementing such mechanism are Google
MillWheel [ABB+13] and Apache Storm [STOb]. We take advantage of Storm’s
open-source nature that allows us to fully analyze the framework. Storm de-
ploys the tasks of an application in Java Virtual Machines (JVM) on the nodes
of the cluster. We study the strategies used to manage acking by the two pop-
ular schedulers of Storm, namely the Even Scheduler and the Resource-Aware
Scheduler (RAS) [PHH+15]. In both of them, the acking mechanism is material-
ized as tasks to be deployed on the cluster.

We demonstrate that the Resource-Aware Scheduler considers only margin-
ally the acker tasks (a.k.a. ackers) during placement, resulting in degraded per-
formance as compared to the Even scheduler. We next design and implement
two task placement strategies for the RAS scheduler that take in account ackers
and optimize their placement. The first strategy balances the acking load, col-
locating the ackers with other application tasks. The second strategy places the
ackers in dedicated JVMs, separating them from the application tasks, alleviat-
ing the load of the incoming message queues.

We evaluate these two solutions in single cluster and multi-cluster environ-
ments, showing how in both cases we can improve the performance of the RAS
scheduler. In particular we show how in a single cluster scenario, our strate-
gies enable the RAS scheduler to catch up with the Even Scheduler in terms
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of throughput while beating it in terms of latency. In the multi-cluster envi-
ronment where the RAS scheduler approach enables it to outperform the Even
scheduler [PHH+15], our acker placement strategies enable to further improve
the RAS throughput.

The main contributions of this chapter can be summarized as follows:

• We demonstrate the impact of the middleware message delivery system
on the application performance.

• Focusing on the Storm case, we show that the acking system generates a
large share of the network traffic. Moreover, the placement of ackers can
significantly impact the overall performance of the application.

• We present two ackers placement strategies that improve the performances
of the two standard schedulers.

The rest of the chapter is organized as follows: related work is presented
in Section 3.1. A detailed explanation of the acking framework is given in Sec-
tion 3.2. Then, in Section 3.3 we precisely define the problem we study. In
Section 3.4 we explain the two ackers placement strategies we propose, that we
evaluate against the legacy Storm schedulers in Section 3.5. Section 3.6 con-
cludes the chapter.

3.1 Related Work

3.1.1 Reliability and Fault Tolerance

Each DSP engine implements message processing guarantee in its own way.
Storm implements an upstream backup, which keeps track of the messages
along the processing path through acknowledgments [TTS+14]; similarly to
Storm, Heron [KBF+15] and Millwheel [ABB+13] implement an acknowledge-
ment-based upstream backup. In addition, both systems use an auxiliary check-
pointing system to further improve message reliability. Apache Flink provides
a checkpointing mechanism that continuously stores the state of the system
[CKE+15]; Spark Streaming relies on Spark Resilient Distributed Dataset (RDD)
support and the different guarantees provided by the external data sources
[HL15]. Meanwhile, Samza adopts a changelog approach [NPP+17].

Fault tolerance of DSP is also a hot research topic [ABC+15]. Most works
concern checkpointing and snapshot techniques. Zhuang et al. [ZWL+18] pro-
pose a novel Optimal Checkpointing Model for stream processing. This model
proposes a dynamic calculation of an optimal checkpointing interval, aiming to
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obtain an optimal processing efficiency. A more workflow-generic approach is
taken by [HFC+18], where the authors tackle the problem of corrupted data fail-
ures, so called silent errors. They optimize the checkpointing overhead, for fail-
stop errors, by proposing different combinations of scheduling algorithms and
checkpointing techniques. Carbone et al. [CFE+15] propose an asynchronous
snapshotting algorithm for stream processing dataflows, where they minimize
the space requirement of snapshots.

Another popular solution is to perform replicas of the application. A dy-
namic replication scheme is presented in [HZK+15] that continuously monitors
the system deciding the optimal technique to apply for the workflow. Cardellini
et al. [CGLPN17a,CGLPN17b] formulate an optimal DSP replication and place-
ment model, where they compute a number of replicas for each task to opti-
mally scale the application. In [SZ16] is presented a DSP engine that implements
a checkpointing system combined with a partial replication of tasks, in order to
reduce the cost of the system recovery and the necessity of backup nodes.

Recent works are concentrating on upstream backup systems. The proposal
from Li et al. [LWJ+17, LWJ+18] suggests a solution considering tasks-failures.
In their work they describe a task allocation strategy that takes into account the
impact of tasks recovery over the cluster resources.

All these works propose novel solutions to fault tolerant systems but none
actually investigate the cost of their implementation on real applications. In
our work we focus on message reliability and on its impact over the application
performances at runtime.

3.1.2 Application Scheduling and Task placement

When talking about resource limitations, several works propose novel schedul-
ing solutions directed to optimize resource utilization and minimize communi-
cation latency, with particular attention over network communication load in
relation to task placement [AFM17]. A large set of works has been done in rela-
tion to Storm.

Similarly to R-Storm [PHH+15], extensively discussed in Section 2.2.3, two
past works [ABQ13] and [XCTS14] propose different schedulers pivoting around
the concept of network distance. Both works focus their solution on minimiz-
ing the network communication, implementing at the same time a monitoring
system to optimize at runtime the application’s resource utilization.

T-Storm [XCTS14] implements an online version of R-Storm including a new
load monitoring component that collects different system cpu workloads and
inter-executor traffic load. The algorithm optimizes cpu and communication
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traffic in a more dynamic way, using these statistics, performing a seamless
topology re-balancing during runtime.

Similarly, [ABQ13] propose a scheduler pivoting around the concept of net-
work distance. It focuses on minimizing the network communication, imple-
menting at the same time a monitoring system to optimize at runtime the appli-
cation’s resource utilization.

D-Storm [LB17] implements a dynamic version of the resource aware sched-
uler. In their implementation, they exploit a MAPE (Monitoring, Analysis, Plan-
ning, Execution) architecture to improve the placement algorithm.

Also [ZLZL16] focuses on assigning tasks to the same slot with other highly
connected tasks. They present an online scheduler that thanks to a traffic re-
lationship model that combined with cpu utilization is used to optimize the
application load balancing.

All these efforts on minimizing inter-node communication has been sum-
marized in [AFM17] where is concisely demonstrated the impact of the tasks
placement in relation to the network traffic and how the proximity of high com-
municating tasks could improve the application throughput.

Cardellini et al. [CGLPN15a, CGLPN15b], try to extend the scheduling to a
wider Quality of Service (QoS) point of view, focusing on distributed scenarios
like Fog Computing [BMNZ14]. They implement an online scheduler that con-
siders latency, CPU utilization and data traffic, trying to minimize the traffic
between components and optimize the system availability.

Eskandari et al. [EHE16, EMHE18] implement two online schedulers based
on graph theory. They consider network traffic and resource allocation, with
the objective of minimizing data communication between tasks and optimize
resource allocation. Both their solutions exploit graph partitionning methods to
improve the tasks ordering and placement of R-Storm.

Another work [LXTW18], states that it is too hard to optimize the workload
balancing through linear programming models. Thus, to tackle the problem
they define a Deep Reinforcement Learning framework, implementing a model-
free Deep Neural Network able to learn and predict optimal placements for
data stream processing systems, without any model-specific boundaries. They
are able to improve Storm performance and to find an optimal task placement
during execution.

All the presented works, in diverse fashions, optimize the application’s re-
source utilization; however, none of them directly consider the acknowledg-
ment framework of DSPs. This work will show how a task-oriented acking
system, such as the one of Storm, can impact the system performances. Specif-
ically, we demonstrate how not only the application tasks have to be optimally
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placed, but so should the tasks dedicated to acking. Even though Storm prob-
lems with large topologies and high traffic has been analyzed in different con-
texts [CDE+16b], nothing in the literature ever analyzed, from a runtime point
of view, the impact of the reliability system over the application performances.
These important academic efforts on improving resource allocation and com-
puting load, generates global performance-oriented solutions. However, rarely
the evaluation takes in account large topologies, or even the size is not speci-
fied at all. In our work we address the resource allocation problem, considering
task allocation in relation to the Storm acknowledgment mechanism, aiming to
improve the application performance.

3.2 Storm’s Acking Framework

The acking framework in Storm serves two functions (as of Storm version 1.2.x):
message reliability and backpressure. In the first case [Stod], to ensure the at-
least-once processing property, every tuple in the workflow will be acked by
each task. In case of failure, they will be re-transmitted by the previous executor.
In the second case, each spout maintains the status of in-flight tuples and if the
number of tuples waiting to be acked exceeds a threshold, the backpressure
mechanism will be activated, slowing down the spouts.

3.2.1 Message Reliability

Storm uses special system tasks, called ackers, to manage the status of the tu-
ples, which are designed to be lightweight [Stod]. The path of tuples in the DAG
is depicted as a tree and the ackers are able to update step-by-step the comple-
tion status of each tuple running in the system, keeping track of eventual tuple
duplication and joins. These tasks are implemented as any other executor [Stoa]
and process incoming tuples in a similar manner. They can receive ack tuples
from both spouts and bolts, through two different streams. The Spouts use the
INIT stream to indicate the creation of a new tuple to the application workflow
and the Bolts use the ACK stream to ack the tuple along the tuple tree.

For every new tuple, a spout generates a random ID and sends its XORed
value to an acker (Fig. 3.1). Having different acker executors, the destination
acker is decided through a mod hashing to always send the same ID to the
same executor. The acker that receives the INIT message, keeps a two-entry
table where it stores the source spout ID and the XORed value received. This
table is stored in a specific data structure called RotatingMap [Stoa]. In addition
to storing the table, this structure acts as a sliding window, to trace the time
needed by a tuple to be processed. In this way is implemented a timeout for
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Figure 3.1: Acking framework message exchange example

tuple completion. By default if after 30 seconds a tuple has not yet been acked,
it is considered as lost (i.e. failed). It will then be retransmitted by the last bolt
which has acked it or by the spout if it was lost at the beginning.

Upon processing a tuple, a bolt can anchor resulting tuples to the original
one, creating a tree-like relation. Every bolt in the topology will send, as ack, the
XORed value of the ID of the tuple or the partial value. The partial value is used
in case the tuple has been sent (i.e. duplicated) on different branches during its
processing. This allows to keep track of tuples that are sent to multiple tasks
(i.e. creating duplicates in different directions). To consider a tuple completed
the acker will wait for the acks from all ramifications.

The root tuple will be fully acked only when all its children will be. This
happens when the tuple reaches the end of the tree. The entry value in the
acker table will be 0, thus the acker will send a message to the originating spout
notifying it that the tuple completed its life cycle.

3.2.2 Backpressure

The acking framework is also used to enforce a backpressure mechanism. The
mechanism is based on an integer value that can be set through the max.spou
t.pending configuration option. This value represents the maximal number of
non-acked tuples allowed before triggering backpressure. If not set (by default),
there is no ack-based backpressure.

Each spout keeps a list of non-acked tuples, i.e. how many tuples the spout
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sends which are not yet completed processing. If, at some point during execu-
tion, the number of waited tuples is larger than the maximum defined value,
the spout will slow down its emission rate, reducing the global throughput of
the application. This can give time to the tuples to be processed and acked,
avoiding overloading bolts memory by storing too many tuples in the incom-
ing queue. The spout will slowly adapt the emission rate to always keep the
number of waiting tuples smaller than the upper limit.

3.3 The Impact of ACKing

3.3.1 ACKers in task placement

Even Scheduler

Implemented as tasks, ackers need to be scheduled similarly to the other op-
erational components of the topology. As we said in Section 2.2.3, the default
scheduler places in round-robin the tasks of the application. The ackers are
placed in the same way at the end of the operational task placement. By default
the even scheduler places one acker per worker. Thus, the final placement will
be of one acker per worker.

Resource-Aware Scheduler

Similarly to operational tasks, in RAS, ackers consume resources. They are
placed at the end of the process similarly to the even scheduler. For such reason,
they will be placed in the already used workers if resources are still available,
otherwise a new worker will be created. By default the RAS places only one
acker task, differently from the one per worker of the Even scheduler. However,
an higher number of ackers can be used if explicitly specified by the application
developer. We discuss the consequences of this strategy in the remaining of the
chapter.

3.3.2 Performance degradation

When dealing with resource optimization in DSP systems, the recurrent resourc-
es taken in account are: CPU, memory and network. Most commonly, literature
solutions focus on the bottleneck generated by task communication [ABQ13,
PHH+15, XCTS14, AFM17, ZLZL16]. Among these resources it results [ABQ13,
XCTS14, CGLPN17b, CGLPN15b] that the most constraining one is the CPU. In
fact, if the application tasks are not fast enough to process the incoming data
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and excessive buffering may result in memory problems, the back-pressure sys-
tem is able to slow down the application, giving time to the executors to pro-
cess the queues. The communication load optimization has been undertaken
through simple co-placement heuristics [ABQ13, PHH+15, EHE16, EMHE18],
that are shown to improve the processing latency. However, CPU balancing
is a more complex matter. Since it is hard to predict the impact of each task and
the load generated a priori, the majority of works implements some monitor-
ing at runtime [PHH+15, LB17]. When overload is detected, some re-balancing
can be performed but it requires adapting the scheduler to these runtime statis-
tics. In most cases the schedulers implemented by the DSP middleware expose
some configuration parameters to adapt the application to the underlying sys-
tem (e.g. RAS scheduler in Storm [PHH+15]). Anyhow, these systems require a
pre-brenchmarking phase to understand the application performance and take
appropriate measures.

Hence, the initial work of this thesis was focusing on analyzing the behavior
and functioning of those schedulers. In this section we demonstrate the widely
varying performance observed in our experimentation1 (Fig. 3.2), for the two
different Storm’s scheduling algorithms.

time0 
1.

5 
M

tu
pl

es
/s

throughput

(a) Even Scheduler

time0 
61

6 
K

tu
pl

es
/s

throughput

(b) RAS

Figure 3.2: Storm tuples throughput

Both schedulers expose to the user some configuration parameters which
can be used to direct the deployment of an application. The Even scheduler
allows to set the number of workers to use. Specifying large values will lead
to spread the tasks over multiple nodes of a cluster. With the Resource-Aware
scheduler, it is possible to define CPU and memory requirements for every com-
ponent [PHH+15]. These values will directly impact the number of nodes used
by a topology. Predicting the optimal values for these parameters is a non-trivial

1the experimental setup is the same as described in Section 3.5
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SUPERVISOR A SUPERVISOR B
WORKER 1

S B1

WORKER 2
S B1

B3B2

B2

ACK ACK ACK

WORKER 1

SLOT 2

Figure 3.3: RAS ackers placement example with a configuration that allows 3 ex-
ecutors per worker; 3 workers used, 3 total ackers co-placed with an operational
task

challenge. Hence, both schedulers usually require a tuning phase to find the
most fitting values in order to optimize the throughput and latency of an appli-
cation.

