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Sailing yacht design has relied on steady state optimization for a long time. Velocity Prediction Programs (VPP) are at the core of the design process of most of architect offices. Nonetheless they have proved inadequate to handle accurately the trade-offs demanded by the state-of-the-art appendages, especially in terms of stability. Besides, traditional tools, such as frequency-domain Boundary Element Methods, are generally unable to deal with the effects of sails on the seakeeping behavior of sailing yachts or wind-assisted ships. For those reasons, the use of time-domain simulation tools, called Dynamic Velocity Prediction Programs (DVPP) has known a substantial increase in the recent years.

The present thesis focuses on the study and development of a 6 degrees of freedom DVPP dedicated to offshore yachts. It implements a multibody algorithm allowing to simulate complex mechanical interactions between yacht elements. Different wind and wave models are available, complex conditions are represented by the superposition of several singular components. The calculation of the loads relies on a weakly non-linear system-based approach. The implemented models use either load calculations at runtime on the body mesh, polynomial regressions on pre-computed dataset or semi-empirical formulas.

Particular care has been drawn to the progressive validation of the numerical tool. Several validation cases are presented, from multibody textbook cases and simple hydrodynamic problems to reference experimental data on a Wigley hull form and on DTMB model 5512.

A towing tank campaign has been conducted to establish a validation database focused on specific severe conditions : high Froude numbers, relatively high steepness waves and highly non-linear motion. The variations of the radiation coefficients with speed are studied, and a comparison with published low-Froude models is presented. The experimental data is used for comparison and validation with the DVPP for two situations of interest : motions and loads in waves, and water entry-exit sequences. The results are encouraging and back up the choice of the models.

Finally, simulations of existing offshore yachts, an Ultim trimaran and an IMOCA monohull, are presented. They consider different transient situations, from a maneuver to varying environmental conditions and point out the interest of dynamic studies, allowing to open a different field of optimization than VPPs.

This work resulted in an operational DVPP, which correctly simulates the behavior of offshore sailing yachts, especially when fitted with hydrofoils.

Symbols and abbreviations

Vector of external moments acting on the yacht (3 × 1) [Nm] xvii Symbols Wavenumber vector [m -1 ]

F P i = f i ,
K P Controller proportional coefficient [ • / • ] k = 2π/λ Wavenumber [m -1 ] k i
Unsteady wind intensity factor for component i Non-dimensional optimal center of effort height [-] xviii 

Introduction

Sailing yachts are complex systems evolving at the interface of two fluids. The balance between aerodynamic and hydrodynamic loads involves all of the six degrees of freedom. Initially their design mainly relied on the intuition of their architects as well as on a process of small iterative changes from one boat to another. While in the early 19th they have been relegated to sport and leisure following the appearance of combustion engines (steam then diesel), this period also marks the beginning of a progressive improvement of the understanding of the physics of sailing. Those progresses allow nowadays to realize iterative design stages to refine the concepts and determine the best tradeoffs. To guide these choices, the architects and engineers must be able to weigh the involved advantages and identify the limitations of their models. Development of computational power has led to a more and more intensive use of numerical tools in the design process, from the simple assessment of hydrostatic characteristics to potential or viscous resolutions of fluid flows, or complex fluid-structure interactions for instance.

In the design of racing yachts, performance is one of the major choice criteria. Performance prediction is thus at the core of their design process. The yachts are more and more complex, with an ever increasing number of configurations and tuning parameters, especially regarding appendages. They exhibit bi-stable navigation modes (Archimedean and fully flying) with substantial speed differences. Access to the fastest mode must be optimized so that it is reached efficiently, finding the best compromise between minimizing the time spent in the low speed mode and maximizing the pace towards the objective. It may require punctually to go astray from the shortest route in order to accelerate and reach the flying mode. Eventually, class rules may complicate further the process by adding other constraints, regarding geometric dimensions or stability characteristics for instance.

Performance prediction is also at stake for cruising yachts whether it is for commercial purposes or to answer an increasing demand from potential buyers to get quantitative assessments of the expected characteristics of the ship. Resulting sail polars are also necessary to feed the routing softwares. Recent years have finally shown a new interest for wind-assisted ship propulsion concepts, which answer the double interest of decreasing fuel costs and pollutants emissions. Performance prediction has also been transposed to their design as it must generally guarantee a given economic efficiency as well as specified travel times.

Most of the design offices are nowadays equipped with a Velocity Prediction Program (VPP) which is the reference tool to assess sailing yachts designs. Generally using system-based approaches, they optimize the available tunings and evaluate the maximal speed in given steady conditions, solving the equilibrium for one to six degrees of freedom. The retrieved sailing polars allow to compare different candidates and design solutions. More details are given in Chapter 1 on the principles and use of VPPs.

Motivation

Nonetheless, optimization of the maximum speed in steady conditions may lead to flawed concepts, which would correspond to static optima with very low performance in dynamic conditions. In a realistic situation, the yacht evolves in an environment (wind and waves) that changes constantly and does not reach an equilibrium but rather goes through sequences of transient phases. Very specific steady optima can lead to non-tolerant design, which could be substantially slowed when tunings and external conditions deviate from those of the studied optimization. Tolerant designs and tunings that allow prompt accelerations after a slowdown (due to a change of wind speed or direction for instance) may lead to greater averaged speeds.

Similarly, investigating the yacht behavior in waves is essential to guarantee her performances offshore. Good seakeeping properties are necessary to ensure both the crew safety and the yacht structural integrity as well as to limit added resistance. Frequency-domain seakeeping studies and the probabilistic analyses that can be inferred are not sufficient to understand and optimize the details of the temporal behavior, and especially the critical non-linear phases.

Finally, in the specific case of foiling yachts, performance is generally opposed to stability: the best lift-to-drag ratios are obtained with geometries that are particularly unstable. Whenever active control is not allowed, sufficient heave and pitch passive stability must be achieved to be able to maintain flight despite eventual external perturbations. Static stability studies based on derivatives approaches provide an interesting first assessment of the stability properties of a given design. However, this method is not sufficient to properly refine the concept and reach an accurate trade-off. Dynamic stability must be assessed over time and a time-domain simulation tool is eventually necessary.

Correspondingly, use of active control systems is also tightly linked to time-domain simulation. The controllers tuning process may have substantial impacts on the yacht response in both real-life and numerical simulations. But even for basic algorithms such as Proportional-Integral-Derivative (PID), the determination of the optimum tuning coefficients is complex, especially as they may depend on the yacht configuration and on the sailing conditions. The use of a DVPP can therefore strongly improve both the development of new control systems and the response of existing ones, by allowing to train and validate their behavior in controlled operating conditions before full-scale sea tests.

Objectives

In light of these observations, French naval architects VPLP Design have undertaken a doctoral thesis project in collaboration with the LHEEA laboratory in Nantes and the IRENAV in Brest with the objectives of gaining understanding in the dynamic behavior of offshore yachts and developing a numerical tool to help its prediction and improvement. While such tools already exist, and are generally referred to as DVPP for Dynamic Velocity Prediction Program, the quality of their models and their capacity in handling offshore racing yachts can be improved. This is further discussed while reviewing already published material in Chapter 1. In this project, a special care is paid to the simulation of transient phases and to the evolution in hybrid mode when the yacht is not fully flying yet. Such a tool would allow stability and seakeeping studies, answering the previously described needs, and thus enabling the comparison of the dynamic properties of given concepts.

Specifications

A complete solution of the two-fluid flow over the whole yacht is not compatible with systematic studies of wide ranges of appendages, configurations and tunings. Such a tool must therefore find a compromise between a necessary numerical efficiency and a desired physical accuracy. To this end, quantitative criteria are necessary.

The main specification from the company is the possibility to use the simulator in real time. While this is a very strong criterion, with heavy consequences on the choice of physical models, it allows in return a very interesting use besides the systematic comparisons of the design stage: both the designers and the customers can sail the numerical boat. This allows to further implicate the sailing team in the design by testing the yacht numerically even before she is launched. A real-time simulator can additionally be used for training as this is already largely done in the aeronautic or car racing fields. Finally, it could also be used as a decision-making support aboard.

Beyond this first criterion, the program is expected to be versatile and modular so that in the end it may handle indifferently power boats and sailing yachts, monohulls, catamarans and trimarans. To this end, a library of physical models should be available so that an adapted one can be used in each situation.

To allow use as a training tool, the DVPP should also be interactive, by providing a GUI (Graphical User Interface) and accepting user commands through keyboard or other peripheral equipment.

The present PhD project concentrates its efforts on the modeling of offshore multihulls and the models described hereafter are mainly oriented towards this objective. A special care has however been brought to the structure of the program to ensure its adaptability to other types of vessels. An example of monohull simulation is presented at the end of this report. Switching from one boat to another is done through a change of configuration file, a text file that provides the necessary models, their characteristics and the yacht properties, so that no alteration of the code is necessary.

Outline

This thesis is divided in five chapters. The first one presents the challenges of yacht performance prediction and its evolution over the past few years. As it is intimately linked to the improvement of the understanding of the physics at stake and to the development of new numerical codes and theories, a review of the available tools and models is presented, separating those dedicated to steady performance prediction and those addressing the unsteady behavior issue. Following this study, the main technical choices are made and justified in view of the specifications formulated in the previous section.

The implemented models are detailed in Chapter 2. The core of the solution is a multibody algorithm which allows handling of moving masses (mast or keel canting, stacking, appendage tuning) during the simulation. Each of the implemented models in this system-based approach is described. The modeling of the surrounding environment is also addressed.

The third chapter presents the preparation and results of an experimental campaign on a multihull float. A first part considers the study of the loads and motion in head waves, allowing to compare them with the DVPP results. In a second part, forced motions are considered: oscillations, to investigate the evolution of radiation force with Froude number, and specific transient phases.

Chapter 4 describes the set of validation tests that were carried out against analytical, published or experimental data in order to verify and validate the DVPP. Tests cases of increasing complexity are carried out regarding both the multibody core and the hydrodynamic models. A comparison with the experimental data gathered in the preceding chapter is also included.

Finally, the last chapter presents example simulations run with the developed numerical tool. They consider various conditions and scenarios in order to underline the differences between steady and unsteady performance prediction, and prove the usefulness of studying the unsteady behavior of the yacht during both the design and the operational phases. This chapter provides an overview of the tools available for sailing yachts performance assessment. Their evolution is tightly linked to that of computational resources. From the evaluation of steady resistance to the solution of the yacht dynamic response, naval architects have taken full advantage of the improvement of both computational power and physical understanding to improve the concepts, and to make the yachts faster or more efficient.

Publications

While the ship response in a seaway and its behavior following control actions (usually the rudder) have historically been dealt with separately, the coupling of both problems allows to simulate realistic situations as, especially offshore, the yacht usually sails in a wavy environment. The theories and tools allowing to resolve these issues, separately first and as coupled problems afterwards, are described and their characteristics discussed. A particular attention is paid to those adapted and used for sailing yachts study.

General background

At the core of the performance of sailing yachts is the coupling between aerodynamic and hydrodynamic loads. The work of [START_REF] Davidson | Some experimental studies of the sailing yacht[END_REF] is a milestone in their understanding. Starting from full-scale speed and attitudes measurements and conducting model tank tests, he was able to derive the sail coefficients of the sloop Gimcrack. His approach took advantage of the balance that must exist between aerodynamic and hydrodynamic loads in steady conditions.

The scientific study of sailing yacht performances remained however rather scarce for a long period of time and the design of racing yachts mainly based on the architects' intuitions with only small design changes from a candidate to another. The 12 Metre class, introduced in the Americas's Cup in 1958, is a good illustration of this trend. By the eighties, the on-water performances of the 12-m yachts were extremely close [START_REF] Van Oossanen | Theoretical estimation of the influence of some main design factors on the performance of international twelve meter class yachts[END_REF]) and many believed the optimum concept had been reached. But the victory of Ben Lexcen's Australia II in 1983, which ended more than one hundred years of American possession of the America's Cup, proved that science-driven design could lead to significant on-water advantages. The well-known short chord winged keel featured by the winning yacht had received a lot of attention from the design team. As reported by [START_REF] Van Oossanen | The development of the winged keel for twelve-metre yachts[END_REF], the keel properties (taper, sweep angle, aspect ratio, wings) were chosen based on panel code simulations and wind tunnel tests. Recent developments on the panel code allowed them to account for the heel and free surface effects which turned out to favor the lowering of the center of lateral resistance as it decreases the free surface perturbation and thus the wave drag. Panel code and towing tank were extensively used to feed a Velocity Prediction Program (VPP, see section 1.2.2) which drove all the design trade-offs such as the reduced waterline length (see [START_REF] Van Oossanen | The development of the 12 meter class yacht "Australia II[END_REF]. This has been a turning point in the design process of racing yachts. All following contenders in the Cup have since then invested an ever increasing effort in experimental and numerical studies, looking for the cutting-edge concept that could confer a critical advantage over the others. US challenger Sail America is a particularly relevant example. Their victorious campaign with Stars & Stripes in 1987, was the achievement of a substantial work of coordination and organization to understand and optimize every aspect (wave resistance, aerodynamics, motion in waves, etc.) of the yacht [START_REF] Salvesen | Technology and design for Stars & Stripes[END_REF]. Meteorological and oceanographic studies were carried out to optimize the concept in accordance with the expected environmental conditions. A VPP [START_REF] Oliver | Performance predictions for Stars & Stripes[END_REF] as well as a Race Model Program (RMP, see section 1.2.3) [START_REF] Letcher | Stars & Stripes[END_REF] were at the very core of the design process, each idea and innovation was to be assessed in terms of speed gain along the race course on a set of probable weather conditions. The probability to win or lose in Fremantle's wind and waves conditions against the expected contender's design was the ultimate choice criterion. The Americans dedicated specific efforts to study Australia II and understand her performance. [START_REF] Boppe | Stars & Stripes '87: computational flow simulations for hydrodynamic design[END_REF] hence underlined how the definition of the comparison parameters is substantial to the validity of the drawn conclusion. Although Australia II had more upright wave resistance than her 1983 contender Liberty, a comparison at iso-side force demonstrates that as she produces it more efficiently, she finally generates less wave resistance in the upper speed range than Liberty. Numerical studies as well as model and full scale tests were successively carried out as the concepts were refined. When sailing to windward, the large speed advantage of Stars & Stripes, allowed her to outpace the Cup defenders and win in a four-race sweep.

Steady performances

Steady performances 1.2.1 Resistance

The zeroth-order approach to boat performance assessment is the evaluation of the straight line loads on the ship. While frictional resistance could be estimated by commonly used skin friction lines (ITTC-57 or Schoenherr's formula for instance), the wave making component remained far more difficult to assess and, for a long time, relied mainly on tank testing (see Chapter 3). However, specific analytical theories have been derived for hull shapes complying with certain criteria.

For instance, thin ship theory [START_REF] Michell | The wave-resistance of a ship[END_REF] assumes small beam with respect to length and draft and thus small angles between the tangents to the ship surface and the vertical plane aligned with the centerline. The perturbation potential due to the ship presence may then be considered as small compared to the steady part -V x where V is the ship constant speed and x the coordinate in the direction of the ship motion. The analytical results consist in a triple integral with highly oscillating integrand.

The assumption with respect to the draft being restrictive for most of common ships, the slender body theory that assumes small beam and draft with respect to the ship length was proposed [START_REF] Cummins | The wave resistance of a floating slender body[END_REF], following aerodynamic theories.

Still exploiting the progress in the aerodynamic field and especially from the work of [START_REF] Hess | Calculation of potential flow about arbitrary bodies[END_REF], panel methods were progressively introduced in the hydrodynamic field. Panel methods (BEM) have drawn a lot of interest [START_REF] Gad | A method of computing the flow and surface wave pattern around hull forms[END_REF][START_REF] Dawson | A practical computer method for solving ship-wave problems[END_REF][START_REF] Delhommeau | Les problèmes de diffraction-radiation et de résistance de vagues : étude théorique et résolution numérique par la méthode des singularités[END_REF][START_REF] Rosen | SPLASH free-surface flow code methodology for hydrodynamic design and analysis of IACC yachts[END_REF][START_REF] Idelsohn | Finite element solution of free-surface ship-wave problems[END_REF] and are still widely used today, due to their relatively high efficiency and their ability to reproduce many of the main flow features. Besides, improvements of computational resources have allowed to handle problems of increasing complexity.

2 1 ⁄2 D approach, also referred to as 2D + t theory or High Speed Strip Theory (HSST), has been introduced in hydrodymic problems by [START_REF] Chapman | Free-surface effects for yawed surface-piercing plates[END_REF] on simple geometries following approaches already in use in the aerodynamic field. [START_REF] Maruo | Nonlinear analysis of bow wave breaking and deck wetness of a high-speed ship by the parabolic approximation[END_REF] and [START_REF] Zhao | A simplified nonlinear analysis of a high-speed planning craft in calm water[END_REF] reported on computations on realistic hull shapes. The idea is to reduce the three dimensional problem to a set of two dimensional ones, which are solved from bow to stern considering the effect of upstream sections. The flow disturbance is thus propagated downstream. This actually amounts to consider a fixed vertical plane which is progressively crossed by all ship sections while a time-like variable t = x/U is incremented. The method is adapted to slender high speed ships, as their diverging wave system dominates over the transverse one. The fully non-linear free surface boundary conditions may be used [START_REF] Sun | Porpoising and dynamic behavior of planing vessels in calm water[END_REF], but difficulties arise in case of wave breaking.

Reynolds Averaged Navier Stokes equations (RANS) are currently the most common technique to solve numerically the Navier-Stokes equations for naval applications. Velocity and pressure fields are decomposed as the superposition of an average component and a fluctuation part. Equations are solved for the average part, while turbulence models are used to account for the fluctuation component. RANS solvers are now well established in the design offices and are an integral part of the design process, whether it consists in the computation of hulls, appendages, sails or several components at the same time [START_REF] Azcueta | RANSE simulations for sailing yachts including dynamic sinkage & trim and unsteady motions in waves[END_REF][START_REF] Cowles | Numerical simulation using RANS-based tools for America's Cup design[END_REF][START_REF] Rousselon | The use of flow simulations at Artemis Racing for the 35th America's Cup[END_REF].

Other approaches exist, such as Large Eddy Simulation (LES) or Detached Eddy Simulation (DES), but their execution time makes them unavailable for yacht engineering applications.

In the case of sailing yachts, the aerodynamic force does not act solely in the boat longitudinal axis but has a strong transverse component that tends to make the boat heel and drift. Also the expression of straight line loads in predefined attitudes is not sufficient to assess the real performance of a yacht.

Velocity Prediction Program

The determination of the actual heel and leeway angles (Figure 1.1) at which the yacht sails in given conditions implies to solve an intricate balance between the aerodynamic and hydrodynamic loads. This strong coupling makes necessary the use of an optimizer, called Velocity Prediction Program (VPP). The first ever VPP was developed in the early 70s at the Massachusetts Institute of Technology, in the frame of the Irving Pratt ocean race handicapping project [START_REF] Kerwin | A velocity prediction program for ocean racing yachts revised to[END_REF]. The project aimed at establishing a time on distance handicapping system based on numerically predicted sailing speed, allowing different yachts to compete against each others. Equilibrium was solved in three degrees of freedom (DOFs): resistance, side force and heeling moment with the objective of maximizing speed. To reach this balance, speed, heel angle and reefing were adjusted within a Newton-Raphson algorithm. VPPs require to be able to evaluate the aerodynamic and hydrodynamic loads over the full input parameters range. Hull resistance and stability as well as sail forces must thus be modeled. [START_REF] Kerwin | A velocity prediction program for ocean racing yachts revised to[END_REF] used tank tests to derive a hydrodynamic model and full-scale measurements to express sail coefficients.

Interest in yacht performance programs quickly developed among the scientific community (see for instance [START_REF] Letcher | Handicapping rules and performance of sailing yachts[END_REF][START_REF] Myers | Theory of sailing applied to ocean racing yachts[END_REF], mainly to propose ratings that would be adapted to the expected yacht performance in the encountered wind conditions. The accuracy of the speed prediction is intimately linked to the model quality, but conversely, use of VPPs for handicapping implies that dedicated thorough tests are not practicable and that simple analytical or semi-empirical formula should be used instead [START_REF] Letcher | Optimum windward performance of sailing craft[END_REF][START_REF] Curtiss | Upright sailing craft performance and optimum speed to windward[END_REF]. As mentioned in the previous section, evaluation of wave-making resistance has long relied mainly on tank testing before the development of BEM and RANSE codes allowed the generalization of alternative numerical solutions. The development of regression formula, such as done by [START_REF] Van Oortmerssen | A power prediction method and its application to small ships[END_REF], that would allow to evaluate the loads for a range of hull geometries was thus very appealing. The first Delft Systematic Yacht Hull Series (DSYHS) were published in [START_REF] Gerritsma | Geometry, resistance and stability of the Delft Systematic Yacht Hull Series[END_REF] and presented polynomial regressions for the residuary resistance, the added resistance due to heel and the dynamic righting moment. The formulas were based on a set of towing tank measurements on twenty-two hull forms systematically derived from one parent form.

A reference in terms of VPP is the ORC VPP (ORC, 2019) which current formulation is documented in [START_REF] Claughton | Developments in the IMS VPP formulation[END_REF]. As described in [START_REF] Claughton | Developments in the IMS VPP formulation[END_REF], the hydrodynamic model is based on a regression built from both DSYHS data and dedicated tests, while the aerodynamic model relies on Hazen's formulation [START_REF] Hazen | A model of sail aerodynamics for diverse rig types[END_REF], see also section 2.5.1). In conformity with the approach of the Irving Pratt project, the VPP is one of the three pillars of the ORC handicapping system together with a measurement procedure (the International Measurement System, IMS) that defines the dimensions that are used as inputs to the VPP, and a race management system that transcribes the VPP speed predictions into a time allowance handicapping that depends on the race conditions.

VPPs have progressively become a central tool in the design process of every high performance sailing yacht as they allow to assess whether a given geometry, concept or tuning is advantageous in terms of absolute boat speed or Velocity Made Good (VMG) on a set of wind conditions (angle and speed). But beyond design support aspects, VPPs are also valuable for race preparation and race strategy [START_REF] Kirkman | The application of VPPs to practical sailing problems[END_REF] as they provide a speed target, optimum VMG angles or tuning indications. With the development of numerical codes and computational power, it is nowadays technically feasible to express loads through polynomial regressions based on numerical calculations carried out on the actual studied shape. Many modeling techniques nevertheless still coexist, based on a wide range of methods (semi-empirical or analytical formula, panel codes, RANSE calculations, wind tunnel, towing tank, full-scale tests, etc.). The improvement of the models accuracy and of the computational resources have also allowed the implementation of VPPs that handle equilibrium in all degrees of freedom.

Besides, progress of computational power has allowed the coupling of optimizers to RANSE solvers [START_REF] Jacquin | Toward numerical VPP using aero and hydrodynamics CFD solvers[END_REF][START_REF] Roux | Strongly coupled VPP and CFD RANSE code for sailing yacht performance prediction[END_REF][START_REF] Levin | Sailing yacht performance prediction based on coupled CFD and rigid body dynamics in 6 degrees of freedom[END_REF]) giving birth to fully numerical VPPs. The hull and appendages loads are thus directly computed within the flow solver with no need for analytical, semi-empirical formula or pre-computed data. The aerodynamic loads can either be supplied by simplified formulations as in [START_REF] Levin | Sailing yacht performance prediction based on coupled CFD and rigid body dynamics in 6 degrees of freedom[END_REF] who use Hazen's model or by coupling the RANSE solver to a second one handling the sails, an aero-elastic panel code in the cases of [START_REF] Jacquin | Toward numerical VPP using aero and hydrodynamics CFD solvers[END_REF] and [START_REF] Roux | Strongly coupled VPP and CFD RANSE code for sailing yacht performance prediction[END_REF].

As they solve for an equilibrium, VPPs are intrinsically steady state tools, which generally consider flat water conditions and constant wind. Workarounds exist however to account for unsteady phenomena through averaged effects such as mean added resistance in waves formula [START_REF] Gerritsma | The seakeeping performance and steering properties of sailing yachts[END_REF][START_REF] Gerritsma | Sailingyacht performance in calm water and waves[END_REF][START_REF] Claughton | Developments in the IMS VPP formulation[END_REF]. This is for instance the approach proposed by [START_REF] Binns | The windward performance of yachts in rough water[END_REF]. One can either increase the number of environmental conditions parameters (characteristic wave height, angle and period) or use simplifications (fully developed spectrum, waves aligned with wind, etc.) and spectral formulations that link waves characteristics to the wind velocity (Pierson-Moskowitz spectrum for instance). Such approaches however fully neglect the large amplitude motions and critical phases that may occur as well as the effect of unsteadiness on the loads. Realistic sailing polars are absolutely necessary when used in Race Modeling Programs or for routing.

Race Modeling Program

The first known race modeling program (RMP) was developed in the frame of Sail America effort to retrieve the Cup. A description of its content and use can be found in [START_REF] Letcher | Stars & Stripes[END_REF]. The details of the yacht temporal behavior are not considered, performances are rather defined as averaged speed on given wind conditions (obtained by VPP calculations), and maneuvers duration. Two race models were implemented, both based on wind distribution probabilities, predicted boat speed and randomizing factors to account for accident or environmental effects. In the second model, more complex features were developed such as yachts interactions effects (sails interference). The outcome of the race models allows the calculation of win/loss probabilities that depend on the opponent, the race location or the month of the year. Game theory is then used to rationalize the decision making process and choose the design that has the highest probability to win the Cup but also to go successfully through the elimination races.

RMPs have since got closer to dynamic simulators, integrating time solutions of the yacht behavior through models of gradually increasing complexity, in order to account for transient phases (acceleration, deceleration) and the capacity to adapt to varying environmental conditions. In [START_REF] Philpott | A simulation model for predicting yacht match race outcomes[END_REF] for instance, loads are not modeled but the difference between the current velocity and the VPP predicted speed is used to derive a force imbalance that allows to express the acceleration. Tacking maneuver is modeled empirically using speed loss, distance made good and duration values from full scale data. Modeling efforts are concentrated on wind conditions (Markov chains) and racing strategies (weighted penalties method). [START_REF] Scarponi | A combined ship science-behavioural science approach to create a winning yacht-sailor combination[END_REF] used a slightly more complex 4DOF model where quasi-steady loads are computed at each time step. The RMP is used to study the effects of the risk-taking attitude of the crew on the race outcome. Similarly, [START_REF] Roncin | Simulation dynamique de la navigation de deux voiliers en interaction[END_REF] developed a numerical tool allowing 6DOF simulation of interacting yachts in the time domain using flat water quasi-steady loads. Such RMPs can be considered as dynamic VPP (DVPP) as those described later on (see following section). They only differ by their intended use and thus by the trade-offs made between modeling accuracy and run time.

The RMP developped by [START_REF] Tagliaferri | Dynamic yacht strategy optimisation[END_REF] is closer to a routing algorithm than to the previously described race models. Steady state polars are used within a dynamic programming algorithm to route the yacht and study the optimal tactics in varying wind conditions. For routing optimization, averaged performances are used and no details of the yacht behavior are accounted for. The input polars may include encountered wave properties as parameters to reflect the yacht velocity more realistically.

In the frame of the present work, the user is precisely interested in the details of the yacht behavior and her response to external or internal perturbations. More accurate modeling of the loads is thus necessary.

The next section presents the available approaches to the yacht temporal evolution modeling.

1.3 Dynamic performances

Dynamic performances

Yacht behavior simulations have long been an important study subject, especially for maneuvers such as tacking [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF] which are crucial in match racing. Nowadays, the growth of foiling technologies has brought out some new stability issues [START_REF] Heppel | Flight dynamics of sailing foilers[END_REF][START_REF] Labat | Stability of coupled heave-pitch motions of a fast foiling boat[END_REF] that are inherently dynamic and involve couplings between the different degrees of freedom.

Besides, in offshore racing, the long fetch available for the wind to blow may lead to substantial sea states which have strong influence on the yacht ability to maintain high average speed. In an inherently unstable environment, the boat behavior is not stationary but composed of multiple transient phases.

Historically, maneuvering -low frequency motion -and seakeeping -high frequency motionissues have been investigated separately as the physical phenomena they involve allow for different types of approximations. However they do have influence on each other and it is of interest to study those effects. Hence this section first presents separately the maneuvering and seakeeping problems before reporting on coupling techniques and yacht dynamic simulation.

Maneuvering Calculation approaches

Maneuverability is an important measurement of the ship reliability and safety. For merchant ships, and following IMO regulations, performing standard tests such as zigzag or turning circles is required for obtaining a class certificate. Besides, maneuvering studies have received a renewed interest in the frame of dynamic positioning [START_REF] Sørensen | A survey of dynamic positioning control systems[END_REF] and control applications [START_REF] Skjetne | A nonlinear ship manoeuvering model: Identification and adaptive control with experiments for a model ship[END_REF].

One of the most widespread approach to maneuvering is the hydrodynamic derivatives method proposed by Abkowitz (1964). The model has 3 degrees of freedom: surge, sway and yaw. Loads are expressed as a Taylor-series expansion from a constant forward speed condition with respect to all the involved parameters: speed disturbance from the average speed, sway, yaw and rudder deflection. The hydrodynamic derivatives are the hydrodynamic forces partial derivatives with respect to each variable.

Another well spread method is the Maneuvering Modeling Group (MMG) model (see [START_REF] Ogawa | MMG report-I, On the mathematical model of ship manoeuvring[END_REF] for the original publication, and Yasukawa and Yoshimura, 2015 for the recently proposed standardization) which also considers 3 degrees of freedom. In this approach, bare hull, propeller and rudder forces are considered through individual components, but some interaction effects are accounted for within the components. The bare hull hydrodynamic force is function of the surge, sway and yaw velocities and accelerations while rudder and propeller loads are expressed from those velocities as well as specific characteristics of those components (such as deflection, area, force increase factor for the rudder, or revolution, diameter, thrust deduction factor for the propeller).

Other models exist such as Nomoto model [START_REF] Nomoto | On the steering qualities of ships[END_REF] or vectorial models [START_REF] Fossen | Nonlinear modelling of marine vehicles in 6 degrees of freedom[END_REF], which allow the study of the three or four degrees of freedom boat motion (surge, sway, yaw and sometimes roll).

All of those models imply the evaluation of hydrodynamic coefficients. This can be done experimentally (model or full scale tests), numerically or through empirical formulations.

Model tests are generally done in captive conditions, but the coefficients may also be derived from free running tests using system identification methods [START_REF] Araki | Estimating maneuvering coefficients using system identification methods with experimental, system-based, and CFD free-running trial data[END_REF]. Captive model tests (Figure 1.2) can be divided in two categories: static and dynamic. In the static one, all parameters are kept constant during the whole run. Typical static tests are the oblique towing and the steady turning tests. The first one allows to identify the coefficients relative to sway velocity while the second one allows to determine the yaw rate dependent terms. Combined tests allow to determine the cross-coupled derivatives. Static rudder, rudder-drift and yaw-rudder tests lead to the identification of the rudder-linked coefficients. In the MMG standard method [START_REF] Yasukawa | Introduction of MMG standard method for ship maneuvering predictions[END_REF], the proposed model tests are static (rudder force tests, oblique towing and circular motion tests). In the dynamic tests, the model is in forced harmonic motion with different combinations of drift and yaw. Expression of motions and loads in Fourier series allows the identification of the coefficients. Planar Motion Mechanism (PMM) tests are the most well-known dynamic captive model tests. In pure sway tests the model oscillates in the lateral direction with a constant heading parallel to its average speed direction, allowing to determine the sway velocity derivatives. Inversely, in pure yaw tests the model axis always remains tangential to its sinusoidal path allowing identification of yaw velocity coefficients. Combined yaw with drift tests lead to cross-coupled terms identification. Finally, similar tests with prescribed rudder angles allow the determination of all rudder deflection derivatives. The hydrodynamic derivatives can also be determined from numerical simulation of those tests, this is for instance done in [START_REF] Sakamoto | URANS simulations of static and dynamic maneuvering for surface combatant: Part 1. Verification and validation for forces, moment, and hydrodynamic derivatives[END_REF] for DTMB Model 5512. Direct simulations of the standard maneuvers have also been carried out [START_REF] Carrica | Turn and zigzag maneuvers of a surface combatant using a URANS approach with dynamic overset grids[END_REF][START_REF] Broglia | Simulation of turning circle by CFD: Analysis of different propeller models and their effect on manoeuvring prediction[END_REF] but involve complex numerical modeling issues especially regarding the propeller. Besides, temporal resolution of such highly delicate problems leads to substantial computational time.

Instead of using mathematically explicit maneuvering models, another possibility is to use look-up tables. Loads are then expressed by interpolation between the pre-computed results. This approach is for instance used in [START_REF] Day | VPP vs PPP: challenges in the time-domain prediction of sailing yacht performance[END_REF].

Sailing yachts maneuvering

First works on adapting classical ship maneuvering theory to sailing yacht were undertaken in the late sixties, mostly focusing on steering and course stability. [START_REF] Spens | Some further experimental studies of the sailing yacht[END_REF] used the coupled sway and yaw linear equations of motions and wind tunnel data to compare the effect of some hull modifications on the downwind directional stability derivatives. Similarly, [START_REF] Gerritsma | Course-keeping qualities and motions in waves of a sailing yacht[END_REF] carried out PMM tests at various speeds and evaluated the directional stability of the tested yacht in straight and curved path from the roots of the two degrees of freedom equations of motion. A couple of years later, [START_REF] Gerritsma | The seakeeping performance and steering properties of sailing yachts[END_REF] argued that roll motion should not be neglected when studying directional and coursekeeping abilities as, due to the vertical distance between the center of lateral resistance and the center of gravity, sway and yaw motions induce roll, and reciprocally. After having performed forced harmonic oscillations including roll motion and heeling moment measurements, Gerritsma and Moyes reported that roll coupling had a destabilizing influence on directional stability. Including a model for the aerodynamic forces led to further destabilization, with the negative real parts of the coupled equations roots coming closer to zero. In a subsequent part, the transfer function from rudder action to yacht heading was computed, with all coefficients being expressed as function of the hydrodynamic first order derivatives. In the case of active helmsman control, the coupling with roll and the effect of sails were proved to have a negligible effect on course-keeping abilities.

