.5, Page 83 of Chapter 4.
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The analytical development is divided into development of internal mechanics and the fluidstructure interaction (FSI) models. The internal mechanics model includes determining the plate response without the fluid. Simply-supported plates having rectangular geometry are considered.

The loading can be either the impulse or the arbitrary pressure profiles such as exponential or step loads. Both quasi-static and dynamic loadings are studied. Simplified analytical formulations to predict orthotropic rectangular plate response including higher order mode shapes, transverse shear deformation, and the membrane stretching caused by geometric nonlinearity are derived.

Several numerical examples are presented in which the proposed formulations are verified by many published literature and numerical solutions using LS-DYNA.

In the FSI model, the effect of fluid pressure is incorporated into the internal mechanics model. Here, two different approaches are considered, assuming an air-backed simply-supported plate subjected to a far-field underwater explosion. The first FSI approach contains two stages of calculations, namely, the early-time and long-time phases. The early-time phase adapts Taylor's FSI theory to determine the kinetic energy that would be transmitted to the plate while the long-time iii phase determines the free oscillation plate response taking into account the water-added inertia as a reloading effect. Many of the observations are related to the physical phenomena that have previously been observed by others in the literature. Then, several case studies were performed and the obtained results were confronted to three-dimensional fully-coupled LS-DYNA/USA models that are again validated using experimental results. However, due to some limitations imposed on the first FSI model which adapted Taylor's theory, it was required to develop an alternative model in which the first-order Doubly-Asymptotic Approximation (DAA 1 ) formulation is coupled into the nonlinear structural equations of motion. An efficient numerical algorithm called Nonstandard Finite Difference (NSFD) scheme is utilized to discretize and solve the coupled equations in the time domain. The scope for the second model is limited to the area where cavitation or reloading effect is not so significant. Again, the accuracy of the proposed model in both small and large deflection regimes is evaluated for various aspect ratios of the plates, loading levels as well as different material configurations. The results of LS-DYNA/USA (DAA 1 ) are used as a reference in this case. Finally, the advantages and shortcomings of the proposed models as well as possible 1.2 Detrimental effect on the ship hull girder caused by non-contact explosion [Keil, 1961] 2.1 Two dimensional schematic of the underwater explosion in an infinite fluid domain [Barras, 2012;Brochard, 2018] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [START_REF] Snay | Hydrodynamics of underwater explosions[END_REF] 
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Threats of underwater explosions

Studies on underwater explosion (UNDEX) started prior to World War I. The first systematic explosion tests were carried out since the 1860s [Keil, 1961]. The experiences from the First World War dawned upon the realization of the need for stronger structural protections against such threats. Then came the Second World War in which more powerful and deadlier weapons such as torpedoes, missiles, depth charges, atomic bombs, etc. were involved. Since then, significant research efforts have been devoted to the UNDEX and its adverse consequences. There was almost a constant development and building of ever more destructive weapons especially during the cold war period (1947 -1991). Several of the underwater nuclear tests were conducted by Navies of the United States and Soviet Union around that time. To name a few, there had been test Baker of operation Crossroads (1946( ), test Wigwam (1955)), test Swordfish of operation Dominic (1962) and so forth until no such tests were allowed anymore under the treaties of Partial Nuclear Test Ban (1963) and Comprehensive Nuclear-Test-Ban (1996) (Source: wikipedia1 ).

Indeed, these weapons were so powerful that the consequences they could bring about were threatening not only to the lives of the crew but also to the military or civil vessels. To further reinforce this point, a few examples are provided in Figs. 1.1 and 1.2. Figure 1.1(a) shows the USS Cole bombing incident in which two suicide bombers in a fiberglass boat carrying up to 225 kg of C4 explosives slammed against the USS Cole while she was being refueled in Yemen's Aden harbor on 12 October 2000. Not only a gaping hole was left on the port side of the US destroyer but 17 crews were also killed. At least 39 people were injured as the aftermath of the attack (Source. wikipedia 2 ). In Fig. 1.1(b), a large hole was seen in the hull of a French oil tanker, MV Limburg, when Al Qaeda terrorists rammed into her starboard side along with an explosives-laden dinghy on October 6, 2002. Consequently, around 90,000 barrels (14,000 m 3 ) of oil were spilled into the Gulf of Aden. In addition, one crew member was killed and twelve more were wounded during the attack (Source: New York Times 3 ).

Non-contact underwater explosions pose equally dangerous threats too. Generally, they are characterized by the depth, size and type of the explosive charge. The initial damage to the target is caused by the generation of the primary shock wave from the source of the charge. The damage is then amplified by the subsequent physical movement of water, the development of cavitation and the secondary shock wave effects due to oscillating bubble pulse. The oscillation of the gas bubble is dangerous especially when the response of the ship is in resonance with the excitation frequency of the bubble. Figure 1.2 shows the excessive global hull girder bending stresses due to the non-contact underwater blast.

In order to avoid such harmful circumstances, a structural engineer or a ship designer needs a thorough understanding of the underlying physics associated with these underwater shock loads. Moreover, there are a few other important questions that should be kept in mind:

1. How do such extreme loads interact with the structures (or materials) in concern?

2. What are the significant responses or physical phenomena that need to be analyzed? 3. What are the available methodologies that could help facilitate the design process?

This thesis is believed to answer these interesting questions. However, before going there, it is important to grasp the present state of knowledge in regards to the use of novel materials such as laminated composites and sandwiches in the naval industries. This is briefly explained in the subsequent subsection.

Advances in the application of composites

Conventionally, metallic materials such as steel have mainly been used in ship buildings. Yet, the recent development in fabrication techniques and several benefits of composites over traditional metals have enabled their applications in maritime industry to flourish considerably. These advantages usually include higher stiffness-to-weight ratios, better magnetic and acoustic signatures, improved durability, ease of maintenance and so on.

Generally, a composite material is formed by combining two or more separate materials to obtain a new material with enhanced mechanical properties, for example, fiber reinforced Figure 1.2 Detrimental effect on the ship hull girder caused by non-contact explosion [Keil, 1961] plastics (FRP), reinforced concrete, etc. For the naval applications, E-glass/vinyl ester, carbon fiber/epoxy and sandwich structures with FRP facesheets and Polyvinyl chloride (PVC) foam core were widely employed during recent decades. The French Navy, for example, began to replace steel with composites in building bow sonar domes for the submarines to achieve better acoustic transparency as well as to reduce operational costs [Mouritz et al., 2001]. Also in the report of [Hall, 1989], it can be found that the Royal Australian Navy (RAN) constructed new Bay class minehunter vessels using glass reinforced plastic (GRP) with foam sandwich composites, see Fig. 1.3. More recently, a European project, FIBERSHIP, has been launched in 2020 with the objectives of promoting the design and construction of commercial vessels of about 50 m in length (about 500 Gross Tonnage) in fiber-reinforced composite materials4 .

Obviously, these increasing demands in the usage of composites have led to a more extensive research in that domain. One such important research area is to study the dynamic response of composite laminates and sandwich structures when subjected to extreme loads such as impacts, inair or underwater blasts. Nevertheless, it has never been an easy task due to limited available data and the involvement of many complicated phenomena. Conducting experiments to determine the response under blast, shock, ballistic and fire conditions take a lot of time and money. Therefore, despite 70 years of development and usage, there is still some substantial lack of understanding of the behavior of composites particularly in areas such as fluid-structure interaction (FSI), resistance to blast and the associated post-failure behavior [Mouritz et al., 2001].

The research work presented in this thesis is an attempt to fill this gap by studying the dynamic behavior of composite plates caused by in-air explosion (INEX) and underwater explosion (UN-DEX). It was financed under the research project named 'SUCCESS -Modélisation de la tenue des StrUCtures CompositEs sous Sollicitations Sévères'. The interested application areas concern with the composite design for the surface ship sonar domes, submarine acoustic windows as well as the scantlings of the side or bottom plating of the ship, shown in Fig. 1.4, when they are subjected to underwater explosion or hydrodynamic slamming impact. 

Challenges, scope and objectives

The presence of terrorist threats (Subsection 1.1.1) combined with the rapid incline in the application of composites (Subsection 1.1.2) are pressing for an unprecedented research effort in the industrial as well as the academic world. However, as discussed before, this is a rather wide-scope field of study since the concept of underwater explosion encompasses several different domains, for example, physical chemistry of the explosives, fluid mechanics, solid mechanics, etc. Not to mention, the effects of non-linearity, material anisotropy and cavitation that occurs during the fluid-structure interaction are making the subject difficult to grasp and even to master it [Barras, 2012].

A further source of difficulty lies in the confidentiality of the topics where many of the resources are only available to those working for military and navies. Moreover, years of practice and skills are required especially for conducting physical experiments (handling explosives, detonics basin, data 1.3 Methodologies acquisition tools, etc.) and working with various numerical tools such as USA (Underwater Shock Analysis) and LS-DYNA [START_REF] Le Sourne | LS-DYNA Applications in Shipbuilding[END_REF], 2018]. Even to perform numerical simulations alone can be quite daunting since a lot of time, effort and expertise are required in modeling, computation, validation and interpretation of the results [Barras, 2012].

Fortunately, through the meticulous works of many researchers in the field of underwater explosions as well as the response of composites, certain understanding has been achieved over the past decades. With the help of advanced computation power of the 21 st century, it has now become possible to analyze problems involving a large number of degrees of freedom and complex geometrical shapes. One such development, known as Doubly Asymptotic Approximation (DAA) method by [Geers, 1978;DeRuntz, 1989], has enabled to treat the underwater explosion problems to the astounding level of accuracy for more than three decades.

Even so, the study performed by [Barras, 2012] has shown that the use of complex numerical simulations such as LS-DYNA/USA are not well-suited especially for the preliminary design stage since a wide variety of loading scenarios as well as structural configurations need to be considered. In this context, simplified analytical tools, that allow rapid and reasonably accurate solutions, become much more relevant, saving both time and effort. In addition, these tools could be used to validate the numerical models for simple cases such as a cylinder or a plate, providing good insights to the users about the problems at hands. However, it is also important to keep in mind that although these analytical tools are quite simple and straightforward to apply, their applicable range is quite limited due to a number of restrictions and assumptions imposed during the derivations. For example, only far-field explosion is studied in this thesis. So far, attention has been paid solely to the simply-supported, air-backed rectangular plate response.

Keeping all these challenges and scopes in mind, the objectives of the thesis are to -

• review the past and contemporary researches regarding the dynamic behavior of metallic and composite plates;

• propose simplified analytical formulae for INEX and UNDEX responses to help facilitate the pre-design processes;

• develop numerical models using nonlinear finite element explicit tools such as LS-DYNA and LS-DYNA/USA which are used to confront the proposed analytical formulations; and

• highlight all the important phenomena taking place in air and underwater blast events.

Methodologies

Numerical and analytical approaches are the main research methodologies applied throughout the whole thesis. Many of the validations and verification of the numerical models were carried out by comparing with previously existed data such as Goranson's experiment (1943) taken from [Kennard, 1944;Cole, 1948], Schiffer and Tagarielli's lab-scaled tests [Schiffer and Tagarielli, 2015] and an in-house test data provided by DGA Naval Systems (Délégation Générale de l'Armement of the French Ministry of Defense). Four different numerical modeling approaches are considered in this document to investigate the coupled FSI phenomena, namely, 2. Fluid-structure interaction (FSI) model: This is, in fact, an extension of the previously developed internal mechanics models by incorporating the effect of fluid pressure. Here, two different approaches are tackled, assuming an air-backed simply-supported plate subjected to a far-field underwater explosion. The first FSI approach developed in this thesis contains two stages of calculations, namely, the early-time and long-time phases. The early-time phase adapts Taylor's FSI theory [Taylor, 1941] to determine the kinetic energy that would be dissipated into the plate whereas the long-time phase determines the free oscillation plate response taking into account the water-added inertia as a reloading effect. Many of the observations are related to the physical phenomena previously observed by [Kennard, 1944], see Appendix B. After observing a few limitations imposed on the first impulse-based approach, a second FSI model is developed. This time, a Doubly-Asymptotic Approximation (DAA) formulation proposed by [Geers, 1978] is coupled into the analytical structural equations of motion of the plate. An efficient numerical algorithm called Nonstandard Finite Difference (NSFD) scheme [Mickens, 1993;Songolo and Bidégaray-Fesquet, 2018], given in Appendix C, is utilized to discretize and solve the coupled equations in the time domain.

The scope for the second model is limited to the area where cavitation or the reloading effect is not so significant.

Outlines of the chapters

The chapters are laid out according to the following general outlines:

• Chapter 1: It is the current chapter in which relevancy of the scientific context regarding the current research is given. Challenges, scopes and objectives are defined. The methodologies applied are briefly introduced. Plans for the thesis are laid out as seen.

• Chapter 2: It is the chapter where important physical phenomena of underwater explosions and a sequence of events are explained along with some relevant references.

• Chapter 3: Different numerical models are constructed and validated using results from the literature as well as the experimental tests. It is also in this chapter that all the relevant literature about numerical methods (hydrocodes, Underwater Shock Analysis (USA) code, etc.) are reviewed.

• Chapter 4: Closed-form analytical expressions are derived to determine the response of a plane, simply-supported plate without the effect of fluid. Any previous research works concerning with the air-blast or impulsive velocity response as well as the effect of geometric nonlinearity due to large deflection are summarized here. Several numerical examples are presented and the proposed formulations are verified by many published literature and numerical solutions using LS-DYNA. Stresses and strains are predicted, and with the help of Tsai-Wu criterion, some sample case studies to detect the first ply failure in the laminates are given as well.

• Chapter 5: Analytical aspects are presented regarding extension of the previous internal mechanics model by using two-step impulse-based approach, and coupled first-order DAA formulation. The accuracy of the proposed FSI model is evaluated for various aspect ratios, loading levels and the material configurations. Moreover, applicability of both FSI analytical models is checked by confronting with the experimental results.

• Chapter 6: In Chapter 6, summaries of each chapter and different perspectives associated to the possible improvements of the proposed formulations, practicality and scientific relevancy are provided.

In addition to these main chapters, three appendix chapters are given for reasons of selfcontainment, showing detailed derivations of Taylor's FSI model, case studies performed by Kennard, and finally, nonstandard finite difference model and its derivations.

Chapter 2

Characteristics of Underwater Explosion

Description of the research work in this thesis cannot be complete without first tackling the underlying physics involved in an underwater explosion event. Indeed, the aim of this chapter is to provide a detailed enough introduction of these phenomena to underpin the current study. The domain of application, however, concerns only with the conventional methods of non-contact underwater explosions such as those triggered by proximity fuses, mines, torpedoes or depth charges. Explosions caused by nuclear weapons are outside the present scope.

Overview of the phenomena involved

Problem configuration

Suppose that an explosive charge, e.g. TNT (Trinitrotoluene), is detonated at some distance away from the targeted structure. Here, both the structure and the charge are assumed to be fully submerged in an infinite fluid domain as illustrated in Fig. 2.1. The initial location of the center of the charge at the time of explosion is called a source point, denoted by O. The standoff point S stands for the point on the structure that will first be impacted by the incident shock wave. The distance between the two points O and S is called the standoff distance and is represented by R. Note that R corresponds only to the initial standoff point S where the segment normal vector n is pointing towards the fluid domain and shows an opposite direction to the shock wave propagation, r . Of course, there would also be other standoff points, S i on the structure not necessarily collinear with initial segment normal vector n. These other segment normal vectors n i are, hence, evaluated depending on the angle of incidence α i , which is the angle between the shock wave direction and the tangent line to the segment or body.

In addition to the terminologies defined above, there are three more important variables, namely, the acoustic speed c w , the incident shock wave P i (t ) at any arbitrary location in fluid, and the incident shock wave Pi (t ) at the standoff point S. Different media refer to different material domains that belong to the explosive charge Ω e , the fluid Ω f , and the target body Ω s . Γ f e and Γ f s are designated for fluid-explosive interface and fluid-structure interface respectively. [Barras, 2012;Brochard, 2018] 

Sequence of events

In general, the sequence of events associated with the detonation of an explosive charge can be characterized as [Cole, 1948]:

1. The detonation phase: During this phase, an exothermic chemical reaction, that converts the original material into a gas, takes place at an extremely high temperature (≈ 3000°C) and pressure (≈ 50, 000 atm). A large amount of energy is suddenly released and a detonation front, typically in the order of 6000 -7000 m.s -1 , expands through the charge (domain Ω e ), eventually reaching the fluid-explosive interface Γ f e . Note that this pressure inside the domain Ω e should not be confused with that of the residual gas bubble which is formed only after this detonation phase.

2. The generation of the shock wave: By the time the detonation wave arrives the outer border of the explosive, a disturbance is transmitted radially outward in the form of the compressive wave into the surrounding fluid (domain Ω f ). This steep fronted pressure wave, also known as the primary shock wave, is roughly followed by an exponential decay, the duration being measured in the order of a few milliseconds at most. Its propagation velocity is, at first, several times higher than that of the acoustic waves in fluid 1 . However, it falls to the acoustic value c w after the shock wave has traveled about 15 to 20 times the size of the charge radius r c , see Fig. 2.1. The profile of this wave broadens gradually as it spreads out in the three 2.1 Overview of the phenomena involved dimensional (3D) domain. This spreading effect is the most significant in the region of high pressures near the charge [Cole, 1948].

The formation of the gas bubble:

The residual gases, as a result of the detonation, give rise to a bubble which then expands in an open water since the pressure inside is still higher than the surrounding hydrostatic pressure. During this growth phase, the internal pressure starts to decrease as the volume of the bubble increases. At some point in time, the bubble grows up to the point where the inside and outside pressures of the bubble become equal, but due to its significant outward momentum, the bubble will continue to expand. Eventually, this momentum is overcome by the imbalance between the outside and inside pressures. It is at this moment that the bubble will attain its first maximum radius. In search of an equilibrium with the surrounding fluid pressure, the bubble will begin to contract, overshooting its equilibrium point again and then continuing to compress the bubble gases inside until the bubble size can no longer be reduced (due to the compressibility of the gases). At this instance, the inward contraction of the bubble is rapidly reversed, thereby generating the first bubble pulse or the secondary pressure pulse. Because of the generation of a large pressure in the bubble during this stage, the bubble begins to expand again and then the cycle repeats. This oscillation process can persist for a number of cycles until all the gas bubble energy is depleted due to radiation, turbulence or the disturbing effects caused by gravity [Cole, 1948].

The phenomena discussed above are depicted in Fig. 2.2 in which the incident pressure-time history is shown at the top and the behavior of the gas bubble at the bottom. It should be kept in mind that the pressure-time plot shown refers only to the pressure evolution at a point (in fluid) sufficiently far from the source point. Also, there should be no interfering boundary surfaces such as rigid wall, seabed, or free surface near the oscillating bubble.

At the initial part of the pressure-time history (top of Fig. 2.2), the primary shock wave followed by an exponential decay profile could be seen. Then come the secondary pressure pulses whose periods coincide with the instance of the bubble's minimum contraction for reasons already explained above. Note that the primary shock wave duration is in the order of milliseconds while the duration for the secondary pressure pulse could be much longer, in the order of 100 milliseconds [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF]. But, its magnitude becomes much weaker, having only about 10 -15 % of that of the primary shock wave. Nevertheless, they still represent important dynamic loads for the ship structures especially in the whipping analysis [Keil, 1961].

Figure 2.2 (bottom) shows the movement of the gas bubble and it can be seen that the bubble not only oscillates but also migrates upward. Every time the bubble reaches its minimum diameter, the internal pressure inside the bubble is at maximum and its vertical movement becomes the largest as well. Obviously, the forces of gravity and buoyancy are playing their parts in this so called bubble dynamics. It should be noted that the movement is not linear as a function of time since it depends on the oscillations of the bubble. The larger the bubble becomes, the more buoyancy forces it will get. However, the fluid drag forces, that resist the upward rise of the bubble, can also increase at the same time. In contrast, when the gas bubble is at its smallest, the presence of inertia is significantly reduced so that the net force acting on the bubble causes it to move upward maximally. With each successive oscillation, the maximum radius as well as the vertical movements of the bubble decrease due to energy losses during the phases of maximum [START_REF] Snay | Hydrodynamics of underwater explosions[END_REF] which presents the temporal evolutions of the pressure (top) and of the residual gas bubble in an open water condition (bottom) contraction. The mechanism of the gas bubble collapse was studied in the past by [START_REF] Snay | Hydrodynamics of underwater explosions[END_REF].

Important physical quantities

In this section, important physical quantities associated to UNDEX such as incident pressure, impulse, and energy are reviewed. Within the domain of the present study, more emphases are given to the primary shock wave and its related properties.

Primary shock wave

According to [Cole, 1948], the primary shock wave is characterized by an almost instantaneous rise of the peak pressure followed by a pressure drop which can be assimilated, at the first approximation, to a simple exponential decay form as follows:

P i (t ) =    0 , t < 0 P 0 e -t /τ , t ≥ 0 (2.1)
where P 0 is the peak pressure and τ is the decay time. The decay time τ is defined as the time constant of the loading when the peak pressure falls to 1/e (about one-third) of its peak value, that is, P i (τ) = P 0 /e. As shall be discussed in Section 2.3, these two quantities (P 0 and τ) can be obtained by using Principle of similarity if the type and mass of the explosive charge and the standoff distance are known. The approximation of the primary shock wave modeled by a simple exponential decay could correctly represent the pressure evolution until time t = τ. In other words, a simple exponential variation of the incident shock wave is accurate for only about one decay constant. After that point (i.e., when t > τ), the pressure begins to drop at a rate slower than as indicated by the tail of the simple exponential law, Eq. (2.1). Indeed, this can be attributed to the gradual expansion of the gas bubble particularly when the load is relatively close to the structure studied. The use of experimental measurements published by [Cole, 1948] also highlighted such deviation of the simple exponential form from the measured pressure curve. These measurements relate to the time evolution of the pressure at a point in the liquid such that the charge mass C and the standoff distance R would give C 1/3 /R = 0.242. Using this data, [Geers and Hunter, 2002] was able to construct a trend curve expressing a double exponential decay form that would provide a better approximation of the incident pressure-time relationship as follows:

P i (t ) =        0 , t < 0 P 0 e -t /τ , 0 ≤ t < τ P 0 0.8251e -1.338t /τ + 0.1749e -0.1805t /τ , τ ≤ t ≤ 7τ (2.2)
The comparison of the simple and double decay formulations up to t /τ = 7 is shown in Fig. 2.3. Both the incident pressure P i (t ) and time variable t are normalized by the peak pressure P 0 and decay constant τ respectively. A difference in the tail of the incident pressure after one decay constant can be observed. In [Barras, 2012], the sensitivity to the change in the incident pressure profile was studied within the framework of Taylor's theory. It was concluded that when the early cavitation is likely to occur, the impulse transmitted to the plate has little or no dependence on the shape of the incident pressure wave over longer times.

The area under the pressure-time curve is called the impulse, denoted by I . It is the integral of the pressure at a given point, between two instants in time. In order not to include the secondary phenomena caused by the residual gas bubble, this short time interval between the appearance of the steep pressure front and the pulse duration is fixed only up to 6.7τ. The impulse is then expressed as:

I = 6.7τ 0 P i (t )d t (2.
3)

The calculation of the impulse from the simple exponential law, Eq. (2.1), would give:

I simple = 6.7τ 0 P 0 e -t /τ d t ≈ P 0 τ (2.4)
Using the double decay exponential form given by Eq. (2.2), which is more representative of the experimental cases where the source point and the target are fairly close, the impulse is written as: where it can be immediately seen that the impulse evaluated from double exponential decay is 30% higher than the one that used simple exponential form. This additional contribution cannot be said as unimportant if seen from the point of view of the UNDEX effects onto the submerged structures. Indeed, in the designing of the structures, taking into account the double exponential decay would lead to a more conservative approach. In the doctoral dissertation of [Brochard, 2018], it was shown, using numerical simulations, that the use of the double exponential form resulted a greater damage to the submerged structure.

I double = 6.7τ 0 P 0 0.8251e -1.338t /τ + 0.1749e -0.1805t /τ d t ≈ 1.3P 0 τ (2.
The energy in the shock wave of the explosion consists of two components, one belonging to the compression in the water, and the other to the associated flow [Keil, 1961]. The energy density or energy flux (that is, energy per unit area) contained in the primary shock wave can be calculated using:

E 0 = 1 ρ w c w 6.7τ 0 P 2 i (t )d t (2.6)
where ρ w and c w are the density and the sound speed in water respectively.

The energy per unit area calculated from the simple exponential form (Eq. (2.1)) of the primary shock wave would then result:

E 0 simple = 1 ρ w c w 6.7τ 0 P 2 0 e -2t /τ d t ≈ P 2 0 τ 2ρ w c w (J .m -2 )
(2.7) while using the double decay form would bring the energy flux of:

E 0 double = 1 ρ w c w 6.7τ 0 P 0 0.8251e -1.338t /τ + 0.1749e -0.1805t /τ d t ≈ 1.058 P 2 0 τ 2ρ w c w (J .m -2 ) (2.8)
Another important quantity that should be discussed is the particle velocity when the shock wave passes to that particular location in fluid. If a plane shock wave comes from a far-field explosion, then the flow velocity of the water particle v(t ) at that point can be associated to the transient pressure P (t ) as:

P (t ) = ρ w c w v(t )
(2.9)

Note that the particle velocity has the same direction to that of the shock wave.

As for the spherical shock wave, which is more common in reality and for the closer target, correction to the above formulation would be required [Keil, 1961]:

v(t ) = P (t ) ρ w c w + 1 ρ w R t 0 P (t )d t (2.10)
where R is the standoff distance, see its definition in Subsection 2.1.1 and Fig. 2.1. The first term in the Eq. (2.10) is the same as the particle velocity due to the plane shock wave (Eq. (2.9)) whereas the second term is the correction term attributed to the afterflow effect. This afterflow term becomes more significant in the close vicinity of the explosion, and also for large time intervals.

Energy balances

The values of different energy distributions evaluated from the detonation of 680 kg TNT are given in Table 2.1, using 1060 cal/g (about 4.44 MJ/kg) as the total energy release. The energy balance in percentage, for better representation, is shown as a flow chart in Fig. 2.4. Detailed study of the energy partition in an underwater blast was reported by [START_REF] Arons | Energy partition in underwater explosion phenomena[END_REF]. It should, however, be mentioned that this distribution will no longer be valid when the bubble forms sufficiently close to an obstacle (rigid wall, seabed, etc.), since it will "collapse" on the obstacle, launching a jet of water and generally causing additional damage to the impacted structure. This phenomenon has been observed in particular in the experimental work carried out by [START_REF] Brett | Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion[END_REF][START_REF] Brett | A study of explosive effects in close proximity to a submerged cylinder[END_REF], relating to the close proximity explosive effects onto the submerged cylinder. [Keil, 1961] 

Principle of similarity

Many of the physical characteristics related to the shock waves are determined based on the principle of similarity which states that, " The pressure and other properties of the shock wave will be unchanged if the scales of length and time by which it is measured are varied by the same scale factor λ as the dimension of the charge. "

-quoted from [Cole, 1948] To make this point clearer, suppose that a TNT charge having a 1 kg mass is detonated at a distance 10 m away from the location of measurement. Now, another charge of the same type is exploded again at a standoff distance of 20 m so that the scale factor λ is equal to two. According to the principle of similarity, the pressure measured from the first explosive (1 kg) will be the same as the second if the mass of the second charge is eight times larger, that is 8 kg. The time constant of the second charge (8 kg) should be varied by the same scale factor and hence, becomes twice that of the first charge (1 kg). An example calculation using the similitude equations, Eqs. (2.11) -(2.14), is shown in Table 2.2 as a numerical example. In this table, one can immediately see that the lengths are in a ratio λ = 2 and the volumes (or the masses) are in a ratio of λ 3 = 8. Important quantities such as peak pressure, decay time, impulse and energy flux also vary with the respective scale ratio.

Indeed, these values from Table 2.2 are a result of the many free-field experimental tests conducted during the years 1950s and 1960s [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF]. By analyzing the pressure measurements from the detonation of a variety of charges at various standoff distances and by making rigorous regression analyses, many empirical relations for the peak pressure, decay time, impulse, and the energy flux could be described only as a function of the charge mass C and the standoff distance R. These empirical relations, following a basic power law expression, can be given as:

Peak pressure (N.m -2 ) :

P 0 = K 1 C 1/3 R A 1 (2.11)
Decay constant (ms) :

τ = K 2 C 1/3 C 1/3 R A 2
(2.12) Impulse (N.s.m -2 ) :

I = K 3 C 1/3 C 1/3 R A 3 (2.13)
Energy flux density (kJ.m -2 ) :

E 0 = K 4 C 1/3 C 1/3 R A 4 (2.14)
Similar laws of similarity for the pseudo-period τ p and the maximum radius R max of the bubble, found in the work of [START_REF] Snay | Underwater explosion phenomena : The parameters of migrating bubbles[END_REF][START_REF] Snay | Charts for the parameters of migrating explosion bubbles[END_REF], can be given as follows:

Bubble pseudo-period (s) :

τ p = K 5 C 1/3 (D + 9.8) 5/6
(2.15)

Maximum bubble radius (m) :

R max = K 6 C 1/3 (D + 9.8) 1/3 (2.16)
where D is the depth, in meter, at which the charge is located. The A i and K i (where i = 1, 2, ..., 6) are constants that depend on the types of the explosives. Table 2.3 below presents the values of these parameters A i and K i for TNT explosive. It was obtained from a spherical charge of density 1520 kg.m -3 . These values are implemented in general hydrocodes such as USA (Underwater Shock Analysis) developed by [DeRuntz, 1989].

The iso-contours of the pressure peak P 0 and the time constant τ, calculated by empirical relations Eq. (2.11) and Eq. (2.12), are presented respectively in Fig. 2.5(a) and (b) as a function of the standoff distance R and the charge mass C , both in a bi-logarithmic scale. According to [Cole, 1948], the range of validity, expressed in terms of ratio (C 1/3 /R), is generally between 0.08 (low loads, large distances) and 2.50 (large loads, small distances) in kg 1/3 .m -1 .

In addition to this range suggested by [Cole, 1948], there are also some other limitations that must be kept in mind when using these power laws relationships: • They are only correct for distances greater than 10 times the initial radius of the charge.

• These equations do not take into account the viscosity and the secondary chemical reactions of the explosion.

• Also, the influence of the shape of the load on the peak pressure or the impulse of the shock wave is ignored.

Shock factor

Shock factor, denoted here as K , is the most widely used parameter to characterize the severity of an underwater explosion. It represents the available energy the shock wave possesses to cause damage to the structure. It can be written as:

K = C R (2.17)
where C is the charge mass in kilogram and R is the standoff distance in meter. This definition of the shock factor is valid when the shock wave direction is perpendicular to the submerged structural surface. In the other cases, the angle of incidence α of the shock wave with the structure, as shown in Fig. 2.1, needs to be accounted for as follows:

K = C R sinα + 1 2 (2.18)
where α is the angle of incidence (between a tangent line to the structure and a line drawn from the charge to the impact point). In the case of a normal incidence, that is, when the charge is situated directly below the vessel, α is taken as π/2 and thus, will yield the highest shock factor. Shock factor is also called Hull Shock Factor (HSF) or Keel Shock Factor (KSF). By using the empirical relation for the energy flux, Eq. (2.14) and noting that the constant A 4 is approximately equal to 2 (see Table 2.3), it can be shown that the energy is proportional to the ratio C R 2 . By relating with Eq. (2.17), a proportional relationship between the shock factor K and the shock wave energy per unit area E 0 can be derived:

K ∝ E 0 (2.19)
In an event of a fluid-structure interaction, the energy contained in the shock wave is, through maximum kinetic energy at the early-time response stages, transmitted to the plate deformation energy which in turn is proportional to the square of the plate deflection (either elastic or plastic). Therefore, it can finally be established that the shock factor is the assessment to the severity of damage to the structure. Of course, the use of shock factor is a simplified way of characterizing the shock wave consequence, but the loading in practice could be more complicated due to the involvement of cavitation, material failure, etc. In the following section, other factors that could also influence the behavior of the shock are discussed.

Other influencing factors

Cavitation

Cavitation is a common phenomenon that should be addressed in an underwater shock loading especially for the flexible target or the free surface.

• Flexible target: In the case of a flexible target, some part of the arriving shock wave is reflected while the other part is either transmitted through the structure or is radiated due to the plate sudden movement. For usual cases such as steel plate, the transmitted pressure is almost negligible due to its high value of acoustic impedance compared to the surrounding water. Therefore, the scattered pressure field caused by the fluid-structure interaction contains mostly of the reflected and radiated pressures. The radiated pressure at the early interaction stage is in negative sign, usually termed as rarefaction waves, and could reduce the total pressure acting on the target. Since water cannot sustain tension, the area in the vicinity of such negative pressures cavitates. Usually, the threshold pressure for this phenomenon is assigned by the vapor pressure 2 . This concept, also known as hull cavitation or local cavitation, will be explored further, numerically or analytically, in Chapter 3 and Chapter 5 respectively.

• Free surface: Cavitation can also result when a compressive shock wave meets the free surface and is then reflected back into the fluid as a tensile wave. Again, the reason is due to the inability of water to maintain tensile waves, creating a non-homogeneous vaporous zone near the free surface. Such cavitated zone is incapable of transmitting shock disturbances to its intermediate area. A schematic representation of this effect is shown in Fig. 2.6 where maximum possible envelop of the cavitated region due to the presence of free surface is highlighted by diagonal stripes. This form of cavitation is called bulk cavitation. Bulk cavitation is important because the closure of the cavitated zone could launch an additional compressive pulse to the structure. This compressive pulse, also known as the reloading effect, depending on the circumstances, can represent an even bigger threat than the actual shock wave [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF]. An example of what could happen when the bulk cavitation zone collapses is shown in the pressure-time plot in Fig. 2.6.

A mathematical model of cavitation was first proposed by [Bleich and Sandler, 1970] in which the water was treated as a bilinear fluid. Then, a further rigorous study has been made by [Kennard, 1943]. More recently, [START_REF] Schiffer | Observations and Numerical Modeling of the Response of Composite Plates to Underwater Blast[END_REF] studied the effect of cavitation on the isotropic and orthotropic plates by scaled experimental tests using a transparent shock tube. 

Bottom reflection and surface cut-off

If an explosion occurs close to the vicinity of the sea bottom, bottom reflection waves must be taken into account. Unlike the cases with free surface, the waves coming from the bottom reflection are compressive. This, of course, could depend on the nature of the sea bottom material. Sometimes, a tensile wave could be reflected for a very flexible sea bottom, but, in most normal cases, a compressive wave is reflected and further enhances the total pressure acting onto the ship 20 2.6 Concluding remarks [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF]. In Fig. 2.7, it is conceptually shown how the reflections from the sea bottom could increase the loading in the temporal evolution of pressure.

Figure 2.7 Illustration of bottom reflection and surface cut-off [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF] The surface cut-off effect, which could be seen in Fig. 2.7 as the drop in the pressure at the tail of the exponential curve, is mainly due to the arrival of the tensile waves reflecting from the free surface. The time delay associated with this surface cut-off effect, or surface cut-off time T sc , can be computed simply by the following formula [Keil, 1961]:

T sc = 1.312 Dd R (2.20)
where D is the depth of a charge location in meter, d is the depth of the target location, and R is the distance between the target point and the source point, all being measured in the S.I. unit.

In addition to all the effects discussed above, there is also another surface phenomenon called spray dome. This is usually observed in the cases of shallow water detonation, usually accompanied by a plume of water breaking out of the free surface. Sometimes, the observed plume tends to be dark in color as a result of the explosive byproducts emerging from the water surface. Another characteristics which is not covered in this discussion is the effect of shock wave refraction. It is particularly involved in large standoff ranges where the fluid may have varying thermal conditions. The assumptions of linear acoustic propagation of the incident shock wave may not be valid anymore in such cases [START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF].

Concluding remarks

In this chapter, the sequence of events taken place in an underwater explosion process is briefly discussed. Several important physical quantities such as the incident pressure, impulse, and the energy flux are explained along with the formulations to predict them. The concept of shock factor is introduced and many other interesting phenomena such as hull or local cavitation are also highlighted. The contents presented in this chapter are important when studying about fluid-structure interaction in Chapter 5.

Chapter 3 Numerical Models and Validations

Advances in technology and computing power in the first half of the 20 th century has made it possible to solve increasingly complex and challenging problems which may involve several hundreds of degrees of freedom (DOFs). Indeed, numerical methods such as finite element are widely applied in naval and many other engineering fields because of their robustness and generality. On this account, the objective of this chapter is to give state-of-the-art literature reviews regarding the application of numerical approaches in the underwater explosion and fluid-structure interaction (FSI) analyses. Theoretical backgrounds about the numerical models used within the framework of this thesis are provided as well. Various numerical models are then constructed using nonlinear finite element explicit solver LS-DYNA and Underwater Shock Analysis (USA) code. Finally, the simulated results using these models are validated by comparing with experimental results available from the literature.

State of the arts

Numerical analysis of underwater explosion and FSI problems can be categorized as:

1. analyses using hydrocodes; 2. analyses using surface approximation methods; 3. analyses using Cavitating Acoustic Finite Element (CAFE); 4. analyses using Cavitating Acoustic Spectral Element (CASE); and 5. analyses using other numerical approaches. [Mair, 1999] gave a comprehensive review about the use of various hydrocode methodologies to predict the structural response loaded by underwater explosions. Hydrocodes are computational continuum mechanics tools capable to simulate the response of both solid and fluid materials under intense dynamic conditions such as detonations or impact loads when the propagation of the shock waves is the main concern. According to [Mair, 1999], an alternate terminology for "hydrocodes" is the "wavecodes" due to the wave-capturing nature of these codes. Unlike the traditional Computational Fluid Dynamics (CFD) or Computational Solid Mechanics (CSM) codes, hydrocodes can provide more fundamental time-dependent solutions of continuum mechanics (compared to, for example, the Navier-Stokes equations of fluid dynamics) and use fewer approximations [Mair, 1999]. They can be grouped as:

Analyses using hydrocodes

• Lagrangian hydrocodes: Lagrangian hydrocodes are relatively straightforward and rapid computational tools in which the meshes remain fixed on the materials and distort along with them. However, calculations may break down whenever large mesh distortions occur since the time step by then is reduced to an extremely small value. This limitation of pure Lagrangian approach was shown in [START_REF] Mair | Lagrangian Hydrocode Modeling of Underwater Explosive/Target Interaction[END_REF] in which the early-time response of a stiffened curved plate under close-in underwater explosion was simulated using Lagrangian hydrocode DYNA3D. [START_REF] Mousum | Numerical Analysis of Immersed Steel & Composite Cylindrical Shell Structures Submitted to UNDEX[END_REF], with the aid of LS-DYNA, analyzed the UNDEX response of immersed steel and composite cylinders in which the fluid models using Lagrangian elements and acoustic volume elements were compared1 .

• Eulerian hydrocodes: Eulerian hydrocodes overcome the mesh distortion problem by advancing the solutions on a computational mesh fixed in time and space [Mair, 1999]. Hence, the time step remains approximately constant throughout the simulations, and it is possible to simulate the bubble jetting phenomenon. Nevertheless, the use of pure Eulerian codes in the modeling of underwater explosion problem is deemed impractical on account of their modeling limitations and fine zoning requirement. Application of Eulerian hydrocodes can be found in [START_REF] Mcglaun | CTH: A three-dimensional shock wave physics code[END_REF] in which a multi-material, 3D physics shock code, called CTH, was presented. Another application for Eulerian hydrocodes in modeling explosive response, shock wave propagation and shock-wall interactions can be seen in [START_REF] Pangilinan | Time-resolved pressure measurements from an underwater explosion[END_REF]].

• Coupled Eulerian-Lagrangian hydrocodes: In the Coupled Eulerian-Lagrangian (CEL) hydrocodes, materials exhibiting fluid behavior is modeled in an Eulerian frame and the solid structures in a Lagrangian frame. Appropriate coupling method is imposed at the interface between these two frameworks so that realistic fluid-structure coupling can be obtained.

