




Acknowledgments

I would like to thank all the members of my jury: Ana Cavalli, Romain Rouvoy,
Antoine Beugnard, Sébastien Mosser, and Gustavo Pinto, for reviewing my work,
attending my defense, and for the interesting questions and discussions that followed
my thesis defense.

Furthermore, I would like to sincerely thank my thesis advisors: Gerson Sunyé,
Massimo Tisi, Jérôme Rocheteau, and Jean-Marie Mottu for their guidance, support,
and patience that helped maintaining my work in the right way.

I also thank all the NaoMod team members for their constructive feedback
during our team meetings and coffee breaks, with a particular thought for my office
mates Joachim and Jolan that made A246 the best room to work in. Kudos to our
stolen sofa.

Finally I would like to thank my friends and family that were behind me during
this thesis, always supportive even during the hard times. Thank you all for the
joyful moments, for the long board game nights, for the trips to Etel. I wouldn’t
have succeeded without you.



Dedication

To Andréas
To Charline

To my Grandma, you would have been so proud



Résumé Français

Contexte

La modélisation est une activité récurrente dans tous les domaines scientifiques et
d’ingénierie qui consiste à représenter chacune des facettes d’un système à un niveau
d’abstraction adapté. Ces représentations sont appelées "modèles", et permettent
une meilleure compréhension de concepts complexes, si bien que les modèles sont
présents dans de nombreux domaines: mathématiques, biologie, ingénierie, etc...
En informatique, les modèles sont largement utilisés pour décrire tous les aspects
d’un logiciel: architecture, algorithmes, communications entre ses composants, et
son matériel.

L’Ingénierie Dirigée par les Modèles (IDM) est un processus de développement
qui centralise l’utilisation des modèles dans toutes les phases de la création d’un
logiciel: design, génération de code, vérification et validation, maintenance, évolu-
tion, etc... Dans le contexte de l’IDM, il est commun de vérifier qu’un logiciel est
conforme dès sa phase de conception en effectuant différents types d’analyses sur le
modèle à partir duquel le code sera généré.

De telles analyses peuvent être faites de deux manières: statiquement, ou
dynamiquement. Les analyses statiques sont effectuées en examinant le modèle sans
l’exécuter, par opposition aux analyses dynamiques qui sont effectuées pendant
l’exécution du modèle, ou après l’exécution du modèle, par le biais de traces
d’exécution. Néanmoins, cela implique de rendre le modèle exécutable. Ce peut-être
effectué en associant une sémantique d’exécution au langage de modélisation, cette
dernière définissant la manière dont le modèle peut être exécuté.

Énoncé du problème

Si l’IDM est un outil puissant pour concevoir des applications logicielles, une fois
l’application déployée et en fonctionnement, il est compliqué de retravailler sur le
modèle afin d’améliorer les parties inefficaces du programme. Ainsi, il est important
de pouvoir améliorer certains aspects de la qualité du logiciel au plus tôt dans son
processus de développement. L’analyse statique de modèles est déjà communément
effectuée afin de localiser d’éventuels points d’amélioration, néanmoins effectuer des

iii



analyses dynamiques au niveau du modèle est plus complexe. Effectivement, l’IDM
est majoritairement utilisée durant la phase de conception et dans un objectif final
de génération de code. Ainsi peu d’aspects dynamiques sont disponibles au sein du
modèle. Néanmoins ce manque d’aspects dynamiques dès la phase de conception
freine la détection d’anomalies, qui ne seront donc détectables qu’à l’exécution.

Ce problème est particulièrement présent dans le domaine de l’optimisation
énergétique de logiciels. Développer des programmes efficaces énergétiquement est
une tâche complexe, qui requiert des connaissances sur la consommation énergétique
des programmes et des systèmes sur lesquels ils seront déployés. Des études portées
sur un large panel de développeurs ont montré que la vaste majorité n’ont que
peu de connaissances à ce sujet [152], et donc ne considèrent pas l’efficacité énergé-
tique durant la phase de conception. Être capable de prodiguer au développeur
des informations sur la consommation énergétique de son système dès la phase
de conception pourrait très certainement l’aider à considérer ces aspects, et les
améliorer. Ainsi, les challenges adressés dans cette thèse sont les suivants:

1. Effectuer une analyse dynamique sur un modèle de conception requiert que
ce modèle puisse représenter le comportement du système conçus pendant
son exécution.

2. Dans le cadre de systèmes cyber-physiques, le modèle de conception définit
en plus le matériel sur lequel la partie logicielle est déployée. Cette couche de
complexité supplémentaire doit être considérée afin d’effectuer des analyses
dynamiques.

3. Les modèles de conception doivent pouvoir être utilisés afin de prodiguer
au développeur des informations sur la consommation énergétique de son
système. Ces informations doivent enfin pouvoir l’aider à comprendre et
améliorer cette consommation.

Contributions

Analyse dynamique de programmes Java

Afin de répondre à ces problèmes, plusieurs contributions sont présentées dans cette
thèse. Tout d’abord, une approche permettant d’injecter des traces d’exécution
au sein de modèles est proposée. Cette approche génère un modèle statique à
partir du code source d’un programme. Une étape d’instrumentation permet de
tracer l’exécution du programme. Ces traces d’exécution sont enfin injectées dans
le modèle statique, permettant ainsi de représenter le comportement dynamique
du programme.



Tout d’abord, un premier prototype permettant la modélisation de traces
d’exécution de programmes Java a été développé1. Le logiciel fait appel à MoDisco
afin de transformer un programme Java en modèle. MoDisco est un outil d’ingénierie
inversée, historiquement développé dans l’équipe NaoMod. MoDisco effectue une
lecture du code source, et en génère un modèle. Ce modèle représente le programme
Java, à un niveau de granularité très fin, et peut être utilisé pour le transformer, le
moderniser, ainsi que le vérifier par le biais de techniques d’ingénierie dirigée par
les modèles. Dans cette thèse, nous injectons des traces d’exécution du programme
Java dans ce modèle MoDisco, afin de pouvoir effectuer des analyses dynamiques
du programme, en travaillant sur le modèle.

Deux cas d’utilisation font ensuite usage de ce modèle statique enrichi d’aspects
dynamiques. Un premier cas d’utilisation mesure et attache des consommations
énergétiques aux traces d’exécution du modèle dynamique. Une analyse dynamique
est effectuée, permettant la mesure des propriété énergétiques du programme Java2.
Ces propriétés énergétiques sont injectées dans le modèle MoDisco, aux côtés
des traces d’exécution, afin de permettre la transformation du modèle dans une
optique d’amélioration de l’efficacité énergétique du programme. Ces propriétés
énergétiques sont modélisées avec le standard SMM, utilisé dans le cadre du projet
Européen MEASURE finançant cette thèse.

Un deuxième cas d’utilisation fait usage du modèle dynamique dans le contexte
d’analyse des impacts que les modifications du code source peuvent avoir sur
les tests de régression. Les tests de régression vérifient, après modification du
code source, que le programme modifié fonctionne toujours comme attendu par
les développeurs. En utilisant le modèle du code source enrichi avec des traces
d’exécution, il est possible de ne sélectionner et exécuter que les tests effectivement
impactés par les modifications du code source, à la place de l’intégralité des tests.
L’évaluation effectuée pour cette contribution analyse des dépots sur GitHub3. Un
fichier de configuration peut être passé en paramètre de notre logiciel, définissant
une liste de dépôts GitHub à analyser. Les dépôts seront alors téléchargés, et toutes
les révisions, dans une portée définie en amont, seront considérés. Ce procédé
simule un contexte d’intégration continue, où des modifications du code source
sont introduites unes à unes. A chaque modification, notre prototype détermine
quelles parties du code source sont impactés, et vérifie si ce code impacté perturbe
le fonctionnement du dépôt analysé. Cette sélection de tests de régression allège
effectivement le coût de l’étape de vérification.

La seconde contribution de cette thèse permet l’analyse dynamique de systèmes
cyber-physiques (SCPs), par le biais d’une plate-forme développée par l’ICAM de

1https://github.com/atlanmod/dynamicanalyser
2https://github.com/atlanmod/energymodel
3https://github.com/atlanmod/mde4rts



Nantes, nommée Emit. Un langage de modélisation est proposé afin de modéliser
des SCPs. Ensuite, une transformation de modèle automatise la surveillance du
SCP modélisé dans Emit. Emit peut ainsi monitorer l’exécution du SCP, et en
permettre son analyse dynamique.

La dernière contribution présentée introduit Eel, un langage générique per-
mettant de modéliser des formules mathématique pour l’estimation énergétique4.
Ces estimations sont attachées à des langages exécutables. La consommation
énergétique des modèles définis avec ces langages exécutables peut être calculée en
évaluant les formules spécifiées avec Eel. En utilisant Eel pendant la phase de
conception, un développeur peut connaître la consommation énergétique de son
programme avant même d’en générer le code. Cela lui permet de pouvoir optimiser
son programme et d’en réduire l’empreinte carbone. L’implémentation de Eel est
intégrée dans GEMOC Studio, un environnement de développement de langages
et d’exécution de modèles. Eel a été utilisé dans le contexte de l’exécution de
modèles Arduino, et est capable d’en estimer la consommation énergétique avec
grande précision (95.1%, en moyenne). Ces outils sont open-source, et disponibles
sur la plate-forme GitHub.

Contexte de la thèse

Cette thèse a été financée par une co-tutelle entre l’Institut Catholique des Arts
et Métiers (ICAM), et l’Institut Mines Télécom (IMT), dans le cadre d’un projet
Européen ITEA-3 intitulé MEASURE5. Le but de ce projet est d’améliorer la
qualité et l’efficacité de l’ingénierie logicielle, tout en réduisant les coups et le temps
de production. Ce projet implémente une plate-forme comprenant de nombreux
outils de qualité logicielle6. Cette plate-forme permet la collection, l’analyse, le
stockage et la visualisation de mesures logicielles, définies avec le standard de
l’Object Management Group (OMG) : Structured Metrics Meta-model (SMM).

De plus, ce thèse a pris place au sein de l’équipe NaoMod (anciennement
Atlanmod). NaoMod est une équipe du Laboratoire des Sciences du Numérique
de Nantes (LS2N), localisée sur les campus de l’UFR Sciences et Techniques, et
l’IMT Atlantique de Nantes. L’équipe est spécialisée dans l’IDM dans la région de
Nantes depuis les années 1990, et a proposé de nombreuses technologies, notamment
basées sur Eclipse, a destination des développeurs et architectes logiciels, dans
l’optique d’améliorer leur productivité, ainsi que la qualité des applications qu’ils
développent7.

4https://github.com/atlanmod/eel
5https://itea3.org/project/measure.html
6https://github.com/ITEA3-Measure/MeasurePlatform
78



Contents

Résumé Français iii
Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Énoncé du problème . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Analyse dynamique de programmes Java . . . . . . . . . . . iv
Contexte de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Context 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Scientific Production . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Models, Meta-Models and Languages . . . . . . . . . . . . . 9
Meta-models . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Model transformations . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Executable meta-modeling . . . . . . . . . . . . . . . . . . . 13
2.1.4 Meta-modeling Standards . . . . . . . . . . . . . . . . . . . 14

2.2 Software analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . 17

Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 18
Model-driven dynamic analysis . . . . . . . . . . . . . . . . 21

2.2.3 Execution traces . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Impact analysis . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5 Regression test selection . . . . . . . . . . . . . . . . . . . . 22

vii



2.2.6 CPS monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Energy measurements . . . . . . . . . . . . . . . . . . . . . 25
Power-meters . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Specialized systems for energy monitoring . . . . . . . . . . 25
Application level energy measurement tools . . . . . . . . . 26

2.3.2 Energy estimation . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Energy-aware software engineering . . . . . . . . . . . . . . 27

3 Model-driven tracing of software execution 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Modeling software execution traces . . . . . . . . . . . . . . . . . . 31

3.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Model Driven Reverse Engineering . . . . . . . . . . . . . . 32
Code Instrumentation . . . . . . . . . . . . . . . . . . . . . 33
Execution and Injection . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Execution environment . . . . . . . . . . . . . . . . . . . . . 35
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Characterizing the source code model with energy measurements . . 38

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Energy Measurements Computation . . . . . . . . . . . . . . 39
3.3.4 Energy Measurements Modeling . . . . . . . . . . . . . . . . 42
3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.6 Threat to validity . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Trace model applied to regression test selection . . . . . . . . . . . 46
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Computation of the impact analysis model . . . . . . . . . . 52
Using the model to select impacted tests . . . . . . . . . . . 53
Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
RQ1: Precision . . . . . . . . . . . . . . . . . . . . . . . . . 60
RQ1: Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
RQ2: Performance . . . . . . . . . . . . . . . . . . . . . . . 61
RQ3: Complementary use of the Model . . . . . . . . . . . . 62

3.4.6 Threats to the validity . . . . . . . . . . . . . . . . . . . . . 62
Commits analyzed . . . . . . . . . . . . . . . . . . . . . . . 62
Single machine . . . . . . . . . . . . . . . . . . . . . . . . . 63
State of the prototype . . . . . . . . . . . . . . . . . . . . . 63
Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Model-driven monitoring of CPS 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Sensor and Actuator Network Modeling . . . . . . . . . . . . . . . . 67

4.2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.2 SAN Meta-Model . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Monitoring platform . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Client Management . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Client States Control . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Callback edition . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Mapping SAN models to Emit . . . . . . . . . . . . . . . . . . . . 75
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Mapping from other meta-models . . . . . . . . . . . . . . . 77
4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.1 Modeling a case study . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Mapping to Emit . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.3 Monitoring with Emit . . . . . . . . . . . . . . . . . . . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Trace-based energy estimation 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Energy-Estimation Modeling . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 An Energy-Estimation Model . . . . . . . . . . . . . . . . . 89
5.3.2 The Energy-Estimation Language . . . . . . . . . . . . . . . 92
5.3.3 Evaluation Semantics . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 The Energy-Estimation Modeling Process . . . . . . . . . . 96



5.3.5 Discussion and Limitations . . . . . . . . . . . . . . . . . . . 98
5.3.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . 100

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.2 Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . 104

Deployment Platforms. . . . . . . . . . . . . . . . . . . . . . 104
ArduinoML EEM . . . . . . . . . . . . . . . . . . . . . . . . 105
ArduinoML Model Estimation . . . . . . . . . . . . . . . . . 107
Deployment and Physical Measurements . . . . . . . . . . . 108
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.3 EEL and Emit . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusion and Perspectives 115
6.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Evolution of MoDisco . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 Hybrid model-driven RTS . . . . . . . . . . . . . . . . . . . 119
6.3.3 Automated EEL model definition . . . . . . . . . . . . . . . 119
6.3.4 GPL energy estimation with EEL . . . . . . . . . . . . . . . 120
6.3.5 Energy-aware source code refactoring . . . . . . . . . . . . . 120
6.3.6 Improving monitoring of sensors and actuators networks . . 121

List of Figures 123

List of Tables 125

Bibliography 127



Chapter 1

Context

1



1. Context

1.1 Introduction

Modeling is a recurrent activity is all scientific disciplines which aims at representing
particular parts of the real world in a simplified manner. As they are able to ease the
understanding of complex concepts, models are used in many domains: mathematics,
biology, civil engineering, software product lines, or philosophic disciplines [7, 10,
12, 65, 156]. In the domain of information technologies, models are widely used to
describe all the aspects of softwares and systems under development: architectures,
algorithms, communications, hardware, or components. To unify the language
for defining models, the Object Management Group (OMG) defined the standard
Unified Modeling Language (UML) [169].

Model-Driven Engineering (MDE) is a process that promotes models as the
central key element for all phases in a software development lifecycle. MDE relies
on abstract models instead of standard code-based engineering practices to manage
complex software systems, and automate various tasks. Over the last decade, MDE
has emerged as a successful and a widely used approach for developing software
systems. Relying on standard modeling languages (e.g., UML) enables a better
interoperability between all the development phases. A typical MDE approach
first models a software architecture. The model is verified, validated, corrected if
needed, and finally the software can be generated through a model transformation.
Furthermore, MDE is also an efficient approach for refactoring and modernizing
existing software systems, using model-driven reverse engineering.

Improving the quality of a software, either at design time or runtime, can be
done by performing analysis on the model it is designed with. An analysis can be
done by examining the model without executing it, i.e., statically. For instance,
asserting that the class names conform with the naming standards. In contrast with
static analysis, dynamic analysis is performed on models during their execution, or
a posteriori, using execution traces.

A model alone is simply an abstract representation of something. To run a
model, an execution environment has to understand how the elements in the model
should behave according to the context. This be done by associating semantics to
all the elements defined by the modeling language. Generally, this is done in two
ways: either generating executable code and running it, or directly interpreting
the model. We indicate a modeling language that can be executed as a xDSL

(executable Domain Specific Language).
As an example, counting the number of entities of a model that are called during

an execution requires a dynamic analysis. Furthermore, instead of performing
dynamic analysis while a model is being executed, such analysis can also be done
on execution traces. An execution trace is a sequence that contains all the relevant
information about a model’s execution, over time. It records all the states of the
model’s execution, the user inputs, the steps responsible for the changes in the

2



1.2. Problem Statement

model, the duration of each state, and any other information related to the model’s
execution.

Energy efficiency is an important concern when designing software, for ecological,
economical, or technical reasons. Measuring the energy that a software consumes
may require this software to be executed, and dynamically analyzed. Information
about the energy consumption of the software is valuable, as it can help improving
inefficient software artifacts. Providing energy-related information as early as
possible, e.g., at design time, especially using models, would certainly help towards
that purpose. This is also beneficial in the domain of cyber-physical systems, where
software can be distributed over complex networks of energy-constrained devices.

1.2 Problem Statement

MDE is a powerful method for designing and generating software code. If static
analysis of models is already efficient and widely used, performing dynamic analysis,
especially at design-time, is more complex. In fact, as design models are used
for code generation, little dynamic aspects are available in them before. If this
lack of dynamic aspects in software models is an impediment to more efficient
implementations, it is also a recurrent issue when designing the underlying physical
systems. Thus, limited possibilities of dynamic analysis in models prevents early
improvements of software, systems, and the combination of both in the domain of
cyber-physical systems.

This is especially true in the area of energy efficiency. Developing energy efficient
applications requires a vast knowledge about energy consumption of software and
systems, and often requires complex dynamic analysis and tooling, that most
developers do not have. Providing feedback to the developers about the energy
consumption of their systems, early in the design process, would certainly help
them improving the energy efficiency their applications.

Thus, leveraging MDE for a better energy efficiency can be summarized by the
following challenges, addressed in this thesis:

1. Performing dynamic analysis on a model requires this model to be executable.
When a model is executed via code generation, the execution trace is distinct
from the model. Being able to inject an execution trace of a running program
into the model it has been generated from can hence enable dynamic analysis,
at the model level.

2. In the context of cyber-physical systems, the behavior of an executable model
can be distributed over complex networks. Tracing the execution of such
system requires complex monitoring platforms. Generating a monitoring

3





1.4. Outline of the thesis

The first contribution, labeled 1a) presents an approach for modeling execution
traces of Java programs inside models. A reverse engineering step creates a model
out of a Java source code. An instrumentation phase traces the execution of the
program, and injects into the model the traces produced. Two usages of this model
are proposed in contributions 1b) and 1c).

A first application, 1b), relies on these execution traces to perform change
impact analysis. When changes in the source code are detected, the execution
trace can be used to highlight the parts of the code that are impacted by the
changes. Then, a Regression Test Selection operation is performed, which consists
in only verifying the code that is actually impacted, instead of the entirety of the
program, hence lightening the testing costs. A second application, 1c), attaches
energy consumptions to the element of this model, and using the execution trace,
estimates the energy consumption of the model’s semantic operations.

The second contribution, labeled 2), presents Emit, a monitoring platforms for
cyber-physical systems (CPS)s. A CPS is first designed using a DSL, and successive
transformation steps configures Emit in order to automatize the monitoring of the
CPS. Emit traces all the events happening in the system, and enables dynamic
analysis over the CPS.

The third contribution, labeled 3), presents Eel (Energy Estimation Language).
Eel is a generic DSL that enables the specification of energy estimation functions.
Energy-related concepts can be attached to the semantic of any executable language.
When models written with this language are executed, the energy-related concepts
modeled with Eel can be evaluated, in order to estimate energy consumptions.
Eel is meant to be used at design time, in order to provide early feedbacks to the
developer, so that she can improve the energy consumption of her software.

1.4 Outline of the thesis

This thesis is organized as follow: Chapter 2 presents some background material
and related work, used along this thesis. Chapter 3 presents our approach for
dynamic analysis in models, separated in three sections: section 3.2 focuses the
injection of execution traces inside source code models, section 3.3 use this model
of execution traces for energy modeling, and section 3.4 performs regression test
selection with it. Chapter 4 presents our approach for CPS monitoring and dynamic
analysis, and Chapter 5 presents our language for energy estimation of executable
models.

5



1. Context

1.5 Scientific Production

During this thesis, we produced 6 articles: 2 international conferences, 3 interna-
tional workshops, and 1 journal.

— International journal

1. Béziers la Fosse, T., Mottu, J.M., Tisi, M. and Sunyé, G. Source-Code
Level Regression Test Selection: the Model-Driven Way. In The Journal of
Object Technology (JOT), 2019.

— International conferences

1. Béziers la Fosse, T., Mottu, J.M., Tisi, M. and Sunyé, G. Annotating Ex-
ecutable DSLs with Energy Estimation Formulas. In Software and Language
Engineering (SLE), 2020.

2. Béziers la Fosse, T., Rocheteau, J., Cheng, Z., Mottu, J.Model-Driven
Engineering of Monitoring Application for Sensors and Actuators Networks.
In Software Engineering and Advanced Applications (SEAA), 2020.

— International workshops

1. Béziers la Fosse, T., Tisi, M., Bousse, E., Mottu J.M., and Sunyé, G.
Towards platform specific energy estimation for executable domain-specific
modeling languages. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C)
(pp. 314-317). IEEE.

2. Béziers la Fosse, T., Mottu, J.M., Tisi, M., Rocheteau, J., and Sunyé,
G. Characterizing a Source Code Model with Energy Measurements. In
Workshop on Measurement and Metrics for Green and Sustainable Software
Systems (MeGSuS), 2018.

3. Béziers la Fosse, T., Tisi, M., and Mottu, J.M. Injecting Execution Traces
into a Model-driven Framework for Program Analysis. In : Federation
of International Conferences on Software Technologies: Applications and
Foundations. Springer, Cham, 2017. p. 3-13.

6



Chapter 2

Background

7



2. Background

In this chapter we introduce the main concepts that this thesis relies on, as well as
related work.

Section 2.1 provides an overlook of the Model-Driven Engineering concepts.
This includes the core concepts of models, meta-models and model transformations,
followed by executable modeling, and a final focus on the standard models proposed
by the Object Management Group, used in this thesis. Furthermore, it introduces
languages and meta-models used along this thesis.

Section 2.2 gives a bird’s eye view on software analysis techniques. It first
describes existing static software analysis techniques, followed by dynamic software
analysis techniques, as well as the software tooling that is necessary to perform
them. It finally describes a specific kind of software analysis: change impact
analysis, and its main usage in this thesis: regression test selection.

Finally Section 2.3 focuses on energy efficiency. It presents energy measurement
and estimation tooling, and existing software-based approaches for fostering better
energy efficiency.

2.1 Model-Driven Engineering

In the early 2000s, the Object Management Group (OMG) introduced the concept
of Model-Driven Architecture (MDA). The main purpose of MDA is to provide
users with tooling for solving the issues that complex systems could raise. Towards
that purpose, an approach to specify IT systems is defined, which separates
the system functionalities from their implementation on a specific platform, and
supply "vendor-neutral interoperability specifications". MDA promotes the usage
of Platform-Independent Models (PIM) as primary artifacts to design system and
software architectures. These models can then be adapted to a specific platform
(i.e., Platform-Specific Model (PSM)) using successive transformations, refinements,
and finally, code generation [20, 97]. We call this process forward engineering. On
the contrary, PIM can be reconstructed by analyzing PSM. This new PIM can then
be used as a basis for code modernization, maintenance and enhancement. We call
this process reverse engineering [41].

Model-Driven Engineering (MDE), is a broader concept that includes MDA.
It is not limited to architecture, but also processes and analysis. MDE has
been successfully used in the past decade, and has proven itself to be a powerful
asset during all stages of software lifecycle: early design, modernization, analysis,
refactoring. Existing studies reported benefits in terms of quality, productivity
and maintainability compared to traditional development processes [90]. For these
reasons, MDE is getting gradually adopted by companies looking for efficient
methodologies for software engineering, such as Ericsson, Volvo, Thales, or ATOS,

8



2.1. Model-Driven Engineering

Package

+ name : String

subPackages

ClassDeclaration

+ name : String
classes

BodyDeclaration
MethodDeclaration

+ name : String

Modifier

+ visibility : Visibility
modifier
1

*

methods
*

<<enumeration>>
Visibility

none

private

protected

public

Figure 2.1: Java meta-model

and a quick glance at any job search website shows how popular MDE tools
are [199].

2.1.1 Models, Meta-Models and Languages

Meta-models

A meta-model is the explicit specification of an abstraction [21, 126], and is strongly
related to the concept of ontology [78]. All the meta-models used in this thesis are
defined using the OMG’s Meta-Object Facility (MOF)1. A meta-model identifies
a list of concepts (classes, each being composed of properties), with relationships
between them, and semantic rules regulating how the model can be denoted, and
that must be satisfied by conforming models.

As an example, we introduce a meta-model, the Java meta-model, used in this
thesis [49]. This meta-model defines all the entities that can be written with the
Java language. Package represents the Java packages, root containers of the classes.
Class corresponds to the Java classes, and can contain Methods, or other Class, as
the inner classes of Java programs. Each Method contains a Block of Statements.
These Statements can be either ControlStatement, representing Java if, while

etc ... Or ExpressionStatement and InvocationStatement. The former contains
one or multiple Expressions, which can be any expression that Java could define
(mathematical, boolean, etc...), whereas the later represent the invocation of a Java
method. We show an excerpt of this Java meta-model in Figure 2.1.

Furthermore, we introduce a second example, also used later in this thesis: the
meta-model of ArduinoML. ArduinoML is a Domain Specific Language (DSL) used
to represent the structural and behavioral aspects of Arduino systems. Thus this

1https://www.omg.org/mof/

9



2. Background

0..1
*

0..1

11

*

0..1
0..1

1

Project

Board Sketch

Block

Control

Instruction

+ execute()

ModuleAssignment

+ value: Integer

DelayWaitFor

WhileIf

PhotoResistor

Pin

+ id: Integer
+ level: Integer

Module

+ name : String

InfraredSensor

LED

ModuleInstruction

Figure 2.2: Abstract syntax of Arduino Modeling Language

meta-model defines ArduinoML’s abstract syntax, defining the concepts that are
expressed with the language and the relations between them. Figure 2.2 shows an
excerpt of this meta-model. The root element of this meta-model is the Project
class. It has a name to identify it, and contains a Board, describing the structural
aspects of a Arduino-based system, and a Sketch, describing the behavioral aspects
of the Arduino system. The Board is composed of Pins, on which Modules are
plugged. Pins hold a signal, defined by the value attribute, and are identified by
an integer. Modules are any kind of sensors and actuators that can be used in a
Arduino system, such as LEDs, Photo-resistors or Infrared sensors, and are plugged
to pins. The Sketch meta-class is composed of a Block. This Block contains a
list of Instructions. Each Instruction can either be a Control instruction, in order
to define loops and branches, a Delay, in order to add timers in the Arduino’s
behavior, or module-related instructions. Those ModuleInstruction can be used in
order to fetch the state of a module, or assign a value to it.

Models

The concept of model can be defined w.r.t. the concept of instance in the class-based
object oriented paradigm. If a class can be instantiated into an object, then a
meta-model can be instantiated into a model, that conforms to the meta-model
abstract syntax and satisfies the meta-model semantics.

Figure 2.3a provides an example of a ArduinoML model, instance of the Ar-
duinoML meta-model presented in Figure 2.2. It conforms to the abstract syntax
of the Arduino meta-model, and respects its semantics. This model describes a

10





2. Background

syntax, i.e., a human-readable way of using the language, that can be a textual
syntax or graphical syntax. Textual syntax enables editing the model using a
textual notation. As an example, the CSS and HTML markup languages can be
considered as DSLs, and are most of the time defined using their corresponding
textual syntaxes. Graphical syntax, on the contrary, is meant to define the model
using a graphical interface. For instance the Scratch programming language is used
through a visual block-based graphical syntax. Finally, a language has semantics,
defining the meaning of the concepts expressed.

As mentioned earlier, ArduinoML is a DSL, with an abstract syntax, defined
by the meta-model in Figure 2.2. It also has a concrete graphical syntax, defined
with Sirius [196], and Figure 2.3b shows the concrete graphical representation for
defining the model in Figure 2.3a.

2.1.2 Model transformations

Model transformations are among the most widely used concepts in MDE. It
is defined as an automatic operation, that consists of the production of one
or more models, from one or more input models. Model transformations are
defined at the meta-model level, and applied on models conforming to these meta-
models. Model transformations can be defined using any GPL (e.g., Java), or
using dedicated DSLs, popular in the MDE community, such as ATL [95] for
model-to-model transformations, or Acceleo [131] in the context of model-to-text
transformations. To standardize model transformations, the OMG introduced
the QVT (Query/View/Transformation) specification, later implemented in many
languages and frameworks [58, 96, 101, 123].

A model transformation can be either endogenous, or exogenous [124]. The first
category define transformations between models defined with the same language.
The second category defines transformations between models conforming to different
meta-models. Code generation is an example of exogenous model transformation,
that we use in the context of ArduinoML. This transformation is implemented
using Acceleo, and generates C code to be deployed on the Arduino board. The
C code corresponding to the Arduino model presented in Figure 5.6 is shown in
Figure 2.4. This is an example of forward engineering: an abstract, high-level,
representation of the system is first defined through a model, which is then used to
produce the low-level concept, the C source code.

In contrast, reverse engineering generates this high-level abstract model of a
concept from its low-level representation. The MoDisco framework performs this
text-to-model transformation. It takes a syntactically correct Java source code,
and transforms it to a model, conforming to the Java meta-model presented in
Figure 2.1. This model can then be refined, enhanced or verified, and a new version
of the source code can be generated with final model transformation.

