Objective

All the industrial flow solvers dedicated to high Reynolds turbulent flows for industrial configurations are based on a formally second-order accurate temporal and spatial discretization. There is a strong need for more accurate discretization approaches in many fields like computational acoustics, Large Eddy Simulation, and vortex dominated flows which are still out of reach of systematic industrial studies. During the last ten years, several numerical methodologies have emerged mainly for compressible flows, which look promising in terms of accuracy, computational cost, and numerical robustness. A few of them concerned the incompressible turbulent flows that need very specific developments which are the topic of this thesis.

The objective of this Ph.D. thesis is to develop, implement, and assess a computational approach that can reach high-order accuracy for the simulation of high Reynolds number turbulent incompressible flows over complex geometries with the help of the solution of the unsteady Navier-Stokes equations. The discretization is based on the discontinuous Galerkin approach adapted to take into account the incompressibility constraint and the method should be able to treat unstructured conformal or non-conformal meshes. Systematic and thorough discretization error assessments are performed with the help of dedicated manufactured solutions in order to draw some general conclusions for industrial applications.

High-order incompressible flow solver

Incompressible Navier-Stokes equations play a vital role in industrial flow simulations. It describes the flow appearing in several applications, such as; turbomachinery, hydrodynamics of ships, weather forecasting, blood flow, and many other fields. Fundamentally, it is the basic mathematical model for low-speed gas flows and for almost all liquid flows, i.e. for flows with Mach numbers below 0.2. Various methods are available to solve the equations numerically, however the finite volume method appears to be dominant on the commercial scale. Most of the industrial flow solvers in computational fluid dynamics field are based on the finite volume method with first or second order accuracy at most. One of the main reasons for this dominance is that, it exactly satisfies the conservation of quantities regardless of the shape and size of the mesh. Very robust numerical solvers can be easily built due to the flexibility of such second order conservative formulation. With an observed order of accuracy not too far from the expected second order accuracy, finite volume scheme has been successfully applied to numerous engineering applications for which physical modelization error is usually larger than numerical discretization error. However, more and more situations require low numerical discretization error. For instance, in a large eddy simulation, numerical discretization error needs to be reduced to low enough level compared with physical modelization error, which in a finite volume approach is usually achieved by grid/time refinement (h-refinement). For sea-keeping simulation, the quantity of interest (the added resistance in waves) is a high-order quantity. Another example is advanced physical modeling such as transition model for which the evaluation of high-order derivatives in source terms is required. Moreover, low-order methods fail in simulations involving vortex dominated flows or acoustics. Vortex flows exhibit high-gradients regions that can only be accurately solved with very fine grids if a second-order method is used. In this case, numerical errors became larger or equal than modeling errors and so they pollute the accuracy of the model. Consequently, with the current numerical methods used commercially, accurately simulating turbulent flows is still out of reach in numerous industrial applications.

Recently, high-order methods are becoming more popular and favorable because of their low dispersion and dissipation errors. It is accustomed among practitioners that the method is high-order if its order is higher than second order. Although the high-order methods are proven to be more accurate, their performance when the solution is not very smooth is questionable. Additionally compared to finite element (FE) and finite volume (FV), the high-order discontinuous spectral methods are often criticized for the increased number of degrees of freedom. In brief, there is no superior method that is valid for every problem. Rather, a method can outperform based on a particular partial differential equation in a given operating range. This motivates the problem being tackled by this thesis; are high-order methods convenient for industrial incompressible flow applications? Numerous aspects should be considered to answer this question. Firstly, industrial flow applications require robust numerical methods for arbitrary geometries at Reynolds numbers up to 10 9 . Thus, the choice of the high-order methods should be narrowed down to conservative methods that are efficient on unstructured grids. Additionally, the numerical method should be stable at such Reynolds numbers. Finite element method can be highorder accurate on unstructured grids, however, convection-dominated flows pose a problem for such discretization scheme. A group of methods that is more suitable for hyperbolic equations is the spectral discontinuous high-order methods. In these methods the solution is discontinuous across the element boundaries likewise the finite volume method. This discontinuity grants the robustness in dealing with non-linear convection terms with the ability to apply stable numerical fluxes and Riemann solvers developed for finite volume. Furthermore, these methods have compact stencil, that make them suitable for efficient parallelization on modern computers. This group can be classified into two main groups, the methods based on the integral formalism or the differential formalism. Spectral difference and flux reconstruction are based on differential formalism and yet conservative across the elements due to the numerical fluxes used. Spectral difference and flux reconstruction have been extensively used for compressible flows. However, the author believes that dealing with the incompressibility constraint without using artificial compressibility in the differential formalism inside the elements would be problematic. On the other hand, the two main candidates in the integral formalism arising from continuous Galerkin and finite volume are discontinuous Galerkin and spectral volume respectively. Taking into account the dominance of the finite volume in computational fluid dynamics, the spectral volume might be the reasonable choice. However, the high-order partitioning inside the elements is not straightforward and can lead to unstable formulations [START_REF] Van Den Abeele | An accuracy and stability study of the 2D spectral volume method[END_REF]. Discontinuous Galerkin can be seen as high-order finite element method inside the elements with finite volume numerical fluxes that solve the problems associated with the non-linear advection term. Therefore, it seems as a convenient choice to robustly solve the incompressible Navier-Stokes for industrial applications. After settling on the high-order method, the question can be reformulated as: is discontinuous Galerkin method convenient for industrial incompressible flow applications?

A general requirement for high-order methods, is the availability of high-order grids. The meshing tool must correctly provide a high-order representation of the geometry. Most of the commercial meshing tool developed for low-order finite element and finite volume produce linear grids that deteriorate the order of accuracy of the overall method. However, the information required to build high-order meshes are provided in the computer-aided design (CAD) model and it is possible that commercial meshing tools will produce highorder girds in the near future. The bottleneck of high-order methods for incompressible Navier-Stokes equations is in the formulation itself. Due to the incompressibility constraint, the equations present a mathematical difficulty in solving them numerically.

Unfortunately, numerous methods for solving the incompressible Navier-Stokes equations that are based on discontinuous Galerkin lead to unstable schemes. The problem is originated from the non-exact mass conservation of the approximate solution. Due to weak enforcement of the incompressibility constraint, the velocity fields obtained are not exactly divergence-free. Automatically, the continuity equation is not exactly satisfied and so mass conservation is lost in the physical sense. For the laminar cases, this lack of conservation has a small impact on the approximate solution and can somehow be accepted for steady state problems. However, for transient problems and turbulent flows, mass conservation is essential to have a stable method. Numerous methods have emerged that use DG [START_REF] Bassi | An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations[END_REF][START_REF] Cockburn | A locally conservative LDG method for the incompressible Navier-Stokes equations[END_REF][START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF][START_REF] Krank | A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow[END_REF][START_REF] Rhebergen | A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations[END_REF]. Nevertheless, these methods do not result in an exactly divergence-free velocity field. To exactly satisfy the mass conservation with DG, the formulation should compute exactly divergence-free velocity fields inside the element. Additionally, the normal components of the velocity across the element boundaries should be continuous, this is known as H (div)-conforming velocity fields. These two features are crucial to obtain an energy-stable and locally mass and momentum conserving method for DG methods [START_REF] Cockburn | A locally conservative LDG method for the incompressible Navier-Stokes equations[END_REF][START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. An elemental post-processing operator was developed by Cockburn et al. [START_REF] Cockburn | A locally conservative LDG method for the incompressible Navier-Stokes equations[END_REF], to generate a pointwise divergence-free processed velocity. Furthermore, the post-processing operator based on H (div)-conforming finite element spaces is not straightforward to build for advection dominated flows. Hybridization is another strategy that can be used to satisfy the divergence-free property [START_REF] Boffi | Mixed finite element methods and applications[END_REF]. Hybrid or hybridizable discontinuous Galerkin (HDG) orginally was developed to reduce the number of degrees of freedom of the implicit solution, by replacing the solution of the elemental nodes by local independent systems defined with respect to the solution on the boundaries of the elements [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF]. Several HDG methods were developed to solve the incompressible Navier-Stokes equations [START_REF] Cockburn | The derivation of hybridizable discontinuous Galerkin methods for stokes flow[END_REF][START_REF] Lehrenfeld | High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations[END_REF][START_REF] Qiu | A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes[END_REF]. Nonetheless, the divergence-free velocity field is not obtained automatically for all HDG methods. The pressure trace on the facets was introduced to act as a Lagrange mulitplier to enforce the continuity of the normal velocity across the element boundaries [START_REF] Labeur | Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations[END_REF][START_REF] Rhebergen | A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains[END_REF]. However, these methods could not satisfy mass conservation, momentum conservation, and energy stability concurrently.

Rhebergen and Wells came up with a simple yet effective method, presented in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. The approximate spaces were chosen precisely so that, the pressure acts as a Lagrange multiplier to enforce the divergence-free condition inside the elements, and the pressure trace as a Lagrange multiplier to enforce continuity across element boundaries. The method brings a conservative, robust, and stable method for simplices [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. Nonetheless, its conservative properties are lost when applied to quadrilateral and hexahedral elements. In industrial applications, hexahedral meshes are highly valuable. Since at high Reynolds numbers flows, it is not recommended to use tetrahedral elements near the wall as they lead to misalignment between solution gradients and the normal to the faces. In this thesis, a modification to the method by Rhebergen and Wells is presented, such that the proposed method is conservative for all standard element types. A function space is introduced for the pressure, which contains the divergence of the velocity for any element type. The construction of this vector space for different element types using the novel concept of the reduced order element is presented in chapter 3. Up to the authors knowledge, this is the first HDG, energy-stable, mass conserving, and momentum conserving formulation for all the range of Reynolds numbers that works for all standard element types without any post-processing or using divergence-conforming finite element spaces. The energy-stable DG method, which is mass and momentum conserving proved to be very efficient for laminar mono-fluids. Nonetheless, the motivation behind using this method is to model turbulent flows, which is the second part of this thesis.

Stability at high Reynolds numbers

The HDG method proved to be a useful tool in numerically solving convection-diffusion problems on unstructured grids with high-order accuracy [START_REF] Cockburn | A hybridizable discontinuous galerkin method for steady-state convection-diffusionreaction problems[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations[END_REF]. However, its performance for convection-dominated flows is doubtful. A drawback of the DG based methods is dealing with a second order or higher derivative terms. There is a dependency on the stabilization parameter, for well-posedness, stability, and the order of convergence [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF]. Only a lower bound of the stability term can be mathematically derived for elliptical problems with no upper bound [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF], which makes choosing the stabilization parameter more of a problem based, rather than a known value. This hinders the robustness of these types of methods, especially in industrial flow applications. In which, the user can not estimate the stabilization term before running the simulation [START_REF] Giacomini | Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for the incompressible navier-stokes equations[END_REF]. For advection-diffusion equations, the stabilization parameter associated with the second order operator is conventionally referred to as the diffusion stabilization parameter. While the stabilization for the advection term is referred to as the advection stabilization parameter. The stability of the advective part has been studied extensively using HDG [START_REF] Cesmelioglu | Analysis of HDG methods for Oseen equations[END_REF][START_REF] Cesmelioglu | Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations[END_REF][START_REF] Cockburn | A hybridizable discontinuous galerkin method for steady-state convection-diffusionreaction problems[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations[END_REF]. This parameter has many convenient choices that do not pose a problem to the stability. A part of this thesis focuses on the derivation of a robust expression for the diffusion stabilization parameter in the HDG framework for convection-dominated flows presented in chapter 2. To the best of our knowledge, the majority of the HDG methods in the literature either set the diffusion stabilization parameter directly proportional to the problem diffusivity or set it to a constant value [START_REF] Giacomini | Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for the incompressible navier-stokes equations[END_REF], and optimal convergence rates of m + 1 are obtained, where m is the order of polynomial used. In some cases, super-convergence of the order m + 2 is achieved for the post-processed solution. However, the tested cases did not cover all the range of diffusivities used for industrial simulations. At very low diffusivity, the suggested choice for the diffusion stabilization parameter fails to guarantee the stability and convergence of the method. This is shown by the examples provided in this thesis. Moreover, an explanation for the loss of accuracy and stability is illustrated and referred to as the near wall ill-conditioning. Additionally, a formulation is derived for the diffusion stabilization term in the incompressible Navier-Stokes equations based on dimensional analysis. The formulation proved to be robust for a wide range of Reynolds numbers.

High-order turbulent flow solver

The turbulence is one of the major challenges in flow simulations causing the turbulence modeling to be essential for most industrial flows. Theoretically, all turbulence scales can be resolved and computed numerically using direct numerical simulation (DNS) [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. However, due to its extreme cost, DNS can only be used for simple and low Reynolds number academic test cases. Instead of resolving all scales, large eddy simulation (LES) is utilized. Its basic concept is to apply a filter to resolve the large scales, while the smaller scales are modeled. Even with modern computer architecture, wall resolved LES is still costly for industrial applications and is not feasible for very high Reynolds numbers. The dominant method in industry is the Reynolds averaged Navier-Stokes (RANS), where all the turbulence scales are modeled. Unfortunately, for some complex flow such as flow with separation, modeling error is too high to provide acceptable prediction for engineering applications. Hybrid LES/RANS provides a solution that compromises between computational time and modeling accuracy, but yet involves RANS modeling. Therefore, it can be agreed upon that RANS is indispensable in the meantime for numerous industrial applications.

In the effort to make LES less costly, high-order methods proved to be a promising candidate [START_REF] De La Llave Plata | On the performance of a high-order multiscale DG approach to LES at increasing Reynolds number[END_REF]. Due to their low dissipation and dispersion errors compared to low order methods and the possibility of p-adaptivity. Nevertheless, fully resolving the scales near the wall for high Reynolds numbers is yet out of reach with advanced high-order discretization methods. For RANS, modeling errors are supposed to be the problem and so the focus is on robustness to have good iterative convergence properties. While for LES, modeling errors are supposed to become negligible and so robustness is not enough. Numerical errors must be become smaller than modeling errors to really benefit from the LES approach. Therefore, implementing hybrid LES/RANS methods under the high-order framework requires methods that can deal with both turbulence modeling strategies. For that reason, high-order accurate Navier-Stokes solvers should be capable of solving the RANS equations. It is known that RANS is difficult to solve using high-order methods due to its large stiffness and non-linearity. The high-order community does not agree whether they should focus on RANS solvers or not due to their high modeling errors [START_REF] Wang | High-order CFD methods: current status and perspective[END_REF]. Relatively few attempts were made to solve the RANS using DG or HDG. However, the author believes that a robust high-order RANS solver is the missing piece towards high-order hybrid LES/RANS, also it will broaden the options for complex physics modeling such as transitional flows.

The most commonly used RANS turbulent models are the one-equation Spalart-Allmaras (SA) model and two-equation models, k -ǫ, and k -ω. Wall resolved k -ǫ model requires ad-hoc wall damping terms in the near wall region which increases the stiffness of the model. For this reason, wall function approaches are usually employed when using k -ǫ model. Unlike the k -ǫ model, the k -ω model can be integrated down to the wall without using any damping function. Hence, it can be applied in a wall-resolved simulation. However, as ω goes to infinity at the wall, accurate resolution of the k -ω model in the near wall region is a difficult numerical task and it usually requires very fine meshes. A common drawback for the original k -ω model is its sensitivity to the boundary conditions. The first k -ω model proposed by Wilcox has been found to be sensitive to free-stream turbulence. To overcome such drawback, Menter has proposed the k -ω SST model that combines the benefits of the k -ω model in the near-wall region and the k -ǫ model away from the wall by using blending functions to switch between the two models. In the high-order DG framework, the focus is more on SA in the literature as it is simpler than the two-equation models and widely used in the aeronautics community. The SA model was modified to suit the DG method in [START_REF] Nguyen | Rans solutions using high order discontinuous Galerkin methods[END_REF]. Oliver et al. added artificial dissipation to damp the oscillations in [START_REF] Oliver | An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations[END_REF]. Similar strategies were presented by Crivellini et al. in [START_REF] Crivellini | High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations[END_REF]. Krank et al. [START_REF] Krank | Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flow[END_REF], focused on wall modeling via function enrichment for explicit SA using operator splitting technique. Moro et al. modified the SA model to avoid negative eddy viscosity values using HDG [START_REF] Moro | Navier-Stokes solution using hybridizable discontinuous Galerkin methods[END_REF]. Furthermore, Allmaras et al. provided modification to the model to work robustly on coarse meshes by expressing a relation for the negative eddy viscosity while preserving the physics behind RANS modeling [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF]. Recently, Peter et al. implemented the SA with HDG for an exact divergence-free incompressible Navier-Stokes formulation [START_REF] Peters | A divergence-conforming hybridized discontinuous Galerkin method for the incompressible Reynolds-averaged Navier-Stokes equations[END_REF]. However, the SA model is not a good choice for many incompressible flow applications [START_REF] Larsson | Numerical ship hydrodynamics: an assessment of the Gothenburg 2010 workshop[END_REF]. The applications of two-equation models with high-order discretization scheme are less common in the literature, one of the earliest formulations was developed by Bassi and his co-workers, where they presented the k -ln (ω) model using DG for compressible flows in [START_REF] Bassi | Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[END_REF]. Later, the same model was implemented by Hartmann et al. and Landmann et al. in the DG framework [START_REF] Hartmann | Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-ω turbulence model equations[END_REF][START_REF] Landmann | A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows[END_REF]. For incompressible flows, Bassi et al. applied the k -ln (ω) model using DG with artificial compressibility in [START_REF] Bassi | A high-order discontinuous Galerkin solver for the incompressible RANS and k-ω turbulence model equations[END_REF]. The idea of using the logarithmic of the turbulence variables was first introduced by Kodama to preserve the positivity of the variables for the k -ǫ model [START_REF] Kodama | A method to assure positiveness of k and ε in the computation of the k-ε turbulence model[END_REF]. Then a similar formulation was presented by Ilinca and Pelletier in the finite volume framework [START_REF] Ilinca | Positivity preservation and adaptive solution for the k-ǫ model of turbulence[END_REF]. Despite the gradient of ln ω being more smooth and easier to represent with high-order polynomials, the generated non-linear term due to the substitution of the variable is not straightforward to deal with. Additionally, the term appears in the non-conservative form which is problematic for DG methods to treat it implicitly. The generated term adds more non-linearity and complexity to the equations, making it more difficult for high Reynolds numbers and implicit time stepping.

The difficulty in solving the RANS turbulence models in the high-order DG framework can be summarized into four challenges. First, the equations are stiff non-linear equations. Fixed-point iteration is normally used to linearize the problem, taking a significant number of iterations to converge. Second, the turbulence quantities are scalar positive quantities. This introduces the problem in the convergence of the fixed-point iteration. In low-order methods, taking the absolute value of the quantity can be a pragmatic approximation. However, taking an absolute value of a polynomial destroys its continuity. Conventionally for low-order methods a better solution is implemented, the implicit operator can be built to result in a positive solution, e.g., [START_REF] Lorin | A positivity preserving finite element-finite volume solver for the Spalart-Allmaras turbulence model[END_REF]. Unfortunately, this cannot be generalized for high-order approximations. Third, the solutions of the turbulence quantities have relativity large gradients and ω has the value of infinity at the wall boundary condition. The mesh size in the parts of the domain where the solution has a large gradient must be fine enough to avoid the oscillations and negative values. These regions are found near the wall and at the edge of the boundary layer. The near-wall part can be solved by meshing, however, determining the location of the edge of the boundary layer before running the simulation is nearly impossible for arbitrary geometries. In low-order methods, the large discretization error provides enough numerical dissipation to stabilize the solution. Additionally, the first-order upwind schemes used to build the implicit part of the FV operator is immune to the oscillations due to the sudden changes in the gradients. Fourth, the turbulence models often contain maximum and minimum functions. Applying these functions on a polynomial approximation leads to discontinuities. A proper mathematical solution for this problem without re-meshing is using extended-FEM [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. However, this brings us back to the point of over-complicating the numerical method, knowing that the model has a significant modeling error. In the presented formulation, polynomial regression is proposed to resolve the discontinuities of the solution inside the elements.

In this work, the high-order RANS formulations with optimal convergence rates are presented for the standard k -ω, TNT, BSL, and SST. Additionally, the RANS formulation is extended to model transitional flows supplemented with the intermittency one-equation local correlation model. The focus is on the computational mitigations used for the equations to have a robust non-linear solver for RANS models in the high-order framework. A special treatment for ω and its gradient is presented to facilitate the usage of ω directly instead of ln (ω). These mitigations can be used with the standard discontinuous Galerkin or the hybridizable form to solve the turbulence closures. These developments are discussed in chapter 4.

Srayan

The results presented in this thesis are computed with Srayan, an in-house arbitrary-order HDG solver for incompressible Navier-Stokes equations developed as a part of this thesis based on the formulations presented. Srayan is written in Fortran and has a Matlab version. It is parallelized using OpenMP, and reads fully unstructured 2D and 3D meshes. It supports all standard element types, as well as high-order mesh preprocessing.

Thesis layout

In chapter 2 the concepts of discontinuous Galerkin method and the hybridization are illustrated. The pure diffusion problem is presented in the DG framework and then extended to convection-diffusion equation using the HDG method. The last section in chapter 2 is dedicated to the importance of the diffusion stabilization for convection-dominated flows in the HDG framework. Chapter 3 reviews the possible ways of solving the incompressible Navier-Stokes equations for DG based methods in general. Then, the concept of the reduced order elements is presented and how it satisfies the exact divergence-free property. Moreover, numerical examples are given by using the method of manufactured solutions. Finally, selected laminar test cases are presented. Chapter 4 is devoted to RANS modeling of turbulent flows in the high-order framework. Similarly, manufactured solutions and numerical test cases are presented for different closure models. At the end of the chapter, the extension of the DG method to transitional flows is presented. In chapter 5, a comparison is demonstrated between DG and FV methods in terms of memory, accuracy per degrees of freedom, and computational time for a given test case. Conclusion and recommendation for future work are presented in chapter 6.

Chapter 2

Discontinuous Galerkin and Hybridization

This chapter discusses the standard and hybridizable discontinuous Galerkin method briefly. First, the building blocks of the method are presented. Then the model problems of the non-linear advection and diffusion equations are reviewed in DG. Further, the convectiondiffusion equation is solved using the HDG method. The convection-diffusion problem provides a descriptive example, as it illustrates how DG based methods deal with first and second order derivatives. The chapter outlines the method, but for a thorough review on DG we refer to the reference by Hesthaven and Warburton for nodal DG method [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF], and the tutorials on the hybridizable form by Sevilla, Huerta, and Giacomini [START_REF] Giacomini | Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems[END_REF][START_REF] Sevilla | Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems[END_REF]. The last section of the chapter is devoted to the analysis of the HDG method for convection dominated flows. An expression for the stabilization parameter is suggested, which is one of the contributions of this work.

Basic concept of DG

DG method was first introduced by Reed and Hill to solve the neutron transport equation [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF]. It can be presented as an extension to either finite element (FE) or finite volume (FV). It can be considered as a generalization of the first-order finite volume as DG uses the numerical fluxes in order to resolve the solution discontinuities between the elements. Further, inside each element, there is a finite element construction, specifically with a Galerkin method. DG combines both worlds of FV and FE and inherits some of their benefits as well as their drawbacks. For instance, the stable numerical fluxes developed for FV to treat the advection terms are fully extendable to DG, unlike classical FE [START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[END_REF]. Moreover, global high-order accurate solutions are achievable due to the FE polynomial approximation internally within the element. Hence, the method is valid for unstructured grids, unlike the high-order FV. On the other hand, dealing with the second order derivative terms is not trivial owing to the fact that the approximate solution is discontinuous [START_REF] Arnold | Discontinuous Galerkin methods for elliptic problems[END_REF][START_REF] Dryja | On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients[END_REF]. Additionally, capturing shock waves or the discontinuity in the analytical solution is troublesome for high-order methods in general [START_REF] Persson | Sub-cell shock capturing for discontinuous Galerkin methods[END_REF]. In brief, DG is an attractive method that possesses numerous possibilities for CFD [START_REF] Remacle | An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems[END_REF][START_REF] Wang | High-order CFD methods: current status and perspective[END_REF].

Defining the approximation space is an essential step for any numerical method. In DG, we search for an approximate solution inside the element that lies in the vector space of polynomials of the order m. Likewise CG (continuous Galerkin), the true solution is projected in a vector space of continuous polynomials defined inside each element. The key difference in DG, is that the treatment of element to element connection is entirely different CHAPTER 2. DISCONTINUOUS GALERKIN AND HYBRIDIZATION from the CG [START_REF] Hughes | A comparison of discontinuous and continuous Galerkin methods based on error estimates, conservation, robustness and efficiency[END_REF]. DG method discards the C 0 continuity of the global approximate solution while maintaining the continuity inside each element. In a way similar to FV in dealing with discontinuous global solutions, numerical fluxes are employed to consistently connect the elements together and to enforce the boundary conditions.

A simple illustration to the concept of the DG method can be shown using the 1-D linear advection equation,

∂u ∂t + ∂u ∂x = 0 in Ω, (2.1) u = u D on ∂Ω D , (2.2) ∂u ∂n = g N on ∂Ω N , (2.3)
where the bounded domain Ω is in R with boundary ∂Ω = ∂Ω D ∪ ∂Ω N , and n is the outward unit normal to the boundary of Ω.

The domain Ω is divided into a number of non-overlapping elements. For each element, the approximate solution is a polynomial of degree m, given that m ≥ 1. The solution is not continuous across the boundaries of the elements, such that the global approximate solution u h is a piecewise polynomial defined in Ω. By substituting the approximate solution u h in the partial differential equation (2.1), we obtain, (2.4)

∂u h ∂t + ∂u h ∂x = R h ,
a residual R h appears due to the polynomial approximation. Intuitively, it is desired that R h → 0. There are different numerical methods that can be used to achieve this. However, DG uses the Galerkin method by multiplying (2.4) by a weighting function and integrating with respect to x for an element K,

(2.5) K φ h ∂u h ∂t + φ h ∂u h ∂x dx = K φ h R h dx If the weighting function φ h is orthogonal to R h , then, (2.6) 
K φ h R h dx = 0
The Galerkin method states that the weighting function should be the same as trial function of the solution to have,

(2.7) K φ h ∂u h ∂t dx + K φ h ∂u h ∂x dx = 0
For connecting all elements in the domain and enforcing the boundary conditions, likewise the classical finite element method, the weak form is obtained from (2.7) by using Green's theorem or simply integration by parts, which yields to, (2.8)

K φ h ∂u h ∂t dx - K u h ∂φ h ∂x dx + [φ h u h ] x L x R = 0
where x L and x R are the left and right edges of the element respectively. It is more convenient to express the generated term in the integral form for easier generalization to higher dimensions to be written as, (2.9)

K φ h ∂u h ∂t dx - K u h ∂φ h ∂x dx + ∂K φ h u h n ds = 0 2.2.

SPACES AND COMMON NOTATIONS

where ds is the surface integral and n is +1 on the right edge and -1 at the left edge in 1D. Naturally, due to the discontinuous nature of u h over the global domain, a problem to evaluate u h on the boundary ∂K arises. In other words, u h has multiple values on the element boundaries. This problem is solved with the aid of the numerical flux u * to have, (2.10)

K φ h ∂u h ∂t dx - K u h ∂φ h ∂x dx + ∂K φ h u * n ds = 0
The choice of the numerical flux determines the consistency and stability of the method. A simple consistent flux that can be applied is the central flux,

(2.11) u * = u - h + u + h 2 = {{u h }}
where the numerical flux is taken as the average of the solution at the boundaries, where the -superscript denotes the interior information of the element and the + superscript denotes the exterior information. Central flux is one of the simplest types of fluxes but it is not always stable. In the following sections, the stability issue is addressed separately. After defining the numerical flux, equation (2.10) can be rewritten as, (2.12)

K φ h ∂u h ∂t dx - K u h ∂φ h ∂x dx + ∂K φ h {{u h }} • n ds = 0
Since the test and weighting functions are polynomials, numerical quadrature is used to evaluate the volume and surface integral terms in (2.12). For establishing the connections between the elements, a summation over the domain is done. By applying an appropriate time marching scheme whether explicit or implicit, a set of linear algebraic equations is deduced, then u h can be evaluated.

The expected error and convergence rate are dependent on the flux type and the DG method. However, for central or upwind fluxes, the error of the DG method can be written as [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF],

||u -u h || Ω h ≤ Ch m+1
where h is the mesh size, m is the order of the approximation polynomial, and C is a constant. Based on this error formulation, a convergence of order of m + 1 is said to be optimal for the DG method.

This presented procedure is the basic mathematical principle behind the various DG methods and what the formulations in this thesis are based upon. Applying this procedure to the multi-dimensional problems, which include, non-linear and second-order terms constitute the topic of the following sections.

Spaces and Common Notations

General mathematical definitions and notations are defined in this section. Throughout the thesis, the vector spaces mentioned in this section are used. For an arbitrary bounded domain

Ω in R d with boundary ∂Ω is divided into n el non-overlapping elements K i ∈ R d , with the element boundaries ∂K i ∈ R d-1
where d is the spatial dimension. The union of all n fc faces F is denoted as

Γ := nel i=1 ∂K i = nfc i=1 F,
where the union of the Dirichlet and Neumann faces is the domain boundary Γ D ∪Γ N = ∂Ω, while the union of all interior faces is Γ i . The broken Hilbert space of the scalar variables,

S v := φ ∈ L 2 (Ω) , φ| K i ∈ H 1 (K i ) , (2.13) S s := φ ∈ L 2 (Γ ) , φ| F i ∈ H 1 (F i ) . (2.14)
The broken Hilbert space of the reduced scalar variables,

S R v := φ R ∈ L 2 (Ω) , φ R | K i ∈ ∇ • H 1 (K i ) d . (2.15)
The broken Hilbert space of the vector variables,

V v := ψ ∈ [L 2 (Ω)] d , ψ| K i ∈ [H 1 (K i )] d , (2.16) V s := ψ ∈ [L 2 (Γ )] d , ψ| F i ∈ [H 1 (F i )] d . (2.17)
The broken Hilbert space of the tensor variables,

T v := Ψ ∈ [L 2 (Ω)] d×d , Ψ | K i ∈ [H 1 (K)] d×d . (2.18)
The space of the scalar variables,

S h v := {φ h ∈ L 2 (Ω) , φ h | K i ∈ P m (K i )} , (2.19) S h s := φ h ∈ L 2 (Γ ) , φ h | F i ∈ P m (F i ) . (2.20)
The reduced space of the scalar variables,

S Rh v := φ R h ∈ L 2 (Ω) , φ R h | K i ∈ ∇ • [P m (K i )] d . (2.21)
The space of the vector variables,

V h v := ψ h ∈ [L 2 (Ω)] d , ψ h | K i ∈ [P m (K i )] d , (2.22) V h s := ψ h ∈ [L 2 (Γ )] d , ψ h | F i ∈ [P m (F i )] d . (2.23)
The space of the tensor variables,

T h v := Ψ h ∈ [L 2 (Ω)] d×d , Ψ h | K i ∈ [P m (K)] d×d . (2.24)
The L 2 is the Lebesgue space, H 1 is the Sobolev space, and P m is the discrete polynomials space up to the order m. The subscript v denotes to a space that lies in the element K, while s denotes to a space that lies on a face F .

In what follows, scalar variables are written with no formatting, while bold for vectors, and bold with uppercase letters for tensors. The volume integrals are defined by the bilinear forms for two scalar, vector, and tensor variables respectively as the inner product, The scalar products for vectors and tensors can be expressed using the Einstein notation as,

(a, b) K = K a b dx, (a, b) K = K a • b dx, (A, B) K = K A : B dx,
a • b = a i b i , A : B = A ij B ij .
Integration by parts or Green's theorem applied on a gradient of a scalar can be written as,

(∇a, b) K = -(a, ∇ • b) K + a, b • n ∂K ,
on a divergence of a vector as,

(∇ • a, b) K = -(a, ∇b) K + a, bn ∂K ,
on a gradient of a vector as,

(∇a, B) K = -(a, ∇ • B) K + a, Bn ∂K ,
and on a divergence of a tensor as,

(∇ • A, b) K = -(A, ∇b) K + A, b ⊗ n ∂K ,
where,

(b ⊗ n) = b i n j .
Moreover, the interior information of an element is referred to with the subscript ⊙ -, while the exterior information which belongs to its neighbor element is ⊙ + . The average and jump operators are used to evaluate fluxes at element boundary faces. The average operator is defined as,

{{a}} = a -+ a + 2 , {{a}} = a -+ a + 2
while the jump operator is defined as,

[[an]] = n -a -+ n + a + , [[a • n]] = a -• n -+ a + • n +
where n is the unit face normal pointing outwards.

Non-linear and Second Order Terms

Non-linear Term

The treatment of the non-linear term in the DG framework is straightforward as long as the true solution has no discontinuities and the term is in the conservative form. Fortunately, that is the case of the non-linear term of the incompressible Navier-Stokes equations. To guarantee stability, a stable total variation diminishing numerical flux is chosen. A wide range of these fluxes developed for finite volume method can be extended to DG [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]. However, the numerical integration of this term requires extra care as it is shown in the non-linear advection model problem.

Model Problem

A suitable model problem is the 1-D non-linear advection equation, where the flux is a quadratic function in u,

∂u ∂t + ∂f ∂x = 0 in Ω, (2.25) f = u 2 2 (2.26)
using the same approach for the linear advection equation yields to the elemental equation, (2.27)

K φ h ∂u h ∂t dx - K f h ∂φ h ∂x dx + ∂K φ h f * n ds = 0, ∀φ h ∈ [P m (K i )] d
where f h is the approximate solution for f , and f * is the numerical flux that lies in the vector space of u h ,

u h ∈ S h v , f h ∈ S h v ,
with the flux is defined as,

(2.28)

f h = u 2 h 2
To complete the discretization, the numerical flux f * must be defined. The numerical flux should be a monotone flux and satisfies the total variation diminishing property. Lax-Friedrichs flux has these properties and can be defined as [START_REF] Leveque | Numerical methods for conservation laws[END_REF],

(2.29) f * u - h , u + h = {{f h (u h )}} + β 2 [[u h n]]
where β is the upper bound on the local wave speed.

β = max | df h du h |
After summing over all the elements, the DG method with Lax-Friedrichs flux leads to a stable and consistent variational formulation. The jump in the solution β 2 [[u h n]] stabilizes the formulation. However, this numerical flux leads to a suboptimal convergence of the order m + 0.5 [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF]. Another stable alternative with optimal order of convergence is the classical upwinding flux.

Volume and surface integral terms that include f h and f * should be evaluated cautiously due to the approximation of the flux f h using equation (2.28). In this case, if u h is approximated with a polynomial of degree m, then f h should be of a degree 2m, but this is not the case with this scheme as f h is a polynomial of degree m in the same space as u h . In other words, f h of the degree 2m is represented in a smaller vector space containing piecewise polynomials up to only the degree m. This is known as aliasing error, and it gets more severe as the element size increases [START_REF] Manzanero | Insights on aliasing driven instabilities for advection equations with application to Gauss-Lobatto discontinuous Galerkin methods[END_REF]. A common remedy to this problem is the usage of over-integration [START_REF] Spiegel | De-aliasing through over-integration applied to the flux reconstruction and discontinuous Galerkin methods[END_REF]. In which, the numerical quadrature is chosen of an order larger than m, such that it exactly calculates the non-linear volume and surface integrals. The over-integration and numerical quadratures are discussed in section 2.5.4.

