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Figure 1: Reinforcement Learning: learning by trial and error, by interacting with the environment
that sends reward signal - positive or negative.
CALVIN AND HOBBES ©Watterson. Reprinted with permission of ANDREWS MCMEEL
SYNDICATION. All rights reserved.
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Résumé

Les travaux développés pendant cette thèse s’intéressent à l’utilisation de l’apprentissage par
renforcement pour la perception et le contrôle d’un véhicule autonome en environnement urbain.
Nous assistons en effet ces dernières années à l’essor du véhicule autonome, largement entraîné
par le développement et l’utilisation grandissante de l’apprentissage automatique - ou machine
learning. Cependant, il reste encore beaucoup de progrès à faire avant une utilisation généralisée
par le grand public. Pour atteindre le niveau d’automatisation actuel, les véhicules autonomes
doivent être équipés de nombreux capteurs coûteux : caméras, radars, Lidar, capteur à ultrasons,
etc... En plus d’être coûteux, ces capteurs sont sensibles aux changements tels que la météo, alors
que les humains sont capables de conduire avec une simple vision frontale dans des conditions très
diverses. Avec l’essor des réseaux de neurones et en particulier des réseaux de neurones convolutifs,
de nombreux problèmes de vision par ordinateur, tels que la classification ou la détection d’objets,
ont atteint des performances très élevées. Dans le domaine de la conduite, l’un des défis de la
vision par ordinateur est de construire des systèmes intelligents capables d’analyser les images
aussi efficacement que les humains. Ces systèmes doivent être capables de gérer les changements
d’apparence (luminosité variable, nuit, brouillard, pluie...), ainsi que les occlusions partielles.

Dans cette thèse, pour être proche de la conduite humaine, nous nous limitons à une seule
caméra embarquée comme capteur d’entrée, et étudions les performances qui peuvent être atteintes
dans ce scénario.

Nous nous intéressons en particulier à la conduite de bout-en-bout, c’est à dire sans étapes
de traitement intermédiaires entre la perception et le contrôle. L’action choisie par l’agent
autonome sera directement calculée à partir des données d’entrée issues des capteurs. Cette
approche bout-en-bout s’oppose à une architecture modulaire, où la navigation est découpée en
sous-modules indépendants (perception, planification et contrôle). Privilégiée par l’industrie, la
modularité présente l’avantage d’être facilement interprétable et permet aux différents modules
d’être développés en parallèle par des équipes indépendantes. Cependant, l’indépendance de ces
modules peut aussi être un facteur limitant. Les modules sont entraînés de manière indépendante,
sans être directement lié à ’objectif final - la conduite. Il peut en résulter un système global
sous-optimal - les modules sont optimaux pour une tâche spécifique, et dépendent les uns des
autres. C’est pourquoi nous avons pris le parti de travailler de bout-en-bout car cette approche,
plus complexe à mettre en oeuvre, permet potentiellement d’atteindre des performances qui ne
sont pas limitées par les objectifs intermédiaires non directement reliés à la conduite.

Pour entraîner un tel modèle de conduite bout-en-bout, on peut distinguer deux paradigmes
d’apprentissages. Le premier, l’apprentissage supervisé, utilise de nombreuses données labellisées,
des démonstrations d’experts que l’agent apprend à reproduire. Le second, l’apprentissage par
renforcement, fonctionne par essai-erreur grâce à un système de récompense. L’agent interagit
avec l’environnement et reçoit des récompenses, positives ou négatives, en fonction des décisions
prises, et a pour objectif de maximiser la quantité totale des récompenses reçues. En plus de ne pas
nécessiter de données extérieures, dans de nombreux exemples, l’apprentissage par renforcement
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a permis de dépasser les performances réalisées avec de l’apprentissage supervisé, ce qui le rend
attractif.

Cependant, l’apprentissage par renforcement présente certains inconvénients. Les entraîne-
ments ont d’une part besoin d’une très grande quantité de données pour converger, et sont
d’autre part longs et parfois instables, notamment car le niveau d’information contenu dans une
récompense est inférieur à celui contenu dans la vérité terrain de l’apprentissage supervisé.

Dans ces travaux, nous proposons plusieurs contributions pour tenter de lever ces verrous.
Dans un premier temps, nous proposons une étude sur l’impact des différents paramètres pouvant
influencer la convergence et les performances d’un agent de conduite autonome.
Dans une seconde partie, nous étudions la manière d’adapter notre agent autonome pour gérer
la conduite conditionnelle, c’est-à-dire pour suivre des instructions GPS haut niveau. Nous
proposons également un nouveau benchmark permettant d’évaluer la robustesse d’un agent
autonome dans le cas où la commande haut niveau est incorrecte.

Enfin dans une troisième partie, nous étudions le problème de la généralisation, crucial pour
les véhicules autonomes. Lors de ces travaux, nous nous sommes en particulier intéressé à l’ajout
d’information sémantique pendant l’apprentissage de la navigation. En effet la segmentation
sémantique contient la quasi totalité des informations nécessaires à la navigation. Nous avons
donc exploré et comparé différentes méthodes permettant d’exploiter cette information tout en
maintenant le caractère bout-en-bout de nos entraînements.

Les expériences sont menées en simulation, et des résultats quantitatifs et qualitatifs sont
présentés tout au long de ce manuscrit. Ces expérimentations nous permettent de présenter un
framework de conduite autonome de bout en bout avec de l’apprentissage par renforcement.
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Chapter 1

Introduction

1.1 Context

Since seminal work in the 1980s in several laboratories around the world, autonomous driving
has been steadily improving and is now close to general practical use. Recent breakthroughs,
supported by major companies such as Waymo or Tesla, now enable people to be driven by
their own vehicles for hundreds of kilometers within given conditions. Autonomous vehicles are
very promising for safer traffic, as more than 90% of accidents are related to human error. An
intelligent system is indeed never tired or distracted, and has a better reaction time than humans.
By drastically limiting accidents, autonomous vehicles will also help reduce traffic jams. This
should improve air quality by limiting pollution, and at the same time allow users to spend less
time on the road.

Nevertheless, vehicles are not yet fully autonomous. The goal of autonomous driving is full
automation, and before reaching this stage, a number of intermediate steps as defined by the
NHTSA (National Highway Traffic Safety Administration) must be achieved (see Figure 1.1).

Figure 1.1: Levels of automation for autonomous vehicles defined by the NHTSA

If levels 0 to 2 are more or less advanced driving assistance, driving delegation appears at
level 3, where the driver must be able to regain control at any time. Levels 4 and 5 correspond to

1
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autonomous driving, under certain conditions for level 4, in any conditions for level 5. Not yet
reached, and also facing legal and ethical problems - such as liability in case of an accident of an
autonomous vehicle - the horizon of level 5 is getting closer.

1.1.1 Vision and machine learning

However, there is still a lot of progress to be made before widespread use by the general public.
To achieve the current level of automation, these autonomous vehicles must be equipped with
many expensive sensors: cameras, radars, Lidar, ultrasonic sensor, etc ... In addition to being
extremely expensive, these sensors have limitations - like the change of weather - while humans
are able to drive with a simple frontal vision. Human driving shows that it is possible to drive
based on vision alone.

With the rise of neural networks and in particular convolutional neural networks, many
computer vision problems, such as classification or object detection, have reached very high
performances. In the driving domain, one of the challenges in computer vision is to build intelligent
systems that can analyze images as efficiently as humans. These systems must be able to manage
changes in appearance (varying brightness, night, fog, rain ...), as well as partial occlusions.
The development of deep learning, using large databases and increasingly powerful machines, is
constantly improving the performance of detection and perception tools.

1.1.2 Modular vs end-to-end approaches

The autonomous vehicles currently in circulation are based on such intelligent cameras and sensors,
and composed of many independent modules. The first one is the perception module, which
detects the essential elements of the environment - other road users, pedestrians, road lines, etc.
This is followed by various blocks: world modeling, trajectory planning, and finally a controller
that produces the output elements: acceleration/braking and steering wheel angle. This modular
approach has the advantage of being easily interpretable - the modules are designed by humans -
and offers the possibility that modules can be developed in parallel by independent teams.

Figure 1.2: Modular vs end-to-end autonomous driving [Talpaert 2019]

However, the independence of these modules can also be a limiting factor. The modules are
trained separately, with no vision of the final objective - driving. This can result in a sub-optimal
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overall system - the modules are optimal for a specific task, and depend on one another. This
modular approach is opposed to the end-to-end approach (see Figure 1.2). It consists of a direct
optimization from the input sensors to the control commands. Less interpretable, it reduces the
number of intermediaries - and thus potential errors. Although considered superior in theory by
the scientific community, the industrial world remains wary of end-to-end, particularly because of
the difficulty of interpreting the behavior and validating the proposed models.

1.1.3 Supervised vs reinforcement learning

Such an end-to-end driving model is learned either through expert demonstrations (supervised
learning) or by exploring and improving itself through a reward system (reinforcement learning).
In the case of supervised learning, the agent learns to reproduce the expert behavior from many
labeled data. In reinforcement learning, the agent interacts with the environment and receives
rewards, positive or negative, depending on the decisions it makes. It has no examples and its
goal is to maximize the total amount of rewards it gets.

Supervised Learning Reinforcement Learning

‚ Training with annotated data ‚ Training with reward funtion

‚ Requires a large number of annotated data ‚ No need for expert demos

‚ Offline training ‚ Interaction with the environment

‚ Simple and stable ‚ Not always convergent

‚ Only as good as the demo ‚ Can become arbitrarly good

Table 1.1: Supervised vs Reinforcement Learning

Brought to light in 2016 with Alpha Go’s victory over Lee Sedol in the game of Go [Silver
2016], reinforcement learning is booming in the scientific community. Developed by Deep Mind,
Alpha Go is composed of neural networks trained with both supervised and reinforcement learning.
While the best chess players have long been beaten by computers, the game of Go was previously
considered one of the biggest challenges for artificial intelligence. Indeed, in the game of Go, the
number of possible configurations exceeds the number of atoms in the universe - 1080, which
prevents any exhaustive search algorithm. There are about 10170 possible configurations in Go,
for a total of about 10600 possible games, against 1040 legal configurations and 10120 possible
games for chess.

The power of reinforcement learning was established for good a few months later with Alpha
Go Zero [Silver 2017]. While Alpha Go uses a combination of supervised learning from expert
moves followed by reinforcement learning with self-play, Alpha Go Zero is trained from scratch
with reinforcement learning in self-play only. After the first 72 hours of a 40 day training, Alpha
Go Zero beats the Alpha Go version used for the game against Lee Sedol, which had been trained
for several months.

In the case of a sequential decision problem such as a game, reinforcement learning can in
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principle exceed the performance of supervised learning. Supervised learning is limited by the
performance of the experts who provide the training data, whereas reinforcement learning can
become arbitrarily good, as shown in the Alpha Go Zero example.

However, reinforcement learning has shortcomings, such as the long training time required -
the level of information contained in a reward is lower than that contained in the ground truth of
supervised learning. Reinforcement learning also needs a very large amount of data to converge, is
sample-inefficient and sometimes unstable (see Table 1.1 for comparison with supervised learning).

1.2 Problematic

We propose in this thesis to study the application of end-to-end reinforcement learning to urban
navigation for autonomous vehicle. The objective is to scale up reinforcement learning for au-
tonomous driving, based only on visual input. To be close to human driving, we limit ourselves
to one onboard camera as input sensor to study the performances that can be reached in such
scenario. To drive in urban environment, we will also study the management of intersection with
high level commands. The problems addressed are therefore the following.

Learning end-to-end driving without intermediate representations. Our objective is to
perform end-to-end driving, by directly mapping visual input to driving control. Such an approach
has the advantage of limiting the integration of human bias in the system and potentially leading
to higher performances.

Training a complex task by reinforcement learning. Although very powerful in the-
ory, reinforcement learning suffers from several drawbacks. Because of the low information given
at each iteration, the training times are usually very long, and trainings can be unstable.

High level command handling for urban driving. In addition to driving safely, an au-
tonomous agent must be able to follow a required path. It must therefore be able to handle an
intersection, and be robust in the sense that it must give priority to the visual information it
receives in the event that the high-level command is erroneous.

Generalization to an unseen environment. Finally, an autonomous vehicle must be able to
drive in a place it has never seen, in weather conditions different from those seen during training.

1.3 Contributions

This thesis is the result of a collaboration between CEA List and ENSTA Paris. The general con-
tribution of this work is to propose a reinforcement learning approach for end-to-end autonomous
driving, especially in urban environment. In particular, we focused on the effect of adding semantic
information on the performance and generalization capabilities of our autonomous agents. This
work is the subject of the following publication:
[Carton 2021b]: Florence Carton, David Filliat, Jaonary Rabarisoa, and Quoc Cuong Pham
“Using Semantic Information to Improve Generalization of Reinforcement Learning Policies for
Autonomous Driving”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, 2021.

We also focused on the robustness of the different autonomous agents in case of unexpected
event, i.e. an impossible command, and propose a method to evaluate this robustness. This work
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is the subject of a second publication :
[Carton 2021a]: Florence Carton, David Filliat, Jaonary Rabarisoa, and Quoc Cuong Pham
“Evaluating Robustness over High Level Driving Instruction for Autonomous Driving”. In:
accepted to Intelligent Vehicles Symposium (IV21), 2021.

1.4 Outline

The manuscript is structured as follows.

• Chapter 2 introduces the principles of supervised and reinforcement learning that are used
in this thesis.

• Chapter 3 proposes a global overview of state of the art approaches related to autonomous
driving and image-based navigation.

• Chapter 4 presents a first step to build a driving agent based on reinforcement learning
only. The implemented methods, as well as all the necessary setup are introduced.

• Chapter 5 focuses on urban driving. In this chapter, the driving agent is adapted to handle
conditional driving, i.e. to follow a high level gps instruction. We also propose a study
on the robustness of autonomous agents, in particular in the case where the high level
instruction is not correctly given.

• Chapter 6 studies the generalization problem, crucial for autonomous vehicles. The influence
of the addition of semantic information is explored in order to improve training and
generalization.

• Chapter 7 concludes these researches and discusses possible perspectives.
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Chapter 2

Supervised Learning and Reinforcement
Learning Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Training and Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 RL Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 RL Definitions and Notions . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Classification of Main RL Algorithms . . . . . . . . . . . . . . . . . . . 14
2.4.3 Tabular Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Introduction

Although they have existed since the 1950s, neural networks have gained in popularity since 2012
with the emergence of deep learning. With the development of powerful computing machines,
GPU (Graphics Processing Unit), which enable a lot of calculations to be parallelized, coupled
with the creation of numerous annotated datasets (like ImageNet [Deng 2009]), deep learning has
made it possible to rapidly surpass previous methods of computer vision.

Deep learning has a wide range of applications. From natural language processing to computer
vision, deep learning is now omnipresent. The scope of this thesis is limited to decision making
from mostly image input. Our work here focuses on algorithms that learn how to drive from road
image and driving instructions.

After a quick introduction about the basis of neural network and deep learning, the aim of this
chapter is to introduce the general principles of supervised and reinforcement learning. For more
extensive explanations, we encourage the reader to refer to the following books: Deep Learning
[Goodfellow 2016], Neural Networks and Deep Learning [Nielsen 2015], Reinforcement Learning:
An Introduction [Sutton 2017].

7
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2.2 Neural Network and Deep Learning

2.2.1 Artificial Neuron

The first definition of artificial neuron dates back to 1943 in A logical calculus of the ideas
immanent in nervous activity [McCulloch 1943]. Inspired from biological neurons, a neuron is a
mathematical object that follows specific rules. Considering an input x “ rx0, ..., xns, the neuron
outputs y “ σp

ř

wixi ` biq, where wi and bi are internal parameters of the neuron, respectively
the weight and bias. σ is an activation function that may add non-linearity. Classical activation
function are sigmoid σpxq “ 1

1`e´x
, hyperbolic tangent (tanh) σpxq “ ex´e´x

ex`e´x
or rectified linear

unit (relu) σpxq “ maxp0, xq.

ř

x0 w0

......

b

σ y “ σp
ř

wixi ` biq

xn wn

Figure 2.1: Artificial neuron

Originally, the first artificial neuron was a perceptron. It is a binary classifier, which activation
function is signp9q, and no bias (see equation 2.1).

output “

"

1 if
ř

wixi ą 0
0 otherwise (2.1)

2.2.2 Artificial Neural Network

Due to its construction, the perceptron is only able to classify data that can be separated by a
single line. It is therefore not able to model more complex functions such as the XOR function.
To model the latter, several perceptrons must be used. From this was born the Multi Layer
Perceptron (MLP). Although often confused, a MLP is composed of several perceptrons - and
therefore with only signp9q binary activation functions, whereas an artificial neural network (ANN)
contains neurons that can have all kinds of activation functions.

Figure 2.2 shows an example of a multi layer artificial neural network. Every circle represents
a neuron. They are usually organized in layers, where the outputs of one layer Li are the inputs
of the neurons of the next one Li`1. Internal layers are called hidden layers. We speak about
deep learning when there are more than 2 hidden layers.
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...
...

...
...

I1

I2

I3

In

O1

Ok

Input
layer

Hidden
layers

Output
layer

Figure 2.2: Multi layer artificial neural network

2.2.3 Convolutional Neural Network

When network layers are organized as before, they are called fully connected layers, because each
neuron is connected to all neurons of the previous layer. However, this architecture does not
apply well to image processing. Indeed, the size of the images would require a large number of
parameters. For RGB images of size 224ˆ 224 - size of ImageNet dataset images, it would already
require 150 528 (“ 224ˆ 224ˆ 3) weights for each neuron of the first layer.

Convolutional Neural Networks (CNN) have emerged to allow images to be processed with
fewer parameters than fully connected layers. They were introduced in 1998 by LeCun et al.
in Gradient-based learning applied to document recognition [Lecun 1998] to allow handwriting
recognition (see Figure 2.3). CNNs are composed of convolution layers usually followed by pooling
layers. The first ones process the image by area (and not by pixel) to detect patterns. The pooling
layers are used to sub-sample the image. In addition to reducing the number of parameters,
another advantage of CNN is the translation invariance.

Figure 2.3: Convolutional network for handwriting recognition [Lecun 1998]

Convolutional and pooling layers are usually followed by some fully connected layers at the
end of the CNN. Among the classical architectures used in computer vision, can be cited VGG
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[Simonyan 2015], Resnet [He 2016] or Inception [Szegedy 2015]. The research for new architectures,
lighter and/or more powerful, is also very active.

2.2.4 Training and Backpropagation

Training an artificial neural network consists in finding the optimal parameters θ (weights and
bias of the neural network) for a given task. For this purpose a loss function L is defined - the
form of which depends on the problem and the type of learning. Examples of loss in the case of
supervised or reinforcement learning are given in the following sections. The parameters of the
network will be modified according to the derivative of this loss function. For every θi P θ,

∆θi “
BL
Bθi

(2.2)

Parameter θi is updated with the gradient descent rule: (we also speak about gradient ascent
when the loss is made to be maximized)

θi Ð θi ´ α∆θi (2.3)

with α the learning rate. The most commonly used optimizers are SGD (Stochastic Gradient
Descent with momentum [Qian 1999]) and Adam optimizer [Kingma 2015].

In machine learning, we can distinguish three types of learning frameworks: supervised
learning, reinforcement learning, and unsupervised learning. Supervised learning learns from
annotated data, reinforcement learning uses a reward function, and unsupervised learning deals
with unlabeled data. In this thesis we are only interested in the two first ones, that are presented
in the next sections.

2.3 Supervised learning

The most commonly used learning type is supervised learning, where the model learns from
annotated data. Classical applications in computer vision are object detection, image classification,
depth prediction or semantic segmentation. The dataset is an ensemble pxn, ynq with n P N,
where xi are the inputs of our model (picture for instance), and yi the groundtruth outputs we
want the model to predict (e.g. type of object in the input image). The model can be defined by
a function f with θ parameters (weights and bias of the neural network). The goal is to learn the
parameters θ such as fpxi, θq “ yi.

In supervised learning, classical loss functions is the L2 loss, or mean square error (equation 2.4)

L “MSEpfpx, θq, yq “
1

N

N
ÿ

pfpxi, θq ´ yiq
2 (2.4)

For classification problem, cross entropy, also call log loss is often used (equation 2.5). In this
case, output fpx, θq “ p, p being the probability to be in the considered class, and groundtruth
y P 0, 1. For multi-class, the loss is the sum over the all classes i (equation 2.6).

L “ CEpp, yq “ ´ylogppq ` p1´ yqlogp1´ pq (2.5)

L “ ´
ÿ

i

yilogppiq (2.6)

Supervised learning presents many advantages. It is rather fast and stable, and usually offers
good convergence. However, it requires annotated data, which are costly. Dataset are always
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limited, and are biased by human. When it comes to performing a succession of actions (as in the
case of autonomous driving), supervised learning can also suffer from distributional shift, which
means that the distribution of the dataset is not identical to the one encountered during test. In
this case, when the system will commit one mistake, it will pile up errors and will never know
how to recover from its mistake.

2.4 RL Algorithms

Reinforcement learning offers an alternative to supervised learning. Also called learning by trial
and error, it does not use annotated data, but only a reward function that indicates good or bad
behavior. External bias is then reduced, but learning can take longer, since no demonstration of
good behavior is given.

2.4.1 RL Definitions and Notions

2.4.1.1 Definitions

Figure 2.4: Reinforcement learning diagram [Sutton 2017]

In reinforcement learning, an agent interacts with an environment. The environment produces
a state st at each timestep t, and when receiving the current state st, the agent reacts with an
action at. The agent acts according to a policy πpat|stq, which represents the probability to take
an action at when being in state st (in a deterministic environment, πpstq “ at). After the agent
has taken the action at, the environment provides a new state st`1 alongside a reward rt, which
indicates how good the new state is.
The goal of the agent is to maximize the cumulative rewards: max

ř

rt (the rewards are often
discounted to avoid exploding sums). The sum of cumulative (often discounted) reward is called
the return Rt:

Rt “ rt`1 ` γrt`2 ` γ
2rt`3 ` ... “

8
ÿ

k“0

γkrt`k`1 (2.7)

We also define V-function and Q-function as follow:

Vπpsq “ EπrRt|St “ ss (2.8)

Qπps, aq “ EπrRt|St “ s,At “ as (2.9)

The V-function, or value function is the expected return from a given state, and the Q-function,
or quality function, is the expected return from a given state-action pair. These functions evaluate
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then how a good a state (respectively a state-action pair) is when following a given policy π. We
define as well the advantage function:

Aπps, aq “ Qπps, aq ´ V πpsq (2.10)

The advantage defines how much better action a is compared to the action chosen by the policy
π.

2.4.1.2 MDP and POMDP

In reinforcement learning, the agent makes a decision according to a state it receives. The
state signal is assumed to have the Markov property, i.e. to be only dependent on the previous
state. Therefore the transition probability is a function only of the previous state and action:
ppst`1|st, atq. The reinforcement learning problem is then a Markov Decision Process (MDP)
defined by a 5-tuple pS,A,P,R, γq:

• S: set of states

• A: set of actions

• P: transition function P : S ˆAˆ S Ñ r0, 1s

• R: reward function R : SˆAˆSˆRÑ r0, 1s or in deterministic cases R : SˆAˆS Ñ R

• γ is the discount factor (trade-off between present and future rewards that indicates that
present rewards matter more)

However the complete state with full information from the environment at timestep t is not
always easy to get and in some environments, only partial information can be obtained. One
can think of image occlusions in computer vision problems. The observation is then defined as
incomplete information from the state. In that case the reinforcement learning problem can
be defined as a Partially Observable Markov Decision Process (POMDP), which is a 7-tuple
pS,A,P,R, γ,Ω,Oq with S,A,P,R and γ defined like in a MDP, Ω a set of observations and
O a conditional observation probability function: O : S ˆ Ω Ñ r0, 1s (defines the probability of
observing o when being in state s). To treat POMDP, several approaches are possible. Either the
state can be inferred/guessed from observation, using probability distribution named belief state,
or the hidden state can simply be ignored, but there can be problems as similar observations can
be derived from different states.

o1 a1

s1

πθ o2 a2

s2

πθ o3 a3

s3

πθ

ppst`1|st, atq ppst`1|st, atq

Figure 2.5: POMDP in RL [Levine 2017]

In this thesis, we are in the case of a POMDP, since our observation contains road images.
Road images do not contain the whole state, since there can be occlusions for instance, and we
don’t have access to the complete state of the environment (e.g. position of other actors). In the
following, we confuse state and observation.
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2.4.1.3 Model-free vs Model-based

Reinforcement learning algorithms can be classified as model-free or model-based. In model-based
algorithms, the agent tries to model the problem, i.e. to learn the MDP (as once we know the
reward and transition functions, the problem can be solved by optimization). In model-free
algorithms, the agent learns directly how to optimize the reward (Q-learning or Policy Gradient for
instance - see section 2.4.2 for more details). In autonomous driving, the model of the environment
is not known (one cannot know the future actions of surrounding actors), and it is difficult to
learn a model of the environment in a large dimensional space - such as images. In this thesis we
will then focus on model-free approaches.

2.4.1.4 Exploration vs Exploitation

Exploration versus Exploitation is a very famous dilemma in reinforcement learning. Exploitation
on one side, aims at making the best so far, i.e. with current knowledge, and exploration consists
in testing other solutions and then gather information, as an unexplored decision could be better
that the other already tested. Both exploration and exploitation are crucial in RL, and the
challenge lies in the trade-off between these two notions. It seems reasonable to explore a lot at
the beginning of the algorithms, when all paths have not been explored yet, and explore less and
less when the algorithms improves.

Two common approaches to face the E-E dilemma are ε-greedy and softmax. ε-greedy approach
consists in picking the best action (= greedy action) with probability 1´ ε and a random action
with probability ε (ε from 0.01 to 0.1 are common choices). With ε-greedy, all actions can be
chosen with the same probability. Softmax approach allows to differentiate according to their
quality Qpa, sq. Next action is selected according to the Boltzmann distribution:

πpa, sq „
e
Qpa,sq
T

ř

aiPA e
Qpai,sq

T

(2.11)

where a in the chosen action at time t and T is a constant called the Temperature.
Both ε-greedy and softmax work in the case of discrete actions. In the case of continuous

actions, exploration is usually done by sampling random action around model output, often using
Gaussian probability:

πpa, sq „ N pfpsq, σq (2.12)

In equation 2.12, fpsq is the model output, and σ the standard deviation of the Gaussian
(that can be fixed of a learned parameter of the model).

2.4.1.5 On-Policy vs Off-Policy

RL algorithms operate with two phases: interaction with the environment to collect data, and
update of the policy using collected data. On-policy algorithms always use current policy to
collect data, whereas off-policy algorithms use an other policy to collect data (an older one, or a
greedy-policy). On-policy algorithms are theoretically more stable - since the policy is updated
with data collected with itself, but are usually slower than off-policy algorithm. Indeed off-policy
algorithms are sample-efficient - i.e. one data can be reused several time - and data collection
and policy update can be performed at the same time, which speeds up training.
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2.4.2 Classification of Main RL Algorithms

RL Algorithms

Tabular
methods

Dynamic
Program-

ming

Policy
Iteration

Value
Iteration

TD-
learning

Q-
learning

SARSA

Monte
Carlo

Methods

Q
learning

V-
learning

Function ap-
proximation

Actor-
Critic

A3C

(D)DPG

RDPGTRPO

PPO

SAC

Value-
based
algo-

rithms

DQN

DDQN

Soft Q-
learning

Policy Op-
timization

REINFORCE

NPG

Figure 2.6: Classification of the main RL algorithms

We present here a diagram to classify the reinforcement learning algorithms. We can first separate
reinforcement learning algorithm in two categories: tabular methods and function approximation.
Tabular methods assume a finite MDP, i.e. with a finite number of states and actions. We will
quickly present these methods in the next paragraph, and we will then go deeper into function
approximation, where the MDP can be non finite.

2.4.3 Tabular Methods

This section is inspired from the book Reinforcement Learning: An Introduction by Richard
Sutton and Andrew Barto [Sutton 2017]. The first methods presented are the tabular methods
where the MDP is finite (finite MDP means that S, A and R are finite) and the dimensions of the
state and action spaces are small, i.e. the value function and the Q function can be represented
as tables (cf Table 2.1).
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State Value
State s0 15
State s1 20
¨ ¨ ¨ ¨ ¨ ¨

State sn ¨ ¨ ¨

(a) V-table

State
Actions up down left right

State s0 -1 12 0 15
State s1 3 20 4 14
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

State sn ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

(b) Q-table

Table 2.1: Examples of V- and Q-tables in a gridworld with four possible actions: go up, down,
left and right

The objective of tabular methods are to fill up these tables, since once they are known, the
optimal policy can be inferred:

• From value function in case of known transition function:

π˚psq “ argmax
a

ÿ

s1,r

pps1, r|s, aqrr ` γV ps1qs (2.13)

• From Q-function:
π˚psq “ argmax

a
Qpa, sq (2.14)

We can divide tabular methods in 3 categories: dynamic programming, Monte-Carlo methods,
and TD-learning.

2.4.3.1 Dynamic Programming

Dynamic programming is model-based RL, it assumes a knowledge of the MDP, and is used
for planning and control. Dynamic programming is used to compute the optimal policy of a
finite MDP with a perfect knowledge of the environment (i.e. states, actions, reward function
and transition function are known). The Policy Iteration algorithm is a dynamic programming
algorithm that iteratively improves the policy, until finding the optimal policy π˚. As we are in a
finite MDP, there exists only a finite number of policies. The Policy Iteration algorithms is in
two parts. First, the current policy π is evaluated, meaning the value function V is computed for
policy π. Then the policy π will be improved by using the computed value function V. When
the policy can no longer be improved, it means it has reached a fixed point, i.e. the optimal
policy, else the succession of policy evaluation and improvement is done again. Policy Iteration
algorithm has the drawback of being computationally expensive, since both policy and value
are computed at the same time. To reduce the computational expense, V-values can be directly
computed. And as the transition function is known, the optimal policy can be derived from the
optimal V-values: π « π˚ such that πpsq “ argmaxa

ř

s1,r pps
1, r|s, aqrr ` γV ps1qs

2.4.3.2 Monte-Carlo Methods

Dynamic programming assumes some knowledge of the environment. On the contrary, Monte-
Carlo Methods are model-free algorithms (= that don’t know the transition function), that learn
from experience. Monte Carlo methods learn from complete episodes, they don’t bootstrap like
TD-learning (see section 2.4.3.3). The basis idea of these algorithms is to use the mean values i.e.
Q(s,a) = mean return starting from state s and performing action a (see Algorithm 1).