Nevertheless, even with a meticulous tuning of these values it is possible
to encounter further placement problems caused by components out of user’s
control. As mentioned before (Section 3.2), Storm implements message guaran-
teeing through special system executors, which have to be placed by the sched-
uler. As shown in Section 2.2.3, the resource-aware scheduler tries to perform
resource optimization with an offline algorithm. It is based on user defined
parameters for both the cluster nodes and the topology components. Ackers’
requirements have a default value of 10 CPU units and 128MB of memory. De-
fault resource requirements can be changed through a configuration parameter,
not directly from the application code as for the operational task customized
requirements.

With some particular combination of user provided parameters, the place-
ment of the topology components may precisely fit the used nodes, not leaving
enough space for the acker executors. This produces a final placement where
the ackers ends up in the last used node with still some free space, or even in
a new separated node. In this situation, all ackers will be co-placed inside the
same node, or even the same worker, together with operational tasks.

An example of such placement result can be seen in Fig. 3.3. In a configura-
tion where a Worker has enough resources for 3 tasks, the last one (B3) has to
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be placed on a third worker. The ackers are then co-placed with B3 as it is the
only one with available space for the three ackers. The total of four tasks can
be co-placed in the same worker as ackers consume, by default, less resources
than an operational task.

This co-placement of ackers can cause a degradation of performances be-
cause of the increased load they put on the CPU. This can be observed by di-
rectly measuring the load on each node as shown in figures Figs. 3.4 and 3.5.
When several ackers are placed inside node 7 (Figs. 3.4b and 3.5b), it increases
the number of processes competing for the CPU, increasing the load, and thus
slowing down the entire topology. Meanwhile, a more balanced ackers distri-
bution (Figs. 3.4a and 3.5a) will even the load and ultimately offer better perfor-
mance.
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Figure 3.4: CPU utilization of a Storm cluster: two different schedulers

This can also be observed at the middleware level. Each executor has an in-
coming message queue called the distruptor queue, as well as an output transfer
queue common to the worker where they are placed. When executors, i.e. ack-
ers, are co-placed inside the same worker, their queues share the same memory
space. When the load is well balanced, the tasks have a good processing rate
and they are quickly consuming from the queue (Fig. 3.6a). However, if mul-
tiple ackers are co-placed inside the same worker node, with other operational



38 CHAPTER 3. NON-FUNCTIONAL TASKS PLACEMENT

node0
node1

node2
node3

node4
node5

node6
node7

node8
node9

node10
node11

node12
node13

node14
node15

0

20

40

60

80

# 
of

 p
ro

ce
ss

es
 w

ai
tin

g

(a) Even Scheduler: ackers balanced over all nodes

node0
node1

node2
node3

node4
node5

node6
node7

node8
node9

node10
node11

node12
node13

node14
node15

0

20

40

60

80

# 
of

 p
ro

ce
ss

es
 w

ai
tin

g

(b) RAS: Majority of ackers co-placed in node7

Figure 3.5: CPU load of a Storm cluster: two different schedulers
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Figure 3.6: Example of workers executors disruptor queues: sojourn time

tasks, the tasks won’t be able to keep up with the rate of incoming tuples. The
competition for memory (i.e. buffers) between the acking process and the data
processing will result in more congested queues with highly variable sojourn
times (Fig. 3.6b).
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Network Traffic To enable message processing guarantee, Storm needs to gen-
erate an acking message for each tuple processed by each task. As a conse-
quence, this mechanism can generate a significant amount of traffic. Measuring
network traffic — i.e. inter-worker and inter-node TCP traffic — during the
experiments, we observe (Fig. 3.7) that in certain cases, the amount of traffic
generated by the sole acking mechanism can be more than half of the total traf-
fic produced by the running topology.
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Figure 3.7: Storm application network traffic using 7 char long java string tuples

With large applications and a huge input rate, the number of tuples to be
acked will be critical, exacerbating the problems described above. Even if the
acker executors are designed to be lightweight, the high load of acking mes-
sages to be processed can exceed their capabilities, slowing down the process-
ing rate. As a consequence, the number of pending tuples would increase and
the back-pressure mechanism will choke the spouts. Simultaneously, the num-
ber of tuples waiting in the queue will build up, reaching the queue maximum
and increasing the risk for new incoming tuples to fail.

Even at a small scale, the placement of ackers could impact the communi-
cation latency. If they are co-placed in a single node, it increases the probabil-
ities that the acking messages travel through the network, instead of reaching
directly a acker in the same node (or, better, in the same worker). In such a
situation, the optimization performed by the RAS scheduler to minimize the
communication is at risk of being nullified by the increased distance to ackers.
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3.4 ACKers-aware Scheduling

In this section, we propose two extensions to the RAS scheduler that take into
account ackers during tasks placement. The default number of ackers in the
default RAS is equal to 1. This choice obviously leads to performance degrada-
tions with increasing application load. A more efficient acking strategy requires
to: 1) set an higher number of ackers and 2) devise a strategy to map ackers to
workers.

For the first problem, we rely on the heuristic used in the Even scheduler,
which is to set a number of ackers equal to the number of workers. The heuris-
tic is necessary because Storm’s scheduler implementation requires to know a
priori the number of ackers that are going to be used. Likewise, the number of
used workers is not known in advance in the RAS scheduler, as opposed to the
Even scheduler where it is set by the user. In the RAS scheduler, the number
of workers is the result of the placement process based on the requirements of
the component tasks in terms of CPU and RAM. To work around this issue, we
use the components requirements with the CPU capacity of the nodes (resp. the
JVM memory) to estimate the maximum number of executors a node can con-
tain (resp. maximum number of executors per worker). We obtain the number
of workers per node and the total number of nodes required. This gives us an
estimation of the total number of workers.

The second problem, mapping ackers to workers, can be addressed using
two different strategies that will be detailed below. To remove every resource
constraint and allow us to chose where to place the acking tasks, we set to 0
their CPU and memory requirements. This gives us all the needed flexibility to
implement the proposed scheduling algorithms.

3.4.1 One-per-Worker Strategy

The One-per-Worker Strategy (OPW) focuses on balancing the acking process
computation load over the workers, instead of co-placing them in one single
node with available resources. On large topology or large clusters, this trans-
lates into a more uniform load over all nodes. The idea is to replicate the
scheduling strategy of the Even Scheduler by placing one acker per worker
while preserving the RAS algorithm for the other components (Fig. 3.8).

The algorithm starts with an unmodified RAS placement strategy for the
components (Algorithm 2 in Section 2.2.3). During this first phase, OPW gets
the list of workers and during a second phase, acker placement is performed.
Ackers are assigned in a round robin manner in each worker (Algorithm 3).

The benefit of this approach is that it combines the default scheduling of RAS
(minimized communication latency) and a better load distribution for ackers
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SUPERVISOR A SUPERVISOR B
WORKER 1

S B1

WORKER 2
S B1

WORKER 3
B3

B2

B2

WORKER 4

ACK

ACK

ACK

SLOT 1

SLOT 2

SLOT 3

SLOT 4

Figure 3.8: OPW placement example with a configuration that allows 3 execu-
tors per worker; 3 workers used, 3 total ackers placed one per worker; N.B.:
ackers don’t consume RAS resources

Algorithm 3: OPW: One-Per-Worker Strategy
1 RAS assignment of topology executors to workers;
2 for a in AckersToBePlaced do
3 w← getNextUsedWorker();
4 assign a to w;

processing.

3.4.2 Isolated Queue Strategy

This second strategy, called Isolated Queue (IQ), isolates the messaging queues
used by the ackers. The rational is to avoid competition with other executors
over the incoming queue. This mechanism has the added benefit of reducing
crashes due to incoming queues using all the available memory.

The IQ strategy deploys the same number of ackers as the OPW strategy, i.e.
one per worker. But instead of placing one acker per worker, it groups them in
a single worker, as it is shown in Fig. 3.9. Algorithm 4 shows the algorithm ex-
ecuted after the RAS algorithm has finished placing the other components. The
IQ strategy first obtains the nodes where the current topology assignment has
reserved some slots, and then creates one worker for each node. The algorithm
then cycles the nodes and the ackers to be placed. If in the selected node, a ded-
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Figure 3.9: IQ placement example with a configuration that allows 3 executors
per worker; 4 workers used, 3 total ackers placed on a dedicated worker

Algorithm 4: IQ: Isolated Queue Strategy
1 RAS assignment of topology executors to workers;
2 for a in AckersToBePlaced do
3 n← getNextUsedNode();
4 w← getAckerWorker(n);
5 if w is null then
6 w← createAckerWorker(n);

7 assign a to w;

icated worker is not present it will create it and deploy a first acker in it. If it
already exists, it will co-place another acker in the same worker.

3.5 Evaluation

3.5.1 Experimental Setup

To evaluate the impact of our strategies over the application throughput and
average processing latency, we performed several benchmarks comparing the
Even, RAS, OPW and IQ schedulers. The tests have been performed on the
Grid5000 testbed2, that allows us to reserve computing nodes in different clus-

2https://www.grid5000.fr/

https://www.grid5000.fr/
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ters. For our tests, we mainly used two clusters: the first one, suno, is located in
the Sophia region and its nodes have two 4-cores Intel Xeon E5520 @2.27GHz
with 32GB of memory. The second one, parapide, is in the Rennes region and
offers nodes with Intel Xeon X5570 @2.93GHz and 24GB of memory. Inside a
cluster all nodes are interconnected with 1Gbps links. The two sites are 850km
apart and connected with a 10 Gbps dark fiber with a measured latency of 21ms.

Based on the evaluation cluster adopted by [TTS+14], we deployed Storm
1.2.1 over 17 nodes: the Nimbus and the Zookeeper server are co-placed in one
node, the remaining 16 nodes host the Supervisors. Each Supervisor consists of
20 available slots with a maximum memory heap of 1024MB each. For the RAS,
OPW and IQ schedulers, the resources configurations in each node are of 800
cpu units (two 4-cores cpus) and 32768MB (resp. 24576MB) of memory for suno
(resp. parapide).

3.5.2 Application

Based on the scenario previously described in Section 3.3.2, where we find a cpu
overload problem in Storm applications, we focus our benchmarking on a CPU
intensive application. Word Count (Fig. 3.10) is a canonical representative of
this family of applications, used likewise in the BigDataBench suite [WZL+14]
as a representative of social network analytics.
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Figure 3.10: Simple streaming Word Count topology

The topology consists of four components. The Word Generators (i.e. the
spouts), continuously inject in the topology random tuples obtained from a set
of 1000 predefined words, under the form of WordXYZ, where XYZ is a number
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that goes from 000 to 999. The Count bolts receive the generated words as in-
put, through a hash-based fieldsGrouping connection (the word itself is the
key used for the grouping), and produce pairs word, counter as output, where
counter is an incremental counter of the word’s occurrences.The counter is kept
in a rolling window updated and managed by a parallel thread. The Rankers
receive these pairs as input, also through a fieldGrouping connection, and pro-
vide the ranking of the three most frequent words every two seconds. They use
a sorted list of key-value entries (i.e. word, counter) that updates every time it
receives a new count; if the counter of the received word enters the top three,
it is added to the list and the fourth in terms of rank, is discarded, otherwise
the received input is discarded. The final step is accomplished by the Merger.
It is a single executor to which the Rankers connect through a globalGrouping.
It receives the rankings from all the previous bolts and outputs the overall top
three most frequent words, by simply merging all the three-words lists and log
the top three words.

We set the resources requirements for the ackers as explained in Section 3.3.1,
and adjust the pending tuples value, max.spout.pending (see Section 3.2). We
set the pending value to 5000, which is high enough to allow the application a
wide margin but that enables backpressure before worker memory saturation.
Acking is enabled for every bolt. In this way we allow Storm to automatitcally
enable the backpressure mechanism and we can study the impact of the acking
framework over the application performances. All components have the same
resource requirements in each test.

3.5.3 Methodology

Application Configuration To perform a comprehensive evaluation, we test
the topology with two different levels of parallelism and with diverse resource
requirements. Based over past works, [TTS+14, LXTW18] and only considering
the topology components, i.e. excluding the system executors, we define a large
topology with a total of 376 executors, and a small topology with a total of 26
executors. The large topology features 75 word generators, 150 counters, 150
rankers and 1 merger. The small topology is configured with 5 word generators,
10 counters, 10 rankers and 1 merger. We tune the different resources require-
ments to generate various scenarios and to better compare the four scheduling
strategies:

• Large topology: the large topology has been investigated with several
configurations (Table 3.1) corresponding to different network distances
between tasks. The Even scheduler has been tested with 13, 16 and 60
workers. Increasing the number of workers increases the number of used



3.5. EVALUATION 45

Scheduler CPU Units Mem (MB) Workers Nodes Ackers

Even
n.d. n.d. 60 16 | 32 60
n.d. n.d. 16 16 16
n.d. n.d. 13 13 13

RAS-Def

ˆ 33 128 n.d.
30 128 58 15 60
30 64 29 15 30

* 30 32 22 15 15
* 27 32 25 13 13

RAS-OPW

33 128 47 16 48
* 30 128 58 15 60

30 64 29 15 30
30 32 15 15 15
27 32 13 13 13

RAS-IQ

33 128 63 16 48
30 128 73 15 60
30 64 44 15 30
30 32 30 15 15
27 32 26 13 13

(ˆ) not enough resources to schedule (*) out of memory crash

Table 3.1: Summary of tests run for the large topology. Total executors: 376 +
ackers

nodes, changing the communication distance between the executors. The
RAS, OPW and IQ schedulers have been tested with 5 different variants.
Starting from a requirement per component of 33 CPU units and 128MB,
to spread the topology as much as possible in the single cluster, down to a
requirement of 27 CPU units and 32MB of memory, to consider the effects
of aggregating the tasks on a smaller number of nodes and workers.

• Small topology: the small topology has been tested with a smaller set of
configurations.The Even scheduler has been tested with 16 and 13 work-
ers. With 16 workers we are able to spread the tasks as much as possible
over the available nodes. While, with 13 workers, more executors will
be co-placed. Thus, we can observe the effect of node sharing. With the
RAS scheduler we have tested two different configurations. The first one
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Scheduler CPU Units Mem(MB) Workers Nodes Ackers

Even n.d. n.d. 16 16 16
n.d. n.d. 13 13 13

RAS-Def 400 128 15 14 13
265 128 10 9 9

RAS-OPW 400 128 13 13 13
265 128 9 9 9

RAS-IQ 400 128 26 13 13
265 128 18 9 9

Table 3.2: Summary of tests run for the small topology. Total executors: 26 +
ackers

maximizes the spreading of the topology. Since there is a total of 26 ex-
ecutors and 16 nodes with a capacity of 800 CPU units each, this can be
achieved by requiring 400 CPU units for each component. This will result
in 2 executors per node, which is the best achievable configuration given
the number of available nodes. The second configuration places three ex-
ecutors per node by setting the CPU requirements to 265 units.

Cluster Setup We first benchmarked the application in a single cluster sce-
nario, where the CPU limitation is more visible. Then, we moved to a multi-
cluster scenario, so as to add a slower link that can impact the application la-
tency. For the multi-cluster scenario, we added 15 nodes on the second cluster.
The tests have been repeated with the same configurations used for the single-
cluster case.