One advantage of such CEL codes is their ability to rezone a Lagrangian mesh into an Eulerian mesh, thereby avoiding mesh distortions. Nevertheless, the application of CEL codes can be difficult or impractical in cases where a thin Lagrangian structural element (with no spatial thickness) is immersed in a single Eulerian fluid cell [Mair, 1999]. In [START_REF] Bergerhoff | Program DYSMAS/ELC and its application on underwater shock loading of vessels[END_REF], the capability for simulating the interaction between underwater explosions and 3D naval structures has been demonstrated using coupled hydrocode DYSMAS/ELC. A more recent study about the use of CEL approach can be found in [START_REF] Avachat | Novel experimental and 3D multiphysics computational framework for analyzing deformation and failure of composite laminates subjected to water blasts[END_REF] in which the experimental and numerical responses of composite laminates subjected to underwater blasts were compared.

• Arbitrary Lagrangian-Eulerian hydrocodes: Arbitrary Eulerian-Lagrangian (ALE) code applies the concepts of both Lagrangian and Eulerian frameworks. Its difference from the CEL approach is that the fluid-structure coupling is done without using two-separate coordinate systems. Generally, coupling becomes more efficient in ALE than in CEL codes since the interface (in ALE) between the structure and its surrounding medium is a Lagrangian boundary for both regions. It should, however, be noticed that the elements that must remain in Lagrangian region (e.g. plates) cannot be allowed to collapse upon each other if the material between them is entrained. In other words, the mesh defining the entrained fluid cannot simply be removed from the Lagrangian interface, even if the fluid itself could [Mair, 1999]. [START_REF] Chisum | Multimaterial Eulerian and coupled Lagrangian-Eulerian finite element analysis of underwater shock problems[END_REF] used multi-material Eulerian and coupled Lagrangian-Eulerian FE analysis in MSC/DYTRAN to study the elastic response of a spherical shell and an infinite cylinder subjected to a plane step wave propagating through an acoustic media. The obtained numerical results were compared with analytical solutions of [Huang, 1969[Huang, , 1970] ] and found a good agreement with them. [START_REF] Kim | Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank[END_REF] used the ALE module of LS-DYNA to investigate the survivability of a submarine liquefied oxygen tank subjected to an underwater explosion. The application of multi-material ALE method for simulating the near-field underwater explosions was presented in the PhD thesis of [Barras, 2012]. More recently, [START_REF] Márquez Duque | Implementation Of The Arbitrary Lagrangian Eulerian Method In Soft Body Projectile Impacts Against Composite Plates[END_REF]Márquez Duque et al., 2019] and [START_REF] Ladeira | Simulation of Slamming on a Fiber Reinforced Composite Structure Using the ALE / Eulerian Numerical Approach[END_REF] used a multi-material ALE scheme in LS-DYNA to model a soft body impacts against laminated composite plates and hydrodynamic slamming responses of composite and steel structures respectively2 .

Analyses using surface approximation methods

Surface approximation methods apply integration techniques to reduce the volume integral of the fluid domain to surface integral of the structural wet segments. Well-known surface approximation methods are discussed here:

• Plane Wave Approximation (PWA): In 1953, [START_REF] Mindlin | Response of an elastic cylindrical shell to a transverse step shock wave[END_REF] proposed a Plane Wave Approximation (PWA) model to analyze the elastic response of cylindrical shells loaded by a lateral step wave. The application of this model can be found in the technical report of [START_REF] Baron | Further studies of the response of a cylindrical shell to a transverse shock wave[END_REF].

• Curved Wave Approximation (CWA): The PWA approach was later extended by [START_REF] Haywood | Response of an elastic cylindrical shell to a pressure pulse[END_REF] to take into account the "after-flow" effect of the spherical wave and was known as Curved Wave Approximation (CWA). Both PWA and CWA models are accurate for the early-time or high-frequency motions.

• Virtual Wave Approximation (VWA): Virtual Wave Approximation (VWA) method was developed by [START_REF] Chertock | Effects of underwater explosion on elastic structures[END_REF] to determine the responses of the lowest bending modes of the slender structure subjected to UNDEX. Such approach was found to be accurate for low-frequency or late-time response stage.

• Doubly Asymptotic Approximation (DAA): During the 1970s, Geers summarized the efforts on the transient FSI responses and concluded that retarded potential integral, spatial domain mapping, and surface interaction approximations are the optimum means for analyzing the complex submerged structures [START_REF] Geers | Excitation of an Elastic Cylindrical Shell By a Transient Acoustic Wave[END_REF][START_REF] Geers | Residual potential and approximate methods for three dimensional fluidstructure interaction problems[END_REF]. This resulted in the well-known Doubly-Asymptotic Approximation (DAA) formulations, the time domain differential equations that approach exactness at both high and low frequencies and allow a smooth transition in-between. In [Geers, 1978;[START_REF] Geers | Doubly asymptotic approximations for vibration analysis of submerged structures[END_REF], the first-order (DAA 1 ) and secondorder Doubly Asymptotic Approximation (DAA 2 ) were derived. They are implemented in the Underwater Shock Analysis (USA) code and coupled with various commercial FE tools such as LS-DYNA, ABAQUS, STAGS-CFA and NASTRAN [DeRuntz, 1989;[START_REF] Ruzicka | Transient response analysis of multiple submerged structures[END_REF]]. The main benefit of using DAA is that it is not required to explicitly model the surrounding fluid because the governing equations are expressed only in terms of the wet surface variables. However, as will be shown later in Section 3.4, the use of DAA model alone is not sufficient to correctly capture the development and collapse of cavitation. Applications of LS-DYNA/USA for naval structures can be found in [START_REF] Le Sourne | LS-DYNA Applications in Shipbuilding[END_REF][START_REF] Shin | Ship shock modeling and simulation for far-field underwater explosion[END_REF][START_REF] Klenow | Assessment of LS-DYNA and Underwater Shock Analysis ( USA ) Tools for Modeling Far-Field Underwater Explosion Effects on Ships[END_REF][START_REF] Hung | Dynamic response of cylindrical shell structures subjected to underwater explosion[END_REF]Brochard et al., 2018Brochard et al., , 2020]].

Analyses using Cavitating Acoustic Finite Element (CAFE)

To circumvent the hurdles posed by the UNDEX induced cavitation, [START_REF] Newton | Effects of cavitation on underwater shock loading -Part I[END_REF][START_REF] Newton | Effects of Cavitation on Underwater Shock Loading-Plane Problem[END_REF] proposed a cost-effective computational scheme based on the displacement potential formulation of the acoustic wave equation. A bilinear constitutive equation was employed in this model and the cavitated zone was modeled by forcing the total pressure of the fluid to the vapor pressure whenever the criterion is met3 . Thus, this type of cavitation model is usually called a one-fluid, pressure cut-off model because a single governing equation is used to describe two separate phases of the fluid. The advantage of a one-fluid model is the computational savings, especially in large scale problems, compared to a two-fluid model that needs multiple constitutive fluid equations to be solved [START_REF] Xie | Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model[END_REF].

A few years later, [START_REF] Felippa | A Family of Early-Time Approximations for Fluid-Structure Interaction[END_REF]DeRuntz, 1984, 1991] extended the cavitation model of Newton to three dimensions by incorporating a conditionally stable staggered central difference time integration scheme, a node-by-node (non-iterative) check for cavitation and then coupled with the boundary element code USA to serve as a non-reflecting boundary. This approach, which was later coined as 'Cavitating Acoustic Finite Elements (CAFE)' by [START_REF] Sprague | Computational treatments of cavitation effects in near-freesurface underwater shock analysis[END_REF], has been incorporated into the commercial nonlinear FE code LS-DYNA and used by many researchers to model far-field explosions, see [START_REF] Shin | Ship shock modeling and simulation for far-field underwater explosion[END_REF]Hung et al., 2005;[START_REF] Gong | On attenuation of floating structure response to underwater shock[END_REF]Sone Oo et al., 2019, 2020]. As shall be seen in the subsequent sections, the author also utilizes this approach, LS-DYNA/USA (acoustics), in the framework of this research.

Nevertheless, [Sprague andGeers, 2001, 2004] had pointed out some of the shortcomings of this model. For example, CAFE fluid meshes can be highly dispersive due to the use of loworder elements. This drawback can be improved by refining the fluid mesh at the expense of computational effort. In addition, CAFE features a one-to-one node coupling between fluidstructure interfaces. In other words, the fluid and structural equations are integrated using the same time increment which could become a major drawback, for example, if either of the two domains needs further refinement in mesh for accuracy.

Analyses using Cavitating Acoustic Spectral Element (CASE)

Cavitating Acoustic Spectral Element (CASE) method is a combination of spectral methods with the finite element approach. This method was developed by [START_REF] Sprague | A spectral-element method for modelling cavitation in transient fluid-structure interaction[END_REF]] by extending the previous CAFE model of [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF]. The idea is to investigate the cavitation phenomenon observed in an acoustic fluid-structure interaction and at the same time, to improve the deficiencies encountered in the original CAFE approach. In this regard, a consistent-interpolation coupling method was employed so that the fluid and structure meshes can be refined separately.

Other improvements of CASE method include replacing the low-order basis functions of finite element method with the higher-order Legendre-polynomial basis functions in order to mitigate the numerical dispersion and refinement issues. The total acoustic field is also separated as equilibrium, incident, and scattered fields to allow for the accurate propagation of the incident shock waves and a significant reduction in the number of fluid DOFs. This method was applied on the floating mass-spring oscillator and the submerged spherical shell excited by a step-exponential wave with or without cavitation [START_REF] Sprague | A spectral-element method for modelling cavitation in transient fluid-structure interaction[END_REF]. In [START_REF] Sprague | A spectral-element / finite-element analysis of a shiplike structure subjected to an underwater explosion[END_REF], the entire ship response in an underwater explosion environment was analyzed by using this method. It was concluded that this method proves to be more accurate with less computational effort compared to the conventional CAFE approach.

Despite the advantages pointed out, this CASE model still suffers certain deficiencies. For example, the spectral elements require smaller critical time steps for explicit time integration [START_REF] Sprague | A spectral-element method for modelling cavitation in transient fluid-structure interaction[END_REF]. This means that for the same number of DOFs, a CASE model is more computationally expensive than the CAFE. More importantly, it was found that the enhancement in the CASE model could not compensate the tendency to have spurious oscillations particularly due to the shock wave discontinuity and the material discontinuity (cavitation) in the fluid [START_REF] Klenow | Prevention of pressure oscillations in modeling a cavitating acoustic fluid[END_REF].

Analyses using other numerical approaches

The following methods are grouped together and labeled as 'other numerical approaches' since they are either not matured enough or their use is quite limited for in-housed applications only. These include:

• Smoothed Particle Hydrodynamics (SPH): In this method, there is no need to define the grids to approximate the spatial derivatives. Instead, an interpolation theory is applied to a random group of particles to represent the state of the system. [START_REF] Swegle | On the feasibility of using Smoothed Particle Hydrodynamics for underwater explosion calculations[END_REF] had implemented SPH method into a finite element code called PRONTO to study FSI problems caused by underwater explosion. This study showed that coupled PRONTO/SPH method could accurately model the shock loading, and the early time effects on the plate but fails to capture late time phenomena. In [START_REF] Liu | Smoothed particle hydrodynamics for numerical simulation of underwater explosion[END_REF], the detonation of high explosive, its interaction with the surrounding water, as well as the shock wave propagation were investigated using SPH method. [START_REF] Ming | Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[END_REF] applied a full SPH method as well as coupled SPH-FEM method along with the so-called 'glue' algorithm 4 at the interface to analyze the damage to ship structures due to underwater contact explosions.

• Local Discontinuous Galerkin (LDG) method: The Local Discontinuous Galerkin (LDG) method is an extension of the Discontinuous Galerkin (DG) method. [START_REF] Cockburn | The local discontinuous galerkin method for time-dependent convection-diffusion systems[END_REF] first used this method to tackle the convection-diffusion problems. Later were found its uses in solving Euler's equation [Atkins, 1997], second-order wave equation [Baccouch, 2012] and so on. In LDG method, an auxiliary variable is introduced to reduce the high order partial differential equations to the first order one. Then, by carefully selecting the numerical flux5 to maintain computation stability, LDG method could avoid spurious pressure oscillations encountered in coupled acoustic FE approaches, thus ensuring high resolution shock waves. [START_REF] Wu | Local discontinuous Galerkin method for far-field underwater explosion shock wave and cavitation[END_REF] employed this method in their paper to analyze far-field explosion shock wave and cavitation. The paper also showed that LDG method can provide an even higher precision than the conventional acoustic FE approach due to better treatment of the discontinuities. There had been a few other researchers that utilized this approach in the study of near-or far-field underwater explosions as well as the associated cavitation effects (near free surface or structure), see for example, [START_REF] Park | A Coupled Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid ( RKDG-DGF ) Method to Near-field Early-time Underwater Explosion ( UNDEX ) Simulations[END_REF][START_REF] Jin | Coupling Runge-Kutta discontinuous Galerkin method to finite element method for compressible multi-phase flow interacting with a deformable sandwich structure[END_REF][START_REF] Park | Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube[END_REF][START_REF] Wu | Interaction between shock wave and a movable sphere with cavitation effects in shallow water[END_REF].

• Flux-corrected Transport (FCT) algorithm: An FCT algorithm, proposed by [START_REF] Klenow | Prevention of pressure oscillations in modeling a cavitating acoustic fluid[END_REF], is an alternative way to overcome the spurious oscillation issues of the CAFE and CASE methods. The idea is to combine the less diffusive nature of CASE with the less oscillatory nature and reduced computational cost of CAFE. It generally comprises a transported diffusion stage, which advances the solution in time and then yields a smooth result, and an anti-diffusion stage in which the numerical errors introduced by the diffused solution are corrected by limiting the anti-diffusive fluxes6 [START_REF] Xiao | An FE-FCT method with implicit functions for the study of shock wave propagation in solids[END_REF]. The main challenge of this method lies in the adaptation of the flux limiter in the coupled finite element, fluxcorrected transport (FE-FCT) algorithm of [START_REF] Xiao | An FE-FCT method with implicit functions for the study of shock wave propagation in solids[END_REF] and then to extend it for the multidimensional problems.

• Domain Decomposition (DD) coupling: The use of Domain Decomposition (DD) coupling is found in the study of hydroelastic response of isotropic and stiffened plates subjected to UNDEX in [START_REF] Colicchio | Elastic shock response of an air-backed plate to underwater explosion[END_REF] and the interaction of gas cavities with surrounding liquid and nearby structures in [START_REF] Greco | A domain-decomposition strategy for a compressible multi-phase flow interacting with a structure[END_REF]. It is a hybrid approach based on a one-way time-space domain decomposition strategy where a 1D radial blast solver is coupled to the 3D compressible, inviscid, multi-phase flow solver. The 1D solver is supposed to solve the shock evolution away from the boundaries whereas the 3D solver is applied to the regions near the boundaries where nonlinearity effects might prevail. The purpose is to limit the computational costs while preserving reliability and accuracy. The method was verified by a far-field UNDEX experiment of [Hung et al., 2005] and then used to investigate the FSI behavior of the navy ship bottom panel. This method, however, cannot be applied to the cases where explosion occurs close to the free surface, sea bottom, or a marine structure large and curve surfaces according to [START_REF] Ming | Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[END_REF].

since there is no radial symmetry for the bubble.

• Other in-housed developed FE models: [Batra andHassan, 2007, 2008] have developed a three-dimensional in-housed finite element program based on Continuum Damage Mechanics (CDM) and Mechanics of Materials (MoM) approaches, taking into account the material rate effect as well as the damage degradation. Numerical solution is sought by employing the Galerkin approximation (or a weak form) and integrated with respect to time by using a subroutine called LSODE (Livermore Solver for Ordinary Differential Equations) with an adaptive time step scheme. Using this code, [Batra andHassan, 2007, 2008] were able to evaluate the response of fiber reinforced composites exposed to underwater or air blasts. Nevertheless, it must be pointed out that both papers emphasized on the internal mechanics and material damage characteristics while many aspects of the FSI and cavitation were left unattended. Also, the mathematical model and results were validated using AS4/PEEK composites only.

Summary

The pros and cons of various numerical approaches previously discussed can be summarized in Table 3.1 below. 

Theoretical backgrounds of the numerical models

In order to validate the simplified analytical models presented throughout this manuscript, it is imperative to have some reference solutions first. These reference results can be either from the experiments or the numerical simulations. In this regards, various numerical models were constructed using a general purpose nonlinear finite element solver LS-DYNA, Doubly Asymptotic Approximations (DAA 1 and DAA 2 ), and Cavitating Acoustic Finite Element (CAFE) models. Indeed, carrying out such sophisticated numerical simulations entails a considerable understanding of the background mathematics. Therefore, in what follows, the main theoretical formulations implemented in each of these finite element models are briefly provided.

Structural response formulation

Based on the principle of virtual work, a commercial FE code such as LS-DYNA solves the following discrete system of dynamic equations:

M s ẍ(t ) +C s ẋ(t ) + K s x(t ) = f (t ) (3.1)
where x(t ), ẋ(t ), ẍ(t ) represent the column vectors of structural nodal displacements, nodal velocities and nodal accelerations with dimension [N s × 1] respectively7 . In addition, M s , C s , and K s refer to the structural mass, damping and stiffness matrices of dimension [N s × N s ], respectively. Note that bold fonts are used here to represent the matrix (or vector) notations.

For an acoustic shock-structure interaction, the external nodal force vector f is given as:

f = -G A f P tot + f d (3.2)
where G is the transformation matrix of dimension N s × N f that relates the structural and fluid nodal surface forces8 , A f is a diagonal area matrix associated with elements in the fluid mesh N f × N f , P tot is the column matrix possessing N f × 1 of the total nodal pressures at the fluidstructure interface, and f d is the column vector [N s × 1] of the generalized forces applied to the dry-structure.

In fact, the calculation of total pressure differs depending on the numerical model considered. With the surface approximation method such as DAA, the total nodal pressure at the fluid-structure interface is represented by a linear combination of the incident pressure P i (recall Eq. (2.1) from Chapter 2) and scattered pressure P s as follows:

P tot = P i + P s (3.3)
where the scattered pressure is calculated according to the DAA equations shown later.

If the total pressure is determined using the acoustic finite volume element (CAFE), a displacement scalar potential Ψ is used. According to [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF],

Ψ = P tot -P h (3.4)
where P tot , in this case, is the total pressure at the node of the fluid volume mesh, and P h is the hydrostatic pressure. The details are explained in Subsection 3.2.3.

Doubly Asymptotic Approximations

Doubly Asymptotic Approximations (DAAs) are matrix differential equations in time domain to characterize the scattered pressure field P s . DAA models of submerged structures could represent the surrounding infinite or semi-infinite fluid through the interaction of state variables alone which are prescribed directly onto the structural wet surface. Cavitation is treated only approximately in coupled DAA models by limiting the total tensile pressure whenever its value falls to that of vapor pressure of the fluid considered.

First-order Doubly Asymptotic Approximation (DAA 1 )

According to [Geers, 1978;DeRuntz, 1989], the first-order Doubly Asymptotic Approximation (DAA 1 ) equation is expressed as:

M f Ṗs + ρ w c w A f P s = ρ w c w M f us (3.5)
where us is the column matrix of scattered wave particle velocities that are normal to the structural wet surface, ρ w and c w are fluid density and sound speed respectively, and M f is the fully populated, symmetric fluid mass matrix at the fluid-structure interface. It is generated by a boundary element treatment of Laplace's equation for the irrotational flow in an infinite, inviscid, incompressible fluid by motions of the structural wet surface. It becomes the virtual mass matrix for the submerged structural motions in an incompressible fluid after being transformed into structural coordinates and then combined with the structural mass matrix [START_REF] Deruntz | Added mass computation by the boundary integral method[END_REF].

The approximate formulation shown in Eq. (3.5) is called as Doubly Asymptotic because it ensures 'exactness' at both high and low frequencies. This means:

• for high frequency (or early-time) motions, the FSI is described by acoustic effects alone. In this case, | Ṗs | |P s | which is a correct limit for short acoustic wavelengths. As a result, the term containing P s is discarded and Eq. (3.5) becomes P s = ρ w c w u s .

• as for the low frequency (or late-time) responses, | Ṗs | |P s | so that the interaction is described solely by water inertial effects. In this case, Eq. (3.5) approaches A f P s = M f us , which is an incompressible-flow relation representing a correct limit for long acoustic waves.

For an excitation by an incident acoustic wave, the scattered wave particle velocity u s holds the following relationship with the structural velocity ẋ according to velocity continuity condition, which implies that the normal fluid particle velocity must be equal to the normal structural velocity at the fluid-structure interface:

G T ẋ = u i + u s (3.6)
where the superscript "T " is used to denote 'matrix transpose'. The fact that the transformation matrix G T relating the velocities of both fluid and structure comes from the invariance of virtual work with respect to either of the wet surface coordinate systems. In general, the number of rows of G matrix greatly exceeds its column numbers because the number of structural DOFs is usually greater than that of the fluid DOFs. This matrix is built in such a way that only the translational DOFs of the structure are coupled with the fluid DOFs.

When the first-order DAA equation, Eq. (3.5), is coupled to the structural equation expressed by Eq. (3.1) without considering any applied forces on the structure except the interaction effects (i.e., f d = 0), the complete system of equations to be solved is obtained as:

M s ẍ +C s ẋ + K s x = -G A f (P i + P s ) M f Ṗs + ρ w c w A f P s = ρ w c w M f G T ẍ -ui (3.7)
According to [DeRuntz, 1989] and user manual of LS-DYNA/USA [LSTC, 2017], simultaneously solving these coupled equations shown in Eq. (3.7) can be quite costly due to the involvement of large connectivity in the coefficient matrix. Instead, the numerical scheme in USA adapted a "staggered solution procedure" in which the structural responses are extrapolated at each time step to solve the fluid response quantities. If the structural time step is smaller than the DAA fluid time step, the fluid pressure used to forward the structural equation of motion is interpolated from the last two known fluid states in order to bound that time. The derivations are accomplished by the steps (and assumptions) mentioned below:

1. Derivation of augmented equation; and

• M s is assumed as a non-singular matrix.

• G T ẍ is obtained by using the first of Eq. (3.7) and then subsequently introduced into the second of Eq. (3.7).

• The resulting equation is multiplied by A f M -1 s to both sides.

2. Derivation of modified, augmented equation;

• The singularities in the fluid particle acceleration vector ui caused by the discontinuity of incident pressure P i at time step zero are removed by defining a modified pressure vector as:

P m = P s + ρ w c w u i (3.8)
• The modified pressure, Eq. (3.8), is substituted into previous augmented equation.

Following the above procedures, a system of modified, augmented FSI equations is derived:

M s ẍ +C s ẋ + K s x = -G A f P m + P i -ρ w c w u i A f Ṗm + D f 1 + D s P m = -ρ w c w A f G T M -1 s (C s ẋ + K s x) -D s P i + D f 1 + D s ρ w c w u i (3.9) where D f 1 = ρ w c w A f M -1 f A f is a fully populated, symmetric matrix, whereas D s = ρ w c w A f G T M -1
s G A f is sparsely populated. At this stage, both the pressure and particle velocity of the incident waves are specified. Assuming a stationary spherical source, for instance from an explosive charge, the incident particle acceleration uI i can be related to the incident pressure P I i by the following equations9 :

P I i (t ) = S R i PI t - R i -S c uI i (t ) = 1 ρ w c w ṖI i (t ) + 1 ρ w R i P I i (t ) λ i (3.10)
where S is the standoff distance from the charge at which PI (t ) is defined (note R i = S at this point), R i is the distance from the source point to the i th DAA element and λ i is the direction cosine of the angle formed by the vectors r i and the DAA element normal n pointed towards the fluid. To help facilitate the explanation, the figure from Chapter 2 is recalled and shown again in Fig. 3.1. The modified pressure equation now becomes:

P m = P s + ΓP I (3.11)
where Γ is a diagonal matrix of direction cosines λ i for the DAA elements.

The new modified, augmented interaction equations can be written as: [Barras, 2012;Brochard, 2018] where R is the diagonal matrix that consists of all the distances R i . Note that the incident wave particle velocity u I does not explicitly appear in the equation. Depending on the type of load model requested, LS-DYNA/USA solves either Eq. (3.9) or Eq. (3.12).

M s ẍ +C s ẋ + K s x = -G A f [P m + (I -Γ) P I ] A f Ṗm + D f 1 + D s P m = -ρ w c w A f G T M -1 s (C s ẋ + K s x) -D s P I + D f 1 + D s -c w A f R -1 ΓP I (3.12)

Second-order Doubly Asymptotic Approximation (DAA 2 )

DAA 2 is a generalization of the DAA 1 to a symmetric second-order differential equation with improved accuracy in the intermediate frequency range. The commonly used second-order DAA equation is the mode-derived form and can be given as follows [Geers, 1978]:

M f Ps + ρ w c w A f Ṗs + ρ w c w Ω f A f P s = ρ w c w M f üs + Ω f M f us (3.13)
where

Ω f = ηρ w c w A f M -1 f .
Here, the parameter η is an adjustable parameter bounded by 0 ≤ η ≤ 1. According to [DeRuntz, 1989], η is a measure of the global curvature of the submerged body and the values between 1/2 and 1 are appropriate for typical USA code applications. If η = 0, then Ω f = 0 and DAA 2 reduces to the DAA 1 .

Coupling DAA 2 with the structural equation, Eq. (3.1), is not as straightforward as DAA 1 since it involves a third-order time differentiation vector ( ... x ) of the structure as well as the evaluation of additional matrix Ω f . First of all, it is necessary to integrate Eq. (3.13) once with respect to time. Second, both sides of the resulting equation are multiplied by A f M -1 f . Thirdly, a new variable is needed to represent the scattered pressure integral as:

q s = Ps (3.14)
where the tilde symbol ( . ) refers to an integration with respect to time.

The rest of the procedures are similar to what was done in DAA 1 . In order to avoid shock singularities in uI at t = 0, a modified pressure-integral vector q m needs to be introduced:

q m = q s + ρ w c w ũI (3.15)
By using Eqs. (3.6), (3.14) and (3.15), it is now possible to derive a modified, augmented interaction equation of DAA 2 as:

M s ẍ +C s ẋ + K s x = -G A f qm + P I -ρ w c w u I A f qm + D f 1 + D s qm + ηD f 2 q m = -ρ w c w A f G T M -1 s (C s ẋ + K s x) -D s P I + ρ w c w D f 1 + D s -ηD f 1 u I + ηρ w c w D f 2 ũI + D f 1 G T ẋ (3.16) where D f 2 = ρ 2 w c 2 w A f M -1 f A f M -1 f A f .
In the case of the spherical incident wave, the relations for the fluid particle velocity vector and the modified pressure integral are given as:

q m = q s + Γ PI ρ w c w ui = Γ ṖI + c w R -1 P I (3.17)
Now the new modified, augmented equations, taking into account the spherical wave, are:

M s ẍ +C s ẋ + K s x = -G A f qm + (I -Γ) P I A f qm + D f 1 + D s qm + ηD f 2 q m = -ρ w c w A f G T M -1 s (C s ẋ + K s x) + ηρ w c w D f 1 G T ẋ -D s P I + D s + (1 -η)D f 1 -c w A f R -1 ΓP I + η D f 2 -c w D f 1 R -1 Γ PI (3.18)
where the identity R -1 Γ = ΓR -1 in which the matrices are diagonal.

In summary, the coupling of USA code (DAA 1 or DAA 2 ) with LS-DYNA can best be described by the flow diagram given in Fig. 3.2. First of all, the incident pressure is input to the USA solver to calculate the scattered pressure10 . In general, the solving algorithm of USA is composed of three modules, namely, FLUMAS, AUGMAT, and TIMINT. The FLUMAS module constructs the fluid mass matrix M f and wet surface area matrix A f . The AUGMAT processor receives the fluid mass matrix from FLUMAS, the data from LS-DYNA and the incident shock loading to assemble the constant matrices (G, D s , D f 1 , and D f 2 ). In the TIMINT solution step, Γ, R and P I are calculated and a step-by-step direct time integration is performed. The DAA fluid equations are advanced in time by employing the extrapolated submerged structural responses while the FE solver LS-DYNA accepts the loads and then delivers the structural solutions (displacement, velocity, acceleration) for that time step. This exchange of information between LS-DYNA and USA occurs at every time step so that nonlinearities in the structural response are fully sorted out. In the present manuscript, both options DAA 1 and DAA 2 were used whenever relevant and the results were compared against experiments or analytical solutions. [START_REF] Hung | Dynamic response of cylindrical shell structures subjected to underwater explosion[END_REF] 

LS-DYNA

Boundary

Coupled acoustic non-reflecting boundary formulation

The nonlinear nature of cavitation makes it difficult for the boundary element treatment such as DAAs to capture accurately the response of the structure, leading to the development of the Cavitating Acoustic Fluid Elements (CAFE) by [START_REF] Newton | Effects of cavitation on underwater shock loading -Part I[END_REF][START_REF] Newton | Effects of Cavitation on Underwater Shock Loading-Plane Problem[END_REF]. [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF] extended this approach to include three-dimensional domain and then coupled with DAA to serve as a non-reflecting boundary located far away from the fluid-structure interface. The illustration of the different fields involved is shown in Fig. 3.3(a) where one can find the submerged structure denoted by S, the acoustic fluid volume region V f and the truncated radiation boundary D. In Fig. 3.3(b), the nature of the interaction between different solvers is conceptually depicted. It can be seen that the fluid volume analyzer in the middle serves as a pressure transducer passing pressure information to both DAA boundary and the submerged structure while receiving displacements from them.

Acoustic fluid volume governing equation

According to the momentum balance equation of Newton's second law, the motion of a fluid particle under dynamic condition can be written as:

ρ w d = -∇ (P tot -P h ) (3.19)
where d = x fx h is the relative displacement of the fluid particle that relates fluid particle displacement x f to the reference hydrostatic displacement x h , ∇ is the spatial gradient operator, P h is the hydrostatic pressure.

Adapting the approach of [START_REF] Newton | Effects of cavitation on underwater shock loading -Part I[END_REF][START_REF] Newton | Effects of Cavitation on Underwater Shock Loading-Plane Problem[END_REF] Differentiating Eq. (3.20) (on both sides) twice with respect to time, substituting into Eq. (3.19), and then by spatially integrating the resulting equation, it is possible to deduce the following relation between displacement potential and field pressure:

ψ = P tot -P h (3.21)
Here, for convenience, 'densified' relative condensation term s is introduced:

s = -ρ w ∇d = ∇ 2 ψ (3.22)

Constitutive equation of the fluid

The acoustic fluid can be modeled either as a linear or bilinear fluid. When the linear fluid assumption is made, its constitutive equation can be given as:

P tot -P h = c 2 w s (3.23)
where c w is the acoustic speed in fluid (related to bulk modulus and fluid density).

When P tot -P h and s are eliminated from Eq. (3.23) by using Eqs. (3.21) and (3.22) respectively, the resulting equation (in terms of ψ) recovers classical wave equation in domain

V f : ψ -c 2 w ∇ 2 ψ = 0 (3.24)
The bilinear constitutive model is proposed so as to model the cavitating region by limiting the negative total pressures (or tensile waves12 ). Mathematically,

P tot -P h =    c 2 w s, if s > -P h /c 2 w , -P h , otherwise. (3.25)

Spatial domain discretization

The acoustic volume V f is discretized into subdomains comprising with three-dimensional finite elements which are joined each other at the nodal points. By using the shape function N , the displacement potential field ψ can be expanded into spatial and temporal functions as:

ψ(x f , t ) = N x f Ψ(t ) (3.26)
where the column matrix Ψ contains the node values of ψ, N is formed by the respective shape functions, and x f = (X , Y , Z ) is the column matrix defining the global coordinates for the fluid nodes13 . These functions must satisfy continuity in space.

To derive the semi-discrete finite element equations, Galerkin method is adopted. This includes integrating Eq. (3.24) over the domain V f , multiplying by the weighted shape function N , and then performing spatial integration by parts so that:

V N N T Ψ + c 2 w (∇N )(∇N ) T Ψ dV = c 2 w B N ∂Ψ ∂n dB (3.27)
where n is the outward exterior normal on the boundary B .

In the matrix form, Eq. (3.27) can be written as:

Q Ψ + c 2 w H Ψ = c 2 w b (3.28)
where According to the derivations done by [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF], they can be given as:

Q = V N N T dV , H = V (∇N )(∇N ) T dV (3.
b s = ρ w A s G T s x , b d = ρ w A d G T d Γx c (3.31)
where x is the column matrix of nodal structural displacements, A s is a diagonal area matrix of contributing surfaces with surrounding fluid volume nodes contacted with the structure, and G s is the transformation matrix relating the structure and fluid nodal surface forces in normal direction.

Similarly, A d is a diagonal matrix of participating areas that surround the fluid-volume nodes (at the truncated DAA boundary surface), G d is the transformation matrix from DAA control points to fluid-volume nodes, and Γ is a direction cosine matrix of the boundary normal (positive towards the fluid) evaluated at DAA control points.

In addition, x c is the column matrix representing global displacements at the DAA control points. It is made up of three components as:

x c = x c i + x c s + x c h (3.32)
where x c i , x c s , x c h are displacements due to incident wave, scattered wave, and hydrostatic pressure respectively. These are solved by using the surface approximation method such as DAAs along with the displacement-pressure relationships and by invoking predictor-corrector solution strategy before and after each call to LS-DYNA. These stages are quite lengthy and hence are not repeated here. Details can be found in [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF].

Artificial damping

One last important information about this coupled model is the consideration of the artificial damping in the equation of motion. This stems from the observation of spurious oscillations, also known as numerical frothing14 . [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF] introduced a numerical damping term proportional to ṡ into the governing equation as follows:

Ψ = P tot -P h + B∆t c 2 w ṡ (3.33)
in which B is a dimensionless damping coefficient whose values lie between 0 and 1, ∆t is the time step, and s has already been defined in Eq. (3.22). The value of ṡ can be estimated by using a backward difference formula.

The effect of the dimensionless damping coefficient onto the time step is associated by:

∆t ≤ ∆t c 1 + 2B (3.34)
where ∆t c is the Courant time step which is equal to the ratio of the cross dimension (characteristic length) of the smallest element to the speed of sound in that element.

Concluding remarks

In summary,

• acoustic fluid volume elements (ELFORM = 8 or 14) together with MAT_ACOUSTIC material model from LS-DYNA can be used to track low-pressure stress waves in acoustic media such as air or water. From this point forward, this approach (without coupling to the USA) is termed as 'LS-DYNA (only acoustics)' approach and used to correlate with the lab-scaled experiments.

• acoustic fluid volume elements coupled with DAA, termed as 'LS-DYNA/USA (acoustic)' approach, is used to model both the shock wave and the cavitation. The extent of the fluid volume region needs to be sufficiently large to encompass all the effects of cavitation. DAA boundary here acts as a non-reflecting boundary.

• according to the LS-DYNA/USA user manual [LSTC, 2017], certain saving in computational effort can be achieved by using PWA or CWA model to represent the non-reflecting boundary, instead of the more expensive DAA-based boundary treatments.

Details of the finite element models

In this section, numerical models are constructed by considering the various techniques presented in the previous Section 3.2. The results obtained from these numerical simulations are then confronted to the following experiments:

1. a circular steel plate experimented in a detonics basin by Goranson and reported by [Cole, 1948];

2. a circular composite plates (carbon fiber/epoxy and glass fiber/vinylester laminates) in a lab-scaled shock tube test and presented by [Schiffer and Tagarielli, 2015]; and 3. a circular steel plate tested by DGA Naval Systems15 in an underwater detonics basin whose details are provided in the Subsection 3.4.3.

The primary goal here is to have an idea about the dynamic behavior of both steel and composite plates while setting up a reliable numerical model that can later be used as a reference to validate the proposed analytical models.

Typical finite element models related to different numerical approaches are shown in Fig. 3.4, see explanations in each subsequent subsections. In all of the FE approaches considered, the plate model is constructed depending on the materials used in the experiment as follows:

• Circular steel plate model: MAT_PLASTIC_KINEMATIC with Belyschko-Tsay shell formulation, five through-thickness integration points and a shear correction factor of 5/6 are applied. The plate has 35 and 24 elements in the radial and circumferential directions respectively. Strain rate is taken into account by using Cowper Symonds formulation in which the values C = 40 and p = 5 (for mild steel) are chosen.

• Circular composite plate model: MAT_COMPOSITE_DAMAGE with fully-integrated shell element (one integration point per ply) is used. Ply orientations and corresponding thicknesses can be conveniently defined through PART_COMPOSITE in LS-DYNA. Transverse shear correction is treated by activating laminated shell theory (LAMSHT). The composite (GFRP or CFRP) plate is meshed to have 14 and 10 elements in the radial and circumferential directions respectively. Due to the problem symmetry, only a quarter of the model is required and the meshes mentioned above are according to the quarter plate model. The upward or downward direction of the loading does not matter as well. The author has also checked the different results using full plate and quarter plate models and found the agreement between the results.

LS-DYNA (impulsive velocity) approach

Figure 3.4(a) shows a quarter plate model of LS-DYNA subjected to the initial impulsive velocity (in negative z-direction). The intial impulsive velocity is calculated using simplified analytical fluid-structure theory of [Taylor, 1941] as follows:

V i = 2P 0 τ m s β β 1-β (3.35)
where m s is the areal mass of the plate, and β = ρ w c w τ /m s is the Taylor's FSI coefficient (see Appendix A for more details).

The fluid is not modeled in this approach. Simply-supported (immovable) boundary is considered on the outer plate edges and the symmetric boundary conditions are applied on the inner plate edges as shown.

LS-DYNA (only acoustic) approach

In this model shown in Fig. 3.4(b), a pressure loading is prescribed at one end of the acoustic fluid column while the shell plate model with a simply-supported boundary condition is attached at the other end. BOUNDARY_ACOUSTIC_IMPEDANCE is applied on the same segment where the loading is specified so that the returning waves propagate out of the fluid domain and do not come back.

Length of the water column.

In the previous study [Sone Oo et al., 2019], two different water column lengths were investigated. Generally, a water column length of about twice the size of the plate's radius is sufficient if BOUNDARY_ACOUSTIC_IMPEDANCE is included. In the correlation with Schiffer's test, a longer water column length which is about the same as in the experiment was employed. In fact, this length has to be adjusted so that both the computational efficiency and the accuracy are compromised. Some prior simulations have also been carried out in order to know the correct water column length.

Acoustic solid element formulation (ELFORM 8) is used in conjunction with the MAT_ACOUSTIC for the fluid model. Cavitation flag is turned on and vapor pressure is limited at zero. Note that using the acoustic element formulation in LS-DYNA requires the fluid mesh to respect the following stability criterion [START_REF] Lstc | LS-DYNA: Keyword User's Manual[END_REF]:

ρ w t w ρh < 2.5 (3.36)
where ρ w and t w are the density and the thickness of the acoustic elements adjacent to the structural element whereas ρ and h are density and thickness of the structural shell element respectively. In accordance with this criterion, the thickness of the fluid mesh of 1 mm is used. Numerical damping B from Eqs. (3.33) and (3.34) of 0.25 is applied for stability purpose. As can be seen in Fig. 3.4(b), the fluid meshes in the x-y plane are modeled the same as the structural meshes 16 . At the fluid-structure interface, the nodes of the structure and the fluid are merged so that FSI is automatically treated in LS-DYNA. Symmetric boundary condition is applied for the inner fluid nodes while x-y translations are constrained on the lateral fluid nodes.

LS-DYNA/USA (DAA 2 )

A wet segment set is defined on the shell plate model to couple with second-order Doubly Asymptotic Approximations (DAA 2 ) boundary elements, see Fig. 3.4(c). Standoff distance, peak pressure, and the corresponding decay time can be defined through USA input card. This can be either using direct specification of peak pressures and decay time or through the similitude law implemented in USA. Cavitation is treated only approximately in this model by limiting the total pressure at zero whenever its value becomes negative. Notice the difference in the assumption of surrounding boundary conditions on the lateral (outer) fluid faces between LS-DYNA/USA (DAA 2 ) model and LS-DYNA (only acoustic) model. For example, LS-DYNA (only acoustic) model, Fig. 3.4(b), employs a water domain of a finite extent whereas LS-DYNA/USA (DAA 2 ) model considers a plate immersed in an infinite fluid domain in its formulation.