Chapter 2. Supervised Learning and Reinforcement Learning Background 16

Algorithm 1 First-visit Monte-Carlo policy evaluation [Sutton 2017]
1: Initialize, for all s P S, a P A :

Qps, aq Ð arbitrary
Returnsps, aq Ð empty list for all s P S
πpa|sq Ð ε-greedy policy

2: repeat forever
3: Generate an episode using π
4: for each state ps, aq appearing in the episode : do
5: RÐ return following the first occurrence of s
6: Append R to Returnsps, aq
7: Qps, aq Ð averagepReturnsps, aqq
8: end for

2.4.3.3 Temporal Difference Learning (TD-learning)

Contrary to Monte-Carlo methods, TD-learning algorithms don’t wait until the end of the episode
to estimate the value, they can update values during the episode, which presents the advantage
of being faster. We present two major TD algorithms: SARSA (Algorithm 2), which is on-policy,
and Q-learning (Algorithm 3), off-policy, both for computing the Q-table.

Algorithm 2 SARSA [Sutton 2017]
1: Initialize Q(s,a) arbitrarily, @s P S, a P A, and Qpterminal_state, ¨q
2: repeat (for each episode)
3: Initialize s
4: choose action a from s using policy derived from Q (e.g. ε-greedy)
5: repeat(for each step of the episode)
6: take action a, observe reward r and next state s’
7: choose action a’ from s’ using policy derived from Q (e.g. ε-greedy)
8: Qps, aq Ð Qps, aq ` αrr ` γQps1, a1q ´Qps, aqs
9: sÐ s1 ; aÐ a1

10: until s is terminal

The name SARSA comes from the quintuple pSt, At, Rt`1, St`1, At`1q needed for the algorithm.
At every step, the agent chose an action a according to its current policy (with sometimes a
random action to explore), and gets a reward r and a new state s1. The agent will then chose
another action according to its current policy, and update the Q-table with the reward r, and the
Q value of new state s1 and new action a1. SARSA is on-policy since the new action a1 is chosen
according to the current policy. Q-learning is an off-policy version of SARSA: the agent does
not have to chose a second action a1, the update will be performed with the best possible action
(maxaQps, aq).

Algorithm 3 Q-learning [Sutton 2017]
1: Initialize Q(s,a) arbitrarily, @s P S, a P A, and Qpterminal_state, ¨q
2: repeat (for each episode)
3: Initialize s
4: repeat(for each step of the episode)
5: choose action a from s using policy derived from Q (e.g. ε-greedy)
6: take action a, observe reward r and next state s’
7: Qps, aq Ð Qps, aq ` αrr ` γmaxaQps1, aq ´Qps, aqs
8: sÐ s1

9: until s is terminal

As SARSA is on-policy, its convergence properties depend on the policy used, whereas it is
not the case for Q-learning, which is independent of the policy being followed.
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2.4.4 Function Approximation

All three classes of algorithms shown previously assumed a finite MDP, which can be limiting
for continuous problems, or even for problems with high dimensions. In this section we will go
deeper in the second class of reinforcement learning algorithms, called function approximation.
This time, the algorithms will not necessarily converge to the optimal solution as is the case in
tabular methods, since we are now in infinite dimension. The term ‘curse of dimensionality’
was invented by Richard Bellman in 1961 to describe the difficulties that arise when increasing
the size of data. Function approximation algorithms can be divided in three categories. The
first one is value-based algorithms, that rely in inferring Q for every state-action pair, and then
derive the optimal policy from it. In function approximation the state space can now be very big,
but to use value-based algorithms, the action space still needs to be finite. The second category,
policy-based algorithms, allows to have big or infinite action space by directly computing the
policy, with no intermediary. But instead of policy-based algorithms, a third category is rather
used because it is more stable. These are the actor-critics, which calculate both policy and state
value at the same time.

2.4.4.1 Value-based Algorithms

Value-based algorithm are based on the calculation of the value of every state, and more precisely
on the Q-value for every pair (state, action). Like Q-learning and SARSA in previous paragraph,
they are based on the fact that knowing the Q function is enough to get the optimal policy
π˚psq “ argmax

a
Qpa, sq. Deep Q learning is the most famous value-based algorithm. It computes

Q in the case of a non finite state space. We present Deep Q learning in this section, as well as
some of its variants.

2.4.4.1.1 Deep Q-learning

Deep Q-learning was introduced by Mnih et at. in Playing Atari with Deep Reinforcement Learning
[Mnih 2013]. They implemented Q-learning with image inputs. In this case, the dimensions
(especially the state space dimensions) are too big for tabular methods.

State s Neural Network

Qps, a1q

Qps, a2q

Qps, a3q

Figure 2.7: Deep Q learning

The Q function was represented by a convolutional neural network (a deep neural network,
hence the name Deep Q Learning), of which inputs are preprocessed images (current state +
previous states), and outputs are the predicted Q-values for every possible action. The parameter
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of Q is θ (the weights of the neural network) The loss function to optimize in DQN is :

Loss “ E r pyDQNi ´Qps, a, θqq2s (2.15)

with
yDQNi “ ri ` γ maxa1 Qpsi`1, a

1|θq (2.16)

However, many learning algorithms assume the data to be iid (independent and identically
distributed), whereas it is not the case in reinforcement learning. As we deal with sequential
states, successive states are strongly correlated. To overcome the problem of correlated data,
Mnih et al. use the experience replay introduced by Lin in his thesis in 1993, and later reused,
formalized and tested by many like for instance Adam et al. in Experience replay for real-time
reinforcement learning control [Adam 2012]. During training, samples are stored in a buffer,
and the updates of the model (i.e. a neural network) are performed with minibatches randomly
sampled from the buffer. Detailed in algorithm 4, Deep Q-learning achieved state of the art
results on seven Atari games.

Algorithm 4 Deep Q-learning with Experience Replay [Mnih 2013]
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode “ 1,M do
4: Initialize sequence s1 “ x1 and preprocessed sequences φ1 “ φps1q
5: for t “ 1, T do
6: With probability ε select a random action at
7: otherwise select at “ maxaQ˚pφpstq, a; θq
8: Execute action at in emulator and observe reward rt and image xt`1

9: Set st`1 “ st, at, xt`1 and preprocess φt`1 “ φpst`1q

10: Store transition pφt, at, rt, φt`1q in D
11: Sample random minibatch of transitions pφj , aj , rj , φj`1q from D

12: yi “

#

rj for terminal θj`1

rj ` γmaxa1Qpφj`1, a
1; θq for non terminal θj`1

13: Perform a gradient descent step on pyj ´Qpφj , aj ; θqq according to equation 2.15
14: end for
15: end for

2.4.4.1.2 Improvements and Variants

Later in 2015, the authors Mnih et al. got further in Deep Q-learning and implemented successfully
Deep Q-learning on the 49 available Atari games in Human-level control through deep reinforcement
learning [Mnih 2015]. The improvement compared to the previous version of Deep Q learning is
the addition of a target network used for updates, which improves the stability of the algorithms.
Introduced by Van Hasselt et al. in Double Q learning [Hasselt 2010] for Q learning, and later
in Deep Reinforcement Learning with Double Q-Learning [Hasselt 2015] for Deep Q learning,
double Q learning is the addition of the target network. The problem of classic DQN lies in
equation 2.15 as yi (in Equation 2.16) is also a function of Q, which can lead to unstable behavior,
and overestimation of the values due to the maximum in Equation 2.16. Therefore a target
network Q with parameter θ1 is used for target yi computation, so that the network Q used to
compute yi don’t change at every iteration. Equation 2.16 becomes:

yDDQNi “ ri ` γ maxa1 Qpsi`1, a
1|θ1q (2.17)

Every N step, the parameters of the target network are updated with θ1 Ð θ. In [Hasselt 2015],
Van Hasselt et al. compare the value estimations and scores on six Atari games with DQN and
DDQN ((Double) Deep Q Network), and DQN shows worse score and stability than DDQN, as
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well as a much larger overshooting of the Q value estimation, Double Deep Q learning is thus a
more efficient and stable version of DQN.

Others have also improved the experience replay with Prioritized Experience Replay [Schaul
2016]. In this paper, the transitions are given probabilities of being selected, so the more interest-
ing ones are sampled from replay buffer more frequently. The importance of a sample depends on
its TD error δ “ rt`1 ` γmaxa1Qtargetpst`1, a

1q ´Qpst, atq, so that they can improve faster the
Q network. Andrychowicz et al. proposed in Hindsight Experience Replay [Andrychowicz 2017]
another way - called HER - to deal with sparse rewards without tuning the reward function. The
idea of HER is to replay unsuccessful episodes while changing the initial goal by the state the
agent actually reached. It is specially meant to deal with sparse rewards, in environments where
exploration can not always be enough to reach the goal. The goal is then stored and becomes a
variable of the transition. Tests are made with the Mujoco simulator [Todorov 2012] with three
tasks: pushing a box, sliding a puck, or pick and place a box, with sparse rewards (the agent only
gets a reward when the task is successful). The authors show that the combination of DDPG +
HER achieve to do the task in a high percentage of the cases, whereas DDPG alone was not able
to even learn in some of the tasks.

One of the main problem in reinforcement learning is the exploration. Classical exploration
is ε - greedy, but if the goal can only be achieved after a specific succession of actions (like in
the mountain car environment, where the car has to gain momentum in order to go up a hill),
performing one random action once in a while may not be enough. In Deep Exploration via
Bootstrapped DQN [Osband 2016], Osband et al. propose a version of DQN where Q functions
are sampled over a distribution at the beginning of an episode. Therefore the agent can explore
and be consistent over one episode, which is called deep exploration.

Others test new architecture: in Dueling Network Architectures for Deep Reinforcement
Learning [Wang, Schaul, 2016], Wang et al. propose a new architecture with two streams: on for
state value (V function) estimation, and the other for Advantage estimation. Both streams are
combined to produce the Q values (see figure 2.8), since Qps, aq “ V psq `Aps, aq

Image
input CNN

V psq

Aps, a1q

Aps, a1q

Aps, a1q

+

Qps, a1q

Qps, a2q

Qps, a3q

Figure 2.8: Dueling architecture [Wang, Schaul, 2016]
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The key idea behind this architecture is that in many environments, actions only matters
sometimes (for instance, in the Breakout game, whatever the paddle goes right and left only
matters when the ball is near the paddle). By explicitly computing both the value and the
advantage instead of directly computing Q, the network will learn in which state the action
actually matters. In particular, the advantage estimates whether an action is better than average,
and thus detects whether the action has little importance in the considered state. Wang et al.
compare their dueling architecture with single stream architecture, and the result is that the
dueling Q network converge faster and leads to better performance than the single stream one.
Particularly on the 57 Atari games, the mean score over human performance of the dueling
architecture is 591.9% whereas it is 341.2% for the DQN from [Mnih 2015].

More recently, a team of Deep Mind have combined several improvements of DQN to measure
the complementarity of these extensions like double Q learning [Hasselt 2010] or experience replay
[Schaul 2016] in Rainbow: Combining Improvements in Deep Reinforcement Learning [Hessel
2018]

2.4.4.2 Policy Gradient

Deep Q learning is an effective algorithm, but can only be applied in discrete action spaces. In
the case of continuous actions, it is obviously possible to discretize them, this however quickly
faces the curse of dimensionality: the number of possible actions grows exponentially with the
number of dimension of the action. For instance, if the action has 3 dimensions, and every
dimension is discretized in 10 intervals, the Q function output dimension is 103 “ 1000, and the
more precision needed, the more intervals are necessary. To bypass this dimensionality curse,
Policy Gradient is a branch of RL algorithms that directly optimize the policy. We don’t cover
here neither genetic algorithms nor evolutionary algorithms, only policy gradient that learns the
policy πpaction|stateq. In contrary to Q-learning or Value iteration algorithms that first estimate
how good a state is, and afterwards construct a policy that leads to good states, the policy is
directly computed. Policy gradient presents different advantages: first of all, it is effective in high
dimensional or continuous action space, it has theoretical good convergence properties, and last
but not least, it can deal with stochastic policies, like in poker game, or Rock-Paper-Scissor.
In Policy Gradient methods, the policy is directly parametrized, with a parameter vector θ
(classically the weights and bias of a neural network) and takes a state s as an input. In the case
of discrete action space, the output of the policy network will a vector of probabilities over all
the possible actions, and in the case of continuous action space, classical output of the policy
network are mean (and potentially variance) of a Gaussian.

The REINFORCE algorithm is the first policy gradient algorithm detailed in Simple Statistical
Gradient-Following Algorithms for Connectionist Reinforcement Learning [Williams 2012]. How-
ever, since its development in 2012, there have been many improvement to make this algorithm
more efficient. This section is inspired by the lectures of John Schulman [Schulman 2017] and
David Silver [Silver 2015] that we recommend to the reader. The basic idea of REINFORCE (see
Algorithm 5) is to maximize the expected sum of rewards over a trajectory τ : EπrRpτqs by using
gradient ascent over the policy parameter θ (gradient ascent as we want to maximize the reward,
and not minimize a loss):

θ “ θ `∇θEπrRpτqs (2.18)

Later we will use the notation Jpθq “ EπrRpτqs, so the previous equation becomes:

θ “ θ `∇θJpθq (2.19)
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The gradient ∇θJpθq can be derived as follows.

∇θJpθq “ ∇θEπrRpτqs (2.20)

“ ∇θ

ż

ppτ |θqRpτqdτ (2.21)

“

ż

∇θppτ |θqRpτqdτ (2.22)

“

ż

ppτ |θq
∇θppτ |θq

ppτ |θq
Rpτqdτ (2.23)

“

ż

ppτ |θq∇θlogppτ |θqRpτqdτ (2.24)

“ Eπr∇θlogppτ |θqRpτqs (2.25)

Using the fact that the gradient of the log probability of ppτ |θq is:

ppτ |θq “ pps0q
T´1
ź

t“0

rπpat|st, θqP pst`1, rt|st, atqs (2.26)

where P pst`1, rt|st, atq is the transition probability and pps0q is the initial state s0 probability.
The gradient of the log probability of p() is:

logppτ |θq “ logpps0q `
T´1
ÿ

t“0

rlogπpat|st, θq ` logP pst`1, rt|st, atqs (2.27)

When we differentiate by θ, as logpps0q and logP pst`1, rt|st, atq do not depend on θ, we
obtain:

∇θlogppτ |θq “ ∇θ

T´1
ÿ

t“0

logπpat|st, θq (2.28)

So:

∇θJpθq “ ∇θEπrRpτqs (2.29)
“ Eπ rRpτq∇θlogppτ |θqs (2.30)

“ Eπ

«

Rpτq∇θ

T
ÿ

t“0

logπpat|st, θq

ff

(2.31)

“ Eπ

«˜

T
ÿ

t“0

rpst, atq

¸˜

∇θ

T
ÿ

t“0

logπpat|st, θq

¸ff

(2.32)

To compute an estimate of the expected value, N trajectories are sampled, and the expected
value is the mean over these trajectories.

Algorithm 5 REINFORCE
1: Initialize θ
2: while not done do
3: sample {τ i} from πθpat|stq (run the policy to sample trajectories)
4: ∇θJpθq « 1

N

řN
i

”´

řT
t“0 rps

i
t, a

i
tq

¯´

∇θ
řT
t“0 logπpa

i
t|s
i
t, θq

ı¯

5: Update θ Ð θ ´ α∇θJpθq
6: end while
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The key principle of policy gradient is to set high probability to actions when rewards are
high. The problem of the equation 2.32 is that all actions in one trajectory are treated equally,
even if a part of them is bad and a part of them good. Moreover, Policy gradient has a high
variance and a slow convergence.
The first trick to make it work better is causality, meaning that the policy at time t can only
affect rewards at time t1 if t1 ą t

∇θJpθq «
1

N

N
ÿ

i

˜

∇θ

T
ÿ

t“0

logπpait|s
i
t, θq

¸«˜

T
ÿ

t“0

rpsit, a
i
tq

¸ff

(2.33)

«
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘

«

T
ÿ

t1“0

rpsit1 , a
i
t1q

ff

(2.34)

«
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘

«

T
ÿ

t1“t

rpsit1 , a
i
t1q

ff

(2.35)

With this new formula, actions are boosted proportionally to future rewards. The second trick to
reduce the variance is to add a baseline as we only boost actions that are better than average. A
very common baseline is the expected sum of rewards.

b “
1

N

N
ÿ

i“0

rpτ iq (2.36)

We can add a baseline since:

Eπr∇θlogπθpτqbs “

ż

πθpτq∇θlogπθpτqbdτ (2.37)

“

ż

∇θπθpτqbdτ (2.38)

“ b∇θ

ż

πθpτqdτ (2.39)

“ b∇θ1 (2.40)
“ 0 (2.41)

The gradient then becomes:

∇θJpθq “
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘

«

T
ÿ

t1“t

rpsit1 , a
i
t1 ´ bq

ff

(2.42)

The policy needs now to be defined for the algorithm to be complete. If the action space is
finite, then the policy can be represented as a neural network that outputs a vector of probability
over the different possible actions. In the case of a continuous action space, the policy can be
represented as a neural network that outputs the mean µpsq (and possibly variance σ2psq, that
can also be fixed) of a Gaussian distribution. The action a will be sampled from that distribution:
a „ N pµpsq, σ2psqq. See Figure 2.9 for an illustration of trajectory sampling in case of continuous
action space.
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State s Output µ

µ

Apply action a
Get reward r and new
state s1 and restart

until end of trajectory

µ a

Sample action a
from Gaussian

Figure 2.9: Trajectory sampling

2.4.4.3 Actor Critic

This section is inspired from the lecture of Sergey Levine [Levine 2017]. Actor Critic combines
policy Gradient and Q learning. At the end of policy gradient algorithm, we had (not taking the
baseline in account):

∇θJpθq «
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘

«

T
ÿ

t1“t

rpsit1 , a
i
t1q

ff

(2.43)

The idea of the equation above is to go on the direction where the good rewards are. However,
řT
t1“t rps

i
t1 , a

i
t1q is an single-sample estimate of the future rewards starting from state st and taking

action at. As this is a single sample estimate, there is a high variance in policy gradient, and
reducing this variance will lead to better and/or faster convergence. It would be more effective
to better estimate the future rewards starting from state st and taking action at, and a good
estimator is the Q value as Qπps, aq “ EπrRt|St “ s,At “ as. The equation 2.43 becomes:
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∇θJpθq «
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘

Qpsit, a
i
tq (2.44)

Moreover, a baseline is added to reduce bias. The sum of rewards b “ 1
N

řN
i“0 rpτ

iq is a commomly
used baseline. But in this case, a more precise average can be computed: b “ 1

N

řN
i Qps

i
t, a

i
tq «

Eat„πθpat|stq rQpst, atqs “ V pstq. The gradient then becomes:

∇θJpθq «
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘ “

Qpsit, a
i
tq ´ V ps

i
tq
‰

(2.45)

We defined earlier the advantage Aps, aq “ Qps, aq ´ V psq which indicates how much action a is
better than average action.

∇θJpθq «
1

N

N
ÿ

i

T
ÿ

t“0

`

∇θlogπpa
i
t|s

i
t, θq

˘ “

Apsit, a
i
tq
‰

(2.46)

To compute the advantage, the following approximation is used:

Qpst, atq « rpst, atq ` γV pst`1q (2.47)

Which leads to:

Apst, atq “ Qpst, atq ´ V pstq “ rpst, atq ` γV pst`1q ´ V pstq (2.48)

One example of Actor-Critic is described on algorithm 6.

Algorithm 6 Actor Critic
1: Initialize θ and φ
2: while not done do
3: Sample tsi, aiu from πθpa|sq (run the policy to sample trajectories)
4: Fit V πφ psq to sampled reward sums
5: Aπpsi, aiq “ rpsi, aiq ` γV

π
φ ps

1
iq ´ V

π
φ psiq

6: ∇θJpθq « 1
N

řN
i ∇θlogπθpai|siqAπpsi, aiq

7: Update θ Ð θ ´ α∇θJpθq
8: end while

To summarize, the actor critic algorithms will have two components, one actor, the policy π,
with parameter θ, and one critic (Q, V or A depending on the algorithm) with parameter φ that
estimates the quality of the actor’s output. In the following we will present different actor-critic
algorithms.

2.4.4.3.1 Deterministic Policy Gradient: (D)DPG, RDPG, D4PG

Classical policy gradient algorithms deal with stochastic policies, however, in Deterministic Policy
Gradient Algorithms [Silver 2014], Silver et al. build a modified actor-critic algorithm to consider
deterministic policies. The deterministic policy gradient is computed more efficiently as Q is only
derivated over actions. The authors present an off-policy algorithm that learns a deterministic
policy using a stochastic policy for exploration.

As an extension of DPG [Silver 2014], Lillicrap et al. present in Continuous Control with
Deep reinforcement Learning [Lillicrap 2016] the algorithm DDPG (Deep Deterministic Policy
Gradient) which is a combination of DPG and DQN [Mnih 2015]. The algorithm is based on
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actor-critic for deterministic policy like DPG, but uses Deep Q learning techniques to estimate
the critic (Q values): experience replay and a target network. Moreover the target network is
slowly updated: θ1 Ð τθ` p1´ τqθ1 with τ ! 1. The result of DDPG is a noteworthy speedup on
most Atari games that are solved in 20 times fewer steps than DQN. Implementation of DDPG is
shown on Algorithm 7. Studies [Henderson 2018; Duan 2016] has shown that DDPG was however
very sensitive to hyperparameters, and less stable than batch algorithms (DDPG updates the
policy at every step, whereas many actor-critic algorithms sample a batch of trajectories before
updating).

Algorithm 7 DDPG from [Lillicrap 2016]
1: Initialize critic network Qps, a|φq and actor µps|θq with weights φ and θ
2: Initialize target network Q1 and µ1 with weights φ1 Ð φ, θ1 Ð θ
3: Initialize replay buffer R
4: for episode = 1, M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 1, T do
8: Select action at “ µpst|θq `Nt according to the current policy and exploration noise
9: Execute action at and observe reward rt and observe new state st`1

10: Store transition pst, at, rt, st`1q in R
11: Sample a random minibatch of N transitions psi, ai, ri, si`1q

12: Set yi “ ri ` γQ
1psi`1, µ

1psi`1|θ
1q|φ1q

13: Update critic by minimizing the loss L “ 1
N

ř

ipyi ´Qpsi, ai|φqq
14: Update the actor policy using the sampled policy gradient:

15: ∇θJ «
1

N

ÿ

i

∇aQps, a|φq|s“si,a“µpsiq∇θµps|θq|si

16: Update the target networks:

17: φ1 Ð τφ` p1´ τqφ1

θ1 Ð τθ ` p1´ τqθ1

18: end for
19: end for

There exists a recurrent version RDPG (Recurrent Deterministic Policy Gradient) in Memory-
based control with recurrent neural networks [Heess 2015] that also uses experience replay and
target networks. RDPG is particularly efficient in partially observed environments, where the
agent needs to remember what happened in the previous states. Another extension of DDPG
is D4PG: Distributed Distributional Deterministic Policy Gradients [Barth-Maron 2018]. The
modifications are the use of multiple actors to sample trajectories, and the distributional critic
updates [Bellemare 2017]. This means that the return is treated as a random variable, and the
objective is to learn its distribution instead of the expected return. D4PG also includes Prioritized
Experience Replay and N-step return, the latter producing the best gain in performance.

2.4.4.3.2 RL with Multiple Workers: A3C, A2C, ACER

We have previously seen the D4PG algorithm which proposes to use multiple actors to collect data.
A3C algorithm proposed by Google Deep Mind in Asynchronous Methods for Deep Reinforcement
Learning [Mnih 2016] proposes to parallelize the gradient computation to avoid the use of a replay
buffer. Instead of doing one propagation with a batch of episodes, smaller back-propagation
are made in parallel with smaller batches. A3C (for Asynchronous Advantage Actor Critic) is
composed of the following:

• A Global agent

• Several Workers that contains local networks
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The global agent contains up-to-date networks. Every worker interacts with its own instance of
the environment. Each worker copies the global networks locally, runs episodes and computes
the corresponding gradients. Then the global network is updated with the local gradients of the
worker, and the worker starts over again, with copying the global networks, run episode, etc....
As every worker does it in parallel, the global network’s update is asynchronous. The algorithm
is an actor critic algorithm, so two gradients are computed, one for the policy and one for the
Value function, and the global agent and the workers have each two network (or a shared network,
depending on the architecture), with parameters θ and φ for respectively the policy and the Value.
The following drawing (Figure 2.10) represents the idea of A3C algorithm, and Algorithm 8 the
pseudo-code for one worker. For clarity reasons, the complete tour is only shown for the first
worker.

Global networks
to compute π and
V with parame-
ters θ and φ

Worker 1 with
parameters θ1
and φ1

Worker 2 Worker n...

run episodes
computes gradi-
ents dθ1 and dφ1

Copy global networks to workers (θi Ð θ and φi Ð φ)

Apply gradients dθ1 and dφ1

Figure 2.10: A3C algorithm

Algorithm 8 A3C - pseudo-code for one worker i (one actor-learner thread) from [Mnih 2016]
1: // Assume global shared parameter vector θ and φ and global shared counter T “ 0
2: // Assume thread-specific parameter vectors θi and φi
3: Initialize thread step counter tÐ 1
4: repeat
5: Reset gradient: dθi Ð 0 and dφi Ð 0.
6: Synchronize thread-specific parameters θi “ θ and φi “ φ
7: tstart “ t
8: Get state st
9: repeat
10: Perform at according to policy πθi pat|stq
11: Receive reward rt and new state st`1

12: tÐ t` 1
13: T Ð T ` 1
14: until episode done

15: R “

"

0 for terminal state st
Vφi
pstq otherwise

16: for k from t´ 1 to tstart do
17: RÐ rk ` γR
18: Accumulate gradients wrt θi: dθi Ð dθi `∇θi logπθi pak|skqpR´ Vφi

pskqq
19: Accumulate gradients wrt φi: dφi Ð dφi ` BpR´ Vφi

pskqq
2{Bφi

20: end for
21: Perform asynchronous update of θ using dθi and of φ using dφi
22: until T ą Tmax
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The efficiency of A3C has been shown on Atari games as well as on labyrinth navigation task.
There exist different extensions of A3C:

• A2C. The defect of asynchronism is that workers are potentially working with old versions
of the policy. The synchronous version of A3C, A2C, waits until all workers are done and
then update the global agent and copy up-to-date weights to the workers. A2C performs
equivalent or even better than A3C.

• ACER [Wang, Bapst, 2016] (Actor-Critic with Experience Replay). It is an off-policy
extension of A3C, with a replay buffer for sample efficiency.

• Impala [Espeholt 2018]. Contrary to A3C, the actors do not perform gradient computation,
but send the full transition to the global agent that perform the update. Acting is completely
separated from training - that can also be split into several learners.

2.4.4.3.3 Trust Region Algorithms: TRPO, ACKTR, PPO

Policy gradient algorithms allow the agent to perform actions in a continuous space, however, the
step size α must be chosen carefully: if it is too small, the learning will be very slow, and if it
is too big, it will be overwhelmed by the noise, as the next batch will be collected under a bad
policy. In Trust Region Policy Optimization [Schulman, Levine, 2015], Schulman et al. propose
a new algorithm to iteratively improve the policy. At every update, the policy is modified to
improve performance while being close to previous policy. The true objective is to maximize
ηpθq “ Eπr γtrpstqs, but this objective is hard to compute, so the authors introduce a surrogate
function

Lpθq “ E
„

πθpat|stq

πθoldpat|sttq
At



(2.49)

that is a local approximation of the true objective and which first order derivatives are equals.

∇θLpπθq|θold “ Es,a„πold

„

∇θπθpa|sq

πoldpa|sq
Aπoldps, aq



|θold (2.50)

“ Es,a„πold r∇θlogπθpa|sqA
πoldps, aqs |θold (2.51)

(2.52)

We get the formula of the gradient derivative as in the equation 2.46, so at first order, when θ
and θold are close:

∇θLpπθq|θold “ ∇θηpπθq|θ“θold (2.53)

This surrogate function is only precise when π and πold are close, so the two distribution are
constrained with the Kullback-Leibler divergence. Therefore the objective of TRPO algorithm is:

#

maximize
θ

řN
n

πθpan|snq
πθoldpan|snq

An

subject to KLrπold, πs ă δ
(2.54)

ACKTR [Wu 2017] is a variation of TRPO, using Kronecker-factored approximate curvature
instead of Kullback-Leibler divergence for for trust region optimization.

An OpenAI team proposed a Proximal Policy Gradient Algorithm [Schulman 2017] that
modifies the TRPO algorithm for a simpler version. The authors suggest 2 different surrogate
functions that constraint the new policy π to be closed to the old one πold. The first one is
naturally defined from Equation 2.54: instead of the separated constraint, the KL penalty is
directly added in the surrogate function LKLPEN .
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LKLPEN pθq “ Et
„

πθpat|stq

πθoldpat|stq
At ´ βKLrπθold , πθs



(2.55)

The parameter β is updated as follow. With d “ EtrKLrπθold , πθss

if d ă dtarg{1.5 β Ð β{2
if d ą dtarg ˆ 1.5 β Ð β ˆ 2

(2.56)

However this surrogate function can be replaced by a stabler one, a clipped surrogate function
LCLIP . Let’s define rtpθq as the probability ratio rtpθq “

πθpat|stq
πθold pat|stq

(and At is still the advantage
at timestep t). The clipped surrogate function is:

LCLIP pθq “ Et rminprtpθqAt, clippstpθq, 1´ ε, 1` εqAtqs (2.57)

This clipped function will force the rtpθq to stay in r1´ ε, 1` εs range.
The algorithm is an Actor-Critic, so the value function V is also computed. In the event that

both policy and value function share neural network parameters, the objective function is:

Lpθq “ Et
“

LPGt pθq ` c1L
V F
t pθq ´ c2Srπθpstqs

‰

(2.58)

where LPG is either LCLIP or LKLPEN , LV F is a squared error value loss, and S is an entropy
bonus to encourage exploration. These algorithms are compared with each other using the Atari
game benchmark, and on robotics tasks using the Mujoco simulator [Todorov 2012], where PPO
algorithm performance far exceed A2C and TRPO. On Atari games, PPO performance competes
with ACER, and exceeds it on the Enduro game. The PPO algorithm presents also the advantage
of being simpler to TRPO and ACER, and performs at least as well. It also allows the value and
policy network to share parameters, which is not the case in TRPO because of the constraint on
the policy.

