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Overview of publications 

Publication I: “Low-order statistics of effective permittivity and electric field 

fluctuations in two-phase heterostructures” 

Understanding the collective, low-frequency dielectric properties of heterostructures is 

a major goal in condensed matter. An effective medium approximation (EMA) involves a 

decoupling between the low-order statistics of the electric field fluctuations and the 

characteristic length scales. We report and characterize, via finite element studies, the low-

order statistics effective permittivity of two phase 2D and 3D random and deterministic 

heterostructures as geometry, phase permittivity contrast, and inclusion content are varied. 

Since EMA analytical expressions become cumbersome even for simple shapes and 

arrangements, numerical approaches are more suitable for studying heterostructures with 

complex shapes and topologies. Our numerical study verifies the EMA analytic predictions 

when the scales are well-separated. Our numerical study compares two approaches for 

calculating the effective permittivity by explicit calculations of local average fields and energy. 

We study the conditions under which these approaches give a reliable estimate of permittivity 

by comparing with 2D/3D EMA analytical models and duality relation. It is found that local 

average fields give more accurate results. By considering 2D checkerboards which consist of 

a multitude of contiguous NxN square cells, the influence of the internal length scale (i.e., N) 

on permittivity is discussed. 

Publication II: “Perspective: Towards understanding the multiscale description of 

cells and tissues by electromechanobiology” 

Almost all biological cells in living tissues exert and experience forces that influence 

biological function. When subjected to an exogenous electric field, mechanical forces operate 

on cells, its constituents, and interfaces with the environment. Many issues about force 

generation and dynamics, the distance over which a force exerts its influence and how cells 
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convert an electrical excitation into a mechanical deformation, are not well understood from 

general first-principles physics. The electric field at the interface between cells is not only the 

driving force for the polarization and conduction phenomena but also induces simultaneously 

a mechanical stress field. Within the extremely heterogeneous multicellular structure of 

biological materials (BM), theoretical models and experimental techniques to understand and 

control their local electromechanical response in BM grow space. In recent years, biophysicists 

have begun to uncover the important time and length scales that mediate force propagation in 

BM. In this perspective review, the multiscale modelling approaches and experimental probes 

for the application of an electromagnetic field to exert mechanical forces upon polarizable BM 

are reported with special emphasis on the control of forces at the cell and tissue levels. 

Modelling is based on a multicellular assembly exchanging charges and stresses with the 

environment. Here, we shall restrict to coarse-graining models since the resulting 

computational complexity quickly becomes overwhelming. Such work can pave the way for a 

deeper understanding of how physical forces influence biological functions. 

Publication III: “Assessing the electro-deformation and electro-poration of 

biological cells using a three-dimensional finite element model” 

In this Letter, we explore how cell electro-deformation and electro-poration are 

connected. We build a time-domain model of layered concentric shells (a model of biological 

cells) including their dielectric and elastic properties. We simulate delivery of one trapezoidal 

voltage pulse to either a single spherical cell or an assembly of three neighboring cells in a 

specific configuration and calculate cell deformation and pore formation. We describe the 

qualitative features of the electric field, surface charge density, transmembrane voltage, cell 

elongation, and pore density distribution at specific times i.e., before, during and after the 

application of the electric pulse and explore the correlations between them. Our results show 

that (1) the polarization charge redistribution plays a significant role in the spatial distribution 
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of electrical stresses at ls time scales and (2) the cell deformation and pore density can be 

correlated with regions of high surface charge density. In future work, our model could be used 

for understanding basic mechanisms of electro-deformation and electro-poration with high-

frequency short bipolar pulses of biological cells in suspension or tissues. 

Publication IV: “A multiphysics analysis of the strain energy in multicellular 

environments” 

This Letter considers the strain energy distribution in cell assemblies. Our scalable 

model consists of N-core-shell spherical structures modeling biological cells with assumptions 

based on two fundamental premises. First, we use a finite element in the framework of time-

domain to solve for the electrodeformation and cell electroporation when a well-defined 

electrical stimulus is delivered to a multicellular environment. Second, the strain-stress 

response of the cell assemblies is characterized by a relaxation time which is much larger than 

the time constant of the membrane charging. A “switch off” (corresponding to times after 

electrical pulsing) phenomenon observed in the strain energy signal might provide an 

interesting discriminant test capable of providing different information on the proximity 

(coupling) effect between cell and assembly anisotropy depending on the type of electrical 

stimulus employed. In the explicit examples we study, we learn how the local enhancement of 

the electric field, deformation of the cell, strain energy, and relative area occupied by the pores 

are modified by varying the intercellular distance distribution. 
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1. Introduction

Human beings can be viewed as extremely sophisticated biological machines that are 

composed of several functional systems which coordinate with each other to perform life. From 

breathing to eating food, being healthy or sick, even feeling emotions is full of physical and 

chemical processes that continue to be investigated in terms of fundamental research. One of 

the major differences between man-made machines and biological machines is that the latter 

are often composed of flexible components that are made of soft materials involving 

biochemical functionality. Focusing more on the physical aspects, consider the breathing of air 

– the lungs expand while inhalation and contract while exhalation. The effective elastic

behavior of organs is indeed connected to the elastic behavior of its composing parts and any 

unusual change in the elasticity of media will affect the bodily functions leading to sickness or 

even fatal diseases. This is why the subject of mechanical behavior in biology has eventually 

attracted a lot of attention through the last two decades [1-2]. Though the subject is being and 

has been explored at several length scales [3-6], this work is particularly concerned to build 

simple biological tissue models in order to characterize their deformation when they are 

stimulated by an electric field. Several basic questions are still open for studying biological 

cells under an applied electric field – (1) How mechanical stress appears in biological media 

affecting biological functions? (2) How multicellular structures emerge or organize themselves 

at large scale in a mechanical context? (3) How tiny components at small scales that make up 

a cell affect its mechanical behavior? Numerical modelling and experimental validation based 

on a recent study [7] has shown that cellular level mechanical stresses in epithelial tissue can 

induce cell death that essentially prevents accumulation of unwanted or pathological cells. In 

order to study the mechanical behavior and response of biological media to internal or external 

stimuli, a basic introduction to its composition and underlying processes is needed. 
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Biological media are extremely heterogeneous and complex in terms of material 

composition. Physical processes occur at several length scales naturally [8-9] or in response to 

an external stimuli [10-12] Guo et al. (2016)].  

 

Fig.1.1: A basic comparison of relative length scales in a biological context. (Adapted from [13]) 

 

All living species are made up of tiny microscale structural units known as biological 

cells that possess nano-structured features as well. From a physical standpoint, a simple picture 

is to consider that the cells sitting next to each other compose a tissue, the tissues of different 

type compose organs which further coordinate with each other to perform functions of a living 

organism. Most animal cells fall in the size range of 5-30 m while most plant cells fall in the 

range of 10-100 m. The smallest scale includes ions and biomolecules such as proteins, 

carbohydrates, lipids and nucleic acids in the range of few nanometers. The major constituent 

in the entire biological media is water that can be thought of as a host medium in which all the 

mentioned entities flow or move. In fact, ions and small biomolecules are usually more mobile 

to flow around in the fluid regions whereas lipids and proteins can form aggregates or more 

12



complex structures like membranes, cytoskeleton or other intracellular or extracellular entities 

which are less mobile. The medium can be roughly described as a dispersion of particle-like 

entities (ions & small molecules) and elastic or viscoelastic super-structures (membranes & 

cytoskeleton) in a liquid host medium (interior and exterior of the cells). The central idea is the 

separation of cell interior from cell exterior by the cell membrane. 

 

Fig.1.2: An illustration of the cell membrane (5-10 nm thick) composed of lipid molecules forming a bilayer that 
is embedded with proteins and ion channels (Public domain image) 

 

While biological cells perform their usual functions in their natural surroundings, one 

can broadly distinguish between their physical and chemical processes. This work is mainly 

concerned with physical aspects such as the electrical and mechanical behavior of the involved 

entities. The usual functions of cells can be manipulated by various external stimuli such as 

electrical, mechanical and fluidic or a combination of these. Here, attention is focused to those 

studies involving an electric stimulus to generate electrical and mechanical responses in the 

cells. An externally applied electric field can disrupt the cell membranes by exerting an electric 

stress distribution over their surfaces. This arises because the applied electric field essentially 

polarizes the individual cells by accumulating the bound charges at the cell membrane which 

behave as an insulating material. As a result, an electric stress is induced that tends to deform 

the cell shape and when the fields are strong enough, it leads to formation of nano-pores into 

the cell membrane thereby altering its insulating behavior to partially conducting. If the pores 
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last long enough to kill the cells, the process is irreversible, otherwise it is reversible. These 

two phenomena (also depicted in Fig.1.3) are referred to as electrodeformation (ED) and 

electroporation (EP), respectively. As a matter of fact, the mechanisms of ED and EP are crucial 

for understanding the biophysical description of cells and tissues. Experimentally, ED and EP 

of cells were first observed nearly four decades ago [14-15]. 

 

Fig.1.3: Microscopic images showing (a) electrodeformation (Fig.1 of [16]) and (b) electroporation (Fig.3A of 
[17]). Left image shows global deformation of Arbacia Puntulata egg under an AC electric field of 2 MHz. The 
egg diameter = 75 m, the space between electrodes = 175 m, electric field strength at electrode surface was 
gradually increased from 0 to 1095 V/cm, cell deformation was recorded at a time interval of about 30 s. Right 
image (using TIRF) shows pore formations over a patch of lipid bilayer (DPhPC) across which the transmembrane 
potential is being varied by applying a DC voltage. The scale bar is 25 m in (b). 

 

Historically, the major issues in developmental biology (e.g. morphological changes) 

and wound-healing (repair of damaged tissue) are explained through mechanisms involving 

chemical gradients and reaction-diffusion processes. In the same context, the idea of naturally 

existing electrical gradients and electromechanical processes have also been explored [18-19]. 

The electric fields can also exist naturally in the biological media and guide cells to move or 

(a) (b) 
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deform. In the same fashion, an external electric field can trigger an electrical or mechanical 

response in the media and thus affect the usual biological functions or processes.  

It is worth noting that ED and EP phenomena have not been studied simultaneously in 

the archival literature with a few notable exceptions [20-21]. Additionally, there is a larger 

number of studies dealing with electrical and EP modelling of cells or tissues than those 

concerned with ED modelling.  

Since a decade, Brosseau’s group has expertise in finite element modelling for many 

purposes: analyze  the fraction of electroporated cells in a random distribution of numerous 

cells and determine the anisotropy in its conductivity by time-dependent analysis [22]; evaluate 

the electric field enhancement using plasmonic nano-particles near cell membrane surface by 

steady-state analysis [23]; study the electrostatic force and surface charge redistribution over 

conducting objects maintained at fixed electric potentials by steady-state analysis [24-25]; 

analyze the electrical interaction among polarizable cells and surface charge redistribution by 

frequency analysis under an applied electric field [26]; and determine the electric potential 

across the cell membranes of arbitrary shaped cells in the context of EP [27].  

What has not been studied so far is the electromechanical response of cell assemblies 

modelling a biological tissue. This topic forms the core subject of this work. It has been shown 

in the case of phospholipid bilayers that EP is affected by ED [21]. Phospholipid bilayers offer 

a much simpler system to study in comparison to real biological cells which are way more 

complex. The important point to note here is that the length and time scales involved for the 

two phenomena are not necessarily the same for simple phospholipid bilayers as compared to 

those for complex cell membranes based on a few simple arguments. For instance – (1) ED of 

phospholipid bilayer can be expected to be much more pronounced than that for cell membrane 

because the latter is also strengthened by the cytoskeleton; (2) electropores of up to 25 m 
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diameter can be formed on phospholipid bilayers whereas on cell membranes they are 

supposedly of up to a few tens of nm diameter as predicted by models [10]. 

This work is motivated by the presumption that a multicellular description within the 

framework of continuum physics is useful to predict the electromechanical collective response 

of numerous cells in a suspension or arranged as a tissue. The continuum description of the 

media employed here leaves out the complexity of the intracellular organelles and the finer 

structural details of the cytoskeleton or even the extra-cellular matrix. Thus, the spirit of this 

work is different from molecular dynamics approach as well as the homogeneous tissue 

approach and lies in between the two by virtue of modelling multiple (3-5) distinct phases. 

This work attempts to answer the following questions. How do cell-cell proximity and 

asymmetry in the arrangement of cells affect the ED and EP phenomena? How do closely 

spaced multiple cells behave differently from the single cell situation under an externally 

applied electric field? How does random positioning in cellular arrangements modelling a 

suspension or tissue contribute to the effective mechanical response under an externally applied 

electric field?  

At the very outset of this work, it is worth noting that the innovation of this work 

compared to the state-of-the-art dealing with electrical and EP modelling of cells is that it 

considers elasticity of biological media and predicts time-dependent small deformations of 

numerous biological cells and calculates strain energy for a global quantification of the 

deformation. Importantly, it deals with both symmetric and non-symmetric configurations of 

cells in 3D. Time domain coupling of electrical and mechanical response under the continuum 

approach using finite element numerical analysis offers an improved platform for further 

scrutiny of applied electric field effects on biological media. These effects may be linked and 

validated by the recent advances in experimental measurements of force, displacements over 

cells and their perforation efficiency.  
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The organization of this work is as follows: Chapter 2 gives a short account the state-

of-the-art and current issues in the field of electromechanobiology. Chapter 3 gives an 

introduction of the numerical methods employed in this work. Chapter 4 discusses the results 

of ED and EP for deformable cells under an applied electric field. Chapter 5 presents the 

conclusions and perspectives while invoking a brief discussion on the scope and limitations of 

our results.  
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2. State-of-the-art and current issues of ED and EP 

 In this chapter, a brief analysis of scientific reports dealing with an electric stimulation 

of single (or multiple) cell(s) (or vesicles) is presented. Firstly, an overview of ED and EP 

scenarios is put forward. The publication Shamoon et al, (2018) [28] is then presented that 

provides a short review of the state-of-the-art and current issues in electromechanobiology. 

Experiments or theoretical analyses of ED and EP scenarios are very diverse owing to the 

differences of biological media and specific methods used. Therefore, our bibliographic 

analysis offers a broad classification of the literature in terms of the consequence of the 

application of electric field on biological media i.e. motion, deformation and perforation of 

individual cells. We note that this hinders a precise comparative analysis of results emerging 

from different studies unless very similar methods or conditions are employed.  

The literature discussed in the publication Shamoon et al, (2018) [28] portrays an 

important aspect of the field of electromechanobiology i.e. its diversity in terms of particular 

cells, cellular environment and specific devices used. Table 2.1 provides a glimpse along these 

differences. Biological cells are extracted from living organisms and stocked, which are 

regrown in the lab by one of the two cell-culture techniques - ‘adherent’ culture where they 

occur as monolayers on an artificial substrate or as ‘suspension’ culture where they are in a 

free-floating condition. On a substrate, cells assume a flattened shape whereas in suspension, 

they are mostly spherical (exception for Red Blood Cells (RBCs) which are discoidal).  

Cell name (References in Shamoon et al, 2018 [28]) Cell environment Device electrodes 

Human Bone Marrow Mesenchymal stem cells [42] Adhering Parallel facing 

Human Embryonic Kidney cells [39] Free-floating Coplanar 

JURKAT (Human T Lymphocyte cells) {WBCs} [39] Free-floating Coplanar 

PC3 (Human Prostate Cancer cells) [39] Free-floating Coplanar 

Red blood cells {RBCs} [45] Free-floating None + optics 

PC12 (Mouse Neuronal cells) [38] Adhering Coplanar 

Human Melanoma cells (Skin Cancer cells) [48] Adhering None + optics 

NIH/3T3 cells (Mouse Embryonic cells) [44] Free-floating Parallel facing + optics 

Table 2.1: Some cells in diverse scenarios of examination for mechanical response studies. 
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2.1 Prior to application of electrical stimulus 

The cell membrane is the basic component for ED and EP studies. It serves as the 

boundary separating the cell interior (also known as cytoplasm) from the cell exterior (also 

known as extracellular fluid or matrix). The major structural component of the cell membrane 

is the lipid bilayer over which membrane proteins and ion-channels are embedded (Fig.1.2). It 

gives shape to the cell which is also re-enforced by the underlying cytoskeleton. It facilitates 

the transport of mobile biomolecules in and out of the cell by natural biological processes such 

as endocytosis, exocytosis and ionic flow through ion-channels.  

The naturally occurring differences of the ionic charge concentration across the 

membrane renders the cytoplasm to be slightly negative with respect to the extracellular fluid, 

thereby leading to a ‘resting membrane potential’ across the cell membrane. This potential 

across the membrane is actually measured by an experimental technique called ‘patch-clamp’ 

and found to be in the range of -100 mV to -10 mV depending on the type of cells. Typical 

average numbers can be -95 mV for skeletal muscle cells, -70 mV for neurons, -50 mV for 

smooth muscle cells and -12 mV for erythrocytes (or Red Blood Cells (RBCs)). The relative 

permittivity of cell membrane is reported in the range of 2-9. From an electrical point of view, 

the membrane acts as a good insulator. The capacitance of the cell membrane is on the order 

of 10-6 F/cm2. Overall, all parts of the biological media can behave partly as conductors (due 

to mobility of charges) and partly as capacitors (due to storage of charges). 

2.2 After application of electrical stimulus 

The biological media can also be viewed as a network of resistors and capacitors 

through which a current flows under an applied electric field. Under an externally applied 

pulsed field for a duration larger than the charging time of the membrane (which is on the order 

of 1 s), charge redistribution takes place that leads to an increase in the membrane potential 
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in addition to the resting potential. The application of AC field affects this interfacial charge 

distribution in an interesting way that has been well studied both theoretically [29] and 

experimentally. At low frequencies ( < MHz), the cell membrane does not allow the current 

to pass through it, while at higher frequencies ( > MHz), the current passes through the cell 

membrane. The consequence of this behavior appears in the effective dielectric response of the 

biological cells in the form of -relaxation related to classical Maxwell-Wagner interfacial 

polarization charges. A theoretical study for calculating the dielectric spectra over a broad 

range of frequencies was performed by Biasio et al. (2010) [30] that considers core-shell 

structures of prolate and oblate spheroidal cell suspensions. The results not only show the -

dispersion but also the -dispersion that occurs at much lower frequencies ( < kHz). This 

study is distinguished by the fact that it not only corroborates the interfacial polarization effect 

arising from the heterogeneity of the system but it also adds the effect of additional surface 

charge distribution leading to -dispersion. The surface charge distribution generates 

superficial current densities which are accounted by 𝐽 = −𝛾𝑘∇𝑉 − 𝐷𝑘∇𝜌𝑘  where 𝛾𝑘  and 𝐷𝑘 are 

surface conductivity and ion diffusion coefficient while 𝑘 refers to the outer or inner side of 

the membrane. Under the assumption of small electric fields, the conductivity is proportional 

to charge distribution through mobilities, 𝜇𝑘  of the bound charges such that 𝛾𝑘 = 𝜇𝑘𝜌𝑘 . Figure 

2.1 shows the dielectric relaxation for prolate and oblate spheroids as membrane conductivity 

is varied between 10-7 to 10-5 S/m. The study shows several other parameter variations such as 

the effect of changing aspect ratio of the spheroids, surface conductivities or ion diffusion 

coefficients etc. Dielectric properties of biological materials have been well characterized by  

Schwan and Takashima, (1991) [31] stating that the various plateaus observed in the response 

are due to ionic processes (-relaxation), charging-up of the membrane or orientation of the 

permanent dipoles (-relaxation) and orientational relaxation of water (-relaxation).  
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Fig.2.1: Effect of changing membrane conductivity (10-7, 10-6, 5x10-6, 10-5, 2x10-5 S/m, the arrow marks the 
ascending order) for dielectric spectra of (a) prolate and (b) oblate spheroidal cell suspensions. Insets show the 
corresponding conductivity spectra. The conductivity and relative permittivity for cell suspension media is set to 
0.15 S/m & 78.5 while that for cytoplasm is set to 0.2 S/m & 100. Membrane relative permittivity is set to 2.5. 
The volume of the spheroids is the same 65.4 m3 while the major and minor semi-axes for prolate shape are 5 
m & 1.8 m and that for oblate shape are 4m and 1.98m. Surface conductivities and ion diffusion coefficients 
are set to 10-9 C/Vs and 10-8 m2/s. (Adapted from Fig.5 and Fig.6 of [30]). 

 

The redistributed charge exerts a force on the membrane which has been evaluated for 

Chinese Hamster Ovary (CHO) cells using co-planar electrodes with AC electric field to be 

0.8-21 Pa [32]. Force and stress measurement techniques used to study biological media have 

been reviewed by Sugimura et al, (2016) [3], listed in Table 2.2.  

 Measured quantities Measurable 

range 

Time 

scale* 

Size 

scale‡ 

Advantages Disadvantages Cost 

Indentation/ 

Microplates/ 

AFM 

Cell or aggregate 
surface tension 

0.1 Pa s-h 1-100 
m 

Absolute 
measurements 

Contact method €€-

€€€€ 

Pipette 

aspiration 

Cell or aggregate 
surface tension 

m-mN/m > 10 s 1-100 
m 

Absolute 
measurements 

Contact method €€ 

Optical/ 

Magnetic 

tweezers 

Cell junction tension pN-nN ms-min 0.1-10 
m 

Non-contact; 
Absolute 
measurements 

Delicate calibration €€€ 

Subcellular 

laser ablation 

Cell junction tension 
to viscous drag ratio 

NA 0.1 s-
min 

0.1-10 
m 

Non-contact Possible collateral damage €€-
€€€ 

Tissue scale 

laser ablation 

Tissue stress to 
viscosity ratio 

NA s-min 10 m 
- 1 mm 

Non-contact Requires sample and laser 
alignment, few 
experiments per sample 

€€-
€€€ 

FRET force 

probe 

Intramolecular 
tension 

pN Video 
rate 

nm Molecular 
measurements 

Requires different control 
constructs, delicate 
calibration 

€ 

Liquid drops Cell-scale stress ~0.1-60 kPa 0.1 s-h >5m Absolute 
measurements 

Requires surface chemistry 
of droplets 

€€ 

Birefringence Tissue-scale stress > 10 kPa Video 
rate 

m Global Requires flat, transparent 
sample, delicate calibration 

€ 

Force 

inference 

Relative cell junction 
tension, cell pressure 

NA Video 
rate 

>m Image based; 
Global 

Requires image 
segmentation 

€ 

*Time scale of the mechanical processes that can be probed; ‡Size scale of the mechanical processes or mechanical elements that can be 
probed; NA, not applicable because only relative measurements; Costs excluding the microscopes: € (<€10,000); €€ (€10,000-50,000); 
€€€ (€50,000-1,00,000); €€€€ (€1,00,000-2,00,000) 

Table 2.2: Ways and benefits of several force measurement methods in living tissue for various time and length 
scales. (Adapted from [3]) 

 

(a) (b) 
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Once, the force is exerted, the resulting deformation depends on the rheological (elastic 

or viscoelastic) properties of the cell membrane and the region locally surrounding it. 

Estimation of elastic properties is usually performed by mechanical testing schemes. Atomic 

Force Microscope (AFM) tip is used to exert a known force, the deformation is observed and 

the properties estimated based on analytical models. Elastic properties of many different types 

of mammalian cells measured by AFM reviewed by Kuznetsova et al. (2007) [33] are listed in 

Table 2.3. The wide variability of the values indicate not only the realistic variety but also the 

imperfections in the measurement.  

Cell type Young’s modulus (kPa) 
Endothelial cells  
   BPAEC 0..2-2.0 
   HUVEC 10-11 
Leukocytes  
   HL60 0.2-1.4 
   JURKAT 0.02-0.08 
   Neutrophils 0.07-0.2 
Corti organ’s cells  
   Outer hair cells 300-400 
   Mouse outer hair cells 2-4 
   Hensen’s cells 0.3-1.1 
Skeletal muscle cells  
   Murine C2C12 myoblasts 11-45 
   Murine C2C12 myotubes 8-14 
   Myofibrils 40-45 
Osteoblasts 0.3-20 
Epidermal keratocytes 10-55 
Platelets 1-50 
Erythrocytes 14-33 

Table 2.3: Young’s modulus of some mammalian cells probed using AFM. (Adapted from [33]) 

  

The elasticity of cerebral endothelial (D3) cells, which constitute the structural basis of 

blood-brain barrier, have been analyzed by AFM indentation [34], the average value of 

Young’s modulus is found to be close to 5 kPa. ED has also been used for estimating elastic 

properties [32]. The reported values for Young’s modulus (including those for extracellular 

matrix on the right extremum) vary from 0.02 kPa to 1.2 GPa. The wide range is due to the fact 
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that different types of cells in a tissue vary in internal structural composition. For instance, cells 

from the muscular tissue have stiffness in between those from the blood (softer) and bone 

(stiffer). 

Transmembrane potential (TMP or also noted as ITV in the literature) refers to the 

potential across the membrane which is the sum of the resting and induced potentials. Once, 

this potential exceeds a few hundred millivolts, some structural changes appear in the cell 

membrane that lead to formation of new electrical conduction pathways in the otherwise 

insulating membrane. In the context of Fig.1.3b, where electropores (of several micrometers in 

diameter) over a phospholipid bilayer are imaged, it is interesting to observe how several pores 

appear as function of the TMP (values of which are marked in the inset of the figure). It is 

worth emphasizing that such electropores have not been yet imaged over real cell membranes 

but their presence is inferred by the observed increased transport of small and large molecules 

across the membrane also leading to an increase in the measured conductance of the membrane. 

Ionic currents are studied using the patch-clamp techniques for isolated cells, tissue sections or 

even patches of membrane. Use of fluorescence microscopy additionally corroborates the entry 

of certain florescent molecules such as Propidium Iodide into the cell cytoplasm. Figure 2.2 

highlights several methods and indicators of EP. Cell viability and transfection efficiency are 

consequently calculated as well to further quantify EP in cell populations. Cell viability is 

defined as the ratio of initial cell number minus the dead cell number to the initial cell number. 

The living and dead cells are labelled with a mixture of two florescent dyes that render the cell 

green or red based on whether it is living or dead. Transfection efficiency is defined as the 

percentage of the cells transfected with a desired ‘cargo’ as compared to the entire population.  

While the experimental aspects were briefly put forward, the theoretical aspects are briefly 

introduced next. 
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Fig.2.2: Several methods that are used to infer electroporation of cells. (Adapted from [35]).  

 

The dielectric breakdown of cell membranes was known even before the term 

‘electroporation’ was coined down. Under high field strengths, the usual insulating behavior of 

the membrane changes to conducting, highlighting a critical threshold in terms of either the 

applied field strength or the voltage induced across the membrane. Initial theoretical studies 

(also reviewed in [36]) began with analytically describing the induced voltage across the 

membrane of an isolated spherical cell in terms of field strength 𝐸𝑎𝑝𝑝  and cell radius R as 𝑇𝑀𝑃 = 1.5𝑅𝐸𝑎𝑝𝑝 cos𝜃, where 𝜃 is angle between the field line and a normal from the center 

of the cell to its membrane. This equation is known as Schwan’s equation and used for steady-

state description of TMP which was derived by Schwan in 1957 by solving Laplace equation 

(see also [37]). To describe the transient behavior during initial microseconds, the first order 

Schwan’s equation is written as 𝑇𝑀𝑃 = 1.5𝑅𝐸𝑎𝑝𝑝 cos 𝜃 (1 − exp⁡(−𝑡/𝜏𝑚)), where 𝜏𝑚 is 

membrane charging time constant (~1 s) given by 𝜏𝑚 = 𝑅𝜀𝑚2𝑑𝑚( 𝜎2𝜎1𝜎2+2𝜎1)+𝑅𝜎𝑚, where 𝑑𝑚 denotes 

membrane thickness, 𝜎 and 𝜀 denote conductivity and relative permittivity. ‘1’ and ‘2’ refers 

to the outside and inside of the cell. Under an oscillating field with frequency , the TMP varies 
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with frequency as 𝑇𝑀𝑃 = 1.5𝑅𝐸𝑎𝑝𝑝 cos𝜃√1+(𝜔𝜏𝑚)2 , where 𝜔 = 2𝜋𝜈. When the period of oscillating field 

or the duration of pulsed field becomes comparable or smaller than the charging constant, the 

induced voltage is diminished. Thus, high frequency stimuli (GHz) and ultra-short duration 

pulses (ns) lead to diminished values of induced TMP. The experimentally determined 

threshold voltage for murine myeloma cells was reported in the same study in the range of 

0.33-0.53 V. The threshold value is usually assumed to be constant (0.258 V) in an advanced 

theoretical model (to be discussed next), but this study reports variations in it with changing 

conductivity of the suspension media and applied frequency. A parallel RC circuit is also a 

simple representation that is employed to calculate the response current flowing through the 

overall tissue under the application of a voltage pulse. A larger network of RC circuits has been 

employed by Gowrishankar and Weaver, (2002) [38] for single as well as multiple cells. 

The theory of EP progressed further [10, 39] which assumes an appearance of nano-

pores over cell membrane affects the membrane conductivity. This model is described in more 

detail in the next chapter. The size of the pores is assumed to be fixed in this work but as it will 

be discussed shortly that it can increase or decrease depending on the pore energy dynamics.  

The following publication Shamoon et al. (2018) [28] gives significant details on the 

progress of understanding the concept and general results dealing with electromechanobiology 

of cells and tissue.  
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Almost all biological cells in living tissues exert and experience forces that influence biological

function. When subjected to an exogenous electric field, mechanical forces operate on cells, its

constituents, and interfaces with the environment. Many issues about force generation and

dynamics, the distance over which a force exerts its influence and how cells convert an electrical

excitation into a mechanical deformation, are not well understood from general first-principles

physics. The electric field at the interface between cells is not only the driving force for the polari-

zation and conduction phenomena but also induces simultaneously a mechanical stress field.

Within the extremely heterogeneous multicellular structure of biological materials (BM), theoreti-

cal models and experimental techniques to understand and control their local electromechanical

response in BM grow space. In recent years, biophysicists have begun to uncover the important

time and length scales that mediate force propagation in BM. In this perspective review, the multi-

scale modelling approaches and experimental probes for the application of an electromagnetic field

to exert mechanical forces upon polarizable BM are reported with special emphasis on the control

of forces at the cell and tissue levels. Modelling is based on a multicellular assembly exchanging

charges and stresses with the environment. Here, we shall restrict to coarse-graining models since

the resulting computational complexity quickly becomes overwhelming. Such work can pave the

way for a deeper understanding of how physical forces influence biological functions. Published by

AIP Publishing. https://doi.org/10.1063/1.5018723

I. INTRODUCTION AND MOTIVATION

A. Context and motivation

Biological materials (BM) such as eukaryotic cells and

tissues are extremely heterogeneous and structured at many

length scales. Such materials are easily deformable by exter-

nal stresses, electric or magnetic fields, or even by thermal

fluctuations which can be described from a soft condensed

matter perspective. The physical and physiological functions

of composite BM are highly dependent on the structural, spa-

tial, and chemical interactions of its subcellular components:

the extremely thin dielectric membrane and the highly con-

ducting cytoplasm. Previous studies have indicated hierarchi-

cal and highly ordered structures in BM based on small-angle

x-ray and neutron scattering, transmission electron micros-

copy, and atomic force microscopy, see, e.g., Ref. 1. As

sketched in Fig. 1, several configurations (in schematic forms)

of BM will be under discussion in this report. Individual cells

are the building blocks of tissues. In most BM, our knowledge

of cellular diversity is incomplete.