LS-DYNA/USA acoustics

As can be seen in Fig. 3.4(d), the plate is attached to both the fixed rigid plate named baffle plate (shell element model using MAT_RIGID) and the acoustic fluid elements. The mesh of the plate is the same as the previous numerical models while that of the rigid baffle has about twice coarser compared to the plate mesh in the x-y plane. The extra fluid is also modeled to resemble the detonics basin employed in the experiment. Note that for a lab-scaled shock tube test (Subsection 3.4.2), such extra fluid is not required to model. The mesh of the fluid in the x-y plane is kept the same as that of the rigid baffle and the plate mesh (in x-y plane). The lateral dimensions and height (in z-direction) of the water column are taken about twice the radius of the plate. DAA non-reflecting boundary is prescribed on the lateral surfaces of the acoustic model as shown in Fig. Fig. 3.4(d). Indeed, some iterations have been performed in order to know exactly where to place the DAA boundaries or how much water column height needs to be modeled. In addition, trial simulations performed using PWA formulation and DAA formulation to represent this non-reflecting boundary suggest that this choice is trivial in the present case study.

The nodes of the rigid baffle are shared neither with the plate nor the acoustic fluid nodes so that the simply-supported boundary condition of the plate is not affected by the fixed rigid baffle. The coupling between the rigid baffle and the acoustic fluid is done by using BOUND-ARY_ACOUSTIC_COUPLING keyword in LS-DYNA. The starting point and the location of the source standoff point in the fluid mesh system are defined so that the reference time t = 0 begins only when the shock wave arrives at the structure. Since the experiments are performed in shallow water condition, no hydrostatic pressure is considered.

Summary

The four FE models discussed above can be summarized as in Table 3.2. 

Validations and analyses

A circular steel plate subjected to a plane shock wave (Goranson's test)

Experiment conducted by Goranson, as reported by [Cole, 1948], involves steel diaphragms that have different thicknesses and strengths. These are fastened to the equivalent of a heavy steel ring that has about 300 mm width and is mounted on the front of a heavy watertight structure.

According to [Kennard, 1944], this ring roughly resembles to an infinite baffle. Charges of 0.45 kg TNT are employed to attack the test diaphragms from different standoff distances. One of those tests is selected to use in our current study since it represents the response of a relatively thin plate subjected to a short decay loading. The parameters of the explosive charge, the plate and the material characteristics are given in Tables 3.3 and3.4. To compare with the experimental loading condition, a double decay formulation from [Geers and Hunter, 2002] is applied here. It has the same profile as Cole's exponential formulation Eq. (2.1) until t < τ, but has a more accurate profile for the longer time upto t = 7τ (presented in Eq. (2.2)).

Here, it is worth mentioning that the use of double decay formulation was, in fact, done in accordance with the suggestion of Kirkwood. This can be found on page 420 of [Cole, 1948] which states that "the secondary bubble pulse may account for the increased damage" and the calculated value (at that time) even after including the 'reloading' effect was still somewhat smaller. Note that the difference between the use of simple and double exponential decay has already been explained in Chapter 2. Without the influence of any FSI, double decay formulation gives about 30% more applied impulse than the simple formulation and carries 1.058 times higher shock wave energy (see Eqs. (2.4) -(2.8) for more details).

Table 3.3 Parameters of the explosive charge in Goranson's experiment [Cole, 1948] ρ w (kg.m -3 ) c w (m.s -1 ) C (kg) R (m) P 0 (MPa) τ (ms) 1025 1500 0.45 1.827 18.73 0.081

The results of central deflection versus time for different numerical models are plotted in Fig. 3.5. First of all, it can quickly be seen that the best match to the experimental result is that of Table 3.4 Characteristics of the plate and material used [Cole, 1948] 

a (m) h (mm) ρ (kg.m -3 ) E (GPa) ν σ Y (MPa) 0.2664
2.79 7800 204 0.3 240 LS-DYNA/USA acoustic model. A further increase of the peak deflection around 1.7 ms is found to be due to the reloading associated to the collapse of cavitation. Taylor's impulsive velocity result (peak value) underestimates by about 30% (a relative error with respect to the experimental result).

It can be seen that a decoupled approach such as LS-DYNA (impulsive velocity) model could not capture the reloading as well as the long time effect, leading to such underestimation. The result of LS-DYNA (only acoustic) model with a finite extent of water is not shown here because the experiment of Goranson involves a detonic basin with an extra fluid region. The plate deflection post-processed from LS-DYNA/USA (DAA 2 ) model is overestimated by about 40% (a relative error from the measurement) since this model could not accurately capture the non-linear nature of the cavitation according to [START_REF] Felippa | Finite Element Analysis of Shock-induced Hull Cavitation[END_REF].

The result extracted from LS-DYNA/USA acoustic simulation can be related to the 'case 2a: cavitation with water reloading effect' of Kennard's finding (see Appendix B, Section B.3). The values for cavitation inception time and the diffraction time for Goranson's plate model are obtained as τ c = 0.03 ms (using Eq. (A.21) from Appendix A) and T d = a/c w = 0.18 ms respectively. [Cole, 1948] has mentioned that the occurrence of cavitation can be quickly checked by comparing τ c and T d . If τ c < T d , this means that cavitation would occur which happens to be the present case study. To observe the occurrence of cavitation, pressure contours at various time steps are retrieved from LS-DYNA/USA acoustic simulations, see Fig. 3.6. The range of the pressure values is set at 0 -10 MPa and the region around the plate is zoomed for clear visibility. Soon after the arrival of the shock wave, cavitation arises quite rapidly due to the flexibility of the plate when subjected to a plane shock wave with a relatively short duration (Fig. 3.6(a)). It can be seen that the observation matches with the predicted theoretical value of cavitation inception time (0.03 ms) given by Taylor's theory.

According to [Kennard, 1943;Schiffer et al., 2012], the occurrence of cavitation gives rise to two breaking fronts that will propagate outward from the point of first cavitation. However, in the present case, only one breaking front can be seen since the other one occurs very close to or directly on the fluid-structure interface. Depending on the pressure and particle velocity in the fluid immediately around the breaking fronts, these fronts could arrest and remain stationary or reverse their directions and become closing fronts [Schiffer et al., 2012]. At about the diffraction time shown in Fig. 3.6(b), the breaking fronts propagating away from the local cavitation zone (blue color) can be seen. Since the traveling of these fronts is 3D in nature, the incoming water diffraction effect is almost blocked out and the plate oscillates analogously to an in-air response until 1 ms (Fig. 3.5). The water reloading then starts at about 1.7 ms, see Fig. 3.6(c). Indeed, such phenomenon can be associated to the collapse of the local cavitation due to the arrest of the breaking front and the return of closing fronts. It can be observed that the water reloading effect could generate an additional pressure wave, which further increases the final plate deflection by about 30%, see Fig. 3.6(d). Without this effect, the result of LS-DYNA/USA acoustics would be approximately the same as that of LS-DYNA (only impulsive velocity) simulation, that is, about Here, recall the physical significance of the rigid baffle plate in the realistic situation as well as in an experimental test. According to [Kennard, 1944], such a mounting approximately resembles to the mounting of a plate in the side of a ship. In Fig. 3.7, different baffle sizes are given with respect to the plate radius, that is, [Without rigid baffle = 0 × plate radius], [half rigid baffle = plate radius] and [full rigid baffle = 2 × plate radius]. The results are shown in Fig. 3.8. It was found that result (without rigid baffle) is approximately the same as that of LS-DYNA (impulsive velocity) or even LS-DYNA (only acoustics) with finite column of water whose results are not shown here for clarity. Hence, it can be concluded that increasing the lateral dimension of the rigid baffle increases the plate deflection but this effect is bounded by the inverse of the radius of the rigid baffle plate in accordance with Kirchhoff Retarded Potential Formulation (KRPF) [START_REF] Felippa | A Family of Early-Time Approximations for Fluid-Structure Interaction[END_REF]. In other words, by using larger baffle sizes, the plate deflection will converge towards a certain value (about 30 mm in the present case). Thus, a full rigid baffle plate is chosen in the coming calculations. [Schiffer and Tagarielli, 2015] have conducted their experiments in a laboratory environment using quasi-isotropic glass/vinylester and a woven carbon/epoxy plates. The test employs a transparent The shock tube is closed at one end by the circular plate specimen supported by a clamping ring, and at the opposite end by a sealing nylon piston, see Fig. 3.9. By using such apparatus, a total of 14 test cases had been reported in [Schiffer and Tagarielli, 2015]. The associated peak pressures and decay times submitted to the specimen were derived from the steel striker of mass M S and velocity v S at the nylon piston as follows:

A circular composite plate subjected to a plane shock wave

P 0 = ρ w c w v 0 , τ = M S + M P A P ρ w c w (3.37)
where v 0 = M S v S / (M S + M P ) is the initial system velocity obtained from conservation of linear momentum, M S and M P are masses of the steel striker and the nylon piston respectively, and A P is the cross-section of the shock tube. The dynamic plate deflections were recorded using a high-speed camera. Two types of materials, carbon fiber/epoxy composite (CFRP) and glass fiber/vinylester composite (GFRP), were used. Their characteristics as well as ply orientations are given in Tables 3.5 and 3.6. Note that the thickness are uniform throughout the plies.

m

Figure 3.9 Schematic of the experimental setup used by [Schiffer and Tagarielli, 2015] In this thesis, one of the cases (experiment 8, GRP plate subjected to P 0 = 9 MPa, τ = 0.12 ms) is selected as a typical case to compare with different numerical approaches used in this research and to gain deeper insights. Other cases from [Schiffer and Tagarielli, 2015] are compared too and the results are listed in Table 3.7. However, a few things should be kept in mind:

• Because of the mechanical coupling between the tube and the water column, the speed at which the pressure pulses propagate in the shock tube was reduced. Therefore, the value of acoustic speed used by [Schiffer and Tagarielli, 2015] to correlate with FE simulations is c w = 1055 m.s -1 .

• Certain attenuation of the pressure amplitude on the order of 5% and the increase in the pressure wave rise time by about 15% were observed during the test. Effect of water column length. In addition to the water column length of 2 m which is the same as in [Schiffer and Tagarielli, 2015], a length of 1 m was also considered in the fluid modeling in order to reduce the computation time. With the preliminary simulations performed on this basis, it was found that the results (of central deflection) from both simulations (between 2 m and 1 m water column lengths) were almost the same. Note also that LS-DYNA/USA acoustics models for Schiffer and Tagarielli's experiments do not require the extra fluid region to make sure that the numerical simulation matches with the lab-scaled test tube setting of [Schiffer and Tagarielli, 2015].

In-depth analysis

Central deflections obtained from various numerical models are plotted as a function of time in Fig. 3.10(a). Pressure-time history is retrieved from LS-DYNA/USA acoustics model as shown in Fig. 3.10(b) in order to gain better insights about the results. First of all, it can be seen that the results post-processed from LS-DYNA (only acoustic) and LS-DYNA/USA acoustic models are very similar and correlate quite well with the experiment with a relative discrepancy of about 9% to the experimental maximum deflection. It should also be noticed that acoustic volume elements contained the pressure near the plate, which non-physically prevents the elastic return of this latter. Expectation of such behavior (slow rebounding) in practice is a question since the trend of the experimental time-history result does not seem to show any of this behavior.

As have already been observed in the Goranson's case study, the results of LS-DYNA/USA (DAA 2 ) model overestimates the plate deflection with a relative error of about 36% from the experiment since such approach considers a plate immersed in an infinite or semi-infinite domain (which does not correspond to the test tube setting), and also, this kind of surface approximation model is not able to capture correctly the phenomena related to cavitation such as the propagation and arrest of the breaking and closing fronts.

Taylor's impulsive velocity model shows a significant underestimation of the maximum deflection (with 60% relative error to the measured value). Upon the collapse of the cavitation, there is a second reloading effect which can be associated to the rise of pressure, see Fig. 3.10(b). However, unlike the previous case study of Goranson's test, the collapse of cavitation (or rise of pressure) in this case is much sooner (and very rapid too), occurring even before the plate reaches its peak deflection. Indeed, such rapid collapse of cavitation (i.e., a short cavitation time span) combined with the continuing action of FSI due to high frequency of the plate suggests that the transferred impulse given by Taylor's equation is not adequate anymore, leading to serious underestimation of the results17 .

In Fig. 3.10(b), it can be observed that cavitation occurs at about 0.025 ms and this cavitation time obtained from LS-DYNA/USA acoustic approach does not agree well with the expected cavitation inception time provided by Taylor FSI theory (see Eq. (A.21) from Appendix A). The initiation of the numerical cavitation process begins approximately 4 times later as compared to the theoretical value, τ c = 0.006 ms (= 6µs). The explanation lies in the fact that the GFRP plate in this case study is relatively thick (a/h = 14.7) and so, its associated dynamic response is relatively faster compared to the duration of the loading. According to the studies of [Schiffer et al., 2012] using a 1D mass-spring model, the increase of the plate (spring) stiffness could lead to the initiation of cavitation being located within the fluid rather than on the fluid-structure interface, unlike what was proposed in Taylor's free plate theory (more details in Appendix A). In this case, the combined action of the plate's rapid dynamic response as well as the temporal development (i.e., initiation and propagation) of the cavitation zone may produce a continuing FSI phenomenon between the plate and the non-cavitated water, causing the cavitation on the fluid-structure interface to appear much later than the expected theoretical time.

Comparison with other test cases of [Schiffer and Tagarielli, 2015]

Comparison with the rest of the experiments (test no. 4 -14) is given in Table 3.7. Note that in all test cases, only elastic response was analyzed, disregarding any effects of damage. It can be seen that in all of the comparisons, numerical results are underestimated, with lowest discrepancy being about 3% and the highest one about 20%. When comparing the current numerical results (LS-DYNA/USA acoustics) with some of the results available from [Schiffer and Tagarielli, 2015] in Fig. 3.11, it was found that there is a strong correlation between the present numerical results and the numerical results of [Schiffer and Tagarielli, 2015]. Unlike the present model, the numerical model of [Schiffer and Tagarielli, 2015] employed ABAQUS/Explicit in which a 'tie' constraint is needed to impose at the fluid-structure interface. Also, the modeling of water is done by defining Mie-Gruneisen equation of state with a linear Hugoniot relation. The most remarkable about their simulations is the use of fine zoning (0.15 mm) for the fluid mesh in thickness direction. [Schiffer and Tagarielli, 2015] has already shown that there was a good qualitative match of cavitation processes between experiments and their simulations using ABAQUS/Explicit.

Even though a good correlation was found between the two numerical models (Fig. 3.11), where W max /h is the ratio of the peak central deflection to the thickness of the plate, and % Discrepancy = experiment -numerical /experiment × 100.

there still exist certain deficiencies compared to the measurement. First of all, the numerical results of [Schiffer and Tagarielli, 2015] are also underestimated. Secondly, both numerical results start to deviate from the experimental time histories around 0.025 ms. According to [Schiffer and Tagarielli, 2015], this was due to the coalesce of the flexural waves at the center of the plate (around t = 0.02 ms) which was not captured in the experiment. They reasoned that the material viscosity and air damping, which may have suppressed or attenuated such mechanism, are not included in the FE simulations.

A few other possible explanations in addition to what was commented by [Schiffer and Tagarielli, 2015] include -• The clamped boundary condition in the experiment may not have been as ideal as the one in the finite element model, yielding larger deflections.

• There is a certain increase in the rise time (about 15%) of the pressure profile which may somehow amplify the applied impulse.

• Also, there is a possible chance of wave interference (or disturbance) from the tube wall which was not considered in the FE simulations.

Nevertheless, the difference between the peak deflections of FE results and experiment can be said as trivial and LS-DYNA/USA (acoustics) could be considered as the reference solution, keeping in mind the observed discrepancies.

A circular steel plate subjected to a plane shock wave (DGA test)

To further test the validity of the LS-DYNA/USA acoustics approach, an in-house test data provided by DGA Naval Systems is used here. The test configurations are shown in Fig. 3.12 in which a circular steel plate (diameter = 410 mm, thickness 4 mm) is bolted to a watertight submerged frame. A TNT equivalent charge of 55 g is then detonated at 0.9 m stand-off distance, generating P 0 = 18.86 MPa and τ = 0.04 ms with a simple exponential profile, Eq. (2.1). The material characteristics are defined in Table 3.8. The attached rigid plate is regarded as a semi-infinite baffle plate.

The conditions for FE models are the same as presented in Section 3.3. The length and lateral dimensions of the fluid model in the LS-DYNA/USA acoustic approach are defined as two times the radius of the target plate. Time histories of the plate are shown in Fig. 3.12(c). It can be observed that the numerical result agrees favorably with the experiment. Note that the experimental central-deflection is measured with the help of a laser before the first pulsation of the gas bubble. Knowing that the time associated with the bubble first contraction is at least 100 orders of magnitude greater than the decay time of the primary shock wave, only the time history up to 3 ms is shown. The numerical result, which is oscillating between 4 mm and 4.6 mm due to elastic energy, shows a maximum relative error of about 15% (at t = 2.7 ms) compared with the measured value (about 4 mm). Such discrepancy is probably due to the fact that the simply-supported boundary condition used in the FE model is not the exact representation of the test which may be somewhere between simply-supported and clamped conditions. 

Concluding remarks

The performances of different numerical approaches to capture the interactions between a plate subjected to the shock wave of an underwater explosion and the effect of the surrounding medium are evaluated in details and compared to the experimental results both from the literature and an in-house developed experimental test data from DGA Naval Systems. According to the studies performed in this research work, it can be concluded that LS-DYNA/USA acoustic model has the best correlations with the experiment in all of the studies. LS-DYNA with only impulsive velocity given by Taylor's theory could lead to significant underestimations especially for thick plates, which oscillate in high frequencies. Using LS-DYNA/USA (DAA 2 ) approach (without explicitly modeling the surrounding fluid) could overestimate the responses especially for relatively large and thin plates in which cavitation is more likely to occur and could last longer depending on the duration of the incident shock wave. Using LS-DYNA (only acoustics) simulations with a finite extent of water may result an unnaturally slow rebounding of the plate due to confined pressures in the neighboring acoustic volume elements. This is not surprising since the finite extent of water Chapter 4

Development of Analytical Model on Internal Mechanics

This chapter explores the internal mechanics of the steel and composite plates subjected to axisymmetric loading. Here, the term 'internal mechanics' strictly refers to the study of the structural behavior such as deformation, energy dissipation, and the evolution of stresses and strains under the uncoupled loading (quasi-static or dynamic). The aim of this chapter is, thus, to validate the analytical structural equations without the complications of the fluid-structure interaction. In addition, it is further imposed that the materials considered do not contain any damage and perfectly follow generalized Hooke's law. Justification for this imposition is examined by studying the response up to the onset of the failure initiation using Tsai-Wu criteria.

Outlines of the chapter are as follows:

• First of all, literature reviews about the laminated composite plates subjected to air-blast or impulsive loads are briefly studied.

• Then, simplified analytical formulations are developed based on the first-order shear deformation theory (FSDT) to determine the quasi-static and dynamic responses of simplysupported rectangular orthotropic plates.

• Finally, analyses of the results obtained and comparisons with the numerical models are performed.

The problem domains are divided into two parts, linear small deflection domain and non-linear large deflection domain. The solutions presented here are extended into underwater blast application in the next chapter.

Literature review

General overview

Studies about shocks and vibrations, static and dynamic nature of the simple structural parts such as circular or rectangular plates, shells, and cylinders, etc. in different boundary conditions have largely been the main academic interests for many decades. The accumulation of such scientific knowledge has been portrayed in several textbooks such as [START_REF] Timoshenko | Theory of plates and shells[END_REF][START_REF] Leissa | Vibration of plates[END_REF][START_REF] Graff | Wave motion in elastic solids[END_REF][START_REF] Jones | Structural impact[END_REF]Reddy, 2004], and so on. Due to the existence of an enormous literature body, the review here is narrowed down to only laminated composites and sandwich plates attacked by air-blasts and shock waves. To have an overview of the topics, some of the prominent review papers are chronologically listed in Table 4.1 along with their brief contexts as well as the number of references cited there.

Table 4.1 Summary of the review papers

Articles Contents

No. of references cited [START_REF] Bert | Literature review: Research on dynamic behavior of composite and sandwich plates -V: Part II[END_REF] -review of composite and sandwich plates under various application areas such as dynamic buckling, impulsive loading, localized impacts, and so on 210 [START_REF] Liew | Research on thick plate vibration: A literature survey[END_REF] -contemporary survey of researches associated to thick plate vibration, -studies are categorized by different plate configurations (rectangular, circular, skewed, triangular plates, etc.) 132 [START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] -a comprehensive overview of different theories and FE methods for modeling multi-layered, anisotropic, composite plates and shell structures 325 [Porfiri and Gupta, 2009] -a collection of significant world wide research efforts on the impulsive response of naval composite structures 78 [START_REF] Zhang | Recent developments in finite element analysis for laminated composite plates[END_REF] -review on developments in FEA for laminated composites from 1990 to 2009 -various laminated plate theories for free vibration studies, buckling and postbuckling analyses, nonlinearities, damage and failure analysis 119 [START_REF] Sayyad | On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results[END_REF] -a review about the free vibration analysis of laminated composite and sandwich plates, -comparison of displacement field formulations from many papers 391 Table 4.1 (continued)

Articles Contents

No. of references cited [START_REF] Kazanci | A review on the response of blast loaded laminated composite plates[END_REF] -categorization of existing laminated plate theories focusing on blast loads, -summary of various types of time-dependent external blast models, -overview on development and applications of various numerical techniques 142 [START_REF] Mouritz | Progress Toward Explosive Blast-Resistant Naval Composites[END_REF] -general discussion emphasizing on the improvements to the air and underwater blast resistant designs of composites -perspectives on the material solution 129

Review on the study of impulsive and blast loading Experiments

The interest in the impulsive loading response has started during and after the second World War. Most researches around that time were devoted to investigating the plastic behavior of circular plates or diaphragms, for instance, [START_REF] Taylor | The distortion under pressure of a diaphragm which is clamped along its edge and stressed beyond the elastic limit[END_REF][START_REF] Florence | Circular plate under a uniformly distributed impulse[END_REF]. After 1980s, the use of composites has soared considerably as the military strove to cut down the acquisition and maintenance costs as well as to improve the structural and operational performance of naval crafts [Mouritz et al., 2001]. [START_REF] Rajamani | Response of Composite Plates to Blast Loading[END_REF] were among the first to conduct experimental studies on the blast response of clamped, rectangular isotropic and orthotropic plates with/without central holes, using a shock tube. By comparing the dynamic strain histories between the experiment and theoretical results employing classical normal-mode approach, a satisfactory agreement was found for the isotropic and orthotropic plates without holes.

Free field air-blast explosion tests on the rectangular steel plates and full-scaled stiffened panels were conducted by [START_REF] Houlston | On analysis of structural response of ship panels subjected to air blast loading[END_REF]. The results were compared against linear and nonlinear finite element program called ADINA, and highlighted the importance of both material and geometric nonlinearities in these analyses. Finite element results focusing more on the nonlinear response were later reported in [START_REF] Houlston | Nonlinear structural response of ship panels subjected to air blast loading[END_REF]. It was indicated that the 'fully fixed' boundary conditions in FE calculations may not be sufficient for the correlation with experiment due possibly to some combination of the edge slip and the rotation around the plate boundary. The accuracy of the finite element solutions and their sensitivities to loading and boundary conditions were investigated in [START_REF] Houlston | Global and local modelling of naval panels subjected to shock loads[END_REF].

In 1994, several series of shock-tube and large-scale air blast trials were performed on a full-size, and various sub-scaled steel stiffened GRP panels [START_REF] Slater | Selection of a Blast-Resistant GRP Composite Panel Design for Naval Ship Structures[END_REF]. The purpose was to establish scaling laws and to evaluate the blast resistance of the hybrid panel design for its possible application in naval ship superstructure constructions. Many advantages of the GRP composites compared to the conventional steel were also discussed from the manufacturing and design perspectives.

Air-blast response of clamped, rectangular composite laminates with/without stiffening were investigated by Turkmen and colleagues, see [Turkmen and Mecitoglu, 1999b,a;[START_REF] Türkmen | Structural response of laminated composite shells subjected to blast loading: Comparison of experimental and theoretical methods[END_REF], using shock tube tests, numerical and theoretical methods. [Turkmen and Mecitoglu, 1999a] concluded that the characteristics and the spatial variation of the shock wave pressure strongly depend on the distance from the open end of the tube to the target plate. Later, the effect of structural damping was examined by [Kazanci and Mecitoglu, 2005] for the same material and plate configuration as [START_REF] Turkmen | Nonlinear structural response of laminated composite plates subjected to blast loading[END_REF]. Many theoretical and experimental observations of Turkmen have recently been summarized and discussed in [START_REF] Turkmen | The Dynamic Behavior of Composite Panels Subjected to Air Blast Loading: Experiment and Theory[END_REF].

Since the beginning of the 21 st century, attention has been shifted to blast mitigation by the use of metallic, composite, and hybrid composite sandwich arrangements. In [Tekalur et al., 2008a[Tekalur et al., ,b, 2009]], shock tubes and controlled explosion tubes were employed to study the blast resistance and damage behavior of E-glass fiber based composites, sandwiches and other materials. Their results suggested that the E-glass fiber composite sustain progressive damage during high-rate loading whereas carbon fiber composites experience no signs of external damage until a certain threshold shock pressure beyond which the panel fails.

[ [START_REF] Arora | Blast Loading of Sandwich Structures and Composite Tubes[END_REF]] made large-scale experimental studies of air-blast loading effects on GFRP and CFRP skinned sandwich panels. Deformation and failure mechanisms are studied using digital image correlation (DIC). Improved performance of composite sandwich structures with CFRP facesheets was observed in comparison with the GFRP with equivalent constructions.

Similar research of full-scaled air and underwater blast tests using rectangular composite sandwich panels with carbon and glass facesheets and different types of polymeric foam cores was reported by [Dear et al., 2017;[START_REF] Arora | Full-Scale Air and Underwater-Blast Loading of Composite Sandwich Panels[END_REF]. FE simulations were performed using ABAQUS/explicit and confronted against the DIC contour plots from experiments. It was claimed that although the maximum displacements agreed well, discrepancy was seen in the panel behavior after the onset of damage. The paper concluded that the use of graded density foam core could improve the out-of-plane displacement at the expense of more damage (crack propagation) through the core.

Quite recently, [START_REF] Balkan | Dynamic analysis of a stiffened composite plate under blast load : A new model and experimental validation[END_REF] performed experimental and theoretical studies of the nonlinear dynamic nature of clamped composite laminates with sandwich stiffeners. Effects of stiffeners, geometrical parameters and the stacking sequence on the dynamic response and maximum failure index of the stiffened laminated plate under blast load were studied.

Theoretical and numerical studies

Earlier theoretical studies can be found in [START_REF] Dobyns | Analysis of Simply-Supported Orthotropic Plates Subject to Static and Dynamic Loads[END_REF] where the response of simply-supported rectangular orthotropic plates were examined under static and dynamic loads. Later, [START_REF] Birman | Behaviour of laminated plates subjected to conventional blast[END_REF] proposed closed-form solution of simply-supported anti-symmetric laminated thick and thin plates subjected to conventional blasts. Consequence of initial imperfection for the thin plates was also studied. However, mode interaction was ignored and the solutions were restricted to only elastic regime. [START_REF] Librescu | Response of Laminated Composite Flat Panels to Sonic Boom and Explosive Blast Loadings[END_REF]] used integral-transform technique to study the blast response of simply-supported rectangular composite flat panels taking into account the transverse normal stress, transverse shear deformation, and the higher order effects. Obtained solutions were compared against first-order shear deformation theory (FSDT) and classical laminated plate theory (CPT), inferring that the shear correction factor used in FSDT largely depends on factors such as lamination scheme, and the relative anisotropy of the layers.

[ [START_REF] Türkmen | Nonlinear Structural Response of Laminated Composite Panels Subjected to Blast Loadings[END_REF][START_REF] Türkmen | Structural response of laminated composite shells subjected to blast loading: Comparison of experimental and theoretical methods[END_REF] explored the nonlinear response of cylindrically curved laminated plates and shells subjected to normal blast load. Love's theory of thin elastic shells was employed in their studies and the governing equations were solved by Runge-Kutta based methods. Comparisons with experimental results were also presented and pointed out the possible influence of structural damping.

The energy based formulations for the stiffened and non-stiffened panels to blast loads were given by [START_REF] Louca | Response of stiffened and unstiffened plates subjected to blast loading[END_REF], highlighting the effects of in-plane boundary conditions, local stiffener buckling and initial imperfections on overall panel response. [START_REF] Nath | Non-linear transient analysis of moderately thick laminated composite plates[END_REF]] made a non-linear transient analysis of the shear deformable laminated composite plates subjected to step, ramp and sinusoidal loads considering many different boundary conditions. In one of the conclusions, it was claimed that the effects of in-plane and rotatory inertia as well as coupled normal-rotatory inertia on the response are trivial.

[ [START_REF] Qiu | Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading[END_REF]Hutchinson andXue, 2004, 2005] made a series of publications on clamped metallic sandwich plates in which blast load was modeled as a classical impulsive load. It was said that a well-designed sandwich plate can sustain larger blast impulses than a monolithic counterpart of the same weight. [Librescu, 2006] analyzed the dynamic response of clamped rectangular sandwich plates attacked by air and underwater explosions. Analytical formulations were developed using von Kármán nonlinear kinematic model in conjunction with initial geometric imperfection effects. [START_REF] Abrate | Transient Response of Beams, Plates, and Shells to Impulsive Loads[END_REF] gave a summary of the transient elastic response of beams, plates and shell models that use modal superposition approach. Classification of incident pulses into short, intermediate, or long duration in comparison with the period of the fundamental vibration mode was also provided in this study.

A continuum damage mechanics based finite element model was proposed by [Batra and Hassan, 2008] and used to evaluate blast resistance of unidirectional fiber reinforced composites including the rate effects and damage development.

[Hoo Fatt and Palla, 2009] developed a wave propagation model of a circular foam-core sandwich composite panels under air explosions, studied the damage initiation by adapting Hashin's failure criteria, and finally compared the results with ABAQUS/explicit solutions.

In Table 4.2, the articles previously discussed are grouped in terms of the structure type and the method considered, namely, experiment, numerical, and analytical methods. Note that the 'experiment' category in Table 4.2 refers to all types of air-blast experiments (full-scaled, test tube). [START_REF] Florence | Circular plate under a uniformly distributed impulse[END_REF] - [START_REF] Taylor | The distortion under pressure of a diaphragm which is clamped along its edge and stressed beyond the elastic limit[END_REF] 2. Rectangular orthotropic plates and shells [START_REF] Rajamani | Response of Composite Plates to Blast Loading[END_REF] [ [START_REF] Turkmen | The Dynamic Behavior of Composite Panels Subjected to Air Blast Loading: Experiment and Theory[END_REF]Mecitoglu, 1999b] [Tekalur et al., 2008a] [ Batra and Hassan, 2008] [ [START_REF] Dobyns | Analysis of Simply-Supported Orthotropic Plates Subject to Static and Dynamic Loads[END_REF] [ [START_REF] Birman | Behaviour of laminated plates subjected to conventional blast[END_REF]Bert, 1987] [Librescu and[START_REF] Librescu | Response of Laminated Composite Flat Panels to Sonic Boom and Explosive Blast Loadings[END_REF] [ Kazanci and Mecitoglu, 2005] 3. Rectangular sandwich panels [Tekalur et al., 2009] - [START_REF] Qiu | Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading[END_REF]] [Hutchinson and Xue, 2004] [Hutchinson and Xue, 2005] 4. Circular sandwich panels -- [START_REF] Hoo Fatt | Analytical modeling of composite sandwich panels under blast loads[END_REF] 5. Stiffened panels and shells [Turkmen and Mecitoglu, 1999a] [ [START_REF] Balkan | Dynamic analysis of a stiffened composite plate under blast load : A new model and experimental validation[END_REF] - [START_REF] Louca | Response of stiffened and unstiffened plates subjected to blast loading[END_REF] 6. Full-scaled isotropic and sandwich panels [START_REF] Houlston | On analysis of structural response of ship panels subjected to air blast loading[END_REF][START_REF] Slater | Selection of a Blast-Resistant GRP Composite Panel Design for Naval Ship Structures[END_REF] [ [START_REF] Arora | Blast Loading of Sandwich Structures and Composite Tubes[END_REF]] [Dear et al., 2017] [ Houlston and[START_REF] Houlston | Nonlinear structural response of ship panels subjected to air blast loading[END_REF][START_REF] Houlston | Global and local modelling of naval panels subjected to shock loads[END_REF] -
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A brief perspective on the laminated plate theories

In general, laminated plate theories can be divided into three main groups, namely, equivalent single layer (ESL) theories, layer-wise lamination theory (LLT), and continuum based 3D elasticity theory.

Equivalent single layer (ESL) theories

ESL theories model the composite laminate as a 2D single equivalent layer by making suitable assumptions of the kinematics of deformation or through-thickness stress states. They can be categorized into:

• Classical lamination plate theory (CPT): It is the simplest theory based on the Kirchhoff-Love's plate model, [START_REF] Kirchhoff | Uber das gleichgewicht und die Bewegung einer elastischen Scheibe[END_REF][START_REF] Love | The small free vibrations and deformation of a thin elastic shell[END_REF], in which out-of-plane shear deformation is ignored. At first, it was proposed for homogeneous plates but extended later to laminated structures. It is valid only for relatively thin plates.

• First-order shear deformation theory (FSDT): The first-order shear deformation theory (FSDT), also known as Reissner-Mindlin theory [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF][START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[END_REF], provides a balance between computational efficiency and accuracy for the global structural behavior of thin and moderately thick laminated composite plates. Nevertheless, no accurate prediction for the local effects, for example, the interlaminar stress distribution between layers, delaminations, etc., can be realized [START_REF] Kazanci | A review on the response of blast loaded laminated composite plates[END_REF].

• Higher-order theories (HSDT): Due to the limitations of CPT and FSDT, many higher-order shear deformation (HSDT), for instance, see [START_REF] Reddy | A Simple Higher-Order Theory for Laminated Composite Plates[END_REF], have been developed by adapting higher-order polynomials in the expansion of through-thickness displacement components. Because of that, shear correction coefficients are not required anymore. Also, the free boundary conditions of the transverse shear stresses on the upper and lower surfaces can usually be satisfied [START_REF] Zhang | Recent developments in finite element analysis for laminated composite plates[END_REF].

Layer-wise lamination theory (LLT)

In theories described above, the number of unknown variables does not depend on the number of constitutive layers. On the other hand, layer-wise lamination theory (LLT) formulates each layer as an independent plate and the compatibility of displacement components corresponding to each interface is imposed as a constraint. As a result, it can give accurate estimation of the interlaminar stresses. However, layerwise models are said to be computationally expensive since the number of unknowns depends on the number of the layers in the laminates. A historical development of layer-wise theories can be found in [START_REF] Carrera | Historical review of Zig-Zag theories for multilayered plates and shells[END_REF].

3D continuum based theory

The exact 3D continuum based theories for the response of isotropic, orthotropic, and anisotropic composite laminated plates have been widely studied by many researchers such as [START_REF] Srinivas | An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates[END_REF][START_REF] Noor | Mixed finite-difference scheme for analysis of simply supported thick plates[END_REF][START_REF] Loredo | Exact 3D solution for static and damped harmonic response of simply supported general laminates[END_REF]. These are exact 3D elasticity solutions and the adapted solution functions usually contain thickness coordinates. [START_REF] Noor | Mixed finite-difference scheme for analysis of simply supported thick plates[END_REF] presented a mixed finite difference scheme for the stress and free vibration analysis of simply-supported, non-homogeneous orthotropic thick plates while adapting Fourier approach to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. In [START_REF] Loredo | Exact 3D solution for static and damped harmonic response of simply supported general laminates[END_REF], the state-space method was utilized to obtain 3D exact solutions for the static and damped dynamic behaviors of simply-supported general laminates. Indeed, such approaches could predict the interlaminar stress of a composite laminate more accurately. However, computational time is still a major concern for the 3D based theories [START_REF] Kazanci | A review on the response of blast loaded laminated composite plates[END_REF].

Linear response of rectangular orthotropic plates

In this section, derivations regarding a simply-supported rectangular orthotropic plate are given using the first-order shear deformation theory (FSDT). According to [START_REF] Wang | Shear Deformable Beams and Plates[END_REF], FSDT could often provide an adequately accurate description of the global response (i.e., deflections, natural frequencies, etc.) for thin and moderately thick plates within a favorable computation time compared to higher-order theories. This assertion is further backed by an earlier study by [START_REF] Noor | Assessment of shear deformation theories for multilayered composite plates[END_REF]] who, through extensive numerical results, stated that "acceptable accuracy can be obtained for free-vibration analysis of moderately thick composite plates using FSDT if shear correction factor is properly selected".

Problem formulation

Consider a simply-supported rectangular composite plate having the sides a, b and uniform thickness h shown in Fig. 4.1. A standard Cartesian coordinate (x, y, z) system is defined at the origin and mid-surface of the plate. The displacements in the x, y, z directions are denoted as u, v and w respectively. Each k th orthotropic ply is orientated at an angle θ (k) with respect to the x-axis. Together with the hypotheses of FSDT, Lagrangian energy approach is considered to derive the mechanical analytical model of the plate in the absence of water. As the first approximation, structural damping, high strain rate, geometric nonlinearity, and failure effects are not considered. 

Derivations

According to FSDT, it is supposed that the transverse displacement is independent of the plate thickness h and the transverse normal strain zz is zero. The transverse shear strains, xz and y z , are accounted for such that the transverse normals rotate with respect to the mid-surface after deformation. Here, in line with a few other researchers such as [START_REF] Librescu | Response of Laminated Composite Flat Panels to Sonic Boom and Explosive Blast Loadings[END_REF]Schiffer and Tagarielli, 2014], the in-plane displacements |u| and |v| are assumed negligibly small compared to the transverse displacement |w|, that is, |u|, |v| |w|. Therefore, the originally 5 Degrees of Freedom (DOFs) problem is now reduced to only 3 unknown DOFs, which are transverse displacement w, transverse normal rotations ψ x and ψ y about y-and x-axes respectively. A conceptual depiction of an original and deformed geometries using a differential section of a plate (in x-z plane) is shown in Fig. 4.2. According to these assumptions discussed before, the displacement fields of the FSDT have the following form:

u(x, y, z, t ) = zψ x (x, y, t ) v(x, y, z, t ) = zψ y (x, y, t ) w(x, y, z, t ) = w(x, y, t )        (4.1)
where ψ x = γ xz + -∂w ∂x and ψ y = γ y z + -∂w ∂y .

It should be noted that these expressions can be reduced to classical plate theory (CPT) for thin plates if the in-plane characteristic dimension to thickness ratio (a/h) is on the order of 50 or more. In other words, the transverse shear strains approach to zero (γ xz , γ y z → 0) such that the rotations ψ x and ψ y can simply be expressed as:

ψ x = - ∂w ∂x , ψ y = - ∂w ∂y (4.2)
The linear strain-displacement relations are written as follows:

xx = z ∂ψ x ∂x , y y = z ∂ψ y ∂y , γ x y = z ∂ψ x ∂y + ∂ψ y ∂x γ xz = ∂w ∂x + ψ x , γ y z = ∂w ∂y + ψ y , zz = 0 (4.3)

Navier's method

To satisfy the simply-supported boundary conditions for the rectangular plate, a modal basedapproach, also known as Navier's solution method, is considered. The unknown functions are expanded into double Fourier series comprising of temporal and spatial variables as:

w(x, y, t ) = ∞ m=1 ∞ n=1 W mn (t ) sin mπx a sin nπy b (4.4a) ψ x (x, y, t ) = ∞ m=1 ∞ n=1 Ψ x mn (t ) cos mπx a sin nπy b (4.4b) ψ y (x, y, t ) = ∞ m=1 ∞ n=1 Ψ y mn (t ) sin mπx a cos nπy b (4.4c)
Figure 4.2 Undeformed and deformed configurations of a section of a plate in x-z plane using FSDT assumptions [Reddy, 2004] where W mn (t ), Ψ x mn (t ) and Ψ y mn (t ) are three generalized coordinates (in time), m and n are mode numbers in x-and y-directions respectively. For simplicity, the three generalized coordinates will be denoted as W mn , Ψ x mn , Ψ y mn for the rest of the book.