12



2.1. Model-Driven Engineering

1 void setup ( ) {
2 // i n i t i a l i z e d i g i t a l pin LED_BUILTIN as an output .
3 pinMode (LED_BUILTIN, OUTPUT) ;
4 }
5

6 // the loop func t i on runs over and over again f o r e v e r
7 void loop ( ) {
8 d i g i t a l W r i t e (LED_BUILTIN, HIGH) ; // turn the LED on (

HIGH i s the vo l tage l e v e l )
9 delay (1000) ; // wait f o r a second

10 d i g i t a l W r i t e (LED_BUILTIN, LOW) ; // turn the LED o f f by
making the vo l tage LOW

11 delay (1000) ; // wait f o r a second
12 }
13

Figure 2.4: C code produced via a model transformation with input model in
Figure 2.3b

package pkg ;
c l a s s C {

pub l i c void A( ) {
B( ) ;

}
pub l i c void B( ) {

System . out
. p r i n t l n ( " Hel lo , World ! " ) ;

}
}

(a) Java program to reverse engineer

:Package

name = "pkg"

:ClassDeclaration

name = "C"

:MethodDeclaration

name = "B"

visibility = public

:MethodDeclaration

name = "A"

visibility = public

(b) Excerpt of the Java model produced

2.1.3 Executable meta-modeling

If MDE is often used for designing the structural aspects of software and systems, it
also enables the definition of behavioral aspects, as shown in Figure 2.3b. Executing
models, conforming to a DSL, is the purpose of executable meta-modeling. Executing
a model requires the DSL it conforms to to provide execution semantics. These
semantics are rules, attached to the meta-classes of the meta-model’s abstract
syntax, that describes how to execute the modeled elements. We call executable
DSL (xDSL) a DSL that can define executable models.

Model execution is popular in the domain of verification and validation. In fact,
executing a model (i.e., before deploying) is an efficient manner of checking that it
behaves as intended by the model developer. Simulators can rely on executable
models, and provide useful tools, such as debuggers, to analyze the state of the

13



2. Background

de f void execute ( ) {
va l pin = _se l f . getPin ( _se l f . module )
pin . l e v e l = _se l f . va lue

}

Figure 2.5: Transformation rule attached to the ModuleAssignment meta-class,
defined with Kermeta3

executable model at runtime.
As stated before, executing a model requires execution semantics. In this thesis

we will focus on two types of execution semantics: operational semantics [155]
and translational semantics [110]. Both enable the execution of models, but
behave differently. First, operational semantics are defined as endogenous model
transformations that changes the state of the model during its execution. Each
operation of the semantics is defined as a set of steps, and each step is an endogenous
model transformation. Second, translational semantics consist in an exogenous
model transformation, that translates the model into a second one. This second
model conforms to the abstract syntax of a second xDSL, with the operational
semantics needed to execute it. If both approaches are effective to run models,
tracing the execution of models that conform to a xDSL with translational semantics
can be harder, as the domain of the language it has been transformed to can differ
from the original language.

We previously introduced ArduinoML, a language for defining Arduino systems.
ArduinoML comes with operational semantics, enabling the execution of conforming
models, using a dedicated engine. These semantics defines transformation rules
(i.e., steps), that are attached to the classes of the abstract syntax of the language.
Objects, instances of these classes, can be executed using these rules.

As an example, running the ArduinoML model presented in Figure 2.3b would
iterate over all the instructions defined in the Sketch, and execute them, one by
one. Running the first ModuleAssignment would apply the transformation rule
presented in Figure 2.5 on the model, and transform it into a the model shown in
Figure 2.6. This step assigns the value 1 to the Pin on which the targeted module
is plugged.

2.1.4 Meta-modeling Standards

The Object Management Group (OMG) proposed several standard meta-models
and languages during the last two decades, in order to tackle recurrent needs in the
MDE community. We present three of these technologies in what follows: UML,
OCL and SMM.

14



2.1. Model-Driven Engineering

:Board :Sketch

:Block

:Delay

value = 1000

:ModuleAssignment

value = 0

:Delay

value = 1000

:ModuleAssignment

value = 1

:LED

name = "Blue LED"

:Pin

level= 1

:Project

Figure 2.6: Arduino model after running the first ModuleAssignment

UML stands for Unified Modeling Language, and was first introduced in 1996
by the OMG. It is the standard language for object oriented modeling. Its purpose
is to unify existing modeling technologies. UML proposes 14 types of diagram, to
represent all the aspects of software engineering. These types of diagram can be
divided in two categories: Structure, Behavior. Structure diagrams include the
Class diagram and Component diagram, used to model the entities of the system.
Behavior diagrams include the Activity and Sequence diagrams, that represent
the business operations that the system performs, as well as the communication
between its entities.

UML models can be associated with Object Constraint Language (OCL) ex-
pressions, another OMG standard. OCL is a declarative language. It can be used
to define invariants, derivation rules, or queries, that, when evaluated, returns
specific elements of the model. We mainly rely on OCL in this thesis as a query
language, as it can be used to fetch the values of attributes in the model, and
compute arithmetic and logic operations on the model.

The last OMG standard we describe is the Structured Metrics Meta-model
(SMM) standard [138]. SMM enables the representation of properties, measure-
ments, and entities performing measurements. It introduces vocabulary from the
domain of analysis, used in this thesis:

• Measure: A method assigning numerical or symbolic values to entities in
order to characterize an attribute of the entities.

15



2. Background

:Observation

timestamp = 1592577449

:Measure

name = "powermeter"
unit = "Watt"

:Measurement

value = 50

measures

measurements

measurand

:Measurand

name = "CPU1"

Figure 2.7: SMM model of a power meter measuring the power consumed by a
CPU.

• Measurement: A numerical or symbolic value assigned to an entity by a
measure.

• Measurand: An entity quantified by a measurement.

Figure 2.7 shows a simple use case featuring SMM.
This model shows a power meter device that measures the consumption of a

CPU. Thus, the power meter device is modeled with the Measure. This measure
produces a Measurement, a "50W" record, when applied to the Measurand, the
CPU. The root of this model is an Observation, which model the timestamp at
which the measure started gathering measurements.

SMM is used as a basis for modeling all information gathered through software
analysis, either statically or dynamically. The next section presents some related
work about software analysis.

2.2 Software analysis

Software analysis is a common step in any software lifecycle. Since the beginning
of software programming, it has always been used for many purposes: quality,
flexibility, metrics about the programs, understandability, verification and vali-
dation, etc. Developing a complex application right is extremely complicated if
no effort is spent in design, especially using modeling and analysis. In the early
2000s, at the beginnings of MDE, Daniel Jackson and Martin Rinard claimed that
there is a great opportunity of collaboration between abstract models, and code
analysis [91]. Indeed, with a straight relationship between the abstract model and
the source code, the developer could leverage properties extracted from the models
as if they were directly produced out of the source code. Furthermore, attaching

16



2.2. Software analysis

properties produced by software analysis to design models would help organizing,
understanding, and re-using these properties.

Software analysis can be divided in two main categories: static analysis, and
dynamic analysis. The next sections define and compare those two approaches.

2.2.1 Static analysis

This first category of software analysis is performed without executing the pro-
gram [200]. Most static analysis approaches are performed on the source code of
the software, or on its compiled code. Static analysis do not require the code to be
runnable to be performed, and thus can be applied at any state in the development
process of a software. It is usually fast, as it does not depend on the complexity of
the program to be analysed, nor on its inputs. For these reasons, most modern
development environments embed static analyzers, that provides useful information
to the developer in order to improve the quality of her programs. Among its
possible applications, static analysis can be used for asserting of the correctness
of the program using control flow analysis, for measuring cyclomatic complexities,
locating unreachable code, for formal verification, or to check if a software conforms
with its design model [69, 71, 132].

Software models have proven to be a powerful asset for performing static analysis.
Dedicated query languages, such as OCL, can be used on top of models to perform
various static analysis. For instance, this is especially interesting when associated
to the MoDisco framework: a Java program can be reverse-engineered into a model,
and queries can be performed on this model to statically analyze the source code.

If static analysis is efficient to capture the program’s structure, only little
information of its behavior can be obtained. If when it comes to behavior analysis
dynamic approaches tend to be more efficient and accurate. However, dynamic
analysis approaches can make good use of static information to enable a better
understanding of the control flows of the system [75].

2.2.2 Dynamic analysis

In contrast with static analysis, dynamic analysis is performed by executing a
program, and gathering metrics at runtime. Dynamic analysis is a common
approach in software engineering, especially used in the context of verification and
validation. Popular usages include test code coverage, fault localization, or any kind
of performance analysis [184, 188, 192]. Most dynamic analysis approaches rely
on a step of instrumentation. In fact, the desired analysis requires some software
tweaking in order to be performed.

As an example, classic code coverage approaches require to mark the lines of
code that have been executed by the test cases to locate non-tested sections of

17



2. Background

code. However simply running the test cases available in the program’s source
code is not enough: by itself, the program do not know which lines of code are
executed. Thus, it is necessary to inject additional behavior inside the program.
Instrumenting a program to enable code coverage consists in adding probes before
each line of existing code. When a probe is executed, then its associated line of
code is considered as executed. Furthermore, the same approach can be applied to
trace the execution of a software. Three main types of instrumentation exist that
we detail next.

Instrumentation

Source-code instrumentation
This first instrumentation technique consists in adding new statements inside

the existing source-code. Source-code instrumentation is easier to perform than
other instrumentation techniques, as it does not have to handle the compiled code
but only the initial source code, which is humanly readable. Furthermore, it is
very accurate, as all the information (statements, methods, attributes, etc ...)
are available in the source code. However source-code instrumentation tends to
be slower than other approaches: the source code has to be parsed, rewritten,
compiled, and loaded before running it. Figure 2.8 shows a simple example of
the source code instrumentation of a Java program. A class is defined with two
methods, A() and B(). The A() method simply calls the B()one. The source
code instrumentation defined injects a statement before and after each method
invocation. These statements print, in the standard output of the Java Virtual
Machine, the name of the method before and after executing it.

Several source-code transformation approaches have been described in the
literature [66, 146, 195]. In this thesis, we rely on the Spoon Framework [148].

Spoon relies on a Java meta-model for representing the Abstract Syntax Trees
(ASTs) of Java programs. It provides a set of pre-processors that enable static
analyses and transformations of Java programs, and automatically compiles the
instrumented code for an immediate execution.

Static binary instrumentation
This second instrumentation technique works at the compiled code level. Instead

of injecting additional statements in the source code of a program, it adds compiled
code inside the existing binaries of a runnable application [105, 133]. The modified
binaries can then be executed.

When users want to reason on source-code instructions, instrumenting at the
binaries level is less accurate than at the source code level. Once the code is
compiled, information about the initial position of statements in the source code is
lost, and only the line numbers are kept. If a very accurate instrumentation method

18



2.2. Software analysis

c l a s s C {
void A( ) {

B( ) ;
}
void B( ) {

System . out . p r i n t l n ( " Hel lo , World ! " ) ;
}

}

(a) Java source code to instrument

c l a s s C {
void A( ) {

System . out . p r i n t l n ( " be f o r e C.B" ) ;
B( ) ;
System . out . p r i n t l n ( " a f t e r C.B" ) ;

}
void B( ) {

System . out . p r i n t l n ( " be f o r e System . out . p r i n t l n " ) ;
System . out . p r i n t l n ( " Hel lo , World ! " ) ;
System . out . p r i n t l n ( " a f t e r System . out . p r i n t l n " ) ;

}
}

(b) Java source code after instrumenting a method invocation

Figure 2.8: Source code instrumentation of a Java program

is needed, then source code instrumentation is a better choice. Else, in terms of
performances and usability, on-the-fly instrumentation is better: it requires the
same knowledge about compiled binaries than static binary instrumentation, and
does not need to write and load the instrumented binaries to execute them.

Figure 2.9 shows an example of a Java byte code instrumentation. Figure 2.9a
shows the compiled code of a Java class, named C. The C() method first described
is the default constructor of this class. The method instrumented is the method
labeled A(), which consists in a single invocation of the method B(). The additional
behavior injected through a byte code instrumentation prints information in the
standard output before and after calling the method B(). If this byte-code instru-
mentation performs exactly as the source code information previously defined, it
requires specific knowledge about the compiled code and some middleware tweaking.
Various frameworks have be developed for static byte code instrumentation and
are used for both industrial and academic purposes [22, 48, 120, 191], but are
outclassed in terms of performances, by on-the-fly instrumentation.

On-the-fly instrumentation
This last instrumentation technique, also called as dynamic byte-code instru-

19



2. Background

c l a s s C {
C( ) ;

Code :
0 : aload_0
1 : i n v o k e s p e c i a l #1 // Method java / lang / Object ." < i n i t > " : ( )V
4 : re turn

void A( ) ;
Code :

0 : aload_0
1 : i n v o k e v i r t u a l #2 // Method B : ( )V
4 : re turn

}

(a) Java byte code to instrument

c l a s s C {
C( ) ;

Code :
0 : aload_0
1 : i n v o k e s p e c i a l #1 // Method java / lang / Object ." < i n i t > " : ( )V
4 : re turn

void A( ) ;
Code :

0 : g e t s t a t i c #2 // F i e l d
java / lang /System . out : Ljava / i o / PrintStream ;

3 : ldc #3 // S t r i n g b e f o r e C.B
5 : i n v o k e v i r t u a l #4 // Method

java / i o / PrintStream . p r i n t l n : ( Ljava / lang / S t r i n g ; )V
8 : aload_0
9 : i n v o k e v i r t u a l #5 // Method B : ( )V
12 : g e t s t a t i c #2 // F i e l d

java / lang /System . out : Ljava / i o / PrintStream ;
15 : ldc #6 // S t r i n g a f t e r C.B
17 : i n v o k e v i r t u a l #4 // Method

java / i o / PrintStream . p r i n t l n : ( Ljava / lang / S t r i n g ; )V
20 : re turn

}

(b) Java byte code after instrumenting a method invocation

Figure 2.9: Byte code instrumentation of a Java program

mentation, consists in rewriting the binaries of a program while it is running [34,
117, 188]. Compared to its static alternative, it does not require the engine (e.g.,
the Java Virtual Machine in the context of Java), to load the modified binaries to
be effective. On-the-fly instrumentation is faster to perform, and usually consists
in injecting agents at the start of a program to transform it. The most popular
Java frameworks for such instrumentation are ASM [33] and Byte buddy [201].

All these instrumentation approaches are suitable candidates for performing
dynamic analysis of software. In this thesis, we rely on software instrumentation
for two purposes: tracing software execution, and measuring energy consumption
at runtime. We detail the energy-efficiency domain later.

20



2.2. Software analysis

Model-driven dynamic analysis

Most models capture the static representation of softwares and/or systems, and
thus little dynamic aspects are available in them. One of the most popular usage of
MDE is about the design of software (e.g., using UML class diagrams), eventually
using code generation in the end to produce the source code. Typically, no execution
is performed with the model but using the generated code instead, and thus no
dynamic analysis can be performed in this context. However, in the context of
xDSLs, models are executable, and hence can be dynamically analyzed. Existing
approaches have been proposed for enabling dynamic analysis of executable models.

The GEMOC language and modeling workbench propose extension mechanisms
that enables the modification of the execution engine. Additional behavior can be
defined and executed before and after running the transformation rules [28, 85].
Furthermore, Eric Cariou et al. propose an approach for weaving business code
into executable models [40]. Business operations are associated with executable
elements, and executed before, during, or after the execution of the targeted element.
These approaches are close to what instrumentation offers to software dynamic
analysis. Finally, additional related work has been proposed to provide feedback to
the user during the execution of models, through graphical views in simulation and
execution environments [129, 175].

These model driven approaches can be used to perform dynamic analysis in the
context of xDSLs, as well as efficiently trace down model executions, and gather
execution traces. In what follows, we detail execution traces.

2.2.3 Execution traces

We define an execution trace as a sequence that contains all the relevant information
about a model’s execution, over time. It records all the states of the model’s
execution, the user inputs, the steps responsible for the changes in the model, the
duration of each state, and any other information related to the model’s execution.
Whilst dynamic analysis can be performed at runtime, it can also be performed at
any time using an execution trace, either by analyzing the trace, or by re-executing
the model using a replay mechanism based on the trace [86].

Tracing the execution of software is extremely common during the software
development life-cycle, and has been heavily studied in the literature. Several
surveys and studies show that tracing the execution of a software is used in many
fields of software engineering, such code coverage [188], fault localization [202], or
change impact analysis [111].

The most popular, and used approach to trace the execution of a software is
to rely on usual instrumentation techniques. Several approaches instrument the
source code or the binaries of a program, and build execution traces in the form of

21



2. Background

call graphs [9, 55, 106]. These call graphs serve as execution traces, and are often
used in the domain of impact analysis to compute dependencies between software
artifacts [161]. Knowing the impacts a code modification can have on other parts
of the program can really improve the developers life, and reduce the maintenance
costs. We detail impact analysis in what follows.

2.2.4 Impact analysis

Impact analysis approaches can be divided in two main categories, static and
dynamic dependency collection. If both approaches are individually efficient,
dynamic analysis can improve the precision of the impacts compared to static
techniques. Thus both approaches are often combined.

Chianti [162] is a dynamic change impact analysis approach based on call graphs.
Using two different versions of the source code, Chianti creates a set of atomic
changes, and analyses their dependencies in order to determine the tests affected
by code changes. Basically, considering two atomic changes A1 and A2, if adding
A1 in the first version of the source code leads to a program syntactically invalid,
then it has a dependency to A2.

Several static impact analysis approaches have been developed. They mainly
parse the Java classes, and extract dependencies at various granularity levels
(statements, methods, classes). When the source code is updated, the dependency
graph is analyzed and the artifacts impacted are highlighted [36, 67, 84, 93]. An
other interesting static approach for impact analysis is to rely on program slicing [1,
14, 47, 159, 190]. Program slicing consists into computing a set of points, such as
statements, that can have an effect on other point of the program.

Nonetheless this approach suffers from the disadvantages of a static approach:
a loss of precision to limit the execution time when the program’s source code is
being too big and/or complex to analyze. To tackle this issue, impact analysis
based on dynamic slicing have been proposed too [193, 197]. Computing the impact
that changes can have on the program can help limiting the development costs,
especially through Regression Test Selection (RTS). This approach consists in only
running the test cases that have been impacted by newly introduced changes in the
source code, instead of running the entire test suite, to check that no regression
has been added. When efficiently performed, RTS effectively reduces the duration
of the regression testing phase. We describe in details RTS, as it is an effective
asset for software sustainability.

2.2.5 Regression test selection

RTS has been extensively studied, leading to multiple systematic studies and
surveys [23, 62, 76, 109, 205]. These approaches for RTS can be classified according

22



2.2. Software analysis

to their granularity. The granularity of a RTS approach is the minimal size of the
artifacts at which change impacts are considered. As an example, a RTS approach
is considered as fine-grained when the impacts are computed at the statement level,
whereas it is coarse-grained when the impacts are computed at the class level.

Several popular RTS frameworks are coarse-grained, considering file or class
granularity. They result in less overhead than a finer-grained one, and tends to be
more scalable for bigger systems. Ekstazi has a 3-phases approach: test selection
using file-dependencies, test execution, and new dependencies collection [70]. It
builds call graphs using a fast on-the-fly instrumentation. Ekstazi is safe for both
code changes and file-system changes. It is among the most efficient state-of-the-art
RTS solutions, with an average time reduction of 47 %. HyRTS is an hybrid RTS
technique, combining both method granularity and file granularity [208]. Using
both the cost-effectiveness of file granularity, and the accuracy of the method-level
RTS, HyRTS outperforms Ekstazi and other state-of-the-art RTS techniques.

Fine-grained RTS techniques tend to select less tests cases to execute, since
the impact analysis is more accurate [141]. This results in a faster test execution,
but counter-balanced by a longer impact analysis. As an example, FaultTracer

is a RTS tool using Chianti’s change impact analysis for a method level test
selection [209]. Despite showing accurate results, FaultTracer produces a
high overhead, and thus computing the impact analysis is sometimes longer than
executing all the test cases.

The dynamic approaches presented are based on software execution traces.
Capturing software execution traces can be done on the system currently running
the software using instrumentation. However, in the context of cyber-physical
systems (CPS), the software is distributed over complex networks running a wide
variety of operating systems. This make any type of instrumentation impossible,
and dynamic analysis must be performed in dedicated CPS monitoring platforms.

2.2.6 CPS monitoring

In CPS, hardware entities communicate with an information infrastructure, and are
orchestrated for certain tasks, such as home automation, car automation, e-health,
smart cities, and “Industry 4.0” [4, 13, 52, 102, 147].

In realistic scenarios, most CPSs are too complex to manage without software
support. The majority of monitoring platforms for CPSs consist of web services
enabling the management of the entities in the network [181] (configuration, con-
nection, disconnection, etc...). Two types of TCP-based protocols are generally
used to support communication within the CPS. The first protocol is the HTTP
protocol for enabling communication between the applications of the CPS via the
request-response messaging paradigm [50]. The second protocol is the Message
Queuing Telemetry Transport (MQTT) protocol to support communications from

23



2. Background

devices to applications via the publish-subscribe messaging paradigm (widely used
between gateways and platforms within IoT architectures). It is lightweight, mature,
and require little amount of code to be functional. For those reasons it has been
heavily studied and used, in both industrial and research worlds [89, 115, 186].

With its low latency, small energy consumption, and simplicity of use, MQTT
is an interesting asset for monitoring and tracing the execution of CPS. Energy
consumption is especially important in the realm of CPSs. In fact, these systems
often embed small computation units relying on limited power supplies. Being
able to design energy-efficient software to deploy on CPS, and estimate the energy
consumption of the CPS components, is thus important. In the next section we
present the domains of energy efficiency, measurement, and estimation.

2.3 Energy efficiency

Energy consumption has become an important concern in the domain of software
engineering during the past decade [144]. The massive electricity needs of data-
centers represented 1.8% total U.S. consumption in 2016, and an estimated account
for about 2% of global greenhouse gas [45, 177, 198]. Furthermore, the expense
to power and cool the data-centers escalated to a significant cost factor: for
every $1.00 spent on new hardware, an additional $0.50 is spent on power and
cooling [174]. As an example, considering the fastest computer in the world in June
20202, the Supercomputer Fugaku, with 7,299,072 cores and peaking at 513,854.7
TFlop/s, consumes 28,335 kW. This would cost 5001.13€ per hour, with a cost
of 0.1765€/kWh (average cost in France, on November 2020). As an answer to
these alarming numbers, significant efforts aim at reducing the CO2 emissions of
data-centers [173], reducing electricity costs [178, 198], or improving the battery
life of smartphones [114, 142].

Energy consumption E is defined as an accumulation of power consumption P

over a duration t, such as E = P × t. Thus, reducing the energy consumption of a
software can be either be done by: (1) Reducing the duration it takes to execute
and/or (2) Reducing its power consumption. Traditionally, such concerns tend to
be addressed at the lower levels (hardware or middleware), and several strategies
have been presented in the past years towards that purpose [125]. Hardware level
optimizations are usually invisible to the developers, and most recent systems
include many of them, such as dynamic voltage, frequency scaling, cpu throttling
or clock gating [107, 108, 203]. However, studies show that the design of softwares
can have a significant impact on energy consumption [30, 38]. If a lot of work
from the domains of high-performance computing and complexity can be applied
to energy-efficiency, it is not always the case, and sometimes reducing the duration

2https://www.top500.org/lists/top500/2020/06/

24



2.3. Energy efficiency

to execute a program increases the power consumption so much that the energy
consumed still increases. As an example, if parallel computing often improves the
performances of a software, each CPU core used increases the power consumption
of the system, and can result hence a loss of energy-efficiency [153].

Nevertheless, promising results have been introduced using software-level energy
management approaches [116], which, combined with lower level optimizations, can
effectively reduce the energy consumption of programs. However, if energy-efficiency
is an important topic, other studies showed that most developers lack knowledge
about energy, as well as tools for measurement and optimization [144, 151]. For
these reasons, it is crucial to provide more tools to developers in order to help
them coding energy-efficient applications. This implies (1) providing information
about the energy consumption of their softwares through energy measurement
or estimation and (2) proposing energy-efficient software constructs and design
patterns.

2.3.1 Energy measurements

Providing to the developer feedback about the energy consumption of its software
can be done either through measurement or estimation. Measurement techniques
differ in granularity, and can be performed at various level in the development
environment. In the following, we detail the main approaches for measuring energy
consumption.

Power-meters

Power-meters are external devices that can be plugged directly on the power supply
of a computer, to measure its entire energy consumption, or on specific components
that need to be monitored [87, 88, 207]. The main advantages of power meters is
that they do not need any software modification to be used, only a little hardware
tweaking and finally their presence to not impact the energy consumption of the
measured system. However, the metrics gathered are coarse grained as they usually
include the entire system’s energy consumption. Thus, understanding the energy
consumption of a single program, when the entire system’s energy consumption is
measured can be complicated. Furthermore, as power-meters are remote devices,
synchronizing the timestamps of these metrics with the observed software require
additional analysis.

Specialized systems for energy monitoring

Specialized systems for energy monitoring are specifically designed for energy-aware
development. Such systems embed multiple sensors, plugged to several parts of

25



2. Background

c l a s s C {
void A( ) {

double beg inning = EnergyCheck . statCheck ( ) ;
B( ) ;
double energy = EnergyCheck . statCheck ( ) − beg inning ;
System . out . p r i n t l n ( "B consumed "+energy ) ;

}
void B( ) {

System . out . p r i n t l n ( " i n s i d e method B" ) ;
}

}

Figure 2.10: Source code instrumentation using jRAPL to measure the energy
consumption of a method call.

the system (e.g., CPU, disks, RAM), and can perform fine-grained measurements
at high frequencies. The most popular ones are the Atom Leap [180] and the
Spartan Fpga [170]. These tools are extremely accurate when performing energy
measurements, however they run specific operating systems and have limited
capabilities, and thus cannot be easily used by developers.

Application level energy measurement tools

This last category of energy measurement tools can be used from software and
operating system levels. They are usually libraries or registries that can be queried
for information about the system’s energy consumption. Their main benefits are
accuracy, fine-grain, and availability on most operating systems and hardware.
However, monitoring the energy consumption of a software at runtime often requires
the usage of instrumentation techniques. In fact, when the developer needs energy
consumption information about specific sections of her program, she needs to
modify the behavior of this program, to enable calls to application-level energy
measurement libraries.

As an example we consider the jRAPL energy measurement library [116].
jRAPL is a Java library that enables access, at the JVM level, to RAPL, a Intel
feature providing information about the energy consumption of the CPU. jRAPL

can be called by through a simple invocation of a Java method, and returns the
energy consumed, by the CPU, since the system has been started up. In order to
measure the energy consumed by a method with jRAPL, an instrumentation step
could add jRAPL invocations before and after this method execution. Comparing
the measures obtained hence produces insights of the CPU consumption while
running a program, as shown in Figure 2.10.

JRAPL can be used through a single line of Java code, and provides the energy

26



2.3. Energy efficiency

consumed by the CPU cores. However, the energy it measures includes the energy
consumed by the system, and induces a considerable overhead [206], threatening
the validity of the measurements.

2.3.2 Energy estimation

While several tools and application are able to provide accurate measures of the
energy consumption, many approaches focus on estimating this consumption instead.
Estimating an energy consumption often requires less tooling than performing
measurement, and is, de facto, easier to setup. A classic way of estimating an
energy consumption can be done by estimating a power consumption, and using
it along with a duration to estimate an energy consumption. This can be done,
as an example, with PowerAPI [25], which estimates the power consumed by
the CPU, for a given process, using the CPU usage. Furthermore, PowerAPI

proposes a middleware toolkit for defining software-level power meters, and several
other energy and power estimation frameworks from the state of the art rely on
it [43, 137]. Compared to jRAPL, these frameworks rely on power models and are
not impacted by the system consumption.

Lots of effort have been spent in developing efficient application-level monitoring
tools, researchers have also proposed instruction-level estimation approaches. These
approaches usually attach small energy consumption values to the instructions of a
specific targeted language. Each time an instruction is executed, an small energy
consumption can be added to the application total consumption. Instruction-level
energy estimation approaches can be very accurate, but are complex to set up as
the energy consumption of a single instruction can be hard to acquire in the first
place.

Using these energy estimation approaches, it is possible to provide to the
developers insights of the energy consumptions of their programs. This energy
feedback could help them doing better design choices, aimed towards a better
energy efficiency. We describe in the next section existing software-level approaches
that are efficient at reducing the system’s energy consumption.

2.3.3 Energy-aware software engineering

Existing work has shown that software-level optimizations are efficient in reducing
the energy consumption of software and thus should be combined with hardware
level optimizations. Software-level energy optimizations rely on the developer’s
implication to be implemented. Many of these optimizations have been described
in the state of the art, and can consist in simple code updates, or important
design changes. As an example, it can be a simple data structure update. In fact,

27



2. Background

existing work compare the energy efficiency of Java data structures according to
the context [83, 149].

Another approach for energy efficiency is the approximate computing [79]. This
approach consists in reducing the quality of service of an application, with a
soft error tolerance. The program returns a slightly less qualitative result, but
consuming much less energy. It is especially interesting in the context of image
processing, where minor changes in the quality of an image are not necessarily
visible at first sight.

Many other software-level changes can be performed, depending on the context.
For Android mobile programming, approaches have been proposed to optimize the
battery duration, such as CPU offloading [104], putting threads on sleep when not
used [112], limiting network usage and inputs/outputs [152], reducing the amount
of external libraries [112], etc ...

Little work has been done in the domain of MDE for energy-aware software
engineering, but some interesting approaches can be mentioned. Several approaches
use models to represent system and software architectures, and optimize them for
better energy efficiency [57, 103, 139, 140]. This is especially interesting in the
domain of cloud energy efficiency, where models can be used to represent cloud
systems, and serve as a basis for optimization using evolutionary algorithms and
simulation [37]. A few other existing approaches rely on xDSLs. The languages
executed embed power and energy estimation features, and can be used to monitor
and optimize the systems designed [11, 19, 187, 189].

Finally, frameworks have been proposed to help software engineers doing the
best energy-efficient design choices. This is the case of Seeds, which generates
several versions of an application implementing different combinations of collections,
and picks the most efficient one after monitoring the energy consumption with
Leap [119]. Approaches have also been proposed to improve energy efficiency
by automatically refactor programs. These approaches define "code smells", "anti
patterns" or "bad code constructs", which are known energy consuming code
patterns, and automatically fix them [46, 98, 128]. However, they are limited to a
small number of situations (e.g., collection implementations), and cannot replace a
developer doing the right energy efficient design choices. Thus, it is crucial to help
developers writing their program in a more efficient manner.

This chapter presented some background concepts necessary to follow this thesis.
It first describes model-driven engineering, first in a general manner, followed by
more specific concepts: model transformations and executable models. Then it
presents software analysis, along with the tools used in this thesis to perform it.
It finally presents the domain of software energy efficiency, with its measurement,
estimation, and optimizations tools. The next chapters present our contributions
in these areas, adding references to specific related works when necessary.

28



Chapter 3

Model-driven tracing of software
execution

29



3. Model-driven tracing of software execution

3.1 Introduction

Many properties of a program have to be analyzed during its lifecycle, such as
correctness, robustness, energy consumption or safety. These behaviors can be
analyzed either dynamically by executing the program, or statically, usually by
examining the source code. If these approaches seem to be opposed, they synergize
well, as dynamic information can be used to add more precision to static analysis [63,
73].

MDE is an efficient approach to design, modernize, generate and analyse
software. However, in most MDE approaches, software systems are engineered by
first designing models, refining them until the architecture is satisfying enough
for generating the source code. With such workflow it is complicated to perform
dynamic analysis on models, as they only represent static aspects of the software,
such as the architecture. In this chapter, we want to tackle this problem, by
adding dynamic aspects of the software inside the static model it conforms to, to
enable dynamic analysis on the model. Towards this purpose, we study the static
model-based reverse engineering framework MoDisco, and leverage it to perform
dynamic analysis on models.