To understand how complex tissues work, it is important

to learn the functional capacities of each cell type and to

understand how any physical information may be inferred by

locally probing an extremely heterogeneous material. As

illustrated in Fig. 1, cell shape is also affected by cell-

substrate, cell-cell, and cell-extracellular medium (ECM)

interactions, apart from its intrinsic cytoskeletal architecture

and organelles.

One of the most intriguing issues in biophysics is how to

describe the ability of cells to respond to electric fields and

how the forces derived from these propagate on the charac-

teristic length scales of their local microenvironment.1 As

polarizable physical objects, the expression of the total force

acting on a cell which is subjected to an electric field can be

calculated by Maxwell’s stress tensor.2 The precise control

of forces between cells and those acting across individual

molecules in cells is crucial to maintain the characteristic

shape and size of tissues.3 In this capacity, the mechanical

properties of cells are largely determined by the actin cyto-

skeleton network, a hybrid polymer gel consisting of several

kinds of filamentous proteins, such as filamentous actin (F-

actin), microtubules, and intermediate filaments. Cells gener-

ate forces by contracting the cytoskeleton.4 The cytoskeletal

network is predominantly under tension; its stiffness

increases with tension and thereby increases the forces it can

support.5–7

Almost all living cells and tissues exert and experience

physical forces that influence biological function.1 One of

the ultimate goals of biology is aimed at understanding and

controlling biochemical reaction systems. Mechanical prop-

erties and forces are important in health as well, i.e., there

are many examples showing that numerous human patholo-

gies are strongly linked to changes in the mechanical proper-

ties of tissues, e.g., arteriosclerosis and liver fibrosis.8,9

Translating this research into the clinic may also help us

create innovative ways of treating certain diseases using

electric- and mechanics-based tools. Despite the great deal

of effort that has been devoted to these materials, however,a)brosseau@univ-brest.fr
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understanding the local properties of the forces transmitted

between cells of arbitrary shape and size in tissues still

presents challenges for theory, simulation, and experiment.

However, a local description is insufficient to disclose funda-

mental physical mechanisms of electromechanobiology. BM

are intrinsically complex because they are influenced by var-

iables that are outside a single level of space-time descrip-

tion. Thus, the collective behavior of BM cannot be simply

inferred from the behavior of its elements. This has encour-

aged researchers to look into more sophisticated models inte-

grating stochastic fluctuations and spatial inhomogeneity

using experimental observations as guidelines during the for-

mulation of these models.

Although the molecular details of BM are complex, in

the past decade or so, numerical techniques allow quantita-

tive coarse-grained-level three-dimensional core-shell (CS)

models of biological cells.10–12 Some of the benefits and

challenges of finite element (FE) modelling of the frequency

response in an external electric field of dynamic multicellular

structures (nonthermal effects) are discussed in Refs. 13–15.

Despite these studies, however, electromechanobiology stud-

ies of BM combining physical modelling and experiment are

still lacking and continue to be a major scientific challenge.

A partial motivation for this report is to summarize and

highlight recent major advances in electromechanobiology

that have paved the way for new phenomena and technolo-

gies useful for manipulation of BM at cellular and tissue lev-

els. Throughout this perspective at the interfaces of applied

physics and biology, we will highlight the importance and

benefits of multiscale models of multicellular force in BM as

leverage to be used for manipulating and engineering

synthetic BM, both for therapeutic applications and basic

biological studies.

B. Plan

We have divided our presentation into three sections.

First, to set the stage for the presentation of modelling and

experimental results in Secs. II–IV, we introduce and define

useful concepts. We take the point of view of analytical for-

mulations of the mechanical response that a CS model of

biological cells must experience when they are stimulated by

an electric field. Second, we provide several illustrating

examples of how a variety of recent developments of experi-

mental techniques add to the characterization toolbox for

describing the electromechanical response in living cells and

controlling the remote manipulation of BM. Third, after

exploring the insights provided by these examples, we dis-

cuss some of the most recent multiphysics coarse-graining

approaches that are opening up opportunities in achieving

great sensitivity of relaxation, electric field induced trans-

membrane voltage (ITV), electroporation (EP), and mem-

brane disruption consequent on the variation of the operating

frequency, shape, and surface charge, and we briefly offer

perspective comments and describe relevant challenges on

the current trends in this field of research.

II. ANALYTICAL FORMULATIONS OF FORCES

The purpose of this section is to briefly consider analyti-

cal formulations which can be used to describe how cells

sense and respond mechanically to an electric field excita-

tion. Although most of the concepts have been around in var-

ious forms for about 50 years, they seem to have recently

gained serious traction and acceptance in the general field of

biophysics. Many theoretical studies have demonstrated that

BM exhibit rich macroscopic electromechanical behavior,

depending sensitively on network connectivity of cells, field

excitation (i.e., dc, ac), and frequency.

A. Background

One way to think about electrostatic forces (EFs)

between two polarized objects is based on the Maxwell stress

tensor (MST). If T is a contraction of the latter

nT ¼ � 1
2
nðE:DÞ þ ðn:EÞDt, where E is the electric field and

D is the electric displacement. This is integrated over the sur-

face of the particle on which force acts, i.e., F ¼ �S n:TdS,
where dS is a surface element, n is the outward normal from

the particle, and t means the transpose of a column vec-

tor.16–18 In frequency domain studies, the instantaneous elec-

trostatic force is calculated by taking the real part of all the

variables involved. The cycle averaged Maxwell’s stress ten-

sor can be computed as nhTi¼ 1
2
Re½� 1

2
nðE�:DÞ þ ðn:E�ÞDt�,

where * is the symbol of complex conjugation. The second

is relevant to non-uniform applied electric fields E and

involves considering dipole or multipole moments, e.g.,

F ¼ p:rE for the lowest-order (dipole) approximation,

where p is the dipole moment. Several authors18–20 have

shown that the differences observed in the EF calculations

between the two different simulation methods arise because

FIG. 1. Schematics of several examples of BM considered in this report. (a)

Most mammalian cells assume a spherical shape. A biological cell is a mate-

rial with complex properties consisting of an extremely heterogeneous,

dynamic, and non-equilibrium intracellular biopolymer network (cytoskele-

ton). (b) A cell within the extracellular medium (ECM) which serves as the

physical scaffolding within which cells live and move (shown here as blue

threads). Cell-cell interactions and intracellular protein complexes (adhe-

sion) between cells and ECM drive the stability and/or reconstruction of

multicellular structures. Focal adhesions (yellow stars) mediate mechanical

forces transmission to the cytoskeletons. Furthermore, they also transmit

forces generated inside the cell by molecular motors such as myosin. (c)

Spatial aggregation of cells forming a tissue with cell-cell and cell-ECM

interactions that drive the stability and/or reconstruction of multicellular

structures. (d)–(f) Cells adhering on a flat substrate assume nearly planar

shapes.
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the approximations in the two methods are taken to different

orders. Biological cells stressed by an external electrical field

undergo mechanical deformation and remodelling caused by

electro-mechanical Maxwell stresses. These stresses appear

at the internal and external biomembrane interfaces due to

the differences in electrical properties of the membrane and

the surrounding and internal fluids. The Maxwell forces

exerted on the interface between two dielectrics are directed

from the dielectric with a higher permittivity towards the

dielectric with a lower permittivity. For a spherical cell, the

polarization charge density on the internal membrane/cyto-

plasm interface is higher than the charge density on the

external membrane/extracellular medium (ECM). ECM that

surrounds and supports cells possesses a gel-like structure

composed of several kinds of biopolymers such as collagen,

elastin, hyaluronic acid, fibronectin, and proteoglycans.

More importantly, ECM serves also as a dynamic roadmap

for cellular signalling molecules such as cytokines and che-

mokines. The difference in the polarization charge densities

is accompanied by differences in the magnitude of the

electro-mechanical stresses on either side of the membrane.

This leads to the appearance of a net radial force.

Based on a surface charge method, Doerr and Yu calcu-

lated the EF between an arbitrary number of charged dielec-

tric spheres.21–23 These authors noted that the magnitude

(relative to point charges in an infinite solvent) of attractive

EFs decreased while the magnitude of repulsive EFs is

increased (again, relative to point charges in an infinite sol-

vent). These results raised the question of why a dense sys-

tem of charged cells does not simply aggregate. Recently,

Tian and co-workers used an analytical approach to address

the problem of evaluating the EF between two polarized

inhomogeneous particles.24 Their study points towards the

importance of the inhomogeneities as key factors for

determining crossover frequencies (CFs) at which the EF

changes from attraction to repulsion or vice versa

(i.e., defined also by a vanishing EFs). Within the dipolar

approximation, CFs correspond to an angular frequency

xCF ¼ 1
e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1�r2Þðr2þ2r1Þ
ðe2�e1Þðe2þ2e1Þ

q

¼ s
�1=2
MWS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1�r2Þ
e0ðe2�e1Þ

q

, where a homo-

geneous dielectric sphere (relative permittivity e2 and

conductivity r2) is embedded in a host medium (relative per-

mittivity e1 and conductivity r1) submitted to an electric

field with a harmonic time dependence, and sMWS ¼ ðe2þ2e1Þe0
r2þ2r1

is the Maxwell-Wagner-Sillars relaxation time.

It is also worth noting that cell modelling in terms of

undeformable particles can be useful for analytical studies of

biological cells since such objects are fairly simple enough

to handle and yet provide rich insights by incorporating sev-

eral physical factors within a single theory. Recently, several

synthetic systems which capture the ability of cells (consid-

ered as magnetic microparticles) to move and interact

through viscoelastic materials in response to external stimuli

have been proposed.25,26 Consideration of the fundamental

forces that capture the essential features of the response of a

particle to an electric field excitation includes the dielectro-

phoretic (DEP) and electrothermal (ET) forces. Since the

present report considers particles of �1� 10 lm size, the

effects of gravity can be neglected. Additionally, Castellanos

and coworkers predicted that ac electroosmosis is not

observable for frequencies greater than 100 kHz when

medium electrical conductivity27 is 0.002 S/m. DEP results

in a force on a dielectric particle subjected to a non-uniform

voltage gradient (where the particle is much smaller than the

electric field nonuniformities).18 ET force is the volume

force exhibited on the fluid medium due to the thermal gra-

dients generated by ac electric fields. The ac nonuniform

electrical fields in the system generate Joule heating at the

electrodes leading to changes in the conductivity and permit-

tivity of the medium, thus exerting an electrical force on the

medium.28 The (time-averaged) forces acting on a particle in

suspension under the influence of an ac electric field are of

several kinds (Table I).

B. CS modelling

Although the details of the constituents of even a single

cell are complex, it is natural to ask how the electrical and

mechanical properties of biological cells can be described in

terms of an effective (continuum) CS model since it repre-

sents a minimal model of reduced complexity.29,30 To this

way of thinking, the cytoplasm can be approximated as a

TABLE I. DEP is a phenomenon in which a force is exerted on uncharged particles because of the polarization effects that occur in nonuniform electric fields.

Usually this force arises on all types of particles, charged or uncharged. The strength of the DEP force depends mainly on electrical properties of the particles,

medium, shape (here assumed to be spherical of radius r), and size of the particles, field magnitude Erms, angular frequency x, and phase u the applied AC sig-

nal; fCM defines the Clausius-Mossoti factor which depends on the applied frequency, cell shape, and relative polarizability of the particle with respect to the

host medium. For a homogeneous dielectric sphere,18 fCM ¼ e2�e1
e2þ2e1

. ET flow is typically observed at frequencies greater than 100 kHz. When an external electric

field is applied across the electrode, Joule heating creates temperature gradients near the electrode. The temperature gradient induces permittivity and conduc-

tivity gradients. The interaction between the electric field and the gradients, as a result, creates a bulk electrical force causing fluid motion.

Force Analytical formulation

DEP

Fh i ¼ 2pe1r
3 Re fCMð ÞrE2

rms þ Im fCMð Þ
X

x;y;z

E2
rmsru

� �

(1)

ET

Fh i ¼ 1

2
e1rTE2

rms

ð1=e1Þðde1=dTÞ � ð1=r1Þðdr1=dTÞ
1þ xe1=r1ð Þ2

� ð1=e1Þðde1=dTÞ
2

" #

(2)
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highly conducting salt solution with a large concentration of

dissolved organic material. From a physicochemical point of

view, the cell membrane constitutes a region of low polariz-

ability that can act as either a barrier to the passage of ions

between two aqueous electrolyte solutions or more likely can

act to slow down diffusion near cell boundaries by trapping

diffusing particles. The membrane surrounding the cell has a

lipid bilayer structure [Fig. 2(a)]. It is very thin, typically

4–10 nm in thickness, and has incorporated into it large

amounts of proteins and discrete domains (less than tens of

nm).

The ITV, caused by low membrane permittivity and con-

ductivity, as well as the rearrangement of interfacial charges,

gives rise to field changes on the order of 1 kVcm�1 across

the membrane thickness, for � 1 V cm�1 field strength. In

these analytical models, the inner medium exhibits the same

dielectric properties of the ECM, and the surface of the cell is

negatively charged for nearly all cells because of the predomi-

nance there of negatively charged groups, e.g., carboxylates

and phosphates. This results in positive ions being attracted

from the ECM to the surface to form double layers.31

CS modelling is of course a gross simplification because

it relies on a reductionist approach. It turns out that one of

the simplest single spherical CS models32 of the effective

complex permittivity is e2 ¼ recytCmem

ecytþrCmem
, where r is the radius

of the rigid sphere, ecyt is the permittivity of cytoplasm, and

Cmem is the membrane capacitance that includes the effect

of membrane thickness and permittivity or conductivity.

This effective permittivity can then be used to estimate

the total EF on the dielectric object under an applied electric

field as the object gets polarized. Derived from MST calcula-

tions, the dielectric force32 can be written as FDEP

¼ Re e1ð Þ
4

e2�e1
e1

E:n
�

�

�

�

2 þ Re e2�e1
e1

� �jEj2
� 	

n, w here e1 is the per-

mittivity of ECM.

The shape of the object and its polarizability (relative to

the host medium) dictate the distribution of the bound

charges and hence the distribution of the electric force.

Analytically, the shapes are often limited to spherical or

ellipsoidal, and the applied field is usually taken to be uni-

form (with the notable exception of Ref. 27). However, the

induced polarization alters the original distribution of the

applied field which becomes significant either with increased

polarization or number density of objects considered. The

EF can be accounted for by superimposing the induced dipo-

lar fields but the field distribution becomes highly non-

uniform depending on position and polarization of each

object.

For modelling the membrane elasticity, a strain energy

density function is often employed. A typical expression for

the deformation force derived from such an energy function

is Fmec ¼ Es
dn
ds
þ jEB

dðj�j0Þ
ds

h i

tþ EB
d2ðj�j0Þ

ds2
� Esnj

h i

n,

where n is the strain, Es and EB are elastic shear and bending

modulus, t and n denote tangential and normal components,

s is infinitesimal segment of the membrane, and j and j0 are

current and resting curvatures. The electrical and mechanical

forces can thus be added to get the total force and thereby

the overall electromechanical response.

C. Cell electropermeabilization

Since the discovery of EP, the question of the physical

mechanisms that temporarily disturb the phospholipid

bilayer of the plasma membrane has been a forefront topic in

the field of EP. EP results in the significant increase in the

electrical conductivity and diffusive permeability of the cell

membrane caused by a series of short-duration, high-inten-

sity electric pulses through tissue,33–37 i.e., typically a few

kV cm�1 lasting from few ns to 1 ls to few ms. Under spe-

cific conditions, the pulses produce temporary structural

changes in the cell membranes and the rearrangement of its

components leads to the formation of aqueous hydrophilic

pores allowing an increased transport of molecules through

the normally impermeable membrane. A number of studies

have reported that EP depends on the local induced trans-

membrane voltage (ITV) induced by the external electric

field. It has also been shown that a specific ITV threshold

exists for the manifestation of the EP phenomenon (typically

from 0.2V to 1V, depending on the cell type), i.e., only the

cells within areas where ITV � ITVth are electroporated. If

the field is too strong or lasts too long a time, the viability of

the cells is compromised and EP is said to be irreversible.

Based on a simple analytical electrostatic model37 of a

single cell, under the assumptions that the external dc applied

field is uniform, infinitely far from the cell and the membrane

is passive, it is relatively straightforward to show that the ITV

scales as V ¼ 1:5ER cos hð1� expð�t=smÞ þ Urest. Here h

denotes the polar angle which is measured from the center of

the spherical cell with respect to the direction of the electric

field, E is the field magnitude, R is the cell radius, sm is the

membrane charging time constant, and Urest is the resting

potential �–40mV. The exponential term describes the return

to equilibrium via relaxation. More advanced methods take

into account the concentration of ions at the membrane sur-

face based on Poisson-Boltzmann or Poisson-Nernst-Planck

equations, e.g., Ref. 38. Over the last two decades, biophysical

models have been developed to explain and predict the condi-

tions for cell electroporation, in particular those dealing with

the influence of the repetition rate of microsecond and nano-

second electric pulses.

Although these analytical studies have begun to charac-

terize the electromechanical response of BM, a theoretical

understanding of how local mechanics are determined by the

heterogeneous structure is still lacking. Facing many issues

which cannot be tackled analytically, the communities of

biophysicists and applied physicists have developed experi-

mental approaches and numerical models used to simulate

the electrical and mechanical responses at different time and

length scales which will be reported in Secs. III and IV.

III. RECENTADVANCES AND HIGHLIGHTS IN FORCE
MEASUREMENT IN THE LAB

There is a long record of experimental studies dealing

with cell response to a wide variety of electric fields for dec-

ades but how the corresponding forces act on various length

and time scales in the biological media continues to be inves-

tigated due to lack of clarity. As a result, electrical stimuli

can create movement, deformation, and/or poration of a cell.
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All these responses can be harnessed for biological and bio-

medical applications.

A. Introduction

As an example for the purpose of illustration, Ref. 39

examines what kind of movement a non-uniform ac electric

field generates for lines of several human cells. Depending

of field intensity, frequency, and conductivity, different types

of motion can be observed. Additionally, the authors in Ref.

39 demonstrate the competing nature of dielectrophoretic

(DEP) and electrohydrodynamic (EHD) forces in an ac

stimulated electromicrofluidic chip. The device has co-

planar electrodes which delivered a field magnitude between

0.022 and 0.067V/micron at a frequency range of 1 kHz and

200 kHz. EHD forces, i.e., ac electro-osmotic and electro-

thermal, are suggested to explain the observed clockwise and

anti-clockwise rotation by creating vortices or swirls in the

fluid that drag or rotate the cell along. The resulting overall

motion is recorded and an estimate of speed obtained from

image analysis that ranges from lm/s to cm/s in the case of

translational motion. The rotational speed is in the range of

10–40 rpm. The role of intracellular Ca distribution, its

importance in field-directed cell shape changes, and move-

ment is also described in Ref. 40. In this study, it is shown

that the electrostatic and electro-osmotic forces apply

mechanical forces on the cell triggering the initial signal of

electrotactic movement of cells. The asymmmetric mem-

brane potential, due to the charge redistribution in the mem-

brane components eventually, is also evidenced to affect

electrotaxis. The motion of individual cells in electromicro-

fluidic platforms is mainly governed by DEP and EHD

forces. An elaborate review for dielectrophoretic platforms

has been given by Khoshmanesh.41

Several platforms have recently proved to be powerful

tools to stimulate electrically and optically for different kinds

of in vivo and in vitro BM. For example, Ref. 42 describes a

device capable of simultaneously providing mechanical,

electrical, and biochemical stimulation in order to investigate

cellular responses in the fields of stem cell biology and

regenerative medicine. Values of electrical field gradients of

5V/cm can be easily attainable and are comparable to those

found in vivo. The experiments demonstrate the ability for

inducing changes in cell morphology, cytoskeletal fiber ori-

entation, and changes in gene expression under physiological

stimuli. Morphological rearrangements of the actin cytoskel-

eton can be observed, and cellular shapes (Fig. 3), character-

ized with image segmentation, produce a percentage

orientation of the actin fibers in the range of 180�.
A recent report highlighted a large variety of methods

dedicated to measuring forces and stresses in living tissues,

some of which are summarized in Table II.

Other force-reporting techniques require the investigator to

isolate cells and tissues and surround or embed them with non-

biological markers that allow the force to be sensed as displace-

ment or deformation. Two most commonly used force sensors

to characterize BM are AFM and optically trapped microbeads.

These tools are coupled to ultrasensitive displacement detection

systems based on opto-electric, acousto-opto-electric, or piezo-

electric phenomena. While AFM can effectively measure pN

forces, it makes use of a tip sharpened at the nanometer scale,

and thus can be considered invasive and moreover it is difficult

to scale up to multi-tip probing.43 Moreover, the probed forces

can be a mix of contributions which must be carefully de-

convolved or inferred. For instance, the AFM tip interacts with

the sample surface and can sense long range as well as short

range forces dealing with electrostatic, van der Waals, and

adhesive forces, respectively. Thus, care must be taken when

interpreting the force maps. The long range non-contact mode

of AFM is used for electrostatic force mapping (EFM).

Furthermore, the calibration of these force probes, based on

FIG. 2. (a) Illustrating a typical animal cell with various organelles (cyto-

skeleton is not shown); the colored cell membrane denotes the different

membrane proteins and a lipid bilayer structure (close-up shown in the

inset). (b) Computational domain for a single cell model where the cell

membrane is modelled with a contact impedance boundary condition relat-

ing the normal component of current density on either side of the cell with

membrane conductivity and thickness.
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simple theoretical models of elasticity or viscoelasticity under

conventional mechanical testing schemes, can be delicate. On

the other hand, optically trapped microbeads can attach them-

selves to the cell surface or proteins over it thereby sensing the

forces associated with its displacements with very high spatial

resolution. However, one cannot consider this effect as an elec-

tromechanical response because forces due to the electric field

act on the bead rather than the BM. The beads, in fact, transfer

an external force profile to the BM which is used to move the

optical trap from the manipulation point of view. We end with

a note of caution. Separating the different contributions to the

probed force is a challenging task. In particular, measuring only

electromechanical forces requires that an ideal force probe

should be able to differentiate between electric field induced

forces and mechanical ones which remains a formidable chal-

lenge within the context of the coupled active dynamics exist-

ing inside the living and heterogeneous BM that include

biochemical reactions, diffusion, growth, and development.

Apart from experimentally sensing the forces as previously dis-

cussed, live motion of cell can be recorded by imaging continu-

ously as the stimulation is effective. An example of

cytoskeleton rearrangement is shown in Fig. 3 and other cases

for translation and rotation at cellular level are shown in Figs. 4

and 5.

B. Measurement of cell and tissue deformation

Two approaches are worth highlighting because they

have already had some success and are providing

experimental ways to manipulating biological cells. On the

one hand, several authors propose using nanoribbons made

of piezoelectric lead zirconate titanate (PZT) for electrical

stimulation of cell membrane and detection of cellular defor-

mation.38 The aim is to characterize the mechanical response

of neuronal cells to applied voltages. Depolarization caused

by an applied voltage induces a change in membrane tension.

Charges on opposing sides of a membrane repel to each other

laterally, creating a local pressure, thus changing the net sur-

face tension. This has the effect of altering the cell radius so

that the pressure remains constant across the membrane. A

preliminary setup calibration (without cells) by making use

of AFM is required. Then, neuronal cells are cultured on

PZT nanoribbons and a standard whole-cell patch-clamp

technique is used to stimulate membrane voltages in cells

while recording the electrical response in PZT nanoribbons.

The generated electrical response was characterized by a

whole-cell patch clamp technique using 1 micron diameter

micropipette through which a current is supplied to the mem-

brane to evoke a sharp increase in membrane potential after

a certain threshold. This suggests the presence of voltage

gated ion channels and cell perforation. A current pulse of

up to 200 pA was used which raised the membrane potential

up to 20mV from a resting potential of �50mV for roughly

about the duration of the pulse and thereafter relaxing gradu-

ally. The electrical response was accompanied with a change

in surface tension of cell and a small change in shape.

Correspondingly, the altered force exerted by the cell on the

suspended piezoelectric nano-ribbon produced a detectable

FIG. 3. Human bone marrow mesenchymal stem cells (top row) stained with blue color for nucleus and red color for actin fibers (top) showing a control image (no

stimulation) and selected images from controlled electrical stimulation (biphasic square-wave pulse of 61.2V for 1ms at 1Hz repetition is applied that delivers an

average electric field of 5V/cm), mechanical stimulation (the entire base is stretched along the y axis as shown on right by double arrow), and electromechanical stim-

ulation; scale bars are 100lm each. Subsequent orientation analysis (bottom) for selected stimulation scenarios: In each image, several actin fibers are identified along

with their orientation angle and a histogram of percentage orientation is plotted [Reproduced with permission Pavesi et al., Sci. Rep. 5, 11800 (2015). Copyright 2014

Author(s), licensed under a Creative Commons Attribution 4.0 License.].42
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deflection. From the analytical model relating the cell radius

to the magnitude of the force, the authors are able to show

that a change of 120mV of the cell membrane voltage indu-

ces a force of about 1.6 nN on the suspended nanoribbons

corresponding to a 1 nm deflection (Fig. 6). Several benefits

of this method are worthy to note. Firstly, it turns out that

PZT nanoribbons are thin and flat and can therefore conform

to or even buckle onto curvilinear surfaces. Secondly, they

can be fabricated using standard microfabrication techniques

and are easily scaled. They can be bio-interfaced directly

with tissues for measuring macroscopic electromechanical

properties.

On the other hand, optical techniques have become

available for studying the electromechanical response of

cells, and large initiatives are emphasizing the newly acces-

sible physical data sets they produce. In Ref. 45, the authors

presented a single beam near-field laser trapping technique

under focused evanescent wave illumination. The device is

able to stretch, hold, and rotate a red blood cell (RBC): it

depends on the trapping power used. Since RBCs play an

important role in drug therapy and disease an understanding

of their fundamental mechanical and viscoelastic properties

is important. This system is compared to laser tweezers used

to pull on bead-handles attached to a RBC for introducing

deformations in the range 15%–50%. Due to its highly con-

fined nature, the strength of the evanescent focal spot is so

strong that a non-linear near-field excitation becomes possi-

ble. In the near-field trapping case, the axial trapping volume

is only a few tens of nanometers. Force calibration is rather

difficult to perform because the object under stress can

exhibit a variety of deformation profiles (Fig. 7). As a conse-

quence, the response is often reported as a function of the

power (typically �15–20 mW) rather than the force or stress

in the plane of the trap. Stretching, rotation, and even folding

of RBC were reported using these traps that have a spatial

extent of only a few tens of nm.45 RBC rotation was reported

on the order of 1 rpm, deformation of up to 25% by stretch-

ing and squeezing. Folding up to 60� was also reported as

the power in the plane is increased.

C. Cell perforation

In recent years, several technological advances have

emerged revolutionizing the field of EP. In Ref. 46, the

authors proposed a specific platform for intracellular delivery

which can be scalable from single cell–suspension experi-

ments. It enables the delivery of well-defined molecular

content to the selected cell or group of cells in an arbitrary

time-window. Cell perforation by electrical stimulation has

been recently reviewed.47 In this study, various platforms

from bulk electroporation (BEP) to micro- (MEP) and nano-

electroporation (NEP) are compared. BEP experiments in mil-

limeter-to-centimeter-sized chambers allow handling millions

of cells but lead to non-uniformly distributed electric fields at

the single cell level. It can lead to highly stochastic transfec-

tion profiles and cell lysis in most cases. High voltage is

needed (>1000 V) and can cause a significant decrease in cell

viability due to joule heating, pH changes, and bubble forma-

tion. For in vivo applications, several groups demonstratedT
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that the adding of gold nanoparticles (AuNPs) in the cell

buffer improves the cell transfection efficiency. Miniaturized

(MEP and NEP) electroporation systems are used for biomedi-

cal applications, including adoptive immunotherapy, gene/

RNA-based therapies, cell reprogramming, and intracellular

bio-interrogation of living cells. Electrodes are far away from

most of the cells in BEP as the generated fields act over all

cell surfaces, while MEP and NEP are focused on reducing

this area to small regions on the surface. Perforation is

inferred from the movement of fluorescent chemical markers

into the cells. These markers are processed from the image

based on which transfection efficiency is evaluated [Fig. 8].

Reversible or irreversible perforation can be performed as evi-

denced by viability markers. It must be noted that transfection

efficiency is cargo dependent. The number of perforated cells

in a single shot is always better in BEP but transfection effi-

ciency and viability are better in MEP and NEP.
47 From the

electric stimulation point of view, it must be noted that the

FIG. 4. Cellular motion for human cells (HEK, JURKAT, and PC3) in AC electromicrofluidic chip. (a) Translational motion of HEK cells away from (top row,

negative-DEP) and towards the coplanar electrodes shown as dark patch (bottom row, positive-DEP) indicated by arrows. (b) Rotational motion of HEK cells

near the edge of coplanar electrodes. (c) Rotational speed of cells as magnitude or frequency of stimulation is varied. The rotational speed and its variance both

increase with magnitude of applied voltage and the former exhibits a broad peak behavior at a particular frequency. Theoretically, n-DEP and p-DEP regimes

depend on the real part of the CM factor being negative and positive, respectively. ncells denote the number of cells used for mean value calculation. The nonlinear

fits to the experimental data were performed using Origin, and the theoretical curve was also plotted based on the model equations used in Ref. 39 [Reproduced

with permission from Vaillier et al., PLoS One 9, e95231 (2014). Copyright 2014 Author(s), licensed under a Creative Commons Attribution 3.0 License.].39
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bias voltage applied to the device and the voltage across the

cell can be very different when BEP systems are used. BEP

requires bias voltage to the order of 1 kV whereas it can be as

low as 100 to 1V for MEPs and NEPs depending on the

designs. MEP system miniaturization results in more local-

ized/enhanced implementation of the electric field on individ-

ual cells, leading to successful transfection at relatively low

voltages and improved cell viability and transfection efficien-

cies. In NEP, only a nanosized portion of the cell membrane

is considered. One unique advantage of NEP-based transfec-

tion is that cytosolic cargo delivery is entirely modulated by

electrophoretic forces. Such systems can achieve 90% trans-

fection efficiency and 100% cell viabilities. Additionally,

electrophoretic forces are enhanced within the nano-channel

due to the high voltage drop, which allow cargo delivery to

occur within microseconds compared to diffusion-dominated

processes, which can take a much longer time (BEP, MEP).