The lamina constitutive relations are described using 2D plane stress assumption. For any k th layer of the orthotropic lamina with an arbitrary orientation θ (k) , the stress-strain relationship can be written as:

     σ xx σ y y σ x y      (k) =    Q11 Q12 Q16 Q12 Q22 Q26 Q16 Q26 Q66    (k)      xx y y γ x y      (4.5)
and for transverse shear as:

σ y z σ xz (k) = Q44 Q45 Q45 Q55 (k) γ y z γ xz (4.6)
where Q(k) i j from Eqs. (4.5) and (4.6) is the reduced transformed stiffness matrix based on engineering constants. The detailed formulations for Q(k) i j can be found in any classical composite textbooks, for example, [Reddy, 2004].

By using Eqs. (4.5) and (4.6) and then by integrating the corresponding stresses with respect to the thickness z, well-known relationships for force and moment resultant to strains can be obtained as: Note here that for small strain, and small deflection (small rotation) problem, the mid-plane strain matrix 0 can be regarded as zero. As will be shown later in Section 4.3, von Kármán description of the quadratic strain can be used for small strain with moderate rotation problem.

N M = A B B D 0 κ , Q y Q x = K s A 44 A 45 A 45 A 55
In addition, a shear correction factor K s = k s x k s y is considered in the computation of transverse shear force resultants (Q x , Q y ) in order to account for the non-uniformity and parabolic shape of the shear stress distribution throughout the thickness. It should be selected so that the strain energy due to constant transverse shear stresses roughly equals to the strain energy due to the true transverse shear stresses as predicted by the 3D elasticity theory. Sensitivity analyses due to different choices of K s are shown in the subsequent sections of this chapter.

The matrices A, B , and D are extensional, bending-extension coupling and bending stiffness matrices respectively and (A 44 , A 45 , A 55 ) are shear stiffnesses. These values can be obtained using Q(k)

i j and the z coordinates of the plies as follows:

A i j = N k=1 Q(k) i j (z k+1 -z k ), B i j = 1 2 N k=1 Q(k) i j z 2 k+1 -z 2 k D i j = 1 3 N k=1 Q(k) i j z 3 k+1 -z 3 k , A op = N k=1 Q(k) op (z k+1 -z k ) (4.8)
where the indexes i , j = 1, 2, 6, and A op = (A 44 , A 45 , A 55 ) are the shear stiffnesses (o, p = 4, 5).

Lagrangian equations of motion

Lagrangian energy approach previously used by other researchers such as [START_REF] Hoo Fatt | Analytical modeling of composite sandwich panels under blast loads[END_REF]Hoo Fatt and Sirivolu, 2017] is employed here to derive the governing equations for the plate.

According to the Lagrangian equation (second kind):

d d t ∂L ∂ ql + ∂L ∂q l = Q l (4.9)
where L = T -U in which T and U are kinetic and strain energies respectively, Q l is the nonconservative force, q is the generalized coordinate, (˙) shows differentiation with respect to time, l is the number of DOF to be considered. In the present analysis, there are three DOFs (w, ψ x , ψ y ). Air-blast response can be viewed as a classical impulsive loading problem provided that the pulse duration is much shorter than the fundamental natural period of the plate [START_REF] Hoo Fatt | Analytical modeling of composite sandwich panels under blast loads[END_REF][START_REF] Abrate | Transient Response of Beams, Plates, and Shells to Impulsive Loads[END_REF]. In this case, Q l can be taken as zero. The consideration of Q l makes the forced response problem and shall be shown later in this chapter.

The general expressions of the kinetic energy T and the strain energy U in a solid can be given as follows:

T = 1 2 Ω h/2 -h/2 ρ u2 + v2 + ẇ2 dzdΩ U = 1 2 Ω h/2 -h/2 σ xx z ∂ψ x ∂x + σ y y z ∂ψ y ∂y + σ x y z ∂ψ x ∂y + ∂ψ y ∂x + σ xz ψ x + ∂w ∂x + σ y z ψ y + ∂w ∂y dzdΩ                            (4.10)
where Ω represents the domain (surface area) of the plate.

By substituting Eq. ( 4.3), and from Eqs. (4.4) -(4.7) into Eq. (4.10), the following expressions for kinetic energy T and the strain energy U can be derived:

T = ab 8 ∞ m=1 ∞ n=1 I 1 Ẇ 2 mn + I 2 Ψ2
x mn + Ψ2 where I 1 and I 2 are mass and rotatory inertia whose corresponding expressions can be found using:

I 1 = ρ N k=1 (h k -h k-1 ) , I 2 = 1 3 ρ N k=1 h 3 k -h 3 k-1 (4.13)
where ρ is the density of the material, and h k is the thickness of each lamina.

When the two energy expressions, Eqs. (4.11) and (4.12), are introduced into Eq. (4.9), the equations of motion for the plate can be derived. Since the eigen modes involved in Eq. (4.4) are orthogonal, the resulting equations are uncoupled to each mode. In matrix form:

   M 1 0 0 0 M 2 0 0 0 M 3       Ẅmn Ψx mn Ψy mn    +    K 11 K 12 K 13 K 12 K 22 K 23 K 13 K 23 K 33       W mn Ψ x mn Ψ y mn    =    0 0 0    (4.14)
where the formulations to calculate M 1 , M 2 , M 3 , K i j mn (i , j = 1, 2, 3) are provided as:

M 1 = ρh , M 2 = M 3 ≈ 0 (4.15)
and;

K 11 = A 44 nπ b 2 + A 55 mπ a 2 , K 12 = A 55 mπ a K 13 = A 44 nπ b , K 22 = D 11 mπ a 2 + D 66 nπ b 2 + A 55 K 23 = mnπ 2 ab (D 11 + D 66 ), K 33 = D 22 nπ b 2 + D 66 mπ a 2 + A 44 (4.16)
By neglecting the effect of rotatory inertia, that is I 2 ≈ 0, M 2 and M 3 become zero. Therefore, the three sets of equations can be reduced to just a single (second-order) ordinary differential equation as:

M 1 Ẅmn + K mn W mn = 0 (4.17)

where K mn is the overall areal stiffness for mode (m, n) written as:

K mn = K 11 + 2K 12 K 23 K 13 -K 2 12 K 33 + K 2 13 K 22 K 22 K 33 -K 2 23 (4.18)

Initial conditions

The generalized displacement at time t = 0 is taken as zero since it is assumed that there is no initial deformation (or imperfection). The initial condition for the generalized velocity Ẇmn (0) is derived from the applied impulse (in-air) denoted as I 0 and orthogonality conditions of the modes.

The in-air imparted impulse can be obtained by integrating the incident pressure pulse with respect to time as:

I 0 = t 0 P i (t )dt (4.19)
where P i (t ) is the uniformly distributed (axisymmetric) incident pressure. For simplicity, this pressure can have any arbitrary shape in time. If the pulse duration is sufficiently short compared to plate response time and FSI effects are ignored, the conservation of linear momentum gives the following relationship between imparted impulse I 0 and maximum impulsive velocity v i as:

I 0 = m s v i (4.20)
where m s = ρh is the areal mass of the plate, and v i is the impulsive velocity. In the next subsection, free-responses of the plate by using different values of v i are analyzed. Note that in the next chapter when fluid-structure interaction effects are involved, the corresponding formula of v i given in Eq. (A.22) from Appendix A needs to be considered.

The orthogonality condition can be expressed via the following equation:

Ω α i j α mn dΩ = 0, for i , j = m, n (4.21)
where where α i j (x, y) = sin i πx a sin are the mode shape terms whose indexes i , j , m, n = 1, 2, 3, etc. By differentiating w(x, y, t ) from Eq. (4.4) with respect to time, the transverse velocity of the plate at time step zero can be written as:

ẇ(x, y, 0) = ∞ m=1 ∞ n=1 Ẇmn (0)α mn (x, y) (4.22)
By multiplying Eq. (4.22) by α i j (x, y) = sin i πx a sin j πy b on both sides and then integrating over the surface area, only one term remains on the right-hand side of the equation by virtue of the orthogonality property given in Eq. (4.21).

Since ẇ(x, y, 0) = v i at t = 0, the equations for initial conditions become:

W mn (0) = 0 and Ẇmn (0) = 2A mn v i (4.23)
where A mn = Ω α mn dΩ / 2 Ω α 2 mn dΩ = 8/(mnπ 2 ) is the term related to mode shape (m, n). Note that structural damping effect is neglected in Eq. (4.17). Also, due to the symmetry of the loading, boundary condition, and initial condition, only odd number terms (m, n = 1, 3, 5, etc.) contribute to the plate response.

Analytical solution

Equation (4.17) is a classical free response equation. With the use of the initial conditions Eq. (4.23), the generalized coordinates (or modal participation factors) can be solved as follows:

W mn = 2 A mn v i ω 0 mn sin ω 0 mn t (4.24)
where ω 0 mn = K mn /M 1 = 2π f 0 mn is the angular natural frequency for mode m and n with f 0 11 = 1/T 0 being the natural frequency of fundamental period T 0 .

The relations between different generalized coordinates are obtained as:

Ψ x mn = K 23 K 13 -K 12 K 33 K 33 K 22 -K 2 23 W mn , Ψ y mn = K 23 K 12 -K 13 K 22 K 33 K 22 -K 2 23
W mn (4.25) By using Eqs. (4.24) and (4.25) in Eqs. (4.11) and (4.12), kinetic and strain energies can be determined. Other quantities such as stresses and strains can be derived as well.

Implementation in MATLAB

Using the analytical formulations derived in this thesis, a general solving algorithm was written in MATLAB program (version R2015a) as shown in Fig. 4.3. It includes three main stages, namely, input, solver, and output. The solver uses the nonstandard finite difference (NSFD) scheme which will be presented later. The failure index based on Tsai-Wu criterion is also given and will only be discussed in Subsection 4.4.2.
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Case studies using non-immersed composite plates

Materials and load cases

Two materials are considered in this section to validate the previously derived analytical solutions and compare with the LS-DYNA finite element results. These are:

• Carbon-fiber/epoxy (CFRP) laminates: Overall thickness h = 5.76 mm, density ρ = 1548 kg.m -3 , and stacking sequence of [±45/0/0/0/ ± 45/0/0/0/90/90] s -a total of 20 plies;

• Glass-fiber/epoxy (GFRP) laminates: Overall thickness h = 8.0 mm, density ρ = 1779 kg.m -3 , and stacking sequence of [0/90/0/90/.../0/90/0/90] -a total of 30 plies.

Corresponding material properties, taken from the quasi-static tests performed in Clément Ader Institute and Icam (Toulouse) [Márquez Duque et al., 2019;[START_REF] Barlow | Endommagements de composites stratifiés et sandwiches sous impact de gélatine moyenne vitesse[END_REF], are given in Table 4.3. Square plates (a = b) with different aspect ratios were used as listed in Table 4.4. Impulsive velocities ranging from 0.5 -9 m.s -1 are applied. Results are then post-processed in terms of peak central deflection, maximum internal energy, and deflection-time history. -Here, the analysis is not performed on the same areal mass basis. Rather, the comparisons are done just to check the validity of the present FSDT based formulations.

-According to Eq. (4.20), higher impulse would be required to move the GFRP plate with the same initial impulsive velocity as CFRP plate.

Finite element model (LS-DYNA impulsive approach)

A typical finite element model of the composite plate using LS-DYNA (only impulsive) approach is shown in Fig. 4.4. Most of the information about the model is similar to the one explained in Subsection 3.3, except that a rectangular plate is considered here. Due to the problem symmetry, only one-fourth of the model is required with the corresponding symmetric boundary conditions. Simply-supported (immovable) boundaries are imposed at the edges and the initial impulsive velocity in the transverse (positive z direction) is distributed uniformly as shown. The mesh sizes are selected so that the ratio of the plate size to element size equals 100 (i.e., a/element size = 100), making a total of 2500 shell elements for each corresponding aspect ratio shown in Table 4.4. This use of the mesh size was found to be sufficient. Also, it is worth mentioning that the author has performed several trial simulations in LS-DYNA to check many different sensitivities of the typical numerical parameters such as the number of integration points, shell element formulations, mesh size, structural stiffness, time step scale factor, etc. It can be confirmed that the simulation employing a full plate model yields almost the same results as the quarter plate model shown here. 

Rectangular CFRP plate

As seen in Fig. 4.5, numerical results regarding the peak central deflections are found within ±10% of the analytical results except for the large aspect ratio (or large deflection). Since geometric non-linearity related to large displacement is not considered in the analytical formula yet, it is accurate only for the maximum deflection less than the plate thickness (i.e., w max /h < 1). Note that the obtained analytical solutions consider the first five odd number modes (m, n = 1, 3, ..., 9) where a convergence of the solution is reached. Since the energy dissipation is more or less the same for a given impulse I 0 , the deformation energy agrees much better than those of central deflections for all aspect ratios, see Fig. 4.5(b). In other words, when the plate deflection exceeds the thickness, some of the kinetic energy is absorbed by an additional stretching mode caused by moderately large rotation. Investigations regarding the geometric nonlinear effect are presented in Section 4.3 and the comparison of the same case studies to the analytical results including geometric nonlinearity will be shown later.

Time evolutions of the central deflections for both thin and thick CFRP plates are shown in Fig. 4.6 where responses are calculated using both analytical and numerical methods at two different impulsive velocities (v i = 2 m.s -1 and 5 m.s -1 ). They are in good agreement except for thin plate at high velocity (5 m.s -1 ). It is observed that the smaller the plate aspect ratio (a/h), the stiffer the plate becomes, leading to smaller central deflection and shorter natural periods (see Fig. 4.5(b) for example). On the other hand, thin plate generally shows higher amplitude at a longer response time. As can be seen in Fig. 4.5(a), the result of thin plate subjected to impulsive velocity of 5 m.s -1 does not agree well because the current analytical formulation does not take into account the geometric nonlinear effect. It had already been reported by [START_REF] Reddy | Geometrically Nonlinear Transient Analysis of Laminated Composite Plates[END_REF] that the geometric nonlinear effect tends to decrease the amplitude as well as the period of the center deflection and stress. This shall be elaborated in the upcoming sections.

Rectangular GFRP plate

Results using GFRP properties and stacking sequence are shown in Figs. 4.7 and 4.8. Similar behaviors as the CFRP plate are observed. For example, in Fig. 4.7(a), the larger the aspect ratio, the more likely for the plate to sustain higher deflections due to lower stiffness. Then, larger discrepancies (overestimation in analytical results) are prone to appear due mainly to the involvement of nonlinearity in FE results. The same conclusion can be made for the central deflection-time plot in Fig. 4.8. Recall here that the GFRP plate is not modeled on the same areal mass basis, see Table 4.4. Also, it should be noted that the range of velocities used for GFRP are in fact lower than those employed for CFRP. This indeed highlights the more flexible nature of the GFRP plate compared to the CFRP.

Impulsive velocity, v i (m/s) 

Natural frequencies

The natural frequencies concerning with the normal bending modes (Fig. 4.9) are given in Table 4.5. These values are compared between analytical and FE computations. It seems that the GFRP plate with [0/90/.../0/90] layout correlates better. The shear correction factor (K s = 5/6) in the analytical computation seems sufficient in this case. Still, discrepancies up to 3% are observed in CFRP thick plate case. This is possibly due to the ignorance of in-plane and rotatory inertia effects as well as the choice of shear correction factor. In a separate test, refinement in the FE mesh is investigated by doubling the number of shell elements. Not much improvement in the result (for both CFRP and GFRP thick plates) was observed. Note that LS-DYNA results are about the same for both full plate and quarter plate model in all cases with CFRP.

Another possible reason is that during the development of the analytical formulations, Navier's solution method (with double Fourier series) is considered since it satisfies the simply-supported boundary condition. However, the selected functions could exactly satisfy the displacement (essential) boundary condition only. As for the moment (natural) boundary conditions, it depends on the choice of the lamination scheme. In order to satisfy these moment boundary conditions exactly, it is also required It can be seen in Eq. (4.26) that α mn = 0 at the edges (x = 0, a, and y = 0, b) whereas, the latter term β mn = 0. Unless D 16 = 0, the bending moment M xx will not be exactly zero since Ψ x mn and Ψ y mn are not zero. Similar condition may be applied to M y y . Perhaps, this is what affects the results of the natural frequencies. According to the results in Table 4.5, the discrepancies increase as the aspect ratio decreases.

A 16 = A 26 = B 16 = B 26 = D 16 = D

Effect of shear correction factor

Now, the effect of shear correction factor in the analytical formulation is studied using CFRP thick plate. Recall that the accuracy of the FSDT theory relies on the choice of the shear correction factor K s . In Table 4.6, natural frequencies calculated for the first 9 symmetric modes are listed using different K s values. LS-DYNA results are also given for the reference purpose. Two things can be observed. First of all, the natural frequencies increase as the K s increases. For clarity, the data from Table 4.6 are plotted again in Fig. 4.10(a). Figure 4.10(b) is also shown to ascertain that the variation of K s does not impose significant changes to the plate's free vibration response. 

Summary of the study

In this section, analytical formulations are developed based on the first-order shear deformation theory (FSDT). Results are analyzed on two different types of materials, carbon fiber/epoxy (CFRP) and glass fiber/epoxy (GFRP) with different layouts and aspect ratios. For varying levels of impulses, maximum central deflections and internal energies are compared between LS-DYNA (only impulsive) and analytical approaches. First natural frequencies are assessed and sensitivity of shear correction factor is explored in brief. Results with steel are not shown here as they will appear in the study of geometric nonlinearity effect. By and large, it can be concluded that the current formulations work quite well and can be used as foundations for various other developments such as nonlinearity and FSI in the upcoming chapters. 

Nonlinear response of rectangular orthotropic plates

Introduction

Generally, nonlinearity could arise from the following three conditions:

• Geometric nonlinearity: This is what has been observed in the previous section in which the linear plate theory is not accurate anymore especially when the plate deflection is in the order of its thickness or more. In this case, the coupling between membrane stresses and curvature of the plate must be considered. Von Kármán nonlinear plate theory, taking into account the quadratic terms in the strain-displacement relations, is applied here. Note that geometric nonlinearity could also arise from other factors such as large strains.

• Material nonlinearity: This is the case where Hooke's law, a linear relationship between stress and strain, becomes invalid, for example, due to plasticity or failure. Also, in cases such as rubber or anisotropic materials, material nonlinearities need to be introduced. Material nonlinearties are not treated in this thesis.

• Boundary nonlinearity: This arises when boundary conditions change during the analysis. Such condition usually involves a contact where a large and instantaneous change in the structural response occurs, for instance, expansion of sheet material into a mold1 .

Any such nonlinearity conditions discussed above could lead to nonlinear terms in the system of partial or ordinary differential equations. Discontinuities or jump conditions may even exist in some cases.

In the coming sections, previous research works which deal with geometric nonlinear effects are briefly reviewed. Then, equations are derived for air-blast response of rectangular composite plate, taking into account the geometric nonlinearity, orthotropy of the laminates as well as transverse shear deformation effects. In-plane and rotatory inertia, and the structural damping effects are, however, ignored.

Modal solution approach presented in the previous section is utilized again in the development of the nonlinear equations. However, one-to-one approximation, similar to the study performed by [Nishawala, 2011], is adapted to avoid involvement of coupling between different mode shapes. This is not to be confused with 'single mode' approach in which only the effect of the fundamental mode is considered, for instance, [START_REF] Sivakumaran | Nonlinear vibration of generally laminated anisotropic thick plates[END_REF][START_REF] Kazancı | Nonlinear dynamic behavior of supported laminated composite plates subjected to blast load[END_REF]. Unlike single mode approach, a one-to-one approximation considers the effects of higher order modes (i.e., the same modal terms) but the coupling between different modes are not permitted so as to reduce the problem complexity. This shall be elaborated more in the 'derivation' section.

Simply-supported boundary condition is considered with two possible edges such as:

1. Immovable edge condition -the edges are restrained from moving. This condition needs to introduce an equivalent axial load which prevents motion.

2. Movable edge condition -the edges are allowed to slide freely within the plane of the undeformed plate. As a result, no axial force will appear at the edges.

The resulting nonlinear ordinary differential equations can be linearized and solved in time domain by using nonstandard finite difference numerical scheme [Mickens, 1993], which is explained in Appendix C. It is an efficient numerical scheme and could, depending on the forcing function, yield an exact-numerical discretization as shown by [Songolo and Bidégaray-Fesquet, 2018]. The obtained results are then validated by comparing with both theoretical and numerical solutions found in literature as well as finite element results performed in LS-DYNA.

Brief review on previous works

Among the theories about the influence of large deflections, the work of [START_REF] Kármán | Festigkeitsprobleme im Maschinenbau[END_REF] is quite well-known. Based on that theory, several other developments on the nonlinear responses had been made such as [START_REF] Levy | Bending of rectangular plates with large deflections[END_REF][START_REF] Yamaki | Influence of large amplitudes on free flexural vibrations of elastic plates[END_REF][START_REF] Iyengar | Large deflections of rectangular plates[END_REF]. These are formulations for nonlinear plate bending under static load, free and forced vibrations for rectangular and circular plates under various boundary and edge conditions. These works were, however, limited to only isotropic materials using thin plate theory in which the effect of transverse shear was neglected.

Extensions of the theoretical solutions for nonlinear vibration of anisotropic rectangular plates under various boundary conditions were carried out by [START_REF] Sathyamoorthy | Non-Linear Vibration of Anisotropic Rectangular Plates Including Shear and Rotatory Inertia[END_REF] based on Galerkin's method and Runge-Kutta procedure, taking into account the transverse shear and rotatory inertia effects.

Using finite element method, [START_REF] Reddy | Geometrically Nonlinear Transient Analysis of Laminated Composite Plates[END_REF] performed the geometrically nonlinear transient analysis of the laminated composite plates which undergo moderately large deformations. The effects of plate thickness, lamination scheme, boundary conditions and loading on the deflections and stresses were investigated. Comparisons with many existing solutions were done while giving many benchmark results. [START_REF] Sivakumaran | Nonlinear vibration of generally laminated anisotropic thick plates[END_REF]] used Hamilton's principles, Galerkin's procedures and principle of harmonic balance approximate solutions to analyze the nonlinear vibration of generally laminated anisotropic thick plates in various boundary conditions, including transverse shear and rotatory inertia effects. [Mei and Prasad, 1989] studied the nonlinear response of simply-supported rectangular symmetric laminated composites subjected to acoustic excitation. Effects of transverse shear on large deflection vibration of laminates under random excitation are also studied using mean-square formulations.

[ [START_REF] Nath | Non-linear transient analysis of moderately thick laminated composite plates[END_REF]] utilized an alternative approach involving double Chebyshev series approximation (spatial discretization) together with the Houbolt time marching scheme (temporal discretization) and quadratic extrapolation technique (for linearization) to analyze the nonlinear transient response of moderately thick laminated composite plates under various non-classical boundary conditions and loading. These studies were done mainly based on von Kármán type kinematics and first-order shear deformation theory. About 10 years later, [START_REF] Upadhyay | Nonlinear dynamic response of laminated composite plates subjected to pulse loading[END_REF] extended the approach of [START_REF] Nath | Non-linear transient analysis of moderately thick laminated composite plates[END_REF] to third-order shear deformation theory.

Efforts regarding conventional air-blast and pressure pulse responses of composite laminates including the geometric nonlinearity (in von Kármán sense) can be found in [START_REF] Birman | Behaviour of laminated plates subjected to conventional blast[END_REF], several papers of Turkmen and colleagues [START_REF] Turkmen | Nonlinear structural response of laminated composite plates subjected to blast loading[END_REF][START_REF] Turkmen | The Dynamic Behavior of Composite Panels Subjected to Air Blast Loading: Experiment and Theory[END_REF], those of Kazanci [Kazanci and Mecitoglu, 2005;[START_REF] Kazancı | Nonlinear dynamic behavior of supported laminated composite plates subjected to blast load[END_REF] and [START_REF] Şenyer | Nonlinear dynamic analysis of a laminated hybrid composite plate subjected to time-dependent external pulses[END_REF], etc. while studies about sandwich composite panels are given in [START_REF] Librescu | Linear and non-linear dynamic response of sandwich panels to blast loading[END_REF]Librescu, 2006;Hoo Fatt and Sirivolu, 2017]. Most of these have already been reviewed in Subsection 4.1.2 and hence, are not repeated here.

Overview and remarks

One important point to note after reviewing the above papers is that with the exception of the finite element approach used by [START_REF] Reddy | Geometrically Nonlinear Transient Analysis of Laminated Composite Plates[END_REF], and the analytical approach involving Chebyshev series by [START_REF] Nath | Non-linear transient analysis of moderately thick laminated composite plates[END_REF][START_REF] Upadhyay | Nonlinear dynamic response of laminated composite plates subjected to pulse loading[END_REF], many other researches discussed above considered only the 'single mode analysis' approach where the effects of the higher order modes are not considered.

Several conclusions made by these authors can be summarized as follows:

• The effects of transverse shear and rotatory inertia decrease with the increasing amplitude and are maximum at small amplitudes [START_REF] Sathyamoorthy | Non-Linear Vibration of Anisotropic Rectangular Plates Including Shear and Rotatory Inertia[END_REF].

• Transverse shear is important for thick plates (a/h < 20) and for small deflection theory and thus, should not be disregarded. As for thin plates (a/h > 50), large deflection theory without the transverse shear effects gives reasonable accuracy [Mei and Prasad, 1989] 2 .

• The influences of transverse shear and rotatory inertia decrease the frequency at any amplitude of vibration. The effect of rotatory inertia is much less than that of transverse shear deformation. These effects decrease with increasing amplitude of vibration and with decreasing thickness-to-span ratio [START_REF] Sivakumaran | Nonlinear vibration of generally laminated anisotropic thick plates[END_REF].

• Effects of in-plane inertia, rotatory inertia and coupled normal-rotatory inertia on the response are insignificant. Transient (free) response of the plate increases with increase in loading duration [START_REF] Nath | Non-linear transient analysis of moderately thick laminated composite plates[END_REF]].

• Structural damping effects could reduce the vibration amplitude in a short time and the frequency of vibration, especially after a strong blast [Kazanci and Mecitoglu, 2005].

In addition to these papers, many of the developments regarding nonlinear theories of beams, plates, shells and other simple structures constructed with isotropic or composite materials had been systematically compiled by [START_REF] Sathyamoorthy | Nonlinear analysis of structures[END_REF]. Also, the book [Shen, 2013] presented a two-step perturbation method to tackle such nonlinear problems.

Extensions for geometric nonlinearity

The first-order shear deformation theory (FSDT) for the orthotropic plate presented in Subsection 4.2.2 is extended here to account for the geometric nonlinearity due to large deflection. However, unlike the previous section in which the Lagrangian energy expression is used, the derivation procedures presented here follows those of [Mei and Prasad, 1989] where the equilibrium equations containing Airy's stress function φ are considered. One reason for selecting such approach is that it provides clearer insights and a more systematic way of arranging the equations.

The problem configuration used is the same as explained in Subsection 4.2.1 and in Fig. 4.1. The displacement field equations, adapting FSDT, are also equivalent to Eq. (4.1) in which three degrees of freedom (DOFs), namely transverse displacement w, rotation about y-and x-axes due to transverse shear strains, denoted as ψ x and ψ y respectively. The schematic representation of the FSDT can be seen in Fig. 4.2.

Again, the in-plane displacements |u|, |v| are assumed to be negligibly small compared to the transverse displacement |w|. The plate is inextensible in the z-direction. Along with these assumptions, the nonlinear strain-displacement relations [START_REF] Kármán | Festigkeitsprobleme im Maschinenbau[END_REF] 

, Q y = h/2
-h/2 σ xz , σ y z dz are shear force resultants, q is the external force in normal direction, and q * is the resultant transverse force due to membrane effects (will be defined later).

The inertia terms are expressed as:

(I 1 , I 2 , I 3 ) = h/2 -h/2 ρ 1, z, z 2 dz (4.29)
where I 1 is the mass per unit area, I 2 is the coupling term which vanishes if the plate is symmetric about the x-y plane, and I 3 is the rotatory inertia term.

Assuming that I 2 , I 3 ≈ 0, the right-hand sides of Eqs. (4.28a -b) become zero. The momenttransverse shear equations, Eqs. (4.28d -e), also become much simplified. Now, by summing the projections of all the forces on the z plane and provided that there are no body forces, it can be proved that q * has the following relationship:

q * = N x ∂ 2 w ∂x 2 + N y ∂ 2 w ∂y 2 + 2N x y ∂ 2 w ∂x∂y (4.30)
Note that the expressions shown in Eqs. (4.28) and (4.30) are well-known expressions and can readily be found in [Mei and Prasad, 1989;Reddy, 2004] and so on. Airy's stress function φ is defined so that the following conditions are satisfied:

N x = ∂ 2 φ ∂y 2 , N y = ∂ 2 φ ∂x 2 , N x y = - ∂ 2 φ ∂x∂y (4.31)
Now, Eq. (4.30) can be rewritten in terms of the Airy's stress function φ as:

q * = ∂ 2 φ ∂y 2 ∂ 2 w ∂x 2 + ∂ 2 φ ∂x 2 ∂ 2 w ∂y 2 -2 ∂ 2 φ ∂x∂y ∂ 2 w ∂x∂y (4.32)
It is already known that the column matrix of force and moment resultants N and M can be related to the mid-plane strain 0 and curvature κ matrices through Eq. (4.7). Assume that the laminate is composed of only symmetric plies. Then, B = 0 giving:

N M = A 0 0 D 0 κ , Q y Q x = K s A 44 A 45 A 45 A 55 ∂w ∂y + ψ y ∂w ∂x + ψ x (4.33)
where A and D are [3×3] matrices representing extensional and bending stiffnesses of the laminate respectively, see Eq. (4.8). For convenience, these equations are rearranged into:

0 M = A * 0 0 D N κ , ∂w ∂y + ψ y ∂w ∂x + ψ x = T s K s A * 44 A * 45 A * 45 A * 55 Q y Q x (4.34)
where T s is the tracing constant3 , and A * i j = A i j -1 in which (i , j ) = (1, 2, 6) for extension, and (i , j ) = (4, 5) for shear. K s is the shear correction factor (0 < K s ≤ 1).

Using Eqs. (4.28d -e) for Q y and Q x along with the moment-curvature relationships, the latter of Eq. (4.34) will become: Equations (4.35a -b) can be rearranged as:

∂w ∂x + ψ x = s 1 ∂ 2 ψ x ∂x 2 + s 2 ∂ 2 ψ x ∂x∂y + s 3 ∂ 2 ψ x ∂y 2 + s 4 ∂ 2 ψ y ∂x 2 +
∂w ∂x + J 1 (ψ x ) + K 1 (ψ y ) = 0 (4.37a) ∂w ∂y + J 2 (ψ x ) + K 2 (ψ y ) = 0 (4.37b)
where

J 1 = 1 -s 1 ∂ 2 ∂x 2 -s 2 ∂ 2 ∂x∂y -s 3 ∂ 2 ∂y 2 J 2 = -s 7 ∂ 2 ∂x 2 -s 8 ∂ 2 ∂x∂y -s 9 ∂ 2 ∂y 2 K 1 = -s 4 ∂ 2 ∂x 2 -s 5 ∂ 2 ∂x∂y -s 6 ∂ 2 ∂y 2 K 1 = 1 -s 10 ∂ 2 ∂x 2 -s 11 ∂ 2 ∂x∂y -s 12 ∂ 2 ∂y 2                              (4.38)
Solving Eqs. (4.37a) and (4.37b) will yield:

N (ψ x ) = K 2 ∂w ∂x -K 1 ∂w ∂y (4.39a) N (ψ y ) = J 1 ∂w ∂y -J 2 ∂w ∂x (4.39b)
where N = K 1 J 2 -K 2 J 1 is a differential operator and can be given as [Mei and Prasad, 1989];

N = l 1 ∂ 4 ∂x 4 + l 2 ∂ 4 ∂x 3 ∂y + l 3 ∂ 4 ∂x 2 ∂y 2 + l 4 ∂ 4 ∂x∂y 3 + l 5 ∂ 4 ∂y 4 + l 6 ∂ 2 ∂x 2 + l 7 ∂ 2 ∂x∂y + l 8 ∂ 2 ∂y 2 -1 (4.40)
in which l 1 , l 2 , ..., l 8 are coefficients defined in Eq. (D.2) in Annex A (Appendix D).

When Q x and Q y obtained from Eqs. (4.28d -e) are substituted into Eq. (4.28c), the following equation is obtained: ρh ẅ -L ψ x , ψ y = q + q * (4.41)

where L ψ x , ψ y is the differential operator expressed as:

L ψ x , ψ y = D 11 ∂ 3 ψ x ∂x 3 + 3D 16 ∂ 3 ψ x ∂x 2 ∂y + (D 12 + 2D 66 ) ∂ 3 ψ x ∂x∂y 2 + D 26 ∂ 3 ψ x ∂y 3 + D 16 ∂ 3 ψ y ∂x 3 + (D 12 + 2D 66 ) ∂ 3 ψ y ∂x 2 ∂y + 3D 26 ∂ 3 ψ y ∂x∂y 2 + D 22 ∂ 3 ψ y ∂y 3 (4.42)
By taking differential operator N to both sides of Eq. (4.41) and by making use of Eqs. (4.39ab), ψ x and ψ y can be eliminated, thus providing:

ρhN ( ẅ) -U (w) = N (q) + N (q * ) (4.43)
where, U (w) = N ψ x , ψ y = D(w) + V (w) is an operator containing only the variable w. D and V refer to bending and transverse shear-bending operators respectively. These are:

D = D 11 ∂ 4 ∂x 4 + 4D 16 ∂ 4 ∂x 3 ∂y + 2 (D 12 + 2D 66 ) ∂ 4 ∂x 2 ∂y 2 + 4D 26 ∂ 4 ∂x∂y 3 + D 22 ∂ 4 ∂y 4 (4.44) and V = 7 j =1 v j ∂ 6 ∂x (7-j ) ∂y ( j -1) (4.45)
whose coefficients v j can be expressed in a column matrix form v j = s D 126 , see Eq. (D.3) in Annex A (see Appendix D for details).

St. Venant's compatibility relation

The term N (q * ) from Eq. (4.43) represents the coupling of the bending, membrane forces and transverse shear effects. When expanded, it gives:

N (q * ) = l 1 ∂ 4 q * ∂x 4 +l 2 ∂ 4 q * ∂x 3 ∂y +l 3 ∂ 4 q * ∂x 2 ∂y 2 +l 4 ∂ 4 q * ∂x∂y 3 +l 5 ∂ 4 q * ∂y 4 +l 6 ∂ 2 q * ∂x 2 +l 7 ∂ 2 q * ∂x∂y +l 8 ∂ 2 q * ∂y 2 -q * (4.46)
It needs to be solved together with Eq. (4.32) which is an expression for q * . However, inside the function q * , there is another unknown function φ. To have a closed mathematical problem, a second equation would be required. This is obtained from St. Venant's compatibility relation as follows 4 :

∂ 2 xx ∂y 2 + ∂ 2 y y ∂x 2 = ∂ 2 γ x y ∂x∂y (4.47)
By substituting the strain-displacement relations from Eq. (4.27) and with the application of chain rule of differentiation, Eq. (4.47) becomes:

∂ 2 0 x ∂y 2 + ∂ 2 0 y ∂x 2 - ∂ 2 γ 0 x y ∂x∂y = ∂ 2 w ∂x∂y 2 - ∂ 2 w ∂x 2 ∂ 2 w ∂y 2 (4.48)
Here, it is worth mentioning that the left-hand side of Eq. (4.48) contains only membrane strains (since all the bending terms are zero) while its right-hand side represents the Gaussian curvature5 . When solving Eq. (4.48) with the use of Eq. (4.34), that is, 0 = A * N and the Airy's function definition from Eq. (4.32), the following equation can be derived:

A * 11 ∂ 4 φ ∂y 4 + 2A * 12 + A * 66 ∂ 4 φ ∂x 2 ∂y 2 + A * 22 ∂ 4 φ ∂x 4 -2 A * 16 ∂ 4 φ ∂x∂y 3 + A * 26 ∂ 4 φ ∂x 3 ∂y = ∂ 2 w ∂x∂y 2 - ∂ 2 w ∂x 2
∂ 2 w ∂y 2 (4.49)

Navier's solution approach

Equation (4.43) together with Eq. (4.49) forms coupled nonlinear partial differential equations.

For simply-supported boundary condition, Navier solution technique, in which the unknown variables are expanded into double Fourier solutions as in Eq. (4.4), can be employed. Here, the transverse normal load q is also expanded into:

q(x, y, t ) = ∞ m=1 ∞ n=1 q mn (t ) sin mπx a sin nπy b (4.50)
where q mn (t ) is the temporal, modal participation term for the load. Selection of the correct form of φ(x, y, t ) depends on the problem formulation -• In the linear domain, that is, for small strain, small deflection regime, φ(x, y, t ) = 0. In this case, it can readily be proved that the corresponding partial differential equation (Eq. (4.43)) reduces to that given by linear first-order deformation theory (FSDT). By enforcing T s = 0, FSDT can be again reduced to classical plate theory (CPT).

• In a non-linear theory (small strain, large deflection regime), the function φ(x, y, t ) needs to satisfy the edge conditions considered, namely, immovable or movable edge.

In the following subsection, the general derivations are done by first assuming immovable edge conditions because it would give the most general conditions. Later, it can be reduced to other problem formulations (edge conditions) by making appropriate choices of the tracing constants such as T s .

Immovable edge condition

Following the approach of [Nishawala, 2011], the Airy's function φ(x, y, t ) is defined as:

φ(x, y, t ) = P x x 2 + P y y 2 + ∞ m=1 ∞ n=1 φ mn (t ) sin mπx a sin nπy b (4.51)
where P x and P y are functions of tensile loads (along x-and y-axes respectively) that will restrain the edges from moving (see Fig. 4.11), and φ mn (t ) is the temporal modal terms for Airy's function.

In [Nishawala, 2011], the influences of various assumptions of P x and P y are analyzed. In one case, P x and P y were regarded as constants and in another, P x (x) and P y (y) with spatial trigonometric functions. For simplicity, only (spatially) constant terms, P x and P y , are considered in this thesis.

It is important to remark that the simple expression (Eq. (4.51)) is not able to resolve a complete 'stress-free' condition which would require ∂ 2 φ ∂x∂y = 0 in all the edges (i.e., x = 0, a, y = 0, b). A consequence of this shall be studied later in Subsection 4.3.5 where the results are compared with those from literature.

For later usage (in Annex B, Appendix D), the following variables are introduced:

α mn = sin mπx a sin nπy b (4.52a
)

β mn = cos mπx a cos nπy b (4.52b)
General expressions for the strain-displacement relations state that: Here, it should be noted that xx = 0 x and y y = 0 y along x-and y-axes respectively as the spatial differentiation of the corresponding rotations are zero at the edges, that is,

∂ψ x ∂x =
∂ψ y ∂y = 0. Both essential and natural boundary conditions, the membrane force resultant formulations due to large deflection, as well as the two edge conditions interested are shown in Fig. 4.11.

By using immovable edge conditions as shown at the bottom of Fig. 4.11, axial displacements (Eq. (4.55)), the strain-force resultant relation ( 0 = A * N ), and Airy's function (Eq. (4.31)), δ x (y) and δ y (x) become:

δ x (y) = a 0 A * 11 ∂ 2 φ ∂y 2 + A * 12 ∂ 2 φ ∂x 2 -A * 16 ∂ 2 φ ∂x∂y - 1 2 ∂w ∂x 2 dx = 0 (4.56a) δ y (x) = b 0 A * 12 ∂ 2 φ ∂y 2 + A * 22 ∂ 2 φ ∂x 2 -A * 26 ∂ 2 φ ∂x∂y - 1 2
∂w ∂y 2 dy = 0 (4.56b) 1. Substitution of the Airy's stress (Eq. (4.51)) and displacement function (Eq. (4.4a)) followed by evaluation of the integrals;

2. Multiplying both sides of the resulting equations with mode shape function α i j in which i , j = 1, 2, 3, ... are the modal indices; and 3. Integrating both sides of the equations over the domain dΩ = dxdy.