Growing use of computers and the constant improvement of their capabilities have quickly enlarged the possibilities of numerical maneuvering simulation. To the author's knowledge, first time-domain studies in the design of racing yachts occurred during the Stars & Stripes campaign as reported in [START_REF] Oliver | Performance predictions for Stars & Stripes[END_REF]. A single degree of freedom quasi-steady tacking model program was developed allowing to study speed drop and distance loss during this maneuver which is crucial in match racing. [START_REF] Masuyama | Stability analysis and prediction of performance for a hydrofoil sailing boat. Part 3: Directional stability analysis[END_REF] and [START_REF] Masuyama | Dynamic performance of sailing cruiser by full-scale sea tests[END_REF][START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF] developed a 4 degrees of freedom numerical tool based on hydrodynamic derivatives computed from tank tests and aerodynamic coefficients derived from wind tunnel measurements. In [START_REF] Masuyama | Stability analysis and prediction of performance for a hydrofoil sailing boat. Part 3: Directional stability analysis[END_REF], a yacht equipped with hydrofoils and a lifting rudder (T-rudder) was studied in terms of directional stability in three situations: fixed rudder angle, proportional-derivative (PD) control and windvane control, while the wind speed and direction and the sail trim angle were varied. The optimum windvane area was proved to depend on the wind conditions. [START_REF] Masuyama | Dynamic performance of sailing cruiser by full-scale sea tests[END_REF] presented a comparison of simulation results with full-scale measurements, which proved successful. A linear law was used to model the sail forces evolution at low apparent wind and simulate tacking maneuvers. In the third paper, [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF] reported on the substantial role of sails in roll damping and proposed a strip theory model ignoring three dimensional effects. This same paper also presented an original approach based on neural network techniques to simulate the tacking maneuver. Such a model has the advantage of requiring only teaching data and no specific model, but in return it cannot provide any insight into the physical causes of the observed behavior. [START_REF] Larsson | Scientific methods in yacht design[END_REF] presented a 4 degrees of freedom simulator based on a set of non linear ordinary differential equations, with the major novelty of allowing user interaction through instruments, controls and steering wheel (see Figure 1.3). The dynamic VPP (DVPP) allowed the practice of match racing. An autopilot was also available to perform straight line control and prescribed maneuvers. [START_REF] Keuning | A generic mathematical model for the maneuvering and tacking of a sailing yacht[END_REF] enlarged the possibilities and modularity of such tools by introducing the use of the Delft Systematic Yacht Hull Series (DSYHS) to compute the hydrodynamic coefficients. With the proposed model, sailing yacht maneuvering simulation became possible without having to carry out dedicated measurements. While comparison with full-scale tests showed good agreement, the weaknesses of the aerodynamic model based on the IMS VPP [START_REF] Claughton | Developments in the IMS VPP formulation[END_REF] are nevertheless underlined by the authors. An improvement of the model was presented in [START_REF] Keuning | The use of a maneuvering model for the optimization of the tacking procedure of an IACC sailing yacht[END_REF], especially regarding the Figure 1.3 -SSPA simulator, with control screens and steering wheel (from [START_REF] Larsson | Scientific methods in yacht design[END_REF] appendages side force. Corrections for the effect of heeling and downwash are included. The program was used on an IACC sailing yacht in cooperation with United Internet Team Germany to optimize the tacking procedure. Towing tank and wind tunnel tests were used to set up the maneuvering coefficients. Different scenarii were tested (rudder and trim-tab actions) and compared in terms of distance lost during tacks to determine the most effective procedure. [START_REF] Richardt | Maneuvering simulations for ships and sailing yachts using FRIENDSHIP-Equilibrium as an open modular workbench[END_REF] reported on a full six degrees of freedom DVPP based on Masuyama's approach. Several methods such as Clarke formula or Lewis transformation are proposed to derive the added mass and damping coefficients. Example maneuvers for a cargo and a sailing yacht are presented. In 2007, based on the DSYHS data and the IMS VPP aerodynamic model, [START_REF] Battistin | A tool for time dependent performance prediction and optimization of sailing yachts[END_REF] developed a simulation tool that they coupled with a genetic algorithm to optimize the tacking procedure of an IMS 37' racer. A multibody model was presented in [START_REF] Védrenne | Simulation dynamique du comportement mécanique de navires, application à la propulsion éolienne[END_REF] based on Lagrange equations. The aerodynamic model relies on the IMS VPP approach. Validations against full scale experiments are presented for a passenger ship and an IACC yacht with satisfactory results.

Seakeeping Calculation approaches

The study of ship oscillating motion was pioneered by the works of W. Froude and A. Krylov in the end of the XIX th , which laid the basis for most of last century seakeeping studies through the Froude-Krylov hypothesis which assumes that the incident wave system is undisturbed by the presence of the ship. A few years later, [START_REF] Lewis | The inertia of the water surrounding a vibrating ship[END_REF] tried to express the ship natural frequency and therefore studied the fluid inertial effects. Studying two dimensional bodies, a conformal mapping is used to approximate ship sections by elliptical sections. The two-dimensional added mass results are then integrated longitudinally, enabling to derive the ship motion and natural frequency.

In [START_REF] Haskind | The hydrodynamic theory of ship oscillations in rolling and pitching[END_REF][START_REF] Haskind | The hydrodynamic theory of ship oscillations in rolling and pitching[END_REF] was the first to try and resolve the complete problem of ship oscillations in waves. He introduced the fundamental decomposition of the velocity potential into radiation and diffraction, solutions of separated problems. Green theorem is used to express the potential while the thin-ship approximation allows to resolve the integral equation. However the lack of computational resources slowed down the spreading of such methods.

Another founding work for seakeeping studies is that of [START_REF] St | On the motion of ships in confused seas[END_REF], which relates the statistical representation of the seaway to the spectral density of the ship response. To this end, the sea surface is assumed to be a Gaussian random process and the ship a linear system (there is a linear relationship between wave elevation, wave loads and ship motion). With this approach, it is possible to derive the ship response amplitude in irregular waves provided the ship Response Amplitude Operator (RAO) is known.

To the first order, the thin ship theory applied to seakeeping problems balances the ship inertial forces by hydrostatic and Froude-Krylov forces. However in such case due to the lack of hydrodynamic damping, unbounded resonance occurs. To avoid this inconsistency, [START_REF] Newman | A linearized theory for the motion of a thin ship in regular waves[END_REF] reformulated the body boundary condition and performed a more refined systematic expansion in terms of the beam-length ratio, the wave amplitude-length ratio and the motion amplitude-length ratio. Indeed, first order hydrodynamic forces are dominant except near the resonance where second order terms must be accounted for. Comparisons with experimental data, though, gave mitigated results. Slender body approximation seemed more realistic as beam is not so often small in comparison with the draft. [START_REF] Ursell | Slender oscillating ship at zero forward speed[END_REF], [START_REF] Joosen | Oscillating slender ships at forward speed[END_REF] or [START_REF] Newman | A slender-body theory for ship oscillations in waves[END_REF] thus worked on its application to seakeeping problems, assuming long wavelengths. According to [START_REF] Newman | A slender-body theory for ship oscillations in waves[END_REF], for transverse motion, strip theory is recovered while for longitudinal motion, although damping is present, forces are dominated by hydrostatic loads and wave excitation. Thus, as for thin ship approximation, resonance cannot be studied at the first order.

Strip theory was first introduced by Korvin-Kroukovsky and Jacobs (1957), but its most popular formulation is that of [START_REF] Salvesen | Ship motions and sea loads[END_REF]. Considering that the ship is slender and assuming high encounter frequency, the 3D problem is reduced to a set of two dimensional problems with no interaction between sections. The high frequency assumption corresponds to assuming that the ship generated waves have a wavelength of the order of the ship beam rather than of its length. The solution is generally considered valid up to Fn = 0.4 (see [START_REF] Salvesen | Ship motions and sea loads[END_REF], forward speed is considered through the superposition of a zero speed term and a speed dependent correction component proportional to either U, U/ω, U/ω 2 or U 2 /ω 2 . The steady flow disturbance is ignored. Strip theory compared very well with experiments, especially for vertical responses. As far as horizontal responses are considered, the viscous effects are generally to be accounted for (through empirical corrections) for the results to be consistent. In line with the initial assumptions, low frequency responses are generally badly handled and produce incorrect motion predictions. Diverse methods are available to evaluate the two-dimensional added mass and damping coefficients, either analytically or using panel methods. The most common analytical approach is Lewis conformal mapping technique [START_REF] Lewis | The inertia of the water surrounding a vibrating ship[END_REF], but it does not allow to handle asymmetric sections. By contrast, Frank close-fit method [START_REF] Frank | Oscillation of cylinders in or below the free surface of deep fluids[END_REF] uses a distribution of sources over the submerged part of the section allowing to deal with arbitrary shapes.

Despite the limitations inherent to its assumptions, strip theory remains a standard seakeeping computation approach due to its ease-of-use and efficiency. Besides, it is easily modifiable to consider some non-linearities.

For instance, [START_REF] Jensen | Wave-induced bending moments in ships -a quadratic theory[END_REF] presented a strip theory based on relative displacements where terms are expanded to the second order. The ship is considered as a Timoshenko beam allowing to study the frequency domain structural response. Previous works on ship loads statistical predictions in waves were based on linear theories but measurements have shown that hogging and sagging may differ widely from one another, which is not visible from linear theory. Therefore, starting from the linear terms of the classical strip theory and using a perturbation approach, quadratic terms are introduced to account for the non-linearities of the problem: waves, hull geometry, hydrodynamic loads. Numerical examples in irregular waves show substantial deviation from the linear prediction when the significant wave height is larger than 1.5% of the length between perpendiculars.

Attempts have been carried out to fill the gap between the high frequency strip theory approach and the low frequency slender-body approach. This is for instance the case of the unified theory of [START_REF] Newman | The theory of ship motions[END_REF]. A near field flow, based on a two dimensional approach, is coupled to a three dimensional far field flow generated by a singularity distribution along the ship centerline. In the high and low frequency limits, strip theory and slender-body theory results are recovered.

The improvement of computational power allowed the development of Boundary Element Methods (BEM), 2D or 3D panel codes computing the velocity potential based on Green's theorem. Two main types of methods have been proposed: the Newman-Kelvin approach (Green function method, GFM, see e.g. [START_REF] Wehausen | Encyclopedia of Physics, volume IX of Fluid Dynamics III, chapter Surface waves[END_REF] and Dawson double body approach (Rankine source method, RSM, [START_REF] Dawson | A practical computer method for solving ship-wave problems[END_REF].

In the first one, Kelvin wave sources (see [START_REF] Wehausen | Encyclopedia of Physics, volume IX of Fluid Dynamics III, chapter Surface waves[END_REF] are distributed on the mean wetted surface of the body. Those singularities inherently fulfill the Laplace equation, the linearized free surface condition as well as the radiation condition. Enforcing the non-penetration condition on each panel allows to derive a system of equations that leads to the evaluation of the unknowns. Various approaches have been proposed for the computation of the Green functions. In the frequency-domain, forward speed Green functions are much more complex to evaluate than zero speed ones leading to a substantial increase in computational costs. Alternative solutions to their calculation is to enforce the forward speed in the body boundary condition but using zero speed Green functions. This process is however not physically justifiable. Formulation of the problem in the time domain is possible, but the correct treatment of the flow time history requires the computation of convolution integrals. In such case, the computational burden is similar at zero and non-zero forward speeds.

In the double body approach [START_REF] Dawson | A practical computer method for solving ship-wave problems[END_REF], one considers that the upper half-space z > 0 is occupied by a symmetric image of the submerged geometry. The steady flow is linearized on this double body flow. A different type of singularities, Rankine sources, are used which do not automatically fulfill the free surface boundary condition, and a finite portion of free surface around the body must be panelized. Additional numerical efforts must thus be performed to enforce a correct propagation of radiated waves on the discretized free surface as well as the absence of reflection at the end of the domain. The double body approach encountered great success in dealing with realistic hull shapes for both steady and unsteady flow cases and is moreover able to handle non linearized conditions.

Combined GFM-RSM approaches have been developed trying to couple the strengths of each technique: the GFM, that properly deals with the radiation condition for all frequencies and speed, is used to describe the far field, while the near field is treated using a RSM. The two solutions are matched along control surfaces on the outer boundary of the near field domain.

The 2 1 ⁄2 D theory has also been adapted to the seakeeping problem. [START_REF] Yeung | Radiation forces on ships with forward speed[END_REF] used this framework to derive the hydrodynamic damping and added mass for heave and pitch oscillations. In a subsequent paper [START_REF] Yeung | A new development in the theory of oscillating and translating slender ships[END_REF], the approach is extended in a manner similar to [START_REF] Newman | The theory of ship motions[END_REF]: the 2 1 ⁄2 D results are considered as an inner solution and matched to a three dimensional outer one to better account for low frequencies. In the following years, the 2 1 ⁄2 D has been recognized as the most practical approach to high speed ships, and remains widely used in this field [START_REF] Faltinsen | Numerical predictions of ship motions at high forward speed[END_REF][START_REF] Holloway | Ship motion computation using a high Froude number time domain strip theory[END_REF][START_REF] Sun | Porpoising and dynamic behavior of planing vessels in calm water[END_REF]. The method is also suitable for slamming and deck wetness modeling, which makes it even more appealing for the high speed shipping industry.

Nowadays, the use of frequency-domain codes decreases (ITTC, 2011a) due to the wide possibilities now offered by time-domain simulations. However, they remain of great help to quickly obtain a rough evaluation of the ship motion and loads in waves in early design stages. Besides, they are regularly used as pre-processing tools, as most of the weakly non-linear (see 1.3.2) seakeeping numerical codes are based on frequency domain hydrodynamic coefficients. Frequency-domain studies also allow an interesting approach to Fluid Structure Interactions (FSI) calculations by direct use of the structural modes of the ship considered as a beam.

Time domain methods allow coupling with any external or internal force model and are now very widely used. Furthermore they may be coupled to maneuvering models or programs (see 1.3.3) to provide knowledge on the effect of waves on ship maneuvers.

Seakeeping non linearities

According to [START_REF] Kring | Nonlinear ship motions and waveinducedloads by a rankine method[END_REF], non-linear effects in seakeeping problems can be classified in 5 groups, in descending order of importance:

1. Ambient wave train steepness, 2. Non-linearities of hydrostatic and Froude-Krylov loads, 3. Viscous effects (roll damping, appendages and transom viscous lift), 4. Slamming, 5. Radiated and diffracted wave non-linearities.

In system-based and potential code approaches, those effects are generally handled separately, by finding modeling solutions to each aspect considered as important. The wave non-linearities due to steepness are accounted for through the use of non-linear wave models such as described in the following chapter. The four other aspects depend usually on the choice of the seakeeping model. The next paragraph introduces modeling levels that handle some of those effects.

Load modeling classification

With the development of numerical codes, a wide range of approaches for seakeeping numerical studies are available. Several classifications of those methods have been proposed and one can in particular refer to ISSC (2009), ITTC (2011a) and ITTC (2017b). The classification proposed in the framework of the 26th International Towing Tank Conference (ITTC, 2011a) compares the ease of implementation and the computational burden of a number of approaches: frequency-domain, impulse-response-function, strip-theory, transient wave Green function, Rankine panel, CFD and hybrid methods. Strip theory models and Rankine panel methods are reported to be the most popular ones. In more recent guidelines (ITTC, 2017b), a different classification is proposed based on the non-linearity of the involved boundary conditions (Figure 1.4). Four categories are proposed from fully linear to fully non-linear, and examples of corresponding numerical methods are given.

The 17th International Ship and Offshore Structures Congress (ISSC, 2009) presented a similar categorization but with two additional categories that allow a more accurate distinction between possible assumptions. This classification will be used herein since it provides more hindsight in the related assumptions. Six levels of complexity are proposed (see Figure 1.5):

-Level 1: Linear, -Level 2: Weakly non-linear, -Level 3: Body non-linear, -Level 4: Body exact (weak scatterer), -Level 5: Fully non-linear -smooth waves, -Level 6: Fully non-linear. One should note that denominations are subject to variations, especially for body non-linear and body exact models. Methods 2 to 4 are partially non-linear methods, also referred to as blended techniques. In the first level of accuracy, the problem is fully linearized and generally solved in the frequency domain. Assuming that the magnitude of the ship motion as well as the steepness are small, the body and free-surface are approximated through their mean position. At low speed, the solution may be expressed as the superposition of the zero-speed solution with a correction term for forward speed [START_REF] Salvesen | Ship motions and sea loads[END_REF]. This is the common approach in strip theory, but is also in use in 3D codes where it allows to get rid of some computational complications (especially when using Green functions). Despite their rather low accuracy, linear models have extremely short run time which is a substantial advantage, especially in early design stages.

Weakly non-linear approaches compute hydrostatic and Froude-Krylov loads from the undisturbed incident wave pressure over the instantaneous body wetted surface. Radiation loads remain linearly modeled using a convolution integral and assuming the body is at its mean position. This approach is commonly used in engineering applications as it provides an interesting trade-off between computational time and accuracy, as hydrostatic and Froude-Krylov terms are generally the dominant non-linear effects for vertical motions. Examples of weakly non-linear models can be found in de [START_REF] De Kat | Simulation of ship motions and capsizing in severe seas[END_REF] and [START_REF] Fonseca | Time-domain analysis of large-amplitude vertical ship motions and wave loads[END_REF]. Both use frequency-domain radiation and diffraction coefficients computed using strip theory and transposed to the time-domain through an inverse Fourier transform. In [START_REF] Fonseca | Time-domain analysis of large-amplitude vertical ship motions and wave loads[END_REF], the m-terms of [START_REF] Olgivie | Recent progress to-ward the understanding and prediction of ship motions[END_REF] are used to model forward speed and account for the interaction between steady and unsteady flows. A comparison of the model's results with experimental data is presented in [START_REF] Fonseca | Comparison of numerical and experimental results of nonlinear wave-induced vertical ship motions and loads[END_REF] for the S-175 container ship. Vertical loads show good agreement, especially for the lower Froude numbers.

In level 3 and above methods, the submerged geometry on which is solved the radiation-diffraction problem varies at each time step, no pre-computation is thus possible. Besides, in level 2 methods, the instantaneous body mesh is used only for direct pressure integration (hydrostatic and Froude-Krylov loads) while for the higher order methods, it is used to solve the boundary value problem, and has thus higher quality requirements, calling for a longer meshing stage at each iteration. A substantial increase of the computational burden therefore exists between level 2 and 3 approaches. This difference is in contrast small between level 3 and 4 methods. Level 3 approaches, body non-linear methods, which account for the instantaneous body position but considering the free surface at its mean position, are thus not very popular. This simplification requires small wave steepness. Examples of two dimensional body non linear methods can be found in [START_REF] Zhang | Computations for large-amplitude two-dimensional body motions[END_REF] and [START_REF] Bandyk | A body-exact strip theory approach to ship motion computations[END_REF]. Both use Rankine source distributions. An advantage of level 3 with respect to higher level methods is their robustness, as linearizing the free surface boundary condition allows to avoid some numerical complications and possible instabilities. Also known as weak scatterer method, the level 4 approach assumes that the body generated waves (scattered waves) are of smaller order than the incident waves and may be neglected. This model was introduced by [START_REF] Pawlowski | A theoretical and numerical model of ship motions in heavy seas[END_REF] and considers the body instantaneous wetted geometry with respect to the incident waves profile. The distinction between radiation and diffraction loads does not stand anymore. The complexity of using Kelvin source Green's functions is increased as the free surface condition is not imposed on the mean free surface anymore. A possible workaround is to map the incident wave profile into a domain where it is flat (ISSC, 2009). Rankine panel methods are thus more commonly used. [START_REF] Huang | Nonlinear ship motions by a rankine panel method[END_REF] presented a Rankine panel method implementing the weak scatterer model. Results of a series 60 hull and a S175 container ship are compared to experimental data, as well as linear and weakly non linear models results. The weak scatterer model is shown to improve the predictions in a number of situations. Another example can be found in [START_REF] Letournel | Développement d'un outil de simulation numérique basé surl'approche weak-scatterer pour l'étude des systèmes houlomoteurs en grands mouvements[END_REF] for wave energy converter applications. Several validation cases are produced. In a first round of tests on a sphere, results are compared to other approaches such as fully linear, body-exact and fully-non-linear. It is in particular shown that the linear model fails to predict correctly the diffraction of regular steep waves around the sphere. In a second round of tests, wave energy converters are considered and discrepancies are observed with the linear model for cases other than small amplitude motion and small steepness waves. In the level 5 approach, the body generated waves are not neglected anymore and none of the boundary condition is linearized or simplified. The evolution of the free surface must be modeled to trace its position in time and apply the dynamic and kinematic boundary conditions along its exact location. A common approach is the Mixed Eulerian-Lagrangian method, introduced by Longuet- [START_REF] Longuet-Higgins | The deformation of steep waves on water[END_REF]. The principle is to carry out two successive operations: in the first one, the Eulerian phase, the fluid potential is computed from the boundary value problem, while in the second one, the Lagrangian phase, the evolution of the free surface particles is computed based on the Lagrangian form of the non-linear free surface boundary condition Dx F /Dt = ∇φ , with x F the position of a fluid particle on the free surface and φ the fluid potential. Level 5 methods are however limited to smooth waves and a wave breaking criterion is generally set up to stop calculations when the fluid domain separates. Besides particles tend to accumulate in the higher gradient area, leading to the saw-tooth instability and requiring additional numerical treatment to smooth the free surface. An example of level 5 method can be found in [START_REF] Beck | Time-domain computations for floating bodies[END_REF]. The three dimensional boundary value problem is solved using desingularized Rankine sources. No comparison is presented but example calculations on simple geometric shapes (box and cylinders) are provided.

Handling of breaking waves or other complex fluid behavior such as spray is not possible in boundary element methods. Reynolds-Averaged-Navier-Stokes (RANS) solvers are the most popular level 6 technique, with a widespread use. The computational cost remains however heavy for engineering purposes when the simulation of fully appended yachts in waves is considered.

Other approaches are available such as for instance Smoothed Particle Hydrodynamics (SPH, see e.g. [START_REF] Touzé | SPH simulation of green water and ship flooding scenarios[END_REF][START_REF] Shadloo | Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges[END_REF] which does not require a grid to solve the Navier-Stokes equations.

Comparative studies have been carried out on diverse seakeeping codes, one can especially refer to the following collaborative works: [START_REF] Bunnik | A comparative study on state-of-the-art prediction tools for seakeeping[END_REF] and [START_REF] Toxopeus | CFD, potential flow and system-based simulations of fully appended free running 5415M in calm water and waves[END_REF]. [START_REF] Bunnik | A comparative study on state-of-the-art prediction tools for seakeeping[END_REF] compared 11 seakeeping prediction tools: 9 potential codes and 2 CFD codes on the simulation in waves of a container ship and a ferry. Among the potential implementations, various levels of complexity were present: fully linear zero-speed codes to non-linear implementations. In [START_REF] Toxopeus | CFD, potential flow and system-based simulations of fully appended free running 5415M in calm water and waves[END_REF], a DTMB 5415M surface combatant is simulated in flat water (roll decay and forced roll) and in waves (mono-and bi-chromatic waves). 7 codes are compared: 2 CFD codes (CFD Ship Iowa and ISIS-CFD), 3 potential codes (Fredyn, LAMP, SWAN) and 2 system-based codes (Sursim and FreSim). Potential and systembased codes implement linear or weakly non-linear models with semi-empirical viscous corrections. None of the system-based codes included modeling of wave loads. In both papers, numerical data are compared to experimental results from model tests at MARIN. Overall, potential codes compared quite well with experimental data and CFD in terms of motion amplitude. Their coupling with maneuvering derivatives such as done in LAMP is shown to be very beneficial for the results accuracy. CFD proves however better as soon as large viscous effects or strong non-linearities are involved.

The previously mentioned LAMP code is also a very interesting work when considering levels of modeling accuracy. Woei-Min Lin and Nils Salvesen's have developed in the 90's a set of codes with varying levels of non-linearity in the frame of the Large Amplitude Motion Program (LAMP, see especially [START_REF] Lin | Large-amplitude motions and waves loads for ship design[END_REF]. 4 LAMP implementations are compared:

-LAMP-1: 3D fully linear method (level 1), -LAMP-2: 3D weakly non-linear method (level 2), -LAMP-3: 2D 1 ⁄2 weak-scatterer method (level 4), -LAMP-4: 3D weak-scatterer method (level 4). A US Navy strip theory code implementing [START_REF] Salvesen | Ship motions and sea loads[END_REF] model is also used.

The comparison is performed on a Series 60 and a S175 container ship, in both cases experimental data are available as reference. It is shown that in severe conditions, LAMP-1 results are inadequate. For the Series 60, LAMP-2 and LAMP-4 results are rather close to one another. For the S175, while pitch motion is similar, LAMP-2 overpredicts the heave response. According to the author the difference would mainly be caused by the effect of forward speed that is only accounted for through [START_REF] Olgivie | Recent progress to-ward the understanding and prediction of ship motions[END_REF] m-terms in LAMP-2. LAMP-2 is however shown to be able to provide valuable insights and consistent non-linear behavior simulations. It is worth noticing that the computational time is reported to be 40 times larger for LAMP-4 in comparison with LAMP-2, both being slower than real time.

Similarly, within the Ship WAve ANalysis (SWAN) program of the MIT [START_REF] Sclavounos | A computational method as an advanced tool of shiphydrodynamic design[END_REF], comparisons between linear and various non-linear implementations were performed (see [START_REF] Kring | Nonlinear ship motions and waveinducedloads by a rankine method[END_REF]. The SWAN codes implement a 3D Rankine Panel Method, in the frequency domain for SWAN-1 and in the time domain for SWAN-2. SWAN-2 was initially fully linear but was extended with nonlinear abilities [START_REF] Huang | Nonlinear ship motions by a rankine panel method[END_REF][START_REF] Kring | Nonlinear ship motions and waveinducedloads by a rankine method[END_REF]. It is shown that the weakly non-linear implementation provides an interesting improvement of the linear predictions, especially for the Snowdrift hull response that presents substantial non-linearities. As could be expected, for steeper waves, the weak scatterer results are closer to the reference data than both linear and weakly non-linear results.

This load modeling classification underlines how the choice of a seakeeping computational approach impacts substantially the performance of the developed program. A trade-off between numerical efficiency and physical accuracy is necessary. While the level 1 approach fails to account correctly for a number of phenomena of interest (such as the large changes in immersion of foiling yachts), most of the higher level techniques cannot achieve real-time computations. The choice of the implemented approach is further discussed in Section 1.4. et al. (1967) are generally considered as the firsts to study the behavior of sailing yachts in a seaway. The motion and added resistance of a yacht were experimentally measured in the facility of the Davidson laboratory of the Stevens Institute of Technology, in head and oblique waves. An interesting observation was that the added resistance in oblique waves could be derived from its value in head waves provided the wave encounter properties were identical.

Sailing yachts seakeeping

Spens

In the following years, [START_REF] Gerritsma | Course-keeping qualities and motions in waves of a sailing yacht[END_REF] presented a comparison of strip theory computations in regular and irregular head waves with experimental measurements for heave and pitch. In long waves (λ > 1.5 L WL ), results showed a rather poor agreement and the author blamed the lack of speed effect in the strip theory model for the observed discrepancies. [START_REF] Gerritsma | The seakeeping performance and steering properties of sailing yachts[END_REF] extended their previous work with additional towing tank measurements on three models, focusing on the effect of longitudinal radius of gyration on the yacht pitch response and added resistance. They also provided a formula for the expression of added resistance in waves based on cross-sectional heave damping coefficients that remains a reference. While these papers did not consider the effect of the sails on the yacht motion, [START_REF] Skinner | Sailing vessel dynamics: investigations into aero-hydrodynamic coupling[END_REF] used lifting line theory and vortex lattice techniques to express the aerodynamic damping provided by the rig. The resulting decrease in pitch motion leads to lower values of added resistance. The reported gain in resistance is as substantial as 14%. However, Skinner also concluded that such a quasi-steady approach could overestimate the aerodynamic damping as it neglects unsteady aerodynamic effects.

In order to validate the use of strip theory codes for seakeeping and the computation of added resistance following the formula given in [START_REF] Gerritsma | The seakeeping performance and steering properties of sailing yachts[END_REF], [START_REF] Gerritsma | Speed loss in waves[END_REF] compared strip theory predictions of heave, pitch and added resistance with model tests on two hull forms from Series II of the DSYHS: a light displacement model with large beam-to-draft ratio and a moderate displacement model with small beam-to-draft ratio. Although results exhibit a good correlation for the former, with only small incidence of heel on motion and added resistance, the results for the medium displacement model are less satisfactory. In particular, heel is shown to have a non negligible effect. [START_REF] Kapsenberg | A new technique for testing a sailing yacht in waves[END_REF] carried out a similar validation work, comparing his innovative test technique where the model is towed at the aerodynamic center of effort to strip theory computations. The wave in-duced motion and added resistance are shown to be largely over-predicted. Citing the work of [START_REF] Gerritsma | Speed loss in waves[END_REF], Kapsenberg assumed that neglecting heel in the strip theory calculations was the probable cause of the discrepancies.

In the beginning of the 2000's, several studies were devoted to the implementation of sailing yacht seakeeping models. [START_REF] Harris | A time domain simulation for predicting the downwind performance of yachts in waves[END_REF] reported on a 3DOF simulation tool (surge, heave, pitch) aiming at predicting downwind performances of sailing yachts. The program uses Hazen sail model and the Delft Systematic Yacht Hull Series for the resistance prediction. Assuming that downwind low encounter frequencies allow to neglect diffraction forces, only the Froude-Krylov part of the excitation force is modeled, by direct integration of the incident wave pressure. Comparison with experimental measurements are presented, with satisfactory agreement. [START_REF] Ottosson | The effect of pitch radius of gyration on sailing yacht performance[END_REF] presented a time-domain tool based on a quasi-steady approach in which angular motions are accounted for by calculating induced velocities. Strip theory was used to derive the hydrodynamic added mass and damping, and the relation between pitch radius of gyration and added resistance in waves was studied.

As numerical codes for predicting the response of yachts in waves developed, the interest of including the maneuvering problem in the studies became undeniable and work on coupling the two approaches was carried out.

Coupling

According to ITTC (2014) and [START_REF] Ma | Time domain simulations of ship maneuvering and roll motion in regular waves based on a hybrid method[END_REF], four approaches are possible to study maneuvering in waves, that is to say the coupling of maneuvering and seakeeping:

-Experimental Fluid Dynamics (EFD), -Computational Fluid Dynamics (CFD), -Two-time scale methods, -Hybrid methods. The term unified is willingly ignored in the terminology as it has been used alternatively to designate both two-time scale and hybrid methods.

EFD is discussed in Chapter 3. Free-running models test for sailing yachts have seen tremendous recent progress (e.g. [START_REF] Gauvain | The un-restrained sailing yacht model tests -a new approach and technology appropriate to modern sailing yacht seakeeping[END_REF], but need further developments. CFD allows the direct simulation of both aspects but is still subject to high computational costs and some technical difficulties remain to be tackled. However, both of those approaches are beyond the scope of this thesis as they are not in line with the expected specifications of the dynamic behavior study tool this work is concerned with. Two-time scale methods and hybrid methods can be both used within system-based or potential codes. In the two-time scale method, maneuvering and seakeeping are considered as two distinct subproblems having different time scales. The sub-problems are solved simultaneously and exchange information (mean wave loads, kinematic properties). The two sub-problems can either be evaluated one after the other [START_REF] Skejic | A unified seakeeping and maneuvering analysis of ships in regular waves[END_REF] or in parallel [START_REF] Seo | Numerical analysis on ship maneuvering coupled with ship motion in waves[END_REF], in that case several seakeeping computation steps are generally carried out within one maneuvering step. The second order wave drift force is generally applied in the maneuvering sub-problem. This coupling allows a lot of flexibility in the handling of both sub-problems. They may for instance have different degrees of freedom: usually four for maneuvering and six for seakeeping. Besides, the seakeeping sub-problem may indifferently be solved in the time-domain or in the frequency-domain. The two-time scale approach is very convenient to couple two pre-existent programs: a strip theory code and a slender body maneuvering model in [START_REF] Skejic | A unified seakeeping and maneuvering analysis of ships in regular waves[END_REF] or a Rankine Panel Method and a MMG model in [START_REF] Seo | Numerical analysis on ship maneuvering coupled with ship motion in waves[END_REF].

In the hybrid method approach, the coupling is performed by including directly the wave induced effects in the maneuvering equation. Cummins equation [START_REF] Cummins | The impulse response function and ship motion[END_REF] allows expression of the fluid memory effect in the time domain through a convolution integral which is to be evaluated at each time step [START_REF] Letki | Simulation of ship manoeuvring performance in calm water and waves[END_REF][START_REF] Ayaz | Manoeuvring behaviour of ships in extreme astern seas[END_REF]. State-space approaches are also regularly used to replace the convolution integral and speed-up the computation, the radiation problem is then represented by a set of ordinary differential equations [START_REF] Fossen | A nonlinear unified state-space model for ship maneuvering and control in a seaway[END_REF][START_REF] Sutulo | A unified nonlinear mathematical model for simulating ship manoeuvring and seakeeping in regular waves[END_REF].

The hybrid approach has been preferred by most of the researchers working on sailing yacht simulation. A probable reason is that handling both problems as one unified problem leads to substantial gain in computational time (no communication between codes for instance), which is a critical aspect when the aim is to run in real time or as close to real time as possible. Finally, when starting from scratch, the implementation burden of the hybrid approach is believed to be smaller than for the two-time scale method in which complex communication issues must be handled.

Yacht dynamic simulation

To the author's knowledge, [START_REF] Day | VPP vs PPP: challenges in the time-domain prediction of sailing yacht performance[END_REF] were the first to report on a 6 degrees of freedom numerical tool for dynamic simulation of coupled maneuvering and seakeeping of a sailing yacht. To this end, sailing yacht dedicated force models are connected to an already existing ship motion program. The model implements a weakly non-linear hybrid approach and uses quasi-steady hydrodynamic and aerodynamic loads through the Delft Systematic Yacht Hull Series and Hazen sail model. To gain in numerical efficiency, hydrodynamic coefficients are pre-computed, allowing to interpolate within the generated database during simulation. Comparison with full-scale data showed good trends although the authors underlined some discrepancies.