The MoDisco framework [31] is designed to enable program analysis in MDE
by creating a model of the source code, the code model, and using it for program
understanding and modernization. The code model makes the program structure
easily accessible to external modeling tools for any kind of processing, e.g. for static
analysis. MDE tools analyzing source code through MoDisco do not execute the
original program. However, if MoDisco provided models of dynamic aspects of the
code, this would enable other useful analysis. In what follows, we show a method
to build a model of the program execution, using both static and dynamic analysis.
Thus, an initial structural model is statically built using MoDisco, containing the
basic blocks of a program: packages, classes, methods and statements. Thereafter,
the code is instrumented in order to add execution traces to the model during
program execution. Consequently, the program is executed and all the statements
in the model that have been executed are ordered in an execution trace. Section 3.2
shows this approach. We then provide two useful usages of this model of dynamic
aspects of a program serving sustainability purposes.

First, we use it to display and understand the energy consumption of software,
as shown in Section 3.3. The execution trace available in the model is enriched
with energy consumptions, enabling model-driven energy-aware refactoring of the
software.

Then we also use it to lighten the cost of regression testing, as shown in
Section 3.4. The execution trace is used as a dependency graph for impact analysis
purposes, and the impact that source code changes can have on the test cases can
be evaluated with it. Finally, the regression testing phase cost can be lightened by

30



3.2. Modeling software execution traces

only running the test cases effectively impacted by changes.

3.2 Modeling software execution traces

3.2.1 Approach

This section illustrates our approach for dynamically building a model of the
program execution. We propose an automatic process made of a sequence of
three steps. Figure 3.1 gives an overview of this process. On the left-hand side of
Figure 3.1, the input is the source code of the considered system. First, a static
model is generated thanks to a reverse engineering step. Second, on the left-hand
side of Figure 3.1, a source-code instrumentation step prepares the code before
execution. Finally, the instrumented code is executed and its instrumentation
allows us to complete the analysis model into the dynamic model of the source
code. This model is the output of the process, and represent the execution of the
program.

The dynamic model should contain the structure of the source code, especially
describing the targeted system. Furthermore it should reify which statements are
executed when the system is run under the action of a launcher (e.g. a set of tests,
or a main method). In addition, the order of the calls should be stored to be used
when analyzing the behavior of the system based on the dynamic model.

Source code Static model

Instrumented 
code

Dynamic
model

MoDisco

Instrumentation

Execution/
Completion

ModelCode

Figure 3.1: 3-step process generating a dynamic analysis model from source code

31



3. Model-driven tracing of software execution

pub l i c c l a s s C {
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

A( ) ;
}
pub l i c s t a t i c void A( ) {

B( ) ;
}
pub l i c s t a t i c void B( ) {

System . out . p r i n t l n ( " He l lo from method B" ) ;
}

}

Figure 3.2: Example of a simple Java program to trace.

In this work, we consider Java source code and we exemplify the approach with
the naive class presented in Figure 3.2. This class is the source-code entry of the
process in Figure 3.1.

Model Driven Reverse Engineering

The first step of our approach consists of generating the model of the code structure
using MoDisco1. MoDisco has a visitor-based system which navigates through the
full abstract syntax tree (AST), and then builds a model from it, according to its
Java meta-model [31]. We use a specific option of MoDisco, which annotates each
element of the output model with its location in the source code. This information
will be necessary for performing the dynamic analysis, as we show later.

Figure 3.3 shows a simplified version of the model generated by MoDisco from
the code in Figure 3.2 (Static model in Figure 3.1). Node elements contain the
position, and a reference to the statements. Since the full static model generated by
MoDisco is rather large, we extract the excerpt in Figure 3.3, focusing on statement-
level information. For instance we filter out information about expressions, binary
files, or import declarations. Since in this work we focus on the execution trace of
the statements, only those ones are needed, within their respective classes, methods,
and packages containers. Specifically this filtering is required to minimize the final
model in-memory size afterwards. The filtering is performed during the model
transformation described in the next section.

Once the static MoDisco model is generated, we need to instrument the software
to trace its execution. The execution thus captured can then be modelled along
with the MoDisco model.

1http://www.eclipse.org/MoDisco/

32



3.2. Modeling software execution traces

:Model

name = "model"

:Package

name = "main"

:JavaModel

:Class

name = "C"

:Method

name = "main"

:Method

name = "A"

:Method

name = "B"

:InvocationStatement :InvocationStatement :ExpressionStatement

:Positions

:Directory

name = "main"

:File

name = "C.java"

:Node

line = 3
startPos = 61
endPos = 65

:Node

line = 6
startPos = 97
endPos = 101

:Node

line = 9
startPos = 133 
endPos = 175

Figure 3.3: MoDisco model of the program in Figure 3.2

Code Instrumentation

Code instrumentation is conducted by inserting additional statements in the code,
at specific places, so that when the software is executed, these new statements are
also executed [73]. We detail existing instrumentation techniques in Section 2.2.2.

For this approach, we relied on source code instrumentation. Indeed, some
specific information about the source cannot be obtained when analyzing the bina-
ries, especially the source code position of the statements. Besides having the line
number for each statement like the other approaches, source code instrumentation
can also provide column position numbers, a relevant information used to match
the executed statements of the code with the analysis model’s statements.

The instrumentation has been performed using the Spoon Framework [148].
When instrumenting classes, a match() method call is added before each statement.
Its parameters are class name where it belongs, the method, and finally the source
code position of this statement. The source-code instrumentation generates the
code of Figure 3.4, which is compiled and loaded before the execution.

Execution and Injection

Following the example depicted in Figure 3.4, the execution part consists of running
the program, through the main() method here. When the new instrumented
statements are executed, the MoDisco model statically built is completed with

33



3. Model-driven tracing of software execution

pub l i c c l a s s C {
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

match ( "C" , " main " , 61 , 65)
A( ) ;

}
pub l i c s t a t i c void A( ) {

match ( "C" , "A" , 97 , 101)
B( ) ;

}
pub l i c s t a t i c void B( ) {

match ( "C" , "B" , 133 , 175)
System . out . p r i n t l n ( " He l lo from method B" ) ;

}
}

Figure 3.4: Instrumented code tracing the execution of the program.

dynamic information. The method match(), iterates over the static model to find
the statement being executed, using its qualified class name, method name, and
finally the source code position of the statement.

For each statement executed, a Measurement is created, conforming to the
SMM standard meta-model. In this example, we label this measurement as
"executed". Then, Measurements are associated with MeasurementRelationships,
thus reproducing the execution order of the program. Relying on SMM for modelling
this trace enables a better flexibility of our approach, as many more dynamic
information can thus be gathered at runtime, attached to the elements of the
MoDisco model: energy consumption, execution times, etc...

This model dynamically completed represent the execution of the software,
as showed in Figure 3.5. Furthermore, statements not linked to any "executed"

measurements can be considered as not executed, this is an immediate interesting
information in the context of code coverage. Additionally, considering a statement
that is part of an execution trace, modifying this statement could eventually
impact the execution of the program, and thus the impacts of this modification
can be estimated simply by looking at the trace. This can serve as a dependency
graph, useful in the domain of impact analysis. Finally, this model answers to the
problematic announced in this section, as it is dynamically created, and analyze
the program’s behavior. However this model highly depends on the source code’s
size. Indeed, each statement in the source code corresponds to one element in the
analysis model, thereby an important source code might lead to scalability issues.

34



3.2. Modeling software execution traces

:Method

name = "main"

:Method

name = "A"

:Method

name = "B"

:InvocationStatement :InvocationStatement :ExpressionStatement

:Measurement

value = "executed"

:Measurement

value = "executed"

:Measurement

value = "executed"

measurand measurand measurand

MoDisco

SMM

:MeasurementRelationship

name = "order"

:MeasurementRelationship

name = "order"

in inout out

Figure 3.5: Model of the execution trace of the main() method execution of
Figure 3.2

3.2.2 Evaluation

Execution environment

In this section we evaluate the overall performances of our dynamic model generation
framework, using the XMI persistence layer for our models.

This evaluation is conducted on a Java project containing the classes introduced
in Section 3.2.1. We programmatically increase the size of this project by duplicating
the number of classes, and for each class we propose a test class that runs it. This
way, every test class is testing a single target class. Using this setup, we can manage
the size of the output model, and observe the behavior of our prototype with either
small and big models.

The experiments are executed on a desktop computer running Windows 10
Professional 64Bits, using an Intel Core i7-4770K (3.50GHz) CPU and, a Sandisk
SSD PLUS 1TB. The Java Virtual Machine version is JDK 1.8.0_121, and runs
with a maximum Java heap size of 2,048 MB.

This experimentation starts by running the program analysis on Java projects
containing a few dozen of classes, which can be considered as small here. Subse-
quently, this number of classes is increased, up to thousands. We measured the
execution time for each step of our prototype, and reported it in Figure 3.6. As
described in the previous parts, those steps are: Reverse Engineering with MoDisco
(RE), Source code Instrumentation with Spoon (Instr), Test Execution (Exec), and
Injection of the traces (Inj) .

35



3. Model-driven tracing of software execution

When the project under analysis reaches approximately 12,000 test classes, the
model created by MoDisco using reverse engineering is too big to be stored in
memory, thus preventing any other analysis on bigger projects.

Discussion

The curves from the left diagram in Figure 3.6 are showing the growth of execution
times when the number of classes increases. The other diagram shows the same
data, but its representation gives a better understanding of each step’s duration in
the whole process and its total duration. This diagram shows that the MoDisco
static model generation is by far the longest steps of the program analysis, with a
non-linear complexity. Also, as written in the previous subsection, the MoDisco
static model creation will not be achieved when the program under analysis gets
very big (approximately 12,000 test classes) due to a lack of memory and the
well-known XMI scalability problem.

Javier Espinazo-Pagán et al. explained in their paper [143] that the XMI
persistence layer scales badly with large models, due to the fact that XMI files
cannot be partially loaded. Indeed the XMI resource needs to keep the complete
object in the memory to use it.

This scalability problem can be partially resolved using a more scalable per-
sistence layer for the EMF Models, such as NeoEMF [18] or CDO2. Nonetheless,
MoDisco has its own meta-models, and uses EMF generated code. Using this code
with NeoEMF and CDO resources cannot currently improve the scalability, since
those layers need to generate their own code from an Ecore meta-model.

2https://eclipse.org/cdo/

0 0.2 0.4 0.6 0.8 1

·10
4

0

0.5

1

1.5

2

·10
6

Classes

M
il
li
se

co
n
d
s

Instr
Exec
RE
Inj

0 0.2 0.4 0.6 0.8 1

·10
4

0

1

2

·10
6

Test classes

Instr
Exec
RE
Inj

Figure 3.6: Dynamic program analysis execution times using the XMI persistence
layer.

36



3.2. Modeling software execution traces

3.2.3 Conclusion

In this section we have presented our approach for dynamic program analysis
purposes, using Model Driven Engineering. The steps of the process dynamically
generate a model, and models an execution trace along with it conforming to the
SMM standard. If this approach suffers from the well studied scalability issues of
MDE, it also creates relevant models of execution traces, reusable for any kind of
software dynamic analysis. The next sections present usages of this trace model
to improve the sustainability of software. The first usage relies on this model to
represent the energy consumption of the software. A second uses it as a dependency
graph to compute the impacts of software changes on the test suites.

37



3. Model-driven tracing of software execution

3.3 Characterizing the source code model with
energy measurements

3.3.1 Introduction

As stated in Section 2.3, energy consumption becomes a major concern when
developing software. Traditionally, such concerns tend to be addressed at the
lower levels (hardware or middleware), and several strategies have been presented
in the past years towards that purpose [125]. Additionally, promising results
have been introduced using software-level energy management approaches [116],
which, combined with lower level optimizations, can effectively reduce the energy
consumption of programs.

Unlike hardware-level energy saving techniques, software-level approaches often
need the implication of developers. In fact, to develop a greener code, a certain
level of energy-awareness is helpful to make relevant design choices. Studies showed
that more than 80% of programmers did not consider the energy consumption
when developing softwares, even if they know how important it can be, especially
in the realm of mobile application development [119, 144]. Representing source
code along with energy consumption would help developers making the right design
choices.

As stated before, MDE is well-known for improving reusability and flexibility
by relying on standard meta-models. Thus, models are typically used during the
software development, as specification models to generate a source code, or as source
code models, reverse-engineered from the software in order to analyze or refactor
it. In this section we extend the MDE approach previously described for modeling
the source code of a software and characterizing it with energy measurements.
To this extent, we rely on the model in which we injected execution traces, as
presented in Section 3.2. A first model of this software is generated with the static
reverse-engineering framework MoDisco [32]. Then, on top of the execution trace
gathered dynamically, we perform energy measurements that are modeled in the
trace.

These measurements are also persisted in a second model conforming to the
Structured Metrics Meta-model (SMM). In order to characterize the source code
with energy metrics, the two models are associated: elements in the source code
(e.g., Java methods) are linked to the energy measurements, enabling the analysis
of the source code energy consumption.

This section is organized as follows: Section 3.3.2 presents our approach, Sec-
tion 3.3.5 discusses it and Section 3.3.6 presents the threats to the validity of our
approach, finally Section 3.3.7 concludes the section.

38



3.3. Characterizing the source code model with energy measurements

3.3.2 Approach

The approach used here is close to the one described in Section 3.2.1, with a few
changes. If the approach presented before focused on traces at the statement level,
in this section we study the energy consumption at the method level. Indeed,
measuring the energy consumption of statements is extremely complicated, as
the duration of a statement execution can be too short to calculate an energy
consumption. Since we are coarser-grained, we can rely on an on-the-fly byte-code
instrumentation instead, as it is easier and faster to set up.

We detail in this section the several steps necessary to characterize our source
code model with energy measurements. First, the source code model is statically
built using the MoDisco reverse-engineering framework. Second, the code is
instrumented, in order to add probes inside the program, which is then executed
to gather the energy measurements at runtime, and trace its execution. Third,
the measurements are persisted in a model conforming to SMM, and associated
with the MoDisco source code model. The Java program in Figure 3.7 is used to
describe our approach. Our application is available on GitHub3.

Considering a source code written in Java, MoDisco generates the corresponding
model conforming to a Java meta-model. The energy measurements have to
be dynamically gathered, and are not available in the initial MoDisco model.
Nonetheless, a benefit of MDE is that such measurements can be modeled and then
associated with our source code model, as presented in the next sections. Applying
MoDisco on the program in Figure 3.7 would produce a model containing all the
source-code elements of such program. An excerpt of this model is available in
Figure 3.8.

3.3.3 Energy Measurements Computation

Once the source code model is generated, the energy is measured. In order to get
such measurements for each method in the program, it has to be instrumented.
We use the ASM on-the-fly instrumentation library4 for that purpose. The JVM
byte-code is visited, and probes are added in the byte-code of every method of
the program. A first probe is added in every method entry point, traces down the
method call, gets the system time, and finally gets the energy consumed by the
CPU at the specific moment, in microJoule.

Another probe is added at every method exit point. This second probe computes
the duration of this method execution, and the energy it has consumed. To do so,
the energy consumed by the CPU is fetched a second time, and subtracted from

3https://github.com/atlanmod/EnergyModel
4https://asm.ow2.io/

39





3.3. Characterizing the source code model with energy measurements

p u b l i c s t a t i c void main ( java . lang . S t r i n g [ ] ) ;
d e s c r i p t o r : ( [ Ljava / lang / S t r i n g ; )V
f l a g s : ACC_PUBLIC, ACC_STATIC
Code :

s tack =2, l o c a l s =2, a rg s_s i z e=1
0 : new #2 // App app
3 : dup
4 : i n v o k e s p e c i a l #3 // new App( )
7 : astore_1
8 : aload_1
9 : i n v o k e v i r t u a l #4 // app . methodA ( )

12 : aload_1
13 : i n v o k e v i r t u a l #5 // app . methodB : ( )
16 : r e turn

(a) Java byte-code before instrumentation

p u b l i c s t a t i c void main ( java . lang . S t r i n g [ ] ) ;
d e s c r i p t o r : ( [ Ljava / lang / S t r i n g ; )V
f l a g s : ACC_PUBLIC, ACC_STATIC
Code :

s tack =2, l o c a l s =2, a rg s_s i z e=1
0 : new #11 // Probe probe
3 : dup
4 : ldc #25 // S t r i n g App$main
6 : i n v o k e s p e c i a l #16 // new Probe ( )
9 : astore_1

10 : new #2 // App app
13 : dup
14 : i n v o k e s p e c i a l #3 // new App( )
17 : astore_2
18 : aload_2
19 : i n v o k e v i r t u a l #4 // app . methodA ( )
22 : aload_2
23 : i n v o k e v i r t u a l #5 // app . methodB ( )
26 : aload_1
27 : ldc #25 // S t r i n g App$main
29 : i n v o k e v i r t u a l #19 // probe . e x i t ( )
32 : r e turn

(b) Java byte-code after instrumentation

Note that if a second method is called inside a first method, then the energy
consumed by this first method includes the energy consumed by the second one.
For instance, if we consider the code in Figure 3.7, the energy consumed by the
main() method will include the energy consumed by the methodA() and methodB

methods. Hence it could be possible to approximate the energy consumed only by
main() by subtracting the energy methodA() and methodB consumed, thanks to
the execution trace.

Running the instrumented code triggers the probes to gather measurements.
For each method, the following metrics are obtained:

1. Its timestamp

2. The energy it consumed

41



3. Model-driven tracing of software execution

3. The methods that have been called inside.

Running the code can be done either by executing the main method of a program,
or through test cases. During the execution, the measurements are published on a
messaging queue, in order to be analyzed after the execution. Indeed, analyzing
the traces is an expensive operation, and performing it after the execution limits
the overhead induced by the execution of the instrumented statements.

Furthermore, our approach is relying on existing energy measurement tools,
and do not aim at improving their accuracy. Performing the measures causes a
significant workload, limiting the accuracy of the energy measurements [165]. For
that reason, we can only provide the energy consumed at the method level, or at
coarser granularity. Per-instruction energy consumption is thus out of the scope of
this approach, and a different approach.

3.3.4 Energy Measurements Modeling

In this main step of our approach, we attach to the execution trace the energy
measurements in a model conforming to SMM and associate it to the source code
model that MoDisco generates. This is performed by reading the measurements
sent in the messaging queue one by one. Energy consumed, timestamps and internal
method calls are persisted as elements in the model. Finally the measurements are
linked to the methods from the source-code level, hence characterizing them.

In Figure 3.9, the energy consumed is contained in the Measurement elements,
as values. The method calls are represented using the MeasurementRelationship.
The "before" and "after" links point towards the Measurement elements, describing
in which order the methods have been called. Here for instance, main() calls
methodA() and methodB().

Furthermore, the timestamps of the methods invocations are available in
the ObservedMeasure elements. Finally the source code model elements (e.g.
MethodDeclaration) are associated to the Measurement using the link labeled as
measurand.

3.3.5 Discussion

This dynamic model characterized with energy measurements offers developers a
better energy-awareness than standard software engineering techniques:

First, a static model of the program is created. The association between
MoDisco’s Java meta-model and SMM offers a representation of the source code
characterized with dynamic information, available for analysis purposes. We rely
on this combination of meta-models to propose graphical representations of the
programs, embedded as Eclipse plugins. We propose two views defined using the

42



3.3. Characterizing the source code model with energy measurements

Figure 3.9: Excerpt of the source code model (the MethodDeclaration instances)
characterized with energy measurements

Sirius graphical modeling workbench that display the program’s call graph and
its energy consumption, in order to help developers locating energy consuming
methods. We also propose a more compact view implemented using the sunburst
radial visualization system [182]. This last view is not defined using model-driven
techniques, at opposed to the Sirius-based views, and is thus less maintainable, but
the library used provides high-quality features for navigation. We display these

43





3.3. Characterizing the source code model with energy measurements

targeting the methods that consume more than a specified energy. As an example,
it could transform all the collections used to more efficient implementations, or use
less consuming data types (e.g., floats instead of doubles), as it has been shown
that it can reduce the energy consumption [116]. The modified source code of the
program can then be generated again, using MoDisco code generator, and be used
to consume less energy. More complex usages could be imagined, such as performing
random model transformations on energy inefficient features and comparing the
energy consumption of the regenerated code, until a smaller consumption is found,
as proposed in design space exploration refactoring approaches.

3.3.6 Threat to validity

Several points have to be considered, in regard to the validity of our approach. First
of all, our current model does not aim at containing the precise energy consumption
measurement for each method. It stores in a standard model the information
we gather from our measuring tools. In our implementation we used Rapl to
measure the energy consumed by the program. Rapl induces an overhead, that has
not been quantified here, and which threatens the accuracy of the measurements.
Furthermore, Rapl also includes the energy that the operating system is consuming.
For that reason, the energy measurements we are able to gather with our current
tooling might not be accurate. Using a dedicated system for energy measurement
could be used to estimate this difference.

3.3.7 Conclusion

In this section we re-use the static source code model in which we injected execution
traces as presented in Section 3.2. Thus, we propose an approach for modeling
the source code of an application and decorating it with energy measurements.
The instrumentation step described in Section 3.2 is extended to also perform
energy measurements in addition to tracing the execution of the software. The
measurements are dynamically gathered in the SMM model, and associated with
the source code model. This model can be used by programmers as a basis for
analyzing and optimizing programs, and offers a better energy-awareness, useful
for implementing greener applications. This shows one usage of our dynamic model
for improving sustainability. In the next section, we rely on this dynamic model
to perform impact analysis on changes in order to reduce the cost of the testing
phase, an other usage fostering sustainability with models.

45



3. Model-driven tracing of software execution

3.4 Trace model applied to regression test
selection

3.4.1 Introduction

In this section, we propose a different usage of our software model enhanced with
execution traces, presented in Section 3.2. Instead of modeling energy-related
information, we use this model as a dependency graph, to perform impact analysis
of the source code changes. This impact analysis is then used to lighten the cost of
regression testing.

Regression testing (RT) is an important step in the software development
lifecycle. It ensures that code updates do not break the functionalities that have
already been successfully tested. However, the size of regression test suites tends
to grow fast [205] when an application is evolving; thus considerably increasing the
testing cost: both in time and energy consumptions.

According to various studies, up to 80 % of testing cost is related to regression
testing, and more than 50 % of software maintenance cost is dedicated to testing [61].
The process of source code compilation, load, and test execution is commonly called
a build. When a build is over, a result, successful or not, is returned to the developer.
According to this result, the developer will either go to another task or correct
the code that has regressed. This is especially true in the context of Continuous
Integration (CI), where the regression testing takes place on a separate server [74].
During the time of the build, the developer does not know yet if she needs to
correct the code (the wait could be long: e.g., 25:33 min including 06:04+18:11
min testing time for the build 372209560 of the Google Guava project5). Thus,
reducing this duration would improve the development productivity.

Reducing the cost of regression testing by only running a specific subset of
test cases is the purpose of Regression Test Selection (RTS). Most of the large
variety of RTS techniques are based on change impact analysis [106, 109]. When
an application under development is being modified, it might be unnecessary to
run all the test cases, especially the ones that are not impacted by changes in the
source code. For instance, existing RTS techniques such as Ekstazi [70] are able
to reduce the regression test time for the Google Guava project 6 to an average of
45 %. A standard RTS approach usually involves three phases:

• (C) Collection of the dependencies between code and test cases.

• (A) Analysis of the changes to select impacted test cases.

5https://travis-ci.org/google/guava/jobs/372209560
6https://github.com/google/guava

46



3.4. Trace model applied to regression test selection

• (E) Execution of the selected test cases.

The benefit of running less test cases during phase (E) could be counterbalanced
by the overhead introduced by the phases (C) and (A). Some existing approaches
such as FaultTracer [209] have shown a RTS time that is longer than the
execution of all tests. For that reason, several RTS approaches named offline
calculate the phase (C) beforehand. Hence, when the user starts a build, the
dependencies are already available for performing phases (A) and (E) with a
positive time gain [208].

Figure 3.11 shows a sequence diagram of an offline RTS approach. The first
build corresponding to revision Ri, is performed normally, and all test cases are
executed. Then, dependencies are collected (i.e., phase C) using this revision,
offline. Later, when the developer proposes a new revision R1+1, the dependencies
previously computed are used to locate the test cases impacted by the changes (i.e.,
phase A). The reduced test suite is executed (i.e., phase A). Finally the developer
is notified, and these three phases can be reproduced at each revision.

The overhead introduced by the phase (A) depends on how the dependencies
are computed during the phase (A) and analysed during the phase (C). It mainly
depends on the precision. A RTS technique is said to be precise if all selected
test cases are affected by the changed code [42] (i.e., no useless test case is ran on
unchanged code). Being precise is not mandatory and computing the dependencies
at a really fine grain induces a significant overhead [70]. The balance between the
precision and its induced overhead should be considered when developing and using
RTS techniques.

The precision of RTS techniques depends on the granularity when considering
source-code updates. It could distinguish file, class, method, or statement updates.
For instance, a class-level update summarizes all the modifications inside a class
whereas a statement-level update considers modifications of a single statement.
The usage of statement-level updates is more precise but induces more overhead
than file-level updates. This is the reason why existing RTS approaches [70] have
shown faster end-to-end7 results using file-level changes, despite selecting more tests.
Nevertheless, Lingming Zhang shows that depending on the file updated and the
case-study, it could be worth considering finer method granularity [208]. Therefore,
by designing a model-driven RTS approach, we can provide modularity and allow
the tester to manage the granularity and optimise the precision. Furthermore,
the overhead induced by a precise approach can be mitigated by performing the
dependency collection phase (C) while offline.

Independently from the precision, RTS techniques must be safe, meaning that
they should select every test case that is impacted by changes in the code [168].

7time necessary to compute the set of test cases to run, plus the test execution time.

47



3. Model-driven tracing of software execution

loop

Notify

:VCS

Clone revision Ri

:Test Server

compile

Commit and push Revision Ri

Commit & Push Revision Ri+1

Developer

run all tests

Notify results

Compute Dependencies

Improve Code

Notify

Clone revision Ri+1

compile

Get tests impacted

Run minimized test suite

Notify results

C

A

E

reduced
duration

normal
duration

Standard Build
Build w

ith R
TS

O
ffline

Figure 3.11: Sequence diagram of an offline RTS.

48



3.4. Trace model applied to regression test selection

While most of the related work on RTS is dedicated to ensuring precision or
performance of language-specific and RTS dedicated tools, in this thesis we focus
on providing a solution that leverages MDE for improving RTS in terms of its
reusability and interoperability. The accuracy of model-driven program analy-
sis techniques has proven this approach to be suitable for tracing down the execution
of programs, as shown in Section 3.2, and can benefit to RTS. First, the modularity
of MDE allows for a configurable approach where the RTS precision can be set as
required. Second, regression testing is one step among all the software development
steps, MDE aims to prevent each step to be independent by sharing the information
via models. Therefore, we propose a model-driven RTS approach that relies on the
execution traces available in the impact analysis model. That model is used all
along the RTS and then it can be exchanged, completed, and reused for different
purposes (e.g., debugging, performance analysis, optimization). Such model can
be connected to the other models of the MDE environment, allowing for instance
to trace regressions from the requirements model or UML models, etc. Finally,
regressions often happen because of changes in different artifacts around the code,
such as resources, configuration files, or data files. The holistic view fostered by
MDE would enable to address all these problems in a uniform way based on the
impact analysis model.

The risk of applying MDE in RTS is its potential performance overhead, in
particular for building the model [176]. In this section we show that this cost can
be reduced by developing an offline model-driven RTS technique: costly impact
analysis model creation is anticipated. Our resulting tool significantly reduces
the execution time of regression testing in our case studies, by up to 32 %. While
state-of-the-art dedicated RTS tools may have better performance, we argue that
the reusability of our computed models makes our solution especially valuable in
MDE environments.

In this section, we propose a model-driven approach for a highly precise and
safe RTS using statement-level impact analysis, in order to select test methods
impacted by code changes. We build a dynamic model of execution traces offline,
using the approach presented in Section 3.2, and leverage it for impact analysis.
When a user requests a build, this model is queried to select all the tests impacted
by changes. Finally, this reduced set of test cases is executed, thus accelerating the
regression testing time. The approach is based on the customizable model storing
the execution traces of the tests. If the fine-grain accuracy of this model may slow
down the RTS, it is a powerful asset for other software engineering tasks, hence
improving its reusability.

To evaluate this approach we aim at answering to the following questions in
this section:

• RQ1: Does our model-driven RTS approach allow for a safe and precise

49



3. Model-driven tracing of software execution

RTS?

• RQ2: Is our model-driven RTS approach efficient enough to significantly
reduce the regression testing time?

• RQ3: Does our model-driven RTS approach offers better modularity and
reusability than existing approaches?

The remainder of this section is organized as follows: Section 3.4.2 describes a
motivation example, then Section 3.4.3 introduces our approach, followed by an
evaluation driven by several experiments in Section 3.4.4. Finally, Section 3.4.5
discusses our proposal and Section 3.4.7 concludes this section.

3.4.2 Running Example

Figure 3.12 presents an example of RTS, and is used to define the context of our
model-driven approach for RTS. Figure 3.12a and Figure 3.12b define a first and a
second revisions of a Java program, respectively. They are verified using the JUnit
testing framework.

In the first revision, R1, the test class TestCA verifies that the class CA works
as expected. Four test cases are implemented: test_mA_0, test_mA_1, test_mB,
and test_mC. The first two tests cover the two branches of the if condition in mA.
The third one tests the method mB, and the last one tests the method mC.

The source code modifications of revision R2 update several lines. The first
change occurs at line 4, where the statement inside the if branch is updated. The
second change occurs at line 8, by renaming method mB to mD. Finally, the last
modification considers the new method name mD inside the corresponding test case.

Orso et al. define two different kinds of program changes, statement-level
changes and declaration-level changes [141]. A statement-level change can be either
a modification, deletion, or addition of executable statements, such as lines 4 and
27 changes. Note that statement-level impact analysis relates to the computation
of the impacts of a statement modification, whereas a statement-level change is a
statement modification.

A declaration-level change is a modification of a signature, such as line 8 change.
It could be method name modifications, method additions or deletions, variable
type changes, or any kind of signature changes.