Cell perforation by ultrafast optical fields can also be

achieved using plasmonics, which has paved the way for

new phenomena and technologies useful for manipulation of

light. There are broadly two ways of doing this. One way is

to deposit metal nanoparticles in the substrate on which the

cell membrane is attached. Another way is to have nano-

structured or unstructured metal coatings on the substrate

over which the cells are brought into contact. Either way, a

metal-dielectric interface is established that allows plas-

monic resonance to be excited by an incident optical field. In

this context, three recent studies that achieve plasmonic

optoporation by short laser pulses in the durations of ns-ps-fs

can be highlighted. In Ref. 48, 15 ns (pulse duration), laser

pulses of 532 nm (on resonance) and 75 ns pulses of 1064 nm

(off resonance) with 10Hz repetition frequency are used to

excite 100 nm gold nanoparticles (AuNPs) deposited on the

membrane of melanoma cells that lead to their perforation

[Fig. 9(a)]. Likewise, in Ref. 49 the authors deposited

100–200 nm Au nanoparticles on breast cancer cells and

used 45 fs laser pulse centered at 800 nm with 3Hz repetition

for excitation. Cells perforate due to the formation of submi-

crometer cavitation bubbles around the nanoparticles.

Transfection efficiency of 77% and a viability of 90% are

reported [Figs. 8(c) and 9(b)]. In addition, for bubbles of

large sizes (above 5 lm) cells die. In Ref. 46, another kind

FIG. 5. Cellular motion for mouse cells in opto-electro-microfluidic chip, (a) WBCs moving away from the light pattern (negative-DEP) at one frequency (left

image) and into it (positive-DEP) at another (right image); rotational motion near the edge of the light spot as (b) applied voltage and (c, d) frequency is varied.

Rotational speed varies quadratically with applied voltage and exhibits sharp peak behavior with frequency [Reproduced with permission from Chau et al.,

PLoS One 8, e51577 (2013). Copyright 2013 Author(s), licensed under a Creative Commons Attribution 3.0 License.].44
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of experiment is performed using gold nanotubes of 180 nm

diameter over a substrate. Mouse fibroblast cells spread over

the nanostructured substrate. Excitation was done with an

8 ps laser pulse of 1064 nm with a repetition frequency of

80MHz during 10ms. Cells are perforated by shockwaves

generated around each nanotube. Lifetime of the pores is

estimated with chemical markers and is close to 10min

(Fig. 11).

IV. MULTISCALE PHYSICS OF INTERCELLULAR

FORCES IN TISSUES

It has been established above that the mechanical forces

between cells generated by an electric field are so far poorly

appreciated and consequently under-exploited. Over the past

few years, a variety of numerical modelling techniques have

been designed to overcome the severe limitations of analyti-

cal models used to quantify intercellular forces, such as the

inclusion of arbitrary shape for cell and the distribution of

material properties, and offer much more versatile analysis.

One of the major goals of such theoretical modelling is to

predict quantities which are physically measurable at cellular

and subcellular levels. However, due to the mismatch

between theoretical assumptions and experimental realities,

disagreements are quite common. Ab initio classical molecu-

lar dynamics (MD) of biomolecules which can simulate the

coupling between electrical and mechanical properties have

not yet been published in the archival literature. On the other

hand, continuum (homogenized) medium approaches such as

FIG. 6. Sensing nanometer scale deformations in excitable cells on a scal-

able substrate: SEM image of the device showing (a) piezoelectric nanorib-

bons as part of the substrate and (b) a neuronal cell adhering over it; scale

bars are 15 lm. (c) Calculated force (blue line) as a function of membrane

voltage based on the model presented in Ref. 38 and measured membrane

voltage (red data points, error bars include variance of data and fitting errors

from the AFM calibration) which increases along with its variance as the

voltage across the membrane is increased [Reproduced with permission

from Nguyen et al., Nat. Nanotechnol. 7, 587 (2012). Copyright 2012

Macmillan Publishers Ltd.].38

FIG. 7. Near-field optical manipulation of RBC on a substrate as a function

of power in the focal plane: (a) stretching is denoted by size qh;vx;y(lm),

where the superscript h-v corresponds to RBC trapped in horizontal or ver-

tical plane on substrate, subscript x-y corresponds to x and y axes; (b) rota-

tion of RBC trapped in horizontal plane, arrows indicate change in the

direction of incident laser polarization; (c) folding of RBC trapped in the

horizontal plane. The response is reported to be mainly linear in all cases

and thus a linear fit is performed [Reproduced with permission from Gu

et al., Opt. Express 15, 1369 (2007). Copyright 2007 Optical Society of

America].45
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finite element (FE) and finite difference time domain compu-

tations are valid because the cell size is sufficiently large for

the molecular details of the membrane to be ignored.

Typically, many simplifications are made to a cell’s mor-

phology in order to more easily represent it computationally,

which include simple shapes in the form of, e.g., spheres,

and a limited amount of physical phenomena. However, bio-

logical cells are complex structures with ever-changing

geometry and physics that span many length and time scales.

Recent developments have shown that arbitrary shaped and

structured cells can be incorporated into models (Fig. 10),

either by parameterizing volumes and surfaces for distribut-

ing spherical CS14 or discoidal structures32 in a given com-

putational space or by using microscopic images of a

densely packed tissue.50 For the specific application reported

in Fig. 10(b), the geometries of biological cells are described

in 2D using triangles that are refined around high-aspect ratio

features, such as at the cell and nuclear membranes.

A. Stress distribution dependence on material
distribution and properties

Several approaches are worth highlighting because they

have already had some success and are providing a construc-

tive path forward to electromechanobiology. For example,

Ye and coworkers32 use a numerical modelling approach of

the effective complex permittivity of a spherical CS structure

and applied it for RBC to calculate the DEP force resulting

from the application of a non-uniform electric field. These

authors found that the DEP force is nonzero only at the

boundary of 2D biconcave shapes as other regions were con-

sidered homogeneous. They obtained the DEP force

FIG. 9. Plasmonic gold nanoparticle enhanced electroporation of: (a) mela-

noma cells using ns laser pulses in on-resonance (532 nm) and off-resonance

(1064 nm) conditions and (b) cancer cells treated with fs laser pulses (45 fs,

800 nm) as a function of laser fluence [(a) and (b) are reproduced with per-

mission from Lalonde et al., Biomed. Opt. Express 4, 490 (2013). Copyright

2013 Optical Society of America48 and Boutopoulos et al., J. Biophot. 9, 26

(2016). Copyright 2016 Wiley,49 respectively).

FIG. 8. Comparison of bulk electroporation and nano-electroporation of

genetically engineered immune cells (NK cells): (a) Phase contrast (top row)

and epifluorescence (bottom row) images, the latter indicating the delivery

of target substance into the cells, (b) transfection efficiency, (c) cell viability

[Reproduced with permission from Chang et al., Lab Chip 16, 4047 (2016).

Copyright 2016 Royal Society of Chemistry].47
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distribution as illustrated in Fig. 12(d). Using a FE analysis,

Yu and Sheng analyzed the response of three differently

shaped CS (sphere, cylinder and biconcave disc) structures

under electric field stimulation. This study informs us about

the effect of shape and material distribution in a CS model

on the mechanical response Figs. 12(a)–12(c).

Numerically calculated MST spatial distribution at the

boundaries of homogeneous dielectric spheres modelling

undeformable cells under an applied uniform electric field

clearly show a bidirectional stretching force due to the

induced dipole.2 The frequency dependence of MST distri-

bution is shown as medium conductivities and inter-particle

distances are varied. Frequency-domain finite element (FE)

simulations provide numerical evidence that the time-

averaged electrostatic force changes from repulsion to attrac-

tion as the drive frequency of the electric field is varied. The

simulations published so far strongly suggest that the repul-

sion to attraction (RTA) transition phenomenon is largely

associated with an asymmetric screening at very small sepa-

ration between cells (Fig. 13). This observation has direct

application to the problem of electrostatics in biomolecular

systems. However, the results obtained so far are incomplete

in two senses. First, they do not account for cell viscoelastic-

ity, which eventually affects the Maxwell stress tensor calcu-

lation. Reproducing elastic moduli is an essential foundation

FIG. 10. Modeling geometries of random configurations of cells which may

closely resemble in vivo cellular environments in living tissues (insets),

where cells form a loosely connected, disordered network [(a) and (b) are

reproduced with permission from Appl. Phys. Lett. 100, 143701 (2012).

Copyright 2012 AIP Publishing14 and Murovec et al., Biophys. J. 111, 2286

(2016). Copyright 2016 Elsevier,50 respectively).

FIG. 11. Plasmonic gold nanotube array enhanced electroporation of NIH/

3T3 cells: (a) NIH/3T3 cells cultured on the substrate, (b) fluorescence

image indicating the intake of target substance into the cells, (c) time

between injection and electropermeabilization as a function of percentage of

fluorescent cells, and (d) SEM image of the gold nanotube array as part of

the substrate [Reproduced with permission from Messina et al., Adv. Mater.

27, 7145 (2015).46 Copyright 2015 Author(s), licensed under a Creative

Commons Attribution 4.0 License.].
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toward simulating mechanical properties of cells and cell

assemblies. Second, while the well-established CS model

[Fig. 2(b)] allows researchers to focus on solving, rather than

defining, the problem is that it neglects the complex internal

structure network of cell, i.e., cytoskeleton.

Simulations based on a 3D object-oriented approach to

modelling individual and collective electromechanical cell

behavior were also carried out. In the numerical study by

Promayon and coworkers52 the effects of incorporating sim-

plified cytoskeleton on the mechanical deformation of cells

needs is worked out. These authors try to model cell aggre-

gation by introducing a chemoattractant field for a cell popu-

lation (36 cells) comprising of 2 types of cells which have

different responses to the same field. Forces are calculated

over each cell surface and threshold rules are defined for for-

mation of the aggregate. This approach can be considered as

a simplification of a molecular dynamics (MD) type

approach in which unique atoms have characteristic atomic

potentials and bond energies. This object oriented approach

allows for preserving multiple aspects associated with the

cell but of course only few aspects can be stored due to limi-

tation of computer memory.

A focused beam of light allows defining gradient forces

due to the beam shape and scattering forces as the light tran-

sit through regions with different optical properties.

Organelles in cells scatter the incident light and thereby alter

the optical stress distribution. In Ref. 53 the authors show

that the local distribution of optical stresses is affected by

the relative size of nucleus and cell [Figs. 14(b) and 14(c)].

Optical stresses are explicitly calculated by making use of a

dynamic ray tracing (DRT) algorithm which takes into

account the vector nature of the electric field. Elastic stresses

for the membrane are calculated from a strain energy density

function using FE. These two forces are added to the incom-

pressible Navier-Stokes equation which was then solved by

the immersed boundary method. The deformation is quanti-

fied as the ratio of the difference to sum of the major and

minor semi-axis deformed lengths [Fig. 14(a)]. It was shown

that the deformations of the cell and the nuclear membranes

can differ significantly.

FIG. 12. Calculated stress distributions in cells: (a) bidirectional applied

stress on the ends of cell is distributed in volume of the cell if elastic mate-

rial is assumed to be filled inside, (b) bidirectional applied stress on the ends

of cell is distributed on the membrane if elastic material is limited only to

the membrane region while the inside is empty. Color bar: red indicates

higher and blue indicates lower magnitude of stress (units of Pa). (c) The

same amount of applied stress as considered in (a) and (b) produces different

elongations of the cell, (d) stress defined and calculated only for the mem-

brane boundary showing two nearby cells under an applied electric field due

to coplanar electrodes and an applied Poiseuille fluid flow field; showing

from left to right the DEP force, the viscous force due to fluid flow and the

interaction force modelled with a formulation using a Morse potential

between the cells [(a)–(c) and (d) are reproduced with permission from Yu

and Sheng, Opt. Express 23, 6020 (2015). Copyright 2015 Optical Society

of America51 and Ye et al., Electrophoresis 36, 378 (2015). Copyright 2015

Wiley,32 respectively].

FIG. 13. The distribution of MST when 6 spherical cells positioned at the

face-center of a cube shown in 2D (4 are visible), modelled with 3 distinct

phases (each for cytoplasm, cell membrane, and the suspension media, see

Ref. 2 for parameter values used) are close to each other, D being the dis-

tance between their centers and r1 being the conductivity of the suspension

media; the colors are used to distinguish the stress distribution direction on

each cell [Reproduced with permission from Murovec and Brosseau, Phys.

Rev. E 92, 042717 (2015).2 Copyright 2015. American Physical Society].
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Two additional simulations which illustrate the importance

of multiscale modeling of intercellular forces in cell assemblies

are worth describing in detail. In the first, we show simulation

results to give an idea of how electric forces between cells can

be controlled by changing the ac frequency of the applied elec-

tric field. In Fig. 15, we show two polarizable cells having

same size (radius 10lm) and properties separated by a small

distance (500nm) while the angular position of one of them is

changed around the other. The ac electric field is applied along

the vertical with an average magnitude of 1 kV/cm. Figure 15

illustrates another important feature arising from the interplay

between the spatial distributions of cell surface charge and elec-

tric field which leads to specific patterns of total electric force

on the second cell with respect to the first. Furthermore, the

direction and magnitude of the force can differ significantly as

the frequency is changed [Figs. 15(b) and 15(c)].

The second and very different example of interface

influence occurs as an aggregate of two-size cells (with radii

10 lm and 5lm) is considered to study the mutual interac-

tion between cells in the system [Fig. 16(a)]. We examine

the local distribution of forces on the reference cell surface

as the frequency of the applied field (adopting a coordinate

system in which the field is oriented along the z vertical

axis) is varied. The nearest neighbors around the central (ref-

erence) cell are separated by a distance of 50 nm. Figures

16(b) and 16(c) show the interplay between the distribution

of cell surface charges and electric force (MST) for this spe-

cific cell configuration. Moreover, as the applied field magni-

tude is increased from 2V/cm to 1 kV/cm, we observe

several orders of magnitude increase in force (not shown).

For frequency of 107Hz, one can see several hot spots of

high surface charge density which are spatially correlated

with the positions of the nearest neighboring cells. When

integrating the MST over one of these spots we obtain a

value of the z-component of the force equal to 1.25 fN for an

applied field of 2V/cm and 312.64 pN when a 1 kV/cm field

is applied. One can note the large difference in absolute val-

ues of the surface charge density for the situation found at

lower frequencies for which large values of MST are close to

the poles of the spherical reference cell and very weak at the

equator as might be expected. This observation fits with the

pearl chain effect, i.e., biological particles immersed in liq-

uid media align themselves and form pearl chains under an

applied electromagnetic field when the field strength is

greater than a certain minimum value.54 The presented calcu-

lations which provide a quantitative estimate for the level of

the driving forces for cell deformation and polarization can

be extended in a few directions. In real tissues there are more

than two cell sizes and this brings to an interesting problem

of cell topology and cell position upon the induced electric

field (and subsequently the DEP forces) in a multiscale tissue

model.50 Furthermore, a conceptualization of the way the

cells interact with one another is of paramount importance in

these computer simulations. Finally, the flexibility of multi-

physics modeling with FE methods will allow future models

to incorporate greater sophistication, simulating also molecu-

lar transport across the membranes as well as the electrome-

chanical properties of tissues.55

B. Modelling cell perforation

As mentioned previously, cell perforation models are usu-

ally based on ITV modelling above a threshold value. In Ref.

50, the authors describe a method for extracting realistic cell

morphologies from fluorescence microscopy images to generate

a piecewise mesh used to develop a finite element model in two

dimensions. Both membranes are treated as a thin dielectric

which acts as a parallel plate capacitor from which ITV is

FIG. 14. Calculated deformations and forces in a nucleated CHO cell mod-

elled as two spherical elastic membranes due to dynamically changing opti-

cal stresses where DF1 is the ratio of difference and sum of the deformed

major and minor axes, r is the ratio of two membrane radii: (a) DF1 vs r,

(b) net scattering forces vs r, (c) gradient forces vs r; the vertical line

denotes the nominal radius ratio r¼ 0.72 of CHO cell [Reproduced with per-

mission from Sraj et al., J. Opt. 17, 075403 (2015). Copyright 2015. IOP

Publishing Ltd.53].
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calculated for two sets of pulse parameters inspired by clinical

irreversible electroporation (IRE) treatments [Fig. 17(c)]. It is

shown that high-frequency bipolar pulse trains are better able to

raise the ITV of tightly packed cells to a simulated electropora-

tion threshold than conventional IRE pulse trains, at the expense

of larger applied potentials. Another strategy is suggested in

Ref. 14 using multicellular models for studying the response of

biological tissues exposed to electric fields. Simulations probing

the conductivity changes of three-dimensional models of

biological tissues consisting of random ternary CS sphere pack-

ings with different spatial scales are described in Ref. 14. The

algorithmic method consists of placing the CS particles in a ran-

dom manner without any overlap between them. An example of

such a geometric model is shown in Fig. 10(a). The asymptotic

DeBruin-Krassowska (DBK) model of EP for a single cell based

on the Smoluchowski equation is used and the FE method solves

Laplace’s equation in time domain to obtain the distribution of

the electric potential in the model. The temporal evolution of the

electric conductivity of these packings is investigated during

application of an electric field with magnitude either below or

above the value leading to cell membrane electroporation. The

fraction of electroporated cells can be described by a hyperbolic

tangent function of the electric field [Figs. 17(a) and 17(b)]. In

Ref. 14, the authors demonstrated that the collective physical

FIG. 15. Total electric forces between two cells under an applied ac field.

(a) Surface charge distribution (in C/m2) over two spherical cells of radii

10lm each, separated by a distance of 500 nm when an average ac field

magnitude of 1 kV/cm with frequency of 106Hz is applied vertically, (b) the

direction of total electric force on the second cell at specific angular posi-

tions is depicted by arrows for frequency of 105Hz (blue) and 106Hz

(brown), and (c) a comparison of force magnitudes for the two cases shown

in (b).

FIG. 16. Local electric forces on a cell surrounded by other cells under an

applied ac field. (a) Model geometry consists of a random distribution of

two-size spheres (radii 10 and 5 lm). The central (blue) sphere is chosen (as

reference) for examining the local force distribution on its surface. MST is

depicted by arrows and surface charge density (in C/m2) is depicted by color

for frequency of (b) 104Hz and (c) 107Hz.
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processes causing the transient permeability of the cell mem-

branes can be understood by analogy with the physics of a two-

state system with an external field. Last but not least, it is worth

noticing that Rems and coworkers56 compared the theoretical

predictions for an aqueous pore conductance by MD

simulations.

V. LOOKING AHEAD IN ELECTROMECHANOBIOLOGY

The interfaces of applied physics and biology have both

precedence and promise.57 The quantitative study of living

matter, trying to understand the living part of the world with

the same precision as we understood the inorganic world is

eventually one of the most fascinating challenges of our

time. We hope that this comprehensive report will serve to

motivate newcomers who have never been exposed to the

field of electromechanobiology.

In the present perspective, we focused on a few funda-

mental points emphasizing how the quantitative analysis of

forces can be controlled by various stimulation parameters.

A single multiscale theoretical model or experimental plat-

form which would include subcellular, cellular and tissue

details is still lacking. Such analysis can be envisioned

through a hybrid continuum approach that takes into account

coarse-grained biomolecular details as well as larger length

scales up to hundreds of cells. While biochemical reactions

were not considered in this report it should be noted that the

physical responses are often coupled with specific biochemi-

cal reactions during regular biological processes that eventu-

ally impact physical models.

A. Theoretical perspectives

A physics perspective in this field will likely be to

imagine numerical tools that lower the level of complexity

of living BM by keeping only the relevant and most

important structural features, and how to think about the

collective mechanics of individual cells organized in a

hierarchical structure which is stimulated with an electric

field. Though simplifications must be made to any simula-

tion, the trend of increasing computer power and perfor-

mance enables many of these inhibitions to be overcome

by simulations that achieve a greater predictive capacity

and come ever closer to simulating precise experimental

and clinical conditions. Immediate challenges are as fol-

lows: (i) develop a multiscale multiphysics analysis of

BM.58 What is needed is a way to gradually increase the

BM complexity so that over complexity can be avoided

but with the necessary physical features retained, for

instance, linking the cell scale (continuum) electroporation

model discussed earlier in Sec. VB and tissue model and

then linking the biomolecular reactions database to it to

test further responses.59 To truly capture and explore phys-

ical phenomena in 3D systems requires accounting for

more of the complexities of a biological cell, such as its

irregular geometry and their inhomogeneous and aniso-

tropic material properties, i.e., meaning that the material’s

mechanical properties do depend on the direction of the

force; (ii) consider the behavior and self-assembly of cell

collections. Out of thermodynamic equilibrium self-

organization mechanisms can emerge and their understand-

ing can open up paths to control emergent tissue patterns

under external mechanical and electromagnetic fields; and

(iii) analyze the role of ECM that surrounds and supports

cells which is known to strongly affect cell/tissue organiza-

tion; in particular the full exploitation of the interfacial

properties will require an evaluation of the distance over

which forces propagate by multiscale tissue modeling and

to compare with experimental observations suggesting that

long distance signals (typically, on the order of ten micro-

meters) are dependent on the inherent tension in the

cytoskeleton.60

FIG. 17. Fraction of electroporated cells vs applied electric field for geome-

try shown in Fig. 10(a) for (a) several volume fractions in static analysis; (b)

different pulse durations in dynamic analysis averaged for 5 realizations; the

calculated data points were fitted to a hyperbolic tangent function. (c)

Comparison of distribution of induced transmembrane potential over the

membrane of individual isolated cell (solid line) or when it is part of the tis-

sue (dashed line) for geometry shown in Fig. 10(b) when stimulated by elec-

tric pulse of 20ls; the analytical Schwan equation is also plotted for

comparison [(a) and (b) and (c) are reproduced from Appl. Phys. Lett. 100,

143701 (2012). Copyright 2012 AIP Publishing14 and Murovec et al.,

Biophys. J. 111, 2286 (2016). Copyright 2016 Elsevier,50 respectively).
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B. Experimental perspectives

The ability to exert and experience force at various length

and time scales is proving to be crucial for most cellular func-

tions. For that specific purpose, experimental approaches are

needed for the following: (i) devise a lab optofluidic platform

for exploring cell signaling at single cell and multiple cell lev-

els with control of the intracellular and intercellular force; (ii)

investigate intercellular communication in the ECM through

electric signals which offer the possibility to communicate on

longer length scales and significant control as well for self-

assembly; (iii) control in real time the electropermeabilization

which represents a way to implement customized treatments

where the electric solicitation is inhibited once the desired

degree of permeabilization is achieved. Eventually, this con-

trol system of the cell membrane permeabilization could be

massively parallelized on a dedicated biochip for the electro-

poration of many cells, prior to cell fusion or integration of

therapeutic vectors; measure experimentally forces and

stresses in situ in electroporated living tissues; (iv) develop

advanced bio-imaging techniques to analyze the cytoskeletal

structures and stress propagation and distribution in living

cells; (v) the growing interest in microfluidics has also raised

questions about interfaces in BM.

C. Clinical perspectives

Understanding the role of physical forces in biology

is not limited to fundamental research but can lead to applica-

tions to treat a wide variety of clinical conditions. In a not-so-

distant future, the complexities related to 3D printing of

biocompatible materials, cells and supporting components

into complex 3D functional living tissues will be addressed by

integrating technologies from the fields of imaging, biomateri-

als science, cell biology, physics and medicine. Combining

electromechanobiology with 3D bioprinting would reveal the

role of forces during tissue fabrication and organogenesis. It is

anticipated that such developments will lead to innovative

high-throughput 3D-bioprinted tissue models for research and

drug discovery. Translating this research into the clinic can

help create new paths for generation and transplantation of

several tissues to repair damaged organs.

Electromechanobiology-based technology is likely to

emerge as an innovative branch for developing precision

diagnostics and therapeutics of diseases that are beyond the

reach of existing toolboxes.
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NOMENCLATURE

AC Alternating current

AFM Atomic force microscopy/mapping

BEP Bulk electroporation

BM Biological materials

CHO Chinese hamster ovary

CM Claussius-Mossotti

CS Core-shell

DBK DeBruin-Krassowska

DEP Dielectrophoretic

DF Deformation factor

DRT Dynamic ray tracing

ECM Extracellular medium

EF Electrostatic forces

EFM Electrostatic force microscopy/mapping

EHD Electrohydrodynamic

EP Electroporation

ET Electrothermal

FE Finite element

FRET Fluorescence resonance energy transfer

HEK Human embryonic kidney

IRE Irreversible electroporation

ITV Induced transmembrane voltage

MD Molecular dynamics

MEP Microelectroporation

MST Maxwell stress tensor

NEP Nanoelectroporation

NK Natural killer

PC3 Prostate cancer

PZT Lead zirconate titanate

RBC Red blood cell

RNA Ribonucleic acid

RTA Repulsion to attraction

SEM Scanning electron microscope
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2.3 A closer context on ED and EP 

Having recalled several concepts and ideas in the publication Shamoon et al. (2018) 

[28] forming a broad perspective, several related studies on ED and/or EP that are closer to the 

goal of this work need to be discussed here separately. 

A first interesting work is given by Riske & Dimova (2005) [21] on giant unilamellar 

vesicles (GUVs) which are very similar to biological cells but less complicated systems due to 

the lack of cytoskeleton and other organelles. GUVs also exhibit ED and EP that makes them 

an experimental model system to study their phenomena in a less complicated scenario. The 

vesicle radii are in the range 10-15 m in this work that recorded the temporal dynamics (with 

a time resolution of 30 s) of the GUV response on application of an electric pulse and its 

further mechanical relaxation over six decades of time. It is reported that macropores (~2 m 

diameter) with pore lifetime of ~10 ms are formed. It is suggested that pore lifetime results 

from an interplay between pore edge tension and membrane viscosity. The conductivity ratio 

between inside to outside of the solution is ~1.3 (6/4.5 S/cm). With this low conductivity 

solution, the charging time is larger than the pulse duration used and the GUVs deform to a 

prolate shape along the average field direction which is quantified by ratio a/b as shown in 

Fig.2.3, where a and b are semi-axes parallel and perpendicular to the field. This ratio should 

not be confused with ‘strain’ which is discussed for the next study in this section. Both quantify 

deformation, however, this ratio is more commonly used for quantifying stretching and 

compression simultaneously. 

This study used several pulse strength-duration parameters (range: 1-3 kV/cm strength 

& 50-300 s duration). The mechanical response corresponding to these parameters is shown 

in the same figure. As the pulse strength increases the maximum value of a/b increases, which 

also increases with increased pulse duration for a single pulse strength. The major result of this 

work is that ED is affected by EP. This can be particularly seen in Fig.2.3C by the additional 
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plateau as the vesicle relaxes. It is shown that the mechanical relaxation dynamics has three 

regimes – area relaxation due to stretching, pore closure and curvature relaxation. 

Fig.2.3: ED and EP of vesicles (Adapted from Fig.1 & 5 of [21]). Degree of deformation (a/b) induced on one 
vesicle when applying different square-wave pulses (A) 1 kV/cm, (B) 2 kV/cm, (C) 3 kV/cm. For each pulse 
strength, the pulse durations were 50-300 s in steps of 50 s denoted by symbols (■, □, ▲, ○, ●, ). Image 
acquisition rate is 30,000 fps. The pulse begins at t=0. The insets show maximum value of deformation (a/b)max 
as a function of pulse duration, tp. The scale bar in A-C is 15 m. (D) Timelapse of the vesicle deformation for 
pulse duration 200 s and applied field 2 kV/cm. (Porated in third frame onwards, pore lifetime is 10 ms). Scale 
bar is 10 m. See the reference for more details. 

Another important study by MacQueen et al. (2010) [32] is used to characterize the 

ED of CHO cells and U937 promonocytes on a planar device. The device design is shown in 

Fig. 2.4 (a) and a pulsed AC field is applied. The frequency is set to 5 x 106 Hz and peak to 

peak voltage is varied between 2-10 V in the form of a square pulse. One cycle of this pulse 

is formed by letting the cell deform at 10 V up to its maximum deformation and letting it 

relax at 2 V (2V is used here as a ‘cell holding’ potential i.e. the applied stress is too weak to 

cause deformation). The strain data for one cycle of the pulse is shown in Fig.2.4 (b). CHO 

cells are found to be stiffer than U937 cells. There is 10 % strain observed in 70 s for CHO 

cells, while 23 % strain for U937 cells in 30 s which can be seen in Fig.2.4 (e). As the cycle 

continues, the strain cycle is also enhanced and thus subsequent deformation begins before a 

D 
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full mechanical relaxation from the previous cycle. Up to 70 % strain is observed for U937 

cells in the subsequent cycles while CHO cells reach up to 22 % strain. 

Fig.2.4: ED of biological cells (adapted from Fig.1b-c, Fig.2c-d and Fig.6 of [32]) Array of electrodes on a 
microscope glass slide, scale bar is 2 cm. A look at the electrodes geometry model, e1 is positive and e2 is negative. 
(c) A closer look at the electrode geometry model with a polarizable spherical object in between, scale bar is 25 
m (d) Optical microscopic image of a U937 cell between the electrodes, (e) Strain as a function of time during 
one cycle of the applied field. 

The use of pulsed AC field in the previous study is limited to only two constant peak-

peak voltages. In a very recent study, Qiang et al. (2018) [40] have employed pulsed AC 

fields by varying the peak-peak voltage in several ways using amplitude-modulated 

waveforms shown in Fig.2.5 (a), which smoothen the transition of exerted force over cell 

membrane and leads to unconventional strain profiles. The cell’s major axis stretches to twice 

its original value while the minor axis is compressed to half its original value. Compare for 

example the deformation pattern shown in Fig.2.4 (e) with Fig.2.5 (b). It should be noted that 

the two studies quantify deformation slightly differently, the previous uses ‘engineering 

strain’ and the latter uses ‘compression ratio’. The technique used in latter study essentially 

gives more control on the amount of ED of the cells than the usual techniques by virtue of 

smoothening the rise of force over time. Red Blood Cells (RBCs) are used in this study to 

measure nonlinear viscoelasticity of their membranes. This is accomplished by using Kelvin-

(a) 

(b) 

(c) (d) 

(e) 
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Voigt model of viscoelasticity which takes the shear stress calculation and deformation 

measurements as inputs and gives membrane shear modulus and viscous relaxation time as 

outputs. 

 

Fig.2.5: Unconventional strain profiles (Adapted from Fig.1d, 5b, 6 of [40]) quantified by minor axis compression, 
λ=b0/b(t) (a) Amplitude modulated waveforms for excitation labelled E1(t)-E4(t), (b) λ for E2(t). Each step is 0.25 
s. Insets show RBC deformations at specific times, (c) Vrms for E3(t) (red) and electrical stress (blue), (d) λ for 
E3(t), (e-f) As in (c-d) for E4(t). 