Evaluation Metrics We focus our evaluation on two key data stream metrics:
application throughput and processing latency. Throughput is obtained by sum-
ming the number of emitted unique tuples by every spout executor over the
duration of the experiments. Latency is the average latency computed by Storm
ackers. For a given tuple, it is the time between its registration at an acker and
the completion of the acknowledgment tree. Hence it is a direct estimator of the
end-to-end processing time. Every test has been run for 20 minutes and the first
and last 5 minutes were excluded from measurement to account for the warm-
up and shutdown phases. The results presented correspond to a steady state of
the topology.
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3.5.4 Results

Single Cluster

Large Topology In this scenario, the Even scheduler (blue bars in Fig. 3.11)
behaves as expected: increasing the number of workers increases throughput
(Fig. 3.11a) but also processing latency (Fig. 3.11b). Indeed, increasing the num-
ber of workers while keeping the number of executors per node constant slightly
increases the available memory for each executor. This results in more space
available for the buffering queues. However, at the same time, a larger num-
ber of workers increases communication latency between executors in the same
node, adding inter-worker communication.

In our experiments with the RAS scheduler, some configurations would run
out of memory and crash (missing values in Fig. 3.11a and Fig. 3.11b indicated
by a cross). The only two working configurations were the ones with a require-
ment of 30 CPU units (CU) and with 128 and 64MB of required memory respec-
tively. With a configuration of 33 CPU units per component, we don’t have
enough space in the cluster to place all the components. Meanwhile, with the
last two RAS configurations (30CU 32MB and 27CU 32MB), as well as the OPW
strategy (30CU 128MB), we come across continuous memory dump crashes
which prevents us from considering the results as valid. In all the failing sce-
narios, the cause is related to the acker executors. The recurring crashing JVMs
are the ones containing only ackers, where we noticed that some ackers fill very
quickly (in the first 10 seconds of run) the receiving queue and cause the worker
to reach its memory heap limit.

Considering the only two valuable results (red bars in Fig. 3.11), we can ob-
serve the importance of a correct resource requirements configuration. With
128MB of required memory, we have an average of 8 executors per node. This
number doubles when we decrease the required memory down to 64MB. The
placement in the first case results in 4 workers per node with 2 executors each,
In the second case we have 2 workers per node with 4 executors each. Com-
pared to the former case, we have a better distribution of ackers. This increases
intra-worker communication, hence reducing communication latency by 82%
and also improving the throughput by more than 115%. As we can see, the
impact of placement in the first test (30CU 128MB in Fig. 3.11b) drastically in-
creases the completion latency to over 300ms in average.

Both OPW (in green on Fig. 3.11) and IQ (in yellow) improve on the orig-
inal RAS scheduler, with both strategies significantly improving the through-
put, catching up with the Even scheduler performance. Regarding latency, the
OPW scheduler (green) cannot reach a faster average processing time than the
default RAS result in its best configuration (30CU 64MB). However, in the best
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Figure 3.11: Results of the large-scale topology in the single cluster environment

case (30CU 32MB), OPW results to be slower by just 4ms (i.e. 6% slower). When
compared to the Even scheduler, swe are able to improve the process latency up
to a 27% on equal throughput configurations.

Overall, while the OPW scheduler offers a good trade-off in terms of through-
put and latency as compared to the RAS scheduler, the most meaningful im-
provements are observed with the IQ strategy. This is especially true in the last
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three configurations (30CU 64MB, 30CU 32MB, 27CU 32MB), which consider-
ably improve the latency of the default RAS scheduler. At a similar throughput
level, the IQ strategy reduces the latency by more than 53% as compared to
the RAS scheduler, and by 33% w.r.t. the Even scheduler. In specific scenarios
where latency is more relevant than throughput, we can, for the best configura-
tion, reduce latency by 66%, at the cost of a 7% decrease of throughput.

Small Topology Results with the small topology are presented in Fig. 3.12a
and Fig. 3.12b for the throughput and latency respectively. We can observe that
the Even schedulers performs very well in this scenario for both metrics. The
RAS scheduler can achieve very good latency, but at the expense of a lower
throughput in some cases. In addition, its performance varies in an unpre-
dictable manner depending on the CPU and RAM requirements used for the
tasks.

Differently from the previous scenario, with a small parallelism level, it
results to be harder to improve the already good performances of the Even
scheduler. However, we must point out that the throughput of the Even sched-
uler is 3 times higher than the resource-aware when using the default strategy
(Fig. 3.12a). However, when a lucky placement occurs, the RAS can improve
the Even lateny by a 27% (Fig. 3.12b), i.e. around 1.6ms (400CU 128MB). With
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Figure 3.12: Results of the small-scale topology in the single cluster environ-
ment
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a requirement of 265 cpu units, precisely to fit 3 executors per node, the aver-
age latency escalates up to 8.8ms. Even though both tests with the default RAS
strategy has the same throughput, in the second scenario we observe an higher
latency caused by an higher sojourn time in the nodes containing the ackers.

In contrast, the IQ and OPW schedulers achieve stable performance irrespec-
tively of the CPU and RAM requirements. They achieve performance on par
with the Even scheduler, with slightly better results for OPW. A fair comparison
between the OPW and Even schedulers can be done when both use the same
number of physical nodes. As can be seen from Table 3.2, this is the case when
comparing the 13 workers case of the Even schedulers and the (400CU 128MB)
case of the OPW scheduler. The performances are almost similar in terms of
throughput and latency for the two schedulers in these two experiments.

Findings: overall, on a single cluster, our strategies improve the performances
of the default RAS in all scenarios. Moreover, in the worst case it is on par with
the Even scheduler.

Multi Clusters

Large Topology A key advantage of the RAS scheduler, and also IQ and OPW,
in a multi-cluster scenario is that they will pack, as far as possible, the topology
in a single cluster. This is the case for the large topology scenario and, as such,
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the results for the three resource aware schedulers are the same as in the single
scenario (Fig. 3.11).

The Even scheduler, in contrast, is greedy and will deploy the topology over
the two clusters, which causes the latency to ramp up from 6 to about 80 ms. But
this can also lead to an increase in terms of throughput if it uses more physical
nodes as is the case in the 60 workers scenario of Fig. 3.13a, where the through-
put is almost double. This is given by the increased number of used nodes, 32
up from 16. We see a significant improvement (+ 82%) of the tuple processing
(Fig. 3.13a) and lower (-42%) latency (Fig. 3.13b).

The slightly improved performances of the 13 and 16 workers tests (com-
pared to the ones in the previous section) can be attributed to the more perform-
ing CPUs in the second cluster, where half of the topology is placed.

Small Topology In this scenario (Fig. 3.14), the Even scheduler clearly under-
performs as compared to the resource aware schedulers, as it again deploys the
topology over the two clusters. Also, the RAS scheduler again achieves less
stable results than the IQ and OPW schedulers due to the balancing of the ack-
ing load they perform. This further enables them to improve throughput as
compared to the original RAS scheduler while featuring similar latencies in this
scenario.

Comparing the Even scheduler with the RAS, we see the true impact of the
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resource-aware algorithm. In the best case the RAS is able to increase by the
10.8% the throughput and to reduce the latency by the 78.8%. The RAS achieves
the same performances as in the single cluster. However, the Even scheduler,
with so few executors feels the impact of having a slow link that separates them
(blue bars in Fig. 3.14b).

As for the default strategy, the RAS with our implemented strategies, per-
forms like in the single cluster environment. However, considering the trimmed
performances of the Even scheduler we’re able to improve its throughput (Fig.
3.14a) by up to 76%, with the OPW strategy, and by 86.6%, when applying the
IW strategy. Even though the best latency is obtained by the default strategy,
we see how our strategies maintain more stable results when changing the con-
figurations. The RAS features (Fig. 3.14b) a latency increase (+ 127.8%) when
passing from a requirement of 400 cpu units to 265. Meanwhile, our solutions
increase, in average, by 61% the best latency obtain by the default RAS, but
reduce the worst case by 29%.

Findings: our proposal improves on both default RAS and Even scheduler,
when running on multiple clusters. The Even scheduler can sometimes achieves
better throughput at the cost of using twice as many nodes.

3.6 Conclusion

With this work, we have demonstrated how implementing reliability in data
stream systems can affect application performance if not done with care. This
is especially true in acknowledgment-based systems, where the acking mecha-
nism induces a significant processing and network load.

We exemplify the case with the Storm middleware, considering its two stan-
dard schedulers, namely the Even and the Resource Aware Scheduler (RAS).
The RAS scheduler was devised for multi-cluster scenario where it is known to
outperform the Even scheduler. We have demonstrated that its relatively worse
performance in single-cluster scenario is due to its handling of the ackers com-
ponents. We have improved the RAS scheduler, with new ackers placement
strategies – OPW and IQ – that enable it to perform at least as well as the Even
scheduler in both scenarios with small or large topologies. This means that it
is possible to design a single scheduler that offers consistent performance irre-
spectively of the exact scenario.

Our work focused on the acknowledgment mechanism, demonstrating its
possible impact on application performance. However, DSP frameworks usu-
ally provide other mechanisms (logging, monitoring, etc) which also rely on
system tasks. In the same manner, they can have an impact on the processing
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load. Thus, it is fair to conclude that all the non-functional tasks should be
considered as part of the application during the scheduling process.
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In Section 2.1.3 we showed the wide range of Stream Processing Engines.
All of them propose different approaches and architectures focusing on differ-
ent streaming challenges [FCKK20], with the final objective of optimizing the
stream processing performances by assuring reliability, high throughput and
low latency. Stream processing evolved at a point which makes it capable, not
only to process data streams, but also to stored data as well. The windowing se-
mantics presented in [ABC+15] introduce a manner to perform batch processing
through streaming platforms.

Several works have been done to improve these systems, from scheduling
algorithms (Chapter 3) to deep architectural renewal [FCKK20]. The inclusion
of new features, a radically different platform architecture and processing se-
mantics, even the application designs itself, need to be analyzed and evaluated.
This process is necessary to understand the behavior of a platform, and how
it reacts to different design implementations. However, writing several appli-
cations to encompass all the possible design implementations and test diverse
features, may be costly and time-consuming.

Current works commonly use test applications as benchmarks or mocks of
production applications. Most of the available benchmarks tend to be bounded
to the platform or scenario they are evaluated on. As a consequence, it makes
those applications hardly usable in other contexts. Moreover, this ad-hoc ap-
proach does not always allow an easy tuning of the application. Indeed, even
some slight changes of the application characteristics require modification of
the source code. This becomes a limitation when the source is not available, or
when the application internals are not correctly explained.

Thus, a reference solution is missing. We feel the necessity for a flexible and
generic approach, that is context- and platform-agnostic and that would allow
to easily configure the fundamental DSP applications characteristics, together
with a detailed workload description.

With this work we propose a generic solution to the problem: an applica-
tion prototype generator based on an high-level description model. We firstly
define the high-level model, by presenting two schemas with different granular-
ity level: the Workflow schema and the Pipeline schema. Based over fundamental
data stream characteristics, the schemas support easy and quickly configurable
topology description. These schemas will be used as input for an automatic
generation framework.
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The prototype generator we present is called NAMB, Not only A Micro-
Benchmark. It is a framework that, given a generic application model, will
automatically generate the defined application. It builds over the two generic
high-level description models here introduced. Thanks to the combination of
the high-level description schema and the application generator, NAMB allows
for an easy and quick generation of a large set of micro-benchmarks as well as
prototypes of realistic applications.

In this chapter we present the following contributions:

• We provide a detailed description and analysis of the fundamental char-
acteristics of typical DSP applications.

• We present the Workflow schema, an high-level model to describe the
global workflow and characteristics of a DSP application, allowing a quick
and easy customization.

• We introduce the Pipeline schema, a second model to precisely describe
each element of a DSP application, allowing an higher degree of flexibility.

• We propose NAMB, a platform for fast and flexible generation of proto-
type applications based on their high-level description.

• We demonstrate how NAMB can be used to evaluate the impact of design
choices and create complex prototypes to analyze DSP systems, only by
using high-level models instead of editing the application code.

• We make available a public release of NAMB at https://github.com/ale
93p/namb, ready for Storm, Flink and Heron.

The rest of the chapter is organized as follows: the State of the Art of bench-
mark applications, is presented Section 4.1.1, and related works on high-level
languages and application generation in Section 4.1.2. The work motivations
and challenges are explained in Section 4.2. Section 4.3 presents the fundamen-
tal characteristics of data stream applications. The derived high-level language
is introduced in Section 4.4. The prototype generator NAMB is presented in Sec-
tion 4.5. Then, Section 4.6 focuses on the implementation challenges and details.
Finally, we conclude in Section 4.7.

4.1 Related Work

4.1.1 Benchmark and Evaluation

A taxonomy of the state-of-the-art DSP benchmark applications can divide them
into three categories: micro-benchmarks, benchmarking suites and mock appli-

https://github.com/ale93p/namb
https://github.com/ale93p/namb
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cations. While we seek to give a precise definition for each group, they are
not mutually exclusive. An application can possibly be part of more than one
group.

Micro-benchmarks

In this category are grouped simple applications that don’t try to replicate re-
alistic scenarios. The workload is composed of simple operations working on
synthetic data.

Peng et al. [PHH+15] define three different base layouts for micro-benchmark
topologies (Fig. 4.1): linear, diamond and star. The first one consists of a pipeline
of tasks without any branch split or join; the diamond shape usually starts and
ends with a single task and has multiple tasks in parallel in-between; the star
layout has multiple source and sink tasks, linked by a single task. Those layouts
are common and widely used in other works (as we will see in the following).

SOURCE TASK1 TASK2 TASK3

(a) Linear Layout

SOURCE

TASK1

TASK2

TASK3

TASK4

(b) Diamond Layout

SOURCE
1 TASK2

TASK1

TASK3SOURCE
2

(c) Star Layout

Figure 4.1: Micro-Benchmarks Topology Layouts

In [XCTS14] three different micro-benchmark applications are proposed. The
first one is composed only of a source and a sink. It is a canonical topology to
evaluate the maximum throughput that can be achieved. The second one is
another popular micro-benchmark, the streaming version of WordCount. It is
usually available as example code in the main DSP systems such as Storm or
Flink. It is implemented as a simple linear application that generates different
sentences and counts the occurrences of single words in them. The last one is
a sample log processing topology. While the last two topologies may be con-
sidered as real use cases, they are normally implemented as examples and not
derived from production code.

The WordCount topology is also used by [CM18], to perform a performance
comparison between several DSP platforms, and by [FAG+17] to evaluate the
performance and capabilities of their novel self-adapting data stream processor.



4.1. RELATED WORK 59

Marangozova et al. [MMDPER19] propose an elastic data stream processor
to dynamically adapt the parallelism of the topology. To evaluate their solu-
tion, they use a DDoS (Distributed Denial of Service) detection application that
follows the diamond layout.

Eskandari et al. [EMHE18] evaluate their graph-based placement scheduler
using micro-benchmark applications. They test different routing options in
Storm and divide the micro-benchmarks between I/O intensive and CPU in-
tensive. In the first case, they test the components to their maximum capacity
without any additional processing, which are later added in the second category
to stress out the CPU.