Diffusion Equation in DG

The discontinuous solution is beneficial in dealing with the advection term in fluids simulations, but it comes with its cost when dealing with second-order derivatives. Since spectral discontinuous methods utilize a global broken vector space for the solution, the first derivative is discontinuous. Moreover, the use of numerical flux mimics a C 0 continuous global flux making it suitable for finding the first-order derivative terms. However, directly acquiring the second derivative from the solution would result in an unstable scheme. A summary of the methods presented to deal with the second-order terms is found in [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF].

Model Problem

The pure elliptical equation, the Poisson equation, presents a fine case for illustration of the DG methods in dealing with second-order terms, (2.30)

-∇ • (ν∇u) = f, in Ω
where u is the solution, ν is the diffusivity, and f is a source term. The DG method can be only applied on first-order derivatives, so the Poisson equation is written as two first-order equations.

∇ • (νq) = f, in Ω (2.31) ∇u + q = 0, in Ω (2.32)
Due to introducing a new equation, an auxiliary variable q is created, that is equal to the gradient of the solution u. The solution is approximated by u h and the auxiliary variable by q h . The approximate solutions lie in the spaces,

u h ∈ S h v , q h ∈ V h v .
The boundary conditions can be written as follow,

u = g D , on Γ D (2.33) νq • n = g N , on Γ N (2.34)
For generality, the diffusivity is represented in the approximation space of the same order as the solution to be ν h and lies in the space of u h ,

ν h ∈ S h v
Using the previously presented approach for linear partial differential equations, we apply the DG discretization for a single element by multiplying each equation with its corresponding test function,

K (∇ • (ν h q h )) • φ h dx = K f • φ h dx, ∀φ h ∈ P m (K i ) (2.35) K q h • ψ h dx = - K ∇u h • ψ h dx, ∀ψ h ∈ [P m (K i )] d (2.36)
To connect the element to its boundaries, integration by parts is applied to have the equations in the form, (2.37)

- K ν h q h • ∇φ h dx = K f • φ h dx - ∂K (νq) * • nφ h ds, ∀φ h ∈ P m (K i ) K q h • ψ h dx = K u h • (∇ • ψ h ) dx - ∂K u * n • ψ h ds, ∀ψ h ∈ [P m (K i )] d (2.38)
By the definition of DG, the numerical fluxes (νq) * and u * should be single-valued on ∂K. Thus, the numerical fluxes can be defined as,

(νq) * = g q (ν - h , q - h , u - h , ν + h , q + h , u + h ), u * = g u (ν - h , q - h , u - h , ν + , q + h , u + h ),
where g q and g u are arbitrary functions. Reasonably, both numerical fluxes should depend on ν - h , ν + h , q - h , q + h , u - h , and u + h , but this would lead to a globally coupled system and the two equations must be solved simultaneously. Hence, convenient approximations are constructed for the numerical fluxes, such that, the system can be decoupled. This is the point where different DG schemes vary. Normally this is done by eliminating the variable q h to reach the so-called primal form [START_REF] Hartmann | Numerical analysis of higher order discontinuous Galerkin finite element methods[END_REF]. This is done by integrating equation (2.38) by parts once more to be,

K q h • ψ h dx = - K ∇u h • ψ h dx + ∂K (u h -u * )n • ψ h ds, ∀ψ h ∈ [P m (K i )] d
The second integration by parts uses the internal elemental solution u h to generate the surface term. Since, the variational formulation is valid

∀ψ h ∈ [P m (K i )] d , the weighting function is set to, ψ h = ∇φ h ,
such that the weak form is written as,

K q h • ∇φ h dx = - K ∇u h • ∇φ h dx + ∂K (u h -u * )n • ∇φ h ds, ∀φ h ∈ P m (K i )
This expression is inserted in equation (2.37) to have the primal form,

(2.39) - K ν h ∇u h • ∇φ h dx + ∂K ν h (u h -u * )n • ∇φ h ds + ∂K (νq) * • nφ h ds = K f • φ h dx, ∀φ h ∈ P m (K i )
The hybridizable DG follows a different approach in eliminating q h , and the approach is presented in section 2.6.

Furthermore, for a general DG scheme, it is easier to represent the numerical fluxes with the jump and mean operators. Hence, the generalized standard form of the fluxes can be written as,

(2.40) (νq) * u * = {{ν h q h }} {{u h }} + C 11 C 12 -C 21 • C 22 [[u h n]] [[ν h q h • n]]
and the boundary condition defined as,

u * =    g D , on ∂Ω ∩ Γ D u -+ C 22 ν - h q - h • n -+ g N , on ∂Ω ∩ Γ N (2.41)
and for the auxiliary variable as,

(νq) * =    ν - h q - h + C 11 u -n -+ g D n + , on ∂Ω ∩ Γ D g N , on ∂Ω ∩ Γ N (2.42)
Forcing boundary conditions is a critical issue in any numerical scheme. DG methods provide a flexible way when dealing with the boundary conditions, where it forces them weakly through the numerical flux. This is done by setting the boundary conditions at an exterior ghost state u + h and q + h at the boundary. Making the boundary conditions weakly enforced through the numerical fluxes [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF]. This generalized standard form presents nearly all possible DG stabilizations in [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF]. Conventionally, the auxiliary vector parameter C 21 is chosen to force C 21 = -C 12 for Table 2.1 -DG second-order schemes and their numerical fluxes

Scheme u * q * compact stable CF {{u h }} {{q h }} LDG {{u h }} -β • [[u h ]] {{q h }} + β[[q h ]] -α j ([[u h ]]) CDG {{u h }} -β • [[u h ]] {{q c h }} + β[[q c h ]] -α j ([[u h ]]) SIP {{u h }} {{∇u h }} -α j ([[u h ]]) NIPG {{u h }} + n • [[u h ]] {{∇u h }} -α j ([[u h ]]) BR2 {{u h }} {{∇u h }} -α r ([[u h ]]) HDG ûh q h
symmetry. It is proven that if C 11 > 0 and C 22 ≥ 0 then the formulation is well-posed [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF]. The choices of the numerical flux are essential in the stability, accuracy, and convergence of the method and each choice leads to a different DG scheme. Many schemes are available in the literature, but the focus is on consistent and stable schemes.

The term β is a 0/1 switch to ensure that the solution is either taken from the outside or the inside on the interface [START_REF] Cockburn | The local discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF], while α is a function of the jump of the solution. As shown in table 2.1, there is a wide range of options to choose from and each scheme has its advantages and disadvantages. The Central Flux (CF) scheme is unstable for the pure elliptical equation, but it can be stable in other cases and it is the simplest to implement.

The CF scheme generates a singular discrete Laplacian operator when solved implicitly. Further, Local Discontinuous Galerkin (LDG) possesses many important features, but it is non-compact for multi-dimensions [START_REF] Cockburn | The local discontinuous Galerkin method for time-dependent convection-diffusion systems[END_REF]. What is meant by non-compact is that the element is dependent on the neighbors of neighbors. Compact Discontinuous Galerkin (CDG) gave a solution for non-compactness of the LDG in a way similar to BR2 by making q c h a function of u h instead of using q h directly [START_REF] Peraire | The compact discontinuous Galerkin (CDG) method for elliptic problems[END_REF]. Symmetric Interior Penalty (SIP) penalizes the solution gradient to acquire stability [START_REF] Hartmann | Numerical analysis of higher order discontinuous Galerkin finite element methods[END_REF]. Non-symmetric Interior Penalty (NIPG) is similar to SIP but it is not symmetric. Moreover, the modified Bassi and Rebay (BR2) is one of the most used schemes for compressible flow applications and it uses lifting operators to penalize the solution gradient [START_REF] Bassi | A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows[END_REF]. Finally, hybridizable DG (HDG) introduces the trace variables ûh and q h to define the numerical flux. HDG is explained in details in section 2.6. It is important to notice that using only the average of q h for the flux of q * is not enough to guarantee stability. In the DG method, there are no penalty terms for the non-linear and linear first-order terms but it is often essential to include a stabilization term to acquire stability for second-order terms. In general, the penalty constant is dependent on local mesh size h, nevertheless, the BR2 scheme provided a penalty term that is independent of h by using lifting operators [START_REF] Bassi | A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows[END_REF].

With the focus on efficient parallelization, compact scheme choices would be more suitable. Thus, CDG, SIP, and BR2 are the most suitable candidates. Convergence rate for these schemes is expected to be optimal m + 1, while the accuracy is dependent on the penalty constant and the test case itself [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF][START_REF] Peraire | The compact discontinuous Galerkin (CDG) method for elliptic problems[END_REF]. Moreover, HDG treats the non-compactness by static condensation and can obtain a m + 2 order of convergence, which makes it an attractive method. Trying to determine which scheme is the best would lead to an endless debate. In conclusion, there is no supreme method for a general partial differential equation, nevertheless the implementation is a key factor regarding the computational time. In the present study, HDG method is used for reasons that are related to the incompressible Navier-Stokes equations as presented in chapter 3. Thus, we continue the chapter with the CHAPTER 2. DISCONTINUOUS GALERKIN AND HYBRIDIZATION focus on the HDG method and its stabilization.

Variants of DG

After defining the approximation spaces and numerical fluxes with applying the Galerkin method, there are multiple variants when it comes to implementing the method. Mainly these variants are the basis functions, nodal points, solution representation, evaluating integrals, strong or weak variational forms. Different combination of the choices results in various DG methods in the literature. Some choices are indisputably better than others, but this is not the same for all choices. A number of choices are briefly presented, and the used variants in this work are justified. Due to the multiple interconnected variants, it is often confusing to differentiate between DG methods in order to choose the most convenient one to the desired problem.

Basis Functions

The monomial basis is the simplest and most common basis for representing a polynomial algebraically. However, it is numerically inappropriate to be a high-order basis, as it is not orthogonal. The monomial basis can be written as,

ψ n = x n 1, x, x 2 , x 3 , x 4 , ..... A basis is said to be orthogonal if 1 -1 ψ i ψ j dx = 0, for i = j,
and an orthogonal basis is orthonormal if,

1 -1 ψ i ψ j δ ij dx = 1.
Using a non-orthogonal basis numerically leads to higher conditioning numbers of the Vandermonde matrix. Specifically, a monomial basis forms a Hilbert matrix that is known to be badly conditioned. A solution to this problem is to apply the Gram-Schmidt orthogonalization approach on the monomial basis. This results in the normalized orthogonal basis, the Legendre Polynomials. The polynomials can be given by Rodrigues' formula, (2.43)

P n (x) = 1 2 n n! d n dx n (x 2 -1) n ,
and the orthonormal basis,

ψ n = P n (x) √ γ n , γ n = 2 2n + 1
The Legendre Polynomials can be defined as a special set of the orthogonal Jacobi Polynomials when α and β are equal to zero. They can be given by Rodrigues' formula, (2.44)

P (α,β) n (x) = (-1) n 2 n n! (1 -x) -α (1 + x) -β d n dx n (1 -x) α (1 + x) β (1 -x 2 ) n
The Jacobi Polynomials are useful in building the orthonormal basis in 2D and 3D for triangles, tetrahedrons, prisms, and pyramids as shown in section 3.3.4. Other orthonormal polynomial sets can be chosen. However, Jacobi polynomials stand a reasonable choice with fair numerical properties. Robust algorithms for implementing the basis are given by Kopriva in [START_REF] Kopriva | Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers[END_REF].

In finite element, the basis can be handpicked to force a desired property in the solution space. Such as the divergence-free basis functions the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF]. However, such spaces were not considered in this study.

Nodal-Modal Representation

After defining the basis, there are two ways in representing the approximate solution, the modal and nodal representations. To represent a unique polynomial of the order m in 1D, m + 1 variables need to be defined. The modal representation defines the coefficients of the polynomial basis. The solution u h is represented as a sum of the polynomial basis ψ h evaluated at the N p nodes with the coordinates ξ multiplied by the coefficients c h , where,

c h = c 1 , ..., c Np , ψ h (ξ) = [ψ 1 (ξ 1 ), ..., ψ Np (ξ Np )],
and the solution being, (2.45)

u h = Np n=1 c n ψ n (ξ n )
Modal representation is easier in evaluating the solution at any point in the domain since the coefficients are known. However, a computation has to be performed to obtain the solution at the nodal points.

The other option is the nodal representation. The solution u h is represented as a sum of the Lagrange polynomials ℓ evaluated at the N p nodes multiplied by the solution at the nodal points u h , where,

u h = u 1 , ..., u Np , ℓ(x) = [ℓ 1 , ..., ℓ Np ]
and the solution is

(2.46) u h = Np n=1 u n ℓ n
with is the Lagrange interpolation defined as, (2.47)

ℓ j (ξ) = N i=0 i =j (ξ -ξ j ) (ξ j -ξ i ) , ξ ∈ [-1, 1]
With this representation, the m + 1 defining variables are the solution at the nodal points. The nodal representation directly gives the solution at the nodes, however, there is more computational effort to be done to obtain the solution elsewhere in the domain.

In explicit methods, the nodal representation can have a considerable effect on the overall computational time, while the effect is less severe for implicit methods. On the other hand, the modal coefficients can be useful in p-adaptivity algorithms. Anyway, the efficiency of the representation depends on the PDE, DG method, coding, and many other variables. Since no method is superior to the other, the nodal representation is chosen as it is widely used in the classical finite element method.

Nodal Points

The nodal points distribution is governed by the polynomial approximation. Algebraically, any linear independent node set of m+1 nodes in 1D can represent a polynomial of the degree m. However, the node sets contribute to the conditioning number of the Vandermonde matrix as shown for the 1D case in figure 2.2. It is known from Runge's phenomenon, that the equidistant node set is not the best option for polynomial approximation. Chebyshev nodes, Legendre-Gauss, and Legendre-Gauss-Lobatto are good interpolation node sets [START_REF] Kopriva | Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers[END_REF].

The nodes are illustrated on the interval [-1 + 1] using a third-order polynomial in figure 2.1. Unlike the other node sets, Legendre-Gauss and Chebyshev node sets do not have nodes on the boundary, and the solution must be extrapolated to the boundaries to evaluate surface integrals. However, the Legendre-Gauss node set is more accurate as an integration node set. Thus, the nodal point choice is coupled with the integration method. Excluding the equidistant node set, the differences between them are minor in terms of conditioning number and the solution would be the same if the numerical integration is done exactly. To sum up, the Legendre-Gauss-Lobatto nodes are chosen for the fact that they include nodes on the boundaries, which simplifies the numerical flux calculations. 

Integration Method

The two most common options are the numerical integration over the Legendre-Gauss-Lobatto node set, which is exact for polynomials up to the order 2m -1 with m + 1 integration points. The second option is the integration over the Legendre-Gauss node set, which is exact for polynomials up to the order 2m + 1 with m + 1 integration points. The accuracy of the integration is demonstrated in figure 2.3. In which, the error of the numerical integration is calculated for,

-1 +1 (1 + x + x 2 + x 3 + x 4 + x 5 + x 6 ) 2 dx
This is polynomial of the order 12 that requires m = 6 using Legendre-Gauss node set and m = 7 for the Legendre-Gauss-Lobatto node set to have an exact numerical integration. For bilinear terms, the volume or surface integral is a multiplication of two polynomials of the order m making it a polynomial of the order 2m. Choosing the Legendre-Gauss-Lobatto nodes set would result in a non-exact integration for these terms as it is only exact for 2m -1. On the other hand, Legendre-Gauss nodes are sufficient. This leads to two main groups of numerical integration strategies, collocated and noncollocated type DG. In non-collocated type DG, the nodal points are different than the integration points. For instance, the solution on the nodal set of the Legendre-Gauss-Lobatto nodes is integrated on the Legendre-Gauss nodes to obtain exact numerical integrations for the bilinear terms.

Furthermore, for non-linear terms, it is conventionally a product of n poly polynomials of the order m making a polynomial of the order n poly • m. Both sets are not enough to integrate this polynomial, therefore over-integration is used. In which, the integration is done on a nodal set with a larger order of polynomial. To guarantee that the integration is exact, the Legendre-Gauss node set is chosen to be of the degree m o , where, (2.48)

m o = (n poly • m) -1 2 
One can choose to eliminate the cost of the over-integration and choose a non-exact numerical integration on Legendre-Gauss-Lobatto or Legendre-Gauss node set for any element type. With this choice, the integration and nodal points can be collocated. This reduces the computational effort, which leads to a diagonal mass matrix with the quadrature weights. This method is widely used in the collocation type DG-SEM for its computational efficiency in explicit methods [START_REF] Hindenlang | Mesh curving techniques for high order parallel simulations on unstructured meshes[END_REF][START_REF] Hindenlang | Explicit discontinuous Galerkin methods for unsteady problems[END_REF][START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF].

The numerical quadratures are defined in 1D and extending them to higher dimensions is not straightforward. First, quadrilateral and hexahedral elements are addressed.

Linear Hexahedrons and quadrilaterals

By the construction of hexahedrons and quadrilaterals, the numerical integration can be done for these elements by using a tensor product of the 1D sets. Therefore, they are exact up to the same orders mentioned for 1D. For non-curved elements, the integration can be exact for linear and non-linear terms with the over-integration of the order m o .

Other Elements

If the elements are curved or other than linear hexahedrons or quadrilaterals, the numerical quadrature is not exact anymore for different reasons. Thus, the cubature rules are used for standard elements [START_REF] Cools | Encyclopaedia of cubature formulas[END_REF][START_REF] Krommer | Computational integration[END_REF]. The order of m o is chosen to perform the overintegration with the cubature rules. These numerical integrations are not exact but they are good enough numerically and the numerical integration error decreases with grid refinement.

In the present study, the over-integration method is chosen and nodal points are not collocated with the integrations points for all element types. This choice might be the most reasonable for implicit methods as the overall cost of the over-integration is less significant when compared to explicit method.

Weak-Strong forms

Integrating by parts the volume integrals once or twice is in fact a matter of choice. Often, it is done twice to ensure symmetry. This section focuses on the differences between weak and strong forms. Recalling the DG weak form of the non-linear advection equation (2.27),

K φ h ∂u h ∂t dx - K f h ∂φ h ∂x dx + ∂K φ h f * n ds = 0, ∀φ h ∈ [P m (K i )] d
applying integrations by parts one more time yields to the strong form, (2.49)

K φ h ∂u h ∂t dx + K φ h ∂f h ∂x dx + ∂K φ h (f * -f h ) • n ds = 0, ∀φ h ∈ [P m (K i )] d
It is proven that the weak form is equivalent to the strong form, numerically and analytically [START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF]. However, differences may occur depending on the choice of the nodal set for non-linear partial differential equations. Specifically, nodal sets with no nodes on the boundaries can lead to the modified strong form as mentioned in [START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF]. Legendre-Gauss set is referred to as Gauss points and Legendre-Gauss-Lobatto set is referred to as Lobatto points. When using Gauss nodes, the method involves interpolation to calculate the numerical flux f * at the faces, where the numerical flux is a function of u h given by,

(2.50) f * = g (I m (u h )) , on ∂K
Where I m is an operator that evaluates the solution of the order m at the element boundaries. The difference between the strong form and the modified strong form is in the evaluation of the flux f h at the faces of the elements. Generally, the flux f h is a function of the solution u h defined at the nodal points as, (2.51)

f h = g (u h ) , in K
where g is a non-linear function. Since the value of the flux f h at boundaries of the element ∂K is required in the strong form defined by (2.49), there are two ways to calculate it; the first one is by interpolating the flux to the boundaries which is referred as the strong form. The interpolated to boundaries solution I m (f h ) is used to calculate the face flux by, (2.52)

f h = I m (g (u h )) , on ∂K
The second way is calculating the flux from the interpolated to boundaries solution u h , in order to have only one interpolation for u h which is referred to as modified strong form. In which, the flux is calculated as,

(2.53) f h = g (I m (u h )) , on ∂K
It is noted that due to aliasing,

I m (g (u h )) = g (I m (u h ))
Due to the evaluation of the face flux f h using the interpolation of u h , the modified strong form is a non-conserving scheme. Currently, there are three equations forms and two choices for the nodes points. Then, we need to compare all the options from the accuracy and computational time point of view.

This comparison is based on the collocated type DG methods. Regarding Gauss nodes, the strong form is computationally more expensive as it involves solution interpolation as well as flux interpolation and yet giving the same accuracy as the weak form, while the weak form involves only flux interpolation. Thus, the strong form is ruled out when choosing Gauss nodes. Additionally, the modified strong form has the same computational effort as the weak form but it results in an additional error and a non-conserving scheme. This makes the weak form the only convenient form for Gauss nodes. Moving to Lobatto nodes, there is no modified strong form as the flux f h and u h are already known at the boundary and there is no interpolation. Furthermore, there is no difference in error nor computational effort between the weak and strong forms when using Lobatto nodes. A comparison is shown in table 2.2 for all the options with regards to the error and computational effort. Finally, the choice is between (Gauss -Weak) and (Lobatto -Weak or Strong) with respect to their computational time in reaching the desired error. For linear problems, Lobatto and Gauss are very close in their efficiency, while in the non-linear steady state, it is more efficient to use Gauss [START_REF] Gassner | A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods[END_REF][START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF]. In the mixed type PDEs such as incompressible Navier-Stokes equations, it is difficult to decide which node set is more efficient without numerical examples. In the present study, since over-integration and Lobatto node set are chosen, both weak and strong forms yield to the same results if the integration is exact. However, their resultant linear systems are different.

To summarize the chosen DG variants, the Legendre and Jacobi polynomials as the basis functions, and the nodal representation with the Lobatto node set. Over-integration is chosen as it is a safer option from the point of view of the author. Finally, the weak form is applied whenever possible as it is often computationally cheaper.

Convection-Diffusion Equation in HDG

In this section, the hybridizable DG method is focused upon and illustrated by the convection-diffusion equation. The equation can be written as follows,

∇(•cu) -∇ • (ν∇u) = f, in Ω (2.54)
where c is a convective velocity field, ν is the diffusivity, and u is a scalar quantity. As normally done in the DG framework, the equation is written in first-order derivative from with setting the boundary conditions as,

∇ • (cu + νq) = f, in Ω (2.55) ∇u + q = 0, in Ω (2.56) u = g D , on Γ D (2.57) (cu + νq) • n -max (c • n, 0)u = g N , on Γ N (2.58)
where the Neumann boundary condition is imposed fully on the inflow faces (c • n < 0) of Γ N , while only the diffusive part is imposed on the outflow faces (c • n > 0). The auxiliary variable q could have been defined differently as q = ν∇u, or q = √ ν∇u in [START_REF] Bassi | Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[END_REF][START_REF] Bassi | Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[END_REF][START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF].

However, we prefer to set the auxiliary variable as the gradient of the u without including the diffusivity to sustain the diagonal dominance of the HDG local problem as ν approaches zero.

∇ • c ∇ • ν ∇ 1 u q = f 0 (2.59)
By the formulation proposed (2.55) and (2.56), the diffusivity is pushed off the diagonal, in which the discrete local problem would be better conditioned at relativity large advection velocities.

The HDG method relies on defining a separate space at the faces defined as S h s . Such that, the solution u h ∈ S h v , and the auxiliary variable q h ∈ V h v are defined on the nodal points, while the trace of the solution ûh ∈ S h s is defined on the unique faces, known as the skeleton of the mesh. Figure 2.4 shows the nodal points in blue and the trace nodes in silver for a second-order quadrilateral mesh. As done for the standard DG, the weak form is derived by applying the Galerkin method,

K ∇ • (cu h + ν h q h ) • φ h dx = K f • φ h dx, ∀φ h ∈ P m (K i ) (2.60) K (∇ • u h ) • ψ h dx + K q h • ψ h dx = 0, ∀ψ h ∈ [P m (K i )] d (2.61)
then Green's theorem on the partial differential equation to have, (2.62)

- K (cu h + ν h q h )•∇φ h dx+ ∂K (cu h + ν h q h ) * •φ h n ds = K f •φ h dx, ∀φ h ∈ P m (K i ) (2.63) - K u h • (∇ • ψ h )dx + ∂K (u h ) * n • ψ h ds + K q h • ψ h dx = 0, ∀ψ h ∈ [P m (K i )] d
where the superscript * denotes the numerical flux. To this point, the discretization is exactly equivalent to the standard DG. In order to avoid the confusion with the DG notations, the wide hat notation is given to the numerical fluxes for the HDG method.

(2.64)

- K (cu h + ν h q h )•∇φ h dx+ ∂K cu h + ν h q h •φ h n ds = K f •φ h dx, ∀φ h ∈ P m (K i ) (2.65) - K u h • (∇ • ψ h )dx + ∂K (u h )n • ψ h ds + K q h • ψ h dx = 0, ∀ψ h ∈ [P m (K i )] d
The numerical fluxes (u h ), cu h , and ν h q h should be single-valued approximations of the fluxes defined on F . Such that, the calculation of the numerical flux on a face with respect to any element sharing that face would be the same. In standard DG, the numerical fluxes are expressed in terms of the elemental solutions of the elements sharing the face given as (u - h , u + h ). In HDG, the numerical fluxes are expressed in terms of the elemental local solution and the trace (u h , ûh ).

To avoid confusion, the hybridization leads to three entities on a face given as; 1) The local solution is given as u h and q h . The local solution has the same definition as standard DG. It is defined everywhere inside the element K as a polynomial and exists on the boundaries of each element ∂K. Therefore, for a given face F , there are two solutions defined on the boundaries of the elements ∂K sharing that face.

2) The numerical fluxes given as (u h ), cu h , and ν h q h . They are equivalent to the numerical fluxes of the standard DG as they provide an approximation of the solution on a given face F to resolve the discontinuity in the solution u h and q h .

3) The trace solution ûh . The trace is not defined for the standard DG and it exists on the faces F being single valued. Its definition is dependent on the definition of the numerical flux. The trace can be considered as a polynomial approximation of the solution u in a space of the dimension d -1. Such that u is approximated by u h in K and on ∂K, and approximated by ûh on F . Such that, u ≈ u h ≈ ûh , on F One of the main goals of introducing the trace is to represent the solution in terms of the trace and solve a global problem that only includes the trace variable. As mentioned earlier, the numerical fluxes are defined with respect to an element in terms of the solution and the trace variables. Thus, (u h ), cu h , and ν h q h are defined with respect to the element on its boundaries ∂K as, (u h ) = ûh (2.66)

cu h = cu h + cα (û h -u h ) (2.

67)

ν h q h = ν h q h + τ ν h (u h -ûh ) n (2.68)
where α is the advection stabilization parameter and τ is the diffusion stabilization parameter. For advection, the classical upwinding scheme is chosen as it is known as a stable flux by setting,

α = 1, if c • n < 0 on ∂K 0, if c • n > 0 on ∂K
while τ is conventionally defined as in [START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF],

τ = ν ℓ ,
where ℓ is the diffusion length scale. Note that the equivalent expression to the formulation presented would be τ = 1/ℓ, since the definition of the auxiliary variable is different from the one defined in [START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF]. In other words, the expression of τ that respects the dimensional analysis is dependent on how the auxiliary variable is defined. In section 2.7, a different definition for the diffusion stabilization parameter τ is proposed. For the numerical fluxes defined, if τ > 0, then the formulation is stable and well-posed for linear problems from a variational mathematics point of view as discussed in [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF][START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF].

A fundamental difference between the trace and the numerical fluxes is that the numerical fluxes are not single valued by default. Consequently, their uniqueness should be enforced. The enforcement of the uniqueness of the fluxes for a face in the continuous setting can be expressed as the flux transmission equations, that are extracted from the partial differential equations (2.55) and (2.56),

[[(cu + νq) • n]] = 0, on F (2.69) [[un]] = 0, on F (2.70)
These equations simply state the continuity of the fluxes across the faces. Thus, solving the transmission equations using the numerical fluxes enforces their uniqueness in the approximate space. Note that the solution u is considered as the flux in equation (2.56).

Since (u h ) is given by (2.66), it is unique and equation (2.70) is applied automatically. Consequently, the continuity of the advective and viscous fluxes are enforced by this weak form,

F [[ cu h + ν h q h • n]] • φ h ds = 0, ∀ φ h ∈ P m (F ) (2.71)
This equation implies the uniqueness of the numerical fluxes cu h + ν h q h on a given face. To compare it with DG, this equation states that the flux on a given face calculated from the left element is equal to the flux calculated from the right element,

flux L (u L h , q L h , ûh ) = flux R (u R h , q R h , ûh ),
where the superscript L and R denotes the left and right elements with respect to a face. The relationship between the fluxes of HDG and DG are thoroughly discussed in section 2.7.

To reach the final formulation, the sum over all the elements is taken for equations (2.64) and (2.65), and the sum over all the faces for equation (2.71), with applying the boundary conditions as,

(u h ) = g D , on ∂K ∩ Γ D (2.72) cu h + ν h q h • n = g N , on ∂K ∩ Γ N (2.73)
As conventionally done in HDG, a local problem is first solved using equation (2.64) and (2.65), then a global problem is formed based on the transmission equation (2.71). Each problem is addressed separately in the following sections. In the subsequent sections, (u h ) is replaced by ûh as they have the same value and defined in the same space.

Local Elemental Problem

The local problem is posed for each element K separately. We recall equation (2.65) to be expressed by equation (2.75). A different form is used for equation (2.64). Integration by part is applied once more on the diffusion operator, which will make the local linear system symmetric, a feature favorable for linear system resolution. This will give the form as shown by (2.74).

(2.74)

(∇ • ν h q h , φ h ) K -(cu h , ∇φ h ) K + cu h + ν h q h -ν h q h , nφ h ∂K = (f, φ h ) K , ∀φ h ∈ P m (K i ) -(u h , ∇ • ψ h ) K + ûh n, ψ h ∂K + (q h , ψ h ) K = 0, ∀ψ h ∈ [P m (K i )] d (2.75)
Then the numerical fluxes defined in equations (2.66), (2.67), and (2.68) are used to have, (2.76)

A uu A uq A qu A qq u h q h = f u f q + A uû A qû ûh , ∀φ h ∈ P m (K i ) ∀ψ h ∈ [P m (K i )] d A uu u h = -(cu h , ∇φ h ) K + (1 -α)cu h , nφ h ∂K + τ ν h u h , φ h ∂K A uq q h = (∇ • ν h q h , φ h ) K f u = (f, φ h ) K A uû ûh = τ ν h ûh , φ h ∂K -αcû h , nφ h ∂K A qu u h = -(u h , ∇ • ψ h ) K A qq q h = (q h , ψ h ) K f q = 0 A qû ûh = -ûh n, ψ h ∂K
These equations form the local elemental problem, with the boundary conditions applied as follows,

ûh = g D , on ∂K ∩ Γ D (2.77)

Global Problem

The global problem is formed by summing the transmission equation (2.71) over all the faces,

Γ [[ cu h + ν h q h • n]] • φ h ds = 0, ∀ φ h ∈ S h s (2.78)
The numerical flux given by equations (2.67) & (2.68) is defined with respect to the element K on ∂K, while the transmission equation (2.78) is applied in a different space on Γ . In order to derive a transmission equation applied with respect to ∂K, we rewrite the equations as,

[[ cu h + ν h q h • n]], φ h ∂Ω + [[ cu h + ν h q h • n]], φ h Γ i , ∀ φ h ∈ S h s = 0 (2.79)
On the boundaries ∂Ω, the jump is defined as

cu h + ν h q h • n -cu h + ν h q h BC • n to have, (2.80) cu h + ν h q h • n, φ h ∂Ω + [[ cu h + ν h q h • n]], φ h Γ i -cu h + ν h q h BC • n, φ h ∂Ω = 0, ∀ φ h ∈ S h s
Then we use the identity,

a • n, b ∂Ω + [[a • n]], b Γ i = K a • n, b ∂K ,
to have the formulation defined over the sum of the elements as,

K cu h + ν h q h • n, φ h ∂K -cu h + ν h q h BC • n, φ h ∂Ω = 0, ∀ φ h ∈ S h s (2.81)
To enforce the boundary conditions, equation (4.10) is used.

(cu + νq) • n = max (c • n, 0)u + g N , on Γ N
Also, knowing that φ h = 0 on Γ D , we get, (2.82)

K cu h + ν h q h • n, φ h ∂K -(1 -α)cû h • n, φ h Γ N = g N • n, φ h Γ N , ∀ φ h ∈ S h s
To obtain the final form of the global problem, the HDG numerical flux definitions (2.67) & (2.68) can now be used directly to have,

K [A ûu + A ûq ] u h q h + A ûû ûh = f û, ∀ φ h ∈ S h s (2.83)
where

A ûu u h = (1 -α)cu h , n φ h ∂K + τ ν h u h , φ h ∂K A ûq q h = ν h q h , n φ h ∂K A ûû ûh = cαû h , n φ h ∂K -τ ν h û, φ h ∂K -(1 -α)cû h • n, φ h ∂K∩Γ N f û = g N • n, φ h Γ N
This forms the HDG method along with the local elemental problem. They can be written together in the matrix form as,

K         A uu A uq -A uû A qu A qq -A qû A ûu A ûq A ûû       u h q h ûh         =    f u f q f û    , ∀φ h ∈ S h v ∀ψ h ∈ V h v ∀ φ h ∈ S h s (2.84)

Hybridization

The hybridization step, which is also known as the static condensation in finite element presents an approach to form the global problem based on ûh only, by eliminating the elemental values u h and q h . Thus reducing the number of degrees of freedom of the global system of linear equations. This is done by inverting the local elemental operator and getting an expression for the elemental values in terms of the trace solution.

First the local elemental operator in equation (2.76) is inverted to be,

(2.85) u h q h = A uu A uq A qu A qq -1 f u f q + A uû A qû ûh , ∀φ h ∈ P m (K i ) ∀ψ h ∈ [P m (K i )] d
The expression for u h and q h in terms of ûh is inserted in equation (2.83) to have, (2.86)

K [A ûu + A ûq ] A uu A uq A qu A qq -1 f u f q + A uû A qû ûh + A ûû ûh = f û, ∀ φ h ∈ S h s
The equation is solved for ûh , then u h and q h are obtained from equation (2.85).

Hybridization has various advantages. First, the global equation is constructed for a smaller number of degrees of freedom compared to DG. Further, the solution gradient q h can be computed from ûh and it is of the same order of u h . This allows computing a super-converged solution of the order m + 2 in diffusion dominated problems. However, the construction of the final operator is computationally much more costly compared to the standard DG due to the local operator inversion.

Post-Processing

The post-processing operation for elliptical problems has been developed for mixed finite element methods to obtain the superconverged solution and first introduced in [START_REF] Raviart | A mixed finite element method for 2-nd order elliptic problems[END_REF]. If the solution u h is approximated by a polynomial of the degree m then the superconvergent solution ũh can have an order of convergence of m + 2. The implementation and error estimates are also given in [START_REF] Arnold | Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates[END_REF]. Superconvergence was attained in the DG framework in [START_REF] Cockburn | A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems[END_REF][START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF][START_REF] Cockburn | Superconvergent discontinuous Galerkin methods for second-order elliptic problems[END_REF] . The operation is possible as the gradient of the solution is a polynomial of the order m, then a solution with a polynomial order of m + 1 can be computed. The elemental post-processing is performed by solving,

∇ • ∇ũ h = ∇ • q h , in K (2.87) n • ∇ũ h = n • q h , on ∂K (2.88)
supplemented with a solvability condition,

K ũh = K u h (2.89) where ũh ∈ P m+1 (K i )
This operation is applied for each element. The superconvergence is highly dependent on the stabilization parameter τ and it is complicated to obtain for convection dominated flows.