Depending on the granularity of the change impact analysis, different test sets
might be selected for a re-run, as illustrated in Table 3.1. Applying RTS with
Class granularity selects four test cases, with Method granularity three, and with
Statement granularity only two, thus improving the precision. For instance, a
Method granularity would consider the entire method mA() changed, and would
select test_mA_1() even if it is not impacted. To improve the precision, Statement

50



3.4. Trace model applied to regression test selection

public class CA {

void mA(int i) {

if (i == 0)

doSomething1();

else

doSomething2();

}

void mB() {

doSomething3();

}

void mC() {

doSomething4();

}

}

public class TestCA {

@Test

void test_mA_0() {

new CA().mA(0);

}

@Test

void test_mA_1() {

new CA().mA(1);

}

@Test

void test_mB() {

new CA().mB();}

}

@Test

void test_mC() {

new CA().mC();

}

}

(a) Revision R1

public class CA {

void mA}(int i) {

if (i == 0)

doSomething5();

else

doSomething2();

}

void mD() {

doSomething3();

}

void mC() {

doSomething4();

}

}

public class TestCA {

@Test

void test_mA_0() {

new CA().mA(0);

}

@Test

void test_mA_1() {

new CA().mA(1);

}

@Test

void test_mB() {

new CA().mD();

}

@Test

void test_mC() {

new CA().mC();

}

}

(b) Revision R2

Figure 3.12: Two revisions of a program

51



3. Model-driven tracing of software execution

Granularity

M
e
th

o
d

s

Class Method Statement

test_mA_0 x x x
test_mA_1 x x
test_mB x x x
test_mC x

Table 3.1: Selection of test methods depending on the granularity of source-code
updates

granularity analyses the impact of each statement: test_mA_1() is not impacted
since it does not run line 4. Therefore, the test execution time is reduced but the
overhead is increased.

In the next section, we present a model-driven approach that is able to select
impacted test cases at the most precise Statement granularity. Thereafter, since
our approach provides a persistent impact analysis model, it will be up to the tester
to choose the granularity to balance overhead/precision w.r.t. her case study.

3.4.3 Approach

Our model-driven RTS approach performs the three RTS phases relying on the
impact analysis model built as shown in Section 3.2:

• (C) Computation of the impact analysis model.

• (A) Analysis of the impact analysis model to select the impacted tests.

• (E) Execution of the impacted tests.

Computation of the impact analysis model

Building the impact analysis model can be performed exactly as shown in Section 3.2.
Using the Figure 3.12a as an input program, the impact analysis model produced
by our approach is the one displayed in Figure 3.13. For readability purposes,
we simply display the relationship between statements and test cases a "trace",
instead of the SMM measurements and relationships presented earlier. This impact
analysis model is performed offline, and persisted in order to be used as soon as a
new version of the code needs to be analyzed, to immediately select the test cases
impacted. Building the model corresponds to the collection phase (C) of the RTS.

52



3.4. Trace model applied to regression test selection

R1: Model default: Package

CA: Class TestA: Class

mA: Method test_mA_1: Method

:IfStatement

line = 3

:ExpStatement

line = 4

:ElseStatement

line = 5

:ExpStatement

line = 6

:ExpStatement

line = 23

trace trace trace

Figure 3.13: Excerpt of the impact analysis model

Using the model to select impacted tests

The second RTS phase selects the test cases to run, based on the impact analysis
model in our model-driven approach (E). This phase is online, starting when the
user launches the regression test activity, e.g., after pushing a new version of the
code on a Version Control System (VCS).

Once the build starts and before anything else, the new revision is compiled.
If the compilation fails, no tests are executed and an error report is given to the
developer. If the code compiles successfully, then the RTS can be performed. The
two revisions of the source code are compared, in order to locate the changes. It is
done with a VCS comparison algorithm (we use the one implemented in JGit8).

Running such algorithm on two different revisions of the code produces a set of
DiffEntries. They are not only produced from Java files, but from any kind of files
contained in the project, such as configuration files, and compiled sources. When a
DiffEntry concerns a Java file, the impact of source code changes on test cases is
computed using the Impact Analysis Model. We do not consider non-Java files yet,
however existing work from the state of the art proposed an approach to do so: the
instrumentation has to specifically observe libraries that read and write files (i.e.,
FileInputStream and FileReader for Java), and add the files to the dependency
model [70].

The changed statements are gathered in the model and the impacted test cases
are selected, using the trace reference. For instance, if we focus on the Figure 3.13,
revision R2 in Figure 3.12b modified the ExpStatement line 6. Using the trace
reference in the model, test_mA_1 is considered as impacted, and is selected to
be run.

8https://www.eclipse.org/jgit/

53



3. Model-driven tracing of software execution

As shown in Figure 3.13, the trace references are precise, linking statements
and test methods. Moreover, by querying the model we can derive the impact at
coarser levels of granularity. For instance in Figure 3.13, the ExpStatement line 6 is
contained inside the method mA, itself contained inside the class CA. Hence, a coarser-
grained analysis (i.e., method or class granularity) can determine that modifying
the method mA or the class CA would impact test_mA_1, and so on. Implementing
a faster hybrid visitor for computing a coarser-grained impact analysis, such as the
one proposed by Lingming Zhang [208] is possible, thanks to the reusability of the
model. Indeed, it is possible to: (1) Build a coarser model during the collection
phase (C), by only considering the dependencies at a coarser level (method, classes),
this would accelerate the offline model building phase, or; (2) Compute the impacts
at a coarser level during the impact analysis phase (A), this would select more
tests, but would accelerate the impact analysis phase.

Each DiffEntry considers a block of a few lines of text, and is classified according
to the type of update (Modification, Insertion, Deletion). In the following we detail
the behavior of the test selection by type of update.

Modification

Modifications introduced by developer can be either statement-level changes or
declaration-level changes. If the update is a statement-level change, then the
impacts can be computed with a statement-granularity. If it is a declaration-level
change, then the impacts are computed at a coarser granularity (Method, or Class),
depending on the change.

Those changes are either in the SUT, or in the test cases. When a test case
is modified, it is immediately selected to be re-executed. However, the approach
is more specific for SUT modifications: In case of statement-level changes, the
modified lines are parsed, in order to get a set of modified statements. Those
statements are queried in the model, and using the trace reference, all the test
cases having executed this specific statement are selected for a new run.

The approach differs in case of declaration-level changes: If a method declaration
is modified, by either renaming it, or changing the signature, this method is queried
in the model, using its old-version signature. Then, all the test cases that executed
this method are gathered, using the trace reference, and selected for a re-run.

Furthermore, the same reasoning is applied with declaration-level changes at
class level. Thus, when a class signature is modified, the old version of the class
is queried in the model, in order to get the test cases impacted, using the trace
relation.

Selecting the tests impacted by the modification at different granularities (e.g.,
Package) is also possible, by applying the same approach on the model.

54



3.4. Trace model applied to regression test selection

Insertion

When the change is an insertion, several cases are considered:
(1) Any test-related insertion results in the selection of the test case. Those

can be either a new test, or an existing test with new lines of code.
(2) When new lines are added in an existing SUT method (i.e., statement-level

changes), the modified method is fetched inside the Impact Analysis Model, using
an OCL query. And thus, impacted test cases are obtained using the impacts
reference between this method and the test cases.

(3) When new classes or methods are added: if the method was not present
in the previous revision, then it is not present in the model either, and hence,
no impacts can be directly computed from it. However, adding such method can
have impacts on the existing SUT. Figure 3.14 describes a situation where the
insertion of a new method has impacts on the test cases. This case can be solved by
checking by OCL if such method overrides a method of a superclass. For instance,
if a method m() is added in class C, this approach would check if m() exists in
superclass SuperC. If it does, then all the test cases executing C.m() would be
selected for an execution, using the trace reference of SuperC.m() in the Impact
Analysis Model. This scenario adds a minor overhead, but is necessary to ensure
the safety of our RTS approach.

Deletion

In the same way as in the other changes, deletions can be at the statement-level, or
declaration-level, which implies three different behaviors:

(1) As a statement-level change, when a line of code is removed at the statement
level (i.e.,), inside a method, this method is fetched by querying the Impact Analysis
Model. Finally, its impacts on the test cases are obtained using the trace reference.
Test cases impacted are then selected to be run again.

(2) As a declaration-level change, when an entire method, which does not
override any method from a parent class, is removed, then the test cases calling it
have probably been modified too. Indeed, removing a non-overridden method from
a class, but not the calls to this method would produce compilation issues. The
same reasoning works at the class-level. If a deleted parent class is used in the test
cases, then those tests have to be updated too.

(3) If the deleted method overrides a method from a superclass, then the old
version of this method is fetched from the model, and all the tests executing it are
selected, using the trace references.

To conclude the Section 3.4.3, we notice that we successfully design and imple-
ment a model-driven RTS approach that can select impacted test cases based on a

55



3. Model-driven tracing of software execution

abstract class SuperC {

void m(){

doSomething();

}

}

class C extends SuperC {

}

class TestC {

@Test

void test(){

new C().m();

}

}

(a) Revision R1

abstract class SuperC\{

void m() {

doSomething();

}

}

class C extends SuperC {

void m() {

doSomething2();

}

}

class TestC {

@Test

void test() {

new C().m();

}

}

(b) Revision R2

Figure 3.14: Adding a new method impacts an existing test case

model. The current version of our prototype is available on GitHub9. Thanks to
that model, the granularity of the selection could be easily adapted according to
the needs. As shown in Section 3.4.3, it is possible to get the impacted test cases
at several granularities (i.e., statement, method, class), depending on the change
type (statement-level, declaration-level). Thus, in order to accelerate the RTS, it is
possible to limit the impact analysis to a certain granularity.

3.4.4 Evaluation

This section presents an experimental evaluation of our approach. First, we
present the environment setup and then the experimental workflow, followed by a
presentation of our results.

Setup

All the experiments are executed on an Intel Core i5-7200U CPU (2.50GHz), 8GB
of RAM, running with Ubuntu-16.04, and using Java 1.8.0_51. The four projects

9https://github.com/atlanmod/MDE4RTS

56



3.4. Trace model applied to regression test selection

Framework First commit LOC #Classes Tested #Test Classes

Javalin caae71e 2500 13 23

JSoup 7f8010d 25 000 61 31

JUnit4 64155f8 100 000 126 174

AssertJ cf4d367 250 000 368 1903

Table 3.2: Projects used for evaluation

presented in Table 3.2 are used for our evaluation. The column First commit
corresponds to the first Git revision used, LOC approximates the lines of Java code
available in each project, and the last two columns list the number of system under
test classes and number of test classes, during the first commit. Those projects are
available on GitHub10 11 12 13.

These four frameworks have been chosen because they answer to several criteria
that were mandatory for the current state of our prototype: using the git VCS, Java,
the Maven dependency manager, and having test suites running with the JUnit
testing framework. Since all these tools are popular in the development community,
restricting the usage of our prototype to them does not significantly hamper
its practical usefulness. Furthermore, the execution trace modelled with these
frameworks are small enough to fit within the RAM allocated to the JVM. Finally,
these frameworks contain both declaration-level and statement-level changes.

Workflow

We used the following workflow to run the experiments. First, a specific starting
revision is determined. This can be a previous tag in a Git history, for instance.
This revision is called R1. Then we define a variable Step, representing the number
of commits between each computation of the RTS. For instance, with Step = 2,
the Regression Test Selection would be computed between R1 and R3. Instead
of applying the RTS at each commit, being able to merge multiple commits at
once offers a more accurate representation of a development lifecycle. In practice,
developers either push multiple commits at once, or use pull requests, to merge
several commits from other branches on the VCS. All the projects are not developed
following pull-based workflow [74], we use the step variable instead.

We then define another variable, Max representing the maximum amount of
commits to analyse. For instance, with Max = 50, the last revision that could be
analysed would be R50.

10https://github.com/jhy/jsoup
11https://github.com/joel-costigliola/assertj-core
12https://github.com/junit-team/junit4
13https://github.com/tipsy/javalin

57



3. Model-driven tracing of software execution

The experimentation starts with the revision R1. Since no model can be
found, all tests are executed. Then the impact analysis model is built offline, thus
computing the dependencies at the statement-level. Once this is done, the revision
R1+Step is cloned, and the RTS is applied between R1 and R1+Step, using the impact
analysis model previously generated. Hence, the subset of tests is executed. The
impact analysis model is built, from the revision R1+Step, and the next revision
R1+2Step is cloned, and this goes on until reaching RMax. Each time, both the
subset of tests and all tests are executed with the same technique, in order to
compare the results.

For the experimentation, the Max value is set to 100, and Step is set to 5.
In their work, Georgios Gousios et al. evaluate the average number of commits
per pull request to be 4.47, and with 90% of pull requests bundling 6 commits or
less [74]. A Step value of 5 is in that range. Finally we consider a Max value of
100 to encounter every type of change.

Results

Figure 3.15 presents the results of applying our model-driven approach to RTS
to a pool of 100 commits for each framework evaluated. The first section of the
table presents the quantity of test methods selected by our approach. As the
number of tests varies along the commits analysed, average values are used. The
second section reports the average compilation and execution times for each project,
without RTS. Hence, summing these two values for each project shows the standard
build time. The third section presents the average times of the three model-driven
RTS activities. The sum of the compilation time with the identification and
execution of impacted tests results in the duration of a full build, when using our
approach. This model-driven RTS build durations and the standard build durations
are compared in the last section of the table, as well as in Figure 3.16.

Results show that applying model-driven RTS shortens the build time, in all
cases, when the impact analysis model is built beforehand (i.e., offline. This
duration corresponds to line (C) in Figure 3.15). On a bigger project such as
AssertJ, the results are more significant, with a RTS build time lasting 67.5 % of a
standard build, when only 18.24 % of the tests cases are executed. However, for a
project of small size, like Javalin, the impact on the build time is less significant,
since selecting and executing the tests takes 90.3 % of the execution time of all
tests.

As explained earlier, running the tests, either all tests, or a test selection,
includes a compilation time. This is performed using Maven and hence several
steps of the Maven build lifecycle have to be executed: validation, compilation,
and finally testing. Comparing only the actual test execution times would show

58



3.4. Trace model applied to regression test selection

Frameworks JSoup AssertJ JUnit4 Javalin
avg Selected test methods 200 888 35 6
avg Test methods 588 4868 998 95
% Test methods selected 34.01% 18.24% 3.51% 6.31%
(1) Compilation Time (ms) 4805 9854 10 230 18 368
(2) Executing all tests 8051 34 762 11 828 4893
(C) Computing impact
analysis model (ms) 78 307 375 747 82 478 50 555
(A) Identifying impacted
tests (ms) 649 4464 1081 331
(E) Executing impacted
tests (ms) 4079 15 791 3549 2635
Standard build: (1) + (2) 12 856 44 616 22 058 23 261
Model-driven RTS build:
(1) + (A) + (E) 9533 30 109 14 860 21 003
((1) + (A) + (E)) /
((1) + (2)) 74.15% 67.5% 67.4% 90.3%

Figure 3.15: Average evaluation results

JSoup AssertJ JUnit4 Javalin
0

1

2

3

4

5

·10
4

12,856

44,616

22,058 23,261

9,533

30,109

14,860
21,003

M
av

en
B

u
il
d

T
im

e
(m

s) Normal

With RTS

Figure 3.16: Build times with and without RTS.

a bigger gap between RTS and the execution of all tests, but would not reflect
real-life builds.

In our experimentation, selecting the tests cases and running them takes always
less time than running all the tests cases. As predicted, a loss of time may occur
when the number of tests is low since the run of a test subset will not compensate
the overhead of the RTS phase (A). However, testers will consider RTS only when
their test suite length starts to be problematic and in that case, our approach is

59



3. Model-driven tracing of software execution

beneficial.

3.4.5 Discussion

In this section, we discuss the approach and the experiments to answer the three
questions asked in Section 3.4.1.

RQ1: Precision

Precision has been discussed previously in Section 3.4.3. We can answer the second
part of RQ1 positively since our model-driven approach allows precise RTS. Thanks
to the impact analysis model, the precision can be as much finer as Statement
granularity. Moreover, the modularity of the approach allows to adapt the precision
by analysing differently the impact analysis model.

RQ1: Safety

To answer the first part of RQ1, we consider the safety of our model-driven RTS
approach. We should prevent an impacted test not to be selected. Therefore, we
consider four risks: miss a source code change, analyse a non up-to-date impact
analysis model, consider all the software artefacts, and flaky tests.

All the tests are first executed to generate the impact analysis model and their
execution is traced at the finest statement granularity. Hence, if any statement is
modified in a future revision, then all the tests that previously executed it can be
selected thanks to the trace references.

The test selection requires an impact analysis model, built offline. If the user
launches regression testing too frequently, the model of the last revision may not
have been completely built. If it happens, the last entirely computed model is used
instead. It would be less precise: since more code changes would be considered,
hence more test cases selected, but the safety is ensured. If no model is available,
then the entire test suite is executed.

The current state of our tool does not compute the impact of external files
changes. Nonetheless, such dependencies could be added in the impact analysis
model: e.g., Gregoric et al. describe an efficient approach to collect file dependencies,
using BCI and monitoring [70]. All standard library methods able to access files
are monitored, and dependencies towards these files are added when accessed
at runtime. Enhancing our current SCI to monitor external files accesses is an
interesting perspective to add to our model-driven approach for RTS, and perfectly
feasible as the static MoDisco model we rely on includes external files too. We ensure
the safety in the current implementation by detecting external files modification

60



3.4. Trace model applied to regression test selection

(using a diff algorithm), and warning the developer. She can then run all the
regression test cases to ensure that nothing has been broken.

Finally, non-deterministic tests, also known as Flaky Tests [118], are not covered
by our approach, nor by state-of-the-art RTS approaches. These tests can behave
differently between several executions, (depending on multiple parameters: asyn-
chronous calls, concurrency, network, test order dependencies, etc.) and therefore
cannot be traced deterministically. The safety risk of Flaky Tests is not only
affected RTS but all the testing process and it is up to the tester to annotate them
for being processed carefully (e.g., with several execution).

RQ2: Performance

As presented in Section 3.4.1 with RQ2, our model-driven approach has to be
efficient enough to reduce the regression testing time. Poorly performed RTS steps
might produce an overhead so important that selecting and executing a reduced
set of tests would take longer than running the entire test suite.

First, our RTS approach is offline. Therefore, we do not take into account the
model generation time (RTS phase (C)). This phase is costly when generating an
impact analysis model, but it has already been performed before the tester launches
the regression testing. Second, the test cases selection (RTS phase (A)) is critical,
and must be computed in a fast way to prevent a counter-productive overhead.
Two expensive activities are processed during the test cases selection:

1. Comparing two revisions of a project, more specifically at a fine granularity
(Statement-level).

2. Querying the model for specific elements.

Being efficient on these two points is a major concern. Performance when
manipulating models is a known issue in model-driven engineering. Experiments
presented in Section 3.4.4 show that we positively answer RQ2 since selecting the
tests cases and running them takes always less time than running all the tests cases.
In addition, our model-driven approach allows to configure the granularity and
then to balance the overhead depending on the case study (e.g., a case study with
few test cases would benefit from a coarser-granularity, while a case study with
long-running test cases would benefit from a fine-granularity to reject slow and non
necessary test cases).

Our performance (gain of up to 32 %) are less important than the ones of
dedicated tools such as the ones of [208][70] (they can gain more than 40 %).
However, as we will see, our generic model-driven approachenables several kinds of
analysis, like the one shown in Section 3.3.

61



3. Model-driven tracing of software execution

RQ3: Complementary use of the Model

In a MDE environment, our impact analysis model becomes a part of the holistic
modeling of all software aspects. Thus, it can be reused to perform heterogeneous
analysis on the project. For example, tracing down the execution of test cases
inside a model would provide a better understanding of a test suite, useful while
reverse-engineering old code bases. This model could also be used to get an accurate
overview of the testing code coverage, and thus significantly improve the quality of
test suites [127].

Concretely, in our tool, we use the Structured Metrics Meta-model14 (SMM)
for gathering measurements performed during the test execution, as shown in
Section 3.3.2. SMM enables the modelling of several metrics: lines of code, test
execution durations, method complexities, energy consumptions, and so on. By
weaving the SMM model along with the model produced during RTS, we are able to
know the energy saved by not running the test cases that have not been impacted.
Thus we successfully answer the RQ3 since the impact analysis model can be
completed and analysed for other software engineering analysis. On the contrary of
dedicated tools that are not compatible and require each one to run and to analyse
the program, we collect and serialize all the information in one impact analysis
model. Created once, we save time, counter-balancing the overhead induced by
model manipulations.

3.4.6 Threats to the validity

Several threats to the validity of our experimentation have to be considered:

Commits analyzed

First of all, the amount of selected tests highly depends of the changes made by
developers. For instance, the modification added between commits fce43e6 and
4fe13cb on the project AssertJ impacted 3312 existing test methods. Therefore,
the results could be radically different using other commits. Furthermore, two
projects developed by programmers following different ways of committing code
update will result in different number of changes between revisions [6].

Nonetheless, by applying our RTS approach on a set of 100 successive commits,
we assume that it covers usual development scenarios, such as adding of new
methods, or modifying of the core methods of the project.

14https://www.omg.org/spec/SMM/

62



3.4. Trace model applied to regression test selection

Single machine

All those results have been computed on a single computer dedicated to this task.
Even if a particular attention has been taken to only dedicate the machine to
the experimentations, background operations performed on the system may have
impacted the execution times reported.

State of the prototype

Our research prototype’s implementation may contain undetected bugs, and thus
the results produced may be subject to variations with the upcoming improvements
and corrections. Even if this prototype is well tested and its source code has been
thoroughly examined (and is open to inspection), not all the results obtained during
the experimentation can be manually verified. Especially the safety of the approach,
while theoretically valid, has been manually checked only for the small projects.
Finally, this prototype is still under development, and so far its performances have
been improving at each revision.

Scalability

Models are well known for suffering of scalability issues [143]. In fact, the standard
EMF implementation persists models using XML data structure. Those files cannot
be partially loaded, and if the model is too large, it might not fit in memory
anymore. When the source code is massive (thousands of classes), the model
generated by MoDisco can be big (GBs), which may produce scalability issues,
especially when querying elements. This limitation in space can be resolved by
using scalable persistence layers for models, such as NeoEMF15, or CDO16. However,
it does not solve execution time issues.

3.4.7 Conclusion

In this section of the thesis, we presented an approach that fosters reusability of our
model of execution traces in the context of RTS. We use the trace model, presented
in Section 3.2, starting from a source-code structural model and enhanced with
dynamic information, gathered during test case execution. On top of this model
we have implemented a fine-grained impact analysis, allowing for effective RTS.
Computing the long-running impact analysis offline allows us to rapidly apply the
RTS when the user needs it, minimizing the waiting time, and hence improving the
productivity. Indeed, experiments on four different open-source projects showed that

15https://www.neoemf.com/
16https://www.eclipse.org/cdo/

63



3. Model-driven tracing of software execution

our approach significantly shortens the regression test execution time. Moreover,
the proposed impact analysis model can serve as a basis for even more software
engineering activities: fault localization, precise code coverage, etc.

While the current version of our prototype provides positive performance results,
several points can still be improved. Incrementality should be considered to reuse
and complete the model during the RTS phase. Indeed, after each build, our
prototype creates the whole model from scratch, using MoDisco. Using diffs to
update an existing model according to the new source code version would shorten
the impact analysis model building time.

3.5 Chapter conclusion

This chapter presented three contributions leveraging MDE for modeling execution
traces of Java applications. We capture the execution of programs using instrumen-
tation techniques, and inject into a source code model the traces. The reusability
of MDE enables many usages of these traces, in different domains.

We present an approach for energy modeling: the energy consumption of the
program’s artifacts is measured dynamically, and modeled along with the trace,
providing a bird’s eye view on the energy consumption of its application to the
developer. This representation can then serve as a basis for energy-aware model
transformations and refactoring.

A second usage of these traces is proposed through RTS. The trace model is
used as a dependency model for impact analysis on source code changes. This
enables a faster regression testing phase.

However, if these usages enable a better sustainability in standard software
engineering, applying them to the domain of CPS, where software can be distributed
over complex networks, is more complex. In the next chapter, we propose an
approach to model and trace the execution of CPS.

64



Chapter 4

Model-driven monitoring of CPS

65



4. Model-driven monitoring of CPS

4.1 Introduction

As mentioned in Chapter 2, a CPS refers to a system that is composed of both
physical devices and software artifacts. Monitoring a CPS is essential to understand
it, control its behavior, and perform any kind of dynamic analysis on it. Over
the past years, the number of CPS increased quickly, and is expected to grow
even quicker in the forthcoming years [99]. This would make the design of their
monitoring applications more and more challenging, as their complexity gets
more important. In this section, we consider this problem of designing CPS
monitoring application, and study it in the context of a specific type of CPS:
Sensors and Actuators Network (SAN). Sensors are small entities mainly used for
sensing, processing and/or sending data, whereas Actuators are controllable entities
requiring external input [5, 145]. Such network requires low latency, valid data
output, good coordination between sensors and actuators, and a long lifetime. To
fulfill these requirements, being able to efficiently monitor the SAN is mandatory.

A common way of designing the monitoring of a CPS is to setup physical devices
to be monitored, and configure and adapt existing tools to combine them into a
monitoring application dedicated to this CPS [54]. It requires a dispensable and
error-prone dependency: the implementation of the physical part of the CPS needs
to be available first, in order to drive the implementation of the monitor’s software
part. This makes such monitoring application complicated to develop, maintain
and update.

Applying MDE to SAN has been investigated [8, 157, 167], and languages such
as SensorML [24] based on a meta-model, or Sosa [92] and Ssn [134], based on
ontologies, have been proposed. However, to our knowledge, no MDE approach to
monitor the SAN execution while analyzing and persisting measurements has been
proposed. Even if a standard Structured Metrics Meta-model (SMM) [138] exists,
as described in Section 2.1.4, it is not integrated into SAN modeling languages.
This results in a lack of modularity and reusability since maintenance of both parts
(the SAN itself and its monitoring applications) is made separately.

Therefore, in this chapter we leverage MDE for CPS traceability and monitoring,
and propose the three-step approach illustrated in Figure 4.1. First, the SAN
is designed using a model, conforming to a SAN meta-model. The SAN meta-
model we propose encompasses concepts from the OMG’s Structured Metrics
Meta-model (SMM) [138], the Semantic Sensor Network ontology (SSN) [134], as
well as SensorML [24]. This model describes the entities in the system, data-types
sent and received, as well as the events and processes happening in the system.
It provides a better view and understanding of the system, instead of directly
implementing it. Second, a model transformation is performed on this model. This
transformation generates a set of HTTP queries, which are executed in order to
configure a web-based monitoring platform. Third, using the MQTT protocol, our

66





4. Model-driven monitoring of CPS

coarse-grained, offers little expressivity on the definition of the devices, and is not
meant to specify processes. OpenGIS proposes SensorML [24]. It can be used
for modeling many aspects of sensors networks: data-types, positions, temporal
data, encoding, observable properties, processes, etc. SensorML covers most of
the needs but does not enable the representation of actuators. Ben Maissa et al.
design a large set of primitives to specify physical deployment of sensors/actuators,
or to specify different behaviors of sensors/actuators according to their location
within the network [17]. The main limitation is that the result lacks of modularity,
which makes maintenance difficult. Doddapaneni et al. separately model the
architecture of SAN, the low-level hardware specification of its nodes, and the
physical environment of deployed nodes [56]. This kind of separation of concerns
is similar to our way of modularizing design of physical and software parts when
designing CPSs, but in their work they model CPSs for simulation purposes,
whereas our work focuses on monitoring running systems. On the same track of
enhancing design modularity, Dantas et al. design a language called LWiSSy to
encourage domain experts to contribute to the design of SAN [51]. Specifically,
the language is organized in three views: structural, behavioral, and optimization.
Each view is to specify a distinct aspect of CPS under development by different
domain experts. LWiSSy offers little expressivity on the data measured by sensors.
Vidal et al. design MindCPS [194], which provides modelling primitives to explicitly
model autonomic behaviors of system under development. Then, it can enable
model transformations to automatically generate Java and SQL code for SAN (e.g.
control loops). Compared to our SAN meta-model, MindCPS’s meta-model is
more complex, and is composed of built-in classes for data filtering, error handling,
etc. Moreover, in terms of real-time data processing, MindCPS provides a mature
solution that publishes them on the MQTT broker in order to provide real-time
feedback. This feature of MindCPS is what we intend to extend for our approach
in the near future. Neuhaus et al. propose an ontology for describing sensor
networks [134]. Sensors can be defined with positions, measures and processes can
be triggered when specified guards are validated. However, it lacks the description
of Measurands on which measurements are performed, and a more reusable way of
defining Sensors (and Actuators), by first defining their model. To model measures
and persist measurements, the OMG has defined SMM [138], first presented in
Chapter 2. It provides a unified way for representing the measurement information
and the measures performing such measurements, without detailing the entities
measured. SMM also enables the specification of relationships between measures
and measurements, the definition of units of measure, dimensions, measurement
scope, measurement accuracy, and so on.

We base our SAN meta-model on this related work. It is able to define sensors,
actuators, as well as processes and the data types provided and used by the devices.

68



4.2. Sensor and Actuator Network Modeling

Furthermore the entities defined can be located in space, configured, and the
expressivity provided by the meta-model enables reusability across devices, for a
better maintainability. Our SAN meta-model also embeds several concepts of SMM,
as relying on such standard offers a better compatibility for our approach. Our
monitoring platform relies on standard web-based communication protocols, HTTP
and MQTT, and also stores the data in a dedicated base for enabling on-demand
data analysis.

4.2.2 SAN Meta-Model

Argument

+ value: Object

Device

+ name: String

Feature

+ name: String
+ factor: Integer

Parameter

+ name: String

Binding

0..*
0..*

0..*0..*

0..* 0..*

0..*0..*0..*

0..*

0..*

1 1

1
1

1

1

Measurand

+ name: String

Measure

+ name: String
+ unit: String

<<Enumeration>>
Mode

INPUT
OUTPUT

<<Enumeration>>
Type

BOOLEAN
DATE
DOUBLE
FLOAT
INTEGER
LONG
STRING
TIME
TIMESTAMP
URI
UUID

Network

+ uri: URI
+ port: Integer

Instrument

+ name: String

Process

+ name: String
+ uri: URI

Trigger

Event
1

0..*

Figure 4.2: Sensor and Actuator Network Meta-model

The root of our SAN meta-model is the Network element. It defines the
address of the server, later used by the devices of the system. Network enables
the specification of the whole system structure through a set of Measurands. Each
Measurand can be seen as individual equipment, nested places, or zones in which
instruments are installed, and performing measures on. This hierarchical structure
corresponds to the characterization of physical environment used by Javier Muñoz
et al. [130] .

Network also includes a list of Measure elements. Each Measure specifies a
type of measurement provided by a network Instrument (e.g. a sensor/actuator
of the system). Both Measure and Measurand notions in our SAN meta-model
are equivalent to the ones available in the Structured Metrics Meta-model [138].
Measurands are related to Devices and Features using the Binding element. Each
Binding links a single Measurand to a single Device and a single Feature, in order
to define where, which entity, and how it is gathering data in the system. Devices

define the physical sensors and actuators deployed in the system.

69



4. Model-driven monitoring of CPS

Instruments and Devices are closely related: the Instrument defines the
model of the sensor (or actuator), whereas the Device defines its physical instance
in the system. Figure 4.3a proposes an example of this concept: the instrument
PeakTech5175 is a sound-level meter. Three devices of the same sound-level
meter (e.g. PT5175_1) are deployed. Instruments are defined by a name, a list
of Features, and a list of Parameters. A Feature has a Mode. Mode can be
either input or output, which defines the communication mode of the related
Instrument. In fact, actuators are basic instruments that follow orders sent by a
monitoring application. Thus, their related Features have the Mode set to Input.
On the contrary, sensors send measurements to a monitoring application, hence
their Mode is output. The Parameter category corresponds to the elements that
vary among different devices of the same Instrument, such as identifiers of IoT
devices, security tokens, etc. The Argument entity available in Devices affects a
value to this parameter. All the Devices related to the same Instrument comply
with its Features, and every Feature can be related to a Measure. A Feature

can apply a factor to its related measure.