Similarly, [LB17] uses CPU and I/O bound micro-benchmarks to prove the
efficiency of their task scheduler. Aljoby et al. [AFM17] use a simple diamond
topology to prove the impact of placement and bandwidth over data stream
applications. Kamburugamuve et al. [KRSF17], test the latency provided by
InfiniBand [INB] and Omni-Path [BDH+15], using a simple diamond layout
micro-benchmark.

Overall, micro-benchmarks often lack implementation details, missing the
internal description. Thus, they don’t give a clear idea of what is the actual
workload of the application.

Benchmark Suites

A suite consists of a set of micro-benchmarks, or more realistic applications,
developed with the specific objective of benchmarking a DSP system. Some
of them may include a monitoring system to retrieve metrics and output the
benchmark results.

In StreamBench [LWXH14], the authors define a set of workloads, character-
izing them in terms of data type and computational complexity. They then pro-
pose 7 different benchmark applications representing those scenarios (Identity,
Sample, Projection, Grep, WordCount, DistinctCount, Statistics), with varying
processing complexity. The applications are tested with two different real-world
datasets (textual and numeric).

BigDataBench [WZL+14] is a benchmark suite devised for both batch and
streaming BigData platforms. They focus on Internet services. BigDataBench is
composed of a large set of applications, each related to a specific Internet service.
More than 30 micro-benchmark workloads are available and grouped under
5 macro-categories of services: Search Engine, Social Network, E-Commerce,
Bioinformatics and Multimedia Processing. Among them Grep, Rolling Top
Words (specific to Social Networks), Kmeans and Collaborative Filtering (spe-
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cific to E-Commerce) are available for streaming data platforms. JStorm [JST]
and Spark Streaming [SST] are currently supported.

The authors in [SCS17] propose RIoTBench, a suite designed specifically for
IoT scenarios. They analyze the characteristics and the behavior of common
applications in this context, describing 8 different common task patterns used
in streaming applications for IoT. The suite regroups a large set of IoT micro-
benchmarks to cover all these patterns. It also includes a set of representative
IoT applications. They are inspired by realistic scenarios and implement four
topologies representing the most common IoT workloads.

In Senska [HRM+17] instead of considering only a set of contexts to bench-
mark as what we have seen above, the authors propose a generalized approach
to DSP evaluation being suitable for every environment. They define 9 basic
tasks used in industrial applications (e.g. Transformation, Merging, Filtering)
and use them to compose 5 different benchmark use-cases (e.g. Check Sensor
Status, Check Machine Power).

Benchmark suites are designed for context-specific scenarios. They consist
of applications built ad-hoc for a specific environment. They are limited by the
static compositions of tasks, other than by the platform-specific implementation.
This lack of flexibility does not allow customized workflow compositions or
cross-platform benchmarks.

Mock Applications

These applications are valid representatives of what is usually deployed in a
production environment. They implement common queries used in production
applications, making them close replicas of what can be deployed in a real clus-
ter.

The first benchmark application appositely developed to benchmark stream-
ing data is Linear Road [ACG+04]. The authors propose an application that
simulates a real scenario: an urban expressway system. The objective of the ap-
plication is to monitor real-time traffic to apply an algorithm of variable tolling,
to adapt the price to the road congestion.

The most popular benchmark application of this category is Yahoo! Stream-
ing Benchmark [CDE+16a]. It has been widely used by companies to evaluate
their solutions [Gri16, Yav17, KW17]. The application (Fig. 4.2) analyzes adver-
tisement interactions on the Web. The data reaches the application as an events
stream from Kafka. They are deserialized and parsed into different fields, keep-
ing only the ad view events. They are then forwarded to the next task which
looks into a Redis database to retrieve the associated campaign id. Finally,
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Figure 4.2: Yahoo Streaming Benchmark Design [CDE+16a]

events are grouped and counted by campaign id.
Yahoo! also presented two other typical industrial topologies in [PHH+15]:

PageLoad and Processing. They are used to manage real-time advertisement
events. Both are presented as a set of standard queries without any details re-
garding the actual workload.

Chatterjee et al. [CM18], in addition to the WordCount application described
earlier, use two applications with real datasets: an air quality monitoring appli-
cation and a flight delay analysis.

Mock applications, similarly to what we have seen in the previous section,
offer static streaming workflows based for popular DSP systems. Although
these applications are representative of real industrial workflows, they may not
match the user-specific environmental needs.

4.1.2 High-Level Languages and Application Generation

Several higher-level languages for DSP [HBB+18] have been proposed. The
main objective is to introduce mechanisms or concepts previously not supported,
or optimize the application generation.

Apache Beam [ABC+15, BEA] tries to enclose all the key mechanisms that a
DSP system should support, through a common set of Java APIs for the differ-
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ent streaming platforms. A particular attention is paid to the windowing mecha-
nism, and a new model for windowing is proposed. It can support out-of-order
data arrivals along with session windowing. Then, Beam Runners translate the
Beam APIs into platform-specific code, allowing cross-platform development
and ensuring a common set of functions between all of them.

SECRET [BDD+10] defines a general semantic to describe the diverse Stream
Processing Engines (SPEs) mechanisms. The framework aims to compare and
ease the understanding of SPEs internal behaviors, which are normally differ-
ently implemented. In their paper, the authors mainly focus on the windowing
mechanism implementing a framework aimed to continuously monitor the win-
dow status of the application.

The authors of SpinStreams [MDT18] present a framework to optimize the
tasks implementation in DSP applications. Given a topology description in xml
and the java functions to describe the tasks workload, SpinStreams applies op-
erators fission (task replication) and fusion (merging two or more tasks into a
single one) to optimize the query executions and improve application perfor-
mances.

Another example of query language for DSP is Piglet [GHS16], an extension
to Pig Latin [ORS+08] directed to Stream Processing functions. Given an high-
level description of the stream processing queries, Piglet generates application
code for the different SPEs. They define a SQL-based API to write the applica-
tion that generalizes the supported platforms features. Similarly to SpinStreams,
they rewrite the application code to optimize the query execution.

The above works propose high-level description models to define DSP topo-
logies. They expose programming languages APIs to write the code, or require
actual code for user-defined functions. The main objective is to generate exe-
cutable application code for the different SPEs. At the same time, they focus
on optimizing the query planning or introducing and generalize missing DSP
features to these engines.

Our work goes on a different direction. We aim to generate prototype appli-
cations, with a simulated workload, i.e., we don’t require the user to specify the
internal code of each task. This approach would allow a quick and easy defi-
nition of the topology graph, without the need of writing the application code,
through an high-level and simple description of the workflow .

4.2 Motivation

We just showed that the literature already provides us with a large variety of
streaming applications and application generators. These works fulfil their ob-
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jectives as they evaluate the specific case their designed for. However, none of
them can be seen as a generic reference solution. We think that this past work
presents various limitations in this regard:

• They are too context-specific. These benchmarking tools are commonly
designed for specific scenarios such as IoT or Internet services, limiting
their applicability to other fields of study. Moreover, they are implemented
over a specific platform. It is thus necessary to rewrite the entire applica-
tion to adapt it to other middlewares.

• Applications and generators require the usage of actual code. Either with
specific APIs (e.g. Java or SQL), or with global definitions (e.g. XML)
which anyway requires external code to define user-specific tasks.

• They are often hard to replicate due to the lack of a specific workload de-
scription. This is especially the case of micro-benchmarks, as they usually
define a general objective for the evaluation – e.g. I/O intensive, maximal
throughput – but fail to provide a detailed definition of the tasks internals.

• At the same time, they are not flexible enough. An imprecise description
of the pipeline and hard-coded configurations do not always allow a quick
and easy tuning of an application, preventing an easy study of different
implementation choices.

• The software presented in the literature is often not publicly available
or hard to retrieve. Private code to be required at the authors or expired
websites, make complicated the usage and testing of these tools.

These drawbacks denote the lack of a generic solution, that could be used in
every scenario and that could be easily and quickly adapted to the underlying
environment. For such reasons, we think it is necessary to have a prototype
application generator that could address those limitations, i.e. that is:

1. generic: able to run on or be adapted to any kind and future data stream
frameworks and features.

2. flexible: with a well defined description model of the workflow, that can
be quickly and easily customized.

3. available: as open-source, so as to be ready-to-use and continuously im-
proved by the community.
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To achieve these objectives, we need an initial description and model of a
typical data stream application. Thus, we first define several fundamental char-
acteristics common to DSP applications (Section 4.3), which have a significant
impact on the characterization of an application workload. We then abstract
these characteristics in a set of parameters configurable by the user through a
high-level set of configurations (Section 4.4). Finally, we implement a frame-
work that, given this model, will automatically generate the application to be
deployed (Sections 4.5 and 4.6).

4.3 Fundamental Characteristics

Streaming applications are composed by a pipeline of tasks that continuously
process data flowing into the application. We divide DSP applications funda-
mental characteristics into two categories: data stream and workflow. The for-
mer defines the input stream of the application. The latter describes how the
data is transferred between tasks and how it is processed. The two categories
are interdependent as the workflow is impacted by the characteristics of the
data stream.

4.3.1 Data Stream Characteristics

Data Characteristics

In stream processing, data can assume various forms (from text to binary), de-
pending on the application environment as well as the data sources. Hence, the
dataset is defined by several properties. The cardinality of the dataset and the
data size depends on the application and also the input format, e.g. JSON, XML,
plain text. Depending on the application field, the number of different items as
well as their popularity may also vary significantly.

Input Stream Characteristics

Data may arrive at different rates. Modern applications such as social networks
not always feature a Constant Bit Rate (CBR) stream. Thus, we identified four
key distributions that represent the majority of stream processes:

• CBR, e.g. a continuous feedback of a monitoring system;

• Bursts, e.g., extraordinary events in sensor-networks [ZKZ+15];

• Saw-tooth distributions, e.g. similar as before, extraordinary events that
generate high number of tuples that slowly decrease.
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• Sinusoidal human-related behavior, e.g. more activities during the day
and less during the night [CERLDP16];

4.3.2 Workflow Characteristics

Connection

A DSP application is commonly represented as a Directed Acyclic Graph (DAG)
of tasks, with the sources as roots and the sinks as leaves. The tasks can be
arbitrarily connected to form different logical shapes. As an example, the three
base layouts described in Fig. 4.1 are commonly basic building bricks for more
complex topologies.

Scalability

Streaming systems are designed to manage high loads of data. Hence, applica-
tions need to be scalable. Most components of the topology can be parallelized
to spread the incoming load over multiple instances. The global parallelism
level of the application represents the total number of instances of all tasks of an
application. However, this global value is not necessarily uniformly distributed,
with some tasks requiring more computational capabilities.

Traffic Balancing

When data is transmitted to a parallelized task, the application has to decide
how to distribute the tuples over the different instances. The various streaming
platforms usually implement some standard grouping methods: (i) balanced
routing, based on a simple round-robin algorithm that assigns each tuple to
a different instance, enabling load balancing between the tasks; (ii) key-based
routing, that sends each tuple to a specific instance using a hash function, al-
lowing for stateful routing; or (iii) broadcast routing, where a tuple is replicated
and sent to all the following level instances.

Message Reliability

Most DSP platforms offer a reliability mechanism to ensure message processing.
As an example, Storm uses an acking framework with the aid of non-functional
tasks while Flink relies on check-pointing to ensure exactly-once delivery [FCP].
These solutions can impact the application throughput, processing latency (as
we saw in the previous chapter) or its message failure probability.
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Windowing

As a consequence of the endlessness of stream applications, most of them try to
give partial results over time periods, rather than waiting the end. This method
of aggregation is done through windows [ABC+15, MTL+18, TGC+19]. A win-
dow is defined as a group of tuples commonly enclosed in a portion of time
or in a specific number of tuples. Tumbling windows are non-overlapping, i.e
the beginning of one window follows immediately the end of the previous one.
Sliding windows, on the other hand, allows for overlapping. Hence, a tuple
can be part of multiple windows. The implementation of a windowing system
is complex. In particular, the need for storing data (even duplicated in case of
sliding window) increases the resource requirements.

Data variability

As the data flow in the tasks pipeline, some tasks may alter the data (e.g. filter-
ing, projections...). Hence the characteristics of the input dataset may change on
the fly.

Workload

Each task composing the DAG performs various operation on the data and
some might be more computationally intensive than others. Thus, the process-
ing load is not always balanced over all tasks and bottlenecks might exist.

We listed and described the main properties that significantly impact the per-
formance and the behavior of streaming applications. From those fundamental
characteristics we derive the high-level model to describe streaming application
prototypes, presented in the next section.

4.4 High-Level Description

The model defines a series of parameters, that covers at best the just described
characteristics. We expose two different description models with different gran-
ularity of application description.

We define a generic schema for a coarse-grained description of the global
behavior of the application, called the Workflow schema. To that first schema,
we juxtapose a second one closer to a real application definition, named the
Pipeline schema. This second schema allows the user to specify the exact DAG
composition they want to evaluate, with parameters for each task. These two
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approaches make it possible to easily and quickly define prototype applications,
but also describe large and complex mock applications.

Both models follow the YAML standard [YAM] for their configuration files,
which will serve as input to the generator (Section 4.5). It thus consists of a
series of key-value pairs grouped into different blocks.

4.4.1 Workflow Schema

The Workflow schema allows the user to describe the global parameters of the
application, without going into the individual task detail. From this high-level
point-of-view, the schema gives the user a quick and easy way to generate sim-
ple micro-benchmarks. The simplicity of the schema allows to swiftly tune
test-by-test some application features (e.g. data size, parallelism, computing
load), and easily experiment with different design combinations. Following the
categorization made in the previous section, we divided the model into two
homonymous main categories.

Data Stream Section

The datastream section contains the input data and arrival flow characteristics.
It supports the definition of a synthetic data stream or the connection to a Kafka
cluster, to allow the connection to an external data source, thus the input of more
complex and realistic data streams. In the following we focus on the synthetic
generator, as it is the one that defines the stream as introduced in the previous
section, whilst the kafka connection is addressed from an implementation point-
of-view in Section 4.5.4.

The synthetic dataset is described by how many unique values it is com-
posed, their appearance distribution, describing the probability of a value to be
generated (e.g. uniform means equal probability for each value), and the size in
bytes of a single tuple.

The input flow is defined through its arrival process, and its rate in terms
of tuples per second. The arrival process distributions can be defined as CBR,
burst, sinusoidal, sawtooth and reverse sawtooth. In addition to the rate value,
common to every distribution, the description includes further parameters for
non-CBR distributions, to customize their variance over time. For the bursts,
it is possible to define the interval time between bursts and individual burst
duration. For the sinusoidal and sawtooth, a phase parameter allows to define
the cycle duration of the wave, e.g. the time for the sinusoid to go back to its
starting point.