A few years later, [START_REF] Harris | Time domain simulation of a yacht sailing upwind in waves[END_REF] proposed another numerical tool to simulate the upwind behavior of sailing yachts. Instead of using the hydrodynamic derivatives approach to the maneuvering problem, the maneuvering loads are directly computed from an unsteady panel code, that includes the appendages. Resistance is expressed using the Delft Systematic Yacht Hull Series while hydrostatic forces are precomputed and interpolated from a look-up table. Radiation and diffraction are expressed from striptheory frequency-domain coefficients. Finally, aerodynamic loads are computed by dividing the sails in strips and interrogating a database built with panel codes calculations. Comparison with full-scale IACC yacht trials are presented, with good agreement.

Initially developed to study the behavior of fishing vessels in astern seas and especially the occurrence of surf-riding and broaching-to phenomena, the ship simulation code of [START_REF] Horel | Modélisation physique du comportement du navire par mer de l'arrière[END_REF] has been adapted to handle sailing yachts. The code uses weakly non-linear load models and a hybrid coupling. In the initial work, maneuvering loads are expressed as hydrodynamic derivatives identified with towing tank tests, while radiation and diffraction loads are computed from frequency-domain linear potential code coefficients. Particular emphasis was brought to the modeling of the effect of following waves on the maneuvering loads. In [START_REF] Horel | System-based modeling of a foiling catamaran[END_REF], the model is used to simulate standard maneuvers with a foiling catamaran in flat water and in waves. In a subsequent paper [START_REF] Horel | Application of system-based modeling and simplified FSI to a foiling Open 60 monohull[END_REF], the DVPP is supplemented by a simplified beam model that allows to consider the fluid-structure interactions on the foils. Straight line performances of an IMOCA 60 in flat water and in waves are then computed, underlining the effects of foil deflection. [START_REF] Angelou | A new mathematical model for investigating course stability and maneuvering motions of sailing yachts[END_REF] reported on an interesting approach to the dynamic simulation of sailing yachts in waves. Vortex methods are used to compute the sail loads upwind as well as the maneuvering loads. The hull and appendages are represented as lifting surfaces (of very low aspect ratio in the case of the hull), and the maneuvering loads are computed through a Vortex Lattice Method (VLM). The sail force model is coupled with a shell finite elements code allowing to model the sail deflection. Strip theory is used to derive radiation coefficients. The model is improved in [START_REF] Angelou | Modeling of transient hydrodynamic lifting forces of sailing yachts and study of their effect on maneuvering in waves[END_REF] to better account for the unsteadiness of the problem. Horseshoe vortices are replaced with vortex rings that are shed by the lifting surfaces. Several simulation examples are provided including tacking maneuvers in waves and course keeping studies.

Other sailing yacht dynamic simulator programs exist outside the academic field. However, publications regarding the content of their models are generally very restricted or even non-existent. That is the case, for instance, of the Gomboc software [START_REF] Wilkins | Gomboc: A design high-flier for ETNZ[END_REF][START_REF] Monnin | The role of simulation in the America's Cup[END_REF], developed by J.-C. Monnin and D. Bernasconi and used by Emirates Team New Zealand.

As mentioned in section 1.2.2, RANSE VPPs have been developed and, as reported by [START_REF] Levin | Sailing yacht performance prediction based on coupled CFD and rigid body dynamics in 6 degrees of freedom[END_REF], work is now carried out to include unsteady environment and perform entire yacht dynamic simulations in CFD. The approach is promising and enables great accuracy while eliminating the need for empirical data or numerical pre-computations. However, the maturity of such methods is currently not sufficient for engineering applications and systematic design studies.

Proposed approach

The real-time constraint on the developed numerical tool is a driving specification for the choice of the modeling approach. RANS solvers or even BEM codes are not feasible solutions, and a system-based model has thus been implemented, allowing the required modularity and efficiency. The system-based approach allows for plugging in and out blocks of force so that one can easily switch from one force model to another, or from one yacht to another (monohull or multihull, power boat or sailing yacht, etc.). With a thoughtful implementation and an integration within a user interface, a change of configuration (change of foil, of sail, etc.) will then be possible by selecting items in a menu.

As for the coupling between the maneuvering and seakeeping problems, an hybrid model seems the most adapted technique as being the most efficient. Besides, its use is very consistent with system-based approaches.

As far as the maneuvering problem is concerned, no choice is necessary at this stage. Direct numerical calculations (potential or RANS) have been ruled out by the use of a system-based modeling. The remaining possibilities all consist in expressing the loads from a set of coefficients, whether hydrodynamic derivatives, polynomial coefficients or other types of regression coefficients. They can therefore be used indifferently.

Finally seakeeping load models with level equal or higher than 3 face much longer running time as the fluid problem must be solved at each time step. While mesh quality is critical for the accuracy of the results, possible loss of robustness is to be feared regarding for instance water exit and water entry which are frequent phenomena for foiling yachts. The computational cost increase is substantial between level 2 and higher order methods. To the author's knowledge, no weak scatterer code is currently able to run in real-time on a laptop. A possible solution could be the use of a 2 1 ⁄2 D approach, but the numerical tool would lose modularity and flexibility while in the future it aims at also handling less slender hull shapes such as for instance IMOCA monohulls. A level 2 approach, which can nevertheless account for a number of important non-linear effects, has thus been chosen. In particular, using non-linear hydrostatic and Froude-Krylov calculations allows to consider the large changes in immersion of the hulls when transitioning from Archimedean to flying mode, and reciprocally.

Foiling greatly enhances the need to factor in all degrees of freedom as heave (flight height) and trim (angle of attack) are at the core of the stability, while the four usual maneuvering parameters remain of great importance. A full 6 degrees of freedom modeling has thus been implemented.

The following chapter details the chosen mathematical models for each component of the studied system. This chapter first describes a rigid body dynamics algorithm allowing for the solution of problems incorporating several interconnected bodies. Environmental models which provide the wind and wave fields are subsequently presented. Load models for all of the yacht components (hulls, sails and appendages) are detailed. Finally, the resulting DVPP is presented in the last section.

The description of the yacht dynamics mainly relies on two reference frames: the Earth-fixed frame R 0 = (O 0 , x 0 , y 0 , z 0 ) and the ship-fixed frame R b = (O b , x b , y b , z b ) (see Figure 2.1). R 0 is inertial and defined with z 0 upwards and orthogonal to the mean free surface. R b is defined with x b positive direction forwards, y b to port and z b upwards. The definition of its origin O b is arbitrary and not subjected to any assumption. Vectors X b expressed in the body reference frame are transformed into the Earth-fixed frame through the relation

X 0 = R R b →R 0 X b . The inverse transformation matrix is: R R 0 →R b = R -1 R b →R 0 = R T R b →R 0 . (2.2)
The position of O b in R 0 is given by the coordinates (x b 0 , y b 0 , z b 0 ). The ship linear and angular velocity vectors with respect to R 0 and expressed in R b are respectively noted V = (u, v, w) and ω ω ω = (p, q, r). The latter relates to the time derivative of the gimbal angles by the following expression:

  1 sin ϕ tan θ cos φ tan θ 0 cos ϕ -sin ϕ 0 sin ϕ/ cos θ cos ϕ/ cos θ     p q r   =   φ θ ψ  , (2.3)
which presents a singularity for θ = ±π/2. This is however not an issue in normal sailing conditions.

Finally, the leeway angle β is defined as the angle between the yacht centerline and her velocity vector, both projected onto the mean free surface plane:

β = -arctan v 1 u 1 , (2.4)
where u 1 and v 1 are the longitudinal and transverse components of the expression of V in R 1 .

Multibody dynamics 2.2.1 Interest

Most of the DVPPs presented in the previous chapter consider the simulated yacht as a unique body and resolve its dynamics through the integration of Newton-Euler rigid body equations:

   m V + ω ω ω × O b G + ω ω ω × (V + ω ω ω × O b G) = F f e I ω ω ω + m O b G × V + ω ω ω × I ω ω ω + m O b G × (ω ω ω × V) = F m e , (2.5) 
where V and ω ω ω are the ship linear and angular velocity vectors, and V, ω ω ω their time derivatives. F f e , F m e are the external forces and moments acting on the yacht, and m, I her mass and inertia at the origin O b of the ship reference frame. G is the body's center of gravity.

In such case the mass, inertia and center of gravity position of the yacht are considered constant throughout the whole simulation. While on many conventional yachts this assumption is appropriate, this is less and less true for high performance yachts equipped with state-of-the-art appendages such as foils or canting keel. As long as the changes of tuning of those appendages are slow enough, quasisteady assumptions are acceptable and the inertial properties may be altered without accounting for the dynamic loads generated by the motion of the appendages. However, with the increase of the use of control systems, this hypothesis may break down. Also, it is of great interest to develop a numerical tool allowing the handling of moving appendages with no constraint on the rate of tuning. For this reason, it was decided to implement a multibody algorithm, which is presented in this section. Closed-loop systems (Figure 2.3c) are the most general type of multibody systems, each body can have any number of successors and ancestors. The motions of the bodies are dependent and may be constrained by joints other than those to which they are directly linked. Open-loop systems dynamics is generally simpler to resolve as subjected to fewer constraints. The motion of each body is independent and one cannot draw a closed path between any combination of bodies. There are two types of open-loop systems: chain systems and tree systems. In the former (Figure 2.3a), each body has exactly one ancestor and one successor, except at the ends. The second category is more general (Figure 2.3b), the bodies can have any number of successors but the unique ancestor constraint remains.

Generalities

The equation of motion of a multibody system can be written using the Lagrangian formulation of the Newton-Euler equations:

τ τ τ = H (q) q + C (q, q) .
(2.6) τ τ τ is the joints loads vector, H the inertia matrix and C stands for the inertial and external loads. q is the vector of the articular variables (joints position).

In the case of a motion simulator, one is interested in the forward (or direct) dynamics of the multibody system, which is the computation of the bodies accelerations from the knowledge of the loads. This corresponds to solving the problem: q = F(q, q, τ τ τ) ,

(2.7)

namely to evaluate H -1 (τ τ τ -C ). Conversely, inverse dynamics consists in computing the loads from known accelerations.

Two types of coordinates may be used to describe multibody systems: natural coordinates or reduced coordinates. With the former, also called redundant or maximal coordinates, each body is described by its own Cartesian coordinates in the global reference frame, while with the latter, also referred to as joint or relative coordinates, each body is located with respect to one of its ancestors only, so that the joint variables are the system state vector. The choice of the coordinates representation is intimately linked to the solution algorithm.

Multibody dynamics solution

For the sake of simplicity, it has been assumed that the unitary bodies of the modeled system are non-flexible as far as the multibody dynamics solution is concerned. However, this does not prevent from computing the external loads accounting for deflections and besides it is also possible to model deformations using several bodies such as done in lumped-mass models for instance. In the following part, only rigid body algorithms are discussed.

The classical approach to multibody problems relies on the Lagrangian formulation of the equations of motion. The Augmented Formulation or Lagrange multipliers method is the most well-known: the bodies all have 6 degrees of freedom and constraint equations are added to enforce the motion restrictions between bodies. Such methods, although they allow to express automatically the equations of motion, are not optimum and their efficiency evolves as O n 4 , with n the (unconstrained) system degrees of freedom [START_REF] Featherstone | Robot dynamics: equations and algorithms[END_REF]. They are therefore not adapted to real time control or simulation.

The most efficient methods for multibody dynamics rely on recursive formulations that make profit of the system structure. The first ones were derived for inverse dynamics problem from Newton-Euler equations, giving birth to the Recursive Newton-Euler Algorithms (RNEA), with O(n) efficiency. Subsequently, efficient forward dynamics algorithms were derived using recursive formulations too. Two major forward dynamics recursive algorithms exist [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF], both belonging to the embedding techniques category:

-the Composite Rigid Body Algorithm (CRBA), -the Articulated Body Algorithm (ABA).

The Composite Rigid Body Algorithm allows to compute C through a recursive inverse dynamics algorithm while H is expressed using a composite-rigid-body method. Throughout a backward loop, composite bodies made of a given body and all of its direct and indirect successors are considered. Knowing from the previous iterations the inertia properties of the succeeding composite body(-ies), the properties of the current one can be derived leading to the expression of H which can eventually be inverted. The Articulated Body Algorithm is a constraint propagation approach. Only one joint is considered at a time, between a base body and an articulated body which includes the remaining part of the system. The acceleration of this unique joint is more easily derivable than that of the complete problem. Once this is done, this solved joint is used to increment the base member and the process repeated. This implies to have an expression of the inertia of the articulated bodies, which can be done through a backward loop on the system. The H matrix is not explicitly derived and its inversion not carried out.

The CRBA is a O nd 2 algorithm, with d the depth of the kinematic tree [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF], and thus achieves O n 3 efficiency in the worst case (a kinematic chain, d = n). ABA are reported to be more difficult to derive but are the most efficient algorithms, with a O(n) efficiency. Nevertheless, for a small number of bodies it is generally reckoned that both algorithms achieve a similar efficiency with even a slight advantage for the CRBA [START_REF] Featherstone | Robot dynamics: equations and algorithms[END_REF]. In terms of numerical accuracy, ABA is reported as being better than CRBA [START_REF] Ascher | Forward dynamics, elimination methods, and formulation stiffness in robot simulation[END_REF].

CRBA and ABA are particularly well suited for kinematic trees. In the case of closed-loops, the problem is complicated by the loss of the joint variables independence (loop closure constraints). In the general case, it is not possible to reduce to an explicit set of independent variables and it is thus necessary to go through a constraint enforcing step. Two major approaches are possible: either consider and solve for fully unconstrained bodies before enforcing all constraints, or cut artificially the loop by considering a spanning tree before enforcing a closure constraint. This second approach is doable in the frame of CRBA and ABA, however new issues are to be handled beside the substantial additional computational cost (sensitivity to cut location for instance).

In this project, it was chosen to implement an Articular Body Algorithm based on the floating base forward dynamics model of [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF] following the formulation proposed by [START_REF] Rongère | Systematic dynamic modeling and simulation of multibody wave energy converters[END_REF]. Both use a robotic formalism.

Parametrization

The implementation of an ABA implies the use of reduced coordinates. The choice of this parametrization is of huge importance to optimize the number of operations in the solution. The modified Denavit-Hartenberg (mDH) parameters were introduced by [START_REF] Khalil | A new geometric notation for open and closed-loop robots[END_REF] and allow a systematic parametrization of kinematic trees (and thus of cut closed-loops too). Each joint can only have one degree of freedom: a rotation (revolute joint) or a translation (prismatic joint). More complex joints are represented by adding combined massless bodies.

The notations and parametrization follow that of [START_REF] Rongère | Systematic dynamic modeling and simulation of multibody wave energy converters[END_REF]. All bodies are numbered starting from the base body 0, and navigating through the kinematic tree towards its ends while incrementing the number. The base body is the only one for which the Cartesian coordinates are known. It may have 0 to 6 degrees of freedom. The ancestor of a body j is noted a j . By definition of the numbering, a j < j.

To express the mDH parameters, each body i is equipped with a frame, noted Σ i = (x i , y i , z i ) and defined so that:

z i is along the direction of joint i (translation axis for a prismatic joint, rotation axis for a revolute joint), -x i is along the perpendicular to z i and one of the succeeding joint axis z j , with a j = i. If i has no successor, x i can be defined arbitrarily. -y i is such that (x i , y i , z i ) is orthonormal and direct. An additional unitary vector u i is defined for all bodies: perpendicular to z i and z a i , if x a i is not perpendicular to z i , and equal to x a i otherwise. The 6 mDH parameters that allow to locate Σ j with respect to Σ a j are then defined as: γ j : angle between x a j and u j around z a j , -b j : distance between x a j and u j along z a j , α j : angle between z a j and z j around u j , -d j : distance between z a j and z j along u j , θ j : angle between u j and x j around z j , -r j : distance between u j and x j along z j . When u j = x a j , only four variables are sufficient to locate Σ j , and γ j = b j = 0. Figure 2.4 illustrates the parametrization. In the case of a prismatic joint, q j = r j , while q j = θ j for a revolute joint.

The formalism allows to express automatically the rotations and translations between the frames of two successive bodies, and by composition to express the homogeneous transformation from a body to any other.

Hereafter, except otherwise noted, the base body is defined as the yacht platform: the ship-fixed reference frame R b and the base body frame Σ 0 are thus identical.

Equations of motion

For a floating base, (2.6) is rewritten as:

0 6×1 τ τ τ = H (q) 0 V0 q + C (q, q) , with H = H 11 H 12 H 21 H 22 .
(2.8) τ τ τ is the vector of torques and forces along the joints axes, known as functions of q and q. H 11 is the base body inertia matrix, H 22 the inertia matrix of the multibody system in its current configuration and H 12 = H T 21 the coupling inertia matrix. 0 V0 is the acceleration of the base body with respect to the Earth-fixed frame and expressed in Σ 0 .

Two particular cases may be identified. In the former, the base body is fixed in the Earth frame: 0 V0 = 0 6×1 and equation (2.6) is thus retrieved. In the second case, only one body, the base body, is present and the usual Newton-Euler equations for a unique body are recovered.

Unlike conventional boats, sailing yachts mass distribution is generally asymmetric to increase the righting moment (water ballast, canting keel, equipment windward stacking). Therefore no assumption is made on the values of the products of inertia of H 11 or on the transverse coordinates of the center of gravity of the base body.

Articulated Body Algorithm

This section underlines the concept and main steps of the implemented Articulated Body Algorithm. A more complete description may be found in [START_REF] Rongère | Systematic dynamic modeling and simulation of multibody wave energy converters[END_REF].

Solution of the forward dynamics problem at each time step is performed in three stages: a forward loop (increasing body numbers), a backward loop and a second forward loop.

In the first forward step, the knowledge of the base body and joints position and velocity is used to derive recursively the homogeneous transformation of each body, as well as their velocity with respect to the Earth frame, by propagating the knowledge of the kinematic state of the components. Inertial, joints and external loads are also computed for each body.

The backward loop aims at computing the modified inertia and force matrices. Those matrices account for loads and inertia transmitted by the successors. The last body having no successor, its inertia and force matrices are not modified. Proceeding iteratively towards the base body, all matrices are expressed.

Finally, the second forward step begins with the solution of the dynamics of the base body, which is performed accounting for the loads and inertia exerted by the remaining part of the multibody system. Knowing the acceleration of the ancestor, the wrench vector and acceleration of each body are derived eventually.

Numerical integration

Several explicit numerical integration schemes with various orders have been implemented, including the usual 4th order Runge-Kutta scheme. Higher order schemes are also available such as for instance Dormand-Prince method. The embedded error estimate it provides is of great interest as it allows the use of adaptive time-stepping techniques. The time step width is then altered automatically by comparing the error estimate to an input tolerance.

The simulator can either be run through a user interface where the simulation is displayed in realtime or off-screen to further increase the efficiency. When running with a visualization window, the time step must be limited so that the potential user actions are accounted for without noticeable delay and the rendering smooth enough (although the use of extrapolation technique is possible to a certain extent).

There is no such constraint in the second mode of execution and the time step may be largely widen when the computation is stable enough.

External loads

Following a system-based approach, the external loads F e are expressed as a superposition of all boat loaded components and can be divided in three main groups: hull loads (H), aerodynamic loads (AP) and appendage loads (AE):

F e = F H + F AE + F AP + ∑ i, j∈{H, AP, AE} F i/ j + R R 0 →R b mg ,
(2.9) with g the gravity vector. F i/ j is the interaction term of component i over component j. As in the majority of system-based models most of those interactions are neglected. However, depending on the setups chosen by the user in the pre-computation steps, some of them may be accounted for, such as the interaction between hull and appendages' forces F AP/H for instance. Load models are described in details in sections 2.4, 2.5 and 2.6.

All loads are to be expressed in the frame of the body they are acting on, at the origin point of the frame. In the case of the base body, loads are thus expressed at O b .

The different components are distributed among the bodies depending on the simulated multibody structure, which is chosen by the user.

Environmental conditions

The environment impacts the yacht behavior through three main phenomena: wind, waves and currents. In the general case, they all vary in both time and space. Currents are not considered herein, but simple modification of the code could allow to handle them, including temporal and spatial variability.

Wind

The wind is described as a vector field W:

W = W (t, x 0 , y 0 , z 0 ) .
(2.10)

The mean wind speed at height z ref = 10 m is designated as the true wind speed (TWS), while the mean angle between its projection on the horizontal plane and the x 0 axis, measured clockwise, is referenced as true wind direction (TWD, see Figure 2.1).

In the simplest level of modeling, the wind field is assumed constant over the whole domain. However, in reality, due to the friction along the sea, the wind distribution is not uniform and a vertical velocity gradient exists within the Earth boundary layer. Its size varies between a few hundred meters and a few kilometers, depending especially on the terrain and the wind force. The wind perceived by the sails is thus very different at deck level and at the mast head (Figure 2.5). Within 100 m from the mean sea level, the wind profile is usually considered to be well described by a logarithmic law (e.g. [START_REF] Flay | A twisted flow wind tunnel for testing yacht sails[END_REF]:

W (z 0 ) = TWS ln z 0 /z ln z ref /z , (2.11)
where z is the surface roughness length. Over open waters, z varies between 10 -4 (calm sea) and 10 -3 m (rough sea). Studies of the coupling between sea state and wind profile have shown that there are substantial differences depending on the nature of the sea state (pure wind sea, swell or mixed conditions) and therefore the use of a general parametrization is complex and beyond the scope of this thesis. The interested reader can refer to [START_REF] Cathelain | Development of a deterministic numerical model for the study of the coupling between an atmospheric flow and a sea state[END_REF].

Combined with the boat speed, this vertical gradient leads to a twisted distribution of the apparent wind AW. The apparent wind field is defined as:

AW (P) = W (P R 0 ) -V (P) ,
(2.12)

where P is a point on the yacht, and P R 0 its location in the Earth frame. The apparent wind speed (AWS) and apparent wind angle (AWA) are respectively defined as the norm of AW at the mast head and the angle between its projection on the plane perpendicular to the mast and the yacht centerline (measured counterclockwise).

The implemented parametrization of the wind as a function of time and of the three spatial coordinates allows for the use of more complex wind field models, including horizontal gradients for instance. Nonetheless, simulations with such wind fields have not been carried out yet, and in the following the horizontal wind gradient is assumed null. This project being mainly interested in the behavior of offshore yachts, only deep water conditions are considered hereafter, and it is thus assumed d 1. This assumption is generally considered valid for wavelength λ smaller than 2d. Following those considerations, 2 nd order Stokes' waves have been implemented in the DVPP. According to Le [START_REF] Méhauté | An introduction to hydrodynamics and water waves[END_REF], this should allow to model waves of steepness up to about s = 0.20 which is deemed acceptable.

Waves

2 nd order Stokes' theory is developed in the frame of an incompressible, inviscid and irrotational flow. In deep water, the potential is similar to Airy waves:

Φ = Ag ω e -kz sin (kX 0 -ω t) .
(2.13) ω is the wave frequency and k = ke w is the wavenumber vector, directed by the wave propagation unit vector e w . X 0 is the considered location in the Earth frame. The wave profile η, however, has a second order component:

η = A cos (kX 0 -ω t) + kA 2 2 cos (2 (kX 0 -ω t)) .
(2.14)

The linear theory dispersion relation remains:

ω 2 = kg . (2.15)
The validity of Stokes' theory may be measured by the Ursell number U r :

U r = A 2d λ d 2 = 8π 2 s d3 .
(2.16)

In the general case, Stokes' theory is considered applicable for U r 100 (U r < 25 -40 in practice). In deep water, the condition becomes s 1 and Stokes' theory is valid for low to moderate steepness waves.

The main wave propagation direction e w with respect to x 0 is designated as Ψ w , while the relative angle between the wave direction and the yacht heading is noted µ (as shown in Figure 2.1). µ = 0 corresponds to following waves.

Complex realistic seastates with polychromatic waves and directional spreading are modeled through the superposition of several monochromatic components. The characteristics of the wave components are defined from the discretization of existing wave spectra such as for instance JONSWAP spectrum.

Hull models

Following the hybrid coupling approach presented in Section 1.3.3, seakeeping loads are directly added to the maneuvering ones in the equations of motion. Also the hull loads, for each hull, can be written as the following superposition:

F H = F hs + F mn + F rd + F df + F fk .
(2.17)

The five terms are respectively the hydrostatic, maneuvering, radiation, diffraction and Froude-Krylov forces.

Hydrostatic loads

The hydrostatic force corresponds to the loads exerted by the hydrostatic pressure along the wetted surface of the hull. In the present work, following the weakly non-linear approach, the integration is performed on the instantaneous wetted surface S W :

F hs = S W -p hs (P) n (P) O b P × n (P) dS (P) , (2.18)
where n (P) is the outward unit normal vector to the body surface at location P and p hs the hydrostatic pressure.

Maneuvering loads

Maneuvering loads are the low frequency force sustained by the ship, which herein include also the steady state resistance. Instead of the usual hydrodynamic derivatives approach (Abkowitz, 1964, see also Section 1.3.1), the dynamic simulation tool uses polynomial response surfaces based on numerical viscous computations (RANS). The response surfaces are built on steady-state calculations over an appropriate range of hull attitudes, sinkage values, leeway angles and speeds (linear and angular), which are then the input variables X i to the polynomial fit

F mn = ∑ α∈N N a α X α , (2.19)
with N the number of variables, a α the polynomial coefficients and α = (α 1 , α 2 , . . . , α N ) the exponents of the monomial

X α = X α 1 1 X α 2 2 . . . X α N N .
The finite set of coefficients a α is determined by least-square regression over the pre-computed RANS results.

The RANS computations are carried out in flat-water conditions, and the hydrostatic components of the loads are removed so that they are only accounted for once, when integrating over the wetted surface due to the incoming wave field. This enables a full modeling of the six components of the hydrodynamic loads on each hull, including dependency to the boat possible changes of attitude and displacement.

The removed hydrostatic loads can either be taken as the value obtained from the RANS computation (including the effects of the free surface alteration due to forward speed) or as the value that would correspond to the considered attitude and displacement over a free surface at rest. None of these techniques is perfect as system-based approaches do not allow to model the accurately interaction between the incident wave field and the forward speed effect.

Radiation loads

The high frequency loads are based on the classical distinction between radiation, diffraction and Froude-Krylov forces. When the ship oscillates in calm water, the generated waves drain energy from the ship and damp its motion. This phenomenon is modeled through the radiation force.

In the frequency-domain, the linear radiation force is divided into two effects: added mass, which is proportional to the ship acceleration, and hydrodynamic damping, which is proportional to the ship perturbation velocity:

F rd (ω, Ū) = +ω 2 A (ω, Ū) ξ ξ ξ -jωB (ω) ξ ξ ξ , (2.20)
where F rd is the complex radiation force vector, ξ ξ ξ the complex yacht response, Ū the yacht mean speed and A (ω), B (ω) the added mass and damping matrices. The latter are more readily computed from frequency-domain codes (see Section 1.3.2), but equation (2.20) cannot be applied directly in the timedomain as it would imply the ambiguous use of the frequency-domain variable ω. The frequency-domain coefficients are thus transposed to the time-domain through Cummins equation [START_REF] Cummins | The impulse response function and ship motion[END_REF] which introduces a convolution integral of the ship velocity with an impulse response function K:

F rd (t) = -A ∞ ( Ū) ξ ξ ξ -B ∞ ( Ū) ξ ξ ξ - t 0 K (t -τ, Ū) ξ ξ ξ (τ) dτ .
(2.21)

A ∞ and B ∞ are the infinite frequency added mass and damping matrices, and ξ ξ ξ the ship perturbation vector. [START_REF] Olgivie | Recent progress to-ward the understanding and prediction of ship motions[END_REF] has shown that K could be expressed from the inverse Fourier transform of the frequency dependent damping coefficients:

K (t, Ū) = 2 π ∞ 0 [B (ω, Ū) -B ∞ ( Ū)] cos (ωt) dω . (2.22)
A non-linear correction of the radiation loads is applied to account for the large changes of the immersed geometry. Improvements of the radiation model to account for speed effects are discussed in Section 3.5.

This approach has proved consistent to model the potential damping, related to radiated waves. A second damping component exists however, related to hull friction and vortex shedding. Roll motion is the most affected by this phenomenon. Viscous damping can be assessed from experimental of numerical measurements (roll decay tests for instance), or using semi-empirical models. The ITTC procedure (ITTC, 2011b) divides roll damping in several components and provides semi-empirical formulas to express them. As far as multihulls are concerned, roll motion is much less important than for monohulls. The heel angles are smaller and induce mainly float sinkage variations. Hull viscous damping is expected to be negligible with respect to the appendage damping, and is thus not considered herein.

Froude-Krylov

Wave loads are represented by the usual superposition of Froude-Krylov and diffraction loads. The former originates in the undisturbed incident wave pressure field. It is thus computed by integrating the incoming waves pressure field p i along the instantaneous ship wetted surface S W :

F fk = S W -p i (P) n (P) O b P × n (P) dS (P) , (2.23)
where n (P) is the outward unit normal vector to the body surface at location P.

The pressure term can be derived from the expression of the fluid potential using Bernoulli's equation:

p i = -ρ ∂ Φ i ∂t + 1 2 |∇ ∇ ∇Φ i | 2 . (2.24)
ρ is the fluid density and Φ i the incoming waves potential, as given in equation (2.13).

Far from resonance, Froude-Krylov loads are the dominant exciting force.

Diffraction

Diffraction force is the second component of the wave excitation force. It is generated by the reflection of the incident waves on the ship surface. As for the radiation force, it is modeled linearly considering the mean ship position and free surface elevation. Expression of the loads may also be performed using a convolution integral (see for instance [START_REF] King | Seakeeping calculations with forward speed using time domain analysis[END_REF][START_REF] Qiu | Validation of time-domain prediction of motion, sea load, and hull pressure of a frigate in regular waves[END_REF] in the form:

F df (t) = +∞ -∞ K D (t -τ) η (τ) dτ .
(2.25)

where η is the free surface elevation. The kernel of the convolution integral K D is the diffraction impulse response function, which can be computed as:

K D (t) = 1 2π +∞ -∞ F df (ω) e jωt dω , (2.26) 
where F df is the complex frequency-domain diffraction force vector. However, F df depends on the relative bearing µ of the waves with respect to the ship. In a 6 degrees of freedom code, the evolution of µ and of the yacht position past the current time t 0 is unknown as they depend on a number of internal (pilot action, sail trimming) and external (environmental perturbations) factors. Also the evaluation of K D (τ) and η (τ) for τ larger than t 0 is problematic.

Another approach consists in using directly the frequency-domain results. In such case, the fluid memory effect is neglected and the diffraction force is computed based on the frequency ω of the individual wave components:

F df = A Re F df (ω , µ) e j[kX 0 -ω t] .
(2.27)

The complex diffraction terms may be computed at the same time as the radiation coefficients using a frequency-domain seakeeping code.

In the case of complex seastates, the diffraction forces of all wave components are summed up to evaluate the resulting total diffraction loads.

Aerodynamic models

The aerodynamic loads are expressed as the superposition of three components:

F AE = F sails -A sails ξ ξ ξ + F wd , (2.28)
which stand respectively for sail forces, sail added mass and windage. The added mass term is nevertheless not included in the external loads expression, but directly added to the yacht generalized inertia matrix to avoid the numerical instabilities that could be generated by an acceleration dependent term in the right-hand side of the equations of motion. The evaluation of these components are detailed in the following sections.

State of the art Approaches

The expression of aerodynamic loads has always been a delicate task, suffering from fewer publications and less interest than hydrodynamic loads. Their evaluation is subjected to several complications. The main one is that conventional sails are not rigid. Their actual flying shape is a complex equilibrium between aerodynamic and structural loads.

Full scale measurements are complex: the sail loads are distributed in an important number of rig components, distinguishing the sail loads from the hull ones may be difficult. Practical issues must also be overcome such as waves perturbations or wind turbulences. The Gimcrack coefficients published by [START_REF] Davidson | Some experimental studies of the sailing yacht[END_REF] through his innovative coupling of full scale attitudes measurements and hydrodynamic model tests have thus remained the standard reference for a long period of time. Similar approaches were used some decades later to produce sail data for other yachts and rigs as reported by [START_REF] Herreshoff | Hydrodynamics and aerodynamics of the sailing yacht[END_REF], [START_REF] Kerwin | A procedure for sailing performance analysis based on full scale log entries and towing tank data[END_REF] and [START_REF] Gerritsma | Determination of sail forces based on full scale measurements and model tests[END_REF]. While [START_REF] Davidson | Some experimental studies of the sailing yacht[END_REF] only produced close-hauled values, the latter papers provided coefficients for additional headings and accounted for new parameters such as the rudder angle in [START_REF] Gerritsma | Determination of sail forces based on full scale measurements and model tests[END_REF]. At that same time, first approaches to evaluate numerically the sail loads were developed, mainly based on lifting line or vortex lattice methods (see especially [START_REF] Milgram | The design and construction of yacht sails[END_REF].

Nowadays, four different techniques allow to evaluate the aerodynamic loads on a given sailplan: -wind tunnel tests, -full-scale tests, -numerical calculations, -semi-empirical models.

The majority of the wind tunnel facilities were built to study aircrafts and thus do not reproduce the twisted flow encountered by a moving sailplan in the vertical wind gradient. The Twisted Flow Wind Tunnel of Auckland University [START_REF] Flay | A twisted flow wind tunnel for testing yacht sails[END_REF] was the first such facility. The setup must allow for the trimming of the sails so that different configurations may be tested. Traditionally, for given wind conditions (apparent wind angle and speed), the trimming allowing the maximum drive force is looked for. To be relevant in strong winds, a constraint on the heeling moment is generally imposed so as to retain only realistic cases. As discussed in Section 1.2.2, the performance of the yacht is a complex equilibrium and the maximal driving force does not necessarily provide the best performance (as for instance the hydrodynamic drag is usually larger at larger heel angles). This trade-off can be determined directly during the measurement by coupling the model with actuators and a hydrodynamic loads calculation program as done by [START_REF] Hansen | An investigation of aerodynamic force modelling foryacht sails using wind tunnel techniques[END_REF]. However, this implies that the derived sail coefficients are linked to a given hull form and hydrodynamic model. Another approach is to derive the maximal driving forces and to use de-powering parameters such as described in the following section.