 

All these reports covered a wide range of issues in context of ED and EP. The 

experimental studies considered either a single or few cells to obtain insights into the 

electromechanical response, however the realistic scenarios correspond to dense cell 

suspensions and complex cellular arrangements of a tissue for which simultaneous ED and EP 

have not been extensively studied yet either by numerical or experimental means. As the 

experimental precision and accuracy of force measurement and application at various scales of 

biological media improve, numerical models based on ED and EP of collective cell assemblies 

form a timely subject of research. The next chapter discusses how numerical methods can be 

useful in predicting measurable and observable quantities which can improve our 

understanding of the first-principles of the Multiphysics assemblies of the biological tissues. 

  

(a) (b) (c) 

(e) 

(d) 

(f) 

49



 

  

50



3. Modelling cells and tissues 

3.1 Introduction 

Fundamental principles of physics (electrostatics and mechanics) can be used to 

construct mathematical models for the purpose of studying ED and EP phenomena. They rely 

on the resolution of partial differential equations (PDEs) in space and time. Analytical solutions 

of these PDEs can be obtained only for high-symmetry and simple geometries. Thus, for most 

of the realistic scenarios in biological media, which lack symmetry and have complex 

geometries, numerical methods are employed to approximate the solutions of involved PDEs. 

Solving them can be realized by many numerical methods such as Finite Element Methods 

(FEM) [41], Finite Difference Methods (FDM) [42], Boundary Element Methods (BEM) [43], 

etc. These methods differ in several aspects such as discretization of space, size scaling, etc. 

FDM differs from FEM and BEM in terms of representation of the derivative in PDEs as finite 

differences, whereas FEM and BEM use integration of the derivative in PDEs. Even though 

FDM has a simpler approach to solution (since numerical integration is more demanding than 

differentiation) and well established for analysis of a broad frequency range while using a short 

pulse in time, FDM is not suitable for modelling deforming object boundaries because it uses 

rectangular grids on which curved objects must be approximated whereas arbitrary or at least 

simply curved shape of cells is mandatory in this work. On the other hand, BEM cannot account 

for the electric potential and mechanical stress distribution in the volume regions away from 

the cell membrane because it is only implemented on the boundary, thus volume regions are 

not solved for. FEM is chosen here because firstly, the involved geometry may contain multiple 

arbitrary shaped cells with curved surfaces which are allowed to deform in time and FEM 

solves both on the boundaries as well as the volume in the space. Secondly, since several 

spatially and randomly distributed cells with deforming boundaries do not have any analytical 

51



formulation for describing electrical and mechanical stress distribution in the volume regions. 

Lastly, since FEM is well suited for transient and nonlinear problems. All equations used in 

this work and the coupling of physics are discussed in this chapter. We first begin by giving a 

flavor of the FEM with an overview of the numerical procedures to generate a basic 

understanding for the reader. 

3.2 Finite Element Method 

Assuming that the solution of a PDE that is required to be solved is given by an 

unknown function 𝑓, defined on the x-axis (1D) (Fig.3.1). The function 𝑓 can be approximated 

by a numerical method (FEM) as 𝑓ℎ  by following a systematic procedure that has the advantage 

of modelling curved geometries and various material properties involving heterogeneity. 

 

Fig. 3.1: (a) Illustration of an arbitrary 1D solution approximation by FEM. Blue solid curve represents the real 

solution, 𝑓. Green dashed curve is the approximated solution, 𝑓ℎ, [41], (b) 3D finite elements surface mesh of a 

spherical cell under an applied electric field (vertical direction), red arrows indicate electrical stress which is 
calculated from the approximated solution for the PDE – Poisson’s equation. 

 

The first step considers the discretization of the domain of 𝑓 on x-axis employing a 

larger number of elements, Ne. In 1D, the elements are line segments. For 2D, the elements 

take the shape of triangles or quadrilaterals while for 3D, they take the shape of prisms, 

𝑓0 

𝑓1 

𝑓5 

𝜓5 𝜓1 𝜓0 

1 

𝑥 − 𝑎𝑥𝑖𝑠 

(a) (b) 
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tetrahedrons or parallelepiped.  Each element uses a set of n basis (or shape) functions  𝜓𝑖 
(polynomials) which can be linear, quadratic or cubic in order to make a ‘guess solution’. Each 

linear element uses 2 nodes, quadratic element uses 3 nodes and cubic element uses 4 nodes. 

Thus the choice of these basis functions further dictates the total number of nodes. There are 

Ne + 1 nodes for linear elements, 2Ne + 1 nodes for quadratic elements and 3Ne + 1 nodes for 

cubic elements.  

The second step is to formulate element-level equations. For a single element, the guess 

solution is approximated using a linear combination of n basis functions and then it is plugged 

into the PDE to calculate a residual. The residual is then multiplied with a weight (or test) 

function 𝑤𝑗, which is also a polynomial, and integrated over the element length to obtain an 

algebraic equation. Since, n test functions are used therefore n algebraic equations per element 

are obtained forming a system matrix of size n x n per element. The basis functions, 𝜓𝑖 are 

expressed as functions of the node position (x, y, z) defined on the local coordinate system 

between any two nodes on an interval 𝜇:[-1,1]. They are shown in the image (Fig.3.1) as linear 

but they can be quadratic such as given below (Eq.3.1) or a higher order polynomial. The test 

functions can be chosen to be same as the basis functions (Galerkin method). 

 𝜓1 = 12𝜇(𝜇 − 1),𝜓2 = 1 − 𝜇2 , 𝜓3 = 12𝜇(𝜇 + 1) (Eq.3.1) 

The third step involves the assembly of the element-level equations (shown below) 

along with the boundary conditions imposed, thus forming a larger system of equation 𝐾. 𝑈 =𝐹 with a size of the system matrix 𝐾 and the vectors 𝑈, 𝐹 depending on the total number of 

nodes. The limits of the integral denote the nodal extents for the element in consideration. The 

system of equations is solved for the unknown coefficients listed in 𝑈 thereby approximating 

the solution 𝑓 over the complete domain, which equals 𝑓ℎ . The set of equations involved in the 

overall procedure are shown in Eq.3.2. 
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𝑓1 =∑𝑓𝑖1𝜓𝑖1𝑛
𝑖 …⁡𝑓𝑁𝑒 =∑𝑓𝑖𝑁𝑒𝜓𝑖𝑁𝑒𝑛

𝑖  

∫ 𝑤1𝑃𝐷𝐸(𝑓1)𝑑Ωℎ𝑒
ℎ𝑒−1 = 0…∫ 𝑤𝑛𝑃𝐷𝐸(𝑓1)𝑑Ωℎ𝑒

ℎ𝑒−1 = 0⋮∫ 𝑤1𝑃𝐷𝐸(𝑓𝑁𝑒)𝑑Ωℎ𝑒ℎ𝑒−1 = 0…∫ 𝑤𝑛𝑃𝐷𝐸(𝑓𝑁𝑒)𝑑Ωℎ𝑒ℎ𝑒−1 = 0⁡ 
𝐾.𝑈 = 𝐹 

(Eq.3.2) 

The three-step procedure shown above for equation formulation prepares the original 

PDE for numerical solvers which is now re-explained in different terms. The original PDE with 

all its boundary conditions specified is required to be solved in the entire domain at all material 

points. This is the so-called ‘strong form’ PDE. Solving a strong form PDE is numerically 

challenging. In the finite element formulation shown above, the strong form PDE is re-written 

in an integral form before plugging the element-level equations into it and using the method of 

weighted residuals (MWR, the integral statements above), a ‘weak form’ PDE is used in 

multiplication with the weight function. The weak form makes use of the Green’s Identity and 

reduces second order partial derivative to first order. MWR approach offers an alternative to 

the traditionally used energy minimization principles approach to equation formulation.  

In order to solve for the coefficients of the system matrix, there are mainly two types 

of solvers - ‘Direct solvers’ and ‘Iterative solvers’ [44]. Direct solvers can be used for small 

and midrange-sized problems, while the iterative solvers can be used for larger linear systems 

or non-linear parts of the problem. The basic direct method in use is the ‘LU factorization’ 

method which is based on decomposing the system matrix into a product of two simpler 

matrices. Some commonly used direct solvers are MUMPS and PARDISO, they differ in 

computational efficiency which is better in the latter as it can use multiple cores of the CPU. 

Some commonly used iterative methods are CG, GMRES, BiCG-Stab etc. A number of 

iterative solvers with cutting-edge preconditioners, such as multigrid preconditioners are 
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available. These preconditioners provide robustness and speed in the iterative solution process.  

Iterative methods can be ‘Stationary’ and ‘Non-stationary’. In the stationary methods, the 

system matrix is re-written as a sum of a two to three matrices following preconditioning 

schemes defined by ‘Jacobi’ or ‘SOR’. In the non-stationary methods for linear systems, 

preconditioning schemes defined by ‘geometric or algebraic multigrid’ are used. The 

nonlinearity of models can be dealt with Newton-Raphson method which uses local derivative 

information to search for better solution candidates and linearize the non-linear problem. It 

then solves a sequence of linear equation systems, using the Jacobian matrix, in order to find 

the solution. 

3.3 COMSOL Multiphysics and computational resources 

COMSOL Mulitphysics® software (v3.5a & v5.2) is used for performing simulations 

and post-processing along with its:  

1. ‘AC/DC’ module that contains ‘Electrostatics’ and ‘Electric Currents’ interfaces,  

2. ‘Structural Mechanics’ module that contains ‘Solid Mechanics’ and ‘Membrane’ 

interfaces and  

3. ‘Mathematics’ module that contain ‘PDE Interfaces’.  

Mathworks® MATLAB software (R14 and R2016a) is also used for further data 

analysis. All simulations and data analyses are performed on a computer equipped with 

INTEL® CORE™ i7-5500U CPU @ 2.4 GHz, 2 Cores, 4 Logical processors, 8 GB RAM and 

NVIDIA GeForce 920M graphics card. The time consumption for the simulations varies from 

a few seconds to one and a half hour depending upon the number of degrees of freedom which 

are determined by the type of analysis, geometric complexity, meshing and the involved PDEs. 

If one simulation is performed for each of the hundreds or thousands of statistical realizations 

(or configurations), then the computational time can go up to more than 24 hours.  

55



3.4 Electric field fluctuations 

Before dealing with the complexity of numerically modelling the multiphysics of 

biological structures in Section 3.5, this section presents our first results to compute the average 

effective permittivity (and its moments) for a single two-phase hetero-structure under an 

applied electric field. Our first idea in tackling the modelling of cell assemblies was to use tools 

from statistical physics which are appropriate for complex systems with a lot of interface 

boundaries. Checkerboard system was used to evaluate the roles of interface, corner and scaling 

to understand the electric field line distribution and polarization. The external electrical 

stimulus is applied by maintaining a potential difference across two electrodes at the top and 

bottom of the checkerboard. Fluctuations of the local electric field and its averages in a 

checkerboard can be used to approximate its effective dielectric response by considering 

hundreds to thousands of its statistical representations within ergodic assumption. In Shamoon 

et al. (2017) [45], we compare two averaging methods which are used to calculate the effective 

dielectric properties. The averaging methods are based either on using the local electric field 

values or its square which accounts for electrical energy, weighted with local material 

properties in the 2-phase media.  

The 2D structures in the form of random checkerboards is formed by a distribution of 

two phases shown in black and white colors and scaled by the number of phases. In this study, 

the assigned relative permittivity is complex, having an imaginary part which signifies 

absorbing media. For example, Fig.3.2 shows all realizations for the smallest checkerboard of 

size 2x2. It is worth noting that only 6 realizations are possible for filling fraction set to 0.5. 

This number increases from 6 (size 2x2) to 12870 (size 4x4) to 9075135300 (size 6x6) to the 

order of 1018 (size 8x8). The total number of configurations including that for all area fractions 

is given by 2NxN.  
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Fig.3.2: Smallest checkerboard of size 2x2 with all possible configurations with filling fraction of the second 
material (black) on the x-axis and number of configurations for the given filling fraction on the y-axis. Relative 
permittivity is denoted by ε. 

 

The statistical realizations of the 2-phase media in the form of checkerboards of larger 

sizes (4x4 and beyond) are generated using an algorithm (Appendix A) based on Monte-Carlo 

method and the desired number of realizations is randomly sampled to solve Laplace equation. 

The checkerboard geometry inherently possesses interface boundaries of two phases at multiple 

corners. Sharp corners appearing on the material boundary interface are known to give rise to 

a high gradient of electric field. The mesh around each intersection point is made much finer 

than in regions away from it (Fig.3.3 (a)) to ensure a better accuracy of the solution. The 

generated checkerboards go through a steady-state analysis by applying an electric field going 

from bottom edge to the top. Once the solution is obtained, electric field line distribution can 

be plotted (Fig.3.3 (b)). The averaging procedures are then employed to estimate the effective 

dielectric properties. 

White: 𝜀1 ; Black: 𝜀2 

Filling fraction, 
2
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Fig.3.3: (a) Meshing in a 4x4 checkerboard. (b) Electric field streamlines for 4x4 checkerboard (a particular 
realization of filling fraction 1/8 with 𝜀1 = 1, 𝜀2 = 5) under an applied electric field from bottom to top edge. 

 

It is worth noting that this individual simulation for electrical steady-state analysis takes 

only a few seconds but for a large number of realizations to be considered, it requires a 

computational time which can go over 24 hours.  

Calculations of the effective dielectric properties of composite media have been 

extensively studied [46]. The current analysis of second order permittivity variations and 

comparison of accuracy among the different averaging methods stated above reveals that 

averaging local electric field is more accurate than averaging local electrical energy for 

obtaining effective permittivity of large black and white checkerboards. Additionally, the 

statistical approach allowed us to estimate the small number of realizations required to obtain 

a fixed accuracy. Even though the statistical approach employed for calculation of electric field 

fluctuations in heterogeneous media is interesting, it cannot be easily employed in the case of 

deforming and arbitrary shaped biological cell assembly mainly because the advanced selection 

methods for deforming boundary surfaces within COMSOL software environment are 

technically more demanding. Moreover, a thousand realizations of the N-cell assembly demand 

much larger amount of time for computation and post-simulation data analysis. 

(a) (b) 
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Understanding the collective, low-frequency dielectric properties of heterostructures is a major

goal in condensed matter. In 1935, Bruggeman [Ann. Phys. Lpz. 24, 636 (1935)] conceived the

concept of an effective medium approximation (EMA) involving a decoupling between the low-

order statistics of the electric field fluctuations and the characteristic length scales. We report on

and characterize, via finite element studies, the low-order statistics effective permittivity of two-

phase 2D and 3D random and deterministic heterostructures as geometry, phase permittivity con-

trast, and inclusion content are varied. Since EMA analytical expressions become cumbersome

even for simple shapes and arrangements, numerical approaches are more suitable for studying

heterostructures with complex shapes and topologies. Our numerical study verifies the EMA

analytic predictions when the scales are well-separated. Our numerical study compares two

approaches for calculating effective permittivity by explicit calculations of local average fields

and energy as geometry, phase permittivity contrast, and inclusion content are varied. We study

the conditions under which these approaches give a reliable estimate of permittivity by compar-

ing with 2D/3D EMA analytical models and duality relation. By considering 2D checkerboards

which consist of a multitude of contiguous N�N square cells, the influence of the internal length

scale (i.e., N) on permittivity is discussed. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4985799]

I. INTRODUCTION AND MOTIVATION

There is currently a significant push to explore the chal-

lenging problem of modelling the dielectric properties of disor-

dered heterostructures for which the microscopic translational

symmetry is broken. For recent progress in this direction, see

Refs. 1–3. The effective medium approximation (EMA) at its

heart is a statistical concept and is one of the overarching ques-

tions guiding the field of contemporary heterostructures phys-

ics.1–3 Generically, within the EMA, one can replace the

heterogeneous system by a fictitious medium with uniform

permittivity to understand the collective, low-frequency dielec-

tric properties. Rooted in the pioneering work by Bruggeman4

in the 1930s, EMA is being tested ever more precisely by

numerical simulation and experiments, even while conceptual

questions remain, e.g., the interplay between disorder scale

and interactions. In the case of multiphase heterostructures, the

implementation of EMA requires that the typical size of het-

erogeneity is much smaller than the free space wavelength of

the electromagnetic wave k (‘ � L � k, where ‘ and L are

the transport mean free path and the thickness of the medium,

respectively).

In many situations, it is desirable to have a precise and

definite meaning for the “effective complex permittivity”

e ¼ e0ðe0 þ e00iÞ of heterostructures, with e0 being the permit-

tivity of vacuum. The imaginary part is often referred

to as the dielectric loss factor. In discussing the dielectric

properties of heterostructures, we note that there have essen-

tially been two distinct approaches to define the effective

permittivity e of a composite material.2,3,5 One approach is a

field statistical one, and a variety of techniques have been

devised in order to get e as the average over the statistical

variations of the material. On the other hand, an alternate

approach to the problem is based on an energy viewpoint.

The former is based on the first-order statistics of the electric

field, while the latter is a second-order energy representation

of the electric field. We have several motivations for consid-

ering this problem. First, the use of solely one of the two def-

initions given above does not guarantee an unambiguous

determination of e. Second, a few explicit studies investi-

gated the equivalence between both definitions. Third, inves-

tigating e and the local field concentration in multifunctional

composite architectures is attracting considerable attention

for many important technological implications owing to the

drastic downscaling of devices.6

Ever-growing numerical simulations, e.g., finite ele-

ment, have provided a comprehensive framework to describe

e.1–3,5,7,12 A recent example of such accurate effective mod-

els is how permittivity of randomised scalable checkerboard

geometries varies with randomization of phases and scaling.7

In this paper, a comparison is made between the results of e

calculations of Ref. 7 dealing with real-valued phase permit-

tivity and the current ones considering complex numbers

describing lossy materials. However, attempts to reliably

extract and understand the electric response of composite

materials have been hindered by large systematic uncertain-

ties of the phase permittivities and a detailed knowledge of

their structures.13 Another source of difficulty is the limita-

tion of many numerical techniques to relatively small sys-

tems. We improved our e calculation algorithm by imposinga)Electronic mail: brosseau@univ-brest.fr
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that each realization chosen out of the whole ensemble of all

possible realizations is used only once in the statistics of e.

Consequently, the interpretation of their randomness and dis-

order signatures is often difficult and sometimes controver-

sial. With these comments as motivation, we turn to assess if

the EMA-based analysis of low-order statistics of permittiv-

ity and electric field gives the same quantitative results. Key

questions at the intersection of computational physics and

materials science are still to be resolved. How do the geome-

try and topology characteristics influence the two ways for

evaluating e? What are the bounds of the electric field aver-

ages and how they depend on the symmetry of heterostruc-

tures? In order to tackle these essential issues, we consider

simple possible (genuinely realizable) models of two-phase

heterostructures, i.e., checkerboards, planar multilayers, and

disk or sphere dispersions, which yet remain rich enough to

exhibit a wide range of dielectric properties.
2,3 Our numeri-

cal study verifies well the EMA analytic predictions for the

effective permittivity and field statistics of these specific

examples. Many models based on different approaches have

been proposed to account for the evaluation of the field aver-

ages in heterostructures, e.g., Refs. 2, 8, and 14–16. The

reader is encouraged to read these references to get a more

complete understanding of this subject. Previous calculations

of e in two-phase heterostructures have reported different var-

iations of e as a function of volume fraction, inclusion shape,

and arrangement. The main focus of this study is on the sys-

tematic comparison of e obtained by different approaches,

i.e., second-order ensemble average and first-order volume

average using the finite element method. Precise knowledge

of e is important in understanding the relaxation processes,

i.e., polarization and conduction, of heterostructures. The data

are presented in tabular form, in hope that they can be useful

to those interested in clarifying the use of low-order statistics

equations for determining the effective complex permittivity

of heterostructures.

We now proceed to outline the methodology required to

characterize the statistics of permittivity and electric field.

Before delving into the details, in Sec. II we briefly make

some general remarks about the low-order statistics of e

which are relevant to our purpose. In Sec. III, we describe

some basic features of the fluctuations of the electric field.

Technical details on the calculation of e are summarized in

Sec. IV. In Sec. V, we discuss in detail, aided by illustrative

simulations, a few different models demonstrating our

claims. We conclude the paper in Sec. VI and discuss possi-

ble avenues for extension of this study.

II. LOW-ORDER STATISTICS OF THE EFFECTIVE
PERMITTIVITY

Here, we recap previous work in statistical properties

of heterostructures by introducing a formalism to calculate

the effective permittivity and characterize its fluctuations.

Within the usual mean-field approach2,3,14,15 defining the

low-order statistics of the effective permittivity, we note

that

��e � �e � varðeÞ=3�e: (1)

The first term of the right hand side of Eq. (1) is the average

value of e, while the second term is related to deviations of e

from its mean. The relative magnitudes of the terms can be

assessed only if some specific assumptions are made regard-

ing the statistics of e. One observes that Eq. (1) does not

involve shapes of particles and may be applied to a dispersion

of any shaped and randomly oriented particles. As an example

of the use of this formula and for later purpose, the interested

reader might now ask, how the first- and second-order

moments of e can be calculated? We first consider the case of

a “black-and-white” checkerboard2,3,7 composed of two iso-

tropic phases for which e ¼ e1 with probability p and e ¼ e2
with probability 1–p. In this case, �e ¼ e1ðpþ ð1� pÞrÞ and

varðeÞ ¼ pð1� pÞe21ð1� rÞ2, where r ¼ e2=e1. Under the

assumption of ergodicity, i.e., p¼/2 in the limit of infinitely

large volume, the effective permittivity can be expressed as

��e

e1
¼ /2 þ 1� /2ð Þrð Þ � /2 1� /2ð Þ 1� rð Þ2

3 /2 þ 1� /2ð Þrð Þ ; (2)

where the order parameter which characterizes the coplanar

ordering is the surface fraction /2 of phase 2. Certain limiting

forms for the effective permittivity can be found when the

constituent fluctuations of the checkerboard have a large vari-

ance, e.g., when r is large. These limiting forms can provide

useful approximations when the conditions for their validity

are met. Another simple example deals with the series law.2,3

In that case, �e ¼ e1/1 þ e2/2 ¼ e1 þ ðe2 � e1Þ/2 and the var-

iance is varðeÞ ¼ ðe2 � e1Þ2/2ð1� /2Þ, so that according to

Eq. (1) the effective permittivity is

��e

e1
¼ 1� r � 1ð Þ2/2 1� /2ð Þ

3 1þ r � 1ð Þ/2

� �2
: (3)

The fact that average permittivities of composite particulate

materials may be accompanied by appreciable standard devi-

ations has been recognized by many authors,7–11 to which

the reader is referred for detailed discussion of this question.

To be specific, these authors calculated the average and stan-

dard deviation of the permittivity of an ensemble of many

realizations corresponding to planar multilayers9 and 2D two-

color checkerboards2,3,7 for which a rigorous theory exists.

III. FIELD STATISTICAL ANALYSIS

As described in much detail in Refs. 1–5, the idea of

effective medium for describing the dielectric properties of

heterostructures was put on a firm mathematical foundation

by Bruggeman. This work has inspired a large amount of

studies about implications and predictions.1 One result from

these early papers is that e satisfies

heðRÞEnðRÞi ¼ enhEnðRÞi; (4)

which relates the spatial average of the electric displacement

field hDi to the spatial average of the electric field hEi, with
R being the notation for a given point in space and n being a

unit vector parallel to the direction of the applied electric

field. In the ensuing discussion, we will omit the running
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projection subscript n on fields. This decoupling has another

important feature: it does not depend on the internal length

scales, i.e., we can replace the heterostructure that has rapid

oscillations in its permittivity by an effective material with a

slowly varying effective permittivity without changing the

local averages of the electric fields.

Two generic implications are that (i) the composite con-

tains subwavelength components but with a sufficiently large

scale so that in each component the behavior of the material is

controlled by macroscopic constitutive equations and (ii) the

random composite material is assumed to be statistically homo-

geneous. Further simplification can be accomplished by adopt-

ing an ergodic assumption, i.e., the ensemble averages can be

replaced with the spacial averages. Unfortunately, this straight-

forward definition often leads to complications because Eq. (4)

does not lead to an efficient way to find e because the problem

of determining global physical quantities of interest consistent

with the local data is known to be computationally hard. An

examination of Eq. (4) shows that it requires that we know the

microgeometry of the composite, a task not easy to carry out.

Another drawback with this approach is that e depends not

only on the microstructure but also on the permittivity contrast

r ¼ e2=e1. If r is changed, all calculations need to be repeated.
Consider again the two-(isotropic) phase composite

materials shown in Figs. 1 and 2. The spatial average fields

in each phase are hEi1 ¼ V�1
1

Ð

V1
EðRÞds and hEi2 ¼ V�1

2

FIG. 1. Deterministic two-phase heter-

ostructures considered in this study: (a)

single sphere (i.e., isotropic phase 1:

scalar permittivity e1, red area) embed-

ded in the other (i.e., isotropic phase 2:

scalar permittivity e2, white area); (b)

laminate material; Let us consider a

semi-infinite medium composed of

infinite slabs (along the y direction)

with randomly chosen thicknesses. We

assume that the composite medium is

fabricated by alternately placing one

type slab (i.e., isotropic phase 1: scalar

permittivity e1, red area) upon the

other (i.e., isotropic phase 2: scalar

permittivity e2, white area); (c) differs

by the orientation of the stratification

axis with respect to the applied electric

field. One immediately sees that the

two cases correspond to condensers in

series and parallel; (d) three cylinders

with axis oriented in the direction of

the applied electric field; (e) (e) differs

from (d) by the orientation of the cylin-

der axis with respect to the applied

electric field; (f) as in (e) but filling

fraction is increased by increasing the

radius such that two of the cylinders

overlap.
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Ð

V2
EðRÞds, respectively. From the linearity of expectation,

hEi is given exactly by hEi ¼ ð1� /2ÞhEi1 þ /2hEi2 and

Eq. (4) reads

ehEi ¼ ð1� /2Þe1hEi1 þ /2e2hEi2: (5)

Using these expressions, we find
hEi2
hEi ¼ 1

/2

e=e1�1

r�1

� �

. Perhaps

the most straightforward examples of two-phase composite

materials are the stratified mixtures [Figs. 1(b) and 1(c)].

When the field is perpendicular to all interfaces of the com-

posite, hEi ¼ r
1�/2

/2

� �

hEi2, and when it is perpendicular to

none, we get hEi ¼ hEi2.
A handful of papers have proposed e definition via the

energy stored in the dielectric of a parallel plate capacitor,

e.g., Ref. 16. This energy representation approach purport-

edly allows e to be determined as

heðRÞjEðRÞj2i ¼ ehjEðRÞj2i: (6)

From Eq. (6), we see that e is obtained regardless of the elec-

tric vector field direction. The question of whether Eq. (6) is

determining the same value of e as that calculated from Eq.

(4) is of great practical importance.

For a two-phase system, Eq. (6) takes the form

ehjEj2i ¼ /2e2hjEj2i2 þ ð1� /2Þe1hjEj2i1: (7)

Using general arguments, a recent study17 has suggested that

jhEi2j
2=hjEj2i2 � 1 by making use of Schwarz’s inequality.

Additionally, these authors found that the spatially averaged

electric field should satisfy

ap ¼ jhEi2j
2=hjEj2i2; (8a)

or, analytically

ap ¼
1

/2

e

e1
� 1

e2

e1
� 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2
e002 �

e001e
0
2

e01

e00 � e001e
0

e01

0

B

B

B

@

1

C

C

C

A

: (8b)

We now have some ammunition to tackle the questions we

raised in Sec. I. We will restrict our attention to the EMA of

the dielectric response, i.e., the electric field being curl-free,

it must satisfy r � ½eðRÞE� ¼ 0.

IV. TECHNICAL DETAILS

Here, we review a few basic technical details about the

simulations. The assumptions behind the results we present

here are that (i) two isotropic phases are present and (ii) per-

fect contact between the two phases is assumed so the electric

potential and normal component of the displacement vector

are continuous across the two-phase interface. The present

day workhorse for ab initio modelling and prediction of

dielectric heterostructures, finite element method, is particu-

larly efficient and computationally inexpensive.3 Here, electri-

cal modeling is carried out using the commercially available

2D and 3D finite element modeling software COMSOL
VR
3.4

Multiphysics package (COMSOL, Inc.).19 Our procedure for

calculating e is the following when a constant, static, external

electric field is applied. The effective permittivity along the

direction corresponding to the applied field [e.g., z direction

in Fig. 1(a), 3D case] is found by integration via either

FIG. 2. (a) 2D representation of a two-color 2D checkerboard (N¼ 4) with

phase 1 (host matrix) in white color and phase 2 (inclusion) in black color.

Our algorithm allows us to create M realizations for each structure. To gener-

ate randomized colored ckeckerboards, a program was written in MATLAB
VR
,

(b) as in (a) for N¼ 6, (c) as in (a) for N¼ 8.
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ez ¼

ð ð ð

V

ek x; y; zð Þ@zVdxdydz

ð ð ð

V

@zVdxdydz

; (9)

or

e ¼

ð ð ð

V

ek x; y; zð Þ @xVð Þ2 þ @yV
� �2 þ @zVð Þ2

h i

dxdydz

ð ð ð

V

@xVð Þ2 þ @yV
� �2 þ @zVð Þ2

h i

dxdydz

;

(10)

where k¼ 1, 2, and V is the electric potential. The effective

permittivity e was calculated by considering as a model sys-

tem a cubic cell of size L [Fig. 1(a)] with boundary condi-

tions by imposing V¼V2¼ 1V on C2, V¼V1¼ 0V on C1,

and @nV ¼ 0 on C3, C4, C5, and C6. Corresponding equations

for the 2D case are obtained by changing V in S which is the

surface of the unit cell perpendicular to the applied field. The

finite element method is employed for the discretization of

the aforementioned equation and was carried out in static

condition with the DC module of COMSOL using a personal

computer with a Pentium IV processor (3GHz).

Triangular meshes were used. We triple-checked our cal-

culations by making use of different mesh densities [standard

(type1), finer (type2), and dense(type3) at corner points]. Each

tile was submeshed. For example, the 4� 4 checkerboard has

a total of 722 triangular elements for type1 (44 per tile), 2888

for type2, and 3136 for type3. For 12� 12 checkerboards, the

numbers are 2016 for type1 (14 per tile), 8064 for type2, and

11232 for type3. Type3 is a variable mesh as it gets dense at the

corners. Typical min and max element edge lengths can be esti-

mated from the numbers given above. We did not differentiate

in meshing the background and inclusions separately. Even for

the higher permittivities tested, the cross check with the three

types of meshes used gave small differences in the results

affecting only the third or fourth decimal places.