By following the above procedures will produce:

Ω ∞ m=1 ∞ n=1 (L.H.S) mn α i j dΩ = Ω ∞ m=1 ∞ n=1
(R.H.S) mn α i j dΩ (4.57) wher (L.H.S) mn and (R.H.S) mn represent left-hand side and right-hand side of the equations which contain the modal terms m, n. It should be noticed that the modal index value m, n inside (L.H.S) mn or (R.H.S) mn may not necessarily be the same as that of the multiplying term α i j . This could increase the problem complexity considerably. To obtain tractable analytical solutions, it is assumed that the multiplication of different modal summation terms follows strictly to the one-to-one approximation, which was investigated in [Nishawala, 2011]. As an example, consider the following equation:

b 0 a 0 ∞ m=1 ∞ n=1 mnπ 2 ab β mn W mn ∞ o=1 ∞ p=1 opπ 2 ab β op W op α i j dxdy ≈        b 0 a 0 ∞ m=1 ∞ n=1 mnπ 2 ab 2 β 2 mn α mn W 2 mn dxdy , (m, n) = (o, p) = (i , j ) 0 , (m, n) = (o, p) = (i , j ) (4.58)
In the sample equation shown above, it can be seen that one-to-one approximation simplifies the resulting equation. Moreover, as shall be shown later, using such approach could reduce the complicated nonlinear coupled partial differential equations to the well-known Duffing's equation, which is a nonlinear second-order ordinary differential equation (ODE) including only a nonlinear cubic term 6 .

Reduction to ordinary differential equation Solving St. Venant's compatibility equation

When Eq. (4.49) is solved by using the Fourier expanded functions and by following the procedures outlined above, it is possible to relate the Airy's modal term φ mn to that of the transverse displacement W mn as follows. Note that in the above expression (Eq. (4.59)), φ mn (t ) and W mn (t ) are simply written as φ mn and W mn respectively.

Solving equations of immovable edge conditions

Solving the Eqs. (4.56a -b), which is a system with two unknowns and two equations, gives P x and P y in terms of W mn as: where

P x = A * 12 r 1 -A * 11 r 2 (A * 12 ) 2 -A *
K mn = D mn -V mn ρh L mn , ς mn = ς mn ρh , F mn = 16q ρhmnπ 2 (4.66)
are the coefficients for stiffness term involving bending and transverse shear, for nonlinear term, and modal forcing term respectively (m, n = 1, 3, 5, etc.). Note that Eq. (4.65) is independent for each mode as a result of the one-to-one approximation.

The remaining coefficients can be determined as:

D mn = D 11 mπ a 4 + 2 (D 12 + 2D 66 ) mnπ 2 ab 2 + D 22 nπ b 4 (4.67) V mn = v 1 mπ a 6 + v 3 m 4 n 2 π 6 a 4 b 2 + v 5 m 2 n 4 π 6 a 2 b 4 + v 7 nπ b 6 (4.68) L mn = 1 -l 1 mπ a 4 -l 3 mnπ 2 ab 2 -l 5 nπ b 4 + l 6 mπ a 2 + l 8 nπ b 2 (4.69) ς mn = 4T n ab l 1 π 8 m 6 n 2 a 6 b 2 - ab 2 R + 16 c -l 3 π 8 m 4 n 4 2a 3 b 3 R + l 5 π 8 m 2 n 6 a 2 b 6 - ab 2 R + 16 c +l 6 π 6 m 4 n 2 a 4 b 2 ab 2 R -4 c + l 8 π 6 m 2 n 4 a 2 b 4 ab 2 R -4 c - 2π 4 m 2 n 2 a 2 b 2 - ab 4 R + c (4.70) in which R = T e A * 12 r 1 -A * 11 r 2 (A * 12 ) 2 -A * 11 A * 22 a mπ 2 + A * 12 r 2 -A * 22 r 1 (A * 12 ) 2 -A * 11 A * 22 b nπ 2 , c = 4ab 3mnπ 2 S * 2 (4.71)
where T n and T e are tracing constants for nonlinearity and for edge conditions respectively. Their values are either 1 or 0. Depending on the tracing constants (flags denoted as T s , T n , T e ), the following conditions could arise:

• If shear flag T s = 0, then all the terms corresponding to transverse shear will vanish. That is, s, l j , v j = 0 according to Eqs. (4.36, D.2 and D.3). Consequently, Eq. (4.65) reduces to nonlinear classical plate theory (with immovable edge condition).

• When T s = T e = 0, Eq. (4.65) represents nonlinear classical plate theory (movable edge).

• If nonlinear flag T n = 0, then Eq. (4.65) refers to linear first-order shear deformation (FSDT) theory which can further be reduced to CPT if both T n and T s equal zero.

• Taking into account all the flags, T s = T n = T e = 1, means that the geometric nonlinear first-order shear deformation (with immovable edge condition) is considered.

It is not explicitly shown here the equations for isotropic materials because they can be treated as a special case of orthotropic material. Considering isotropic materials (i.e., E 11 = E 22 = E , G 12 = G 23 = G 13 = E / (2 + 2ν) will invoke the following conditions automatically:

D 11 = D 12 + 2D 66 = D 22 = D = E h 3 12(1 -ν 2 ) A * 11 = 1 E h , A * 12 = -νA * 11 , A * 66 = 1 Gh (4.72)
Also, it can be proved that for isotropic materials, the general partial differential equation of motion shown in Eq. ( 4.43) coincides with that of FSDT or CPT, depending on the assumptions.

Nonstandard finite difference (NSFD) scheme for time discretization

The nonlinear Duffing's equation given in Eq. (4.65) is rearranged into the linearized form as follows:

Ẅmn + ω 2 mn W mn = F mn (4.73)

where ω mn = K mn + ς mn W 2 mn is to be solved at each time step. The resulting equation is discretized and solved by using nonstandard finite difference (NSFD) scheme presented in Appendix C. The corresponding explicit semi-analytical expressions for modal participation term W mn and its rate of change with time V mn for the next time step are as follows:

W i +1 mn = W i mn cos ω i mn ∆t + V i mn ω i mn sin ω i mn ∆t - F i mn (ω 2 mn ) i cos ω i mn ∆t -1 (4.74) V i +1 mn = -W i mn ω i mn sin ω i mn ∆t + V i mn cos ω i mn ∆t + F i mn ω i mn sin ω i mn ∆t (4.75)
where the forcing term F i mn = 16q i m s mnπ 2 and the angular frequency ω i mn = K mn + ς mn W i mn 2 are calculated for each step size. The step size is selected to be less than one-hundredth of the time to reach the first peak (linear) displacement, ∆t < π/(200ω). The initial conditions at t 0 = 0 are considered as W (0) = Ẇ (0) = 0 for forced, undamped response.

Results and analyses

The results are validated by comparing with reference solutions from the literature as well as LS-DYNA nonlinear finite element results. Both isotropic and composite plates are considered under static and dynamic loading.

Static loading submitted to rectangular steel plate

Letting Ẅmn = 0 from Eq. (4.65) would give a static version of the equation as follows:

K mn W mn + ς mn W 3 mn = F mn (4.76)
in which the coefficients as well as the flags are equally valid as defined in Eq. (4.66). Now, the present solution is compared to the theoretical solutions available from the literature [START_REF] Yamaki | Influence of large amplitudes on free flexural vibrations of elastic plates[END_REF] and [START_REF] Iyengar | Large deflections of rectangular plates[END_REF] for various edge conditions. For simplicity, these edge conditions are denoted using roman numerals as: (i) Stress-free edge, (ii) Movable edge, and (iii) Immovable edge. Again, it is important to differentiate between different edge assumptions. According to [START_REF] Yamaki | Influence of large amplitudes on free flexural vibrations of elastic plates[END_REF] (also refer to Fig. 4.11), these conditions can be summarized as shown in Table 4.7. As mentioned before, the current simplified formulation for φ does not exactly satisfy ∂ 2 φ ∂x∂y = 0 condition. As a consequence, the nonlinear system becomes slightly stiffer.

Table 4.7 Different edge conditions considered in [START_REF] Yamaki | Influence of large amplitudes on free flexural vibrations of elastic plates[END_REF] Conditions

At x = 0, a At y = 0, b (i) Stress-free edge ∂ 2 φ ∂y 2 = ∂ 2 φ ∂x∂y = 0 ∂ 2 φ ∂y 2 = ∂ 2 φ ∂x∂y (ii) Movable edge P y = ∂ 2 φ ∂x∂y = 0, u = constant P x = ∂ 2 φ ∂x∂y = 0, v = constant (iii) Immovable edge u = ∂ 2 φ ∂x∂y = 0 v = ∂ 2 φ ∂x∂y = 0
For the case study, a square steel plate having the following material characteristics is considered: E = 200 GPa, ρ = 7800 kg.m -3 , ν = 0.316 [START_REF] Yamaki | Influence of large amplitudes on free flexural vibrations of elastic plates[END_REF] where wm = W 11 h . The static (fundamental mode) solutions provided by [START_REF] Iyengar | Large deflections of rectangular plates[END_REF] Note that [START_REF] Iyengar | Large deflections of rectangular plates[END_REF] did not study for condition (ii)8 .

To have comparable form to the reference equations (Eqs. (4.77a -4.78b)), the effects of material orthotropy, transverse shear and higher-order modes are removed from Eq. (4.76). Then, the rearranged (present) solutions for the square steel plate (ν = 0.316) become:

(ii) Movable edge (T s = 0, T e = 0):

22.251 wm + 8.773 w3 m = q a 4 E h 4 (4.79a) (iii) Immovable edge (T s = 0): 22.251 wm + 29.938 w3 m = q a 4 E h 4 (4.79b)

Present solutions do not solve the 'stress-free' edge condition.

A careful study of Eqs. (4.77a -4.79b) reveals that the bending term (coefficient of wm ) is the same for all equations except Eq. (4.78b). The accuracy of Eq. (4.78b) seems doubtful as shall be seen in Fig. 4.12(b). The coefficient for the cubic term ( w3 m ) for the immovable edge is the largest among the three while that for the 'stress-free' edge is the lowest. This observation is consistent for all of the equations, Eqs. (4.77a -4.79b).

The load-deflection relationship are plotted in Fig. 4.12 for movable and immovable edge conditions. Regardless of the edge conditions, the results depict that including geometric nonlinearity effect causes the system to become 'stiffer' compared to the linear classical plate results. In Fig. 4.12(a), different theoretical results and the present solution are compared. A slight discrepancy after about q a 4 E h 4 ≥ 22 or when dimensionless deflection wm ≥ 0.8 is observed for condition (ii): movable edge (compare blue line and black line). This discrepancy is believed to be due to the fact that the present formulation does not necessarily take into account the vanishing shear force resultant, that is, N x y = 0 at the edges, leading to slightly stiffer system. Nevertheless, it can be said that the relative error (< 5%) is within acceptable region. This conclusion is the same for Fig. 4.12(b) in which all the results except for linear theory look similar.

Sensitivity to the nonlinear coefficient. At this point, the author also investigated the effect of varying the nonlinear term, that is, the coefficient of the cubic term from Eq. (4.79). The bending term, which can be expressed as π 6 /(48(1 -ν 2 )) = 22.251, is kept the same. The nonlinear term is varied from 0 to 30 as shown in Fig. 4.12. It can be seen that without the nonlinear term, the result is exactly the same as the linear theory. It is also seen that the higher the nonlinear coefficient is, the more deviation of the results from the linear plate theory. As previously been observed in Fig. 4.12, the value of the nonlinear coefficient depends on the assumption of the edge conditions and the Airy's stress function φ.

Static solutions using LS-DYNA (nonlinear implicit)

Among the three edge conditions presented, 'immovable' edge is of interest. Therefore, calculations are performed again using the same configuration but with a different Poisson's ratio (ν = 0.3). These are also simulated using LS-DYNA nonlinear implicit code. Results are plotted in Fig. 4.14. It can be seen that compared to the mode [1,1] result (represented by the red line), the central deflections that account for the higher mode numbers are slightly lower. This observation is in agreement with the conclusions from [START_REF] Levy | Bending of rectangular plates with large deflections[END_REF] 9 . It can also be seen that the convergence of the results are found at [M , N ] = [3, 3] where they are in good accordance with the LS-DYNA nonlinear implicit solutions using the same boundary and edge assumptions. 

Dynamic loading submitted to square isotropic plate

A dynamic response is examined by applying a uniformly distributed suddenly applied pressure (also called 'step loading') onto the simply-supported square isotropic plate with immovable edge assumption. Both the loading and the plate material characteristics taken from [START_REF] Akay | Dynamic large deflection analysis of plates using mixed finite elements[END_REF] are as follows:

a = b = 2.438 m , h = 6.35mm , ν = 0.316 E = 7.031 GPa , ρ = 254.7 kg.m -3 q(x, y, t ) = 4.882 N.m -2 , 0 ≤ t < ∞ (4.80)
These are the benchmark results used and validated by many academics. Here, the results of [START_REF] Akay | Dynamic large deflection analysis of plates using mixed finite elements[END_REF][START_REF] Reddy | Geometrically Nonlinear Transient Analysis of Laminated Composite Plates[END_REF] are used to compare with the present semi-analytical solutions. In Fig. 4.15(a), the first half waves of the transient central deflections are given for different levels of the step loading q = 4.882 N.m -2 . It is seen that with the increasing loading, the amplitude increases but the oscillation period of the plate decreases as a consequence of non-linear 'stiffening' effect. In Fig. 4.15(b), dimensionless peak central deflection is plotted as a function of the dimensionless dynamic load. Results of [START_REF] Reddy | Geometrically Nonlinear Transient Analysis of Laminated Composite Plates[END_REF] are also shown for reference purposes. The present (semianalytical) results are found to be in good agreement with the benchmark results. Note that the present results consider up to the first 3 modes. Also, transverse shear effect (with K s = 5/6) is taken into account. However, since the current case study uses a thin isotropic plate (a/h = 384), the effect of geometric nonlinearity is more significant than that of the transverse shear. 

Impulsive loading submitted to a square composite plate

In this subsection, a simply-supported (immovable edge) square carbon fiber/epoxy (CFRP) laminated plate is subjected to an impulsive loading by specifying the initial impulsive velocity.

The properties of the material and plate are the same as defined in Subsection 4.2.4 (see Tables 4.3 and 4.4). The typical FE set-up has already been shown in Fig. 4.4.

The nondimensional peak deflections at the centers of thin and thick plates subjected to different impulsive velocities are plotted in Fig. 4.16. Analytical linear results using FSDT, analytical nonlinear results using FSDT and the finite element results using LS-DYNA are compared. As expected, the thin plate shows higher amplitude of response whereas the thick plate sustains higher impulsive velocities at much lower peak deflections. Error bars based on the results of LS-DYNA are also incorporated in the Figures. For thin plate, it is seen that up to about 15 m.s -1 , that is, W max /h ≤ 2, the present analytical results are within ±15% relative discrepancy. As for the thick plate, the agreement is even better (relative discrepancy < ±10%) for both linear and nonlinear results, further reinforcing the fact that geometric nonlinearity effect is only important for plates with large aspect ratios.

In Fig. 4.17, various results of central deflections for thin and thick CFRP plates are plotted against time. It can quickly be realized that for lower impulsive velocity, the responses are quite similar between LS-DYNA and analytical approaches. But, with increasing initial velocities v i (see for example, thin CFRP plate response with 10 m.s -1 ), the agreement deteriorates. The reason is likely due to the analytical formulations employing one-to-one approximation as well as the linearization with the use of local calculation of the nonlinear natural frequency for each time step. This issue is to be investigated in the future. Nevertheless, it can be said that, the current formulation still gives qualitatively good estimation of the peak deflection up to two times the plate thickness according to Fig. 4.16. With this, the purpose of this chapter, which is to validate the analytical solutions without fluid-structure interaction effect, can be said as 'achieved'. 

Concluding remarks for geometric nonlinearity

Geometric nonlinear effect (in von Kármán sense) is investigated and analytical formulations are developed and validated by comparing with results from the literature and nonlinear finite element using LS-DYNA. These validations include both static and dynamic loadings applied to isotropic and composite square plates. According to the results, it can be claimed that one-to-one approximation and local linearization still maintain reasonable accuracy of the solution. The geometric nonlinearity is important especially for relatively thin plates or high loading level since considering only linear results is found to be erroneous.

Analysis of stresses and strains

Formulations of nonlinear plate theory are extensible to calculate stress and strain in each lamina direction as well as in the global coordinate system. For this purpose, the following operations are performed on Eqs. (4.39a) and (4.39b) as:

Ω N (ψ x )CS mn dΩ = Ω K 2 ∂w ∂x -K 1 ∂w ∂y CS mn dΩ (4.81a) Ω N (ψ y )SC mn dΩ = Ω J 1 ∂w ∂y -J 2 ∂w ∂x SC mn dΩ (4.81b)
where N ( ), K 1 ( ), K 2 ( ), J 1 ( ) and J 2 ( ) are differential operators already defined in Eqs. 

Ψ x mn = D 1 M 1 W mn , and 
Ψ y mn = D 2 M 1 W mn (4.82)
where,

D 1 = mπ a + s 10 mπ a 3 -(s 5 -s 12 ) mn 2 π 3 ab 2 D 2 = nπ b + s 3 nπ b 3 -(s 8 -s 1 ) m 2 nπ 3 a 2 b M 1 = l 1 mπ a 4 + l 3 mnπ 2 ab 2 + l 5 nπ b 4 -l 6 mπ a 2 -l 8 nπ b 2 -1                    (4.83)
By using the expressions for Ψ x mn and Ψ y mn and with the aid of Eq. (4.27), it is now possible to derive the in-plane and out-of-plane strains as follows:

   xx y y γ x y    (k) =     1 2 ∞ m=1 ∞ n=1 mπ a 2 W 2 mn (CS mn ) 2 1 2 ∞ m=1 ∞ n=1 nπ b 2 W 2 mn (SC mn ) 2 ∞ m=1 ∞ n=1 mnπ 2 ab W 2 mn CS mn SC mn     + z (k) + z (k+1) 2    -∞ m=1 ∞ n=1 mπ a Ψ x mn α mn -∞ m=1 ∞ n=1 nπ b Ψ y mn α mn ∞ m=1 ∞ n=1 nπ b Ψ x mn + mπ a Ψ y mn β mn    (4.84)
and,

γ y z = ∞ m=1 ∞ n=1 nπ b W mn + Ψ y mn SC mn , and 
γ xz = ∞ m=1 ∞ n=1 mπ a W mn + Ψ x mn CS mn (4.85)
Note that the out-of-plane shear strains and the membrane terms (the first of Eq. (4.84)) of the in-plane strains are constant throughout the thickness. The curvature terms of the in-plane strains are, however, linearly interpolated depending on the position of the ply. 

T trans =         cos 2 (θ) sin 2 (θ) 2 cos (θ) sin (θ) 0 0 sin 2 (θ) cos 2 (θ) -2 cos (θ) sin (θ) 0 0 -cos (θ) sin (θ) cos (θ) sin (θ) cos 2 (θ) -sin 2 (θ) 0 0 0 0 0 cos (θ) sin (θ) 0 0 0 sin (θ) cos (θ)         (4.87)
After knowing the strains (in local or global system), it can readily be calculated corresponding stresses using constitutive equations given in Eqs. (4.5) and (4.6).

Case studies: comparison of the effective strain

To check the validity of the strain formulations, effective strains at the center of the plate and at the lowest ply of the laminate are compared using analytical and finite element methods. In LS-DYNA, the effective strain is calculated as follows10 :

eff = 4 3 2 x y + 2 y z + 2 xz -D x D y -D y D z -D x D z (4.88)
Note that i j (i , j = x, y) are tensor strains, and D x , D y , D z are deviatoric strains given as:

D x = xx - xx + y y + zz 3 D y = y y - xx + y y + zz 3 D z = zz - xx + y y + zz 3                (4.89)
The effective strains are calculated in the analytical program (using the same formulations shown above) while numerical results are directly retrieved from LS-DYNA.

Using thin and thick CFRP square plates

For the comparison with LS-DYNA, previously used simply-supported CFRP laminates (thin plate and thick plate) from Subsection 4.2.4 are used here again. Initial impulsive velocity of 2 m.s -1 is used as an example. The transient results of the effective strains obtained from both numerical and analytical programs are compared in Fig. 4.18. It can be seen that both of the analytical results for thin and thick CFRP plates are comparable to their respective numerical solutions. Another interesting observation is that the peaks of the effective strains for the thin plate are on the same order of magnitude as the thick plate although the central deflection of the thin plate is significantly greater than that of the thick one (recall Fig. 4.16(a) and Fig. 4.16(b) at 2 m.s -1 ). This suggests that the strains (at the center of the plate) are mainly due to curvature (see the latter of Eq. (4.84)). As shown in Fig. 4.19, the curvature terms before multiplying with interpolation function (z (k) + z (k+1) )/2 are comparable for both aspect ratios. This observation will be discussed again in the coming Subsection 4.4.2 where the initiation to failure is analyzed using Tsai-Wu criterion. 

Evaluation of error measure

Russell's error calculation technique, a robust error measure technique, can be used for quantifying the magnitude, the phase and the overall error between two transient responses. It had been proved and compared with many other existing error evaluation techniques by [Russell, 1997].

The formulations are as follows:

A = N i =1 f 1 (i ) 2 , B = N i =1 f 2 (i ) 2 , C = N i =1 f 1 (i ) f 2 (i ) (4.90)
where f 1 (i ) and f 2 (i ) are transient response functions for numerical and analytical results.

By making use of these three parameters defined in Eq. (4.90), Russell's error measure technique calculates magnitude error m, phase correction p, phase error E p , magnitude error factor E m , and finally comprehensive error RC as follows:

m = A -B AB , p = C AB , E p = cos -1 (p) π E m = sign(m) log 10 (1 + |m|), RC = π 4 E 2 m + E 2 p (4.91)
According to [Shin and Schneider, 2003;LeBlanc and Shukla, 2011], the following values of comprehensive error factor, see Table 4.8, can be regarded as acceptance criteria. The transient results of effective strains for various cases are first retrieved from LS-DYNA and analytical program (MATLAB) using the same time step (interval). Then, at each time step, various error factors shown in Eq. (4.91) are evaluated. The obtained results are given as Russell's comprehensive error RC as shown in Table 4.9. According to the criteria defined in Table 4.8, it can be observed that all the cases show acceptable values of comprehensive error factors (0.15 < RC ≤ 0.28) in the transient effective strains at the lowest ply and center of the laminate subjected to various initial impulsive velocities. 

Tsai-Wu failure criterion

Tsai-Wu failure criterion in the case of two-dimensional stress can be expressed as follows11 :

F = F 1 σ 1 + F 11 σ 2 1 + F 2 σ 2 + F 22 σ 2 2 + 2F 12 σ 1 σ 2 + F 66 τ 2 12 < 1.0 (4.92)
where F is the failure index, and σ i denotes the stress components in principal material coordinates (i = 1, 2) and τ 12 for in-plane shear stress. The corresponding strength parameters are obtained as:

F 11 = 1 X t X c , F 22 = 1 Y t Y c , F 66 = 1 S 2 F 1 = 1 X t - 1 X c , F 2 = 1 Y t - 1 Y c , F 12 = - 1 2 F 11 F 22        (4.93)
where X t and X c are tensile and compressive strengths in longitudinal (fiber direction), Y t and Y c are tensile and compressive strengths in transverse (matrix direction) respectively, and S is the shear strength. Failure index F is calculated for each ply. If it is less than 1, it means that the lamina does not fail. For F ≥ 1, the lamina fails and so, post-failure behavior must be considered. In this section, the critical energy required to initiate the failure in the lamina is determined using Tsai-Wu criterion, see Eq. (4.92). Two types of materials, namely, CFRP and GFRP, are considered where their corresponding material properties have already been given in Table 4.3. A stacking sequence of [±45/0/0/0/ ± 45/0/0/0/90/90] s is considered. The thicknesses of the laminates are slightly adjusted as shown in Table 4.10 so that the plates possess the same areal mass (ρh = 8.9 kg.m -2 ).

Initial kinetic energies (calculated from initial impulsive velocities v i ), corresponding peak deflections W max as well as the plies where the failure starts are indicated in Table 4.11.

One thing to be noticed is that in all the cases except for the GFRP thick plate, the initial failure occurs near the lowest ply in tension phase. However, the GFRP thick plate shows the failure at the top most ply (N = 1). Upon further inspection as indicated in Fig. 4.20, the failure in ply no. 1 of GFRP thick plate is found to occur at the tension phase (i.e, at t = 0.53 ms when the plate in sagging condition). This can be attributed to the summation of different modal responses as well as some possible involvement of the nonlinearity. Details, however, should be investigated more.

In Fig. 4.21, the results of critical energies are plotted in a column diagram along with the corresponding maximum central deflection at the onset of failure. As expected, CFRP laminate with large aspect ratio absorbs the highest energy of all whereas GFRP laminate with the small aspect ratio absorbs the lowest. It can be said that plates with larger aspect ratios could absorb more energies due to their sizes. Another reason for this is, as discussed in the previous section, that although thick plates sustain significantly lower deflections, the strains due to bending curvature for thick plates are comparable to that for the thin plates. This point can further be reinforced by Table 4.12 in which the maximum tensile stresses in the principal material directions are compared between LS-DYNA and analytical approaches. As can be seen, there is a general agreement between LS-DYNA and analytically calculated stresses. Moreover, the stresses on the onset of failure are quite similar between thin and thick plates of the corresponding materials. Chapter 5

Development of Analytical Model on Fluid-structure Interaction

The analytical model (both linear and nonlinear regimes) developed in the previous chapter is extended to take into account the effect of the fluid-structure interaction (FSI). This is done in two different approaches below:

• Two-step impulse based approach: In this FSI model, calculations are divided into two stages. The first stage deals with the calculation of an initial impulsive velocity based on Taylor's FSI theory. The second stage includes determination of the free-response of the plate, accounting for the water-added inertia effect associated with the reloading or deceleration of the immersed plate. This work has been published in [Sone Oo et al., 2020b].

• Doubly-Asymptotic Approximation approach: To overcome the drawbacks of the first FSI model based on impulse, a second model is proposed by directly coupling the analytical structural equations with the first-order Doubly-Asymptotic Approximation (DAA 1 ). Some part of this approach was presented in [Sone Oo et al., 2020a].

In what follows, state-of-the-art literature reviews regarding the past studies of the FSI employing experimental and analytical methods are first documented. Then, simplified analytical models are developed by adapting the two approaches described above. The results obtained are confronted against both experimental results found in literature and numerical results performed in LS-DYNA/USA. Finally, advantages as well as drawbacks of both FSI models are discussed.

Literature review

Underwater explosion (UNDEX) has been the focus of naval research since World War I and II. Over the past decades, several advances have been brought forth by many researchers in the field and thus, a considerable body of literature already existed. For instance, at the end of Word War II, three volumes of "Underwater Explosion Research" were issued by [Office of Naval Research, 1950a,b,c]. In addition, references such as [Cole, 1948;Mair, 1999;Porfiri and Gupta, 2009] provide a wide overview of many of the worldwide research efforts about UNDEX. An exhaustive list of bibliographies had also been given by [Barras, 2012] where several topics related to UNDEX were systematically classified with respect to their thematic areas.

Extracting from a wealth of information available in the literature, this review section is divided into two main categories: (1) experimental studies, and (2) theoretical and analytical studies. Studies regarding numerical method have already been presented in Section 3.1 of Chapter 2 and hence, are not described here.

Experimental studies

Experimental studies of underwater explosions can further be grouped into two; one using real explosive test facilities and one conducted in a laboratory environment.

Using real explosive test facilities

In the past, most of the experiments were conducted by using real or model-scale structures in explosive test facilities. Some of the earliest such attempts were done on an air-backed plate or diaphragm in a detonics basin, for example, by Goranson and their colleagues in 1943 [Cole, 1948]. In the 1980s, experimental shock tests were conducted on a large number of glass-reinforced plastic (GRP) composite panels and a full-scale midship section to decide suitable materials for the newly-built mine hunter [Hall, 1989].

A series of underwater explosive experiments were performed on GRP composite laminates by [START_REF] Mouritz | The damage and failure of GRP laminates by underwater explosion shock loading[END_REF]Mouritz, 1995aMouritz, ,b, 1996] ] during the 1990s in order to understand the damage response of stitched and non-stitched laminates, their fatigue properties, flexural strength, fracture resistance and so on. Based on those researches, several important observations had been made. For example, delaminated area of the stitched GRP laminates were found to be less than that of the non-stitched ones at the expense of the flexural strength since stitches can introduce 'stress concentrations' during bending [Mouritz, 1995a]. In [START_REF] Mouritz | The damage and failure of GRP laminates by underwater explosion shock loading[END_REF], it was observed that the water-backed GRP laminates do not show any damage to either the polymer matrix or glass fibers after being loaded by a UNDEX shock wave. In another conclusion, the four-point bending test was proposed to predict the failure strength of GRP under shock loading, taking into account strain rate sensitivity and shock wave reflections. [START_REF] Ramajeyathilagam | Deformation and rupture of thin rectangular plates subjected to underwater shock[END_REF]] conducted an experiment with the use of a box model under an air-backed condition in a shock tank to test the response of steel rectangular plates subjected to UNDEX. The elastic responses of plane isotropic plates subjected to underwater explosions were studied experimentally and numerically by [START_REF] Rajendran | Linear elastic shock response of plane plates subjected to underwater explosion[END_REF]Hung et al., 2005]. [START_REF] Rajendran | Of Underwater Explosion Experiments on Plane Plates[END_REF] gave detailed discussions about the test procedures and the analysis method for carrying out a UNDEX test for the plane plates. [START_REF] Wei | Analysis and interpretation of a test for characterizing the response of sandwich panels to water blast[END_REF][START_REF] Wadley | Compressive response of multilayered pyramidal lattices during underwater shock loading[END_REF] used a Dyno-Crusher test to study a multi-layered pyramidal core sandwich panel response when subjected to a 1D water blast loading. In these experiments, a water-filled cupboard cylinder was placed on top of the specimen and a plane shock loading was initiated by detonating a thick explosive sheet directly above the test sample. The study revealed that the stress and impulse imparted to a multi-layered pyramidal panel are significantly lower than that of a metallic solid counterpart tested under the same conditions.

Air and underwater blast performance of the composite sandwich structures had been tested by [Dear et al., 2017]. A three-dimensional digital image correlation technique (DIC) was employed to trace the deformation histories of the tested panels. The paper concluded that the use of graded density foam core could improve the out-of-plane displacement for both GFRP and CFRP face sheets at the cost of more panel damage (delamination) between the layers in the core.

Using a laboratory environment

Recent advancement in experimental techniques has made it possible to conduct underwater explosion tests in a controlled laboratory environment. One such pioneering job includes [START_REF] Deshpande | An underwater shock simulator[END_REF] in which an underwater shock simulator is utilized to study the core compression behavior of metallic sandwich plates in relation to the impulse and the Taylor FSI effect [Taylor, 1941]. Such apparatus consists of a water-filled tube with a piston at one end and a test specimen at the other. Exponentially decaying shock waves, with peak pressure of 15 -70 MPa and decay times of 0.1 -1.5 ms, were generated by independently adjusting the speed and mass of the projectile respectively. This study has demonstrated that the transmitted shock impulse to the sandwich plate decreases with increasing FSI effect.

A similar approach has been attempted by [START_REF] Espinosa | A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading[END_REF]. However, unlike [START_REF] Deshpande | An underwater shock simulator[END_REF], a divergent shock tube type was designed to overcome the dimensional limitation imposed by the size of the apparatus. The dynamic deformation behavior of the stainless steel monolithic plate loaded by underwater blast in shallow water was studied with the aid of shadow moiré optical measurement and high-speed photography. [START_REF] Mori | Deformation and fracture modes of sandwich structures subjected to underwater impulsive loads[END_REF][START_REF] Mori | Deformation and failure modes of I-core sandwich structures subjected to underwater impulsive loads[END_REF][START_REF] Latourte | Failure mechanisms in composite panels subjected to underwater impulsive loads[END_REF] also utilized the same apparatus as [START_REF] Espinosa | A Novel Fluid Structure Interaction Experiment to Investigate Deformation of Structural Elements Subjected to Impulsive Loading[END_REF] and explored the dynamic failure of monolithic and sandwich plates with various core topologies.

In the studies of [START_REF] Leblanc | Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: An experimental and computational study[END_REF], 2011a[START_REF] Huang | An Experimental Investigation of Water-Filled Tank Subjected to Horizontal High Speed Impact[END_REF], a water-filled conical shock tube, which generates the free-field shock wave pressure (9.65 -20.6 MPa) by the detonation of an explosive charge at the end of the tube, was employed in order to investigate the UNDEX response as well as the damage evolution of the plane and curved composite laminates. Effects of curvature, thickness, and thickness distribution were also studied, claiming that these could impose considerable influences to the deformation mechanisms and the FSI behavior. Finite element simulations using LS-DYNA were also performed and correlated with the test results, including the delamination damage. [Schiffer and Tagarielli, 2012, 2014a,c, 2015] conducted many experimental tests using a transparent shock tube to observe the structural motion and the fluid cavitation associated to rigid, water-filled double-walled hulls as well as monolithic composite and sandwich plates under exponentially decaying plane shock waves. Unlike previous studies, these studies provide deep water (hydrostatic pressure) effect and detailed observation of cavitation.

A series of papers has been published by [START_REF] Avachat | Effect of Facesheet Thickness on Dynamic Response of Composite Sandwich Plates to Underwater Impulsive Loading[END_REF][START_REF] Abrate | Interaction of underwater blasts and submerged structures[END_REF], 2015, 2016, 2017] about the application of underwater shock loading simulator where the underwater shock response of composite laminated plates and sandwich structures are studied experimentally and numerically together with their post-damaged behavior. [START_REF] Qu | Response of Cylindrical Composite Structures Subjected to Underwater Impulsive Loading: Experimentations and Computations[END_REF] also employed the same apparatus to analyze the dynamic response of thick and thin-walled composite cylinders. Indeed, this is another variant of the lab-scaled test consisting of a gas reservoir, a high-speed camera, a projectile, a long water-filled shock tube, a thin piston plate and a test specimen.

In addition to the above papers, there has been many recent papers, see [START_REF] Huang | An Experimental Investigation of Water-Filled Tank Subjected to Horizontal High Speed Impact[END_REF][Huang et al., , 2016a[Huang et al., ,b,c, 2018[START_REF] Huang | Analytical model of the dynamic response of clamped metallic sandwich beam subjected to underwater impulsive loading[END_REF][START_REF] Feng | Underwater blast behaviors of enhanced lattice truss sandwich panels[END_REF], who studied experimentally the underwater blast resistance and failure of various sandwich panels and circular composite plates in air-backed and water-backed conditions by using a projectile-impact based underwater non-contact explosive simulator.

Summary of the experimental studies

By referencing the assertions and studies of many authors stated above, the pros and cons of the UNDEX tests in an explosive test facility and in a lab-scale environment can be summarized and given in Table 3 andTable 4 respectively 

Theoretical and analytical studies

Among the earliest theoretical works, Taylor's one-dimensional (1D) fluid-structure interaction (FSI) theory, see [Taylor, 1941], is a well-known and widely adapted approach due to its simplicity and effectiveness. The major finding is that the momentum transferred to the free-standing plate could substantially be reduced by decreasing the plate areal mass or its acoustic impedance due to the promotion of FSI. It can be said that the early-time interaction effect is properly accounted for in the method. However, the late time response is not considered in Taylor's theory. Thus, [START_REF] Deshpande | An underwater shock simulator[END_REF] had pointed out that a decoupled model based only on Taylor's freestanding plate theory might underestimate the structural response.

The theoretical studies performed by [Kennard, 1943[Kennard, , 1944] ] give much insights in regards to many physical aspects of the UNDEX problems as well as local cavitation that may occur in the vicinity of the immersed structure. Nearly 70 years later, [Schiffer et al., 2012] adapted the findings of [Kennard, 1943] and proposed an analytical model for a 1D spring-supported, air-backed and water-backed rigid plates subjected to a plane shock wave, explicitly taking into account the cavitation of the fluid as well as the influence of the hydrostatic pressure. Another mathematical model that describes both cavitation and wave propagation in bilinear fluid was proposed by [Bleich and Sandler, 1970].

During the 1970s, theoretical exact solutions for the transient interaction of a plane acoustic wave and a spherical shell, cylindrical shell, and a large plate were given by [Huang, 1969[Huang, , 1970[START_REF] Huang | Transient bending of a large elastic plate by an incident spherical pressure wave[END_REF] respectively using the series solution and Laplace transform techniques. These are linear solutions and thus, various sources of nonlinearity such as cavitation are not included.

[ [START_REF] Lam | Dynamic response of a laminated pipeline on the seabed subjected to underwater shock[END_REF] studied analytically the dynamic response of a simply supported underwater laminated pipeline subjected to underwater shock load. The modal analysis method was applied to derive the approximate formulation. Comparisons of natural frequencies were made using the results of [START_REF] Cederbaum | Random vibration and reliability of composite structures[END_REF]] and a good agreement was achieved. Nevertheless, as a simplified treatment, its usage was quite limited in that a different formulation would be required if there is any change in either the loading or the support condition. [Librescu, 2006] proposed an approach based on 3D elasticity theory and Lagrangian description to examine the dynamic response of anisotropic sandwich flat panels subjected to underwater and in-air explosions. Von Kàrmàn nonlinear kinematic model was adopted to account for the membrane stretching. The effect of geometric imperfection was also studied. However, there is still a need to incorporate the effect of fluid cavitation as well as the transverse normal compressibility of the sandwich core.

In the analytical study of [START_REF] Liu | Transient Response of Submerged Plates Subject to Underwater Shock Loading : An Analytical Perspective[END_REF]], Taylor's air-backed plate theory was extended to a water-backed FSI model by introducing a second FSI parameter and then solving the governing equations. The influence of the back conditions on the characteristics of transient response was analyzed. It was found that water-backed plates experience lower equivalent pressure loading, reduced structural response as well as momentum transmission. Unlike the air-backed plates, cavitation was discovered to be valid for a smaller range of FSI parameter.

[ [START_REF] Wang | A novel efficient method to evaluate the dynamic response of laminated plates subjected to underwater shock[END_REF] proposed a novel solution technique that could yield the elastic dynamic response of simply-supported laminated plates subjected to UNDEX. This formulation was based on the state space method, a numerical inversion of the Laplace transform, and the FSI solution proposed by [Taylor, 1941]. Solutions were given for both air-backed and water-backed configurations and validated by comparing with semi-analytical results [START_REF] Shupikov | Vibrations of multilayer plates under the effect ofimpulse loads. Three-dimensional theory[END_REF] and experimental results of [Hung et al., 2005] and also with FE results.

Theoretical and numerical modeling of the dynamic response of fully clamped, air-backed circular composite plates subjected to underwater blast was performed by [START_REF] Schiffer | The dynamic response of composite plates to underwater blast: Theoretical and numerical modelling[END_REF]. In this study, equations of motion were derived in the form of non-dimensional ODE by considering the lowest frequency mode shape and transverse shear deformations, the stretching forces due to large deflections, the FSI behavior before and after cavitation event and by using the flexural wave positions to determine the zones of the cavitated fluid. This study was validated by experiments performed in [Schiffer and Tagarielli, 2015]. [START_REF] Ahamed | Composite plates subjected to water blast loading[END_REF] analyzed the response of a clamped composite plate by considering two analytical approaches, namely, the Taylor's approach [Taylor, 1941] and the structural acoustic approach. The main difference between these approaches is the calculation of the radiated pressure field. For instance, the FSI considered in Taylor's approach was primarily by fluid damping effect. On the other hand, a full radiated pressure spectrum for different frequencies was considered in the structural acoustic approach.

[Hoo Fatt and Sirivolu, 2017] also developed an analytical model by introducing Taylor's FSI theory into Lagrange's equations of motion to analyze the air and water blast responses of the clamped rectangular sandwich panels. Cavitation was considered by setting the total pressure to zero and by iterating in time to find the location and time of the first appearance of local cavitation. However, water-added mass or reloading caused by reattachment of the cavitated water was not considered, leading to underestimation in both air-and water-backed peak responses.