For example, Fig. 4.3 indicates that the benchmark will generate synthetic
data. Each tuple will have a size of 8 bytes and their values will be randomly
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datastream:
synthetic:

data:
size: 8
values: 100
distribution: uniform

flow:
distribution: uniform

rate: 0

Figure 4.3: Datastream section of Workflow schema (yamb.yml)

chosen among 100 different ones with a uniform distribution. The arrival rate is
not limited (indicated with value 0), making the application produce as much
data as it can, and uniform, i.e. not following any arrival process (with a lim-
ited rate, this would translate into a CBR arrival process). The unbounded rate
will exploit the maximum capacities of the platform and testing environment,
without setting any time interval between tuples.

flow:
distribution: sinusoidal
rate: 1000
phase: 300 PHASE

RATE

SINUSOIDAL
DISTRIBUTION

Figure 4.4: Flow configured as: sinusoidal stream, with fixed rate and phase

In a second example (Fig. 4.4), the arrival flow is defined as sinusoidal. For
this distribution, an arrival rate of 1000 tuples/s will correspond to the highest
value reached by the wave, and the new phase value will define the time dura-
tion, in seconds, of a sinusoidal wave cycle.
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Workflow Section

The high level description of the DAG is given in the workflow section. It al-
lows to configure the logic composition of the graph and tasks connection as
well as the internal task workload. The DAG depth defines how many levels of
subsequent tasks are in the topology, including the sources. The global paral-
lelism level is the total sum of all the tasks instances, and how it is distributed
over the single tasks. One can further specify how components are connected
to each other, as well as the grouping method (e.g. shuffle/round-robin, hash-
based/by key) and the shape of the topology, defined through the basic micro-
benchmark layouts (represented in Fig. 4.1).

The tasks workload is defined by their processing load. The value specified
in the schema will be used to simulate the internal workload of the tasks. We
rely on a busy wait function (Section 4.6.1) that will keep the CPU busy. In
this manner we are able to produce a generic load not bounded to any specific
data stream query. This allows for context-agnosticism. A DSP application may
have a balanced load, where all the tasks have the same processing load, as
well as unbalanced loads, especially applications for which the heaviest tasks
are at the beginning of the DAG, or the reverse (we will go into more details
in Section 5.2.3). The balancing method can be defined in the configuration to
specify how to distribute the load value over the tasks.

The workflow description includes also a reliability flag, to enable reliabil-
ity mechanisms where the platform supports it, e.g. Storm acking framework.
Windowing and data filtering can be globally defined. The former specifies the
type of window (i.e. thumbling or sliding), its duration in seconds and the in-
terval between the beginning of two windows, in case of sliding windows. The
filtering parameter specifies the percentage of data that will be discarded, e.g. a
value of 0.33 means that only the 33% of incoming tuples will reach the sink.

In Fig. 4.5 we consider a diamond topology with round-robin (balanced) con-
nections between tasks. The depth of 5 indicates there will be two more tasks
after the diamond (Fig. 4.5 right side). With a balanced parallelism level of 24,
each of the 6 tasks, including the source, will have 4 instances. The processing
time at each task will be simulated following the decreasing order (other modes
such as constant or increasing are possible). This mode starts by assigning the
defined processing load value to the first task and then decreases it by 20% for
each following ones. Hence, the most computational intensive tasks will be at
the beginning of the topology. Finally, the generated code will use the reliability
mechanisms of the platform if available.
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workflow:

depth: 5

scalability:
parallelism: 24
balancing: balanced

connection:
shape: diamond
routing: balanced

workload:
processing: 3.0
balancing: decreasing

reliability: true

source

task_3

task_1 task_2

task_4

task_5

Figure 4.5: Workflow section of Workflow schema (yamb.yml)

4.4.2 Pipeline Schema

Differently from the Workflow schema, the Pipeline schema doesn’t describe
the topology from a generic point of view. It focuses on the description of each
task and connection to accurately define more specific characteristics. Similarly
to what a user would write to build a real application using platform-specific
APIs. The main advantage of this schema is that it allows to tune the parameters
at task level, giving more freedom to shape the application. This allows to test
specific scenarios, such as finding the application bottleneck.

The configuration file consists of a main section to describe the pipeline of
tasks. The key-values in this schema are overall the same as in the Workflow
schema, but task-based. A task can either be a source or a processing unit, de-
pending on the properties used to configure it. The data stream is described
directly in the source task, defining how that specific task will generate data, or
if it is connected to an external source (Section 4.5.4).

An advantage is that, differently from the Workflow schema, the user can
also specify different sources with a specific behavior each. Meanwhile, the
workflow is defined at a per-task level. Each task is defined by its own properties,
as processing workload and parallelism. Each task will define the parent tasks
and how they are connected to the previous level in the DAG. This allows to
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create more complex topologies that do not strictly match one of the layouts
provided in the workflow schema.

Fig. 4.6 shows an example of a configuration file with the associated topol-
ogy for the Pipeline schema. A source (word_generator) will send data at a rate of
1000 tuples per second to 2 counter tasks using a hash-based routing. To simulate
a real processing load (Section 4.6.1), we use here a busy wait loop of 4500 cycles
(4.5 in the configuration file as the unit is a thousand of cycles). Finally, the data
is sent to a sink, which will perform some light processing. The meaning of the
processing parameter is explained and motivated in Section 4.6.1.

pipeline:
tasks:
- name: word_generator

parallelism: 1
data:

size: 8
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 1000

- name: counter
parallelism: 2
routing: hash
processing: 4.5
parents:
- word_generator

- name: sink
parallelism: 1
routing: balanced
processing: 0.5
parents:
- counter

word_
generator

sink

counter

ke
y-
ba

se
d

ro
ut
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g
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Figure 4.6: Per-task configuration with the Pipeline schema (yamb.yml)
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4.5 Not Only a Micro-Benchmark

In this section we present the details of NAMB – Not only A Micro-Benchmark
– an application prototype generator for stream processing frameworks. Given
a high-level definition of the workflow for the Workflow schema or the Pipeline
schema, NAMB automatically generates the corresponding application for mul-
tiple platforms.

4.5.1 NAMB Design

NAMB prototyping process is based on two main phases. It processes the high-
level configuration files provided by the user and passes the result to an applica-
tion generator. Once the user has written their high-level YAML model, NAMB
is executed through a main command line script, through which the user is able
to specify for which platform the application will be generated. The script will
create and run NAMB giving in input the configuration file, it will then directly
deploy the generated application on the platform of choice.

LoadGen

KAFKA
CONSUMER

SYNTHETIC
GENERATOR

DATA
GENERATION

FLINK
GENERATOR

STORM
GENERATOR

HERON
GENERATOR

...

TOPOLOGY
GENERATOR

APPLICATION
BUILDER

ParallelismGen

...

Figure 4.7: NAMB Architecture

NAMB core is composed by three main components (Fig. 4.7). The Applica-
tion Builder that takes the input configuration and reads the defined parameters;
the Topology Generator that, based on the specified platform, will translate those
configurations into platform-specific code; and the Data Generation that will in-
ject data into the pipeline, either synthetic data or data from an external source.

NAMB is designed to easily support add new platforms (Section 4.5.5). In
its current version, NAMB supports Storm, Flink and Heron, while support of
Spark Streaming is under development.
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4.5.2 Application Builder

The Application Builder is the first component in NAMB’s workflow. It is the
interpreter of the input configuration. It parses the configuration file of the
user and, based on the chosen schema, converts it in easy-to-use objects for the
topology generator and the application generation. The Application Builder
generates different objects based on the configuration schemas it is interpreting.

The Workflow schema allows the user to provide only a high-level descrip-
tion of the topology (no per task details). Hence, NAMB (other than storing
plain values as the topology depth or the topology shape) has to adapt some of the
global values, such as the workload or parallelism, to the tasks in the pipeline.

Meanwhile, for the Pipeline schema, it doesn’t necessitate the adaptation
done above. In this case, the Application Builder converts the tasks blocks de-
scribed in the configuration file into a list of tasks objects, of which properties
will then be used to define the actual tasks in the topology.

4.5.3 Topology Generator

The Topology Generator is the principal component of NAMB. It generates
the application by translating the configurations given in input into platform-
specific code. When running NAMB the user can specify between the supported
Stream Processing Engines (currently Flink, Storm and Heron). Once the appli-
cation is correctly generated it is directly deployed.

As we have seen, the Workflow schema gives a generic description of the
topology, leaving incompletely defined some parameters such as the topology
shape in relation with its length, or when to apply specific operations (e.g. data
filtering). Hence, the Topology Generator needs to adopt some specific rules to
standardize every topology generation (Section 4.6.2).

One of the main objective and characteristic of NAMB is to be cross-platform.
In this way, given the same configuration file, NAMB can generate the topology
for different SPEs. However, every SPE has a different architectural character-
istics, implementing in their own way mechanisms such as schedulers or reli-
ability. For that reason, the topology generation has to take in account these
architectural differences (Section 4.6.3).

4.5.4 Data Generation

The Data Generation component is in charge of injecting data in the application.
It can let the sources use an internal synthetic data generator or connect them to
an external Kafka topic.
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The internal method is used to generate synthetic data. The Data Generator is
quickly configurable. The user can decide the characteristics of the dataset, as
explained in Section 4.4.1, and the Data Generator will generate tuples for the
topology.

The external connection allows to configure the data stream section in the
Workflow schema (as shown in Fig. 4.8), or the source tasks in the Pipeline
schema, to plug the source tasks to a Kafka cluster. In this manner, the data
generation would not be bounded to the set of options offered by the Synthetic
Generator. Moreover, in case of a system benchmarking, it will be possible to
consider metrics, such as the event-time latency [KRK+18], that are not available
using the Synthetic Generator.

datastream:
external:

kafka:
server: localhost:9092
group: test
topic: topic

zookeeper:
server: localhost:2181

Figure 4.8: Data Stream section of Workflow schema for the kafka source

Fig. 4.8 shows the configuration section of the datastream, that can be used
in place of the synthetic stream description seen in Fig. 4.3. In this case it doesn’t
describe the stream but it is used to define the connection to the external cluster.
It requires to specify the connection properties of the Kafka cluster: the main
server (i.e. the couple IPAddr:port), the topic and the group. For some plat-
forms, e.g. Storm, it is necessary to specify as well the Zookeeper server.

4.5.5 Multi-Platform Design

System-Specific Configuration

In addition to the application configuration file, NAMB includes a configuration
file for each supported platform. It is used to define system-specific properties
that are external to the application, e.g. number of workers in Storm. It also
includes a debug parameter that specifies an output log rate; this will print the
sampled tuple information (e.g. timestamp, ID or value), that could be eventu-
ally used to extract statistics.
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This file is then combined with the user-provided configuration to generate
the application and deploy it on the specific platform.

Platforms Support

NAMB design is modular. This allows to add support for new platforms in
an easy way. The main driver to implement is the Topology Generator for the
platform. As all the configuration parsing and data generation is performed by
parallel components, if anyone wants to add a new SPE to NAMB, they need
to translate the schema model of the logical DAG using the platform-specific
API. Even though the generator is the thicker component to implement, it will
be also necessary to add support for minor companion components such as the
system-specific configuration and the deploying option in the running script.

4.6 Implementation Challenges

4.6.1 Task Workload Simulation

To maintain the general nature of NAMB, the user does not have to specify
the exact code of a task. This avoids specific query operations on data, which
commonly results in context-specific processing, not general enough for our ob-
jectives. Instead, NAMB simulates the load through a busy wait loop function.
In this manner it is able to simulate processing workload, easily configurable
in the schema. A parameter is used to set the number of loop cycles, allowing
NAMB to replicate the processing load of common tasks used in stream process-
ing. The value is specified in thousands of cycles, e.g. a value of 1.5 correspond
to a busy wait of 1500 cycles, a value of 0.2 to 200 cycles, and so on.

Proof of Concepts

To demonstrate the equivalence that can be obtained between busy wait loops
and a real load, we have performed experiments on Apache Storm (version
1.2.1) on a 4-core node. Based on a set of representative works in the DSP do-
main [PHH+15, CM18, SCS17, HRM+17, ČTLČ16] we derived 5 key DSP tasks:

1. Identity: a task that just forwards the tuple as it is, without any processing;

2. Transformation: a task that transforms the input data, e.g. a parsing func-
tion that divides a JSON or XML text into an array of fields;

3. Filter: a task that filters data based on its value or a specific field, e.g.
if/else rules;
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4. Aggregation: a task that accumulates the input data over time, e.g. arith-
metic operations;

5. Sorting: a task that sorts in a specific order the input data over time, e.g.
ranking of word occurrences.

iden. filter aggr. rank. transf.
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Figure 4.9: Per tuple CPU measurements for real/simulated tasks

Each of these tasks was executed and its CPU time measured using Java’s
ThreadMXBean [TMX] API. Then busy wait (i.e. simulated load) tasks were cre-
ated and evaluated in the same conditions, to find equivalent simulated tasks.
With a carefully chosen number of cycles, we were able to reproduce a load
similar to the original task.

In Fig. 4.9a we can see the results for the real tasks. Identity, filter and ag-
gregation are under an average CPU time of 100 ms, aggregation is slightly more
variable than the other two, however we can consider the processing load of the
three tasks equivalent. The ranking task double the load of the previous three,
being quite stable around the a CPU time of slightly less than 200 ms. Transfor-
mation is the heaviest tasks and it spikes up to almost 500 ms, around 2.5 times
the ranking task, but with a larger variability.

Once we have the load characteristics, we try to find equivalent simulated
tasks. As they have close processing load results, we can simulate the identity,
filter and aggregation tasks using the same busy wait cycles. In Fig. 4.9b, we can
see how a busy wait of 700 cycles can in average replicate the same load of the
three tasks. Even though the results shows higher variability than the real task,
we can in average simulate the ranking task with a synthetic task of 103000 busy
wait cycles. More precise results are obtain for the transformation task, which
can be correctly be simulated with 450000 busy wait cycles.
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Finally, we consider NAMB synthetic tasks able to equivalently simulate real
tasks by using busy wait functions.

4.6.2 Topology Design Decisions

As previously mentioned, when translating the Workflow schema to the ac-
tual platform-specific topology, we need to define specific implementation rules.
Some may just require a value adaptation, others may actually shape the topol-
ogy and its design. The Pipeline schema is exempt of these translations as it
doesn’t define global and generic values, but specific ones by task.

Topology Shape

The user configures the topology shape and the depth of the DAG. Given this
combination, the Topology Generator has to define the logical composition of
the DAG. If the shape is linear, the translation is straightforward, we will have
1 source and n − 1 tasks connected sequentially (for a DAG depth of n). If the
shape is diamond, instead of replicating the diamond through all the topology,
we apply it only at the beginning. This results in having 1 source connected to
2 tasks at the same level, that will then join to a single task. The topology then
continues as a linear chain. A similar rule has been applied to the star topology.
In this case, we will have 2 sources that will join to a single task. The latter then
splits to 2 tasks. From this point, we decided to continue the topology with only
one branch. This means that one of the two branches is a sink and the other
continues as a linear chain.