Figure 4.3b illustrates the modeling of a measurement to be performed: a remote
chronometer is used to measure the execution time of a program, represented by
the measurand com.package.App. The measuring device is named StopWatch1

and complies with the instrument BenchTimer1221. This instrument has a feature
Duration, that applies a factor of −3 to the second unit given by its corresponding
Time measure, meaning that this feature records milliseconds. Finally, a binding
shows that the Duration feature of StopWatch1 measures the execution time of
com.package.App.

Processes define computation units that can be triggered when specific events
occur. The Trigger’s role is to specify in which situation the Process shall start.
Triggers are abstract, but extended by Events. An Event is related to a Device

and a Feature by the means of a Binding, and can launch a Process when the
user-specified event happens. The fact that the Trigger class is abstract makes
possible to extend it to other kinds of triggers such as background tasks or finite
state machines. Using state machine using ThingML [82] is a perspective.

In conclusion, guided by a high level of abstracted design as shown in Fig 4.2,
our SAN meta-model will help developers to implement their desired logic. It
describes how the measurements can be started or triggered, but not how these
measurements are produced, as it has no impact on how to map the SAN model to
the monitoring platform. However, the reusability and adaptability of MDE would
enable an extension of this existing SAN meta-model, with the descriptions of such
computations.

70



4.3. Monitoring platform

PeakTech5175:Instrument

PK5175-1:Device PK5175-3:DevicePK5175-2:Device

(a) Three devices of a same instrument

b1:BindingStopwatch1:Device com.package.App:Measurand

Duration:Feature

Factor = -3 
Mode = Output 

BenchTimer1221:Instrument Time:Measure

Unit = second 

(b) Feature for millisecond measurements

Figure 4.3: Excerpts of SAN models

4.3 Monitoring platform

As first presented in Section 2.2.6, MQTT is among the most popular and used
communication protocol for CPS devices. Two mature monitoring platforms for
MQTT devices can be considered: IBM’s Watson IoT1 and Eclipse MQTT Spy2.
The first one is a powerful private cloud-based solution, also driven through HTTP.
The second one, Eclipse MQTT Spy, offers efficient message filtering and processing
service, but no HTTP endpoint for remote control and monitoring. In opposition
to these monitoring platforms, we propose EMIT, a Free, Open Source, self
hosted monitoring platforms for CPSs3. It is model driven, and provides a better
modularity and adaptability than state-of-the-art platforms.

A first prototype of a monitoring application was used with power sensors
measuring the energy consumption of Java programs [166]. Emit has been created
using this work to automate its execution and its configuration by integrating it in
our approach. Moreover, Emit can now consider all kinds of MQTT clients, with
an HTTP endpoint, and analysis features through Callbacks. It is composed of two
layers. One relies on the MQTT protocol for communicating with the devices of
the CPS it monitors. The other one relies on the HTTP protocol, and is focused
on configuring the entities of the CPS that Emit listens to. These web APIs has
been testified by our partners from the Measure project4 in developing advance

1https://www.ibm.com/cloud/watson-iot-platform
2https://www.eclipse.org/paho/components/mqtt-spy/
3https://github.com/jeromerocheteau/emit
4The MEASURE project. http://measure.softeam-rd.eu/related-tools

71



4. Model-driven monitoring of CPS

Control

0..*

Platform

Connect

+ started: Long

+ stopped: Long

1..1

0..*

0..*
1..1

0..*

0..*

Publish

+ topic: String

+ published: Long
+ qos: Integer
+ retained: Boolean

Subscribe

+ topic: String

+ started: Long

+ stopped: Long

Callback

+ uuid: Uuid

+ name: String
+ owned: String

Message

+ topic: String

+ received: Long

+ retained: Long

+ stopped: Long

+ payload: Binary

Broker

+ uuid: Uuid

+ name: String
+ uri: URI
+ owner: String

Client

+ uuid: Uuid

+ name: String
+ owned: String

Figure 4.4: Emit Core Meta-model

web applications, such as tools for security analysis and data mining.

A bird’s eye view of Emit is shown in Figure 4.4. It manages a set of Clients
which publish/subscribe Messages, and a set of Brokers which conditionally dis-
patch Messagess to Clients. It enables a set of standard Controls over Clients,
such as Connect to a broker, Subscribe, and Publish to a topic. Last, to have
finer-control over clients, Emit also manages a set of Callback, i.e., functions to
be called when clients receive messages.

4.3.1 Client Management

The first web API supported by Emit has the purpose of managing MQTT
clients. This implies being able to create, update, delete and retrieve MQTT
clients among the instances of Brokers. After providing connection settings and
credentials, MQTT clients can be connected to existing Brokers, in order to
subscribe, unsubscribe, and/or publish on specific topics. One notable feature of
Emit is that it maintains an inner pool of registered clients that are trusted by
Emit. Foreigner clients need to correspond to a registered client in Emit in order
to be authenticated and to perform management operations via Emit.

72



4.3. Monitoring platform

4.3.2 Client States Control

The second web API available in Emit enables the management of the clients
states. For each client, this implies being able to: (1) Connect and disconnect the
client to a MQTT broker, (2) Subscribe and unsubscribe the client to a MQTT
topic, (3) Publish a message to a topic.

Those operations are performed using existing MQTT libraries (https://

mosquitto.org/). All performed modifications are logged by Emit. For instance,
calling the web API that connects a MQTT client to a broker creates a new
Connect instance in the database with the started property defined by the current
timestamp. When it disconnects, the web API updates the instance for its stopped

attribute with the current timestamp. This works the same way for the Subscribe

and Publish entities.

4.3.3 Callback edition

Callbacks are behaviors that are triggered when a specified event occurs. In Emit,
the web API enables the creation and edition of callbacks. Callbacks are created
by Clients, and trigger events when a message corresponding to this Callbacks

is received on a topic listened by the Client. In Emit, we can create four types of
atomic callbacks for MQTT message processing (as shown in Figure 4.5):

• TopicCallback returns true if and only if the message topic matches the
pattern attribute it contains.

• TypeCallback returns true if and only if the message payload can be cast to
one of the types.

• StorageCallback enables the storage of a message content, into a given
collection of underlying database of Emit. Hence it means that the message
persistence is programmatically defined using the callback edition services,
with their attachment to a client.

• FeatureCallback returns true if and only if the message payload satisfies
the logical condition expressed via Type and Symbol.

These atomic callbacks can be composed into more complex callbacks using
GuardCallback for a conditional case analysis structure. Each GuardCallback

specifies: 1) a test callback to check the condition; 2) a success callback to specify
what should happen when the check passes; and 3) a failure callback to specify
the case when the check does not pass. Emit also enables the definition of callback
when events at the user level occur.

73



4. Model-driven monitoring of CPS

<<Enumeration>>
Symbol

EQ
NEQ
LT
GT
LEQ
GEQ

Callback

+ uuid: Uuid

+ name: String

+ owned: String

test

success

failure

1..1

1..1

0..1

1..1

1..1

1..1 1..1

<<Enumeration>>
Collection

MESSAGE
FAILURE

<<Enumeration>>
Type

BOOLEAN
DATE
DOUBLE
FLOAT
INTEGER
LONG
STRING
TIME
TIMESTAMP
URI
UUID

StorageCallback

GuardCallback

TopicCallback

+ pattern: String

FeatureCallback

+ value: String

TypeCallback

Figure 4.5: Emit Core callback meta-model

• ConnectCallback corresponds to the connect / disconnect state control.

• SubscribeCallback corresponds to the subscribe / unsubscribe state control.

• AttachCallback corresponds to the attach/detach state control. The duality
in client state controls (e,g. connect/disconnect, subscribe/unsubscribe and
attach/detach) is defined by a Boolean property labeled enable.

• PublishCallback corresponds to the publish state control, where its message

property defines a message payload.

Finally, Emit provides a web API for MQTT messages retrieval. This returns
chunks of messages for a given MQTT client, on a specified topic. The service can
be customized in order to only retrieve messages in a given time-span, by giving
the API temporal bounds.

74



4.4. Mapping SAN models to Emit

Callback

+ uuid: Uuid
+ name: String
+ owned: String

Client

+ uuid: Uuid
+ name: String
+ owned: String

ConnectCallback

+ enable: Boolean

AttachCallback

+ enable: Boolean

SubscribeCallback

+ enable: Boolean
+ topic: String

SubscribeCallback

+ topic: String
+ message: String

1..1

1..1

Figure 4.6: Emit Core callback meta-model

4.4 Mapping SAN models to Emit

In previous sections, we presented our SAN meta-model to provide a way to
model the diversities in SAN (Section 4.2). We also presented Emit, a generic
CPS monitoring platform relying on Web-APIs for configuration and management
(Section 4.3). This separation of designs allows experts from both SAN modelling
and SAN management to work independently, thereby increasing productivity and
quality of software development. In this section, we describe a mapping between the
two worlds, that allows domain experts in each world to exchange their information.
Our mapping is documented in a model transformation fashion, which aims at
generating entities inside Emit, hence enabling monitoring the CPS corresponding
to the SAN model. In addition, since the web APIs of Emit can only be queried
through HTTP requests, we briefly illustrate the corresponding HTTP queries
generated out of the SAN model, that facilitate the usage of Emit.

Note that our mapping is not a total function, in the sense that several elements
in the SAN meta-model do not have to be created in Emit to enable the monitoring
of the CPS. As an example, Measurand elements are physically bound to the devices
performing measures on, and are modelled in the SAN models. Adding them in
Emit is not necessary, since we only are only interested in monitoring the devices
performing the measurements.

Network

At the root of our mapping, we translate each Network element of a SAN model
into a Broker entity for Emit. From such Broker element, we subsequently launch
a code generation of HTTP POST request in order to create a virtual broker in Emit.

75



4. Model-driven monitoring of CPS

The idea is to enable and follow the methodology of the MQTT protocol, i.e. using
a Broker to manage communications of clients, later generated.

Features

In the SAN model, the Feature elements correspond to either sensors or actuators.
The Mode attribute defines if either the Feature sends data (i.e., is a sensor),
or receive data (i.e., is an actuator). In both cases, Emit has to listen to the
messages going from or to the Feature. For that purpose, SAN’s Feature are
mapped to Client entities within Emit. Later, Emit can then subscribe to topic
corresponding to the mapped Feature in order to monitor it. This topic is generated
by concatenating the name attributes of the network, device and binding, and using
backslash as a separator. We assume that the monitored sensors and actuators are
publishing and subscribing, respectively, to this topic.

Furthermore, the Measure to which the Feature is bound to indicates which
datatype this Feature is supposed to receive (or send). A GuardCallback is added
to this generated client to ensure the data sent conforms to the right datatype.
This GuardCallback checks the type of the message using a Type Callback. Two
StorageCallbacks are then attached to this GuardCallback. If the type of the
message conforms to the Measure, then the messages can be persisted in a "message"
collection with the first StorageCallback. Otherwise, it is persisted in a "failure"
collection with the second StorageCallback. After the creation of the client, Emit

can monitor the messages sent to, or by, this client and eventually add callbacks to
it according to the needs.

Events

So far, only the events attached to features with the output mode (i.e., events
triggered when a specific value is sent by a sensor) are considered by this trans-
formation. In fact, actuators are not necessarily controlled through MQTT, and
for that reason, mapping them into EMIT is out of this work scope. This Event
transformation shows that it is possible to automatically create within Emit: (1) a
Callback element that corresponds to this process, and (2) a Client that subscribes
to the topic on which a device broadcasts its measurement data.

The Event transformation has two steps. Firstly, it verifies that the uri of each
Process actually refers to an existing entity within the execution environment.
This can be done using software components provided as third-party libraries
and which comply with the MQTT callback API provided by the Eclipse Paho
library5, used within Emit. Secondly, it transforms every Event bound to output

Features into a GuardCallback. The test of this GuardCallback is defined by a
5Eclipse Paho. https://www.eclipse.org/paho/

76



4.4. Mapping SAN models to Emit

FeatureCallback, which checks if the output of the Feature verifies the specified
condition. The success of this GuardCallback is defined by a hand-made callback
launching the Process behaviour. Such transformation provides flexibility: custom
MQTT callbacks can be developed and integrated into the monitoring application
later. However, it does not ensure a full control over the provided callbacks which
have to be user-defined in order to launch Processes.

To summarize this mapping, we display in Section 4.4 a SAN model and its
corresponding entities in Emit, according to this transformation.

:Network

uri = "192.168.1.1"
port = 1883

:Instrument

name = "INA219"

:Feature

name = "voltage"
mode = OUTPUT

:Feature

name = "current"
mode =  OUTPUT

:Device

name = "INA219_1"

:Platform

:Broker

uri = "192.168.1.1:1883"

:Client

name = "INA219_1/b1"

:Measurand

name = "PC1"

:Binding

name = "b1"

:Binding

name = "b2"

:Client

name = "INA219_1/b2"

:GuardCallback :GuardCallback

:TypeCallback

type = FLOAT

:TypeCallback

type = FLOAT

:StorageCallback

collection = MESSAGE

:StorageCallback

collection = MESSAGE

test

success

test

success Measure

+ name: "current"
+ unit: "ampere"
+ type: FLOAT

SANEMIT

Measure

+ name: "voltage
+ unit: "volt"
+ type: FLOAT

Figure 4.7: Mapping from SAN to Emit

4.4.1 Mapping from other meta-models

We previously showed how the SAN meta-model can be mapped to Emit using
a model transformation. This transformation generates a set of HTTP queries
that, when executed, enables the configuration of Emit. This MDE approach is
easily configurable and reusable, as any other entry meta-model could be mapped
to Emit for a remote web-based monitoring.

In the previous chapter, we mentioned existing scalability issues for model-
driven approaches. When the analysis produces too many measurements, persisting
the SMM-based analysis can be complicated, and the model might not fit in the
memory. Emit would offer an interesting alternative to it, as instead of being
modeled with SMM, the measurements could be stored in the document-based
database of Emit, once sent through MQTT. This would offer a better scalability
in space.

As an example, we could measure the energy consumed by the methods of a Java
program, and send the measurements to Emit. Instead of tracing and modeling

77



4. Model-driven monitoring of CPS

class C {

void A() {

B();

}

void B() {

doSomething();

}

}

(a) Java source code

class C {

void A() {

double beginning = EnergyCheck.statCheck();

B();

double energy = EnergyCheck.statCheck() - beginning;

MQTT.publish("C.A", energy, 0);

}

void B() {

double beginning = EnergyCheck.statCheck();

doSomething();

double energy = EnergyCheck.statCheck() - beginning;

MQTT.publish("C.B", energy, 0);

}

}

(b) Java source code after instrumenting methods

Figure 4.8: Source code instrumentation of a Java program to send estimations to
Emit.

the execution with SMM, the instrumentation step performed would perform
measurements, and sent them to Emit through MQTT. A first model transformation
would generate a set of HTTP queries from a MoDisco model, to configure Emit.
Figure 4.8 shows an example of a source code instrumentation that would enable
such behavior. The instrumentation first calculates the energy of each method
using jRAPL, and finally sends the results on an MQTT topic corresponding to
the qualified method name. The last parameter of MQTT.publish() corresponds
to the MQTT QoS parameter.

78



4.5. Application

4.5 Application

In this section, we apply our approach on a case study, following the three steps
presented in Figure 4.1: (1) Design of the SAN model, (2) Model transformation
and (3) Emit configuration by executing the generated HTTP Queries. This case
study is designed for a smart cooling system of an IT infrastructure: a thermometer
measures the temperature in a building, when this temperature reaches a given
threshold, a cooling process starts. The infrastructure is modeled conforming to
our SAN meta-model (Section 4.2) as shown in Figure 4.96. We then describe how
it is mapped to Emit for enabling its monitoring. The goals are: (1) To show the
possibility of pipelining our technologies for developing and monitoring CPS. (2)
To provide this case study as a reference that allows SAN users to define their own
mappings in order to interact with Emit.

4.5.1 Modeling a case study

The IT infrastructure is composed of three locations in which measurements are
performed: two floors Floor1 and Floor2 located inside a building Building1. One
thermometer device (TILM35B) is attached to the whole building for measuring its
current temperature. It refers to the TILM35 element, which describes the measuring
features it uses. We labelled it CurrentTemp, as it produces a temperature with the
Celcius unit. A binding labelled b3 associates together Building1, CurrentTemp

and TILM35B. This models that the thermometer TILM35B is deployed in Building1,
and is measuring its temperature (in Celcius) with the temperature sensor it embeds.
Furthermore, a power meter (measuring watts) is attached to each floor for tracking
their respective power consumption. They are modeled by the PeaktechF1 and
PeaktechF2 elements, and refer to Peacktech6226, which describes its power
measuring output device. The b1 binding associates together Floor1, PeaktechF1

and PowerConsumption (b2 binds Floor2, PeaktechF2 and PowerConsumption,
respectively). Finally, an entity “ProbingTemp” is referring b3. This entity triggers
a Cooling process as soon as the temperature measured by the TILM35B is too
important. We modeled this SAN, as shown in the first step of Figure 4.1, the next
step it to automatically generate its monitor application.

4.5.2 Mapping to Emit

In order to enable monitoring, the modeled SAN has to be added into Emit.
Running the transformation (as described in Section 4.4) on the input SAN model

6The figure is simplified to fit the level of conciseness needed for this thesis. In particular,
containment relationship of Network entities are hidden, and only entities that are demonstrated
here are shown.

79



4. Model-driven monitoring of CPS

PeaktechF1:Device

b1:Binding

Floor1:Measurand

Peacktech6626:Instrument

PowerConsumption:Feature

mode = Output

PeaktechF2:Device

b2:Binding

Floor2:Measurand

TILM35:Instrument

CurrentTemp:Feature

mode = Output

Temperature:Measure

unit = Celsius
type = Float

TILM35B:Device

b3:Binding

Building1:Measurand

ProbingTemp:Event

Cooling:Process

Power:Measure

unit = Watts
type = Float

UUID:Parameter

type = String

PeaktechF1-uuid:Argument

value="s1000089221'

PeaktechF2-uuid:Argument

value="s1000089222'

Figure 4.9: Cooling System Modeling for IT Infrastructure using SAN model

generates several entities in Emit.
Since Emit relies on the MQTT protocol (as described in Section 4.3), the

first step of the transformation adds into Emit the broker used in the SAN. As
shown in Figure 4.10a, a broker labeled Infrastructure is added to Emit, which
corresponds to the root Platform element of the SAN model (not displayed in
Figure 4.9 for readability purposes). Subsequently, it allows Emit to subscribe to
different topics that this broker hosts, thereby monitoring the sensors and actuators
available in the system.

The second step of the transformation maps the three devices to Emit as
Clients. Figure 4.10b shows the interface of Emit that displays a client generated
for the PowerConsumption feature of PeaktechF1. The user can switch between
clients by using the left panel. The right panel shows different parameters of this
feature that the user can edit. As we can see in the figure, PowerConsumption is
declared as a public client, which means it can be seen by any Emit user (private
client would only be seen by the user that added it). The last text field shows the

80



4.5. Application

Broker in Emit, to which this client is connected. Once registered to a broker in
this way, client’s data is sent and monitored by Emit. This allows further analysis
or computations to be performed.

The third step of the transformation maps the event in the SAN model into
Emit. For instance, the ProbingTemp event is transformed into a set of callbacks.
First, a guard is created into Emit. This guard is a callback, activated every time
a message is sent by the corresponding client. The test of this guard checks if the
power measured by the PowerConsumption sensor is above a specified threshold. A
success from this guard launches the cooling process linked to the event. Figure 4.10c
shows the interface of callbacks in our example and the guard generated from the
SAN model.

Upon this point, the smart cooling system is added in Emit, as shown in the
second step of Figure 4.1.

4.5.3 Monitoring with Emit

Finally, Emit can effectively be used to monitor the three clients created, as
shown by the third step of Figure 4.1. This enables several functions: (1) Adding,
removing, and managing more Callbacks for the clients. (2) Easily accessing
the messages sent and received by the clients, using the RESTful API provided
by Emit. (3) Providing real-time metrics with graphical display through the
front-end of Emit, as shown in Figure 4.10d. Monitoring this system within Emit

enables different analysis and computation on the data gathered by the sensors
of the system. E.g., energy metrics and statistics could be computed using both
the power-meter and timestamp values providing the energy consumption of the
building during the wanted duration.

This case study shows how we generate Emit entities from our SAN model,
in a real-life situation. This approach is automatized using a model transforma-
tion, ensuring a conformity between Emit’s configuration, and the SAN model.
Compared to standard approaches, modifying the system would not break the
monitoring functions of Emit: re-running the transformation would update the
entities of Emit and hence maintain the monitoring, for a better reliability and
maintainability.

The transformation in this example is implemented as a Model-To-Text (M2T)
transformation, and is available on Github7. The SAN model is defined using the
Eclipse Modeling Framework [183], and the M2T implemented using Acceleo [131],
which generates a set of HTTP requests in the CURL format8.

7https://github.com/veriatl/emit-san-metamodel
8https://curl.haxx.se/

81





4.6. Conclusion

4.6 Conclusion

In this chapter, we present a model-driven approach to monitor and trace a specific
type of CPS: Sensor and Actuator Networks. We introduce a meta-model of SAN,
enabling the co-design of the structural and behavioral parts of such network. We
also design and implement an open-source Web-API, namely Emit, for monitoring
sensors and actuators networks, and providing an endpoint to the information
infrastructure for running analysis and computations on the data gathered from
the network. The generic meta-model of Emit as well as the simple HTTP-
based configuration endpoint makes it easy to use for any kind of remote dynamic
analysis, even software. We orchestrate our SAN meta-model and Emit via model
transformation to allow them work hand in hand and apply our whole approach on
a smart cooling system case study.

The result shows that by leveraging MDE for generating an MQTT-based SAN
monitoring application, we can foster reusability of CPS design. Emit can be used
to monitor the CPS and persist its execution traces in its database for further
analysis. The abstract view of the system eases its understandability, providing
a safe way of structuring the SAN network. Furthermore, the standard format
provided by EMF enables reusability and maintainability, for multiple purposes such
as refactoring, refining, code generation. Finally the mapping used for transforming
our SAN model to the Emit model can be easily customized, in order to adapt to
the client’s needs.

83





Chapter 5

Trace-based energy estimation

85



5. Trace-based energy estimation

5.1 Introduction

As explained in Section 3.3 energy consumption has become an important concern
in the domain of software engineering during the past decade [144]. Energy-aware
design of software systems and applications benefits from an estimation of the
energy consumption at design time. Using this early feedback, software engineers
can perform design choices aimed at energy efficiency, e.g. using the right data
structures depending on the context, avoiding energy-consuming code smells [39,
100, 135, 150, 158]. In particular, many tools have been developed for measuring
and estimating the energy consumption at the software and middleware levels [25,
43, 116, 136, 163, 180]. Existing approaches from literature address the energy
consumption of general-purpose programming languages instructions, e.g. based
on LLVM IR [77], Android Bytecode [80], or System call traces [2].

Energy optimization of cyber-physical systems (CPSs) introduces further chal-
lenges, since consumption is impacted both by the physical devices and the software
running on them, and constrained by limited power supplies. When designing
CPSs, software developers need to consider also the physical characteristics of
the devices included in the system, since a significant part (usually most) of the
consumption goes into software-driven physical devices [160, 172]. If all engineering
disciplines have ad hoc tools for estimating energy consumption, tools usable across
engineering disciplines are uncommon. As a result, energy-optimization typically
requires long feedback loops between experts in several engineering disciplines.

Furthermore, using energy measurement and estimation tools often requires
complex software and system tweaking, and competences about energy measurement
that the majority of software developers does not have [144, 152].

Finally, providing immediate feedback about energy consumption is more
complicated when the application under development is meant to be executed on a
large diversity of platforms with their own energetic properties. Indeed, in order
to gather energy-related metrics, deploying the application on all platforms, or
running several low-level hardware simulators, can be long and expensive. Most
existing work targets specific languages, or runtime platforms.

In this work, we argue that models in executable domain-specific languages
(xDSLs) are an effective artifact for an energy-aware development process for
CPSs. Indeed, models are already commonly used during the CPS engineering
life cycle [3]. The structure and behavior of executable models are written in a
modeling workbench that is typically able to simulate their execution, verify their
properties, compile and deploy them on several platforms [15, 44, 60, 121, 185].

We introduce a generic approach for estimating the energy consumption of
systems designed by xDSLs. The approach is based on a proposed Energy Estimation
Language (EEL) for annotating any given xDSL with energy-estimation formulas.
An energy specialist writes Energy Estimation Models (EEMs), each one defining

86



5.2. Running Example

the energetic properties of the xDSL for a single specific runtime platform. The
modeling workbench is capable of taking several EEMs into account while simulating
an executable model, and predict how much energy it would consume when deployed
on its respective platforms. This feedback can help developers identifying energy
waste and improving their programs before actually deploying them.

This approach raises the following research questions:

RQ1: Can EEMs associated to xDSLs be used to encode the energy estimation
methods in literature?

RQ2: Can the evaluation of EEMs on xDSL execution traces provide accurate
energy estimations?

We show the benefits of our approach by a case study, where we define an
EEM for an xDSL for Arduino, i.e. ArduinoML. We measure the consumption of
Arduino devices using small benchmark ArduinoML models, and we model this
consumption in the EEM. We automatically estimate the consumption of three
larger ArduinoML application models, obtained by combining these devices. Then
we generate code from them and deploy them on the runtime platform to measure
and compare the energy consumption to the estimation automatically performed
at design time. We detect in our case study an estimation error with an average
4.9 %, between 0.4 % and 17.1 %.

This chapter is organized as follows. Section 5.2 proposes a running case to
exemplify the approach. Section 5.3 outlines the EEL abstract and concrete syntax,
and its semantics. Section 5.4 experiments on the approach. Section 5.5 concludes
this chapter.

5.2 Running Example

We illustrate the chapter with a running example where a developer wants to build
a small CPS on top of Arduino1.

Arduino is a open-source hardware and software company. It proposes develop-
ment boards embedding CPUs based on AVR and ARM architectures, but also a
cross-platform development environment. A program to be deployed on Arduino
boards can be written in any language, as long as it compiles to binary code
conforming to the targeted CPU. The standard Arduino development environment
supports C and C++. A Arduino program is called a Sketch, and consists of two
functions setup and loop. The former is called at the start of the program, and is
generally used to initialize the variables, and to define the types of the signal used

1https://www.arduino.cc/

87



5. Trace-based energy estimation

by the pins of the Arduino board (digital or analogic, input or output). The later
defines the behavior of the Arduino board, and is repeated indefinitely.

In this running example, the system that the developer wants to deploy embeds
an Arduino board, an infrared sensor and a LED. The behavior to define in the
sketch is the following: when the sensor detects an obstacle, the LED is turned
on for one second and then turned off for another, repeatedly. The CPS has to
be produced in several versions, based on different Arduino boards: Arduino Uno,
Due, Nano, etc. The developer needs to estimate and possibly improve the energy
consumption of her system on all platforms.

If this use-case is intentionally small to be completely addressed here, it shows
the cumbersomeness of a standard energy-aware development process. The standard
development process requires writing a C program in the Arduino IDE. The main
loop of the program checks if the signal sent by the sensor is HIGH. As soon as it
is, a HIGH signal is sent to the LED to turn it on, followed by a one second delay.
Finally a LOW signal is sent to the LED to turn it off, and another one second delay

follows. The written C code may differ among the different Arduino platforms.
The developer would manually perform the needed adaptations before deployment.
In order to measure the energy consumption, the developer has to deploy each C
program on their related platform, and use specific energy-measurement devices. By
reading these measurements, she tries to detect possible inefficiencies and optimize
her code.

Instead of developing in C, an developer relying on a xDSL could choose to
model the application as an executable model in a modeling workbench such as
GEMOC Studio [26], AToM3 [53], Ptolemy [35], or ModHel’X [81], and generate the

0..1
*

0..1

11

*

0..1

0..1

Project

Module

+ name : String

Pin

Board Sketch

Block

Control

Instruction

+ execute()

LED PhotoResistor

InfraredSensor

ModuleAssignment

ModuleInstruction

DelayWaitFor

1

WhileIf

Figure 5.1: Excerpt of the ArduinoML meta-model

88



5.3. Energy-Estimation Modeling

C code for the different target platforms. This would streamline the development
phase but would not yet impact the energy estimation effort to be made for each
platform.

Due to the popularity of Arduino, several model-driven approaches have been
proposed to simulate and generate code for Arduino systems [26, 72]. In this work
we rely on the xDSL ArduinoML integrated to the GEMOC Studio, based on
standalone development environment Arduino Designer2. ArduinoML is an xDSL
for representing structural and behavioral aspects of Arduino systems. Figure 5.1
presents an excerpt of the ArduinoML meta-model. The left part of this meta-model
(Board) defines the physical properties of the system: which pins are used, by
which modules, the level of the signal coming from/going to this pin, etc. The right
part of this meta-model (Sketch) defines the behavioral properties of the system:
what to do with the modules, according to the signals coming from/going to the
pins. ArduinoML is executable in GEMOC, since its meta-model defines semantic
operations for the language instructions (defined in the execute() function). The
operations may change the value of runtime properties in ArduinoML, e.g. the
level of a Pin. The GEMOC workbench calls these operations in order to simulate
the system execution.

Figure 5.2 presents the ArduinoML model of the sample program. Its lower part
represents the structural aspects of the Arduino system: a LED and an infrared
sensor, plugged on the pins 13 and 10 of the board, respectively. The upper part
of the model represents the behavioral aspects of the system, previously described.

To optimize it, the developer needs to estimate the energy consumption of this
model on the target platforms. The platforms differ in the Arduino boards used (e.g.
ProMini, UnoR3), but they may also employ different LEDs or infrared sensors,
with their own energy consumption. Typically the developer would generate a
different versions of the C code from the model, for each platform, deploy them and
execute the system to perform physical measurements. Deploying and performing
the measurements with standard power measurement tools can be long, complicated,
and expensive, especially if the developer needs to iterate multiple times to tune the
performance of her program. The next section introduces our solution to perform
this estimation at design time, without deploying the model.