V. COMPUTATIONAL RESULTS

With this in mind, we are now ready to analyze (experi-

mentally realizable) 2D and 3D two-phase heterostructures.

In our study, we consider the various static systems shown in

Figs. 1 and 2. We start by addressing the question of permit-

tivity statistics in two-color checkerboards which provide an

intuitive picture for much of the fascinating physics that

occurs in random heterostructures.

A. Random heterostructures

A specific example is the two-color 2D checkerboard

structure illustrated in Fig. 2 which consists of a multitude of

contiguous N�N square cells, with randomly and indepen-

dently chosen intrinsic permittivity for each cell. Our algo-

rithm uses a specific test to ensure that his permittivity

assignment is not repeated in subsequent realizations. Each

realization of the checkerboard structure may be regarded as

being infinite in extent, but to ensure a model that is at least

wide-sense stationary over space, the location of each phase

is taken to be random, with a uniform distribution of proba-

bility over an N � N square. We attribute to each elementary

square cell either the white (phase 1, host matrix) or the

black color (phase 2, inclusion). For given /2, there is a set

of combinatorial structures (N¼2N
2

) corresponding to the

allowable realizations for this 2-color encoding. For /2¼0:5,

the grid can be tiled
N2

N2=2

� �

¼ X ways. Exploring the sta-

tistical behavior of checkerboards for N 	 4 is hindered by

the large computational cost. As such, our procedure only

tests a conspicuously small subset of the prodigious number

of possible realizations of square N � N random checker-

boards. Using an iterative algorithm,7 previous simulations

have suggested that an accurate approximate EMA represen-

tation of e can be obtained by considering M realizations of

disorder at different permittivity ratios r. We first point out

an important general observation with regard to the conver-

gence of our results. For all surface fractions and N consid-

ered, M can be as low as 10 for low permittivity contrast but

it can be of the order of 1000 for high permittivity contrast to

get a very good approximation of e, consistent with previous

work.7 The subset selectivity is made randomly and we

check carefully that the results of our numerical simulations

are independent of this choice. Thus, our algorithm requires

only modest computing resources. No algorithm has so far

managed to probe the statistical properties of random check-

erboards, due to the impossibility of dealing with the tremen-

dous number of possible realizations when N is large and /2

takes an arbitrary value.18 One important aspect of the ongo-

ing simulations is that /2 ¼ 0:50 corresponding to the half-

filling statistically isotropic case. In that case, e is invariant

under rotation and Keller-Dykhne duality relation states

that the effective permittivity of the checkerboard array of

squares is equal to the geometric mean of those of the two

phases, i.e., e ¼ ffiffiffiffiffiffiffiffi

e1e2
p

. Differently from Ref. 7, we consider

inclusion permittivity characterized by complex numbers.

A summary of the calculated e and ap values is provided

in Tables I–VII. In practice, the performance of our numerical

scheme is good as shown by exact numerical simulations. A

consistency check is making sure that for /2 ¼ 0:5, the ensem-

ble average over M random realizations �e ¼ M�1
PM

i¼1 ei
gives the exact value. This result follows from the fact that in

the EMA, a disordered but on average isotropic structure has

its effective permittivity satisfying the duality transformation.

References 2, 3, and 7 provide support for this conclusion.

Therefore, robust e values can be obtained by our method. For

e1¼ 1 and e2¼ 3þ i (N¼ 4, Table I), (N¼ 6, Table IV), and

[N¼ 8, Table VII(a)], there is good agreement between the

numerical estimate of e obtained from Eq. (9) and its analytical

exact value. We find that calculations of e obtained from Eq.

(6) are significantly different from their exact value (up to

615%) as shown in Fig. 3 and thus are not shown in the tables.

We believe that this error arises because of an error of 2%–4%

in calculation of electric field norm due to the boundary condi-

tions on the transverse sides which force the x components of

the electric field to zero. For a high permittivity contrast
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structure, this error is expected. But since the displacement

field method uses only the y-components, this error is avoided.

Significant errors may arise due to the topological defects

imposed by heterogeneous boundary conditions, i.e., corner

points, affecting the effective properties depending on the per-

mittivity ratio between the phases.7 In the following, we will

restrict our e data comparison between the ensemble averages

for Eq. (4) and the results of Eq. (1) using average using the

finite element method.

Tables II, III, V, VI, and VII illustrate the situation con-

sidered for cases different than the special half filling case.

The most conspicuous feature of these tables is the close

similarity between the values of e and ap obtained by the two

approaches. We also performed a series of phase exchange

(duality) simulations since if the material is macroscopically

isotropic, then the Keller-Dykhne duality relation takes the

TABLE I. First principles effective permittivity calculations for the two-

color 2D checkerboard (N¼ 4) with e1¼ 1 [white (phase 1, host matrix)]

and e2¼ 3þ i [black color (phase 2, inclusion)]. Calculation of e is per-

formed by using Eq. (8a). The content (surface fraction) of the black phase

is /2¼ 0.5. The exact value predicted from the Keller-Dykhne duality rela-

tion is e ¼
ffiffiffiffiffiffiffiffiffiffi

3þ i
p

¼1.7553þ 0.2848i. M is the number of random realiza-

tions considered for the statistical average �e ¼ M�1
PM

i¼1 ei and variance

varðeÞ ¼ M�1
PM

i¼1 ðei � �eÞ2. The coefficient �ap is computed via statistical

average over the number M of realizations and is compared to the value

defined by Eq. (9). Note that �ap ¼ M�1
PM

i¼1 api and ��a p ffi 0:9151 are

obtained from Eq. (8b).

M �e ��e �ap

10 1.7670 þ 0.2948i 1.7655 þ 0.2876i 0.9354

50 1.7552 þ 0.2882i 1.7542 þ 0.2832i 0.9250

100 1.7519 þ 0.2831i 1.7513 þ 0.2797i 0.9271

1000 1.7553 þ 0.2873i 1.7545 þ 0.2834i 0.9247

12870 1.7565 þ 0.2883i 1.7557 þ 0.2844i 0.9249

TABLE II. (a) As in Table I for e1¼ 1 and e2¼ 3þ i, with /2¼ 3/

16¼ 0.1875; (b) As in (a) for /2¼ 13/16¼ 0.8125; (c) Compare with the

value eðe1; e2Þeðe2; e1Þ obtained from the Keller-Dykhne duality relation of

eðe1; e2Þeðe2; e1Þ ¼ e1e2 ¼ 3þ i. Note that �ap ¼ M�1
PM

i¼1 api and ��a p are

obtained from Eq. (8b).

(a)

M �e ��e �ap
��a p

10 1.2211 þ 0.0598i 1.2209 þ 0.0588i 0.9510 0.9508

50 1.2319 þ 0.0661i 1.2317 þ 0.0648i 0.9579 0.9578

560 1.2300 þ 0.0650i 1.2298 þ 0.0636i 0.9582 0.9581

(b)

M �e ��e �ap
��a p

10 2.4692 þ 0.6789i 2.4689 þ 0.6779i 0.9521 0.9521

50 2.4746 þ 0.6835i 2.4742 þ 0.6823i 0.9546 0.9545

560 2.4763 þ 0.6855i 2.4760 þ 0.6845i 0.9541 0.9541

(c)

M �eðaÞ�eðbÞ

10 2.9745 þ 0.9767i

50 3.0033 þ 1.0058i

560 3.0013 þ 1.0040i

TABLE III. (a) As in Table II (a) for e1¼ 1 and e2¼ 30þ i with /2¼ 3/

16¼ 0.1875; (b) As in (a) for /2¼ 13/16¼ 0.8125; (c) As in Table II (c): in

this case eðe1; e2Þeðe2; e1Þ ¼ e1e2 ¼ 30þ i.

(a)

M �e ��e �ap ��a p

10 1.5335 þ 0.0030i 1.5276 þ 0.0022i 0.7807 0.7693

50 1.5967 þ 0.0035i 1.5888 þ 0.0028i 0.7905 0.7803

560 1.5896 þ 0.0036i 1.5805 þ 0.0026i 0.7905 0.7797

(b)

M �e ��e �ap ��a p

10 19.3114 þ 0.6148i 19.2523 þ 0.6121i 0.8050 0.8031

50 19.4828 þ 0.6211i 19.3979 þ 0.6171i 0.8133 0.8108

560 19.5715 þ 0.6245i 19.5060 þ 0.6214i 0.8154 0.8133

(c)

M �eðaÞ�eðbÞ

10 29.6124 þ 0.9999i

50 31.1065 þ 1.0607i

560 31.1086 þ 1.0632i

TABLE IV. As in Table I for the case N¼ 6 with e1¼ 1 and e2¼ 3þ i,

/2¼ 0.5. The exact value predicted by the Keller-Dykhne duality relation is

again e ¼
ffiffiffiffiffiffiffiffiffiffi

3þ i
p

¼1.7553þ 0.2848i. Note that �ap ¼ M�1
PM

i¼1 api and
��a p ffi 0:9151 are obtained from Eq. (8b).

M �e ��e �ap

10 1.7414 þ 0.2784i 1.7411 þ 0.2773i 0.9056

50 1.7533 þ 0.2857i 1.7529 þ 0.2839i 0.9164

1000 1.7576 þ 0.2887i 1.7573 þ 0.2873i 0.9198

10000 1.7572 þ 0.2882i 1.7569 þ 0.2867i 0.9173

TABLE V. (a) As in Table IV (a) for e1¼ 1 and e2¼ 3þ i with /2¼ 7/

36¼ 0.1944; (b) As in (a) for /2¼ 29/36¼ 0.8056; (c) As in Table II (c): in

this case eðe1; e2Þeðe2; e1Þ ¼ e1e2 ¼ 3þ i. Note that �ap ¼ M�1
PM

i¼1 api and
��a p are obtained from Eq. (8b).

(a)

M �e ��e �ap ��a p

10 1.2357 þ 0.0661i 1.2356 þ 0.0658i 0.9379 0.9378

50 1.2441 þ 0.0791i 1.2440 þ 0.0713i 0.9347 0.9346

1000 1.2418 þ 0.0701i 1.2417 þ 0.0694i 0.9398 0.9397

(b)

M �e ��e �ap ��a p

10 2.4618 þ 0.6771i 2.4616 þ 0.6765i 0.9532 0.9532

50 2.4485 þ 0.6650i 2.4483 þ 0.6646i 0.9498 0.9498

1000 2.4573 þ 0.6726i 2.4571 þ 0.6722i 0.9523 0.9523

(c)

M �eðaÞ�eðbÞ

10 2.9972 þ 0.9995i

50 2.9984 þ 1.0032i

1000 3.0043 þ 1.0076i
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form �eðe1; e2Þ�eðe2; e1Þ ¼ e1e2. It is widely believed that this

result is independent of the details of the morphology of the

material.2,3,5 From Tables II, III, V, VI, and VII, we find

that, in all cases (N¼ 4, e1¼ 1 and e2¼ 3þ i; N¼ 4, e1¼ 1

and e2¼ 30þ i; N¼ 6, e1¼ 1 and e2¼ 3þ i; N¼ 6, e1¼ 1

and e2¼ 30þ i; N¼ 8, e1¼ 1 and e2¼ 3þ i), the e depen-

dence in the phase inversion follows the Keller-Dykhne

duality relation. From these tables, we find that, in all cases,

this result is obtained for both calculation approaches.

For isotropic two-phase mixtures, the field averages and

the effective permittivity are related by hE2ij=hEi2 ¼ /�1
j @je,

where @j ¼ @=@ej. Hence, for the half filling case,
7 we have

hE2i2=hEi
2 ¼ r�1=2: (11)

This result provides us with an exact expression for the field

averages. We emphasize that this prediction valid for arbi-

trary N � N random checkerboard is free from the rescaling

procedure. Another quantity of interest to us is ap which is

defined in terms of field averages according Eq. (8a).

Importantly, ap and �ap have a maximum value of 1 (within

the numerical uncertainty). The calculated values for a wide

range of cases (Tables I and IV) show that the results of our

numerical simulations are close to the exact value, even for

small values ofM.

Further scrutiny of Tables I to VI leads to two additional

observations. For cases different than the special half filling

case, one can see that ap � 1 even when the ratio of the real

part of the phase permittivity is large. Remarkably, we see

that ap is significantly reduced when phase inversion is case

of a large contrast between real part of permittivity of the

phases (Tables III and VI). Second, in Fig. 4 we show the

evolution of the real and imaginary parts of e with increasing

N, i.e., decreasing the internal length scale of the stochastic

inhomogeneities characterizing disorder and connectedness.

Furthermore, it is observed that the standard deviation for

both e0 and e00 leads also to a power law dependence, r /
N�b with b � 1:160:1. This indicates that the smaller the

value of N, the higher the role of fluctuations that can be

achieved in evaluating e. Figure 3 shows the average value and

variance of the real and imaginary parts of e obtained from

either Eq. (4) or Eq. (6) as a function of the numberM of reali-

zation used to determine the moments. In accordance with our

previous remark, 103 realizations seem to be a sufficient value

to get reproducible and convergent permittivity data.

Another important feature is the electric field spatial dis-

tribution [Fig. 5(a)]. The field within each phase is controlled

by the applied voltage gradient and by the polarization

charges on the interfaces between the two phases. In Ref. 17,

it was considered that ap ¼ 1 holds only if the electric field

in phase 2 does not vary spatially. We observe that this field

spatial distribution and the nominal value obtained from Eq.

(8b), i.e., ��ap ffi 0:9151, are consistent with this statement.

B. Further analysis: Deterministic heterostructures

We now proceed with a detailed analysis of the deter-

ministic systems with different symmetries illustrated in Fig.

1. This time, our calculation method only requires one sweep

over scale, and it is therefore computationally very efficient.

The results from our 3D numerical simulations are shown in

Tables VIII to X.

TABLE VI. (a) As in Table V (a) for e1¼ 1 and e2¼ 30þ i with /2¼ 7/

36¼ 0.1944; (b) As in (a) for /2¼ 29/36¼ 0.8056; (c) As in Table II (c): in
this case eðe1; e2Þeðe2; e1Þ ¼ e1e2 ¼ 30þ i. Note that �ap ¼ M�1

PM
i¼1 api and

��a p are obtained from Eq. (8b).

(a)

M �e ��e �ap ��a p

10 1.6174 þ 0.0041i 1.6155 þ 0.0039i 0.6282 0.6174

50 1.7047 þ 0.0057i 1.6991 þ 0.0050i 0.6300 0.6198

1000 1.6744 þ 0.0052i 1.6659 þ 0.0035i 0.6714 0.6612

(b)

M �e ��e �ap ��a p

10 19.1705 þ 0.6082i 19.1150 þ 0.6052i 0.8060 0.8044

50 18.6817 þ 0.5898i 18.6432 þ 0.5878i 0.7864 0.7853

1000 18.9709 þ 0.6006i 18.9305 þ 0.5986i 0.7982 0.7970

(c)

M �eðaÞ�eðbÞ

10 31.0037 þ 1.0629i

50 31.8435 þ 1.1115i

1000 31.7618 þ 1.1041i

TABLE VII. (a) As in Table I for the case N¼ 8 with e1¼ 1 and e2¼ 3þ i,

/2¼ 0.5. The exact value predicted by the Keller-Dykhne duality relation is

again e ¼
ffiffiffiffiffiffiffiffiffiffi

3þ i
p

¼1.7553þ 0.2848i; (b) As in (a) for /2¼ 13/64¼ 0.2031;

(c) As in (a) for /2¼ 51/64¼ 0.7969; As in Table II(c): in this case

eðe1; e2Þeðe2; e1Þ ¼ e1e2 ¼ 3þ i. Note that �ap ¼ M�1
PM

i¼1 api and ��a p

ffi 0:9151 are obtained from Eq. (8b).

(a)

M �e ��e �ap

10 1.7544 þ 0.2849i 1.7542 þ 0.2837i 0.9173

50 1.7559 þ 0.2869i 1.7558 þ 0.2861i 0.9151

1000 1.7575 þ 0.2887i 1.7574þ 0.2880i 0.9138

10 000 1.7583 þ 0.2895i 1.7581 þ 0.2887i 0.9136

(b)

M �e ��e �ap

10 1.2552 þ 0.0758i 1.2552 þ 0.0753i 0.9263

50 1.2546 þ 0.0747i 1.2545 þ 0.0743i 0.9335

1000 1.2550 þ 0.0751i 1.2549 þ 0.0747i 0.9318

(c)

M �e ��e �ap

10 2.4289 þ 0.6532i 2.4289 þ 0.6529i 0.9494

50 2.4365 þ 0.6607i 2.4364 þ 0.6603i 0.9508

1000 2.4348 þ 0.6593i 2.4347 þ 0.6590i 0.9501

(d)

M �eðaÞ�eðbÞ

10 2.9994 þ 1.0040i

50 3.0074 þ 1.0109i

1000 3.0061 þ 1.0103i
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Consider, first, the case of a single inclusion inside the

matrix [Fig. 1(a)]. In that case, we can use the virial equation

to evaluate e. The calculations in this study have mostly

/2 ¼ 0:1. Thus, to first order2,3,5,12

e

e1
¼ 1þ 3/2

r � 1

r þ 2
þ O /2

2

� �

; (12)

allows calculation of e as a function of /2 and r. Simulation

data collected in Tables VIII–X show no observable

FIG. 5. Electric field line distribution in the realization of the 8 � 8 checker-

board shown in Fig. 2(c) with e and ap data corresponding to Table VII(a).

e1¼ 1 and e2¼ 3þ i.

FIG. 3. (a) Comparison of the ensem-

ble average of the real part of e

obtained from Eqs. (4) and (6) for

checkerboards of size N¼ 4, 6, and 8.

e1¼ 1 [white (phase 1, host matrix)]

and e2¼ 3þ i [black color (phase 2,

inclusion)], /2¼ 0.5. Symbols are for

data obtained from Eq. (4) open blue

circles and solid line (N¼ 4), open

blue circles and dashed line (N¼ 6),

and open blue circles and dotted line

(N¼ 8). For data obtained from Eq.

(6), the blue circles are changed to

green squares; (b) As in (a) for the

imaginary part of e; (c) As in (a) for

the variance of the real part of e; As in

(b) for the variance for the imaginary

part of e.

FIG. 4. (a) Histograms showing distributions of the real part of e for 1000

randomly chosen realizations from a set of over 10 000 trials with e1¼ 1

[white (phase 1, host matrix)] and e2¼ 3þ i [black color (phase 2, inclu-

sion)], /2¼ 0.5 as a function of N; (b) as in (a) for the imaginary part of e..
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differences between the values obtained from both equations.

As seen from the first line of these tables, we match exactly

the permittivity data and this is consistent with earlier com-

putational studies.3,7,13 We have also obtained ap� 1 and

close to the calculated value obtained from Eq. (8).

We now turn to the case of stratified mixtures composed

of 3 slabs (along the z direction) of phase 2. The two diagrams

differ by the orientation of the stratification axis with respect

to the applied electric field, i.e., parallel (resp. perpendicular)

to E shown in Fig. 1(b) [resp. Fig. 1(c)]. If E is parallel to all

the dielectric interfaces of the composite [Fig. 1(b)], similar

considerations lead to the conclusion that ek is equal to the

weighted average of the permittivity of the constituents

ek
e1

¼ 1þ /2 r � 1ð Þ: (13)

It is simple to check explicitly that the permittivity e? of the

composite material with the electric field along the z axis,

i.e., perpendicular to the dielectric interfaces [Fig. 1(c)],

takes the form

e?
e1

¼ r

/2 þ r 1� /2ð Þ : (14)

In this case, the field in each phase will be uniform but dif-

ferent. In Table IX, we give both the e and ap of each of the

case illustrated in Figs. 1(b) and 1(c). Most notable from

Table IX is the good approximation obtained from Eq. (4)

using finite element calculations. This is consistent with Ref.

17. Next, we examine to what extent symmetry and dimen-

sionality can affect these results. Additionally, Table X illus-

trates good agreement between the results obtained for the

2D counterparts of 3D geometries shown in Fig. 1 with the

corresponding analytical results.

VI. CONCLUSION AND POTENTIAL FUTURE
DIRECTIONS

In conclusion, while the determination of the effective

permittivity and electric field fluctuations in composite struc-

tures is an extensively studied subject, the present study

reveals how nontrivial is the computation of the low-order

statistics of electric fields of 2D and 3D two-phase random

and deterministic structures in the absence of translational

invariance. Although wave propagation in such materials is

still experimentally and theoretically challenging, recent

numerical advances make it more accessible. As stringent

tests of our approach, we compare the theoretically predicted

effective permittivity and field average with their numeri-

cally simulated counterparts for different 2D and 3D geome-

tries, inclusion contents, and symmetries. Comprehensive

evidence shows that Eq. (4) provides an efficient numerical

TABLE X. As in TABLE VIII for 2D configurations. e1¼ 1 and e2¼ 3þ i. In that case, the analytical exact value of e is performed by using
e
e1
¼ 1þ 2/2

r�1
rþ1�/2ðr�1Þ þ O /2

2

� �

.2,3,12,15

Configuration /2 �e e exact value ap[Eq. (8a)] ap [Eq. (8b)]

Fig. 1(a) /2¼ 0.1 1.1115 þ 0.0262i 1.1114 þ 0.0262i 1 1

Fig. 1(b) /2¼ 0.1 1.2000 þ 0.1000i Eq. (11)¼ 1.2 þ 0.1i 1 1

Fig. 1(c) /2¼ 0.1 1.0752 þ 0.0114i Eq. (12)¼ 1.0751 þ 0.01161i 1 1

Fig. 1(e) /2¼ 0.1 1.1119 þ 0.0266i 0.9954

Fig. 1(f) /2¼ 0.337 1.4437 þ 0.1297i 0.979

TABLE IX. As in Table VIII for e1¼ 1 and e2¼ 30þ i.

Configuration /2 �e e exact value ap [Eq. (8a)] ap [Eq. (8b)]

Fig. 1(a) /2¼ 0.1 1.2991 þ 0.0011i Eq. (10)¼ 1.2987 þ 0.0011i 0.9970 0.9645

Fig. 1(b) /2¼ 0.1 3.8710 þ 0.0990i Eq. (11)¼ 3.9 þ 0.1i 1 1

Fig. 1(c) /2¼ 0.1 1.1058 þ 0.0001i Eq. (12)¼ 1.1069 þ 0.0262i 0.9999

Fig. 1(d) /2¼ 0.1 3.8994 þ 0.1000i Eq. (11)¼ 3.9 þ 0.1i 1 1

Fig. 1(e) /2¼ 0.1 1.2099 þ 0.0005i 0.9860

Fig. 1(f) /2¼ 0.337 2.0618 þ 0.0043i 0.9312

TABLE VIII. First principles effective permittivity calculations for the 3D configurations shown in Fig. 1 with e1¼ 1 [white (phase 1, host matrix)] and

e2¼ 3þ i ([red color (phase 2, inclusion)]. Two ways are considered for the calculation of e, either by using Eqs. (4) and (8a). The content (volume fraction) of

phase 2 is /2.

Configuration /2 �e e exact value �ap [Eq. (8a)] ap [Eq. (8b)]

Fig. 1(a) /2¼ 0.1 1.1320 þ 0.0377i Eq. (10)¼ 1.1320 þ 0.0377i 0.9999 1

Fig. 1(b) /2¼ 0.1 1.1980 þ 0.0990i Eq. (11)¼ 1.2 þ 0.1i 1 1

Fig. 1(c) /2¼ 0.1 1.0743 þ 0.0114i Eq. (12)¼ 1.0751 þ 0.0116i 1 1

Fig. 1(d) /2¼ 0.1 1.2000 þ 0.1000i Eq. (11)¼ 1.2 þ 0.1i 1 1

Fig. 1(e) /2¼ 0.1 1.1120 þ 0.0266i 0.9954

Fig. 1(f) /2¼ 0.337 1.4438 þ 0.1299i 0.9778

044106-9 Shamoon, Lasquellec, and Brosseau J. Appl. Phys. 122, 044106 (2017)

68



way to estimate e over an extended range of material

parameters.

What we can learn from the field of heterostructures can

have far-reaching implications in many fields of science.

There is a wide variety of directions for further research.

Going one step further, it would be interesting to push our

analysis further by considering multifunctional composite

architectures, e.g., additional unique properties can emerge

(such as magnetoelectricity) that are absent in intrinsic

phases,6 and hierarchical composites with dielectric proper-

ties that are superior to those of the constituent materials,

e.g., biocomposites.20 Another natural next step is to investi-

gate the dynamics of polarization in an electric field when

the phase permittivities are frequency dependent in the giga-

hertz and terahertz ranges of frequency for which most appli-

cations of interest lie. We hope to return to some of these

issues in the near future.
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3.5 Numerical protocol 

The Multiphysics modelling protocol for 3D biological cells is now introduced. It 

begins by describing the geometry, setting up the material properties and parameters to be used 

in the model. The geometry is then discretized by meshing prior to solving. Adjusting the mesh 

parameters can result in a coarser or finer mesh. As an illustration, the geometry and meshing 

for a single cell is shown in Fig.3.4. The geometry of the model contains several boundaries 

(3D surfaces) which are handled with appropriate constraints or boundary conditions. The 

initial values, parameters and material properties are in fact required by the accompanying 

differential equations or boundary conditions which are implemented as part of the sub-models 

– Electrical, Structural and Pore models. The output solution of one sub-model is coupled to 

the input of the other, wherever needed. Then, the model is solved for a steady-state analysis, 

frequency analysis or a time-dependent (transient) analysis. The obtained results are further 

post-processed for better visualizations and a statistical analysis thereafter in case of multiple 

configurations. This completes the numerical protocol. It must be noted that all the mentioned 

sub-models are coupled in this work for the time-dependent analysis in contrast to the results 

shown in sections 3.4 and 4.2 where only electrical sub-model is used in context of static and 

frequency analysis. 

 

Fig.3.4. Single cell (a) model geometry and (b) meshing (shown for surfaces only). 
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The aspects of geometry, meshing and modelling coupled physics are discussed in more 

detail in the next two sections.  

3.6 Geometry and meshing 

The geometry for the model is described in a 3D computational cube in which initially 

spherical cells are placed. Radii in the range from 4 m to 12 m have been used in this work. 

The positioning of spherical cells divides the computational cube in two distinct domains – one 

that refers to the cell interior and the other that refers to the cell exterior. As shown in Fig.3.5, 

multiple cells can be positioned in the cube. The space occupied by the cells in the cube defines 

the filling fraction.  

  

Fig.3.5. Positioning the spherical cells in the computational cube of sides 50 m by direct placement (left, filling 
fraction = 0.0536) and 120m by the algorithm-assisted placement (right, filling fraction = 0.1337) 

 

When the number of cells is small, only a few (e.g. less than ten) realizations are 

required and they can be positioned by manually specifying their locations ensuring desired 

proximity distances among the neighbors’ non-overlapping boundaries. But, when the number 

of cells is large enough or many realizations are required, it becomes necessary to use a 

computer algorithm which takes care of the non-overlapping constraint between cells and 

50 m 120 m X Y 

Z 
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iterative generation of new realizations (see Appendix A). The two methods are referred to in 

this text as ‘Direct’ placement and ‘Algorithm assisted’ placement. The latter is more relevant 

for having closer resemblance to high density multicellular cell suspensions and tissue. 

All distinct domains or volume regions are meshed with tetrahedral elements and thus 

all boundary surfaces with triangular elements and all lines with edge elements. The mesh is 

automatically refined in regions wherever two boundary surfaces occur in close proximity or a 

boundary becomes too curvy. Further refinement is always possible to control the mesh density 

by adjusting the mesh parameters. 2D cross section is shown in Fig.3.6. Since the cell 

membranes are very thin (~5-10 nm) in comparison to the overall size of the cell (~5-10 m), 

modelling them with distinct computational volume leads to a much denser mesh around it 

(Fig.3.6 (a)). Thus, cell membrane is rather modelled only as a meshed surface over which 

‘contact impedance’ boundary conditions are applied (shown in Eq.3.4, later) taking into 

account the voltage drop across it due to relevant factors i.e. the membrane thickness and its 

electrical and structural material properties. It is worth mentioning that both ways of modelling 

the cell membrane represent a Core-Shell structure. 

 

Fig. 3.6. 2D illustrations of the meshing of (a) single cell with its cell membrane modelled as a distinct region 
leading to a very dense mesh, (b) single cell with its cell membrane modelled not as a distinct region but via a 
‘Contact Impedance’ boundary condition  that couples the electric potential on either side of the membrane to its 
width and material properties, leading to a coarse mesh, (c) three cells in close proximity with same conditions as 
in (b) leading to a mesh density that is somewhere between (a) and (b). (d-e) Mesh quality illustrations for typical 
triangular and tetrahedral elements indicating a lower quality (~0-0.5) for skewed shapes and higher quality (~0.5-
1) for regular shapes. 

(a) (b) (c) 

(d) (e) ~0.69 ~0.99 ~0.69 ~0.99 
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To compare the number of mesh elements generated when using different number of 

cells, consider a 50m cube containing a single cell of radius 6 m in 3D, modelled with a 

distinct thickness for the membrane (20 times the usual 5 nm, i.e. 100 nm). It leads to 44390 

tetrahedral elements and 5259 triangular elements. Now, compare these numbers in Table 3.1 

with cases for a 19 cells configuration (put in a 55 m cube with cell radii as 5 and 10 m) and 

76 cells configuration (put in a 120 m cube with cell radii as 8, 10 and 12 m) which are 

shown in Fig.3.7, where the cell membrane is modelled as a meshed surface employing the 

‘contact impedance’ boundary condition. The table also shows the average mesh quality 

estimate for both element types. The range of quality is 0 to 1, the latter indicating the best 

possible element. One can notice from the table and Fig.3.7 (a) that the number of elements 

increases further when cells are in close proximity to each other or when the number of cells is 

high. Larger volume of the cube also accommodates more number of tetrahedral elements. 

Element Type 1 Cell* 1 Cell 19 Cells 76 Cells 

Tetrahedral 44390 15833 46510 85934 
Quality (Avg.) 0.6568 0.7637 0.6833 0.6859 

Triangular 5259 1688 7144 13348 
Quality (Avg.) 0.9217 0.9703 0.9309 0.9282 

Table.3.1: Number of finite elements used for meshing computational domain. * denotes that ‘contact impedance’ 
boundary condition is not used but a distinct volume for membrane is meshed. 

 

Fig.3.7: Surface meshing for 3D multicellular configurations consisting of (a) 19 cells put in a 55 m cube with 
cell radii as 5 and 10 m, and (b) 76 cells put in a 120 m cube with cell radii as 8, 10 and 12 m. Cubes not 
shown. 