There had also been a few researchers in the past who attempted to use impulsive loading approach to idealize the underwater blast, see for example [Hutchinson andXue, 2004, 2005;[START_REF] Liang | The response of metallic sandwich panels to water blast[END_REF]Brochard et al., 2018Brochard et al., , 2020] ] and so on, to analyze the metallic sandwich panel and immersed cylinder responses attacked by underwater blasts.

By following a similar approach to [Brochard et al., 2018], [Sone Oo et al., 2019a,b, 2020b] developed a simplified analytical treatment for linear elastic response of isotropic circular plate and composite rectangular plates under far-field underwater explosions. [Sone Oo et al., 2020b] discussed the applicability of using such impulse-based approach, providing various validations and case studies. More recently, a novel simplified approach to couple the first-order Doubly-Asymptotic approximation (DAA 1 ) with the analytical plate equation was proposed in [Sone Oo et al., 2020a] so that the limitation of the impulse-based approach could be lifted. These approaches are detailed in the following sections.

Two-step impulse based approach

The in-air mechanical model developed in the Section 4.2 (Chapter 4) is extended to include the FSI effect when fluid is present on one side of the plate and air on the other side. A plane shock pressure wave (in normal direction) is applied uniformly to the entire plate on the fluid side, see Fig. 5.1. Following the approach of [Brochard et al., 2018], the interaction between fluid and structure is divided into two phases as follows:

• In the first phase, the impulsive velocity transmitted to the plate is determined by using Taylor's 1D approximate FSI theory [Taylor, 1941]. The deformation of the plate in this phase is assumed negligibly small and cavitation is supposed to occur in the neighboring of the plate at the end of this phase.

• In the second phase, deformation is supposed to begin by the dissipation of the kinetic energy obtained from the first phase and at the same time, the cavitation zone is assumed to Figure 5.1 Geometry, coordinate system and loading collapse without allowing for any time gap. This collapse would launch an additional pressure, namely water-added inertia effect, onto the plate. This would increase the transverse deflection of the plate as well as reduce its natural frequencies, causing longer periods of oscillation compared to the in-air response.

Early-time phase

Adapting the approximate formulations of [Taylor, 1941], the total pressure applied to the plate during the early-time phase is obtained by a linear superposition of incident, reflected and radiated pressures as follows:

P tot (t ) = 2P 0 e -t /τ -ρ w c w Ẇ (5.1)
where ρ w and c w are water density and speed of sound in water respectively. The factor '2' comes from doubling of the incident pressure as if the plate is rigid and perfectly reflective upon arrival of the shock wave [Cole, 1948]. The latter term -ρ w c w Ẇ represents a rarefaction or radiation damping term, which would decrease or even diminish the double pressure due to the plate movement. When the total pressure falls below the vapor pressure, cavitation would result either on the surface of the plate or inside the fluid domain. In the case of Taylor's free-standing plate theory, it is assumed that cavitation always occur all over the surface of the plate. By solving the following equation of motion (see detailed derivations in Appendix A):

Ẅ = 2 m s P 0 e -t /τ - ρ w c w Ẇ m s (5.2)
along with the initial conditions W (0) = 0 and Ẇ (0) = 0, [Taylor, 1941] proposed the following analytical solutions for the free rigid 1D plate:

V i = 2P 0 τ m s β β 1-β (5.3) 123 τ c = τ ln β β -1 (5.4)
where V i is the maximum impulsive velocity, τ c is the cavitation inception time when P (t ) becomes zero and maximum V i is reached, m s = ρh is the areal mass, β = ρ w c w τ m s is the FSI coefficient relating decay time and areal mass of the plate. The significance of β is highlighted later in the Subsection 5.2.3 where various analytical results are evaluated.

The reduced transferred impulse due to the movement of the plate can be calculated using:

I t = 2I 0 β - β β-1
(5.5)

where I 0 = P 0 τ is the applied impulse related to incident wave. Note that only the maximum impulsive velocity (Eq. ( 5.3)) and cavitation inception time (Eq. (5.4)) of the Taylor's FSI theory [Taylor, 1941] have been expressed in this chapter. For the rest of the formulations regarding displacement, acceleration, pressure, etc., the reader is referred to Appendix A. The impulsive velocity given by Eq. ( 5.3) is used as an initial condition to solve linear (or nonlinear) structural equation1 . Mathematically, Ẅmn + ω 2 0 mn W mn = 0 (5.6)

Initial conditions: W mn (0) = 0 and Ẇmn (0) = 2A mn V i (5.7)
where ω 0 mn = K mn /m s is the natural frequencies for mode (m, n = 1, 3, 5, ...). Details can be found in Subsection 4.2.2 (Chapter 4). The closed-form analytical solution entitled only impulsive velocity for a 2D composite plate is obtained as:

W mn = 2 A mn V i ω 0 mn sin ω 0 mn t (5.8)
This solution function, however, still does not take into account the water-added mass effect that should appear at some time after t > τ c . This is discussed in the subsequent subsection.

Long-time phase

In this stage, deformation is supposed to begin only when the plate reaches its maximum impulsive velocity V i , that is, the end of the first phase. It is now considered that the kinetic energy acquired by the plate after the early-time phase is dissipated as elastic strain energy of the plate. In addition, during the plate deceleration phase, additional pressure due to water inertial effect is assumed to act upon the plate, following the immediate collapse of cavitation. For a rectangular plate vibrating in water, the water-added mass per unit area can be determined by using the formulation of [Greenspon, 1961]:

M a mn = 1 2 ρ w b f (a/b)A 2 mn (5.9)
where M a mn is the added mass of water, f (a/b) = 1.5 (a/b) 3 -3.12 (a/b)2 + 2.6 (a/b) + 0.0098 is the correction term for different aspect ratios of the plate (0 ≤ f (a/b) ≤ 1) for a ≤ b, and A mn = 8/(mnπ 2 ) is a mode shape term associated to a simply-supported boundary condition (m, n = 1, 3, 5, ...). This added-mass formulation of [Greenspon, 1961] consists of some approximations on the mode shape term by assuming the entire plate as a rectangular piston with a deflection equal to the average of the mode shape. Thus, the above formulation is accurate for the first mode only.

The final (wet) natural frequencies now become:

ω mn = K mn M 1 + M a mn (5.10)
where the expressions of M 1 and K mn are given by Eqs. (4.15) and (4.18) respectively. The (wet) natural frequency should be used in conjunction with Eq. (5.6) and solution function (Eq. (5.8)) to get the final solution (with the water-added mass effect). As a consequence of having the extra mass, the natural frequencies of the plate will decrease and the periods of oscillation become longer compared to the non-immersed (in-air) case.

The maximum swing time T 0 w of the plate including the water-added mass can be approximated using fundamental mode as:

T 0 w ≈ π 2ω 11 = T 0 1 + M a 11 M 1 (5.11)
where T 0 ≈ 1/(4 f 0 11 ) is the approximate in-air swing time when the plate reaches its first peak of deflection.

Case studies

Materials and load cases

Carbon-fiber/epoxy (CFRP) laminates having a uniform thickness of 5.76 mm, density of 1548 kg.m -3 , and the symmetric laminate having [±45/0/0/0/ ± 45/0/0/0/90/90] s are used to demonstrate the analytical solutions. A square plate (a = b) is considered where the length of the edges are varied to have aspect ratios of a/h = 69.4 (thin plate) and a/h = 17.4 (thick plate). The material characteristics are given in Table 5.3. Load cases are defined in Table 5.4 in which the cases [C-1a to C-1d] represent thin CFRP plate and the cases [C-2a to C-2c] the thick CFRP plate. The peak pressures and decay times are selected so as to give the same transferred impulse I t given by Taylor's theory (i.e., Eq. (5.5)). Moreover, the dimensions, thickness and fundamental frequency of the plate are also described in Table 5.4. The obtained results are then compared with the results of LS-DYNA/USA acoustic simulations including rigid baffle plate and the extra fluid model (see Fig. 3.4(d)).

Table 5.3 Characteristics of the material (CFRP) 2 

E 11 E 22 = E 33 ν 12 = ν 13 ν 23 G 12 = G 13 G 23 (GPa) (GPa) - - ( 

Dimensionless parameters

The investigations regarding the UNDEX loading with the FSI effect are performed on the seven load cases specified in Table 5.4 by using LS-DYNA/USA acoustic approach as well as analytically.

In doing so, the following dimensionless parameters are introduced so as to generalize our study:

Wmax = W max W m = ρ w c w 2P 0 τ W max , vi = V i u 0 = ρ w c w V i P 0 β = ρ w c w τ m s , Ī = I t I 0 = 2β β 1-β       
(5.12)

where Wmax represents dimensionless maximum central deflection, which is the ratio of the peak deflection obtained from the present analytical approach W max (see Eq. (A.24)) to the maximum displacement W m obtained from approximate theory of [Taylor, 1941] without considering cavitation. The second parameter vi is dimensionless maximum impulsive velocity at the end of the early-time phase in which u 0 = P 0 ρ w c w is the maximum particle velocity due to incident wave. Then, β refers to the Taylor's FSI coefficient, and finally, Ī denotes the dimensionless transferred impulse I t given as a function of applied impulse I 0 .

Time histories of the central deflections

Direct comparisons of central deflections as a function of time are shown in Fig. 5.2 for thin and thick CFRP plates respectively. For both aspect ratios, the analytical results up to (M , N ) = (5, 5) are evaluated with or without water-added mass effect. Results without water-added mass (indicated by a red curve) are shown just to demonstrate that considering only Taylor's free plate theory underestimates the central deflection in all cases regardless of the aspect ratios. This observation is in agreement with the past researchers, for example, [START_REF] Deshpande | An underwater shock simulator[END_REF]. An important point which should be noted is that the analytical results for different case studies are the same for each corresponding aspect ratio since the peak pressures and decay times are arbitrarily selected to transmit the same transferred impulse I t , see Table 5.4. In other words, the same initial impulsive velocities are used in each thin and thick plate case.

In Fig. 5.2(a), three cases of LS-DYNA/USA acoustics simulation results are given. However, as can be seen, only one of the results, that is, case [C-1b], with the water-added mass correlates to that of LS-DYNA/USA acoustics. For the rest of the cases, overestimation of the analytical results for case [C-1a] and underestimation for case [C-1c] are found. Obviously, the transferred impulses are not the same for different cases in LS-DYNA/USA acoustic results due to the initiation and temporal evolution of cavitation. It can be deduced that for a relatively short decay loading as in the case of [C-1a], the current analytical formulation (with added mass, see blue curve) overestimates because it assumes an abrupt transfer of increased impulse due to the water-added mass since the beginning of the analysis. In reality, water-added inertial effect could only initiate after the reattachment of the water with the plate.

On the other hand, when the load duration is relatively long as in the case for [C-1c], the impulse-based nature of the current analytical approach could not capture the continuing FSI phenomenon caused by the long loading pulse. Two peaks can be seen in LS-DYNA/USA acoustics central deflection results for cases [C-1a to C-1c] in Fig. 5.2(a). The first peak resembles an inair like response since cavitation encompasses the plate until about 1.4 ms. Then, reloadings associated to the collapse of the cavitation initiate at about 2 ms (pointed by gray arrows in the figure). Consequently, a further increase of the central deflections of the plate would be resulted. Indeed, because of this non-linear behavior of cavitation, Taylor's FSI theory with the same value of I t for every case (recall Table 5.4) could lead to erroneous results, which can be either over-or underestimation of the response.

The correlation, nonetheless, seems to be much better for thick plate (case [C-2a]) as seen in Fig. 5.2(b) provided that water-added mass is accounted for. Since the thick plate oscillates in high frequency, it would cause the reloading to appear even before the plate reaches its peak deflection (around 0.18 ms). In other word, such rapid collapse of cavitation seems to be much more relevant with the assumption behind the present analytical formulation in which an abrupt transfer of impulse due to water-added mass is considered. Nevertheless, if the decay time were further increased as in the case for [C-2b], any amount of water-added mass would not compensate for the discrepancy since there is a continuing FSI phenomenon which is not accounted for in an impulse-based model proposed in this section. A further improvement of the formulation in this regard is given in the Section 5.3 of this chapter where DAA 1 model is coupled to the analytical formulation.

Sensitivity to peak pressure

Knowing that the proposed analytical formulations work well for a certain range of decay times, the sensitivity due to the change in the peak pressures is investigated while keeping the same decay time. Decay time from the case study [C-2a], τ = 0.024 ms, is selected. Results using different peak pressures are plotted in Fig. 5.3. As expected, the results show linear relationship between applied impulse and peak deflection-to-thickness ratio as long as the maximum central deflection remains well within the small displacement regime (W max < h). It can be seen that the analytical results with the water-added mass match quite well (within a relative discrepancy of ±5%) with the numerical results.

Sensitivity to FSI parameter β

The peak deflections are now normalized by using Taylor's maximum displacement W m (without cavitation), see Eq. (5.12), and plotted as a function of the time ratio τ/T 0 as well as the FSI Time (ms) parameter β in Fig. 5.4. In fact, the only parameter varied here is the decay time τ. However, it is expected that for the same stiffness, the relationship depicted in Fig. 5.4 would hold true for any combinations of peak pressures and decay times provided that the deformation remains in linear elastic domain. Decrease of the decay time or increase of the areal mass would result in the decrease of the FSI parameter β, and vice versa. It is seen that the applicable domain is not the same for thin and thick CFRP plates because varying the aspect ratio not only changes the lateral dimension (related to diffraction time, T d = a/(2c w ) ) but also the plate stiffness (related to the swing time, T 0 ≈ f 0 11 /4).

Relative error bar of ±15% to analytical results is shown in Fig. 5.4(a) and (b) to evaluate the applicable domain of the proposed method. It can be seen that this range is: continuing interaction between the fluid and the structure, especially for relatively thick plates shown in Fig. 5.4(b). In this case, cavitation may occur but it will either collapse very rapidly or will only occur at some point in the fluid away from the fluid-structure interface, either case suggesting that the transferred impulse given by Taylor's theory would be underestimated.

Thin CFRP plate: 0.09 ≤ τ/T 0 ≤ 0.16 ( 

Effect of water-added mass

By considering the water-added mass in our analytical model, the Taylor's transferred impulse I t given by Eq. (5.5) is modified into:

I t mod = I t Taylor + I t water = 2I 0 β - β β-1 + M a 11 v i = 2I 0 β - β β-1 1 + M a 11 m s (5.14)
where the factor 1 + M a 11 m s represents the increase of the response due to water-added mass. Note that only mode [1,1] of the added mass has been considered in the above equation since its contribution to the plate response is by far the highest. Such effect, indeed, extends the limit of Taylor's theory to some extent (recall that using only Taylor's impulsive result would yield underestimation in any cases). The amount of amplification is directly proportional to the lateral dimension of the plate, that is, the larger the plate, the more amplification of the response due to water-added mass will be obtained. Based on the present studies, relatively large plates are more prone to cavitation since their swing times T 0 as well as diffraction time T d are usually longer compared to the decay times τ. In addition, it will take much longer for the cavitation to collapse if As already discussed, the longer the cavitation phase, the more overestimation the current formulation would be resulted since the proposed method does not consider a time gap between the initiation of the cavitation and the reattachment of the water to the plate after cavitation collapses.

In Fig. 5.5, dimensionless transferred impulse with or without water-added mass as well as the dimensionless maximum impulsive velocity are plotted as a function of Taylor's FSI coefficients. As β tends to infinity, both transferred impulse with or without water-added mass will approach to zero and the dimensionless maximum impulsive velocity will approach to 2. This is analogous to the original free-rigid plate FSI theory of [Taylor, 1941] except that the range of applicability is extended by increasing Ī or equivalently by decreasing β of Taylor by an amount β water = (τρ w c w )/ m s + M a 11 . Note that the impulsive velocity vi will be the same for both analytical models since the increase in momentum I t water and increase in mass M a 11 will cancel each other out. A more versatile approach that includes not only the effect of cavitation but also the continuing FSI effect related to relatively long decay times should be considered in the future.

Sensitivity to plate stiffness

The effect of changing the plate stiffness is investigated by keeping the same areal mass and the same decay time so as to have the same FSI parameter β. Comparisons will be made for long lateral dimension (a = b = 0.4 m) and for short lateral dimension (a = b = 0.1 m). It should be kept in mind that the lateral dimension is associated to the diffraction time and thus, keeping the same lateral dimension will give the same diffraction time T d and similarly, the same FSI parameter β and decay time τ will yield the same cavitation inception time τ c according to Eq. (5.4). Therefore, the effect of change is solely due to the plate areal stiffness K . Peak pressures are also adjusted in order to keep the analysis well within the linear elastic, small displacement domain, that is, W max < h. FSI parameters of β = 28.8 and β = 4.14 are selected for long plate (a = 0.4 m) and short plate (a = 0.1 m) respectively. The objective here is to verify whether the applicable range (within the relative error margin of ±15%) specified in the previous discussions is still valid for any changes in the stiffness assuming a negligible structural damping. The following ply orientations are considered:

• layout 1: [±45/0/0/0/ ± 45/0/0/0/90/90] s -with 20 plies, and

• layout 2: [0/90/0/90/.../0/90/0/90] -with 20 plies.

To investigate the change of stiffness due to material, carbon-fiber/epoxy (CFRP) and glassfiber/epoxy (GFRP) plates are employed. The corresponding properties, extracted from quasistatic tests done in the framework of this PhD thesis, are given in Table 5.3 and 5.5 for CFRP and GFRP respectively. Table 5.5 Characteristics of the material (GFRP)

E 11 E 22 = E 33 ν 12 = ν 13 ν 23 G 12 = G 13 G 23 (GPa) (GPa) - - (GPa) (GPa)
34.1 10 0.279 0.402 3.03 3.58

The results for both long and short lateral dimensions are shown in Fig. 5.6. The corresponding FSI parameter β, aspect ratios a/h, material, ply layout and total areal stiffness K (see Eq. (4.18) in Chapter 4) are also given in each figure. Note that the thickness of the GFRP plate needs to be adjusted in order to have the same areal mass. First of all, it can be said that the applicable domain agrees well with the previously deduced values, 0.09 ≤ τ/T 0 ≤ 0.16 (19.8 ≤ β ≤ 34.5) for relatively thin plate and 0.28 ≤ τ/T 0 ≤ 0.35 (4 ≤ β ≤ 5.1) for relatively thick plate. The relative error range is also well within the acceptable values, 15% and 5% for relatively long and short plates respectively. In addition to this, the pattern observed is also in consistence with the expected behavior, that is, when the plate becomes more flexible (as τ/T 0 gets smaller), cavitation is more likely to occur and will last longer. As for the stiffer plates (i.e., with short lateral dimensions seen in Fig. 5.6(b)), the rapid collapse of cavitation has made the comparison with the analytical two-step impulse-based approach to be much more relevant (and shows less relative discrepancy) since the proposed method considers an abrupt transfer of energy due to water-added mass without any time gap between cavitation appearance and water reattachment.

Highlights and remarks

In this section, simplified analytical solutions based on two-step approach, which consists of determining Taylor's transferred impulse in the early-time phase and then water-added mass for the long-time phase, are proposed. Attention has been paid in the application of this method on the UNDEX response of a simply-supported, air-backed composite rectangular plates in linear elastic, small displacement regime. Different parametric studies such as varying the peak pressures, decay times, aspect ratios, areal mass as well as stiffness corresponding to different materials (CFRP and GFRP) and ply orientations are performed. A number of important phenomena are highlighted. These include:

• As expected, the maximum central deflection of the plate is linearly proportional to the peak pressure.

• Changing the decay time of the loading could affect the FSI behavior of the plate as well as the cavitation on the fluid-structure interface. For example, increase of the decay time could increase the cavitation inception time, reducing the time gap between the first appearance of cavitation and the reattachment of water to the plate. On the other hand, decrease of the decay time could result in an earlier promotion of cavitation.

• The plate stiffness also plays an important role in the study of FSI. Flexible plates (with large aspect ratios) are prone to a prolonged cavitation period, leading to responses similar to in-air cases (Case 2 of Kennard's studies, Appendix B). In the case of the stiff plates, a more rapid collapse of the cavitation was observed due to their high oscillation frequencies. It was observed that two-step impulse-based approach works better for the stiff plates (with lower aspect ratios).

• Based on the calculations of square CFRP plates, the applicable limit (Eq. (5.13)) of the two-step approach is exposed in terms of the ratio of the decay time of the shock wave to the plate in-air swing time, and in terms of the FSI parameter related to decay time and areal mass. Within this proposed limit, varying the aspect ratios (a/h = 17 to 80), materials and ply layouts still gives acceptable results (with a relative error of ±15%) according to some of the studies performed in this research.

It must, however, be pointed out that the simplified two-step approach is valid only for the limiting ranges pointed out. Exceeding the limit would result in either over-or underestimation of the responses. Moreover, many of the other phenomena such as non-linearity due to large deformation, propagation of the breaking and closing fronts caused by cavitation, the continuing FSI effect due to relatively long duration of the shock wave, hydrostatic pressure, change of the backed condition, and the effect of damage still need to be explored.

Nevertheless, the advantage of the simplified method can be appreciated. As a demonstration, computation times required for the analytical approach (programmed in MATLAB) and numerical approach (performed in LS-DYNA/USA) are compared in Table 5.6. Note that these were done using the same computer (Core i7-8550U @ 1.8 GHz, RAM 16 GB). It can be seen that numerical simulations can be very time-consuming especially for relatively large composite plates studied in this paper since they involve large water domain as well as the rigid baffle plate. It was also found that FE calculation uses 5,104,602 structural DOFs and 26,625 fluid DOFs for thin plate, and 301,272 structural DOFs and 3,300 fluid DOFs for thick plate. From the industrial point of view, it is not practical to use such expensive tools to perform preliminary design studies that may involve a large number of configurations or load cases. In this regard, simplified analytical solutions become very useful. In the coming sections, coupling of the analytical solutions to Doubly-Asymptotic method and the response including geometric nonlinearity effect shall be investigated. 

Coupling with the first-order Doubly-Asymptotic Approximation

The objective of this section is to propose a semi-analytical (closed-form like) solution that couples the first-order Doubly-Asymptotic Approximation (DAA 1 ) with the linear or nonlinear analytical structural equations. This can be done by adapting a nonstandard finite difference (NSFD) scheme developed by [Songolo and Bidégaray-Fesquet, 2018], see derivations and an example application in Appendix C. First of all, analytical equations are derived for the spring-supported rigid, airbacked plate subjected to a plane shock wave. Then, these are extended to a 2D deformable, air-backed plate with simply-supported boundary conditions. Finally, the results are compared with those obtained from LS-DYNA/USA (DAA 1 ).

Formulations for a spring-supported rigid plate

Suppose that a rigid plate having areal mass m s is subjected to a uniformly distributed incident shock wave P i (t ). The plate is exposed to water with density ρ w on one side and a linear spring and air on the other side as shown in Fig. 5.7. The equation of motion of the single degree-of-freedom (DOF) system can be written as:

Ẅ + ω 2 W = P tot m s (5.15)
The total pressure applied P tot from Eq. (5.15) is determined by linearly superposing the incident pressure P i and scattered pressure P s . Mathematically, P tot = P i + P s (5.16) in which the incident pressure is considered using a simple exponential decay form, see Eq. (2.1) from Chapter 2. According to DAA 1 formulation [Geers, 1978], the scattered pressure P s is solution of the following equation: Ṗs + D f P s = ρ w c w us (5.17)

where D f = ρ w c w M a is the ratio of acoustic impedance of water to areal water-added mass of the submerged plate, and us = ui -Ẅ in which ui and us are the incident and scattered accelerations of the fluid particles respectively. This expression for us is derived from the velocity continuity condition at the fluid-structure interface. M f is the water-added mass for the rigid plate when it moves in water and A f is the wet surface area of the plate in contact with water. The system of equations is called 'coupled FSI equations' when Eq. (5.17) is solved together with the structural equation, Eq. (5.15). All the pressures, particle accelerations as well as the plate acceleration must be updated for each time step.

For a far-field plane shock wave, the incident pressure can be associated to the incident particle velocity as follows:

P i = ρ w c w u i (5.18)
In fact, it is also possible to consider an incident pressure with a spherical profile. These have been explained in Subsection 3.2.2 of Chapter 3 in details. For the moment, a much more simplified expression that uses a plane shock wave is considered.

Time discretisations

Discretizing Eq. ( 5.17) at the current time step i with a standard explicit finite difference scheme would yield:

P i +1 s = P i s 1 -∆t D f + ∆t -ρ w c w Ẅ i + P i i (5.19)
where P i s = P s (t i ) at current time step and P i +1 s = P s (t i + ∆t ) for the next time step. To convert Eq. (5.19) into the NSFD scheme, the time step is renormalised by using:

ϕ = 1 -e -D f ∆t D f (5.20)
Let V = Ẇ , V = Ẅ and with the use of Eq. ( 5.20), it is possible to rewrite Eq. (5.19) as:

P i +1 s = P i s e -D f ∆t + ϕ -ρ w c w V i + P i i (5.21)
Such a scheme is called nonstandard finite difference (NSFD) according to Definition 1 given in Appendix C. Since incident pressure P i is known for all time steps, total pressure P tot can be updated for each time step if Eq. (5.21) is solved simultaneously using the following discretized equations for displacement, velocity and acceleration of the plate respectively:

W i +1 = W i cos (ω∆t ) + V i ω sin (ω∆t ) - F i m s ω 2 (cos (ω∆t ) -1) (5.22a) V i +1 = -W i ω sin (ω∆t ) + V i cos (ω∆t ) + F i m s ω sin (ω∆t ) (5.22b) V i +1 = -ω 2 W i + 1 m s P i i + P i s (5.22c)
where the step size can be approximated as ∆t ≤ π/(200ω), which is less than or equal to onehundredth of the time to reach the first peak displacement. Here, ω = K /m s is the angular frequency. The initial conditions at time step zero (i = 1) are taken as W (0) = V (0) = 0, V (0) = 2P 0 /m s , and P s (0) = P i (0) = P 0 . Note that cavitation can be considered by introducing a flag that would trigger whenever P i tot ≤ 0. Following the suggestion of USA user's manual [LSTC, 2017], only the scattered pressure P s is modified when the cavitation criterion is met.

Formulations for a simply-supported deformable plate

The zero-dimensional equations from previous subsection are quickly extended to determine the response of an air-backed rectangular plate in simply-supported boundary condition subjected to a plane shock wave in negative z-direction. The derivations based on the first-order shear deformation theory with or without geometry nonlinearity have been given in Subsections 4.2.2 and 4.3.3 of Chapter 4. The discretized form of the equations are similar to Eqs. (5.22a -c) except that the modal terms in x-and y-directions are involved. Thus, the modal participation of the forcing term on the right-hand side of the equation of motion becomes: (5.23) where α mn = sin mπx a sin nπy b , and dΩ = dxdy. Notice that the incident pressure is assumed to be evenly distributed across the plate and thus, does not depend on spatial coordinates. The scattered pressure, however, is both a function of spatial and temporal variables. Assuming that the scattered pressure has the same mode shape as the transverse displacement w,

F mn (t ) = Ω P i (t ) + P s (x, y, t ) α mn dΩ
P s (x, y, t ) = ∞ m=1 ∞ n=1
p mn α mn (5.24) By substituting Eq. ( 5.24) into Eq. (5.23), and using the orthogonality condition, it is possible to write the following expression for the modal force term:

F mn = A f 4 16
mnπ 2 P i + p mn (5.25) DAA 1 equation (Eq. (5.17)) for a 2D deformable plate can be given as:

Ṗs (x, y, t ) + D f P s (x, y, t ) = ρ w c w ui (t ) -ẅ(x, y, t ) (5.26)

Substituting the expanded forms of the functions Ṗs (x, y, t ), P s (x, y, t ), ẅ(x, y, t ) in Eq. (5.26), multiplying both sides with the mode shape function α i j , integrating with respect to the surface area dΩ, and then by virtue of orthogonality property, the modal equation for the scattered pressure in time domain can be derived as: ṗmn = -D f mn p mn -ρ w c w Vmn + 16 mnπ 2 Ṗi (5.27)

Note that D f mn = ρ w c w M a mn should be calculated for each mode (m, n). The areal water-added mass M a mn for the submerged plate can be determined by using the formulation of [Greenspon, 1961] as already presented in Subsection 5.2.2, see Eq. (5.9). A slight improvement to the original Greenspon's formulation is possible by modifying the mode shape term: Modified Greenspon's formulation:

M a mn = 1 2 ρ w b f (a/b) ∞ j =1
64 mn j 2 π 4 (5.28)

where j = 1, 3, 5, .... If we compare the above modified formula (Eq. (5.28)) with the original one (Eq. (5.9)), it can be realized that instead of using A 2 mn = 64/(mnπ 2 ) 2 , it is expressed in terms of the summation form. Since j 2 is in the denominator, considering higher values of j in the series will not contribute much. Although this modified formulation of water-added mass has not been justified, it has certain advantages without significantly affecting the maximum plate deflection as shall be shown later.

Equation (5.27) can be solved using the same procedure given in the previous section, see Eqs. (5.21) and (5.22). For convenience, the resulting semi-analytical (closed-form like) solutions are described again as follows:

W i +1 mn = W i mn cos ω i mn ∆t + V i mn ω i mn sin ω i mn ∆t - 4F i mn M s (ω 2 mn ) i cos ω i mn ∆t -1 (5.29a) V i +1 mn = -W i mn ω i mn sin ω i mn ∆t + V i mn cos ω i mn ∆t + 4F i mn M s ω i mn sin ω i mn ∆t (5.29b) V i +1 mn = -(ω 2 mn ) i W i mn + 4 M s F i mn (5.29c) p i +1 mn = p i mn e -D f mn ∆t + 1 -e -D f mn ∆t D f mn -ρ w c w V i mn + Ṗ i i 16 mnπ 2 (5.29d)
where the forcing term F i mn can be calculated for each time step using Eq. (5.23) since p i mn is now known, and M s = m s A f is the mass of the plate. For linear theory, the angular frequency ω mn = K mn /m s is the same for all time steps. As for nonlinear theory, it is changing due to the local linearization, ω i mn = K mn + ς mn W i mn 2 , see Chapter 4 for more details. The same initial conditions as the rigid plate can be applied here.

Implementation in MATLAB

The described numerical scheme is implemented in a MATLAB program. The calculation steps involved are very similar to the one shown in Fig. 4.3 (Chapter 4) except that there is an additional step in the solver which is to update the scattered pressure at every time step. For the rigid platespring system, the scattered pressure P s can be directly updated using Eq. (5.21). The modal pressure term p mn from Eq. (5.27) is used for the simply-supported deformable plate.

Results and analyses for a spring-supported rigid plate

A square rigid plate having the dimensions (a = b = 167 mm), thickness (h = 10 mm), and density (ρ = 1500 kg.m -3 ) is exposed to the water (ρ w = 1000 kg.m -3 , c w = 1498 m.s -1 ) on one side. Four discrete springs possessing equivalent stiffness of K = 4.5 MN.m -1 are used to support the plate at the four corner nodes on the other side of the plate. A single finite element rigid plate-spring model, that resembles to the one shown in Fig. 5.7, is constructed. No fluid elements are modeled since the plate is coupled to the DAA boundary element. Fully-integrated shell element formulation together with rigid material is applied.

A plane shock exponential wave comprised of a peak pressure P 0 = 75 MPa and decay time τ = 0.21 ms is considered through the USA keyword input. Cavitation is treated approximately by limiting the total pressure at zero whenever it becomes negative. Here, both results with and without cavitation are simulated just to compare. Results are then calculated again by using semi-analytical equations shown in Eqs. (5.21 -5.22c). Since the purpose is just to test the validity of the developed equations, the same value of water-added mass (M a /m s = 6.25) obtained from LS-DYNA/USA is used for the analytical calculation as well.

In Fig. 5.8, the results of displacement, velocity, acceleration and normalized total pressure (P tot /P 0 ) obtained from both LS-DYNA/USA (DAA 1 ) and the analytical approach involving DAA 1 are plotted as a function of time and up to 4 ms. As can be seen in all the plots, analytical solutions are almost exactly the same as the numerical results using LS-DYNA/USA (DAA 1 ) whether cavitation is taken into account or not. In addition, the change in the behavior of the plate caused by the consideration of cavitation can be observed especially after the pressure cut-off (at about 1.4 ms). It is also worth mentioning that the author tested the equations using different loading (e.g., sinusoidal profile), and different acoustic impedance (e.g., air) and almost the same results between analytical and numerical methods were found. Therefore, it is safe to conclude that the FSI coupling scheme works well for a single degree-of-freedom system.

Results and analyses for a deformable simply-supported plate

To test the validity of the equations for the simply-supported, air-backed, deformable plates (Eqs.

(5.29a -d)), the following cases are considered:

1. Thin and thick isotropic (steel) plates subjected to a uniformly distributed suddenly applied pressure pulse -also called step loading, and 2. Thick composite (CFRP) plate 3 subjected to a uniformly distributed exponentially decaying shock wave loading. In both cases mentioned above, FSI is considered by using DAA 1 formulation and calculated using both analytical and numerical (LS-DYNA/USA) approaches. Note that cavitation is not accounted for and thus, the load cases are chosen not to give rise to large negative total pressures. The aspect ratios for the thin and thick plates are a/h = 69.4 and a/h = 17.4 respectively. The corresponding dimensions of the plates are the same as CFRP plate as used before, see Table 5.4. The material properties for isotropic (steel) are: ρ = 7800 kg.m -3 , E = 204 GPa, and ν = 0.3 while those for the CFRP plate are used the same as shown in Table 5.3. The finite element set-up of the model is analogous to Fig. 3.4(c) from Chapter 3 except that quarter square plates are now modeled.

As for the analytical approach, transverse shear deformation (K s = 5/6), geometric nonlinearity (immovable edge condition), and mode numbers up to [M , N ] = [3, 3] are considered.

Thin and thick isotropic (steel) plates subjected to step pressure loading

In Fig. 5.9, maximum central deflection-thickness ratios for thin and thick steel plates are plotted as a function of step pressures P 0 . As expected, influence of geometric nonlinearity is found to be much higher in thin plate (large aspect ratio). Relative error of ±5% is given and it can be said that the current analytical (coupled with DAA 1 ) results correlate well with those of LS-DYNA/USA (DAA 1 ). Among the various load cases analyzed, the transient behavior of two cases are shown in Figs. 5.10 and 5.11 as examples representing thin and thick steel plates respectively. It can be seen that analytical results correspond better with FEA when nonlinearity is accounted for. Not only the peak deflection but also the time evolution of total pressures and deflections match quite well between LS-DYNA/USA and analytical method, both considering DAA 1 for FSI. Note that a modified Greenspon's formulation (Eq. (5.28)) is used to predict the water-added mass. Investigations regarding this by comparing the (wet) natural frequencies will be shown soon. Thick composite (CFRP) plates under exponentially decaying pressure loading This is just an example case study using a thick CFRP plate under exponentially decaying pressure shock wave. This loading corresponds to 586 kg of TNT explosive charge detonated at about 169 m stand-off distance (shock factor = 0.14). Note that this is also the case where cavitation effect is supposed to be minimum since the load duration is relatively long compared to the plate response time. Results for the thin CFRP plate are not shown due to two reasons: (1) occurrence of early-time cavitation due to lower flexibility of the plate, and (2) possible involvement of material damage. While investigations are in progress, analysis is focused only on the thick CFRP plate in this section.

Figure 5.12 shows the time evolutions of deflection, and normalized total pressure at the center of the plate. Numerical results obtained from LS-DYNA/USA (DAA 1 ) are with or without the cavitation. It can be seen that the effect of cavitation is not significant in this case since the two numerical results are nearly the same. The author has checked the sensitivity on the time step. The current time step considered in the calculation is (∆t = 1 × 10 -6 s) which is less than one-hundredth of the swing time (T 0 w /100 ≈ 3.5 × 10 -6 s). In Fig. 5.12(a), the peak deflection is found to be around 0.35 ms and both numerical results are within ±10% of the analytical. Peak response accounting for cavitation is the largest since the negative total pressure, that pulls back the plate, is cut-off. Coupled analytical-DAA 1 scheme seems to be in good agreement with the LS-DYNA/USA although the period of the analytical result is found to be slightly shorter.

Effect of water-added mass formulation

All of the results from Fig. 5.9 to Fig. 5.12 are evaluated using the improved Greenspon's formulation presented in Eq. (5.28) because the original Greenspon's formulation (Eq. (5.9)) is only accurate for the first mode. For higher mode numbers, the values of the in-water natural frequencies become nearly the same as the in-air frequencies. By arbitrarily changing the square of the mode shape term, it is possible to improve the behavior in the higher order modes without actually affecting The effect of this improvement can be seen in Fig. 5.13. Notice that small oscillations in the plate central velocity and total pressure disappear and the solutions become more comparable to LS-DYNA/USA (DAA 1 ). Recall that D f mn = ρ w c w /M a mn . It seems that that the increase in M a mn would result in the decrease of D f mn which in turn leads to smaller rate of change in the scattered pressure according to Eq. (5.27). Nevertheless, it can be shown that this kind of improvement does not cause significant change in the central deflection result except that the period is slightly longer and become more comparable to LS-DYNA/USA (DAA 1 ), see Fig. 5.13(c).

Another slight improvement can be found in the (wet) natural frequencies. Table 5.7 shows calculations of natural frequencies up to the first four bending modes using original formulation and improved formulation. Although the change is very small, it did indeed improve the in-water natural frequencies especially for higher mode numbers.

Sensitivity to the number of modal participation terms

The effect of the number of modal participation terms is investigated using steel plate case study. As can be seen in Fig. 5.14, using different numbers of modal terms do not change the result of central deflection-time plot. However, it slightly effects the scattered pressure result at the beginning of the calculation. According to the initial condition considered, the scattered pressure is P s = P i = P 0 at time zero. Nonetheless, its result seems to be dependent on the number of modal terms (m, n) considered for p mn according to Eq. (5.24).

Concluding remarks

The first-order Doubly-Asymptotic Approximation (DAA 1 ) has been incorporated into analytical formulations including geometric nonlinear and transverse shear deformation effects. The accuracy of the formulations is checked by using a spring supported rigid plate system, and simply-supported isotropic and composite square plates subjected to step pressure as well as exponentially decaying plane shock pressure waves. Solutions of LS-DYNA/USA (DAA 1 ) are used as references. It was observed that for isotropic plate using a range of step loading, the discrepancy is only within ±5% with respect to the numerical results for both large and small aspect ratios. As for the composite plate, only one case study using thick plate (small aspect ratio) has been done at the moment due to arising of two issues: (1) the appearance of early-time cavitation, and (2) the possible involvement of damage. Also, the comparison of the first natural frequencies with those from LS-DYNA/USA reveals that the discrepancy becomes higher for the higher mode number even with slight improvement in water-added mass formulation of Greenspon. More improvement regarding cavitation needs to be considered in the near future. [Hung et al., 2005] conducted an experiment on air-backed rectangular aluminum plate using a 4 m × 4 m × 4 m water tank. A small quantity of highly sensitive charge from a combination of DP60 detonator and a Detasheet was exploded at various standoff distances from the target, ensuring that its deformation remained within the elastic region. The shock parameters of the combined charge were determined experimentally. Using them, the peak pressures and decay times were calculated as given in Table 5.8. Commercial 6061-T6 aluminum plate having dimensions of 100 cm × 100 cm × 1 cm was selected as a target whose material characteristics are shown in Table 5.9. The plate was fixed on a steel casing, called a shock rig, which was fixed to the steel base as shown in Fig. 5.15.

The initial velocities at the center of the plate as well as the measurement of the peak strains and in peak strains) are in good agreement for the lower shock factor (K < 0.1). However, the discrepancy tends to increase with the increasing values of the shock factors (i.e., K ≥ 0.1). One possible explanation for this discrepancy is that the support condition in the experiment was somewhere between clamped and simply-supported conditions. All the analytical formulations consider simply-supported conditions while the FEM results of [Hung et al., 2005] used clamped conditions. It seems that effect of the boundary is more obvious with stronger shock waves.

ter placed at the center of the plate [Hung et al., 2005].

Overall conclusions

In this chapter, two types of analytical formulations are proposed:

1. two-step impulse based method: Taylor's simplified FSI model is used to calculate the kinetic energy in the early-time stage and then the free response of the plate is determined together with the water-added inertia effects.