Attempts to measure full scale sail loads at sea were reported by [START_REF] Milgram | Modelling IACC sail forces by combining measurements with CFD[END_REF], [START_REF] Masuyama | Full-scale measurement of sail force and the validation of numerical calculation method[END_REF], [START_REF] Hochkirch | Full-scale hydrodynamic force measurement on the Berlin sailing dynamometer[END_REF] and more recently [START_REF] Fossati | A novel full scale laboratory for yacht engineering research[END_REF]. All used a dynamometer frame linked to the hull by a set of load cells. The rig is only attached to the frame, so that sail forces are measured independently from hull loads. The flying shapes were determined from videos. The measured sail loads could then be used in performance prediction programs. The use of such frames is complex as it requires a yacht specifically designed and built for this purpose. Another approach is to fit strain gauges on all the interfaces between hull and rig such as performed on a J80 by [START_REF] Augier | Experimental validation of unsteady models for fluid structure interaction: Application to yacht sails and rigs[END_REF]. Cameras and processing softwares are used to record and determine the flying shape. Although, full scale sail tests remain complex, they are still a necessary step in the process of validating calculation programs and understanding some specific phenomena.

The complexity of numerical calculation of sail forces depends strongly on the considered point of sailing. Upwind, the flow is mainly attached over the sails and may thus be modeled satisfactorily through potential flow solvers. On the other hand, downwind, large flow separations occur which cannot be modeled properly with potential approaches, as strong viscous effects are involved. RANS solvers may be able to model the general characteristics of the flow [START_REF] Collie | Validation of cfd methods for downwind sail design[END_REF], but study of specific features such as spinnaker Leading Edge Vortices calls for even higher accuracy modeling (DES see for instance [START_REF] Viola | Detached Eddy Simulation of a sailing yacht[END_REF]. Sail trimming sensitivity complicates things further, as a tuning optimization must be carried out for each point of sail. To determine the actual sail shape, the fluid code must be coupled to a Finite Element Analysis program (see for instance [START_REF] Charvet | Numerical simulation of the flow over sails in real sailing conditions[END_REF], but the iterative solution of the fluid-structure equilibrium implies increased computational time.

Nowadays, all those approaches coexist, the framework and intended use determine which is better suited. As far as high performance yacht racing is concerned, the constant increase of the reachable speed implies that the apparent wind angle remains rather small even in downwind conditions. Due to the previously described complexities of experimental and numerical measurements of sail forces, semi-empirical approaches have proved very successful, especially in the frame of VPPs development. The first models were based on the rare available sail coefficients: Gimcrack first [START_REF] Davidson | Some experimental studies of the sailing yacht[END_REF], and then Baybea [START_REF] Kerwin | A procedure for sailing performance analysis based on full scale log entries and towing tank data[END_REF] and Standfast [START_REF] Gerritsma | Determination of sail forces based on full scale measurements and model tests[END_REF]. Their main drawback was that they expressed the coefficients for the complete sailplan, limiting adaptability to other rigs. To overcome this issue, the landmark model of [START_REF] Hazen | A model of sail aerodynamics for diverse rig types[END_REF] proposed a set of individual coefficients for each sail, based on a re-analysis of Baybea measurements. Hazen model remains the base of the vast majority of today's VPPs, and especially of the ORC one [START_REF] Claughton | Developments in the IMS VPP formulation[END_REF][START_REF] Orc | ORC VPP Documentation[END_REF]. The model and its extensions are presented in the following section.

Hazen model and its extensions

Hazen's paper presented the maximum lift and parasitic viscous drag coefficients C max L and C D, p as functions of the apparent wind angle for five sails (main, jib, spinnaker, mizzen and mizzen staysail). The underlying assumption is that the interaction effects are neglected or, more exactly, are assumed to counterbalance each others. The lift and drag of the total rig are computed as the sum of the individual components weighted by the area ratio. Induced drag coefficient C D, i is computed from the lifting line theory expression:

C D, i = C 2 L 1 πΛ + k p , (2.29)
where C L is the lift coefficient, Λ the aspect ratio of the rig and k p the quadratic profile drag coefficient, taken as 0.005 by Hazen. Formulas are provided to compute Λ from the rig characteristics depending on the point of sailing and accounting for a free surface mirror effect. A third drag term includes the effects of topsides and mast.

As discussed earlier, the maximal driving force does not necessarily correspond to the highest boat speed due to the aero-hydro coupling. Hazen thus introduced two de-powering parameters ranging between 0 and 1: flat, f , and reef, r, to reduce side force and heeling moment. The first one corresponds to a linear decrease of the sail lift (sail camber or sheeting angle reduction), and consequently a decrease in induced drag. The second, reef, models a reduction of the sail area (reefing) that allows to lower the center of effort and decrease the heeling moment. Lift and drag have thus a quadratic dependency on r:

C L = f r 2 C max L (AWA) , C D = r 2 C D, p (AWA) +C D, i (C L ) . (2.30a) (2.30b)
Observing that the reef parameter had been diverted from its intended use of modeling sail reefing and instead had become a variable to model trim changes that lower the center of effort, [START_REF] Jackson | An improved upwind sail model for VPPs[END_REF] introduced the twist parameter t w . It allows to model the twist of the sail beyond its optimal value to lower the center of effort and decrease heeling moment, with no change of sail area. A drag penalty is added as the sail is considered as not optimally loaded anymore:

s CE = s opt (1 -t w ) , C D = r 2 C D, p +C D, i 1 + c t t 2 w .
(2.31a)

(2.31b) s CE and s opt are the non-dimensional heights of the the effective and optimal centers of effort, and c t is the twist drag penalty coefficient. Theoretical values cited by [START_REF] Jackson | An improved upwind sail model for VPPs[END_REF] and based on comparison with a semi-elliptic load distribution are s opt = 0.42 and c t = 8.

Hazen model is the basis of the current ORC VPP aerodynamic model (see [START_REF] Claughton | Developments in the IMS VPP formulation[END_REF]. It is enriched by additional coefficients (battened mainsail, code zero and spinnaker for instance). The computation of the sail area relies on formulas based on the IMS measurements procedure. The individual sails center of effort are expressed from semi-empirical formulas implying the geometrical center of area. The resulting center of effort is computed by a weighted sum, that accounts for the area ratio and the partial force coefficients.

This model is generic and highly simplified, neglecting substantial interactions phenomena, but remains the only alternative to carrying out one dedicated study (numerical or experimental) per sailplan.

DVPP and unsteadiness

The reduced frequency f R provides an interesting measurement of the importance of dynamic effects on sails. It may be expressed as:

f R = c V T , (2.32)
where c is the sail characteristic chord length, V the characteristic fluid velocity and T the characteristic period of oscillations. In waves, it is typically the period of encounter. According to Fossati and Muggiasca (2011) who cite previous references, the unsteadiness of the flow must be accounted for when reduced frequencies are larger than 0.05. In such cases, the temporal variations of the generated vortices and the added mass effects become non negligible, specific behaviors such as hysteresis loops are observed.

In real sailing conditions, there are several causes to unsteadiness, such as:

-variability of the inflow in both time and space (wind shear, turbulence), -trimming changes, -maneuvers, -yacht oscillatory motion in waves.

Nonetheless, unsteady sail aerodynamics has been the subject of only a limited number of publications. A substantial majority of the developed DVPP thus use quasi-steady models, based on Hazen / ORC formulations and coefficients [START_REF] Oliver | Performance predictions for Stars & Stripes[END_REF][START_REF] Ottosson | The effect of pitch radius of gyration on sailing yacht performance[END_REF][START_REF] Day | VPP vs PPP: challenges in the time-domain prediction of sailing yacht performance[END_REF][START_REF] Keuning | A generic mathematical model for the maneuvering and tacking of a sailing yacht[END_REF][START_REF] Battistin | A tool for time dependent performance prediction and optimization of sailing yachts[END_REF][START_REF] Védrenne | Simulation dynamique du comportement mécanique de navires, application à la propulsion éolienne[END_REF][START_REF] Horel | Application of system-based modeling and simplified FSI to a foiling Open 60 monohull[END_REF], relying on experimental values [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF][START_REF] Masuyama | Tacking simulation of sailing yachts with new model of aerodynamic force variation during tacking maneuver[END_REF] or on numerical data [START_REF] Harris | Time domain simulation of a yacht sailing upwind in waves[END_REF]. In the quasi-steady approach the steady state polars are used while the apparent wind calculation accounts for the heel angle (effective angle theory, see e.g. [START_REF] Kerwin | A velocity prediction program for ocean racing yachts revised to[END_REF] and the induced velocity due to the yacht angular motion. Some models have been enriched to include a formulation for the added mass of the sail plan [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF][START_REF] Harris | Time domain simulation of a yacht sailing upwind in waves[END_REF][START_REF] Védrenne | Simulation dynamique du comportement mécanique de navires, application à la propulsion éolienne[END_REF]. Use of vortex methods directly within the temporal solution has been reported [START_REF] Angelou | A new mathematical model for investigating course stability and maneuvering motions of sailing yachts[END_REF], but this is computationally expensive. Besides, unless it is coupled to a structural solver or based on actual flying shape, this approach neglects the aero-elastic coupling.

Two simplified unsteady models have been presented, by [START_REF] Fossati | Motions of a sailing yacht in large waves: An opening simple instationary modelling approach[END_REF] and [START_REF] Gerhardt | Unsteady aerodynamics of upwind-sailing and tacking[END_REF]. In the former, the sail forces of a pitching yacht are determined using a rheological model based on experimental measurements. This approach allows to reproduce the substantial hysteresis phenomena that have been observed experimentally [START_REF] Fossati | Experimental investigation of sail aerodynamic behavior in dynamic conditions[END_REF][START_REF] Augier | Numerical study of a flexible sail plan submitted to pitching: Hysteresis phenomenon and effect of rig adjustements[END_REF]. However, work would still be needed to adapt such approach to a 6 degrees of freedom simulation program. Gerhardt (2010) developed a two-dimensional unsteady sail model, including interactions, based on thin airfoil theory. The effects of unsteadiness are proved to be substantial on the developed lift.

The model proposed by [START_REF] Charvet | Numerical simulation of the flow over sails in real sailing conditions[END_REF], which implements a vortex element method coupled to a structural model, allows to model unsteady aerodynamics. It has been coupled to a RANS solver by [START_REF] Jacquin | Toward numerical VPP using aero and hydrodynamics CFD solvers[END_REF] and [START_REF] Roux | Strongly coupled VPP and CFD RANSE code for sailing yacht performance prediction[END_REF], but the resulting tool seems to have mainly been used for steady state calculations, letting the simulation converge with no internal or external perturbations. Such approach is of great interest, but its computational cost prohibits its use for real time applications. It could be used to pre-compute sail forces and build look-up tables. Nonetheless, the huge amount of parameters at stake for unsteady aerodynamics makes this method complex. One would have to reduce drastically the number of parameters to go down to a feasible number of pre-computations and to an acceptable number of input variables.

A specific aspect of unsteady sail aerodynamics is the handling of maneuvers and trimming. Whereas steady state sail polars consider permanently optimally trimmed sails, in the reality, the sail trimmer may not fully anticipate gusts and other changes of wind conditions. Besides, once trimmed, the sail takes a certain time before developing its full lift. Some DVPPs have thus introduced lag terms in their aerodynamic models. As for maneuver, tacking has received a lot of interest [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF][START_REF] Masuyama | Tacking simulation of sailing yachts with new model of aerodynamic force variation during tacking maneuver[END_REF][START_REF] Gerhardt | Unsteady aerodynamics of upwind-sailing and tacking[END_REF] and specific models must be derived for the behavior of the sails at very low apparent wind angles and for the related complex physical phenomena such as flogging.

Sail forces

This work implements a quasi-steady aerodynamic model enriched by the account of sail added mass effects. Steady state sail polars are used, based on RANS calculations. The polars include the three dimensional position of the center of effort C E . The effective apparent wind AW eff accounts for the yacht heel angle and for the induced velocity due to yacht motion:

AW eff (P) = AW (P) -[AW (P) • z m ] z m , (2.33)
where AW is computed from (2.12) and z m is the unit vector aligned with the mast. z m may differ from z b , for instance in the case of a canted mast. The effective apparent wind speed and angle AWS eff and AWA eff are the norm and angle from the centerline of AW eff . The sail forces are assumed to lie in a plane perpendicular to the mast. Thus in the mast reference frame, the sails force vector is given by:

f sails = 1 2 ρ air S S AWS 2 eff   -C D (AWA eff ) cos AWA eff +C L (AWA eff ) sin AWA eff -C L (AWA eff ) cos AWA eff -C D (AWA eff ) sin AWA eff 0   , (2.34)
where C L and C D are the three dimensional lift and drag coefficients of the sails given by the polar, ρ air the air density and S S the sails total area. The force vector is then displaced to the yacht origin O b to express the aerodynamic moments:

m O b sails = O b C E (AWA eff ) × f sails . (2.35)
As for wind tunnel tests, the sail polars are built by finding the optimum sail parameters that maximize the driving force, under heeling moment or side force constraints. The twist and flat parameters are used to model de-powering. However, there is no reef parameter, different polars are used when the sail configuration is altered (reefing or head sail change).

Sailplan added mass

Seakeeping studies of sailing yachts have shown that the transverse aerodynamic inertia provided by the sailplan has a substantial impact on the yacht response especially in roll [START_REF] Masuyama | Tacking simulation of sailing yachts-numerical integration of equations of motion and application of neural network technique[END_REF]. The implemented method is based on the strip theory approach proposed by [START_REF] Gerhardt | Tacking in the wind tunnel[END_REF] and carried out over the two-dimensional representation of the sail plan at rest. The actual sail shape is not solved in the sail force model, and thus this added inertia does not vary over time during the simulation. It is taken as a constant depending only on the sails configuration. The sailplan is divided in infinitesimal strips of height dz and length c (z), where c is the complete sailplan chord at height z as defined in Figure 2.7.

In the direction normal to the strip, the added mass as given by potential flow theory is:

dm a (z) = ρ air π 4 c(z) 2 dz . (2.36)
This value is integrated along the whole sailplan to derive sway and heel added mass and inertia, accounting for the lever arm z with respect to O b . [START_REF] Gerhardt | Tacking in the wind tunnel[END_REF] has shown experimentally that three-dimensional effects should not be neglected, and based on the work of [START_REF] Tuckerman | Inertia factors of ellipsoids for use in airship design[END_REF], proposed a corrective factor S (Λ). Comparing strip theory and analytical added mass values for an elliptical plate, S (Λ) is expressed as:

S (Λ) = π 2 Λ 2 -16 Ẽ(k) (π 2 Λ 2 -32) + 16 K(k) , (2.37) 
where K(k) and Ẽ(k) are the complete elliptical integrals of the first and second kinds for eccentricity k:

k = 1 - 16 π 2 Λ 2 .
(2.38)

The resulting added inertia in roll is thus:

A sails 44 = S (Λ) π 4 ρ air z max z min c (z) 2 z 2 dz . (2.39)
Through this model, the developed DVPP accounts for part of the unsteadiness of sails loads. However, as shown by Fossati andMuggiasca (2011), Gerhardt et al. (2011) and [START_REF] Augier | Numerical study of a flexible sail plan submitted to pitching: Hysteresis phenomenon and effect of rig adjustements[END_REF], such simple models do not fully reproduce the unsteady aerodynamic behavior of sails, and especially hysteresis phenomena. Further work still needs to be carried out to integrate such aspects in real-time DVPPs.

Windage

Windage is modeled through a process similar to the IMS VPP approach (ORC, 2019). From RANS calculations, reference drag areas AC w d are evaluated for apparent wind angles 0 and 90 • , and values are interpolated for intermediate wind angles:

f wd = 1 2 ρ air AC w d (AWA) AWS AW .
(2.40)

The lifting effects due to the platform fairings are included in the windage terms.

Appendage models 2.6.1 First approach and limitations

In a first approach, appendage loads are pre-computed using a Vortex Lattice Method (VLM, see next section or e.g. [START_REF] Katz | Low-speed aerodynamics[END_REF], namely AVL [START_REF] Drela | AVL 3.36 User primer[END_REF], with correction for viscous effects and evaluated during simulation through polynomial response surfaces. This provides a numerically efficient way to evaluate the spanwise distribution of lift for lifting surfaces of any aspect ratio, dihedral and sweep. Assuming that the appendages are not located in the wake of one another, their interaction is currently neglected. Velocity induced by the yacht angular motion, wave velocity field and appendage trimming angles are accounted for by computing effective angles between the appendage and the incoming flow following the Quasi-Steady Theory (QST) approach. The flow apparent velocity vector is:

V P/flow = V + ω ω ω × P -V w ,
(2.41)

where P is the vector between the yacht center of rotation and the considered location, and V w is the wave orbital velocity vector.

As for the sails, the level of instationnarity may be evaluated through the reduced frequency f R . But while the characteristic oscillation period should be similar in both cases, the two other parameters are different. For an offshore multihull such as an Ultim class yacht, the characteristic chord c is of the order of 1 m for an appendage while it is rather of the order of 10 m for the sails. As far as the characteristic velocity is concerned, the velocity induced by the yacht angular motion will differ widely depending on the position on the yacht and, besides, while appendages are subjected to a wave orbital velocity component, sails are themselves subjected to the wind velocity. Overall, those variations lead usually to smaller reduced frequencies for appendages.

The added mass effects on the appendages can nonetheless be approached through the same strip theory technique as for the sails. The flat plate transverse added mass is integrated along the span to evaluate the coefficient. Three-dimensional effects are expected to be more complex as the appendage shapes may present curvatures and even angled elbows.

This first approach has three main drawbacks. The major one is a limited robustness and flexibility. In waves or during maneuvers, very high angles or speeds can be occasionally encountered, especially along the rudders. For the calculated loads to be accurate, a huge number of pre-computations must be performed. Even though VLMs allow for runtime of the order of one second or less, due to the number of parameters and of values to sweep, the total pre-processing time is important, which is a problem when one wants to perform systematic tests of several appendage geometries, one of the intended uses of this DVPP. Secondly, it is known that the rudder angle necessary to produce a given amount of lift is substantially altered when in the wake of a forward appendage (board or foil). It is thus of interest to be able to model interactions and the effect of non-straight wakes. Finally, even though unstationnarity is expected to be lesser than for sails, some of its aspects are fundamental for a proper modeling of the response of a flying multihull. For instance, lift force needs time to settle, and there is therefore a delay between the time where a foil enters the water and the time where it could generate the expected quasi-steady lift.

Second approach

The second version of the appendage model is based on an unsteady lifting line approach. While the model choice and bibliographic review was performed within this thesis project, the implementation was carried out by an intern, under my supervision. This work is not presented herein.

Control systems

Class rules on yacht control systems are a key issue in the future of high-performance sailing, especially offshore. Sportsmanship, human safety, energy consumption, financial costs are intimately linked to the decision to authorize them on board or not. For the time being, the Ultim Class 32/23 does not allow control systems other than the helm autopilot (heading control).

However, in the frame of numerical simulation it is of interest to observe the behavior with and without control systems. To allow for exploring both manually or systematically the performance of given designs, the developed tool thus allows to adjust all of the yacht tuning parameters (appendages, sails, etc.) either through direct human control (keyboard or dedicated device) or using pre-implemented control systems. The latter are usual proportional-integral-derivative (PID) controllers. In the case of the helm pilot, the rudder deflection angle δ R is then computed as:

δ R = K P (ψ -ψ T ) + K P T D ψ + K P T I t 0 ψ (τ) dτ , (2.42)
where ψ T targeted heading, ψ, ψ yacht heading and its first order derivative, K P controller proportional coefficient, T D controller derivative coefficient, T I controller integral coefficient.

The controlled parameter, here the rudder angle, and its rate of change are bounded by saturation values to ensure that they remain within a realistic range. It is also possible to use other measured process variables such as the true wind angle.

The interest of PID controllers lies in their wide applicability as well as their ease of use and implementation. The determination of the coefficients is however delicate. Unlike a robotic arm on an assembly line or a thermostat in a room, in the case of yacht simulation, the system may encounter substantial changes of external conditions that will in turn strongly alter its response. Therefore it is generally necessary to use different sets of coefficients.

There are several possibilities to tune the PID coefficients. The first straightforward approach is a manual tuning, based on one degree of freedom (yaw) test simulations. To this end, T D and T I are respectively set to zero and infinity, and K P adjusted by finding a compromise between the system's stability and settling time. Secondly, T I is set so that the static error is suppressed in an acceptable amount of time. Finally, T D is increased to reduce oscillations while avoiding excessive overshoots and instability.

More systematic approaches are possible such as for instance Ziegler-Nichols method or Lambda tuning.

The underlying question in the coefficients tuning is the controller's aim. It can either be looked for as the optimal control for the considered conditions or as the most realistic one. In the latter case, the tuning should inspire from the real-life process used to tune the autopilots coefficients.

The question of the controllers, both in terms of algorithm and of tuning process is a wide subject, with substantial impact on the yacht response in both real life and numerical simulation. With its modular nature, the developed DVPP allows to study them, and to be used within tuning loop to optimize the behavior of on-board control systems.

Resulting program 2.8.1 Implementation

To ensure scalability, the multibody algorithm solution and the user interface have been separated. The DVPP can thus be run with or without user interface. When running with visualization (Figure 2.8), user interaction is possible for any of the yacht parameters. The program is able to run in real-time on a conventional laptop. The program was designed with a high level of modularity making use of object-oriented programming, so that different models can be alternatively plugged in and out. Simulated boat and conditions are defined through configuration files (Figure 2.9) to avoid altering the code at each run. 

Real time simulation

As discussed in the first chapter, the modeling choices have been made with the main objective of being able to run in real-time. Similarly, the implementation and the conceived operating process for the DVPP have been thought for this purpose. Also, a substantial distinction is drawn between the preprocessing stages and the simulation strictly speaking.

As far as preprocessing computations are concerned, the running time does not matter as long as it remains within an acceptable range (a few hours maximum), and priority is given to numerical accuracy.

The computation of sail added mass and inertia is thus performed on highly discretized sail plans (10 -2 m-high strips) for a computation time of the order of the second.

Radiation-diffraction computations last several hours. The input meshes are a few thousand facets large, and the swept pulsations and wave headings sufficiently discretized, not necessarily linearly. Where appropriate, symmetry simplifications are applied.

The steady state RANS calculations can either be performed in-house or outsourced. Once again, the mesh size and computation parameters are chosen to obtain a satisfying accuracy, without strong constraint on the calculation time.

For the appendages, an extension of the in-house design tools operates the generation of the files necessary for their simulation.

Conversely, all stages and processes corresponding to the simulation itself are carefully optimized to avoid any loss of computation time. Froude-Krylov and hydrostatic loads are computed simultaneously over the input meshes. These meshes are generated using dedicated softwares such as Gmsh (see [START_REF] Geuzaine | Gmsh: a 3D finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. Mesh convergence studies are performed to define an acceptable trade-off between accuracy and mesh size. The number of facets must be chosen in accordance with the steepness of the considered sea states. As in general the same meshes are kept independently of the sea states, conservative choices are made. The computation of the free surface intersection is performed in a manner close to [START_REF] Horel | A method of immersed surface capture for broaching application[END_REF]. The facets located at the free surface are cut, and their properties (area, centroid) recalculated, before the integration of the pressure field is performed.

The main parameter influencing the ratio between simulated time and computation time is obviously the time step width. With the present DVPP, simulations are generally run at frequencies ranging from 10 to 100 Hz (time steps between 10 and 100 ms). The two major factors calling for small time steps are simulation of high-frequency waves and the use of high-frequency control systems. When new simulation cases are considered, quick time step width convergence studies are performed to ensure its adequacy.

As in visualization mode there is no real benefit in being much faster than real time, the potential remaining computation time may be reinvested, to compute and provide the user with additional data fields for instance.

Conclusion on the mathematical modeling

In this chapter, the physical bases of the motion solution, the environment modeling and the loads calculations have been presented.

The core of the time-domain simulation algorithm allows for the computation of multibody problems through a formalism stemming from robotics. The chosen method is oriented towards the solution of open loop systems, and more specifically kinematic trees. Such systems have been deemed as the target of interest for the present project. The chosen recursive algorithm is reported to achieve the best efficiency amongst the inverse multibody dynamics solution algorithms.

Making use of object-oriented programming, a reference structure has been established for wind and for waves, allowing to implement different models as long as they provide the expected functions. Singular wind or wave components can be superposed to generate complex conditions, their properties being determined from the discretization of reference spectra.

Hull loads are evaluated by superposing five components: hydrostatic, maneuvering, radiation, Froude-Krylov and diffraction. In accordance with the weakly non-linear approach, hydrostatic and Froude-Krylov forces are computed over the instantaneous wetted surface, in the incident wave field. Maneuvering loads are estimated through response surfaces built from pre-computed data. Although the pre-processing calculations may be carried out with appendages in order to consider their interactions with the hull, only the hull loads are fitted in the response surfaces, and the appendages are modeled separately. Radiation and diffraction are expressed based on linear BEM code coefficients.

Sail loads are estimated from steady state polars. Conventional de-powering parameters are used to decrease side force and heeling moment. Unsteadiness is roughly accounted for through the computation of an effective apparent wind vector (quasi-steady theory) and a simplified added mass effect.

As far as the appendages are concerned, a first approach has been implemented which is operational despite several limitations. In view of the drawbacks of this method based on pre-computed data, investigations have been carried out to set up a new model, more adapted to the need of the DVPP. While the literature review and the determination of the model have been carried out in the frame of this PhD project, the implementation was performed by an intern. The new appendage model is now under validation.

Several verification and validation cases have been carried out to ensure the accuracy of the implementation and the validity of the models. They are presented and discussed in Chapter 4.

The following chapter describes a campaign of towing tank tests aimed at improving the implemented models as well as acquiring validation data. This chapter presents the experimental campaign carried out in the frame of this PhD thesis. The conception, preparation and realization of the tests are described as well as the post-processing of the data. Two different setups are considered allowing for several types of tests: captive and semi-captive responses in waves, forced oscillations and specific imposed motions. Results are used to discuss some of the modeling approaches. Comparisons with the DVPP are performed in the next chapter.

Background

Description of the need

When developing a DVPP, trade-offs are necessary between numerical efficiency and models accuracy. The implemented models generally rely on strong approximations and are often used beyond their original scope of validity, such as linear seakeeping theory at high Froude numbers or in steep waves. The validation tests carried out are often very simple test cases (low Froude number, low steepness waves), rather far from offshore sailing conditions. Similarly, available data for validation mainly focus on power boats and are often limited to rather low Froude numbers (ITTC, 2017b,c, see also next chapter).

Besides, foils have led sailing yachts to evolve at very high Froude numbers, as they cause both an increase in boat speed due to their higher lift-to-drag ratios and a decrease in waterline length as they take on part of the yacht displacement.

As far as the present DVPP is concerned, the load models detailed in Chapter 2 are expected to be rather consistent in steady conditions (flat water, constant wind, constant velocity). By construction, the unsteady components fade out in such case, while the steady values, derived from RANS calculations or simpler models (vortex methods for the appendages), are considered to provide a satisfactory level of accuracy over the range of possible speeds and attitudes. However, in unsteady conditions, the validity range of the implemented load models is much more constricted, mainly to low Froude numbers and to low steepness waves. This is the counterpart of the need for a high computational efficiency.

To gain confidence in the DVPP as well as to identify its limits, it is therefore of great interest to dispose of experimental data covering large ranges of wave steepness and Froude values, to compare both the modeled loads and the predicted behavior. Studying the loads and motions in waves will allow to assess the validity and limits of the weakly non-linear approach. The existing means of validating such a DVPP are discussed in the following section (3.1.2).

The validity of the implemented radiation model is particularly questionable as, beside being based on the weakly non-linear approach with the known limitations, it uses (initially) zero-forward speed radiation coefficients. Given the extend of the range of considered Froude values, this could be an important limitation of the DVPP. Therefore, it was decided to carry out an experimental study of the evolution of these coefficients with speed. A captive setup allowing to perform forced motions tests was considered as the best approach to the radiation coefficients measurement. The aim of the study was twofold: observe the coefficients evolution and compare it with available models for low Froude numbers on one hand, and, if necessary and if possible, build an empirical model to account for the effect of speed on the coefficients.

Finally, foiling yachts simulation raises the question of the handling of the change of mode (Archimedean / flying), and of the ability of the chosen models to deal consistently with such phenomena. As the setup necessary for generating forced oscillations allows to impose motions in the 6 degrees of freedom, this was considered as an interesting opportunity to simulate such changes of mode. This is a rather exploratory part of the experiments, with as first objective the comparison of the experimental loads with corresponding simulations, without any change to the initial load models. If weaknesses are observed, a second aim would be to propose, from the analysis of those potential defaults, an empirical correction to better model the changes of mode.

DVPP validation

Validation of a DVPP as a whole is complex as it involves many parameters and couplings, especially when high performance yachts fitted with state-of-the-art appendages are concerned. In the process of validation, two approaches are possible: full-scale tests and model experiments.

Full-scale tests are of great interest as they allow to directly compare predictions to reality. However, validating a simulation code implies that the behavior in all situations of interest as well as the characteristics of all modeled phenomena are sufficiently repeatable. Conducting the standard ship maneuvers (turning circle, zig zag tests, etc.) both numerically and in full-scale is thus a good starting point for assessing the quality of a maneuvering model. However, this is poorly suited for the specialties of sailing yachts.

Several attempts to validate sailing yacht simulation codes with full-scale tests have been reported (see for instance [START_REF] Masuyama | Dynamic performance of sailing cruiser by full-scale sea tests[END_REF][START_REF] Day | VPP vs PPP: challenges in the time-domain prediction of sailing yacht performance[END_REF][START_REF] Binns | The development and use of sailing simulation for IACC starting manoeuvre training[END_REF][START_REF] Clark | Validation of a sailing simulator using full scale experimental data[END_REF]. They allowed to point out the shortcomings and strong points of the models. To gain confidence, in the numerical tool, exhaustive tests must be successively and rigorously carried out. [START_REF] Binns | The development and use of sailing simulation for IACC starting manoeuvre training[END_REF] have thus proposed a six-test procedure, each of them designed to assess specific aspects of the simulation models (hydrodynamic added mass, damping, etc.).

Full-scale tests face nonetheless two major difficulties: the evaluation of the environmental conditions and the quantity of available data. As reported in the International Towing Tank Conference recommendations (ITTC, 2017c), the complexity of documenting the environmental conditions (wind, waves, currents) properly and exhaustively during the whole test sessions degrades the data quality. The quantification of the environmental parameters and their fluctuations within the whole area covered by the yacht during measurement session is difficult.

Besides, while measuring speed, position or attitudes is nowadays rather convenient with on board equipment or small measuring units, the assessment of some data remains complex and expensive. For instance as the complexity of state-of-the-art high performance appendages and their available tunings (flap, rake, cant, extension) have much increased in the recent years, the knowledge of the deflections and loads they sustain is now critical in the understanding of their behavior.

The characterization and enforcement of the environmental conditions is much easier in model tests. Nevertheless, two other issues need to be tackled. First the incompatibility between Froude and Reynolds similarities is questionable especially for the scaling of the appendage loads. Second the propelling of the model is a complex matter if one is willing to account for the heeling and pitching moments as well as the unsteady aerodynamic effects. A first approach introduced by [START_REF] Allan | Yacht testing[END_REF], referred to as free sailing tests, consists in towing the model at the aerodynamic center of effort with constant tension. In this way, the model sails with a realistic attitude. However, in addition to the equilibrium settlement issues reported by [START_REF] Murdey | Techniques for testing sailing yacht[END_REF], this method does not allow to vary dynamically the position of the center of effort or the aerodynamic force direction and magnitude. A very promising approach developed recently at the Wolfson Unit and presented by [START_REF] Gauvain | The un-restrained sailing yacht model tests -a new approach and technology appropriate to modern sailing yacht seakeeping[END_REF] allows to avoid these issues by using an air screw device mounted on a mast to generate a variable propulsion force.

In parallel, semi-captive tests remain very popular for seakeeping experiments. The model is linked to the towing carriage with at least two free degrees of freedom, heave and pitch. This approach allows to compare the predicted motion in waves with full control of the conditions. When trying to validate a system-based DVPP, where loads are computed by dividing the yacht in several components (appendages, hull, etc.) and summing up their contributions, a particular interest of getting back to simpler methods as semi-captive tests is that they allow to isolate specific model blocks and validate them independently of each other. This is then the chosen approach.

Organization

The experimental campaign took place from April to June 2019 and was divided in two stages. The first one aimed at studying motions and loads in waves and used a setup allowing tests in restrained conditions (wave loads study) and with two degrees of freedom (heave and pitch responses study). This setup and the corresponding measurements are presented in Section 3.3.

The objective of the second stage was the study of the loads in forced motion: oscillations, in order to measure the radiation loads, and specific transient phases such as water entry. Setup and results for the second stage are presented in Section 3.4.

Facility

Experiments were carried out in the towing tank facility of the LHEEA laboratory in Nantes, France. The tank is 140 m-long, 5 m-wide, and has a 3 m constant depth. A hydraulic flap-type wave-maker equips one end of the tank, while on the other end a wave absorber limits wave reflection. The towing carriage has a theoretical maximum speed of 8 m/s.

Model

Model

Geometric properties

Offshore racing multihull floats are characterized by very high slenderness and rather shallow draft. An existing 2.5 m long model with such properties was used. In comparison with a 100 ft-Ultim trimaran, this represents a scale factor of 1/12.8. Its main characteristics are given in Table 3.1 andFigure 3 As the aim of the experimental campaign was to study the hull loads and validate their numerical modeling, a single bare hull was used with neither appendages nor superstructure. This avoids flow similarity incompatibilities between hull and appendages.

To stimulate turbulence and ensure equivalence of the model-scale regime with the full-scale one, the model is fitted with three 10 mm-wide sand stripes spaced by 50 mm and located 10%L PP (see ITTC, 2017d, for guidelines).

Inertial properties

Tuning of the inertial properties is only meaningful for the semi-captive tests. Corrective masses have been removed for the forced motion tests. The longitudinal position of the center of gravity (LCG) and the displacement were defined to reach an attitude that is consistent for modern geometries (see Table 3.2): the transom is slightly immersed, while the bow skims the free surface. As far as the vertical position of the center of gravity (VCG) is concerned, it was defined scaling the full-scale value of a complete trimaran.

In order to be able to set the connecting gear of the setups of either of the two experimental stages, a polyurethane foam platform was glued and machined, with all the necessary fitting holes.