Stabilization Parameter

During the testing of the HDG method for convection dominated convection-diffusion equations, it was noticed that the error increases significantly as the convection is more dominating. This section is devoted to understanding this problem. Besides, a solution to this problem is proposed that proved its effectiveness. The stability of the convectiondiffusion equation can be studied by addressing the convection limit and diffusion limit separately. The classical upwinding provides enough stabilization for the convection equation. On the other hand, the diffusion stabilization is not well-established for convectiondiffusion problems using the HDG formulation. This section is devoted to the analysis of the diffusive stabilization parameter in the HDG formulation. First, a derivation of the lower limit is presented for a diffusion equation using the generalized standard DG formulation in section 2.7.1. Then, in 2.7.2, the diffusive fluxes of the HDG method are expressed in the generalized standard DG formulation so that the stability limit derived for the DG method can be applied on the HDG method. Finally, the remainder of this section provides an analysis to the problem with the support of numerical results.

Diffusion Stability Constraint

For a pure diffusion equation a lower limit for the stabilization parameter can be derived in the standard DG formulation. The stability constraint is expressed in [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF], which states that the weak form is well-posed if C 11 > 0 and C 22 ≥ 0. Where the fluxes can be written in the standard DG form on Γ ,

q * = {{q h }} + C 11 [[u h n]] + C 12 [[q h • n]] u * = {{u h }} -C 21 • [[u h n]] + C 22 [[q h • n]]
In this section, the stability constraint is derived for the generalized standard DG,

(νq) * = {{ν h q h }} + C 11 [[u h n]] + C 12 [[ν h q h • n]] u * = {{u h }} -C 21 • [[u h n]] + C 22 [[ν h q h • n]]
The difference is that ν is approximated as ν h . By which, the diffusivity is a piecewise polynomial of the order m.

Proposition

The discontinuous Galerkin formulation defined by the equations (2.37) and (2.38) with the numerical fluxes defined by (2.40), (3.28), and (2.42) has a unique approximate solution

(u h , q h ) ∈ S h v × V h v , provided that C 11 is positive and C 22 is non- negative.
The general DG formulation for the diffusion equation is recalled. We sum equations (2.37) & (2.38) over all the elements to have, (2.90)

- K K ν h q h •∇φ h dx+ Γ i (νq) * •[[φ h n]] ds+ ∂Ω (νq) * •φ h n ds- Ω f •φ h dx = 0, ∀φ h ∈ S v (2.91) Ω q h •ψ h dx- K K u h •(∇•ψ h ) dx+ Γ i u * [[ψ h •n]] ds+ ∂Ω u * ψ h •n ds = 0, ∀ψ h ∈ V v
Then the definition of the numerical fluxes (2.40), (3.28), and (2.42) is inserted into the equation. It is easier to write the equations using bilinear forms, (2.92)

a (q h , ψ h ) = Ω q h • ψ h dx + ∂Γ i C 22 [[ν h q h • n]][[ψ h • n]] ds + Γ N C 22 (ν h q h • n)(ψ h • n) ds (2.93) b (u h , ψ h ) = - K K u h •(∇•ψ h ) dx+ Γ i ({{u h }} + C 12 • [[u h n]]) [[ψ h •n]] ds+ Γ N u h ψ h •n ds (2.94) c (u h , φ h ) = Γ i C 11 [[u h n]] • [[φ h n]] ds + Γ D C 11 u h φ h ds
and the linear forms,

F (ψ h ) = - Γ D g D • n ds - Γ N C 22 (g N • n)(ψ h • n) ds (2.95) G (φ h ) = Ω f • φ h dx - Γ D C 11 g D φ h ds - Γ N φ h g N • n ds (2.96)
by applying integration by parts again for the bilinear form (2.93),

(2.97) b (u h , ψ h ) = K K ∇u h •ψ h dx+ Γ i ({{ψ h • n}} + C 12 [[ψ h • n]]) [[u h n]] ds+ Γ N u h ψ h •n ds
Finally, the equations can be written as,

a (q h , ψ h ) + b (u h , ψ h ) = F (ψ h ) (2.98) -b (φ h , ν h q h ) + c (u h , φ h ) = G (φ h ) (2.99)
A unique solution for these equations is u = 0 and q = 0 if f = 0, g D = 0, and g N = 0. To prove the uniqueness of this solution. Since the variational form holds ∀φ h ∈ P m (K i ) and ∀ψ h ∈ [P m (K i )] d , we take the weighting functions equal to the approximate solutions,

φ h = u h , , ψ h = ν h q h
By substitution and adding the two equations,

(2.100) a (q h , ν h q h ) + c (u h , u h ) = 0
where, (2.101)

Ω q h • ν h q h dx + ∂Γ i C 22 [[ν h q h • n]][[ν h q h • n]] ds + Γ i C 11 [[u h n]] • [[u h n]] ds = 0
Given that the diffusivity is always positive, ν h > 0.

Since [[u h n]] = 0 on Γ i , therefore conditions C 11 > 0 and C 22 ≥ 0 must be satisfied to force q h = 0. Moreover, this implies that,

(2.102) b (u h , ψ h ) = 0, ∀ψ h ∈ V h v
In the integral form, (2.103)

K K ∇u h • ψ h dx = 0, ∀ψ h ∈ V h v
as a consequence of ∇u h = 0 on every K i then u h is a piecewise constant. Considering the boundary conditions g D = 0 and g N = 0, with the jump [[u h n]] = 0 on Γ i , then u h = 0. This proves the proposition for the elliptical generalized standard DG formulation.

The stability constraints remain the same as the ones for the standard DG flux derived in [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF], C 11 > 0 and C 22 ≥ 0.

HDG flux in Generalized Standard form

In order to apply the stability constraint derived for the DG method on the HDG method, it is important to express the HDG fluxes as an expression in terms of the solution u h and the auxiliary variable q h . The goal of this section is writing the HDG numerical flux (2.67) and (2.68) defined on ∂K,

cu h = cu h + cα (û h -u h ) ν h q h = ν h q h + τ ν h (u h -ûh ) n, in the generalized standard DG from (2.40) defined on Γ as, (νq) * = {{ν h q h }} + C 11 [[u h n]] + C 12 [[ν h q h • n]] (2.104) u * = {{u h }} -C 21 • [[u h n]] + C 22 [[ν h q h • n]] (2.105)

From HDG to DG

In the beginning, the connection between the HDG numerical flux and the standard DG numerical flux is highlighted. In the HDG setting, a given interior face Γ n is shared between two elements K -and K + . By the definition of a general HDG flux function,

f HDG = g(f h ), on ∂K Written for Γ n with respect to the K -element, f HDG = g(f - h ), on ∂K ∩ Γ n for K - while for the K + element, f HDG = g(f + h ), on ∂K ∩ Γ n for K +
Given that f HDG is single valued on the face Γ n . By adding both contributions and averaging we get,

f HDG = g(f - h ) + g(f + h ) 2 , on Γ n
This is similar to f * DG , a general numerical flux definition for a DG method on Γ n . Thus the relation between the HDG and DG fluxes can simply be written as,

(2.106) f * DG = f HDG = g(f - h ) + g(f + h ) 2 , on Γ n
This means that to write the HDG flux defined on ∂K in the DG form on a given face of Γ , we take the average of the HDG fluxes with respect to the elements sharing that face using the fact that the HDG flux is unique.

Expressions of the HDG fluxes

To obtain the expressions of the HDF fluxes, we recall the transmission equation (2.71), which implies,

(2.107) [[( cu h + ν h q h ) • n]] = 0, on Γ
Since the interest is on the diffusive limit, we set c = 0. Then using the definition of the diffusive HDG stabilization on in equation (2.68),

(2.108)

ν h q h = ν h q h + τ ν h (u h -ûh ) n, on ∂K
Enforced by the transmission equation (2.107), the jump of the numerical flux ν h q h defined on Γ is zero. Combining the last two equations to get the expression,

(2.109) [[ν h q h • n]] + τ + ν + h u + h + τ -ν - h u - h -τ + ν + h + τ -ν - h ûh = 0, on Γ Solving for ûh , (2.110) ûh = τ + ν + h τ + ν + h + τ -ν - h u + h + τ -ν - h τ + ν + h + τ -ν - h u - h + 1 τ + ν + h + τ -ν - h [[ν h q h • n]], on Γ
To obtain an expression of ν h q h on Γ , the expression for ûh (2.110) on Γ is inserted in (2.108) on ∂K, CHAPTER 2. DISCONTINUOUS GALERKIN AND HYBRIDIZATION I-First, taking the terms with q h .

ν h q h - τ ν h τ + ν + h + τ -ν - h [[ν h q h • n]]n, on ∂K
The variables q h , ν h , τ , and n are defined on ∂K and not single valued on the Γ . Thus, to switch from the ∂K to Γ we use the result obtained from equation (2.106). We take the average of these variables between two elements sharing the same face. To write the expression as,

ν - h q - h - τ -ν - h τ + ν + h + τ -ν - h [[ν h q h • n]]n -+ ν + h q + h - τ + ν + h τ + ν + h + τ -ν - h [[ν h q h • n]]n + /2, on Γ
Recalling the jump operator for a vector variable,

[[ν h q h • n]] = ν - h q -• n -+ ν + h q + • n +
By adding the terms,

τ + ν + h τ + ν + h + τ -ν - h ν - h q - h + τ -ν - h τ + ν + h + τ -ν - h ν + h q + h , on Γ II-Second, taking the terms with u h , τ ν h u h - τ + ν + h τ + ν + h + τ -ν - h u + h + τ -ν - h τ + ν + h + τ -ν - h u - h n, on ∂K
The variables u h , ν h , τ , and n are defined on ∂K and not single valued on Γ . Similar to what is done for q h , we switch from ∂K to Γ ,

τ -ν - h u - h n -- τ -ν - h τ + ν + h τ + ν + h + τ -ν - h u + h n -- τ -ν - h τ -ν - h τ + ν + h + τ -ν - h u - h n -+ τ + ν + h u + h n + - τ + ν + h τ + ν + h τ + ν + h + τ -ν - h u + h n + - τ + ν + h τ -ν - h τ + ν + h + τ -ν - h u - h n + /2, on Γ
Recalling the jump operator for a scalar variable,

[[u h n]] = u - h n -+ u + h n + By simplifying we get, τ -ν - h τ + ν + h τ + ν + h + τ -ν - h [[u h n]], on Γ
Finally, the u h and q h terms are added. Now the diffusive part of the HDG flux in expression (2.108), can be expressed in the DG form on Γ as, (2.111) 

ν h q h = τ + ν + h τ + ν + h + τ -ν - h ν - h q - h + τ -ν - h τ + ν + h + τ -ν - h ν + h q + h + τ -ν - h τ + ν + h τ + ν + h + τ -ν - h [[u h n]], on Γ
The variables q - h and q + h can be further expressed as the mean value for ν h q h as defined by the average operator, plus another term depending on the jump. By expressions (2.110) and (2.111), the HDG fluxes can be written in the generalized standard DG form in terms of u h and q h .

Analysis

After obtaining an expression for the HDG diffusive fluxes in the generalized standard DG flux form, the stability constraints of the generalized standard DG flux forms can be used for HDG to deduce guidelines for the diffusion stabilization term. Since the interest is on the diffusivity limit, the velocity field is set as, c = 0

Standard DG flux

Following [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF], the flux can be written in the standard DG form on Γ ,

q * = {{q h }} + C 11 [[u h n]] + C 12 [[q h • n]] (2.112) u * = {{u h }} -C 21 • [[u h n]] + C 22 [[q h • n]] (2.113)
It is proven for the standard DG flux in [START_REF] Castillo | An a priori error analysis of the local discontinuous Galerkin method for elliptic problems[END_REF], that the DG method is stable if C 11 > 0 and C 22 ≥ 0 without including the viscosity in the flux of the auxiliary variable q * , and using the standard DG flux form. The HDG flux results in the variables as derived in [START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF],

C 11 = τ -τ + τ + + τ - (2.114) C 12 = C 21 = 1 2 [[τ n]] τ + + τ - (2.115) C 22 = 1 τ + + τ - (2.116)
From these expressions, any value of τ > 0 satisfies the stability condition. Thus, setting τ = ν/ℓ, where ℓ is the diffusion length scale, seems like a reasonable choice that satisfies the stability condition. However, studying the numerical fluxes in the generalized form gives a different conclusion.

Generalized Standard DG flux

The generalized standard DG flux is recalled (2.104) & (2.105) on Γ ,

(νq) * = {{ν h q h }} + C 11 [[u h n]] + C 12 [[ν h q h • n]] u * = {{u h }} -C 21 • [[u h n]] + C 22 [[ν h q h • n]]
It is proven for the generalized standard DG flux in section 2. [START_REF] Bassi | An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations[END_REF] 

ν h q h = τ + ν + h τ + ν + h + τ -ν - h ν - h q - h + τ -ν - h τ + ν + h + τ -ν - h ν + h q + h + τ -ν - h τ + ν + h τ + ν + h + τ -ν - h [[u h n]], on Γ ûh = τ + ν + h τ + ν + h + τ -ν - h u + h + τ -ν - h τ + ν + h + τ -ν - h u - h + 1 τ + ν + h + τ -ν - h [[ν h q h • n]], on Γ
to be written as follows,

C 11 = τ -τ + ν - h ν + h τ + ν + h + τ -ν - h (2.117) C 12 = C 21 = 1 2 [[τ ν h n]] τ + ν + h + τ -ν - h (2.118) C 22 = 1 τ + ν + h + τ -ν - h (2.119)
In the generalized case, the viscosity ν h appears to be contributor in the stability constraints. From a variational mathematics point of view, setting τ > 0 and given that ν h is positive then the method is stable because C 11 > 0. However, from a numerical sense, the stability constraint is not necessarily satisfied for all positive values of τ and ν h . This case occurs when ν → 0, which leads to lim ν→0 C 11 = 0. Numerical illustrations are shown for choices 1 & 2.

Choice 1 τ = ν ℓ

Where ℓ is the problem dependent diffusive length scale. This option is the most common among HDG practitioners [START_REF] Nguyen | An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations[END_REF]. Using this expression for equations (2.117), (2.118), and (2.119),

C 11 = ν - h ν + h 2 ℓ ν + h 2 + ν - h 2
(2.120)

C 12 = 1 2 [[ν 2 h n]] ν + h 2 + ν - h 2 (2.121) C 22 = ℓ ν + h 2 + ν - h 2 (2.122) Setting the diffusivity as a constant, ν = ν - h = ν + h then, C 11 = ν 2 2ℓ , C 12 = 0, C 22 = ℓ 2ν 2
If ν << ℓ then C 11 ≈ 0, i.e., ν = 10 -7 and ℓ = 1 result in C 11 = 5 × 10 -15 , which is less than the machine precision. During the implementation with C 11 set to that value, this directly produces a nearly ill-conditioned elemental matrix as shown in the results section. On the other hand, C 22 is positive and for these choices, C 22 = 5 × 10 13 . It seems like an unreasonable large number, even if C 22 is multiplied by the viscosity of the term

[[ν h q h •n]]. Choice 2 τ = ℓ ν
The choice is derived based on understanding the limits of C 11 . Using this expression for equations (2.117), (2.118), and (2.119),

C 11 = ℓ 2 (2.123) C 12 = 0 (2.124) C 22 = 1 2ℓ (2.125)
This choice satisfies the stability conditions if τ > 0, regardless of the value of ν. Where the stability constraints are only dependent on the diffusive length scale. For the moderate value of the diffusivity ν > 10 -4 , there is no huge numerical difference between the two choices. While for ν < 10 -4 , choice 2 adds more stability and robustness to the method. The second choice becomes essential in convection-dominated flows, where the diffusivity can reach a value as little as ν < 10 -9 .

Dimensional Analysis

With using the dimensional analysis, the new definition of the stabilization term is extended to the incompressible Navier-Stokes equations. Firstly, the approximate velocity field is referred to as u h , with its trace defined as u h . While the approximate auxiliary variable L h , which is the velocity gradient tensor, and its trace defined as L h . The stabilization associated with the diffusion appears in the equation, (2.126)

ν h L h = νL h + τ ν (u h -ûh ) n, on ∂K
Where L is the velocity gradient with the dimension 1/T , u is the velocity with the dimension L/T , and ν is the kinematic viscosity with the dimension L 2 /T . The dimensional analysis implies that the dimension of τ should be 1/L, where L is the length unit and T is the time unit. In the latest definition of τ given as,

τ = ℓ ν
The unit of τ for the previous definition is T /L. Recalling the common dimensionless parameter, Reynolds number,

Re = U D ν , Re ∝ 1 ν
where U is a reference velocity and D is the characteristic length. Given from (2.117), (2.118), and (2.119) that the stabilization term should be,

τ ∝ 1 ν
Therefore it is deduced that, τ ∝ Re

In order to match the dimensions for the stabilization term, the Reynolds number is divided by a length scale to give the stabilization term in this form,

(2.127) τ = Re ℓ = U D ℓν
The reference velocity can be chosen as the inlet velocity or another convenient choice is to set it as free field velocity,

(2.128) τ = U ∞ D ℓν
With this definition of the diffusive stabilization parameter, the incompressible Navier Stokes formulation is stable over all the range of Reynolds numbers.

A note on discontinuous viscosity

Conventionally in turbulent flows with eddy-viscosity models, a turbulence model is solved which changes the value of viscosity to replace it with an effective viscosity defined as,

ν e = ν + ν t
where ν t is the modeled eddy viscosity. This is the case in RANS and LES turbulence closures with linear viscosity models. The modeled eddy viscosity is discontinuous between the elements, since it depends on the approximate velocity field u h . Because of this discontinuities the value of C 12 defined in (2.118) will not be zero.

C 12 = 1 2 [[τ ν e n]] τ + ν + e + τ -ν - e
This term has no effect on the stability constraints at the diffusive limit, however, understanding its effect on the accuracy is left for future work as it can make some sort of upwinding or downwinding. Anyways, the stabilization parameter can be defined to set this term to zero by satisfying,

τ -= τ + ν + e ν - e

Numerical Results

The new definition of the stabilization term is proven to be crucial for the stability and accuracy of the method in the given test cases.

Convection-Diffusion

Since the transient term in the non-linear convection diffusion equation might stabilize the operator [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF], the steady state equation is studied.

(2.129)

∇ • us -∇ • (κ∇s) = f
where s is a scalar variable, u is a velocity field, κ is the diffusivity, and f is a source term. An 2D exact solution for this equation is given by,

u 1 = y c b (2.130) u 2 = 0 (2.131) s = 1 (x + 1) (y + 1) + 9 (2.132)
where c = 1 and κ = 10 -6 . In case 1, b = 1, the x-velocity has a moderate gradient near the wall. Case 2 is built by setting b = 13, to have a steeper gradient of the x-velocity. The domain is a square of the dimension [0, 1] 2 . Dirichlet boundary conditions are applied on all the boundaries. The two cases are solved for τ = ℓκ and τ = ℓ/κ, where ℓ = 1. The L2 norms are presented for the computed solution s h and the post-processed solution sh . Equidistant triangular meshes are used with the polynomial order, m = 3. 

Table 2.3 -Case 1 errors and convergence

▼❡s❤ τ = ℓκ τ = ℓ/κ s h -s L2 r❛t❡ sh -s L2 r❛t❡ s h -s L2 r❛t❡ sh -s L2 r❛t❡ 10 × 10 ✶✳✸✽❡✲✵✺ ✲ ✹✳✽✵❡✲✵✻ ✲ ✶✳✷✵❡✲✵✹ ✲ ✶✳✷✵✲✵✹ ✲ 20 × 20 ✶✳✻✻❡✲✵✻ ✸✳✶ ✸✳✾✵❡✲✵✼ ✸✳✻ ✷✳✷✵❡✲✵✺ ✷✳✹ ✷✳✷✵❡✲✵✺ ✷✳✹ 40 × 40 ✷✳✵✷❡✲✵✼ ✸✳✵ ✷✳✽✼❡✲✵✽ ✸✳✽ ✸✳✸✽❡✲✵✻ ✷✳✼ ✸✳✸✽❡✲✵✻ ✷✳✼ 80 × 80 ✷✳✺✵❡✲✵✽ ✸ ✷✳✶✾❡✲✵✾ ✸✳✼ ✹✳✺✻❡✲✵✼ ✷✳✾ ✹✳✺✻❡✲✵✼ ✷✳✾
▼❡s❤ τ = ℓκ τ = ℓ/κ s h -s L2 r❛t❡ sh -s L2 r❛t❡ s h -s L2 r❛t❡ sh -s L2 r❛t❡ 10 × 10 ✶✳✶✶❡✰✵✶ ✲ ✸✳✾✸❡✲✵✸ ✲ ✷✳✸✸❡✲✵✸ ✲ ✷✳✸✸❡✲✵✸ ✲ 20 × 20 ✶✳✹✻❡✰✵✵ ✷✳✾ ✷✳✻✵❡✲✵✹ ✸✳✾ ✶✳✸✷❡✲✵✹ ✹✳✶ ✶✳✸✷❡✲✵✹ ✹✳✶ 40 × 40 ✶✳✽✾❡✲✵✶ ✷✳✾ ✶✳✾✵❡✲✵✺ ✸✳✽ ✽✳✾✷❡✲✵✻ ✸✳✾ ✽✳✾✷❡✲✵✻ ✸✳✾ 80 × 80 ✷✳✸✽❡✲✵✷ ✸ ✶✳✸✹❡✲✵✻ ✸✳✾ ✻✳✺✶❡✲✵✼ ✸✳✽ ✻✳✺✶❡✲✵✼ ✸✳✽
As expected because of the advection dominance, the superconvergence of the post-processed solution is lost for both cases as it is not m + 2. It is also noticed that the post-processed solution for the τ = ℓ/κ is equal to the approximate solution in cases 1 and 2. It is noticed from the results that the errors in case 2 are much larger when the stabilization parameter is changed. It can be said that, setting τ = ℓ/κ results in a less sensitive formulation to the advection velocity. It is believed that the reason of this is due to the near wall ill-conditioning, that is discussed in the next section.

Near wall ill-conditioning

Large variations in the accuracy are observed for the same exact solution and diffusivity with only varying the advection velocity. The x-velocities varying between zero to 1 are plotted below on figures 2.5 & 2.6. In case 1, the velocity is large enough to stabilize the equation as the diffusion limit is not met. While in case 2, the velocity is nearly zero in the first row of cells near the wall and the diffusion limit is met in a numerical sense. Therefore, the approximate solution, in this zone is dependent mostly on the diffusion part. The numerical errors can clearly be seen from the approximate solution s h , as is plotted for case 2 with different stabilization terms on figures 4.3 & 4.5. The error is clearly dependent on the velocity field for τ = ℓκ. This can be explained by looking at the conditioning number of the local elemental matrices defined in equation (2.76). The conditioning number is plotted for both stabilization parameters on figures 4.4 & 4.6. The maximum and minimum conditioning numbers for τ = ℓκ are 3.53 × 10 12 & 4.16 × 10 3 respectively, while for τ = ℓ/κ are 2.50 × 10 3 & 2.18 × 10 3 respectively. A correlation can be observed between the conditioning number and the error in the solution. The conditioning number is dependent on the mesh size, advection velocity, and diffusivity. However, inverse proportionality between the τ and κ avoids the near wall ill-conditioning in nearly all the cases. The reason for this ill-conditioning can be explained by looking at the matrix in equation (2.76) as the advection velocity c approaches zero. In this case, it can be seen that the stabilization term is the dominant term in the matrix A uu ≈ τ ν h u h , φ h ∂K . Knowing that, the local elemental matrix is non-invertible if A uu = 0. This fact is analytically proven from the stability constraint of C 11 . To conclude, the direct proportionality between the stabilization parameter and the diffusivity allows A uu ≈ 0. On the other hand, the inverse proportionality protects the formulation from reaching this numerical limit.

Incompressible Navier-Stokes

The discretization used to solve the incompressible Navier-Stokes are mentioned in chapters 3 and 4. This section only illustrates the effect of the proposed stabilization parameter on the Navier-Stokes equations. Please refer to chapter 3 and 4 for a detailed illustration of the implemented method.

It can be argued that the previous test case is not physical. Consequently, we move to a more physical example, the incompressible Navier-Stokes equations,

∂u ∂t + ∇ • (u ⊗ u) + ∇p -ν∇ 2 u = s ∇ • u = 0
It is known that at relativity large velocities the flow is no longer laminar and gets turbulent. High mesh resolution near the boundary wall is required to resolve the velocity profile, where the velocity in the near-wall region is approaching zero. The near wall ill-conditioning is even more severe as the advection velocity (which is the solution) is approaching zero as well. This implies that the transient term might not suffice to resolve the stability problem. Additionally, the non-linear advection terms add more complexity to the situation, since using an iterative process to resolve the non-linearities is obligatory. Moreover, combining the near wall ill-conditioning with an iterative process results in unphysical states of the velocity near the wall. This leads to completely losing the robustness of the solver and failing to obtain a converged solution. It was observed that the flows starting from Re = 10 5 or more are prone to near wall ill-conditioning. To solve the incompressible Navier-Stokes equations for these Reynolds numbers a turbulence model needs to be chosen. Reynolds Averaged Navier-Stokes (RANS) is used as it is the most convenient choice for flows up to Re = 10 9 . With the purpose of separating the problems associated with turbulent closures and near wall ill-conditioning, the method of manufactured solution is used. Then, the results for the standard RANS k -ω model is presented.

Method of Manufactured Solution

The velocity field, pressure, and turbulent eddy viscosity are obtained from the manufactured solution in [START_REF] Eça | Manufactured solutions for steady-flow Reynolds-averaged Navier-Stokes solvers[END_REF] and described in section 3.7. The near-wall velocity profile mimics the solution of the RANS equations. Turbulent eddy viscosity is used as an input to avoid solving a turbulence closure. The computational domain is [0.1, 1] × [0, 0.25] in x and y respectively. The wall boundary condition is at y = 0. Reynolds numbers of 10 7 and 10 9 are tested for τ = ℓν and τ = Re/ℓ, where ℓ = 100.

Table 2.5 -Manufactured solution Re = 10 

7 ▼❡s❤ τ = ℓν τ = Re/ℓ u h -u L2 r❛t❡ u h -u ∞ r❛t❡ u h -u L2 r❛t❡ u h -u ∞ r❛t❡
▼❡s❤ τ = ℓν τ = Re/ℓ u h -u L2 r❛t❡ u h -u ∞ r❛t❡ u h -u L2 r❛t❡ u h -u ∞ r❛t❡ 16 × 16 ✽✳✻✺❡✲✵✹ ✲ ✽✳✻✼❡✰✵✵ ✲ ✸✳✺✶❡✲✵✺ ✲ ✽✳✺✼❡✲✵✸ ✲ 20 × 20 ✺✳✸✻❡✲✵✹ ✷✳✶ ✺✳✼✼❡✰✵✵ ✶✳✽ ✶✳✹✶❡✲✵✺ ✹✳✵ ✷✳✵✵❡✲✵✸ ✻✳✺
It is noticed that the pressure does not vary with the change of the stabilization parameter as the method is pressure robust [START_REF] Elzaabalawy | An HDG method for the incompressible Navier-Stokes equations with pointwise divergence-free velocity field for tetrahedral and hexahedral elements[END_REF]. The infinity norm is more descriptive for these types of problems, as the variation in the solution happens in a small domain. In the τ = ℓν case, the infinity norms are huge compared to the free stream velocity of the value 1. These errors normally lie in the boundary layer near the wall, which makes the convergence for the turbulent closure coupled case nearly impossible. While for τ = Re/ℓ, the infinity norms are much smaller and the solution near the wall is oscillations free.

RANS Standard k -ω

The standard k -ω equations are two non-linear scalar convection-diffusion equations with source terms given as,

∂k ∂t + ∇ • (ku -[(ν + σ k ν t ) ∇k]) + β * ωk = ν t P ∂ω ∂t + ∇ • (ωu -[(ν + σ ω ν t ) ∇ω]) + βω 2 = ζP
The model constants and coupling is given in section4. 

Incompressible Navier-Stokes Equations

The finite volume method has been the dominant approach for solving the incompressible Navier-Stokes equations (INS) for decades. The author believes that the reason behind this dominance is due to its conservative properties on unstructured meshes for any shapes of control volumes. Unfortunately, extending to high-order finite volume is not practical for unstructured meshes. In the efforts to design a high-order incompressible Navier-Stokes solver, the DG method is chosen as it inherits important features from FV. Mainly, the numerical fluxes that facilitate dealing with advection terms, and the formulation being conservative and in the integral form. In this chapter, the pros and cons of solving the INS equations under the DG framework are reviewed. Then, a newly developed pointwise conservative and energy-stable formulation is presented that is valid for all standard element types.

Ways to solve it with DG

Solving the incompressible Navier-Stokes equations is a mathematically challenging task due to the incompressibility constraint. By construction, the equations form a saddle point problem, that can be observed in the matrix vector form as,

(3.1) A B B T 0 u p = f 0 ,
where A is the Laplace, advection, and time derivative operator, B is the gradient operator, and B T is the divergence operator. The Uzawa algorithm presents a direct method to solve this problem by multiplying the first row by B T A -1 and subtracting from the second row, which yields to,

(3.2) A B 0 -B T A -1 B u p = f -B T A -1 f
However, the inversion of matrix A is often not applicable for the whole discrete systems. On the other hand, iterative methods provide a solution to the saddle point problem as it is shown in the following sections. Different numerical solutions to the saddle point problems can be found thoroughly in [START_REF] Benzi | Numerical solution of saddle point problems[END_REF]. The methods for solving the incompressible Navier-Stokes equations are based either on direct or iterative methods to the saddle point problem.

To ensure the solvability and well-posedness of the discrete system, the inf-sup condition also known as Ladyzhenskaya-Babuška-Brezzi inequality or LBB condition must be satisfied. It is a condition on the approximation spaces of the velocity and pressure. In order to have a unique solution for the discrete equations in a CG approximation, this LBB inequality must hold [START_REF] Babuška | The finite element method with Lagrangian multipliers[END_REF][START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[END_REF],

(3.3) inf {φ h ∈Sv\{0}} sup {ψ h ∈Vv\{0}} Ω φ h ∇ h • ψ h dx φ h L 0 (Ω) ψ h H 1 0 (Ω) ≥ β h
where V v and S v are the vector spaces for the velocity and pressure respectively, and β h is a positive mesh independent non-zero constant. Several approximation spaces that satisfy the LBB condition are available in the literature [START_REF] Donea | Finite element methods for flow problems[END_REF]. The common remedy in finite element is choosing different orders of polynomial of the vector spaces for the pressure and velocity. This constraint is not restricted to finite element, for instance, staggered grids in finite difference and finite volume are used as a way to circumvent the LBB condition. For discontinuous global solutions, it is proven that the LBB condition can be satisfied without altering the approximation spaces by adding a penalizing term [START_REF] Di Pietro | Mathematical aspects of discontinuous Galerkin methods[END_REF]. In a similar way, stable finite volume methods can be achieved on collocated grids with preserving the conservative properties as done in the Rhie and Chow interpolation method which roughly consists in relaxing the strict incompressibility condition by adding a 4 th order diffusive term multiplied by h 2 to maintain the 2 nd order accuracy [START_REF] Rhie | Numerical study of the turbulent flow past an airfoil with trailing edge separation[END_REF].

Taking into account the saddle point problem issue and the LBB condition, stable DG based formulations are presented to solve the incompressible Navier-Stokes equations in the following sections with illustrations of the drawbacks of each method. Our goal is seeking an ideal variational form that has the conservative properties of the finite volume method by being pointwise mass and momentum conserving as well as being energy-stable.

Projection Methods

The projection methods are based on operator splitting techniques to resolve the saddle point problem. They split the original partial differential equation into multiple simpler equations, in which each equation is solved separately resulting in a temporal error. They are also known as fractional step methods. Seeking an arbitrary high-order formulation, one can rule out the projection methods from the beginning for unsteady flows as they are at most third-order accurate in time. Nevertheless, it is widely common in finite element for its simplicity. There are different splitting arrangements in the literature, and in this thesis, the stiffly stable KIO (Karniadakis, Israeli, and Orszag) is presented [START_REF] Karniadakis | High-order splitting methods for the incompressible Navier-Stokes equations[END_REF]. An overview of the family of projection methods is found in [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF], and their stability in the high-order DG framework is discussed in [START_REF] Fehn | On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations[END_REF]. KIO is a three step method and based on the second-order backward differencing scheme BDF2. At the beginning, an intermediate velocity ũ is evaluated by applying the time discretization explicitly with dropping the pressure and the viscous terms,

(3.4) γ 0 ũ -α 0 u n -α 1 u n-1 ∆t = -β 0 (u n • ∇) u n -β 1 u n-1 • ∇ u n-1
This scheme is not self-starting so the first time step is based on first-order accurate in time, with the constants,

γ 0 = 1, α 0 = 1, α 1 = 0, β 0 = 1, β 1 = 0,
starting from the second time step, the constants are.

γ 0 = 3 2 , α 0 = 2, α 1 = - 1 2 , β 0 = 2, β 1 = -1
Then the second step is defining the pressure gradient in terms of ũ and the second intermediate velocity ũ which is by definition divergence-free,

(3.5) γ 0 ũ - ũ ∆t = -∇p n+1
By taking the divergence of (3.5), the approximate Poisson equation is deduced,

(3.6) -∇ 2 pn+1 = - γ 0 ∆t ∇ • ũ
The Poisson equation is not trivial to solve because it has no physical boundary condition at the Dirichlet velocity boundaries. Numerical boundary conditions are computed from the Navier-Stokes equation with implicitly imposing the mass continuity equation by using the vorticity to have,

n • ∇p n+1 = ∂ pn+1 ∂n = -β 0 n • Du n Dt -ν∇ 2 u n -β 1 n • Du n-1 Dt -ν∇ 2 u n-1 = -β 0 n • Du n Dt + ν∇ × Ω n -β 1 n • Du n-1 Dt + ν∇ × Ω n-1
where D is the material derivative defined as,

Du Dt = ∂u ∂t + (u • ∇) u
and Ω is the vorticity vector defined as,

Ω = ∇ × u
Presently, the Poisson equation is well-posed and the divergence-free intermediate velocity ũ is computed. The third and final step incorporates the viscous term to obtain u n+1 , (3.7)

γ 0 u n+1 - ũ ∆t = ν∇ 2 u n+1
Equation (3.7) is a Helmholtz equation to be solved implicitly as the Poisson equation.

The spatial DG discretization is straightforward and presented as the advection, pressure, viscous steps. The advection step is explicit, where the Lax-Friedrich numerical flux is applied to the advection term and the first intermediate velocity ũh is computed. Then, the SIP method is applied to solve the Poisson equation to obtain the pressure. The Poisson equation is solved implicitly, knowing that its operator is often badly conditioned. Fortunately, DG SIP method enables the usage of preconditioners for symmetric operators, which remarkably improves the solving time and storage. Various preconditioners can be used for symmetric operators developed for spectral element methods in general, such as additive Schwarz using overlapping subdomains and low-energy basis [START_REF] Fischer | An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations[END_REF][START_REF] Sherwin | Low-energy basis preconditioning for elliptic substructured solvers based on unstructured spectral/hp element discretization[END_REF]. In the viscous step, the second-order term is discretized in the same manner as the pressure step using SIP. Fortunately, the burdensome task is already done in the pressure step as the Helmholtz operator can simply be derived from the Laplacian operator by adding a mass matrix. Thanks to the mass matrix coming from the unsteady term, this equation is relativity well-conditioned compared to the Poisson equation and does not require numerically derived boundary conditions. The spatial discretization can be found in the reference [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF].

Choosing approximation spaces of the same order for the pressure and velocity is conditionally inf-sup stable. For large time steps, the time splitting error is enough to numerically satisfy the LBB condition. Generally, relying on the error for stabilization is not a robust choice, and choosing an unconditionally inf-sup stable space is recommended.