X Y 

Z 

(a) (b) 
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3.7 Modelling coupled physics 

Three differential equations having three dependent variables, corresponding to the 

three distinct sub-models – electrical, structural and pore models will be considered. All distinct 

materials are modelled within continuum theory. Molecular description is ignored. All material 

parameters with the exception of membrane conductivity are time-independent. Initial 

conditions are assigned and the model solves for next time-steps chosen adaptively. The time-

steps become smaller when the intermediate solutions change rapidly and become larger when 

the change is slower. Fig.3.8 (a) depicts the coupling of the solution from electrical model to 

structural and pore models as inputs, in one time step.  

 
Fig.3.8. Modelling an isolated spherical cell under an applied electric field. (a) Coupled physics with submodels, 
(b) Transmembrane potential, TMP in color and normal components of Maxwell Stress Tensor, MST by arrows 
(arrow length is proportional to the magnitude of stress), (c) Magnitude of membrane displacement, |u| and (d) 
Pore density, N. *Altered values are used in the next time step; Estrain is strain energy; Npores is total number of 
pores. 

 

Electrical Model Structural Model Pore Model 

Solves for Electric 
Potential, V 

Solves for 
displacement, u 

Solves for Pore 
Density, N 

Calculate MST 

Calculate TMP 

Calculate Estrain Calculate Npores 

TMP (V) |u| (nm) N (m-2) 

Altered membrane conductivity* 

Altered membrane position* 
(a) 
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Z 

X 
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The structural model and pore model alter one or several quantities which are fed back 

into the electrical model in the next time-step. This cycle repeats every time-step until the last 

pre-assigned value of time. When multiple cells are considered, the deforming membranes may 

come close to each other but their overlapping as well as any adhesive forces are not accounted 

and we ensure that the calculated deformation is small enough to prevent any overlapping. 

3.7.1 Electrical model 

Cells can simply be considered as effective spheres composed of a conducting core 

representing cytoplasm and thin insulating shell representing cell membrane, which is also 

known as a Core-Shell (CS) structure. CS description has been extensively employed to derive 

analytical expressions for dielectric response or total force acting on the cell. 

Under an applied electric field, the spherical cell gets polarized. The field can be applied 

by specifying the voltage, Vapplied(t) on a face of the cube along with boundary conditions as 

shown in Fig.3.9. Assuming charge conservation, the continuity equation for the electric 

current density, J, can be written as ∇. 𝑱 = −𝜕𝑡𝜌𝑐ℎ𝑔 where 𝜌𝑐ℎ𝑔  is the charge density and 𝛿𝑡 
denotes the time derivative. The Poisson equation, ∇2𝑉 = − 𝜌𝑐ℎ𝑔𝜀𝑟𝜀0 , along with the continuity of 

current density and Ohm’s law (𝑱 = ⁡𝜎E) leads to (Eq.3.3) which solves for electric potential  

 −∇. ((𝜎 + 𝜀𝑟𝜀0𝜕𝑡)∇𝑉) = 0 (Eq.3.3) 

 where σ and 𝜀𝑟 are the conductivity and relative permittivity of the subdomain regions i.e. 

interior and exterior of the cell. The electric potentials on either side of the cell membrane are 

coupled through a specific ‘contact impedance’ boundary condition (Eq.3.4) as given by  

 𝒏. 𝑱𝟐 − 𝒏. 𝑱𝟏 = 1𝑑𝑚 (𝜎𝑚 + 𝜀𝑚𝜀0𝜕𝑡)(𝑉2 − 𝑉1) (Eq.3.4) 

where n is the unit vector normal to the boundary surface on either sides, 
m

  is the membrane 

conductivity,⁡𝜀𝑚 is the membrane relative permittivity, dm is the membrane thickness, and ‘1’ 
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and ‘2’ denote the exterior and the interior of cell, respectively. This step essentially gives the 

TMP (Eq.3.5). Initially, at t = 0, V1 = Vrest and V2 = 0. At any arbitrary time it is given as 

 𝑇𝑀𝑃 = 𝑉1 − 𝑉2 (Eq.3.5) 

We implement the outer boundary conditions on the cube faces. Dirichlet boundary 

condition specifies the value of potential. The external potential can be applied to any of the 

cube faces (the bottom face is used here). The potential at the face opposite to it is set to zero. 

Neumann boundary condition, which is applied at the side faces, ensures that the normal 

component of electric field is set to zero i.e. the electric field at those faces remains parallel.  

 

Fig.3.9: Material properties and boundary conditions in electrical model. 

 

If the external potential is assumed sinusoidal with angular frequency 𝜔, then the 

frequency dependence (dispersion) is incorporated into the complex relative permittivity of the 

all regions of the cell. In particular, we use the following relation (Eq.3.6): 

 𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 − 𝑖( 𝜎𝜀0𝜔) (Eq.3.6) 

where 𝜀𝑠𝑡𝑎𝑡𝑖𝑐  represents the relative permittivity at low frequencies (static limit). Once the 

electric potential distribution and thus the electric field distribution has been calculated, then 

Maxwell Stress Tensor (MST) that signifies the electrical stress can be calculated as (Eq.3.7): 

𝜀1, 𝜎1 
𝜀2, 𝜎2 𝜀𝑚, 𝜎𝑚 𝜕𝒏𝑉 = 0 𝜕𝒏𝑉 = 0 

𝑉 = 0 

𝑉 = 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑  

Eq.3.4 
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 𝑀𝑆𝑇𝑖𝑗 = 𝜀𝑟𝜀0(𝐸𝑥2/2 𝐸𝑥𝐸𝑦 𝐸𝑥𝐸𝑧𝐸𝑦𝐸𝑥 𝐸𝑦2/2 𝐸𝑦𝐸𝑧𝐸𝑧𝐸𝑥 𝐸𝑧𝐸𝑦 𝐸𝑧2/2) (Eq.3.7) 

where i, j can be x, y and z, and E is the electric field component. The diagonal components 

signify normal stress while the off-diagonal components signify shear stress. A surface integral 

of MST will give total force over that surface. Hence, one can calculate total force on a full or 

a partial membrane surface of the cell.  

3.7.2 Structural model 

In three dimensions, the mechanical stress 𝑺 at any arbitrary point in the material can 

be written in the form of a tensor as follows (Eq.3.8): 

 𝑺 = (𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧) (Eq.3.8) 

The law of momentum conservation (Newtonian mechanics) can be written as ∇𝑺 +𝒇 = 𝜌𝜕2𝑡2𝒖 where 𝜌 denotes the initial mass density, 𝒖: (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) denotes the displacement 

field and 𝒇 denotes the external volume distribution force field. Since the electrical stress is 

distributed variably over the cell surface only and not in the volume regions of the remaining 

media, 𝒇 is set to zero and MST is added to 𝑺 at the boundaries. Effectively, we solve for the 

deformation distribution as follows (Eq.3.9): 

 (𝜕𝑥𝑆𝑥𝑥 𝜕𝑦𝑆𝑥𝑦 𝜕𝑧𝑆𝑥𝑧𝜕𝑥𝑆𝑦𝑥 𝜕𝑦𝑆𝑦𝑦 𝜕𝑧𝑆𝑦𝑧𝜕𝑥𝑆𝑧𝑥 𝜕𝑦𝑆𝑧𝑦 𝜕𝑧𝑆𝑧𝑧) = 𝜌(
𝜕2𝑡2𝑢𝑥𝜕2𝑡2𝑢𝑦𝜕2𝑡2𝑢𝑧) (Eq.3.9) 

The mechanical stress distribution includes the electric stress distribution (as given in 

previous sub-section) and the generated responsive stress distribution that essentially depends 

on the constitutive relation used. The equation is valid for all regions and particularly 
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significant for the cell membrane. All boundaries of the computational domain are allowed to 

displace as per the calculation of displacement i.e. they are free to move/deform.  

The time-dependent strain at the cell membrane can be defined in terms of its reference 

position, say 𝑅0 and its current deformed position at a given instant, say 𝑅(𝑡) as (Eq.3.10): 

 𝛾(𝑡) = 𝑅(𝑡) − 𝑅0𝑅0  (Eq.3.10) 

 The general strain tensor for any region can be written as (Eq.3.11): 

 𝛾 = (𝛾𝑥𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧𝛾𝑦𝑥 𝛾𝑦𝑦 𝛾𝑦𝑧𝛾𝑧𝑥 𝛾𝑧𝑦 𝛾𝑧𝑧) (Eq.3.11) 

Under the assumption of small displacements and rotations, the normal and shear strain 

components are given as (Eq.3.12): 

 𝛾𝑥𝑥 = 𝜕𝑥𝑢𝑥𝛾𝑦𝑦 = 𝜕𝑦𝑢𝑦𝛾𝑧𝑧 = 𝜕𝑧𝑢𝑧 ; ⁡⁡⁡⁡⁡⁡⁡⁡
𝛾𝑥𝑦 = 𝛾𝑦𝑥 = (𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦)/2𝛾𝑦𝑧 = 𝛾𝑧𝑦 = (𝜕𝑧𝑢𝑦 + 𝜕𝑦𝑢𝑧)/2𝛾𝑥𝑧 = 𝛾𝑧𝑥 = (𝜕𝑧𝑢𝑥 + 𝜕𝑥𝑢𝑧)/2  (Eq.3.12) 

 By taking the ratio of compression to elongation, one obtains the so called Poisson’s 

ratio given by (Eq.3.13) 

 𝜈 = −𝛾𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝛾𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛  (Eq.3.13) 

The normal and shear components (six in total) of stress and strain can also be 

represented as vectors. The simplest constitutive relation that relates the stress to strain is an 

equivalent of Hooke’s Law i.e. containing a single elastic constant, the Young’s modulus, Y 

(used here in Shamoon et al, (2019-a) [47]). For a linear isotropic Hookean material, the stress 

is proportional to the strain and this constitutive relation can be written as (Eq.3.14) below: 

( 
   
𝑆𝑥𝑥𝑆𝑦𝑦𝑆𝑧𝑧𝑆𝑦𝑧𝑆𝑧𝑥𝑆𝑥𝑦) 
   = 𝑌(1 + 𝜈)(1 − 2𝜈)(  

 1 − 𝜈𝜈𝜈000
𝜈1 − 𝜈𝜈000

𝜈𝜈1 − 𝜈000
0001 − 2𝜈00

00001 − 2𝜈0
000001 − 2𝜈)  

 
(  
 𝛾𝑥𝑥𝛾𝑦𝑦𝛾𝑧𝑧𝛾𝑦𝑧𝛾𝑧𝑥𝛾𝑥𝑦)  
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In the above relation, some literature may also contain a factor of ½ in the bottom three diagonal 

components of the stiffness matrix as per the difference in defining the shear strain. The strain 

predicted by a Hookean material can thus be written as (Eq.3.15): 

 𝛾(𝑡) = 1 + 𝜈𝑌 (𝑺. 𝒏) − 𝜈𝑌 𝑡𝑟(𝑺. 𝒏)𝐈 (Eq.3.15) 

where S.n denotes the diagonal stress components at any arbitrary cross-sectional area in the 

computational domain with a unit normal n 

 

Fig.3.10: Material properties and boundary conditions in structural model. 

 

The simplest viscoelastic model that can be used for describing cell membrane 

deformability is Standard Linear Solid (SLS) model. The SLS model has three parameters 

(used here in Shamoon et al, (2019-b) [49]) – two elastic constants, 𝑘1, 𝑘2 and one viscous 

constant, 𝜂 (See Fig.3.11).  

 

Fig.3.11: Maxwell representation of a simple viscoelastic model called Standard Linear Solid (SLS) model. The 
springs with elastic constants k1 and k2 represent the elastic component of the model’s response and the dashpot 
with viscous constant  represents the viscous component of the model’s response. 

 

The SLS model predicts the membrane strain as follows (Eq.3.16): 

 

𝑘1, 𝑘2,⁡𝜂, 𝜈 
Y,⁡𝜌,⁡𝜈 

𝑺. 𝒏 = 𝑀𝑆𝑇(𝑡) 
Y,⁡𝜌,⁡𝜈 𝒖 = 𝒖(𝑡) 𝒖 = 𝒖(𝑡) 
𝒖 = 𝒖(𝑡) 

𝒖 = 𝒖(𝑡) 

𝑘1 𝑘2 𝜂 
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 𝑑𝛾(𝑡)𝑑𝑡 = 𝑘2𝜂 ( 𝜂𝑘2 𝑑(𝑀𝑆𝑇(𝑡))𝑑𝑡 + 𝑀𝑆𝑇(𝑡) − 𝑘1𝛾(𝑡))𝑘1 + 𝑘2  
(Eq.3.16) 

The strain energy density function for linear isotropic materials within the small strain 

assumption can be written as follows (Eq.3.17): 

𝑊 = 12∑∑𝜎𝑖𝑗𝛾𝑖𝑗3
𝑗=1 = 12 (𝜎𝑥𝑥𝛾𝑥𝑥 + 𝜎𝑦𝑦𝛾𝑦𝑦 + 𝜎𝑧𝑧𝛾𝑧𝑧 + 2𝜎𝑥𝑦𝛾𝑥𝑦 + 2𝜎𝑦𝑧𝛾𝑦𝑧 + 2𝜎𝑥𝑧𝛾𝑥𝑧)3

𝑖=1  

The formulae presented in this section were adapted from [47-a] with some changes in 

symbols. The structural input parameters used in the model are based on experimental 

estimation of material properties obtained from the archival literature. Elasticity and 

viscoelasticity has been implemented in multiple ways in this work which are not always the 

same (see Table 4.1). The material property values pertaining to electrical and pore models are 

discussed in various references and noted here in Chapter 2, Table 2.2.  

3.7.3 Pore model 

Thermal fluctuations on the membrane lead to stochastic events of formation and 

destruction of nanopores. It is assumed that an equilibrium pore density exists even before the 

application of the electrical stimulus. When the local electric field near the membrane becomes 

high enough due to an external stimulus, it causes an increased formation of nanopores on the 

cell. Modelling of this phenomenon began since the seminal work of DeBruin and Krassowska 

(1999) [48] using an asymptotic form of the Smoluchowski equation. In particular, we calculate 

the pore density, 𝑁, over the membrane based on its highly non-linear dependence on TMP. 

For simplicity, we assume a fixed pore radius (0.75 nm) for all the pores. The following 

equation (Eq.3.18) gives the rate of formation (and destruction) of pore density. 

 𝜕𝑡𝑁(𝑡) = 𝛼⁡exp⁡((𝑇𝑀𝑃𝑉𝑒𝑝 )2)[1 − (𝑁(𝑡)𝑁0 ) exp⁡(−𝑞 (𝑇𝑀𝑃𝑉𝑒𝑝 )2)] (Eq.3.18) 
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In this equation, TMP is sourced from the solution of electrical model. If the TMP 

evolves in time due to any external factor then it directly affects the pore density through the 

equation shown above. Here, 𝑁0 is the pore density in the non-electroporated membrane,⁡𝑉𝑒𝑝  

is the electroporation threshold, 𝛼 and 𝑞 are two parameters describing the EP process. This 

equation is solved only on the cell membrane surfaces. 

The membrane conductivity is linked to the pore density by the following equation 

(Eq.3.19) 

 𝜎(𝑡) = 𝑁(𝑡)(2𝜋𝑟𝑝2𝜎𝑝𝑑𝑚/(𝜋𝑟𝑝 + 2𝑑𝑚)) (Eq.3.19) 

where 𝑟p is the fixed pore radius,⁡𝜎p is the single pore conductivity, 𝑑m is the membrane 

thickness. It should be noted that the relation above is in addition to the existing conductivity 

of the membrane. 

Commenting on the limitations of EP model used. The pore radius is set to 0.75 nm, 

however, this assumption is relaxed in several more advanced pore models to study the 

dynamics of each pore size that can evolve based on a collective contribution to pore energy 

landscape which further adds to the cell membrane free energy. Another limitation is regarding 

the shape of the pore considered. A pore can be considered as cylindrical, trapezoidal and 

toroidal. Cylindrical pores have been considered in this work. These considerations affect the 

quantities like conductance and the energy of individual pores that contributes to the free 

energy of the membrane.  

3.8 Problem size and solver techniques 

The meshing and coupled physics influence the number of degrees of freedom for the 

whole model. All involved equations are solved for each node. The number of degrees of 

freedom is given by the product of the number of all mesh nodes and equations. Listed below 

are the number of degrees of freedom for 1 cell and 76 cell configurations.  
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Degrees of Freedom 1 Cell 76 Cells 

Electrical Model 24027 140213 
Structural Model 71163 129795 
Pore Model 306 23768 
Total 95496 293776 

Table 3.2: The number of degrees of freedom in the COMSOL models used. 

 

The degrees of freedom mentioned in Table 3.2 are for the cases where visco-elastic 

membrane is not considered. The case where it is considered, is for the seven cell 

configurations (Publication by Shamoon et al (2019-b) [49]). There, the total number goes to 

170764. 

The direct method PARDISO (Parallel direct sparse solver interface) is used as general 

time-dependent solver which utilizes multiple cores of the CPU and BDF (backward 

differentiation formula) for time-stepping. The steady-state and frequency domain solutions 

are obtained by an iterative solver called BiCG-STAB (Biconjugate gradient stabilized 

method). Technical details of the model have been sufficiently introduced and now, we are in 

good position to numerically study the ED and EP of cell-assemblies. 
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4. Results and discussion: ED and EP of cell assemblies 

In this chapter, the major results and analyses of this work are presented by simulating 

time-dependent ED and EP for N-cell assemblies under an applied electric pulse. N-cell 

assemblies considered here have N = {1, 3, 7, 76}. Results for electrical force modulation by 

frequency analysis among neighboring cells are shown later for N = {2, 15, 19, 23, 27, 35, 43}.  

4.1 Time-dependent analyses 

The results of the time-dependent analysis are organized in two sub-sections – the first 

one deals with a small number of cells, the second one considers a large number of cells. The 

summary of the similarities and differences among different studies is shown in Table 4.1. 

Aspects 
Shamoon et al. 

(2019-a) 

Shamoon et al. 

(2019-b) 

Unpublished, 

Large value of N 

N-spherical-cells 1 and 3 7 76 

Electrical pulse 
durations 

100 s + 
100 s +, 

100 s +: 25 s ˗, 
100 s +: 50 s ˗ 

1 s +: 1 s 0: 1 s ˗ 

Simulated time 200 s 200 s 6 s 

Electrical materials Defined by Permittivity, Conductivity 

Structural materials 
Elastic (Cells & 

ECM) 

Elastic (Cells & 
ECM); Viscoelastic 

(membrane) 
Elastic (Cells) 

Pore model features Pore density with fixed pore radius 

Table 4.1: Main similarities and differences in the time-dependent analyses of N-cell configurations. 

 

Firstly, the common assumptions and calculation steps in the three studies are stated. 

The electrical properties are defined by the relative permittivity and conductivity of the distinct 

homogeneous and isotropic phases describing the cell interior, exterior and membrane. The 

time-varying electric pulse is applied on one face of the cube while the opposite face is 

grounded. Poisson’s equation is solved for electric potential distribution. The calculation of the 

transmembrane potential and electrical forces, which appear on the location of the deforming 

boundaries of the cells, is done in the same way in all studies. In terms of output, the structural 
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model gives the membrane displacement and the pore model gives the pore density which is 

analyzed locally on the membrane surface. Strain energy for the elastic and viscoelastic media 

is calculated. The membrane conductivity, which is a measurable quantity in experiments is 

increased in proportion to the calculated pore density. Pore number or area occupied by the 

pores on the membrane is also calculated which serves as an indirect measure of membrane 

perforation. See the previous chapter for involved equations. It must be noted that since the 

simulation time is limited to a maximum of 200 s, the pore density remains constant in this 

duration. The time constant for the decay of pores is ~1.5 s which is much larger than the 

simulation time. Most of the material properties except for the membrane conductivity and 

mass density, are assumed to be constant during the time dependent analysis unless otherwise 

stated. Membrane conductivity varies with the calculated pore density while the mass density 

varies as the deformations cause a small change in volume. 

4.1.1 Small number of deforming cells 

For the two publications Shamoon et al. (2019-a) [47] and Shamoon et al. (2019-b) 

[49], Fig. 4.1 shows the time-varying electrical stimuli and Fig. 4.2 shows the model geometries 

used in each simulation which is performed for 200 s. 

 

Fig.4.1: Electrical voltage pulses used to stimulate the N-cell assemblies in Shamoon et al. (2019-a) [47] (Pulse 1 
only) and in Shamoon et al. (2019-b) [49] (Pulses 1-4). 
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All cells are placed in a cube of sides 50 m (Fig.4.2). The one and three cell 

configurations in Shamoon et al. (2019-a) [47] are analyzed by means of a single configuration. 

However, in the analysis of the seven-cell configurations in Shamoon et al. (2019-b) [49], we 

consider eight configurations with size and position which can be varied in orderly and 

symmetric arrangement or in a disordered and non-symmetric fashion in terms of size and 

intercellular boundary-boundary distances along the centers of respective cell-pairs. 

 

Fig.4.2: Model geometries A and B used in Shamoon et al. (2019-a) [47] while A1-A4, B1-B4 used in Shamoon 
et al. (2019-b) [49]. The cube has side length 50 m. The radii fall in the range of 4-8 m. 

A B 
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In the first paper i.e. Shamoon et al. (2019-a) [47], the mechanical properties of the 

interior and exterior of the cells are modelled with a single homogeneous and isotropic elastic 

material (Young’s modulus = 1000 Pa). The electrical stress appears on the cell membrane 

under an applied field of 5 kV/cm while the pulse is on for 100 s and simultaneously affects 

the rest of the media generating the mechanical stress. As the pulse falls, the electrical stress 

quickly vanishes while the deformed configuration begins to relax mechanically. A small 

assembly of three neighboring spherical cells of different sizes is compared to that of a single, 

isolated spherical cell under an applied electric pulse in the context of its time evolving 

electromechanical response. In this respect, the local behavior of various important quantities 

over the cell membrane is analyzed. On the one hand, this approach allows us to compare single 

cell simulations with existing literature for which several studies have been undertaken 

previously. On the other hand, it gives evidence that the presence of even a few neighbors in 

proximity alters the usual single cell response, either the electrical or the mechanical response. 

For instance, Fig.3 and Fig.4 in the publication Shamoon et al. (2019-a) [47] show how surface 

charge, MST and thereby the membrane displacement and pore density over the cell membrane 

of isolated and non-isolated cell differ from each other. The same figures show that ED and EP 

are enhanced by several times over the proximity regions in comparison to an isolated cell. 

This leads to the conclusion that the collective response of multi-cellular configurations is 

composed of contributions from several individual cells that also affect each other when cells 

are in proximity. Thus, the N-cell arrangement i.e. the way the cell assembly is realized is also 

an important ingredient of the analyses for designing simple models of biological tissue. 

In the second paper i.e. Shamoon et al. (2019-b) [49], the consideration of elasticity is 

one step more complex than the previous one considered. It considers a homogeneous and 

isotropic viscoelastic membrane (Young’s modulus = 500 Pa, Shear modulus = 1500 Pa, 

viscous relaxation time = 0.1 s) modelled apart from the same elastic media for interior and 
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exterior of the cells as mentioned before. The appearance of stress is also as before, i.e. initially 

the electrical stress appears on the membrane which is then transferred to other regions. Seven-

cell assemblies in two sets of configurations characterized by order and weak disorder are 

considered. The variations in the time evolving response are examined with different pulse 

parameters. The major results include the strong variations in enhanced electric field and 

membrane strain energy in relation to diverse characteristics of pulse. These two quantities are 

very sensitive to minor variations of the cellular spatial arrangements.  

 

Fig.4.3: Spatio-temporal variations of electrical quantities for the case of single cell under an applied field of 5 
kV/cm. The pulse duration is 100 s which begins at 10 s and ends at 110 s (see Pulse 1, Fig.4.1). The x-axis 
represents the arc length from –z to +z direction over the cell membrane. The y-axis represents (a) TMP, (b) 
surface charge density, (c) norm of the surface electric field and (d) MST. The time instants are marked in the 
legends. 

  

 Results for the case of a deformable single cell are presented in Fig.4.3. The temporal 

variations of TMP around the cell Fig.4.3 (a) agree with previous results found in the archival 

literature [48]. At t = 0 s, the resting potential set to -50 mV leads to a TMP of 50 mV (shown 

in blue). As the pulse begins to rise at t = 10 s, TMP also begins to rise as a cosine around the 

(a) (b) 

(c) (d) 
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membrane revealing the depolarized and hyperpolarized poles (shown in green). It takes only 

1 s for the TMP, after the beginning of the pulse, to rise to 1 V over the poles. A small 

asymmetry in the values confirms our results, 1.1 V and -1 V for the depolarized and 

hyperpolarized poles with the existing trends shown in [48]. As time evolves, the cosine 

behavior is altered as the extrema of the TMP shift from the poles to regions between the poles 

and equator. Finally, as the pulse begins to fall, TMP falls to zero. In the other panels of Fig.4.3, 

surface charge density, surface electric field norm and MST are plotted which reveal the non-

uniform distributions of these quantities over the cell membrane. The surface charge density 

ranges from -0.9 to 0.9 fC/m2. The local electric field norm at the poles reaches over 6.5 

kV/cm beyond the average value i.e. 5 kV/cm for the whole media. MST at the poles reaches 

over 2.6 pN/m2. Next, Fig.4.4 shows identical trends of the pore density N (calculated from 

Eq.3.18) and the membrane conductivity (given by Eq.3.19). The pore density rises typically 

from 109 to 1014 per m2 while the membrane conductivity is increased from 10-6 to 10-4 S/m. 

The temporal trends are shown for the three points situated at the poles and equator of the cell. 

 

Fig.4.4: Time evolution of the pore density and membrane conductivity at polar and equatorial points of the single 
cell under an applied electric field. 

 

 The time-dependent force averaged on polar halves of the cell can be calculated from 

the MST and is shown in Fig.4.5 (a) for the upper half of the cell. The force shows a spike at 

the start of the pulse but quickly stabilizes slightly above 0.11 nN. Given the elastic properties 

for the media, under the application of this electric field induced force, the cell membrane 
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begins to deform which also pushes the regions around it resulting in deformation of the cube 

boundaries as well. The deformation of the whole media can be globally quantified by strain 

energy shown in Fig.4.5 (c). The contribution of the deforming boundaries of the cell and cube 

to the strain energy can be inferred from the maximum values of boundary displacements of 

the cell membrane and cube shown in Fig.4.5 (d). It can be seen that the deforming cell 

membrane contributes more to the strain energy than the deforming cube boundary. This is 

because the cell membrane is far enough from the cube boundary in the case of single cell. It 

will be seen shortly, in the case of denser packing of cells, when the cell membrane is close to 

the cube boundary, then the cube boundary is also deformed significantly and contributes much 

more to the strain energy.   

 

Fig.4.5: (a) Time dependence of the force averaged on the upper half of the cell, (b) Deformed configuration (not 
to scale) at the end of the pulse at t=110 s (see Pulse 1 in Fig.4.1), (c) Strain energy in J for the deforming media, 
(d) Boundary displacements in nm of the membrane and cube. 

 

(a) (b) 

(c) (d) 
t=110 s 

nm 
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 The deformation of a single cell or single vesicle is often quantified by an aspect ratio 

defined as ‘D=b/a’ where the stretched radius ‘b’ is along the applied field direction and the 

compressed radius ‘a’ is orthogonal to it. This aspect ratio along with the changing radii is 

plotted in Fig.4.6(a) for different conductivity values of those used for the results shown in 

Fig.4.5 and Shamoon et al. (2019-a) [47]: 0.20 S/m for the extracellular region and 0.15 S/m 

for the cytoplasm. Additionally, the Young’s modulus is changed from 1000 Pa to 800 Pa, so 

that the media is more elastic. All other parameters are identical. It is clear that a more elastic 

cell leads to a larger deformation (up to 9.7 m as opposed to 6.9 m in the previous case while 

the original radius was 6 m).  

 

Fig.4.6: (a) The aspect ratio (y-axis, left) and radii (y-axis, right) of a single cell under an applied electric field 
(see Pulse 1 in Fig.4.1), (b) Steady state calculation of the electrical force on upper half of a single cell under an 
applied field of 5 kV/cm. 

(a) 

(b) 
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Electrical force can also vary as the conductivities of the media change. This is depicted 

in Fig.4.6 (b) with the calculation of steady state electrical force on the upper half of a single 

cell. The conductivity of membrane is varied as a parameter while keeping the conductivities 

of the inner and outer regions unchanged. The log of the average force varies linearly with the 

log of the membrane conductivity. A variation of six orders of magnitude of force (10-14 to 10-

8 N) is computed from a variation of four orders of magnitude of membrane conductivity (10-7 

to 10-4 S/m). 

Having considered the deformable single cell case in detail, we discuss now a simple 

case of asymmetric configuration with three neighboring cells of different radii. Cells 1-3 have 

radii 6, 4 and 8 m as depicted in Fig.4.7 (a). The results are depicted in Fig.4.7.  

 

Fig.4.7: (a) Deformation of three-cell configuration at t=110 s under an applied field (see Pulse 1 in Fig.4.1). (b) 
Maximum value of the calculated displacements on the boundary of each cell and the cube. (c) Strain energy in J 
for the deforming media. 

(a) 

(b) (c) 

nm 

t=110 s 

Cell 1 

Cell 2 

Cell 3 
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As the number of cells increase in the cell assembly, the number of deforming boundaries 

increase which essentially results into a more complex contribution to the strain energy. The 

individual membrane deformation analysis, as done for single cell before (Fig.4.5 (d)) and for 

the three-cell case now (Fig.4.7 (b)), becomes more cumbersome when the number of cells is 

increased. Hence it is more practical to assess deformation directly from the strain energy. A 

comparison of the membrane deformation for the two cases shows that Cell 1 (shown in Fig.4.7 

(a)) experiences more deformation (~9.5 nm) than that when it is isolated (~5.5 nm). Among 

the three cells, the membrane displacement is minimum for the smallest cell and maximum for 

the largest cell. The large cell is near the cube boundary which essentially increases its 

displacement as well making it more significant than those for cells 1 and 2. 
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ABSTRACT

In this Letter, we explore how cell electro-deformation and electro-poration are connected. We build a time-domain model of
layered concentric shells (a model of biological cells) including their dielectric and elastic properties. We simulate delivery of one
trapezoidal voltage pulse to either a single spherical cell or an assembly of three neighboring cells in a specific configuration and
calculate cell deformation and pore formation. We describe the qualitative features of the electric field, surface charge density,
transmembrane voltage, cell elongation, and pore density distribution at specific times i.e., before, during and after the applica-
tion of the electric pulse and explore the correlations between them. Our results show that (1) the polarization charge redistribu-
tion plays a significant role in the spatial distribution of electrical stresses at ls time scales and (2) the cell deformation and pore
density can be correlated with regions of high surface charge density. In future work, our model could be used for understanding
basic mechanisms of electro-deformation and electro-poration with high-frequency short bipolar pulses of biological cells in
suspension or tissues.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5079292

The pursuit of understanding the mechanisms of electro-
deformation and electro-poration (EP) of biological cells in sus-
pension or tissue began decades ago1,2 and the search continues
with renewed enthusiasm.3,4 Understanding the connection
between cell electro-deformation and EP is still a relatively unex-
plored area of research. One of the significant challenges in EP is
high molecular weight molecules delivery such as DNA into the
living cells. However, most of the existing numerical and analytical
studies have tackled the modelling of this phenomenon based on
various assumptions and constraints to predict and evaluate cell
and tissue EP.1–14 Typically, EP takes place when the transmem-
brane potential (TMP) exceeds a threshold Vep above which elec-
trically conductive pores start forming in the membrane.1–3

Experimental estimates for Vep fall in the range of 0.5–1.2 V but
theoretical estimates point to Vep¼ 0.258V.15Most of the existing
studies have so far assumed that cell membranes are rigid. This is
valid assuming the electro-deformation is much slower in time as
compared to the formation of pores. Cells change shape during

the application of ls duration pulses and relax to their original
shape when the external stimuli stop.16,17 Yet, these volumetric
deformations which are ubiquitous in the context of experimental
EP, have not gained much attention in numerical models. Figure 1
shows optical microscopy images of two Chinese Hamster Ovary
(CHO) cells from a time-lapse imaging (Multimedia view) of five
cells. The applied electric field direction is shown in the middle
snapshot. A CHO cell is observed to elongate up to 55% of its ini-
tial radius in the direction of the neighboring cell during applica-
tion of a 100 ls long trapezoidal pulse. After the end of the pulse,
the cell returns gradually to its initial shape. Elongation decreases
from 55% to 28% in the next 100 ls after the pulse, to 8% after
1ms and to 5% after 2ms. It is noteworthy that in physiological
experimental conditions, the electro-deformation is much
smaller than the present case which may not be captured unless
more advanced ultrafast imaging is used.