Center of gravity

To tune and measure the center of gravity, the model was suspended to a gantry (Figure 3.2) using the piece of interface of the first setup, an orienting device that allows to tune or free separately all the angular degrees of freedom. Heel and yaw were fixed at 0 • , while pitch was free. The measurement of the position of the center of gravity was performed through inclination tests: calibration masses are added to the model and the resulting pitch angle measured with an inclinometer (0.01 • accuracy). The pitch equilibrium equation of the i-th measurement θ i can be written as:

cos θ i x m m m + ∑ j x j m j -sin θ i z m m m + ∑ j z j m j = 0 , (3.1)
where m m , x m and z m are respectively the mass, and the longitudinal and vertical positions of the center of gravity of the model including the moving part of the interface, and m j , x j and z j are the same data for the calibration masses.

Carrying out N measurements (N ≥ 2) leads to an overdetermined system of unknowns (x m , z m ), to which an approximate solution can be derived through a linear least square resolution. Comparing the solution to the target position of the center of gravity, corrective masses are fitted to the setup iteratively until satisfactory measurements are obtained. The effective LCG is 1.018 m forward of the transom, 2 mm behind the target value, corresponding to a pitch angle variation of less than 0.01 • . The measured VCG is 0.192 m.

It is important to notice that the properties m m , x m and z m refer to the total mass oscillating in pitch (including the moving part of the orienting device). As explained later on (see Section 3.3.1), the effective displacement is set independently of the real weight of the model.

Model

Pitch inertia

The chosen LCG being rather backwards (40% of L PP from stern), it was necessary to add an important amount of weight at the stern. Consequently, the pitch inertia is proportionally much higher than it should be. To measure it, oscillation tests were performed on the previously used gantry. By analogy with the simple pendulum system, a relation can be derived between the pitch oscillation period and the pitch inertia. At the center of rotation R, the pitch equation of motion of the system can be written in the linearized form:

I R yy θ + m m gδ θ = 0 , (3.2)
where I R yy is the model pitch inertia at the center of rotation, and δ the distance between the center of rotation and the model center of gravity. Hence, the period of oscillation is given by:

T = 2π I R yy m m gδ . (3.3)
The measured inertia of the complete pitching system is 16.4 kg.m 2 . Usually, pitch radius of inertia is of the order of 0.25L PP (see for instance ITTC, 2017a), whereas here the equivalent radius for the setup (including the moving part of the interface) is 0.52L PP . Consequences are discussed in Sections 3.3.10 and 4.5.4.

As roll and yaw are restrained, there is no need to adjust the inertia of these degrees of freedom.

Preparatory steps

Having a numerical version of the geometry is of prime importance to be able to reproduce the experiments within the DVPP. As no numerical geometry file of the model existed, it was therefore necessary to create one. To this end, two processes were tested: manual measurement on a marble and three-dimensional laser scanning. The scanning was performed using a Kreon Skyline Wide scanner, with a reported precision of 15 µm. Comparison of both measurements proved that the reconstituted geometries were consistent, despite minor discrepancies. In the absence of a reference numerical model, the estimation of the error is complex. The gap between both geometries is in the order of 1 mm at the highest. In the end, the geometry built from the manual measurements has been used as it intrinsically respects important geometrical properties such as symmetries or bow radius. This geometry is then used to pre-compute the radiation-diffraction coefficients as well as to express hydrostatic and Froude-Krylov loads within the DVPP.

In order to use a motion tracking system, markers are attached to the model. Two reference elements made of three reflective white spheres were set on polyurethane foam platforms at the bow and stern of the model (see Figure 3.3e). The three-dimensional positions of the markers were measured manually as well as with the three-dimensional scanner.

Guidelines

To ensure the quality of the experimental measurements, the model dimensions must enable to avoid interactions with the tank walls and bottom.

The work of [START_REF] Lataire | Experiment based mathematical modelling of ship-bank interaction[END_REF], cited by ITTC (2017e), shows that lateral tank wall interaction can be neglected if:

y infl = 5B (Fn h + 1) < y M-T , (3.4)
where B is the model breadth, y M-T the distance between the model and the tank walls, and Fn h = U/ √ gh the Froude depth number based on the carriage speed U and the tank depth h. In the present situation, y infl = 1.32 m, which is sufficiently smaller than the tank half width, 2.5 m.

The blockage coefficient is defined as the ratio of the model cross-section over the tank one. According to [START_REF] Debord | Accuracy, test planning and quality control in sailing yacht performance model testing[END_REF], the coefficient needs to be less than 1/100 to minimize blockage effect. This condition is validated as the model cross section is only 0.0044 m 2 , which represents less than 1/3000 of the 5 × 3 m tank cross section.

The usual condition for considering deep water (ITTC, 2017e) is h/T m < 4. Although this condition is met, an additional constraint based on the critical speed V crit = √ gh must also be accounted for. As for other recommendations specific to the tests parameters (speed, frequency, amplitude, etc.), this is discussed later on (see Section 4.5.4).

Setup description

The first setup, presented in Figure 3.3, is designed for semi-captive tests. The model is held by the orienting device used for the tuning of the inertial properties of the model, which allows to adjust yaw, pitch and heel. Pitch and heel can be independently freed or restrained with a lock-pin system, while yaw is adjustable through a worm screw. Model and orienting device are linked to the load cell by a column allowed to slide vertically guided by two sets of three rollers. A counterweight system allows to compensate for the weight of the column and pitch system, and to set the model displacement at the target value. The column can be prevented from moving by a clamping system. 

Instrumentation Load cell

The in-house load cell provides measurements for the six force components using strain gauges. All gauges are held by thin decoupling rods to minimize cross-axis sensitivity and interference between loads. One sensor is oriented in the tank direction, two (front and rear parts) in the transverse direction and three (front, middle and rear parts) in the vertical direction, with the middle one shifted transversely with respect to the others. Their combination allows to derive the moments. When heave and pitch are freed, the corresponding loads only represent frictions in the setup.

The load cell was calibrated before and after the experimental campaign to check for possible alteration of the sensors. No significant variation of the conversion coefficients was observed (less than 0.2%).

Calibration was done with weights corresponding to the range of expected loads to ensure its suitability for the planned measurements. Calibration is done by loading/unloading cycles on all gauges. A calibration chassis, directly mounted on the load cell frame and equipped with sheaves, allows to load each of the gauges at known positions with low misalignment errors. After N measurements (N > 6) of the output tensions for known imposed loads, a system of equations is obtained in the form:

∀n ∈ [[1, N]], ∀i ∈ [[1, 6]], F n i = ∑ j=1 C i j U n j , (3.5) 
where F n i is the known force or moment i imposed at measurement n, C i j the calibration matrix coefficients and U n j the tension j at measurement n. The calibration matrix is finally determined line by line by least square regression.

After each loading/unloading cycle, the tensions are compared to the initial values to ensure the absence of offset and the linearity of the gauges.

Other measurements

The measurements of the model attitudes is redundant so that if one sensor fails other measurements are available. Rotating potentiometers directly fitted on the orienting device are used to measure yaw and pitch angles, while a laser on the sliding column measures the heave motion. They were calibrated beforehand to retrieve the relation between the output tension (0 -10 VDC) and the mesurand. An inertial measurement unit (IMU, SBG Ellipse 2E) records model attitudes and accelerations, and a motion capture system (Qualisys) tracks the positions of the two reference elements at the bow and stern of the model.

The position of the carriage is measured by incremental encoders on each side of the carriage. Its derivative allows to retrieve the carriage speed. Two ultrasonic wave probes located at different longitudinal positions (bow and center of gravity) are used to measure the free surface elevation and retrieve the excitation phase.

Acquisition

Potentiometers, carriage speed and positions, wave probes, heave laser sensor and load cell are plugged to a first acquisition module (HBM MX1615B) while the inertial measurement unit is plugged into a second one (HBM M840B). Both modules are linked and thus synchronized by the acquisition program. The sample rate was set to 100 Hz. The motion capture system (Qualisys) was running on a second computer, with a separate acquisition software. An experimental issue with the triggering system did not allow a perfect synchronization between the two acquisitions so that a phase shift exists between the tracking measurements and the other data. Inertial unit and potentiometers allowing the determination of the motion phase, this issue was however not critical.

Parameters choice and testing program

As the heel angle of multihulls, especially with foils, tends to be rather small in absolute value, all experiments were carried out upright to focus on parameters that were believed to be more relevant.

The presented setup was used during three measurement steps, with the model towed at constant speed and yaw:

-Straight line towing on flat water, with 2DOF (heave and pitch): to measure loads and reference attitudes, -Captive tests in waves: to measure the wave loads and compare with the models, -Semi-captive tests in waves: to measure the heave and pitch response and compare with simulations. Four speed values were swept as well as 2 leeway angles. Details are given in Table 3.3. As the waves propagation axis is aligned with the towing tank main direction and the carriage rails, the waves heading relative to the model is equal to the leeway angle.

Speed (m/s) Froude number (-) 0.0 0.00 1.8 0.36 4.0 0.81 6.0 1.21 Leeway ( • ) 0.0 2.0 Table 3.3 -Speed and leeway conditions at model scale.

It was found more relevant to study head wave conditions, in which the pitch and heave responses are of greater importance. To simplify the problem, only monochromatic waves were studied. In the objective of studying the model response at diverse Froude values as well as for both small and steep waves, it was chosen not to sweep a wide number of wave periods but to concentrate on two values. To define those periods, the response amplitude operators at zero speed were computed using a seakeeping potential code. They are plotted in Figure 3.4. The heave response does not exhibit any resonance, but the pitch one has a peak around which the two reference frequencies are chosen. Those two values lead to wavelengths of the order of respectively L PP and 2L PP , which are conditions of known interest. Two amplitudes were studied for both wave periods (see Table 3.4), the resulting steepnesses s = 2A/λ were respectively 1.5%/3.5% and 1.5%/7.0%.

For measurements with forward speed, several strategies are possible. Two schemes were tested in this campaign: constant wave frequency ω and constant frequency of encounter ω e .

The constant encounter frequency strategy is interesting as in a simple, straightforward approach, forward speed can be modeled only through its effect on the encounter frequency. In such case, no-speed radiation coefficients are used but with frequency corresponding to the effective encounter frequency. Besides, as quoted by [START_REF] Irvine | Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves[END_REF], and according to [START_REF] Lewis | Principles of naval architecture[END_REF], the effect of speed on the natural frequency is generally small and thus the resonance peak is expected to remain located about the same frequency range. Wave amplitude being limited by the tank and model freeboards, it has to be kept constant and cannot be increased to maintain a constant steepness. Therefore, with the constant encounter frequency strategy, the wave steepness decreases with the tested speed values.

On the contrary, with constant wave frequency, the wave steepness is constant throughout the tests, but the encounter frequency increases progressively.

Tested wave conditions are summarized in Table 3.4.

Fn [-]

Constant ω

Constant When pitch and heave were freed, some of the harshest wave conditions led to too large motions that were blocked by the heave and pitch systems stops. No measurement was thus possible in 2DOF for the 7% steepness waves.

ω e λ λ λ /L PP [-] s [-] λ λ λ /L PP [-] s [-] 0 2.
A total of 144 runs has been carried out with this setup, including repeatability tests: 26 straight line towing runs, 61 captive runs and 57 semi-captive runs.

Guidelines

To avoid side wall effects when carrying out seakeeping experiments, ITTC (2017a) recommends that the upper wavelength in head waves remains below a value given as a function of the model length, the tank width and the Froude number F n . The formula is based on the consideration of a source of harmonic strength. The larger the Froude number the larger the available wavelength range. Obviously, at Fn = 0, interference happens and only the data before reflected waves come back to the ship are to be accounted for. The lower wavelength bound for the stricter condition Fn = 0.36 is 10.4 L PP , all considered waves are below this limit.

While the model draft to tank depth ratio is negligible, the critical wave velocity V crit = √ gh is rather small (V crit = 5.4 m/s). [START_REF] Debord | Accuracy, test planning and quality control in sailing yacht performance model testing[END_REF] advise not to neglect the tank finite depth if the test speeds are beyond 70% of the critical wave velocity, which is the case for the two highest speed values. This point is discussed in further details in section 4.5.4.

Procedure Preliminary steps

Model heel angle was set to zero using an inclinometer put on the model reference plate. The leeway was tuned by performing a number of towing tests and sweeping discrete yaw values. Interpolation for zero side force allows to derive the neutral angle of the model.

For the captive part of the tests, the clamping system was installed with the model at its reference sinkage and trim. The resulting displacement and pitch angle were checked through the load cell measurement and an inclinometer.

Test procedure

To optimize the measurements duration, the wave maker and the carriage were synchronized so that during the whole laps of time where target speed is established, the encountered waves are fully developed to their target characteristics.

So that the conditions are as similar as possible from a run to another, a constant waiting time of 20 mn was respected between all tests and blank runs were performed each morning to ensure an equivalent turbulence level in the tank.

Noise and filtering

Especially at the highest speeds, measurements are perturbed by high frequency components induced by vibrations of diverse origins. It is of interest to identify the causes and characteristics of these vibrations to deal with them adequately.

Frequency analysis on flat water towing tests allows to identify two vibration components. The first one (V / f 25 -30 m) corresponds to carriage superstructure vibrations, while the second one (V / f = 0.72 m) corresponds to the rail plates presence. While potentiometers measurements are relatively unaffected by noises (Figure 3.5a), other instruments such as the inertial unit are much more perturbed, mainly around 8 Hz (Figure 3.5b). The first vibration component is too close to the frequency range of interest to be filtered out. But the second one, as well as the high frequency noise can be filtered out using a low-pass filter. A Butterworth type filter is used and applied twice, once forward and once backward so that the implied phase delay is removed. The effective order of such method is twice the order of the initial filter. The highest encounter frequency of the test matrix is 3.34 Hz, a cut-off frequency of 4.5 Hz and a filter order of 5 is thus used. At 3.34 Hz the filter gain is then -0.01 dB, while at about 8.0 Hz it falls to -50 dB, which seems a good compromise between not altering the signal of interest and removing the perturbations. Higher order filters could be used to decrease even further the high frequency components, but it increases the probability of numerical instabilities. One should however take care when filtering the signals as it may smooth interesting harsh non-linearities in the response. This is especially true for the high steepness waves which have non-negligible second order components. Hence, raw signals are systematically checked and compared to filtered signals.

Repeatability

A number of runs were performed several times to check the repeatability of the experiments. All repeated tests were carried out within one week. Initial conditions are similar in terms of speed evolution and history of encountered waves (timing of the wave front arrival) as the carriage and wave-maker are synchronized. Carriage stop was either manual or automatic, the deceleration phase may thus vary between tests.

Figure 3.6 shows the pitch signal superposition of two repeated tests for the conditions Fn = 0.81, λ = 2.25 L PP and s = 1.5%. Correlation between both tests is good. When fitting the stabilized oscillations by a sine function a + b sin [ω e (t + c)], the differences between the fitted coefficients are small as shown on Table 3 

Uncertainties

Seven categories of uncertainty causes have been identified in the experiment:

-Model (dimensions, wetted surface, center of gravity position, displacement, inertia) -Heave and pitch system (friction, misalignment) -Carriage speed -Acquisition system -Environment (water temperature, waves characteristics) -Motion sensors (potentiometers, laser, tracking system) -Load sensors (load cell)

Uncertainties on model properties are summarized in Table 3.6 (left). Whenever repeated measurements were not carried out (type A uncertainties), type B are applied. Combined uncertainties are evaluated through the law of propagation of uncertainty (ITTC, 2014), they are noted as '-' in .

Variable

Std. uncertainty Type Linear dimensions 2.9 • 10 -4 m B Mass 2.9 Uncertainty due to friction in the setup was not quantified, but the order of magnitude was evaluated (see section 4.5.4). The load cell was mounted on the carriage using a laser pointer, the accuracy of the assembly is evaluated at about ±1 mm. The carriage speed is measured by two incremental encoders and the standard uncertainty is established at 0.01 m/s. The accuracy class of the acquisition modules is 0.05% according to the supplier.

• 10 -4 kg B Water temperature 0.1 • B Water density 2.1 • 10 -2 kg.m -3 B Displacement volume 3.1 • 10 -7 m -3 - LCG 1.4 • 10 -5 m A VCG 1.0 • 10 -4 m A Inertia 3.2 • 10 -2 kg.m 2 - Sensor Std uncertainty Pitch potentiometer 3.7 • 10 -2 • Yaw potentiometer 3.7 • 10 -2 • Heave laser 1.0 • 10 -4 m IMU angles 0.1 •
As far as the uncertainties in the environment are concerned, the measurement of temperature was repeated during the experimental campaign and no significant variation was observed. The accuracy on the wave properties measurements is reported to be better than 3 • 10 -3 m by the manufacturer.

The uncertainty with the motion sensors is known from the suppliers data or from the calibration procedures. They are reported in Table 3.6 (right). The positions of the IMU and of the orienting device which carries the potentiometers were pinpointed with the CNC milling machine used to process the deck of the model.

Finally, the uncertainties linked to the load cell other than its mounting on the carriage are the calibration uncertainties. The load cell is equipped with a sheave system that minimizes misalignment errors during calibration. The uncertainties in the positions of the sheaves are estimated at 0.5 mm. Calibration mass tolerance is 0.01%. The uncertainty in the curve fitting that allows to express the calibration matrix is given by the standard error of estimation (SEE, see ITTC, 2017a), which based on the 66 calibration points is less than 2.9 • 10 -2 N for forces and 1.4 • 10 -2 N.m for moments.

While in resistance tests or linear seakeeping measurements, the output parameters are a finite set of values (drag coefficient, amplitude, phase angle, etc.), this is not the case for nonlinear seakeeping experiments. A way to use statistics methods on the presented experiments is to superpose consecutive periods of the output signals and measure the variations with respect to the mean signal over a period. Figure 3.7 illustrates the process by plotting signal(t) = f ( mod[t, T ] ) .

(3.6)

The computation of the standard deviation of the superposed signal over a period gives an estimation of the data scatter. For the plotted signal, the maximum standard deviation is 1.0 • 10 -4 m. 

Setup deflection

During the experiments, and especially during the captive tests, transverse oscillations of the bow were visible in the toughest conditions. They can be caused by either model deflection or experimental setup defects (gap in the orienting device for instance). The stiffness of the markers rods has not been assessed, however they did not present any visually perceptible motion whereas bow oscillations were clearly visible. Figure 3.8 shows the standard deviation of the transverse position of the tracking system forward marker (at the bow). The maximum value is substantial: 2.5 mm. The extrema of the standard deviation as well as the amplitude of the deflection increase roughly as the square of the carriage speed. While they also increase with increasing wave amplitude, no clear relation has been identified. Dependency to wave steepness is not particularly visible, and substantial deflections also happen for small steepness values. The maximal gap between the lower and upper values of the marker transverse position is 17 mm while for the yaw angle of the marker it reaches 1.5 • . Those measurements must be considered with care as the uncertainties of the tracking system have not been assessed. Besides, the measurements may be amplified by motions in the other degrees of freedom (pitch for instance).

Amidship, both the yaw potentiometer and the IMU measure a maximal gap of 0.3 • and a standard deviation of 0.1 • . This tends to prove that the deflections are partly due to model deflection (between amidship and the bow) and partly to setup defects. 

Measurements discussion

As expected, results show linear behavior for the small speeds and wave steepness, while nonlinearities alter the amplitudes and shapes of the signals when conditions are tougher. Interesting features especially in pitch are visible in Figure 3.9, they are believed to be caused by the rather aft position of the model center of gravity. In some tests conditions, it was not possible to reach a stabilized model behavior and the measurements exhibit oscillations of variable amplitudes. This is further complicated at high speeds, where the effective distance remaining for measuring loads and motions with a fixed carriage speed is short.

As explained in 3.2.2, due to experimental setup limitations, the model pitch inertia is proportionally far too high. This is believed to be the cause of very large motions observed in some of the runs. As this inertia is independent of the model displacement (due to the counterweight compensation), its ratio with the hydrodynamic added inertia and damping has an unusual value. Similarly, the inertial loads for the heave motion are highly influenced by the heave system. The setup was designed for heavier models for which the effect of the heave column and counterweight is negligible. This is a drawback of the setup and is probably the cause for the impossibility of testing the 7% steepness waves in 2DOF. However, this does not prevent to compare the measurements with simulations, as done in the next chapter.

Second setup: forced motion

Setup description

The second setup is shown in Figure 3.10. In order to perform forced motion tests, a Stewart platform, also called hexapod (Mistral Hexapod, Symétrie) was fitted on the carriage on dedicated crossbars. The hexapod consists in two plates, the base plate and the mobile plate, linked by six electric linear actuators. Plates and actuators are connected through Cardan joints allowing to move the mobile plate in the six degrees of freedom. A stiff intermediate piece links the mobile plate to the load cells, which are themselves screwed to the model platform. The hexapod is PC-controlled, and can either displace the mobile platform to given target position and attitudes or execute user-defined motion scenarii. The brushless motors amplifiers of the actuators are controlled in real-time to ensure the adequacy of the instantaneous required position with the motor resolver position. The payload capacity is 1 000 kg and the maximum allowable motion frequency is 3 Hz. The linear velocity limits are 1 m/s in the horizontal directions and 0.6 m/s vertically, while the angular velocity limits are 50 deg/s and 70 deg/s respectively.

Instrumentation Load cells

Following preliminary studies to assess the magnitude of the expected loads during the forced motion experiments, it has been decided to simultaneously use two load cells (Figure 3.11).

The first one is a dynamometer axis (Garos) measuring 5 components (no transverse force in the present setup). Its nominal loads are respectively 500 N for forces, 60 N.m for the torque around the main symmetry axis and 55 N.m for the other moments. It provides a sensitivity which is adapted to the expected forces, but the nominal moments may be limiting for some of the planned measurements. Besides, the lack of transverse force measurements is also an issue.

For those reasons, an additional load cell was used (HBM MCS10 BG2 025), with higher nominal loads and six-component measurement. Nominal loads are respectively 5 kN for horizontal forces, 25 kN for vertical forces, 350 N.m for moments around horizontal axes and 250 N.m for moments around the vertical axis. The expected loads are largely included in those ranges. However, especially for the vertical force, the nominal loads are much higher than the expected measurements and the accuracy of the measure is thus not optimal with this load cell.

Experiments are performed in order of increasing intensity so that, if the measured loads become too close to the limits, the dynamometer axis is removed and replaced by a machined aluminum piece. The 5-component load cell was calibrated before the experiments following the same process as presented for the previous setup load cell. As for the 6-component one, the supplier calibration matrix was used, after ensuring its relevance and the absence of alteration of the zeros.

Other measurements

The inertial measurement unit and motion capture system were kept from the previous setup. An additional reference marker was placed on the hexapod mobile plate.

Acquisition

The previous acquisition modules were kept, with the same frequency of 100 Hz. The synchronization between the tracking system acquisition and the other measurements remained imperfect.

Parameters choice and testing program

The forced motion experiments were divided in three stages, all in flat water conditions: -Straight line towing, to evaluate the reference steady loads, -Forced oscillation in several degrees of freedom, -Water entry-exit sequences.

Straight line towing

The towing measurements were performed for all speed, displacement and attitude values that would be encountered in the forced motion tests, including the attitudes corresponding to the maximum amplitudes of the forced oscillations.

Forced oscillations

Forced oscillations measurements were carried out for 8 speed values up to Fn = 1.4. Details of the values can be found in Table 3.7. Mean displacement remained at 6 kg. Except for heave and pitch oscillations for which tests with 2 • leeway angle were also performed, all tests were done with zero mean yaw angle.

As explained in the description of the first setup test parameters, heel is of lesser importance for multihulls, and therefore no heel oscillations were tested to maximize the number of measurements in the other degrees of freedom. The high frequency limit of the hexapod being 3 Hz, 10 frequency values between 0 and 3 Hz were tested (Table 3. [START_REF]5kg and θ = 3 • (bow down)[END_REF]. Oscillations were performed in the following order: heave, pitch, yaw, sway and surge, sorted by decreasing priority. For the low priority motions, only a part of the speed and frequency values were swept.

Speed (m/s)

Heave and pitch oscillation amplitudes (Table 3.7) were defined as the maximal values allowing to remain within the hydrostatic loads linear range. Similarly, the yaw oscillation amplitude was chosen small enough to remain in a domain of linear dependency between side force and yaw angle. Finally, horizontal translation amplitudes were defined to respect the horizontal speed limit of the hexapod, V h lim = 1.0 m/s. For the highest frequency, this leads to a maximum allowable amplitude of 0.054 m, this value, rounded down to the nearest centimeter, was thus chosen.

Hexapod commands were carefully checked to verify their compliance with the range, velocity and acceleration limits of the hexapod.

The center of rotation for all oscillations was defined as the projection of the model theoretical center of gravity on the mean free surface. This allows a direct comparison with conventional seakeeping codes and models where the ship-fixed reference frame is usually defined in such manner (see for instance [START_REF] Salvesen | Ship motions and sea loads[END_REF].

Water entry-exit

For foiling yachts, the water entry and exit phases are critical. The modeling of the latter can be considered as rather simple, the displacement of the hull decreases progressively until the yacht is only carried by her appendages. On the contrary, water entry can be very sudden, especially in case of loss of flight stability, as can happen for instance when the rudders' elevators stall or exit the water. An accurate modeling of these transient sequences is important to retrieve correctly the penalty of touching the water, even briefly.

The objective of this part of the forced motion experiments is to generate data corresponding to such phases and compare them with the current DVPP models. Many parameters are at stake and it was necessary to restrict the experiments to a reasonable number of cases. To this end, the water entry tests have been modeled by carrying out square heave oscillations at constant speed, leeway and pitch. Although questionable, this approach consists in considering that the variation of heave when the yacht digs in is much quicker than the alteration of the pitch angle. In reality, the heave and pitch rates of change strongly depend on the local angle of impact with the free surface as well as on the hull shape.

Two speed values, corresponding to Froude numbers 0.8 and 1.1, are tested, for two leeway angles, 0 and 4 • . Those values are considered to be representative of situations of interest: with no leeway angle, the test can correspond for instance to a water entry following a loss of pitch stability, while the second value is more representative of a loss of heave stability which would result in a loss of appendages side force, and thus a large drift. As these situations correspond to a wide range of pitch attitudes, five different pitch angles have been tested, from -3 to +3 • .

Finally, as far as the choice of the amplitude of the heave motion is concerned, it was decided to consider two scenarios. In the first one, the situation is not critical, the hull only partly enters the water, following a change of heel angle or a sudden variation of the wind for example. To model this case, the maximum displacement is taken as 50% of the nominal value, that is 3.0 kg. In the second scenario, the yacht really digs in and, due to inertia or to non-conventional attitude, the hull takes on more than its nominal displacement. This situation may happen for instance when digging in with a high heel angle, the float may punctually bear part of the central hull displacement.

All tests parameters are summarized in Table 3. Table 3.8 -Speed, leeway and trim conditions.

In order to avoid infinite values of acceleration and remain within the hexapod specifications, the heave square signals have been smoothed using sine quarter functions and finite slope values. The sine functions period and the slopes were defined so as to lie as close as possible to the hexapod limits. An example signal is provided in Figure 3.12. The duration between the up and down phases is taken such as to allow both the measurement of a complete sequence for all speed values and the stabilization of hydrodynamic loads after water entry. In the lower position (0.7 s ≤ t ≤ 4.3 s), the sinkage is defined to correspond to the target maximum displacement at the considered pitch angle, while in the upper position (t < 0.7 s and t > 4.3 s) the hull is totally out of the water. The blue domain corresponds to non-zero model displacement.

A total of 614 runs has been carried out with this setup, including repeatability tests: 145 straight line towing runs, 345 forced oscillations runs (122 in heave, 118 in pitch, 36 in yaw, 39 in sway and 30 in surge) and 124 water entry/exit runs.

Guidelines

ITTC recommendations for captive model tests (ITTC, 2017e) are given in the scope of maneuverability experiments and therefore mainly consider PMM-type tests. In the present situation, the aim is to study the high frequency loads, therefore the given frequency limits corresponding to the avoidance of unsteady loads or memory effects are irrelevant. However, test frequencies should be chosen to avoid the natural frequencies of the tank, especially for lateral motion. Otherwise, tank resonance would yield a standing wave system which may perturb the measurements. It was thus verified that none of the wavelengths corresponding to the test frequencies was a multiple of the half tank width (ITTC, 2017e).

The amplitudes of the oscillations have been chosen to remain in the linear domain and respect the guidelines related to tank interaction.

As for the first setup, the highest speed values are larger than the recommended limit of 70%V crit . These effects are, at least partially, accounted for in the forward speed stiffness coefficients. An accurate assessment of the consequences of these finite depth effects would require either numerical tank measurements or additional experimental tests, in a deeper facility.

Finally, for the reliability of the derived periodic data, it is necessary to be able to measure several cycles. For PMM tests, ITTC (2017e) considers that three cycles is a good target. In the general case of the present campaign, it is possible to measure at least ten cycles. But this is not the case when both the highest speed values and the lowest frequencies are considered, due to the distance necessary to accelerate and decelerate the carriage. In such cases, only a single cycle is generally possible.

Procedure Preliminary steps

The hexapod offsets necessary to reach the target heel and trim angles, as well as the reference displacement were determined using an inclinometer and the load cells. They were relatively small (-0.68 • and +0.61 • ) proving that the hexapod was rather correctly set on the carriage.

Oblique towing tests with varying yaw angles were performed to determine the neutral angle of the setup for which side force is canceled.

Oscillations were carried out around this reference tuning.

Test procedure

No triggering system was used between the carriage and the hexapod. The latter was started manually just before the carriage acceleration, based on a countdown. The timing of the hexapod commands was optimized to maximize the number of measured cycles with a settled carriage speed.

A waiting time of 15 mn was observed between all tests (to let the free surface rest), and blank tests were done each morning.

Natural frequencies, noise and filtering

First tests with the setup have shown a substantial amount of noise in the measurements with two characteristic frequencies: 11.7 and 13.4 Hz. The probable cause being setup vibrations, natural frequencies tests have been performed to validate this hypothesis. A unidirectional accelerometer was placed on the model and the setup was excited tapping on the bow with a rubber mallet. The acquisition rate is increased to 600 Hz.

In a first stage, the accelerometer is put on the fore platform. The measurement axis is successively oriented in the vertical and transverse directions and the mallet used in those same directions. In the first case, the model is excited in pitch and the accelerometer exhibits a signal with frequency 11.7 Hz. In the second case, the model is excited in yaw and the second peak frequency, 13.4 Hz is retrieved. The noise present in the measurements is thus due to setup oscillations in pitch and yaw.

In a second stage, the accelerometer is placed on the interface between both load cells, and the setup excited by tapping vertically and transversely at that same location. The measurements of the accelerometer show an extremely quick return to equilibrium, approximately 0.03 s. The signal, both before the shock and after the return to equilibrium, exhibits very small oscillations of characteristic period 0.02 s (50 Hz) which are believed to be perturbations from the power supply.

As the measurement between both load cells shows that the setup is quite stiff at that point, it has been concluded that the set composed by the lower load cell, the 5-component one, and the model, was not stiff enough and was responsible for the pitch and yaw oscillations that brought noise in the measurements.

Both natural frequencies are relatively larger than the maximum oscillation frequency, 3 Hz allowing an efficient filtering. The same method as in waves is used with a slightly higher cut-off frequency. As previously (see Section 3.3.6), the raw signal is kept nonetheless and checked to avoid potential loss of information.

Load cells comparison

Considering the specificity of this setup which includes two load cells, it is interesting to compare their outputs. To this end, towing tests data are displaced to a same reference point (the previously defined rotation center) and plotted. Results for vertical force and pitching moment are shown in Figure 3.13. The correlation is very good for the pitching moment, with both slope and coefficient of determination close to 1.0, and only a small offset (0.197 Nm). As far as vertical force is concerned, data are more scattered, which is an expected consequence of the very high nominal load of the 6-component load cell. Similarly, comparison for the longitudinal forces highlights a measurement default of the 5-component load cell. Hence, as summarized in Table 3.9, only the 6-component load cell outputs (HBM) are considered for longitudinal and transverse forces, while only the 5-component outputs (G5C) are used for the vertical force. Both load cells are used for moments measurements, allowing for comparison. Fx Fy Fz Mx My Mz HBM HBM G5C Both Both Both Table 3.9 -Considered load cell for each component.

Repeatability

As for the previous setup, some cases have been performed several times to assess the repeatability of the experiments. Figure 3.14 shows three superposed vertical force measurements for heave oscillations at Froude number 0.50 and period 0.61 s. Despite some noise the signals correlate quite well. Besides, outputs are quite consistent as can be seen from Table 3.10.

Measurement

#1 #2 #3 Amplitude [N] 8.11 8.19 8.16

Phase [rad] 4.17 3.94 4.22

Table 3.10 -Amplitude and phase of repeated cases. 

Uncertainties

From the seven causes of uncertainties evaluated in Section 3.3.8, four (model, carriage, acquisition and environmental conditions) are unchanged.

As far as the setup is concerned, the small misalignement errors of the hexapod have been corrected by offset values that were determined using an inclinometer (Type B uncertainty, 2.9 • 10 -3 • ).

The accuracy of the IMU is shown in Table 3.6. Uncertainties related to the motion tracking system have not been assessed, they mainly depend on the rods stiffness, as well as on the quality of the calibration which implies placing reference markers in the measuring area.

The 5-component load cell support was machined out of aluminum with a CNC milling machine and the holes to set the calibration masses were also pinpointed on the support, ensuring a very high accuracy. The SEEs, based on 203 measurements, are respectively 6.1 • 10 -3 N for forces and 3.2 • 10 -3 Nm for moments. As the 6-component load cell calibration matrix was not re-evaluated, the SEE cannot be expressed. The maximum relative error measured while checking the validity of the supplier values was 0.73%.

Outcomes

Almost all planned tests have been carried out. The post-processing of the forced oscillations and the study of the evolution of radiation loads with speed are detailed in the next section. Comparison of the water entry-exit sequences with numerical simulations are shown and discussed in Section 4.6 (next chapter).

Radiation results

In this section, from the formulation of the equations of motion with forward speed and the expression of the linear radiation loads, experimental values of the radiation coefficients are retrieved from the load measured during the forced oscillation tests. Their evolution with forward speed is studied, and compared with simplified models. This section is not present in the public version of this manuscript.

Tank tests conclusion

In order to gain confidence in the developed numerical tool and validate its predictions beyond the usual limits of low Froude numbers and low wave steepness, an experimental campaign was carried out on a bare multihull float. The campaign made use of two different experimental setups.