2.4.4.3.4 Entropy with Reinforcement Learning: SQL, SAC

A classical problem in reinforcement learning is that agents become very specialized, as they have
been trained to solve a very specific task the best way possible. More specifically, the agents learn
only one way to solve the task. We can see and example in figure 2.11: in classical RL, the robot
will only focus on the upper passage, which is the optimal one, and will have to relearn from
scratch if this passage is blocked (and might not be able to relearn at all). One way of solving
this issue and to force the robot to explore and learn all possible ways to solve the task is to add
entropy, and maximizing both the sum of rewards and the entropy, as presented in Reinforcement
Learning with Deep Energy-Based Policies [Haarnoja 2017]. The optimal policy becomes:

π˚ “ argmax
π

Eπ

«

ÿ

t

rt `Hpπp¨, stqq

ff

(2.59)

With this method, named Soft Q-Learning (SQL), the robot will learn both passages, even if he
will prefer the most optimal one, and will be able to quickly move on to the second passage when
the first one will be blocked.
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Figure 2.11: A robot navigating a maze [Tang 2017]. With classical RL (left), the robot will learn
only the best way to reach the goal. With entropy regularization (right), the robot will learn
both ways, so that it can adapt if the environment changes.

Soft Q-Learning is the predecessor of Soft Actor-Critic (SAC) from Soft Actor-Critic: Off-
Policy Maximum entropy deep reinforcement learning with a stochastic actor [Haarnoja, Zhou,
Abbeel, 2018]. SAC is the actor-critic version of SQL, combining off-policy updates and maximum
entropy.

Later work [Haarnoja, Zhou, Hartikainen, 2018] extends SAC to add automatic tuning of
hyperparameter, which lead to stabler training. A lot of algorithms (A3C, PPO...) now includes
entropy in their surrogate function, for a better exploration and improved robustness [Ahmed
2019].

2.5 Conclusion

In this chapter we presented an overview of deep neural networks, supervised learning and
reinforcement learning algorithms, with a focus on model-free deep reinforcement learning. On
some sequential decision problems (like the game of Go), reinforcement learning has outperformed
supervised learning, and RL does also not require annotated data. This thesis therefore focuses on
reinforcement learning to solve vision-based navigation. To be close to human behavior, we chose
to work with an algorithm that allows continuous actions. We have opted for PPO algorithm. At
the time this thesis began, it was one of the state of the art algorithms for image based RL, and
has notably surpassed A2C and ACER on the Atari game Enduro. PPO is on-policy, which is
usually more stable than off-policy, and does not require the use of a replay buffer. Indeed, storing
many images (of sometimes large size) is a disadvantage of off-policy algorithms. On-policy are
however sample-inefficient, but as we will work with a simulator (see Chapter 3 for environment
choice and details) - and not in real world where data collection is always more costly - data
collection was not a key element in our choice. PPO is an actor-critic that also offers to share the
parameters between policy and value (which TRPO does not for instance). In the next chapter,
we present an overview of the application of reinforcement learning to vision-based navigation
tasks.
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3.1 Introduction

The purpose of this chapter is to present existing work related to our problematic, namely
reinforcement learning for visual-based autonomous driving. We are interested in two aspects,
the perception of the environment, and the control of the driving. We have divided this state of
the art in four sections. The first one covers autonomous driving, with both supervised learning
and reinforcement learning. The second one is interested in related issue, that are not directly
autonomous driving, but whose ideas can be applied to it. The third part focuses on the tools
to work with, and in particular the driving simulators. Finally, we will synthesize the different
approaches and indicate the research directions we have chosen.

3.2 Autonomous Driving

Traditionally in autonomous driving, two approaches can be distinguished (see Figure 3.1). The
first one consists of a modular pipeline, which breaks down driving into intermediate tasks, such as
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perception, path planning, and control. This allows monitoring all stages of the decision-making
process but needs individual optimization for every subsystem, making it difficult to find an
overall optimal solution. The second approach that has recently become popular is end-to-end
driving, where the system directly maps raw inputs, such as road images, to driving controls.
The advantage of end-to-end learning is the reduction of intermediate operations, especially as
these are mostly designed for human drivers. It can reduce time and complexity not only during
training, but also in later application, as no extra features are computed. Besides, no human bias
is added in the choice of intermediate representations.

Input
(image,
speed...)

Detection
(lanes,
cars,...)

Path
planning Controller

Action
(steer,
throttle,
brake,...)

(a) Traditional autonomous driving architecture

Input
(image,
speed...)

Action
(steer,
throttle,
brake,...)

Direct optimization

(b) End-to-end autonomous driving architecture

Figure 3.1: Traditional vs end-to-end learning

We focus in this work on the use of a single camera as input sensor, but many other
elements can be used as input information: lidar, odometry, radar, etc... In this section will be
presented approaches that work end-to-end (perception to control), as well as approaches that use
intermediate representations. We mostly focus on approaches that uses one front-facing camera -
and so RGB images as input, but we will also present some works that use birdview images.

3.2.1 Autonomous Driving with Imitation Learning

In the case of a sequential decision problem (such as autonomous driving), we often speak of
imitation learning or behavior cloning to speak of supervised learning. In what follows, we will
not differentiate between the three terms. Imitation learning is learning by demonstration. In the
case of autonomous driving, performing imitation learning would mean to feed a learning agent
with examples from human driving, and let the agent reproduce what humans do. Supervised
learning therefore requires a large amount of annotated data, which can be difficult to collect in
the real world. This is especially true since autonomous driving requires seeing a large number of
different situations (different weather, times of day and night, different roads, etc.). The use of
simulated data is a way to get around these challenges, but it poses the problem of the transition
from simulation to real world.

Driving Using Neural Networks

ALVINN (Autonomous Land Vehicle In a Neural Network) [Pomerleau 1989] is the first au-
tonomous vehicle using a neural network trained with supervised learning by Navlab in 1989.
The neural network used contained only three layers. The input layer had 1217 units: 960 from a
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30ˆ 32 road image, 256 from a 8ˆ 32 laser rangefinder, and one feedback unit from output layer.
The hidden layer contained 29 units, and output layer 46. ALVINN is capable of performing
lane following task on simple real-world road. Since ALVINN and its 3 fully-connected-layers
neural network, the sizes and possibilities of neural networks have evolved a lot. In Off-road
obstacle avoidance through end-to-end learning [LeCun 2005], a mobile robot is trained to avoid
obstacles while driving off-road. The input size is much larger than ALVINN’s, with two stereo
cameras that produce a input of size 149 ˆ 58 ˆ 6, and a CNN is used with 72000 trainable
parameters. This approach effectively avoids obstacles in real-world navigation. More recently in
End to End Learning for Self-Driving Cars, Bojarski et al. trained a CNN with a large dataset
(around 72 hours of driving) to perform lane following and deployed it on a real car [Bojarski
2016]. The same idea is successfully applied in [Rausch 2017] in Learning a deep neural net
policy for end-to-end control of autonomous vehicles with a driving simulator. However both
[Bojarski 2016] and [Rausch 2017] only control steering angle, and not the speed of the vehicles,
on lane-following task.

Taking Temporality into Account

Autonomous driving involves a sequential decision-making process. Adding temporality improves
the robustness and consistency of a model. In both Going deeper: Autonomous steering with neural
memory networks [Fernando 2018] and End-to-end learning of driving models from large-scale
video datasets [Xu 2017], LSTM layers are added to handle memory. In [Xu 2017] only one layer
of LSTM is used. The output of the CNN is merged with the features of the trajectory (speed
and angle), and the whole is passed through a LSTM layer. In [Fernando 2018] on the other hand,
there are two separate memory modules, one for the CNN output (the spatial memory module),
and one for the trajectory features (the trajectory memory module). Output are merged after the
memory modules. This architecture allows to have differentiated memories and to better capture
long-term dependencies.

Handling More Complex Scenarios

All these approaches present end-to-end autonomous driving, but they mostly focus on lane
following task, no driving command (’turn left’, ’go straight’) is given. When introducing the
CARLA simulator in [Dosovitskiy, Ros, 2017], Dosovitskiy et al. also propose a baseline of
conditional autonomous driving with three different approaches: modular pipeline, end-to-end
imitation learning and end-to-end reinforcement learning. Along with the simulator, a benchmark
is also proposed. The purpose of this benchmark (which we will call CARLA CoRL benchmark) is
to evaluate the driving agent on goal-directed navigation. Four tasks are proposed: straight (when
destination is straight on), one turn (destination is one turn away), navigation (full navigation
in empty town), and dynamic navigation (full navigation with dynamic obstacles - cars and
pedestrians). To evaluate the generalization capabilities of the agents, 6 weathers are used:
4 are seen during training, and 2 only at test time, as well as two different towns: one for
training, and one for test. The benchmark outputs the percentage of successful episodes, i.e.
when the driving agent has managed to reach destination. On this benchmark, both modular
pipeline and imitation learning show satisfactory results, especially on training conditions, whereas
reinforcement learning approach is way beyond. However in unseen town, performance drops,
for both modular pipeline and imitation learning. More detail on imitation learning training are
given in End-to-End Driving via Conditional Imitation Learning [Codevilla 2017], along with
transfer to real world. The inputs of the supervised learning algorithm are: the current image i
from the road, a vector of measurements m (containing the current speed for instance), and a
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high level command c (to indicate where to go). Two global architectures are studied here (see
Figure 3.2).

(a) command input architecture (b) branched architecture

Figure 3.2: Two network architectures for conditional driving [Codevilla 2017]. Left: the driving
command is used as an input and its features are concatenated with features fom image and
measurements. Right: the driving command (that needs to be discrete), is used to split the
network into command-specific branches.

In the first approach, the three inputs pass through independent networks: a convolutional
network Ipiq for the image, and two fully connected networks for command and measurement
(Cpcq and Mpmq), the outputs of which are concatenated and passed through a control module
represented as a fully connected network Apă Ipiq,Mpmq, Cpcq ąq. This architecture is named
command input as the command is given as input. The problem of this approach is that the
algorithm is not forced to take the command c in account. To ensure that, a second approach
is proposed: both image and measurement networks are kept, and command is supposed to
be discrete c P C “ tc1, c2, ..., cku. After Ipiq and Mpmq are concatenated, according to the
command c, a branch Ak is chosen, which is a sub-policy corresponding to command ck. This
architecture is called branched. This branched architecture has been used a lot since [Sauer 2018;
Müller 2018; Toromanoff 2019], as it has shown better results than classical concatenation.

In Explaining autonomous driving by learning end-to-end visual attention [Cultrera 2020], the
authors add an attention module to the imitation learning architecture. This attention module
allows to explain the prediction of the model, and improves the performance of the driving agent
compared to simple imitation learning.

Finally in Learning Situational Driving [Ohn-bar 2020], training is performed in three steps.
First a mixture of models is trained with imitation learning. A context embedding system is then
learned: it is a VAE of which encoder is used to extract the information from the input image
while reducing the dimension (see Figure 3.3). The policy is then composed of the mixture of
models as well as the context embedding. The last step is policy refinement using CMA-ES, only
in the last layers of the policy.
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Figure 3.3: Learning Situational Driving [Ohn-bar 2020]. The policy is a combination of a mixture
of experts with context embedding, refined with task-driven rewards using evolutionary algorithm.

From Simulation to Real World

First developed and trained for urban driving in simulation, the model from [Codevilla 2017] is
also trained and tested in the real world, in a residential area with a small robotic truck. Data is
collected directly with the truck, and the network is trained in the same way as in simulation.
In the same way, the branch architecture allows the robot not to miss any crossover. However,
real-world data is expensive and difficult to collect, so many approaches focus on the transition
from simulation to the real world rather than training with real world images.

To facilitate the transition to real-world driving, in Driving Policy Transfer via Modularity
and Abstraction [Müller 2018], the driving policy is not learned from end-to-end, but from
segmented images and produces waypoints rather than driving command (steering angle and
acceleration/braking) (see Figure 3.4).

Figure 3.4: Driving system network architecture [Müller 2018]. Three modules are used: the
perception module that segments the input image, the driving policy that computes waypoints
from segmented image, and finally the PID controller that computes driving commands.

The perception module is trained on Cityscapes dataset [Cordts 2016]. It is composed of and
encoder-decoder network with ERFNet architecture [Romera 2018], and then fixed to train the
driving policy. The driving policy is trained on CARLA simulator [Codevilla 2017]. It takes one
segmented map as input, and output the two next waypoints at every frame, according to the
driving instruction (turn left, go straight, etc...). The architecture is the same as in [Dosovitskiy,
Ros, 2017], with branched network. The waypoints are then converted to driving control through
PID. Extensive ablation study is performed, the model is compared with several variations: no
perception module (image is used to compute driving policy instead of segmented image), direct
mapping with driving command (instead of waypoints), with and without data augmentation or
domain randomization, etc... They show that the proposed approach outperformed all the others
in terms of generalization in both simulation and real world.

In Learning to Drive from Simulation without Real World Labels [Bewley 2019], a translation
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network [Liu 2017] is used to bridge the gap between simulation and real world. The driving agent
is trained with imitation learning only in simulation, and the translation network transforms real
world images to the latent space that is common with simulated images (see Figure 3.5). The
agent is then capable of driving in real town without having seen any real driving examples.

Figure 3.5: Sim2Real transition network for autonomous driving [Bewley 2019]. Z is the common
latent space between real and simulation images, and is used to compute the driving command.
Two Variational AutoEncoders are used to compute this latent space, and to generate images in
any of the two domains.

Using Intermediate Representations

As introduced earlier (see Figure 3.1), two approaches traditionally prevail in autonomous driving:
modular pipeline, and end-to-end driving. While end-to-end training can be seen as a black box,
difficult to interpret, and difficult to train, the modular pipeline requires independent optimization
of each module. The idea of computing intermediate representations for autonomous driving can
be seen as a compromise between end-to-end learning and modular pipeline.

In DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [C. Chen
2015], the authors Chen et al. have decided to use this intermediate approach, which they
call Direct Perception. A CNN processes the input image, and outputs meaningful indicator -
affordances, like distances to other cars and to lane marks (see Figure 3.6). A simple controller is
then used to make driving decisions. To do so, a convolutional network is trained with 12 hours
of human driving from the racing video game TORCS [Wymann 2014]. The controller uses the
affordance computed by the CNN to compute desired steering command and acceleration/brake
based on the distance to the vehicle in front, its placement in its lane, and the command requested
(stay in its lane or change lines). Tests are performed on unseen TORCS tracks. Real world tests
are also performed, with both smartphone videos and KITTI dataset [Geiger 2013] to evaluate



37 3.2. Autonomous Driving

the lane detection and car distance estimation.

Figure 3.6: DeepDriving architecture [C. Chen 2015]. Input images are used to compute affordance
- e.g., distance to lane marks.

This work has been improved by Al-Qizwini et al. in Deep learning algorithm for autonomous
driving using GoogLeNet [Al-Qizwini 2017]. Only 5 affordances are computed (against 13 in [C.
Chen 2015]) - however distance to preceding car is assumed to be given by a distance-measuring
device and not computed from image input. A comparison between state-of-the-art CNNs (VGG
[Simonyan 2015], GoogleNet [Szegedy 2015] and Clarifai [Zeiler 2014]) is carried out. This
approach outperforms the previous one by using a more accurate feature extractor (GoogleNet
[Szegedy 2015] is showed to be the best), and to remove redundant affordances.

Using intermediate representation has been applied to conditional driving in the simulator
CARLA in Conditional Affordance Learning for Driving in Urban Environments [Sauer 2018].
The main difference with previous approaches is the taking into account of conditional driving,
and use of video input instead of frame-by-frame (see Figure 3.7). The effectiveness of this
approach is demonstrated on the CARLA CoRL benchmark. It also takes into account the
management of traffic lights and the detection of traffic signs.

Figure 3.7: Conditional affordance learning (CAL) architecture [Sauer 2018]

These affordances can also be trained as auxiliary task, like in [Mehta 2018; Hawke 2019]. In
Learning End-to-end Autonomous Driving using Guided Auxiliary Supervision [Mehta 2018] two
types of auxiliary predictions are computed: visual affordance (e.g. distance to vehicle ahead,
lateral distance to pedestrian approaching, etc...) and action primitive (slow down, turn right,



Chapter 3. State of the art 38

speed up, ...). From high level direction given by the planner input, and considering visual and
speed inputs, the action primitive serves as a planner to predict the action to be carried out
at any given moment. In other words, if the instruction (planner input) is to turn right, the
action primitive predicts if the agent needs to turn right immediately, or wait until it reaches the
crossing, or slow down first to stop at a traffic light, etc... As shown in Figure 3.8, the auxiliary
predictions are trained at the same time as the driving task, and they are also used as input for
the last block of the architecture.

Figure 3.8: Guided auxiliary supervision architecture [Mehta 2018]

In this case the loss is a combination of auxiliary loss (one for action primitives and one for
visual affordance) and of driving control loss. On this work, affordance are used also as input
for the next step, so we known what is in the intermediate representation. In Urban Driving
with Conditional Imitation Learning [Hawke 2019], Hawke et al. also use auxiliary tasks, but the
intermediate representation is not directly specified (see Figure 3.9). The perception module is
trained to reconstruct different interpretable outputs: semantic segmentation and depth from
one RGB image, and optical flow from two consecutive frames to add temporality. However
only encoded features are used for driving task. The perception module is pretrained separately
on several large datasets (KITTI [Geiger 2013], Cityscape [Cordts 2016], Deeplab [L. C. Chen
2018],...). In some of the experiments, three cameras are used (a left-facing and a right-facing
camera in addition to the forward-facing camera), and each image is processed independently by
the perception module. Intermediate representations are merged after with sensor fusion module.

Figure 3.9: Network architecture for real world urban driving with three auxiliary tasks: semantic
segmentation, depth prediction and optical flow [wayve blog 2019]
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This work is completely realized in real world. Data are collected by driving around Cambridge,
and tests are performed with a human driver ready to take control in case of a problem. In
this work the authors observe different key elements for autonomous driving through supervised
learning. First of all the distribution of data is very important. In an important part of the data,
the vehicle is at a standstill, and when driving, it usually goes straight ahead. To prevent these
predominant practices from taking over, the dataset is balanced during the learning process. They
have also found that the more data that is learned, the better the system performs. Finally, they
emphasize that a robust representation of the environment is an essential element for real-world
driving.

The same auxiliary predictions, namely semantic segmentation and depth prediction, are
used Rethinking Self-Driving: Multi-Task Knowledge for Better Generalization and Accident
Explanation Ability [Z. Li 2018] (see Figure 3.10). However, contrary to [Hawke 2019], the
perception module is trained separately and frozen during driving module training.

Figure 3.10: Multi task training for self driving (MT) [Z. Li 2018]

Learning to drive can be divided into two principles: understanding the environment, and
learning to act on it. Using intermediate representations as presented above is one method to help
the agent understand the environment. In Learning by cheating [D. Chen 2020], a privileged agent
is trained with expert trajectories, and has access to the layout of the environment (birdview,
other actors positions, etc...). This privileged agent then trains an agent that only has access to
raw image input and no other groundtruth information. This decomposition allows learning in
2 steps: the privileged agent has a complete knowledge of the environment, and can therefore
focus on learning to drive. The second agent will therefore focus more on understanding the
image provided to him as input (called ’learning to see’). This approach is the first one to reach
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a perfect score on CARLA CoRL benchmark, and shown effective generalization in the unseen
town.

3.2.2 Limits of Imitation Learning

However, even with data augmentation, the problem of imitation learning, and more generally in
supervised learning, is that we use human provided data. How can a car drive perfectly if we only
trained it with imperfect human driving examples ? We can therefore see why it is interesting to
use reinforcement learning: human bias would be avoided since the system will learn from itself.
It is not told how to behave, but experiences by itself and gets positive and/or negative rewards
according to how good his actions were. The point is to give the agent no human-designated
features, to avoid human bias. In the case of an autonomous car, the agent is no taught to follow
the lines of the road, but will be given a negative reward if it goes off the road.

In Exploring the Limitations of Behavior Cloning for Autonomous Driving [Codevilla 2019],
the authors investigate and analyze the limits of imitation learning applied to autonomous driving.
The limitations of behavior cloning that are highlighted in this work are:

• Distributional shift (also covariate or dataset shift): difference between training and test
distribution. In imitation learning for autonomous driving, it is mainly due to the sequential
nature of the driving task, violating the assumption that data are i.i.d. (independent and
identically distributed). During test phase, unseen situations will lead to small mistakes
that will pile up and cause bigger mistakes. (see Figure 3.11).

Figure 3.11: Covariate shift example between training (pale images), and test (normal images)
[Shkurti 2021]

• Dataset bias: in the case of autonomous driving, collected data are mostly easy situations
(like going straight). However the agent needs to learn to react in more complex situations,
that are usually less present in the dataset, because they occur less often.

• Causal confusion: when the network find correlations that are only artificial in dataset.

• High variance between the results of models trained with the same parameters. Under the
most difficult test conditions - many dynamic objects - the variance can reach 40% on 12
models trained with different seeds.

The authors trained a conditional network like in [Codevilla 2017]. Some changes are made to
add more robustness: one module to predict the speed is added, and L1 loss is used instead of
classical MSE. A new benchmark (called NoCrash) is proposed to explore the behavior of the
agent in different traffic conditions (empty, regular and dense). To explore the limitations, models
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have been trained with 2, 10, 50 and 100 hours of demonstration, with the best performance
achieved when using only 10 hours. The dataset indeed lacks diversity, so adding more data will
only lead to overfit. The authors also noticed that the agent reacts better when encountered
vehicles have common model and color, which underlines the dataset bias. Identical models
have also been trained with different random seeds to explore the variance, and results on the
NoCrash benchmark differs highly between the two seeds. However the variance can be reduced
by pretraining the CNN (here on ImageNet). The last studied effect is called inertia problem,
and is due to causal confusion. Indeed in the dataset, when the agent is stopped, there is a very
high probability that it will remain unmoving - because of traffic light or other vehicle ahead.
Therefore in the test, there are many episodes where the agent simply stops and never starts
again. The speed prediction branch reduces this problem, but does not completely eliminate
it. This work points out many of the difficulties of supervised learning applied to autonomous
driving, as well as research directions.

Increasing the Dataset

Figure 3.12: Training framework with 3 camera for data collection [Gandhi 2017]

One possible solution to distributional shift is to increase the dataset. The main problem with
imitation learning is that the system doesn’t know how to recover from its mistakes. When the
system will commit a small mistake (and it obviously will at some point), errors will pile up
since the situations have not been seen in the training data. Some have found ways to bypass
this problem by extending their training datasets. In [Gandhi 2017; Codevilla 2017; Bojarski
2016], datasets are increased to add errors trajectories and the correct behavior in these cases, in
order to make the learning agent more robust. These three papers deal with autonomous driving
(with respectively drone and car), using a single camera. In Learning to Fly by Crashing [Gandhi
2017], they crashed a drone more than 11.000 times to collect a huge crash database, using a
naive and random algorithm (to avoid human bias in crashes). In both End to End Learning for
Self-Driving Cars [Bojarski 2016] and End-to-End Driving via Conditional Imitation Learning
[Codevilla 2017], two extra cameras are added to collect more samples, and more specifically,
"bad" samples: one on the left and one on the right. The images from these camera are labeled
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according to the rotation of the cameras to provide bad samples during training. Moreover,
the data are augmented with random shift and rotation of the recorded images (and of course
groundtruth is also modified accordingly) (see Figure 3.12).

In End to End Vehicle Lateral Control Using a Single Fisheye Camera [Toromanoff 2018]
Toromanoff et al. propose a method to increase the dataset a posteriori, without adding any
additional sensor. A single fisheye camera is used to collect data. The image used to predict the
steering angle is not directly the one given by the camera: a cylindrical projection is used and
the image obtained is close to the image of a simple camera. The fisheye camera image is used to
augment the dataset with lateral offset images, of which cylindrical projections are used. This
method has the advantage of being more flexible than using several conventional cameras for data
collection, but requires post-processing of the data.

Increasing data seems to be an unavoidable way to robustify a framework that uses behavior
cloning. In ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
[Bansal 2018], not only perturbations are added, but the classical imitation loss is also modified
to add additional losses to deter unwanted events. Perturbations are created to modify the
trajectories in the dataset and show the agent how to recover from a wrong situation. Additional
losses are: a collision loss to reduce collisions, a on road loss to encourage the agent to stay on the
road and a geometry loss to encourage the agent to follow the same trajectory regardless of speed.
The model also predicts the location of the other dynamic objects on the scene, so auxiliary
losses are used regarding this auxiliary predictions. But contrary to lots of work presented in this
section that mostly use one front facing camera, the inputs used in this framework are mid-level
inputs: bird view of road map, traffic lights, boxes of the dynamic objects, route, etc., and the
model outputs a driving trajectory. However, this work shows the limits of behavior cloning, and
suggests ways to improve and apply it to autonomous driving.

3.2.3 Autonomous driving with Reinforcement Learning

Despite many advantages such as its speed and ease of implementation, imitation learning has
many drawbacks. With the emergence of reinforcement learning and its application to increasingly
complex problems, it began to be applied to autonomous driving. Because of the trial and error
essence of RL and the need of a very large amount of data to converge, very little work is done
directly in real world. Most of the works are carried out in simulation, especially when dealing
with urban navigation.

Lane Following

As for imitation learning, some are only interested in the lateral control of the vehicle, leaving the
speed control to an independent controller [Wolf 2017; D. Li 2019]. Whereas [Wolf 2017] focuses
on end-to-end, [D. Li 2019] breaks down learning process in one perception module that predict
track features, and one control module that uses these features as well as ego-vehicle information
like current speed to compute steering angle (see Figure 3.13). The perception module is trained
with multi-task supervised learning to output 3 track features: distance to lane markings, angle
between track and vehicle heading, and high level road direction (left curve or right curve or
straight). The track features are then used to train the control module with reinforcement learning
with DPG (Deterministic Policy Gradient [Silver 2014]). In Learning how to drive in a real world
simulation with deep Q-Networks [Wolf 2017] on the contrary, steering angle is directly computed
from image input without any intermediate representation. Deep Q learning algorithm is used in
this work, with then discrete actions. However, in these two works, the speed is not controlled
with reinforcement learning, and thus requires an additional controller.
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Figure 3.13: Lateral control framework [D. Li 2019]. Perception module is trained with supervised
learning to computed track features that will serve as input to the RL control module.

Still in the lane following task, other works compute speed control commands (accelera-
tion/brake) as part of a racing game [Sallab 2016; Sallab 2017; Perot 2017; Jaritz 2018]. However
whereas both [Perot 2017] and [Jaritz 2018] use road image as input, [Sallab 2016] and [Sallab
2017] use simpler input like position of the track borders. Based on visual inputs, [Perot 2017;
Jaritz 2018] uses A3C algorithm with discrete actions and add LSTM in the network to add
temporality. The agent is trained with different driving conditions (different weather, road
structure or adherence, ...) with the racing game World Rally Championship 6 (WRC6) [World
Rally Championship 2016], and is able to generalize in unseen tracks.

Hierarchical Reinforcement Learning for Specific Driving Tasks

Others focus on tasks closer to driving in an urban environment: lane changing [Y. Chen 2019;
Mirchevska 2018] and traffic light management [J. Chen 2018]. In Deep Hierarchical Reinforcement
Learning for Autonomous Driving with Distinct Behaviors [J. Chen 2018], Chen et al. apply
hierarchical reinforcement learning to handle traffic lights. Hierarchical reinforcement learning
[Barto 2003] is based on the decomposition of a policy into sub-politics. In this case, the general
policy is driving, and the sub-policies for traffic light management are: pass or stop. The first
level policy will decide if the car must pass or stop, and the sub-policies will compute driving
commands (see Figure 3.14).
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Figure 3.14: Hierarchical policy architecture for traffic light management [J. Chen 2018]

The advantage of using hierarchical reinforcement learning is that it allows smooth transfer to
other task, and more interpretability and white box compared to flat reinforcement learning. The
first step consists in training the primitive controller (pass and stop) individually. They output
acceleration/brake intensity according to the distance to the crosswalk. Then these controllers
are assembled in the structure showed in Figure 3.14, and finetuned together to handle traffic
light scenario. However the state of the system is composed of the current speed of the car, the
distance to the crossing line, and the time for the traffic light to turn red, the two latter not
being available in real world driving scenarios. Nevertheless this work compared hierarchical
reinforcement learning training with the same task trained with flat reinforcement learning that
shows no good result on the traffic light scenario.

Hierarchical reinforcement learning is also used in Attention-based hierarchical deep reinforce-
ment learning for lane change behaviors in autonomous driving [Y. Chen 2019] for lane change
with image as input (see Figure 3.15).

Figure 3.15: Hierarchical policy architecture for lane change [Y. Chen 2019]

In this work, the reward is constructed so that the car should remain in its lane, but also runs
at a preferred speed (35 km/h), and is encouraged to overtake if the front vehicle is less than
100 meters away. The agent must first take the decision to change lane (high level command),
and then compute the corresponding driving command (low level command). Training is based
on DDPG, with the actor outputting the high level command from current state, and critic
outputting driving command from current state and high level command. Like [J. Chen 2018], a
comparison with flat reinforcement learning is performed and shows that hierarchical RL performs
better on lane change task. Higher results are also achieved by adding spatial and temporal
attention, as well as LSTM for temporal information. In High-level Decision Making for Safe
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and Reasonable Autonomous Lane Changing using Reinforcement Learning [Mirchevska 2018],
reinforcement learning is used to perform only high level decision: stay in line, or change lane
right or left. The reward is only based on the speed of the agent (the closer to desired speed, the
better), and input of the agent is composed of his current speed, as well as the relative speed of
adjacent vehicles, and the distance to adjacent vehicles. Despite the fact that this information is
not available in the real world, this work shows that an agent is capable of making the decision
to pass a car that is moving slower than it is. Moreover what is interesting in these two works
[J. Chen 2018; Mirchevska 2018] is that the agent decides by itself whether to change lane or not.

Driving in Complex Urban Environments

All of the approaches presented above apply reinforcement learning to autonomous driving, but
focus on the task of following the road, without worrying about intersections which are an
important part of driving in an urban environment. The first to experiment with conditional
driving with reinforcement learning are Dosovitskiy et al. in CARLA: An Open Urban Driving
Simulator [Dosovitskiy, Ros, 2017]. Together with the baseline training in imitation learning
and modular pipeline, they present the first end-to-end RL training for conditional driving with
vision-based input. The training is performed with A3C for 10 million iterations. This first
complete autonomous driving baseline in an urban environment produces much lower results than
those produced by supervised learning or the modular pipeline. Under training conditions, for
the navigation task, the agent trained with reinforcement managed to complete only 14% of the
episodes, compared to 86% under supervised training.

A more recent approach, CIRL: Controllable Imitative Reinforcement Learning for Vision-
based Self-driving [Liang 2018], combines both supervised learning and reinforcement learning by
pretraining the network with supervised learning (see Figure 3.16)

Figure 3.16: CIRL training framework [Liang 2018]. The backbone network is first trained with
supervised learning, and then used to initialize the weight of reinforcement learning training.