SOURCE

TASK1

TASK2

TASK3 TASK4 TASK5

(a) Diamond Layout

SOURCE
1 TASK2

TASK1

TASK3SOURCE
2

TASK4 TASK5

(b) Star Layout

Figure 4.10: Streaming topology layouts as implemented by NAMB

For instance, considering a topology of depth 5, with a linear layout there
will be 1 source and 4 working tasks, pipelined one after the other. With a dia-
mond layout (Fig. 4.10a) the topology will still have 1 source (at the first level of
depth). However, this time the tasks will be 5. The first two will be placed right
after the source (at the second level of depth), splitting the stream, which then
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merge in the third task (third level of depth); after the third task the topology
continues as linear until the last one (at the fifth level of depth). Also the star
layout generates 5 tasks (Fig. 4.10b). In this case the application has two sources,
which merges in the first task. This first task immediately splits the stream in
two branches. As explained above, the remaining tasks will be placed after the
upper branch (from a logical point of view), in a linear manner.

Parallelism

The schema specifies a global parallelism value. The value represents the total
amount of task instances of the application, i.e. the sum of each task parallelism
level. For such reason, the specified value needs to be distributed over the tasks
in the application. How it is distributed is based on the balancing technique
specified in the configuration. If the user specifies balanced parallelism, NAMB
will split equally the instances over the tasks (including the sources) while de-
creasing will create a decreasing series of instance numbers that will be assigned
sequentially to the tasks, vice-versa the increasing configuration. The pyramid
will assign increasing values until the middle task of the topology and then de-
creasing until the sink.
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(a) Balanced

3

3

4 5
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5
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3 3
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(c) Decreasing

Figure 4.11: Parallelism balancing examples; depth 4 diamond topology with a
global parallelism of 18; balanced, increasing and decreasing configurations

An example of the parallelism distribution with different configurations is
presented in Fig. 4.11. The example shows a diamond topology of depth 4 (i.e.
1 source, in gray, and 4 tasks, in white), with a global parallelism of 18 (i.e. a
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total of 18 task instances). The balanced configuration (Fig. 4.11a) tries to equally
assign a parallelism value to each task (including source). In this case it can’t
assign the same parallelism to each task, as the value is not equally divisible
between all tasks. Hence, it will give more instances to the first tasks. The in-
creasing (resp. decreasing) configuration (Fig. 4.11b, resp. Fig. 4.11c) will assign
different parallelism values to each task, distributing them from a lower paral-
lelism level (resp. higher) climbing up (resp. lowering down) to an higher (resp.
lower) value.

Processing Workload

A similar process is done also for the processing workload. The user specify a
value for the processing load of the application (as seen in Section 4.6.1). As for
the parallelism, the workload value has to be distributed over the tasks. Differ-
ently from the parallelism representation, the workload value doesn’t represent
the total processing amount of the application. In this case, the value represents
the starting-point for the loads, i.e. the value assigned to the first task. As for the
parallelism, several distribution methods are implemented: balanced, which as-
signs the same workload processing value to all the tasks; increasing, which assigns
the workload processing value to the first task and increases it by 20% for each fol-
lowing ones; decreasing which works the same way but decreases the workload;
and pyramid, which merge together the increasing and decreasing methods at the
same manner as for the parallelism.

Fig. 4.12 shows an examples of the various balancing configurations. The ex-
amples are on a diamond topology of depth 4 (i.e. 1 source, in gray, and 4 tasks,
in white). With a base value of 10 (i.e. 10000 busy wait cycles) the three different
distributions set a different value in each task (excluding the source). A balanced
configuration (Fig. 4.12a) will assign 10 at each task. Increasing (Fig. 4.12b) will
start from a value of 10 for the first task, then 12 (i.e. +20%), follows a value
of 14.4 (i.e. +20% of 12), and so on. Vice-versa, with a decreasing configuration
(Fig. 4.12c), still starting from a first value of 10, to the second task will be as-
signed a processing load of 8 (i.e. -20%), then a value of 6.4 to the third (i.e. -20%
of 8), and so on.

Traffic Routing

As introduced in Section 2.1.3, in streaming applications tasks can be connected
to each other through different grouping methodologies. These techniques de-
scribe how the data traffic is routed between the tasks. The schema has a field
to specify which kind of grouping we want in the application.
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Figure 4.12: Workload balancing examples; with a base processing value of 10;
balanced, increasing and decreasing configurations

By default, the defined method is applied at every step of the topology.
However, given the differences between platforms, this rule has to be bypassed
by some platforms to accommodate specific architectural optimizations (Sec-
tion 4.6.3).

Data Filtering

A filtering parameter allows to reduce the data volume at runtime. To keep the
schema generic, it does not specify when or how to apply the filtering.

For the when, we set a fixed position. To be able to test the application with
the two volume loads, filtering is applied at the middle of the topology. As an
example, if the DAG depth is 8, the filtering will be applied at the third task
(i.e. level 4 of the DAG). In the case of a non-linear topology, if the middle level
corresponds to the double-task level (i.e., 2 for diamond or 3 for star), filtering
will be applied to both of them.

For the how, the user can set a filtering value. This value represent the per-
centage (normalized to 1) of received messages that the task will forward to the
next one.

Windowing

Following the same reasoning for the data filtering, the windowing has been
associated to a single task (i.e. the one that would perform the aggregation). For
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convenience we set the windowing task as the second task of the topology, or
the first in case the application is composed just by the source and one task. The
user can define the type of window (e.g. thumbling, sliding) and the window
size.

4.6.3 Managing Platform Specifics

NAMB generates applications for multiple SPEs. When generating the applica-
tion from the Workflow schema or the Pipeline schema, it is necessary to take
into account the major design and implementation differences between plat-
forms [GHS16]. Each platform implements in a different manner the way to
define data routing among tasks, reliability mechanisms and scheduling strate-
gies.

An example of such discrepancy can be seen between Flink and Storm. Those
platforms implement different grouping methods to connect the tasks, e.g. Flink:
direct connection, absent in Storm (Sections 2.2 and 2.3). Likewise, these differ-
ences may reflect in the scheduling algorithm and different optimization made
by the platforms (Sections 2.2.3 and 2.3.3).

In the current version of NAMB, whereas in Storm and Heron the specified
routing is applied between each task, in Flink it is only applied at the first level,
between the source and the first-level tasks. This preserves the chains of sub-
tasks (Section 2.3.3) and produces a more realistic and optimized prototype.

While the majority of applications generators perform also query optimiza-
tion, it is not our main focus. Our objective is to generate prototypes. For this
reason, we take into account platform specifics only to make design decisions
for the generation. However, it would be easy for someone to implement an
optimized generator for a specific platform, taking into account the previously
described design rules and the internal mechanisms of the platform.

4.6.4 Data Generation

Synthetic Data Distribution

NAMB implements an internal synthetic Data Generator. The generator man-
ages the form of the data as well as the composition of the dataset, its size (i.e.
how many values the dataset is composed of) and the appearance probability
of the single values.

The synthetic sources will produce strings of a specified size from a set of
unique values, sequentially increasing the characters starting from the right-
hand side one, composing a series of the form: [aaa, aab, ..., aaz, aba, ..., abz, ...]
(in case of a 3-byte long data). Even though we acknowledge that in DSPs we
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may encounter different types of data, we currently only generate strings. As
we saw in Section 4.6.1, no actual processing is performed directly over the tu-
ples, so the actual data type does not impact the application behavior. However,
the size of data impacts its transfer over the network between the tasks and the
distribution of tuple values (uniform or biased) impacts the routing of tuples in
the topology.

Concerning the appearance probability, the high-level description accepts
two different distribution types. A uniform distribution will give an equal prob-
ability to each value to appear in the stream. To simulate the popularity of some
data, it is also possible to specify a non-uniform distribution. In the first case,
the size of the set matches the unique values as each of them will be present
only once; whereas, to have an heterogeneous probability of values generation
(when non-uniform is set), the generator will create different copies of the same
value.

The Data Generator manages also the arrival flow properties. It defines the
rate at which the data will be produced, as well as its arrival distribution. Data
may arrive at a constant bit rate, or present some variability, as already dis-
cussed in Section 4.4.1.

External Generator

The synthetic generator is subject to several limitations as already discussed in
Section 4.5.4. As an example, the Java implementation of the Synthetic Gen-
erator does not allow to set an inter-tuple interval under 1ms, except for the
unlimited rate (bounded only by the processing capabilities of the node). This
limitation could be easily overcome with a Kafka producer written in C.

For such reason, we use the external generator Section 4.5.4 capability to
connect a Kafka broker to NAMB. As an external module of NAMB, we imple-
mented a Kafka producer in C. The producer follows the same design as the
internal one. A major difference is given by the configuration file. Even though
it is tightly based on the properties of the yaml file, C doesn’t support yaml
parsing. For simplicity reasons, we implemented the configurations through
the libconfig library.

As we can see in Fig. 4.13, the configuration file is divided in 4 sections. The
sections datastream and flow are the same used in the Workflow schema and
Pipeline schema. The only adaptation is for some property names, as libconfig
requires unique names overall and not per section like yaml. E.g. ddist and sdist
in place of the keywoard distribution. The section kafka specifies the connection
to the Kafka broker (i.e.where to send the messages). Finally, a global section is
used for generic configurations. The figure shows the debug option, used in the
same manner as for the NAMB configuration, to specify the frequency of tuple
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datastream =
{

data = {
values = 100;
size = 10;
ddist = "uniform";

};

flow = {
rate = 2000;
phase = 300;
sdist = "sawtooth";

};
};

kafka =
{

broker = "localhost:9092";
topic = "namb-topic";

};

global =
{

debug = 0.002;
};

Figure 4.13: Configuration of the external data generator

details logging.

4.7 Conclusion

In this chapter, we have presented NAMB, Not only A Micro-Benchmark, a generic
application prototype generator. NAMB features two high-level description
models for streaming topologies to produce a working streaming application
prototype for a target platform.

Based on the analysis of the main characteristics of DSP applications, we
have devised the Workflow schema and the Pipeline schema. They allow a
precise, high-level, definition of a streaming application. The first one can be
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used to quickly write prototypes for a set of canonical topologies. The second
one can accurately reproduce complex applications.

The prototype generator, NAMB, uses the two schemas to generate proto-
type applications. To remain platform- and application-independent, we simu-
late the tasks processing workload, through an equivalent busy wait function,
that replaces complex application-dependent code. A Data Generation compo-
nent, with support for synthetic and external data, is used to inject tuples to
the application. In addition, we give specific insights on the implementation
challenges addressed to translate the generic description to actual code.

Using NAMB, a user can investigate the impact of design choices on the
overall performance by simply modifying the configuration file instead of the
real application. In the next chapter, we empirically show how our application
generator exploits these high-level descriptions to automatically generate pro-
totype applications.

The current version of NAMB, along with the configuration files used in
this thesis, is available on GitHub1. It supports Storm, Flink and Heron. The
external C generator is as well publicly available2.

1https://github.com/ale93p/namb
2https://github.com/ale93p/namb-c-datagen

https://github.com/ale93p/namb
https://github.com/ale93p/namb-c-datagen
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In this chapter, we present different scenarios where we use NAMB to per-
form fast and easy testing of SPEs using prototype applications. We show-
case different scenarios for the two description schemas, Workflow schema and
Pipeline schema, using NAMB on multiple platforms, namely Apache Storm
and Apache Flink.
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In the previous chapter we motivated the need of a general solution to per-
form streaming platform and application testing. In this respect (Section 4.2) we
highlighted a list of limitations in the current state of the art. Furthermore, we
listed a set of characteristics that a general solution should have.

We identified the need for a generic and flexible solution. Hence, we de-
signed and implemented NAMB and the application high-level description to
be: (i) able to correctly define the prototype application; (ii) able to test different
features that could be adapted to every context and scenario; (iii) that can be quickly
and easily customized; (iv) able to run on multiple platforms.

We devise a set of tests aimed to demonstrate that NAMB, coupled with
the high-level schemas, covers all the features listed above. These tests are
presented in the following sections: in Section 5.2, we show how by quickly
changing the high-level description, one can easily explore different applica-
tion design choices; in Section 5.3 we show that apart from micro-benchmarks,
NAMB can as well replicate real applications performances; in Section 5.4 we
exploit the Pipeline schema to analyze possible application optimizations; in
Section 5.5 we use NAMB to evaluate the impact of platform internal mecha-
nisms; finally, in Section 5.6 we describe the characteristics of the internal and
external generators (Section 4.6.4), making a comparison between the two.

5.1 Experimental Setup & Methodology

All the experiments were done on a 4-node Linux cluster on the Grid’5000
testbed1. Each node has two 4-core Intel Xeon CPUs and 32GB of memory. The
cluster is interconnected by a 1Gbps network. Out of the 4 nodes, one is used
as a master node (Nimbus for Storm and Job Manager for Flink), and the other
three as worker nodes (resp. Supervisors and Task Managers). Other tools, as
Zookeper or Redis, are co-placed in the master node.

We use throughput and latency as the two evaluation metrics. The through-
put is measured as the total number of tuples produced by the sources task per
millisecond. The latency is the processing latency [ABC+15], the average time
spent by tuples between the source and a sink. We exploit the debug option of
NAMB (Section 4.5.5) to sample the processed tuples. We set it to sample 1 tuple
each 2000. Such a value allows to retrieve enough samples to compute a statis-
tical analysis, without affecting application performance with I/O operations.
Hence, throughput and latency are computed over those samples.

For the presented experiments, we have used Storm and Flink. We use one
or the other platform based on the test, to prove the capability of NAMB to run

1https://www.grid5000.fr/w/Grid5000:Home

https://www.grid5000.fr/w/Grid5000:Home
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on different platforms. We highlight the fact that any supported platform can
be used to reproduce the tests presented in the following.

5.2 Application Design

To demonstrate the benefits of the Workflow schema, we show how starting
from a common linear topology, we can quickly evaluate the impact of small
changes in the design choices. We evaluate it on Flink with 4 different micro-
benchmarks, using the base configuration file shown in Fig. 5.1. For each ex-
periment, we focus on a single parameter change (highlighted in gray in the
figure). The considered topology is made of a single source and 3 other tasks
organized in a linear layout with a balanced parallelism distribution. The topol-

datastream:
synthetic:

data:
size: 10
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 0

workflow:
depth: 4
scalability:

parallelism: 96
balancing: balanced

connection:
shape: linear
routing: none

workload:
processing: 10
balancing: balanced

Figure 5.1: Base configuration file for Workflow schema experiments. High-
lighted values are changed during tests
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Figure 5.2: Flink performance with different connection routing between source
and task. 4 tasks with 24 instances each.

ogy is fed with a uniform synthetic data stream of 100 unique values of 10 bytes
each, without rate limit.

5.2.1 Connection Routing

In this test, we analyze the impact on the performance of the different routing
systems of Flink. We fix the parallelism level to 96, the upper-bound imposed
by Flink in our hardware environment [FJS].

A parallelism of 96 creates 24 instances per task (including the source). The
connection routing, or grouping, specifies how the tuples are distributed be-
tween task instances. We test three different grouping schemes by changing the
routing type parameter. The direct connection (none value in the configuration)
directly connects the source to the task. As a consequence, Flink groups all the
tasks in the same chain, as explained in Section 2.3.3. The rebalance routing
(balanced in NAMB) equally distributes the tuples between all task instances.
And finally, grouping by key (hash), distributes the tuples based on the hash
value of the tuple. For these last two methods, Flink creates two different tasks
(Fig. 2.4b), therefore the tuples will need to travel the network to be routed to
the assigned task (i.e, the network layer is not bypassed with the sub-chain ap-
proach).