The first setup was dedicated to the study of the motions and loads in waves with forward speed. Tests were done both in captive and semi-captive (free heave and pitch) conditions. A large range of Froude numbers, from 0 to 1.2, and of wave steepness values, up to 7%, was tested. Due to the model shape and to the intended attitude (sinkage and pitch angle) at rest, the center of gravity had to be rather backwards, leading to a high value of pitch inertia. As far as the tests with non-zero leeway angle are concerned, yaw angle variations were observed, demonstrating the existence of setup deflections.

Comparisons of the experimental data with DVPP simulations are presented in the next chapter (Section 4.5).

For the second setup, a Stewart platform was set on the towing tank carriage in order to carry out forced motion tests.

First, sinusoidal oscillations were performed in heave, pitch, yaw, sway and surge, with the aim of measuring the evolution of the radiation coefficients with forward speed. Froude numbers from 0 to 1.4 were swept. The post-processing of these tests has allowed to retrieve the radiation coefficients from the measured oscillating loads. They have proved highly sensitive to the determination of the phase as well as on the signals noise. Comparison with two low Froude numbers theories has shown that none of them was able to predict correctly the radiation coefficients over the range of tested frequencies and Froude numbers. Interesting observations have been drawn from the heave and pitch coefficients, but further work is needed for the other degrees of freedom.

In a second step, an innovative set of transient tests were performed with the same setup. The aim was to reproduce in a simplified manner the dig in and take off phases endured by foiling yachts. The tests were carried out using square heave oscillations with constant pitch angle at two different speed values and two different leeway angles. Results of the comparison with the DVPP for these transient tests are presented in the following chapter (Section 4.6).

Before presenting the comparisons of the DVPP with these complex tests cases, this next chapter details a set of simulations dedicated to validate several items of the developed tool, from the solution of the dynamics to the hydrodynamic force models. To validate such a DVPP, it is necessary to proceed progressively, and to go through a block per block validation. Direct comparison with complete real-life data would most probably not provide enough information to identify the failing part(s) of the simulator. This chapter therefore begins with the presentation of elementary tests that allow to verify and validate separately different components of the DVPP.

Multibody tests are first carried out. The resulting simulations are compared with direct numerical integration of the equations of motion. In a second step, simple hydrodynamic test cases are simulated which involve an increasing number of force components (hydrostatic, radiation, Froude-Krylov, diffraction). In case of inconsistent results, it is then possible to identify the faulting model, and either correct it if it comes from an implementation error, or take into account this limit if it comes from an inherent defect. Subsequently, naval oriented validation cases are performed, on reference geometries (a Wigley hull form and the DTMB 5512). Those tests allow for an overall validation of the hydrodynamic models of the DVPP, including forward speed effects. Finally, as the previous cases are limited to rather conventional conditions (low Froude numbers and low steepness waves), a final set of validation tests is carried out by comparing simulations to the the data gathered during the tank tests described in the preceding chapter. The response in waves in both captive and semi-captive conditions is studied first, while in a second step, the evolution of the loads during water entry and exit sequences is investigated. Both these last comparisons allow to assess the limits of the DVPP over a range of conditions of interest, and potentially identify directions for future improvements.

Multibody problems

This section is dedicated to the testing of the multibody core of the simulator, with no consideration of hydrodynamic, aerodynamic or naval aspects. Several pendulum problems are considered, allowing to validate diverse aspects of the algorithm and its implementation. No friction is considered.

Simple pendulum

The simple pendulum problem can be resolved with a straightforward mathematical approach and does not specifically necessitate multibody resolution techniques. However, in the process of verification and validation, it is of interest to do so.

The problem considers a punctual mass m at the end of a massless rod of length l. The rod is free to oscillate around a fixed pivot axis (Figure 4.1). The equation of motion writes:

γ = - g l sin γ , (4.1) 
with γ the pendulum angle from the vertical axis. The multibody modeling of the problem considers two bodies: a base body, fixed in the Earth-frame, and a free-to-rotate body which includes the rod and the mass. Figure 4.2 presents the result for the conditions m = 10 kg, l = 50 cm and initial angle γ 0 = 10 • , compared with the numerical integration of (4.1). After 20 s of simulation with a fourth order Runge-Kutta scheme and a time step width of 0.01 s, the maximum error between numerical integration and simulation is 4.8 • 10 -7 rad.

Conical pendulum

The second validation case considers a conical pendulum. It consists in a pendulum mounted on a rotating platform. The connection between the platform and the pendulum is located on the axis of rotation of the platform (see Figure 4.3). In the case of constant platform rotational speed ω, the equations of motion can be expressed as (details are provided in A.1):

γ = - g l -ω 2 cos γ sin γ . (4.2)
This equation of motion admits either two or three equilibrium positions depending on the value of ω. Two of those positions are identical to the simple pendulum, 0 and π, as in such positions no centrifugal load is exerted on the mass m. The third equilibrium is defined for ω ≥ g/l and is given by cos γ e = g/lω 2 . Perturbation studies of the equation of motion allow to investigate the stability of those positions. γ = π is always unstable. γ = 0 is stable for small rotational speeds (ω ≤ g/l) while γ e is always stable when defined (ω ≥ g/l). In the limit case ω l = g/l, γ e is exactly 0. As no friction is considered the equilibriums are stable but not attractive and the pendulum oscillates around them with constant period. Simulation involves three bodies: the fixed base body, the platform and the oscillating rod. Figure 4.4 shows two simulations results. In both cases, the initial angle is γ 0 = 10 • . In the first situation, ω is lower than ω l and the pendulum oscillates linearly around 0, while in the second situation ω is larger than ω l and the pendulum oscillates around γ e = 52.2 • . As the initial angle is far from its equilibrium value, the pattern is non-linear and the average value offsets from the equilibrium value γ e . The maximal absolute errors after 20 s of simulation are respectively 7.0 • 10 -8 rad and 3.9 • 10 -7 rad using a fourth order Runge-Kutta scheme with time step width 0.01 s.

Eccentric pendulum

To get closer to the example of a swing carousel, another test case is studied, with the pendulum axis off the platform rotation axis (see Figure 4.5). In this situation, there is no neutral position for the pendulum, which will sustain centrifugal force whatever the angle γ. Assuming constant platform angular velocity, the equation of motion is expressed as (see A.1):

γ = - g l sin γ -cos γ sin γ + R l ω 2 , (4.3)
where R is the horizontal distance between the pendulum pivot and the platform rotation axis. Only one equilibrium position γ e exists, with no restriction on the platform angular velocity ω. It can be derived from the following non-linear equation:

ω 2 (l sin γ e + R) cos γ e = g sin γ e . (4.4) 
Two comparisons are carried out. In the first one, the platform angular velocity is slowly increased so that the pendulum remains in a quasi-steady mode and γ (t) = γ e (ω (t)). Figure 4.6a shows the comparison of the simulation with the instantaneous solution of (4.4). The maximal error is 3.3•10 -5 rad, measured when the pendulum velocity is the highest, that is to say when the quasi steady assumption is the most questionable. Otherwise the error is of the order of 10 -7 rad.

The second comparison (Figure 4.6b) is more conventional and considers the oscillations of a pendulum released from γ 0 < γ e for ω = 4.0 rad/s. After 20 s of simulation the maximal absolute error is 4.8 • 10 -2 rad. 

Inverted pendulum

This test case has the interest of having a non zero value for the term ω ω ω × V. The pendulum is mounted on a translating cart (Figure 4.7), leading to a two degrees of freedom system. A classical study situation for this problem is when the pendulum is located above the cart, hence the name. In such case, no stable equilibrium exists and one needs an actuator and a controller to move the cart and stabilize the pendulum.

In the present situation the control aspects are of no interest and we study the oscillations with no actuator. The equations of motion can be written in the form:

  ẍ γ   = m sin γ m sin 2 γ + m c   1 cos γ - cos γ l - m + m c ml     l γ2 g   , (4.5) 
where x is the cart position and m c its mass. Details are provided in A.2. Results are shown in Figure 4.8 for an initial angle γ 0 = 15 • . Both the cart position and the pendulum angle match the results from the numerical integration. The maximal absolute errors in 20 s of simulation are respectively 1.6 • 10 -7 m and 3.9 • 10 -7 rad. 

Double pendulum

The last test case is the classical double pendulum problem, which considers two serial pendulums (Figure 4.9). This is an interesting problem as this system can exhibit a highly complex behavior, with a non periodic and chaotic motion. Any small error in the resolution is thus magnified very quickly. The angle from the vertical axis, the rod length and the mass of each pendulum i are respectively noted γ i , l i and m i . The equation of motion of the system can be expressed as (see A.3):

  γ1 γ2   = 1 l 1 l 2 m 1 + m 2 sin 2 ∆γ   -l 2 -m 2 l 2 cos ∆γ l 1 cos ∆γ m T l 1     m 2 l 2 γ2 2 sin ∆γ + m T g sin γ 1 l 1 γ2 1 sin ∆γ -g sin γ 2   , (4.6) 
where m T = m 1 + m 2 and ∆γ = γ 1γ 2 .

For small angle oscillations, the system may be linearized and the solutions are expressed as the superposition of two normal modes. In such case, the pendulums work in opposition: when one reaches a local maximum, the other is at a local minimum. However, when the amount of energy in the system is larger (higher initial positions or non-zero initial velocities), the motion gets chaotic. Figure 4.11a shows an example of such situation. The same pendulums as previously are considered but the initial angles are γ 1, 0 = γ 2, 0 = 80 • (the pendulums are aligned). As minor variations lead quickly to very different behaviors due to the chaotic nature of the motion, the time step width must be adapted to the severity of the motion, either manually or using adaptive time stepping. This is true for both the simulation and the direct numerical integration. Comparison with numerical integration of the equations of motion is shown in Figure 4.11b. The previously presented test cases validate the implementation of the multibody algorithm used to resolve the rigid body dynamics within the developed DVPP. The largest measured error is 4.8 • 10 -2 rad (eccentric pendulum) after 20 seconds of simulation. In that specific case the amplitude of the oscillations reached up to 100 • . The accuracy both absolute and relative of the multibody solution is thus considered as satisfactory.

Case description and modeling

The validation cases presented in this section are based on a paper (see [START_REF] Wendt | International Energy Agency Ocean Energy Systems Task 10 Wave energy converter modeling verification and validation[END_REF] published in the frame of the Ocean Energy Systems (OES) Task 10 on the simulation of a heaving sphere. Results from ECN simulations with a linear model using a state space representation are available for comparison.

The sphere has a 5 m radius and weights 2.618 • 10 5 kg. Hence it is at rest when its center is at z = 0 m in the 1000 kg/m 3 density water. The mass is uniformly distributed, so that the center of gravity is at the center of the sphere.

The system is submitted to its weight, hydrostatic, diffraction, Froude-Krylov and radiation loads. As the aim of the present validation case is to validate the implementation of the force models, and not the computation of the hydrodynamic coefficients, the radiation-diffraction coefficients computed by the ECN model are directly used to carry out the simulation. The reference data being based on linear model calculations, it is of interest to carry out the simulation with both linear and non-linear approaches. In the former case, which allows to verify the code implementation, first order approximations of hydrostatic (F z hs ) and Froude-Krylov (F z fk ) loads are used:

F z hs = -C 33 z F z fk = A Re F z fk (ω ) e -jω t . (4.7)
where C 33 is the hydrostatic stiffness coefficient in heave and F z fk the complex frequency-domain Froude-Krylov one. The second approach corresponds to a weakly non-linear model, and relies on the previously presented non-linear Froude-Krylov and hydrostatic loads (see Sections 2.4.1 and 2.4.4).

Three cases are studied:

-heave decay tests, to validate hydrostatic and radiation loads implementation, -heave oscillations in regular waves, to validate radiation, diffraction and Froude-Krylov implementations, -heave oscillations in irregular waves, to validate the previous models in irregular conditions. In the first test case, the sphere is released from the altitude z 0 above the free surface at rest. Three initial altitudes are tested, 1, 3 and 5 m. The linear simulation is in excellent agreement with ECN data for all three initial attitudes, as shown in Figure 4.12 for z 0 = 1 m and 5 m.

Heave decay

As far as the non-linear implementation is concerned, it compares very well with ECN data for the lowest initial altitude (Figure 4.13a). This behavior is indeed expected for such small amplitude oscillations. For the largest initial altitude (Figure 4.13b), the linear data and the non-linear simulation are not similar anymore, which is consistent as the initial altitude is large (equals to the radius of the sphere). The observed differences are consistent with those visible between linear and non-linear codes in the reference paper [START_REF] Wendt | International Energy Agency Ocean Energy Systems Task 10 Wave energy converter modeling verification and validation[END_REF]. 

Regular waves

In the second test case, heave oscillations in regular waves are considered. Simulations are performed for ten different wave periods, including the one corresponding to the analytically predicted resonance, and three wave steepness values. Note that the steepness definition used within the reference paper [START_REF] Wendt | International Energy Agency Ocean Energy Systems Task 10 Wave energy converter modeling verification and validation[END_REF] differs from that used in the preceding chapter:

ŝ = H gT 2 = s 2π . (4.8)
For each steepness value, the response amplitude operators are computed. Comparison of the reference data with the results from linear simulations for the lowest and largest steepness values are shown in Figure 4.14. The response amplitude operators compare very well in both cases.

Computation of the response amplitude operators is also performed from non-linear simulations. Results are shown in Figure 4.15. As previously, they are in excellent agreement with the linear reference data for the low steepness case. As far the higher steepness case is concerned, small differences can be observed near the resonance, which is consistent as in steeper waves, the behavior is expected to become non-linear. The linear simulation and the reference data compare very well. Some minor variations are observed in the first few seconds, which are due to differences in the implementation of the initial memory of the radiation kernel. Besides, as the simulated case corresponds to low steepness wave conditions, the non-linear simulation has a linear behavior and consistently matches both the other curves.

Irregular waves

Finally, [START_REF] Wendt | International Energy Agency Ocean Energy Systems Task 10 Wave energy converter modeling verification and validation[END_REF] present results for three irregular waves cases, generated from Pierson-Moskowitz spectra. Figure 4.17 shows time series comparisons with the linear reference code for the two most interesting ones. The first wave conditions studied (Figure 4.17a) correspond to a low steepness case ( ŝ = 0.26%) with a spectral peak period set at the resonance. All three heave signals correlate perfectly, except in the first seconds as explained in the preceding paragraph. The second conditions studied (Figure 4.17b) are described as survival conditions, the wave steepness is almost doubled and the significant wave height is larger than twice the sphere radius. As expected, the linear heave responses are in excellent agreement, while the non-linear response differs occasionally, especially when heave variations are substantial. Although only linear reference data have been available for comparison, these hydrodynamic test cases validate the implementation of the main hydrodynamic models: hydrostatic, radiation, Froude-Krylov and diffraction as well as the pipeline used to go from an input geometry to time-domain simulations. This set of tests considered only a very simple geometry and no forward speed, the following cases allow to verify that results remain consistent for more complex and realistic shapes and for forward speed.

Hereafter, only the weakly non-linear model presented in Chapter 2 is used.

Wigley 4.3.1 Case description

This test case is built on the study of four Wigleys in regular head waves by [START_REF] Journée | Experiments and calculations on 4 Wigley hull forms in head waves[END_REF]. Wigleys are fully parametric and mathematically defined hull forms. The presented work focuses on Wigley III. Its body plan and characteristics are respectively given in Figure 4.18 and Table 4.1. In his paper, Journée presents experimental results from tank testing at the Shiphydromechanics Laboratory of the Delft University of Technology as well as numerical ones computed through the 6 degrees of freedom program SEAWAY that implements both ordinary and modified strip theory methods. Hydrodynamic coefficients, wave loads, heave and pitch motions as well as added resistance results are presented.

Hereafter, results and comparisons are presented in the form of heave and pitch response amplitude operators (RAO), defined as:

RAO z (ω) = z (ω) A , RAO θ (ω) = θ (ω) L WL 2πA , (4.9a) (4.9b) 
where z and θ are the heave and pitch responses.

Simulations are carried out using infinite depth Airy waves of amplitude, A = 0.02 m and with wavelength ranging from 0.2L W L to 13L W L . Four different Froude numbers are studied: 0, 0.2, 0.3 and 0.4. As no data are provided about the steady state hydrodynamic loads, the effects of forward speed on the vertical force and on the pitching moment are neglected. The numerical simulations make use of the multibody algorithm to model the joints between the model and the carriage.

Frequency-domain

In the case of small wave amplitudes, the non-linear effects are negligible and the results are supposed to be comparable to linear model data. This allows to compare the time-domain simulations to direct analytic calculation of the response amplitude operators in the frequency-domain and verify the implementation of the high-frequency load block of the simulator. 

Response Amplitude Operators

In the purpose of validation, results from the developed dynamic simulation tool are compared to the reference values provided by Journée. The moduli of the response amplitude operators for Fn = 0 are presented in Figure 4.20. The results correlate well with both experimental and numerical results. The pitch motion peak is slightly lower than Journée's experimental data but is in excellent agreement with his own numerical results. Both low and high frequency limits are consistent.

As the speed increases, a resonance peak of increasing intensity appears in both heave and pitch, and both degrees of freedom become more intricately coupled.

Heave responses are shown in Figure 4.21. The correlation with the reference data is very good, the resonance peak location and amplitude is accurately retrieved, especially at Fn = 0.40. At Fn = 0.20, the peak seems to be overestimated with respect to the experimental data, but the same behavior is observed for the reference numerical simulations. The consequences of neglecting the steady loads due to forward speed are difficult to evaluate. Qualitatively, one can expect that they would alter the model equilibrium position in steady conditions, which would no longer correspond to zero pitch angle. In turn, this would break even further the heave-pitch balance implied by the model longitudinal symmetry, and increase the coupling between both degrees of freedom. It could possibly slightly improve the modeling of the pitch resonance peak. Further work, including assessment of those loads, would be necessary to confirm this hypothesis.

While this test case shows that the behavior in heave is well predicted by the DVPP, the response in pitch suffers from discrepancies towards the resonance peak, which is a region of high interest. An assumption has been proposed to explain the differences, however it has not been assessed. A second validation case on a reference hull form is thus performed in the following section. Experiments were performed in regular waves for three different steepness values Ak: 0.025, 0.050 and 0.075. Five Froude values are considered: 0.0, 0.19, 0.28, 0.34 and 0.41. Due to physical limitations and model slamming, experimental measurements are not available for all frequencies.

In the reference paper [START_REF] Irvine | Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves[END_REF], the response amplitude operators are defined as:

RAO z (ω) = z 1 (ω) η 1 , RAO θ (ω) = θ 1 (ω) kη 1 , (4.10a) (4.10b)
where η 1 , z 1 and θ 1 are the first harmonics of the wave elevation, and heave and pitch responses.

As the considered wave steepness values are relatively small, simulations are run with Airy waves. Data published in the reference paper [START_REF] Irvine | Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves[END_REF] show that the second and third order harmonics are rather negligible (amplitude ratio of less than 5%). To model the flat water hydrodynamic loads due to forward speed, data from a prior paper, [START_REF] Gui | Forces, moment, and wave pattern for surface combatant in regular head waves. Part I: Measurement systems and uncertainty assessment[END_REF], are used and a polynomial response surface built. The moduli of the response amplitude operators are shown in Figures 4.24 and 4.25 for the intermediate steepness value (Ak = 0.050). Similar results are obtained for the lower and upper steepness values, as can be seen from Figures 4.26 and 4.27. The number of available experimental data is small for the higher steepness value, however, as observed by [START_REF] Irvine | Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves[END_REF], the behavior remains rather linear for all three steepness values and the RAO are thus highly similar. Simulations and experimental data correlate well. In heave, consistency is excellent, even the sharp peak at Fn = 0.41 is correctly resolved. In pitch, the peak from the present model turns out to be a bit larger than the experimental results. This may be caused by energy loss due to viscous effects that would be insufficiently accounted for in the numerical model.

The phases of the transfer functions are also provided in the reference paper. They are plotted for some of the Froude and steepness values in Figures 4.28 and 4.29. The correlation quality is similar for the other values. The phases are overall in very good agreement. The discrepancy in heave modulus at Fn = 0.0 and f 1.0 Hz is also visible. As far as the pitch response is concerned, the numerical model predicts an increase in phase at Fn = 0.41 that is too early in terms of frequency with respect to the reference data: the last two points are off the curve. Otherwise, the trends and values are very correctly simulated. With this hull shape having no longitudinal symmetry, the heave-pitch coupling is much stronger than for the Wigley hull. Thus the very satisfying results of this test case allow to further validate the implemented hull model but also the coupling algorithm between the different degrees of freedom.

This test case is of great interest as it considers a realistic hull shape, with features (transom stern, sonar dome) that complicate the geometry. Using the provided information, and especially the loads in steady conditions, it has been possible to realize the simulations in a framework completely similar to that which will be used for full-scale yachts simulation.

No major discrepancy has been identified in both heave and pitch, which allows to fully validate the DVPP within the range of applicability of the weakly non-linear approach. However, as discussed in Chapter 3, such conditions are not fully representative as the DVPP is to be used also for large Froude numbers simulations as well as relatively high steepness waves. The next section thus proposes a comparison between simulations and experimental data for such conditions.

Comparison with 2DOF tank tests 4.5.1 Approach and modeling

The previously presented validation cases are mainly restricted to linear low Froude conditions. The aim of this section is to compare the DVPP results with results in tougher conditions based on the experimental campaign in waves.

Unlike most of the models tested on a similar setup, the implicated mass ratios do not allow to neglect the effect of the heave column or of the counterweight. However, while the model is free to both heave and pitch, these two elements can only slide vertically. To represent correctly the inertial effects at stake in the setup, a multibody approach was thus adopted. The system is made up of three bodies: the carriage, which translates horizontally at a prescribed speed, the heave system, free to translate vertically with respect to the carriage, and the model, which can pitch with respect to the heave system. To simplify the problem, the sheave system is neglected and the counterweight is assimilated to a mass with upwards gravity. Solid friction in the setup is neglected. 

Captive tests

In this section, heave and pitch are restrained and the measured and calculated loads are compared. As some of the measurements exhibit strong non-linearities, it is of great interest to compare the time series rather than only response amplitude operators. Simulated and measured signals are synchronized with respect to the phase of the waves. The accuracy of the excitation phase determination is thus critical to properly synchronize the signals. This is done through a least square regression which yields a maximal standard deviation of 0.015 rad for the phases. Only sequences with stabilized carriage velocity are plotted. Examples of comparisons for in-plane loads are shown in Figure 4.31. Once the experimental noise if filtered out, the simulated loads are close to the experimental measurements. Correlation is good, the main features of the response are correctly retrieved and the amplitude and phase are consistent.

Even specific non-linearities are visible, such as for instance the small local peaks in both pitch moment responses or the slope inflections near the minima of the surge force responses. It is interesting to note that the pitch moment local peaks are not visible in the filtered signal at Fn = 1.21, but they can be figured out from the raw data. A small phase shift is visible in all three signals at Fn = 1.21, evaluated at approximately 0.6 rad.

Consistently, cases with zero leeway present negligible values of transverse loads. However, they are mainly underestimated in the cases with non-zero leeway angles (see for instance Figure 4.34). The setup deflections discussed in Section 3.3.9 are believed to be one of the main reasons for those discrepancies, as they affect substantially the effective leeway angle and hence the transverse loads.

Figure 4.32 shows the errors in side force and yawing moments between experiments and simulations as a function of the standard deviation of the yaw angle of the tracking system forward marker. One can notice that the errors increase clearly with the variations of the marker's yaw, when the variations are negligible the errors are small. This is however not a proof that the deflections are the sole cause of discrepancies as they could also be due to the toughening of the wave and speed conditions. To assess this hypothesis, simulations have thus been run again but with an increased leeway angle.

This allows to model very roughly the consequences that model and setup deflections could have. Resulting changes on simulated in-plane loads are rather small but in some cases allow to decrease further the gap with the experimental data. For instance, Figure 4.33 shows a comparison of the previously presented surge and vertical forces with and without a leeway angle correction of 2 • (4 • instead of the 2 • of the experiments): the leeway correction brings a small improvement.

Transverse loads are much more altered by the change of leeway angle. There is no common trend for all cases. Some cases are improved (Figure 4.34) but in some cases the loads remain underestimated or become on the contrary overestimated. As discussed in Section 3.3.9, the deflection intensity depends on the test conditions (especially carriage speed and wave amplitude). To be more consistent one should thus use different leeway corrections, adapted to each situation. Besides, the study of the time series show that the deflection is periodic: the forward marker yaw increases when the bow is hit by the wave, and then decreases when going past it. Thus the effective leeway oscillates which intensifies even more the transverse loads variations. In the future, if such experiments were to be performed again, a reinforcement of the model as well as an improvement of the clamping system should be considered to avoid those issues.

To sum up the captive tests comparisons: the in-plane loads are very good, a minor phase shift appears at the highest Froude value. The phase of the simulated transverse loads is rather correct, but the amplitude is underestimated. The model deflection in yaw is believed to have alterered the quality of the experimental measurements and to be responsible for the gaps. Heave motion presents a good correlation (Figure 4.35,left). Phases and amplitudes are consistent with the experimental results. Amplitude relative gaps vary between 5 and 10%. The gaps in phase of the first three cases are very small (between 0.06 and 0.16 rad). The last presented case (4.35d), which is one of the most severe conditions (Fn = 1.21 and wave steepness of 3.5%), produces only very small motion amplitude (of the order of one millimeter). The results suffer from the low frequency oscillations of the experimental data and present a consequent phase shift of about 1.0 rad.

Semi-captive tests

As for the pitch motion, the correlation is not as good (Figure 4.35,right). Phases and amplitudes are globally consistent, except in the case of the most severe conditions (4.35d), but numerical responses miss some specific features observed on the experimental signals (4.35a, c). Those features are not necessarily repeated in all oscillations in the experimental data, which questions their origin and thus the criticality of their absence in the simulated responses. Part of it could be due to second order wave effects. As far as the fourth presented case is concerned, the amplitude of the experimental results is quite small. The simulated pitch motion amplitude is about half of the experimental value, while the phase shift is about 0.8 rad.

As far as the fourth presented case is concerned, the amplitude of the simulated pitch motion is about half of the experimental value, while the phase shift is about 0.8 rad.

An example of surge force comparison is provided in Figure 4.36. The quality of the correlation between simulated and measured loads is strongly dependent on the correlation of heave and pitch responses. In the plotted results, the pitch peak (Figure 4.35c) is thus retrieved in the measured surge force. Overall, consistency is rather correct. It is interesting to note the evolution of the mean resistance: for this case, the flat water value is 24.2 N, while it reaches 30.4 N in captive mode and 29.1 N in semi-captive mode. Similar tendencies are observed on all points. One can thus conclude that results are globally consistent, especially in heave. Up to Fn = 0.8, both heave and pitch responses correlate very well, with small difference in amplitude and almost no phase shift. While in low steepness waves the heave response remains correct at Fn = 1.2, the quality of the simulated pitch motion degrades, especially regarding the prediction of a secondary component. In the most severe conditions, the gaps with the experimental data increase for both responses, especially regarding pitch motion.

Discussion

It is interesting to notice how the use of previously measured captive towing loads to build a response surface for flat water hydrodynamic loads allows to account indirectly for some effects, and especially windage and shallow water waves. Given the important cross-section of the setup, and especially the heave and pitch system, windage has a non-negligible impact on measured loads, especially at the highest speeds. Runs with the model in air were performed to assess them (the total cross section variation due to the model immersion is neglected). At Fn = 1.21, the windage drag reaches up to 4.6 N, which represents 25% of the 18.2 N of the drag force measured at that speed in the water. However, this effect is already accounted for in the towing loads and there is no need to build an additional model.

As discussed previously, some of the studied speeds are too close or even beyond the critical wave velocity. This implies that finite depth effects occur at those speeds. Although we were not able to quantify the impact of this phenomenon on the loads, it is also accounted for in the captive towing loads.

Solid friction in the heave and pitch system was not accounted for in the model. The measurements of vertical force and pitching moment provide an order of magnitude of the frictional effects in the setup. Their maximum variations are respectively of 3 N and 7 N.m. Considering the masses and inertia at stake in the setup, friction can indeed be neglected, which is consistent with the absence of clear overestimation of the motion by the simulator.

There is no absolute pattern that allows to discriminate parameters that would be acceptable or non acceptable in terms of simulation accuracy. Heave motion is rather more accurately described than the pitch response. The most probable cause is that the response surface for flat water hydrodynamic loads was not built on a large enough range of pitch values (input range is -3 /+ 3 • , while the amplitude is beyond 6 • in some cases). Thus the pitching moment variations are not described with sufficient accuracy for the largest amplitudes. Expanding the range of the input data of the response surface would probably improve the results quality and should be tested. Besides, the major improvement point of the tests would be to find a better trade-off between the target position of the center of gravity and the resulting pitch inertia, which in the present case is far too high. This substantial value of inertia increases the probability that the response exceeds the model limits, whether it is the response surface input boundaries or the limits of the weakly non-linear models.

The lack of model and setup stiffness substantially perturbs the quality of the comparison of transverse loads. The bow periodic deflections are difficult to model numerically. If further tests were to be performed with the present setup, it would be of a great interest to fix this issue. As the defect may be located in the holding gear, changing this element could be necessary. It would be interesting to try and characterize the model stiffness on a testbed, and potentially to strengthen it (with external stiffeners for instance).

Overall, the results are nonetheless satisfactory. The in-plane loads are well predicted by the DVPP in terms of both phase and amplitude. Heave and pitch responses present a good correlation until Froude number 0.8. At higher speed, some discrepancies appear but, especially in heave, the response remains representative of the experimental measurements.

The chosen model seems therefore relevant, even for simulation of the yacht behavior in the severe conditions that are high speeds and rough sea states.

Water entry-exit phases comparison 4.6.1 Approach and modeling

In this section, the DVPP models behavior in a characteristic transient phase is studied and compared to the loads measured experimentally during the water entry and exit sequences (Section 3.4).

Studying those phenomena is of great interest as they are quite specific to the operation of foiling yachts and have thus not received many attention. The yacht response to water entry/exit occurences is yet critical to simulate correctly the behavior. In particular, the surge force response and the transient time necessary for the heave force to settle have a significant impact on the ability to predict properly the speed loss and the potential relaunch, which are strategic elements when analysing different designs.

Pictures of the experiments are provided in Figure 4.37. The motion is entirely prescribed and no resolution of the dynamics is therefore needed. The hexapod commands generated for the tank tests are used to force the heave position in the numerical simulation.

As previously, the hull hydrodynamic models described in Chapter 2 are used. Flat water conditions are considered, therefore Froude-Krylov and diffraction loads are null.

The aim of this section being the study of the quality of the transient loads modeling, the steady loads are not modeled using the towing tank data as in the preceding section, but directly from the mean of the stabilized loads in the present experiments. This allows for a more consistent superposition of the simulated and experimental forces, and avoids comparing the data with an offset. Comparison between these average values and the results from the towing tests is consistent and shows no major discrepancy.

Inertial loads are evaluated by deriving the slope of the function F i = f ω 2 where F i is the load in i measured during the heave oscillation tests in air (as done in Section 3.5). Due to some minor asymmetries of the setup, small transverse loads are measured during these oscillations, they are accounted for hereafter.

Loads are measured and compared in the boat reference frame.

Noise filtering

The measurements are noisy, mainly due to the lack of stiffness of the 5-component load cell. The motion is highly non-linear and the spectra of both the heave commands and the measured loads include high frequency components. This is illustrated in Figure 4.38a which shows the normalized spectra of the heave position, velocity and acceleration. Although the main peaks are below 5 Hz for all three signals, non-negligible amount of information remains in higher frequency ranges, especially for the acceleration. Figure 4.38b shows the alteration of the heave acceleration signal after filtering by an order 10 filter, with cutoff frequency 10 Hz. The gain of such a filter at 11.7 Hz, first natural frequency of the setup, is only -15 dB while the acceleration signal is already severely degraded. This is not acceptable as the acceleration is directly retrieved in the measured loads through the inertial and added mass forces. Following these observations, no filtering has been performed on the experimental results. 

Comparison

This section shows some comparisons between the numerical simulations and the experimental results. Figure 4.39 illustrates a case with Fn = 0.0.

The noise in the experimental measurements of surge force and pitching moments are relatively high. Although there is no forward speed, a non-zero surge force is measured due to the pitch angle of the model (Figure 4.39a). The F x simulation does not depict any transient hydrodynamic load, which is consistent with the implemented models but the stabilization of the loads seem to be slower in the experimental results. The inertial loads peaks in the simulation correlate badly with the experiments. A possible explanation is that the inertial loads coefficients have been derived from oscillation tests with zero pitch angle while here the case corresponds to 1 degree bow down. This may have relatively high impacts on the small cross-coupling inertial coefficients such as surge. F z results (4.39b) are much more consistent, despite some small overestimations of the peaks, the transient loads prediction proves rather accurate. Small persistent oscillations are visible in the experimental data, they are believed to be due to a non-sufficiently stabilized free surface when running the test. Finally, as far as the pitching moment M y is concerned (4.39c), a small transient hydrodynamic effect is visible wich correlates well with the experimental data. While most of the inertial loads peaks are consistent, the experimental results have no peak at the beginning of the upward motion, which is rather intriguing. As for the surge force, the measurement of the inertial loads at zero pitch angle could cause some errors. A second possible explanation would be the presence of mechanical play in the setup. Results for heave force remain consistent, although the downward peak of the transient oscillation may be slightly overestimated. The good correlation of the inertial peaks prove the quality of the added mass effect prediction. The increase pace of the pitching moment correlates well in both cases. The transient oscillations are however more questionable. Although they remain within the noise of the experimental data, it would rather seem that the stabilization of the hydrodynamic loads is in reality faster than predicted. This is especially true for the case Fn = 1.1 (Figure 4.40b). For the lower Froude case, the prediction seems quite acceptable.

A case with non-zero leeway is shown in Figure 4.41, for Fn = 0.8. There is a substantial underestimation of the surge force peak. Whereas the numerical results depict almost no hydrodynamic transient effect, the experimental results show a peak of magnitude greater than 1.5 times the stabilized load value. The difference is less important for the sway force for which the peak is noticeable and well located. Its evolution is rather consistent although the first upward peak is probably a bit underestimated. A discrepancy in the load slope is visible during the upward motion. The prediction of the heave force correlates very well with the small underestimation of the first upward peak already pointed out on previous results. The pitching moment prediction is acceptable, but as previously the convergence to the steady state value seems too slow and the transient oscillations too high. Finally the yawing moment is too noisy to distinguish transient oscillations from setup vibrations. Given the aspect of the sway force signal, it would be logical to expect transient oscillations. Almost none are predicted by the numerical model. 