In this Letter, 3-D finite-element method is used to simu-
late the time-dependent electro-deformation and EP of a

Appl. Phys. Lett. 114, 063701 (2019); doi: 10.1063/1.5079292 114, 063701-1
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single-cell and an assembly of three cells in a specific configura-
tion when one trapezoidal pulse is delivered. Specifically, we
borrow from the existing research (see, e.g., Refs. 3, 7, 18, and 19)
on the DeBruin and Krassowska asymptotic model of EP for a
single cell based on the Smoluchowski equation which is solved
on the cell surface to give pore density. The surface patterns of
various important quantities like the electric field and surface
charge density, Maxwell stress tensor (MST), TMP and pore den-
sity are examined at specific times, i.e., at the beginning, during
and the end of the pulse. The main innovation of this Letter is to
evaluate the correlation between the electric field, TMP, surface
charge, and pore density distributions at the cell surface. This
modelling is motivated in part by the recently proposed irre-
versible EP with high-frequency short bipolar pulses11,12 that
reduces the occurrence of muscle contractions during clinical
therapy showing that it is of utmost importance to consider the
physical forces that govern cell deformation in order to optimize
the EP efficiency.4 We also note that other authors have pro-
posed interesting 3D models of simple or realistically shaped
cells in densely packed tissues.11–14,19,20

We use a model characterized by a principle of minimality
in many respects. As in Refs. 21–23, the electrical properties are
deduced from a core-shell modelling. In the case which is con-
sidered here, the elastic properties of cells are assumed to be
spatially uniform, i.e., both cell and suspension medium have the
same properties. Two reasons that spatially uniform properties
are used here are that we already know that the mechanical
properties of cells remain poorly understood fundamentally16,17

and the cell cytoplasm contains an elastic cytoskeleton while
the cell exterior may contain an elastic matrix in the case of tis-
sue or less of this in case of suspension media, all of which are
too complex to be a part of this model. The purpose of our
model remains to highlight some specific features in the results
irrespective of the complexity of either the mechanical model or
poration model used. Several factors can influence the distribu-
tion of electrical stress over the membrane such as the mem-
brane compositional heterogeneity or different conductivity

ratio across the membrane. In this work, we are focused in a
particular scenario but such a model raises the question of how
the electrical stress induced deformation of the cell would affect
the final relaxation state when the electrical pulse delivery is fin-
ished. Furthermore, we expect the EP behavior is similar to that
observed in previous studies so we can approximate the mem-
brane conductivity by rðtÞ ¼ NðtÞ 2pr2prpdm=ðprp þ 2dmÞ

� �

,
where we denote the pore density in the cell membrane, the
radius and the internal electrical conductivity of a single pore,
and the membrane thickness by N, rp and rp, and dm, respec-
tively.18 In Refs. 15 and 18 (see also references therein), it was
shown that one can extract information about pores by solving
a differential equation that governs the dynamics of the pore
density as a function of time t, _N tð Þ ¼ a exp ðTMP=VepÞ2

� �

1½
� N tð Þ=N0

� �

exp �qðTMP=VepÞ2
� �

�, where N0 is the pore density
in the non-electroporated membrane, while a and q are two
parameters describing the EP process.

Our starting point is to consider a single spherical cell (at
rest) and an assembly of three cells in a specific configuration
(Fig. 2) that are exposed to a positive polarity trapezoidal voltage
pulse (applied in the z-direction) which delivers an average elec-
tric field of strength E0 ¼ 5kV/cm. Of course, one could also
consider the case of a multicellular environment modelling tis-
sue,9 an interesting generalization that we will discuss later. The
electric and elastic properties are given as input parameter val-
ues for our simulations (see supplementary material). First, the
Laplace equation is solved for electric potential, and thenMST is

calculated at the cell membrane as MSTij ¼ e EiEj �
1
2 dijE

2
� �

where i, j can be x, y, and z, E is the electric field, and e is the
membrane permittivity. In this, the surface electric field is
obtained from the solution of electric potentials that are cou-
pled at the cell membrane through a boundary condition

n:J ¼ 1
dm

r� e d
dt

� �

(Vint � VextÞ where J is the current density n

the outward normal from the cell, dm is the membrane thick-
ness, r is the membrane conductivity, and “int” and “ext” denote
the cell interior and exterior, respectively. The average electric
stretching force experienced by upper or the lower half of the
reference cell is within the range of 0.1–0.3 nN. The MST distri-
bution over the cell surface is an input parameter of the elastic
model, which solves the time evolution of cell shape. The polari-
zation charge redistribution induces stresses and changes the
initially spherical surface of the cell into a prolate shaped sur-
face. For a 6lm cell radius (R), the electro-deformation DR=R,
gradually increases the dimension along the z-axis. In our exam-
ple model, the pulse delivery begins at t¼ 10 ls and is finished at
110 ls to achieve good electrostatics. The total simulation run-
time is 200 ls.

Simulations are performed using COMSOL MultiphysicsVR

v5.2.24 The simulations use a 50� 50� 50 lm3 computational
domain with electrically insulated boundary conditions for the
y-z and x-z planes (conservation of the electric current density),
adopting previously published techniques.4,8,9,23 Tetrahedral
meshes are used in our calculations. The number of tetrahedral
elements varies between 16570 (single-cell) and 19320 (3-cell
configuration). The membrane is replaced by a thin surface to
which a boundary condition is assigned between the cytoplasm

FIG. 1. Snapshots from the time-lapse of CHO cells treated with a 100ls long
pulse (for details on the experimental setup, see supplementary material).
Multimedia view: https://doi.org/10.1063/1.5079292.1
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and the extracellular medium.4,9 The average computational
time of a typical simulation is about 13min for a single cell and
38min for three cells on IntelV

R

CoreTM i7–5500U CPU.
Figure 2 (Multimedia views) shows the area corresponding

to TMP � Vep in red color, starting from the poles, then spread-
ing with time to other regions of the cell surface except near the
equator (h ¼ p=2), and then shrinking once the pulse is finished.
Charge distribution induces asymmetry along the z-direction,
and the appearance of the characteristic prolate-shaped cells is
observed as those shown experimentally in Fig. 1. These plots
are interesting because a possible indirect detection of EP is
that a large rise in the surface charge density is seen once the
TMP exceeds Vep corresponding to the induced buildup of
charges across the cell membrane.We now describe the tempo-
ral dynamics of the elastic strain energy which is equivalent to

the potential energy stored in the material when it is stretched
with a force. Within this elastic model, the strain energy follows
the voltage excitation up to a maximum, then shows a relaxation
followed by a plateau, and has a complex behavior when the
pulse is finished depending on the induced buildup of charges
across the cell membrane. This is reasonable because we expect
that the charge relaxation process for longer times (>100 ls) is
describable by reversible physics. There is another noticeable
point, i.e., the strain energy is two orders of magnitude weaker
for the single cell configuration compared to the multiple cell
one. Since strain energy represents the energy absorbed in the
structure when strained, the larger number of cells the larger
energy strain.

Besides determining the dependence of the cell elongation
perpendicular to the high electric field regions over the mem-
brane, such calculations can also serve to direct access into the
symmetries of the surface charge and pore density and to achieve
a correlation between them. The TMP is most naturally described
in terms of the Maxwell-Wagner-Sillars interfacial polarization of
the membrane. The TMP caused by the delivery of external elec-
tric field scales with time as / E0R cos ðhÞ½1� exp ð�t=sÞ�, where
s / r�1 is the time constant of membrane charging. For a
single cell configuration (Fig. 3, left column), h is a polar angle

FIG. 2. Simulation results highlighting the trends of the total elastic strain energy in
(a) single and (b) 3-cell configurations versus time. The pulse begins at 10 ls and
ends at 110 ls—the limits of the pulse are marked with vertical dashed lines. The
3-dimensional plots represent the areas corresponding to TMP � Vep ¼ 0.258 V
(shown in red, otherwise blue) at t¼ 10 ls (left), t¼ 109 ls (middle), and t¼ 112
ls (right). The radii for cells 1–3 are 6, 4, and 8lm, respectively. Multimedia views:
https://doi.org/10.1063/1.5079292.2; https://doi.org/10.1063/1.5079292.3

FIG. 3. Comparison of the (y-z) plane distribution of the electric field norm, TMP, sur-
face charge, and pore density of the single (left) and three-cell (right) in suspension at
specific times of the electric pulse: t¼ 11 ls (solid line), t¼ 109 ls (dashed line), and
t¼ 112 ls (dash-dotted line). h is a polar angle measured from the center of the cell 1
(of radius 6lm) going counterclockwise from the –z to the þz direction.
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measured from the center of the cell 1 (of radius 6lm) going
counterclockwise from the –z to the þz direction. To further
explore how redistribution of polarization charges can be con-
trasted with the single cell case, we now consider a 3-cell config-
uration. For the 3-cell configuration (Fig. 3, right column), h is
defined with respect to cell 1 as before. Cell 2 has a radius of 4lm
and cell 3 has a radius of 8lm. The initial gap distances between
the closest points of cell 2 and cell 3 surfaces with respect to cell
1 are 630nm and 420nm, respectively. The results in Fig. 3 show
the asymmetry of the electric field norm, TMP, surface charge
density, and pore density.

We first consider a single spherical cell in suspension (Fig.
3, left column) and make some consistency checks, i.e., at 11 ls,
one finds a cosine law dependence of the electric field. A closer
look at the pore density shows that once pores are created the
highest density remains localized at the polarized poles. In our
calculations for the 3-cell configuration, the electric field norm
shows two peaks. The results show that the angle for the higher
peak corresponds to the larger cell and the other peak corre-
sponds to the smaller cell. It is also useful to look at the surface
charge density: in the isolated cell case, it correlates well with
TMP, but for the 3-cell configuration it correlates with high
electric field areas. From the right column of Fig. 3, we also note
that there is a coincidence of the extrema of the electric field,
TMP, and pore density. Such behavior has been corroborated
experimentally in red blood cells as well as in supramolecular
giant unilamellar lipid vesicles.4 Additionally, the remarkable
aspect of this geometry is that it can give rise to the Coulomb
repulsion-to-attraction transition when very closely approach-
ing a pair of static bodies having dissimilar surface potentials, a
phenomenon associated with an asymmetric electrostatic
screening at very small separation between cells.25 From the
perspective of generating a cell hierarchy for tissue modelling,
the important aspect of this geometry is that it allows simulta-
neously analyzing proximity, crowding, and correlation effects
between cells.

To further challenge our simulation data, in Fig. 4, we plot
the MST distribution and elongation dy and dz in the y- and z-
directions, respectively.

Firstly, proximity effects lead to distortions of the spatial
distributions of dy and dz. Especially instructive is the clearly
established correlation between the MST distribution and elon-
gation in the y and z directions as presented in the right column
of Fig. 4. The fact that simulations see a much better alignment
of these quantities in the direction of the maximum electric field
is reflective of the interplay between the surface charge distri-
bution and the mechanical restoring forces of the cell in our
model. When the number of cells in proximity is large, it is
expected to have the following behavior: the larger local electric
field, the more pronounced pore formation.

In summary, this study reveals some of the subtleties of cell
electrostatics and mechanics, either for a spherical cell or an
assembly of 3-cells in a specific configuration, that involve a
complex interplay of the effects of the electric field, cell surface
charge, TMP, pore density, and characteristics of the delivered
pulse. Together, these observations suggest that the spatial
organization of the polarization charges can play an important

role in electro-deformation and EP of biological cells and that
this organization can be controlled to facilitate EP. Our model
can also be extended in directions such as linking to various
device configurations with microfluidics and transport of dilute
species from the cell exterior to its interior or vice-versa. This
will render the extended models more appropriate for experi-
mental validations with existing studies.26 A two-dimensional
model describing several irregularly shaped cells in proximity
has recently been studied byMescia and co-workers.27

From a physical perspective, it is important to note that
some EP models incorporate the change in the membrane ten-
sion due to the presence of pores which might also affect mem-
brane elasticity. A more refined elastic model of the cell treating
the contributions of the actomyosin cytoskeleton to the cell size
and shape variations under external electric perturbation is
required for a broader perspective. In particular, we plan to
include the effect of cytoskeletal structures since the tensegrity
architecture is a fundamental principle that governs how real
cells are structured to respond biomechanically to mechanical
forces. It is also worth mentioning that electric pulses leading to
EP have an effect on the integrity of the cytoskeleton.28 From a
biophysics perspective, our study sets the stage to explore more
complicated coarse-grained models that generate dense
heterogeneous and anisotropic tissues such as in Ref. 8. Also,
different kinds of voltage excitation, e.g., high-frequency short
bipolar pulses need special attention. Such features will be
considered in future work.

FIG. 4. As in Fig. 3 for the MST distribution and elongation in the y- and z-
directions, respectively.
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See supplementary material contains the details of the
experimental setup and the list of parameters used in our
model.
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7G. Pucihar, D. Miklavčič, and T. Kotnik, “A time-dependent numerical
model of transmembrane voltage inducement and electroporation of
irregularly shaped cells,” IEEE Trans. Biomed. Eng. 56, 1491–1501 (2009).

8T. Murovec, D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau,
“Modeling of transmembrane potential in realistic multicellular struc-
tures before electroporation,” Biophys. J. 111, 2286–2295 (2016).

9M. Essone Mezeme, G. Pucihar, M. Pavlin, C. Brosseau, and D. Miklavčič,
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1. Experimental details 

 

Cell culture 

CHO-K1 cells were grown in 25 cm2 flasks in HAM's F12 culture medium, supplemented with 10% 

fetal bovine serum, L-glutamine and antibiotics at 37°C in a humidified 5% CO2 until 60–80% 

confluence. 

 

Cell preparation 

On the day of experiments, the cell suspension was prepared. After counting the cells, aliquots of 

2x105 cells were placed into 1.5 ml centrifuge tubes and centrifuged (270g, 4°C, 5 min). The 

centrifuged tubes were kept at 4°C up to two hours. Right before the experiments, the cells in the 

centrifuge tube were first washed with 1 ml of the hypoosmolar medium (0.5 mM Mg2+ acetate, 0.1 

mM Ca2+ acetate, 1 mg/ml bovine serum albumin, and 90 mM glucose (all from Sigma-Aldrich), 

12 mS/m). Then, they were centrifuged again in a Labnet C1301 centrifuge for 20 s. Finally, they were 

resuspended in 200 µl of the hypoosmolar medium. 20 µl of the final cell suspension was transferred 

to the Eppendorf microfusion chamber (parallel wire electrodes with electrode distance of 200 um), 

which was placed on the microscope stage. The fusion chamber was covered with cover glass to 

prevent medium evaporation. 

 

Pulse delivery  

After the transfer to the fusion chamber, cells were left for five minutes to sediment onto the bottom of 

the chamber. Then, three rectangular pulses of 100 µs and 100 V with a repetition period of 3 ms were 

delivered with the pulse generator βtech (Electro cell B10, BetaTech, France). The delivered pulses 

were monitored on LeCroy WavePro 7300A oscilloscope using probe LeCroy PP005A. 
 

Image capture 

Cells were monitored under inverted microscope Zeiss Axiovert 200 with ×40 objective 

magnification. Images were captured with the high-speed camera Phantom v2010 (Vision Research) in 

PCC 2.5 software (Vision Research). The camera was triggered by the rising edge of the first applied 

pulse. The delay between the onset of the pulse and the onset of the trigger signal was about 100 ns. 

We acquired images before, during and after pulse delivery at a frame rate 50000 per second (each 

image corresponds to 20 μs) with an exposure time of 10 μs. The image resolution was 256×128 
pixels, 12 bits per pixel.  
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2. List of model parameters 

Electric pulse parameters 

Pulse duration 100 s 

Transition time 1 ns 

Pulse start time 10 s 

Pulse end time 110 s 

Applied voltage 5 kV/cm x 50 m = 25 V 

Total simulation time 200 s 

Electrical properties of media 

Relative permittivity of cytoplasm 60 

Conductivity of cytoplasm 0.42 S/m 

Relative permittivity of suspension 80 

Conductivity of suspension 0.012 S/m 

Relative permittivity of membrane 8.85 

Conductivity of membrane 10-6 S/m 

Resting membrane potential -50 mV 

Mechanical properties of media 

Density 1050 kg/m3 

Young’s modulus 1000 Pa 

Poisson ratio 0.4 

Pore density model parameters 

Electroporation threshold, Vep 258 mV 

Initial pore density, N0 1.5x109 1/m2 

Pore radius, rp 0.75 nm 

 109 1/(m2s) 

q 2.46 
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Having discussed the deformable single cell and three cell configurations, seven cell 

configurations are hereby. This case particularly differs from the last two cases as it considers 

the membrane viscoelasticity additionally. The strain energy of the membrane is analyzed for 

many realizations and different pulse shapes as well (see Fig.4.1 for pulse shapes).  

 

Fig.4.8: (a) Deformation of seven cell configuration A3* (see Fig.4.2 for geometry) stimulated with Pulse 2 (see 
Fig.4.1 for pulse shape) near the end of the pulse at t=130 s, excited along z axis. (b) Same as in (a) but with 
excitation along y axis (c) Maximum value of the deforming boundaries of all cells and cube. (d) Same as in (c) 
but for excitation along y axis. (e) Strain energy in kT with T=310 K. (f) Same as in (e) but for excitation along y 
axis. 

 

(a) (b) 

(c) (d) 

(e) (f) 

t=130 s t=130 s 

nm nm 
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The case of two configurations (A3* and B2, see Fig.4.2) stimulated separately along 

orthogonal directions is discussed here while more cases can be found in the publication 

overleaf. The results are shown in Fig.4.8 and 4.9. ‘*’ signifies a difference that the intercellular 

distances are more than those in A3 and less than those in A4. 

 

Fig.4.9: (a) Deformation of seven cell configuration B2 (see Fig.4.2 for geometry) stimulated with Pulse 2 (see 
Fig.4.1 for pulse shape) near the end of the pulse at t=130 s, excited along z axis. (b) Same as in (a) but with 
excitation along y axis (c) Maximum value of the deforming boundaries of all cells and cube. (d) Same as in (c) 
but for excitation along y axis. (e) Strain energy in kT with T=310 K. (f) Same as in (e) but for excitation along y 
axis.  

 

nm nm 
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ABSTRACT

This letter considers the strain energy distribution in cell assemblies. Our scalable model consists of N-core-shell spherical structures modeling
biological cells with assumptions based on two fundamental premises. First, we use a finite element in the framework of time-domain to solve for
the electrodeformation and cell electroporation when a well-defined electrical stimulus is delivered to a multicellular environment. Second, the
strain-stress response of the cell assemblies is characterized by a relaxation time which is much larger than the time constant of the membrane charg-
ing. A “switch off” (corresponding to times after electrical pulsing) phenomenon observed in the strain energy signal might provide an interesting
discriminant test capable of providing different information on the proximity (coupling) effect between cell and assembly anisotropy depending on
the type of electrical stimulus employed. In the explicit examples we study, we learn up to date facts about how the local enhancement of the electric
field, deformation of the cell, strain energy, and relative area occupied by the pores are modified by varying the intercellular distance distribution.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109533

In this letter, we examine in detail the physics ideas which may
be used to obtain a multiphysics model of the strain energy distribu-
tion in cell assemblies. The ability of controlling tensegrity in biological
materials is still an open question in tissue engineering and has gener-
ated widely debated mechanisms on the mechanical forces between
cells in tissue based on energetic, time scale, and cell number consider-
ations.1–13 From the vantage point of what is seen in experiments, this
is an important question since it has been difficult to quantify stress in
cells due to their complex shapes and internal structures. Tissue and
cell level architecture prevent disruptions from occurring, either by
shielding cells from damaging levels of force or, when this is not possi-
ble, by promoting safe force transmission through the plasma mem-
brane via protein-based cables and linkages. On the other hand, the
issue of electroporating a single cell when an electric excitation is
applied is technically challenging.1–4

Throughout this letter, we consider 7-cell groups embedded in
an extracellular medium. The motivation for studying these assem-
blies lies in their potential to help answer current theoretical and
experimental questions regarding the collective electromechanical
response of deformable spherical cells in proximity to each other, to
assess how the intracellular distance and cell compactness can affect
the strain energy distribution, and to provide clues for where to
search for simple tissue models which are efficient to provide theo-
retical predictions for classic biological research such as electropora-
tion scenarios. Each cell is assumed to be heterogeneous (core-shell

spherical structures modeling biological cells), with a viscoelastic
membrane. This important additional feature in our model is
largely based on reports showing evidence that most living cells
show a viscoelastic deformation under mechanical forces.14 In our
work, the DeBruin and Krassowska self-consistent model (to give
pore density) can be solved locally on the cell surface area for which
the local values of the transmembrane potential (TMP) become the
input variable.4 In our simulations, the surface patterns of the elec-
tric field, surface charge density, Maxwell stress tensor (MST),
TMP, and pore density can be obtained at specific times, i.e., at the
beginning, during, and the end of the electrical stimulus. In order to
be concrete, and for illustration purposes, we first consider an
assembly of seven cells in specific configurations (Fig. 1) that are
exposed to a positive polarity trapezoidal voltage pulse which deliv-
ers an average electric field of strength E0 ¼ 5 kV/cm.

First, the electromagnetic equations are solved for electric poten-
tial, and then, MST is calculated at the cell membrane. TheMST distri-
bution over the cell surface is an input parameter of the viscoelastic
model, which solves the time evolution of cell shape. The polarization
charge redistribution induces stresses and changes the initially spheri-
cal surface of the cell into a prolatelike shaped surface. Typically, elec-
troporation takes place when TMP exceeds a threshold Vep above
which electrically conductive pores start forming in the membrane.1,3,4

Experimental estimates for Vep fall in the range of 0.5–1.2 V, but in
modeling studies, it is usually set to Vep¼ 0.258V.1
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The continuum multiphysics model for calculating the strain
energy in multicellular assemblies is performed in three steps. First,
under the assumption that cells can be described by (conducting)core-
(dielectric)shell structures, the spatial distribution of the electric poten-
tial in a subdomain of the cell is solved by making use of Poisson’s
equation�r� ððrþ e@tÞrVÞ ¼ 0, where @t denotes the time deriv-
ative and r and e are the conductivity and permittivity of the

subdomain, respectively. The generated fields polarize the cells, leading
to emergence of surface charge distributions that locally correlate with
enhanced electric field regions, and thus, electrical forces are exerted
on the cell membrane that are calculated using MST. Undergraduate
textbooks and pioneering papers19 show that the MST is given by
MST ij ¼ e EiEj �

1
2
dijE

2
� �

, where i, j can be x, y, and z and E is the
electric field. The surface electric field is obtained from the solution of
electric potentials that are coupled at the cell membrane through the
specific boundary condition given by

n� J ¼
1

dm
rm þ em@tð Þ Vint � Vextð Þ;

where n is the unit vector normal to the boundary surface, J is the elec-
tric current density, rm is the membrane conductivity, dm is the mem-
brane thickness, and “int” and “ext” denote the cell interior and
exterior sides, respectively. A resting potential of �50mV is set. To be
specific, we will assume that the conductivity and permittivity values
for the interior and exterior sides of the cell and for the membrane are
listed in Table S1 of the supplementary material. The second stage in
the procedure is to model the cell deformation. From this prospective,
the resulting stress distribution is coupled to the structural model for
calculation of membrane displacement u. In the case at hand, the

strain energy was calculated by solving first q@2
t2u ¼ r � S, where it

should be borne in mind that q denotes the mass density and S

denotes the stress.21,22 The membrane is modeled with a viscoelastic
material, while the inner and outer regions of the cell are modeled
with an elastic material. The stress leads to deformation in all media
(elastic and viscoelastic). The strain energy of the cell membrane can

be calculated for both deformable materials as Emem/med ¼
Ð Ð Ð

S

� c dX=2), where c is the strain and dX is the volume or surface
element. The final stage is to focus on the pore dynamics during puls-
ing. For simplicity, we assume a fixed pore radius (0.75 nm).21 We cal-
culate the pore density in the membrane, N, based on the highly

nonlinear dependence on TMP, i.e., @tN ¼ a expððTMP=VepÞ
2Þ½1

�ðNðtÞ=N0Þexpð�qðTMP=VepÞ
2Þ�, which alters the initial cell mem-

brane conductivity by adding the following term:

FIG. 1. Schematic of the eight canonical examples of 7-core-shell arbitrarily fixed in
space cell configurations and subjected to an electric field pulse. In the A1–A4 con-
figurations, all cells have the same radius set to 6 lm, and the intercellular
boundary-boundary distance, db-b, with respect to the central cell is varied from
0.625lm (A1), 1.25lm (A2), 2.5 lm (A3) to 5lm (A4). In the B1–B4 configura-
tions, cells have a radius distribution, leading to a broader db-b distribution with a
minimum set to 0.5 lm with respect to the nearest neighbor. The side of the com-
putational cube domain is 50 lm. The cell-size and distance distribution information
are given in the supplementary material.

FIG. 2. Different electric pulse stimuli used in this study: (a) unipolar pulse, (b) bipo-
lar pulse, (c) the same as (b) but differing in the width and depth of the second
pulse, (d) the same as (b) but differing in the width and depth of the second pulse.
Here, V¼ 25 V applied over the distance 50lm, leading to an average field of
5 kV/cm during the time interval t0 ¼ 100 ls.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 115, 043701 (2019); doi: 10.1063/1.5109533 115, 043701-2

Published under license by AIP Publishing

105



rep tð Þ ¼ N tð Þ 2pr2prpdm= prp þ 2dm
� �

� �

:

Here, we denote the pore density in the cell membrane, the radius and
the electrical conductivity of a single pore, and the membrane thick-
ness by N, rp and rp, and dm, respectively;

1 N0 is the pore density in
the nonelectroporated membrane; a and q are two parameters describ-
ing the EP process.4 With this result in hand, the number of pores
involves surface integration of pore density over the total cell mem-
brane surface area, and so we obtain Npores ¼

Ð Ð

NdA. Likewise, the
total membrane surface area for the configuration is 3.16� 10�9 m2.

It is useful for us to first focus on the trapezoidal voltage pulse
excitation [Fig. 2(a)] of 100 ls duration. As a matter of practice, the

total simulation runtime is 200 ls. Simulations are performed using
COMSOL MultiphysicsVR .15 Unless specifically noted, the electric field
is oriented along the z-axis. Other types of well-defined electric stimuli,
depicted in Figs. 2(b)–2(d), will be considered later.

As an example, Fig. 3 (Multimedia view) shows the evolution of
TMP exceeding the electroporation threshold voltage Vep which is
shown by regions colored in red for three fixed times during the appli-
cation of the voltage pulse. In the “switch on” state, as time goes by,
the red region in proportion to the total area increases from the poles
and subsequently decreases because the TMP decreases. It is worth
observing that these 3D plots are consistent with the anisotropic
dependence of the TMP, i.e., the induced TMP varies locally with the
position on the membrane with the highest established jTMPj at the
poles of the cell and minimal jTMPj established around the equator,
and so only the poles are electroporated. It appears that pore density
persists in all areas where TMP is above threshold, but as the pulse
falls, TMP quickly decreases from the poles (Fig. 3), while pore density
decreases more slowly outside the simulation temporal window.

With this understanding, we proceed to estimate the temporal
dynamics of the maximum value of the electric field norm on the cell
membrane [Fig. 4(a)], the total number of pores [Fig. 4(b)] assuming a
fixed pore radius set to 0.75 nm, and the relative pore area [Fig. 4(c)].
It turns out that the observed behavior of the electric field norm of the
Ai configurations is qualitatively similar to those of the Bi configura-
tions, but the larger amplitude of the electric field evidenced for config-
urations B2 and B3 is attributed to the proximity (coupling) effect. In

FIG. 3. The 3D plots represent the regions for configuration B2 corresponding to
TMP � Vep ¼ 0.258 V (shown in red, otherwise blue) when pulse 1: (a) rises, (b) is
maintained on, and (c) falls. Multimedia view: https://doi.org/10.1063/1.5109533.1

FIG. 4. (a) The maximum value of the electric field norm on membranes, (b) the
total number of pores, and (c) the fractional pore area occupied on the cell mem-
brane for the different configurations studied excited with pulse 1. The dashed lines
indicate the beginning and end of the pulse.
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point of fact, the smallest db-b value in these configurations occurs at a
specific angle of the electric field orientation leading to large local field
enhancement. The number of pores exhibits a transition that is abrupt
as the voltage pulse is switched on [Fig. 4(b)]. The plateau in the num-
ber of pores dynamics can be accounted for by the much slower rate
of pore destruction than the rate of pore creation.16–20 Pore persistence
when the pulse is switched off has been described and analyzed in Ref.
16. Histograms of the fractional pore area are not distinguishable for
configurations Bi most likely because the average value of db-b does
not vary much between the Bi configurations. In contrast, the histo-
grams shown in the left panel of Fig. 4(c) are somewhat more discrimi-
nant for configurations Ai because the average db-b value varies much
more among the Ai configurations. Be this as it may, the pore area is
suggestive to be more sensitive to symmetry rather than the proximity
effect.