5.3 Energy-Estimation Modeling

5.3.1 An Energy-Estimation Model

Current modeling workbenches for xDSLs focus on modeling the systems, simulating
their execution, verifying their properties, compiling and deploying code on several

2https://github.com/mbats/arduino

89





5.3. Energy-Estimation Modeling

1 Platform "ArduinoUnoR3" {
2 // LED L−53MBDL
3 LED.voltage = 5
4 LED.current = 0.00845
5 LED.power = LED.voltage ∗ LED.current
6 // IRSensor Velleman VMA 330
7 InfraredSensor.voltage = 3.3
8 InfraredSensor.current = 0.00235
9 InfraredSensor.power = InfraredSensor.voltage ∗ InfraredSensor.current

10 // Board Arduino Uno Rev 3 (ATMega328p CPU)
11 Board.voltage = 5
12 Board.cpuCurrent = 0.0241
13 Board.cpuPower = Board.voltage ∗ Board.cpuCurrent
14 Board.period = 1/16000000
15 Board.nLEDsOn =

LED.allInstances()−>select(it|it.oclContainer().oclAsType(Pin).level=1)−>size()
16 Board.nIR = InfraredSensor.allInstances()−>size()
17 Board.power = Board.cpuPower + (Board.nLEDsOn ∗ LED.power) +

(Board.nIR ∗ InfraredSensor.power)
18 // Instructions
19 ModuleAssignment.clockCycles = 44
20 ModuleAssignment.duration = ModuleAssignment.clockCycles ∗ Board.period
21 Delay.clockCycles = 76
22 Delay.callDuration = Delay.clockCycles ∗ Board.period
23 Delay.waitDuration = self.value/1000
24 Delay.duration = Delay.callDuration + Delay.waitDuration
25 ModuleAssignment#execute.energy = ModuleAssignment.duration ∗ Board.power
26 Delay#execute.energy = Delay.duration ∗ Board.power
27 }

Listing 5.1: Excerpt of an EEM for platform made of an Arduino UnoR3, a LED
actuator, an infrared sensor

91



5. Trace-based energy estimation

power consumption, and clock period as it impacts the duration of the instructions,
and hence their energy consumption. Line 15 counts the number of LEDs turned
on using a model query as only those ones will consume energy, and line 16 define
the Board total power consumption by summing all the power-consuming devices
it holds. Note that we use OCL formulas to navigate the ArduinoML model, that
includes the information on system state at runtime.

Then we define the duration of the instructions in the behavioral part of the
Arduino language (right part of Figure 5.1). In this particular example, we want to
first estimate the duration out of the number of clock cycles needed to execute the
instructions, and the clock period of the CPU. We first define the ModuleAssignment
duration at line 20, by multiplying the number of clock cycles needed to execute
it by the clock period of the Arduino board. For the Delay instruction, we also
need to consider the delay duration (in seconds) specified by the developer in the
ArduinoML model. This duration is queried using OCL, line 23, and divided in
order to get milliseconds.

Finally, lines 25 and 26 assign energy-consumption estimations to the Module

Assignment and Delay instructions. We estimate the energy consumption of
these instructions by multiplying the duration of those instructions by the power
consumption of the system. We assign the result of these computations to the
execute operation of these xDSL instructions.

Given an execution trace of the ArduinoML model, the evaluation component
of EEL uses the EEM to compute a global estimation of the energy consumed
during that execution. The same execution trace can be used with different EEMs
for estimating the consumption of different final platforms before deployment.

5.3.2 The Energy-Estimation Language

In this section we illustrate the main concepts of our energy estimation DSL, and
how it is used for describing the energy consumptions of the targeted xDSLs. An
excerpt of the concrete syntax, written with XText [64], is defined in Listing 5.2,
and an excerpt of the abstract syntax is available in Figure 5.3. We discuss later
in Section 5.3.5 on why using a new dedicated language, instead of OCL and/or
Aspect-Oriented techniques to annotate languages with energy-estimation formulas.

The top-level container of this meta-model is the Platform element. A single
EEM is meant to define the energy consumed by the xDSL on a single platform,
defined here. Estimations are defined through the Estimation element.

First, estimations have a Target. A Target can be either a meta-class of the
xDSL or a meta-operation. We decorate meta-classes when we want to declare
general energy-related properties on them. For instance, in our example we used an
estimation targeting the LED meta-class to define its voltage. An estimation can
also target a meta-operation. When an operation conforming to this meta-operation

92



5.3. Energy-Estimation Modeling

1 Platform:
2 ’Platform’ name=String ’{’

3 estimations+=Estimation (’,’ estimations+=Estimation)∗
4 ’}’;
5 Estimation:
6 (post?=’post’)? target=Target ’.’

7 name=(EstimationName | UserEstimationName)
8 (’=’ expr=EstimationExpr)?;
9 Target: EClass | EOperation;

10 EstimationName:
11 ’duration’ | ’frequency’ | ’current’ | ’voltage’ | ’power’ | ’energy’ |

’absoluteTime’;
12 UserEstimationName: ID;
13 EstimationExpr:
14 (EstimationValue | OCLEstimationExpr |
15 CompositeEstimationExpr);
16 EstimationValue: value=Double;
17 OCLEstimationExpr: query=OCLExpr;
18 CompositeEstimationExpr: TransitionEstimationExpr |
19 TailEstimationExpr;
20 TransitionEstimationExpr: LogisticEstimationExpr | ... ;
21 LogisticEstimationExpr:
22 ’logfun(’L=[EstimationExpr] ’,’ k=[EstimationExpr] ’,’ x0=[EstimationExpr]

’,’ x=[EstimationExpr] ’)’;
23 ...

Listing 5.2: Excerpt of the EEL concrete syntax

is performed, the estimations targeting it are evaluated, in order to produce an
energy consumption estimation.

Estimations have an EstimationName. While EEL users can specify their
custom UserEstimationNames, a set of energy-related estimations (current, voltage,
power, energy, frequency, duration) are predefined. These estimations are meant to
have special support in the tooling, especially to be used by generic energy-aware
visualizations in the modeling workbench. For these estimations, EEL also verifies
the consistency of their physical units.

The right-hand side of an estimation is an EstimationExpression. Expressions
can simply hold an EstimationValue, defined by a Double, or be more complex.

OCLEstimations contain an OCL query. This query is evaluated in the context
of the targeted element, and the value is assigned to the estimation. While we
currently use standard OCL (from the OCL Eclipse project), the connection with
OCL is completely modular, and the language is suitable for integration with

93



5. Trace-based energy estimation

0..1 target

+

Energy Estimation Language CoreEMF

Platform

+ name: String[?]

*

EClass

EOperation

EClassifier

<< Enumeration >>
Type

CURRENT
VOLTAGE
POWER
DURATION
ENERGY
SCALAR
FREQUENCY
ABSOLUTETIME

Estimation

+ name: String[?]
+ type: Type[?]
+ post: Boolean[?]

CompositeEstimation

EstimationOperationAdd

EstimationOperationSub

EstimationOperationMul

EstimationOperationDiv

EstimationValue

+ value: Double

CompositeEstimationOperation

LogisticEstimation

IntegrationEstimation

ExponentialEstimation

TailEstimation

OCLEstimation

+ query: OCL

Figure 5.3: EEL abstract syntax

different flavors of OCL. For instance uncertainty-aware OCL [122] may be used to
specify estimations that are better represented by probability distributions.

Besides inheriting the expressive power of OCL, the language supports domain-
specific composition of estimations by extending the CompositeEstimation meta-
class. The extension, performed in Java, enables the integration of existing math-
ematical libraries for representing complex functions, calculus, or numerical esti-
mations. For instance we can use it to represent several sigmoid functions from
literature to model the transition from one state to another (like LogisticEstima-
tionExpr in Listing 5.2). We can also provide several decreasing tail functions,
typically used in energy estimation to represent phenomenons like tail energy, i.e.
hardware-induced energy consumption corresponding to an activity happening after
a device is used (see Section 5.4.1).

Finally, a special estimation absoluteTime is used to refer to the clock value,

94



5.3. Energy-Estimation Modeling

MAssignment.energy

MAssignment.duration

Board.period

1/16000000

MAssignment.clockCycles

44

Board.power

IR.power

IR.voltage

3.3

IR.current

0.00235

LED.power

LED.voltage

5.0

LED.current

0.00845

Board.CPUPower

Board.cpuVoltage

5.0

Board.cpuCurrent

0.0241

Figure 5.4: Evaluation tree for the ModuleAssignment.execute() operation de-
fined in Listing 5.1

stored in the execution trace. This value is useful to calculate durations of events
during the execution, e.g. the delay of user input. We will discuss these issues in
detail in Section 5.3.5.

5.3.3 Evaluation Semantics

The entry point of the semantics for EEL are the energy estimations attached to
meta-operations. The expressions associated to these estimations are evaluated
every time the semantic operation is called, by default immediately before. Since the
state of the model before performing the operation is known, the changes that the
called operation will apply can be anticipated. And thus the energy consumption
of the DSL operation can be estimated.

Each estimation is lazily evaluated when needed. Estimations are built on top
of each other, in a hierarchical fashion (reference cycles between estimations are
not allowed). Hence, an estimation can be represented as a tree, whereas the first
estimation is the root, and depends on the values of its children. When evaluating
an estimation, the tree is traversed depth-first, in post-order. Figure 5.4 shows the
estimation for a ModuleAssignment.execute() operation, in a tree shape, based on
Listing 5.1. Thus, to estimate this instruction, the leaves are first evaluated. They
are defined as simple double values, and used later by the composite estimations of
the trees. As an example, IR.power computes the product between its two leaves
IR.current and IR.voltage, for an estimated power consumption of 0, 00775
Watts for the Infrared Sensor. The same reasoning applies until reaching the root
of the tree. This represents an estimated energy consumption of 4.68 × 10−7 Joules
for the ModuleAssignment.execute() instruction, considering that there are only
one LED and Infrared sensor in the system.

As some durations cannot be anticipated, e.g. because of user inputs in the
trace, it is sometimes convenient to perform estimation at the end of the execution
of a semantic operation. EEL provides a specific keyword for the purpose, post.
Any estimation marked by post is executed right after the conclusion of a semantic

95



5. Trace-based energy estimation

operation. Note that if an estimation depends on a post estimation, then it will
also be calculated after the execution of the semantic operation.

As an example, considering the WaitFor instruction defined in ArduinoML. This
instruction puts the board on sleep mode until a pin’s signal changes. Computing
the energy estimation of this instruction requires to measure the duration of this
wait and then to use it along with the power drawn during it, to compute an energy.
This can be done by using the Board.absoluteTime estimation. This value has
to be stored in an estimation property before performing ArduinoML’s WaitFor

instruction. Then, is has to be evaluated a second time at the end of the WaitFor

instruction, using the post keyword of EEL. The difference between the values of
these two Estimations is the duration of the WaitFor instruction, which is then
used to estimate the energy it consumed.

Furthermore, considering the EEM in Listing 5.1, computing the power drawn
by LEDs is performed, line 17, by multiplying the number of LEDs turned on by
the individual power of a LED. In this specific example, this works since a single
type of LED is used for this platform. However, if different types of LEDs are used
in the system, the individual power of each LED may change. To estimate such
platform, each LED has to be properly identified in the Arduino model (e.g., by
its name), so that these identifiers can be used in the EEM to provide per-LED
power consumptions. Listing 5.3 shows an example of such EEM. Two types of
LEDs are defined. OCL is used to compute the number of LEDs of each type
currently turned on, and the total power consumed by LEDs of all types can be
computed. Nevertheless, it implies that the developer using ArduinoML and the
energy specialist designing EEMs conform with the same naming conventions. In
fact, if the LED’s type is not properly defined in the ArduinoML model, then EEL
has no way of knowing which type it is.

5.3.4 The Energy-Estimation Modeling Process

EEL is meant to be used in the process illustrated by example in Figure 5.5. The
developer designs (1) the Arduino application model to be deployed on several
platforms (2).

We introduce a new actor called Energy Estimation Specialist. This actor knows
the xDSL (ArduinoML in our case) and the platforms on which the models can be
deployed. The specialist provides the developer with one Energy-Estimation Model
(EEM) for each platform (3). Each EEM defines the energy consumption of the
ArduinoML operations for its related platform.

To estimate the energy consumption, the developer needs a set of execution
traces of her ArduinoML model, storing the timed execution of the semantic
operations of the xDSL (e.g. the execute operation) and the state of variables
at these times They can be derived e.g., by executing the simulator on a set of

96



5.3. Energy-Estimation Modeling

benchmarks (4), by different trace synthesis methods such as the ones presented
in section 3.2 or chapter 4, or by reusing/adapting real-world traces for previous
executions.

An execution trace can finally be analyzed by the EEM evaluation component.
This estimates (5) the energy each Arduino platforms (based on different Arduino
Device, e.g. ProMini or UnoR3, and Modules, e.g. LED L-53MBDL or L-7113ID)
would consume when running the Arduino program. An immediate feedback is
given to the developer about the energy that would be consumed on the final
platforms. It can hence help her doing the best design choices for energy efficiency
(6).

Applying the process to our example in Figure 5.2, the developer may analyze
the trace of a benchmark simulation that sets to 10 seconds the user time before
triggering the infrared sensor. The EEM evaluation component exploits the EEM
in Listing 5.1 to estimate for this trace an energy consumption of 1.6044 J on the
platform featuring an Arduino UnoR3.

The ArduinoML developer can immediately detect an elevated consumption,
and try to improve the behavior by replacing the if ArduinoML instruction by
a waitFor instruction as shown in Figure 5.6. Instead of actively checking this
sensor, the Arduino is put to sleep until the sensor detects a change.

1 Platform "DifferentLEDs" {
2 // LED L−53MBDL
3 LED.voltage = 5
4 LED.53MBDL_current = 0.00845
5 LED.53MBDL_power = LED.voltage ∗ LED.53MBDL_current
6

7 // LED L−7113ID
8 LED.7113ID_current = 0.00765
9 LED.7113ID_power = LED.voltage ∗ LED.7113ID_current

10

11 Board.numberOf7113ID = LED.allInstances() −> select (it |
it.oclContainer().oclAsType(Pin).level = 1) −> select ( it |
it.name.substring(1,6) = ’7113ID’) −> size()

12 Board.numberOf53MBDL = LED.allInstances() −> select (it |
it.oclContainer().oclAsType(Pin).level = 1) −> select ( it |
it.name.substring(1,6) = ’53MBDL’) −> size()

13 Board.powerOfLEDs = Board.numberOf53MBDL ∗ LED.53MBDL_power +
Board.numberOf7113ID ∗ LED.7113ID_power

14 }

Listing 5.3: Excerpt of an EEM for a platform with different types of LEDs

97







5. Trace-based energy estimation

If traces are derived by a simulator, the simulator should reflect as much as
possible the behavior of the final platform. Non-deterministic behavior and effects
can differ between the final platform and the simulator, because of a different
implementation, or because of variations in the execution environment on which
the models are executed.

To be usable by EEL, execution traces should contain the entities executed,
and also store execution times. As durations can be different in the simulator than
in the final platform, if traces are derived from a simulator, then runtime system
times should be estimated. Time estimation is possible on EEL, by defining a
duration estimation. The estimation should access the absoluteTime element
to retrieve the execution-trace time, and apply a composite or OCL estimation
expression to perform the conversion.

Probabilistic EEMs. Current estimations by EEL return a numeric value for each
estimation. By using uncertainty in OCL from [122] this value can be associated
with uncertainty measures. In case of non-deterministic behavior, a larger number
of traces can be energy-estimated to derive a probability distribution.

An alternative approach would be encoding probabilities directly within the
EEM model. The resulting probabilistic EEM would compute and store estimations
as complex objects representing a full probability distribution. This is especially
feasible when the energy-estimation specialist can reasonably estimate the proba-
bility of the non-deterministic choices or user interactions. This is a possible line
for future work.

5.3.6 Implementation Details

We implemented the editor and evaluation component of EEL as an extension
to GEMOC Studio. GEMOC Studio is a language and modeling workbench for
model design and execution [16, 27, 29]. Its execution engine embeds a generic
trace constructor, an omniscient debugger, and several extension mechanisms. The
ArduinoML integration within GEMOC enables the execution of Arduino models
in a simulator, as well as code generation. For our experimentation, we directly
extend the GEMOC trace generator to estimate the energy consumption during
the simulation without waiting the full trace to be completely produced.

Our implementation relies on the Java Engine of GEMOC Studio [26]. This
engine is dedicated to operational semantics directly written with Java, Xtend [59],
or Kermeta [94]. The executable semantics is a sequence of calls to the semantic
operations of the xDSL (e.g. execute() in ArduinoML). It is composed of several
operations called during the execution of models, including the followings:

• initialize: is called before the execution, and performs the loading of the
model to be executed

100



5.4. Evaluation

• beforeStep: is called before executing operations annotated with @Step in
the operational semantics.

• afterStep: is called after executing operations annotated with @Step in the
operational semantics.

We extend GEMOC’s Java Engine with an addon that performs additional
behavior on top of the existing operations. The initialize extension simply consists
in loading the energy estimation model provided by the energy estimation specialist,
thus making it available during the xDSL model execution. Estimations are
performed in the beforeStep and afterStep depending on the post keyword.

5.4 Evaluation

In this section we evaluate our approach against the research questions that
motivated this work. The first part of this evaluation shows how EEL can model
existing domain-specific energy estimation approaches from literature, answering
RQ1. The second part presents a workflow where we use EEL to estimate the
energy consumption of Arduino systems, answering RQ2.

5.4.1 Expressiveness

In this section we evaluate the expressiveness of EEL, i.e. its ability to model energy-
estimation approaches existing in the literature. Since energy-estimation profiles
for xDSLs are not currently available or not using Model-Driven Engineering [164],
we select from literature well-known per-instruction energy-estimation profiles for
general-purpose languages. EEL can represent those energy estimation-profiles
and evaluate them, when it is given execution traces of their respective systems.
While we can not argue about the complexity of future energy-estimation profiles
for xDSLs, this shows that EEL is expressive enough to represent current ones.

Shuai Hao et al. propose Software Energy Estimation Profiles (SEEPs). SEEPs
associate Android instructions with Hardware energy costs [80]. In previous work,
they show how to calculate per-line energy consumption [113], and introduce tail
energy consumption. Tail energy is a hardware-induced energy consumption, corre-
sponding to an activity happening after a device is used. Such energy is calculated
using a mathematical function provided by the hardware manufacturer. They illus-
trate this with an excerpt of Android code featuring the HttpClient.execute()

instruction. Figure 5.7a shows an example of tail energy consumption occurring
after using HttpClient.execute().

Estimating the energy consumption of this instruction as well as the tail energy
consumption do not represent a challenge. However, the EEL model has to consider

101



5. Trace-based energy estimation

power

duration

HttpClient#execute

HttpClient tail
consumption

t0 t1

(a) Tail energy consumption

power

duration

tail interruption

t1 t2

(b) Tail interrupted

Figure 5.7: Tail consumption behaviors

eventual interruptions of the tail consumption. The Expressiveness of EEL allows
us to model such event. For instance, Figure 5.8 shows an equivalent SEEP modeled
with EEL to estimate the energy consumption of this Android instruction, and
considering the tail energy consumption with interruptions. We detail this EEM.

Line 1 captures the absolute time when the instruction
HttpClient.execute() is called, using the absoluteTime global property. Line
2 computes the energy consumed during the execution of this instruction, which
corresponds to the area under the power plot in Figure 5.7a between t0 and t1.
We simplify this computation here to only focus on the tail. Line 3 computes the
tail energy consumption. As stated before, this energy consumption is defined by a
mathematical function provided by the manufacturer of the concerned device. We
define it as tailFunction(duration), a fictional mathematical function taking the
duration of the tail as a parameter, but a more complex function, eventually available
in EEL (logistic, exponential, integral, etc.), could have been used. This duration
is computed by subtracting the absoluteTime when the HttpClient.execute()

instruction last ended, corresponding to t1 in Figure 5.7b, to the absoluteTime
at which it started last, t2 in Figure 5.7b. This corresponds to the interrupted
tail’s duration, and can be used to estimates the tail’s consumption. Then, line 4
sums the tail energy to the call energy, to compute the energy of the instruction,
and finally line 5 updates the time at which this instruction ended. Since these
operations are performed sequentially, the time elapsed since the last usage of the

102



5.4. Evaluation

1 HttpClient#execute.absoluteTimeLastCallStart = HttpClient.absoluteTime
2 HttpClient#execute.callEnergy = HttpClient.cpuEnergyCost +

HttpClient.wifiEnergyCost
3 HttpClient#execute.tailEnergy =

tailFunction(HttpClient#execute.absoluteTimeLastCallStart −

HttpClient#execute.absoluteTimeLastCallEnd)
4 HttpClient#execute.energy = HttpClient#execute.callEnergy +

HttpClient#execute.tailEnergy
5 HttpClient#execute.absoluteTimeLastCallEnd =

HttpClient.absoluteTimeLastCallStart + HttpClient#execute.duration

Figure 5.8: EEM for Android HttpClient

1 call#execute.energy = 1.25265
2 op#execute.energy = 1.95631
3 memload#execute.energy = 0.95351
4 ...

Figure 5.9: EEM for LLVM IR

wi-fi card is updated after computing this tail energy consumption. Such EEM
could be attached to an executable language defining Android Java classes (using
MoDisco [32], for instance).

Neville Gretch et al. associate LLVM IR instructions with constant energy costs
for a given platform, and statically estimate the energy consumption of programs
relying on control flow graphs [77]. For such low-level consumption models, EEL
can simply list the energy consumptions of each LLVM IR instructions as shown
in Figure 5.9. The EEL evaluation component will sum the consumptions of all
instructions in the trace.

The approach presented by Karan Aggarwal et al. analyzes system call traces
for estimating the impact of software changes on power consumption [2]. They
build linear regression models, that associate a power usage to each system call
instruction. They model the global power usage as the average power of all system
calls, weighted by their number of appearances in the execution trace. Their
approach can be used to estimate the energy consumption of an application with
EEL, as described in Figure 5.10. Each system call is attached to an average
power consumption. EEL counts the times systems calls are executed, and it
derives the average power consumption. The total energy consumption is computed
multiplying the average power and the elapsed time in the system.

103



5. Trace-based energy estimation

1 mmap2.power = ...
2 mnap2#execute.count = mnap2#execute.count + 1
3 open.power = ...
4 open#execute.count = open#execute.count + 1
5 ...
6 app#execute.startTime = app.absoluteTime
7 post app#execute.calls = mnap2#execute.count + open#execute.count + ...
8 post app#execute.power = ((mmap2.power ∗ mnap2#execute.count) +
9 (open.power ∗ open#execute.count) + ... ) / app#execute.calls

10 post app#execute.energy = (app.absoluteTime − app#execute.startTime)
11 ∗ app#execute.power

Figure 5.10: EEL Power estimation model example for system calls

5.4.2 Estimation Accuracy

To answer to RQ2, we evaluate our approach in predicting the energy consumption
of Arduino systems. First, we describe the runtime platforms where we will deploy
the ArduinoML application models, and we describe how an energy estimation
specialist would define EEL models for those platforms. Then we consider a real-
world ArduinoML model. We estimate, using EEL, the energy consumption of this
ArduinoML model when deployed on those platforms. To check the accuracy of the
energy estimation, we measure and compare the actual consumption of that system
by generating C code, deploying it and performing hardware measurement. Finally,
we follow the same process for the two sample systems in Figures 5.2 and 5.6.

Deployment Platforms.

We consider two deployment platforms. A first platform is based on an Arduino
UnoR3 board. The platform defines a specific device for every module in the Ar-
duinoML model. All LED entities declared in the structural part of the ArduinoML
application models (such as the one of Figure 5.2 or Figure 5.12) having the color
blue are deployed as Kingbright LEDs with the reference L-53MDBL. Infrared
sensors are deployed as Velleman Obstacle Avoidance sensors with the reference
VMA 330, servo motors as TowerPro SG90 and photoresistors as GL55. We will
refer to this platform simply as UnoR3.

A second deployment platform has two differences w.r.t. the first one: instead
of featuring a Arduino Uno R3 board, it uses a Arduino Pro Mini, and instead of
using a blue LEDs, it relies on Kingbright L-7113ID red LEDs. We will refer to
this platform simply as ProMini.

104



5.4. Evaluation

ArduinoML EEM

Considering the couple platform/xDSL, the energy specialist will consider one by
one the meta-classes of ArduinoML meta-model to describe with EEL what would
be their impact on the global energy consumption.

The energy specialist may use benchmarks to estimate the power curves on
the platform. Benchmarks are typically made of several small ArduinoML models.
Each ArduinoML model focuses on a single module, in order to understand how
its presence impacts the energy consumption of the entire Arduino system. For
more complex platforms, benchmarks focusing on the interaction between pairs of
components are needed, to estimate if it can have effects of the energy curves.

We provide in EEL estimations of the energy consumption of the following
meta-classes: Board (in two states: running, and sleeping), LED, InfraredSensor,
ServoMotor, PhotoResistor. We individually deploy a specific ArduinoML model
and perform measurements for each one of these meta-classes, in order to produce
energy-consumption curves that we model with EEL. Figure 5.11 visualizes some
of those curves. In the simplest cases, producing an energy estimation formula
can be done by simply averaging the power consumed by the meta-class measured.
For instance, Figure 5.11a shows an average power of 122.5 mW for the Arduino
UnoR3 board in running state, thus we model this power consumption with EEL,
and attach it to the Board meta-class of ArduinoML.

To measure the consumption of a Module, we need to compare the consumption
of the platform with and without this Module activity. For instance, to estimate
the consumption of the LED, we subtract the consumption of Figure 5.11b from
Figure 5.11a.

Some meta-classes require more reasoning in order to be properly estimated
and modeled with EEL, e.g. the photoresistor in Figure 5.11e and the servo motor
in Figure 5.11f. In fact, the power consumption of the photoresistor is not constant,
but depends on the intensity of the light it measures. The technical specifications of
the photoresistor provided by the manufacturer define the resistance of the module
as a linear function of the light it measures. We model this specification in OCL as
a linear function of the signal received from the analog pin.

The energy consumption of the servo motor requires a more complex formula:
the energy consumption peaks during the first degrees of the rotation, falls, and
finally remains (approximately) constant until the rotation finishes. We use three
mathematical functions to estimate this energy consumption. A first linear function
estimates the peak of power at the beginning of the rotation, and is applied to the
first degrees of the rotation. A second exponential function estimates the power
dropping. Finally a constant power function estimates the power until the rotation
finishes. The duration of each of those steps is calculated using the technical
specifications of the servo motor used. These functions are also defined using OCL.

105



5. Trace-based energy estimation

All these estimations are modeled with EEL to produce the EEM of the first
platform, partially shown in Listing 5.1. In each of the plots from Figure 5.11
we display, in addition to the energy consumption measured on the platform, the
power estimation curve modeled with EEL (in red).

Finally we replicate the process with the second platform. We produce a different
EEM for estimating ArduinoML on the new platform. The energy-consumption
curves have very similar shape than Figure 5.11, but the new platform impacts
the parameters in the EEL model for the Board and LED elements. In fact, in
this second EEL model the Board and LED power consumptions are respectively
32.5 mW and 11.5 mW smaller than in the first EEL model.

0 0.2 0.4

60

80

100

120

140

160

duration (s)

p
o
w

e
r 

(m
W

)

measure

estimation

(a) Arduino UnoR3 run-
ning with no module.

0 0.2 0.4

60

80

100

120

140

160

duration (s)

p
o
w

e
r 

(m
W

)

measure

estimation

(b) Arduino UnoR3 run-
ning with LED on.

0 0.2 0.4

60

80

100

120

140

160

duration (s)

p
o
w

e
r 

(m
W

)

measure

estimation

(c) Arduino UnoR3 run-
ning with Infrared sen-
sor.

0 0.2 0.4

60

80

100

120

140

160

p
o
w

e
r 

(m
W

)

duration (s)

measure

estimation

(d) Arduino UnoR3
sleeping with Infrared
sensor.

0 0.2 0.4

60

80

100

120

140

160

duration (s)

p
o
w

e
r 

(m
W

)

measure

estimation

(e) Arduino UnoR3 run-
ning with Photoresistor.

0 0.2 0.4
0

500

1000

1500

duration (s)

p
o
w

e
r 

(m
W

)

measure

estimation

(f) Arduino UnoR3 run-
ning with Servo Motor
rotating 180°.

Figure 5.11: ArduinoML benchmarks used for building Arduino UnoR3 EEM

106





5. Trace-based energy estimation

to the energy estimation of the rotation of the servo motors. Second and third
rows correspond to the blinking behavior, estimating the energy consumed when
the LED is respectively off, and on. The fourth row shows the totals. The columns
show duration of the benchmarks, number of measurements, measured energy,
estimation and accuracy.

The following two lines show the result of the estimation of the IfTempo and
WaitForTempo (WFT) applications on UnoR3. The rest of the table shows all the
previous estimations, this time applied to the second platform, ProMini. Note that
for each case study, estimations for both platforms are computed and shown to the
developer at the same time.

Deployment and Physical Measurements

In order to validate these energy estimations, we proceed to physical measurements.
We first generate the C code of the three ArduinoML models using Acceleo [131]
model-to-text transformations. Structural information of the ArduinoML model is
used to configure the setup() function in the Arduino code, whereas the behavioral
information of the ArduinoML model is used to write the loop() Arduino function.
The generated code is then deployed via USB through the ArduinoIDE4.

4https://arduino.cc/en/main/software

Platf. Dur. #Meas. Meas. Estim. Accur.
Rotations UnoR3 2.7 s 507 0.77 J 0.67 J 86.7%
LED off UnoR3 2.0 s 378 0.32 J 0.32 J 98.5%
LED on UnoR3 2.0 s 376 0.41 J 0.40 J 99.6%
Total Door UnoR3 6.7 s 1261 1.51 J 1.40 J 92.7%
IfTempo UnoR3 12.98 s 986 1.72 J 1.60 J 92.9%
WFT UnoR3 12.93 s 982 1.02 J 0.92 J 89.8%
Total UnoR3 32.61s 3229 4.27 J 3.93 J 92.1%
Rotations ProMini 2.7 s 487 0.70 J 0.58 J 82.9%
LED off ProMini 2.0 s 377 0.25 J 0.25 J 97.6%
LED on ProMini 2.0 s 376 0.31 J 0.32 J 97.0%
Total Door ProMini 6.7 s 1240 1.23 J 1.16 J 94.0%
IfTempo ProMini 13.00 s 992 1.49 J 1.50 J 99.0%
WFT ProMini 12.99 s 990 0.72 J 0.73 J 98.9%
Total ProMini 32.69 s 3222 3.47 J 3.38 J 97.4%

Table 5.1: Comparison of the measures and estimations for the Arduino models

108



5.4. Evaluation

The Measurement column of Table 5.1 decomposes the energetic measurements
made on the platform deployed for the door system and for the two other systems.
The last column computes the accuracy of the estimation w.r.t. the physical
measurements. A power consumption plot of the system, and the estimation is
available in Figure 5.13.

0 1 2 3 4 5 6
0

500

1000

1500

2000

duration (s)

p
o
w

e
r 

(m
W

)

measure
estimation

Figure 5.13: Power consumption plot of the Arduino system, and its estimation

Discussion

As shown in Table 5.1, total energy estimations are consistently closer than 10 % to
the ground truth, thus answering positively to RQ2. In some cases we obtain very
high accuracy, especially on the ProMini platform (99.0% for IfTempo and 98.9%
for WaitForTempo). For the larger use case the two platforms are estimated with
similar accuracy (92.7% for UnoR3, 94.0% for ProMini). If our estimations are
accurate, this is also due to the high quality of the simulator in which we performed
this evaluation. ArduinoML’s operational semantics defined in GEMOC Studio are
fine grained, and thus can be accurately estimated.