2. coupled DAA 1 model: The first-order Doubly-Asymptotic Approximation (DAA 1 ) model is coupled into analytical structural equation containing geometric nonlinearity, material orthotropy and transverse shear deformation.

Various conclusions have been drawn for each model. When using the two-step impulse model, the major advantage is the simplicity of the implementation. However, it is only valid for a certain range of FSI parameter due mainly to the occurrence of cavitation and its closure (reloading). Using only the Taylor's impulsive velocity would result in an underestimation of the response compared to that of the finite element using LS-DYNA/USA (acoustics) approach except for the cases of early and prolonged cavitation. On the other hand, including the effect of water-added mass when the cavitation might still be valid would overestimate the central deflection. Indeed, the domain of validity for the two-step impulse based approach is strictly to the cases where there is a rapid collapse of cavitation as in the case of the relatively thick plates. To be able to capture the response accurately, the action of cavitation, that is, its temporal development and the collapse, must be considered.

As for the coupled DAA 1 model, so far cavitation can be approximately captured by assuming a prolonged cavitated zone. This would make the case to be analogous to Taylor's FSI theory and might be applicable for the cases in which cavitation occurs very early and the plate's swing time is very long (case 2 of Kennard's studies, see Appendix B). The validations using the experiment of [Hung et al., 2005] are similar to case 2 because cavitation occurs very early and lasts very long. Nevertheless, only simply-supported boundary has been developed in this research work, the microstrains obtained from the semi-analytical formulations using coupled DAA 1 model are overestimated as much as 30% compared to the measured values. In the future, analytical formulations with clamped boundary condition should be examined. Another extreme case where coupled DAA 1 model may be used is when the effect of cavitation is minimum, that is, for cases involving very long decay times or step loading. The author has compared the numerical results given by LS-DYNA/USA (DAA 1 ) and LS-DYNA/USA (acoustics) models. It was found that as long as the effect of cavitation is negligible, these numerical approaches show comparable results. Therefore, the domain of validity for the semi-analytical (DAA 1 ) model proposed in this research work should be the regime where cavitation effect is negligible (cases 1 and 3 of Kennard's studies in Appendix B).

A common conclusion that can be drawn from both FSI models is that more consideration needs to be given in regards to the action of cavitation and the reloading effects. The perspectives regarding how the cavitation issue should be tackled are discussed in the next chapter.

Chapter 6

Conclusions and Perspectives

In this concluding chapter, the main works presented in each chapter are summarized and the important observations are recalled. Advantages as well as limitations of the developments and methods proposed in this thesis are exposed. Finally, in the 'perspectives' section, possible applications of the current analytical methods are discussed and the future works to be carried out are suggested.

Summaries of each chapter Chapter 1 -introduction

Chapter 1 describes about the devastation and catastrophes an underwater explosion could bring about. In this way, the need for a thorough understanding of the underlying physics associated to these loads and their interaction with the structures is highlighted. Due to the involvement of several different domains (fluid mechanics, structural mechanics, etc.), complexities may easily arise in the modeling of this kind of problem, and thus the reference today is to use numerical approaches such as LS-DYNA/USA. These approaches, nevertheless, may not be well-suited for the preliminary design stages since the computational expense to use such numerical tools can be quite high. Not to mention, the efforts required for the modeling, validation and interpretation of the results can be extensive as well. In this context, simplified analytical tools, which are fast, relatively easy to implement and reasonably accurate, become much more relevant in the predesign phases. Indeed, the main objective of this thesis is to develop simplified analytical design tool to predict the response of composite plates subjected to air and underwater explosions.

In so doing, the scope here is narrowed down only to the study of the far-field explosions, that is, the explosion is assumed to be sufficiently far from the target so that a uniformly distributed, plane shock pressure wave can be adapted and the contribution of the gas bubble (for the late time) can be ignored. Also, the external effects such as the rigid body movement attached to the boundary (or to the ship) and the global hull responses are ignored. The attention is paid solely to the local behavior (i.e., plates) of the structural elements. Moreover, the plate is considered to be in an air-backed, simply-supported (immovable edge) condition and has a rectangular geometry. As for the composite plate, the layout is supposed to be balanced and symmetric about the mid-plane.

The methods to solve the fluid-structure interaction problem proposed in this thesis are:

(1) two-step impulse based approach, and

(2) the coupled first-order Doubly Asymptotic Approximation approach.

Both models are extended formulations of the internal mechanics model which is based on the first-order shear deformation theory for the orthotropic material in both small and large deflection domains. In the coming subsections, summaries about these models are presented and the personal contribution of the author in their development are highlighted.

Chapter 2 -characteristics of underwater explosion

It is the chapter in which important physical phenomena involved in an underwater explosion event are introduced to give better understanding of the studies in the later chapters. The domain of application concerns with the conventional methods of non-contact underwater explosions only. Three main sequences of events are presented, namely, the detonation phase, the generation of shock wave and the formation of the gas bubble. The formulations to calculate important physical quantities such as the incident pressure, impulse and energy are given. Many empirical formulations to characterize and quantify the shock wave are also provided based on the 'principle of similarity'. Moreover, the concept behind the term 'shock factor' as well as many other interesting phenomena such as local cavitation, bulk cavitation, bottom reflection and so on are explained. All of the work appeared in Chapter 2 are taken from the prominent literature bodies in the past such as [Cole, 1948;Keil, 1961], etc.

Chapter 3 -numerical models and validations

In Chapter 3, state-of-the-art literature reviews about the various numerical approaches in the field of underwater explosion and fluid-structure interaction problems are presented along with their pros and cons. Then, the theoretical backgrounds of the numerical approaches employed in this thesis are discussed in details. These models are available in the coupled finite element code called LS-DYNA/USA. The four numerical approaches considered in this thesis are as follows:

(1) LS-DYNA with only initial impulsive velocity approach,

(2) LS-DYNA with acoustic fluid approach,

(3) LS-DYNA/USA with second-order Doubly-Asymptotic Approximation (DAA 2 ) approach, and

(4) LS-DYNA/USA with both acoustic fluid and non-reflecting boundary DAA approach1 .

The main differences between each of these models are in their consideration of fluid model (finite, infinite extent or none), the treatment on the boundaries, and the possibility to capture cavitation (reloading).

The validity of each of these numerical approaches is investigated by confronting against various experimental data, namely, Goranson's experiment performed in a detonic basin [Cole, 1948], lab-scaled test conducted by [Schiffer and Tagarielli, 2015], and test data obtained from DGA Naval Systems. All these experiments are done on the circular steel or circular composite plates with either simply-supported or clamped boundary conditions.

At the end of the comparisons between different experimental and numerical results, it is possible to:

(1) relate the observed phenomena to the conclusions drawn by the past researchers such as [Kennard, 1944;Schiffer and Tagarielli, 2015], and

(2) draw a number of conclusions regarding the performances of the numerical approaches considered.

According to these studies, it is found that LS-DYNA/USA acoustic model has the best correlations with the experiment in all of the studies. LS-DYNA with only impulsive velocity could lead to significant underestimations especially when thick plates, which oscillate in high frequencies, are subjected to loading with relatively long duration. Using LS-DYNA/USA (DAA 2 ) approach (without explicitly modeling the surrounding fluid) could overestimate the responses especially for relatively large and thin plates in which cavitation is more likely to occur and could last longer if the duration of the incident shock wave is short. Using LS-DYNA (only acoustic) simulations with a finite extent of water may result an 'unnaturally' slow rebounding of the plate due to confined pressures in the neighboring acoustic volume elements. Here, it should be remarked that when a finite extent of water is considered, the results post-processed from LS-DYNA (only acoustic) and LS-DYNA/USA (acoustic) models are very similar. It is thus reasoned that the use of a confined tube setting such as a lab-scaled shock tube test might have possibly lead to such behavior. The question of whether such behavior could occur in the experiment is in doubt and the issue is still to be investigated in the future. Nonetheless, qualitatively good results (and quantitatively in terms of the peak central deflections) have been obtained for all the lab-scaled experiments shown in this manuscript when using LS-DYNA/USA (acoustics). Therefore, it is concluded in Chapter 3 that LS-DYNA/USA (acoustic) model, which is comprised of an extra fluid region and a fixed rigid baffle plate, is to be used as a reference for the comparisons with the results evaluated using two-step analytical approach (Subsection 5.2.3 of Chapter 5).

Chapter 4 -internal mechanics

Chapter 4 is devoted to study and validate the 'internal mechanics' of the plate, that is, the study of structural behavior without the complications of the fluid-structure interaction. In this chapter, brief literature reviews are first given concerning with the laminated composite plates subjected to air-blast or impulsive loading. Then, simplified analytical formulations are developed based on the first-order shear deformation theory (FSDT) to determine the quasi-static and dynamic responses of rectangular orthotropic plates in simply-supported boundary condition. Here, the problem domains are divided into two parts, namely, the linear small deflection regime and nonlinear large deflection regime. Both models are assumed to perfectly follow generalized Hooke's law of elasticity and the post-failure regime (matrix cracking, delamination, fiber rupture) is not considered.

Derivation of 'small deflection, linear elastic' model is adapted from the common approaches that can be found, for example, in [Reddy, 2004]. In this approach, the solutions and loading are expanded into double Fourier series. Ordinary differential equations are derived by employing the Lagrangian equation of motion. Results analyzed on two different types of materials, CFRP and GFRP, using analytical formulations are then compared with those from LS-DYNA simulations. According to the comparison, it was found that the formulations work quite well (the numerical results are within ±10% of the analytical results) as long as deflections remain small (w max /h < 1). A major observation here is that the larger the plate aspect ratio (that is, a/h) becomes, the more likely it is for the plate to sustain higher deflections due to lower stiffness. And then, the larger discrepancies (overestimation in the analytical results) are prone to occur when compared to the finite element results. The reason is that numerical results in LS-DYNA maintain geometric nonlinearity in their element formulation while analytical solution has yet to include that effect.

In the second part (Section 4.3) of Chapter 4, the linear FSDT solution is improved by accounting for the geometric nonlinearity due to large deflection (in von Kármán sense). In doing so, the partial differential equations are derived by following the procedures presented in [Mei and Prasad, 1989] 2 . In the solution steps, however, the same solution functions based on double Fourier series are adapted along with the one-to-one approximation assumption and Airy's stress function, previously utilized by [Nishawala, 2011]. Here, the objective of using one-to-one approximation is to avoid mode coupling while taking into account the effects of higher order modes. This way, it is possible to reduce the partial differential equations to the 'Duffing's equation', which can again be reduced to a much simpler form by local linearization. The resulting equation is then discretized and solved in time domain by using nonstandard finite difference scheme, developed in [Songolo and Bidégaray-Fesquet, 2018]. This nonlinear model is validated by comparing with the reference solutions available from the literature as well as LS-DYNA nonlinear finite element simulations. Both isotropic and composite plates are considered under quasi-static and dynamic loadings. Two types of edge assumptions, 'movable' and 'immovable' edges, are studied. According to the results, it can be shown that one-to-one approximation and the adapted solution functions provide reasonable accuracy within ±15% discrepancy relative to the numerical results. Important observation here is that disregarding the geometric nonlinear effect could be erroneous especially for relatively large and thin plates subjected to high loading level. The effect of nonlinearity is found to decrease the frequency of the oscillations and the amplitude of the plate deflection.

In the final part (Section 4.4) of Chapter 4, the formulations of nonlinear plate theory are extended to determine stress and strain in each ply. The concepts of effective strain and Russell's error measure technique [Russell, 1997] are applied to evaluate the accuracy of the formulations developed. It is observed that all the case studies show acceptable values of comprehensive error factors (0.15 < RC ≤ 0.28) in the transient effective strains at the lowest ply and center of the laminate subjected to various initial impulsive velocities. Finally, with the use of Tsai-Wu criterion, the ply at which failure will be initiated is predicted for some sample composite plates with large and small aspect ratios. The magnitudes of the in-plane stresses at the onset of failure are also compared to those of LS-DYNA. Although many more developments and analyses still need to be done, it can roughly be said that the failure initiation and the stresses are in good agreement with the numerical results according to some of the case studies performed in this thesis.

Chapter 5 -fluid-structure interaction

In Chapter 5, the past studies of the FSI problems using experimental and analytical methods are first reviewed. Then, the analytical model derived in Chapter 4 (for both small and large plate deflections) is extended to include the effect of the fluid-structure interaction. This is done by using the following approaches:

(1) two-step impulse based approach, and

(2) coupled first-order Doubly Asymptotic Approximation approach. These works have recently been published in the international journal of impact engineering, see [Sone Oo et al., 2020b], and in the international conference for ships and offshore structures that can be found in [Sone Oo et al., 2020a], respectively.

The first analytical model, following the approach of [Brochard, 2018], consists of two calculation steps:

(1) calculation of an initial impulsive velocity based on Taylor's simplified FSI theory for the early-time phase (the deformation is assumed to be negligibly small), and

(2) determination of the free-response of the plate for the long-time phase, taking into account the water-added inertia effect associated to the deceleration of the immersed plate.

Here, the plate is supposed to be air-backed, simply-supported (immovable edge) conditions and so far, only the linear, elastic, small displacement solution has been considered. Incident plane shock wave having simple exponentially decaying pressure profile is employed. Different parametric studies such as varying the peak pressures, decay times, aspect ratios and stiffness of the plates corresponding to different composite materials (CFRP and GFRP), and ply orientations are investigated. According to these studies, a number of important phenomena have been observed as follows:

• As expected, the maximum central deflection of the plate is linearly proportional to the peak pressure.

• Varying the decay time of the loading could affect the FSI behavior of the plate as well as the cavitation on the fluid-structure interface. For example, increase of the decay time could increase the cavitation inception time, thereby reducing the time gap between the first appearance of the cavitation and the reattachment of water to the plate. On the other hand, decrease of the decay time could result in an earlier promotion of cavitation.

• Flexible plates (with large a/h ratios) are prone to a prolonged cavitation period and show in-air like responses. As for the stiffer plates, a more rapid collapse of the cavitation was observed due to their high oscillation frequencies.

• Two-step approach works better with the stiffer plates (lower a/h ratios) where the cavitation collapses rapidly since two-step approach considers an abrupt transition between the earlytime and long-time stages.

Along with these observations above, the limits of applicability of the two-step approach are exposed as follows:

For thin CFRP plate: 0.09 ≤ τ/T 0 ≤ 0.16 (or) 19.8 ≤ β ≤ 34.5

For thick CFRP plate: 0.28 ≤ τ/T 0 ≤ 0.35 (or) 4.0 ≤ β ≤ 5.1

Exceeding these limiting values would result either over-or underestimation of the responses compared to LS-DYNA/USA (acoustic) solutions. Nevertheless, the power of the simplified analytical approach can be appreciated since a lot of time and effort can be saved. To highlight this point, a performance comparison study is done using the same computer (Core i7-8550U @ 1.8 GHz, RAM 16 GB) and the same termination time. The results are shown in Table 6.1. The high cost in the computational time in LS-DYNA/USA (acoustic) is mainly due to the involvement of a large number of degrees of freedom which could amount up to 5 millions DOFs, for instance, in the case for thin plates. From the industrial point of view, this is not acceptable and thus, simplified analytical solutions become more relevant. However, it should be aware that analytical formulations are limited by their non-generality depending on the assumptions in their derivations, as well as their applicable ranges.

A second method, which involves coupling of the first-order Doubly Asymptotic Approximation (DAA 1 ) in the analytical structural equations, is proposed for the cases where the loading duration is relatively long and the effect of cavitation is not important. The validity of the proposed formulations is first checked using spring supported rigid plate model (a single DOF system). Results are almost the same compared to the numerical model (LS-DYNA/USA with DAA 1 ) using the same system and water-added mass values. As for the 2D deformable plate with simplysupported (immovable edge) boundary condition, good agreement (±5% discrepancy with respect to numerical results) was achieved on the various step loading responses of the thin and thick steel plates. Regarding the exponentially decaying pressure loads subjected to the composite plates, only one case study on the thick (CFRP) plate has been given. Due to the possible involvement of the early-time cavitation as well as the material damage, cases involving the thin composite plates and other similar scenarios are omitted.

As for the treatment of cavitation in a 2D deformable plate system, the pressure cut-off model can be applied as long as cavitation is prolong and there is no reloading (same as case 2 from Kennard's studies). This makes the approach to be analogous to the two-step impulse based model containing the initial impulsive velocity only, that is, without the water-added mass effect. Example application of this analytical (coupled DAA 1 ) model can be found in Section 5.4 when the analytical results are compared to the experimental results of [Hung et al., 2005] 3 . One important observation here is that the microstrain results obtained from both analytical approaches are overestimated as much as 30% compared to the measured values. This highlights the need to consider a different boundary condition such as clamped edges. As for the areas where cavitation (reloading) may be important, a different FSI model still needs to be developed. This will be discussed in the subsequent section.

To appreciate the advantages of the analytical (coupled DAA 1 ) model, typical times required to solve the same problem are compared using the computer (Core i7-8550U @ 1.8 GHz, RAM 16 GB), see Table 6.2. Termination times used to end the computation are listed as well. It is obvious that using LS-DYNA/USA (DAA 1 ) without the explicit fluid model reduces the computation time tremendously and an even more time can be saved if semi-analytical approach is applied. 

Perspectives

Perspectives of the future work to be carried out are presented for 'internal mechanics' model, 'fluid-structure interaction' model, and 'general' as a whole thesis work.

Internal mechanics model

In the development of the analytical formulations, Navier's solution method containing the double trigonometric series was employed since it could satisfy the simply-supported boundary condition. It should, however, be noticed that the selected functions only exactly satisfy the displacement boundary condition, which is also known as 'essential' boundary condition. As for the moment (natural) boundary conditions, it depends on the choice of the lamination scheme. In order to satisfy both displacement and moment boundary conditions exactly, it is necessary that A 16 = A 26 = B 16 = B 26 = D 16 = D 26 = 0. Obviously, not all the lamination scheme could satisfy the secondary boundary condition. According to [Reddy, 2004], Navier's approach is applicable only for the laminates with a single generally orthotropic layer, symmetrically laminated plates with multiple specially orthotropic layers, and anti-symmetric cross-ply laminates. The effects of the choice of solution functions along with the lamination scheme should be investigated in more details.

Secondly, the formulations proposed are valid only for the simply-supported boundary condition. To solve other boundary conditions such as clamped edges, a different type of solution function or an approximate method (e.g., Ritz's method) must be considered [Reddy, 2004].

Thirdly, in the development of geometric nonlinear theory for orthotropic plates, a one-to-one approximation and the local linearization are adapted to simplify the problem. Their consequences as well as the applicable limits of these approximations should be investigated in the future.

Fourthly, the effect of structural damping (as in [Kazanci and Mecitoglu, 2005]) as well as the viscoelastic effect should be studied. Finally the post-damage behavior should be included by decreasing the material stiffness after the onset of the first ply failure while taking into account the material strain rate effect at the same time, for example, as had recently been done by [START_REF] Fedorenko | Failure analysis of laminated composites with shear nonlinearity and strain-rate response[END_REF]. In that paper, two damage parameters corresponding to fiber and matrix failure modes are introduced to account for the damage evolution. Indeed, it would be interesting to incorporate such model into the analytical approach presented in this thesis.

Fluid-structure interaction model

On characterizing the incident load, a simple plane shock wave, which is associated with a far-field underwater explosion, is adapted assuming that the charge source is sufficiently far from the target. This is a simplified assumption. In the future, a spherical wave as well as the possible contribution of the oscillating bubble should be examined. Also, at the arrival of the shock wave onto the plate, the scattered pressure is simply considered as a combination of the fully-reflected pressure and radiated pressure caused by plate movement. In reality, for composites, some part of the incident pressures might have transmitted into the plate and therefore, only some part could reflect. This was discussed in [START_REF] Abrate | Interaction of underwater blasts and submerged structures[END_REF] and of course, should be taken into account.

One of the most important improvements that should be done in near future would be to study the effects of cavitation and reloading associated to its collapse, considering the actions of breaking and closing fronts as first outlined by [Kennard, 1943]. In other words, the questions of 'where' and 'when' the reloading starts, and 'how' it modifies the total pressure are important ones. So far, an approximate cavitation model has been developed by cutting-off the total pressure once it drops below zero. However, it is an idealized assumption and works only for long and lasting cavitation (case 2 of Kennard). It would be useful to know the criteria to distinguish between different cases, for example, prolonged cavitation, cavitation with reloading and no cavitation at all. Regarding this, [Schiffer and Tagarielli, 2014] proposed an analytical model for the clamped circular plate by adapting a wave propagation model. One question here is to know if this is enough to predict the stresses and strains correctly especially for higher order modes because using wave propagation model means that the displacement functions are polynomial and could only account for the fundamental mode of deflection. Also, the cavitation model is based on 1D model using rigid plate-spring system, [Schiffer et al., 2012]. In the future, the question of how to extend this model to 2D rectangular plate needs to be researched.

When coupling with the Doubly Asymptotic Approximation model of [Geers, 1978], only the first-order form was used in this thesis. In fact, the second-order form (DAA 2 ) is a more generalized version of DAA 1 . Here, a numerical algorithm proposed by [START_REF] Cieśli Ński | On the exact discretization of the classical harmonic oscillator equation[END_REF]] can be used to discretize and solve the coupled equations with DAA 2 in time domain. This is also one of the future perspectives of the research.

The water-added mass is calculated based on [Greenspon, 1961]'s formulation. However, it is only accurate for the fundamental mode shape. It was found out that the values of water-added mass for higher order modes are very small compared to mode [1,1]. In this thesis, this issue was lifted by artificially improving the mode shape term without giving rigorous justifications. Obviously, a better formulation needs to be developed in the future.

Finally, the phenomena regarding the inclusion of hydrostatic pressure and water-backed condition should be investigated as well. Either condition could modify the total pressure and thus, the criterion for cavitation. These are the research works that should be done in the future.

General

In general, the formulations developed should not be limited to the rectangular geometry or plate equations. In the future, more formulations should be developed by coupling DAA, for instance, with string-on-foundation model used by [Brochard et al., 2018] to determine the UNDEX response of cylindrical metallic structures. Also, it would be interesting to extend the formulations to other types of geometries such as curved shells, spheres, stiffened panels, etc. Finally, by incorporating graphical user interface, it may be possible to make an industrialized version of the simplified design tool that features different structural parts with different boundary conditions subjected to different explosion loads.

A.2 Approximate formula: free-standing rigid plate model By using the initial conditions expressed in Eq. (A.11),

C 1 = 2ρ w c w χ 1 (χ 2 + 1/τ) m s (χ 2 -χ 1 ) 1 τ 2 - ρ w c w m s τ + ω 2 , C 2 = 2ρ w c w χ 2 (χ 1 + 1/τ) m s (χ 1 -χ 2 ) 1 τ 2 - ρ w c w m s τ + ω 2 ,              (A.12)
By substituting Eq. (A.12) into Eq. (A.9), and by using Eqs. (A.3) and (A.4), the following formulations can be derived: 

P tot = 2P 0 1 τ 2 - ρ w c w m s τ + ω 2 - ρ w c

A.2 Approximate formula: free-standing rigid plate model

If the frequency of free vibration of the plate is small compared to inverse of the decay time 1 τ and the constant ρ w c w m s , then ω can be neglected [Taylor, 1941]. Then, the response of the plate becomes analogous to that of a free-standing rigid plate. Also, where β is called the FSI coefficient of Taylor and can be determined as:

β = ρ w c w τ m s (A.19)
The term β can also be seen as the ratio of the decay time τ to the Kirkwood damping time, m s / ρ w c w , of the plate. Kirkwood damping time is defined as the time required for the velocity of a plate, when in contact with water and given an initial impulsive velocity only (without any external forces), to drop to 1/e of its initial value. It can be interpreted as the time required for a sound wave to traverse a thickness of water having the same mass as the plate [Kennard, 1944].

The velocity of the plate from Eq. (A.18) can be related to the maximum particle velocity of the incident wave, denoted as u 0 , as follows: Ẇ = 2u 0 β 1 -β e -βt /τe -t /τ (A.20) in which u 0 = P 0 /(ρ w c w ). The plate reaches its maximum velocity when the total pressure is equal to zero. Then, the time associated to this event can be derived as:

τ c = τ ln β β -1 (A.21)
At the time of τ c , the loading is canceled since the total pressure P tot (τ c ) = 0. It is also the time when cavitation phenomenon appears since water cannot sustain large tensile loading (which is approximately true for any shallow water explosion cases). In this regard, τ c is termed as 'cavitation inception time'.

The maximum attainable speed V i at time τ c can now be written as:

V i = 2P 0 τ m s β β 1-β or V i = 2u 0 β 1 1-β (A.22)
It is at that instant when the kinetic energy flux transmitted to the plate also becomes maximum. Its expression per unit area can be written as: .23) where E 0 = P 2 0 τ /(ρ w c w ) is the energy flux contained in the shock wave (see Chapter 2). Without taking into account the cavitation phenomenon (that is, assuming that water can support tension), the expression for maximum displacement W m can be obtained by integrating the velocity of the plate, Eq. (A.18) from time zero to infinity as:

T i = 1 2 m s V 2 i = 2τP 2 0 ρ w c w β (1+β)/(1-β) or T i = 4E 0 β (1+β)/(1-β) (A
W m = ∞ 0 2P 0 τ m s (1 -β)
e -βt /τe -t /τ dt = 2P 0 τ ρ w c w (A.24) This constant is used in the thesis (Chapter 5) to define dimensionless deflection so that the displacement (with cavitation) is characterized as a function of the displacement (without cavitation).

In connection with Eq. (A.17), it is also useful to describe the plate displacement W at the moment of cavitation inception time τ c while neglecting the effect of plate stiffness. This gives:

W i = W (τ c ) = 2P 0 τ 2 m s β 1 -β + 1 β β/(1-β) or W i = W m 1 -β + 1 β β/(1-β) (A.25)

A.3 Application examples and analyses

A.3.1 Using approximate formulations of Taylor

The effect of the variation of the FSI coefficient β on the cavitation inception time, maximum velocity, displacement, and kinetic energy is accessed by using Eqs. • The ratio τ c /τ asymptotically decreases with increasing β (and vice versa).

• In the extreme cases of an infinite mass or extremely short shock event, lim β→0 τ c /τ = ∞.

In contrast, for a negligible plate mass or an extremely long shock event, lim β→∞ τ c /τ = 0.

• Taking the right-hand and left-hand limits to the Eq. (A.21) at β = 1 shows that cavitation occurs at about the load decay time, i.e., τ c → τ when β → 1. • The plate velocity increases along with the FSI coefficient β.

• In the extreme case of an infinite mass or extremely short decay time (β → 0), the plate velocity remains zero.

• On the other hand, when β approaches infinity (very light plate or very long decay time), the velocity of the plate will approach to twice the maximum incident particle velocity u 0 .

3. Effect on plate displacement (Fig. A.2(c))

• W i /W m refers to the ratio between the displacement when pressure changes to suction and the maximum displacement when the plate is assumed to remain in contact with water.

• According to the figure, W i /W m = 0.264 is maximum at β = 1.

• When β → ∞, then the ratio W i /W m → 0. • The maximum kinetic energy transmitted at the cut-off time τ c has a maximal value around β = 1 and then starts to decrease with the increasing FSI effect.

• The maximum value of T i is approximately equal to half of the shock wave energy E 0 . It shows that the kinetic energy transferred to the plate at the early-event of the FSI does not exceed 50% of the initial energy possessed by the shock wave. The remaining energy is lost during the wave propagation as has already shown in Fig. 2.4, Chapter 2.

A.3.2 Using full formulations of Taylor

The difference between full and approximate formulations of Taylor lies whether the plate stiffness is considered or not. Following the approach of [Taylor, 1941], the stiffness is represented as a linear spring with areal stiffness K s . The effect of varying the stiffness is studied while keeping the same areal mass and acoustic properties, and applying the same loading. These are shown in Table A.1. A steel plate having the density 7800 kg.m -3 and a uniform thickness of 10 mm is considered along with three values of stiffnesses, K s = 0, 6.48 × 10 8 , 3.37 × 10 9 N.m -3 , see Table A.2. Note that test 1 (with stiffness zero) is basically the same as Taylor's approximate theory. The results of maximum impulsive velocity V i with the associated cavitation inception time τ c are listed in Table A.2. It can be seen that the increase in stiffness causes a slight decrease in the maximum impulsive velocity. Nevertheless, the overall value (with a standard deviation of 1.7 for V i ) does not change a lot. As for τ c , the values are almost identical except for test 3 where the pressure does not fall below zero for all time. Hence, no τ c information is available for test 3. As for the stiffer plate (test 3), its high stiffness possibly brings the plate to a stop sooner than the other two. This can be observed in Fig. A.3(b) where the non-dimensional velocity of test 3 changes with a quicker (steeper) negative slope compared to the rest. If we recall the expression for total pressure P tot = 2P i -ρ w c w Ẇ , then it can be realized that the latter term ρ w c w Ẇ (its absolute value) is starting to decrease, causing the total pressure to increase again due to decrease of the negative term. This observation is also consistent with the incident pressure profile (Fig. A.3(a)) because at about t /τ = 0.5, there is still a considerable part of incoming pressure (the remainder of P i ) after that time. In this sense, the approximate formula of Taylor's theory is not valid anymore for two reasons: first, there is no cavitation inception time, and second, the plate stiffness, which may be important depending on the decay time of the loading, is not accounted for. These conditions are usually satisfied in practical test assemblies due to the thinness of the diaphragms [Kennard, 1944]. Assume that the plate is mounted in a fixed plane baffle and is proportionally constrained in its motion, then the initial impulsive velocity acquired at the center of the plate can be given as:

V mod = 2 F i d t M + M l (B.3)
where F i = Ω P i f (x, y)dΩ in which P i is the incident pressure, and f (x, y) is a shape factor represented by a fixed function of the Cartesian coordinates (x, y) specifying position on the plate, and M l = Also the stress forces in the plate are still not very important, that is, the plate deflection is negligibly small at that time τ c . Cavitation is supposed to occur and to last at least until the plate attains its maximum deflection. Usually, this condition could be found in cases where relatively thin (and flexible) plates are exposed to a shock wave with short decay time. The maximum impulsive velocity given by Taylor's free-standing plate theory is relevant in this case:

V i = 2P 0 τ m s β β 1-β (B.6)
where β = ρ w c w τ/m s is the FSI coefficient and m s = ρh is the areal mass of the plate, see details in Appendix A. This condition has been observed in the experiment of [Hung et al., 2005] in which an air-backed aluminum plate is subjected to far-field underwater explosion.

B.3 Case 2a: Reloading after cavitation at the diaphragm

This is more or less the same with case 2 except that there is a reloading of additional pressure to the plate when the cavitation zone collapses. After the appearance of cavitation, the remainder of the shock wave might act on the water surface, thereby accelerating it towards the plate. One condition necessary for this case is that the duration of the shock wave exceeds the compliance time. That is, τ > τ c (B.7)

In case the decay time is too short, the reloading effect becomes a lot less and the case resembles more like case 2: prompt and lasting cavitation. A conceptual description of the central deflection including the reloading effect is given in Fig. B.4. A practical study for this case can be found in the Goranson's experiment (reported by [Cole, 1948]). Its validation and comparison with numerical simulation using LS-DYNA/USA (acoustics) have also been given in Section 3.4.1 of Chapter 4. [Kennard, 1944] asserted that the effect on the water should be especially strong near the edge of the plate. Moreover, it is already known that the flexural motion of the plate begins at the support and propagates toward the center. At the edge, therefore, the cavitation must start to disappear immediately, and it should disappear progressively toward the center. The boundary of the cavitated area may move at supersonic velocity and will then be accompanied by an impulsive increment of the pressure, leading to further increment of the maximum deflection (as shown in Fig. B.4). An idealized analytical treatment for this case is given in this thesis by assuming that the closure of cavitation and imposing its effect since the beginning of the analysis, see two-step impulse based method presented in Chapter 5, Section 5.2.

B.4 Case 3: Negligible diffraction time but long decay time

The decay time in this case is sufficiently long and the diffraction time is negligible so that:

T d τ , T d T 0 w (B.8)
Under these conditions, non-compressive theory is applicable. Note that decay time τ is not necessarily smaller than T 0 w . Otherwise, the case will become like case 1 (relatively long swing time, no cavitation). For a proportionally moving plate or diaphragm mounted in a large plane fixed baffle, [Kennard, 1944] proposed analytical expressions by adapting the forced harmonic oscillator equation as:

(M + M l ) Ẅ + K W = 2F i (B.9)
where F i = P i f (x, y)d Ω, K is the stiffness, and W is the central deflection. For a simple exponential wave, i.e., P i = P 0 e -t /τ , then F i = F 0 e -t /τ in which F 0 is a constant. Approximate solution for Eq. (B.9) when W (0) = Ẇ (0) = 0 at t = 0 is: Here, N refers to the ratio of the maximum deflection W d yn under a suddenly applied force F 0 e -t /τ to its static deflection W st at i c under a steady force F 0 . This plot shows the relationship between the dynamic load factor N and the dimensionless number q associated to decay time and angular frequency.

W = 2F 0 (M + M l ) 1 τ 2 + ω 2
where the parameter ∆t > 0 is the step size, t 0 is the initial time, and i = 1, 2, 3, ... refers to the discrete point (shall be written using superscript from now on).

An approximate solution X (t i ) at time t i , denoted as X i for simplicity, can be obtained by using an efficient numerical scheme called nonstandard finite difference (NSFD) methodology. Definition 1. The numerical solution of Eq. (C.3) is called a nonstandard finite difference method if at least one of the following conditions is satisfied [Mickens, 1993]:

• The renormalization of the step size:

Ẋ i = ϕ(∆t ) -1 X i +1 -X i , where ϕ(∆t ) = ∆t I + O ∆t 2 is a positive diagonal matrix; and

• The nonlocal approximation of the right-hand side of Eq. (C.3): for example, X → X i +1 .

When B from Eq. (C.3) is taken as zero, the exact numerical solution is 1 :

X i +1 = e A∆t X i (C.6)
With some algebraic manipulations, it is able to show that:

ϕ(∆t ) -1 X i +1 -X i = AX i (C.7)
where ϕ(∆t ) = e A∆t -I A -1 which verifies the first condition of Definition 1 on NSFD scheme. By adding the non-autonomous term to Eq. (C.7), the equation becomes:

ϕ(∆t ) -1 X i +1 -X i = AX i + B i (C.8)
whose explicit form including the matrix e A∆t is as follows:

X i +1 = e A∆t X i + ϕ(∆t ) B i (C.9)

The solution to Eq. (C.9) lies in finding the exponential matrix e A∆t which can be expressed by a linear combination as follows [Songolo and Bidégaray-Fesquet, 2018]:

e A∆t =
λ 1 e λ 2 ∆t -λ 2 e λ 1 ∆t λ 1 -λ 2 I + e λ 1 ∆te λ 2 ∆t λ 1 -λ 2 A (C.10)

where λ 1 , λ 2 = ±ω are two distinct eigen values of the [2 × 2] matrix A. Solving Eq. (C.10) and substituting into Eq. (C.9) leads to the expressions below:

W i +1 = W i cos (ω∆t ) + V i ω sin (ω∆t ) - F i
M s ω 2 (cos (ω∆t ) -1) (C.11)

V i +1 = -W i ω sin (ω∆t ) + V i cos (ω∆t ) + F i M s ω sin (ω∆t ) (C.12)

where the step size can be estimated as ∆t ≤ π/(200ω), which is at most one-hundredth of the time to reach the first peak displacement.

C.2 Sample case study

As an example2 , suppose that the object has a mass of 3 kg, and is attached to a spring with stiffness of 75 N.m -1 as shown in Fig. C.1. The forcing term has the form: F (t ) = 10 cos (ωt ). Assume that the system has the initial condition: W (0) = 0.2 and Ẇ (0) = -0.1. Neglecting damping in the system, its angular natural frequency can be calculated as:

ω = K s M s = 75 3 = 5 rad.s -1
The exact solution of the aforementioned system can be given as:

W (t ) exact = 1 5 cos (5t ) - 1 50 sin (5t ) + t 3 sin (5t )
The present explicit solution using NSFD scheme (Eq. [C.11]) is obtained as: W (t ) i +1 = W i cos (5∆t ) + V i 5 sin (5∆t ) -2 15 cos 5t i (cos (5∆t ) -1)

V i +1 = -5W i sin (5∆t ) + V i cos (5∆t ) + 2 3 cos 5t i sin (5∆t )

with W 1 = W (0) = 0. 
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 11 Figure 1.1 Serious local damage to the structures caused by contact explosions
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 1314 Figure 1.3 HMAS Rushcutter, RAN's Bay class minehunter vessel (Source. wikimedia 5 )
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 21 Figure 2.1 Two dimensional schematic of the underwater explosion in an infinite fluid domain[Barras, 2012; Brochard, 2018] 
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 22 Figure 2.2 Schematic representation inspired by[START_REF] Snay | Hydrodynamics of underwater explosions[END_REF] which presents the temporal evolutions of the pressure (top) and of the residual gas bubble in an open water condition (bottom)
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 25 Figure 2.5 Iso-contour plots for (a) the peak pressure P 0 (MPa), and (b) the decay time τ (ms) relative to the primary shock wave as a function of the firing distance R and the explosive mass C in S.I. units
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 26 Figure 2.6 Illustration of bulk cavitation phenomenon[START_REF] Costanzo | Underwater Explosion Phenomena and Shock Physics[END_REF] 
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 31 Figure 3.1 Two dimensional schematic of the underwater explosion in an infinite fluid domain[Barras, 2012; Brochard, 2018] 
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 32 Figure 3.2 LS-DYNA/USA coupled program[START_REF] Hung | Dynamic response of cylindrical shell structures subjected to underwater explosion[END_REF] 
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 33 Figure 3.3 Coupling of the acoustic volume solver with LS-DYNA: (a) components of the different domains involved: submerged structure S, surrounded by cavitating acoustic fluid volume V f , truncated by radiation boundary D 11 ; and (b) the interaction processes between different solvers.

  29) are called the fluid capacitance (mass) and reactance (stiffness) matrices, respectively. The boundary interaction term b consists of b s and b d as: b s is associated to the interaction of the acoustic fluid volume with the structure while the forcing term b d corresponds to the DAA boundary acting on the fluid volume.
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 34 Figure 3.4 Typical finite element models for the simulation of UNDEX using different numerical approaches: (a) LS-DYNA with only impulsive velocity (no fluid) model, (b) LS-DYNA with only acoustic elements model, (c) LS-DYNA/USA with DAA 2 boundary elements (no fluid) model, and (d) LS-DYNA/USA acoustics coupled to DAA non-reflecting boundary model.

  Figure 3.5 Comparison between central deflection-time history results calculated by different numerical codes and Goranson's experimental result performed on steel circular plate in detonics basin
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 3638 Figure 3.6 Pressure contours at various important time steps retrieved from LS-DYNA/USA acoustics model of Goranson's experiment (Plate deflection is amplified by 3 times for clear visibility): (a) At cavitation inception time, (b) At diffraction time, (c) At reloading time (just before the collapse of local cavitation), and (d) At the time of maximum central deflection.
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 3 Figure 3.10 Comparison of the numerical results with the experimental result of Schiffer and Tagarielli [2015] conducted on circular GRP plate: (a) plot of central deflections obtained from different numerical approaches and experiment is given as a function of time, and (b) normalized pressure P /P 0 obtained from LS-DYNA/USA (acoustics) simulation is plotted as a function of time.