The method is simple and can be implemented efficiently, but it has some incurable weaknesses. Firstly, it is at most third-order in time due to the time splitting error even if a higher order time differencing scheme is used in equation (3.4). Secondly, the advection term is treated explicitly which limits increasing the time step at high Reynolds number flows. Finally, the method does not compute exactly divergence-free velocity fields. The mass continuity is enforced weakly on the second intermediate velocity and by the numerically derived boundary conditions for the pressure. Therefore, the mass is not exactly conserved and the formulation is not energy-stable. With appropriate modifications as done in [START_REF] Krank | Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flow[END_REF], the method can be barely acceptable for low and medium Reynolds numbers, but the author believes that it is inconvenient for high Reynolds numbers as the stabilization terms are not straightforward. Consequently, it was not chosen to proceed further with this method.

Stationary iterations

The stationary iteration method is based on algebraic manipulations to iteratively solve the saddle point problem without introducing a temporal error nor splitting the PDE. These types of methods are widely used in finite volume. The SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm developed by Spalding and Patankar is one of the well-known iterative methods to solve the incompressible Navier-Stokes equations. Different variants are also widely used, such as the PISO and SIMPLER algorithms. The basic idea of these methods is briefly presented in this section for the DG method. Firstly, the discrete formulation based on DG can be written as,

(3.8) A B D G u h p h = f g
where A is the discrete Laplace and the linearized advection operator, B is the discrete gradient operator, D is the discrete divergence operator, and G is a zero matrix. For generality, matrix G can be non-zero if a stabilization strategy is applied. However, the stabilization can be performed by choosing a m -1 polynomial for the pressure space and m for the velocity space. This combination satisfies the LBB condition and no stabilization is required with matrix G being a zero matrix. The iterative method is based on finding an approximation of A -1 to decouple the system. The simplest approximation is by using,

C = diag(A) -1
An algorithm is given below where β is an under relaxation factor.

1) Solve each momentum equation separately Solve Au

* h n = f -Bp n-1 h to get u * h n 2) Get the pseudo-velocity Get ũ from ũ = u * h n -CAu * h n + Cf 3) Solve [DCB + G]p h = Dũ -g to get p 4) Correct the pressure p n h = βp + (1 -β)p n-1 h 5) Correct the velocity u n h = ũ -CBp n h 6) Check residuals 6.1) Check momentum residuals Au n h + Bp n h -f 6.2) Check continuity residuals Du n h + Gp n h -g 7) Repeat the steps till desired convergence
The method is robust and proved its efficiency in numerous finite volume solvers. A method based on SIMPLE algorithm and DG discretization is implemented for steady and unsteady incompressible flows in BoSSS (Bounded Support Spectral Solver) code [START_REF] Klein | An extension of the SIMPLE based discontinuous Galerkin solver to unsteady incompressible flows[END_REF][START_REF] Klein | A SIMPLE based discontinuous Galerkin solver for steady incompressible flows[END_REF]. This method outperforms the projection method since there is no restriction on the temporal error. Additionally, the advection term can be treated implicitly or explicitly. Unfortunately, there is a misfortune that comes from the DG method itself, which is the approximate velocity field being not divergence-free. Therefore, the method can not be a mass conserving, momentum conserving, and energy-stable concurrently. The essential stabilization for the second-order term in the DG framework is often the term responsible for computing non divergence-free velocity fields as the velocity fluxes are penalized. An elemental post-processing operator can be applied to force the mass conservation, but dealing with the tangential viscous stresses across the element boundaries is not straightforward for advection dominated flows [START_REF] Cockburn | A locally conservative LDG method for the incompressible Navier-Stokes equations[END_REF]. As an alternative one can use divergence-conforming spaces such as Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM), but these spaces are difficult to construct [START_REF] Carrero | Hybridized globally divergence-free LDG methods. Part I: The Stokes problem[END_REF][START_REF] Cockburn | A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations[END_REF]. In order to avoid the problems associated with the post-processing operator or the construction of the divergence-conforming spaces, this method was excluded.

Pressure Poisson Equation

In the PPE (Pressure Poisson Equation) method, the saddle point problem is solved by mathematically generating a pressure equation using calculus. The method is not the conventional way of solving the incompressible Navier-Stokes as it requires high-order derivatives on the element boundaries. The details of the method can be found in [START_REF] Shirokoff | An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary[END_REF]. First, the incompressible Navier-Stokes equations are recalled,

∂u ∂t + ∇ • (u ⊗ u + Ip -ν∇u) = f , in Ω ∇ • u = 0, in Ω
We apply the divergence operator on the INS, then apply implicitly the incompressibility constraint or the continuity equation to get the PPE. This process is applied for each term as, I) Time derivative term, Since the velocity field is divergence-free at any given time then the divergence on the velocity time derivative is as follows,

∇ • ∂u ∂t = 0 II) Diffusion term, Using this identity, ∇ 2 u = ∇ (∇ • u) -∇ × ∇ × u,
with enforcing the mass conservation,

ν∇ • ∇ 2 u = ν∇ • (-∇ × ∇ × u) III) Convective term, ∇ • (∇ (u ⊗ u)) = ∇ • (∇ • u + u • ∇u) ,
with enforcing the mass conservation,

∇ • (∇ (u ⊗ u)) = ∇ • (u • ∇u)
After these manipulations, the equations can be written in this form,

u t = -u • ∇u -∇p + ν∇ 2 u -∇ 2 p = ∇ • u • ∇u -ν∇ 2 u
With this formulation, analytically ∇ • u is independent of time and will have a constant value equal to the one specified at t = 0, as ∇ • u(x, 0) = ∇ • u(x, t). Thus, setting a divergence-free velocity as an initial condition the solution should always be divergence-free in the continuous setting. Normally, the PPE approach is rarely used in conventional discretization methods as it requires the second and third derivatives of the velocity to impose the boundary conditions. In high-order DG, this is not a problem if we are using a polynomial degree m ≥ 3. To get the pressure boundary condition, the projection of the INS is used to have,

n • ∇p = -n • u t + u • ∇u -ν∇ 2 u
For consistency and stability of the PPE method, these conditions should be satisfied for the initial condition,

u (x, 0) = u 0 , ∇ • u 0 = 0, n • u 0 = n • u D (x, 0) .
This implies that the normal of the initial condition at the boundaries must be equal to the velocity Dirichlet boundary conditions. In addition, the initial condition should be divergence-free.

With the PPE, there is no saddle point problem. Nevertheless, imposing the mass conservation is applied weakly and subjected to the boundary conditions and fluxes. Since the continuity of the velocity across the faces is imposed in the integral sense and not pointwise in DG, as we march in time the formulation does not compute divergence-free velocity fields and the mass continuity is lost. As a result, the PPE is non-robust when solved using DG.

Static Condensation

The static condensation was designed for the finite element method to remove the internal degrees of freedom and only solve the equations on the element boundaries by reconstituting new degrees of freedom on them, known as traces of the solution [START_REF] Wilson | The static condensation algorithm[END_REF]. Thus, reducing the number of degrees of freedom to be solved for the global operator. In the DG framework, the static condensation is known as the hybridization. Inside each element, there is an incompressible Navier-Stokes equation with the traces at the boundaries of the element being the boundary conditions for the velocity and the pressure. By discretizing using DG, a local saddle point problem is formed. To satisfy the well-posedness of the local problem, the pressure operator in the momentum equation is built carefully with the aid of the pressure trace to be exactly the transpose of velocity operator in the mass equation with a zero null space. During hybridization, this equation is solved directly as it is small in size and well-posed with only the degrees of freedom inside the element. In consequence, the saddle point problem is solved directly by inverting the whole operator for each element locally. As a result, an exact numerical operator for the trace pressure at the boundaries of the elements is constructed due to the hybridization. It can be said that hybridization locally solves the saddle point problem directly in an element-wise manner. This operation is elaborated in detail in the next section for DG. Further, solving the INS with static condensation is not restricted to the finite element method as shown in chapter 5.

Notwithstanding the exact construction of the operator of the pressure trace, the problem of computing velocity fields that are not divergence-free still exists after hybridization. Fortunately, by utilizing the newly introduced degrees of freedom with specific approximation spaces, the velocity field can be exactly divergence-free. The method recently developed by Rhebergen and Wells, is only valid for triangular and tetrahedral elements [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. In this thesis, the method is extended to all standard element types by introducing the novel reduced element for the pressure space. This leads to a variational form that is mass conserving, momentum conserving, and energy-stable without applying a post-processing operator. Since the static condensation or hybridization is the only high-order method that provides such properties among the methods presented, it was chosen to proceed further with this method. The details of the method are presented in the next section.

Divergence-free HDG

Hybridization offers a convenient framework to solve the saddle point problem and to exactly satisfy the mass continuity with using LBB stable spaces, making HDG one of the most attractive high-order methods to discretize the incompressible Navier-Stokes equations. The equations can be written in the conservative form as,

∂u ∂t + ∇ • (u ⊗ u + Ip -ν∇u) = f , in Ω (3.9) ∇ • u = 0, in Ω (3.10)
where u is the velocity field, p is the kinematic pressure, ν is the kinematic viscosity, I is the identity tensor, (u ⊗ u) = u i u j , and f is a source term. The boundary conditions can be written as,

u = u D , on Γ D (3.11) (u ⊗ u + Ip -ν∇u) n -max (u • n, 0) u = g N , on Γ N (3.12)
where n is the outward facing normal, and g N is a known flux at the boundary.

We recall notations and the spaces from section 2.2. The bounded domain 1 where d is the spatial dimension. The union of all n fc faces F is denoted as,

Ω in R d with boundary ∂Ω is divided into n el non-overlapping elements K i ∈ R d , with the element boundaries ∂K i ∈ R d-
Γ := nel i=1 ∂K i = nfc i=1 F,
where the union of the Dirichlet and Neumann faces is the boundary of the domain Γ D ∪ Γ N = ∂Ω, while the union of all interior faces is Γ i . The broken polynomial spaces for the vector and scalar variables are defined on the elements and faces as,

V h v := ψ h ∈ [L 2 (Ω)] d , ψ h | K i ∈ [P m (K i )] d , V h s := ψ h ∈ [L 2 (Γ )] d , ψ h | F i ∈ [P m (F i )] d , ψ h = 0 on Γ D , S h v := {φ h ∈ L 2 (Ω) , φ h | K i ∈ P m-1 (K i )} , S h s := φ h ∈ L 2 (Γ ) , φ h | F i ∈ P m (F i ) ,
where m is the order of the polynomial. These are the vector spaces presented by Rhebergen and Wells in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. A modification for the approximate scalar variable space S h v is proposed, such that the method would be exactly pointwise divergence-free for any element type. The scalar variable approximation space is redefined as the reduced space,

S Rh v := φ R h ∈ L 2 (Ω) , φ R h | K i ∈ ∇ • [P m (K i )] d
It is noted that this definition of S Rh v for the triangular mesh leads to the same original spaces since,

∇ • [P m (K)] d = P m-1 (K)
However, for the quadrilateral and hexahedral elements the space S Rh v is no longer the same. It is shown in section 3.3 how S Rh v is defined on the elements. The approximate solution and trace variables are defined as follows,

u h ∈ V h v , ûh ∈ V h s , p h ∈ S Rh v , ph ∈ S h s .
Velocity u h is of a degree m defined on the elements, pressure p h is of the same degree as ∇ • u h defined on the elements, trace velocity ûh and trace pressure ph are of a degree m defined on the facets. The nodal points for the solution and the trace are illustrated in figures 3.1-3.4.

The derivation of the formulation is divided into two sections, the mass balance and the momentum balance.

Mass Balance

In the continuous setting, the mass balance is written by recalling equation (3.10),

∇ • u = 0, in Ω
The Galerkin method is applied to the continuity equation using the weighting function of the pressure φ R h , to have it in the strong form as, and integrated by parts to have a continuity equation in the weak form for each element defined as, 

K ∇ • u h • φ R h dx = 0, ∀φ R h ∈ ∇ • [P m (K i )] d , (3.
K u h • ∇φ R h dx - ∂K u h • nφ R h ds = 0, ∀φ R h ∈ ∇ • [P m (K i )] d (3.14)
∇ • u h = 0
In other words, the algorithm searches for p h which exactly implies this elemental equation. Since the approximate spaces were designed to force ∇ • u h ∈ S Rh v and p h ∈ S Rh v , therefore u h can be exactly pointwise divergence-free. With this formulation the mass balance is exactly satisfied inside the elements in the approximate space.

Furthermore, the mass transmission equation can be extracted from the continuity equation to be defined as,

[[u • n]] = 0, on Γ (3.15)
This equation implies the continuity of the normal velocity across the faces. Recalling the jump operator,

[[u • n]] = u -• n -+ u + • n +
The Galerkin method is applied to the mass transmission equation using the weighting function of the pressure trace φ h , to have,

Γ [[û h • n]] • φ h ds = 0, ∀ φ h ∈ S h s (3.16)
To have this equation defined with respect to the elements boundaries ∂K rather than the faces Γ , we write the equation as the sum over the internal and external faces,

∂Ω [[û h • n]] • φ h ds + Γ i [[û h • n]] • φ h ds = 0, ∀ φ h ∈ S h s (3.17)
Then we use the identity,

∂Ω (a • n) • b ds + Γ i [[a • n]] • b ds = K ∂K (a • n) • b ds,
and the definition of the jump operator to have,

K ∂K u h • n φ h ds - ∂Ω ûh • n φ h ds = 0, ∀ φ h ∈ S h s , (3.18)
where u h ≈ ûh on ∂K. Equation (3.18) is implicitly the equation of the trace pressure ph . In which, the trace pressure ph has a different role by acting as a Lagrange multiplier to force the normal velocity continuity at the faces. The pressure and the pressure trace equations (3.14) & (3.18) enforce the approximate velocity u h to be exactly pointwise divergence-free and H (div)-conforming velocity as presented in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. With this formulation in the discontinuous Galerkin framework, the normal velocity is continuous across the faces and the tangential components are discontinuous.

Finally, the boundary conditions for the mass balance are enforced in equation (3.18), by setting, ûh = u D , on ∂K ∩ Γ D

Momentum Balance

Before continuing the discretization of the momentum equations, the choice of the method to discretize the second-order derivative needs to be determined. As mentioned in chapter 2, there are various methods to discretize the second-order derivative as shown in [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF][START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF]. Rhebergen and Wells used the symmetric interior penalty method SIP [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. The SIP choice is reasonable to avoid adding the new auxiliary variable L, the gradient of the velocity. The benefit of introducing L, is that it is used to obtain super-convergent solutions in the HDG framework [START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF]. However, with this discretization the post-processed super-converged velocity will not be divergence-free. On the other hand, the drawback for the SIP method is that the stability term is mesh dependent. For viscous flows at high Reynolds numbers, the aspect ratio of the elements near the wall is huge to resolve the boundary layer and this leads to large values for the SIP stability parameter. The second Bassi and Rebay method BR2, can be a convenient option to have a mesh independent stability constant without introducing L [START_REF] Bassi | A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows[END_REF]. In this work, the HDG method is chosen for this formulation as the HDG stability parameter is mesh independent. Besides, the auxiliary variable is useful in calculating more accurate viscous forces. The new variable L does not affect the size of the global operator as it is a local variable. Additionally, for generalization, the definition of L can be changed to be the rate of strain tensor instead of the velocity gradient for turbulent flow simulations using eddy-viscosity models or any other desired definition as done in chapter 4.

After choosing the HDG method and satisfying the continuity equation, the momentum balance is rewritten as,

∂u ∂t + ∇ • (u ⊗ u + Ip -νL) = s in Ω (3.19) L -∇u = 0 in Ω (3.20)
In which the numerical flux L h is defined on ∂K in terms of the velocity as,

(3.21) L h -L h = τ (û h -u h ) ⊗ n
where τ is the stabilization parameter and n the face normal pointing outwards. Equations (3.19) & (3.20) are multiplied by their corresponding weighting functions then integration by parts is applied to reach the weak form. Then equation (3.21) is used to eliminate the variable L h .

We apply the Galerkin method to equation 3.19 by using the weighting function of the velocity ψ h , to have,

(3.22) K ∂ t u h • ψ h dx + K (∇ • [u h ⊗ u h ]) • ψ h dx - K (∇ • νL h ) • ψ h dx + K (∇ • Ip h ) • ψ h dx = K f • ψ h dx, ∀ψ h ∈ [P m (K i )] d
Then we apply integration by parts once for the convection term, twice for the viscous terms, and twice for the pressure term. In the first integration by parts, the surface term is replaced by the value at the trace •, while the second integration by parts the elemental values are used as to compute the surface terms.

(3.23)

K ∂ t u h • ψ h dx - K ∇ψ h : u h ⊗ u h dx - ∂K ψ h • n( u h ⊗ u h ) ds + - K (∇ • νL h ) • ψ h dx + ∂K τ νu h • ψ h ds - ∂K τ ν ûh • ψ h ds + K (∇ • Ip h ) • ψ h dx - ∂K Ip h n • ψ h ds + ∂K Ip h n • ψ h ds = K f • ψ h dx, ∀ψ h ∈ [P m (K i )] d
The viscous term is integrated by parts twice to have a symmetric Stokes operator. While the pressure is integrated by parts twice to force the operator of p h to have a zero null space by introducing the term with ph . Besides, the operator of p h is exactly the transpose of operator of u h in equation 3.14. These two conditions are essential to create a well-posed operator as discussed in [START_REF] Donea | Finite element methods for flow problems[END_REF].

To define the auxiliary variable L h , the Galerkin method is applied on equation 3.20 to have,

(3.24) K L h : Ψ h dx - K ∇u h : Ψ h dx = 0, ∀Ψ h ∈ [P m (K)] d×d
integration by parts is applied once to have the equation in the weak form as,

(3.25) K L h : Ψ h dx + K (∇ • Ψ h ) • u h dx = ∂K ûh • Ψ h n ds, ∀Ψ h ∈ [P m (K)] d×d
where Ψ h belongs to the polynomial space of tensors, recalling,

T h v := Ψ h ∈ [L 2 (Ω)] d×d , Ψ h | K i ∈ [P m (K)] d×d ,
and,

(3.26) L h ∈ T h v
The boundary conditions are imposed on the trace variable as,

ûh = u D , on ∂K ∩ Γ D (3.27) and ph = p N , on ∂K ∩ Γ N (3.28)
where p N is obtained from the Neumann boundary condition h N defined in equation (3.12). For a stable advection flux, upwinding is applied and ( u h ⊗ u h ) is defined as, (3.29) (

u h ⊗ u h ) = u h ⊗ u h + (û h -u h ) ⊗ λu h
where λ is a switch that is equal to 1 for an inflow face and equal to zero otherwise. While for the first momentum transmission equation, the Galerkin method is applied to have,

λ = 1, if u h • n < 0 on ∂K 0, if u h • n > 0 on
Γ [[(u ⊗ u + Ip -νL) * n]] • ψ h ds = 0, ∀ ψ h ∈ V h s (3.33)
where the superscript * denotes the numerical flux. The numerical fluxes are defined with respect to ∂K, while equation (3.33) is defined on Γ . Thus, we split the surface integrals over all the faces Γ to the sum on the boundary and internal faces, ∂Ω and Γ i respectively,

∂Ω∪Γ i [[(u ⊗ u + Ip -νL) * n]] • ψ h ds = 0, ∀ ψ h ∈ V h s (3.34)
We continue the derivation as done for the mass transmission equation, knowing that ψ h = 0 on Γ D , and the sum of the previously defined advective, pressure, and viscous numerical fluxes defined as,

u h ⊗ u h + (û h -u h ) ⊗ λu h + Ip h -ν (L h + τ (û h -u h ) ⊗ n) , on ∂K
The momentum transmission equation can finally be written in the weak form as,

(3.35) K ∂K (u h ⊗(1 -λ)u h )n • ψ h ds + K ∂K (û h ⊗ λu h )n • ψ h ds+ K ∂K Ip h n • ψ h ds - K ∂K νL h n • ψ h ds - K ∂K ντ ûh • ψ h ds+ K ∂K ντ u h • ψ h ds = Γ N (h N + (1 -λ) (û h • n) u h ) • ψ h ds
For easier representation, we write the equations in an inner product form defined as local and global problems.

Local Problem

The local problem corresponds to equations (3.14),(3.23),(3.25),

(3.36)

   A uu A uL A up A Lu A LL 0 A pu 0 0       u h L h p h    =    A uû A Lû 0    ûh +    A up 0 0    ph +    f u 0 0    , ∀ψ h ∈ [P m (K i )] d ∀Ψ h ∈ [P m (K)] d×d ∀φ R h ∈ ∇ • [P m (K i )] d A uu u h = (∂ t u h , ψ h ) K -(∇ψ h , u h ⊗ u l-1 h ) K + (u h ⊗(1 -λ)u l-1 h )n + τ νu h , ψ h ∂K A uL L h = -(∇ • νL h , ψ h ) K A up p h = (∇ • Ip h , ψ h ) K -Ip h n, ψ h ∂K A uû ûh = -(û h ⊗ λu l-1 h )n, ψ h ∂K + τ ν ûh , ψ h ∂K A up ph = -Ip h n, ψ h ∂K A Lu u h = (∇ • Ψ h , u h ) K A LL L h = (L h , Ψ h ) K A Lû ûh = ûh , Ψ h n ∂K A pu u h = (u h , ∇φ R h ) K -u h , nφ R h ∂K f u = (f , ψ h ) K
where ( , ) is the volume integral inner product, , is the surface integral inner product, and the superscript l-1 is the value at the previous non-linear iteration. If the trace variables are defined, the local problem is a well-posed INS equation with known pressure and velocity at the boundaries. This elemental equation is solved directly and it is relatively small in size.

Global Problem

The global problem is formed by equations (3.18),(3.35),

(3.37)

K A pu u h = A pû ûh + f p, ∀ φ h ∈ S h s ,
and

(3.38) K      A ûu A ûL 0    u h L h p h    + A ûû ûh + A ûp ph      = f û, ∀ ψ h ∈ V h s A pu u h = u h , n φ h ∂K A pû ûh = ûh , n φ h Γ N f p = u D • n, φ h Γ D A ûu u h = (u h ⊗(1 -λ)u l-1 h )n, ψ h ∂K + ντ u h , ψ h ∂K A ûL L h = -νL h n, ψ h ∂K A ûû ûh = (û h ⊗ λu l-1 h )n, ψ h ∂K -ντ ûh , ψ h ∂K -(1 -λ) (û h • n) u l-1 h , ψ h ∂K∩Γ N A ûp ph = Ip h n, ψ h ∂K f û = h N , ψ h Γ N
This set of local and global equations (3.36), (3.37), and (3.38) provides an energy-stable, mass and momentum conservative discretization for the INS and can be written together in the matrix form as,

K                     A uu A uL A up -A uû -A up A Lu A LL 0 -A Lû 0 A pu 0 0 0 0 A ûu A ûL 0 A ûû A ûp A pu 0 0 -A pû 0               u h L h p h ûh ph                     =        f u 0 0 f û f p        , ∀ψ h ∈ V h v ∀Ψ h ∈ T h v ∀φ R h ∈ S Rh v ∀ ψ h ∈ V h s ∀ φ h ∈ S h s (3.39)
It is noted that the operator in equation (3.39) has many symmetries. Inverting the sign of the last row in equation 3.39 would lead to a symmetric Stokes operator after the hybridization step. Further, all the terms that do not include ν or the advection form the symmetric part of the operator. For instance,

A ûp = (A pû ) T , A up = (A pu ) T , A up = (A pu ) T .

Saddle point problem

The hybridization step is done by inverting the matrix in equation (3.36) and finding an expression for u h , L h , and p h . Then the expression is inserted in (3.37) and (3.38). After applying the hybridization step similar to that described in detail in [START_REF] Giacomini | Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems[END_REF], the final form of the problem can be written as, (

3.40)

A ûû A ûp A pû A pp ûh ph = f û f p A ûû ûh = K      A ûu A ûE 0   A -1    A uû A Eû 0       + A ûû      ûh , A ûp ph = K      A ûu A ûE 0   A -1    A up 0 0       + A ûp      ph , f û = f û - K      A ûu A ûE 0   A -1    f u 0 0            , A pû ûh = K A pu A -1 A uû -A pû ûh , A pp ph = K A pu A -1 A up ph , f p = f p - K A pu A -1 f u ,
where A -1 is the inverse matrix of the local problem,

A -1 =    A uu A uL A up A Lu A LL 0 A pu 0 0    -1
Equation (3.40) is in the hybridized form and ready to be solved. A pp is symmetric, and A ûp is the transpose of A pû , therefore this is a saddle point problem like the original problem but with a non-zero invertible pressure operator [START_REF] Benzi | Numerical solution of saddle point problems[END_REF]. Incidentally, with omitting the advection term this operator is symmetric. Recalling the matrix vector form of the INS,

(3.41) B G G T 0 u p = f 0
where B is the discrete Laplace and the advection operator, G is the discrete gradient operator, and G T is the divergence operator. The hybridization does not only satisfy the continuity equation, but it also solves the velocity-pressure coupling problem. Matrix A pp is non-zero and it appears in a natural way due to the hybridization step without introducing a stabilization term for the pressure. With adequate boundary conditions, matrices A ûû and A pp are invertible and relatively well conditioned compared to the discrete matrix of DG. In the case where only Dirichlet boundary condition is applied, the pressure gradient is unique but not the pressure. Therefore, the operator becomes singular with a solvability condition automatically satisfied if the global divergence-free condition is fulfilled. Finally, compared to the classical solutions of FV and FE, there is no need to introduce pseudo-velocity, use the SIMPLE algorithm, or the need to solve a correction Poisson equation to generate a non-zero pressure coefficient in the continuity equation.

Conservation laws

It can be proven analytically that these choices of the spaces lead to a mass conserving, momentum conserving, and global energy stable formulation. The proof is similar to that presented in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. However, the difference lies in the introduced reduced space for the pressure and presented in this section.

The elemental pointwise satisfaction of the divergence-free condition is written as,

∇ • u h = 0, ∀x ∈ K, ∀K ∈ Ω h
This condition can be illustrated by applying integration by parts to the continuity equation (3.14) to have,

K (∇ • u h ) • φ R h dx = 0, ∀φ R h ∈ ∇ • [P m (K i )] d , (3.42) Since φ R h , ∇ • u h ∈ ∇ • [P m (K i )] d
, thus the pointwise divergence-free condition holds for all elements.

Moreover, it can be proved that u h is an H (div)-conforming field, where,

[[u h • n]] = 0, ∀x ∈ ∂K, ∀∂K ∈ Γ i u h • n = ûh • n, ∀x ∈ ∂K, ∀∂K ∈ ∂Ω
The mass transmission equation 3.18 is recalled, written as the sum over the faces,

Γ i [[u h • n]] φ h ds + ∂Ω (u h -ûh ) • n φ h ds = 0, ∀ φ h ∈ S h s (3.43) Since φ h , u h , ûh ∈ [P m (F i )] d , then u h is an H (div)-conforming field.
This derivation holds for any element type as the pressure space is defined as the divergence of the velocity space. Therefore, the mass balance is exactly enforced in this formulation. The velocity field being divergence-free and H (div)-conforming is an essential key in proving energy-stability as proved in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF].

Reduced Elements

With the approximation space defined for the pressure S Rh v , the basis functions are not straightforward to construct. By recalling the spaces, the approximation vector space for the velocity,

V h v := ψ h ∈ [L 2 (Ω)] d , ψ h | K i ∈ [P m (K i )] d ,
and the approximation vector space for the pressure,

S Rh v := φ R h ∈ L 2 (Ω) , φ R h | K i ∈ ∇ • [P m (K i )] d .
The vector space S Rh v is defined as the vector space of polynomials containing the divergence of all polynomials of the vector space V h v . The vector space S Rh v is referred to as the reduced space. In the first case, for the triangular and tetrahedral elements, the reduced space is a vector space of polynomials upto the degree m -1. For the sake of clarity, the divergence of the space is illustrated on monomial bases, For illustration, the reduced order basis is calculated by taking the divergence of the monomial basis and ignoring the coefficients. The conclusions hold for Legendre polynomials as well. In this case, the pressure basis functions can be clearly defined for triangles as in [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF], with the nodal points as in figure 3.7.

1 x x 2 • • • x m y xy • • • x m-1 y y 2 • • • x m-2 y 2 . . .
Figure 3.7 -On the left is a 3 rd order degree triangular element and on the right is a 2 nd order triangular element While for the second case, for quadrilateral and hexahedral elements, the basis functions are conventionally constructed by applying tensor product to the 1D normalized Legendre polynomials. For the sake of clarity, a monomial basis of the the third degree can be written as follows, In this example the divergence of any polynomial represented by the full order basis, can be exactly represented by the reduced order basis functions. The m -1 polynomial space for quadrilaterals and hexahedrons does not possess this feature. Additionally, the full polynomial space with the degree m violates the LBB condition [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[END_REF]. Thus, the required polynomial space is not a conventional one. Therefore, one can use a tensor product to build the reduced basis functions but one needs to remove the highest order term x m y m . Which means that the number of basis or nodes for the reduced element of the order m, would be (m + 1) d -1. Consequently, it is obligatory to remove one node from the full element of the order m to form nodal set of the reduced element. If the geometrical symmetry is desired, the node at the center of the element would be removed and this also preserves the number of nodes at each face. However, the odd order element does not have a node at its center. The second option, in which the geometrical symmetry will be lost, is to remove an arbitrary node of an element. Both choices satisfy the removal of the highest order term in the cross product of the 1D normalized Legendre polynomials. Nevertheless, arbitrary node elimination does not form a good interpolation set. 
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Modifying the nodal distribution

Removing the center or corner node technique for quadrilaterals and hexahedrons satisfies the pointwise exact divergence-free velocity, but the performance of the interpolation is questionable. For the full reference element the node position is chosen precisely to reduce the interpolation error. Chebyshev, Legendre-Gauss, Legendre-Gauss-Lobatto are good interpolation node sets [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF][START_REF] Kopriva | Implementing spectral methods for partial differential equations: Algorithms for scientists and engineers[END_REF]. Due to the node elimination, the reduced set of nodes are not optimal anymore.

The Lebesgue constant can be used to give an indication on how convenient the nodal distribution for the reduced element is. The Lebesgue constant can be defined as [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF],

(3.44) Λ = max x Np i=1 |ℓ i (x) |,
where N p is the number of nodal points, and ℓ is the interpolation Lagrange polynomial. The higher the Lebesgue constant the worse the nodal distribution. The nodal positions are intuitively modified for the odd and even reduced elements as follows; for even orders the nodes on the central horizontal and vertical axis are redistributed according to the Legendre-Gauss-Lobatto for the degree m -1. While for the odd degrees, the nodes on the vertical axis right and left to the center are redistributed according to the Legendre-Gauss-Lobatto for the degree m -1. The same is done for the horizontal axis above the center, then the three nodes in the center are shifted downwards. The Lebesgue constants are compared for the regular element, modified reduced element as in figures 3.12 and 3.13, reduced element without modification as in figures 3.10 and 3.11, full element with equidistant nodes, and optimized triangular element as in [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF]. The equidistant element is used as a reference for the worst nodal distribution. For both even and odd elements, this intuitive modification improved the interpolation significantly as shown in table 3.1.

The modified nodal distribution can be accepted in terms of interpolation accuracy if we compare it to the optimized nodal distribution for the triangles in [START_REF] Hesthaven | Nodal discontinuous Galerkin methods: algorithms, analysis, and applications[END_REF]. The geometrical symmetry lost for the odd elements does not affect the interpolation dramatically as it can be seen from the results. Even better nodal distributions for the reduced element can be achieved by optimization techniques as done for triangular elements in [START_REF] Chen | Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[END_REF][START_REF] Hesthaven | Stable spectral methods on tetrahedral elements[END_REF]. However, in this work the intention was to provide a proof of concept and further optimizations are left for future work.

A note on the LBB condition

It is proved in [START_REF] Rhebergen | Analysis of a hybridized/interface stabilized finite element method for the Stokes equations[END_REF] that the P m -P m-1 for simplices is an inf-sup stable set of approximation spaces that can compute solenoidal velocity fields. The stability for the full-reduced approximation spaces is not proven mathematically. However, the inf-sup stability was observed during the numerical test cases for various configurations.

Forging the basis

This section presents how the reduced basis functions are formed from a practical point of view. As a result of the node elimination, constructing the shape-functions and differentiation matrix cannot be obtained by cross product from the 1D counterparts. Neither the cross product of the 1D numerical quadrature can be used.

To form the reduced basis functions, we start from the 1D basis written as,

(3.45) ϕ n (ξ n ) = Pn (ξ n ) = P n (ξ n ) γ n (3.46) γ n = 2 2n + 1
where P n is the Legendre polynomial of order n, and Pn is the normalized Legendre polynomial. The tensor product is applied to the 1D basis to build the 2D & 3D basis, (3.47) ϕ = Pi Pj Pk then the highest order term is omitted in both 2D & 3D to construct the Vandermonde matrix for the reduced basis, where the reduced basis is defined as,

(3.48) ϕ R = ϕ\ Pi=m Pj=m Pk=m
Once the basis functions for the reduced nodes are obtained, the Vandermonde matrix can be computed based on the nodal positions.

The Vandermonde matrix is built using,

(3.49) V R,(i,j) = ϕ R,j | ξ i i, j = 0, 1, ...N p R
where ξ is the nodal position vector of the size,

N p R = (m + 1) d -1
The reduced Vandermonde matrix is an invertible square matrix of the size

N p R × N p R .
There is no explicit formula to perform the numerical quadrature directly on this new set of nodes. Consequently, an interpolation matrix is built to extrapolate the reduced nodes to the Legendre-Gauss integration nodes of the full element. With this interpolation matrix, the full element quadrature rules can be applied to numerically integrate the reduced element.

(3.50)

V IP,(i,j) = ϕ R,j | ξ IP,i i = 0, 1, ...N IP j = 0, 1, ...N p R
Where ξ IP is the interpolation nodes set, then the interpolation matrix is, (3.51)

P IP = V IP V -1

R

The standard numerical quadrature of the integration nodes can be used after defining the interpolation matrix. It is important to ensure that, the same integration nodes are used for the pressure and the velocity to have an invertible operator of the local problem.

To calculate the differentiation matrix, we obtain the gradient of the Vandermonde matrix at the integration nodes,

(3.52) V R ξ ,(i,j) = ∂ϕ R,j ∂ξ | ξ IP,i i = 0, 1, ...N IP j = 0, 1, ...N p R (3.53) V Rη,(i,j) = ∂ϕ R,j ∂η | ξ IP,i i = 0, 1, ...N IP j = 0, 1, ...N p R (3.54) V R ζ ,(i,j) = ∂ϕ R,j ∂ζ | ξ IP,i i = 0, 1, ...N IP j = 0, 1, ...N p R
Then the differentiation matrices are multiplied by the inverse Vandermonde matrix to have,

D R ξ = V R ξ V -1 R (3.55) D Rη = V Rη V -1 R (3.56) D R ζ = V R ζ V -1 R (3.57)
Moreover, it is recommended to choose the surface nodes for the reduced element as the surface nodes of the full element for two main reasons. Firstly, the surface integrals for the reduced elements are done with the same numerical quadrature of the full element. It is noted that the surface integrals of the reduced quadrilateral and hexahedral element are of the order m, since the eliminated basis does not have a contribution in the surface integrals. Secondly, to maintain the same mapping Jacobian and metric for curved elements. Consequently, the proposed formulation computes divergence-free velocity field on curved elements. To switch between the physical space and the reference space, the same mapping applied for the full element can be applied to the reduced element as long as the boundary and integration nodes are the same. These volume and surface matrices provide enough information about the element to apply the HDG scheme.