Like [Dosovitskiy, Ros, 2017], CIRL uses a branched network to take the driving command
into account, and experimental settings are identical is these two works. The actor-critic algorithm
Deep Deterministic Policy Gradient [Lillicrap 2016] is used to train RL agent. Actor and critic
are two separate networks, and only the actor uses the pretrained weights from imitation learning
as initializer. The imitation part is trained with the same 14 hours of driving as [Dosovitskiy,
Ros, 2017], and RL finetuning is performed for 0.5 million steps (against the 10 Millions used
to train RL from scratch in [Dosovitskiy, Ros, 2017]). CIRL outperforms both supervised and
reinforcement learning training on Carla CoRL benchmark.

The work of Rhinehart et al. in Deep Imitative Models for Flexible Inference, Planning, and
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Control [Rhinehart 2020] also proposes a combination of supervised and reinforcement learning for
conditional driving. But unlike CIRL where reinforcement learning is model-free, a model-based
approach is used. As before, the combination of supervised and reinforcement learning allows
for a shorter and safer training. In fact, reinforcement learning learns by trial and error, by
collecting data during training, with a model that is not optimal, which can lead to dangerous
behaviors. In [Rhinehart 2020], an imitative model is built which allows to prefer the expert’s
trajectory, contrary to classical reinforcement where all options are possible. The model learns
from Lidar points and the few previous positions of the agent to plan a trajectory according to a
given objective (a point located a few meters or even ten meters from the agent). During the test
phase, the trajectory is given to a PID controller that calculates the commands (see Figure 3.17).

Figure 3.17: Deep imitative training and test phases [Rhinehart 2020].

Finally, End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit
Affordances [Toromanoff 2019] also presents a reinforcement learning framework for autonomous
driving divided in two steps. The encoder is first trained in a supervised way to compute
affordances: semantic segmentation, state and distance to traffic light, distance to crossing, or
ego vehicle angle with the road (see Figure 3.18).

Figure 3.18: Supervised affordance training [Toromanoff 2019].
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The encoder is then frozen and its output is used for reinforcement learning training. In this
framework, the input is composed of 4 road images (to include temporality) and the current
vehicle speed. The driving instruction is given as high level command (turn left, change lane,
etc...), and to take it into account, a branched architecture like [Dosovitskiy, Ros, 2017; Codevilla
2017] is used. This work achieved very high score on CARLA benchmarks [Dosovitskiy, Ros, 2017;
Codevilla 2019] as well as on the CARLA Challenge [CARLA Autonomous Driving Challenge
2019].

Driving in Real World

The majority of the works on autonomous driving with reinforcement is done in simulation.
However, some works are performed directly in the real world. Among the first experiments with
autonomous driving with reinforcement learning we can find the works of Michels et al. [Michels
2005] and of Riedmiller et al. [Riedmiller 2007]. In High speed obstacle avoidance using monocular
vision and reinforcement learning [Michels 2005] a RL agent is trained to avoid obstacles in
unstructured outdoor environment from depth prediction. The vision system is trained with
supervised learning to predict depth from monocular camera input image, and the controller
is trained from depth input to control command with reinforcement learning. In Learning to
drive a real car in 20 minutes [Riedmiller 2007], the controller in also trained with reinforcement
learning, using the car position and current speed as input. The robot car must follow a given
track, and the reward function is based on the distance to the given track (the more the robot is
in the middle of the track, the better). The robot learns to follow a given path in 20 minutes with
reinforcement learning. These two experiments have however been realized with small robot cars.
The scaling on a real car was carried out by Kendall et al. in Learning to drive in a day [Kendall
2018]. Their agent learns to perform lane following in both simulation and real world, using only
images from a front-facing camera as input (as well as speed and steering measurements) (see
Figure 3.19).

Figure 3.19: Reinforcement learning architecture to train a real car to drive in real world [Kendall
2018]
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The algorithm used is DDPG [Lillicrap 2016] which is an actor critic, and the work on
simulation is essentially used to tune the hyperparameters of the framework. On the real vehicles,
a safety driver takes control of the vehicles when it deviates too much from the road center, and
the taking over indicates the end of an episode. This work also explores the use of a Variational
AutoEncoder (VAE). A decoder of the same size as the encoder is added and trained at the same
time as the driving task to reconstruct the original image. The addition of an autoencoder as
auxiliary task allows for much faster and more efficient learning. It is also important to notice
that no transition from simulation to real world is performed, the training to drive in real world
is directly realized on the real car. It is however difficult to use reinforcement learning directly in
the real world. Indeed, RL is based on the interaction with the environment, and on the principle
of trial and error, where the agent learns from its own mistakes. For obvious security reasons,
most of the work is done in simulation, and the few works done in real world are focused on road
following with simple and empty environments.

To overcome these limitations, part of the research is interested in the transition from
simulation to real world. In Virtual to Real Reinforcement Learning for Autonomous Driving
[X. Pan 2017], Pan et al. propose a translation network to bridge the gap between simulation
and real world, so that an agent trained only to drive in simulation is able to drive in the real
world. The translation network enables the transition from simulation to synthetic realistic
image, through segmentation (see Figure 3.20). The first part of the translation network segments
the simulated image to obtain semantic information. The second part transforms the semantic
segmented image to realistic image. The translation network is first trained as a GAN, and then
used to train a driving agent with A3C algorithm. As this driving agent only sees realistic images,
smooth transition to real world can be performed.

Figure 3.20: Virtual to real reinforcement learning framework [X. Pan 2017]. Translation network
transforms simulated images to realistic one through semantic segmentation so that the agent
learns from near-reality images and is able to drive in real world.

Extension: Driving with Birdview Input

We focused earlier on the use of a single onboard camera coupled with driving instructions. In this
section we study some works using more trajectory information to teach an agent to drive. Both
[Agarwal 2019] and [J. Chen 2019] use route information which could for example be provided
by a gps. The agent does not need to plan where to go, which simplifies the task compared to
driving with high level driving instructions. It can be noted that humans are capable of doing
both: we are capable of following a high level command (and unconsciously we plan a trajectory
ourselves), and also of following a gps that provides us a trajectory. These methods are not
mutually exclusive.
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Learning to Drive using Waypoints [Agarwal 2019] proposes a framework for autonomous
driving that uses birdview segmented image and route waypoints as input. As shown in Figure 3.21,
input segmented image is passed through an encoder, and its features are then concatenated with
waypoints features to output steering angle and target speed. Target speed is given to a PID
controller that outputs throttle/brake command. The encoder is first trained as a part of an
autoencoder to reconstruct the segmented image. It is then frozen during RL driving training,
while being regularly finetuned on the collected segmented images to improve stability.

Figure 3.21: Autonomous driving framework using birdview semantic segmentation image called
WRL (Waypoint based DRL) [Agarwal 2019]

This work achieved for the first time high score in Carla CoRL benchmark [Dosovitskiy, Ros,
2017] using only reinforcement learning for driving policy, with more than 90% successful episodes
on navigation task (percentage that falls to 79% - or even 60% on an unseen town - on the
dynamic navigation task).

The work Model-free Deep Reinforcement Learning for Urban Autonomous Driving [J. Chen
2019] from Chen et al. explore even more complex scenarios, with roundabounds (versus only
simple crossroads in [Agarwal 2019]). Like [Agarwal 2019] they use two distinct steps. The
driving agent is explicitly divided into two modules (see Figure 3.22): one perception module
with the latent encoding, and one control module, the RL agent. The encoder is first trained
with supervised learning using a Variational AutoEncoder (VAE), and frozen during RL training
for agent driving control. In this work the input is composed of a birdview image from the map
containing the routing as well as ego vehicle and other surrounding objects.
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Figure 3.22: Autonomous driving framework using birdview image [J. Chen 2019]. The birdview
image contains the map, as well as the route to follow, the position of the agent and of the others
dynamics objects around. The latent encoder is trained via a VAE, and frozen during RL driving
training.

However, even if we can imagine having the road given as input (using GPS), getting the
positions of all the objects surrounding the vehicle (as well as semantic segmented birdview image
used in [Agarwal 2019]) seems more complex in the real world, and requires additional data
processing before this algorithm can be used.

3.3 Applications Related to Autonomous Driving

In the previous section we presented several works on autonomous driving with visual input. In
this section, we introduce related work that are not strictly speaking autonomous driving, but
which ideas can be easily transferable. In particular, we will focus on image based tasks. The
first to successfully apply reinforcement learning to a vision-based task are Mnih et al. in Playing
Atari with Deep Reinforcement Learning [Mnih 2013]. Deep Q learning is successfully applied on
7 Atari games, and later in [Mnih 2015] on the 49 Atari games, and outperforms human levels on
a large number of them.

3.3.1 Navigation in Maze / Vision-Based Game

Slightly more complex game environments than Atari are also used: Deep Mind Lab [Beattie
2016] for maze navigation in [Jaderberg 2016; Mirowski 2016], and Vizdoom [Kempka 2017] which
is a FPS (First Person Shoot) game in [Lample 2017] (more details about the environment in the
section 3.4). These three works [Jaderberg 2016; Mirowski 2016; Lample 2017] use reinforcement
learning with visual inputs, and all use auxiliary tasks to improve the performance of their agents.

In Learning to Navigate in Complex Environments [Mirowski 2016], the authors compare
several architectures on different navigation tasks, ranging from a small static maze to a large
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maze with a random goal. The differences between the compared architectures are the following
(see Figure 3.23): a simple feedforward model, addition of recurrent layer, addition of additional
input (current speed, previous action and reward), and finally additional outputs (loop closure
and depth prediction). These additional outputs, computed as auxiliary tasks, are intended to
teach the agent an intrinsic representation of its environment. Indeed, calculating the depth
allows a better representation of the space. Finally, calculating the loop closure allows the agent
to learn how to detect the places where it has already passed, and thus to allow an efficient
exploration. Training is realized with A3C algorithm [Mnih 2016], and experiences show that
training with auxiliary task allows a better resolution of the most complex tasks

Figure 3.23: Different architectures: (a) is a convolutional encoder followed by a feedforward layer
and policy (π) and value function outputs; (b) has an LSTM layer; (c) uses additional inputs
(agent-relative velocity, reward, and action), as well as a stacked LSTM; and (d) has additional
outputs to predict depth and loop closures. Figure and caption from [Mirowski 2016]

Using auxiliary task to help an agent is also used in Playing FPS Games with Deep Reinforce-
ment Learning [Lample 2017] on Vizdoom FPS game. The goal of the agent in this case is to
navigate in the game to find and kill enemies. The task is then divided in two subtasks: navigation
and shooting. The model used is a small CNN followed by a LSTM layer, and is trained with
DQN. Simple training did not produce good results, so an auxiliary task is added to predict game
features (more precisely the presence of certain entities - enemy, health pack, weapon... - in the
considered frame). This auxiliary prediction is shown to improve the performance of the agent.

Finally using additional task to improve maze navigation is reiterated in Reinforcement
Learning with Unsupervised Auxiliary Tasks [Jaderberg 2016], on the same maze environment
DeepMind Lab [Beattie 2016] like [Mirowski 2016]. The navigating agent called UNREAL is
trained with A3C, together with two types of auxiliary tasks (see Figure 3.24). Auxiliary tasks are
added to enable a faster, more robust and efficient training, and are called unsupervised as they
do not need extra supervision or signal than the base agent. First of all, auxiliary control tasks
are used, which produce additional rewards to the agent. They are composed of pixel changes
(which measures the difference between the pixels of two consecutive images, and encourages the
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agent to explore) and network features (which encourages the agent to activate its hidden layers
as much as possible). The second type of auxiliary task is reward prediction, where the agent
learns to predict the next reward with historical context (i.e. previous image inputs). The replay
buffer is also used to perform value function training to enable a faster value iteration. Contrary
to [Mirowski 2016], the auxiliary tasks used do not need extra features (like depth for instance).
The auxiliary tasks are internal to the agent.

Figure 3.24: UNREAL agent [Jaderberg 2016]

However, gaming environments are simpler than those related to driving (especially in urban
areas). In particular the size of the images used by the agent is relatively small (84ˆ 84ˆ 3 for
[Jaderberg 2016; Mirowski 2016] and 108ˆ 60ˆ 3 for [Lample 2017]). ) compared to that used
for autonomous driving (200ˆ 88ˆ 3 for [Dosovitskiy, Ros, 2017], 384ˆ 160ˆ 3 for [D. Chen
2020], or 4ˆ 288ˆ 288ˆ 3 for [Toromanoff 2019])

3.3.2 Target Driven Navigation

The work in Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning
[Zhu 2017] introduces a target-based navigation. The agent’s goal is to find a specific object in
a room. To do so, the authors Zu et al. use an indoor navigation simulator, the AI2-THOR
framework [Kolve 2017b] (see section 3.4 for details). A network is trained with the image of
the target and the current image seen by the agent as inputs. This makes the algorithm more
flexible to change of target. A siamese network with shared weights is developed containing a
50-layers ResNet pre-trained on ImageNet, and frozen for navigation training. After the siamese
network, feature from both observation and target images are fused and passed through scene
specific layers, i.e. branches for the different rooms (see Figure 3.25 for architecture details). The
scene specific layers are used to catch the characteristics of every scene, and the authors show
that the agent has better results when it contains specific layers for each scene
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Figure 3.25: Target driven navigation network architecture with scene specific layers [Zhu 2017].

Possible actions are discrete: moving forward, moving backward, turning left, and turning
right, and the agent is trained with 20 different indoor scenes with A3C algorithm. In Vision-based
Navigation Using Deep Reinforcement Learning [Kulhánek 2019], the authors tackle the same
problem as [Zhu 2017], increasing complexity. In their case their CNN is neither pre-trained
nor fixed, and their framework is tested in several environments: AI2-THOR [Kolve 2017b], but
also DeepMind Lab [Beattie 2016] and House3D [Wu 2018]. To improve the performance of
their agent, auxiliary tasks are added: both unsupervised tasks like UNREAL: pixel control and
reward prediction [Jaderberg 2016], but also supervised auxiliary tasks: depth map, observation
segmentation and target segmentation (see Figure 3.26).
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Figure 3.26: Target driven navigation network architecture with supervised and unsupervised
auxiliary tasks [Kulhánek 2019]

The two previous papers indicate the target with the help of an image: the agent has a visual
input of the object or place to be found. Others have looked at language-guided navigation.
In both [Chaplot 2018] and [Wu 2018], the instructions are given in common language. In
Gated-attention architectures for task-oriented language grounding [Chaplot 2018], the agent
learns to navigate in a Doom environment following given instruction (eg. ’go to the green torch’,
’go to the smallest blue object’), whereas in Building generalizable agents with a realistic and
rich 3D environment [Wu 2018], navigation takes place inside a house. Wu et al. propose a new
dataset for indoor navigation, and a task consisting in giving the agent a semantic concept (e.g.
go to the kitchen), and considering the task fulfilled when the agent has reached the given room.
In this environment, the agent can chose between a finite number (12) of high level actions. The
indoor target-based navigation task, called RoomNav, is trained with A3C. Both [Chaplot 2018]
and [Wu 2018] use a gated attention mechanism to follow the instruction (see Figure 3.27). This
module takes features from image input and from instruction representation, and computes the
Hadamard product (element-wise matrix product).
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Figure 3.27: Gated attention architecture [Chaplot 2018]

Finally in Learning to Navigate in Cities without a Map [Mirowski 2018], a team from
DeepMind has developed an agent that can solve the Courtier task. This task consists in
navigating without a map, and is actually what humans do in their neighborhood for instance.
When we want to go to the bakery, we find our way with visual help from our environment.
The agent navigates in Google Street View interface, and can chose between a fixed number of
actions (5 actions are possibles, go straight or rotate with ˘22.50 or ˘67.50 ). It has two inputs:
the current image, and the goal description. The goal is described with its proximity with a
set of landmarks, that are specific to each city. To solve the Courtier task, a goal-dependent
reinforcement learning algorithm is used.

Figure 3.28: Overview of goal directed navigation architectures [Mirowski 2018].
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In the Figure 3.28, the different architectures of the agent are shown. GoalNav is composed
of a convolutional encoder plus a LSTM with goal description input, CityNav is a single city
architecture and adds a goal LSTM. The idea is to have two parts in the learning: the global
part, the encoder and the LSTM, and the locale-specific, the goal LSTM. The last architecture,
MultiCityNav, enables to learn in different city. The encoder and the general LSTM are general
enough for all the Cities, and the goal LSTM is City-specific. As a result, the trained agent can
navigate through a lot of big cities (Paris, London, New York), and can learn to navigate in new
cities without forgetting the previously learned ones.

3.3.3 Summary

In this section we have presented work dealing with vision-based navigation. Several interesting
ideas emerge. The first one is the use of auxiliary tasks, either unsupervised - internal to the
agent - like reward prediction, or supervised like depth prediction. As for urban driving, we also
find the idea of branches to navigate in different places (different rooms or different cities), while
keeping a common encoder for feature extraction.

3.4 Tools: Available Simulation Environments

In this section we present a non exhaustive list of available environments to work with. We
divided the environments in 3 categories: games, indoor environments, and driving environments
- simulator or datasets.

3.4.1 Games

Games are probably the simplest and most widely used environments for reinforcement learning
based on visual input. Fast, they allow for effective agent-environment interaction. The first to
be used are Atari games [Bellemare 2013], of which Enduro is the closest to driving. However, it
is very simple, the possible actions are very limited (see Figure 3.29).

Figure 3.29: Enduro
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ViZDoom [Kempka 2017; Wydmuch 2019] and DeepMind Lab [Beattie 2016] are games
designed specifically for AI research. DeepMind Lab is a maze environment, and ViZDoom is
a FPS (first person shoot) game. Both use first person view and 3D environments, and can be
customized by the user. But whereas DeepMind Lab is only a maze, with sometimes rewards to
collect, ViZDoom is a game where the agent has to move and kill its enemies at the same time.
However these games remains virtual environments with no realistic rendering, and no action
that can easily be transfered in real world.

(a) ViZDoom

(b) Deep Mind Lab

Figure 3.30: DeepMind Lab and ViZDoom
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3.4.2 Indoor Environments

(a) MINOS (b) AI2 THOR

(c) HoME (d) House 3D

Figure 3.31: Indoor Simulator

Before focusing on autonomous driving, we had considered navigation in a more general way,
hence the overview of indoor environments. To handle indoor navigation, many indoor simulators
or datasets are available in literature (see Figure 3.31). SceneNet RGB [McCormac 2016] and
SUNCG dataset [Song 2017] are two examples of indoor datasets, with a high number of images.
Both are synthetic, and offer semantic segmentation, however SceneNet RGB [McCormac 2016]
is photorealistic. Minos [Savva 2017], House3D [Wu 2018], HoME [Brodeur 2017] are indoor
simulators where the agent can navigate in a house, and finally, AI2 THOR [Zhu 2017], [Kolve
2017a] contains 3D photorealistic indoor scene where the agent can act on the environment, e.g.
move/push objects.

3.4.3 Driving Environments

With the development of autonomous driving, many learning environments have been developed.
They can be classified in 2 categories: datasets and simulators.

One of the most famous dataset for vision-based driving task is the Kitti dataset [Geiger 2013;
Geiger 2012]. It provides a large number of images collected in Karlsruhe, Germany, with image
and groundtruth data for stereo vision, optical flow, visual odometry, 3D object detection and 3D
tracking. This dataset proposes real world images, in a lot of challenging situations (eg. median
strip, narrow road with parked cars, tramway line, etc...).

Kitti Dataset presents many derivatives: [Menze 2015] with dynamic scenes, Kitti-Road
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Figure 3.32: Image from Kitti Dataset [Geiger 2013]

[Fritsch 2013] for road and lane detection. Virtual Kitti dataset [Gaidon 2016; Cabon 2020]
was proposed as a virtual extension of Kitti. The scenes are cloned from the Kitit dataset, and
extended to add more variety in weather or lighting conditions, as well as groundtruth data for
depth map, semantic segmentation, optical flow and object detection and tracking.

Figure 3.33: Image from Virtual Kitti dataset [Gaidon 2016]

SYNTHIA [Ros 2016] (SYNTHetic collection of Imagery and Annotations) is a large photore-
alistic driving dataset with semantic segmentation and depth prediction. SYNTHIA proposes
a large amount of data (more that 200 000 labeled images), with different lighting conditions,
weathers and seasons (see Figure 3.34), as well as different types of cities (European town, modern
city, highway, green areas). Cityscape [Cordts 2015; Cordts 2016] is also a urban dataset for
semantic segmentation, but with real world images, collected in many city in Germany.
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Figure 3.34: Images from SYNTHIA dataset [Ros 2016]

Figure 3.35: Segmented image taken in Stuttgart from Cityscape dataset [Cordts 2015]

Recently Waymo released their own dataset [Sun 2020] collected in three US cities: San
Francisco, Phoenix, and Mountain View. It provides camera and Lidar data on a huge amount
of real world images. We can mention many other datasets for autonomous driving: CamVid
[Brostow 2009], Torontocity [S. Wang 2017], Robotcar [Maddern 2017], Audi Autonomous Driving
Dataset (A2D2) [Geyer 2020], Appoloscape [Huang 2020], Mapillary [Neuhold 2017], Playing for
Benchmarks [Richter 2017], nuScenes [Caesar 2020] and the very recent BDD100K - DeepDrive
Dataset from Berkeley [Yu 2020].

These datasets, although very complete, do not allow interaction with the environment. For
that it is better to turn to driving simulators. The simplest is Javascript racer [Gordon 2012],
a driving game. It has the advantage of being very simple, and therefore to run quickly on a
computer. However the design is very simplified and far from a real image. Torcs [Wymann 2014],
still a racing game, offers a more photorealistic design, and is used in many research projects.
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(a) Javascript Racer (b) TORCS

Figure 3.36: Racing games Javascript racer and Torcs

Finally for urban driving, we can cite two open-source simulators: Carla [Dosovitskiy, Ros,
2017] and Airsim [Shah 2017]. Airsim is a simulator designed by Microsoft AI & Research,for
both drone flight and car driving, and Carla is a urban driving simulator sponsored by Intel and
Toyota. These two simulators offer photorealistic images, and many features. They both propose
complex urban environments (see Figure 3.37), with different lightning and weather conditions.
Several sensors are available: camera, lidar, radar, semantic segmentation.

(a) CARLA (b) AirSim

Figure 3.37: Airsim and Carla simulators

3.4.4 Summary

We have presented in this section different environments. From simple games to driving simulators,
the literature presents a rather large choice of working environments. We summarize in the
following table the different characteristics of the simulators. As the datasets are not comparable
in the same way, we do not include them in this table.
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Environment 3D Photo Large Fast Customizable Actionable Physics
-realistic -scale

Atari [Bellemare
2013]

‘

VIZDoom [Kempka
2017]

‘ ‘ ‘

Deep Mind Lab
[Beattie 2016]

‘ ‘ ‘

AI2 THOR [Zhu
2017] [Kolve 2017a]

‘ ‘ ‘ ‘ ‘ ‘

MINOS [Savva 2017]
‘ ‘ ‘

House3D [Wu 2018]
‘ ‘ ‘ ‘

SceneNet RGB
[McCormac 2016]

‘ ‘ ‘ ‘

HoME [Brodeur
2017]

‘ ‘ ‘ ‘ ‘

Javascript Racer
[Gordon 2012]

‘

Torcs [Wymann
2014]

‘ ‘ ‘

AirSim [Shah 2017]
‘ ‘ ‘ ‘

CARLA
[Dosovitskiy, Ros,

2017]

‘ ‘ ‘ ‘

Table 3.1: Summary of environment - table inspired from [Savva 2017], [Kolve 2017a], [Wu 2018]
and [Brodeur 2017]. 3D: Supports 3D Settings. Photorealistic: life-like images. Large-scale:
Many environment available. Fast: High FPS possible. Customizable: Adaptable with different
tasks. Actionable: An agent can act on the environment (move objects...). Physics: The
environment is subject to the force of gravity and to other external forces

3.5 Synthesis and Research Trails

In this state of the art, we have studied different frameworks for autonomous driving, and more
broadly for navigation. The methods we presented used supervised learning, reinforcement, or a
combination of both.

It is interesting to note that very few approaches focus on a complete image-based end-to-end
with reinforcement learning, and the few that do are limited to lane following [Kendall 2018;
X. Pan 2017]. Those who focus on more complex driving problems, i.e. urban driving, simplify
their state space by using segmented birdview images [Agarwal 2019], or by pre-training the agent
with supervised learning (CIRL [Liang 2018]), or finally by pre-training a part of the network in
a supervised way to predict affordances that will be used as inputs for a RL agent [Toromanoff
2019]. In none of these cases did the agent learn directly from image and with reinforcement
learning. In this thesis we want to study the feasibility of end-to-end learning with reinforcement
learning.

We also notice in the literature a wide use of intermediate affordances or representations,
both in IL [Sauer 2018; C. Chen 2015; Al-Qizwini 2017; Mehta 2018] and RL [Toromanoff 2019;
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D. Li 2019]. They can be classified in two categories: implicit or explicit. When they are explicit,
affordances usually are features specific to driving (distance from the previous car, center of the
road, etc.). These affordances allow more explicit learning, by reducing the black-box effect of
neural networks. On the other hand, these are made by and for humans, and their choice can bias
the agent. Indeed, is it useful to predict that the car in front is at 5.5m, or is it sufficient to say that
there is a car in front and to know if it is rather far or rather close? Intermediate representations
are in a way implicit affordances, the network is trained for a certain task (semantic segmentation
for example, or reconstruction of the original image using a VAE), and it is the intermediate
representation that is used by the agent for autonomous driving. There are several ways to train
these affordances / intermediate representations. They can be trained at the same time as the
driving task, so they are called auxiliary tasks, like in [Mehta 2018; Hawke 2019]. Affordances can
also be trained separately, in a supervised way, which represents the large majority of cases [Z. Li
2018; D. Li 2019; J. Chen 2019; Toromanoff 2019; Sauer 2018; C. Chen 2015; Al-Qizwini 2017].
They are then used by a PID controller, or as input for a driving agent. This allows to reduce
the state space, especially when learning to drive is done in RL [Toromanoff 2019]. However,
we believe that decoupling perception and control may reduce the performance and robustness
of the driving agent, since there is no direct mapping between image perception and driving
control. Used in RL for navigation in maze [Jaderberg 2016; Mirowski 2016], end-to-end training
using auxiliary tasks seems to us to be a promising trail, still little exploited in a complex task
such as autonomous driving with RL in an urban environment. Auxiliary tasks allow to train an
agent using end-to-end while guiding the training. Other ideas have been considered to assist
reinforcement learning, all of which are presented in the appendix A.

In this thesis, we will focus on reinforcement learning with raw image input and continuous
actions for conditional urban driving. The choice of continuous action was made to bring ourselves
closer to reality and not to depend on a given discretization. However, in view of the difficulty
of the driving task, we will study methods to accelerate learning and increase its performance,
in particular by adding auxiliary tasks. Because of the trial and error essence of reinforcement
learning, its need for interaction with the environment and therefore for obvious safety reasons,
our work will be done in simulation. We decided to work with Carla simulator [Dosovitskiy, Ros,
2017]. Indeed Carla is an urban driving environment with many possible sensors as well as a
certain variability of the environments. Moreover Carla proposes an autopilot mode, and is easy
to handle. Finally Carla offers two evaluation benchmarks (CoRL and NoCrash) on which more
and more researchers compare their algorithms, and also proposes the Carla challenge [CARLA
Autonomous Driving Challenge 2019], where complex driving situations are evaluated (handling
intersections, overtaking, multi lane driving, etc...). Carla also benefits from a large and growing
community (some of which implement their own maps, such as interactive traffic scenarios in
[Błażej 2020]). In Table 3.2 we summarize the major approaches from the state of the art, and
their results on Carla CoRL benchmark. It is important to note that very few approaches use
reinforcement learning, and none of them perform end-to-end RL with RGB visual input. Some
of the work presented in the table 3.2 is also done concomitantly with the work presented in this
thesis.
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Training Details

Navigation Dynamic Navigation
Training New New New town Training New New New town
conditions weather town & weather conditions weather town & weather

MP [Dosovitskiy,
Ros, 2017] Modular Pipeline 80 94 24 47 77 89 24 44

RL [Dosovitskiy,
Ros, 2017] End-to-End RL using A3C 14 2 3 6 7 2 2 4

CIL [Codevilla
2017] End-to-End IL 86 84 40 44 83 82 38 42

CIRL [Liang
2018]

IL followed by RL finetuning with
A3C 93 86 53 68 82 80 41 62

CILRS [Codevilla
2017] CIL + speed prediction 95 96 69 92 92 96 66 90

MT [Z. Li 2018] Multi-task IL that predicts semantic
segmentation and depth 81 88 72 78 81 80 53 62

CAL [Sauer 2018]
Supervised training of affordances
(distance to vehicle, red traffic light,
...) fed to a controller

92 90 70 68 83 82 64 64

ILA [Cultrera
2020]

End-to-End IL with attention mod-
ule 91 92 53 67 89 92 40 56

LSD [Ohn-bar
2020]

Situational Driving: supervised mix-
ture of models + context embedding
+ CMA-ES finetuning

99 100 98 98

WRL [Agarwal
2019]

Waypoint based DRL: birdview seg-
mented image input + waypoints
to indicate direction + speed PID
controller

99 99 94 94 79 79 60 60

LBC [D. Chen
2020]

Learning by Cheating: two stages
training with privileged agent hav-
ing access to environmental layout,
and teaching a vision-based agent

100 100 98 100 100 96 99 100

MaRLn
[Toromanoff

2019]

RL. Encoder pretrained in a super-
vised manner with affordances (seg-
mentation, distance to crossing, traf-
fic lights states, ...) and fixed during
navigation RL training (DQN)

100 100 100 100 100 100 98 100
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Chapter 4

End-to-End Autonomous Driving on
Circuit with Reinforcement Learning
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4.1 Introduction

The purpose of this chapter is to highlight some of the parameters necessary for the convergence
of a reinforcement learning algorithm in the case of autonomous driving. The objective here is to
show that an agent is able to drive with the help of a RL algorithm using continuous actions.
Reinforcement Learning algorithms are known to be extremely sensitive to hyperparameters, this
is why we decided to first place ourselves in a simpler environment than the complete CARLA
maps. Working in a simpler environment allowed us to make first choices of global design of our
framework. The work in this chapter therefore focuses on the lane following task, conditional
navigation (with intersections) will be added in the next chapter. We will therefore deal with
the network model, the inputs and outputs, the design of the reward function as well as the
hyper parameters that allow a RL algorithm to converge. The objective is first to understand the
influence of the different parameters, justify the choices we have made, and detail them in order

65
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to ensure the reproducibility of our work. The main contribution of this chapter is therefore
to detail the different elements that play a key role and their influence on the performance of
the driving agent. First we will present the simplified environment we use. It is a circuit in
which we will navigate in optimal conditions, i.e. weather with good visibility. It is in this
environment that we will study the different parameters essential to the good convergence of PPO
for autonomous driving. Later we will add some difficulties, such as different weather conditions,
data augmentation, and some obstacles.