Performing accurate measurements of the Arduino final platform requires (1)
a stable power supply, and (2) an accurate current sensor. In order to have a
stable power supply, we power the final platform with the deployed ArduinoML
model through the 5 V port, which is wired to a second Arduino that outputs
a regulated 5 V. This second Arduino measures the c urrent it delivers using a
INA219 current sensor. This sensor has a high accuracy (0.5 %), and can send data

109



5. Trace-based energy estimation

over the Arduino’s I2C interface, which can then be easily gathered and analyzed
by a computer through the Arduino’s Serial port. We perform measurement every
3 ms for this evaluation.

If the estimation is very close to the energy measured when the LED blinks (resp.
98.5 % and 99.6 %), it is slightly less accurate for the motor’s rotation (86.5 %).
This is due to several factors: (1) the energy consumption behavior of the motor
is different when performing small and large rotations (2) the frequency at which
measurements are performed is not sufficient, and power spikes happen between
measurements (3) the behavior of the servo motor is non deterministic, and our
EEM cannot estimate it accurately.

5.4.3 EEL and Emit

To conclude this evaluation we propose to use Emit to perform energy estimation
with EEL. As described in Chapter 4, Emit can be used to monitor networks of
sensors and actuators through the MQTT communication protocol. It persists
communications in a document-based database, that can be queried and used as
an execution trace of the CPS.

We reuse the CPS defined in Section 5.4, featuring a servo motor, a LED,
a button and a button. In order to be externally monitored, we consider that
the Arduino board embeds a ESP8266 chip that communicates, through MQTT,
of the state of the modules in the CPS. This enables monitoring through Emit.
Each module communicates to its specific topic, simply labelled by its name in
Figure 5.12. According to the Emit’s meta-model defined in Figure 4.4, we define
an EEL model to estimate the energy consumption of the monitored system, when
deployed on the devices specified in Section 5.4.2. This EEL model attaches energy
estimation formulas to the concepts available in Emit.

For this EEL model, the language it is based on changes (i.e., Emit instead of
ArduinoML), but the platform is the same one. We detail the EEL model. Emit

offers little expressivity besides enabling the modeling of MQTT concepts. In the
EEL model, we attach the voltages of the modules to the root Platform element.
All execution traces are available in the Message entities. Messages have a MQTT
topic, a corresponding client, a reception timestamp and a payload. We consider
for this use-case that each module has its own MQTT topic for communicating.
As an example, the "Servo1" servo motor in Figure 5.12 acts as an actuator where
the rotation instructions are sent on the "Servo1" MQTT topic, by the Arduino
board. Same for the LEDs, where a boolean is sent to their corresponding topics
when they are lit on and off.

We detail the EEL model available in Figure 5.14. The voltage and current
consumptions of the main modules used in the platform are attached to Emit’s
Platform element. The board and infrared sensors power consumption are constant.

110



5.4. Evaluation

We query the number of infrared sensors deployed by querying the number of MQTT
topics monitoring infrared sensors in the model.

For this use-case, we consider that the execution trace is modeled as a set of
MQTT messages, ordered by reception timestamp. Using EEL, we estimate the
energy consumption of the system between each message reception. The duration
between each message is computed at line 21 in Figure 5.14. This duration is
then multiplied by the system’s power to compute the energy consumed since the
previous message. This energy consumption depends on the amount of LEDs turned
on. Each time a message is received by Emit on a LED’s topic, the amount of
LEDs turned on is updated, as shown line 25. Finally, when the Arduino performs
a servo motor’s rotation, it sends the value of the rotation on the corresponding
servo motor’s topic. This message is thus used in line 19 to compute the energy
spent by the motor for rotating.

We consider the Emit model available in Figure 5.15 as an execution trace for
performing this estimation. This model covers a subset of the execution scenario
presented in Figure 5.13. First, the button is pressed. This corresponds to the
Message labeled "1" in Figure 5.15. Then the arduino controls the servo motor to
perform three steps of the rotation, visible in the three messages related to the
"Servo1" client. Then, the Infrared sensor detects an obstacle in Message 5. The
rotation is put on pause, and finally the LED blinks during one second. Applying
the EEL model to this Emit model would produce the energy estimations detailed
in Table 5.2, for each message in the trace, for a total energy consumption of
0, 19919924 Joules.

Message Energy (J) Description

1 0 the time elapsed since the beginning of the execution is 0.

2 0.00805608 energy spent by the servo motor’s rotation.

3 0.01959903
energy spent by the servo motor’s rotation, plus the energy con-
sumed by the system during 90 ms.

4 0.01959903 same as previous estimation.

5 0.0025651 energy spent by the system during 20ms.

6 0 the LED is turned on, but no time elapsed since the last message.

7 0.0852525 energy spent by the system, with a LED on, during 500ms.

8 0.0641275 energy spent by the system with the LED off, during 500ms.

Table 5.2: Energy estimation when applying EEL to fig. 5.15

111



5. Trace-based energy estimation

1 Platform "Arduino_EMIT" {
2 Platform.voltage = 5.0
3 Platform.current = 0.0241
4

5 Platform.NumberOfIRSensor = Client.allInstances() −> filter(c |
c.name.contains("IRSensor")) −> size()

6 Platform.IRSensorVoltage = 3.3
7 Platform.IRSensorCurrent = 0.00235
8 Platform.IRSensorPower = Platform.IRSensorVoltage ∗

Platform.IRSensorCurrent ∗ Platform.NumberOfIRSensor
9

10 Platform.LEDCurrent = 0.00845
11 Platform.LEDVoltage = 5.0
12 Platform.LEDPower = 0.00845 ∗ 5.0
13

14 Platform.idlePower = Platform.voltage ∗ Platform.current +
Platform.IRSensorPower

15

16 Message.isLED = self.topic.contains(’LED’))
17

18 Message.isServoMotor = self.topic.contains(’ServoMotor’))
19 Message.servoEnergyConsumption = if (Message.isServoMotor) int(0, 0.002 ∗

Message.payload, 22.378∗5∗x) else 0
20

21 Message#onReceipt.timeElapsedSinceLastMessage = self.received −

Message#onReceipt.lastMessage
22

23 Message#onReceipt.energySpentSinceLastMessage =
Message#onReceipt.timeElapsedSinceLastMessage ∗ (Platform.LEDPower ∗

Message#onReceipt.numberOfLedsON + Platform.idlePower) +
Message.servoEnergyConsumption

24

25 Message#onReceipt.numberOfLedsON = if (Message.isLED) if (Message.payload
= 1) Message#onReceipt.numberOfLedsON + 1 else if (Message.payload =
0) Message#onReceipt.numberOfLedsON − 1 endif else
Message#onReceipt.numberOfLedsON endif

26

27 Message#onReceipt.lastMessage = self.received
28 }

Figure 5.14: EEL model for estimating Emit traces

112



5.5. Conclusion

:Platform

:Client

name = "Servo1"

:Client

name = "LED1"

:Client

name = "IRSensor1"

:Client

name = "Button1"

1:Message

payload = 1
received = 0

2:Message

payload = 6
received = 0

3:Message

payload = 6
received = 90

4:Message

payload = 6
received = 180

5:Message

payload = 1
received = 200

6:Message

payload = 1
received = 200

7:Message

payload = 0
received = 700

8:Message

payload = 1
received = 1200

messagesclients

Figure 5.15: Emit model used as an execution trace to perform an energy estimation
with EEL.

5.5 Conclusion

In this chapter we presented an approach that relies on execution traces for
estimating the energy consumption of executable models when deployed on their
target platforms. We introduced EEL, a language enabling the specification of the
energy-related properties of a system. Each EEL model attaches energy-related
concepts to the meta-elements of an xDSL for one specific deployment platform.
Execution traces of models conforming to the xDSL can be used along with an
EEL model, to estimate the energy consumption of this executable model, on its
platform. We propose a concrete syntax for writing EEL models and evaluate our
approach by estimating several ArduinoML models. The results show that Arduino
estimations written with EEL are between 0.4 % and 17.1 % of the ground truth,
and 4.9 % on average. Using this immediate feedback, the developer can improve
the energy efficiency of its models before deploying them. These predictions do not
require any knowledge about energy consumption or measurement for the developer
and require little effort to be produced.

EEL is meant to be an interface between the estimators of energy-consumption
functions and system developers. While in this chapter we focused on the syntax,
semantics, and integration of the language with the modeling workbench, several
improvement points can be raised. First, being able to automatically produce
EEL models from sets of measure would greatly facilitate the energy specialist’s
role. Second, being able to re-use EEL models more easily could be a useful
improvement. Reusing EEL models is currently done using copy & paste, but
future implementations will enable the definition of libraries. Any EEL model

113



5. Trace-based energy estimation

could be imported into an other one as a library, and specific concepts in this
model could be selected. As an example, if two platforms embed different modules
but share the same LED definition, the second platform should be able to import
the LED definition available in the first EEM model, using a line of EEL code
similar to "from EEM_platform1 import LED". Third, reusing EEL models across
languages is also considered. Making EEL meta-model agnostic is challenging,
but can be useful to estimate platforms on which models defined with different
languages will be deployed. Moreover, we want to improve the visual feedback
within the modeling workbench, to automatically highlight the parts of the model
that are the main culprits of energy waste. Finally, EEL could be integrated in
other environments than GEMOC Studio. In fact, environments used by CPS
engineers such as Simulink or Capella could benefit from EEL.

114



Chapter 6

Conclusion and Perspectives

115



6. Conclusion and Perspectives

6.1 Synthesis

Dynamic analysis is an important technique for asserting of the validity of software
and systems. It is performed during the execution, and is able to detect issues that
usual static analysis techniques would not see. In the domain of Model-Driven
Engineering, software and systems are designed and generated using models. Models
often represent the static aspects of the application designed, but suffer from a
lack of dynamic analysis possibilities. This is especially problematic in a context of
energy-aware engineering, where dynamic analysis is important to estimate and
optimize the platform’s energy consumption.

In this thesis, we tackle this lack of dynamic analysis options in the domain
of model-driven engineering, and apply it to energy-aware engineering. We first
present an approach for injecting execution traces inside models. Source code is
instrumented, hence enabling the tracking of the execution. The generated traces
are then injected into the initial source code model. We use this model for multiple
purposes exploiting the reusability of MDE.

We first enhance the model execution by adding energy-measuring probes inside
the program. Using these additional dynamic information we can model the energy
consumption of the Java program, and use it as a starting point for performing
energy-aware refactoring. Furthermore we rely on the execution traces injected
inside the model for performing regression test selection. Regression test selection
reduces the duration of the testing phase during the engineering of a software
application.

If this lack of dynamic aspect is an impediment to software engineering, it is
also problematic for cyber-physical systems (CPS). As an answer to that, we also
propose an automated model-based approach for generating monitoring platforms
of CPS. A CPS is designed using a dedicated meta-model. A model transformation
takes models of a CPS as an input, and generates a monitoring configuration. When
executed, this configuration defines the entities to be monitored in a web-based
monitoring platform, Emit. The monitoring platform can then be used to monitor
and perform dynamic analysis on the running CPS.

If these approaches can be used to trace the execution of software and systems,
an additional contribution is necessary for enabling generic energy estimation of
executable languages. To this extent, we propose a domain specific language (EEL)
for performing energy estimation on executable models. EEL attaches energy-
related concepts and energy estimation formulas to the elements of executable
languages. Energy estimations can be calculated using execution traces of languages
decorated with EEL. We propose several use-cases in which we estimate the energy
consumption of Arduino models, as well as CPSs monitored with Emit.

To summarize this thesis, model driven dynamic analysis can be complicated,
especially when models only consider static aspects of the system they design. Our

116



6.2. Limits

answer to this problem is to add dynamic aspects into existing static models. We
propose an approach that gathers execution traces by running an application, either
through simulation or code generation, and inject the traces back into the model
it has been designed with. Models of dynamic aspects are an effective approach
for estimating energy consumption, which is a crucial information for performing
design choices aimed towards energy efficiency. Furthermore, models are effective
tools for refactoring, modernizing and optimizing software and systems. Adding
energy-related aspects to them can hence be an essential criterion in performing
energy-aware model transformations.

6.2 Limits

Several limits were encountered during the research presented in this thesis, which
should be considered in future works. We describe them in what follows.

6.2.1 Scalability

A first limit encountered early in this thesis (i.e., Section 3.2) is the lack of scalability
of models, both in time and space. In fact, standard models persistence layers (e.g.,
XMI for EMF) are limited by the size of the system’s RAM. Thus, very large models
(with several millions of elements) might not fit in the available memory. This
issue has been encountered several times in this thesis, either by using MoDisco to
reverse engineer large Java projects (e.g., Hadoop), or when tracing the execution
of complex projects (e.g., Soot). Using a more scalable persistence layer, such
as NeoEMF or CDO, improves this scalability in space, however it hampers the
scalability in time scalability, mandatory to perform dynamic analysis in reasonable
time. If sending data measured to Emit through MQTT at runtime can help
measurements dynamically gathered to scale, the static model can still remain
problematic for very large source codes (hundred thousand classes).

6.2.2 Incrementality

An other limit encountered in Chapter 3 concerns the incrementality when creating
models. Building a model for dynamic analysis is a costly operation: building a
static model takes time, and so does running the program and inject execution
traces in it. When the program is modified, our current approach has to rebuild
the full model from scratch. An incremental approach would only modify the parts
of the model that are impacted by the changes in the source code, instead of the
entire model. Doing this should greatly improve the time performances of our

117



6. Conclusion and Perspectives

model-driven approach. Thus, it could balance the loss of speed due to the usage
of a more scalable persistence layer.

6.2.3 Accuracy

This limit concerns the energy measurements, and has been problematic in Sec-
tion 3.3. Accurately measuring the energy consumption of a software is a com-
plicated task: state-of-the-art energy measurement tools, such as jRAPL, rely
on hardware counters, making accurate measurement for software application
hard to provide. In opposition, power estimation and measurement tools, such
as PowerAPI, estimate the power consumption of processes, defined by their
Process ID (PID), at a specified sampling frequency. The estimations provided
by such framework are accurate for processes running for longer durations (more
than a second), however estimating short running processes (few microseconds) is
complicated, as the duration of the measured process might fit between two power
measurements. This also results in a lack of accuracy.

6.2.4 Expressiveness

Emit enables the monitoring of cyber-physical systems through the MQTT com-
munication protocol. Emit provides dynamic analysis features, that can be defined
in its web interface, using Callbacks. Callbacks are functions, attached to specific
topics, that are triggered when a message on this topic is received, and validates
the guard of the callback. The current implementation of Emit provides little
expressiveness in the manners of defining callbacks. Only simple callbacks can be
defined, mostly relying on guards comparing the content of the messages with an
expected value. Furthermore, the callback functions are also limited: storage in the
database or message expedition. This limits the possibilities of dynamic analysis
with Emit.

Furthermore, in Chapter 5 we introduced Eel, a DSL for specifying energy
estimation, meant to be attached to executable languages. If Eel performs well
for defining energy estimation, its expressiveness could be improved, especially for
pragmatic purpose. As an example, being able to reuse already defined estimations
for different platforms/meta-models to reduce copy-and-paste.

6.3 Perspectives

We mention along this thesis possible evolutions and perspectives for our work,
as answers to the limits previously mentioned. In what follows we sum up these
perspectives.

118



6.3. Perspectives

6.3.1 Evolution of MoDisco

This first perspective concerns MoDisco. This framework has been developed in
2011, and is no longer maintained in the NaoMod team. Extending MoDisco to
enable dynamic analysis would be an interesting perspective. Our work that relied
on MoDisco was focused on (1) tracing down the execution of a Java program and
(2) performing energy measurements. However, proposing a high-level interface
for MoDisco enabling the definition of any type of dynamic analysis for Java
program would be extremely useful. A domain specific language, or a dedicated
Java library, could be used to specify the dynamic analysis to be performed, and
the metrics would be modeled using the Structured Metrics Meta-model, thus
fostering reusability. An approach similar to Section 3.2 could be used.

Furthermore, another important evolution should be to consider scalable persis-
tence layers. The current implementation targets the Eclipse Modeling Framework
standard: XMI. MoDisco is able to reverse engineer massive projects such as
Apache Hadoop, however the models produced cannot be loaded and used on
standard computers due to a lack of resources. Converting XMI models to scalable
persistence layers is complicated: the classes defined by the meta-model have to
be generated according to the persistence layer, thus a useful addition to MoDisco
would be to propose the usage of other persistence layers than XMI.

6.3.2 Hybrid model-driven RTS

This second perspective is a consequence of the previous one. Building the impact
analysis model, as depicted in Section 3.4, is a long operation, depending on the
complexity of the analyzed program. Due to the scalability issues described above,
modeling the behavior of complex applications might not be possible with our fine
granularity level (e.g., statement-level granularity). In such scenario, being able to
choose the granularity at which the RTS is performed would be a relevant addition.
A coarser-grained impact analysis would certainly select more test cases to be
executed, but would also be faster to perform, and the impact analysis model would
contain less elements. Furthermore, recent work showed that the benefits of a faster
impact analysis phase can even outclass the benefits of a smaller test selection. This
difference of granularity may be studied in the case of a model-driven approach for
RTS.

6.3.3 Automated EEL model definition

EEL enables the definition of per-instruction energy estimations. Defining EEL
models is a tedious and error-prone task: it requires specific tooling for energy
measurement, as well as knowledge about the energetic properties of software and

119



6. Conclusion and Perspectives

systems, and eventually dynamic analysis skills. Automating the definition of
EEL models would greatly improve the quality of life of developers: relying on a
specialist of energy estimation would not be necessary anymore. However, this is
complicated as EEL is meant to decorate any executable language.

An automated approach could consist in running specific instructions of a
language several times, while putting parts of the platform under variable stress.
Results produced could be used to infer the energetic properties of the language,
when executed on the analyzed platform.

An other approach could be to rely on AI. Several EEL models, and their
corresponding platform properties, could be used as learning sets for a neural
network (or even a linear regression model). Once trained, providing the platform
properties, the AI could propose a corresponding EEL model. This is feasible for
one executable language. However it would require a lot of EEL models, which are
complicated to define in the first place.

6.3.4 GPL energy estimation with EEL

EEL enables the decoration of DSL instructions with energy-related concepts.
However, this approach could also be applied to General Purpose Languages
(GPLs), such as Java or C++. These languages are not directly executed, but
compiled instead to a lower level representation (e.g., Java byte-code), which is
later interpreted by an engine. Existing work by Bugra M. Yildiz et al. proposed a
meta-model for the Java byte-code [204]. Such meta-model could be decorated with
EEL, and Java programs compiled to byte-code could be estimated dynamically,
using this EEL model. Providing accurate energy estimation of Java applications,
based on fine-grained instruction-based estimations, is complicated. Furthermore,
performing this using EEL should be thoroughly evaluated, but would nevertheless
provide interesting results.

6.3.5 Energy-aware source code refactoring

This perspective leverage model-driven engineering for energy efficiency. MoDisco
is a popular tool for modernization and refactoring of Java programs. Refining
MoDisco models and generating the code from the refined model is an effective
approach for program transformation. Many energy consumption anti-patterns
have been described in the state-of-the-art. Thus, proposing a set of energy-aware
model transformations to apply on MoDisco models could certainly help energy
oblivious developers to optimize and modernize, their programs. Furthermore,
these model transformations could consider energy measurements modeled with
SMM, as proposed in Section 3.3, to target the greediest methods in particular.

120



6.3. Perspectives

6.3.6 Improving monitoring of sensors and actuators
networks

This last perspective focuses on Emit, our monitoring platform for sensors and
actuators networks, and the meta-model used to defines the systems to be monitored.
Considering the monitoring platform, a first perspective concerns the expressivity
of the callback definition. Our current platform only enables the definition of
simple callbacks, with limited guards (e.g., comparison of values, cast, storage
in database). Future work could improve the callback definition to enable more
analysis possibilities. Either by implementing more callbacks by hand, proposing
a DSL that lets the user define the callbacks, or proposing an embedded coding
environment in Emit enabling the definition of callbacks through GPLs. State-of-
the-art monitoring platforms already propose this last option.

Another perspective concerns the verification and validation of CPSs. Emit

could be used to perform dynamic verification of a running CPS, based on the
messages sent and received by the devices deployed in the system. In opposition,
static verification could be performed on sensors and actuators models, using model
checking techniques, for instance.

A last perspective could be to improve the sensors and actuators meta-model
to enable the definition of the devices behavior. As an example, it could rely on
ThingML to define, through state machines, the behavior of sensors and actuators.
ThingML would be finally used to generate the source code to deploy on the devices,
thus leveraging MDE for all the aspects of the CPS.

121





List of Figures

1.1 Contributions of this thesis. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Java meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Abstract syntax of Arduino Modeling Language . . . . . . . . . . . . . 10
2.3 Two representations of the same ArduinoML model. . . . . . . . . . . . 11
2.4 C code produced via a model transformation with input model in

Figure 2.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Transformation rule attached to the ModuleAssignment meta-class,

defined with Kermeta3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Arduino model after running the first ModuleAssignment . . . . . . . . 15
2.7 SMM model of a power meter measuring the power consumed by a CPU. 16
2.8 Source code instrumentation of a Java program . . . . . . . . . . . . . 19
2.9 Byte code instrumentation of a Java program . . . . . . . . . . . . . . 20
2.10 Source code instrumentation using jRAPL to measure the energy

consumption of a method call. . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 3-step process generating a dynamic analysis model from source code . 31
3.2 Example of a simple Java program to trace. . . . . . . . . . . . . . . . 32
3.3 MoDisco model of the program in Figure 3.2 . . . . . . . . . . . . . . . 33
3.4 Instrumented code tracing the execution of the program. . . . . . . . . 34
3.5 Model of the execution trace of the main() method execution of Figure 3.2 35
3.6 Dynamic program analysis execution times using the XMI persistence

layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Simple Java program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Excerpt of the MoDisco source code model . . . . . . . . . . . . . . . . 40
3.9 Excerpt of the source code model (the MethodDeclaration instances)

characterized with energy measurements . . . . . . . . . . . . . . . . . 43
3.10 Three views to display software energy consumption. . . . . . . . . . . 44
3.11 Sequence diagram of an offline RTS. . . . . . . . . . . . . . . . . . . . 48
3.12 Two revisions of a program . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Excerpt of the impact analysis model . . . . . . . . . . . . . . . . . . . 53
3.14 Adding a new method impacts an existing test case . . . . . . . . . . . 56

123



List of Figures

3.15 Average evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.16 Build times with and without RTS. . . . . . . . . . . . . . . . . . . . . 59

4.1 Approach for CPS monitoring in Emit . . . . . . . . . . . . . . . . . . 67
4.2 Sensor and Actuator Network Meta-model . . . . . . . . . . . . . . . . 69
4.3 Excerpts of SAN models . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Emit Core Meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Emit Core callback meta-model . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Emit Core callback meta-model . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Mapping from SAN to Emit . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 Source code instrumentation of a Java program to send estimations to

Emit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9 Cooling System Modeling for IT Infrastructure using SAN model . . . 80
4.10 Screen captures of Emit running . . . . . . . . . . . . . . . . . . . . . 82

5.1 Excerpt of the ArduinoML meta-model . . . . . . . . . . . . . . . . . . 88
5.2 ArduinoML model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 EEL abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Evaluation tree for the ModuleAssignment.execute() operation de-

fined in Listing 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Process for the estimation of Arduino energy consumption at design time 98
5.6 Updated Behavioral part of the ArduinoML Model . . . . . . . . . . . 99
5.7 Tail consumption behaviors . . . . . . . . . . . . . . . . . . . . . . . . 102
5.8 EEM for Android HttpClient . . . . . . . . . . . . . . . . . . . . . . . 103
5.9 EEM for LLVM IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.10 EEL Power estimation model example for system calls . . . . . . . . . 104
5.11 ArduinoML benchmarks used for building Arduino UnoR3 EEM . . . . 106
5.12 ArduinoML model of an automatic door . . . . . . . . . . . . . . . . . 107
5.13 Power consumption plot of the Arduino system, and its estimation . . . 109
5.14 EEL model for estimating Emit traces . . . . . . . . . . . . . . . . . . 112
5.15 Emit model used as an execution trace to perform an energy estimation

with EEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

124



List of Tables

3.1 Selection of test methods depending on the granularity of source-code
updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Projects used for evaluation . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Comparison of the measures and estimations for the Arduino models . 108
5.2 Energy estimation when applying EEL to fig. 5.15 . . . . . . . . . . . . 111

125





Bibliography

[1] M. Acharya and B. Robinson. “Practical change impact analysis based
on static program slicing for industrial software systems”. In: Proceedings
of the 33rd international conference on software engineering. ACM. 2011,
pp. 746–755.

[2] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia. “The
Power of System Call Traces: Predicting the Software Energy Consumption
Impact of Changes”. In: Proceedings of 24th Annual International Conference
on Computer Science and Software Engineering. CASCON ’14. Markham,
Ontario, Canada: IBM Corp., 2014, pp. 219–233.

[3] D. Akdur, V. Garousi, and O. Demirörs. “A survey on modeling and model-
driven engineering practices in the embedded software industry”. In: Journal
of Systems Architecture 91 (2018), pp. 62 –82. issn: 1383-7621. doi: https:

/ / doi . org / 10 . 1016 / j . sysarc . 2018 . 09 . 007. url: http : / / www .

sciencedirect.com/science/article/pii/S1383762118302455.

[4] I. F. Akyildiz and I. H. Kasimoglu. “Wireless sensor and actor networks:
research challenges”. In: Ad hoc networks 2.4 (2004), pp. 351–367.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless
sensor networks: a survey”. In: Computer networks 38.4 (2002), pp. 393–422.

[6] A. Alali, H. Kagdi, and J. I. Maletic. “What’s a typical commit? A char-
acterization of open source software repositories”. In: 2008 16th IEEE
International Conference on Program Comprehension. IEEE. 2008, pp. 182–
191.

[7] R. Ansorg and L. Schwabe. “Domain-specific modeling as a pragmatic
approach to neuronal model descriptions”. In: International Conference on
Brain Informatics. Springer. 2010, pp. 168–179.

[8] M. W. Anwar, F. Azam, M. A. Khan, and W. H. Butt. “The Applications
of Model Driven Architecture (MDA) in Wireless Sensor Networks (WSN):
Techniques and Tools”. In: Future of Information and Communication
Conference. Springer. 2019, pp. 14–27.

127



Bibliography

[9] T. Apiwattanapong, A. Orso, and M. J. Harrold. “Efficient and precise
dynamic impact analysis using execute-after sequences”. In: Proceedings of
the 27th international conference on Software engineering. 2005, pp. 432–441.

[10] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria,
G. Casale, P. Matthews, C.-S. Nechifor, D. Petcu, et al. “Modaclouds: A
model-driven approach for the design and execution of applications on mul-
tiple clouds”. In: 2012 4th International Workshop on Modeling in Software
Engineering (MISE). IEEE. 2012, pp. 50–56.

[11] R. B. Atitallah, S. Niar, A. Greiner, S. Meftali, and J. L. Dekeyser. “Esti-
mating energy consumption for an MPSoC architectural exploration”. In:
International Conference on Architecture of Computing Systems. Springer.
2006, pp. 298–310.

[12] S. Azhar. “Building information modeling (BIM): Trends, benefits, risks,
and challenges for the AEC industry”. In: Leadership and management in
engineering 11.3 (2011), pp. 241–252.

[13] R. Baheti and H. Gill. “Cyber-physical systems”. In: The impact of control
technology 12.1 (2011), pp. 161–166.

[14] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum. “CodeSurfer/x86—A
platform for analyzing x86 executables”. In: International Conference on
Compiler Construction. Springer. 2005, pp. 250–254.

[15] N. Bandener, C. Soltenborn, and G. Engels. “Extending DMM behavior spec-
ifications for visual execution and debugging”. In: International Conference
on Software Language Engineering. Springer. 2010, pp. 357–376.

[16] O. Barais, B. Combemale, and A. Wortmann. “Language Engineering with
the GEMOC Studio”. In: 2017.

[17] Y. Ben Maissa, F. Kordon, S. Mouline, and Y. Thierry-Mieg. “Modeling
and Analyzing Wireless Sensor Networks with VeriSensor: An Integrated
Workflow”. In: Transactions on Petri Nets and Other Models of Concurrency
VIII. Springer, 2013.

[18] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay. “Neo4EMF,
a scalable persistence layer for EMF models”. In: European Conference on
Modelling Foundations and Applications. Springer. 2014, pp. 230–241.

[19] L. Berardinelli, A. Di Marco, S. Pace, L. Pomante, and W. Tiberti. “Energy
consumption analysis and design of energy-aware WSN agents in fUML”. In:
European Conference on Modelling Foundations and Applications. Springer.
2015, pp. 1–17.

[20] J. Bézivin. “On the unification power of models”. In: Software & Systems
Modeling 4.2 (2005), pp. 171–188.

128



Bibliography

[21] J. Bézivin and O. Gerbé. “Towards a precise definition of the OMG/MDA
framework”. In: Proceedings 16th Annual International Conference on Auto-
mated Software Engineering (ASE 2001). IEEE. 2001, pp. 273–280.

[22] W. Binder, J. Hulaas, and P. Moret. “Advanced Java bytecode instrumenta-
tion”. In: Proceedings of the 5th international symposium on Principles and
practice of programming in Java. 2007, pp. 135–144.

[23] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. “Regression test
selection techniques: A survey”. In: Informatica 35.3 (2011).

[24] M. Botts and A. Robin. “OpenGIS Sensor Model Language (SensorML)
Implementation Specification (OGC 07–000)”. In: (2007).

[25] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier. “Powerapi: A
software library to monitor the energy consumed at the process-level”. In:
ERCIM News 2013.92 (2013).

[26] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale. “Execution framework of the gemoc studio (tool demo)”.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. 2016, pp. 84–89.

[27] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, and B. Baudry. “Omni-
scient debugging for executable DSLs”. In: Journal of Systems and Software
137 (2018), pp. 261–288.

[28] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. “Advanced
and efficient execution trace management for executable domain-specific
modeling languages”. In: Software & Systems Modeling (2017), pp. 1–37.

[29] E. Bousse, T. Mayerhofer, and M. Wimmer. “Domain-Level Debugging for
Compiled DSLs with the GEMOC Studio (Tool Demo)”. In: 2017.

[30] D. J. Brown and C. Reams. “Toward energy-efficient computing”. In: Com-
munications of the ACM 53.3 (2010), pp. 50–58.

[31] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. “Modisco: A model driven
reverse engineering framework”. In: Information and Software Technology
56.8 (2014), pp. 1012–1032. issn: 0950-5849.

[32] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. “MoDisco: a generic
and extensible framework for model driven reverse engineering”. In: Pro-
ceedings of the IEEE/ACM international conference on Automated software
engineering. ACM. 2010, pp. 173–174.

[33] E. Bruneton. “ASM 3.0 A Java bytecode engineering library”. In: URL:
http://download. forge. objectweb. org/asm/asmguide. pdf (2007).