Reduced elements in 3D

The construction of the reduced basis in 3D for standard elements is illustrated. The Jacobi polynomials defined by equation (2.44) are used to define these spaces. The number of the basis functions in the full element is referred to as N p , while the number basis functions for the reduced element is referred to as N pR . The reference coordinates are given as ξ = (ξ, η, ζ).

Hexahedron

As mentioned before, the hexahedron is simple in construction. For the hexahedron the basis functions in the reduced space are defined as,

Hex = {(ξ, η, ζ) | ξ, η, ζ ≥ -1; ξ, η, ζ ≤ 1} ϕ ijk (ξ) = P (0,0) i (ξ)P (0,0) j (η)P (0,0) k (ζ), ∀(i, j, k) ≥ 0; i, j, k ≤ m ϕ R ijk (ξ) = P (0,0) i (ξ)P (0,0) j (η)P (0,0) k (ζ), ∀(i, j, k) ≥ 0; i, j, k ≤ m; i + j + k = 3m
The number of basis functions is, 

N p = (m + 1) 3 N pR = (m + 1) 3 -1

Tetrahedron

The reduced tetrahedron, is simply a one degree less full tetrahedron.

Tet = {(ξ, η, ζ) | ξ, η, ζ ≥ -1; ξ + η + ζ ≤ 0} ϕ ijk (ξ) = 2 √ 2P (0,0) i (a)P (2i+1,0) j (b)P (2(i+j)+2,0) k (c)(1 -b) i (1 -c) i+j , ∀(i, j, k) ≥ 0; i, j, k ≤ m ϕ R ijk (ξ) = 2 √ 2P (0,0) i (a)P (2i+1,0) j (b)P (2(i+j)+2,0) k (c)(1 -b) i (1 -c) i+j , ∀(i, j, k) ≥ 0; i, j, k ≤ m -1
The number of basis functions is,

N p = 1 6 (m + 1)(m + 2)(m + 3) N pR = 1 6 (m)(m + 1)(m + 2)
The extended coordinates (a, b, c) 

∈ [-1, 1] 3 are, a =      2 1 + ξ η + ζ , η + ζ = 0 -1, η + ζ = 0 , b =      2 1 + η 1 -ζ -1, ζ = 1 -1, ζ = 1 , c = ζ (3.58)

Prism

The prism can be seen as triangular element of the order m repeated with a number of m + 1. The reduced prism can be seen as triangular element of the order m repeated with a number of m with a triangular element of the order m -1.

Pri = {(ξ, η, ζ) | ξ, η, ζ ≥ -1; ξ + η ≤ 0; ζ ≤ 1} ϕ ijk (ξ) = √ 2P (0,0) i (a)P (2i+1,0) j (b)P (0,0) k (c)(1 -b) i , ∀(i, j, k) ≥ 0; i + j ≤ m; k ≤ m ϕ R ijk (ξ) = √ 2P (0,0) i (a)P (2i+1,0) j (b)P (0,0) k (c)(1 -b) i , ∀(i, j, k) ≥ 0; i + j ≤ m; i + j + k < m 2
The number of basis functions is,

N p = 1 2 (m + 1)(m + 2)(m + 1) N pR = 1 2 (m)(m + 1)(m + 3)
The extended coordinates (a, b, c) 

∈ [-1, 1] 3 are, a =      2 1 + ξ 1 -η -1, η = 1 -1, η = 1 , b = η, c = ζ (3.

Pyramid

By the nodal construction, the pyramid can be seen as layers of quadrilateral elements extruded with the order of the quadrilateral decreases by one for each step. The reduced pyramid can be seen similarly, but with using reduced quadrilateral instead.

Pyr = {(ξ, η, ζ) | ξ, η, ζ ≥ -1; ξ + ζ ≤ 0; η + ζ ≤ 0} ϕ ijk (ξ) = 2P (0,0) i (a)P (0,0) j (b)P (2(ij)+2,0) k (c)(1 -c) ij , ∀(i, j, k) ≥ 0; i + k ≤ m; j + k ≤ m ϕ R ijk (ξ) = 2P (0,0) i (a)P (0,0) j (b)P (2(ij)+2,0) k (c)(1 -c) ij , ∀(i, j, k) ≥ 0; i + k ≤ m; j + k ≤ m; i + j = m(m -k) where (ij) = i + j
The number of basis functions is,

N p = 1 6 (m + 1)(m + 2)(2m + 3) N pR = 1 6 (m)(m + 1)(2m + 7)
The extended coordinates (a, b, c) 

∈ [-1, 1] 3 are, a =      2 1 + ξ 1 -ζ , ζ = 1 -1, ζ = 1 , b =      2 1 + η 1 -ζ -1, ζ = 1 -1, ζ = 1 , c = ζ (3.

Reduced-Elements Consequences on the Stokes Problem

To test the well-posedness and convergence of the method for the Stokes problem, a manufactured solution is constructed as follows,

u = (1 -cos 2πx) (1 -cos 2πy) (3.61) v = (1 -cos 2πx) (1 -cos 2πy) (3.62) p = 0 (3.63)
The domain is [0, 1] 2 and the mesh is equidistant as shown in figure 3.22.

Figure 3.22 -Mesh with its boundary conditions

This solution is specially chosen to have u = v all over the domain as well as homogeneous boundary conditions. In addition, the gradients at the boundaries are zero. A source term is added for the continuity equation as the velocity field of the manufactured solution is not divergence-free. The results in this section are based solely on numerical examples. In which the well-posedness is based on the singularity of the global problem after the hybridization step. It is observed as a consequence of using the reduced element, there are more restrictions on the boundary conditions. These results are obtained with 4th order elements, Table 3. 

Convergence

Using the same test case, the observed order of grid convergence of the proposed method is determined from the results obtained for five meshes with a constant grid refinement ratio of 2. The results are presented for different stability parameters. It was observed that the error in the velocity is independent on the value of τ , while the error in the pressure depends on τ . Additionally, the convergence rate is m for both pressure and velocity when τ = 0. If τ > 0 the convergence rate for the pressure is suboptimal and decreases to m -1 as τ increases.

Well-posedness

The results on well-posedness and convergence are only observed numerically and not proven analytically yet. The spaces for the pressure p h and its trace ph are important in deciding the well-posedness of the method. A pragmatic solution to impose well-posedness is to reduce the order of the trace ph at the Dirichlet boundaries, in order to relax the mass conservation constraint at the Dirichlet boundaries. It is suspected that the origin of the problem comes from the fact that the surface integrals of the pressure p h and the pressure trace ph are evaluated at the same order m as mentioned in section 3.3.

In table 3.6, the options for the pressure spaces are presented with respect to pointwise divergence-free ∇ • u h = 0, normal velocity continuity across the element faces [[u h • n]] = 0, optimal convergence h m+1 , and well-posedness. What is meant by optimal convergence is, m + 1 for the velocity and m for the pressure compared to the method in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. While the well-posedness is compared to that of the continuous setting. 

ph ∇ • u h = 0 [[u h • n]] = 0 h m+1 Well-posed Reduced m m-1 m Reduced m-1 Reduced m-1| Dirichet
For the last option the boundary condition is only satisfied in the integral sense and not pointwise, where u h • n = u D • n is not exactly enforced as ph is of the order m -1. The "Reduced m -1" option proves that the suboptimal convergence and the well-posedness problems are not directly associated to the reduced element, but it comes from the combination of the spaces. The pointwise divergence-free and normal velocity continuity across the element faces are essential for a energy-stable and momentum conserving formulation as mentioned in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. Therefore, the optimal convergence property is sacrificed, and the first or last options are the most convenient for quads and hexas. To conclude, the first option is chosen when the boundary conditions lead to a well-posed problem as illustrated in table 3.2, otherwise the last option is chosen.

Revisiting the HDG fluxes

The representation of the fluxes in the HDG framework can conceal the physical meaning of the numerical fluxes. This section reviews the numerical fluxes described for this method and attempts expressing the fluxes explicitly as done in the DG or FV methods. The advection flux can be understood as the classical upwinding, however, the viscous and pressure traces might be obscure. To simplify the notations, the transmission equations for the Stokes problem are considered,

[[(Ip -νL) n]] = 0, on Γ [[u • n]] = 0, on Γ
The numerical fluxes can be given as,

Ip h -ν L h = Ip h -ν (L h + τ (û h -u h ) ⊗ n) , on ∂K
The procedure done in section 2.7.2 is repeated to explicitly present the fluxes. Inserting the expression in the transmission of the flux of momentum,

[[[Ip h -ν (L h + τ (û h -u h ) ⊗ n)] n]] = 0 By simplifying, [[νL h n]] + τ + ν + u + h + τ -ν -u - h -(τ -ν -+ τ + ν + )û h = 0 Solving for ûh , ûh = τ + ν + τ -ν -+ τ + ν + u + h + τ -ν - τ -ν -+ τ + ν + u - h + 1 τ -ν -+ τ + ν + [[νL h n]]
By inserting ûh in the momentum flux and simplifying,

Ip h -ν L h = Ip h - τ + ν + τ -ν -+ τ + ν + ν -L - h - τ -ν - τ -ν -+ τ + ν + ν + L + h - τ + ν + τ -ν - τ -ν -+ τ + ν + [[u h ⊗ n]]
We get an expression for the viscous flux.

Following what is done for the viscous flux, by inserting ûh in the mass flux,

τ + ν + τ -ν -+ τ + ν + u + h + τ -ν - τ -ν -+ τ + ν + u - h + 1 τ -ν -+ τ + ν + [[νL h n]] • n - + τ + ν + τ -ν -+ τ + ν + u + h + τ -ν - τ -ν -+ τ + ν + u - h + 1 τ -ν -+ τ + ν + [[νL h n]] • n + = 0
We do not get expression for the pressure trace. The dilemma of the incompressibility constraint persists.

To further simplify the expressions, we consider a constant viscosity and a constant stabilization terms, to have τ + = τ -and ν -= ν + . The traces can be written as:

Velocity trace, ûh = {{u h }} + 1 2τ ν [[νL h n]]
Viscous trace,

L h = {{L h }} + τ 2 [[u h ⊗ n]]
Pressure trace, Find ph such that,

u + h • n + + u - h • n -= 0
As inherited from the partial differential equation, there is no expression for the pressure trace. However, the constraint that the pressure trace forces on the velocity leads to a second constraint on the velocity gradient. It is obtained by multiplying the velocity flux by a normal,

ûh • n -= {{u h }} • n -+ 1 2τ ν [[νL h n]] • n -
Using the continuity constraint enforced by the pressure, we obtain the other constraint on the gradient,

[[νL h n]] • n -= 0
An expression for ph can not be given explicitly without inverting the local problem. Thus, it is obtained after the static condensation. That is the reason why it is not straightforward to obtain exactly pointwise mass conserving DG formulation without hybridization.

Time Stepping and Unsteady Flows

The proposed formulation sets no restrictions on implicit temporal scheme nor the time step. Thus, the temporal accuracy is determined by the way we treat the term (∂ t u h , ψ h ) K . The global error for unsteady problems can be dominated by the temporal error. However, high-order time stepping schemes were not the focus of this thesis. Consequently, the stable second-order optimized, second-order, and first-order implicit backward differencing (BDF) schemes are chosen and implemented.

The time derivative term is discretized by one of the following time schemes, BDF1;

∂ t u h = u t -u t-1 ∆t (3.64) BDF2; ∂ t u h = 1.5u t -2u t-1 + 0.5u t-2 ∆t (3.65) BDF3; ∂ t u h = 11 6 u t -3u t-1 + 1.5u t-2 -1 3 u t-3 ∆t (3.66)
It is known that the BDF3 is not an A-stable time discretization scheme. Therefore, the optimized second-order version is chosen, BDF2OPT β = 0.48;

BDF 2OP T = (β)BDF 3 + (1 -β)BDF 2 (3.67)
The value of β is chosen according to the paper [START_REF] Vatsa | Re-evaluation of an optimized second order backward difference (BDF2OPT) scheme for unsteady flow applications[END_REF]. With the chosen time marching schemes the unsteady solver computes pointwise divergence-free velocity fields at every time step. Additionally, the unsteady solver is energy-stable without the need of any further stabilizations.

Method of Manufactured Solution

The proposed full-reduced formulation is used with setting τ = 1 for all test cases, unless otherwise mentioned. Picard iteration is used to resolve the non-linearity and convenient under-relaxation parameters were chosen to ensure the convergence. The details of the non-linear iterations are found in chapter 4. For quadrilateral meshes, if the boundary conditions do not result in a well-posed problem, the order of ph is chosen as m -1 on the Dirichlet faces as mentioned in table 3.6.

The method of manufactured solutions is used for the verification of the proposed method. The solution mimics a laminar boundary layer over a flat plate, found in [START_REF] Eça | A manufactured solution for a two-dimensional steady wall-bounded incompressible turbulent flow[END_REF]. The velocity field is divergence-free, while source terms are added to the momentum equations.

The analytical solution is defined as follows; The method of manufactured solution (MMS), provided a useful way in developing the method and debugging the implementation. Since, each term in the INS can be studied separately. Equidistant quadrilateral meshes are used for the orders 3 and 6. Reynolds number is chosen to be 100. L2 norms of the x-velocity, y-velocity, and pressure are presented. The results show convergence of the order m for the velocity and m -1 for the pressure. The velocity profiles and the pressure of the manufactured solution are plotted in figure 3.26 for ν = 10 -2 . 

η = σy x (3.68) u = erf(η) (3.69) v = 1 σ √ π 1 -e -

Laminar Test Cases

Uniform flow

The steady uniform flow test case is one of the simplest test cases where the velocity is specified at the inlet, while the rest of the boundary faces are specified as outlets. Nevertheless, it is an efficient stability test of the formulation. In the first case the kinematic viscosity is set as ν = 10 -2 and the second case as ν = 10 -8 . Two formulations are tested for the quadrilateral elements, the full-reduced and a non H (div)-conforming method. The mesh consists of 4x4 quadrilateral elements and m = 4.

First, iterative convergence is plotted in figures 3.24, 3.25. In the case with higher viscosity the formulation can be stable, while in the smaller viscosity case, the non-mass conserving solution diverges after a few iterations. The iterative error norm is defined as the infinity norm of the velocity between the current iteration and the previous one. The errors in the velocities are plotted for the case where ν = 10 -8 . The numerical disturbances are visible in figures 3.28, 3.29 while for the full-reduced case the disturbances are in the order of the machine precision. This test case emphasizes the importance of using a pointwise mass conserving formulation with H (div)-conforming velocity field especially for high Reynold numbers. Since the non-conserving formulation fails in this simple test case, most likely it will also fail in more complex flows.

Pressure-Robustness

The pressure-robustness is an important feature that a robust incompressible Navier-Stokes solver should have. The pressure-robustness can be tested with a special test case for which the analytical solution is independent of the viscosity. For such test case, if numerical error in the velocity is also independent on the viscosity, then the method is pressure-robust, as defined in [START_REF] Lederer | Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements[END_REF]. The example in [START_REF] Lederer | Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements[END_REF] is used, where the velocity is given by, u = curlζ, ζ = x 2 (x -1) 2 y 2 (y -1) 2 , and p = x 7 + y 7 -1 4 defined on the domain [0, 1] 2 . Using third-order elements, the quadrilateral mesh is tested and the results are shown in tables 3.9 & 3.10. The error in the velocity is independent on the viscosity as it can be seen. Same conclusions were observed when a triangular mesh was used in tables 3.11 & 3.12. However, for triangular meshes the error in the pressure is less sensitive to the change of the viscosity compared to the method by Rhebergen and Wells [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF].

Hybrid Mesh

With the vector spaces proposed the velocity field obtained from a hybrid mesh is pointwise divergence-free and H (div)-conforming. The results obtained from a hybrid mesh with 18 quadrilaterals and 36 triangles are shown. 

Patch Test

To check the quality of the full-reduced space, a patch test is designed with an exact solution defined as follows, u = x, v = y, and w = z. While the pressure is defined as, p = x 4 y 3 z 3 + x 3 y 4 z 3 + x 3 y 3 z 4

A full-reduced space of the 4 th order should contain the analytical solutions. Using 4 hexahedrons a solution with these error norms is obtained,

u h -u ∞ = 4.84 • 10 -14 , p h -p ∞ = 1.93 • 10 -13 , ∇ • u h ∞ = 1.50 • 10 -14
Machine precision errors are expected, since the volume and surface numerical quadratures are exact on the full and reduced elements.

Lid-Driven Cavity

The lid-driven cavity test case is modified to remove the singularity in the velocity at the corners by imposing the following velocity profile at the upper face,

u = 4x(1 -x), (3.72) v = 0, (3.73)
and stationary wall at the rest of the boundaries. The domain is chosen to be a square with the dimension [0, 1] 2 . These boundary conditions result in a pressure being known up to a constant, thus the pressure trace at the bottom right corner is fixed to zero so that the pressure can be unique. This treatment does not conflict with the divergence-free property for the computed velocity fields. The viscosity is set to µ = 10 -3 and the density as ρ = 1. The simulations were performed on equidistant quadrilateral meshes, where the mesh HhPm is a mesh with 4 h quadrilateral elements with the order of the polynomial of m. The nodal points are presented for different meshes in figures 3.30-3.34. The results are plotted for different meshes and polynomial orders. However, there is a discontinuity in the gradient at the top right corner. The x-velocity is plotted on the mid-vertical plane in figure 3.35, the y-velocity is plotted on the mid-horizontal plane in figure 3.37, and the vorticity is plotted on the moving plane in figure 3.38. The velocity profiles of H4P5 and H3P8 are nearly identical. H2P5 velocity profiles are closer to the true solution, while the degrees of freedom are few to capture the gradients near the corners. Figure 3.36 shows the iterative convergence based on the maximum norm error of the velocity between the last two iterations. The contour plots of the velocities, vorticity norm, and pressure are displayed in figures 3.39-3.42. On the coarse grids the solution discontinuities are visible as observed in figure 3.37. More accurate solutions are obtained as the mesh is refined or the polynomial order is increased. The solutions on the grids H3P8 and H4P5 are nearly identical. Further refinements did not change the velocity profiles. An advantage for the implicit high-order methods can be noticed from these results, where the convergence is obtained in a fairly small number of iterations. Additionally, the discontinuity of the gradient did not pose a limitation for high-order approximations. The advantages and disadvantages of having a higher order method is discussed in chapter 5. 

Flow past a square

This test case demonstrates the ability of the high-order method in capturing the vortex shedding due to the low dissipation errors of the method. The results are obtained from a triangular grid with m = 3 and the time step of ∆t = 0.01. The square is located exactly in the center of the vertical axis and an unsymmetrical velocity inlet was introduced in the beginning of the simulation to trigger the instabilities. Uniform x-velocity is imposed at the inlet together with a moving wall for the top and bottom boundaries where x-velocity of the same magnitude as for the inlet boundary is imposed. While the outlet is left as a pressure outlet with p = 0. The Reynolds number based on the square height d is Re = 100, and it is shown in the results that the vortices are dissipating with a slower rate compared to low order methods. The mesh consists of 4160 triangular elements as shown in figure 3 

Remarks

An energy-stable formulation for the incompressible Navier-Stokes equations that is mass and momentum conserving is proposed. The method computes exactly pointwise divergencefree, and H (div)-conforming velocity fields on hexahedral elements as well as triangular or hybrid ones. The key point of the proposed method, is the usage of the reduced elements to exactly enforce the divergence-free property. The same proposed reduced order space for the pressure is extended to any standard element type. Although, the formulation has suboptimal convergence on hexahedral and quadrilateral meshes, the method is easy and simple to implement. The results support the stability and the robustness of the proposed method for solving the laminar flow test cases with high accuracy. This motivates the usage of this formulation for turbulent flows, which is the topic of the next chapter.

Chapter 4

Turbulent Flows

What greatly motivates the development of high-order CFD solvers is the turbulence. Specifically, to make the LES and DNS simulations less costly. Turbulence is a multiscale non-linear physical phenomenon. Resolving all the turbulent scales is out of reach with the current supercomputers and discretization methods for high Reynolds numbers. Consequently, the flow simulations are coupled with turbulence closures to model the unresolved turbulent scales. This chapter focuses on the development of the two-equation RANS models using the high-order HDG solver. Solving RANSE with high-order methods is known to be challenging for its high stiffness. Strategies to overcome this problem under the DG framework are presented.

Solving RANSE by HDG

RANSE

By time-averaging the Navier-Stokes equations, Reynolds-averaged Navier-Stokes (RANS) equations are obtained [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. With employing the modeled Reynold stresses, the RANS equations model the turbulent flows to acquire the modeled time-averaged quantities for the velocity and pressure. The incompressible RANS equations using eddy viscosity models can be written as,

∂u i ∂t + ∂ ∂x j (u i u j ) = - ∂p ∂x i + ∂ τ ij ∂x j + f i (4.1)
∂u j ∂x j = 0 (4.2)
where u and p are the time-averaged velocity and kinematic pressure respectively, f i is a source term, while τ ij is the modeled Reynolds stress defined for incompressible flows as per the Boussinesq's hypothesis by,

(4.3) τ ij = 2ν e S ij - 2 3 kδ ij
where, (4.4)

S ij = 1 2 
∂u i ∂x j + ∂u j ∂x i
and the effective viscosity is defined as, (4.5)

ν e = ν + ν t ,
k is the turbulence kinetic energy, ν is the molecular viscosity, ν t is the eddy viscosity, and δ ij is the Kronecker delta. The definitions of u and p are different from the ones in the previous chapter. However, the same notations are kept for easier representation. In this chapter, the velocity and pressure are the time-averaged quantities unless otherwise mentioned. In the following section, the HDG formulation is presented for the RANS momentum and mass equations regardless of the turbulence closure used.

HDG for RANS

We begin the HDG discretization by writing the RANS equations in the first-order form as,

∂u ∂t + ∇ • (u ⊗ u + Ip -ν e E) = f , in Ω (4.6) E = ∇u + (∇u) T , in Ω (4.7) ∇ • u = 0, in Ω (4.8)
where I is the identity tensor, and (u ⊗ u) = u i u j , while E is an auxiliary tensor defined as twice the strain rate tensor,

E = 2S ij
The auxiliary variable is also known as the symmetrical gradient of the velocity field,

E = ∇u + (∇u) T = ∇ s u
Note that the variable p, is the kinematic pressure added to the term, (2/3)kδ ij , as conventionally done in RANS formulations. The boundary conditions are defined as,

u = u D , on Γ D (4.9) (u ⊗ u + Ip -ν e E) n -max (u • n, 0) u = g N , on Γ N (4.10)
where u D is the velocity at the Dirichlet faces, and g N is the flux at the Neumann faces. We follow the discretization for the laminar incompressible Navier Stokes equations presented in the previous chapter, which is a modification of the method in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. The formulation provides an exact pointwise, divergence-free, and H (div)-conforming velocity field for all standard element types. Moreover, the formulation is energy-stable, which is an important feature for turbulent flows in general. Additionally, it is mass and momentum conserving. Satisfying all these features concurrently for the incompressible Navier-Stokes discretization is of vital importance to the stability of the method especially for high Reynolds numbers as discussed in [START_REF] Elzaabalawy | An HDG method for the incompressible Navier-Stokes equations with pointwise divergence-free velocity field for tetrahedral and hexahedral elements[END_REF][START_REF] Fehn | High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods[END_REF][START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF].

The major differences between the laminar and turbulent HDG formulations are the auxiliary variable and the turbulent viscosity. The auxiliary variable E is chosen to be the symmetric velocity gradient instead of being the velocity gradient L. The motivation for introducing the symmetric velocity gradient is because the effective viscosity is not constant. The expansion of the viscous term for the Navier-Stokes equation in the non-conservative form is written as,

2 ∂ν e S ij ∂x j = 2 S ij ∂ν e ∂x j + ν e ∂S ij ∂x j
For laminar flows, ∂ν e ∂x j = 0, and this term can be written as the divergence of the velocity gradient by imposing the incompressibility condition. This is not the case if the eddy viscosity is not constant, thus the variable E is introduced to write the RANS equations directly in the conservative form without expanding the viscous term. With this representation, the momentum equations can be solved implicitly without introducing explicit terms. The modifications in the formulation are presented in the next sections.

RANS Global Problem

As conventionally done in HDG, the formulation is written as a local and global problems. Following the HDG discretization, the Galerkin method is applied on the transmission equations (4.11), and (4.13) using the predefined approximation spaces and summed over all the faces to have,

[[ u h ⊗ u h + Ip h -ν eh E h n]], ψ h Γ = 0, ∀ ψ h ∈ V h s (4.15) [[û h • n]], φ h Γ = 0, ∀ φ h ∈ S h s (4.16)
Stable advective and viscous numerical fluxes are chosen and as a function of the approximate solutions u h and p h , and their trace variables ûh and ph respectively.

Advective Flux u h ⊗ u h ; the classical upwinding scheme is used for the advection flux with respect to the element by,

u h ⊗ u h = u h ⊗ u h + (û h -u h ) ⊗ λu h , on ∂K (4.17)
where λ is the advection stability parameter defined as,

λ = 1, if u h • n < 0 on ∂K 0, if u h • n > 0 on ∂K
The upwinding provides enough stabilization for the advection part.

Diffusive Flux (ν eh E h ); The diffusive flux is defined with respect to the element by,

(ν eh E h ) = ν eh E h + τ ν eh [(û h -u h ) ⊗ n + n ⊗(û h -u h )] , on ∂K (4.18)
As the definition of the auxiliary variables in (4.7), the diffusive stabilization accommodates the velocity gradient and its transpose. As done for the laminar flow, the diffusive stabilization parameter τ should be directly proportional to the Reynolds number and can be defined as,

τ = Re ℓ , (4.19)
where Re is the Reynolds number, and ℓ is a problem dependent viscous length scale. Normally, ℓ is set from 50 to 200. After defining the numerical fluxes and boundary conditions, the discretization of the global problem can be completed. The numerical flux given by equations (4.17) & (4.18) is defined with respect to the element K on ∂K, while the transmission equations are defined on Γ . In order to derive a formulation defined with respect to ∂K, we split the surface integrals over all the faces Γ to the sum on the boundary and internal faces, ∂Ω and Γ i respectively,

(4.22) [[ u h ⊗ u h + Ip h -ν eh E h n]], ψ h ∂Ω + [[ u h ⊗ u h + Ip h -ν eh E h n]], ψ h Γ i = 0, ∀ ψ h ∈ V h s [[û h • n]], φ h ∂Ω + [[û h • n]], φ h Γ i = 0, ∀ φ h ∈ S h s (4.23)
On the boundaries ∂Ω, the jump is defined as ⊙ • n -⊙ BC • n. Then, we use the identity,

a • n, b ∂Ω + [[a • n]], b Γ i = K a • n, b ∂K ,
to have the formulation defined over the sum of the elements as, (4.24) 

K u h ⊗ u h + Ip h -ν eh E h n, ψ h ∂K -u h ⊗ u h + Ip h -ν eh E h BC n, ψ h ∂Ω = 0, ∀ ψ h ∈ V h s K ûh • n, φ h ∂K -(û h • n) BC , φ h ∂Ω = 0, ∀ φ h ∈ S h s ( 4 
K u h ⊗ u h + Ip h -ν eh E h n, ψ h ∂K -g N n, ψ h Γ N -(1 -λ) (û h • n) u h , ψ h Γ N = 0, ∀ ψ h ∈ V h s
The boundary conditions are enforced on equation (4.25), by using equation (4.20) to have,

K ûh • n, φ h ∂K -ûh • n, φ h Γ N -u D • n, φ h Γ D = 0, ∀ φ h ∈ S h s (4.27)
The final step is to use the HDG fluxes (4.14), (4.17), and & (4.18) defined on ∂K.

(4.28)

K (σ a + Ip h + σ d ) n, ψ h ∂K -h N n, ψ h Γ N -(1 -λ) (û h • n) u h , ψ h Γ N = 0, ∀ ψ h ∈ V h s K u h • n, φ h ∂K -ûh • n, φ h Γ N -u D • n, φ h Γ D = 0, ∀ φ h ∈ S h s (4.29)
where

σ a = u h ⊗ u h + (û h -u h ) ⊗ λu h σ d = -ν eh E h -τ ν eh [(û h -u h ) ⊗ n + n ⊗(û h -u h )]
To complete the HDG discretization the local problem is formulated in the following section.

RANS Local Problem

The local problem is formed by applying the Galerkin method on equations (4.6), (4.7), and (4.8). In which, the approximate solutions are defined in the spaces,

u h ∈ V h v , ûh ∈ V h s , p h ∈ S Rh v , ph ∈ S h s , E h ∈ T h v , ν eh ∈ S h v .
The equations in the strong form can be written as,

(∂ t u h , ψ h ) K + (∇ • (u h ⊗ u h + Ip h -ν eh E h ), ψ h ) K = (f , ψ h ) K , ∀ψ h ∈ [P m (K i )] d (E h , Ψ h ) K -(∇ s u h , Ψ h ) K = 0, ∀Ψ h ∈ [P m (K i )] d×d (∇ • u h , φ R h ) K = 0, ∀φ R h ∈ ∇ • [P m (K i )] d
In equation (4.6), Green's theorem is applied once for the advection term, once for the pressure term, and twice for the diffusion term. In equation (4.7), it is applied once, while equation (4.8) is left in its strong form.

a(ψ h , u h ) + b(ψ h , p h ) + c(ν eh E h , ψ h ) = (f , ψ) K , ∀ψ h ∈ [P m (K i )] d (4.30) d(E h , Ψ h ) + e(Ψ h , u h ) = 0, ∀Ψ h ∈ [P m (K i )] d×d (4.31) h(u h , φ R h ) = 0, ∀φ R h ∈ ∇ • [P m (K i )] d (4.32) a(ψ h , u h ) = (∂ t u h , ψ h ) K -(∇ψ h , u h ⊗ u h ) K + u h ⊗ u h , ψ h ⊗ n ∂K b(ψ h , p h ) = -(∇ψ h , Ip h ) K + Ip h , ψ h ⊗ n ∂K c(ν eh E h , ψ h ) = -(∇ • ν eh E h , ψ h ) K + (ν eh E h ) -(ν eh E h ), ψ h ⊗ n ∂K d(E h , Ψ h ) = (E h , Ψ h ) K e(Ψ h , u h ) = (u h , ∇ s • Ψ h ) K -ûh ⊗ n, Ψ h ∂K -n ⊗ ûh , Ψ h ∂K h(u h , φ R h ) = -(∇ • u h , φ R h ) K
An important feature in this discretization is that the first term of the bilinear form b must be the transpose of the bilinear form h to have an inf-sup stable discretization, as discussed for finite elements in [START_REF] Donea | Finite element methods for flow problems[END_REF]. In other words, if the integration by parts is applied twice on the pressure term then it should be applied once for the continuity equation as done for the laminar flow. Anyhow, since these terms are linear, weak and strong forms would lead to the same exact solution as proved in [START_REF] Kopriva | On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods[END_REF]. 

Turbulence Model

In this section, the HDG discretization of the two-equation turbulence model and the calculation of the various terms are presented, with the general aim to obtain a positive eddy viscosity. One can use the DG method without hybridization since there is no incompressibility constraint. Regardlessly, both strategies would have nearly the same challenges.

General kω model

The standard k -ω, TNT, BSL, and SST can all be written in the general form, [START_REF] Deng | Ship flow simulations with the ISIS CFD code[END_REF] where P for incompressible flows is defined as,

∂k ∂t + ∇ • (ku -[(ν + σ k ν t ) ∇k]) + β * ωk = ν t P (4.33) ∂ω ∂t + ∇ • (ωu -[(ν + σ ω ν t ) ∇ω]) + βω 2 = ζP + F ω 1 ω (∇k • ∇ω) (4.
P = 2S ij S ij
The boundary conditions are defined as,

k = k D , on Γ D (4.35) (ku -[(ν + σ k ν t ) ∇k])n -max (u • n, 0) k = r N , on Γ N (4.36) ω = ω D , on Γ D (4.37) (ωu -[(ν + σ ω ν t ) ∇ω])n -max (u • n, 0) ω = q N , on Γ N (4.38)
Conventionally, k D is specified at the inlet as k inlet and k wall = 0, while r N = 0 is applied elsewhere for the Neumann boundary. While ω D is specified at the inlet as ω inlet and ω wall = ∞. The implantation of the wall boundary condition of ω is discussed in the subsequent sections. Further, q N = 0 is applied elsewhere for the Neumann boundary. The eddy viscosity is defined as, (4.39)

ν t = k ω
The definition of the eddy viscosity stands for all the mentioned models, expect the SST model. This section is dedicated to the Wilcox 98 and the TNT models, while the modifications for the STT and BSL are presented in the following section.

The model constants for the k -ω Wilcox 1998 are [START_REF] Wilcox | Turbulence modeling for CFD[END_REF],

σ k = 0.5, β * = 0.09, σ ω = 0.5, β = 0.072, ζ = 13/25, F ω = 0,
while for the TNT model [START_REF] Kok | Resolving the dependence on freestream values for the k-turbulence model[END_REF],

σ k = 2/3, β * = 0.09, σ ω = 0.5, β = 0.075, κ = 0.41 and ζ = β β * - σ ω κ 2 √ β * F ω = 0, if (∇k • ∇ω) < 0 0.5, if (∇k • ∇ω) > 0
In the following sections, one will describe a separate HDG discretization for the equations of k and ω using the formulation of the scalar convection-diffusion equation with a source term in section 2.6. The approximate spaces of the solution and their traces are,

k h ∈ S h v , ω h ∈ S h v , kh ∈ S h s , ωh ∈ S h s ,
with the turbulent eddy viscosity, ν th ∈ S h v .

The k equation

To formulate the HDG method, the auxiliary variable r is defined as,

r = ∇k
The transmission equations can be written as,

[[kn]] = 0, on F (4.40) [[(uk -[ν + σ k ν t ]r) • n]] = 0, on F (4.41)
Following what is done in section 2.6, the global problem can be written as, (4.42)

K u h k h -ν k r h • n, φ h ∂K -(1 -λ)u h kh • n, φ h Γ N = r N • n, φ h Γ N , ∀ φ h ∈ S h s
To close the formulation u h k h and ν k r h are defined on internal faces ∂K as,

u h k h = u h k h + λu h kh -k h (4.43) ν k r h = ν k r h + τ k ν k kh -k h n (4.44)
where λ is same upwinding switch used in equation (2.67), while τ k is the diffusion stabilization term defined as, (4.45)

τ k = Re ℓ k
where ℓ k is the turbulence kinetic energy diffusion length scale, normally set from 50 to 200.

To complete the HDG discretization, the local problem for the k equation is written as,

a k (k h , φ h ) + b k (r h , φ h ) = c k (ν th , φ h ), ∀φ h ∈ P m (K i ) (4.46) d k (k h , ψ h ) + e k (r h , ψ h ) = 0, ∀ψ h ∈ [P m (K i )] d (4.47) a k (k h , φ h ) = (∂ t k h , φ h ) K + (β * ω h k h , φ h ) K -(∇φ h , u h k h ) K + u h k h , nφ h ∂K b k (r h , φ h ) = -(∇ • ν k r h , φ h ) K + ν k r h -ν k r h , nφ h ∂K c k (ν th , φ h ) = (ν th P , φ h ) K d k (k h , ψ h ) = (∇ψ h , k h ) K -kh n, ψ h ∂K e k (r h , ψ h ) = (r h , ψ h ) K
where,

ν k = ν + σ k ν th , ν k ∈ S h v
With the boundary conditions applied as follows,

kh = k D , on ∂K ∩ Γ D (4.48)
The equations are linearized using coupled fixed-point iteration. The iterative procedure is discussed in section 4.3.