Fig. 5.2a shows that balancing and direct routing achieve the same through-
put, while the key-based (i.e. hashed) grouping offers significantly lower per-
formance. On contrast, in Fig. 5.2b we can see a significant impact on latency
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Figure 5.3: Flink performance when varying components parallelism using a
rebalanced connection. The different series represented are defined by the num-
ber of source instances.

when the tasks are directly connected and co-placed: the latency is significantly
lower than the other two methods, only 0.03 ms of average completion time
compared to the 701 ms and the 907 ms for balanced and hash respectively.

5.2.2 Parallelism Scale-up

Here, we evaluate the impact of the parallelism level on the entire application.
We have set routing to rebalance mode.

In this evaluation we try four different parallelism levels, starting from the
lowest possible value (4, i.e. 1 instance per task) until the highest one (96, i.e.
24 instances per task). In the configuration file, we just need to change the
parallelism value and re-deploy NAMB.

From the results in Fig. 5.3 we can see how, as expected, the throughput
increases when increasing the application parallelism (Fig. 5.3a). More sources
and more tasks to process data, increases the global emission rate. As we have
enough tasks to process the data generated by the sources, the final throughput
equals the sums of all the sources. Starting from a single source emission rate
of 36 tuples/ms, the throughput linearly increases with the number of source
instances: 218 tuples/ms with 6 sources, 646 tuples/ms with 18 sources, up to
791 tuples/ms with 24 sources. On the other hand, the latency increases as well
(Fig. 5.3b) due to the placement of the tasks on different nodes, following the
network distance principle [PHH+15].
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Figure 5.4: Flink performance with different workload distribution. 4 tasks of
24 instances each, connected via direct routing

5.2.3 Processing Load Balancing

In this experiment, we try to change the workload balancing, to see the impact
of a computing bottleneck on the application performance. In the NAMB con-
figuration, we just need to change the workload balancing property. We keep the
parallelism level to 96 and the routing to direct (none).

We investigate three different distributions: balanced, increasing, and decreas-
ing. As seen in Section 4.6.2, the three distributions will respectively: assign the
same load value at each task, assign the base value to the first task and then
increasing the load at each successive task and vice-versa.

As expected, increasing the computing load greatly lowers the throughput
compared to a balanced one (Fig. 5.4a). Also, if the load decreases, the appli-
cation can process more tuples. The completion latency (Fig. 5.4b) follows the
same trend. What is interesting in this experiment is that it shows that, in Flink,
having a high load on the first task will not necessarily create a bottleneck. In-
deed, since Flink’s built-in scheduler will co-place (as a single thread) all directly
connected tasks, the overall load is more important.

5.2.4 Data Size

Another important factor to take into account when developing an application
is the size of data. In most cases, the data will have to be transferred between
machines, impacting the overall performance of the application.
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Figure 5.5: Flink performances with different data sizes, 4 tasks of 24 instances
each connected through rebalance routing

This test explores three different data sizes, 2, 10, and 100 Bytes, represent-
ing a number, a string and a JSON message respectively. We will use a rebal-
ance routing strategy to ensure to have network communication but without
the overhead of the hash functions.

Fig. 5.5a shows that the data size has a modest influence on the throughput.
However, the impact on the latency is high. The larger the tuples, the lower
the latency (Fig. 5.5b). Flink uses internal buffers [Kru] which are flushed either
after some timeout expires or when they are full. Having large tuples triggers
the second condition faster, decreasing the average completion latency of the
tuples.

In this section, we have shown how NAMB can be used to quickly generate
a set of prototypes. By slightly modifying the configuration file, a user can
investigate the impact of multiple different features of a DSP. In our case, on
one side, we were able to confirm the impact on throughput of the parallelism
level and the load distribution of the tasks. On the other side we discovered
the significant impact of the key grouping connection and the impact on latency
of higher data sizes. This kind experiments, can ease the user design of their
application.
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5.3 Application Prototyping

5.3.1 The Yahoo! Streaming Benchmark

Using the per-task granularity of the Pipeline schema, we can reproduce exist-
ing applications and create prototypes with similar performance. For this eval-
uation, we use the Yahoo! Streaming Benchmark (see Fig. 4.2 and Section 4.1.1).
To validate our approach, we compare the results on two different platforms:
Storm and Flink. As in [Yav17], we have modified the Yahoo Streaming Bench-
mark to remove the Kafka producer and use a local ad-hoc data generator in-
stead, so as to maximize the application throughput. Besides, it makes the
benchmark generator more comparable to NAMB internal synthetic one.

For both platforms we have set a parallelism level of 1 for each task except
for the last one, for which it was set to 2.

Fig. 5.6 shows the relative difference between NAMB and the Yahoo Stream-

Throughput
(tuples/ms) Latency (ms)

Yahoo Bench 101.66 48.39
NAMB 106.58 50.13

(a) Apache Storm

Throughput
(tuples/ms) Latency (ms)

Yahoo Bench 128.83 15.03
NAMB 126.89 14.42

(b) Apache Flink

Table 5.1: Real application simulation: results on Storm and Flink
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Figure 5.6: Throughput and latency percentage difference ratio between NAMB
and Yahoo Bench results



5.3. APPLICATION PROTOTYPING 93

pipeline:
tasks:
- name: ads

parallelism: 1
data:

size: 180
values: 1000
distribution: uniform

flow:
distribution: uniform
rate: 0

- name: event_deserializer
parallelism: 1
routing: balanced
processing: 6.9
parents:
- ads

- name: event_filter
parallelism: 1
processing: 0.7
filtering: 0.333
parents:
- event_deserializer

- name: event_projection
parallelism: 1
processing: 2.2
resizeddata: 52
parents:
- event_filter

- name: redis_join
parallelism: 1
processing: 3.0
parents:
- event_projection

- name: campaign_processor
parallelism: 2
routing: hash
processing: 2.1
parents:
- redis_join

Figure 5.7: Pipeline schema configuration file used for Storm. Highlighted val-
ues differ in the Flink configuration.
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ing application for both platforms. We can see that NAMB is able to obtain al-
most the same performance as the original application (Table 5.1a). The Yahoo
Benchmark in Storm (Fig. 5.6a) reaches a throughput of 102 tuples/ms, whereas
NAMB achieves 107 tuples/ms, less than 5% difference. Meanwhile, the av-
erage latency is around 48 ms with the YahooBench and 50 ms with NAMB
(slightly more than a 3% difference). The difference with Flink (Table 5.1b) is
similar in terms of throughput with only a 1.5% difference, 129 tuples/ms for
the YahooBench vs 127 tuples/ms with NAMB). The difference in latency is 4%,
15 ms with the YahooBench and 14.5 ms with NAMB.

From these results, we can observe that Flink gives slightly better perfor-
mance. This is because of its task grouping policy, which reduces network com-
munications. Storm, on the other hand, uses 6 Java Virtual Machines. However,
this result could change with different configurations files. Hence these results
cannot be directly used to assert the performance of one platform over the other.

In Fig. 5.7 we see, as an example, the configuration used for Storm. For these
two experiments, we did not use strictly the same configuration file. Indeed, the
computational load of Storm and Flink is different for the same application (Sec-
tion 4.6.3). We adapted the processing loads in Flink to be 60% of the ones used
in Storm. This was, however, the only difference. The rest of the configuration
parameters being strictly identical.

5.3.2 Insights on Processing Load Tuning

The choice of a correct processing value for a given task is non trivial. We just
show how distinct platforms react differently to the same processing load. To
find the matching performance that replicates the Yahoo! Benchmark we had
to specify two different sets of processing values for Flink and Storm. In the
following we further investigate the causes of this necessity, trying to get better
insights on this application behavior.

First of all, we have to consider that those tests were run without a data
generation rate limit. In this manner the generation reaches the platform stress
point, enforcing backpressure at the source, limiting the application to its maxi-
mum achievable throughput. Hence, we are in an unstable condition. Moreover,
given the lack of a common semantic in data streaming (Section 2.1.2), the inter-
nal implementation of the backpressure mechanism is different between Flink
and Storm.

Thus, we analyze the behavior of the busy wait function with a limited rate,
which doesn’t cause backpressure. To test the two platforms reaction to back-
pressure, we gradually increase the processing load value, up to the point where
the task takes more time to process the tuple than the source to produce it. At
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this point, the incoming buffers start to fill and backpressure is enforced.
We run a simple source-task micro-benchmark. We limit the generation to

1000 tuples/s, so as not to immediately trigger backpressure with low process-
ing loads. We start from a processing load value of 0 (i.e. 0 busy wait cycles)
and we increase it up to 2000 (i.e. 2 millions busy wait cycles), largely above
the processing capacities. We perform the tests in Storm and Flink, both using
one single JVM, i.e. one worker for Storm and one task manager slot for Flink.
Since Storm creates a thread for each task, while Flink has operator chaining
(Section 2.3.3), we tested Flink with two different configurations: one using a
rebalance connection, that creates one thread per task, to make it comparable to
Storm (we will refer to it as Flink rebalance); the other using a direct connection,
that applies operation chaining creating a single thread for both tasks, to see
which is the difference (we will refer to it as Flink direct).

Processing Load Impact on Application Performance

As expected, looking at the throughput (Fig. 5.8a), Flink direct is the one behav-
ing differently. The advantage of the single thread is the nonexistent commu-
nication cost, shown by a stable low latency (Fig. 5.8b). However, the trade-off
is that the two tasks are not parallelised. Being co-located in the same thread,
the source and task operations are done sequentially. In other words, the source
operations to produce a new tuple won’t run until the task finish to process the
current tuple. Hence increasing the processing load of the task impacts as swell
the source capacity, reducing significantly the generation throughput. A quick
takeaway can be to never use a direct connection between the source and the
task to achieve the best performance.

Meanwhile, Storm and Flink rebalance have an almost identical throughput
evolution (Fig. 5.8a). In both cases it is constant until a processing load of 1300
and we see it that starts to decrease at 1400. This indicates that there is no dif-
ference between the two platforms in terms of task processing, meaning no spe-
cific optimization is applied by either platform. This is confirmed as well by the
identical (average tuple) processing time measured for all three configurations
(Fig. 5.8c). Instead, we see a significant difference in latency (Fig. 5.8b). Even
though for both platforms, latency follows the same trend, we can see that after
the processing value of 1250, the latency in Storm spikes significantly higher
than Flink rebalance.

Fig. 5.8c shows that same processing load values have the same computation
time in both platforms. Yet, in the previous section we had to configure two dif-
ferent values for Storm and Flink to achieve the same application performance.
From our analysis, it appears that only latency is impacted differently in the two
platforms. As we stated at the beginning of the section, the previous tests were
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Figure 5.8: Application performance metrics in relation for busy wait cycles

run under a backpressure condition. Hence, in the following, we further study
the role of backpressure in relation to the processing load.

Backpressure Characterization Through Streaming Time Series

To investigate this parameter, we look at the specific time series of the test runs.
We notice that both platforms follows the same pattern: we present Storm as an
example in Fig. 5.9. In the presented figures we show the latency, as throughput
behaves speculatively. Initially, with low processing load values, we find a sta-
ble condition (Fig. 5.9a), where the application runs in its normal state. Then, in-
creasing the load, throughput and latency are highly variable (Fig. 5.9b), as the
application continuously alternates normal and backpressure state. The mem-
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(a) Normal State (500’000 BW Cycles) (b) Alternating State (1’225’000 BW Cycles)

(c) Persistent Backpressure State (2’000’000
BW Cycles)

Figure 5.9: Latency Storm Runs Time Series of Latency

ory buffers continuously fill, generating high latency spikes and consequently
significant throughput reductions. Finally, when the load is excessively high,
the application enters in a persistent backpressure state. We find a single ini-
tial backpressure event (Fig. 5.9c) that limits the application rate at its maximum
achievable throughput. The latter is the same condition under which the tests
where run in the previous section.

Hence, we made a preliminary study to better understand how to charac-
terize the backpressure behavior through the time series, as it impacts a correct
definition of a task processing load value in NAMB. A first discrete metric is
the number of backpressure occurrences. The three conditions described above
can be seen if we look at the number of backpressure events for each processing
load (Fig. 5.10a). For this preliminary study we manually verified their pres-
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Figure 5.10: Backpressure and metrics standard deviation for busy wait cycles

ence in the time series – however, we remark that it would be optimal to have
the platform to log every time the application enters a backpressure state. In the
plot (Fig. 5.10a) we can see how increasing the processing load value increases
the number of backpressure occurrences. Then, they start to decrease down to
a single occurrence. This is given by the fact that every backpressure event is
also characterized by its duration.

Thus, at heavier processing loads the application will present less backpres-
sure occurrences but of a longer duration, significantly impacting the computa-
tion of average throughput and latency. We deduce that the average values
for the two metrics are not accurate enough to find correct processing load
values for real applications. A first attempt to find a better evaluation metric,
that would better characterize the time series in relation to the backpressure
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events, is to consider the standard deviation (STD) of the two evaluated metrics
(i.e. throughput and latency). As we can see, the STD values for throughput
(Fig. 5.10b) and latency (Fig. 5.10c) follow similar patterns to the one of the
backpressure occurrences (Fig. 5.10a). Moreover, standard deviation can also
give us a rough idea of the backpressure heaviness, e.g. longer backpressure
events, higher standard deviation.

In summary, we showed that average throughput and latency are not enough
to tune the processing load value. We demonstrated that Storm and Flink man-
age backpressure differently at high processing loads. This results in different
application performance for the same load value. Hence, the necessity of differ-
ent configurations for the two platforms. To this end, we used two new metrics
to better characterize the time series resulting from the streaming application
run: backpressure occurrences and standard deviation of throughput and la-
tency. Through these analysis we showed that when it comes to the choice of the
processing value, we do not need to just consider the application overall perfor-
mance. This study underscores the need to consider the impact of backpressure.
However, other features implementation differences, in other platforms and in
different conditions, may require the same attention.

5.4 Bottleneck Discovery

Once found the correct configuration for the Yahoo! Benchmark (like in Sec-
tion 5.3.1), we can exploit NAMB’s flexibility to investigate the behavior of an
application under various conditions. We consider a scenario where developers
are interested in finding potential bottlenecks in their application. Without loss
of generality, we chose Flink as SPE.

We used the base configuration shown in Fig. 5.7 (experiment base). We
used two others configurations as possible optimizations: one where we halved
the processing load of the event deserializer (experiment A); and another where
we made the same optimization to the campaign processor (experiment B). The
goal is to evaluate the impact of some potential code optimization on these two
components.

The results of the evaluation in Fig. 5.11a shows that, in terms of through-
put, the event deserializer is one of the possible bottlenecks in the application.
Meanwhile, reducing the load of the campaign processor does not have an im-
pact on throughput. On the other hand, considering latency (Fig. 5.11b), we see
that in both cases we have an improvement of the tuples processing time. Yet,
halving the event deserializer produces a more substantial improvement.