4.2 Background

In a first part we will summarize the state of the art from Chapter 3 concerning the lane following
task from visual input with reinforcement learning. We will take the opportunity to detail the
reward functions used for autonomous driving in RL. We will then insist on the importance of the
choice of hyperparameters, and on some good practices. Finally we will present some upstream
choices, such as the choice of a framework.

4.2.1 Lane Following with Reinforcement Learning

Kendall et al. are among the first to take an interest in real-world driving with reinforcement
learning in Learning to drive in a day [Kendall 2018]. Their approach combines training an
autoencoder that reconstructs the image to reduce the state space, and learning to drive. The
work is done on a real vehicle, with a driver who regains control if the car goes off the road -
which ends the episode. The algorithm used is DDPG. This work showed for the first time that it
is possible to use reinforcement learning for autonomous driving in real environment. However,
the speed limit is set at 10km/h, and to explore higher speeds, a lot of work is done in simulation.
Wolf et al. in [Wolf 2017] use DQN, with discrete actions, for driving in a fully simulated circuit
at constant speed. The input images are however very simple, a mask with the lines of the road.
To handle the more complex images of Torcs simulator, Li et al. propose a two-step training
in Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving
[D. Li 2019]. The first step is to extract track features from the image: distance to lane marking,
the heading angle difference, and track heading - which indicates whether the road is straight or
whether it turns left or right. The network for extracting these features is trained in a supervised
way. Then these features are used as input for a RL agent that computes the steering wheel angle
using DPG. Like [Wolf 2017], the speed is also imposed, and varies between 60 and 75km/h. Other
works also manage the speed control, in addition to the steering wheel angle. This is the case in
both [Perot 2017; Jaritz 2018]. These two approaches involve a small CNN (containing 3 layers
of convolution) with LSTM, with A3C and discrete actions, for racing driving on WC. Finally
in Virtual to Real Reinforcement Learning [X. Pan 2017] an agent is trained on realistic images
to allow transfer to the real world. A translation network is trained using a GAN to transform
simulation images - Torcs - into realistic images (through semantic image segmentation). These
realistic images are used as input/state for the RL agent which is trained with A3C.

Overview of Reward Functions

We present in table 4.1 a brief overview of the rewards function used in lane following, as well as
the reward used in original Carla work [Dosovitskiy, Ros, 2017] - since we are using this simulator
and we want to move to urban driving afterwards, and also because this reward can also be
applied to lane following.
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The works on lane following presented above have either the objective of driving as fast as
possible, or the speed is controlled independently and the agent focuses only on lateral control.
We will present in detail the rewards for conditional driving in the next chapter, however it
is interesting to note that most of the rewards for urban driving are additive, while they are
sometimes multiplicative for race driving. However, in spite of a certain disparity in the formulas
of the rewards functions, we generally find the same components:

• Speed and/or traveled distance

• Deviation from the center of the road

• Angle between vehicle’s direction and desired trajectory.

• Punishment in case of collision / offroad / countersteering

4.2.2 Hyperparameters Importance & Best Practice

Replication of results is essential to allow for comparison and improvement. Both papers
[Henderson 2018; Islam 2017] investigate the reproducibility of results in reinforcement learning.
These two works highlight the variance that exists between different identical runs of the same
algorithm. In the Figure 4.1 we can see the results of 10 runs of the TRPO on the HalfCheetah-v1
environment, separated in two sets of 5 runs. We can see the variance that exists between identical
runs where the only variation is the random seed. Usually the results presented in the literature
show the best results obtained, or an average of a small number of trainings.

Figure 4.1: Average return on HalfCheetah environment of 10 identical trainings with different
random seeds

The results also vary greatly depending on the network policy and activation features. The
activation functions that seem to perform best are the relu and leaky relu. The importance of
reward scaling is also highlighted in [Henderson 2018], and a badly chosen scaling can prevent
convergence. Several techniques can be found in literature:

• Rescale reward with a factor: ragent “ σ ˆ r (usually σ “ 0.1) like in [Duan 2016] or [Gu
2016]
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• Clip reward between r´1, 1s like in [Hessel 2018]

• Rescale reward between r´1, 1s

• Log rescaling ragent “ signprq ¨ logp1` |r|q [Hester 2017]

Figure 4.2: Comparison between log rescaling (red: y “ signprq ¨ logp1` |r|q ), rescaling factor
(blue: y “ 0.1ˆ x), and clipping (green: y “ maxp´1,minpx, 1qq

In What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study [Andrychow-
icz 2021] is performed an extensive study on many hyperparameters and different aspects of
training - losses, network architecture, optimizers... The authors then give different recommenda-
tions. We note among other things that the optimizer Adam is a good choice, that it is absolutely
necessary to normalize the observation, and that using GAE (Generalized Advantage Estimation)
[Schulman, Moritz, 2015] for advantage estimation works well. There are also many parameters
that need to be tuned (learning rate or discount factor) depending on the environment, but this
work gives a starting point.

Finally we will present two very important tricks from DeepMimic: Example-Guided Deep
Reinforcement Learning of Physics-Based Character Skills [Peng, Abbeel, 2018] that make RL
algorithm work: the initial state distribution, and early termination. First, not initializing the
agent at the same initial state allows to explore more, and probably getting to a rewarding
state quicker. It will also make the agent learn every part of the task independently. Indeed,
in the case of DeepMimic, the initial state is sampled in the reference motion. So if the task
is to learn how to do a backflip, the agent will learn to jump and land at the same time, as it
may be initialized when the agent is already in the air. If the initialization was only a fixed
state, it would have learned first to jump, but it would have needed to be able to land before
getting rewards. So having a good initial state distribution can be necessary to make the agent
learn. Early termination also enables to accelerate the learning process. The goal is to stop the
episode as soon as the agent is put in a too bad situation (lying on the ground for instance for
human-shaped agent, or stuck against a wall). By doing so, it avoids having a collection of useless
data, and the learning will focus on better data. This early termination in used in Learning to
drive in a day [Kendall 2018]. Episode ends as soon as the car starts getting off the track, to
avoid exploring useless places.

4.2.3 Upstream Choices

We presented in chapter 2 the main reinforcement learning algorithms. As mentioned, we chose
the PPO algorithm for several reasons. First PPO is an actor-critic algorithm that allows the use
of continuous actions. It is simple to implement, and allows the sharing of parameters between
the policy and the value function, as well as with potential auxiliary tasks. PPO also has high
performance on Atari games, and in particular far surpasses A3C and ACER on the Enduro
game, the Atari game that is closest to autonomous driving.

We chose not to implement it ourselves and to use a framework. Reinforcement learning
algorithms are sensible to the implementation. In Deep Reinforcement Learning that Matters, the
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authors compared the results of different implementation of the same RL algorithms and noticed
huge variance in results. That is why we wanted to work with a tried-and-tested implementation.
We chose stable baselines [Hill 2018], a fork of Openai Baseline [Dhariwal 2017], the latter being
no longer maintained. Stable baselines presents a unified interface for all RL algorithms. It
also contains additional optimizations for PPO that do not appear in original paper. These
additional optimization - like value function clipping, or advantage normalization - may have a
major impact on the performance [Engstrom 2019]. More recently, Tensorflow proposes its own
interface, TF agent [Guadarrama 2018], and we can also cite rllab [Duan 2016], which is not
maintained anymore but refactored by garage [contributors 2019].

Finally, we chose to work in simulation with the Carla simulator. We chose to use the best
possible image quality (two choices are possible, Low or Epic quality), and to work at 20 FPS.
There is a wide variation in the choice of frame per second in the literature, from low frequency
(10 FPS for [Toromanoff 2019; D. Chen 2020], 12 in [Rausch 2017]), to intermediate (30 FPS in
[Bojarski 2016]) or even high frequency for race and high speed driving (60 FPS [Y. Pan 2017]). At
the moment, it is not possible to use the Carla simulator at less than 10 FPS1 . The physic engine
is clamped at a minimum of 10FPS, so if the simulator is set to less, it is no longer synchronized
with the physic engine, and therefore the simulator measurements become inaccurate or even
false (speed ‰ distance

time ). We are not in the case of a speed race, but focus on urban - or maybe
highway - driving. The speed will therefore be between 0 and 100km/h approximately. 50 km/h
corresponds to about 13.8m/s, and 100km/h at 27.7m/s, so at 10 FPS, when the vehicle drives
at 50 km/h, there is 1.4m between each frame, and almost 3m at 100km/h, which seems a bit
too much. We decided to divide these figures by two, and therefore to work at 20 FPS.

4.3 Experiments

4.3.1 Environment

Driving well is a very complex task. When we drive, we follow a certain path, we pay attention to
others - vehicles, pedestrians,... and we comply with traffic regulations. This leads to an ensemble
of tasks that are very difficult to implement. Therefore we have split the tasks, starting with
simple driving without obstacles, and we gradually increase difficulty (adding fixed and moving
obstacles, intersection, navigation with a given path, ...). The first objective is then to measure
how well the car is able to follow a road, without moving obstacles (like other cars or pedestrians),
and no crossing. To do so we built our own map (see Figure 4.3) which is a closed-loop circuit,
with one lane in each direction. We designed our map so that there are various environment
conditions: straight road, sharp turns, trees on the side of the road, buildings, ... We integrated
this map into Carla simulator to run our experiments. The first step consisted in training our
agent to follow its lane, and drive at correct speed. The creation of new maps - with RoadRunner
software - and their integration into the simulator is a tedious work, that is why only one training
circuit was built (we will see in chapter 6 the second circuit created to study generalization).
However, it was important to start with a circuit in order to validate the training setup in a
simpler environment, especially without crossings management, which we will study in the next
chapter.

1https://github.com/carla-simulator/carla/issues/695

https://github.com/carla-simulator/carla/issues/695
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Figure 4.3: Training circuit

4.3.2 Model

In this section we will first present the neural network used in a detailed manner, then the
hyperparameters that have proven to be necessary. The network used is based on a Resnet34
[He 2016]. The Resnet18 and Resnet34 networks are classically used for the perception module
for autonomous driving [Toromanoff 2019; D. Chen 2020; Hecker 2019], and the work [Codevilla
2018] have shown good performances for Resnet 18 and 34, and a drop in performance when
switching to Resnet50. Figure 4.4 shows the neural network used by the PPO algorithm. The
inputs are an image It P RW˚H˚C , and a vector containing the measurements - current speed and
current steering angle. The network outputs both action and value - since PPO is an actor-critic.
Details are given in the input/output section 4.3.4. Table 4.2 and Figure 4.5 show details on the
Resnet34 architecture. The activation functions used are ReLu.

Image
It

Resnet34

Speed
steering
angle

dense
layer
128

concat
dense
layer
512

dense
layers

2ˆ 256

Policy
π

Action
at

Value
func-
tion
V

dense
layers

2ˆ 256

Value vt

Figure 4.4: Reinforcement Learning Architecture



Chapter 4. End-to-End Autonomous Driving on Circuit with Reinforcement Learning 72

Output size
Input [64,192]

First layers [32,96] conv[7*7], 64, stride 2
[16,48] maxpool[3*3], 64, stride 2

Encoder block 1 [16,48] 3ˆ

#

convr3 ˚ 3s, 64

convr3 ˚ 3s, 64
no strides

Encoder block 2 [8,24] 4ˆ

#

convr3 ˚ 3s, 128

convr3 ˚ 3s, 128
stride 2 on first conv

Encoder block 3 [4,12] 6ˆ

#

convr3 ˚ 3s, 256

convr3 ˚ 3s, 256
stride 2 on first conv

Encoder block 4 [2,6] 3ˆ

#

convr3 ˚ 3s, 512

convr3 ˚ 3s, 512
stride 2 on first conv

Table 4.2: Resnet34 as Encoder

+

convr3, 3s

convr3, 3s

+

convr3, 3s

convr3, 3s, stride 2

convr1, 1s, stride 2

Figure 4.5: Encoder block architecture for block 2,3,4. Encoder block 1 has no strides so residual
are both simple additions

Hyperparameters

Once the algorithm and the network have been chosen, the hyperparameters must be set. We based
ourselves on the hyperparameters given in the original PPO paper [Schulman 2017], in particular
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for the discount factor γ set to 0.99, the clipping parameter ε “ 0.2 and the value function loss
weight c1 “ 0.5 (see equation 2.58 for full PPO loss). Since PPO is an on-policy algorithm, it
alternates between data collection, and policy/value function update with backpropagation. So at
every iteration, a batch of steps is collected with all the actors running. To adjust the batchsize,
we performed some quick tests on the Enduro environment. We found, all other things being
equal, that the learning converged for a batch size of 1024, but not for 512 or 128, therefore we
set the batchsize to 1024. We had 8 simulators running in parallel to collect data , so each one
collected T “ 128 training steps. Once this batch is collected, update takes place. The whole
batch is shuffled to avoid correlated data, and split in mini-batch for backpropagation. We chose
the minibatch size of 128 - so the batch is split in M “ 8, and the batch will be gone through 4
times (number of epoch = 4). The policy network outputs µ which is the mean of a Gaussian
distribution used to compute the action at:

at „ N pµptq, σptqq (4.1)

We decided to set the variance σ linearly decreasing from 1 to 0.2 over training, but it can also
be learned as an output of the policy (see Figure 4.6a). Variance decay enables high exploration
of the agent at the beginning of the learning process, and a controlled decrease of this exploration
during training. Training is realized with Adam optimizer and a exponentially decreasing learning
rate, from 5 ¨ 10´4 to 5 ¨ 10´6 over training (see Figure 4.6b).

(a) Standard deviation (b) Learning rate

Figure 4.6: Evolution of standard deviation and learning rate over training

Table 4.3.2 summarizes the principal hyperparameters and their values, using notations from
[Schulman 2017] ,

hyperparameter value
clipping parameter (ε) 0.2

discount factor γ 0.99
value function loss weight c1 0.5

GAE parameter λ 0.95
nb of environments N 8
nb of minibatch M 8

nb of collected data per environment T 128
nb epoch 4
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4.3.3 Training and Evaluation Benchmark

Since we created our own environment, the benchmark presented by CARLA authors cannot
be applied [Dosovitskiy, Ros, 2017]. We were inspired by it to create our own benchmark that
measures how well the car is driving. Relevant measurements are the following: average speed
during one episode, traveled distance in one episode (as there is no ending point, episode ends
when car crashed or with time-out), average cross-track error (cte), average angle between car
and road (atr) (this will check if the car oscillates or is aligned with the road), and the number of
episode that end with a collision. Evaluation will be made with the same conditions as training
(same circuit, same weather condition). We will explore generalization on chapter 6, on both
circuit and full town. The circuit length is around 2.5km, so we chose 6 starting points around the
circuit (3 in each direction), and run episodes of maximum 2000 steps, which amounts to about
1km at 40km/h and 20 FPS. So these 6 episodes roughly cover the whole circuit. On Figure 4.7 we
show the evolution of discounted reward during training over 10 Million steps. Under the simplest
conditions we work with - easy circuit and weather, the trainings are stable and all converge
in the same way, so we present only one learning curve. However, in more complex conditions
(obstacles and difficult weather at the end of this chapter, and with conditional navigation in the
next chapter), we will see that identical trainings have different performances. Table 5.4 show
the results of our baseline training with optimal parameters on our benchmark.

Figure 4.7: Discounted reward during training

Baseline
speed km{h 38.40 (4.52)

cte m 0.05 (0.06) )
atr ° 0.98 (1.00)

distance m 1066.55 (6.19)
collision 0/6

Table 4.3: Result of our baseline training on our benchmark. For every measurement is shown
the mean and variance over the test episodes.
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4.3.4 Input/Output

In this section we detail the input/output of our reinforcement learning training.

Input

A compromise had to be found between a large image that makes it possible to clearly distinguish
the important elements - crossroads, red lights, traffic signs - and a small image that allows
large batches - and therefore faster and more efficient training. We chose an image size of
192ˆ 64ˆ 3, of which an example can be seen on Figure 4.8. This image size is close to the one
from original CARLA work [Dosovitskiy, Ros, 2017] with RGB image of size 288ˆ 88, but rather
small compared to recent state of the art work (LBC [D. Chen 2020] use 384ˆ 160 RGB image
and MaRLn [Toromanoff 2019] use 4 RGB images of size 288ˆ 288).

Figure 4.8: Example of input image - here on Town01. Size is 192ˆ 64ˆ 3

The two other inputs are measurements that indicate the current state of the vehicle: current
speed and current wheel angle. All inputs are scaled: RGB image is scaled between 0 and 1,
and wheel angle is already P r´1, 1s. Current speed is in km/h, and is scaled (by 0.01) during
training. Figure 4.9 shows the comparison of the discounted reward during training with and
without speed scaling. Even if both training converge, speed scaling - as well as all other input
scaling - speeds up the convergence.

Figure 4.9: Comparison of discounted reward between training with speed normalization (orange)
and without (pink).
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Output

In Carla simulator, the necessary driving controls are acceleration P r0, 1s, brake P r0, 1s, and
steering wheel angle P r´1, 1s. In the literature there are two ways to represent acceleration and
brake values: one common output, or two separate outputs. However, as it is not possible to
accelerate and brake at the same time, we considered it simpler to have a single output for speed
management. We thus combined acceleration and braking into a single output: acceleration/brake
P r´1, 1s (positive to accelerate, and negative to brake).

The angle of the steering wheel can vary from -1 to 1 (which roughly corresponds to -90 to
+90°). Regarding the steering wheel angle, we have found that if the output is directly the angle,
the latter can vary enormously between two iterations. This causes several problems. The first
one is that it is not close to reality, the steering wheel cannot turn completely in one twentieth of
a second. The second one is that it produces oscillations of the vehicles if the steering wheel varies
too much between two iterations. We have compared in Table 4.4 the results of two trainings,
one where the output is directly the wheel angle, and the second where the output is the delta of
the wheel angle. The difference on the benchmark is not huge but we can see that the angle of
the car in relation to the road is higher. But above all, by observing the behavior of the agent, we
can see that it oscillates much more, with a much less comfortable behavior for the passengers.

We have added a parameter, which we call the hardness of the steering wheel, which indicates
how much the steering wheel can move at the most with each iteration. We have estimated that
the steering wheel can rotate from one side to the other in 2 second. Therefore at 20 FPS, 40
frames are necessary for the steering wheel to go from -1 to 1, the steering wheel can then rotate
to a maximum of 2{40 “ 0.05 per step. The steering wheel angle is then:

θt`1 “ θt ` 0.05ˆ∆θ. (4.2)

Baseline with ∆θ as output Training with θ as output
speed km{h 38.40 (4.52) 39.73 (5.08)

cte m 0.05 (0.06) 0.09 (0.08)
atr ° 0.98 (1.00) 1.88 (1.65)

distance m 1066.55 (6.19) 1103.67 (5.92)
collision 0/6 0/6

Table 4.4: Comparison of performance on our benchmark between training with steering angle θ
as output and training with the delta of the steering angle ∆θ as output.

4.3.5 Design of Reward Function

As the reward is the only information the agent obtains from the environment, it is a very
important component in reinforcement learning algorithm. As we have seen in the section 4.2.1,
there is a wide variety of rewards. We have chosen an additive reward, we will see in the next
chapter that these are the most used for city driving which is our final goal.

The reward function used is a weighted sum of several terms: the gap between current speed
st and objective speed sobj (in km{h), the cross-track error (distance to road center) cte (in m),
and the angle between the car and the road atr (in degrees). There is also a negative reward
when the car collides with an obstacle or runs off the track.
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(a) Illustration of cross-track error d and
angle α used to compute the reward (b) Illustration of speed reward

Figure 4.10

r“

"

ws ˆ rspeed ` wcte ˆ rcte ` wa ˆ rangle
rpunish when collision or offroad (4.3)

with

• rspeed “ target_speed´ |target_speed´ speed|q: computes the gap between target speed
and current speed. The target speed is set to 40 km/h

• rcte “ p1 ´ dq with d the cross track error, i.e. the lateral distance of our agent to road
center

• rangle “ p15´ |α|q with α the angle between the direction of the agent and the trajectory.

• ws, wcte and wa their associated weights, respectively 1.0, 10 and 0.1, determined experi-
mentally to balance the different terms of the reward.

• rpunish “ ´100

Although we have not studied in details the influence of weights on the agent’s behavior, we
have observed a strong influence of the reward sign. Constants are added in rcte and rangle so that
the corresponding reward is positive if the car is roughly aligned with the road (i.e. α ă 15 °) and
not too far from road center (d ă 1m). Figure 4.11 shows the discounted reward with and without
these constants. On the red curve the constants were set to zeros, and we can observe training
takes much longer to stabilize. In Table 4.5 we compare the results of the training with mostly
positive reward and the training with negative reward - that differ only from two constants in
reward function. The results at 10 Million steps are comparable, even if we observe a much higher
variance when the reward is negative. At 7 millions steps, it is obvious that the training with
the negative reward is still learning, whereas the baseline is already stable. It is also interesting
to note that the baseline at 7 million has a higher speed, because our agent learns first how to
accelerate, and later it learns to brake when it is able to drive around 40km/h.
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Figure 4.11: Comparison of discounted reward during training between mostly positive (orange)
and negative (red) rewards

Baseline 10 M Baseline 7 M Neg reward 10M Neg rewards 7M
speed km{h 38.40 (4.52) 40.71 (4.73) 35.85 (13.65) 19.54 (24.81)

cte m 0.05 (0.06) 0.06 (0.05) 0.15 (0.18) 4.45 (9.94)
atr ° 0.98 (1.00) 0.92 (0.95) 3.18 (5.56) 33.03 (36.15)

distance m 1066 (6.19) 1130.83 (5.92) 995.93 (262.76) 450.75 (279.15)
collision 0/6 0/6 0/6 2/6

Table 4.5: Comparison of performance evolution between positive and negative rewards

We also scale our reward during training. We tested the four options presented in Section 4.2.2,
namely scaling factor (we tested σ “ 0.1), reward clipping in r´1, 1s, reward rescaling between
r´1, 1s and log rescaling: rscale “ signprq ¨ logp1`|r|q. With no normalization, our training could
not converge. We tested these four options, and both rescaling with 0.1 factor and log rescaling
gave satisfactory results, whereas clipping or rescaling between r´1, 1s did not work out well. We
decided to use log rescaling since (even if it flattens bigger values).

4.3.6 State Initialization, Early Termination and Partial-Episode Bootstrap-
ping

We applied both reference state initialization and early termination from [Peng, Abbeel, 2018] we
presented in Background (see Section 4.2.2), adjusted to our problem. First we will sample initial
states around the whole circuit, the car won’t start from the same starting point. Moreover, the
agent will not be placed always at the center of its lane: we shift it randomly so that it is not in
the middle, and we also rotate it slightly (between -30 and 30 degrees). This way, we encourage
the agent to first learn how to correct its trajectory to follow the road. The termination will
occur if the car collides, but also if is goes off the road - and also in case of a timeout.

We also added partial-episode bootstrapping from [Pardo 2018], which consists in modifying
the reward for a terminal state if the termination is due to time limit (see eq. 4.4). Indeed for the
lane following task, as we work in a closed loop circuit, there is in theory no limit for the driving,
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and a timeout is only set to diversify experiences. Therefore, reaching this limit should not be
penalized and we give the expected long term return instead of the actual reward to compensate.

rterminal_state “

"

r at environmental termination
r ` γ ˆ valueps1q at timeout (4.4)

Figure 4.12 shows the comparison of the value loss with and without using Partial Episode
Bootstrap, and we can observe that convergence of value loss is much better when using Partial
Episode Bootstrap.

Figure 4.12: Comparison of value loss between with (orange) and without (blue) partial episode
bootstrap

The influence on the performance of partial episode bootstrap on the circuit was not visible
on the car behavior, but we did notice a huge effect when working in town.

4.3.7 Increased Complexity: Diverse Weathers and Bad Parked Cars

We have previously placed ourselves in the simplest possible conditions for hyperparameters
tuning - ClearNoon preset. We are going to increase the difficulty in this section, both by training
with different weather conditions and adding data augmentation, and by adding fixed obstacles
on the trajectory of our agent.

Different Weathers and Data Augmentation

To add robustness, diverse weathers and times of the day are used during training, as well as data
augmentation on images, as commonly used in supervised deep learning. Data augmentation
includes random variation in hue and saturation , brightness and contrast, along with conversion
to gray scale, partial erasing of the image salt and pepper noise, and Gaussian blur (see Figure 6.3).
We used the python library imgaug [Jung 2018] to augment the images. The data augmentation
is applied to each image independently, so it changes along an episode. We also randomly
changed the color on semantic element of the image during training, we will see on the chapter on
generalization (Chap 6) that it improves generalization capabilities. Our benchmark is extended
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to add new weathers. We used 6 training and 6 test weathers, and each episode will be run with
each weather, for a total of 36 training episodes and 36 test episodes.

(a) Original Image (b) Gaussian Blur (c) Random Erasing

(d) Salt and Pepper Noise (e) Changes in hue / saturation (f) Change in brightness

Figure 4.13: Example of data augmentation

Addition of Bad Parked Cars

To teach our agent to avoid obstacles, we randomly placed cars that overflow slightly on the road,
like badly-parked cars, and trained the model from scratch. The cars are placed so that our agent
meets them regularly (about 3 or 4 per kilometer, but their placement and occurrence is random).
We present on Table 4.6 the results on training conditions with and without obstacles. We can see
that our agent drives perfectly when there are no obstacles, in both training conditions and new
weathers, but that is collides more often in unseen weather conditions when we add bad parked
cars. We can see that the agent is less efficient when the difficulty of the task increases (addition
of obstacles), but also that it has difficulties to generalize (with different weather conditions).

Training condition New weather
With cars No cars With cars No Cars

speed km{h 36.4 (7.8) 37.3 (6.3) 36.9 (6.3) 36.2 (8.8)
cte m 0.2 (0.3) 0.1 (0.1) 0.2 (0.3) 0.1 (0.2)
atr ° 1.7 (1.5) 1.1 (0.2) 1.7 (1.3) 1.0 (0.3)

distance m 978.7 (274.3) 1035.3 (175.0) 881.1 (332.7) 1005.2 (243.8)
step 1900.7 (399.3) 2000.0 (0.0) 1724.4 (545.1) 2000.0 (0.0)

collision 3/36 0/36 10/36 0/36

Table 4.6: Performance of training with bad parked cars as obstacles: results with and without
obstacles, on training and new weather conditions
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Figure 4.14: Discounted reward during 3 trainings with bad parked cars as obstacles.

In the learning curves (Figure 4.14), we notice on one of the curves a drop of the rewards at
the end of the training. There can be several reasons: instability of reinforcement learning in
general, or an ill-adapted standard deviation used for Gaussian policy distribution. However the
training without obstacles all converge, so the reason may lie in their addition. The probable
explanation is that our agent learns to drive closer and closer to the road center, so that it rubs
the other cars (Figure 4.15). When it overtakes a car, as soon as it passed it, our car pulls
back and may hit the other car. The problem is that our car don’t see the other anymore, as
we only have one front camera, and no memory in our model (neither recurrent network, nor
framestacking...).

Other
car

Our
car

Figure 4.15: Drawing of a collision where our agent pulls back too quickly.

Hereunder on Figure 4.16 is an example of the last observation of a failing episode. Our
car scratched the other one by folding too early to the right, so the episode stops and indicates
a collision. However, we observe that the other car does not appear on the on-board camera
anymore, so the agent doesn’t know it is here anymore.
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(a) Top view (b) On-board camera

Figure 4.16: Example of a collision with a car invisible from the onboard camera

4.3.8 Adding memory

We identified a problem when our agent overtakes obstacles and pulls back too quickly. To
overcome this issue, we explored several tracks of memory addition (with a time limit of one
month, since we wanted to move to Carla towns, and not stick to the circuit too long):

• Framestacking: we stacked 4 images as input of our CNN to add temporality (not necessarily
the 4 consecutive frames, but with some delay to add some distant memory)

• Representation aggregation: 4 frames were taken, each independently passed through the
CNN, and the resulting representation were either passed through conv1D (conv 2+1 D
[Tran 2018]), or concatenated, and then passed thought the last dense layers

• Lstm/Gru: addition of recurrent network layers in the CNN

There are also other ideas (adding side and/or back cameras, or adding the history of previous
actions as input) that we have not explored. On Figure 4.17 are represented the different
architectures that we have studied for memory addition.
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(b) Memory layer (gru or lstm)
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(c) Data aggregation. Four consecutive frames are separately passed through the encoders - with shared
weights - are their features are aggregated, either with a concatenation, or with a convolution 1D.

Figure 4.17: Comparison of three architectures with memory component for conditional driving.

The network with LSTM/Gru layers were very difficult to converge, adding even more
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instability to our problem. We tried several methods, pre-training the encoder with semantic
segmentation, changing the batch size, but only rare configurations converged (training from
scratch with LSTM - we failed to converge the network with a GRU layer). And in the rare case
the network with memory layers did converge, the driving results were much poorer than our
baseline. The mean speed was barely higher than 20km/h - for a target speed of 40km/h, and
collision rate is around 1/3, which is not smaller than the baseline. Training with LSTM layer
was also much slower than the baseline (5 days vs 3). Due to the complexity of training a network
with memory layer, we have abandoned this track. Despite our efforts, we have also not been
able to converge any training with aggregation. Since these training sessions are also long, we did
not dig in that direction.

The only one that produced results comparable with the baseline was image framestacking.
We stacked 4 frames as input to the encoder, taking 1/5 of the frames (consecutive frame would
have been too close in time). Taking 1/5th of the frames allows to cover 1 second of driving time -
we set the simulator at 20 FPS. However, it did not solve the problem of hit cars (maybe because
this event was too rare to be taken in account), and was slower to converge than the baseline
(from 3 days for the baseline to 3-5 days with framestacking).

In total we launched about 60 trainings in an attempt to add memory to the network (each
taking at least 3 days to give results). None of the solutions we investigated did improve the
results. Therefore we went back to no memory network since we did not want to spend too much
time on memory addition. We start to see here a limitation in the choice of PPO as an algorithm
- and more generally pure on-policy algorithms. The absence of replay buffer prevents us from
seeing more often the rare events and thus from handling them correctly.