In this section, we focus on the terms that are problematic for high-order DG methods or methods based on polynomial approximation in general. First, some useful notations are defined. Conventionally, the integration nodes are different from the nodal points, thus the interpolation between the two sets of nodes for ω h needs to be done with extra care near the wall. The interpolation matrix N, is the mapping from the nodal points to the integration points, with the size of n int × n p . Where n int and n p are the number of integration points and nodal points respectively. If the nodal points are the integration points, then N is the identity matrix. Furthermore, the differentiation elemental matrix N x , is the spatial derivative operator of a function on the nodal points extrapolated to the integration points, with a size of n int × n p . These matrices are sufficient to explain how to deal with the non-standard terms, the production, dissipation, and diffusion.

Production Term (ν th P , φ h ) K

A common trick that is used in finite volume is implemented, by treating the production term explicitly to maintain a positive right-hand side. This aids in maintaining positive values of k h during the linear iterations. The norm of the strain rate tensor is calculated as a function of u h and N x to have its values on the integration points.

The turbulent eddy viscosity, v th belongs to the space of polynomials as defined previously. Analytically, this variable is defined as the ratio between k and ω. In the approximate spaces, k h and ω h are polynomials of the same space. Consequently,

k h ω h / ∈ P m (K i )
To fit this expression in the polynomial space, it is performed by dividing the nodal values. Therefore, an aliasing error is introduced by specific values k h and ω h to get ν th . In other words, the value of the eddy viscosity is dependent on the set of nodes chosen, e.g,

Nk h Nω h = N 1 ω h Nk h
For the production term, the turbulent eddy viscosity is calculated as,

ν th = N 1 ω h |Nk h |
The absolute value is taken as a safeguard to ensure the positivity of the eddy viscosity. Often, it is not needed as the scaling limiters discussed in section 4.3 are used. By this formulation, the aliasing error is used effectively to damp the oscillations of ω near the wall. The profile of ω near the wall is difficult to be represented by a polynomial because near the wall, ω is directly proportional to the square inverse of the normal wall distance [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. In The oscillations for the Nω h result in negative values of ω, and taking the absolute values would result in a bad approximation. On the other hand, the analytical solution of the inverse of ω near the wall is a second-order polynomial, which is very easy to deal with [START_REF] Wilcox | Turbulence modeling for CFD[END_REF]. Thus, the robustness is maintained by interpolating the inverse of ω for this term. By dealing with the inverse of ω, an aliasing error is introduced that creates a natural filter to the undesired oscillations.

Finally, a production limiter is conventionally used to limit the production at the stagnation points [START_REF] Menter | Ten years of industrial experience with the SST turbulence model[END_REF], (4.49) P total = max(ν t P, 15β * ωk)

Dissipation Term (β * ω h k h , φ h ) K
Following the finite volume discretization, this term is treated implicitly. The volume integral term is calculated elementally as,

β * |N(1/ω h )|
It is important to use this approximation in the region near the wall to damp the oscillations as done in the production term. Furthermore, the calculation of this term directly on the wall is not feasible as it goes to infinity. Therefore, the dissipation term is calculated on the integration points and then interpolated back to nodal points. Given that, the integration points are internal nodes and not on the boundary of the element.

An additional constraint that needs to be considered when choosing the mesh size, is the conditioning number of the local element matrix. Near the wall, the dominant diagonal terms are the dissipation term for k h and (r h , ψ h ) K for r h as shown later in equation (4.71). Since the dissipation term has a huge value at the wall, a phenomenon similar to the near-wall ill-conditioning presented in section 2.7.5 occurs. However, the oscillations in the solution k h in this region do not affect the overall solution as it has very small values and the eddy viscosity is nearly zero. Additionally, the hybridization confines this ill-conditioning to the local matrices that are solved directly, which means that this issue does not hugely affect the global operator that is solved iteratively.

Diffusion Term b k (r h , φ h )

The turbulent eddy viscosity ν th on the nodal points is calculated by, (4.50)

ν th = k h ω h
and,

ν k = ν + σ k ν th ,
where the differentiation is done directly by N x ν k . While the extrapolation of ν k is used to obtain the turbulent viscosity in the surface integral terms. This definition for the turbulent eddy viscosity is used for RANS equations to calculate ν eh as,

ν e = ν + ν th
The ω equation

The most important consideration in solving the ω equation is the boundary condition.

Setting the ω to infinity at the wall boundary condition is not numerically feasible. The conventional solution to this problem is setting a large value of ω at the wall [START_REF] Bassi | Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations[END_REF]. However, this solution is not stable for high-order approximations when ω is set to large values at the wall due to the large oscillations. An alternative solution is to avoid solving the elements with a wall boundary condition. These elements are taken out of the computational domain as shown in figure 4.2, and leaving their neighbors with a new Dirichlet boundary condition.

Unlike the finite volume discretization, elements with only one node on the wall are also removed as shown in figure 4.2, because the approximation is continuous inside the element and not cell-centered as for the finite volume. Thus, for a polynomial approximation any contact with the wall would result in a singularity at the point of contact. where y wall is the normal wall distance. This approximation is analytically valid for y + < 3. After taking out the near-wall elements and using the near-wall analytical solution, the ω is now easier to solve. By this choice, the conventional solution to this problem is avoided.

The same procedure could be done for k to eliminate the near-wall oscillations at the wall boundary by using the analytical solution for the viscous sublayer given in [START_REF] Eça | Near-wall profiles of mean flow and turbulence quantities predicted by eddy-viscosity turbulence models[END_REF][START_REF] Kalitzin | Near-wall behavior of RANS turbulence models and implications for wall functions[END_REF], (4.52)

k + = C k (y + ) p k
where C k and p k are constants. The calculation of k + and y + can be exact because the velocity gradients are continuous inside the elements. However, this solution is not necessary for the HDG method, but it can be beneficial for other DG methods to solve the near-wall conditioning problem associated with the dissipation term in the k equation.

In order to formulate the semi-discrete equation, a similar discretization is done for the specific rate of dissipation ω. To formulate the HDG method, the auxiliary variable q is defined as, q = ∇ω The transmission equations can be written as,

[[ωn]] = 0, on F (4.53) [[(uω -[ν + σ ω ν t ]q) • n]] = 0, on F (4.54)
The global problem can be written as, (4.55)

K u h ω h -ν ω q h • n, φ h ∂K -(1 -λ)u h ωh • n, φ h Γ N = q N • n, φ h Γ N , ∀ φ h ∈ S h s
To close the formulation u h ω h and ν ω q h are defined on internal faces ∂K as,

u h ω h = u h ω h + λu h (ω h -ω h ) (4.56) ν ω q h = ν ω q h + τ ω ν ω (ω h -ω h ) n (4.57)
where λ is same upwinding switch used in equation (2.67), while τ ω is the diffusion stabilization term defined as [START_REF] Elzaabalawy | Analysis of hybridizable discontinuous Galerkin stability parameter in convection dominated flows[END_REF], (4.58)

τ ω = Re ℓ ω
where ℓ ω is the specific rate of dissipation length scale, normally set from 50 to 200. To complete the HDG discretization the local problem is written as,

a ω (k h , φ h ) + b ω (q h , φ h ) = c ω (φ h ), ∀φ h ∈ P m (K i ) (4.59) d ω (k h , ψ h ) + e ω (q h , ψ h ) = 0, ∀ψ h ∈ [P m (K i )] d (4.60) a ω (ω h , φ h ) = (∂ t ω h , φ h ) K + (βω h ω h , φ h ) K -(∇φ h , u h ω h ) K + u h ω h , nφ h ∂K b ω (q h , φ h ) = -(∇ • ν ω q h , φ h ) K + ν ω q h -ν ω q h , nφ h ∂K c ω (φ h ) = (ζP , φ h ) K + (CD ω , φ h ) K d ω (ω h , ψ h ) = (∇ψ h , ω h ) K -ωh n, ψ h ∂K e k (q h , ψ h ) = (q h , ψ h ) K where, ν ω = ν + σ ω ν th , ν ω ∈ S h v
With the boundary conditions applied as follows,

ωh = ω D , on ∂K ∩ Γ D (4.61)
Production Term (ζP , φ h ) K The strain rate norm term ζP is calculated directly from the velocities.

Cross-Diffusion (CD ω , φ h ) K

The cross diffusion term, ∇k • ∇ω, is a tricky term for high-order methods since the oscillations can affect its value and the sign enormously. It can be seen from figure 4.1, that the gradient of the function ω would be entirely different from the original gradient. The change of the sign is even more problematic because the limiters involve maximum and minimum operators. A proposed solution to this problem in calculating this term in the approximation space is to deal only with the derivative of the smooth function, the inverse of ω. The formulation is derived using the product rule as follows,

∂ ω ω n ∂x = 1 ω n ∂ω ∂x + ω ∂ 1 ω n ∂x
Solving for the gradient of ω,

∂ω ∂x = ω n ∂ ω ω n ∂x -ω n+1 ∂ 1 ω n ∂x By setting n = 1 we get, ∂ω ∂x = -ω 2 ∂ 1 ω ∂x
The partial derivative in the y and z can be obtained similarly. Calculating the derivative of the inverse of ω h is significantly more accurate. This is implemented in the polynomial spaces as follows, (4.62)

∇ω h = - 1 N(1/ω h ) 2 N x 1 ω h
With this formulation, the sign and value of the gradient of ω are preserved near the wall. While for the turbulence kinetic energy the gradient is relativity smooth and calculated directly as,

∇k h = N x k h
With the previous definition, the cross diffusion term is defined in the continuous setting as,

CD = ∇k • ∇ω = -∇k • ω 2 ∇
1 ω and in the approximate spaces as, (4.63)

CD h = -N x k h • 1 N(1/ω h ) 2 N x 1 ω h
The cross diffusion term in the TNT model is treated explicitly and defined on the integration points as,

CD ω = F ω N 1 ω h CD h ,
and

F ω = 0, if CD h < 0 0.5, if CD h > 0
With this formulation, CD ω does not oscillate depending on the sign of the oscillations of the gradients.

Dissipation Term (βω h ω h , φ h ) K

The dissipation term is treated implicitly and calculated as,

1 |N(1/ω h )| Diffusion Term b ω (q h , φ h )
The diffusion term is treated implicitly and the term ν ω on the nodal points is calculated by,

ν ω = ν + σ ω ν th ,
where ν th is obtained from equation (4.50). The differentiation is done by N x ν ω . While, the extrapolation of ν k is used to obtain the turbulent viscosity in the surface integral terms.

The previous description suffices for the calculation of the Wilcox 98 and TNT k -ω models. In the next section, some modifications are presented in the formulation to account for the SST and BSL models.

kω BSL and SST model

We apply the same concepts to the BSL and SST models. However, more complexity is added because of two major reasons. The first one is that the turbulent viscosity is not a continuous function inside all the elements for the SST model. The second reason is due to the use of the blending functions F 1 & F 2 . These functions are responsible for switching between the k -ω to the k -ǫ turbulence models. For the sake of brevity, only the differences between the SST and the standard k -ω are presented. Menter2003 SST model is used and can be found in [START_REF] Menter | Ten years of industrial experience with the SST turbulence model[END_REF]. While the BSL model is the same as the SST but without the viscosity limiter. The model constants are defined as, σ k1 = 0.85, σ k2 = 1.0, β * = 0.09, σ ω1 = 0.5, σ ω2 = 0.856,

β 1 = 0.75, β = 0.0828, ζ 1 = 5 9 , ζ 2 = 0.44, a 1 = 0.43
where σ, β, and ζ are calculated with the function,

⊙ = F 1 ⊙ 1 +(1 -F 1 )⊙ 2

Blending functions

To damp the oscillations of ω, again its inverse is used in calculating the blending functions F 1 and F 2 by,

CD kω = max 2ρσ ω2 |N 1 ω h CD h |, 10 -10 arg 1 = min max |Nk h ||N 1 ω h | β * d , 500ν|N 1 ω h | d 2 , 4ρσ ω2 |Nk h | CD kω d 2 F 1 = tanh arg 4 1 arg 2 = max 2 |Nk h ||N 1 ω h | β * d , 500ν|N 1 ω h | d 2 F 2 = tanh arg 2 2
While the cross difussion term is calculated as,

F ω = 2σ ω2 (1 -F 1 ) CD ω = F ω N 1 ω h CD h ,

Limited turbulent eddy viscosity

For BSL the eddy viscosity is directly calculated as in equation (4.50), while for the SST, it is calculated by,

ν th = a 1 k h max(a 1 ω h , F 2 S) (4.64)
Due to the max and min operators in the model, the eddy viscosity is discontinuous inside the element. These discontinuities can be exactly computed using extended-HDG. Nevertheless, this is a very costly solution for a RANS model. Instead, polynomial regression is applied to force the continuity of these functions as discussed in the next section.

Discontinuous eddy viscosity

A simple method to smooth the discontinuous eddy viscosity solution is presented. First, the discontinuous eddy viscosity is calculated on the integration points of the order m o . Then using polynomial regression, a polynomial of the order m is fitted to the discontinuous eddy viscosity at the integration nodes. If m o = m, then the polynomial will pass through all the points. The polynomial regression gives a close approximation to the integration of the discontinuous functions, but it is misleading for its derivative. As noticed from the numerical results, this approximation is not stable for formulations that calculate the derivative of the fitted polynomial. Consequently, for SST and BSL, the weak form of the diffusion term is used. The diffusion terms k and ω are recalled,

b k (r h , φ h ) = -(∇ • ν k r h , φ h ) K + ν k r h -ν k r h , nφ h ∂K , b ω (q h , φ h ) = -(∇ • ν ω q h , φ h ) K + ν ω q h -ν ω q h , nφ h ∂K ,
and represented in the weak form,

b kSST (r h , φ h ) = (ν k r h , ∇φ h ) K -ν k r h , nφ h ∂K , b ωSST (q h , φ h ) = (ν ω q h , ∇φ h ) K -ν ω q h , nφ h ∂K .
With the weak representation of the diffusion terms, taking the derivative of the discontinuous functions during the non-linear iterations is avoided. The effect of the polynomial regression on the SST model cannot be evaluated without comparing it to the solution obtained with properly resolving the discontinuity. However, the introduced error due to this approximation is believed to be unsignificant compared to the modeling error. Notwithstanding, the author believes that the SST model is not a convenient RANS model for high-order methods.

Coupling

The non-linear solver is a challenging task for high-order RANS formulations. The challenge comes from the positivity restrictions of the turbulence quantities as well as the non-linearity. There are two ways to design the coupling, first, the RANS and the turbulence model are coupled together and solved using fixed-point iteration. The alternative way of coupling is to solve each set of equations separately and then update the solutions using fixed-point iteration. The latter option is chosen since the stiffness of the turbulence equations is much higher than the RANS equations. By this method, there is an exterior loop, a loop for RANS, and a loop for the turbulence model. The method is presented for the steady-state solution and it can be extended to unsteady RANS.

Exterior Loop, g

The global iteration loop is started with an initial condition for u g-1 h , k g-1 h , and ω g-1 h . Normally, the solution is initialized with the values from the inlet boundary condition, while ν g-1 e is calculated from these initial values.

RANS Loop, i

In this loop, the values of u i-1 h is set to u g-1 h and the global value, ν g-1 e is used. The local problem over for each element can be written in the matrix form by, (4.65

)    A uu A uE A up A Eu A EE 0 A pu 0 0       u h E h p h    =    A uû A Eû 0    ûh +    A up 0 0    ph +    f u 0 0    , ∀ψ h ∈ [P m (K i )] d ∀Ψ h ∈ [P m (K)] d×d ∀φ R h ∈ ∇ • [P m (K i )] d A uu u h = -(∇ψ h , u h ⊗ u i-1 h ) K + (u h ⊗(1 -λ i-1 )u i-1 h )n + τ ν g-1 e u h , ψ h ∂K A uE E h = -(∇ • ν g-1 e E h , ψ h ) K A up p h = -(Ip h , ∇ψ h ) K A uû ûh = -ûh ⊗ λ i-1 u i-1 h )n, ψ h ∂K + τ ν g-1 e ûh , ψ h ∂K A up ph = -Ip h n, ψ h ∂K A Eu u h = (u h , ∇ s • Ψ h ) K A EE E h = (E h , Ψ h ) K A Eû ûh = ûh ⊗ n, Ψ h ∂K + n ⊗ ûh , Ψ h ∂K A pu u h = -(∇ • u h , φ R h ) K f u = (f , ψ h ) K
While the global problem is written in the matrix form as, (4.66)

K      A ûu A ûE 0    u h E h p h    + A ûû ûh + A ûp ph      = f û, ∀ ψ h ∈ V h s A ûu u h = u h ⊗ u i-1 h -u h ⊗ λ i-1 u i-1 h )n, ψ h ∂K + τ ν g-1 e [u h ⊗ n + n ⊗ u h ] n, ψ h ∂K A ûE E h = -(ν g-1 e E h )n, ψ h ∂K A ûû ûh = ûh ⊗ λ i-1 u i-1 h )n, ψ h ∂K -τ ν g-1 e [û h ⊗ n + n ⊗ ûh ] n, ψ h ∂K - (1 -λ i-1 ) (û h • n) u l-1 h , ψ h ∂K∩Γ N A ûp ph = Ip h n, ψ h ∂K f û = h N , ψ h Γ N and, (4.67) K A pu u h = A pû ûh + f p, ∀ φ h ∈ S h s A pu u h = u h • n, φ h ∂K A pû ûh = ûh • n, φ h Γ N f p = u D • n, φ h Γ D
The hybridization step is done by inverting the matrix in equation (4.65) and substituting u h , E h , and p h in the global problem. After the hybridization, the RANS operator can be written as, (4.68)

A ûû A ûp A pû A pp ûh ph = f û f p A ûû ûh = K      A ûu A ûE 0   A -1    A uû A Eû 0       + A ûû      ûh , A ûp ph = K      A ûu A ûE 0   A -1    A up 0 0       + A ûp      ph , f û = f û - K      A ûu A ûE 0   A -1    f u 0 0            , A pû ûh = K A pu A -1 A uû -A pû ûh , A pp ph = K A pu A -1 A up ph , f p = f p - K A pu A -1 f u ,
where A -1 is the inverse matrix of the local problem. The operator in equation (4.68) is relativity dense for 3D problems compared to low-order methods. If the operator is too large to be stored, the diagonal block matrices for each velocity component and pressure are stored to be solved iteratively in an uncoupled way to get ûh and ph .If there are no memory limitations, the whole operator is stored and solved once to get ûh and ph . As conventionally done in HDG, ûh and ph are used to compute u h from the local problem. Then the value of u i h is computed with under-relaxation with the formula,

u i h = r ui u i-1 h + (1 -r ui )u h (4.69)
Normally, a single iteration is enough to move on to the turbulence model. The external value of the velocity is updated to be,

u g h = r ug u g-1 h + (1 -r ug )u i h (4.70)
With this under-relaxation, the pointwise divergence-free feature of the velocity field is preserved.

Turbulence loop, j

Using the external value of the velocity, the turbulence quantities are solved iteratively to update the external eddy viscosity. k j-1 h and ω j-1 h are set to k g-1 h

and ω g-1 h respectively. First, the turbulence kinetic energy equation is solved. The elemental local problem can be written in the matrix form as, (4.71)

A kk A kr A rk A rr k h r h = A k k A r k kh + f k f r , ∀φ h ∈ P m (K i ) ∀ψ h ∈ [P m (K i )] d A kk k h = (β * ω j-1 h k h , φ h ) K -(u g h k h , ∇φ h ) K + (1 -λ g )u g h k h , nφ h ∂K -τ k ν j-1 k k h , φ h ∂K A kr r h = -(∇ • ν j-1 k r h , φ h ) K f k = (ν j-1 th P g , φ h ) K A k kk h = -τ k ν j-1 k kh , φ h ∂K -λ g u g h kh , nφ h ∂K A rk k h = (∇ • ψ h , k h ) K A rr r h = (r h , ψ h ) K f r = 0 A r k = kh n, ψ h ∂K with its global problem, (4.72) K A kk A kr k h r h + A kk kh = f k, ∀ φ h ∈ S h s
where,

A kk k h = (1 -λ g )u g h k h , n φ h ∂K + τ k ν j-1 k k h , φ h ∂K A kr r h = -ν j-1 k r h , n φ h ∂K A kk kh = u g h λ g kh , n φ h ∂K -τ k ν j-1 k kh , φ h ∂K -(1 -λ g )u g h kh • n, φ h ∂K∩Γ N f k = r N • n, φ h Γ N
The hybridization step leads to, (4.73)

K A kk A kr A -1 k A k k A r k + A kk kh = f k - K A -1 k f k f r
This system of linear equations is solved to have kh . From the local problem, k h is obtained.

Then the value is updated with under-relaxation as follows, (

k j h = r kj k j-1 h + (1 -r kj )k h 4.74) 
Since the value of k h can be negative, the positivity of k j h is not guaranteed. Thus a scaling limiter is applied to maintain a positive turbulence kinetic energy as illustrated in 4.3.2. To complete the coupled solver the local equation for ω is formulated as, (4.75)

A ωω A ωq A qω A qq ω h q h = A ω ω A qω ωh + f ω f q , ∀φ h ∈ P m (K i ) ∀ψ h ∈ [P m (K i )] d A ωω ω h = (βω j-1 h ω h , φ h ) K -(u g h ω h , ∇φ h ) K + (1 -λ g )u g h ω h , nφ h ∂K -τ ω ν j-1 ω ω h , φ h ∂K A ωq q h = -(∇ • ν j-1 ω q h , φ h ) K f ω = (ζP g , φ h ) K + (CD j-1 ω , φ h ) K A ω ω ωh = -τ ω ν j-1 ω ωh , φ h ∂K -λ g u g h ωh , nφ h ∂K A qω ω h = (∇ • ψ h , ω h ) K A qq q h = (q h , ψ h ) K f q = 0 A qω = ωh n, ψ h ∂K with its global problem, (4.76) K A ωω A ωq ω h q h + A ω ω ωh = f ω, ∀ φ h ∈ S h s
where,

A ωω ω h = (1 -λ g )u g h ω h , n φ h ∂K + τ ω ν j-1 ω ω h , φ h ∂K A ωq q h = -ν j-1 ω q h , n φ h ∂K A ω ω ωh = u g h λ g ωh , n φ h ∂K -τ ω ν j-1 ω ωh , φ h ∂K -(1 -λ g )u g h ωh • n, φ h ∂K∩Γ N f q = q N • n, φ h Γ N
The hybridization step leads to, (4.77)

K A ωω A ωq A -1 ω A ω ω A qω + A ω ω ωh = f ω - K A -1 ω f ω f q
The system of linear equations is solved to obtain the value of ωh then ω h is obtained from the local problem. The updated ω h is provided by, (

)

ω j h = r ωj ω j-1 h + (1 -r ωj )ω h
The scaling limiter is applied using the inverse of ω. The eddy viscosity is updated using the values of ω j h and k j h , and the iterations are repeated till the desirable convergence. After the convergence in the j loop the values of the exterior loop are updated by,

k g h = r kg k g-1 h + (1 -r kg )k j h (4.79) ω g h = r ωg ω g-1 h + (1 -r ωg )ω j h (4.80)
Accordingly, the exterior eddy viscosity ν g th is obtained. The exterior loop is repeated until the desired convergence for the exterior variables is reached.

The standard values for the under-relaxation parameters at the beginning of the simulation for the velocity are, r ui = 0.4, r ug = 0.5, while for k, r ki = 0.5, r kg = 0.7, while for ω, r ωi = 0.5, r ωg = 0.7.

After a couple of iterations the parameters of the external loop are changed manually to, r ug = 0.2, r kg = 0.2, r ωg = 0.5. These values allow the possibility of starting the simulation from bad estimates. In laminar flows, there is no need for such strong under-relaxation.

Positivity preserving

In this work, a generalization of limiting negative k values to zeros and taking the absolute values of ω is proposed to fit the high-order method. Rather than taking the absolute values which will make high-order scheme unstable due to the discontinuity thus created, it is been found that when cell averaged values of the turbulence quantities inside an element is positive, it is possible to apply a scaling limiter such that cell average of the element is preserved while negative values are eliminated. Preserving the cell average value will allow preserving the original high-order accuracy. The scaling limiter is defined below [START_REF] Zhang | On maximum-principle-satisfying high order schemes for scalar conservation laws[END_REF],

(4.81) ki = θ k k i -k + k
where k is the cell averaged quantity, k i is the value of the solution at each node for i = [1, 2, .., n p ], and ki is the limited value, while θ k is defined as, (4.82)

θ k = k k -k min , If k min > 0 then θ k = 1.
Where k min is the minimum value of the approximate solution in the element. This scaling limiter preserves the original high-order accuracy as [START_REF] Zhang | On positivity-preserving high order discontinuous Galerkin schemes for compressible euler equations on rectangular meshes[END_REF],

(4.83) | ki (x) -k i (x)| ≤ C max |k i (x) -k|
where k is the continuous solution. The evaluation of k min can be costly for higher order elements. As a result, the smallest values of k i is used as the k min . Anyhow, the high-order accuracy is also preserved with this choice as well.

Likewise, the scaling limiter is applied for 1 ω as follows, (4.84)

1 ωi = θ 1 ω 1 ω i - 1 ω + 1 ω
where, (4.85)

θ 1 ω = 1 ω 1 ω -1 ω min If ω min > 0 then θ 1 ω = 1. The value of 1
ωi is limited to ǫ to avoid having infinity values for ω, where ǫ = 10 -12 .

Method of Manufactured Solution

To test the discretization scheme without the effect of the non-linear coupling, the method of manufactured solutions was used. The manufactured solution of Eça and his co-workers is chosen [START_REF] Eça | Manufactured solutions for steady-flow Reynolds-averaged Navier-Stokes solvers[END_REF]. The analytical solution mimics the RANS turbulent boundary layer in a rectangular domain with excellent properties for code verification for the range of Reynolds numbers between 10 6 to 10 9 . The computational domain is a rectangle of the size [0.1, 1] in x and [0, 0.25] in y, where the wall boundary condition is applied at y = 0. Dirichlet velocity boundary condition is imposed at the left boundary side, while Neumann boundary conditions are imposed on the top and right boundaries. The RANS equations are solved with the eddy viscosity obtained from the analytical solution. To check the convergence of the method, the grids were refined in the x and y directions using the same number of cells for both directions. Cells were distributed equidistantly in the x direction and distributed using a constant stretching parameter in the y direction based on Vinokur's functions [START_REF] Vinokur | On one-dimensional stretching functions for finite-difference calculations[END_REF]. The stabilization parameter is set to Re/100 and the results are shown in table 4.1. Optimal convergence rates around m + 1 for the velocity and m for the pressure as thirdorder triangular elements are being used. The same exercise was done for k and ω equations separately and optimal convergence rates were obtained as well.

This test provided a useful procedure to calibrate the length scale ℓ of the diffusion stabilization parameter for turbulent flows that is defined in equation (4.19). A wide range of ℓ is used for Reynolds numbers of 10 5 , 10 7 , and 10 9 on the same mesh. The max and L2 norms of the errors are plotted in figures 4.3, 4.4, and 4.5 for the velocity and pressure. These results show the vital importance of the diffusion stabilization parameter on the results at high Reynolds numbers. From this analysis, the minimum error is in the range of ℓ ≈ 10 2 at different Reynolds numbers, which supports the direct proportionality between the diffusion stabilization parameter and the Reynolds number suggested in chapter 2.

Turbulent Test Cases

Channel Flow

The channel flow test case is chosen to focus on the fully turbulent flow and to avoid the transition flow or any singularities in the solution. Periodic boundary conditions are applied in the flow direction for all the variables, while no-slip wall boundary condition is applied on the other direction. A constant source term is added to the momentum equation as a pressure gradient to induce a flow. By keeping the source term as a constant, various mesh sizes are used for code verification. The solutions are compared to the classical second-order finite volume solution, where y + and the degrees of freedom (DOF) are kept the same. The solution of the finite volume on a very fine grid with 1000 cells in the y-direction is used as a reference solution to compare the FV and third-order HDG on triangular meshes. The Wilcox 98 k-ω model is implemented, and the tests were performed at Re = 2 × 10 6 with 60 DOF in the y direction. The corresponding y + is 0.85, while the second nearest element to the wall is located at y + elem of 3.1. The value of the y + is calculated based on the distance between the wall and the first node away from the wall. It is more reasonable to depend on y + elem as it is independent of the local nodal distribution inside the element and the order of the polynomial. The near wall equation (4.51) for ω is used as a boundary condition for the second nearest element to the wall. Results are shown for the lower half of the channel with a half-height of 1 in figures 4.6, 4.7, and 4.8 for the velocity, turbulence kinetic energy, and the specific rate of dissipation respectively. The value of the stabilization parameters τ , τ k , and τ ω are set to Re/200. The same test is repeated for Reynolds number of 2 × 10 8 with 120 DOF in the y direction. The corresponding y + and y + elem are 0.29 and 1.0 respectively. The results show that 4 th order HDG predicts better profiles for the velocity, k, and ω near the wall. In the Re = 2 × 10 6 case, HDG offers a much better result than the FV for the whole velocity profile. It is observed that lower y + values are needed as the Reynolds number increases. The observations were nearly the same for the Re = 2 × 10 8 case. It is noted that the reference values are only considered as the best possible result for FV at finer meshes, not the overall best results. The better accuracy per DOF is demonstrated in this example for the higher order methods, even for the RANS equations.

Solution verification

At this range of high Reynolds numbers, there is no available data to perform validation. However, it is possible to perform a verification study to check the convergence behavior of the numerical solution. The velocity and turbulence quantities are computed on different meshes to perform a grid refinement study. Then the results are fitted to a power series in order to estimate the convergence rate. The number of elements in y changed from 30 to 300, this corresponds to y + values from 0.85 to 0.10 and y + elem values from 3.1 to 0.37. The mean and maximum velocity, maximum k, and minimum ω are chosen to estimate their convergence rates. Additionally, the skin friction is based on u h and E h is presented. The results are shown in table 4.2. Expected convergence rates were obtained which are roughly equal m + 1 from 30 to 150 cells in y for all variables. For very fine meshes, the order deteriorates as seen in figures 4.12 and 4.13. The reason for this sub-optimality is believed to be due to iterative convergence of the non-linear solver. Additionally, the singularity of ω going to infinity at the wall might be an other issue to consider. While for the skin friction based on u h , the values are not monotonic. The viscous forces based on the velocity gradients can be calculated with HDG by two methods. First, the derivatives of the velocity are calculated based on u h , while the other way is using directly the auxiliary variable E h , which is the symmetric gradient of the velocity. Since, taking the derivative reduces the order of accuracy, the calculation of the skin friction using E h is more accurate and has a higher order. This feature is one of the advantages of using hybridizable discontinuous Galerkin in viscous forces calculations.

The reason why the calculated viscous forces or skin friction is different is that E h numerically is not exactly equal to the symmetric gradient of u h . This is expected as each variable is defined in a different space, and due to the stabilization parameter τ . For smooth gradients with a finer set of grids, the skin friction based on u h would converge to the skin friction based on E h for a coarser set of grids, and asymptotically, both will converge to the same value. However, as long as the solution has singularities there will be a difference between u h and E h as the ∇u h is an m -1 order polynomial and E h is a m order polynomial and both are trying to capture a singularity. Therefore, using E h would be closer to the true value. This can be observed from the results of the channel flow in table 4.3, where the true solution determined by the imposed pressure gradient is 1.2373476 × 10 -3 . Based on E h the error for the coarsest grid between the calculated and the imposed value is 1.0%, while on the finest grid is 0.002%. While based on u h , the errors are 6.4% and 0.13% for the coarsest and finest grids respectively. The order of convergence when u h is used to calculate the viscous forces is m, while using E h is m + 1 and it is always closer to the imposed value for the same mesh. The calculated convergence rates are plotted in figure 14. The asymptotic order of convergence is second-order for this test case. However, a final explanation for the suboptimal convergence is not yet available.

Flat Plate

The flat plate test case can be useful in the validation and verification process of the turbulence model. The 2D zero pressure gradient flat plate validation case from the turbulence modeling home page of NASA is implemented (https://turbmodels.larc.nasa.gov/) [START_REF]NASA. Turbulence modeling resource[END_REF].

The usage of the analytical near-wall ω requires a y + and x + less than 3 to allow the exclusion of the adjacent elements to the wall. Thus, the mesh should be able to capture the boundary layer in the x-direction upstream of the leading-edge. The results plotted using HDG are based on the TNT model on an equivalent grid in the sense of degrees of freedom. The HDG grid on the plate is 3 rd order triangular h-grid of the size 100x86, with 172,000 DOFs, while the reference results are obtained on a mesh of 449x385 quadrilateral elements with 172,865 DOFs. The inlet boundary condition for k was set to 1.5x10 -4 and ω to 1.5x10 4 so that the inlet eddy viscosity is 0.1 of the fluid viscosity. The velocity profiles are compared with the law of the wall based on Cole's correlation in figure 4.16 at Re θ = 10, 000. In figure 4.17, the skin friction is plotted with Re θ and compared with the K-S correlation. The reference results can be found on the webpage in [START_REF]NASA. Turbulence modeling resource[END_REF]. In figure 4.18, the skin friction is plotted along the normalized flat plate length and compared with the solution obtained from the solver FV solver ISIS-CFD based on the SST model [START_REF] Deng | Ship flow simulations with the ISIS CFD code[END_REF]. The HDG-TNT velocity profile is very close to Cole's correlation, and to the reference results of the SST and the Wilcox 2008 in figure 4.16. While for the skin friction, the skin friction compared to the boundary layer thickness of the HDG-TNT is closer to the K-S correlation. Compared to the ISIS-CFD code based on the SST formulation, there is an overestimation of the skin friction in the results obtained by HDG by around 2%. This overestimation is believed to be due to the singularity in the skin friction at the leading edge. Additionally, the mesh is much finer at the leading edge which results in much less numerical dissipation compared to finite volume.

With the eddy viscosity ratio of 0.1 imposed at the inlet, some oscillations in k and ω are observed at the edge of the boundary layer. Additionally, during the testing of the BSL and SST models, it was noticed that these methods are less robust when the eddy viscosity at the inlet becomes lower compared to the TNT and Wilcox 98. This highlights a common problem for high-order RANS solvers in their robustness on coarse meshes. One of the simplest remedies is to increase the eddy viscosity ratio at the inlet, which adds enough dissipation at the coarse regions. The HDG-SST is tested with increasing the eddy viscosity ratio at the inlet to 100. By using inlet boundary condition for k as 1.5x10 -3 and ω as 1.5x10 3 The HDG-SST and the reference results for the SST are nearly identical for the velocity profiles. Likewise for the HDG-SST, the skin friction is closer to the K-S correlation. The skin friction is overestimated compared to the results of ISIS-CFD by 1.6%. The effect of the increased eddy viscosity at the inlet does not hugely affect the results as the SST model is less sensitive to the inlet boundary condition and the eddy viscosity limiter is activated near the leading edge.

The domain is changed from the previous setting to have a symmetry plane after the plate as well as a symmetry plane before it. This setting is recommended as the boundary layer at the trailing edge is not fully developed turbulent flow. A mesh of 228x72 elements is used to study the Wilcox 98, TNT, and the BSL models with an eddy viscosity ratio of 100 at the inlet to suit all the methods. The SST is excluded from this study due to the polynomial regression that is used to approximate the discontinuity in the eddy viscosity. Finally, to measure the convergence of the HDG method, the TNT model is chosen with an eddy viscosity ratio of 100 at the inlet for the set of grids in table 4.4. A set of h-grids designed to suit the high-order RANS is used to test the verification of the method for the drag coefficient. Nevertheless, the discontinuity in the skin friction at the leading and trailing edge might lead to a reduced convergence rate. The drag coefficient C D (u h ) is calculated based on the velocity, while C D (E h ) is calculated based on the symmetric velocity gradient. A suboptimal order of convergence is observed. It is believed that the sub-optimality is due to the singularities at the leading and trailing edges in the skin friction as well as the oscillating k and ω at the boundary layer edge. Additionally, the singularity of ω at the wall makes the verification study more complex. However, the magnitude of the error is relatively small. The percentage of the error for the coarsest mesh it 0.0710% and 0.0184% for the drag coefficient using u h and E h respectively. The benefit of having E h is clear in this example, where the error of the drag coefficient calculated using the strain tensor on the coarsest grid is less than the error of the drag coefficient calculated using the velocity on the finest grid. Finally, these levels of error magnitudes are sufficient for engineering accuracy. For this test case, a more detailed verification study and a comparison with the results obtained from a finite volume solver are presented in chapter 5.