Discussion

In view of the quantity of noise in the experimental signals, the comparison with the simulations is delicate as the high frequency transient effects are easily confounded with vibrations. If similar experiments were to be redone, a greater care should be drawn to the stiffness of the setup, and more especially to that of the load cells, which are highly solicited in such motions. The experiments give an interesting overview of the convergence time of the hydrodynamic loads, which does not exceed a few seconds in the present measurements.

Although the modeling approach is rather simple, it allows satisfying prediction of the transient loads generated during the water entry and exit phases.

The heave force prediction is overall quite accurate, but it could probably be further improved by implementing a slamming model using the work of Von [START_REF] Kármán | The impact on seaplane floats during landing[END_REF], as well as for instance [START_REF] Battistin | Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[END_REF] and [START_REF] Tassin | Hydrodynamic loads during water impact of three-dimensional solids: modelling and experiments[END_REF]. The non-consideration of such loads in the present approach is the most credible explanation for the observed small underestimation on the first transient loads peak.

Further work is necessary to improve the prediction of the surge and sway forces whose peaks are underestimated. Considering that the loads have been studied in the boat reference frame, part of the difference may also be explained by slamming effects, which have in the present case non-zero projections on the longitudinal and transverse axes of the load cell.

In most cases, the stabilization of the pitching moment is too slow compared to the experimental results. This should be further investigated and could be caused by the implemented radiation loads correction.

Obviously the slenderness of the model and the shape of its sections decrease the magnitude of slamming loads and other unsteady effects during water entry. With flatter hull bottom the simulations would probably perform worse and additional models would be necessary to account for those phenomena.

It would be very interesting to carry out similar tests in semi-captive conditions. This would give more hindsight into the importance of those transient loads in the behavior and the consequences of the discrepancies observed in their modeling. As their characteristic time is very short, they might have only a limited impact on the response, but this remains to be quantified. Besides, small differences in the response may lead to completely distinct behaviors. For instance, errors in the surge force prediction and thus on the related speed loss, may be exacerbated by substantial consecutive differences on the lift generated by the appendages, and in the end lead to inaccurate prediction of the yacht motion. The use of actuators such as done presently with the hexapod does not allow the study of free heave and pitch responses. To do so, a possible solution would be the use of a conventional semi-captive set-up, but including a system to clamp the model above the free surface and release it at a given time. Nevertheless, such tests seem rather difficult to set up. It would especially require a sufficient stroke for the heave system and an accurate release mechanism.

An intermediate solution could also be to keep on using a captive setup but imposing more realistic heave and pitch motions. These imposed motions could be determined from preliminary semi-captive tests, potentially carried out with no load cell and at Fn = 0 to simplify the experimental setup.

Conclusion of the validation tests

The first elementary validation tests have proven the correct implementation of the basis of the DVPP. The pendulums test cases resulted in only small gaps with direct numerical integration, showing that the solution of the dynamics was reliable, even for relatively complex systems. Relative and absolute errors are within an acceptable range.

Similarly, comparison on simple hydrodynamic tests has allowed to verify the implementation of the main hydrodynamic force models. The generation of different seastates has also proved operational, for both regular and irregular conditions.

While the sphere test cases were based on the comparison with linear numerical results, and therefore inherently of lesser accuracy than the intended level of the DVPP, the Wigley and DTMB validation cases are based on experimental data. Their comparison with DVPP simulations is very good, especially for the DTMB. Various conditions of waves and forward speed have been tested with equally consistent results. Besides, this work has allowed to assess the simulation pipeline, from the generation of the mesh to the simulation, including all pre-processing steps (mainly the radiation-diffraction calculations).

Thanks to the experimental campaign, a set of validation data which includes specific conditions has been established. Regarding the comparison of motions and loads in waves, results are satisfactory insofar as the experimental and simulated responses correlate overall very well. Gaps have been observed in the most severe conditions. Several improvements have been suggested for both the experimental campaign (setup stiffness, model inertia) and the simulations (range of the response surfaces inputs).

An innovative set of tests has been presented, which focuses on the behavior during the transition from flying mode to Archimedean mode and inversely. Comparisons results are very good, with a very interesting quality of the transient evolution of the loads. Simulations could probably be further improved by accounting for slamming loads.

Next step in the validation process would probably be a comparison with full-scale data of a complete yacht. This will be performed in the near future, at least in a qualitative way. The following chapter presents application cases on real yachts which results are considered quite consistent with real life observations. A thorough quantitative comparison with full-scale data would be very difficult due to the complexity of measuring and controlling the external conditions. Nonetheless, with the improvements of on-board sensors, such comparisons could be eased in the long term. Now that the different models are implemented and that most of the modules have been validated, it is interesting to apply the DVPP to a few representative scenarios. This chapter thus presents examples of simulations with the developed numerical tool, in order to underline its abilities and assets. The different simulated situations show what can be done with such a DVPP, from evaluating tuning strategies to the comparison of different designs, or the assessment of peak loads, safety criteria or transient response.

The first simulations consider an offshore trimaran. Three scenarios are tested. To begin with, a maneuver is simulated with the yacht bearing away on flat water. Two tuning strategies are compared, having the same initial and final tunings. The resulting states are highly different, illustrating the nonunicity of the equilibriums. Secondly, the yacht is studied in unsteady wind conditions. The temporal evolution of the yacht is compared to VPP outputs. Occurrence of critical peak values is underlined. Finally, the yacht is simulated in following seas. Surf-riding phenomena are observed as well as regular transitions between flying and Archimedean modes.

To illustrate the versatility of the DVPP, a monohull is then studied. Different yacht configurations are tested in waves. It is shown that the VPP optimum is not the fastest one. The ability to respond efficiently to perturbations and to regain speed quickly can make a substantial difference.

Ultim trimaran

Considered yacht

In this part, the simulated yacht is Macif 100, an offshore trimaran of the Ultim class. Skippered by François Gabart, she has been the holder of the single-handed sailing around-the-world record since 2017 (in 42 days 16 hours 40 minutes 35 seconds). Her main particulars are given in Tables 5.1 and5.2. The first two simulations consider the appendage package that was used for the circumnavigation (Figure 5.1a): two small L-foils, one centerboard and three T-rudders (one on each hull). In the last simulation a second set of appendages is used (Figure 5.1b), with a larger foil and an elevator on the centerboard. Characteristics of this second appendages set cannot be provided for confidentiality reasons. The windward foil is raised to the upper position in all examples. 

Simple maneuver

As known by VPP engineers, a given configuration (the parameters of the VPP: appendage tunings, ballast, sail trim, etc.) in given external conditions (wind speed and angle) may lead to different equilibrium states (and thus different boat speeds), especially when the yacht has the ability to sail in different modes (Archimedean, fully flying, hybrid). The aim of this first simulation is to illustrate this specificity by comparing two sail trimming strategies, while adapting to new sailing conditions, and showing that even though the final configuration is the same in both cases, the final state largely differs, with a substantial speed delta.

Flat water conditions are considered. The yacht initially sails upwind in 19 knots of wind at 50 • True Wind Angle on port tack. The simulation is carried out in six degrees of freedom, with no active control system other than an autopilot for the rudder angle. At t = 50 s, the target heading is increased by sixty degrees so that the yacht bears away (see Figure 5.2). No change of sail is allowed. As explained in section 2.5.1, the sail polars give the sail forces at the considered steady Apparent Wind Angle (AWA) for an optimal trim. In dynamic conditions, such an approach is an idealization as it means that the sails are trimmed for maximum driving force at the same rate as the Apparent Wind Angle varies. However, the maximum driving force may not be the tuning that allows the maximal speed.

VPP studies carried out to optimize initial and final states configurations (board extension, rudder rake, Flat and Twist, etc.) show that the sails must be de-powered (twisted) after the bearing away maneuver. The sail twist enables to lower the center of effort, which decreases the heeling moment at the cost of an increased drag coefficient. The compared strategies focus on the timing of this specific action. In the first one, twist is operated progressively, but directly after the rudder action, while in the second one, the sails are twisted only after the main hull is lifted out of the water (see Figure 5.3). With the second strategy the yacht maintains a strong heeling moment which makes her heel and decreases the wetted area of the main hull. The yacht can then accelerate, increasing thus the lift force of the foil in a virtuous circle that sees the hulls dynamic buoyancy and drag replaced by the foil action. Finally, the sails need to be twisted to enable the heeling moment to be balanced (as the boat accelerates, the aerodynamic heeling moment keeps on increasing otherwise). Acting too soon, as in the first strategy, prevents the yacht, under-powered, from lifting the main hull (Figures 5.4c and 5.4g), with a resulting lack of speed of more than 4.5 knots (Figure 5.4a).

Pushed by the inertial forces after the start of the turn, the yacht keeps briefly a non negligible speed component in the direction of her initial motion, that is to windward. This explains the negative leeway peak shown in Figure 5.4b. The ratio of the main hull wetted surface area to its nominal value is shown in Figure 5.4e. Its evolution is close to the heel angle behavior and, while it saturates at about 25% when using the first strategy, it indeed tends to zero in the second case, which corresponds to flying the main hull.

The pitch angle evolution is visible in Figure 5.4f. Its evolution is driven by three main phenomena. First, the appendage tuning is changed during the maneuver, altering the pitching moment generated initially. The tuning history being similar in both strategies, this does not cause the difference between their final states. Secondly, after the maneuver, speeds are higher in both strategies, and as the speed increases, the aerodynamic bow down moment increases, leading to a greater pitch angle. Finally, a last factor is at stake in the second strategy: the main hull leaves the water and its pitching moment component vanishes. That is why the second strategy shows a lower pitch angle than the first one.

While the timing of the sail twist varies between both strategies, other parameters are altered when bearing away but with identical timing in both cases. It is for instance necessary to partially lift up the centerboard and to change the rake angle of foils and rudders. This modifies the balance of the boat and explains the perturbations seen on the time series. Figure 5.5 shows the time evolution of the distribution of vertical forces (aligned with acceleration of gravity) as a percentage of the yacht displacement. On both strategies, the load transfer from the float to the foil as the speed increases is visible, allowing to accelerate even more as the foil has a substantially better lift to drag ratio at such speeds. As previously shown, in the second strategy, the main hull is lifted out of the water by the sails heeling moment and the displacement is transferred to the foil and to a lesser extent to the float. Finally, the foil carries 50% of the yacht in the first strategy while in the second strategy this percentage reaches 70%. This simulation highlights an interesting aspect verified in real conditions: one must build up speed before setting on the final configuration and track. This is very important as -especially for foiling yachts which can evolve in very different modes -one given configuration does not lead to a unique equilibrium. Dynamic simulation allows to work on the strategy necessary to reach the VPP optimized steady speed and to improve those transient phases.

Behavior in unsteady wind conditions

This second simulation case aims at showing the interest of dynamic studies to predict potentially critical situations when evolving in unsteady conditions. The consequences on the yacht behavior of an irregular wind are studied. For this example, unsteadiness is modeled by adding sinusoidal components to the mean True Wind Direction TWD 0 while the True Wind Speed is kept constant at 18 knots:

TWD (t) = TWD 0 1 + ∑ i k i sin 2π T i t .
(5.1)

The periods T i and the intensity factors k i of the five sinusoidal components are chosen arbitrarily. They are given in Table 5.3. Periods are chosen so that they are not multiples of each other, in order to increase the time necessary to observe a periodic behavior. Time evolution of the True Wind Direction is visible in Figure 5.6 over the time range of the simulation, those variations impact both the Apparent Wind Speed and the Apparent Wind Angle.

Usually, unsteady wind are represented by a higher number of components, derived from a reference spectrum. In the present approach, only a few components have been used so as to ease the interpretation and gain better insight from the simulation. Flat water conditions are considered. At t = 0, the simulation is launched from a VPP optimized equilibrium corresponding to TWA 110 • / TWS 18 kn, so that the unsteady wind acts as a perturbation to this situation. It is interesting to notice that, in such a configuration the boat speed is about 30 knots, and therefore a major component of the apparent wind. The fluctuations of the apparent wind are thus much smaller than the true wind variations. During the 400 s simulation the standard deviation of the True Wind Direction is 4.3 • and the amplitude between extrema is 19.5 • , while the corresponding values for the Apparent Wind Angle are respectively 1.4 • and 6.1 • . The yacht is free to move in 6 degrees of freedom, while an autopilot with a constant heading target (ψ T = 0 • ) controls the rudders.

As can be seen from Figure 5.7, the yacht evolves in hybrid mode, with in average 50% of the yacht displacement sustained by the foil.

One can notice three peaks where the heel angle almost reaches 12 • and the main hull is out of the water (at t equals 200, 280 and 320 s, see Figures 5.7 and 5.8c). Consistently, Figure 5.6 shows that they correspond to situations where the wind heads (TWD maxima as the yacht heads North on port tack). However, such values of the True Wind Angle are reached several times without resulting in such heel angle peaks. This demonstrates how the wind sequence has a strong impact on the yacht instantaneous behavior and proves how necessary time-domain simulations are for the complete understanding of the yacht behavior. Similarly, Figure 5.8 shows in green the limits reached in a steady VPP when the yacht configuration is kept constant and the True Wind Angle ranges from 100 • up to 120 • , the minimal and maximal values of Figure 5.6. The heel variations are highly correlated with the wind direction signal, but very high peaks occur incidentally. This shows, as could be expected, that steady state analysis can miss critical situations. On the contrary, the simulated boat speed is well contained within the VPP limits, as the wind oscillates too quickly for the speed to settle to the steady equilibrium values seen in VPP. The average speed during the simulated sequence is 29.3 knots, which is slightly below the speed reached in steady wind (29.5 knots).

Unlike the other outputs, the boat speed presents a low frequency component strongly dominating the high frequency ones. This low-pass filtering can be explained by the loads' dependency to the boat speed that tends to damp the response as well as, unlike heel or heave, the absence of a strong hydrodynamic stiffness. This can be verified by comparing the power spectral densities of the output signals with the input one (Figure 5.9), which consistently shows that the first component of the speed PSD is largely dominant over the other components. On the contrary, the signals of angular position show a spectrum that is relatively close to the input one, with some additional very small harmonics. The fourth component being rather weak and close to the third one, it is hardly distinguishable in the shown spectra. Another difference between the yacht attitudes and her horizontal velocity components is the delay with which they respond to the wind perturbation. This can be shown by computing the normalized cross-correlation function between input and output signals (see Figure 5.10). The first peak height gives the strength of the correlation while the abscissa indicates the phase shift. As expected the heel angle is highly correlated to the True Wind Direction (maximum correlation coefficient of 0.90) with a very short 0.85 s lag. On the contrary, the boat speed, which is also well correlated (maximum correlation coefficient of 0.71), presents a much higher delay of 7.22 s. This simulation case has shown that a VPP is unable to predict the critical phases that can occur in unsteady conditions and that may be detrimental to the yacht stability, safety and performance. DVPPs allow to study these critical situations. Furthermore, they enable to study and improve the ship tuning parameters to optimize the speed in unsteady conditions and smooth even more the output signal. Besides, in such situations, the tuning of the autopilot coefficients may have significant impact on the response. DVPPs thus allow to study the effects of given coefficients and may be used within the tuning loop to optimize the behavior of on-board control systems.

Downwind sailing in waves

Finally, this third simulation case aims at modeling a sequence in the Southern Oceans (Indian or Pacific) which are generally almost totally sailed downwind in westerly winds. Southern ocean properties corresponding to the period December-January have been chosen based on [START_REF] Young | Seasonal variability of the global ocean wind and wave climate[END_REF]. The sea state is constructed by superposition of three wave components (Table 5.4) representing respectively the low, medium and high frequency parts of a fully-developed spectrum of about 4.5 m significant wave height and 12.0 s peak period. All three components propagate in the same direction as the wind. In general, complex sea states are represented by the superposition of much more wave components. In this case, the number is restricted to three in order to be able to identify precisely the phenomena linked to each of the wave components. With this approach it is thus possible to compare the velocity and position of each component with respect to the yacht, and derive its effect on the response. A simulation case with more components is presented in the next section. As the yacht surfs in front of the coming wave, the orbital velocities further increase the appendage lift (by increasing the angle of attack, consequence of the wave vertical velocity component), especially of the foils, and the yacht may reach a flying mode (Figure 5.11). She remains however slightly slower than the wave and is progressively overtaken. As it happens, the effect of orbital velocities on the rear appendages is inverted (the wave vertical velocity becomes negative) and their lift decreases, as well as the efficiency of their pitch stabilizing effect. The pitch angle is reduced (Figures 5.12d and 5.13c) and the bow gains altitude over the free surface. Consequently, the immersed surface of the foil shaft decreases, leading to a drop in the side force, making the yacht bear away and drift (see Figures 5.12e,5.12f, for instance at t = 40 s, and Figure 5.13d). Drifting, and not pushed anymore by the wave, the yacht slows down and reenters the water (Figure 5.13e). It may reach negative heel angles (Figure 5.12g) due to the coupled effect of decreased aerodynamic heeling moment (less apparent wind speed) and buoyancy on the leeward float bow that may touch the wave. The yacht finally realigns with her heading target as the pilot acts on the rudder (Figure 5.12h), and the sequence starts again when another large wave arrives. (e) Heading -controlled by PD autopilot.

(f) Leeway.

(g) Heel.

(h) Rudder angle. (c) Still faster, the wave overtakes the yacht, which pitches bow up (t 40 s).

(d) With less appendage side force, the yacht drifts and loses speed (t 45 s).

(e) The yacht has been overtaken and is close to her minimal speed (t 50 s). In Figure 5.12c, one can notice the presence of higher harmonics when elevation is positive and smoother behavior otherwise. A possible explanation would be that the appendages that carry the boat when elevation is large are more sensitive to small changes in the free surface elevation due to the high frequency waves than the hulls for which free surface variations are averaged along a larger length. This is however not clearly visible from the vertical loads time series (Figure 5.11). A second, more convincing, possible explanation is that the platform stability is higher when in Archimedean or hybrid mode than in flying mode, so that the high frequency perturbations are better filtered out.

It is interesting to note that the proportional coefficient of the heading autopilot (1.5 here) has a critical impact on the yacht behavior: with a too stiff autopilot the rudder corrections are too abrupt and the yacht drifts largely, while with a too small coefficient the yacht slaloms slowly, making very wide turns with substantial impacts on the velocity made to mark. The wave spectrum being fully developed and having a tight resonance peak, the first wave component is largely predominant over the others. A quasi-periodic behavior with frequency corresponding to the encounter frequency of this component can thus be observed on the provided time series. A pilot that would be aware of the position of the waves would be able to anticipate the yacht motion while she is overtaken. An autopilot algorithm with learning abilities would be able to recognize such a repeating pattern and determine an action to prevent it. Dynamic simulation allows to develop, train and test such controllers.

When designing a high performance foiling yacht, one of the key aspects is the ability to maintain a sustainable flight. Indeed, each return to an Archimedean mode has a substantial cost in terms of boat speed. Dynamic simulation is therefore critical in the design process to assess the flying stability. This is especially the case in waves, as they violently and repeatedly perturb the yacht equilibriums. A trade-off must therefore be identified between the pure performance (maximal steady state speeds) and dynamic behavior. Two main aspects are at the core of this issue: the dynamic stability and the ability to re-accelerate after a speed loss. A DVPP is therefore necessary to evaluate and compare the appendage designs in a set of representative conditions.

IMOCA monohull

Considered yacht

The following simulations deal with an IMOCA monohull. IMOCA (International Monohull Open Class Association) are 60 ft-long yachts dedicated to ocean racing, which are in particular known for taking part in the Vendée Globe, the single-handed non-stop round the world yacht race. The 9 th edition of the race will depart from Les Sables d'Olonne (France) on November 8th, 2020. The standing record was established during the 2016 edition by Armel Le Cléach on Banque Populaire XIII, in 74 days and 3 hours.

The class rule (see Table 5.5) allows five appendages: a canting keel, two rudders (without horizontal lifting surface) and either two foils or two daggerboards1,2 . While the keel, mast and outriggers are onedesign, the design of the hull, foils and rudders is open.

The simulated yacht is a generic 2020-generation VPLP IMOCA, and is shown in Figure 5.14. After the 2016 edition which has seen the first foil-equipped yachts, the 2020-edition concepts are going one step further with hulls designed around the foils and a huge increase in the size and loads of the foils. The developed length of the foils used in the simulation is about 7 m. Only the leeward one is in the water, while the windward is fully retracted. Average yacht mass3 7, 500 -8, 000 kg Table 5.5 -IMOCA characteristics 1, 2 . 

Effect of ballasts and stacking

In this section, the yacht evolves downwind in medium wind conditions. For confidentiality reasons, the exact speed and direction values cannot be provided. The sea state is relatively rough and corresponds to a swell risen by a distant storm. A Jonswap spectrum corresponding to a significant wave height of 9.5 m and a zero-crossing period of 15 s is used to generate the waves. Such characteristics should, according to Stormsurf (2020), represent the effect of a one-day storm of about 45 kts. Such conditions are often encountered during the Southern segment of the Vendée Globe. The realization of the spectrum uses the superposition of 40 singular components. Directional dispersion is accounted for through a square cosine law and the mean wave direction of propagation is aligned with the wind.

A steady VPP optimization is run to define the best configuration in terms of appendages tuning and sails trimming. According to the VPP there is a clear advantage in stacking the moving masses just behind the yacht center of gravity while filling the windward rear ballast. The steady optimized speed is 24.8 kts. First DVPP simulations with this configuration show the flying phases are short and in average the hull still carries a non-negligible part of the yacht displacement. The evolution of the vertical position of the center of gravity, shown in Figure 5.15, gives insight into the size of the waves. Downwind, it is generally considered that the lighter the yacht the faster she is, as at this point of sail the need for righting moment is lesser than in reaching conditions. Besides, the masses are usually moved back in order to get the bow up and avoid nose-diving in waves.

It seems therefore interesting to try and lighten the boat as well as moving back the center of gravity. A second configuration is thus tested, with all ballasts emptied and the masses moved as far back as possible. Overall, this configuration has a center of gravity further back than the first configuration, as the masses displacement has a greater effect than the emptying of the rear ballast. Under those constraints, the VPP optimized speed is 23.7 kts which is 1.1 kts less than the previous configuration.

A comparison of the speeds of both configurations is shown in Figure 5.16 for 4-minute-long simulations. The averaged values are 22.5 kts for the first configuration (ballast filled), which is much lower than the VPP optimized value, and 22.9 for the second configuration. The first major difference is that the variations are much higher with the second configuration, which is a direct consequence of the loss of surge inertia (decreased mass). One can notice that the maximum speeds are larger with the second configuration: the lighter yacht has a greater ability to surf and to regain speed after a deceleration phase. Those speed values, about 30 knots are rather close to the wave propagation velocity projected on the yacht heading, which is consistent. With less inertia, the second yacht also loses more quickly the gained speed, and her minimal speed values are lower than the first configuration ones. However, when comparing the gains and losses, one can see that overall the second configuration is faster as the area in green is much larger than the red one. It is also interesting to have a look at the hull buoyancy over time, as shown in Figure 5.17. Average values are respectively 26% of the reference value for the first configuration and 16% for the second one. The time spent with zero displacement in the hull are rather short in both situations. This is consistent as in such case the yacht flies on only two points, a configuration which is quite unstable. The average hull displacement is much smaller with the second configuration. This is partly a consequence of the difference in weight, but the main reason is the increased speed which allows foil and keel to carry more of the yacht weight. One can notice that the reference displacement is punctually largely exceeded. This happens when the yacht suddenly pitches down and crashes into the water after losing her balance. The maximum value is reached with the first configuration, which has more inertia and a further forward center of gravity With the second configuration the yacht is more airborne, nonetheless she regularly goes back into the water. This is particularly visible when looking at the evolution of the pitch angle (Figure 5.18, negative values correspond to bow up). It is important to point out that the provided values correspond to the pitch angle in the earth frame and thus are strongly influenced by the slope of the waves. Both configurations have similar average values, however the time evolution is quite different. The variations of the second configuration pitch angle are larger, with increased speeds, the foil and keel are generating more lift and thus an increased bow up moment. Regularly, the moments balance themselves, and the yacht flies on her keel and foil, with a small area of the rear part of the hull in the water. In such situation, the yacht maintains high speed values. However, such a configuration (two supports in front of the center of gravity and no lifting surface at the rear) is inherently longitudinally unstable, as the variations of pitching moment due to the hull buoyancy (hydrostatic and dynamic) are not sufficient to counteract the exciting effect of the forward lifting surfaces. Therefore, due to the regular perturbations from the incoming waves, the equilibrium may be broken. When the perturbation makes the yacht pitch up, the lift increases further and rather large negative trim values are reached. This pitch angle increase is not indefinite: on the one hand the forward appendages can eventually get out of the water, and on the other hand the angle of attack and area of the hull wetted surface lead to a strong surge of the drag force which will make the yacht slow down, and in turn decrease the appendage lift. Besides, an external perturbation from the waves can also push the boat to pitch down. The instability of the configuration then increases the overall pitching moment as the yacht pitches down. In the end, the yacht crashes into the water (large positive pitch values) and suffers potentially heavy speed losses (up to almost 15 kts in the worst case). The hull displacement and speed loss after the crash can be related to the falling height (higher for large negative trim values) and to the yacht inertia. The large trim oscillations are believed to be unrealistically magnified by the lack of foil deflection when loaded. Those deflections tend to unload the foil, as when it bends it gets out of the water, and have thus a damping and regulating effect on the motion, and especially on the trim evolution. The development of a Fluid-Structure Interaction model is planned for the coming months and should help supporting this opinion.

Longitudinal stabilization

As previously discussed, a configuration with one or several lifting surfaces forward of the center of gravity and none at the rear cannot achieve longitudinal stability. This can be shown by a perturbation analysis. Effects of instability can be decreased by optimizing the hull rear shape, the foil shape or the mass distribution, but this will nonetheless not allow pitch stability. This issue is highly similar to that of the longitudinal stability of airplanes, which benefit from years of studies. Although for airplanes solutions have been found by altering the main wing design (using auto-stable sections or delta wings for instance), the most common solution to achieve longitudinal stability is a rear lifting surface. With a sufficient distance from the center of gravity and a large enough area, the variation of pitching moment of the rear lifting surface, which is opposed to the perturbation, is sufficient to counteract the effect of the forward lifting surfaces, and thus stabilize the motion.

To illustrate this point, a third configuration is tested. The mass distribution is identical to the second one (no ballast, stacking at the rear), but the yacht is now equipped with T-rudders, with an elevator area of 0.15 m 2 . Time series of configuration 3 pitch angle are shown in Figure 5.19 together with the previous results. The improvement is very clear, the range of pitch angle variations is now of 13.8 • while it was 16.0 • and 20.3 • with the previous configurations. The displacement is given in Figure 5.20. The flying phases are much longer and the mean hull displacement much smaller: 5% of the reference displacement (instead of respectively 26% and 16%). This is consistent as the yacht is now able to achieve a stable flight on three supports (keel, foil, rudder), with the hull fully above the water. From time to time, when the yacht slows down too much after being passed by a wave, she touches the water and the hull displacement increases (t = 15 or 91 s for instance). Nonetheless those phases are rather short and the yacht takes off again quickly as she regains speed.

No crash occurs during the simulated time. This is visible on both the displacement and pitch angle time series. The reference displacement is never exceeded, and the maximum pitch angle, about 5 • (at t = 100 s for instance), corresponds to a normal attitude on a steep wave when the yacht is heeled. Similarly, the negative peak value at t = 110 s occurs just after the yacht is overtaken by the wave. The pitch angle corresponding to a safe bow up flying attitude is magnified by the ascending slope of the passing wave. Finally, speed values are plotted in Figure 5.21. The average speed is 24.1 kts which is 1.2 kts faster than the second configuration. This is a direct consequence of the stability gain which is sufficient to counteract the added drag of the increased wetted area of the rudder elevators.

The yacht only goes once below 18 knots and is overall much more regular. The minimal speed values are reached when the yacht is overtaken by the wave and is slowed down by its ascending slope (inverse situation compared to surf phenomenon). It is interesting to notice that the surf speeds are a bit smaller than for the second configuration. This may be a consequence of the added drag of the elevators but other phenomena could be at stake too. The use of a stabilization device is thus highly beneficial for both the yacht attitude and average speed. In less rough sea states, the gain would probably be even higher. Simulations in broad reach have shown that the speed increase could reach more than 5 knots compared to conventional IMOCA appendages setup.

The IMOCA class may open the rule to T-rudders in the coming years. However, other issues are at stake such as cost control and fleet competitivity preservation.

Beyond the speed gains achievable through dynamic behavior optimization, other criteria can be looked upon and improved. This is for instance the case of the mean heel angles, accelerations, decelerations and impacts, which may have heavy consequences on the ship integrity or on the ability of the skipper to endure the race.

Conclusion of the application cases

The application cases presented in this chapter have demonstrated the ability of the DVPP to handle the simulation of full scale yachts in various situations from steady environmental conditions to varying wind or wavy seas. The different scenarios considered have underlined several assets of dynamic simulations.

The existence of bi-stable equilibriums confers a critical importance to the chronology of the yacht tuning. Although some best practices may already be well established, a DVPP can help optimize this succession, and conjointly gain understanding in the operation of the yacht.

VPP studies are of great help in the design process. Nonetheless, the steady optimums must subsequently be analyzed in the light of their behavior in unsteady conditions. The presented examples have shown that critical peak values, largely exceeding the VPP predictions, can be reached punctually, with the risk of affecting the crew safety or the yacht integrity.

Several of the example simulations have shown that the ability to build up speed and accelerate efficiently was a key element to achieve high average speeds. This point should be assessed through a larger number of simulations in a wider range of environmental conditions. Such observations are of great interest in order to be able to conceive increasingly competitive designs.

In the frame of a complete design study, a statistical and probabilistic assessment would be necessary, in order to avoid drawing conclusions from the observations of a unique simulation that may not be entirely representative. The consideration of longer simulation times and various realizations of the wind and sea states would provide a deeper understanding and an increased confidence in the analysis.

As the simulations in waves have shown, the gaps between the steady optimized speeds and the average values in realistic conditions can be substantial. It is thus of interest to assess the boat speed not only for a set of wind conditions (angle and speed) as usually done with VPPs to generate the yacht polars, but also for different sea states. One could then compute multidimensional polars providing the mean boat speed once both the wind and wave conditions are known. Such methods are already in use for conventional yachts, as formulas have been derived that can help assess the mean added wave resistance (see e.g. [START_REF] Gerritsma | The seakeeping performance and steering properties of sailing yachts[END_REF], and therefore evaluate a speed penalty depending on the sea state. As far as foiling yachts are concerned, this is more complex as the speed losses are tightly linked to the ability to maintain long flying periods and to take off efficiently. DVPPs are thus perfectly fitted for such calculations and for deriving such polars.

Conclusion

The work carried out in this PhD project focused on the modeling of sailing yachts unsteady behavior, and more specifically on the hydrodynamic aspects. The objectives were to improve the understanding of those phenomena and to develop a DVPP (Dynamic Velocity Prediction Program) allowing to study them. A specific attention was drawn to foiling offshore multihulls.

A detailed survey of the already published models and existing tools has been presented. Advantages and drawbacks of the different approaches have been discussed in order to make an informed and adapted choice with regard to the provided specifications. The main constraint was the ability to run in real time and drove the majority of the modeling choices, especially regarding the seakeeping computations. The core of the DVPP is a multibody algorithm which allows a large scalability, guaranteeing the ability to handle complex simulations including heavy appendages control or maneuvers for instance. The loads are expressed according to a system-based and weakly non-linear approach which turned out as the optimum choice to reach the best computational efficiency and a large modularity.

The identified models have been implemented and tested progressively. The resulting DVPP handles real time simulation with full resolution of the 6 degrees of freedom. Different wind and wave models have been implemented. Complex environmental conditions can be represented by the superposition of several singular wind or wave components. The chosen code structure guarantees that future developments could easily add new types of sea or wind models as well as account for other environmental phenomena such as currents. Diverse types of loads computations coexist in the DVPP, such as direct calculation on meshed geometries, pre-computed database query, call to polynomial regressions on pre-computed data or semi-empirical formulas.

The state-of-the-art review and the development of the numerical tool have risen several issues. The major one is the lack of validation material for the behavior of sailing yachts in rough environment. Most of the sufficiently documented and freely available data relate to small Froude number vessels, generally in low steepness waves. Besides, foiling yachts face the specific issue of mode transition, from Archimedean to flying, and inversely. This problem is rather new and also lacks of documentation and experimental data. Finally, the chosen seakeeping model does not intrinsically account for the forward speed effect, aside from the inclusion of encounter frequency. Simple, low Froude, corrections have been proposed, but their validity in the high speed range is questionable. For those three reasons, an experimental towing tank campaign has been undertaken, with funding from VPLP Design. Two different setups have been used. The first one was designed to measure the loads (captive tests) and motions (semi-captive tests) in waves, while the second aimed at measuring the hydrodynamic loads during forced motions. The same model, a multihull float of 2.5 m was used in both cases. A wide range of tests conditions has been swept with both setups, with a particular focus on high Froude number cases. Two types of forced motions have been carried out: sinusoidal oscillations, to measure and compare the radiation coefficients, and heave square oscillations, to observe the load evolution in water entry and exit events.

A particular consideration has been given to the validation of the DVPP, to verify the implementation, to validate the adequacy of the results but also to identify the shortcomings of the chosen models. The multibody solution implementation has proved consistent and able to solve problems of increasing complexity with a high level of accuracy. Comparisons of the results with reference data for simple hydrodynamic problems and reference experimental results yielded a very good level of correlation. Finally, the simulations have been compared to the data of the performed experiments. Although discrepancies are observed in the most severe conditions, the comparison with the simulated motions and loads in waves is positive and encouraging. For the transient phases from flying mode to Archimedean and reciprocally, very interesting correlations are found, especially in heave. The implementation of a model for slamming loads would probably improve the results further.