4.4 Conclusion

In this chapter we have focused on the task of lane following for a first study of autonomous
driving with continuous actions. We placed ourselves in a simplified environment that we designed,
i.e. a circuit with variations: straight lines, chicanes, trees, high and low buildings, etc... We
built a training network, decided on the inputs, their normalization and the outputs, and chose in
particular to produce only a variation of steering wheel angle to limit the oscillations of our agent.
Numerous trainings were carried out to adjust all the hyperparameters of the PPO algorithm.
We sketched out our reward function so that it could be adapted to urban driving. We found, as
expected, that the normalization of the reward had an important role, but also, what was less
expected, the influence of the sign of this reward function on learning. To evaluate our agents
and make decisions, we have built our benchmark applicable to in-circuit driving. Finally, we
have increased the complexity of our environment by playing on both the difficulty of perception
- adding more diverse and complex weather conditions - and on difficulties specific to driving
- avoiding obstacles. Our agent has learned how to avoid fixed obstacles, and is capable of
navigating in weather conditions that it has not seen during training. However we identified a
problem when our agent overtakes other cars: it pulled back too early and sometimes hit the
obstacles it was avoiding. With only one front-facing onboard camera, and no memory in the
network or in the input state, our agent cannot handle these cases. We tried different techniques
to add memory to our network, but none of these methods solved this problem, probably because
it happens too rarely to be handled by an on-policy algorithm. One solution would have been to
add a lot of obstacles to make this event less rare, but we didn’t linger on the circuit to quickly
move on to urban driving (in the next chapter), while having a prior idea of the limits of our
framework. We also identified a generalization problem. If our agent is able to drive in the same
conditions as during the training, it seems to have difficulties to drive in weather conditions that
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were not encountered before. Generalization will be more specifically studied in the chapter 6.
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5.1 Introduction

In the previous chapter, we studied autonomous driving on a circuit with reinforcement learning.
In this chapter, we will study the transition from lane following to conditional driving. In
particular, we will look at how to adapt both the reward function and the model to take into
account the driving instruction. Conditional driving presents many challenges. The agent must
now manage intersections, which must be crossed safely, while following high-level instructions
that indicate which way to go. In addition, one of the problems, especially with on-policy
reinforcement learning, is that intersections can be considered rare events, as there are many
more times when the agent simply has to follow its lane.

In this chapter we will also study the robustness of autonomous agents. In particular, we are
interested in the reaction of the agent if a wrong command is given to it (see Figure 5.1). We
believe the agent must be robust in the sense that the information in the environment must keep
priority over the high-level order. This can be for example the case where the gps signal indicates

87
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to turn, but the street is blocked for road works, or the case where the gps signal is lost due to
bad connection and it does not detect that the vehicle is approaching an intersection.

Figure 5.1: What to do if the GPS breaks down?

To summarize, the main contributions of this chapter are:

• Study of how to give the command to an agent in the case of an RL agent using on policy
algorithm, and the changes to be made to switch from lane following to conditional driving.

• Implementation of a benchmark to assess the robustness of a driving agent. This benchmark
evaluates the reaction of an agent if an erroneous high level command is provided. This work
has been subject to the following publication accepted at Intelligent Vehicles Symposium
(IV21) :
[Carton 2021a]: Florence Carton, David Filliat, Jaonary Rabarisoa, and Quoc Cuong Pham
“Evaluating Robustness over High Level Driving Instruction for Autonomous Driving”. In:
accepted to Intelligent Vehicles Symposium (IV21), 2021.

5.2 Background

In this section, we present a summary of the state of the art in conditional driving and robustness.
In a first part, we study the different ways to indicate to an agent the path to follow, then we
will examine the existing studies on robustness.
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5.2.1 Conditional Driving

Early work on autonomous driving focused mainly on lane following [Kendall 2018; Perot 2017;
Jaritz 2018]. With the recent development of urban driving simulators (Carla [Dosovitskiy, Ros,
2017] and Airsim [Shah 2017]), a lot of work is now focusing on conditional driving, where the
agent must follow a given path. The question of high level order tracking therefore arises: how to
add the order in the architecture so that the agent takes it into account? The simplest way is
to treat this command as a classical input, and to concatenate it with the features of the other
inputs. This is what [Codevilla 2017] and [Hubschneider 2018] do. However, these two works
focus on supervised learning, where it is possible to balance the dataset. And even despite this
balancing, [Codevilla 2017] found that the command was sometimes ignored.

Introduced in [Dosovitskiy, Ros, 2017], the architecture with branches is widely used in
conditional driving. After the CNN, the network is split into several branches, and each branch
corresponds to a high-level command (see Figure 5.2). The output used is the one from the
corresponding branch. This forces the agent to take into account the command given to it.
This method has been used in Atari games for action-dependent video prediction in [Oh 2015].
The action, which is discrete, is represented by a one-hot tensor, and multiplied by the output
of the previous module. The rest of the network is therefore specific to the action. Recently,
many approaches working on conditional driving, both in reinforcement learning and supervised
learning, use this branched architecture [Dosovitskiy, Ros, 2017; Codevilla 2017; Toromanoff 2019;
Cultrera 2020].

Encoder

Other
inputs

fully
con-

nected
layers

concat

Branch for turning left

Branch for turning right

Branch for going straight

Branch for lane following

Figure 5.2: Architecture with branches

It is also possible to give a command in the form of a sentence, and both [Chaplot 2018; Wu
2018] use an attention mechanism to take the instruction into account. The instruction is given
in natural language, preprocessed, and merged with features from the observation by a gated-
attention module. The features are multiplied together using Hadamard’s product (term-to-term
matrix product).

Finally other approaches do not use the high-level command, which can be restrictive because
it is discrete. Some approaches use directly a birdview image of the route to be followed, such as
[J. Chen 2019], or tells the agent where to go with an objective, such as [Rhinehart 2020], or a
sequence of waypoints to follow, such as [Agarwal 2019].

These different approaches are not necessarily mutually exclusive. We humans are able to
follow both a high-level command (turn right), a complex sentence (’Take the second turning on
the left’) and a path given to us (by a gps). In the following we will focus on conditional driving
using a high-level and hence discrete command.
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Reward for conditional driving

In the previous chapter we present an overview of the rewards used for lane following. We present
here some of the rewards used for conditional driving. The first reward used for conditional
driving in Carla is the one from [Dosovitskiy, Ros, 2017]. It is a weighted sum of deltas between
current and previous states: traveled distance d, speed v, collision c and intersection with the
sidewalk s or the opposite lane o (both P r0, 1s, 0 means no intersection, 1 that the agent is fully
outside its lane). We can note the terms about distance and speed are redundant. This leads to
the following reward function (Equation 5.1).

r “ 1000pdt´1 ´ dtq ` 0.05pvt ´ vt´1q ´ 0.00002pct ´ ct´1q ´ 2pst ´ st´1q ´ 2pot ´ ot´1q (5.1)

This reward encourages the agent to drive as fast as possible. The later work CIRL [Liang 2018]
proposed a different formula, still a weighted sum of five terms, but with significant differences.
The reward here depends among other things on the high level command c P {Followlane, TurnLeft,
TurnRight,Straight}.

r “ rs ` rv ` rr ` ro ` rd (5.2)

with

ro “ ´100 when overlapping the other lane (5.3)

rr “ ´100 when overlapping the sidewalk (5.4)

rd “

"

´100 if collision with other vehicles and pedestrians
´50 other collisions (5.5)

rs “

"

´15 if |steer| in opposite direction for c = TurnLeft or TurnRight
´20 if |steer| > 0.2 when c = Straight (5.6)

rv “

$

’

’

&

’

’

%

minpv, 35q for c= Followlane
minpv, 25q for c = Straight
v if v ď 20 for c = TurnLeft or TurnRight
40´ v if v ą 20 for c = TurnLeft or TurnRight

(5.7)

Contrary to the previous work of [Dosovitskiy, Ros, 2017], this reward has a clear dependance
on the high level command. More precisely, with this reward it is very likely that the agent will
prefer to collide (which ends the episods with a negative reward of ´50 or ´100 according to the
what it collided into), than simply going into the wrong direction at a crossing (which leads to
a sum of negative rewards rs for going into the opposite direction). In Learning to Drive using
Waypoints [Agarwal 2019] the reward is much simpler (see Equation 5.8).
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r “ rs ` rd ` Ipcq ˆ rc (5.8)

with rs “ s the speed reward directly proportional to the current speed s, rd “ ´d inversely
proportional to the cross-track error d, and rc “ ´250ˆ s´ 250 in case of offroad or collision,
inversely proportional to the speed s. The function Ipcq indicates if there is a collision or if the
agent goes offroad. This reward also encourages the agent to go as fast as possible, but the
collision/offroad punishment is also proportional to the current speed, with higher punishment if
the collision occurs at high speed.

Finally the reward from [Toromanoff 2019] is composed of three terms. The first is proportional
to the difference with desired speed (maximum when the agent drives at target speed, and linearly
decreasing to zero), the second is maximum when the agent is at the center of the road, and
the last is inversely proportional to the angle of the agent with the road direction. Episode is
terminated with negative punishment if the agent collides, goes offroad, or stops for no reason.

In general, the same terms can be found in the reward function: one on speed and/or
acceleration, one on distance to the center of the road, and possibly one on the angle to the path.
Also, the conditions of termination are collisions, leaving the road, and when the agent stops
without reason.

5.2.2 Robustness

In recent years, there has been a great improvement in the performance of autonomous vehicles.
Most of the time, the agents are evaluated on their performance and their generalization capacity
(driving in an unknown environment, with different weather conditions, or different luminosity
[Dosovitskiy, Ros, 2017], or with dense dynamic agents [Codevilla 2019]). However, there are
relatively few evaluations that focus on the robustness of these agents. This is sometimes evaluated,
as for example in the Carla challenge, where one of the scenarios simulates a loss of control of
the vehicle - due to a very wet road. Some have focused on the robustness on the perception
module of driving agents [W. Zhou 2019; Michaelis 2019]. In Improved Robustness and Safety
for Autonomous Vehicle Control with Adversarial Reinforcement Learning, Ma et al. [Ma 2019]
propose a framework to train a robust agent with reinforcement learning, and evaluate it by
applying disturbance. The disturbances are applied on acceleration and steering angle. In the
same way in ChauffeurNet [Bansal 2018], the agent is trained to be able to handle a trajectory
disturbance. We note that no evaluation is done on the reaction of the agents if an incorrect
driving instruction is given.

5.3 Crossing Management

In this section we will look at the changes needed in both the reward function and the model to
move from lane following to conditional driving.

5.3.1 Reward and model adaptation

We selected several crossings in the training city, and started learning about small episodes with
only one intersection, with easy weather. The idea was to verify that our model is capable of
learning to turn. We therefore selected episodes where the agent is asked to turn left, and episodes
where the agent is asked to turn right. If we trained our agent on these episodes separately, it
was able to follow the right path, but we found that if we trained on all possible intersections, the
agent preferred to stop before the intersection. The reason for this is the following: we penalize
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the agent if it goes too far from his route, with a negative reward and ending the episode. But
during the learning process, the agent explores and may takes the wrong road, it does not know
yet how and where to turn. So our training ends up in a local optimum, and the agent rather stops
in front of an intersection. The penalization when going offroad was too important, therefore the
agent would rather just stop and have no reward than risking a big negative reward. To solve
this problem, we added a new episode termination condition called bad stop: if the agent stops
when it should not, the episode ends and the agent is penalized.

The reward function is then slightly modified and becomes:

r“

"

ws ˆ rspeed ` wcte ˆ rcte ` wa ˆ rangle
rpunish when collision, offroad, bad stop. (5.9)

with

• rspeed “ target_speed´ |target_speed´ speed|q. The target speed is modified compared
to training in the circuit so that the agent slows down at crossing. The normal target speed
is 35 km/h as a general rule and 15 km/h at crossings.

• rcte “ p1 ´ dq with d the cross track error, i.e. the lateral distance of our agent to road
center

• rangle “ p15´ |α|q with α the angle between the direction of the agent and the trajectory.

• ws, wcte and wa their associated weights, respectively 1.0, 10 and 0.1.

• rpunish “ ´100

We have kept the reward function from the previous chapter, adding these modifications. We
have seen among other that the positivity of the reward has an impact on the performance of our
agent. The weights balance the different terms of the reward, giving the highest weight to the
speed term, so that the agent is not tempted to drive at low speed.

At the same time, we studied the different possible architectures to provide the agent with
high level control. To take into account a high level command, we identified three possible
architectures (see Figure 5.2). In all three cases the command is discrete, represented by a one-hot
tensor. The first architecture is the most classical; it is the simple concatenation of the features
coming from the command with those coming from the image and the different measurements.
The second is the branch architecture, with specific branches for each command. The last one
is an architecture using an attention mechanism. The features coming from the commands are
multiplied by those coming from the image and measurements using Hadamard matrix product
(element-wise matrix product).
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(c) Architecture with gated attention

Figure 5.2: Comparison of three architectures for conditional driving. The architectures differ
in the way the high-level command is taken into account. (a) : the features from the command
are concatenated with the features from image and measurements, (b) : the command is used to
create command-specific branches, (c): the features from the command are multiplied with the
others using Hadamard product (gated attention).

We did not test the first architecture using simple concatenation, because the state of the
art shows weaker performance than architecture with branches, with a command sometimes
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ignored [Codevilla 2017]. We have tested and compared the two following ones: with branches
and with an attention mechanism. For our experiments, we used 26 training episodes, and 20 test
episodes, with an equal distribution of crossroads where the command is to go straight, turn left
or right, and a few episodes with just a road that turns without a crossing. Training episodes are
sometimes on the same intersection, but with different driving instruction or starting points. Test
episodes are located on intersections that have never been seen during training. Unsurprisingly,
we found a big overfit on the training episodes, which is not surprising given the low number of
episodes used for learning. But what we found was that the agent with the architecture with
attention mechanism tended to ignore the command in a situation it hadn’t seen, and simply
continue straight ahead. The agent with the branch structure, despite a difficulty to generalize,
showed that the command was taken into account.

5.3.2 Discussion

We have studied different possible architectures to add a high level command to the navigation
task. In the simplest case of concatenation, the command is not always taken into account, and
we found the same problem with the architecture with gated attention. This problem is all the
more present because we have chosen an on-policy reinforcement learning algorithm. This means
in particular that there is no replay buffer, and therefore no way to balance the dataset to have
an equivalent number of each command. In our case, intersections and associated high-level
commands are rare events, and it is not possible to modify - even artificially - their occurrence.
This is why we decided to work with a model using branches. It allows to have a separate policy
for each high-level command, and to force the agent to take into account the requested instruction.

However, the model with branches has 2 major drawbacks. The first is the lack of continuity
between branches. When the command changes from following the road to turning right, the
agent suddenly changes branches. So it has to learn the same things several times - braking if
there is an obstacle, for example, because it does not depend on the given command. The second
disadvantage is related to the choice of the high level command. Using a discrete high-level
command forces us to have a finite, defined number of possible instructions and instructions
like ’turn to the 2nd right’ become impossible. So we limit the possibilities: how to do at a
roundabout? Or at more convoluted intersections?

It would be interesting for future work to test the attention mechanism for taking into account
the command with an off-policy algorithm, such as DQN or SAC. Indeed, the use of branches for
each command allows to counterbalance the fact that the commands are not equitably seen during
training, and thus not equitably used in the data. Most of the time, the agent has indeed to go
straight, crossing situations are rarer than following the road. By removing these branches, the
agent tends to perform the very dominant action in the data, namely going straight. Switching
to off-policy would allow the rarer data to be used more often.

5.3.3 Training and Results on CoRL Benchmark

In order to train our agent on the navigation task, we used the same parameters as for the circuit
for the most part. The main difference is the training duration: to drive in the city, our agent
is trained up to 20 Million iterations, against 10 in the circuit. To speed up the training, 16
simulators in parallel are used for data collection, compared to 8 in the circuit. We kept collecting
128 step per environment, which resulted in a batch twice as large (2048), that we split in 16
minibatch of size 128 for backpropagation. Our first trainings were following the framework from
the original Carla paper [Dosovitskiy and Koltun 2017], also used in CIRL [Liang 2018], and
indicated the high level command corresponding to the closest waypoint. In other words, the
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driving instruction was given at the last moment, especially when the agent was at a crossing. We
found that this was not robust at all, as the agent would turn as soon as the order changed. So
we decided, as with more recent approaches (LBC [D. Chen 2020] or MaRLn [Toromanoff 2019]),
to give the order a few meters before the crossing (usually 15). This increases the robustness of
the agent, but also the difficulty because the agent now has to learn when to turn. The control
of the steering wheel is no longer directly linked to the high level control. We carefully selected
training episodes. We chose 25 episodes all over the training town, by taking particular care to
distribute the crossings in an equitable way. Our first tests included a lack of left turn and we
found that the agent had great difficulty turning left.

Figure 5.3: Examples of training and test environments. Left: training town and training weathers.
Right: test town and test weathers.

Our trainings are evaluated on the Carla CoRL benchmark, and we present here the best
results. We use data augmentation and an encoder that has been pre-trained on segmentation
task. We will see details on both in the next chapter, as well as more extensive results. However,
it is very important to note that training is sometimes highly unstable. Identical trainings using
the same parameters did not have the same results on the benchmark at all (cf Table 5.3 at the
end of this section). So we did several trainings with the same parameters (at least two) to keep
the best, which took time and a lot of resources.

CoRL Benchmark [Dosovitskiy and Koltun 2017] is a goal directed urban navigation benchmark.
Four different tasks can be evaluated (from going straight to full navigation with dynamic
obstacles), and we will focus on the navigation task (navigation without other cars or pedestrians).
Dynamic navigation will be dealt with in the next chapter. CoRL benchmark evaluates the driving
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capacities of an agent, as well as its generalization capabilities, by testing training conditions as
well as unseen town and new weather conditions. Some examples of training and test conditions
are shown on figure 5.3. The benchmark outputs the percentage of successful episodes, i.e. when
the driving agent has managed to reach destination. For every episode, the trajectory is computed
by the simulator and high level commands are sent to the agent with the different information
(road picture, current speed, etc...).

We present in Table 5.1 the performance of our agent, and compare them to the state of the
art algorithms Learning by Cheating (LBC) [D. Chen 2020] and MaRLn [Toromanoff 2019], and
also with original RL baseline on Carla Dosovitskiy, Ros, 2017 and CIRL Liang 2018 on the
navigation task in Table 5.2. We used the open-source implementations of the benchmark released
by Learning by Cheating1 and MaRLn2. For the latter, in order to make a fair comparison, we
used the agent who was trained only on training conditions for the CoRL benchmark. The score
is the percentage of success of requested trajectories. Evaluation is made with the version 0.9.6
of Carla.

Task Training New weather New town New Town
conditions & weather

Straight 100% 100% 97% 100%
One turn 92% 96% 60% 68%
Navigation 87% 98% 49% 40%

Table 5.1: Results of our agent on Carla CoRL benchmark

Training Training New weather New town New Town
conditions & weather

RL [Dosovitskiy, Ros, 2017] 14% 2% 3% 6%
CIRL [Liang 2018] 93% 86% 53% 68%
LBC [D. Chen 2020] 100% 100% 98% 100%

MaRLn [Toromanoff 2019] 100% 100% 100% 98%
Our 87% 98% 49% 40%

Table 5.2: Results of our agents and SOTA agent on CoRL benchmark with navigation task

If we are competitive with the method using only reinforcement learning [Dosovitskiy, Ros,
2017], we are quite far from state of the art results. We notice that our agent overfits in the
training town, and that it has trouble to generalize driving in an unknown town.

Here we also draw the limits and flaws of the on-policy algorithms. We had to choose very
precisely the training episodes, and a slight imbalance (less left turns for example), led to a
drop in performance. We also found another imbalance: out of the four training meteorological
conditions, one of them is more difficult - HardRainNoon. The agent found it harder to navigate
through it, so the training episodes were shorter in this configuration, and therefore there were
fewer examples in the collected data. The fact that there is no replay buffer does not help to
compensate for these imbalances.

1https://github.com/dotchen/LearningByCheating
2https://github.com/valeoai/LearningByCheating

https://github.com/dotchen/LearningByCheating
https://github.com/valeoai/LearningByCheating
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Instability - High variance

In contrast to circuit driving, especially on empty circuits with simple weather conditions, city
driving training is much more unstable. The figure 5.4 shows the learning curves of 4 identical
trainings, differing only by their random seed, on the circuit and in town. It can be seen that
urban driving training has much more diverse curves, and the performance of the agents resulting
from these trainings is also very varied (see Table 5.3).

(a) Discounted reward of 4 identical trainings -
different random seed - in empty circuit

(b) Discounted reward in 4 identical trainings -
different random seed only - in empty town

Figure 5.4: Variance between several trainings with different random seeds, in the circuit (left)
and in the town (right)

Training Training Condition New Weather New Town New Town
& Weather

Orange 87% 98% 49% 40%
Dark Blue 86% 100% 51% 24%

Cyan 8% 8% 11% 12%
Red 0% 0% 7% 6%

Table 5.3: Results of 4 agents trained with different random seed on CoRL benchmark with
navigation task

5.4 Robustness of Learning

It is very classic to evaluate an agent on an environment it has not already seen, to measure its
generalization capacity. We will study generalization in the next chapter. On the other hand,
there are few studies on the robustness of agents. Robustness is defined in terms of reliability,
and assesses the capacity to withstand variations without consequences.

We propose here a benchmark that would allow an evaluation of the ability of driving agents
to react in case of unexpected command, and thus measure their ability to understand the
environment around them.

5.4.1 Benchmark Description

Our benchmark is inspired by the CoRL benchmark from Carla [Dosovitskiy, Ros, 2017]. In
CoRL benchmark, the command is always correct. Therefore, to study the robustness of the
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agents, we build a benchmark that consists in giving an incorrect command at an intersection,
and evaluate the reaction of the driving agent. To evaluate only the robustness of the agent, we
place ourselves in the simplest conditions, i.e. in conditions that have already been seen during
training, namely the training town with ClearNoon time/weather preset. Since we only work
in an easy map of Carla, there are 4 possible commands: follow lane (basic command when
there is no crossing), go straight, turn left and turn right (neither lane change nor traffic circle).
We want to evaluate the reaction of the driving agent if an incorrect command is given at an
intersection. We can distinguish two cases: either the agent is told to go at a direction that does
not exist, or the basis command (follow lane) is still given even if the agent reached a crossing.
We will measure the number of unsafe behavior (ie collision, offroad, or stop at the middle of
the crossing) in these cases (see Figure 5.5 for examples of unsafe behaviors). This will help to
measure if the agent has achieved a certain understanding of the environment, or if it blindly
follows instructions. For each crossing type, we selected 10 of them in the training town, and run
small episodes starting before the crossing with erroneous command.

Figure 5.5: Examples of unsafe behaviors.

In the event that a wrong command is given at a junction, one can expect two behaviors from
a human driver: either it stops before the junction or it randomly takes one of the proposed
routes. Out of the 10 test episodes, we have therefore counted as unsafe behavior the cases where
the agent stops in the middle of the crossing, and the cases where the agent collides or goes
offroad. For every crossing type we counted the unsafe behavior for both wrong command (that
is not available at the given crossing), and basis - follow lane - command.

In Table 5.4, we present the results of our agent by comparing it to two state of the art
agents [D. Chen 2020] and [Toromanoff 2019]. Since the results measure unsafe behavior here,
the smaller the more robust. In the next chapter, we will also study two other agents that we
test here as well. This is an agent trained with segmentation as input, and an agent trained with
segmentation auxiliary task. More details will be given in the next chapter, but for further study
and discussion, we also test them here.

These agents are trained with the same algorithm (PPO), and the same reward function.
Unlike our image input agent, the encoders of these two agents are trained from scratch. The
differences are listed below:
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• Agent with Segmentation input

– RGB image input is replaced by segmentation mask.

– Resnet34 encoder is replaced by smaller CNN from [Mnih 2015] which we call Na-
tureCNN

– Encoder trained from scratch

• Agent with segmentation auxiliary task:

– A decoder is added to output semantic segmentation

– Encoder trained from scratch

– Semantic segmentation and driving are trained at the same time

Type of crossing

wrong command Total unsafe

LBC [D. Chen 2020]

Unsafe behavior 0 5 10
23 / 60with wrong command

Unsafe behavior 0 0 8with ’follow lane’ command

MaRLn [Toromanoff 2019]

Unsafe behavior 2 1 10
13 / 60with wrong command

Unsafe behavior 0 0 0with ’follow lane’ command

RL seg input

Unsafe behavior 0 10 9
35 / 60with wrong command

Unsafe behavior 0 6 10with ’follow lane’ command

RL img input

Unsafe behavior 0 1 7
16 / 60with wrong command

Unsafe behavior 0 4 4with ’follow lane’ command
Unsafe behavior 0 2 0

3 / 60RL with with wrong command
auxiliary task Unsafe behavior 1 0 0with ’follow lane’ command

Table 5.4: Results of our agents and two state of the art agents on our wrong-command benchmark,
showing the number of unsafe behavior on 10 trials.

5.4.2 Qualitative Analysis

We first note that the results are very disparate according to the type of crossing. For the first
crossing type, where the ’turn right’ command is not possible, all the agents drive correctly (with
sometimes bites into the sidewalk, but overall safe behaviors). This is probably due to the fact
that the sidewalk is always present to the right of the agent, and that this helps the agent to
drive correctly by simply following it.

For the second crossing, where the ’turn left’ command is not possible, the agents have
different behaviors. The LBC [D. Chen 2020] agent deviates slightly if it is still asked to turn left,
and then in half of the cases, stops abruptly in the middle of the crossing, which we considered
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to be dangerous and therefore unsafe behavior. The MaRLn [Toromanoff 2019] agent keeps its
course, and both [Toromanoff 2019] and [D. Chen 2020] perform well when the command remains
to follow the road. Among our agents, the behavior varies greatly. The agent using segmentation
as input has a very high collision rate, because it turns directly left if this command is given. The
two agents using the input image react better, even though the auxiliary task seems to help to
behave correctly.

Finally the third type of intersection, where it is not possible to go straight, appears to be
the more difficult for all agents. The LBC agent has a very bad error management: in the vast
majority of cases, it keeps going straight, even if there is a wall, and usually hits any obstacle in
front of the car, and so does our agent that uses segmentation. The MaRLn agent manages to
turn when the command follow lane is still given - by sometimes biting into the other lane, but
keeps going straight if the command straight is given. However, unlike LBC, it rarely collides,
preferring to stop in the middle of the crossing. On the other hand, our agent which has learned
with an auxiliary task does not make any mistakes. It turns arbitrarily to one side or the other,
even if it is asked to go straight, which shows that it relies much more on the analysis of the
environment around.

5.4.3 Discussion

We present the performance of 5 driving agents: one trained with imitation learning (LBC [D.
Chen 2020]), and the four others with reinforcement learning. We are not surprised by the rather
low performance in terms of robustness of LBC. This is one of the drawbacks of supervised
learning, since the cases of error are not present in the learning dataset, the agent never learns
how to react to unexpected situations.

One might have thought that reinforcement learning, because of its trial-and-error nature,
would alone have increased the robustness of learning. However, the disparity in the results of
agents trained through reinforcement learning shows that this is not enough. We can compare the
performance of our two agents with RGB image as input. Although using an encoder pretrained
on the segmentation task, the simple agent (i.e. without auxiliary task) is less robust than the
one using segmentation as an auxiliary task. The use of semantic segmentation as auxiliary task
allows the agent to make the link between the semantic parts of the image and the rewards, and
thus to have a better understanding of the environment. It is able to analyze its surroundings,
and to make a decision in a situation it has never seen before by giving priority to the visual
information over the high-level command.

MaRLn agent [Toromanoff 2019] is quite close to ours using auxiliary task, with the following
differences: the encoder is pretrained to calculate segmentation as well as other affordances
(distance to traffic lights, position in the road...), and frozen during RL driving training. Perception
is then decoupled from driving. Our agent in contrast is trained end-to-end with both segmentation
and driving. We believe that decoupling perception and control may reduce the robustness of the
agent.

We have also analyzed the different experiments of our agent using only segmentation, and a
possible explanation for the poor performance in terms of robustness is that it is too confident on
the road marking perception. Indeed, the segmentation in Carla being perfect, this agent has
never needed to use anything other than the road lines to learn to drive. In normal situations,
when it reaches a crossroad, our agent starts to turn in the prescribed direction, and adjusts its
trajectory with the lines of the road it joins (road markings are not present in the intersection).
However, in the case of a wrong command, it starts to turn and cannot correct itself because
there are no more lines - because the target road doesn’t exist.

On the other hand, the agents which learned with an RGB image as input were subject to
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data augmentation. In particular, road lines are not always visible in the image (very rainy
weather or Gaussian blur), so the agents learn to use other elements - the sidewalk for example.
These agents therefore learn with information redundancy, which is not the case if only perfect
segmentation is used. One lead for future work to validate this hypothesis would be to train an
agent with segmentation input, by regularly and randomly removing one or more masks. The
agent would then learn to use the different elements present in the observation in a robust way.

5.5 Conclusion

In this chapter, we first studied how to add a high-level command to give a driving direction
instruction. We have seen that in the case of an on-policy reinforcement algorithm, the most
efficient way is to use a branch architecture. Indeed the on-policy character does not allow to
balance inputs, and thus to balance the situations seen by the agent. The use of branches allows
to specialize a part of the network and avoid that the agent learns only with the most frequent
examples.

We also propose a first study to evaluate the robustness to wrong command of a vision based
driving agent. With the development of end-to-end conditional autonomous vehicles, we believe
this issue is of crucial interest and has so far not been dealt with. We found in this evaluation
that an agent appears to be more robust when perception and control are not decoupled during
training. We also observed a better robustness when the agent has a high-level understanding of
its environment with, for example, the ability to segment the observation, but also when it learns
to use the redundancy of the elements present in the observation.

As future work, we can imagine others tests to evaluate the robustness: changing the visual
input by placing the camera at a different position, changing steering wheel hardness, etc... Since
all the situations cannot be seen during training, we need to have agents that are capable of
adaption and understanding of the environment, in the sense that they must extract enough
information to avoid dangerous situations.
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6.1 Introduction

In the previous chapter, we set up a framework for reinforcement learning applied to urban
vision-based autonomous driving. Our agent is however facing a big problem of generalization. If
changing the weather seems to have little effect, navigating in a town that was not seen during
training leads to a drastic drop of performance. In this chapter we will study different methods to
reduce this overfit and increase generalization performance in the context of autonomous driving
in an urban environment. We are particularly interested in semantic segmentation and different
ways of using it: through data augmentation, directly as input, as pre-training or as auxiliary
task.