NACA 0012

The NACA 0012 airfoil stands as a well-studied test case for validating the turbulence model. The x + at the trailing edge should be less than 3 likewise the flat plate test case. The tests were made with a steady-flow at Reynolds number of 6x10 6 with an angle of attack of zero and an eddy viscosity ratio of 6 at the inlet. The numerical results are compared with reference CFD results for the skin friction in figure 4.26, and compared with with experimental for the pressure coefficient in figure 4.27. An observed over-estimation of the skin friction due to the increased eddy viscosity at the inlet is present compared to the reference results of the SST model in [START_REF]NASA. Turbulence modeling resource[END_REF]. While the pressure coefficient is slightly less than the reference results but closer to the experimental results of Ladson. Figures 4. 28-4.34 are the plots for the mesh, x-velocity, y-velocity, pressure, turbulence kinetic energy, the inverse the specific rate of dissipation, and the eddy viscosity ratio respectively. The elements are clustered near the leading and trailing edges to satisfy the meshing requirements. Oscillations can be clearly observed in the wake of the aerofoil for the specific rate of dissipation. If the eddy viscosity ratio at the inlet is decreased, the non-linear solver does not converge and the oscillations become dominant. 

Transitional Flow

Simulating the laminar-to-turbulent flow transition is a topic of growing interest, because of the numerous industrial applications for which transition is significant. One of the most used models in the CFD community is the one-equation local correlation-based γ transition model [START_REF] Menter | A one-equation local correlation-based transition model[END_REF]. An additional transport equation for the intermittency γ is solved in addition to the transport equations for the turbulence variables. Despite its wide use, solving these equations in the finite volume framework is quite challenging. An accurate resolution of the transition and turbulence variables demands extremely dense meshes in order to achieve a reasonable discretization error. This constraint makes the simulations excessively expensive in terms of computational time and mesh generation, making these models lack robustness for industrial applications. In addition, accurately evaluating higher order derivatives that are required in some transition models, is unattainable for industrial applications in the FV framework.

This section focuses on the implementation of RANS supplemented with one-equation local correlation-based transition model, coupled with the TNT k-ω using the pointwise divergence-free hybrid discontinuous Galerkin method. Exploiting HDG allows us to study the transition model with a high-order accurate scheme that has low dispersion and dissipation errors. It is widely acknowledged that those high-order methods are not suitable for these kinds of problems, because of the large number of limiters in the equations, as well as their non-linearities. On the contrary, proposed modifications for the equations coupling, linearization, boundary conditions, and aliasing lead to a robust high-order RANS discretization.

The one-equation local correlation-based transition model by Menter his co-workers is combined with the k-ω TNT model can be written as [START_REF] Menter | A one-equation local correlation-based transition model[END_REF],

∂k ∂t + ∇ • (ku -[(ν + σ k ν t ) ∇k]) + D k = P total (4.86) ∂ω ∂t + ∇ • (ωu -[(ν + σ ω ν t ) ∇ω]) + βω 2 = αP + F ω 1 ω (∇k • ∇ω) (4.87) ∂γ ∂t + ∇ • (γu -[(ν + σ γ ν t )∇γ]) + E γ = P γ (4.88)
where the production terms for incompressible flows are defined as,

P total = ν t P k + P lim k P k = γP, P = S 2 = 2S ij S ij , S ij = 1 2 ∂u i ∂x j + ∂u j ∂x i
and,

D k = max(γ, 0.1) • β * ωk E γ = c a2 ρ ΩγF turb (c e2 γ -1) P γ = F length ρSγ(1 -γ)F onset P lim k = 5C k max(γ -0.2, 0)(1 -γ)F lim on max(3C SEP µ -µ t , 0)S Ω ν t = k ω
The model constants and functions are, 

F onset1 = Re v 2.2Re θc F onset2 = min(F onset1 , 2.0) F onset3 = max 1 - R T 3.5 3 , 0 F onset = max(F onset2 -F onset3 , 0) F turb = e - R T 2 4 R T = ρk µω Re v = ρd 2 S µ Re θc = f (T u L , λ θL ) F length =
Re θc (T u L , λ θL ) = C T U 1 + C T U 2 exp [-C T U 3 T u L F P G (λ θL )] C T U 1 = 100.0, C T U 2 = 1000.0, C T U 3 = 1.0 F P G (λ θL ) =    min(1 + C P G1 λ θL , C lim P G1
), λ θL ≥ 0 min(1 + C P G1 λ θL + C P G3 min λ θL + 0.0681, 0], C lim P G2 , λ θL < 0 C P G1 = 14.68, C P G2 = -7.34, C P G3 = 0.0, C lim P G1 = 1.5, C lim P G2 = 3.0

F GP = max(F GP , 0) F lim on = min(max( Re v 2.2 • Re lim θc -1, 0), 3) Re lim θc = 1100, C k = 1.0, C SEP = 1.0 R y = ρy √ k µ , F 3 = e (Ry/120) 8 , F γ1 = max(F 1 , F 3 )
The model constants for the TNT model are presented in section 4.2.1. In the work of Menter [START_REF] Menter | A one-equation local correlation-based transition model[END_REF], the intermittency equation is coupled with the k -ω SST model. Since the equation is coupled with the k -ω TNT model in the presented work there are some changes. The calculation of P lim k is done with a minor difference. The strain rate invariant is used instead of the vorticity by,

P lim k = 5C k max(γ -0.2, 0)(1 -γ)F lim on max(3C SEP µ -µ t , 0)S 2 (4.89)
and F 3 is not used since there are no blending functions.

The production limiter is applied only for the k equation as, (4.90) P total = max(ν t P k + P lim k , 15β * ωk)

The HDG discretization for the γ equation is similar to the discretization done for the k equation.

The γ equation

To formulate the HDG method, the auxiliary variable s is defined as,

s = ∇γ
The transmission equations can be written as,

[[γn]] = 0, on F (4.91) [[(uγ -[ν + σ γ ν t ]s) • n]] = 0, on F (4.92)
Following section 2.6, the global problem can be written as, (4.93)

K u h γ h -ν γ s h • n, φ h ∂K -(1 -λ)u h γh • n, φ h Γ N = s N • n, φ h Γ N , ∀ φ h ∈ S h s
To close the formulation u h γ h and ν k s h are defined on internal faces ∂K as,

u h γ h = u h γ h + λu h (γ h -γ h ) (4.94) ν k s h = ν k s h + τ k ν k (γ h -γ h ) n (4.95)
where λ is same upwinding switch used in equation (2.67), while τ γ is the diffusion stabilization term defined as, (4.96)

τ γ = Re ℓ γ
where ℓ γ is the intermittency diffusion length scale, normally set from 50 to 200. To complete the HDG discretization, the local problem for the γ equation is written as,

a γ (γ h , φ h ) + b γ (s h , φ h ) = c γ (ν th , φ h ), ∀φ h ∈ P m (K i ) (4.97) d γ (γ h , ψ h ) + e γ (s h , ψ h ) = 0, ∀ψ h ∈ [P m (K i )] d (4.98) a γ (γ h , φ h ) = (∂ t γ h , φ h ) K + (E γ , φ h ) K -(∇φ h , u h γ h ) K + u h γ h , nφ h ∂K b γ (s h , φ h ) = -(∇ • ν k s h , φ h ) K + ν γ s h -ν γ s h , nφ h ∂K c γ (ν th , φ h ) = (P γ , φ h ) K d γ (γ h , ψ h ) = (∇ψ h , γ h ) K -γh n, ψ h ∂K e γ (s h , ψ h ) = (s h , ψ h ) K where ν γ = ν + σ γ ν th , ν γ ∈ S h v
With the boundary conditions applied as follows, γh = γ D , on ∂K ∩ Γ D (4.99)

As done for the fully turbulent flows, this section is devoted to the non-standard treatment of the production, dissipation, and diffusion terms of the intermittency equation. The ω equation is similar to the fully turbulent TNT so the implementation details are omitted.

Production Term (P γ , φ h ) K

The production term P γ is defined as,

P γ = F length ρSγ(1 -γ)F onset (4.100)
It should be calculated on the integration nodes directly. First, the focus is on the calculation of F onset . We start by the following equations, The F P G is limited to non-negative values,

Re v = ρ(Nd) 2 S µ (4.
F GP = max(F GP , 0) (4.105)
now the correlation can be used,

Re θc (T u L , λ θL ) = C T U 1 + C T U 2 exp [-C T U 3 T u L F P G (λ θL )] (4.106)
The calculation of F onset1 can be done,

F onset1 = Re v 2.2Re θc (4.107) F onset2 = min(F onset1 , 2.0) (4.108) Then R T is calculated as, R T = ρNk h µNω h (4.109)
To obtain,

F onset3 = max 1 - R T 3.5 3 , 0 (4.110)
Finally, F onset can be written as,

F onset = max(F onset2 -F onset3 , 0) (4.111)
Secondly, the term including γ(1 -γ). A modification is proposed that it is not present in the original model. Due to the oscillations of the polynomials and ω h , the term γ(1 -γ) is calculated with respecting the physical limits of the function when γ varies between 0 to 1 to be,

Lim Pγ = min(max(0, Nγ h (1 -Nγ h )), 0.25) (4.112)
The maximum limiter is to avoid the function to have negative values and the minimum limit is to avoid exceeding the maximum value of γ(1 -γ), which at γ = 1/2 to be 1/4. Furthermore, to clip the oscillations at the edges of the function where γ is approaching 0 or 1. An additional limiter is introduced so that,

Lim Pγ = 0, Nγ h > 0.98 0, Nγ h < 0.02
These limiters have an effect on the model, but it fairly increases the model robustness. The limits are chosen based on the analogy with the wall boundary condition. Thus assuming that the flow is fully turbulent if γ > 0.98 and laminar if γ < 0.02. Finally, the production term is calculated as,

P γ = F length ρS • (Lim Pγ )F onset (4.113) Dissipation Term (E γ , φ h ) K This term is treated implicitly E γ = c a2 ρ ΩγF turb (c e2 γ -1) (4.114)
where Ω is the absolute vorticity rate. R T is calculated previously for the production,

F turb = e - R T 2 4 (4.115)
Similarly as done for the production, a physical limit is introduced for (c e2 γ -1),

Lim Eγ = min(max(0.02, c e2 Nγ h -1), c e2 -1) (4.116)
The maximum value of the linear function is at γ = 1, to be c e2 -1. While the minimum value is at the minimum value imposed at the boundary condition γ = 0.02 to be zero. However, the value it limited to 0.02 for stability, which is the value at γ = 0.0204. This is 2% more than the value imposed at the boundary condition. This dissipation limiter is supported by the production limiter Lim Pγ . With this setting, the dissipation is positive near the wall while the production is limited. Thus γ h has a negative gradient normal to the wall then starts increasing when the production limiter is switched off. The dissipation term is calculated as,

E γ = c a2 ρ ΩF turb Lim Eγ (4.117)
The diffusion term is straightforward with the eddy viscosity calculated as,

ν th = k h ω h

Modifications to the k equation

The γ physical limit is applied to the 1 -γ to be written as,

Lim P k = max(0, 1 -Nγ h ) (4.118)
then the oscillations at the limits are clipped,

Lim P k = 0, Nγ h > 0.98 0, Nγ h < 0.02
Then,

Re v = ρ(Nd) 2 S µ (4.119) F lim on = min(max( Re v 2.2 • Re lim θc -1, 0), 3) (4.120)
To calculate the production term as,

P lim k = 5C k max(γ gh -0.2, 0)Lim P k F lim on max(3C SEP µ -Nµ t , 0)S 2 (4.121)
Where γ gh = Nγ h is clipped to make sure that model is consistent,

γ gh = 0, Nγ h < 0.02 1, Nγ h > 1
The clipped intermittency is used again in the calculation of the dissipation term by,

D k = max(γ gh , 0.1) • β * |N(1/ω h )| (4.122)
The differences between the original model and the modified model to be suitable with the high-order polynomial approximation of γ h are the limiters Lim Pγ , Lim Eγ , and Lim P k with the clipped variable γ gh . These introduced variables provide enough stabilization while being physically consistent with the original model. The intermittency equation is linearized and solved in a similar way as the k and ω equations in the RANS loop. Such that, γ is solved then k, then ω till the convergence criteria is met. The formulation is tested in the T3A test case and the results are presented in the next section.

T3A Results

The ERCOFTAC T3A test case is one of the popular 2D test cases for testing the transition models [START_REF] Coupland | Ercoftac special interest group on laminar to turbulent transition and retransition: T3a and T3b test cases[END_REF]. It is a 2D flow over a flat plate with a zero pressure gradient. The same meshes used for the 2D flat plate test case are employed. The value of k at the inlet is calibrated for the finite volume solvers, such that it leads to a transition point close to the experimental results. One of the drawbacks of this model is that the transition is strongly dependent on the value of k at the inlet.

First the results are plotted using the 304x96 grid at L = 0.1 and L = 0.98. Figures 4.36-4.41 show the velocities, the inverse the specific rate of dissipation, the eddy viscosity, the intermittency, and the turbulence kinetic energy profiles respectively. At L = 0.1 the velocity profile is laminar then at L = 0.98 it is fully turbulent. A verification study is performed to check the order of convergence and the error magnitudes. The results are obtained on five meshes and presented in table 4.5. The conclusions are similar compared to the fully turbulent flat plate test case. However, the reason for the better convergence rates plotted in figure 4.42 is not fully understood.

The error percentage is very small for all the grids and the skin friction plots are nearly identical as shown in figure 4.44. However, there is a remarkable difference between the results obtained from the HDG solver and the FV solver ISIS-CFD although the proposed modifications are used for both discretization methods. Further work is to be done to find out the reason behind this inconsistency between the two method for this model. It was noticed that the HDG solver reaches a converged solution in less than 500 fixed-point iterations for all the grids used. This number is significantly low compared to finite volume solvers, in which the number of iterations reaches hundreds of thousands for these types of simulations. Besides, in finite volume as the mesh is refined the number of iterations increases. The iterative convergence is plotted in figure 4.43 for the 380x120 mesh. Nearly the same profile was obtained for all the mesh set. Even faster convergence could have been achieved if the under-relaxation factors were optimized. In this test case, at 80 iterations, the outer under-relaxation parameters were changed manually. What happens at the leading edge is quite important for the DG method as this point is the weakest one. In other words, the mesh must be fine enough to capture the decay of k and the profile of ω at the leading edge. Their profiles are plotted on figures 4.48 and 4.49. For the coarsest mesh, the oscillations in ω are visible. This is the reason why with coarser meshes the converged solution was not obtained. On finer meshes, the profiles seem to follow the same behavior.

The results of the high-order transition modeling are promising. Additionally, more complex transition models that require the second-order derivatives can be implemented in the DG framework. Thanks to the low dissipation errors coarser grids can be used. For instance, better results can be obtained using circular fitted grids at the leading and training edges to capture the boundary layers in the x and y directions with a fewer number of elements.

Remarks

Due to the high-order polynomials, the robustness of the model is highly dependent on the meshing. The method is fairly stable for fine meshes, with x + and y + set to less than 3. However, the coarse elements at the inlet, outlet, or at the boundary layer edge can result in destroying the convergence of the non-linear solver. A common solution for this problem, is to increase the eddy viscosity ratio at the inlet. Therefore, using a less sensitive model to the inlet boundary conditions of the turbulence quantities is recommended for high-order discretizations, such as the SST model. Nevertheless, the SST model includes a discontinuous eddy viscosity that is undesirable for high-order formulations. The k-kl model presented in [START_REF] Abdol-Hamid | Verification and validation of the k-kl turbulence model in FUN3D and CFL3D codes[END_REF], can be a strong alternative to the k-ω SST model for high-order methods. One of the advantages of this method is that kl is zero at the wall. This eliminates the problems associated with ω. Furthermore, this model suits the high-order methods as the second-order derivative of the velocity are used in the model. For unstructured finite volume meshes, the second-order derivatives are not easy to be calculated accurately. On the contrary, these derivatives are calculated elementally in DG based methods. However, the problem of the negative values at the coarse regions persists in the k-kl model. An alternative option that can be studied in the future, is to develop a negative k-kl model to be solved in the negative regions as done for the negative Spalart Allmaras model in [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF].

The better accuracy per degrees of freedom for HDG can be observed in the channel flow test case. Furthermore, the order of convergence is higher than the one obtained from the second-order accurate finite volume even for test case with the discontinuity in the skin friction. The availability of the symmetric gradient proved to be useful in calculating more accurate velocity gradients for the same grid. Moreover, the possibility of adding more complicated models for transition flows is feasible.

Chapter 5

FV vs HDG

The results presented in the previous chapters prove that HDG can be a competitor to finite volume for incompressible flow simulations. This chapter presents a finite volume solver using the concept of the hybridization to resolve the incompressibility constraint. Further, the results obtained from the HDG solver are compared with the results obtained from finite volume based solvers for selected 2D and 3D test cases.

HDG as a HFV method

Since DG is a generalization to first-order FV, then using piece-wise constants to approximate the velocity in the divergence-free HDG method presented in chapter 4 should lead to a finite volume method. The hybridization is the main feature of this method, thus it is referred to as divergence-free hybridizable finite volume (HFV). In HFV, the velocity u h is constant inside the element, with a constant trace on each face ûh . While the pressure trace ph , is a constant defined on each face. By the definition of the divergence-free HDG method, the pressure p h lies in the divergence of the vector space of the velocity. Therefore, p h lies in the zero vector space, i.e. it is a dummy variable. With this setting, the pressure only exists as the trace on the faces. To summarize the approximation spaces in the HDG form,

u h ∈ [P 0 (K i )] d , p h ∈ 0(K i ), ûh ∈ [P 0 (F i )] d , ph ∈ P 0 (F i )
The auxiliary tensor variable L h that can be defined as the velocity gradient or the symmetric velocity gradient is a piece-wise constant as well.

L h ∈ [P 0 (K i )] d×d
With these definitions, the velocity, and velocity gradient are defined as constants inside the element at the blue colored nodes in figure 5.1. While the velocity trace and pressure trace are defined as constants on the faces at the silver colored nodes. 

∂u ∂t + ∇ • (u ⊗ u + Ip -νL) = f , in Ω (5.1) L = ∇u, in Ω (5.2) ∇ • u = 0, in Ω (5.3)
and the boundary conditions as,

u = u D , on Γ D (5.4) (u ⊗ u + Ip -νL) n -max (u • n, 0) u = g N , on Γ N (5.5)
where u D is the velocity at the Dirichlet faces, and g N is the flux at the Neumann faces. In the following derivation, the spaces are restricted to piece-wise constants, with all the weighting functions set to 1.

HFV Global Problem

As conventionally done in HDG, the formulation is written as local and global problems. First, the transmission equations are extracted from the partial differential equations (5.1),(5.2), and (5.3), then written in the continuous setting as,

[[(u ⊗ u + Ip -νL) n]] = 0, on F (5.6) [[u ⊗ n]] = 0, on F (5.7) [[u • n]] = 0, on F (5.8)
These equations imply the continuity of the flux across the faces. The approximate variables on Γ belong to the piece-wise constant spaces, ûh ∈ V h s , ph ∈ S h s Equation (5.7) is automatically satisfied by approximating the velocity flux as the trace, ûh ≈ u h , on ∂K (5.9) Following the divergence-free HDG discretization, the Galerkin method is applied on the transmission equations (5.6), and (5.8) using the predefined approximation spaces and summed over all the faces to have,

[[ u h ⊗ u h + Ip h -νL h n]], ψ h Γ = 0, ∀ ψ h ∈ V h s (5.10) [[û h • n]], φ h Γ = 0, ∀ φ h ∈ S h s (5.11)
The Galerkin method is equivalent to taking volume integrals as the weighting functions are set to a constant. Stable advective and viscous numerical fluxes are chosen and as a function of the approximate solutions u h and p h , and their trace variables ûh and ph respectively.

Advective Flux u h ⊗ u h ; the classical upwinding scheme is used for the advection flux with respect to the element by,

u h ⊗ u h = u h ⊗ u h + (û h -u h ) ⊗ λu h , on ∂K (5.12)
where λ is the advection stability parameter defined as,

λ = 1, if u h • n < 0 on ∂K 0, if u h • n > 0 on ∂K
The upwinding provides enough stabilization for the advection part. It is noted that the value of u h is constant on all the faces of the same element and no interpolation is done.

Diffusive Flux (νL h ); The diffusive flux is defined with respect to the element by,

(νL h ) = νL h + τ ν [(û h -u h ) ⊗ n] , on ∂K (5.13)
The stabilization parameter τ and the auxiliary variable L h are unconventional in the FV discretization.

Boundary conditions; the application of the boundary condition is simple for the HFV method. The trace variables are defined on at the boundary conditions as, ûh = u D , on ∂K ∩ Γ D (5.14) while for the pressure, ph = p D , on ∂K ∩ Γ N (5.15) where u D is the velocity at the Dirichlet boundary condition obtained from equation (5.4), and p D is a part of the flux g N at the Neumann boundary condition obtained from equation (5.5).

After defining the numerical fluxes and boundary conditions, the discretization of the global problem can be completed.

[

[ u h ⊗ u h + Ip h -νL h n]], 1 ∂Ω + [[ u h ⊗ u h + Ip h -νL h n]], 1 Γ i = 0 (5.16) [[û h • n]], 1 ∂Ω + [[û h • n]], 1 Γ i = 0 (5.17)
On the boundaries ∂Ω, the jump is defined as ⊙ • n -⊙ BC • n. Then, we use the identity,

a • n, b ∂Ω + [[a • n]], b Γ i = K a • n, b ∂K , a(ψ h , u h ) = (∂ t u h , ψ h ) K -(∇ψ h , u h ⊗ u h ) K + u h ⊗ u h , ψ h ⊗ n ∂K b(ψ h , p h ) = -(∇ψ h , Ip h ) K + Ip h , ψ h ⊗ n ∂K c(νL h , ψ h ) = -(∇ • νL h , ψ h ) K + (νL h ) -(νL h ), ψ h ⊗ n ∂K d(L h , Ψ h ) = (L h , Ψ h ) K e(Ψ h , u h ) = (u h , ∇ s • Ψ h ) K -ûh ⊗ n, Ψ h ∂K -n ⊗ ûh , Ψ h ∂K h(u h , φ R h ) = -(∇ • u h , φ R h ) K
Before substituting the weighting functions with ones we write the equations in the matrix vector form.

(5.29)

   A uu A uL A up A Lu A LL 0 A pu 0 0       u h L h p h    =    A uû A Lû 0    ûh +    A up 0 0    ph +    f u 0 0   
Setting p h = 0 and φ R h = 0 we get,

A uu u h = (u h ⊗(1 -λ i-1 )u i-1 h )n + τ νu h , 1 ∂K A uL L h = 0 A up p h = 0 A uû ûh = -ûh ⊗ λ i-1 u i-1 h )n, 1 ∂K + τ ν ûh , 1 ∂K A up ph = -Ip h n, 1 ∂K A Lu u h = 0 A LL L h = (L h , 1) K A Lû ûh = ûh ⊗ n, 1 ∂K A pu u h = 0 f u = (f , 1) K
Matrices A up and A pu are zeros so the dummy variable p h and its row vector are removed. The local elemental problem is reduced to a diagonal matrix, effortless to invert.

A uu 0 0 A LL u h L h

Static condensation

The global problem is written in the matrix form as, (5.30)

K A ûu A ûL u h L h + A ûû ûh + A ûp ph = f û A ûu u h = u h ⊗ u i-1 h -u h ⊗ λ i-1 u i-1 h )n, 1 ∂K + τ ν [u h ⊗ n] n, 1 ∂K A ûL L h = -(νL h )n, 1 ∂K A ûû ûh = ûh ⊗ λ i-1 u i-1 h )n, 1 ∂K -τ ν [û h ⊗ n] n, 1 ∂K -(1 -λ i-1 ) (û h • n) u l-1 h , 1 ∂K∩Γ N A ûp ph = Ip h n, 1 ∂K f û = h N , 1 Γ N and, (5.31) K A pu u h = A pû ûh + f p A pu u h = u h • n, 1 ∂K A pû ûh = ûh • n, 1 Γ N f p = u D • n, 1 Γ D
The hybridization step is done by inverting the diagonal matrix in equation (5.29) and substituting u h , and L h in the global problem. After the hybridization, the global HFV operator can be written as, (5.32)

A ûû A ûp A pû A pp ûh ph = f û f p A ûû ûh = K A ûu A ûL A -1 uu 0 0 A -1 LL A uû A Lû + A ûû ûh , A ûp ph = K A ûu A ûL A -1 uu 0 0 A -1 LL A up 0 + A ûp ph , f û = f û - K A ûu A ûE A -1 uu 0 0 A -1 LL f u 0 , A pû ûh = K A pu A -1 uu A uû -A pû ûh , A pp ph = K A pu A -1 uu A up ph , f p = f p - K A pu A -1 uu f u ,
The matrix vector form of the equation is not required for the HFV method. In fact, the equations can be written directly in the variational form as the inverse of the local problem can be deduced analytically, but the formulation needs to be derived. In the operator in equation (5.32), each velocity component is only coupled with the pressure as A ûû is a block diagonal matrix that is invertible. While the pressure is coupled with all the components with A pp being a symmetric matrix despite the advection. It has one zero eigenvalue that vanishes with setting the pressure boundary conditions. Thus, the formulation is well-posed with a unique velocity and pressure traces. As conventionally done in HDG, ûh and ph are used to compute u h from the local problem. The convergence is first-order as expected. Additionally, HFV inherits all the divergence-free HDG properties being exactly mass and momentum conserving as well as being energy-stable. Also, p-adaptivity can be implemented and switch to higher order HDG. An additional benefit is that first-order velocity derivatives are found in the cell centers. The results obtained for the lid driven cavity test case at Re = 100 are presented below. The HFV method is only applicable for triangular and tetrahedral meshes as the normal face velocity is continuous across the faces. Furthermore, this method presents the hybridization as a general concept that can be applied for different discretization methods as done in [START_REF] Giacomini | A second-order face-centred finite volume method on general meshes with automatic mesh adaptation[END_REF].

2D Lid-Driven Cavity

Deciding which method is better for simulating incompressible flows can be abstract. To set a full multi-variable comparison, many aspects should be considered apart from the variational formulations. For instance, the storage requirements, efficient coding, preconditioner & linear solver, the test case, degree of accuracy desired, and time stepping. Accordingly, a comparison is performed to shed light on the possibility and limitation of the HDG method. Conducting a thorough comparison demands a full-scale DG based code, not just a prototype, which is the case of the present study.

The regularized lid-driven cavity example defined on 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 is presented for four different orders, with m = 0 to represent the first-order finite volume at Re = 1000. Besides, HDG of the order 3, 6, and 8 are presented. Furthermore, the results are compared with the second-order finite volume solver ISIS-CFD [START_REF] Deng | Ship flow simulations with the ISIS CFD code[END_REF] as well as OpenFOAM. ISIS-CFD solver is based on a velocity-pressure coupled approach and referred to as FV-C, while the OpenFOAM solver is based on a decoupled approach and referred to as FV-S. Both finite volume solvers lead to the same velocity profiles.

The boundary condition is on the top moving wall is given as,

u =      1 -cos(4πx) 2 , if x < 0.25 or x > 0.75 1, if 0.25 ≤ x ≤ 0.75 (5.33)
With zero velocity for the rest of the boundaries. Additionally, the original lid-driven cavity with, u = 1, is presented to observe the effect of the discontinuity. The total kinetic energy of the flow is chosen to measure the level of computational error and defined as,

KE = Ω 1 2 u 2 + v 2 dx
There is no analytical solution to this problem and the errors are calculated based on the power series fitting. As expected, the magnitude of the error is lower as the polynomial order increases as shown in figure 5.5, with the errors of the second-order finite volume method are between P0 and P3. However, the degrees of freedom might be misleading because the size of the global coupled operator is what decides the storage requirements. In figure 5.6, the number of non-zeros in the operator is plotted against the degrees of freedom. It is noticed that as the order increases, the storage requirements increase for the HDG methods. While the decoupled finite volume has the lowest storage requirements and the coupled finite volume approach nearly has the same DOF as the HFV. This presents a limitation for the high-order methods, especially the hybridizable DG. The number of non-zeros is proportional to DOF and for meshes with millions of degrees of freedom, the number of non-zeros becomes enormous. This limitation is often circumvented in compressible flow solvers as explicit time stepping methods can be implemented. In figure 5.7, the total computational time is compared with the error percentage with no optimizations done to the HDG solver. Since there are no memory limitations in this test case the computational time decreases theoretically as the approximation order increases. However, this point is subjected to preconditioners, linear solvers, and the number of non-zeros. This figure is given to prove that high-order methods are not necessarily slower than low-order ones. Another factor that increases the computational efficiency of the high-order methods is the faster iterative convergence. For a given CPU cost, DG provides a better solution than FV as FV-C is more accurate than FV-S for a given CPU cost. For FV, this is only due to the fact that we use much more memory since the solution accuracy is identical. For DG, we have two effects which are mixed, the increase of accuracy and the local coupled formulation. Figure 5.8 shows the number of Picard iterations for the solution to converge plotted against the mesh size. The number of iterations is nearly constant for m ≥ 3, while it increases as the number of degrees of freedom increases for finite volume. It is often perceived that the increased number of iterations for the low-order methods is associated with the uncoupling of the solver. This is observed from the number of iterations of the segregated approach (FV-S). However, the number of iterations for the coupled hybrid finite volume (P0) approach also increases as the mesh is refined. Finally, figures 5.9 and 5.10 illustrate the mesh dependency for the regularized and the original lid-driven test case respectively. The solution using high-order methods converges to a mesh independent solution much faster than the low-order method for the smooth test case as well as the case with the discontinuity in the velocity. To sum up the test case, low-order methods have an advantage in terms of storage, as well as the availability of preconditioners and efficient linear solvers. On the other hand, the high-order divergence-free HDG method is faster and more accurate if there are no memory limitations even for solutions that have singularities. High-order HDG for incompressible flows is not well-established yet for large scale computing due to the memory limitations and the lack of efficient preconditioners. The plotted data are given in the following tables. Where Elem is the number of elements, Iter is the number of iterations to converge, Time is the time taken in seconds, nnz is the number of non-zeros, DOF is the degrees of freedom, KE R is the total kinetic energy of the regularized lid-driven test case, and KE is the total kinetic energy of the original lid-driven test case. mathematical model used in both methods is the same but the meshes are not similar as each method has its meshing requirements.

The comparison between the FV and HDG solutions uses a typical cell size defined by, (5.34)

r i = h i h 1 = N ref N DOF 1/2
, where N ref is the number of DOF of the finest FV grid.

The numerical solutions are assumed to follow, (5.35)

φ i = φ o + αr p i ,
where φ i is any functional or local quantity of interest at grid level r i , φ o is the estimate of the exact solution, α is a constant related to the error level and p is the observed order of grid refinement. The data of the seven finest grids of FV and the five finest grids of HDG are used to determine φ o , α and p in the least squares sense. It is possible that some cases do not lead to a solution with p > 0. In those cases, the fit is performed with (5.36)

φ i = φ o + α 1 r i + α 1 r 2 i .
However, this fit is just a rescue solution to estimate φ o .

The selected quantities of interest are:

• The friction drag coefficient of the plate C D ;

• The skin friction coefficient C f at five locations along the plate, x = 0.01L, x = 0.25L, x = 0.5L, x = 0.75L and x = 0.99L;

• The horizontal mean velocity component u, the turbulence kinetic energy k and the eddy-viscosity ν t at five locations of three profiles located at x = 0.25L, x = 0.5L and x = 0.75L.

Figure 5.11 presents the convergence with grid refinement of C D . HDG(u) results are based on C D calculated from the u solution, whereas HDG(E) is determined from velocity derivative, which is also a dependent variable in HDG. There is an excellent agreement between the FV and HDG(E) solution. For the same number of DOF, the numerical error of the HDG solution is significantly smaller than that obtained for the FV method. The HDG(u) solution exhibits the largest standard deviation of the least squares fit due to a little "noise" in the data. The exact source of the noise is not clear, however, it is believed that the aliasing error introduced to damp the oscillations might be a reason. Additionally, in HDG the simulation is stopped before the iterative convergence reaches the machine precision. 5.16 present the C f results at the five selected locations. x = 0.5L coincides with a cell face and so the HDG solution presents two results, one from the left cell and another from the right cell. Therefore, at x = 0.5L HDG produces 4 estimates of C f . Some remarks can be observed;

h i /h 1 C D ×10 3 0 1 2 3 
• The results at x = 0.01L exhibit the largest differences between the extrapolated FV and HDG solutions. It is believed that this point is affected by the singularity at the leading edge. On the other hand, the fit for HDG(u) is not presented because the result is too affected by the noise in the data.

• At x = 0.75L it is not possible to obtain a reliable fit to the HDG data. Although the differences between the five grids are much smaller than in FV data, the observed behaviour is not monotonic.

• At x = 0.5L, the HDG(E) results from the two sides are identical and very similar to the HDG(u) from the left cell. However, the data from the HDG(u) right cell is different but still consistent with the remaining solutions.

Figure 5.17 to 5.19 present the convergence of the local flow quantities. Although it is not easy to obtain the observed order of grid convergence at some locations, especially for the HDG data, there is a remarkable consistency between the FV and HDG solutions for the flow variables. It is also evident that for an equal number of DOF, the HDG solutions exhibit a significantly smaller numerical error than the FV solution. These trends are observed for integral, surface and local quantities. 

3D Flow Past a Cylinder

The desired objective of these developments is to obtain accurate results for 3D geometries. Most of the observations in the 2D test case are extended to 3D. Unfortunately, performing a systematic 3D test case was out of reach in this work for the following reasons; -The lack of a 3D high-order mesher.

-Memory limitations.

-The lack of preconditioner for hybridized methods.

Instead in this section, a brief illustration is given for 3D flows and what to expect. First, the so-called curse of dimensionality is evident in 3D in the incompressible Navier-Stokes equation in terms of storage and the size of the local elemental problem. In table 5.5, the size of the local problem that is to be solved directly is given for each order. The degrees of freedom per hexahedron is given by (m + 1) 3 , and the size of the local problem is degrees of freedom multiplied by 12, the 3 velocity components and their gradients. In addition, (m + 1) 3 -1 degrees of freedom for the pressure. It is noticed that the size becomes a computational limitation as the order increases, knowing that the local elemental matrix is inverted every iteration. One can eliminate the auxiliary variable from the formulation and remove the 9 components of the velocity gradient by using SIP as done in [START_REF] Rhebergen | A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field[END_REF]. However, the accuracy of the calculation of the viscous force will decrease. Although these computations can be efficiently done in parallel, they can consume a considerable amount of time. Therefore, efficient state-of-art coding implementations need to be considered for these types of discretizations. Moreover, an efficient preconditioner and linear-solvers become essential for 3D cases for HDG to be able to compete with the current finite volume solvers. Reassuringly, it is shown in [START_REF] Kirby | To CG or to HDG: a comparative study[END_REF], that HDG can be as efficient as CG.