In this section, we showcased NAMB capability to perform quick analysis
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Figure 5.11: Bottleneck discovery experiment in the three different configura-
tions

on the application design, that would help to better understand the impact of
the application design over the performance. In this case, we take the study of
the bottleneck as an example, however, NAMB can be used at the same manner
to study different application design choices.

5.5 Platform Features Testing

We use here the Workflow schema to quickly test specific platform mechanisms.
In this experiment, we analyze the back-pressure mechanism of Storm, enabled
by the acking framework. We have studied the impact of the framework in
the first part of this thesis (Chapter 3). Back-pressure ensures a limit to the
application throughput, to avoid overloading the system in case of a too high
rate of incoming tuples. The acking framework is also used to ensure message
reliability. Its activation in Storm requires adding specific code in every task. In
NAMB, this can be done by simply setting the reliability parameter to true in
the workload section.

Moreover, as we mentioned before (Section 4.5.4), the synthetic generator can-
not be set to go below 1ms of interval between tuples. However, we need to
stress the system to trigger the back-pressure mechanism. We use multiple
Kafka producers and a Kafka server to generate an high rate of tuples. The
latter (Fig. 5.12) is co-located with the master server.

The generated prototype is a source with two tasks in a linear topology, with
a processing of 0 for each task, so as to let the application have the minimum
processing time, thus reaching the maximum throughput. We set Storm to use
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datastream:
external:

kafka:
server: <master_server>:9092
group: test
topic: test

zookeeper:
server: <master_server>:2181

workflow:
depth: 3
scalability:

parallelism: 3
balancing: balanced

connection:
shape: linear
routing: balanced

workload:
processing: 0
reliability: true

Figure 5.12: Configuration file for the back-pressure experiment.

3 workers, one for each application component.
The external Kafka producer is set to have two production phases. Most of

the time it is in a steady phase, with a fixed data generation rate. However, at
regular intervals, the rate is increased during a so-called burst phase. We tested
Storm once with the reliability mechanism enabled and once with it disabled.

As we can see in Fig. 5.13, when the reliability mechanism is enabled, the
back-pressure regulates the maximum throughput of the application. In Fig.
5.13a, the back-pressure limits the throughput to 80 tuples/ms during burst
phases, which is lower than the Kafka production rate (over 100 tuples/ms).
After completing the processing of all the Kafka tuples, Storm throughput goes
back to the steady phase. On the contrary, we can see in Fig. 5.13b, how, with-
out the reliability mechanism enabled, the application almost immediately fails.
Even during the steady phase, it cannot process incoming tuples fast enough.
The Java VM reaches the Garbage Collector threshold right after the application
starts to receive the first tuples, leading to out-of-memory errors.
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Figure 5.13: Back-Pressure test in Storm, with enabled and disabled reliability
mechanism.

Using NAMB, this kind of experiment can be quickly performed without
having to modify platform-specific code, but by just changing one parameter in
the high-level description.

5.6 Data Generator

To show the behavior of the extended data generator we perform different ex-
periments with different stream distributions. We show the behavior and limi-
tations of the internal data generator compared to the connection to the external
Kafka producer.

5.6.1 Internal Generator

The previous experiments (Sections 5.2 to 5.4) were performed using the inter-
nal data generator with a CBR distribution and an unlimited rate (Fig. 5.1). Us-
ing the same configurations, we show the behavior of the data generator by
setting a predefined rate and over different arrival process. In this set of experi-
ment we only changed the flow description as in Fig. 5.14.

We show the results of the internal generator for three different distributions
(Fig. 5.15): CBR, sinusoidal and reverse sawtooth (so as to simulate an extraor-
dinary event followed by a slowdown). For the last two distributions, we set
the phase duration to 300 seconds. We set the generation rate to 1000 t/s, which
is the maximum achievable by the Java generator. As previously mentioned
(Section 4.5.4), Java’s sleep precision cannot go under the millisecond.
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flow:
distribution: sinusoidal
rate: 1000
phase: 300

Figure 5.14: Flow description. Highlighted distribution type changed in the
experimentation.
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Figure 5.15: Internal data generator throughput with different stream distribu-
tions
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In Fig. 5.15a we immediately see the low precision of the internal generator.
The noise is due to several factors, such as the sleep precision itself and other
processing done in the task.

The sinusoidal (Fig. 5.15b) and the reverse sawtooth (Fig. 5.15c) show an-
other limitation of the Java’s sleep function. In our environment a nanosecond
precision is not achievable. As a consequence, both distributions result as a se-
quence of steps rather than a continuous rate change. In particular, we see a
different behavior between higher and lower throughput phases. This is visible
mainly at two levels. First, at higher throughput we have more tuples to sample,
i.e. more points on the plot and vice-versa for lower throughput where in fact
we observe less accuracy. Second, the processing overhead of the task doesn’t
allow the throughput to reach the configured value of 1000 tuples/s. We can
see a better curve at low throughput by it stays limited for a longer time during
the high throughput phase.

Despite these limitations, the internal generator is able to reproduce the de-
fined waves, which is enough for some micro-benchmarks.

5.6.2 External Kafka Producer

The external generator (Sections 4.5.4 and 4.6.4) aims to overcome the previous
limitations. For sake of comparison, we show the same distributions as above
(Fig. 5.16). However, in this case we set the rate to 2000 tuples/s, to show the
capability of the external generator to reach higher throughput than the internal
one.

Firstly, we see in Fig. 5.16a that the CBR scenario features a negligible noise,
as compared to Fig. 5.15a. Moreover, Figs. 5.16b and 5.16c are more accurate and
don’t show step changes in the throughput, thanks to the microsecond accuracy
achieved with the sleep function implemented in C.

The better precision of the external generator shows that one may need
develop a custom generator, to simulate more realistic data flows using real
datasets.

5.7 Conclusion

In this chapter, we evaluated through numerous experiments our streaming ap-
plication prototype generator, NAMB. We have shown how NAMB can be used
to quickly define and run prototyped applications over multiple platforms, with
the advantage of modifying a single configuration file, instead of the platform
specific API code.
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Figure 5.16: External data generator (Kafka producer) throughput with different
stream distributions

We used Flink to show the impact of small design choices, such as data rout-
ing and size. With the same platform we showed how can be discovered pos-
sible application optimizations, i.e. how to detect bottleneck. Using Storm, we
showed how one can quickly study the behavior of internal platform mecha-
nisms, along with tasks performance optimization evaluation. We used both
systems to show how NAMB could replicate more complex and realistic ap-
plications, taking as example the Yahoo Streaming Benchmark, and achieving
the same performance as the original one. We addressed the problem of the
choice of processing value through a preliminary study of the matter. We fi-
nally showed the characteristics and limitations of the internal data generator
component trough a comparison between the internal and the external ones.

With these various examples and test cases, we demonstrated that NAMB
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offers a generic and flexible solution to the benchmarking problem pointed in
the previous chapter.
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The core of research work carried out in this thesis revolves around Big Data
Analytics, and in particular Data Stream Processing. We study the limits of
current DSP platforms, from an application design and platform features point-
of-view.

We first investigate the impact of message reliability mechanisms in stream-
ing applications in Chapter 3. We uncover a link between tasks scheduling al-
gorithms and reliability mechanisms. Especially when non-functional tasks are
used to enforce this kind of mechanisms, we show how a wrong placement of
those tasks impacts application performance. To work around this issue, we
present two scheduling algorithms that optimize the placement of the applica-
tion, improving its performance.

Then, we tackle the shortcomings of current streaming application testing.
Hence, we present NAMB, Not only A Micro-Benchmark (Chapter 4), a tool for
application prototype generation. We use two high-level description models
used to define streaming application. We describe the architecture of our tool,
also analyze its implementation challenges. Finally, in Chapter 5 we use NAMB
in different use-cases to demonstrate its generic and flexible nature.

107
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6.1 Non-Functional Tasks Scheduling

Through an in-depth analysis of the Storm’s acking framework, we demonstrate
how a poor placement of the application tasks, ackers in particular, can degrade
throughput and latency.

We firstly give a detailed explanation of the Storm acking framework, show-
ing the internal implementation, and how it materializes in a set of application
tasks that need to be placed and consume resources as every other task. We
exhibit the significant amount of traffic generated by ack messages. We illus-
trate how an higher latency and lower throughput can result as a consequence
of these two aspects.

We present an upgraded version of the Resource-Aware Scheduler (RAS),
that we name Acking-Aware Scheduler. We propose two new strategies based
on the default one implemented in RAS. The two strategies, OPW (One-per-
Worker) and IQ (Isolated Queue), take actively in account the acking tasks and
their impact, and place them consequently. In OPW, we alleviate the processing
load by distributing these non-functional tasks over the workers. In IQ, we
unload the buffering queues by placing the acking tasks in an isolated worker,
avoiding memory competition between operational and non-functional tasks.

Through an extended evaluation phase, we show how our two proposed
scheduling algorithms can improve the application performances. We compare
our solution to the two internal schedulers in Storm: the Even and the RAS
scheduler. In a single cluster environment our placement strategies improve
both default schedulers, and in the worst case they perform as the Even Sched-
uler. In a larger multi-cluster environment, our solutions improve significantly
over both the Even Scheduler and the Resource-Aware Scheduler, in terms of
throughput and latency.

Future Directions In conclusion, we expose how a mismanagement of non-
functional tasks, can substantially impact the final performances of the deployed
application. In Streaming Platforms, where performances constitutes a high-
priority requirement, this aspect should not be underestimated when designing
and implementing the application.

Different reliability systems already exist and are implemented by existing
streaming platforms. Thus, it has to be taken into consideration that alternative
message reliability systems may be more performing than one implemented
through non-functional tasks. Also, the design of novel ways to optimize the
platform internals to make the framework lighter and the job schedulers aware
of those mechanisms, could constitute a promising future work direction.
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6.2 Streaming Application Prototyping

In the second part of the thesis, we study application and streaming platform
testing. Among all the test applications available in literature, we uncover a lack
of a generic and easy-to-use solution to quickly test diverse types of applications
over different platforms. To this end, we present NAMB, a solution that is easily
usable (independently from the knowledge a user may have) and that allows a
quick definition of various application designs.

Following an initial taxonomy of the currently available benchmarking ap-
plications, we extrapolate the main features that significantly impact a stream-
ing application performances. Based on these fundamental characteristics, we
define an high-level and generic model to describe a streaming application. We
introduce two different description models, that from a totally generic point-
of-view describe the fundamental characteristics of the application we want to
deploy on our platform. We propose a generic model, the Workflow schema,
and a per-task defined model, the Pipeline schema. The models take shape as
YAML configuration schemas, enabling the user to write a streaming application
without knowledge of the specific platform APIs.

NAMB, Not only A Micro-Benchmark, is an application prototype generator.
We design and implement the tool to generate a streaming application based on
the high-level description provided by the user. We initially implement it with
support for Storm, Flink, Heron and with an ongoing implementation of Spark
Streaming. We design the tool to be modular and allow an easy support of
new streaming platforms. We describe the challenges to convert the high-level
description into actual platform code. It has to adapt also to the architectural
differences of the specific streaming platform. We exemplify the problem by
comparing Storm and Flink task management. We simulate the task processing
load, to keep NAMB general and context-unaware, without the need of imple-
menting actual queries. We demonstrate how a busy wait function can correctly
simulate the load, facilitating the user description of the application.

Overall, we demonstrate the potential of the two description models. We
show how the Workflow schema can easily and quickly allow for application
customization, enabling an efficient manner to test application design choices
that may impact the performances. We show that the Pipeline schema can be
used to prototype real applications, achieving close performance results to the
ones of the replicated application. Using this use case we focus on the chal-
lenges of the processing value decision. Analyzing the behavior of the applica-
tion in relation to the load, we define more specific metrics for a correct load
value choice. Given the capabilities of the two models, we show practical use
cases where we can exploit NAMB. We use the quick tuning feature to dis-
cover where may reside the bottleneck operator, understanding which param-
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eter should be optimized (if possible) to improve the application performance.
We study and analyze the behavior of an internal platform mechanism, as the
Storm reliability framework, to understand if fits with our requirements and
what is its impact on performance. Finally, we show the capabilities of the inter-
nal synthetic data generator, illustrating its limitations, and demonstrating how
an external data generator could deal with them.

NAMB, together with the high-level schema, allows to tackle all the missing
features of current streaming benchmarking applications. It is context-unaware,
so it can be used to create prototypes for every environment. It is flexible, al-
lowing a wide range of customizations to describe the application we want to
deploy. It is accessible, as it doesn’t require to write application code. It is not
restricted to a single platform, allowing an easy support for more technologies.
Last but not least, it is available as an open source software.

Future Directions NAMB is already available and ready to use. Nevertheless,
it can take advantage of further improvements. First of all, one can add the
support of more streaming platforms, as Spark Streaming and Kafka Stream-
ing. From a design and implementation point of view, we have margins of
improvement both on the high-level description and the implementation of the
tool itself.

The high-level description can be extended with more features of modern
and upcoming streaming applications, as well as extending the definition of the
currently supported ones. We already extended the initial NAMB data stream
description, from a more basic definition to the one presented in our published
works, with specific fields to customize the stream. The same work can be done
for other fields, like the characteristics of the dataset (e.g. probabilities of occur-
rence, data format) or the details of internal mechanisms (e.g. windowing or
reliability).

In parallel, the translation of the models in actual application can be im-
proved. It should be possible to find better generalizations, or adapt them to
modern trends, e.g. where to place the windowing task (one selected task or
over all the application), how to shape the application, how to distribute the
parallelism.

A major subject of interest is the study of an optimal methodology for the
processing value choice. An in-depth study of the way to translate the load
value from one platform to another, depending on the type of operation per-
formed by the application, is an interesting future work. It will help to perform
efficient and direct comparison of performance between platforms.
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6.3 List of Available Software

Here we list, and we link to, the software produced during this thesis work,
made available as Open Source:

• NAMB - Not only A Micro-Benchmark.
https://github.com/ale93p/namb

• NAMB C DataGen - C Data Generator For NAMB.
https://github.com/ale93p/namb-c-datagen

6.4 List of Publications

The contributions illustrated in this thesis have been material of the following
publications:

International Conferences

• A. Pagliari, F. Huet, and G. Urvoy-Keller. "On the Cost of Acking in Data
Stream Processing Systems" 2019 19th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID), 2019.

• A. Pagliari, F. Huet, and G. Urvoy-Keller. "NAMB: A Quick and Flexible
Stream Processing Application Prototype Generator", 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), 2020

International Workshops

• A. Pagliari, F. Huet, and G. Urvoy-Keller. "Towards a High-Level Descrip-
tion for Generating Stream Processing Benchmark Applications", 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 2019

National Conferences

• A. Pagliari, F. Huet, and G. Urvoy-Keller. "Cost of Acknowledgment in
Data Streams", Conférence d’informatique en Parallélisme, Architecture
et Système (COMPAS), 2019

https://github.com/ale93p/namb
https://github.com/ale93p/namb-c-datagen
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