This study has been subject to the following publication at Autonomous Vehicle Vision
Workshop at WACV 2021:
[Carton 2021b]: Florence Carton, David Filliat, Jaonary Rabarisoa, and Quoc Cuong Pham
“Using Semantic Information to Improve Generalization of Reinforcement Learning Policies for
Autonomous Driving”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, 2021.
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6.2 Background

In the context of autonomous navigation, the ability to generalize to an unseen environment is a
crucial element. The driving agent must be able to navigate in an environment it has never seen
before, and also in various weather or lighting conditions. When introducing Carla simulator
[Dosovitskiy, Ros, 2017], its authors proposed the CoRL benchmark for goal directed navigation.
This benchmark measures the performance of driving agents, both in training conditions, and in
different conditions (new city, new weather, or both), on different tasks - from going straight to
dynamic navigation with other agents (vehicles and pedestrians). A larger and more complex
benchmark on Carla, called NoCrash is proposed in [Codevilla 2019]. It proposes 3 urban
navigation scenarios: empty town, regular traffic, and dense traffic. Like CoRL benchmark, 4
conditions are evaluated: training conditions, new city, new weather, and new city and new
weather. If the training and test towns are the same as CoRL benchmark, as well as the training
weathers, one of the two test weather is replaced (WetCloudyNoon is replaced by WetSunset).

We found in previous chapter (Chapter 5) that our agent’s ability to generalize is poor, and
this finding can be extended to the performance of many state of the art works on the benchmarks
of Carla simulator. This is particularly true for navigation and dynamic navigation tasks, as
well as in NoCrash benchmark, for approaches using both reinforcement learning and imitation
learning. On the same weather conditions, CIRL [Liang 2018] performance drops by about 40%
between train and test town on both navigation and dynamic navigation tasks. Less drastic,
Learning to Drive using Waypoints has a drop of almost 20% between the two cities in dynamic
navigation - whereas the input used is a bird view of segmented image. In supervised learning,
CIL [Codevilla 2017], MT [Z. Li 2018], CAL [Sauer 2018] and ILA [Cultrera 2020] all experience
drops in performance (between 10% and 40%) when they are evaluated in the new town, and most
strongly in the dynamic navigation task. We refer the reader to the Table 3.2 from Chapter 3
for an overview, where most of the work presents difficulties in generalizing. Only very recent
work show perfect scores on Carla CoRL benchmark [Toromanoff 2019; D. Chen 2020], and these
approaches still present difficulties on the more complex NoCrash benchmark. Despite recent
progress, generalization is still an open problem for autonomous driving.

In a broader context, generalization is a key element in computer vision. However, as mentioned
in Quantifying Generalization in Reinforcement Learning [Cobbe 2019], it is common to use
the same environment for training and test in reinforcement learning benchmarks. Moreover,
classical techniques employed in supervised learning are not automatically used when training
with reinforcement learning. For example, it is interesting to note that in Carla original paper
[Dosovitskiy, Ros, 2017], the authors automatically add methods to reduce overfit in the training
with imitation learning - data augmentation and regularization techniques like dropout - whereas
none is applied for RL training.

In this section we will first present a brief overview of classical techniques used in computer
vision to reduce the overfit, and secondly we will study the addition of information as a way to
increase both performance and generalization.

6.2.1 Classical Methods to Reduce Overfit

In supervised learning, many techniques are used to improve generalization and reduce overfit in
deep neural networks, especially when applied to computer vision. The most classical regularization
techniques are batchnorm [Joseph 2016], L1 or L2 regularization [Krogh 1992], and dropout
[Srivastava 2014].

Batchnorm and dropout are specific layers that can be added in the network. The dropout is
the temporary deactivation of a certain proportion of neurons. Carried out randomly at each
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passage in the network, the objective is to reduce the co-adaptation of neurons. During the test,
all neurons are reactivated, and their output is averaged according to the percentage of neurons
deactivated during training (if 50% of the neurons are deactivated during training, the output of
the neurons is multiplied by 0.5 during test). The batchnorm normalizes the input of an internal
layer in the network, in the same way that the input of the network is normalized. The mean
and the variance are calculated on the mini-batch given as input. In parallel, the batchnorm
also learns a sliding mean and variance to be applied during the test on a single sample. It
should be noted that dropout and batchnorm have a distinct behavior during training and testing.
However, reinforcement learning algorithms interact with the environment, alternating between
data collection and policy improvement. This raises a difficult question: should the dropout and
batchnorm layers therefore have train or test behavior during data collection?

Easier to apply in RL, L1 or L2 regularization consists in penalizing the high values of the
network weights. A regulation term is added to the global loss. On Equations 6.1 and 6.2 are
shown both regularizations.

lossregL1 “ loss` λ
ÿ

|wi| (6.1)

lossregL2 “ loss` λ
ÿ

w2
i (6.2)

These methods modify networks to improve generalization. In computer vision, inputs can
also be modified to artificially vary the data that are provided to the network. Addition of noise,
blur, change of colors or contrast, geometric modifications, these modifications are called data
augmentation, of which the work [Shorten 2019] presents an extended overview. [Laskin 2020]
focuses on data augmentation, and proposes a plug-and-play module to add data augmentation
in reinforcement learning framework. The latter, although crucial and widespread in supervised
learning, is not at all generalized in RL. When comparing the baselines in both imitation and
reinforcement learning in autonomous driving, CARLA authors [Codevilla 2017] do apply data
augmentation and regularization techniques (dropout) during imitation learning training, and
not during reinforcement learning.

The work [Cobbe 2019] studies the problem of generalization and the way to apply the classical
methods (data augmentation, L2 regularization, dropout...) to reinforcement learning training.
They conclude that classical techniques used in supervised learning can be successfully applied in
reinforcement learning with some notable success of data augmentation and batch-normalization.
It should be noted that these papers [Cobbe 2019; Laskin 2020; Lee 2020] are recent and that
their studies were therefore not available at the beginning of this thesis.

Close to data augmentation, domain randomization is used to enable the transfer from one
environment to another, in particular to fill the reality gap. It consists in randomizing some
parameters of the environment (colors, textures, lighting, position of camera, noise, ...) in the
simulated environment, so that the transfer to real world is smooth. Domain randomization is
applied in simulation training for robot grasping in [Tobin, Fong, 2017; Tobin, Biewald, 2017],
and in drone navigation in [Sadeghi 2016], where the drone was only trained in simulation and
tested in real life. In the same spirit, in both [Rajeswaran 2016; Peng, Andrychowicz, 2018], the
authors randomize the physical parameters of the system (mass, length, damping, ...) to build a
more robust policy.

6.2.2 Use of Additional Information to Improve Training and Generalization

In addition to classical methods, the ability of an agent to generalize increases with the number
of different environments it encounters. Unsurprisingly in [Cobbe 2019], the agent increases its
performance as the number of different environments seen during training increases. Similarly
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in [Toromanoff 2019], an ablation study is performed to compare the performance of an agent
in a city it did not see, depending on whether one or more cities were used during training. As
expected, performance increases with the addition of data, but the highest performance in an
unseen city peaks at 58.4% of successful episodes. This indicates that there is still plenty of room
for improvement, especially in autonomous driving with RL. Another very standard practice is
to add information via pretraining the neural network, either with the same task (autonomous
driving in CIRL [Dosovitskiy, Ros, 2017]), or with different task (collision probability in [Sadeghi
2016] for drone navigation). However, different data and new environments are not always
available. In Exploring data aggregation in policy learning for vision-based Urban autonomous
driving [Prakash 2020] is proposed an improvement of Dagger [Ross 2011] for autonomous driving
for better generalization. The general idea is to sample critical states - intersection, presence of
pedestrians... - from on-policy data collection, and use a replay buffer to focus on these high
complexity states. This methods aims at counter the natural bias of the dataset, and showed
improved performance compared to CILRS [Codevilla 2019].

Last but not least, an auxiliary loss (or multi-task training) was first used in [Jaderberg 2016]
with deep reinforcement learning, and it showed improved performance. However, no study on
generalization capabilities is made. The idea is to train several tasks at the same time, the main
one is trained with reinforcement learning, and the auxiliary tasks are trained with supervised
or unsupervised learning. Auxiliary loss is also used with reinforcement learning in Learning to
navigate in complex environment [Mirowski 2016] to predict depth to help an agent navigate in a
maze. In autonomous driving the classic auxiliary tasks are depth, segmentation, or movement
(optical flow) [Hawke 2019; Z. Li 2018; Toromanoff 2019; B. Zhou 2019]. However, these methods
require additional information - for depth or segmentation - or additional calculations - for optical
flow. To use what we already have at hand, we can think of the reconstruction of the original
image using a VAE [Kendall 2017; Agarwal 2019], or future prediction - next frames prediction
[Santana 2016; Mahjourian 2017; Vukotić 2017] or future measurement prediction [Dosovitskiy
and Koltun 2017].

In this chapter we focus on data augmentation and semantic segmentation. We will see that
semantic segmentation contains (almost) all the necessary elements for urban driving, and we will
study how to incorporate this information during training, in data augmentation, in pre-training
and as an auxiliary task.

6.3 Experiments

In this section we present the different experiments we have conducted and their results. Most
of our conclusions come from the navigation task experiments, using Carla CoRL benchmark
[Dosovitskiy, Ros, 2017], a part of our experiments was also carried out in a first time on circuit.
We have presented in chapter 4 our circuit, created to study autonomous driving under simple
conditions. To study the generalization, a second circuit dedicated for the test was built. To make
it different from the first one, we varied the environment around the circuit, and also changed the
color of the center line. An image of our test circuit is shown in figure 6.1.
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Figure 6.1: Test circuit

In a first part, we will study the impact of data augmentation on generalization and propose
a data augmentation with a semantic segmentation component. Then in a second part we will
study the addition of segmentation as a pre-training as well as an auxiliary task. Finally we will
extend our study to dynamic navigation to compare with other state of the art methods.

6.3.1 Data Augmentation

As described in the chapter 4, in addition to using different weathers and times of day, we
used data augmentation, inspired by the one used for supervised training in Carla original work
[Dosovitskiy, Ros, 2017]. Data augmentation includes random variation in hue and saturation,
brightness and contrast, along with conversion to gray scale, partial erasing of the image, salt
and pepper noise, and Gaussian blur.

The data augmentation is applied independently on each image, and thus varies during an
episode. The different data augmentation are combined in a random order, and also in a random
way, the most frequent being the variation of contrast, hue and saturation (half of the time), and
the least frequent being Gaussian blur and gray-scale (10% of the images).

When creating the test track, we chose a different color for the middle line of the road. As we
noticed a big loss of performance of our agent when it passes on this test circuit, we had the idea
to randomly change the color of the middle line during the training (see Figure 6.2), idea that we
then extended to different semantic parts of the environment (see Figure 6.3 for examples in the
town).

6.3.1.1 Circuit

On Figure 6.2 is shown an example of data augmentation performed in the circuit. Random
erasing as well as salt and pepper noise are added to the original image, and the lane color is
randomly changed. The results of the three following benchmarked trainings are presented on
table 6.1: without any data augmentation - only four different training weathers, with classical
data augmentation, and with classical data augmentation plus random semantic variation.
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Figure 6.2: Data augmentation in circuit with random line color

Training Condition New Weather New Track New Track
& Weather

speed (km/h) 29.4 (0.8) 28.0 (5.0) 24.6 (6.8) 26.2 (5.0)
cte (m) 0.3 (0.1) 0.3 (0.1) 2.2 (2.8) 2.7 (4.1)
atr (°) 1.8 (0.7) 2.0 (1.2) 12.3 (10.8) 13.9 (14.1)

distance (m) 637.2 (274.3) 578.0 (320.9) 150.3 (206.5) 135.3 (150.3)
collision 16/36 16/36 34/36 36/36

(a) No Data Augmentation

Training Condition New Weather New Track New Track
& Weather

speed (km/h) 35.3 (6.1) 36.2 (6.2) 11.7(13.3) 16.4(14.2)
cte (m) 0.2 (0.1) 0.2 (0.1) 4.7 (5.6) 2.6 (2.6)
atr (°) 1.4 (0.3) 1.3 (0.2) 22.7 (25.4) 14.1 (14.2)
dist (m) 775.4(311.9) 851.0(286.8) 146.3(258.7) 222.4(322.8)
collision 16/36 15/36 17/36 17/36

(b) Data Augmentation without color randomization

Training Condition New Weather New Track New Track
& Weather

speed (km/h) 36.4 (7.8) 36.9 (6.3) 29.0 (9.2) 29.5 (8.3)
cte (m) 0.2 (0.3) 0.2 (0.3) 4.8 (5.9) 2.9 (3.3)
atr (°) 1.7 (1.5) 1.7 (1.3) 30.8 (33.7) 25.0 (28.0)
dist (m) 978.7 (274.3) 881.1 (332.7) 350.8(468.8) 359.7 (462.1)
collision 3/36 10/36 22/36 25/36

(c) Data Augmentation with color randomization

Table 6.1: Comparison of the benchmark at 10 Millions steps with and without data augmentation.
The figures presented are the mean (and variance) on different measurements
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When classical data augmentation is added, performance improves, especially in the training
town. The agent drives at a speed close to the target speed (40km/h) while it was 10km/h
below without data augmentation. It also remains a little more in the middle of the road, and
covers on average a greater distance in each episode. In the test city, collisions decrease, despite
performances that remain low. Part of this poor performance is potentially due to a different
colored center line, and we see in the last table an improvement in performance when we add a
random variation in the color of this line. The speed of the agent gets closer to the target speed
(40km/h), and despite a large number of collisions, the agent covers more distance in each episode
on average. The agent generalizes a little better, and the performance is also significantly better
in the training city, with a significantly lower number of collisions and a higher distance traveled.

6.3.1.2 Town Environment

We extended this study to the city to confirm our results, by comparing the results of different data
augmentation on the navigation task. We extended our data augmentation by randomly changing
the color of all semantic parts of the input image, examples can be seen on Figure 6.3. We observe
in the table 6.2 the same trends. We first notice that learning without data augmentation is
not efficient at all (we are barely higher than the RL baseline from the original CARLA paper
[Dosovitskiy, Ros, 2017]), even under training conditions. Classic data augmentation allows to
increase the performance, both in training conditions and in the new city, but does not really
reduce the gap between the training city and the new city. If we look closer at the results of
training without data augmentation, we notice that with a few exceptions, only the episodes with
the easiest weather (ClearNoon) were successful. The addition of noise (classic DA) in the input
image has therefore made it possible to better learn the different meteorological conditions, even
if they are all seen during the training. The addition of segmentation in the data augmentation
allows to reduce the generalization gap a bit, even if it is still important. Highlighting the
semantic elements of the image allows the agent to make the link with the reward function, and
thus to better generalize. However, even if progress is made compared to the training without
data augmentation, the gap between training town and test town is still huge.

Figure 6.3: Examples of data augmentation in town
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Training Training Condition New Weather New Town New Town
& Weather

No DA 34% 6% 9% 2%
Classic DA 57% 60% 22% 4%
Semantic DA 67% 60% 34% 28%

Table 6.2: Baseline results for navigation task with different data augmentation

6.3.2 Semantic Segmentation as Auxiliary Task

We have seen in the previous section that data augmentation helps better learning and general-
ization, and that the addition of semantic information within the data augmentation itself also
allows better generalization. We intuit that semantic segmentation plays an important role in
generalization. Indeed, it is important that the agent distinguishes the road from the sidewalk,
detects cars and pedestrians, and is able to do so in an environment that it has not seen before.
In this section we will first confirm this hypothesis by training an agent with only segmentation
as input. Then in a second part, we will compare the benefits of semantic segmentation if it is
used as a pre-training for encoding, or as an auxiliary task.

6.3.2.1 Semantic Segmentation

We first trained an agent with the semantic segmentation as input. We trained it in the same way
as a classical agent using the image, with the difference of the network. The input is indeed much
simpler than an image - as it only consists of 5 segmentation masks (road, road lines, vehicles,
sidewalk and backgroud). We therefore used a simpler network, namely the network used in
[Mnih 2015], which we call NatureCNN, a small network composed of 3 convolution layers. We
show on table 6.3 the performance of our agent trained with semantic segmentation as input on
navigation task on CoRL benchmark [Dosovitskiy, Ros, 2017]. This first experiment shows the
importance of semantic information in generalization. Indeed, training an algorithm with the
semantic image as input allows to obtain perfect training and generalization performances, and
this shows that the semantic segmentation contains the necessary information for the training.
This approach is not useful in practice as perfect semantic segmentation is usually not available in
the target environments, but shows that the bottleneck in generalization is mainly on the image
analysis part, and not in the driving decision that generalizes perfectly.

Training Training Condition New Weather New Town New Town
& Weather

Perfect segmentation 100% 100% 100% 100%

Table 6.3: Performances with semantic segmentation as input on navigation task on CoRL
benchmark.

Since perfect segmentation is in reality never available, a natural solution to this problem is
to train a semantic segmentation in the training conditions and rely on its generalization capacity
to the new environment. We therefore wanted to test the same agent using a segmentation that
we would have trained separately. To train semantic segmentation from RGB images, we used a
Linknet [Chaurasia 2018] since it is based on Resnet34 we already use for RL. This training will
be then also used as pretraining for the Resnet encoder in the next section. A drawing of Linknet
structure is shown in Figure 6.4. Data for training are collected in training conditions only, in
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Town01 with training weathers. 140 000 images are used, divided in training and validation
sets with the ration 0.8{0.2. Images are collected with three cameras to perform viewpoint
augmentation. We used one forward-looking camera, and two with a ˘30° angle like in [Bojarski
2016]. Using only one front-facing camera for segmentation training and using this segmentation
for a RL driving agent resulted in very poor performance (less than 50% in training town). Indeed
the RL agent explores a lot, and thus oscillates. If it never learns to segment image that are
not perfectly aligned with the road, it will hardly learn how to drive. Moreover having different
points of view also helps to manage the crossings. Five categories are trained for the mask output:
road, roadlines, vehicles, sidewalk and background. Loss function is categorical cross-entropy,
and optimizer is Adam. The learning rate is 10´3, and we used a batch size of 32. Training is
made during 100 epochs, and we use classic data augmentation (Gaussian blur, salt and peper
noise, random erasing, etc...) during training.
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Figure 6.4: Linknet network segmentation architecture [Chaurasia 2018]

We measured the performance of our training by computing the frequency weighted intersection
over union (FIoU). Indeed all the categories do not have an equivalent number of pixels in the
image (road and road line for instance), therefore weighting the results with the frequency of the
class equilibrates the results. IoU and FIoU are detailed in the following equations.

IoU “
TP

TP ` FP ` FN
(6.3)

TP stands for True Positive (number of pixel belonging to the class and being correctly assigned
to this class), FP and FN respectively the False Positive (not belonging to the class but assigned
to it) and False Negative (belonging to the class and not assigned to it) number of pixels.

FIoU “
1

ř

i ti

k
ÿ

i“1

ti ˚ IoUi (6.4)

k is the total number of classes and IoUi is the IoU for the ith class, and ti the number of pixel
in class i (in groundtruth).
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Our training achieved a FIoU of 85% in training conditions, and 82% in new town and weather.
An example of a segmented image from the test set is shown on Figure 6.5. We can see that
the segmentation is globally good, even if the road line is not perfectly segmented (however the
portion of the line close to the agent is good), and the distant cars are not detected.

(a) Original image

(b) Road prediction (c) Road groundtruth

(d) Roadlines prediction (e) Roadlines groundtruth

(f) Sidewalk prediction (g) Sidewalk groundtruth

(h) Vehicles prediction (i) Vehicles groundtruth

Figure 6.5: Example of segmented test images

We show in table 6.4 the performance of our agent with this learned segmentation, and
compare it with the training using the perfect one given by the simulator. The agent using our
learned segmentation achieves high but not perfect performance. This approach shows that this
is not sufficient to retain the generalization ability of the previous approach. This is also probably
an upper limit to the generalization performance that could be achieved with this reinforcement
learning approach. Moreover, we saw in the previous chapter that our agent using semantic
segmentation as input was not at all robust to a wrong direction command. This is why we think
it is important to continue using the image as input, and we will see in the rest of this chapter
different methods to incorporate semantic information.
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Training Training Condition New Weather New Town New Town
& Weather

Ground truth seg 100% 100% 100% 100%
Learned seg 100% 100% 89% 86%

Table 6.4: Performances with semantic segmentation as input.

6.3.2.2 Pretraining and Auxiliary Task

First, we studied the influence of a good pre-training on the performance of our agent. We decided
to continue using semantic segmentation, and used the weights of the segmentation trained
encoder - see previous section - to initialize our training. The data augmentation is the same
as the one used previously - the semantic data augmentation. We noticed a clear improvement
of the performances on the navigation task, reported in the table 6.6. We are not surprised
that a good initialization can have a great influence on the results, considering the variation of
the performances when changing the random seed (see previous chapter). However, despite a
certain improvement in performance, the ability of our agent to generalize remains weak. We
have increased its performance in general, but without really reducing the gap between training
and test town.
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Figure 6.6: Reinforcement learning architecture with auxiliary task

In a second step, we study the effect of adding semantic segmentation as an auxiliary task.
Auxiliary tasks consist in training a different task than the main one at the same time in order
to improve its performance. In our case, we train semantic segmentation along with driving.
The general architecture (see Figure 6.6), as well as the inputs and outputs of the reinforcement
training are identical to the previous one (see Chapter 5). The Linknet [Chaurasia 2018] decoder
is added to compute the segmentation of the image. The decoder outputs St P r0, 1sW˚H˚c with
c the number of classes to segment. For a given pixel on the original image, the output is the
probability to belong to the different classes. The 5 classes are the same as the previous training
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of semantic segmentation: road, roadlines, vehicle, sidewalk and background. The pedestrians are
not taken into account since they cannot cross the street in the Carla version we use (0.9.6). One
of the challenge is to combine both learnings at the same time, and not having one prevailing on
the other. The simplest loss is a weighted sum of the different losses :

l “ λrllrl ` λauxlaux. (6.5)

In equation 6.5, lrl is PPO loss, laux the semantic cross entropy loss, and λrl and λaux their
respective weights. We first tested this simple combination of losses, adjusting the weights using
the orders of magnitude of the different losses, but our tests were not conclusive. In [Kendall 2017]
is described a more efficient loss combination to perform automatic loss balance in multi-task
learning. We tested it and quickly had good results, both trainings, main task and auxiliary task,
converged. This loss consists in adding two trainable parameters, which will allow an automatic
balancing. We set σrl and σaux two trainable parameters, and the loss function becomes:

l “ e´σrl ˆ lrl ` σrl ` e
´σaux ˆ laux ` σaux. (6.6)

This loss is used in all the following experiments. In our tests in this section, 3 of the 4 blocks of
the encoder are common between the segmentation task and the navigation task, the 4th and
last block is duplicated and task-specific. We kept the skip-connections of the Linknet during the
training with auxiliary task (see Figure 6.4 to have a global overview of Linknet architecture).
We did some experiments with the skip connections removed, and the results were about the
same. We did not pursue the study and decided to keep the skip connections. However, we have
removed the batchnorms in the architecture (there are some in the Linknet).

We first tested the addition of auxiliary task on the circuit - used in particular to adjust the
loss balance. The results with and without the auxiliary task - and always with badly parked
cars as obstacles - are shown in the table 6.5. We can see an improvement in performance by
adding the auxiliary task on the test track, with an average speed closer to the target speed, an
agent closer to the center of the road, and less away from its trajectory. The agent also travels
more distance on average per episode, and the variance of the measurements is lower overall. We
note, however, that our agent is slightly worse on the training track, which is often the case when
we try to reduce overfitting. Moreover, the low generalization capacity in our circuit is probably
also due to the fact that the pattern is very repetitive with a not very long circuit.
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Training Condition New Weather New Track New Track
& Weather

speed (km/h) 36.4 (7.8) 36.9 (6.3) 29.0 (9.2) 29.5 (8.3)
cte (m) 0.2 (0.3) 0.2 (0.3) 4.8 (5.9) 2.9 (3.3)
atr (°) 1.7 (1.5) 1.7 (1.3) 30.8 (33.7) 25.0 (28.0)
dist (m) 978.7 (274.3) 881.1 (332.7) 350.8 (468.8) 359.7 (462.1)
collision 3/3 10/36 22/36 25/36

(a) Baseline

Training Condition New Weather New Track New Track
& Weather

speed (km/h) 37.3 (5.3) 36.8 (5.2) 34.1 (9.6) 36.1 (6.9)
cte (m) 0.2 (0.1) 0.2 (0.1) 2.2 (4.8) 1.9 (2.6)
atr (°) 1.4 (0.9) 1.7 (1.1) 7.2 (10.3) 7.5 (7.8)
dist (m) 874.0(329.1) 770.3(397.6) 481.6 (401.3) 541.1 (406.9)
collision 11/36 15/36 30/36 25/36

(b) Auxiliary task

Table 6.5: Comparison of results at 10 million steps between baseline and learning with auxiliary
task. The figures presented are the mean (and variance) on different measurements

Finally, we applied the auxiliary task to the navigation task on our urban training (the
extension to dynamic navigation will be seen in the next section). In the table 6.6, we can
compare the results of our baseline, of the agent pre-trained with segmentation, and of the agent
with auxiliary task.

We also performed some experiments by adding regularization and batchnorm, both during
the segmentation pre-training and RL training, and we add the results to the table 6.6. The L2
regularization was only added in the CNN. We indeed found that if regularization is added in the
branches, the network has trouble learning, because regularization takes place at each iteration,
while branch update is more sparse. We did 2 separate tests with the batchnorm. The first one
consisted in fixing the batchnorm layers after the pretraining, and the second one in continuing
to train the batchnorm layers. We noticed a surprising drop in performance when continuing to
train the batchnorm, contrary to what we expected. We did not extend our tests with batchnorm
and regularization because the first results were disappointing, i.e. they were not improving the
generalization of the driving agent.

Training Training New Weather New Town New Town
Condition & Weather

Baseline with data aug 67% 60% 34% 28%
Pretraining 82% 98% 49% 40%

Pretraining + reg L2 86% 98% 52% 32%
Pretraining + batchnorm fixed 86% 100% 55% 28%

Pretraining + trainable batchnorm 40% 34% 30% 16%
Auxiliary task 90% 92% 78% 68%

Table 6.6: Pretraining and auxiliary task performance
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We can see that the auxiliary task allows to obtain high performances, but especially to reduce
the gap between the training and test town. The agent learns at the same time to distinguish the
different semantic elements of the image, and to map them with positive or negative rewards.

6.3.3 Application to Dynamic Navigation

In order to better compare ourselves to the state of the art, we applied these results to dynamic
navigation, i.e. by adding moving obstacles. It should be noted, however, that we use Carla
version 0.9.6 without further modifications, and that in this version pedestrians do not cross the
street.

To add more vehicles, we had to make some modifications. The first is the adjustment of the
target speed as in [Toromanoff 2019]. Indeed, without modifications, we found that our agent
tries to pass the vehicle stopped in front of him, either by the opposite lane or by the sidewalk
(as there is no difference in the reward, only the distance to the center of the road matters). In
addition to being an undesirable behavior, we found the problem raised in chapter 4, namely that
our agent having only a front camera and no memory, it pulls back too fast and hits the obstacle
it is overtaking. We therefore modified the target speed in the reward function, using a target
speed linearly decreasing to zero according to the distance to the vehicle in front. We also placed
a lot of vehicles around our agent at the beginning of each episode, rather than randomly placing
them around the training town, to make sure it sees enough. We also chose to give our agent an
initial speed P r0, 40skm{h so that it quickly learns to brake. However, to continue learning to
navigate, only half of the simulators have dynamic agents.

We noticed an increase in convergence time - which seems normal when increasing the task
complexity. In the circuit, our algorithm converges in less than 10 Million steps. For the
navigation task, the training often converged in 15 Million steps. For dynamic navigation, the
highest performances are reached around 18-20 Million iterations.

We trained 3 different types of models. The first one is with semantic segmentation as input,
as a baseline. The other two are both with an auxiliary task, and different simply by the number
of common encoder blocks between the navigation task and the auxiliary segmentation task. The
encoder, Resnet34, has 4 distinct blocks. Our previous experiments used 3 blocks in common out
of the 4. We experimented here with having 3 blocks, or 4 blocks - and the whole encoder - in
common between navigation and segmentation. Due to long training times (around 7 days for
full dynamic navigation task) combined with computational expense of our training (16 Carla
simulators are used in parallel to collect data in one training), we only launched 2 trainings of
each architecture. Our models are evaluated on Carla’s classic CoRL benchmark, but also on the
more complex NoCrash benchmark.

Task Training Condition New Weather New Town New Town
& Weather

CoRL 2017
Navigation 98 98 96 98

Dynamic navigation 91 98 96 98
No Crash

Empty 99 100 95 94
Regular 92 92 85 88
Dense 70 68 69 72

Table 6.7: Benchmark results with semantic segmentation as input
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In the table 6.7 are shown the results of the segmentation alone, used as input. It can be seen
that the results are high, and obviously very stable from the point of view of generalization. It
can be seen that in the most complex conditions, i.e. navigation in dense terrain, the performance
peaks at 70%, which suggests a maximum achievable with our method.

In both tables 6.8 and 6.9, we can see the results of our training with auxiliary task, with 3
or 4 common blocks in the encoder. We can see that even if the addition of the auxiliary task has
reduced the variations between the trainings, they are still present. The evaluations are launched
with the same random seed. We can see that the two apprenticeships with 3 blocks out of the 4
in common with the auxiliary task have quite similar results. On the two other trainings with
the common complete encoder, the performances are more different. One of the two has lower
performances - the training does not look finished because the performances increase with the
previous checkpoints while the curve seems stable. The second has high performance on the CorL
benchmark, but performance drops on the NoCrash benchmark, especially on the test town with
new weather.

Task Training New weather New town New Town
conditions & weather

CoRL 2017
training 1 training 2 training 1 training 2 training 1 training 2 training 1 training 2

Navigation 84 79 84 80 73 75 58 44
Dynamic nav 84 78 88 78 69 67 52 46

No Crash
training 1 training 2 training 1 training 2 training 1 training 2 training 1 training 2

Empty 78 72 92 74 71 67 28 30
Regular 73 72 80 74 64 61 22 18
Dense 73 61 62 60 55 42 12 8

Table 6.8: Auxiliary task, 3 blocks encoder

Task Training New weather New town New Town
conditions & weather

CoRL 2017
training 1 training 2 training 1 training 2 training 1 training 2 training 1 training 2

Navigation 29 100 34 96 30 79 20 70
Dynamic nav 35 86 36 84 34 60 26 42

No Crash
training 1 training 2 training 1 training 2 training 1 training 2 training 1 training 2

Empty 12 94 22 64 28 83 8 4
Regular 19 89 18 46 28 73 8 4
Dense 27 78 16 30 38 56 4 0

Table 6.9: Auxiliary task full encoder

To conclude this section, we compare our best trainings with the state of the art methods
using reinforcement learning on CoRL benchmark [Dosovitskiy, Ros, 2017] - and not on NoCrash
benchmark since all these methods do not have results on it. Comparison is shown on table 6.10.
It is important to note that we are the only ones, with the exception of [Dosovitskiy, Ros, 2017]
that achieve very low performance, to perform end-to-end RL training with image input. CIRL
[Liang 2018] uses supervised learning as pretraining, WRL [Agarwal 2019] uses segmented birdview
images, and MarLn [Toromanoff 2019] pretrains the encoder with semantic segmentation and
other affordance then freezes it during RL training.
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We can compare our training with semantic segmentation as input with WRL [Agarwal 2019],
and our method outperforms the latter, especially since we are using an on-board camera and
not a top view like [Agarwal 2019]. However as mentioned in chapter 5, using pure segmentation
seems to be not robust, and would require in any case to have access to this semantic information.