The formulation is tested for the benchmark test case, the laminar flow past a cylinder. We follow the benchmark test case with varying Reynolds number of [START_REF] Schäfer | Benchmark computations of laminar flow around a cylinder[END_REF]. Additional FV and FE results can be found in [START_REF] Bayraktar | Benchmark computations of 3D laminar flow around a cylinder with CFX, Open-FOAM and FeatFlow[END_REF]. The goal of this study is to assess the enhancement of the accuracy per degrees of freedom for high-order methods in time dependent problems. Second-order optimized (BF2OPT) time scheme is applied with a constant time step of 0.01s. The time step is chosen so that the spatial error would be dominating the total error. The geometry is given in figure 5.20. The geometry is simple and the high-order meshing is done by Gmsh software as shown in figure 5.21 [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. The mesh is extruded by two layers in the z direction to make a mesh of curved hexahedrons. Since the cylinder can be given by a second-order polynomial, a second-order mesh is sufficient to be extrapolated to higher orders. An isoparametric mapping is done between the second-order nodes generated by Gmsh and the desired polynomial order The results with m = 6, max C D is 3.2548399 with an error of 1.30%, while the min C L is -0.010386910 with an error of 5.78%. Using FeatFlow, with 58208 DOFs for the velocity, the max drag and min lift coefficients are 3.2207 and -0.0095 respectively, with errors 2.34% and 13.6%. Although the DOF are less using the divergence-free HDG, the results are closer to the reference solution. This supports the superiority of the high-order methods in simulating incompressible flows regarding accuracy.

The accuracy is comparable with the OpenFOAM finite volume solver with 393,216 DOF. The max C D and min C L are 3.3233 and -0.0118 with the errors 0.8 % and 7.3 %. It is noted that the second-order finite volume solver used around 8.68 times the number of DOF to reach the same orders of magnitude of the errors.

The same conclusions can be reached by comparing the results with the results obtained from the finite volume solver CFX. The max C D and min C L are 3.3334 and -0.0118 with the errors 1.1% and 7.27% for 410,800 DOF. It is noted that the results obtained using HDG are not on an optimal mesh and better results can be obtained. However, the superiority of the high-order methods is observed for the under-resolved meshes or non-optimal meshes.

A note on stability

The same test case is implemented using an HDG method that is not mass conserving. Despite the flow being laminar, the simulations become unstable after a couple of time steps due to the time marching with velocity fields that are not pointwise divergence-free or H (div)-conforming. Since the divergence of the velocity field is proportional to the error, one can reduce the error by mesh refinement, however, this is not a robust solution for industrial scale simulations. On the other hand, the developed divergence-free HDG method did not have any stability issues with the under-resolved mesh at m = 2. Moreover, the usage of an implicit time marching scheme with the energy-stable HDG discretization makes the method numerically robust despite the high-order approximations. This feature is believed to be of critical importance for under-resolved LES and RANS simulations.

Chapter 6

Conclusion and Future work

Complying with the objectives of the thesis, an arbitrary high-order formulation on unstructured meshes for solving the unsteady incompressible Navier-Stokes equations is developed. It is based on the divergence-free hybridizable discontinuous Galerkin method. The variational formulation is an energy stable formulation that is mass and momentum conserving. It computes exactly pointwise divergence-free, and H (div)-conforming velocity fields on all standard element types. The key point of the proposed method besides the static condensation is the usage of the newly introduced reduced elements to exactly enforce the divergence-free property.

During the testing of the method, it was noticed that the diffusion stabilization parameter plays an essential role in the stability of convection dominated flows. Further, it is proved that the inverse proportionality with the diffusivity or viscosity adds numerical robustness to the formulation. Additionally, the effect of the near wall ill-conditioning is illustrated. For Navier-Stokes equations, the stabilization parameter should be directly proportional to the Reynolds number as derived from the stability constraints and the dimensional analysis. Robustness for test cases up to Re = 10 9 is shown by the numerical test cases.

Moreover, the method is implemented to solve the Reynolds averaged Navier-Stokes equations supplemented with two-equation turbulence models. The formulation is based on solving the specific rate of dissipation, ω without altering the original closure models, or adding artificial dissipation in the high-order framework. Additionally, a one-equation transition model is added to examine the high-order methods for simulating transitional flows. Finally, these developments were implemented and tested in a prototype code named Srayan.

Attempting to answer the question provoked in the introduction "Is discontinuous Galerkin method convenient for industrial incompressible flow applications?" leads to many different controversies, yet to be settled. Notwithstanding, a deeper understanding of the topic is reached. The potential and limitations of the DG method are rigorously demonstrated and encountered in this work for laminar and RANS modeled mono-fluid incompressible turbulent flows on a stationary geometry. The DG potentials and limitations for such simulations can be summarized as,

2) The preconditioners and linear solvers. Due to the high-order polynomials and solution discontinuities, the operators are often badly conditioned. Also, the hybridization complicates the linear system even more. The algebraic multi-grid, multi-grid, and iLU symmetric Gauss-Seidel methods are currently being used. Yet solving an operator deduced from the finite volume method is much easier.

3) Global operator storage. The hybridization and implicit operators are essential to have a fully conservative scheme, however, the size of the operator after hybridization is huge compared to finite volume. Maybe the better accuracy per degree of freedom can balance the storage issue. Solving this problem with explicit methods is not applicable because of the incompressibility constraint and the time step size limitation.

4) Can we obtain H (div)-conforming velocity fields while using p-adaptivity? The method relies on ph being the same degree of ûh on the element boundaries for acquiring pointwise continuous normal velocities across the element boundaries. When p-adaptivity is applied, how can this condition be imposed? 5) Oscillations: Is the k-ω RANS model robust enough for high-order methods? The robustness of the k-ω model is highly dependent on the mesh and the inlet eddy viscosity ratio. For instance, there is a restriction on the maximum mesh size to have a converged solution for each eddy viscosity. For complex industrial geometries, clean meshes are sometimes hard to obtain. 6) High-order time integration schemes. Low-order time integration schemes can limit the overall accuracy of the method even if high-order spatial discretization methods are used and temporal error can add undesirable considerable numerical dissipation to the LES and DNS simulations. Thus, stable high-order time integration methods are highly required to have a globally high-order discretization in space and time.

These potentials and limitations motivate further exploration of this topic. A list of the possible topics can be;

Future work

1) The extension of the method to for non-conforming meshes and hp-adaptivity. Inspect the possibility of modifying the pressure and velocity spaces to compute H (div)conforming velocity fields.

2) Modifying a two-equation RANS model to accept the negative values. As done for the negative Spalart-Allmaras model, the k-kl model might be possible to be modified in a similar manner. This would result in a robust high-order accurate RANS model even on bad meshes.

3) Applying the hybrid RANS/LES or PANS using the divergence-free HDG. One of the main goals of using high-order methods is to make LES more affordable. Great results are expected if the developed RANS model is combined with an LES solver. 4) Modifying the method to be solved with a multi-grid matrix-free solver while retaining all of its conservative properties. Since p h and ph are the essential variables for the exact mass conservation. BR2 DG method can be used to discretize the momentum equations, while divergence-free HDG for the continuity equation. With this formulation, the operator can be solved in a matrix-free way by using the multi-grid method. Thus, eliminating the storage problem and improving the computation time. 5) Further dimensionality reduction. Can we apply further dimensionality reduction and express the solution in terms of the values at its vertices?

Résumé

Une méthode haut ordre de résolution des équations de Navier-Stokes pour un écoulement incompressible basée sur une discrétisation éléments finis Galerkin discontinu hybride est présentée pour laquelle la stabilité énergétique est assurée et la masse et la quantité de mouvement sont conservées. La formulation calcule exactement des champs de vitesse solénoïdaux pour des types d'élément standard sans avoir recours à des opérateurs de post-traitement ou à des espaces fonctionnels H (div) conformes. Ceci est réalisé en proposant une définition simple et nouvelle de l'espace fonctionnel pour la pression, de sorte qu'il contienne la divergence de la vitesse discrétisée. Une attention particulière est accordée à l'application de cette méthode à différentes formes d'éléments en introduisant le concept d'éléments d'ordre réduit pour toutes les formes standard en 2D et 3D. En outre, la contrainte d'incompressibilité est gérée via la condensation statique pour résoudre le problème du point selle. De plus, dans le but de simuler des écoulements à nombres de Reynolds élevés, la signification de la stabilisation de la diffusion dans le cadre discontinue de Galerkin hybride est analysée. Alors que dans la littérature, le terme de stabilisation de la diffusion est directement proportionnel à la diffusivité ou à la viscosité pour les équations de Navier-Stokes, la présente étude dérive mathématiquement une nouvelle expression pour le terme de stabilisation de diffusion où le terme est inversement proportionnel à la diffusivité ou à la viscosité. Son importance pour les écoulements dominés par la convection est soulignée et étayée par de nombreux exemples numériques. De plus, la formulation proposée pour les équations de Navier-Stokes en régime incompressible est étendue pour résoudre ces équations en moyenne de Reynolds (RANSE) pour les modèles de turbulence TNT, BSL et SST k -ω pour des nombres de Reynolds jusqu'à 10 9 . La résolution des équations en formulation RANSE est une tâche difficile pour les méthodes d'ordre élevé, en raison de profils non réguliers des quantités caractérisant la turbulence. Dans le cadre de la formulation Galerkin discontinu, l'approximation polynomiale de ces quantités conduit à de grandes oscillations qui impactent le solveur non linéaire. Compte tenu de la complexité des méthodes d'ordre élevé et des erreurs de modélisation assez importantes de la modélisation RANS, les méthodes d'ordre inférieur sont par conséquent, souvent considérées dans la littérature comme plus pragmatiques. Cependant, cette thèse montre que la résolution des équations RANSE avec la méthode d'ordre élevé proposée est robuste et conduit à des amplitudes d'erreur significativement plus faibles par rapport aux solveurs basés sur les volumes finis du second ordre. De plus, on observe une réduction remarquable du nombre d'itérations pour obtenir une solution convergée. Une attention particulière est portée au traitement du taux spécifique de dissipation de la turbulence ω dans le cadre des approximations d'ordre élevé. Les possibilités et les limites de la simulation d'écoulements incompressibles industriels à l'aide de cette formulation haut-ordre sont évaluées afin de tirer des conclusions générales pour les applications industrielles.

  while the surface integrals as, a, b ∂K = ∂K a b ds, a, b ∂K = ∂K a • b ds, A, B ∂K = ∂K A : B ds.
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 23 Figure 2.3 -Numerical integration example
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 24 Figure 2.4 -Nodal points and traces of the HDG method for quadrilateral elements, m = 2
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 25 Figure 2.5 -Case 1 x-velocity field
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 2 Figure 2.7 -Case 2 HDG solution s h for τ = ℓκ
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 2 Figure 2.8 -Case 2 local conditioning for τ = ℓκ
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 2 Figure 2.9 -Case 2 HDG solution s h for τ = ℓ/κ
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 2 Figure 2.11 -x-velocity profile for the channel flow at Re = 2 × 10 8
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 212 Figure 2.12 -Turbulence kinetic energy profile for the channel flow at Re = 2 × 10 8
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 2 Figure 2.13 -Specific rate of dissipation profile for the channel flow at Re = 2 × 10 8
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 31332333234 Figure 3.1 -Velocity nodal points and traces of the HDG method for triangular elements, m = 3

∂K

  To complete the HDG discretization, the momentum transmission equations extracted from equations (3.19) & (3.20) are added to ensure inter-element continuity of the normal flux across the interface. [[(u ⊗ u + Ip -νL) n]] = 0, on Γ (3.30) [[u ⊗ n]] = 0, on Γ (3.31) Equation (3.31) is automatically satisfied by approximating the velocity flux as the trace, (3.32) u h ≈ ûh , on ∂K
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 353236 Figure 3.5 -A monomial basis for a triangular element of an order of m

Figure 3 . 8 -x x 2 x 3 y xy x 2 y x 3 y y 2 3 1 x x 2 x 3 y xy x 2 y x 3 y y 2 xy 2 x 2 y 2 x 3 y 2 y 3 xy 3 x 2 y 3 Figure 3 . 9 -

 3823339 Figure 3.8 -A monomial basis for a quad element of an order of m
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 310 Figure 3.10 -Arbitrary node elimination -Reduced element without modification
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 312313 Figure 3.12 -Full & reduced 3 rd order element -Modified reduced element
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 3 Figure 3.14 -Second-order hexahedron
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 3 Figure 3.16 -Second-order tetrahedron
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 593 Figure 3.18 -Second-order prism
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 603 Figure 3.20 -Second-order pyramid
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 2 Global problem well-posedness for the 2D full-reduced discrete Stokes problem Left Bottom Right Top Well-posedness Stability constraint D Where D stands for Dirichlet and N stands for Neumann boundary conditions for the velocity. The global problem is only well-posed if the number of the Neumann orthogonal sides are larger or equal than d, where d is the spatial dimension of the problem. Another important observation is that the problem is well-posed if the stability term τ = 0 only for the case with two perpendicular Dirichlet sides. It is shown in the next section that optimal errors are obtained when τ = 0.
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 23 .70) p = 0.5 ln (2x -x 2 + 0.25) ln (4y 3 -3y 2 + 1.25) (3.71)
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 323 Figure 3.23 -The manufactured solution x,y velocity profiles and the pressure from top to bottom
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 324 Figure 3.24 -Iterative convergence at ν = 10 -2
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 325 Figure 3.25 -Iterative convergence at ν = 10 -8
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 326327328329 Figure 3.26 -Error in x-velocity for [[u h • n]] = 0
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 3 Figure 3.30 -H2P3 Figure 3.31 -H2P4 Figure 3.32 -H2P5

Figure 3 . 5 Figure 3 . 38 -

 35338 Figure 3.35 -x-velocity at x = 0.5 Figure 3.36 -Iterative error
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 3 Figure 3.39 -Lid-driven cavity x-velocity plot

. 43 .

 43 The inlet boundary condition is set as, u = 1 + 0.2 sin(2π y H )e -10t (3.74) The time dependent term vanishes numerically for t>3 and the inlet becomes uniform flow. The square height is d = 0.3, the height of the domain is H = 3, the length of the domain L = 5H, the inlet distance to the square L in = 3d. The velocity components are plotted at t > 90 in figures 3.44 and 3.45.
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 3 Figure 3.43 -The grid

Figure 3 .

 3 Figure 3.44 -x-velocity vortex shedding

  First, the transmission equations are extracted from the partial differential equations (4.6),(4.7), and (4.8), then written in the continuous setting as,[[(u ⊗ u + Ip -ν e E) n]] = 0, on F (4.11) [[u ⊗ n]] = 0, on F (4.12) [[u • n]] = 0,on F (4.13) These equations imply the continuity of the flux across the faces. The approximate variables on Γ belong to the spaces, ûh ∈ V h s , ph ∈ S h s Equation (4.12) is automatically satisfied by approximating the velocity flux as the trace, ûh ≈ u h , on ∂K (4.14)

  Boundary conditions; the application of the boundary condition is simple for the HDG method. The trace variables are defined at the boundary conditions as,ûh = u D , on ∂K ∩ Γ D (4.20) while for the pressure, ph = p D , on ∂K ∩ Γ N (4.21) where u D is the velocity at the Dirichlet boundary condition obtained from equation (4.9), and p D is a part of the flux g N at the Neumann boundary condition obtained from equation (4.10).

. 25 )

 25 To enforce the Neumann boundary conditions for equation(4.24), equation (4.10) is directly used to replace the flux at the Neumann boundary. Also, knowing that ψ h = 0 on Γ D , we get,(4.26) 
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 41 Figure 4.1 -Oscillations damping by aliasing
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 42 Figure 4.2 -A mesh with the removed wall elements

Figure 4 . 3 -Figure 4 . 4 -Figure 4 . 5 -

 434445 Figure 4.3 -Errors at Re = 10 5 for different ℓ
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 46 Figure 4.6 -x-velocity profile for the channel flow at Re = 2 × 10 6
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 47 Figure 4.7 -Turbulence kinetic energy for the channel flow at Re = 2 × 10 6

Figure 4 . 8 -

 48 Figure 4.8 -Specific rate of dissipation profile for the channel flow at Re = 2 × 10 6
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 49 Figure 4.9 -x-velocity profile for the channel flow at Re = 2 × 10 8
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 410 Figure 4.10 -Turbulence kinetic energy for the channel flow at Re = 2 × 10 8
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 411 Figure 4.11 -Specific rate of dissipation profile for the channel flow at Re = 2 × 10 8
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 413 Figure 4.13 -Convergence rate of the skin friction
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 414 Figure 4.14 -Coarse grids convergence
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 4 Figure 4.15 -2D zero pressure gradient flat plate mesh

  . The same comparisons are plotted in figures 4.19, 4.20, and 4.21. 
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 416417 Figure 4.16 -Comparison with the velocity law
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 418419 Figure 4.18 -The skin friction along the flat plate
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 420 Figure 4.20 -Comparison with the skin friction
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 421 Figure 4.21 -The skin friction along the flat plate
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 4 Figure 4.22 -Flat plate mesh with symmetry plane after the trailing edge
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 423424 Figure 4.23 -Comparison with the velocity law
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 426 Figure 4.26 -Comparison of the skin friction plotted with the chord length
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 427 Figure 4.27 -Comparison of the pressure coefficient plotted with the chord length
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 42824 Figure 4.28 -The mesh of a NACA 0012 airfoil with y + elem = 2
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 4 Figure 4.30 -y-velocity profile around a NACA 0012 airfoil at Re = 6 × 10 6
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 431 Figure 4.31 -Pressure profile around a NACA 0012 airfoil at Re = 6.6 × 10 6
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 432 Figure 4.32 -Turbulence kinetic energy profile around a NACA 0012 airfoil at Re = 6×10 6
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 434 Figure 4.34 -Eddy viscosity ratio profile around a NACA 0012 airfoil at Re = 6 × 10 6
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 433 Figure 4.33 -The inverse of the specific rate of dissipation profile around a NACA 0012 airfoil at Re = 6 × 10 6

λ

  100, c e2 = 50, c a2 = 0.06, σ λ = 1.0 T u L = min(θL = min(max(λ θL , -1.0), 1.0)

101 )

 101 T u L = min(100 2Nk h /3 Nω h Nd , 100) (4.102) λ θL = -7.57 • 10 -3 N y (Nd) 2 ν + 0.0128 (4.103)λ θL = min(max(λ θL , -1.0), 1.0) (4.104) Then F P G (λ θL ) =    min(1 + C P G1 λ θL , C lim P G1), λ θL ≥ 0 min(1 + C P G1 λ θL + C P G3 min λ θL + 0.0681, 0], C lim P G2 , λ θL < 0
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 421 Figure 4.35 -T3A mesh
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 4 Figure 4.36 -T3A x-velocity profile Figure 4.37 -T3A y-velocity profile
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 440 Figure 4.40 -T3A γ profile Figure 4.41 -T3A k profile
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 4 Figure 4.42 -T3A skin friction convergence
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 443 Figure 4.43 -Iterative Convergence on the mesh 380x120
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 4446 Figure 4.44 -T3A skin friction for different grids
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 447 Figure 4.47 -Skin friction at the local maximum
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 5152 Figure 5.1 -Nodal points and traces of the HFV method
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 53 Figure 5.3 -u plot for the lid driven cavity
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 55 Figure 5.5 -Mesh size vs error Figure 5.6 -Mesh size vs storage
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 57 Figure 5.7 -Computational time vs error Figure 5.8 -Mesh size vs iterations
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 59 Figure 5.9 -Mesh size vs kinetic energy for the regularized case
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 516 Figure 5.16 -Skin friction coefficient C f at x = 0.99L as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.

Figures 5. 12

 12 Figures 5.12 to 5.16 present the C f results at the five selected locations. x = 0.5L coincides with a cell face and so the HDG solution presents two results, one from the left cell and another from the right cell. Therefore, at x = 0.5L HDG produces 4 estimates of C f . Some remarks can be observed;

  Figures 5.12 to 5.16 present the C f results at the five selected locations. x = 0.5L coincides with a cell face and so the HDG solution presents two results, one from the left cell and another from the right cell. Therefore, at x = 0.5L HDG produces 4 estimates of C f . Some remarks can be observed;

Figure 5 .

 5 Figure 5.17 -u, k and ν t at 5 different locations of the x = 0.25L profiles as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.

Figure 5 .

 5 Figure 5.18 -u, k and ν t at 5 different locations of the x = 0.5L profiles as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.
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 5 Figure 5.19 -u, k and ν t at 5 different locations of the x = 0.75L profiles as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.
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 520 Figure 5.20
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 521 Figure 5.21

  . The test is performed for m = 4 and m = 6 and the lift and drag coefficients are obtained as a function of time. The 3D mesh consists of 132 hexahedral elements. For m = 4, in the xy plane there are 1650 DOF with 10 layers in z to have 16,500 DOF. While for m = 6, in the xy plane there are 3234 DOF with 14 layers in z to have 45,276 DOF. The reference results are obtained with the finite element solver FeatFlow with 25,725,701 DOF [12]. The high-order results are obtained using Srayan and the lift and drag coefficients obtained are plotted against the reference results on figures 5.22 and 5.23.
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 5 Figure 5.22 -C L vs time

Figure 5 .

 5 Figure 5.23 -C D vs time
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 2 

	2 -Nodal points and variational forms comparison (The more the ' | ' indicates more error or effort)
	node type form	error effort used
	Gauss Gauss Gauss Lobatto Lobatto	weak strong modified weak strong	| | ||| || ||	|| ||| || | |	--

  .1, that the DG method is stable if C 11 > 0 and C 22 ≥ 0. The values of C 11 , C 12 , C 21 , and C 22 are obtained from equations (2.110) and (2.111) with c = 0,

Table 2 .

 2 

4 -Case 2 errors and convergence

Table 2 .

 2 6 -Manufactured solution Re = 10 9

	10 × 10 16 × 16 20 × 20	✺✳✾✾❡✲✵✹ ✶✳✾✵❡✲✵✹ ✽✳✹✻❡✲✵✺	✲ ✷✳✹ ✸✳✻	✼✳✽✾❡✲✵✶ ✷✳✷✽❡✲✵✶ ✶✳✵✷❡✲✵✶	✲ ✷✳✻ ✸✳✻	✶✳✻✼❡✲✵✹ ✷✳✸✻❡✲✵✺ ✾✳✼✾❡✲✵✻	✲ ✹✳✶ ✸✳✾	✺✳✺✵❡✲✵✸ ✶✳✵✵❡✲✵✸ ✹✳✸✾❡✲✵✹	✲ ✸✳✻ ✸✳✼

  2. The turbulence quantities, k and ω are strictly positive. Solving them coupled with the RANS momentum equations delivers a challenging problem for high-order methods in general. For particularity HDG, this is a combination of the two previously presented examples as presented in chapter 4. The added robustness by setting the τ ∝ 1/ν, proves to be essential in reaching a converged solution. This section points out the sensitivity of varying the stabilization parameter in RANS simulations. The channel flow test case for Re = 2 × 10

8 

is solved, with the stabilization parameter for each equation set as τ = Re/100 = 10 6 . Convergence was not reached for τ = 10 3 or lower. Periodic boundary conditions are applied on the inlet and outlet with two wall boundary conditions on the top and bottom boundaries. A pressure gradient is imposed by a source term to obtain the required Reynolds number. The solution obtained, is compared to a reference solution in figures 2.11, 2.12, and 2.13. Where the reference solution is a solution obtained by a finite volume solver on a very fine grid.

Table 3 .

 3 1 -Lebesque constant values for quad elements

	Order Full Reduced modified Reduced Full equidistant Triangle
	2	1.56	3.00	3.00	1.56	1.67
	3	2.25	3.33	7.38	2.66	2.11
	4	2.67	3.85	11.25	4.87	2.66
	5	3.16	4.40	21.86	9.64	3.12
	6	3.51	5.33	24.14	20.69	3.70
	7	3.89	5.35	46.67	48.02	4.27
	8	4.18	6.79	41.67	119.6	4.96
	9	4.49	6.48	83.47	318.5	5.74
	10	4.75	8.13	63.85	893.5	6.67

Table 3 .

 3 3 -Convergence for 4 th order full-reduced element τ = 0

	Mesh	h 1	h 2	h 3	h 4	h 5
	u h -u p h -p u	1.40e-04 8.78e-06 5.49e-07 3.43e-08 2.14e-09 2.00e-03 1.23e-04 7.67e-06 4.79e-07 2.99e-08 -3.99 3.99 3.99 4.00
	p	-	4.02	3.99	3.99	3.99
	Table 3.4 -Convergence for 4 th order full-reduced element τ = 0.01
	Mesh	h 1	h 2	h 3	h 4	h 5
	u h -u p h -p u	1.40e-04 8.78e-06 5.49e-07 3.43e-08 2.14e-09 2.00e-03 1.35e-04 9.58e-06 7.89e-07 7.79e-08 -3.99 3.99 3.99 4.00
	p	-	3.89	3.81	3.60	3.34
	Table 3.5 -Convergence for 4 th order full-reduced element τ = 1
	Mesh	h 1	h 2	h 3	h 4	h 5
	u h -u p h -p u	1.40e-04 8.78e-06 5.49e-07 3.43e-08 2.14e-09 2.68e-02 3.30e-03 4.17e-04 5.21e-05 6.50e-06 -3.99 3.99 3.99 4.00
	p	-	3.02	2.98	3.00	3.00

Table 3 .

 3 6 -Pressure Spaces Options for the Quads and Hexas p h

Table 3 .

 3 

		7 -3 rd order full-reduced quadrilateral element
	Cells 32 × 32 64 × 64 128 × 128	u h -u L2 rate 5.92e-05 -7.44e-06 2.99 9.31e-07 3.00	v h -v L2 rate 2.10e-05 -2.68e-06 2.97 3.36e-07 3.00	p h -p L2 rate 2.81e-02 -7.10e-03 1.98 1.80e-03 1.98
	Table 3.8 -6 th order full-reduced quadrilateral element
	Cells 16 × 16 32 × 32 64 × 64	u h -u L2 rate 2.78e-07 -4.33e-09 6.00 6.82e-11 5.99	v h -v L2 rate 3.62e-07 -8.00e-09 5.60 1.14e-10 5.82	p h -p L2 rate 9.27e-05 -2.95e-06 4.97 9.67e-08 4.93

Table 3 .

 3 

		9 -3 rd order full-reduced element ν = 1
	Cells 16	u h -u L2 rate 8.60e-03 -	p h -p L2 rate 6.40e-03 -	∇ • u h ∞ 2.97e-14
	64	1.10e-03	2.97	1.60e-03	2.00	1.22e-13
	256	1.34e-04	3.04	3.85e-04	2.05	3.84e-13
	1024	1.67e-05	3.00	9.59e-05	2.00	1.89e-12
	4096	2.09e-06	3.00	2.39e-05	2.00	1.06e-11
	Table 3.10 -3 rd order full-reduced element ν = 0.001
	Cells 16	u h -u L2 rate 8.60e-03 -	p h -p L2 rate 7.49e-06 -	∇ • u h ∞ 7.45e-13
	64	1.10e-03	2.97	1.56e-06	2.26	5.28e-13
	256	1.34e-04	3.04	3.86e-07	2.01	1.48e-12
	1024	1.67e-05	3.00	9.59e-08	2.00	1.48e-12
	4096	2.09e-06	3.00	2.39e-08	2.00	1.64e-12

Table 3 .

 3 11 -3 rd order triangular m, m -1 element ν = 1

	Cells 64	u h -u L2 rate 9.06e-04 -	p h -p L2 rate 5.71e-04 -	∇ • u h ∞ 7.82e-14
	256	5.39e-05	4.07	6.09e-05	3.22	4.99e-13
	1024	3.42e-06	3.98	7.22e-06	3.08	1.87e-12
	4096	2.17e-07	3.98	8.89e-07	3.02	7.47e-12
	Table 3.12 -3 rd order triangular m, m -1 element ν = 0.001 Cells u h -u L2 rate p h -p L2 rate ∇ • u h ∞ 64 9.06e-04 -5.64e-04 -6.83e-12
	256	5.39e-05	4.07	6.06e-05	3.22	2.52e-11
	1024	3.42e-06	3.98	7.21e-06	3.07	3.81e-11
	4096	2.17e-07	3.98	8.89e-07	3.02	6.58e-11

Table 3 .

 3 

	Cells 54	u h -u L2 rate 1.55e-03 -	p h -p L2 rate 7.73e-04 -	∇ • u h ∞ 2.93e-12

13 -3 rd order quadrilateral and triangular full-reduced element ν = 1

  To close the local problem, the definition of the numerical flux terms, u h ⊗ u h and (ν eh E h ) in equations (4.17)& (4.18) is used.The local problem equations (4.30), (4.31), and (4.32) are solved elementally with forcing the velocity and pressure boundary conditions. This completes the formulation of the local problem. To solve the local and global problems of the RANS equations, the approximate effective viscosity ν eh needs to be determined. It is calculated from the turbulence model described in the next section.

Table 4 .

 4 1 -Manufactured solution Re = 10 7

	Cells 10x10 0.77 1.69e-04 y + u h -u	rate -	p h -p 1.38E-04	rate -
	13x13 0.50 5.01e-05 4.62 6.56E-05 2.84
	21x21 0.25 8.13e-06 3.79 1.60E-05 2.94
	28x28 0.18 2.70e-06 3.82 6.79E-06 2.97

Table 4 .

 4 2 -Verification for the channel flow at Re = 2 × 10 6

	Cells y	u mean	u max	k max	ω min	c -3
	30	0.98977 1.06747 4.05778e-03 0.255826092	2.45439	2.472245
	40	1.00084 1.07856 4.04762e-03 0.255880068	2.47955	2.474219
	60	1.00440 1.08214 4.04544e-03 0.255898627	2.47805	2.474755
	90	1.00525 1.08299 4.04446e-03 0.255903872	2.47705	2.474727
	120	1.00555 1.08330 4.04420e-03 0.255904877	2.47662	2.474714
	150	1.00571 1.08346 4.04396e-03 0.255905159	2.47636	2.474707
	180	1.00581 1.08356 4.04388e-03 0.255905265	2.47618	2.474704
	210	1.00588 1.08363 4.04379e-03 0.255905313	2.47605	2.474702
	240	1.00593 1.08368 4.04374e-03 0.255905337	2.47595	2.474700
	270	1.00597 1.08372 4.04370e-03 0.255905351	2.47587	2.474699
	300	1.00600 1.08375 4.04367e-03 0.255905359	2.47581	2.474698
	∞ Order	1.00579 1.08353 4.04396e-03 0.255905196 3.91 3.91 4.26 3.89	--	2.474716 5.72

f (u h ) × 10 -3 c f (E h ) × 10

Figure 4.12 -Convergence rate of u h , k h , and ω h

Table 4 . 3 -

 43 Verification of the viscous forces for the channel flow at Re = 2 × 10 6 Cells y f (u h ) × 10 -3 % error f (E h ) × 10 -3

	% error

Table 4 .

 4 4 -Verification of the skin friction for the flat plate at Re = ×10 7 Grid C D (u h ) × 10 -3 error % C D (E h ) × 10 -3

	error %

Table 4 .

 4 5 -Verification of the skin friction for the T3A test case Grid C D (u h ) × 10 -3 error % C D (E h ) × 10 -3

	error %

0 HDG(ul) p= 2.1 HDG(El) p= 2.1 x=0.5L h i /h 1

  Figure 5.11 -Drag coefficient C D as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.Figure 5.12 -Skin friction coefficient C f at x = 0.01L as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.Figure 5.13 -Skin friction coefficient C f at x = 0.25L as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.
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  5.14 -Skin friction coefficient C f at x = 0.5L as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.Figure5.15 -Skin friction coefficient C f at x = 0.75L as a function of grid refinement level. FV fit performed for the 7 finest grids 1 ≤ r i ≤ 2 and HDG fits performed for the 5 finest grids.
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Table 5 .

 5 5 -The size of a local Problem of a Hexahedron

	m DOF per Elem Local Problem Size
	0	1	13
	1	8	103
	2	27	350
	3	64	831
	4	125	1624
	5	216	2807
	6	343	4458
	7	512	6655
	8	729	9476

Table 5 .

 5 6 -Lift and drag for different solvers

	Solver	C D	% error	C L	% error	DOF
	FeatFlow	3.2207	2.34	-0.0095	13.6	58,208
	OpenFOAM 3.3233	0.80	-0.0118	7.30	393,216
	CFX	3.3334	1.10	-0.0118	7.27	410,800
	Srayan	3.2548	1.30	-0.0103	5.78	45,276
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to have the formulation defined over the sum of the elements as,

n, 1 ∂Ω = 0 (5.18)

To enforce the Neumann boundary conditions for equation (5.18), equation (5.5) is directly used to replace the flux at the Neumann boundary. Also, knowing that ψ h = 0 on Γ D , we get,

The boundary condition are enforced on equation (5.19), by using equation (5.14) to have,

The final step is to use the HFV fluxes (5.9), (5.12), and & (5.13) defined on ∂K.

where,

To complete the HFV discretization the local problem is formulated in the following section.

HFV Local Problem

The local problem is formed by applying the Galerkin method on equations (5.1), (5.2), and (5.3). In which, the approximate solutions are defined in the spaces,

The equations in the strong form can be written as,

The dummy variable, the pressure p h and its zero space are left as variables to extract the pressure trace. In equation (5.1), Green's theorem is applied once for the advection term, once for the pressure term, and twice for the diffusion term. In equation (5.2), it is applied once, while equation (5.3) is left in its strong form.

Better accuracy per degree of freedom. Considerably higher accuracy per degree of freedom is observed compared to the low-order method for laminar and RANS flows. This permits the usage of coarser meshes.

2) Less sensitivity to mesh deformation. As shown in the fully turbulent and transitional flows test cases, converged solutions were obtained using very high aspect ratios on triangular meshes using h-grids. On the other hand, finite volume solvers struggle with these types of meshes.

3) Convergence is reached in a reduced number of iterations. One iteration of HDG can be more costly than one FV iteration, but the HDG solver converges in much fewer iterations. Even better results can be obtained if a fictitious time is implemented to replace the manually set under-relaxation parameters.

4) The availability of the velocity gradients at the same order of accuracy of the velocity as well as the possibility of calculating higher gradients. HDG allows the local calculation of the velocity gradients on the same degrees of freedom as the velocity. This facilitates the calculation of the viscous stresses. Additionally, calculating higher-order derivatives for the velocity can be done element-wise on fully unstructured girds. Second-order derivatives (Hessian) are very useful for some criterion in transition or in automatic grid refinement.

5) Local calculation of the solution derivatives.

Exact high derivatives of the pressure and velocity solutions can be computed inside the elements up to the m + 1 derivative for the velocity and up to the m derivative for the pressure on fully unstructured grids for all element types. These values broaden the possibilities in error calculations and advanced physical modeling.

6) Physically conservative variational formulation.

The formulation presented in the variational form is physically correct likewise the finite volume formulations. Thus the formulation can be confidently extended to multi-physics problems.

7) Lower error magnitudes.

The error magnitude is lower as the order increases for the calculated forces. This is also observed in the accuracy of capturing the vortex shedding. Limitations 1) Availability of high-order meshing tools. Simply, without a high-order mesh, the DG formulation would compute the solution on a different geometry. For curved surfaces, the linear approximation of surface obtained from the current meshing tools leads to the suppression of the geometrical feature of the surface. Several commercial and academic groups are currently working on high-order meshing tools, such as NUMECA, Pointwise, Nektar++ at Imperial College of London, and Numerics Research Group at University of Stuttgart. Additionally, the NEFEM (NURBS-enhanced finite element method) method can provide a solution to this problem.
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