  Figure 3.12 DGA test setup performed on a circular steel plate subjected to a TNT equivalent charge of 55 g and comparison of the central final deflections with LS-DYNA/USA acoustic simulation
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 41 Figure 4.1 Panel geometry and coordinate system of the problem formulation

  where N = N x N y N x y T and M = M x M y M x y T are column matrices of in-plane force and moment resultants respectively, 0 = 0 x 0 y 0 x y T is the mid-plane strain matrix, and κ = κ x κ y κ x
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 43 Figure 4.3 General procedure (solver) written in MATLAB program
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 44 Figure 4.4 Typical finite element model of composite (quarter) plate in LS-DYNA
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 46 Figure 4.5 Comparison of CFRP plate response subjected to the varying impulsive velocities (Numerical results are shown with •, ×, and the analytical ones are shown with lines)

( a )Figure 4 . 7

 a47 Figure 4.7 Comparison of GFRP plate response subjected to the varying impulsive velocities (Numerical results are shown with •, ×, and the analytical ones are shown with lines).
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 48 Figure 4.8 Time evolutions of central deflection for (a) thin GFRP plate (a/h = 50), and (b) thick GFRP plate (a/h = 12.5), subjected to low impulsive velocity (v i = 2 m.s -1 ) and high impulsive velocity (v i = 5 m.s -1 ).
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 49 Figure 4.9 Normal modes of rectangular CFRP plate retrieved from LS-DYNA/implicit eigenvalue calculations

Figure 4 . 10

 410 Figure 4.10 Effects of varying the shear correction factor K s on (a) natural modal frequencies ( f mn ), and (b) free response of the plate (case study performed on CFRP thick plate subjected to v i = 2 m.s -1 )

  . (4.54a -b), axial displacements δ x and δ y along the edges y = 0, b and x = 0, a can be given respectively as:δ x (y)
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 4 Figure 4.11 Simply-supported boundary conditions (left), force resultants and edge conditions (right) for the rectangular plate
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 4 Figure 4.12 Nondimensional load-deflection curves for simply-supported isotropic square plate with: (a) Movable and stress-free edge conditions, and (b) Immovable edge condition. (Steel plate with Poisson's ratio ν = 0.316) -(i) Stress-free edge, (ii) Movable edge, (iii) Immovable edge
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 4 Figure 4.13 Sensitivity to the nonlinear term (the coefficient of the cubic term from Eq. (4.79))
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 4 Figure 4.14 Static response comparison between LS-DYNA nonlinear implicit solver and present analytical results using different number of modal participation terms

  Figure 4.15 Dynamic response of simply-supported isotropic square plate subjected to uniformly distributed step loading: (a) Central deflection Vs time, and (b) Dimensionless peak deflection-load. (See material and loading characteristics in Eq. (4.80)).

  Figure 4.17 Time evolutions of central deflection for (a) thin CFRP plate (a/h = 69.4), and (b) thick CFRP plate (a/h = 17.4), subjected to different impulsive velocities

  81a -b) would then give Ψ x mn and Ψ y mn as a function of W mn :

time

  Figure 4.18 Comparison of effective microstrain at the center and lowest ply of the (a) thin CFRP plate (a/h = 69.44), and (b) thick CFRP plate (a/h = 17.44) subjected to initial impulsive velocity of 2 m.s -1
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 4 Figure 4.21 Analytical evaluation of critical energy required to initiate first ply failure
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  Table 5.1 Pros and cons of using explosive test facilities Pros Cons -Ease of use -Direct data measurement without the need for complicated scaling of spatial and temporal variables -Wider range of test specimen dimensions -Expensive -Requirement of extensive safety measures -Difficult to perform in non-military settings -Relatively hard for the data acquisition due to the presence of spherical wave fronts and pressure signatures Table 5.2 Benefits and drawbacks of using laboratory environment Pros Cons -A wide variety of loading conditions only within a limited budget -Safe, simple and robust -Better accuracy control and repeatability -Limitation on the size of test specimens -Complexity in scaling of large structures -The impact region in the lab-scale test is generally small compared to the panel dimension, sometimes leading to a very localized damage
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 5253 Figure 5.2 Comparison of central deflection time histories between analytical and numerical methods for (a) thin CFRP plate (a/h = 69.4), and (b) thick CFRP plate (a/h = 17.4). (Analytical results consider the first five vibration modes and shear correction factor K s = 5/6)
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 54 Figure 5.4 Comparison of dimensionless maximum central deflections between analytical and numerical methods for (a) thin CFRP plate (a/h = 69.4), and (b) thick CFRP plate (a/h = 17.4).
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 55 Figure 5.5 Dimensionless transferred impulse Ī and dimensionless impulsive velocity vi as a function of Taylor's FSI coefficient β (Calculations based on thick CFRP plates with a/h = 17.4)
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 56 Figure5.6 Effect of stiffness for carbon-fiber/epoxy and glass-fiber/epoxy plates with different stacking sequences, layout 1 and 2 (denoted by 'CFRP 1','CFRP 2' and 'GFRP 2' respectively) 
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 57 Figure 5.7 A mass-spring system containing a rigid plate in air-backed condition and subjected to an incident pressure
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 58 Figure 5.8 Comparison between LS-DYNA/USA and analytical results using DAA 1 formulations (with/without cavitation)
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 59 Figure 5.9 Comparison of the response of (a) thin steel plate (a/h = 69.4), and (b) thick steel plate (a/h = 17.4) loaded by varying levels of suddenly applied step pressures using LS-DYNA/USA (DAA 1 ) and coupled analytical-DAA 1 approaches.

  Figure 5.12 Comparison of the thick CFRP plate response between LS-DYNA/USA (DAA 1 ) and coupled analytical-DAA 1 approaches (Exponentially decaying pressure: P 0 = 1.5 MPa, τ = 1.3 ms)
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 513 Figure 5.13 Comparison between original and improved formulations of water-added mass. LS-DYNA/USA (DAA 1 ) result is also plotted as reference. Calculations here are based on thick CFRP plate subjected to exponentially decaying pressure (P 0 = 1.5 MPa, τ = 1.3 ms).

5. 4 Figure 5 .

 45 Figure 5.14 Effect of number of mode shapes in coupled analytical-DAA 1 formulations (calculation based on thick steel plate subjected to step pressure of 2.5 MPa).
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 5 Figure 5.15 (a) Setup of the experiment of [Hung et al., 2005], and (b) details of the shock rig, plate and location of the strain gauge.
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  (A.19 -A.25). The obtained results are plotted in Fig. A.2. 1. Effect on cavitation inception time (Fig. A.2(a))

2.

  Effect on plate velocity (Fig. A.2(b))

4.

  Effect on kinetic energy((Fig. A.2(d)) 
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 2 Figure A.2 Plots of the effect of the variation of dimensionless parameter β on: (a) Dimensionless cavitation inception time (τ c /τ); (b) Dimensionless plate velocity (V i /u 0 ); (c) dimensionless displacement (W i /W m ); and (d) dimensionless kinetic energy (T i /E 0 )

  ρ w (kg.m -3 ) c w (m.s -1 ) P 0 (MPa) τ (ms) β = ρ w c w τ/m s of pressure and velocity are shown in Fig.A.3. Both pressure, velocity and time are non-dimensionalized to give a generalized conclusion. The time when the pressure becomes zero (around t /τ = 0.5) is marked by a red dash-dot lines in both figures. First of all, according to Fig.A.3(a), the transient response of pressure is almost the same for all three cases until the time of cavitation (t = τ c ). It shows that the more flexible the plate (e.g., K s = 0), the more

Figure A. 3

 3 Figure A.3 Plots of the effects of plate stiffness K s by assessing (a) non-dimensional pressure (t /τ), and (b) non-dimensional plate velocity, both as a function of dimensionless time (t /τ).

  Figure B.3 Conceptual plot for case 2

Figure B. 4

 4 Figure B.4 Conceptual plot for case 2a

  Figure B.5 Dynamic response factor N

  2 and V 1 = Ẇ (0) = -0.1 as initial conditions, and ∆t = π/(200ω) ≈ 3 ms. The results are plotted in Fig. C.2. It can be seen that the present NSFD solution matches perfectly with the exact solution.
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 2 Figure C.2 Forced, undamped response of the mass-spring system

  

  

  

  

  

  

  

  

  Indeed, it is the intention of the author to evaluate the performance and the validity of each FE approach. Only then, the simplified analytical solutions are compared against the validated FE simulation results.Development of analytical models is divided into two as follows:

	1. Non-linear finite element (FE) explicit code LS-DYNA with only initial impulsive velocity
	(or) pressure loading,
	2. LS-DYNA including acoustic volume elements,
	3. LS-DYNA coupled with USA (Underwater Shock Analysis) code involving Doubly Asymptotic
	Approximation (DAA) boundary element solver, and
	4. LS-DYNA/USA with DAA non-reflecting boundary element (NRB) solver that is again coupled
	with acoustic volume elements to take into account the effects of cavitation.

1. Internal mechanics model: It is also known as 'uncoupled model' in which the plate response is studied without the presence of fluid. Classic Plate Theory (CPT) and First-order Shear Deformation Theory (FSDT) were adapted. Equations of motion are derived by using either Lagrangian energy approach or equilibrium equations, depending on the level of complexities involved. At first, derivations are done for a simply-supported orthotropic rectangular plates in only linear, small displacement domain. Later, emphasis is given to the extensions of the simply-supported orthotropic plates in geometrically nonlinear, large displacement domain. The obtained results are validated with LS-DYNA and other available solutions from the literature.

  Comparison of the simple and double decay formulations
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.1 Energy balance involved in a detonation of 680 kg TNT

[START_REF] Arons | Energy partition in underwater explosion phenomena[END_REF] 

  Energy participation in the process of an underwater explosion

		100%			
		Total energy		
		emitted by the		
		detonation		
	53%			47%	
	Initial shock		Energy in the first	
	wave energy		bubble pulsation	
	20% Energy lost during early propagation	33% Shock wave energy (to inflict damage)	13% Radiated energy during first pulsation	17% Energy losses at first maximum contraction	17% Remaining energy in second pulsation
	Figure 2.4				

Table 2 .2

 2 Numerical example for the principle of similarity

		Charge 1 Charge 2	Charge 2 Charge 1
	C (kg)	1	8	8
	R (m)	10	20	2
	P 0 (MPa)	3.44	3.44	1
	τ (ms)	0.14	0.28	2
	I (N.s.m -2 ) 682.7	1365.4	2
	E 0 (J.m -2 )	660.2	1320.4	2

Table 2 .3

 2 Parameters for the TNT explosive[START_REF] Reid | The response of surface ships to underwater explosions[END_REF] 

	Peak pressure	P 0	K 1 52.117 ×10 6 A 1 1.180
	Decay constant	τ	K 2 0.090 A 2 -0.185
	Impulse	I	K 3 6519.945 A 3 0.980
	Energy flux	E 0	K 4 94.34 A 4 2.155
	Bubble period	τ p	K 5 2.064
	Bubble radius (max.) R max K 6 3.383

Table 3 .1 Comparison of different numerical approaches Method Pros Cons

 3 

	Lagrangian hydrocodes	-Relatively straightforward -Fast computation	-Distorted mesh -Unacceptably resulting small time step
			-Computationally expensive
		-Use of advection	-Fine mesh requirement
	Eulerian hydrocodes	or remapping phase	-Modeling limitations (e.g., 'smeared' structural
		-Avoid mesh distortions	properties due to presence
			of water in a mixed cell)
	Coupled Eulerian-Lagrangian hydrocodes (CEL)	-Capability of rezoning -Avoid mesh distortions -Effective fluid-structure coupling	-Two separate coordinate systems required -Difficult to apply for thin plate elements that are extended into the fluid

Table 3 .1 (continued)

 3 

	Method	Pros	Cons
		-Continuous rezoning of	-Rezoning increases
	Arbitrary Lagrangian-Eulerian hydrocodes (ALE)	the water elements -No need to use separate coordinate systems -More efficient FSI	computational effort -Lagrangian elements cannot collapse on one another particularly
		coupling than CEL	in the 'pinch-off' region
	Plane wave approximation (PWA), Curved wave approximation (CWA)	-No explicit fluid model required -Very fast calculation	-Only accurate for early-time (or) high frequency motion -Cavitation not captured correctly
			-Only accurate for late-
	Virtual wave approximation (VWA)	-No explicit fluid model required -Very fast calculation	time (or) low frequency motion -Cavitation not captured
			correctly
	Doubly Asymptotic approximation (DAA 1 or DAA 2 )	-No explicit fluid elements required -Approaches exactness at both early-time and late-time	-The application of DAA model alone cannot capture cavitation correctly
	Cavitating Acoustic Finite-Element (CAFE)	-Requires only one unknown per node -Cost effective solution -Able to model cavitation well	-Use of low-order elements may lead to numerical dispersions -Needs refined mesh

Table 3 .2

 3 Summary of four FE models simulated

	FE model	Fluid Cavitation Assumptions
	LS-DYNA (only impulsive velocity)	No	No	-No water inertia or cavitation effects
				-Finite extent of water
	LS-DYNA (only acoustic) Yes	Yes	-Constrained x-y displacements on
				the lateral surface of the fluid
	LS-DYNA/USA (DAA 2 )	No	Yes	-Infinite fluid domain
	LS-DYNA/USA (acoustic) Yes	Yes	-Semi-infinite fluid and rigid baffle plate

Table 3 .5

 3 Characteristics of the circular composite plates employed in the experiment of[Schiffer and Tagarielli, 2015] 

	Material Ply layout	Radius (mm) Thickness (mm) Density (kg.m -3 )
	CFRP	[0/90] 3	12.5	0.75	1500
	GFRP	[0/45/90/ -45]	12.5	0.85	1550

Table 3 .6

 3 Material characteristics of CFRP and GFRP[Schiffer and Tagarielli, 2015]E 1 (GPa) E 2 = E 3 (GPa) ν 12 = ν 23 G 12 = G 13 (GPa) G 23(GPa) 

	CFRP	103	7.5	0.28	2.62	2.93
	GFRP	27.8	5.0	0.3	1.86	1.92

Table 3 .7

 3 Comparison with other test cases of[Schiffer and Tagarielli, 2015] 

	Experiment	LS-DYNA/USA (acoustics)

Table 3 .8

 3 Characteristics of the steel plate (DGA)

	Density	Young modulus Poisson ratio Tangent modulus Yield stress
	ρ (kg.m -3 )	E (GPa)	ν	E T (MPa)	σ Y (MPa)
	7800	210	0.3	1680	250

Table 4 .2

 4 Different categories of previous research works on blast and impulsive loads

	Analytical	
	Numerical	
	Experiment	
	Configurations	1. Circular steel plates

Table 4

 4 

			.3 Characteristics of the materials	
	Materials	E 11	E 22 = E 33 ν 12 = ν 13	ν 23	G 12 = G 13	G 23
		(GPa)	(GPa)	-	-	(GPa)	(GPa)
	CFRP	138	8.98	0.281	0.385	3.66	3.24
	GFRP	34	10.04	0.274	0.4	3.03	3.58
	Table 4.4 Different plate aspect ratios considered	
			Dimension (mm) CFRP GFRP	
				a = b	a/h	a/h	
	Thin plate		400	69.4	50	
	Medium plate	200	34.7	25	
	Thick plate	100	17.4	12.5	

Table 4 .5

 4 First natural frequencies of the CFRP and GFRP plates with different aspect ratios

	Materials a/h	Mode [m, n]	Analytical f (Hz)	LS-DYNA f (Hz)	Discrepancy %
			[1,1]	191	190	0.5%
		69.4	[1,3] [3,1]	673 1220	669 1216	0.6% 0.3%
			[3,3]	1672	1652	1.2%
			[1,1]	756	743	1.7%
	CFRP	34.7	[1,3] [3,1]	2627 4541	2596 4508	1.2% 0.7%
			[3,3]	6161	6030	2.1%
			[1,1]	2906	2808	3.4%
		17.4	[1,3] [3,1]	9620 14661	9431 14457	2.0% 1.4%
			[3,3]	19518	18975	2.8%
			[1,1]	135	135	0.5%
		50	[1,3] [3,1]	756 756	755 755	0.2% 0.2%
			[3,3]	1201	1195	0.5%
			[1,1]	539	534	0.9%
	GFRP	25	[1,3] [3,1]	2921 2921	2911 2912	0.3% 0.3%
			[3,3]	4583	4541	0.9%
			[1,1]	2109	2073	1.7%
		12.5	[1,3] [3,1]	10367 10367	10307 10312	0.6% 0.5%
			[3,3]	15710	15518	1.2%

Table 4 .6

 4 Analytical calculations of natural frequencies (in Hz) for various K s (case study using CFRP thick plate, a/h = 17.4)

	Modes K s = 0.36 K s = 0.64 K s = 0.83 K s = 1.00 LS-DYNA
	[1,1]	2730	2862	2906	2931	2808
	[1,3]	8504	9323	9620	9797	9431
	[3,1]	11564	13732	14661	15263	14456
	[3,3]	15268	18221	19518	20370	18965
	[1,5]	17125	19833	20931	21623	20827
	[3,5]	21774	26369	28456	29855	27873
	[5,1]	21188	26684	29379	31268	28952
	[5,3]	23828	29949	32961	35080	32254
	[5,5]	28739	36149	39818	42412	38940

  can be written as:-h/2 σ xx , σ y y , σ x y dz are in-plane force resultants, M x , M y , M x y = -h/2 z σ xx , σ y y , σ x y dz are resultant bending moments, Q x

	where N x , N y , N x y =	h/2											
	h/2														
	xx = γ xz =	1 2 ∂w ∂w ∂x ∂x + ψ x , 2 + z	∂ψ x ∂x	,	y y = γ y z =	1 2 ∂y ∂w ∂w ∂y + ψ y , 2 + z	∂ψ y ∂y	,	γ x y = zz = 0 ∂w ∂x	∂w ∂y	+ z	∂ψ x ∂y	+	∂ψ y ∂x	(4.27)
	The general governing equations for the plate using equilibrium conditions (without u and v
	terms) can be given as follows:										
									∂N x ∂x	+	∂N x y ∂y	= I 2 ψx	(4.28a)
									∂N x y ∂x	+	∂N y ∂y	= I 2 ψy	(4.28b)
					∂Q x ∂x	+	∂Q y ∂y	+ q + q * = I 1 ẅ	(4.28c)
						∂M x ∂x	+	∂M x y ∂y		-Q x = I 3 ψx	(4.28d)
						∂M x y ∂x	+	∂M y ∂y		-Q y = I 3 ψy	(4.28e)

  = [s 1 , s 2 , ..., s 11 , s 12 ] T is the column matrix of order [12 × 1], and A * s with order [12 × 6] and D 126 with order [6 × 1] are defined for an easy implementation in computer program, see Eq. (D.1) in Annex A (Appendix D).

									s 5	∂ 2 ψ y ∂x∂y	+ s 6	∂ 2 ψ y ∂y 2	(4.35a)
	∂w ∂y	+ ψ y = s 7	∂ 2 ψ x ∂x 2 + s 8	∂ 2 ψ x ∂x∂y	+ s 9	∂ 2 ψ x ∂y 2 + s 10	∂ 2 ψ y ∂x 2 + s 11	∂ 2 ψ y ∂x∂y	+ s 12	∂ 2 ψ y ∂y 2	(4.35b)
	where s j are coefficients for transverse shear and can be determined as:
					s =	T s K s	A * s D 126			(4.36)
	in which s										

  The strains provided by Eqs. (4.84) and (4.85) are in global coordinate system. These are multiplied by the transformation matrix T trans to convert to the local (material) coordinate system. They can be written in contracted matrix notation as follows: [ 11 , 22 , γ 12 , γ 44 , γ 55 ] T and glocal = [ xx , y y , γ x y , γ y z , γ xz ] T are column matrices of the local and global strains. The transformation matrix T trans is expressed as:

	where local =	
	local = T trans global	(4.86)

Table 4 .8

 4 Acceptance criteria using Russell's comprehensive error factor[Shin and Schneider, 2003] 

	Russell Comprehensive Error Factor Conditions
	RC ≤ 0.15	Excellent
	0.15 < RC ≤ 0.28	Acceptable
	RC > 0.28	Poor

Table 4 .9

 4 Evaluation of error measures on central effective strain at the lowest ply of the thin and thick CFRP laminate subjected to various impulsive velocities v i

	Cases	v i m.s -1 -RC	Conditions
	Thin CFRP plate (evaluation up to 10 ms)	2 5 10	0.19 Acceptable 0.23 Acceptable 0.23 Acceptable
	Thick CFRP plate (evaluation up to 1 ms)	2 5 10	0.22 Acceptable 0.22 Acceptable 0.16 Acceptable

Table 4 .

 4 11 Analytical evaluation of the initiation of failure for thin and thick composite plates using the same areal mass (ρh = 8.9 kg.m -2 )

	Cases	a/h	v i (m.s -1 ) Critical KE (J) W max (mm) Failure at
	CFRP thin	69.44 8.7	54.0		9.9	N = 24
	GFRP thin 80.00 6.8	32.9		12.0	N = 24
	CFRP thick 17.36 12.5	7.0		1.2	N = 22
	GFRP thick 20.00 6.3	1.8		1.2	N = 1
	Table 4.12 Comparison of maximum tensile stresses (in material directions) at the onset
	of failure (total no. of plies = 24)		
	Cases		Ply no. σ 1	σ 2	τ 12
	-		-	MPa	MPa MPa
	CFRP thin	24	583.09 47.86 19.83 Analytical
				582.50 46.87 16.98 LS-DYNA
	GFRP thin 24	187.07 65.64 17.17 Analytical
				201.74 55.88 17.12 LS-DYNA
	CFRP thick 22	504.51 57.92 0.00	Analytical
				538.79 47.43 1.43	LS-DYNA
	GFRP thick 1	186.90 65.58 11.52 Analytical
				202.47 55.97 10.30 LS-DYNA

Table 5 .6

 5 Computation times between analytical and numerical approaches

	Cases (CFRP)	Computation time (s), (HH:MM:SS)
		Analytical Numerical
	C-1b: Thin plate (a/h = 69.4) 1.1	27473 (07:37:53)
	C-2a: Thick plate (a/h = 17.4) 1.0	147 (00:02:27)

Table 5 .7

 5 Calculation of natural frequencies (in-water) up to the first four bending modes

	Material	a/h Mode --	Natural frequencies (in-water) (Hz) Original* Modified** LS-DYNA/USA (DAA 1 ) %***
	Steel		

Comparison with experimental results of Hung et al. (2005)

  

Table 5 .8

 5 Peak pressures and decay times of the combined charge (1 g) at various standoff distances[Hung et al., 2005] Cases Standoff distance R Shock factor Peak pressure P 0 Decay time τ direction) are plotted as a function of the shock factor in Fig.5.16 along with two reference results; experimental and numerical results retrieved from[Hung et al., 2005]. Two different analytical results using coupled DAA 1 model and two-step Taylor's impulse based model are shown. Due to the nature of the plate and the explosive parameters used in the experiment, cavitation is expected. Thus, coupled-DAA 1 analytical formulations (without cavitation) would underestimate the responses whereas the two-step methods (with water-added mass) would overestimate significantly. These results are not shown in the figures for clarity. Here, DAA 1 cavitation model can be approximately considered by assuming that when the pressure has dropped to zero, cavitation would occur and last long until the plate has reached its peak deflection (case 2 of Kennard's studies, see Appendix B).

	(-)	(cm)	(-)	(MPa)	(ms)
	1	70.00	0.045	4.96	0.0142
	2	35.93	0.088	11.74	0.0122
	3	15.90	0.199	28.85	0.0103
	4	8.95	0.353	54.47	0.009
		Table 5.9 Material parameters of aluminum plate [Hung et al., 2005]
	Density (kg.m 3 ) Young's modulus (GPa) Yield stress (MPa) Poisson's ratio
	2700	70		270	0.3
	(in x-				

Observing Fig. 5.16(b)

, first of all, both of the analytical results (in terms of peak central velocity 4

Table 6
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	.1 Typical computation times using analytical (two-step) and LS-DYNA/USA
	(acoustic) approaches	
	Cases (CFRP)	Computation time (s), (HH:MM:SS)
		Analytical Numerical
	Thin plate (a/h = 69.4) 1.1	27473 (07:37:53)
	Thick plate (a/h = 17.4) 1.0	147 (00:02:27)

Table 6 .2

 6 Typical computation times using analytical (coupled-DAA 1 ) and LS-DYNA/USA (DAA 1 ) approaches

	Cases (CFRP)	Termination time Computation time (s)
		(ms)	Analytical Numerical
	Thin plate (a/h = 69.4) 8	4	204
	Thick plate (a/h = 17.4) 1	3	125

  w χ 1 (χ 2 + 1/τ) m s (χ 1 -χ 2 ) e χ 1 t + ρ w c w χ 2 (χ 1 + 1/τ) m s (χ 1 -χ 2 ) e χ 2 t + 1 τ 2 + ω 2 e -t /τ (A.13) 

	and	W =	m s	2P 0 τ 2 -1 ρ w c w m s τ + ω 2	e -t /τ +	χ 2 + 1/τ χ 1 -χ 2	e χ 1 t -	χ 1 + 1/τ χ 1 -χ 2	e χ 2 t	(A.14)

Table A .1

 A Characteristics of incident loading and properties of water

Table A .2

 A Results of the calculations with different stiffnesses (β = 4) Tests m s (kg.m -2 ) K s (N.m -3 ) V i (m.s -1 ) τ c (ms) likely for the cavitation to appear. The times of the appearance of cavitation for test 1 (K s = 0) and test 2 (K s = 6.48 × 10 8 ) are very close.

	1	78	0	63.2	0.096
	2	78	6.48 ×10 8	62.3	0.1
	3	78	3.37 ×10 9	59.2	-

  s 11 s 7 s 8s 1 -3s 10 s 5s 12 s 8s 1s 10 s 9s 2 + 3 (s 4s 11 ) s 6 s 4 + s 9s 11s 12 3 (s 5s 12 )ss 1 )s 10 2 (s 4 + s 9s 11s 12 ) s 8s 1 s 4s 11 + 3 (s 9s 2 ) 2 (s 5s 3s 12 ) s 9s 2 s 5s 12 -3s 3 2s 6 -s 3

				-s 10	0	s 7
		, and s =	           	s 4 3 0 s 5 -s 3 -s 12 3s 6 0 s 6 0 0 0 0
				0	0	0
				0	0	2s 7
				0	3s 7	2 (s 8 -s 1 -s 10 )
				s 7	3 (s 8

Underwater explosion (wikipedia), assessed on 8 June

https://en.wikipedia.org/wiki/Underwater_explosion 2 USS Cole bombing (wikipedia), assessed on 8 June 2020. https://en.wikipedia.org/wiki/USS_Cole_bombing 3 Guantanamo Detainee Pleads Guilty in 2002 Attack on Tanker Off Yemen, assessed on 4 February 2020.

http://www.fibreship.eu/

Retrieved from Wikimedia Commons on 9 June 2020, https://commons.wikimedia.org/wiki/File:BAY_CLASS_-_

Scientific Papers of G. I. Taylor, Vol. III, pages 287-303. Cambridge University Press, Cambridge, UK.

In seawater at 18°C, the acoustic speed c w is approximately 1500 m.s -1 .

Vapor pressure of water at 20°C is about 2 kPa. (Source. Lide,David R., ed. (2004). Handbook ofChemistry and Physics) 

Master thesis performed within the framework of Erasmus Mundus Program for Advanced Ship Design (EMSHIP) and under project SUCCESS.

These are master theses performed within the framework of Erasmus Mundus Program for Advanced Ship Design (EMSHIP) and under project SUCCESS.

Vapor pressure of water at 20°C is about 2 kPa. (Source. Lide,David R., ed. (2004). Handbook ofChemistry and Physics) 

'Glue' algorithm is an application of lumped mass points at the fluid-structure interface at each time step to guarantee the continuity conditions. It is a very efficient algorithm to treat FSI, especially for complex system with

These are numerical terms to capture the shock discontinuities across the element boundaries.

The diffusive or anti-diffusive fluxes are terms consisting of spatial and temporal functions as well as coefficients that have to be selected well to suit a particular problem or algorithm[START_REF] Klenow | Prevention of pressure oscillations in modeling a cavitating acoustic fluid[END_REF].

N s is the number of degrees of freedom related to the motions of the finite element structural nodes.

N f is the number of degrees of freedom related to the wet surface fluid mesh.

Note that the incident pressure or particle acceleration is denoted using the capital I (in the subscript) in order to avoid confusion with the iteration for the different i th element of the DAA.

The sets of equations used could vary depending on the choice of the user.

In the currently available solver of LS-DYNA/USA, the radiation boundary formulation shown in Fig.3.3(a) and Fig. 3.3(b) can use either DAAs, PWA or CWA formulation.

For convention, the compressive pressures are conventionally represented by positive sign.

The symbol x f is used to distinguish from the structural nodal displacement matrix x from Subsection 3.2.1

Frothing is a term used to describe the appearance of small pressurized islands in the cavitating region (or vice versa, the appearance of small zero-pressure bubbles in the pressurized region).

'Délégation Générale de l'Armement' of the French Ministry of Defense.

Because of the nature of the displacement potential formulation, the change of fluid mesh density in the x-and y-directions does not have any effects on the pressure wave propagation. This has also been confirmed using one element model in the fluid column.

This was also observed during the research work of this thesis as detailed in Chapter 5.

Source. Boundary nonlinearity, assessed on 15 July

2020, https://abaqus-docs.mit.edu/2017/English/ SIMACAEGSARefMap/simagsa-c-nlnboundnonlin.htm

Evaluations are made at high sound spectrum level (SSL) of about 130 dB (reference sound pressure = 20 µPa).

It is simply a flag for transverse shear deformation effects and takes the value of either 1 or 0. When T s = 0, transverse shear effects are neglected while T s = 1 would consider the transverse shear.

Among six unique equations defining the St. Venant's compatibility condition, only one equation is of interest in our study. It is required for a particular strain field so that the displacement field is unique without gaps and continuous[Nishawala, 2011].

In differential geometry, the Gaussian curvature of a surface at a point is defined as the product of the two principal curvatures at the given point on the surface. It is proportional to the ratio between the area of a stretched surface to the non-stretched one (Source. wikipedia: https://en.wikipedia.org/wiki/Gaussian_curvature)

These are lengthy processes and thus, are largely omitted. However, some of the important differential and integral evaluations used during different derivation stages are given in Annex B (Appendix D) for reference purposes.

Note also that the bending coefficient value for immovable edge condition (Eq. (4.78b)) is doubtful. According to CPT, it should be 22.25 for Poisson's ratio of 0.316.

Source. Table VI, Page 28 of[START_REF] Levy | Bending of rectangular plates with large deflections[END_REF]. It also suggested that the contribution of the higher order modes is not significant compared to the fundamental mode.

Source. https://ftp.lstc.com/anonymous/outgoing/jday/faq/effective_plastic_strain

Source. http://www2.me.rochester.edu/courses/ME204/nx_help/index.html#uid:id626801

The impulsive velocity can be applied to both linear and nonlinear theories. However, in this section, attention is paid solely to the linear response.

These are taken from the quasi-static tests performed by Dr. Dorival and colleagues during this PhD thesis at Clément Ader Institute, Toulouse.

Layout 1: [±45/0/0/0/ ±

45/0/0/0/90/90] s

This peak central velocity was obtained by integrating the central acceleration result measured by the accelerome-

This model is denoted as 'LS-DYNA/USA (acoustic)' in the manuscript.

Unlike what was presented in[Mei and Prasad, 1989], some of the formulations are expressed in matrix form in the manuscript to be more systematic and compact.

These are experiments conducted on an air-backed aluminum plate in a water tank[Hung et al., 2005].

A exact difference scheme is one in which the solution of the difference equation is exactly equal to that of the ordinary differential equation on the computational grid for fixed, but, arbitrary step size ∆t[Mickens, 1993].

Source. Paul's Online Notes, assessed on 22 July 2020, https://tutorial.math.lamar.edu/Classes/DE/Vibrations.aspx

Atkins, H. L. (1997). Local analysis of shock capturing using discontinuous galerkin methodology.

13th Computational Fluid Dynamics Conference. Avachat, S. and Zhou, M. (2017). Novel experimental and 3D multiphysics computational framework for analyzing deformation and failure of composite laminates subjected to water blasts. International Journal of Impact Engineering, 106:223-237. Baccouch, M. (2012). A local discontinuous Galerkin method for the second-order wave equation. Computer Methods in Applied Mechanics and Engineering, 209-212:129-143.

 (4.92). All data shown here are evaluated for GFRP thick plate (ply no. = 1) subjected to v i = 6.3 m.s -1 .

Overall conclusions

In this chapter, analytical formulations are proposed in both linear and nonlinear (small and large deflection) regimes based on the first-order shear deformation theory for the orthotropic material. The validity as well as the accuracy of the formulations are checked using the results of nonlinear finite element simulations, LS-DYNA. The geometric nonlinearity is considered by adapting von Kármán plate theory. Modal superposition with one-to-one assumption is used to avoid mode coupling. Both static and dynamic results are evaluated and then compared with other solutions from the literature. Finally, these are extended to determine stresses and strains. Russell's error evaluation technique is employed for a few cases just in order to ensure that the strains are correctly calculated. With the implementation of Tsai-Wu criterion, it is possible to predict the ply where the failure will be initiated. Although many more development and analyses are still required, it can roughly be said that the failure initiation and the stresses are quite comparable to numerical results according to some of the cases performed in this study. All these analytical

APPENDIX

Appendix A

Theoretical Background of Taylor's Model

Taylor's fluid-structure interaction theory [Taylor, 1941] The pressure in the incident wave is taken as:

where z is the distance measured perpendicular to the plate in the shock wave direction, P 0 is the peak pressure, c w is the acoustic speed in the fluid and τ is the decay time.

Upon arrival of the shock wave to the plate, the transverse motion of the plate Ẇ (t ) causes modifications in the reflected wave. The pressure in the reflected wave P r is now given as:

where φ t + z c w is an unknown function to be determined. At the surface of the plate, that is OO in Fig. A.1, z = 0 and the total pressure becomes:

in which the total pressure is given as a linear superposition of the incident and the reflected pressures, that is, P tot = P i + P r .

Assuming that the disturbances are sufficiently small, the particle velocity u i caused by incident wave and the particle velocity u r due to reflected wave can be written as:

respectively. The negative sign in the reflected particle wave velocity u r shows the direction opposite to the normal incident wave. Note that φ = φ(t ).

The velocity continuity condition at the fluid-structure interface OO implies that the plate transverse velocity Ẇ is equal to the resultant of the incident and reflected wave velocities as:

By rearranging Eq. (A.5), the function φ is obtained as:

A.1 Full formula: spring-supported rigid plate model

The motion of the plate is determined by its mass per unit area m s , by the total pressure P tot , and by the support conditions. For simplicity, [Taylor, 1941] assumed that the constraints are represented by a linear spring support with an areal stiffness K s . When the plate is not in contact with water, it could oscillate freely with a natural period 2π/ω. The equation of motion is:

where ω = K s /m s is the angular frequency (rad.s -1 ). By eliminating W from Eq. (A.7), equation of motion can be expressed in terms of φ as:

The solution of Eq. (A.8) is:

where C 1, 2 are arbitrary constants and χ 1, 2 are obtained as:

The initial conditions are W (0) = Ẇ (0) = 0 and Ẅ (0) = P tot /m s . In terms of φ:

when t = 0 (A.11)

A.4 General remarks

Taylor's free-standing plate theory, approximate formulations, see Eqs. (A.19), (A.21), and (A.22), is widely employed because of their simplicity and effectiveness. From these formulations, it can be deduced that the maximum plate velocity (or kinetic energy) depends on both β and the peak pressure P 0 . Many of the behavior of the plate can also be identified in terms of β. Nevertheless, the simplified formulations of Taylor are no longer accurate for the plate with high stiffness. In order to use the Taylor's simplified theory, natural period of the plate needs to be much longer than the decay time of the loading. Indeed, this is the condition usually observed in thin and flexible plates.

Another thing that should be aware is that both full and approximate formulations of Taylor only describe early-time response of the plate. This means that the FSI is modeled considering the acoustic effects alone. Therefore, it should be kept in mind that the negative portion of the total pressure (for example, in Fig. A.3(a) after t /τ = 0.5) is not valid anymore since water cannot sustain such a large tensile loading. This modification of the plate response caused by cavitation and the inclusion of the water-added inertia effect at late times are studied in this thesis, see Chapter 5 for further details.

A.5 References Kennard, E. (1944). The effect of a pressure wave on a plate or diaphragm. Technical report, Navy Department, David Taylor Model Basin, Washington, D.C. Taylor, G. (1941). The pressure and impulse of submarine explosion waves on plates. In The

Appendix B

Case Studies of Kennard [Kennard, 1944] had described useful concepts about the behavior of the plate or diaphragm impinged by the shock wave by using the following four characteristic times: With the use of these four characteristic times, the four different cases that could possibly arise in an event of a shock wave impacting a plate or diaphragm can be characterized as:

1. Case 1: Relatively long swing time, no cavitation;

2. Case 2: Prompt and lasting cavitation at the diaphragm only;

3. Case 2a: Reloading after cavitation at the diaphragm; and 4. Case 3: Negligible diffraction time but long decay time.

These cases depend on the appearance of the cavitation at the diaphragm. For example, among these cases, cavitation does not appear at the plate or diaphragm in cases 1 and 3. According to [Kennard, 1944], necessary condition for the cavitation to occur is the compliance time of the plate to be less than its diffraction time. That is,

If this condition is not satisfied, i.e., τ c > T d , physically this means that the inflow of water from regions beyond the edge of the structure is likely to equalize the pressures, thus preventing the cavitation to occur. Each of the four cases stated above is explained briefly in the this chapter together with relevant illustrations and formulations.

Appendix C Nonstandard Finite Difference Scheme

C.1 Forced, undamped vibration

Consider a mass-spring system depicted in Fig. C.1. The system consists of an object with mass M s and a linear spring with stiffness K s . A force F with any arbitrary function in time is applied to move the object to a displacement of W (t ) in z direction. The corresponding equation of motion of the system can be given as:

in which Ẅ (t ), W (t ) and F (t ) are, for simplicity, written as Ẅ , W and F respectively, and

is the angular natural frequency. 

where V is the new variable representing velocity to reduce the order of differential equation. Equation (C.2) can be expressed in matrix form as follows:

where

To have numerical approximation of Eq. (C.3), the interval [t 0 , t ] is discretized into:

C.3 General remarks

Generally,

• The semi-analytical solution presented in this appendix chapter is valid for a single degree of freedom problem or a spring-supported rigid plate system. These are shown in Chapter 5 when the analytical structural equations are coupled with the first-order Doubly Asymptotic Approximation formulations.

• It can also be extended into two-dimensional system, that is, for plates, see Chapter 4 where a linearized Duffing's equation is solved.

• The resulting solution functions are similar to the closed-form expressions and can, thus, be easily implemented in any programming tool such as MATLAB.

• These expressions also ensure the exactness of the solution and can be solved with any initial conditions at time step t i .

• Moreover, unlike the well-known Runge-Kutta scheme, the current scheme does not require additional function evaluations, thus saving more computational effort. 

C.4 References

Appendix D

Additional Formulations for Chapter 3 

Résumé :

Les explosions sous-marines comprennent de nombreux phénomènes physiques complexes tels que la propagation des ondes de choc, les interactions fluidestructure, la cavitation, etc. Pour modéliser ces phénomènes aussi précisément que possible, des calculs par éléments finis couplés au code 'Underwater Shock Analysis' (USA) sont aujourd'hui utilisés. Cependant, de telles approches nécessitent beaucoup d'efforts de modélisation et de temps de calcul. Dans ce contexte, le travail de recherche réalisé dans le cadre de cette thèse a permis de mettre au point des formulations analytiques simplifiées à la fois rapides et raisonnablement précises. Le domaine de validité des formulations proposées a été précisé en confrontant les résultats analytiques à des simulations numériques (réalisées également dans le cadre de la thèse) et des résultats expérimentaux issus de la littérature. Un outil de bureau d'étude pour l'analyse de la réponse au choc de plaques composites immergées a également été développé.

Title : Development of analytical formulae to determine the dynamic response of composite plates subjected to underwater explosions Keywords : Underwater explosion (UNDEX); Fluid-structure interaction (FSI); Composite plate; LS-DYNA / USA; Analytical method, Doubly Asymptotic Approximation.

Abstract : Underwater explosions involve many complex physical phenomena such as shock wave propagation, fluid-structure interactions, cavitation, etc. To model these phenomena as precisely as possible, finite element calculations coupled with the code "Underwater Shock Analysis" (USA) are used nowadays. However, such approaches require a lot of modeling effort and computation time. In this context, the research work carried out within the framework of this thesis has enabled the development of simplified analytical formulations that are both rapid and reasonably accurate. The range of validity of the proposed formulations was examined by comparing the analytical results with numerical simulations (also carried out within the framework of the thesis) and experimental results available from the literature. An office design tool for the analysis of the shock response of submerged composite plates was also developed.