Our models with input image present good results, far surpassing the RL of [Dosovitskiy, Ros,
2017], and having results comparable or even slightly superior to CIRL [Liang 2018], knowing
that no demonstration has been given to our agents. However, they remain inferior to those of
MaRLn [Toromanoff 2019], which is possibly due to two major differences: the use of an off-policy
RL algorithms, which allows to focus on more difficult passages, and the separate training of the
encoder, with thus two separate optimizations, whereas we use an on-policy algorithm with an
end-to-end training.

Training Task Training New weather New town New Town
conditions & weather

RL Navigation 14 2 3 6
[Dosovitskiy, Ros, 2017] Dynamic navigation 7 2 2 4

CIRL Navigation 93 86 53 68
[Liang 2018] Dynamic navigation 82 80 41 62

WRL Navigation 99 99 94 94
[Agarwal 2019] Dynamic navigation 79 79 60 60

MaRLn Navigation 100 100 100 100
[Toromanoff 2019] Dynamic navigation 100 100 98 100

Seg input Navigation 98 98 96 98
Dynamic navigation 91 98 96 98

Auxiliary Task Navigation 100 96 79 70
Full encoder Dynamic navigation 86 84 60 42

Auxiliary Task Navigation 84 84 73 58
3 blocks encoder Dynamic navigation 81 88 69 52

Table 6.10: Comparison with algorithms from state of the art using reinforcement learning on
CoRL benchmark on both navigation and dynamic navigation

6.3.4 Preliminary Results with Ensemble Averaging

In this last section, we want to propose an opening and preliminary results on the ensemble
average. Ensemble methods usually help reduce overfitting since they benefit of local optima. And
as, because of our choice of methods, we have trained many models, we want to take advantage
of it by averaging them. We propose here two tests: checkpoint average, and model average.

Checkpoint average, as proposed in Checkpoint ensembles: Ensemble methods from a single
training process [H. Chen 2017], consists in averaging the output of checkpoints from the same
training. Used in [Toromanoff 2019], the authors indicate that this method reduces oscillations
and improves the performances. Between 3 and 8 checkpoints are used (3 in the paper, 8 in the
git repository1). We have selected one of our model trained with auxiliary task in a dynamic
environment, and average the output of 6 checkpoints (from 15 to 20M). At each iteration, the
action used is the average of the actions calculated by the models from each checkpoint. We
report in table 6.11 the results and compare them to the results of the two best checkpoints we
measure (18 and 20M).

1https://github.com/valeoai/LearningByCheating

https://github.com/valeoai/LearningByCheating
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Task Training New weather New town New Town
conditions & weather

18M 20M avg 18M 20M avg 18M 20M avg 18M 20M avg
15-20M 15-20M 15-20M 15-20M

Empty 66 72 64 74 74 76 70 67 61 24 30 18
Regular 74 72 73 76 74 74 61 61 69 22 18 20
Dense 66 61 67 56 60 62 46 42 43 18 8 16

Table 6.11: Checkpoint average performance on NoCrash benchmark. We compare the performance
of two checkpoints (18M and 20M steps), with the average of 6 checkpoints: from 15M to 20M -
every 1M.

One can see in these figures little or no improvement in performance. This suggests that in
our case, the model converges to a distribution and that the successive checkpoints, although
quite distant, are part of the same distribution.

Model average [Dietterich 2000] is more general. It consists in averaging the outputs of
different models - usually trained on the same data. It is classical to average identical models,
i.e. having been trained in the same way, but we had few that were performing good enough.
We chose to test our three best dynamic navigation models. In the table 6.12 we show the
performance of each model separately, and their average. We can observe a clear improvement in
performance, especially in situations where all three models are struggling (new town and new
weather). It is interesting to note that the agent resulting from this average tends to draw the
best from each. We can conclude here that the models are not in the same local optimum. An
immediate extension to this work would be to average more models, and average identical models.
It would be interesting to see if models trained in the same way - with 3 encoders for example,
tend to go to the same local optimum or to different ones. However, this would require a large
number of models, and thus many computing resources.

Task Training New weather New town New Town
conditions & weather

CoRL 2017
1 2 3 avg 1 2 3 avg 1 2 3 avg 1 2 3 avg

Navigation 100 84 79 95 96 84 80 100 79 73 75 85 70 58 44 62
Dynamic navigation 86 81 78 95 84 84 78 94 60 69 67 87 42 52 46 60

No Crash
1 2 3 avg 1 2 3 avg 1 2 3 avg 1 2 3 avg

Empty 94 78 72 94 64 92 74 100 83 71 67 86 4 28 30 38
Regular 89 73 72 89 46 80 74 94 73 64 61 86 4 22 18 38
Dense 78 73 61 74 30 62 60 84 56 55 42 66 0 12 8 22

Table 6.12: Model average results on both CoRL and NoCrash benchmark. First model is
auxiliary task with full common encoder, second and third are auxiliary task with 3 blocks over
4 common between navigation and semantic segmantation. Last column is the average of the
output of the 3 models.

6.4 Discussion

In this chapter we have studied different methods to reduce overlearning with reinforcement
learning applied to autonomous driving. We have analyzed the influence on the performances,
and in particular on the generalization, of different methods based on semantic segmentation.
Indeed, semantic segmentation allows an agent to learn to drive and to generalize to roads it has
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not seen. However, relying solely on the generalization capability of segmentation is to separate
perception and control, which is not in the spirit of end-to-end driving. We therefore experimented
with different ways of adding this segmentation information: in the data augmentation, through
pre-training, and finally with an auxiliary task. We have shown that only the latter method
reduces the gap between training conditions and test environments. Pre-training or applying a
rigorously chosen data augmentation allows us to improve the performance of our agent in general,
but does not solve the generalization problem. Simultaneous learning the image segmentation as
auxiliary task, by sharing part of the network with driving task, on the other hand improved
generalization. What the addition of segmentation seems to indicate is that the agent learns
to match the elements observed in the input image with the rewards. One could imagine going
further, for example by adding more data augmentation, varying the camera position to change
the point of view, or even using different environments - more cities in Carla, or even completely
different environments.

One might also wonder what impact the quality of the learned segmentation has. Recent
work, Label efficient visual abstractions for autonomous driving [Behl 2020], seems to suggest
that a weaker annotation (coarse 2D boxes around the segmented object rather than a precise
contour) - and thus less expensive - would be just as effective in terms of driving. It would be
interesting to test this weaker segmentation as an auxiliary task to study if the same performance
can be achieved.

We also applied the segmentation auxiliary task to the dynamic driving task, testing two
different levels of layer sharing in the process. We can imagine as future work to test more in
depth different architecture and their influence on the results - for example the skip connections of
the linknet, to study in more detail the level of information shared between the main navigation
task and the auxiliary task. We have not made attemps to modify the general architecture when
it was set, but very recent work [Raileanu 2021] seems to suggest that decouple policy and value
leads to better generalization. We can also imagine comparing the relative performance of adding
different auxiliary tasks. We have focused only on segmentation, essentially due to limited time,
but we can think about other driving related tasks like depth or next frame prediction, optical
flow computation, direction or waypoints prediction, etc ... An interesting extension to our work
would be the comparison of the simple or combined addition of these different auxiliary tasks.

Finally, we have also tested to average either checkpoints of a same model or dinstinct models.
We found that using checkpoints from the same training does not improve the performance or
only slightly, which indicates that the model does not oscillate between several minima. On the
other hand, averaging different models led us to obtain better results than each model taken
separately.

To conclude, we compare our best results, i.e. those of model averaging, with the two
state of the art methods, LBC and MaRLn. In our comparison with the state of the art
algorithms in table 6.13 we re-run their evaluation without pedestrians for a fair comparison
(using implementation from both 2 and 3).

2https://github.com/dotchen/LearningByCheating
3https://github.com/valeoai/LearningByCheating

https://github.com/dotchen/LearningByCheating
https://github.com/valeoai/LearningByCheating
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Task Training conditions New weather New town & weather New Town
LBC MarLn Ours LBC MarLn Ours LBC MarLn Ours LBC MarLn Ours

CoRL 2017
Navigation 100 100 95 100 100 100 98 100 85 100 98 62

Dynamic navigation 100 100 95 100 100 94 99 98 87 100 100 60
No Crash

Empty 97 100 94 84 14 100 100 98 86 68 26 38
Regular 99 100 89 90 16 94 99 99 86 68 28 38
Dense 92 93 74 86 18 84 90 79 66 52 20 22

Table 6.13: Comparison with SOTA on CoRL and NoCrash benchmarks

First, we see that none of the approaches achieves 100% success on the most complex
benchmark, namely NoCrash. Moreover, LBC seems to have results that generalize better to
conditions that have not been seen. These methods are very diverse and show that there is still
room for improvement because in the most complex situation (dense traffic and new town and
weather), the best of the agents only achieves its goal in just over half of the cases. Our agent,
the only one that was trained end-to-end with reinforcement learning, shows promising results,
which despite a difficulty to generalize, remains relatively homogeneous in this benchmark.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we focused on the application of reinforcement learning to driving in an urban
environment. Most of the existing works in the literature on end-to-end autonomous driving
use imitation learning, or at least a separate perception module trained in a supervised manner.
In this thesis, we have chosen to perform end-to-end training with reinforcement learning. In
particular, we studied several aspects of autonomous driving: robustness in case of an erroneous
directive, and the ability to generalize to an unknown environment.

After having initially set up the elements for an autonomous agent to be able to follow a road
using only one embedded camera like a human driver, we first addressed the management of
crossings by our autonomous agent. We studied how to give a direction command to an agent to
switch from lane following to conditional driving. We also proposed a benchmark that evaluates
the robustness of an autonomous agent. Comparison with state-of-the-art algorithms shows that
reinforcement training improves the reaction of agents to erratic high-level commands, and that
learning to segment the input image in parallel improves the robustness of the agent by giving
it an understanding of its environment. Another essential element that we have identified for a
robust agent is information redundancy. We found that an agent that has learned to use all the
elements available is more robust. Eventually, our results suggest that an agent is more robust
when perception and control are not decoupled during training.

Finally, we studied the problem of generalization to an unknown environment. We have been
particularly interested in the addition of semantic information during learning, and the relative
benefits depending on how it is added. We have shown in a first step that segmentation contains
the necessary elements for driving in urban environment, and is thus particularly adapted to
autonomous driving. We then showed that the addition of segmentation as an auxiliary task,
i.e. learned in parallel with driving, by sharing part of the neural network, largely improved the
generalization capacity of our autonomous agent.

7.2 Limits

In the course of our work, we identified several limiting factors.
The first is the variability of our different trainings. Training differing only in random seed

could lead to completely different autonomous agents, and thus to very different performances.
Even if the addition of a supervised auxiliary task reduced this variability a little, it is still present
and makes the analysis of the results more complex.

The second issue is the training time and the resources required per training. This is linked to
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our choice of algorithms, and in particular to the on-policy factor. Coupled with the variability
of learning, having to perform a large number of long and resource-consuming trainings was a
substantial limiting factor for this work.

Finally, we must also mention the limits of the simulator. Although very powerful and offering
many complex situations, it is recent and still under development. Moreover, the comparison
between works realized on distinct versions of the simulator is not entirely relevant because of
the difference in graphics. It should also be noted that the autopilot embedded in the simulator
is far from perfect. We can see on the figure 7.1 that our agent is blocked by a collision, and
the autopilot barely reaches 60% of completed episodes on certain tasks on the most complex
benchmark (NoCrash).

Figure 7.1: Our driving agent is blocked due to a collision of Carla’s vehicules.

7.3 Future work

The work of this thesis opens the way to many perspectives and avenues of reflection.
Use of more off-policy data. We have indeed found that our agent has difficulty in

handling the rare cases that can occur. This is due to the choice of PPO, which is on-policy,
and treats all data in the same way. However, when driving, the most common cases are driving
straight ahead, but the most complex moments are changes of direction, or the presence of other
agents where we have to brake. To counterbalance this limitation of PPO, we artificially varied
the situations seen, by placing our agent close to crossings, and by adding many vehicles around
it. However this requires a lot of pre-processing, and it is difficult to consider all situations -
and that is also only realizable in simulation. A natural solution would be to directly change
the algorithm to an off-policy algorithm, like SAC. However, on-policy algorithms are in theory
more stable, because the update is done with data collected by the current policy. Moreover,
the data is stored in a replay buffer which can be very large in terms of size if the input used is
the image. To keep the on-policy side of PPO, one solution would be to change the occurrence
of the data during the update. PPO works as follows: a batch of data (state-action-reward) is
collected. This batch is shuffled to make the data independent, then separated into mini-batches,
and the update is done with these mini-batches. One could imagine that instead of taking all
the data from the batch, the mini-batches are formed by picking the data using probability. The
more complex the data (e.g. low reward obtained, or low value), the higher the probability.
Another close solution would be to copy some data so that they appear several times, balancing



125 7.3. Future work

the batch by duplicating the rarest data. However, this solution has limits, because it only allows
to balance within a single batch collection, and not on all the data seen during the learning process

Extension of auxiliary tasks. We found that adding an auxiliary segmentation task greatly
helps an autonomous agent to learn, and in particular to relate rewards to the semantic elements
around it. An interesting perspective would therefore be to test other driving-related auxiliary
tasks, such as depth calculation, optical flow, or next image prediction, as well as their combination.
In the context of a transfer to the real world, the possibility of using these auxiliary tasks on real
vehicles should be considered. One can either use an existing module producing imperfect informa-
tion - such as segmentation or object detection, or use an automatic annotation (of the depth by a
Lidar for example), or use a task that does not require any annotation (e.g. next frame prediction).

In-depth study of perception and control coupling. In our work, we have chosen to
train our agent from end-to-end, while many works decouple perception and control. The study
on robustness that we carried out suggests that the coupling, and thus the use of a single optimiza-
tion, increases the robustness of the autonomous vehicle. When perception is trained separately
from control task, the encoder is trained with different tasks - detection, segmentation, etc, that
are not directly the driving task - and the encoder has then never been optimized for driving. It
would be interesting to train two different agents in the same way, using the same algorithm and
the same hyperparameters, one by pre-training and fixing the encoder with a certain number of
tasks, and the other by learning these same tasks in an auxiliary way, and to test these agents
both for their performance, their ability to generalize, and their robustness to erroneous commands.

More environments. Generalization to an unseen environment remains an open problem.
While humans are able to adapt to big changes, a significant change of its environment can cause
a drastic loss of performance for an intelligent system. In particular, humans are able to handle a
new environment (e.g. video game) with different graphics - because we identify semantic objects
even if they are visually different from those we are used to. One could imagine training an
autonomous agent in several completely different environments - using several different simulators,
not just different environments of the same simulator. Coupled for example with semantic
segmentation auxiliary task, this may build agents that have more in-depth understanding of the
environment and that can adapt more easily to a new one. More specifically, it could also ease
the transition from simulation to the real world.

Intrinsic reward. Another perspective would be to exploit intrinsic rewards. Based on the
idea that an agent learns better if it is intrinsically motivated [Singh 2005], the intrinsic rewards
do not come from the environment (like the distance to the center of the road, collision, etc.),
but from the agent itself. One can think of curiosity to improve exploration. Adding intrinsic
motivation could reduce training time, however, it seems difficult to perform autonomous driving
without environmental rewards, but intrinsic rewards could be combined with external rewards.
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Appendix A

Methods to Improve RL Training

Reinforcement learning is known to have a number of drawbacks, such as long training time and
high computational expense. If learning starts from scratch, with no prior information, the agent
must test all options to figure out the good ones. Therefore, accelerating learning is a major and
still open problem. Stability is also a sensitive issue in reinforcement learning because of the
high degree of randomness in training process. In this section we will present several research
directions that can be used to help RL training.

A.1 Fine-tuning

In supervised learning, fine-tuning is a very popular technique. It consists in training the agent of
the source domain, and retraining it on the target domain. In perception tasks for instance, a lot
of models are first pretrained on image classification tasks, to develop feature representation, and
then re-trained on new task, and show very good results. Fine-tuning is however less commonly
used in reinforcement learning. Indeed RL is based on the principle of trial and error, and on its
own exploration of the environment. If the agent is guided, the very principle of reinforcement
learning is tampered.

Some, however, have used supervised pretraining before reinforcement learning training. In
[Sadeghi 2016], model is pretrained to predict the collision probability. The goal is to teach an
agent how to fly a drone. Training is made in simulation using CAD models from real images
using [Izadinia 2016]. The agent is pretrained to predict the collision probability, and fine-tuned
with RL on navigation task. In simulation, CAD2RL presents a noteworthy improvement of the
results obtained with Imitation learning, and in real environment the results are pretty interesting,
as the drone is able to adjust its height to go through a window, or fly up stairs. Pretraining
the agent can speed up a lot training, and still allows to explore, but only starting from the
pretrained weight.

In this case the pretraining is made on a different task (collision probability), however it
can also be made with the same task. It is the case of both [Liang 2018; Pfeiffer 2018] for
navigation task. In this case the agent is pretrained with supervised learning and finetuned with
reinforcement learning, and show improved performance compared to supervised or reinforcement
learning alone. However using supervised learning drastically reduce the exploration of the agent,
and still requires a large amount of annotated data.
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A.2 Combining Reinforcement Learning with Demonstration

Adding expert demonstration during reinforcement learning training is a technique that allows
to guide the agent. Training still starts from scratch, and demonstration are added during
training. Intuitively it can be more powerful than simple pretraining since it does not constrain
the exploration, as reinforcement learning starts at the beginning of the training, while still
giving a guidance during training. Indeed one main problem of RL is the exploration part: if the
exploration is not enough, the agent may never get good rewards, and thus never learn. Therefore
it can be interesting to add good demonstration, combining reinforcement and supervised learning,
so that the agent can know in which direction the rewards are higher.

Different methods are used to take into account the demonstrations. Demonstrations can be
added to the replay buffer like [Vecerik 2017; Gulcehre 2020], and pulled with high probability
thanks to the prioritized experience replay [Schaul 2016] (see Figure A.1). Demonstrations can also
be processed separately, using a separate supervised loss [Rajeswaran 2017; Lakshminarayanan
2016; Hester 2017]. However, work has shown that training in the same way, i.e. with the same
loss, the supervised transitions and those collected during the training allows to be more robust in
case of a poor quality demonstration (cf. Reinforcement Learning from Imperfect Demonstrations
[Gao 2018])

Finally, demonstrations can be incorporated into the reward like in DeepMimic: Example-
Guided Deep Reinforcement Learning of Physics-Based Character Skills [Peng, Abbeel, 2018].
The agent is taught to perform physical tasks on simulation (like spinkick or cartwheel), and is
given reference motion. The reward function is composed of two terms: the first one encourages
the agent to follow the reference motion, and the second to perform a specific task (hit a ball).
This allows the agent to learn to perform some specific task that were not given as example while
being guided by a reference movement.

Figure A.1: Prioritized experience replay with two separate buffers: one for expert demonstrations,
one from the learning agent [Gulcehre 2020].
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A.3 Progressive Networks

Developed to overcome the failures of fine-tuning like catastrophic forgetting, progressive networks
[Rusu 2016] operate by freezing previously learned network, and training a new network on a
different task using lateral connections to the previously learned network (see Figure A.2). General
idea is that previously learned skills can apply to new tasks. In Sim-to-Real Robot Learning
from Pixels with Progressive Nets [Rusu 2017], Rusu et al. use progressive networks to move
from simulation to real world for vision based robot grasping task, trained with reinforcement
learning. They show noteworthy improvement of the performance with the task in real life with
progressive networks compared to simple fine-tuning. In this work it is used to bridge the gap
between simulation and reality, and we can imagine using it to achieve different level of driving
(lane following, obstacle avoidance, then conditional driving, etc...).

Figure A.2: Progressive network [Rusu 2016]. Each network is represented in column, representing
a specific task. When learning a new task, the other column parameters are frozen, and the new
column corresponding to the new task is randomly initialized. Transfer can apply from previous
columns laterally: hidden parameters h2i depend from both hidden parameters h1i´1 and h2i´1, i
representing here the ith layer of the network.

A.4 Multi-Task, Auxiliary Task and Intrinsic Rewards

Traditional learning problems learn one task at a time. For complex problems, this means
separating them into independent tasks that are learned separately. In the case of driving, one can
think of road detection, then trajectory planning, etc... which, in the case of the modular pipeline
approaches, are learned separately. However, in the case of complex systems, training several
correlated tasks at the same time enables knowledge to be shared between the different tasks,
and to learn and generalize better at the same time. We speak of multi-tasks when the tasks
that are learned have the same importance, on the other hand we speak of auxiliary tasks when
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this is not the main learning objective but helps for performance. A lot of work on multi-task
learning focuses on the learning of an agent able to master the different Atari games [Rusu 2015;
Parisotto 2016; Hessel 2019].

Both Policy Distillation [Rusu 2015] and Actor-Mimic: Deep Multitask and Transfer Rein-
forcement Learning [Parisotto 2016] use several single-game expert DQNs to transfer knowledge
to a single DQN using distillation [Hinton 2015]. They show improved performance compared to
single-task expert and DQN trained simultaneously, and improved generalization. Distillation
is also used in [Teh 2017], with one common policy interacting with task specific policies (see
Figure A.3). Task specific policies distill knowledge into the common policy, and in return the
common policy guides task-specific policies through Kullback-Leibler divergence for regularization.
In [Hessel 2019], PopArt normalization [Van Hasselt 2016] is used to manage the different environ-
ments, and in particular the rewards, whose order of magnitude can vary from one environment
to another.

Figure A.3: Distral (distill and transfer) framework [Teh 2017]. Common policy π0 gets knowledge
from task specific policies πi, and guide them using KL regularization.

We saw earlier that several approaches use auxiliary tasks to help learning the navigation
task. These auxiliary tasks are complementary tasks to navigation, whether it is the prediction of
affordances [Mehta 2018], depth [Mirowski 2016; Hawke 2019; Z. Li 2018], segmentation [Hawke
2019; Z. Li 2018], loop closure [Mirowski 2016], or internal information that do not require
additional information such as image reconstruction with a VAE [Kendall 2018] or self-supervision
[Jaderberg 2016; Shelhamer 2019].

Rather than adding an extra loss, it is possible to use intrinsic rewards. Intrinsic rewards are
a way to add rewards when the environment produces only very sparse rewards, and can help
exploration. In [Pathak 2017] is introduced Intrinsic Curiosity Module (ICM) (see Figure A.4).
The Intrinsic Curiosity Module produces a reward according to the agent capabilities to measure
the consequence of its own actions. Both [Zhelo 2018; Pathak 2017] use the ICM to encourage
exploration. The addition of intrinsic reward allows better data efficiency without adding external
information.
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Figure A.4: Intrinsic Curiosity Module (ICM) [Pathak 2017]. The agent interacts with the
environment, and consecutive states st and st`1 are send to the ICM unit, along with the
chosen action at. Features φpstq and φpst`1q are computed from the states, and a forward model
computes an estimation pφpst`1q of φpst`1q from features φpstq and action at. The difference
between pφpst`1q and φpst`1q is the intrinsic reward.

A.5 Meta Learning

In practice very close to multi-tasks learning, meta learning, also called "learning to learn", is a
branch of learning that enables more flexibility between different environments. The training
set is now part of the learned function f: fpDtrain, sq Ñ a, a task to perform now becomes a
training data. We present here a few works that we think are relevant, but there are many more
[J. X. Wang 2016; Finn and Levine 2017; Mishra 2018; Finn, Yu, 2017; Schwarz 2018; Duan
2016; Finn, Abbeel, 2017]. Based on the observation that learning from scratch takes a really
long time, and that animals and humans can learn new task very fast from prior understanding
of the world, Duan et al. propose an approach to speed up learning in MDP. In RL2: Fast
Reinforcement Learning via Slow Reinforcement Learning [Duan 2016], Duan et al. formulate
the principle of learning a RL algorithm as a RL algorithm itself (which leads to the name RL2).
The algorithm will be trained across a set of MDP, and not only one MDP as in classical RL.
Figure A.5 shows the principle of the RL2 algorithm. A trial is defined as a series of episodes
with a given MDP. The MDP is fixed inside a trial, but varies from one trial to another. Inside
a trial, several episodes (n) are performed (here 2 episodes per trial). The agent consists in a
Recurrent Neural Network (with hidden state h) with Gated Recurrent Units, trained with Trust
Region Policy Optimization [Schulman, Levine, 2015].

Figure A.5: RL2 algorithm [Duan 2016]
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The RL2 algorithm is tested on visual navigation on a maze and show a high success rate.
In Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [Finn, Abbeel, 2017],

the authors prepare a model for quick adaptation to new tasks. The idea of the MAML algorithm
is to optimize the reward after one or more gradient step. The idea is not to be perfect on all
tasks, but to find a "mean" policy that can quickly adapt to all of them. The idea is represented
in Figure A.6.

Figure A.6: Model-Agnostic Meta Learning (MAML) framework that optimizes a policy capable
of fast adaptation to new tasks [Finn, Abbeel, 2017]

The MAML algorithm is first evaluated on a regression task for sine function, and shows
pretty good results compared to finetuning, then on image classification on both Omnilog [Lake
2013] and MiniImageNet [Vinyals 2016] datasets. The evaluation is performed as follow: the
MAML network is trained on several classes of images, and then tested on 5 or 20 new classes,
with 1 or 5-shot learning, meaning the network is provided 1 or 5 images to adapt to the new class,
and then evaluated on test images on the new classes. In all cases, MAML performs better than
state-of-the-art classification few-shot of meta-learning algorithms. MAML is also evaluated on a
reinforcement learning task: locomotion tasks of half-cheetah and ant (direction and velocity),
and the model is shown to adapt very quickly to new task (i.e. new direction or speed), much
better than pretraining, and than random initialization. With a single gradient step on the new
task, the model is capable of performing very well on that task.

Meta learning works by training an agent on a set of similar tasks, so that it captures the
heart of the problem. In our case, we can imagine training an agent to drive in several different
environments, with different viewpoints, or even with several different simulators, so that it is
able to understand the driving problem, and then to better generalize.
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Titre: Exploration des algorithmes d’apprentissage par renforcement pour la perception et le controle d’un
véhicule autonome

Mots clés: Apprentissage par renforcement, Véhicule autonome, Apprentissage de bout-en-bout, Vision par
ordinateur, Tâche auxiliaire

Résumé: L’apprentissage par renforcement est une
approche permettant de résoudre un problème de prise
de décision séquentielle. Dans ce formalisme, un agent
autonome interagit avec un environnement et reçoit
des récompenses en fonction des décisions qu’il prend.
L’objectif de l’agent est de maximiser le montant to-
tal des récompenses qu’il obtient. Dans le paradigme
de l’apprentissage par renforcement, l’agent apprend
par essais-erreurs la politique (séquence d’actions) qui
donne les meilleures récompenses.
Dans cette thèse, nous nous concentrons sur son ap-
plication à la perception et au contrôle d’un véhicule
autonome. Pour rester proche des conditions d’un
conducteur humain, seule la caméra embarquée est util-
isée comme capteur d’entrée. Nous nous focalisons en
particulier sur l’apprentissage de bout-en-bout de la
conduite, c’est-à-dire une correspondance directe en-
tre les informations provenant de l’environnement et
l’action choisie par l’agent. Ce type d’apprentissage
pose cependant certains défis : les grandes dimensions

des espaces d’états et d’actions ainsi que l’instabilité
et la faiblesse du signal de l’apprentissage par renforce-
ment pour entraîner des réseaux de neurones profonds.
Les approches que nous avons mises en œuvre pour faire
face à ces défis reposent sur l’utilisation de l’information
sémantique (segmentation d’images). En particulier,
nous explorons l’apprentissage conjoint de l’information
sémantique et de la navigation. Nous montrons que
ces méthodes sont prometteuses et permettent de lever
certains verrous. D’une part combiner l’apprentissage
supervisé de la segmentation à l’apprentissage par ren-
forcement de la navigation améliore les performances de
l’agent, ainsi que sa capacité à généraliser à un environ-
nement inconnu. D’autre part, cela permet d’entraîner
un agent qui sera plus robuste aux événements inat-
tendus et capable de prendre des décisions en limitant
les risques. Les expériences sont menées en simulation,
et de nombreuses comparaisons avec les méthodes de
l’état de l’art sont effectuées.

Title: Exploration of reinforcement learning algorithms for autonomous vehicle visual perception and control

Keywords: Reinforcement Learning, Autonomous Vehicle, End-to-end training, Auxiliary task, Computer
vision

Abstract: Reinforcement learning is an approach to
solve a sequential decision making problem. In this
formalism, an autonomous agent interacts with an envi-
ronment and receives rewards based on the decisions it
makes. The goal of the agent is to maximize the total
amount of rewards it receives. In the reinforcement
learning paradigm, the agent learns by trial and error
the policy (sequence of actions) that yields the best
rewards.
In this thesis, we focus on its application to the per-
ception and control of an autonomous vehicle. To stay
close to human driving, only the onboard camera is
used as input sensor. We focus in particular on end-to-
end training, i.e. a direct mapping between informa-
tion from the environment and the action chosen by
the agent. However, training end-to-end reinforcement
learning for autonomous driving poses some challenges:

the large dimensions of the state and action spaces as
well as the instability and weakness of the reinforcement
learning signal to train deep neural networks.
The approaches we implemented are based on the use
of semantic information (image segmentation). In par-
ticular, this work explores the joint training of seman-
tic information and navigation. We show that these
methods are promising and allow to overcome some
limitations. On the one hand, combining segmenta-
tion supervised learning with navigation reinforcement
learning improves the performance of the agent and its
ability to generalize to an unknown environment. On
the other hand, it enables to train an agent that will
be more robust to unexpected events and able to make
decisions limiting the risks. Experiments are conducted
in simulation, and numerous comparisons with state of
the art methods are made.
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