Finally, the DVPP has been used in some example situations, quite representative of transient sequences aboard offshore yachts: maneuvers, varying wind or waves. The simulations yielded very consistent results, demonstrating the interest of this approach. Specific aspects of dynamic simulations have been pointed out such as the importance of the yacht and tunings history. Comparison with static optimization from a VPP has also underlined substantial differences proving how necessary it is to use both tools when designing a yacht. Finally, an example with a monohull has been presented to show that the code modularity allows to use the DVPP on different vessel types as long as the load models are used or changed consistently. Different configurations of the monohull have been tested in a process similar to one of the intended use of the DVPP. The steady VPP optimum is challenged by alternative configurations that are deemed able to solve the observed problems in dynamic conditions. Time-domain simulation allows then to compare the average boat speeds but also the attitudes and the possible occurrences of phases that are critical for safety or performance. 

New interface

Following an evolution of the need of the company and in order to make the DVPP usable by external users, a new interface has been developed by a group of companies specialized in video games, virtual reality and animation so that the DVPP can now be used as a standalone software with high quality renderings. Visualizations of the new interface are shown in Figure 6.1.

Perspectives

The foundations of the DVPP have been laid. A sufficient number of models are available to allow for the simulation of offshore yachts in many situations. However, the tool is aimed at being improved and updated, and several developments are already planned or underway.

First, the new appendage hydrodynamic model is currently under validation. The following step is the introduction of a structural model so as to account for the large deflections sustained by those ever slender lifting surfaces. The best lift-to-drag ratios are obtained for high aspect ratio, low relative thickness geometries, which are thus subject to substantial deflections. Those deflections may have critical impacts on the study of the yacht dynamics as they alter the generated loads in terms of both magnitude and direction and can damp the motion.

As discussed in Chapters 2 and 5, the modeling of the sail loads in unsteady conditions is delicate, and to date no satisfying model exists. The main drawback of the current model is that it considers that the sails are permanently optimally trimmed even during maneuvers or in varying environment. A second development of the DVPP will thus probably be the implementation of a model allowing for non optimal tuning of the sails.

The presented towing tank tests have provided very interesting results and led to the identifications of some drawbacks in the experimental setups. The experience gained in their realization allows to consider some improvements that would enable a greater quality of results. In severe conditions (steep waves, high Froude numbers, highly non-linear motion), the setups and especially the load cells are highly strained and great care must be drawn to use stiff pieces to limit as far as possible the vibrations that subsequently pollute the measurements.

More than 750 experimental cases have been carried out, including the repeated measurements and diverse verifications. Not all the data have been processed yet, the remaining ones will allow to push further the work presented herein. Study of the evolution with speed of the out-of-plane radiation coefficients should in particular be of great interest.

The DVPP resulting from the present project is operable and can thus already fill its intended duties, especially regarding performance prediction in realistic conditions. A central use will be the comparison of design options, and in particular of appendages concepts, as the DVPP allows to assess both the resulting boat speeds but also the stability of the considered configurations. Besides, it is also possible to evaluate the seakeeping abilities of a given yacht, as well as to establish sailing polars that account for the sea state.

The simulator will also be used in other situations such as training, in order for instance to improve the tuning choices and their chronology. Furthermore, the handling of a wide range of input systems (driving wheel, gamepad, keyboard, etc) reinforces user interaction.

The possibility of plugging in external code allows the use of realistic control systems, which is an interesting asset in the process of training and optimizing helm autopilots or flight controllers.

As the DVPP is used on operational projects, comparisons with full scale data will allow to refine the models and detect the necessary improvements. Besides, new developments will be necessary to handle other types of vessels, such as wind assisted ships, and their specific issues. At the end of this PhD this numerical tool is thus not frozen, but destined to be permanently upgraded.

The calculation of the partial derivatives yields: = m 2 l 2 2 γ2 + m 2 l 1 l 2 γ1 cos ∆γm 2 l 1 l 2 γ2 1 sin ∆γ + m 2 l 1 l 2 γ1 γ2 sin ∆γ .

∂ L ∂ γ1 = m T l 2 1 γ1 + m 2 l 1 l 2 γ2
(A.17)

The differential equations therefore write: m T l 2 1 γ1 + m 2 l 1 l 2 γ2 cos ∆γ = -m 2 l 1 l 2 γ1 γ2 sin ∆γm T gl 1 sin γ 1 , m 2 l 2 2 γ2 + m 2 l 1 l 2 γ1 cos ∆γ = m 2 l 1 l 2 γ1 γ2 sin ∆γm 2 gl 2 sin γ 2 .

(A.18)

Assuming m 2 = 0, the system of equations is given in matrix form by: 
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 11 Figure 1.1 -Yacht characteristic angles definition.

( a )

 a Straight towing. (b) Oblique towing. (c) Steady turning. (d) Pure yaw. (e) Pure sway.
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 12 Figure 1.2 -Captive tests for maneuvering coefficients identification.
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 14 Figure 1.4 -Seakeeping models classification based on boundary conditions non-linearities (from ITTC, 2017b)
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 15 Figure 1.5 -The adopted 6-level classification of seakeeping codes.
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 21 Figure 2.1 -Reference frames definition.

Figure 2 . 2 -

 22 Figure 2.2 -Definition of the gimbal angles roll ϕ, pitch θ and yaw ψ.

A

  multibody system is a set of interconnected bodies. The allowed degrees of freedom between bodies depend on the nature of their links, called joints. Two basic topologies exist: open-loop and closed-loop systems.
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 23 Figure 2.3 -Multibody topologies.
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 24 Figure 2.4 -Modified Denavit-Hartenberg parameters (from Rongère and Clément, 2013)

Figure 2 . 5 -

 25 Figure 2.5 -Wind shear and its effect on apparent wind. (For the sake of simplicity, the wind is represented with no vertical component.)

  Several theories exist to model water waves such as for instance Stokes' theory, Stream function theory, nonlinear Schrödinger equation, etc. Their validity depends on the characteristics of the considered waves and on the local depth (Figure2.6). Two non-dimensional parameters are of particular interest to study the validity of such theories for a given wave of amplitude A and wavenumber k evolving in water of depth d:-the steepness s = kA, -the relative depth d = kd.
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 26 Figure 2.6 -Validity of usual wave models (adapted from Le[START_REF] Méhauté | An introduction to hydrodynamics and water waves[END_REF] 

Figure 2 . 7 -

 27 Figure 2.7 -Strip theory method for sail added mass calculation.
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 28 Figure 2.8 -Initial user interface of the simulator.
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 29 Figure 2.9 -Structure and operation of the developed tool.
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 31 Figure 3.1 -Model body plan.

Figure 3 . 2 -

 32 Figure 3.2 -Inclination test to determine the center of gravity location.

  Carriage and towing tank. (e) Model and orienting device.

Figure 3 . 3 -

 33 Figure 3.3 -First experimental setup.

Figure 3 . 4 -

 34 Figure 3.4 -Heave and pitch responses amplitude operators at Fn = 0.

( a )

 a Pitch potentiometer and heave laser measurements. (b) Inertial unit measurements.

Figure 3 . 5 -

 35 Figure 3.5 -Spectra of the heave and pitch responses at Fn = 1.21, β = 0 • , λ = 5.2 L PP and s = 0.6%.

( a )

 a Full measurements. (b) Zoom on stabilized motion.

Figure 3 . 6 -

 36 Figure 3.6 -Repeated tests example, pitch angle from inertial unit, at Fn = 0.81, β = 0 • , λ = 2.25 L PP and s = 1.5%.

Figure 3 . 7 -

 37 Figure 3.7 -Superposition of the periodic samples on case Fn = 0.81, β = 0 • , λ = 3.9 L PP and S = 0.9%.

Figure 3 . 8 -

 38 Figure 3.8 -Standard deviation of bow marker transverse position in restrained conditions.

Figure 3

 3 Figure 3.9 -Non-linear pitch angle behavior in regular waves, Fn = 0.81, β = 0 • , λ = 7.1 L PP , s = 1.1%.

  Model and instrumentation. (c) Carriage and hexapod.

Figure 3 . 10 -

 310 Figure 3.10 -Second experimental setup.

Figure 3 .

 3 Figure 3.11 -Fitted instrumentation for second setup (1: 6-component load cell, 2: 5-component load cell, 3: IMU).

Figure 3 .

 3 Figure 3.12 -Hexapod heave signal for case ∇ m = 7.5 kg and θ = 3 • .The blue domain corresponds to non-zero model displacement.

( a )

 a Vertical force. (b) Pitching moment.
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 313 Figure 3.13 -Load cells comparison on towing data (HBM: 6-component load cell, G5C: 5-component load cell).

Figure 3 . 14 -

 314 Figure 3.14 -Superposition of the repeated cases (Heave, Fn = 0.50, T = 0.61 s)
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 41 Figure 4.1 -Simple pendulum.Figure 4.2 -Simple pendulum results for m = 10 kg, l = 0.50 m and γ 0 = 10 • .

Figure 4 . 2 -

 42 Figure 4.1 -Simple pendulum.Figure 4.2 -Simple pendulum results for m = 10 kg, l = 0.50 m and γ 0 = 10 • .

Figure 4 . 3 -

 43 Figure 4.3 -Conical pendulum.

  (a) ω = 0.8 rad/s. (b) ω = 4.0 rad/s.

Figure 4 . 4 -

 44 Figure 4.4 -Conical pendulum results for m = 10 kg, l = 1.0 m and γ 0 = 10 • (ω l = 3.1 rad/s).

Figure 4 . 5 -

 45 Figure 4.5 -Eccentric pendulum.

  (a) γ 0 = 0 • , ω = 0.01 × t. (b) γ 0 = 18 • , ω = 4.0 rad/s (γ e = 66.6 • ).

Figure 4 . 6 -

 46 Figure 4.6 -Eccentric pendulum results for m = 10 kg and l = 1.0 m.

Figure 4 . 7 -

 47 Figure 4.7 -Inverted pendulum.

( a )

 a Chart position. (b) Pendulum angle.

Figure 4 . 8 -

 48 Figure 4.8 -Inverted pendulum results for m = 10 kg, m c = 15 kg, l = 1.0 m and γ 0 = 15 • .

Figure 4 . 9 -

 49 Figure 4.9 -Double pendulum.

Figure 4 .

 4 10a illustrates this situation. Both rods have the same length and the mass ratio m 2 /m 1 is 2. The two frequency components are visible. Comparison

( a )

 a Superposition of the angles of both pendulums. (b) Comparison with numerical integration.

Figure 4 .

 4 Figure 4.10 -Double pendulum results for l 1 = l 2 = 0.50 m, m 2 = 2m 1 = 20 kg, γ 1, 0 = 0 • and γ 2, 0 = 5 • .

( a )

 a Pendulums trajectories (initial positions in black). (b) Comparison with numerical integration.

Figure 4 .

 4 Figure 4.11 -Double pendulum results for l 1 = l 2 = 0.50 m, m 2 = 2m 1 = 20 kg, γ 1, 80 = 0 • and γ 2, 0 = 80 • .

  (a) z 0 = 1 m. (b) z 0 = 5 m.

Figure 4 .

 4 Figure 4.12 -Comparison of heave decay data with linear time-domain simulations.

  (a) z 0 = 1 m. (b) z 0 = 5 m.

Figure 4 .

 4 Figure 4.13 -Comparison of heave decay data with the weakly non-linear implementation.

  (a) ŝ = 0.05%. (b) ŝ = 1%.

Figure 4 .

 4 Figure 4.14 -Comparison of sphere response amplitude operators in heave with linear simulations.

  (a) ŝ = 0.05%. (b) ŝ = 1%.

Figure 4 .

 4 Figure 4.15 -Comparison of sphere response amplitude operators in heave with non-linear simulations.

Figure 4 .

 4 Figure 4.16 -Comparison of the heave response in regular waves, T = 4.4 s and ŝ = 0.05%.

  (a) T p = 4.4 s, H s = 0.5 m ( ŝ = 0.26%). (b) T p = 15.4 s, H s = 11.0 m ( ŝ = 0.47%).

Figure 4 .

 4 Figure 4.17 -Heave response in irregular waves.

Figure 4 .

 4 Figure 4.18 -Wigley III body plan.

Figure 4 .

 4 Figure 4.19 shows the comparison between those frequency-domain calculations and the simulation results at Fn = 0. They both use the same set of hydrodynamic coefficients. The full correlation between the compared data allows to confirm the correct implementation of the model.

  (a) Heave motion. (b) Pitch motion.

Figure 4 .

 4 Figure 4.19 -Comparison between frequency and time-domain computation of Wigley III RAO at Fn = 0.

( a )

 a Heave motion. (b) Pitch motion.

Figure 4 .

 4 Figure 4.20 -Comparison between simulations and reference data for Wigley III RAO at Fn = 0.

  (a) Fn = 0.20 (b) Fn = 0.30 (c) Fn = 0.40

Figure 4 .

 4 Figure 4.21 -Comparison between simulations and reference data for Wigley III heave RAO at Fn > 0.

Figure 4 .

 4 Figure 4.22 shows the pitch responses. The overall consistency is good and the resonance peak location is correct. The peak amplitude is however underestimated by the present model simulations. High and low frequency limits are consistent in all cases.

Figure 4 .

 4 Figure 4.22 -Comparison between simulations and reference data for Wigley III pitch RAO at Fn > 0.

  description Following the identification by the ITTC of a lack of fully documented seakeeping experimental validation data, Irvine et al. (2008) carried out and reported on the 2DOF response in waves of the David Taylor Model Basin (DTMB) model 5512, a 3.048 m-long model of a surface combatant (Figure 4.23), with a transom stern and a sonar dome. The model is studied in bare hull conditions, its main particulars are given inTable 4.2.

Figure 4 .

 4 Figure 4.23 -Geometry of DTMB 5512.

  Fn = 0.0 (b) Fn = 0.19 (c) Fn = 0.28 (d) Fn = 0.34 (e) Fn = 0.41

Figure 4 .

 4 Figure 4.24 -Heave RAO for Ak = 0.050.

  Figure 4.25 -Pitch RAO for Ak = 0.050.

  (c) Ak = 0.025 (d) Ak = 0.075

Figure 4 .

 4 Figure 4.26 -Heave RAO for the lower and upper steepness values (top: Fn = 0.0, bottom: Fn = 0.41).

Figure 4 .

 4 Figure 4.27 -Pitch RAO for the lower and upper steepness values (top: Fn = 0.0, bottom: Fn = 0.41).

  (a) Fn = 0.0 (b) Fn = 0.34 (c) Fn = 0.41

Figure 4 .

 4 Figure 4.28 -Heave phase for Ak = 0.025.

Figure 4 .

 4 Figure 4.29 -Pitch phase for Ak = 0.025.

  The hull hydrodynamic models described in Chapter 2 are used. Instead of carrying out dedicated CFD runs to build the low frequency loads response surface, experimental data based on towing tests in restrained conditions for several speed, pitch, leeway and displacement values are used. No yaw rate coefficient is included, as it is unnecessary for 2DOF tests. Radiation, diffraction, hydrostatic and Froude-Krylov loads are computed from the numerized geometry. Therefore, the resulting hull model used hereafter is representative of what would be used for full scale yachts simulations.To better account for the waves non-linearities in the high steepness range, simulations are run with 3rd order Stokes waves. A resulting simulation is shown in Figure4.30.

Figure 4 .

 4 Figure 4.30 -Tank tests numerical simulation with the DVPP.

  Fn = 0.81, β = 2 • , λ = 3.9 L PP , s = 1.7% (b) Fn = 1.21, β = 0 • , λ = 2.3 L PP , s = 3.5%

Figure 4 .

 4 Figure 4.31 -Comparison with the DVPP for captive tests at Fn = 0.81 (left) and Fn = 1.21 (right), (top: surge force, middle: heave force, bottom: pitch moment).

( a )

 a Side force. (b) Yawing moment.

Figure 4 .

 4 Figure 4.32 -Evolution of transverse loads errors with setup deflection intensity.

Figure 4 .

 4 Figure 4.33 -Small improvement of in-plane loads prediction when increasing leeway angle (Fn = 0.81, β = 2 • , λ = 3.9 L PP , s = 1.7%).

  (a) Fn = 1.21, β = 2 • , λ = 5.3 L PP , s = 1.3%, Heeling moment. (b) Fn = 0.81, β = 2 • , λ = 3.9 L PP , s = 0.4%, Yawing moment.

Figure 4 .

 4 Figure 4.34 -Consequence of running simulations with increased leeway angle on transverse loads.

  Heave and pitch are now freed, and the measured and simulated responses are compared. As for the captive tests, motion signals are synchronized so that the excitation signals are in phase. Example results are plotted in Figure4.35. Heave experimental data comes from the laser measurements while the pitch motion is measured with the potentiometer. The noise is much lesser than in the load cell measurements.

  (a) Fn = 0.36, β = 2 • , λ = 4.6 L PP , s = 1.7% (b) Fn = 0.81, β = 2 • , λ = 7.1 L PP , s = 0.5% (c) Fn = 1.21, β = 0 • , λ = 9.2 L PP , s = 0.9% (d) Fn = 1.21, β = 2 • , λ = 0.9 L PP , s = 3.7%

Figure 4 .

 4 Figure 4.35 -Comparison with the DVPP for semi-captive tests for heave (left) and pitch (right) responses for Froude numbers from 0.4 to 1.2.

Figure 4 .

 4 Figure 4.36 -Surge force comparison with the DVPP in semi-captive conditions, Fn = 1.21, β = 0 • , λ = 9.2 L PP and s = 0.9%

Figure 4 .

 4 Figure 4.37 -Pictures of the experiments before and after water entry. Case Fn = 1.1, β = 4 • , ∇ m = 7.5kg and θ = 3 • (bow down).

( a )

 a Spectra of the input signals. (b) Filtering of the heave acceleration.

Figure 4 .

 4 Figure 4.38 -Effects of filtering on the input signals for case ∇ m = 7.5kg and θ = 3 • .

Figure 4 .

 4 Figure 4.39 -Results at Fn = 0.0, with ∇ m = 7.5 kg and θ = 1 • (Average up and down speed: 30 cm/s).

Figure 4 .

 4 Figure 4.40 presents results with forward speed and zero leeway angle. Despite the noise, the surge force prediction seems rather accurate in both cases, with only a small hydrodynamic transient effect.Results for heave force remain consistent, although the downward peak of the transient oscillation may be slightly overestimated. The good correlation of the inertial peaks prove the quality of the added mass effect prediction. The increase pace of the pitching moment correlates well in both cases. The transient oscillations are however more questionable. Although they remain within the noise of the experimental data, it would rather seem that the stabilization of the hydrodynamic loads is in reality faster than predicted. This is especially true for the case Fn = 1.1 (Figure4.40b). For the lower Froude case, the prediction seems quite acceptable.

  (a) Fn = 0.8. (b) Fn = 1.1.

Figure 4 .

 4 Figure 4.40 -Results at Fn > 0 for case β = 0 • , ∇ m = 7.5 kg and θ = -3 • . (Top: F x , Middle: F z , Bottom: M y )

Figure 4 .

 4 Figure 4.41 -Results at Fn = 0.8, β = 4 • , ∇ m = 7.5 kg and θ = 0 • .
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( a )

 a First appendage configuration: small foils and T-rudders. (b) Second appendage configuration: larger foils and T-rudders, elevator on centerboard.
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 51 Figure 5.1 -Comparison of considered yacht appendage configurations.

Figure 5 . 2 -

 52 Figure 5.2 -Yacht trajectory during the maneuver.
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 53 Figure 5.3 -Schematic representation of sail twist evolution for both strategy.

  (a) Boat speed. (b) Leeway angle. (c) Heel angle. (d) Rudder angle. (e) Relative value of main hull wetted surface area. (f) Pitch angle (positive bow down).(g) Main hull altitude.

Figure 5 . 4 -

 54 Figure 5.4 -Comparison of the two trimming strategies.
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 55 Figure 5.5 -Distribution of vertical forces (in Earth fixed frame) as a percentage of yacht displacement.

  Wind sinusoidal components.

Figure 5 . 6 -

 56 True Wind Direction evolution.

Figure 5 . 7 -

 57 Figure 5.7 -Time series of hull and foil vertical forces (in Earth fixed frame) as percentage of yacht displacement.

Figure 5 . 8 -

 58 Figure 5.8 -Dynamic simulation results compared to steady VPP optimization on the same True Wind Angle value (orange) and range (green).

  Figure 5.9 -Power spectral density of the input and output signals showing the boat speed low-pass filtering.

  (a) Boat speed. (b) Heel angle.

Figure 5 .

 5 Figure 5.10 -Normalized cross-correlation function between True Wind Direction and Boat Speed (a) and Heel angle (b) (The first peak is highlighted in the enlargement).

  The pilot target is set at 140 • of the wind direction. Results are shown inFigures 5.11 and 5.12. While the phase velocities of the three wave components are respectively 16.3, 10.8 and 6.5 m/s (Figure 5.12a), the yacht speed projected along the wave propagation axis ranges between 9.7 and 15.0 m/s. When caught up by the largest wave component, the yacht almost reaches its velocity. On the contrary, the smaller components are mostly overtaken by the yacht.

Figure 5 .

 5 12c shows the free surface elevation at the horizontal coordinates of the yacht center of gravity. The correspondence with the boat speed evolution (Figure 5.12b) is clearly visible. When the crest of the largest wave component arrives at the ship (Figure 5.13a), she is pushed forward and surfs (between t = 25 s and 40 s for instance, see Figure 5.13b). The yacht mean speed is 30 knots but it undergoes very large variations, ranging from 25 up to 35 knots during the surfing phases.

Figure 5 .

 5 Figure 5.11 -Hulls and foil vertical forces (in Earth fixed frame) as percentage of yacht displacement.

( a )

 a Boat velocity vector projected on wave propagation axis (plain) compared with wave components velocities (dashed). (b) Boat speed. (c) Wave elevation at center of gravity (Earth fixed frame). (d) Pitch angle (positive bow up).

Figure 5 .

 5 Figure 5.12 -Downwind sailing in waves results.

( a )

 a The wave arrives and the yacht starts accelerating (t 20 s).(b) The lift increases and the yacht flies at high speed (t 30 s).

Figure 5 .

 5 Figure 5.13 -Schematic sequence of the downwind simulation in waves (Blue arrows: wave propagation, red arrows: yacht speed, green arrows: yacht attitude evolution).

Figure 5 .

 5 Figure 5.14 -The generic IMOCA used for simulations.

Figure 5 .

 5 Figure 5.15 -Vertical position of the center of gravity.

Figure 5 .

 5 Figure 5.16 -Comparison of the boat speed of configurations 1 (full ballast) and 2 (empty ballast).

Figure 5 .

 5 Figure 5.17 -Time series of the adimensional buoyancy of configurations 1 (full ballast) and 2 (empty ballast).

Figure 5 .

 5 Figure 5.18 -Time series of the pitch angle of configurations 1 (full ballast) and 2 (empty ballast).

Figure 5 .

 5 Figure 5.19 -Time series of the pitch angle of the three configurations.

Figure 5 .

 5 Figure 5.20 -Time series of the adimensional displacement of configuration 3.

Figure 5 .

 5 Figure 5.21 -Comparison of the boat speed of the three configurations.
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 61 Figure 6.1 -The new interface of the DVPP.
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  the left-hand-side, the equations of motion of the double pendulum are expressed as:
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  .1.

	Length between perpendiculars	L PP	2.500 m
	Waterline length	L WL	2.490 m
	Waterline breadth	B WL	0.115 m
	Draft	T m	0.057 m
	Wetted Surface Area	WSA 0.283 m 2
	Waterplane Area	WPA 0.195 m 2

Table 3 .

 3 

1 -Model geometric properties.

Table 3 .

 3 .5.

	Coefficients Run #1 Run #2	Difference
	a ( • )	0.329	0.292	0.037 (11.9%)
	b ( • )	6.286	6.293	0.007 (4.8%)
	c (s)	0.482	0.428	0.054 (11.8%)

5 -Comparison of the fitted coefficients for function a + b sin [ω e (t + c)].

Table 3

 3 

	.6 -Model and motion sensor uncertainties.
	(Type '-' corresponds to combined uncertainties.)

Table 3 . 7 -

 37 Tests parameters values for the forced oscillation tests.

			Frequency (Hz)	
		Froude number (-)	0.15	
	0.0 1.8 2.5 4.0 5.5 6.0 6.5	0.00 0.36 0.50 0.81 1.11 1.21 1.31	0.5 0.8 1.1 1.35 1.65 1.95 2.25	DOF Amplitude Surge 0.05 m Sway 0.05 m Heave 0.01 m Pitch 1 • Yaw 4 •
	7.0	1.41	2.6	
			2.95	

Table 4 .

 4 2 -DTMB 5512 characteristics.

Table 5 .

 5 

		M ax . de pt h (m )	T ot al sp an (m )	M ea n ch or d (m )
	Foil	1.9	3.2	0.9
	Board	3.6	4.2	1.1
	Main rudder	1.8	3.0	0.5
	Float rudders 1.6	2.7	0.4

1 -Macif 100 characteristics (from Macif Course au Large, 2018).

Table 5 .

 5 

2 -First appendage configuration characteristics.

Table 5 . 4 -

 54 Wave components properties.

	i Period [s] Amplitude [m] Wavelength [m] Phase velocity [m/s]
	1	10.46	1.69	171.1	16.34
	2	6.92	0.49	74.8	10.80
	3	4.15	0.18	26.9	6.48

https://www.imoca.org/en/imoca/class-rules

https://www.imoca.org/en/imoca/official-documents

https://www.imoca.org/en/boats/
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Pendulums problems equations

This appendix details the derivation of the equations of motion of the pendulums problems used for the multibody algorithm validation in Chapter 4. Friction is neglected in all considered problems. All rod lengths are assumed to be non zero.

A.1 Conical and eccentric pendulums

The problem of the conical pendulum can be considered as a particular eccentric pendulum, with R = 0 (see Figure A.1). Equations of motion are therefore derived for the general case R = 0 (eccentric pendulum) first, and the conical pendulum equation is deduced afterwards. In both cases, the angular velocity ω of the rotating platform is assumed constant. It is convenient to consider the problem using cylindrical coordinates (r, θ , z) (see Figure A.2). The origin O of the coordinate system is taken as the intersection between the platform rotation axis and the horizontal plane containing the pivot point of the pendulum. 

Newton's second law along e r and e z gives then:

where T is the rod tension. Combining both equations to remove this unknown term leads finally to the equation of motion:

In the case R = 0, the conical pendulum equation of motion is retrieved:

A.2 Inverted pendulum

The derivation of the equations of motion for the inverted pendulum problem is carried out by applying Newton's second law to both the cart and the pendulum mass. The notations of Newton's second law applied to the cart along the translation and vertical axes yields:

where T is the tension exerted by the rod on the cart and R the vertical reaction force from the cart support. Secondly, the pendulum mass is studied. Its position (x p , z p ) in the same coordinate system is given by:

Hence, Newton's second law for the pendulum mass writes:

Combining equations (A.5a) and (A.7a) leads to the first equation of the system:

The second equation is derived by combining equations (A.7a) and (A.7b) (which is equivalent to projecting the pendulum equilibrium in the direction perpendicular to T ):

ẍ cos γ + l γ = -g sin γ .

(A.9)

In matrix form, equations (A.8) and (A.9) yield:

Inverting the left-hand-side and rearranging the terms, the final expression of the equations of motion is retrieved:

(A.11)

A.3 Double pendulum

As far as the double pendulum problem is concerned, the equations of motion could also be derived by applying Newton's second law to both masses, however they are more conveniently expressed using Lagrange equations. The notations of The coordinates of both pendulums are respectively:

(A.12) Hence the potential energy E p of the double pendulum system writes:

Similarly, the kinetic energy E c of the system is given by:

Introducing m T = m 1 + m 2 and ∆γ = γ 1γ 2 , the Lagrangian L of the system is thus:

Lagrange equations of the system are:

La thèse présentée ici a pour sujet le développement d'un tel DVPP et l'étude du comportement instationnaire des voiliers, en particulier dans le cadre d'un trimaran de course au large. Un cahier des charges strict a dicté la plupart des choix techniques et scientifiques des modèles utilisés par cet outil. En particulier, il est attendu qu'il puisse fonctionner en temps réel, afin de permettre à un utilisateur de conduire et régler le bateau lors des simulations. Après un travail bibliographique permettant de décider et justifier les choix de modèles, le DVPP a été développé progressivement, en veillant à valider au fur et à mesure les éléments implantés. Devant le constat du manque de données de référence pour valider les résultats du DVPP dans des conditions difficiles (nombres de Froude et cambrures de vague élevés, mouvements fortement non linéaires), il a été décidé de mener une campagne expérimentale en bassin de traction. L'exploitation des données a permis de valider plus largement l'outil et gagner en compréhension sur ses limites. Enfin des cas d'application sur un trimaran et un monocoque ont été réalisés pour illustrer l'utilisation et l'intérêt de l'outil.

Cette section propose un résumé, chapitre par chapitre, du manuscrit de thèse.

B.1 Simulation dynamique et performance des voiliers

La simulation dynamique des voiliers était initialement principalement portée sur l'étude des manoeuvres et de la tenue à la mer. Les premières sont fondamentales en match racing et leur optimisation a donc attiré de nombreux compétiteurs, en particulier dans le cadre de la coupe de l'America. Quant à la tenue à la mer, c'est un aspect fondamental de tout navire ayant vocation à évoluer au large.

Historiquement ces aspects étaient traités séparement, en considérant le problème du mouvement à basse fréquence, la manoeuvrabilité, et celui du mouvement à haute fréquence, la tenue à la mer.

L'approche la plus classique au problème de manoeuvrabilité est celle d'Abkowitz et des dérivées hydrodynamiques. D'autres modèles comme le modèle MMG (Maneuvering Modeling Group) ou celui de Nomoto ont aussi été proposés. Leur point commun est de nécessiter l'évaluation de coefficients, qui permettent de lier les paramètres du mouvement (vitesse, attitude) aux efforts hydrodynamiques. Il est aussi possible d'utiliser des approches moins génériques en interrogeant des bases de données précalculées, soit par interpolation directe soit via des fonctions de régression.

En ce qui concerne la tenue à la mer, un large panel d'approches est possible dont la précision augmente avec la complexité. Les modèles les plus simples considèrent des conditions linéaires de houle et de mouvement, là où les plus complexes n'imposent pas de telles contraintes. Les approches faiblement non-linéaires qui utilisent une modélisation linéaire des efforts de radiation-diffraction et des calculs non-linéaires des efforts hydrostatiques et de Froude-Krylov sont actuellement généralement considérées comme le meilleur compromis précision/vitesse de calcul. Les méthodes plus complexes ne sont pour le moment pas compatibles avec un fonctionnement en temps réel.

L'évaluation simultanée des capacités de manoeuvrabilité et de tenue à la mer peut être faite de quatre manières. Les deux premières correspondent aux approches expérimentales et numériques directes (CFD RANSE par exemple, les deux problèmes sont résolus simultanément en un seul), mais ne répondent pas au cahier des charges de l'outil recherché. Les deux autres approches couplent les deux problèmes. La méthode aux deux échelles de temps résout les problèmes en parallèle et utilise les sorties de chaque problème comme entrées de l'autre. La méthode hybride quant à elle, introduit les efforts de tenue à la mer dans les équations de manoeuvrabilité. Cette approche est considérée comme la plus efficace numériquement et la plus adaptée au problème considéré.

B.4 Validations

Afin de garantir la cohérence des résultats du DVPP, des cas de validation des différents modules du simulateur ayant une complexité croissante ont été étudiés et les résultats comparés à des valeurs analytiques ou de référence.

Plusieurs cas classiques de problèmes multicorps sont considérés, faisant intervenir des pendules et des éléments en translation. Les sorties du DVPP sont alors comparées aux résultats analytiques ou à l'intégration numérique directe de l'équation du mouvement.

Dans un second temps, des problèmes hydrodynamiques simples sont étudiés, faisant intervenir un nombre croissant de modèles d'efforts. La comparaison à des données de référence se montre ici aussi très satisfaisante.

Des cas de validation sur des formes de navire sont ensuite présentés, pour une carène Wigley et le modèle DTMB 5512. Les données de référence proviennent de mesures expérimentales. Dans le cas du Wigley, quelques écarts sont observés concernant la réponse en assiette mais qui pourraient être expliqués par l'absence de prise en compte des efforts stationnaires. En ce qui concerne le modèle DTMB, les résultats sont très satisfaisants.

Enfin, des simulations reproduisant successivement les deux phases d'essais en bassin sont réalisées. Pour les mesures dans la houle, l'algorithme multicorps est pleinement valorisé car permettant de prendre en compte les contraintes complexes du montage expérimental et de la répartition non-conventionnelle des masses et inerties entre le modèle et les éléments du montage. La comparaison des efforts montre des résultats cohérents. En ce qui concerne les réponses en pilonnement et tangage, les résultats sont satisfaisants mais montrent des écarts en tangage dans les conditions les plus sévères. Le rayon de giration en tangage du montage, éloigné de conditions normales de fonctionnement, est une cause d'aggravation possible de ces écarts.

La comparaison des créneaux en pilonnement est intéressante et montre qu'une partie importante des efforts instationnaires est correctement modélisée. L'ajout d'un modèle de tossage améliorerait probablement la prédiction des efforts.

B.5 Cas d'applications

Trois premiers exemples de simulation modélisent le trimaran Ultime Macif 100 construit pour François Gabart. Le premier se déroule sur mer plate. Le bateau est initialement au près et la consigne du pilote de barre est modifiée de sorte à abattre de 60 • (la direction du voilier s'écarte de l'axe du vent réel, en passant de 50 • à 110 • ). Les réglages sont alors progressivement changés de leur valeur initiale vers la valeur donnée par le VPP pour l'état cible. Deux stratégies de réglage des voiles sont comparées. Dans la première, les voiles sont réglées directement dans leur état final, alors que dans la seconde, le changement n'est effectué que lorsque le bateau a réaccéléré sur sa nouvelle trajectoire. Les résultats montrent des écarts significatifs de vitesse entre les deux cas, alors que les réglages finaux des deux bateaux sont identiques. Cette simulation illustre l'importance de pouvoir établir la séquence permettant d'atteindre l'équilibre optimum calculé par le VPP.

Le second exemple simule des conditions de vent variables. L'analyse des séries temporelles montre l'occurrence de plusieurs phases critiques (forte gite), qui vont bien au-delà des valeurs obtenues dans des conditions équivalentes en régime stationnaire. D'autre part, on observe aussi le filtrage effectué par la réponse en vitesse qui oscille à des valeurs inférieures aux vitesses optimales prévues par le VPP pour des conditions statiques.