Next, we analyze the effect of symmetry and proximity effects on
the strain energy distribution of the interior and exterior of the cell
and viscoelastic membrane [Figs. 5(a) and 5(b)] for the different con-
figurations shown in Fig. 1. First, there is a general pattern in these
graphs in the switch on state, i.e., a narrow peak during a few tens of
microseconds followed by a broad plateau. Second, it is noticeable that
in the switch off (postpulse) state, a second peak is observed with a
time scale which can range from 150 to 200 ls. This observation does

not arise from the dominance of the mechanical relaxation process
over the electrical charge relaxation since it was also observed in our
earlier study dealing with elastic deformation of cells after removal of
the electric stimulus.1 The incomplete shape recovery in the switch off
appears to be consistent with the power-law dynamics of cell deforma-
tion discussed in Ref. 14. The switch off signal is likely observable in
currently AFM-based, scanning probe and confocal fluorescence
microscopy experiments under in vivo experiments.17 Figure 5(c)
shows the maximum value of the membrane displacement from its
original position.

Particular attention is now paid to explore the mechanical
response to a bipolar pulse stimulus. It is worth noting that these cal-
culations are performed for configurations A3� and B2 which have an
identical average value of db-b of 3lm [the star in A3� means that it is
neither a A3 nor a A4 configuration since the average db-b value lies in
between the value for A3 (2.5lm) and that for A4 (5lm)].
Interestingly, there is a rather clear peak corresponding to the zero-
crossing of voltage excitation when the electrical stimulus is oriented
along the y-axis. Additionally, it is interesting to note that this switch
on peak signal can be larger by a factor of 8 than the corresponding
peak signal when the electrical stimulus is oriented along the x-axis
that. In the right panel of Fig. 6, we show the corresponding behavior
for the B2 configuration. We also point out that the “off” state associ-
ated with bipolar pulse stimuli is clearly visible for pulse 2 and 3 excita-
tions of the assemblies containing random distributions of cells.23–25

To summarize, we present explicit evidence of collective behavior
of cell assemblies by analyzing their electromechanical response. The

FIG. 5. Simulation results highlighting trends of the strain energy in 7-cell configura-
tions vs time when the different configurations are excited by pulse 1. The dashed
lines indicate the beginning and end of the pulse. (a) Strain energy for the interior
and exterior of the cell, (b) strain energy for the viscoelastic membrane, and (c) the
maximum value of the membrane displacement for the different configurations stud-
ied. Physiological conditions (T ¼ 310 K).

FIG. 6. Strain energy of the membrane as a function of time when configurations
A3� and B2 are excited vertically (along the z-axis, blue line) and horizontally (along
the y-axis, red line) by (a) pulse 2, (b) pulse 3, and (c) pulse 4, respectively. T is
defined by physiological conditions (T¼ 310 K). The dashed lines indicate the
beginning and end of the pulse.
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studied heterogeneous configurations present a case in which the local
enhancement of the electric field, deformation of the cell, strain
energy, and relative area occupied by the pores are sensitive to multiple
phenomena that can be difficult to deconvolve. The other remarkable
aspect is that we report a switch off (postpulse) phenomenon for sev-
eral kinds of electrical stimuli observed in different cell configurations.
Within our framework, it is possible to obtain also some insight into
the parameters affecting the temporal dynamics of the local enhance-
ment of the electric field, the surface charge density, the polarization
distribution, the relative deformation, the strain energy, and the pore
area extent within the cell membrane. Here, we are interested in cellu-
lar hardware (structure and electromechanical properties), but we
have had little to say about cellular software (information processing
capabilities). A comprehensive study of how they interplay to control
cell form and function in tissues, i.e., how the mechanical signals are
transmitted and potentially transduced into intracellular biochemical
signals, is useful because it can open newer doors to be used for 3D
engineered tissues.

See the supplementary material for the list of the parameter val-
ues for our electrodeformation and electroporation model [Fig. S1
(Multimedia view)] describing the temporal evolution of the TMP for
configurations A1 and a short discussion of the intercellular
boundary-boundary distance histograms for configurations A1–A4
and B1–B4 (Fig. S2).
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Supplementary Material of: A multiphysics analysis of the strain energy in multicellular 

environments, by D. Shamoon, S. Lasquellec, and C. Brosseau* 

The Supplementary Material contains the list of the parameter values for our 

electrodeformation and electroporation model, a figure (Fig. S1) describing the temporal 

evolution of the TMP for configurations A1, and a short discussion of the intercellular 

boundary-boundary distance histograms for configurations A1-A4 and B1-B4 with a figure 

(Fig. S2).  

 

Table S1: Parameter values for the electrodeformation and electroporation model. References: 
a[1], b[18,24], c[4,18,25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electric pulse parameters 
Pulse duration parameter t0 100 µs 
Transition time 1 µs 
Applied voltage 5 kVcm-1 x 50 µm = 25 V 
Total simulation time 200 µs 

Electrical properties 
Relative permittivity of the cytoplasma 60 
Conductivity of the cytoplasma 0.42 Sm-1 

Relative permittivity of the 
suspension/extracellular matrixa 

80 

Conductivity of the 
suspension/extracellular matrixa 

0.012 Sm-1 

Relative cell membrane permittivitya εm 8.85 

Initial cell membrane conductivitya 10-6 Sm-1 

Resting transmembrane potentiala Ures
 -50 mV 

Structural properties 
Thickness of the cell membranea dm 5 nm 
Uniform density (all regions)b 1050 kgm-3 
Young’s modulus (int/ext of cell)b 1000 Pa 
Poisson ratio (int/ext of cell)b 0.4 
Young’s modulus (cell membrane)b 500 Pa 
Poisson ratio (cell membrane)b 0.49 
Shear modulus (cell membrane)b 1500 Pa 
Viscous relaxation time (cell membrane)b 0.1 s 

Pore density model parameters 

Electrical conductivity of a single porea σp 0.114 Sm-1 

Electroporation thresholdc Vep
 258 mV 

Initial pore densityc N0 1.5x109 m-2 
Pore radiusc rp 0.75 nm 

Creation rate coefficientcα 1x109 m-2s-1 

Pore creation ratec q 2.46 
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Fig. S1: The 3D plots represent the regions for configuration A1 corresponding to TMP≥ Vep 

= 0.258 V (shown in red, otherwise blue) when pulse 1: (a) rises, (b) is maintained on, and (c) 

falls (see video Fig. S1 (Multimedia view)). 

In this study we consider two series of configurations: a first one with a discrete 

distribution of the intercellular boundary-boundary distance db-b values and same cell radius 

leading to symmetric and regular configurations (Ai, with i=1,2,3,4 in Fig. 1), and the other 

one with a relatively broad distribution of db-b values (left panel of Fig. S2) thanks to the 

radius distribution yielding asymmetric and irregular configurations (Bi, with i=1,2,3,4 as can 

be seen in Fig.1). In the A1-A4 configurations, the intercellular boundary distance is 

respectively x, 2x, 4x, 8x (where x=0.625 µm) and the cell radius is set to 6 µm. If we look at 
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the right panel of Fig. S2, it can be seen that the symmetry-breaking B1-B4 configurations are 

arranged in such a way as to allow the db-b values to be randomly distributed. 

 

 

Fig. S2: Proximity histograms for configurations A1-A4 and B1-B4, where db-b is the 

intercellular boundary-boundary distance. In these plots, the number indicates the average 

value of db-b for the color histogram (orange) corresponding to the lowest db-b values. 
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4.1.2 Large number of deforming cells (unpublished work) 

The case of N-spherical-cell assemblies is further considered by using larger values of 

N. An algorithm designed to build a random distribution of non-penetrating N-spherical-cell 

assembly is used (see Appendix A). Our initial motivation was to consider hundreds or 

thousands of such assemblies in the same spirit as was done for the statistical analysis of 

random checkerboards i.e. to represent average properties of cell assembly realizations. But, at 

present, it represents a challenging task since each simulation runs for about one and a half 

hour or more. It is reminded that in the same spirit, 5-15 such random assemblies have been 

previously considered by Mezeme et al. (2012) [22-a] for non-deformable cells. For 

deformable cells of large number, the analysis is computationally more expensive than that 

discussed in Chapter 3.  

 

Fig.4.10: Electrical pulse and model geometry of 76 spherical cells (of radii 8, 10, 12 m) for time-dependent 
analysis. 

 

In this preliminary test, we consider a single assembly. When the post-simulation 

analysis protocol will be fully automated, its execution will be made straightforward. Thus the 

number of assemblies can be increased to formulate average ED and EP behaviors. The 
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algorithm takes the cube dimensions and number of cells with specified dimensions as inputs 

and returns the positions of each cell as output. The assembly of cells considered here has 76 

cells corresponding to a filling fraction of 0.1338. This assembly is electrically stimulated with 

the voltage pulse depicted in Fig.4.10. Conductivity of cytoplasm is set to 0.12 Sm-1, while that 

of suspension media is 0.53 Sm-1. Elastic behavior of cells considered with Young’s modulus 

set to 1000 Pa.  

4.1.2.1 ED behavior 

The analysis for ED is conducted as before and membrane displacements are obtained. 

Figure 4.11 shows two snapshots corresponding to the instant times during the end of each 

pulse polarity.  

 

Fig. 4.11: Snapshots of total membrane displacement in nm during the end of each pulse polarity. Arrow depicts 
the direction of electric field. Pulse and configuration as in Fig.4.10. 

  

It can be observed that the local deformation has more than doubled to 27 nm by the 

end of second pulse as compared to its value at the end of the first one, i.e. 11 nm. By extracting 

the maximum value of the total membrane displacement from all cell membranes, we find that 

it mainly increases rapidly during the rise of the pulse polarities and tends to remain constant 

after the pulse has gone till the end of simulation (t = 6 s). Since, an elastic model is used, it 

t=2s 
nm 
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nm 
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is expected to further reduce if longer simulation times are used. Figure 4.12 clearly shows that 

the maximum value of membrane displacement is calculated as 27 nm. 

 

Fig.4.12: Maximum value of the total displacement (anywhere on the membranes) as a function of time. The 
dashed regions with ‘+’ and ‘-’ indicate pulse polarities. Pulse and configuration as in Fig.4.10. 

 

Strain energy is obtained (Fig.4.13) which confirms the trend illustrated in Fig.4.12 and 

indicates that the system has still not relaxed mechanically after 6 s (the end of simulated 

time). Even though a slight relaxation follows each drop of pulse polarities, the strain in the 

system persists at least for the duration of the whole simulation. 

 

Fig. 4.13: Strain energy for the 76 cell configuration as a function of time. The dashed regions with ‘+’ and ‘-’ 
indicate pulse polarities. Pulse and configuration as in Fig.4.10. 
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However, it must be noted that in the event of a net translation of the cell, the strain will 

remain non-zero even after a complete mechanical relaxation to original shape since the strain 

is calculated according to the original position of the membrane. 

4.1.2.2 EP behavior 

EP behavior is now examined for the assembly of cells with N=76. The number of 

generated pores is very small (only about 50 (i.e. 162-112), see Fig.4.14). It is recalled that the 

number of pores in our previous works i.e. Shamoon et al. (2019-a, b) [47, 49] was calculated 

to reach 105 before becoming constant for the remaining duration of the simulation. Here, the 

small number is due to the weakness of electric field pulse-strength (0.83 kV/cm). This is 

further confirmed by running complementary sets of simulations for pulse-strengths 1 kV/cm 

and 1.2 kV/cm for which the number of pores reached 26,000 and then to 105, respectively. 

Accordingly, the maximum membrane displacements increase to 47 nm and 102 nm. It is also 

noted that the formation of the pores increases at the end of positive pulse polarity rather than 

at the beginning. We expect that this observation is related with the membrane charging time 

which in this particular case is in the range of 0.74-1.1 s owing to the cell-radii distribution 

between 8-12 m. 

 

Fig.4.14: Number of pores of fixed radius as a function of time. The dashed regions with ‘+’ and ‘-’ indicate pulse 
polarities. Pulse and configuration as in Fig.4.10. 
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This analysis of ED and EP for N-cell assemblies provides evidence that neighboring 

cells and changing pulse parameters have significant but complex effects on these two related 

processes that may be distinguishable by experimental techniques. Many more realizations are 

needed to get the general features of the ED and EP behavior for that. However, these 

preliminary tests can serve as a guide to understand the effects of neighbor’s proximity and 

non-symmetric effects of the configuration. While a time-dependent analysis predicts how the 

system evolves in time, a frequency analysis gives important insights also as to how one can 

use frequency tuning as a force modulation technique among neighboring cells interplaying 

with the material dispersive properties.  

4.2 Frequency analyses 

Force modulation by varying the frequency of the exogenous applied field is analyzed 

in the context of neighboring cells. This is a first step analysis since ED and EP are not 

incorporated in it, however our results form a necessary stage for developing the model further. 

All regions of the biological media are assigned dispersive complex relative permittivity (i.e. 

frequency-dependent). The analysis is performed within quasi-static approximation i.e. the 

wavelength of the ac field is considered to be much larger than the smallest spatial feature in 

the geometry of the model.  

Firstly, we present the frequency analysis for a single cell of radius R = 5 m put in a 

cube of sides 2.5*R=12.5 m, thus representing a cell suspension with a filling fraction of 

0.2608. The complex relative permittivity is set to 𝜀𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝜀𝑠𝑡𝑎𝑡𝑖𝑐 − 𝑖( 𝜎𝜀0𝜔) where the static 

(long-wavelength) relative permittivity for interior, exterior and membrane of the cell are 60, 

80 and 8.5 respectively. The conductivities are set to 0.42 S/m, 0.01 S/m and 1x10-6 S/m 

respectively. An applied field strength of 1 kV/cm is given in the frequency range of 103 to 109 

Hz. The results shown in Fig.4.15 show potential difference across the membrane and surface 
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charge density over it. Over the full frequency range the TMP ranges between ±0.6 V while 

the surface charge density ranges between ±0.18 fC/m2. It is interesting to observe that the 

extrema of these two quantities on the poles occur in different frequency ranges i.e. at the 

topmost point of the cell, TMP is highest in the range of 103-104 Hz while the surface charge 

density is highest around the MHz range. 

 

Fig.4.15: (a) TMP over half the cell circumference from bottom to top, (b) TMP at the topmost point on the cell, 
(inset) Model geometry; ac field is applied along z axis (c) Surface charge density over half the cell circumference 
from bottom to top, (d) Surface charge density at the topmost point on the cell 

 

The average force on upper and lower halves of the cell is presented in Fig.4.16 along 

with results of the effective dielectric behavior. On a single cell, the net total electric force is 

zero while the two poles experience an equal stretching force (of the order 10-5 N in lower 

frequency range and then drop to 10-9 N towards the higher frequency range) in opposite 

Top point 103-109 Hz 

(a) (b) 

(c) (d) 

103-109 Hz Top point 
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directions. The real part of effective relative permittivity can be seen relaxing first beyond 50 

kHz and then for the second time beyond 50 MHz corresponding to low frequency and high 

frequency -relaxation process. 

 

Fig.4.16: (a) Net electrical force over upper and lower halves of the cell surface calculated by surface integration 
of MST, (b) Real part of the effective relative permittivity, (c) Imaginary part of effective relative permittivity, (d-
e) Zoomed regions from (b).  

 

The results for neighboring cells are organized in the following sections which 

consistently show that the inter-cellular electrical forces can be modulated at the local as well 

as at the global level. These results are in good agreement with the previous work realized by 

Murovec & Brosseau (2015) [26]. This new addition considers two different lines of 

investigation. One focusses on two neighboring cells among which one can be found at 

different relative orientations with respect to the other cell and field direction. Two separate 

sets of parameters and material properties are used in this case. It is observed that the frequency 

modulation leads to force reversal on the cell. The other focusses on a cell which is well 

(c) (d) (e) 

(a) (b) 
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surrounded by its nearest neighbors. The effect of introducing second nearest neighbors is 

examined on the net force experienced by the central cell within the applied frequency 

modulation analysis. A gradual increase of filling fraction up to 0.29 is implemented.  

4.2.1 Effect of relative orientation among two cells on total force 

Under an ac applied field, the total electrical force experienced by a cell in proximity 

to an identical neighbor is examined. The position of the neighboring cell is changed around 

the reference cell which is positioned in the center of the cubic domain. It is reminded that two 

sets parameters and properties are used in this analysis.  The first set is identical to that used 

for single cell and mentioned before (Section 4.1.1). Second set of properties consists of the 

conductivity for interior, exterior and membrane of the cell that is set to 0.75 S/m, 0.056 S/m 

and 3x10-7 respectively. The relative permittivity for the respective regions is set to 75, 80 and 

3. Figure 4.17 shows a typical geometry of the model used. 

 

Fig.4.17: Two cells of radius 10 m are separated by 500 nm. The applied ac field is along z axis. Side of the cube 
is 80 m. The position of the off-center cell is revolved around the central cell keeping the same separation. 

 

The central cell is identified as cell 1 and the off-center cell as cell 2. The orientation 

of cell 2 is defined in terms of angle  with respect to the field direction along +z. Cell 2 is on 

top of cell 1 when  The total electric force as well as the force on polar halves of both 

X 

Y 

Z 
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cells are studied as the position of cell 2 is revolved around cell 1. For  = 0, the forces are 

plotted in Fig.4.18. It is observed that the average force on the polar halves is in the order of 

10-5 N during low frequency near 103 Hz which drops to half in the next around 104 Hz and 

further drops to 10-9 N beyond the range following 106 Hz. Both cells experience a net force 

along z axis in the order of 10-7 N which further drops to zero close to 105 Hz and then the force 

reversal is observed till 106 Hz after which the magnitude is in the order of 10-9 N. The results 

are illustrated in Fig.4.18.  

 

Fig.4.18: Electric force, z component (total and averaged on polar halves) on two neighboring cells as a function 
of frequency when the angle of orientation for cell 2 is  = 0. (a) For cell 1 and (b) for cell 2. 
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When the angle of orientation of cell 2 is varied from 0 to 90 degrees, significant 

changes in the net force experienced by the two cells are recorded which are displayed in 

Fig.4.19. It is worth noting that the forces are not necessarily equal and opposite. 

 

Fig.4.19: Net electric force on two cell configuration as a function of frequency. The angle of orientation of cell 
2 is marked in the legend. 

 

 For the second set of parameters which were also used in Shamoon et al. (2018) [28], 

we show the total magnitude of the force and its direction for the two cell configuration in 

Fig.4.20. 
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Fig.4.20: Total electric forces between two cells under an applied ac field. (Adapted from Fig.15 of Shamoon et 
al (2018) [28]). (a) Surface charge distribution (in C/m2) over two spherical cells of radii 10 m each, separated 
by a distance of 500 nm when an average ac field magnitude of 1 kV/cm with frequency of 106 Hz is applied 
vertically, (b) the direction of total electric force on the second cell at specific angular positions is depicted by 
arrows for frequency of 105 Hz (blue) and 106 Hz (red), and (c) a comparison of force magnitudes for the two 
cases shown in (b). 

 

One can notice that the proximity effect redistributes the surface polarization charges 

depending upon the direction of the applied field and relative position of the two cells. The two 

frequencies at 105 Hz and 106 Hz show remarkable differences in the total force magnitude and 

orientation. Colored arrows label the frequency and illustrate the change of direction while the 

dashed line represents the trajectory along which the cell 2 is positioned at specific points 

corresponding to the angle of orientation. The length of the arrows is a guide to the eyes. More 

than one order of magnitude difference can be seen clearly as the angular position of cell 2 is 

varied. However, the second set of parameters lead to a very different order of magnitudes than 

the first one discussed above.  

The change in the order of magnitude of the electrical force is particularly important in 

cell manipulation techniques. The effect of varying the separation between the two cells is also 

analyzed. Four simple combinations of the property values labeled as 1(a, b) and 2(a, b) are 

shown in the inset of Fig.4.21.  
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Fig.4.21: Order of magnitude differences in total force on the off-center cell inclined 300 from the vertical from 
lower side around an identical neighbor cell in the center. The whole system is under an applied average ac electric 
field of 1 kV/cm strength. The conductivity of suspension media and separation of the cells are varied as shown 
in the inset table and the legends are marked accordingly. 

 

The geometry for this model consists of the same two-cell configuration when the off-

center cell is inclined at 300 from the vertical about the center (same as shown in Fig.4.17). The 

results show that when frequency is below 105 Hz, the force increases by an order of magnitude 

for a smaller conductivity medium as compared to the case of larger conductivity medium 

while the separation distance does not have much effect except that the force is slightly intense 

when cells are closer. As frequency is close to 106 Hz, the orders of force magnitude increase 

to 10-10 N for both media. With further increase in frequency, the higher conductivity medium 

leads to a faster increase in the force than the lower conductivity medium. Additionally, the 

force is more sensitive to the separation of the cells at higher frequency as shown by the 

increased separation among the marked lines corresponding to the combinations ‘a’ and ‘b’ of 

each ‘1’ and ‘2’.   

4.2.2 Effect of introducing next-nearest neighbors 

A series of geometries is constructed with increasing the number of cells as N = {15, 

19, 23, 27, 35, 43} in order to have a gradual increase in the filling fraction. The cells are 
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positioned by direct placement. The multicellular configurations (Fig.4.22) contain cells of two 

sizes (5 and 10 m). The first configuration has five larger cells and ten smaller ones so that 

the central cell is well surrounded by its nearest neighbors. For introducing next-nearest 

neighbors, only smaller size cells are added in the next configurations as they can fill more 

space. The obtained filling fractions are in the range 0.18-0.29. In this analysis, the net force 

components on the central cell are analyzed as a function of frequency and filling fraction. 

 

Fig.4.22: Multicellular model geometry with filling fractions (a) 0.18, (b) 0.2, (c) 0.216, (d) 0.23, (e) 0.26 and (f) 
0.29. Cube size is 55 m. Two cell radii - 5 and 10 m. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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The force components which are shown in Fig.4.23 reveal that the net force magnitudes 

significantly change (within the order of 10-8 N) on the central cell with similar force reversal 

trends as discussed before. 

 

Fig.4.23: Net electric force components for the central cell in a suspension with varying filling fraction due to 
increase in number of the cells. 
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We observe that when frequency is changed, the surface charge redistribution becomes 

more prominent close to the proximity regions at 107 Hz as presented in Fig.4.24.  

 

Fig.4.24: Local electric stress distribution on a cell surrounded by other cells under an applied ac field. [Adapted 
from Fig.16 of Shamoon et al (2018) [28]] (a) Model geometry consists of a random distribution of two-size 
spheres (radii 10 and 5 m). The central (blue) sphere is chosen (as reference) for examining the local force 
distribution on its surface. MST is depicted by arrows and surface charge density (in C/m2) is depicted by color 
for frequency of (b) 104 Hz and (c) 107 Hz 

 

At 104 Hz, the central cell experiences mainly a bi-directional electrical stress with less 

prominence around the proximity regions. But, as the frequency is changed to 107 Hz, the 

electrical stress gets concentrated around the proximity regions. In particular, for the larger red-

spot covering a surface area of 9.3849 m2, the MST was surface integrated to reveal a small 

force of 1.25 fN for an applied field strength of 2 V/cm but this force scales up to 1.25 nN for 

an applied field strength of 2 kV/cm. 

Considering the frequency analysis of this work, the reader’s attention is brought to a 

previous work by Murovec & Brosseau (2015) [26] in which frequency modulation of electric 

field excitation of neighboring biological cells showed a similar variation of the local electrical 

stress distribution. Our results are consistent with that work but calculated for new cell 

configurations. Consider another previous work by Murovec & Brosseau (2014) [25-b] that is 

closely related but had a slightly different scenario. In that work, the spheres are modelled as 

conducting bodies only (not core-shell), which are maintained at fixed potentials (slightly 

different in magnitude) and the total force is calculated which is shown to possess a repulsion-

to-attraction transition with respect to inter-cellular gap distance. The difference in the two 
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situations is hereby noted. First, cells are not maintained at constant potential here, they are 

under the applied field, and there is a gradual variation of electric potential around the cell 

membrane. Hence, it is not the same situation but the possibility of redirection of the force 

remains due to the same reasons i.e. redistribution of the surface charges. In summary, the force 

reversal can be observed with inter-cellular distance variation and also with frequency variation 

without necessarily varying the former. 
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5. Conclusion and Perspectives 

This work aimed at developing simple numerical models for describing ED and EP of 

biological cell assemblies submitted to an electric field excitation. Experimentally relevant 

field excitations and experimentally determined material properties are used as inputs for the 

models. This work is distinguished from the archival literature in that it considers non-

symmetric randomized deformable cell assemblies. In summary, this study reveals some of the 

subtle interactions of cell electrostatics and mechanics for assemblies of cells in specific 

configurations, which involve a complex interplay of the effects of the electric field, cell 

surface charge, TMP, pore density, and characteristics of the delivered pulse. The 

experimentally measurable quantities like electric voltage across the cell membrane (TMP) and 

electrical force distribution (MST) over the cell membrane are calculated in this study which 

fall well within the reported estimates in the literature (respectively, -40 mV-1.2 V and 10-70 

pN/m2). This work is also distinguished by the use of deformation analysis predicting up to 

66 % of strain for cell membrane and ~5 kT for its strain energy under an applied electric pulse. 

Both ED and EP are shown to be affected by the proximity of cells owing to the local electric 

field enhancement. We present explicit evidence of collective behavior of cell assemblies by 

analyzing their electromechanical response both in dc and ac excitations.  

Together, these observations suggest that the spatial organization of the polarization 

charges can play an important role in electro-deformation and EP of biological cells and that 

this organization can be controlled to facilitate EP. Our model can also be extended in 

directions such as linking to various device configurations with microfluidics and transport of 

dilute species from the cell exterior to its interior or vice-versa. This will render these extended 

models more appropriate for experimental validation. Here, we studied cellular hardware 

(structure and electromechanical properties), but we had little to say about cellular software 

(information processing capabilities). A comprehensive study of how they interplay to control 
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cell form and function in tissues, i.e., how the mechanical signals are transmitted and 

potentially transduced into intracellular biochemical signals, is useful because it can open 

newer doors to be used for 3D engineered tissues. 

Several trade-offs are involved in construction of a 3D Multiphysics model involving 

Multiscale non-symmetric arbitrary shapes of cells. Multiscale aspects can be dealt by 

considering the distinct phases as homogeneous entities in a defined regions of space while the 

heterogeneity amounts to the number of such distinct phases. Multiphysics aspects can be dealt 

with by making a clear distinction between the time scales of various events involved that can 

lead to decoupling of involved equations wherever possible. A single multiscale theoretical 

model or experimental platform which would include subcellular, cellular and tissue details or 

have a control over these aspects is still lacking (i.e. from 1 nm to 10 mm as shown in Fig.1.1). 

Moreover, biochemical reactions during regular biological processes which eventually impact 

physical responses were not considered in this report. A hybrid continuum approach can be 

envisioned for such an analysis that takes into account coarse-grained biomolecular details and 

reactions sourced from a database and considering as well as hundreds of cells up to large 

length scales. 

Considering the modelling of more physical processes, one can further relax the 

assumption of homogeneous conductivity for interior and exterior of the cells by including the 

local ionic concentrations that can contribute to the local charge distribution. The membrane 

conductivity is experimentally measured by ‘voltage clamp’ techniques which maintain a fixed 

transmembrane potential that can be varied by an external battery. The ionic currents through 

the membrane are measured using this technique. The frequently monitored ions are K+, Na+, 

Cl-, Ca2+. In context of the model developed in this work, the ‘external battery’ is however not 

directly applied across the membrane but farther away that indirectly induces the variation of 

TMP. Since, these ions flow through the membrane in and out of the cells by various means 
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such as voltage-gated ion-channels (or the nano-pores that have been discussed in this work), 

it would be worth exploring how the local concentrations are affected by application of external 

fields. Goldberg et al. (2018) [50] have incorporated multiple ionic species in a multyphysics 

simulation approach to EP. Apart from these, the ion specificity for ion-channels and pore 

dynamics add further complexity to the scenario. On the other hand, fluid flow in general can 

also exert pressure on the membrane leading to an additional contribution apart from the MST. 

Hence, modelling of ionic concentrations, pore radii distribution dynamics and fluid flow can 

be very interesting to give results much closer to the experimental devices used for the purpose. 

Membrane mechanics has been conventionally modelled with Helfrich’s energy 

function [51] that uses terms corresponding to surface curvature and bending moduli. This 

energy function permits a rough estimate of the equilibrium shape of a cell. The general free 

energy of the membrane can accommodate contributions from Helfrich’s energy and more 

terms such as those accounting for surface tension and occurrence of pores. The strain energy 

results presented in this work (~5 kT) for viscoelastic membrane are of the same order of 

magnitude as those reported for pore formation (~15-20 kT) in the literature. Thus, an energy 

formalism can also be considered to study the electromechanical response of multicellular 

configurations by their calculation on the defined membranes. 
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Appendix A: Geometry conception using algorithms  

A1. Random 2D checkerboard generation 

The algorithmic concepts for generating hundreds to thousands of realizations of two 

phase media in the form of 2D checkerboard (sizes 4x4 and beyond) are presented below. The 

goal is to obtain all or if not all, then a very high number of realizations for a given filling 

fraction of the checkerboard. A MATLAB script was written by the author for this goal. It must 

be borne in mind that these realizations become the source from which a desired number of 

realizations are then randomly sampled for electrical steady-state analysis.  

Assignment of material phase 

First, all the small squares of the model from 1 to NxN (here shown for 2x2) are labelled 

 

Arrays are filled with 1s (white) and 2s (black) corresponding to the two phases (𝜺𝟏 and 𝜺𝟐) using an algorithm based on Monte Carlo method.  

 

The last step is repeated many times ensuring non-repeatability of the sequence and 

storing all unique sequences. The program stops if the maximum possible number or a 

sufficiently high number of configurations is reached. 
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Algorithm highlights 

• The aim is to generate sequences of NxN elements using 2 digits (1s and 2s representing 

the ID of first and second material) ensuring a fixed filling fraction  

• First, Monte Carlo method is used to generate a Gaussian distribution of a large number 

of sequences (which may contain repeated sequences) centered at the desired filling 

fraction 

• Then, the sequences corresponding to the desired filling fraction are chosen and the 

unique ones from among them are extracted 

• For extremely large number of sequences it is reasonable to generate only up to 105 

unique sequences 

A2. Randomly distributed spherical N-Cells generation 

Numerical generation of randomly distributed N objects in 3D space is not trivial since 

objects can overlap which is not a desired feature in this work. Random distribution of non-

overlapping N-cells was generated by using a user-developed MATLAB function (courtesy: 

Melvin and Laboratory of Biocybernetics, Slovenia) 

Algorithm highlights 

 The primary inputs such as number of cells, filling fraction and cube dimensions are set 

 An average radius for cell distribution is calculated based on the primary inputs 

 Non-overlapping condition is enforced by requiring the new random center coordinates 

to be rejected if the distance between the new and any of the old ones is less than twice 

the average radius 
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