129



Bibliography

[34] B. Buck and J. K. Hollingsworth. “An API for runtime code patching”. In:
The International Journal of High Performance Computing Applications
14.4 (2000), pp. 317–329.

[35] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. “Ptolemy: A framework
for simulating and prototyping heterogeneous systems”. In: Readings in
hardware/software co-design. 2001, pp. 527–543.

[36] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich. “JRipples: A tool for
program comprehension during incremental change”. In: 13th International
Workshop on Program Comprehension (IWPC’05). IEEE. 2005, pp. 149–152.

[37] P. C. Canizares, A. Núñez, J. de Lara, and L. Llana. “MT-EA4Cloud: A
Methodology For testing and optimising energy-aware cloud systems”. In:
Journal of Systems and Software 163 (2020), p. 110522.

[38] E. Capra, C. Francalanci, and S. A. Slaughter. “Measuring application
software energy efficiency”. In: IT Professional 14.2 (2012), pp. 54–61.

[39] A. Carette, M. Adel Ait Younes, G. Hecht, N. Moha, and R. Rouvoy.
Investigating the Energy Impact of Android Smells. Tech. rep. 10. 2017. url:
https://hal.inria.fr/hal-01403485/file/carette-saner-17.pdf.

[40] E. Cariou, O. Le Goaer, L. Brunschwig, and F. Barbier. “A generic solution
for weaving business code into executable models.” In: MODELS Workshops.
2018, pp. 251–256.

[41] E. J. Chikofsky and J. H. Cross. “Reverse engineering and design recovery:
A taxonomy”. In: IEEE software 7.1 (1990), pp. 13–17.

[42] P. K. Chittimalli and M. J. Harrold. “Regression test selection on system re-
quirements”. In: Proceedings of the 1st India software engineering conference.
ACM. 2008, pp. 87–96.

[43] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe.
“Process-level power estimation in vm-based systems”. In: Proceedings of
the Tenth European Conference on Computer Systems. 2015, pp. 1–14.

[44] B. Combemale, X. Crégut, and M. Pantel. “A design pattern to build
executable DSMLs and associated V&V tools”. In: 2012 19th Asia-Pacific
Software Engineering Conference. Vol. 1. IEEE. 2012, pp. 282–287.

[45] G. Cook. “How clean is your cloud”. In: Catalysing an energy revolution
(2012), p. 11.

[46] L. Cruz, R. Abreu, and J.-N. Rouvignac. “Leafactor: Improving energy
efficiency of android apps via automatic refactoring”. In: 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE. 2017, pp. 205–206.

130



Bibliography

[47] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B.
Yakobowski. “Frama-c”. In: International conference on software engineering
and formal methods. Springer. 2012, pp. 233–247.

[48] M. Dahm, J van Zyl, and E Haase. The bytecode engineering library (BCEL).
2003.

[49] G. Daniel, G. Sunyé, and J. Cabot. “Scalable queries and model transforma-
tions with the mogwai tool”. In: International Conference on Theory and
Practice of Model Transformations. Springer. 2018, pp. 175–183.

[50] L. Daniel, M. Kojo, and M. Latvala. “Experimental evaluation of the CoAP,
HTTP and SPDY transport services for Internet of Things”. In: International
Conference on Internet and Distributed Computing Systems. Springer. 2014,
pp. 111–123.

[51] P. Dantas, T. Rodrigues, T. Batista, F. C. Delicato, P. F. Pires, W. Li,
and A. Y. Zomaya. “LWiSSy: A domain specific language to model wireless
sensor and actuators network systems”. In: 4th International Workshop on
Software Engineering for Sensor Network Applications. IEEE. 2013, pp. 7–
12.

[52] P. Daugherty, P. Banerjee, W. Negm, and A. E. Alter. “Driving uncon-
ventional growth through the industrial internet of things”. In: Accenture
Technology (2015).

[53] J. De Lara and H. Vangheluwe. “AToM 3: A Tool for Multi-formalism and
Meta-modelling”. In: International Conference on Fundamental Approaches
to Software Engineering. Springer. 2002, pp. 174–188.

[54] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren. “Cyber-physical system
design contracts”. In: Proceedings of the ACM/IEEE 4th International
Conference on Cyber-Physical Systems. 2013, pp. 109–118.

[55] B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vásquez, D. Poshy-
vanyk, and H. Kagdi. “Impactminer: A tool for change impact analysis”. In:
Companion Proceedings of the 36th International Conference on Software
Engineering. 2014, pp. 540–543.

[56] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda, and
H. Muccini. “A model-driven engineering framework for architecting and
analysing wireless sensor networks”. In: Proceedings of the 3rd International
Workshop SESENA. IEEE Press. 2012, pp. 1–7.

[57] B. Dougherty, J. White, and D. C. Schmidt. “Model-driven auto-scaling
of green cloud computing infrastructure”. In: Future Generation Computer
Systems 28.2 (2012), pp. 371–378.

131



Bibliography

[58] G. Dupe, M. Belaunde, R. Perruchon, H. Besnard, F. Guillard, and V.
Oliveres. SmartQVT.

[59] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow, W.
Hasselbring, and M. Hanus. “Xbase: implementing domain-specific languages
for Java”. In: ACM SIGPLAN Notices 48.3 (2012), pp. 112–121.

[60] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. “Dynamic meta
modeling: A graphical approach to the operational semantics of behavioral
diagrams in UML”. In: International Conference on the Unified Modeling
Language. Springer. 2000, pp. 323–337.

[61] E. Engström and P. Runeson. “A qualitative survey of regression testing
practices”. In: Product-Focused Software Process Improvement (2010), pp. 3–
16.

[62] E. Engström, P. Runeson, and M. Skoglund. “A systematic review on re-
gression test selection techniques”. In: Information and Software Technology
52.1 (2010), pp. 14–30.

[63] M. D. Ernst. “Static and dynamic analysis: Synergy and duality”. In: WODA
2003: ICSE Workshop on Dynamic Analysis. 2003, pp. 24–27.

[64] M. Eysholdt and H. Behrens. “Xtext: implement your language faster
than the quick and dirty way”. In: Proceedings of the ACM international
conference companion on Object oriented programming systems languages
and applications companion. 2010, pp. 307–309.

[65] J.-M. Favre. “Megamodeling and etymology-a story of words: From MED to
MDE via MODEL in five milleniums”. In: In Dagstuhl Seminar on Trans-
formation Techniques in Software Engineering, number 05161 in DROPS
04101. IFBI. Citeseer. 2005.

[66] M. S. Feather. “A survey and classification of some program transformation
approaches and techniques”. In: The IFIP TC2/WG 2.1 Working Conference
on Program specification and transformation. 1987, pp. 165–195.

[67] M. Follett and O. Hoeber. “ImpactViz: visualizing class dependencies and
the impact of changes in software revisions”. In: Proceedings of the 5th
international symposium on Software visualization. 2010, pp. 209–210.

[68] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
improving the design of existing code. Addison-Wesley Professional, 1999.

[69] A. German. “Software Static Code Analysis Lessons Learned©”. In: Crosstalk
(2003), pp. 13–17.

132



Bibliography

[70] M. Gligoric, L. Eloussi, and D. Marinov. “Practical regression test selection
with dynamic file dependencies”. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM. 2015, pp. 211–222.

[71] I. Gomes, P. Morgado, T. Gomes, and R. Moreira. “An overview on the
static code analysis approach in software development”. In: Faculdade de
Engenharia da Universidade do Porto, Portugal (2009).

[72] L. Gonnord and S. Mosser. “Practicing domain-specific languages: from
code to models”. In: Proceedings of the 21st ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems: Companion
Proceedings. 2018, pp. 106–113.

[73] A. Gosain and G. Sharma. “A Survey of Dynamic Program Analysis Tech-
niques and Tools”. In: Proceedings of the 3rd International Conference on
Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014:
Volume 1. Ed. by S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J.
Mandal. Cham: Springer International Publishing, 2015, pp. 113–122. isbn:
978-3-319-11933-5. doi: 10.1007/978-3-319-11933-5_13.

[74] G. Gousios, M. Pinzger, and A. v. Deursen. “An exploratory study of
the pull-based software development model”. In: Proceedings of the 36th
International Conference on Software Engineering. ACM. 2014, pp. 345–355.

[75] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. Cavalli. “Detecting
control flow in smarphones: Combining static and dynamic analyses”. In:
Cyberspace Safety and Security. Springer, 2012, pp. 33–47.

[76] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. “An
empirical study of regression test selection techniques”. In: ACM Transac-
tions on Software Engineering and Methodology (TOSEM) (2001).

[77] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder.
“Static analysis of energy consumption for LLVM IR programs”. In: Pro-
ceedings of the 18th International Workshop on Software and Compilers for
Embedded Systems. 2015, pp. 12–21.

[78] N. Guarino, C. Welty, et al. “Towards a methodology for ontology-based
model engineering”. In: Proceedings of the ECOOP-2000 Workshop on Model
Engineering. 2000.

[79] J. Han and M. Orshansky. “Approximate computing: An emerging paradigm
for energy-efficient design”. In: 2013 18th IEEE European Test Symposium
(ETS). IEEE. 2013, pp. 1–6.

[80] S. Hao, D. Li, W. G. Halfond, and R. Govindan. “Estimating mobile applica-
tion energy consumption using program analysis”. In: 2013 35th international
conference on software engineering (ICSE). IEEE. 2013, pp. 92–101.

133



Bibliography

[81] C. Hardebolle and F. Boulanger. “Modhel’x: A component-oriented approach
to multi-formalism modeling”. In: International Conference on Model Driven
Engineering Languages and Systems. Springer. 2007, pp. 247–258.

[82] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa. “ThingML: A Language
and Code Generation Framework for Heterogeneous Targets”. In: 19th
ACM/IEEE International Conference MoDELS. ACM, 2016.

[83] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle. “Energy
profiles of java collections classes”. In: Proceedings of the 38th International
Conference on Software Engineering. 2016, pp. 225–236.

[84] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Damásio. “On
the precision and accuracy of impact analysis techniques”. In: Seventh
IEEE/ACIS International Conference on Computer and Information Science
(icis 2008). IEEE. 2008, pp. 513–518.

[85] A. Hegedus, G. Bergmann, I. Ráth, and D. Varró. “Back-annotation of
simulation traces with change-driven model transformations”. In: Software
Engineering and Formal Methods, 2010.

[86] Á. Hegedüs, I. Ráth, and D. Varró. “Replaying execution trace models
for dynamic modeling languages”. In: Periodica Polytechnica Electrical
Engineering and Computer Science 56.3 (2012), pp. 71–82.

[87] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and
S. Romansky. “Greenminer: A hardware based mining software reposito-
ries software energy consumption framework”. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. 2014, pp. 12–21.

[88] J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D. Reed. Watts up? pro ac
power meter for automated energy recording. 2013.

[89] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. “MQTT-SA publish/-
subscribe protocol for Wireless Sensor Networks”. In: 3rd International
Conference on Communication Systems Software and Middleware and Work-
shops. IEEE. 2008.

[90] J. Hutchinson, J. Whittle, and M. Rouncefield. “Model-driven engineering
practices in industry: Social, organizational and managerial factors that
lead to success or failure”. In: Science of Computer Programming 89 (2014),
pp. 144–161.

[91] D. Jackson and M. Rinard. “Software analysis: A roadmap”. In: Proceedings
of the Conference on the Future of Software Engineering. 2000, pp. 133–145.

[92] K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc, and M. Lefrançois. “SOSA:
A lightweight ontology for sensors, observations, samples, and actuators”.
In: Journal of Web Semantics 56 (2019), pp. 1–10.

134



Bibliography

[93] JArchitect : Java Static Analysis and Code Quality Tool. (accessed July 8,
2020). url: https://www.jarchitect.com/.

[94] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet.
“Mashup of metalanguages and its implementation in the kermeta language
workbench”. In: Software & Systems Modeling 14.2 (2015), pp. 905–920.

[95] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. “ATL: A model transfor-
mation tool”. In: Science of computer programming 72.1-2 (2008), pp. 31–
39.

[96] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. “ATL:
a QVT-like transformation language”. In: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, languages,
and applications. 2006, pp. 719–720.

[97] S. Kent. “Model driven engineering”. In: International Conference on Inte-
grated Formal Methods. Springer. 2002, pp. 286–298.

[98] D. Kim, J.-E. Hong, I. Yoon, and S.-H. Lee. “Code refactoring techniques
for reducing energy consumption in embedded computing environment”. In:
Cluster Computing 21.1 (2018), pp. 1079–1095.

[99] K.-D. Kim and P. R. Kumar. “Cyber–physical systems: A perspective at
the centennial”. In: Proceedings of the IEEE 100.Special Centennial Issue
(2012), pp. 1287–1308.

[100] Z. King, M. Sayagh, and A. Hindle. “Energy Profiles of Java Collections
Classes”. In: (2016).

[101] D. S. Kolovos, R. F. Paige, and F. A. Polack. “The epsilon transformation
language”. In: International Conference on Theory and Practice of Model
Transformations. Springer. 2008, pp. 46–60.

[102] S. Kubler, K. Främling, and A. Buda. “A standardized approach to deal
with firewall and mobility policies in the IoT”. In: Pervasive and Mobile
Computing 20 (2015).

[103] T. Kurpick, C. Pinkernell, M. Look, and B. Rumpe. “Modeling cyber-
physical systems: model-driven specification of energy efficient buildings”.
In: Proceedings of the Modelling of the Physical World Workshop. 2012,
pp. 1–6.

[104] Y.-W. Kwon and E. Tilevich. “Reducing the energy consumption of mobile
applications behind the scenes”. In: 2013 IEEE International Conference
on Software Maintenance. IEEE. 2013, pp. 170–179.

135



Bibliography

[105] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. “Pebil: Effi-
cient static binary instrumentation for linux”. In: 2010 IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS).
IEEE. 2010, pp. 175–183.

[106] J. Law and G. Rothermel. “Whole program path-based dynamic impact
analysis”. In: Proceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society. 2003.

[107] E. Le Sueur and G. Heiser. “Dynamic voltage and frequency scaling: The laws
of diminishing returns”. In: Proceedings of the 2010 international conference
on Power aware computing and systems. 2010, pp. 1–8.

[108] S.-W. Lee and J.-L. Gaudiot. “Throttling-based resource management in
high performance multithreaded architectures”. In: IEEE Transactions on
Computers 55.9 (2006), pp. 1142–1152.

[109] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. “An exten-
sive study of static regression test selection in modern software evolution”.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM. 2016, pp. 583–594.

[110] E. Lepore and B. Loewer. “Translational semantics”. In: Synthese (1981),
pp. 121–133.

[111] B. Li, X. Sun, H. Leung, and S. Zhang. “A survey of code-based change
impact analysis techniques”. In: Software Testing, Verification and Reliability
23.8 (2013), pp. 613–646.

[112] D. Li, S. Hao, J. Gui, and W. G. Halfond. “An empirical study of the
energy consumption of android applications”. In: 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE. 2014, pp. 121–
130.

[113] D. Li, S. Hao, W. G. Halfond, and R. Govindan. “Calculating source line
level energy information for android applications”. In: Proceedings of the
2013 International Symposium on Software Testing and Analysis. 2013,
pp. 78–89.

[114] X. Li, P. J. Ortiz, J. Browne, D. Franklin, J. Y. Oliver, R. Geyer, Y. Zhou,
and F. T. Chong. “Smartphone evolution and reuse: Establishing a more
sustainable model”. In: 2010 39th International Conference on Parallel
Processing Workshops. IEEE. 2010, pp. 476–484.

[115] R. A. Light. “Mosquitto: server and client implementation of the MQTT
protocol”. In: The Journal of Open Source Software 2.13 (2017), p. 265.

136



Bibliography

[116] K. Liu, G. Pinto, and Y. D. Liu. “Data-oriented characterization of application-
level energy optimization”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer. 2015, pp. 316–331.

[117] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. “Pin: building customized program analysis
tools with dynamic instrumentation”. In: Acm sigplan notices 40.6 (2005),
pp. 190–200.

[118] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. “An empirical analysis of flaky
tests”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM. 2014, pp. 643–653.

[119] I. Manotas, L. Pollock, and J. Clause. “SEEDS: a software engineer’s energy-
optimization decision support framework”. In: Proceedings of the 36th Inter-
national Conference on Software Engineering. ACM. 2014, pp. 503–514.

[120] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. “DiSL:
a domain-specific language for bytecode instrumentation”. In: Proceedings
of the 11th annual international conference on Aspect-oriented Software
Development. 2012, pp. 239–250.

[121] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. “xMOF: Executable
DSMLs based on fUML”. In: International Conference on Software Language
Engineering. Springer. 2013, pp. 56–75.

[122] T. Mayerhofer, M. Wimmer, L. Burgueño, and A. Vallecillo. Specifying
quantities in software models. Tech. rep. Submitted, 2018.

[123] Q. Medini. IKV++ technologies home. 2011.

[124] T. Mens and P. Van Gorp. “A taxonomy of model transformation”. In:
Electronic notes in theoretical computer science 152 (2006), pp. 125–142.

[125] S. Mittal. “A survey of techniques for improving energy efficiency in em-
bedded computing systems”. In: International Journal of Computer Aided
Engineering and Technology 6.4 (2014), pp. 440–459.

[126] M. Monperrus, A. Beugnard, and J. Champeau. “A definition of" abstraction
level" for metamodels”. In: 2009 16th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems. IEEE. 2009,
pp. 315–320.

[127] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink. “On the in-
terplay between software testing and evolution and its effect on program
comprehension”. In: Software evolution. Springer, 2008, pp. 173–202.

137



Bibliography

[128] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol. “Earmo:
An energy-aware refactoring approach for mobile apps”. In: IEEE Transac-
tions on Software Engineering 44.12 (2017), pp. 1176–1206.

[129] D. Mosteller, M. Haustermann, D. Moldt, and D. Schmitz. “Integrated
Simulation of Domain-Specific Modeling Languages with Petri Net-Based
Transformational Semantics”. In: Transactions on Petri Nets and Other
Models of Concurrency XIV. Springer, 2019, pp. 101–125.

[130] J. Muñoz, P. Valderas, V. Pelechano, and O. Pastor. “Requirements engi-
neering for pervasive systems. a transformational approach”. In: 14th IEEE
International Requirements Engineering Conference (RE’06). IEEE. 2006,
pp. 351–352.

[131] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet, Y. Lus-
saud, and F. Allilaire. “Acceleo user guide”. In: See also http://acceleo.
org/doc/obeo/en/acceleo-2.6-user-guide. pdf 2 (2006), p. 157.

[132] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. “Applying
static analysis to software architectures”. In: Proceedings of the 6th European
SOFTWARE ENGINEERING conference held jointly with the 5th ACM
SIGSOFT international symposium on Foundations of software engineering.
1997, pp. 77–93.

[133] N. Nethercote. Dynamic binary analysis and instrumentation. Tech. rep.
University of Cambridge, Computer Laboratory, 2004.

[134] H. Neuhaus and M. Compton. “The semantic sensor network ontology”. In:
AGILE workshop on challenges in geospatial data harmonisation, Hannover,
Germany. 2009, pp. 1–33.

[135] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. “A preliminary
study of the impact of software engineering on GreenIT”. In: 2012 1st
International Workshop on Green and Sustainable Software, GREENS 2012
- Proceedings. 2012, pp. 21–27. isbn: 9781467318327. doi: 10.1109/GREENS.

2012.6224251. url: https://hal.inria.fr/hal-00681560v1.

[136] A. Noureddine, R. Rouvoy, and L. Seinturier. “A review of energy measure-
ment approaches”. In: ACM SIGOPS Operating Systems Review 47.3 (2013),
pp. 42–49.

[137] A. Noureddine, R. Rouvoy, and L. Seinturier. “Unit testing of energy con-
sumption of software libraries”. In: Proceedings of the 29th Annual ACM
Symposium on Applied Computing. ACM. 2014, pp. 1200–1205.

[138] O. M. G. Object Management Group. Structured Metrics Metamodel. url:
https://www.omg.org/spec/SMM/1.2/.

138



Bibliography

[139] M. F. Oliveira, E. W. Brião, F. A. Nascimento, and F. R. Wagner. “Model
driven engineering for MPSOC design space exploration”. In: Proceedings of
the 20th annual conference on Integrated circuits and systems design. 2007,
pp. 81–86.

[140] M. d. S. Oliveira, L. B. de Brisolara, L. Carro, and F. R. Wagner. “Early
embedded software design space exploration using UML-based estimation”.
In: Seventeenth IEEE International Workshop on Rapid System Prototyping
(RSP’06). IEEE. 2006, pp. 24–32.

[141] A. Orso, N. Shi, and M. J. Harrold. “Scaling regression testing to large
software systems”. In: ACM SIGSOFT Software Engineering Notes. Vol. 29.
6. ACM. 2004, pp. 241–251.

[142] P. J. Ortiz, J. Browne, D. Franklin, J. Y. Oliver, R. Geyer, Y. Zhou, and
F. T. Chong. “Smartphone Evolution and Reuse : Establishing a More
Sustainable Model Smartphone Evolution and Reuse : Establishing a more
Sustainable Model”. In: 90 (2015). doi: 10.1109/ICPPW.2010.70.

[143] J. E. Pagán, J. S. Cuadrado, and J. G. Molina. “Morsa: A scalable approach
for persisting and accessing large models”. In: International Conference on
Model Driven Engineering Languages and Systems. Springer. 2011, pp. 77–
92.

[144] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. “What Do Programmers
Know about Software Energy Consumption?” In: IEEE Software 33.3 (2016),
pp. 83–89. issn: 07407459. doi: 10.1109/MS.2015.83.

[145] M. Van de Panne and E. Fiume. “Sensor-actuator networks”. In: Proceed-
ings of the 20th annual conference on Computer graphics and interactive
techniques. 1993.

[146] H. Partsch and R. Steinbrüggen. “Program transformation systems”. In:
ACM Computing Surveys (CSUR) 15.3 (1983), pp. 199–236.

[147] D Pavithra and R. Balakrishnan. “IoT based monitoring and control sys-
tem for home automation”. In: 2015 global conference on communication
technologies (GCCT). IEEE. 2015, pp. 169–173.

[148] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
“SPOON: A library for implementing analyses and transformations of Java
source code”. In: Software - Practice and Experience 46.9 (2016), pp. 1155–
1179. issn: 1097024X. doi: 10.1002/spe.2346. arXiv: 1008.1900.

[149] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes. “The
influence of the Java collection framework on overall energy consumption”.
In: GREENS’16. ACM. 2016.

139



Bibliography

[150] R. Pereira, J. Saraiva, H. I. Tec, N. Lincs, and J. P. Fernandes. “The
Influence of the Java Collection Framework on Overall”. In: (2016).

[151] G. Pinto and F. Castor. “Energy efficiency: a new concern for application
software developers”. In: Communications of the ACM 60.12 (2017), pp. 68–
75.

[152] G. Pinto, F. Castor, and Y. D. Liu. “Mining questions about software
energy consumption Understanding Open-Source Software and Communities
View project Transfering knowledge to software engineering practice View
project Mining Questions about Software Energy Consumption”. In: (). doi:
10.1145/2597073.2597110. url: www.stackoverflow.com/questions/

413227.

[153] G. Pinto, F. Castor, and Y. D. Liu. “Understanding energy behaviors of
thread management constructs”. In: Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages &
Applications. 2014, pp. 345–360.

[154] G. Pinto, F. Soares-Neto, and F. Castor. “Refactoring for energy efficiency: a
reflection on the state of the art”. In: Proceedings of the Fourth International
Workshop on Green and Sustainable Software. IEEE Press. 2015, pp. 29–35.

[155] G. D. Plotkin. “A structural approach to operational semantics”. In: (1981).

[156] R. Pohjonen, J.-P. Tolvanen, and M Consulting. “Automated production of
family members: Lessons learned”. In: Proc. of PLEES 2 (2002), pp. 49–57.

[157] R. Priego, A. Armentia, E. Estévez, and M. Marcos. “Modeling techniques
as applied to generating tool-independent automation projects”. In: at-
Automatisierungstechnik 64.4 (2016), pp. 325–340.

[158] G. Procaccianti, H. Fernández, and P. Lago. “Empirical evaluation of two
best practices for energy-efficient software development”. In: Journal of
Systems and Software 117 (2016), pp. 185–198. issn: 01641212. doi: 10.

1016/j.jss.2016.02.035. url: https://wiki.cs.vu.nl/green{\_

}software/index.php/Best{\_}practices{\_}for{\_}.

[159] V. P. Ranganath and J. Hatcliff. “Slicing concurrent Java programs using In-
dus and Kaveri”. In: International Journal on Software Tools for Technology
Transfer 9.5-6 (2007), pp. 489–504.

[160] C. Reams. “Toward Efficient Computing”. In: ().

[161] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. “Chianti: a tool for
change impact analysis of java programs”. In: 39.10 (2004), pp. 432–448.

140



Bibliography

[162] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. “Chianti: a tool for
change impact analysis of java programs”. In: ACM Sigplan Notices. Vol. 39.
10. ACM. 2004, pp. 432–448.

[163] F. Rieger and C. Bockisch. “Evaluating Techniques for Method-Exact Energy
Measurements: Towards a Framework for Platform-Independent Code-Level
Energy Measurements”. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing. SAC ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 125–128. isbn: 9781450368667. doi: 10.

1145/3341105.3374105. url: https://doi.org/10.1145/3341105.

3374105.

[164] F. Rieger and C. Bockisch. “Survey of approaches for assessing software en-
ergy consumption”. In: Proceedings of the 2nd ACM SIGPLAN International
Workshop on Comprehension of Complex Systems. 2017, pp. 19–24.

[165] S. a. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. “JouleSort: a
balanced energy-efficiency benchmark”. In: Proceedings of the 2007 ACM
SIGMOD international conference on Management of data. ACM. 2007,
pp. 365–376.

[166] J. Rocheteau, V. Gaillard, and L. Belhaj. “How Green Are Java Best Coding
Practices?.” In: SMARTGREENS. 2014, pp. 235–246.

[167] T. Rodrigues, P. Dantas, P. F. Pires, L. Pirmez, T. Batista, C. Miceli,
and A. Zomaya. “Model-driven development of wireless sensor network
applications”. In: IFIP 9th International Conference on Embedded and
Ubiquitous Computing. IEEE. 2011.

[168] G. Rothermel and M. J. Harrold. “Analyzing regression test selection tech-
niques”. In: IEEE Transactions on software engineering 22.8 (1996), pp. 529–
551.

[169] J. Rumbaugh, I. Jacobson, and G. Booch. “The unified modeling language”.
In: Reference manual (1999).

[170] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh. “Initial explorations on design pattern energy usage”.
In: 2012 First International Workshop on Green and Sustainable Software
(GREENS). IEEE. 2012, pp. 55–61.

[171] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D.
Grossman. “EnerJ: Approximate data types for safe and general low-power
computation”. In: ACM SIGPLAN Notices. Vol. 46. 6. ACM. 2011, pp. 164–
174.

[172] E. Saxe and S. Microsystems. “Power-Efficient Software”. In: (), pp. 1–8.

141



Bibliography

[173] J. Scaramella. “Solutions for the Datacenter ’ s Thermal Challenges”. In:
January (2007).

[174] M. J. Scaramella and M. Eastwood. “Solutions for the datacenter’s thermal
challenges”. In: IDC, January (2007).

[175] G. Sedrakyan and M. Snoeck. “Enriching Model Execution with Feedback
to Support Testing of Semantic Conformance between Models and Require-
ments”. In: (2016).

[176] B. Selic. “The pragmatics of model-driven development”. In: IEEE software
20.5 (2003), pp. 19–25.

[177] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E.
Masanet, N. Horner, I. Azevedo, and W. Lintner. “United states data center
energy usage report”. In: (2016).

[178] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E.
Masanet, N. Horner, I. Azevedo, and W. Lintner. United States Data Center
Energy Usage Report. Tech. rep. 2016.

[179] W. G. da Silva, L. Brisolara, U. B. Correa, and L. Carro. “Evaluation of the
impact of code refactoring on embedded software efficiency”. In: Proceedings
of the 1st Workshop de Sistemas Embarcados. 2010, pp. 145–150.

[180] D. Singh and W. J. Kaiser. “The atom LEAP platform for energy-efficient
embedded computing”. In: (2010).

[181] K. J. Singh and D. S. Kapoor. “Create Your Own Internet of Things: A
survey of IoT platforms.” In: IEEE Consumer Electronics Magazine 6.2
(2017), pp. 57–68.

[182] J. Stasko and E. Zhang. “Focus+ context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations”. In: IEEE Sympo-
sium on Information Visualization 2000. INFOVIS 2000. Proceedings. IEEE.
2000, pp. 57–65.

[183] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[184] M. łgorzata Steinder and A. S. Sethi. “A survey of fault localization tech-
niques in computer networks”. In: Science of computer programming 53.2
(2004), pp. 165–194.

[185] J. Tatibouët, A. Cuccuru, S. Gérard, and F. Terrier. “Formalizing execution
semantics of UML profiles with fUML models”. In: International Confer-
ence on Model Driven Engineering Languages and Systems. Springer. 2014,
pp. 133–148.

142



Bibliography

[186] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan. “Performance
evaluation of MQTT and CoAP via a common middleware”. In: Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE.
2014, pp. 1–6.

[187] C. Thompson, J. White, B. Dougherty, and D. C. Schmidt. “Optimizing
mobile application performance with model–driven engineering”. In: IFIP In-
ternational Workshop on Software Technolgies for Embedded and Ubiquitous
Systems. Springer. 2009, pp. 36–46.

[188] M. M. Tikir and J. K. Hollingsworth. “Efficient instrumentation for code
coverage testing”. In: ACM SIGSOFT Software Engineering Notes 27.4
(2002), pp. 86–96.

[189] C. Trabelsi, R. Ben Atitallah, S. Meftali, J.-L. Dekeyser, and A. Jemai. “A
model-driven approach for hybrid power estimation in embedded systems
design”. In: EURASIP Journal on Embedded Systems 2011 (2011), pp. 1–15.

[190] Unravel. (accessed July 8, 2020). url: https://www.nist.gov/itl/ssd/

unravel-project/.

[191] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
“Soot: A Java bytecode optimization framework”. In: CASCON First Decade
High Impact Papers. 2010, pp. 214–224.

[192] A. Van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A framework for
application performance monitoring and dynamic software analysis”. In:
Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering. 2012, pp. 247–248.

[193] G. Venkatesh. “Experimental results from dynamic slicing of C programs”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
17.2 (1995), pp. 197–216.

[194] C. Vidal, C. Fernández-Sánchez, J. Díaz, and J. Pérez. “A model-driven en-
gineering process for autonomic sensor-actuator networks”. In: International
Journal of Distributed Sensor Networks 2015 (2015), p. 18.

[195] E. Visser. “A survey of rewriting strategies in program transformation
systems”. In: Electronic Notes in Theoretical Computer Science 57.2 (2001).

[196] V. Viyović, M. Maksimović, and B. Perisić. “Sirius: A rapid development of
DSM graphical editor”. In: Intelligent Engineering Systems (INES), 2014
18th International Conference on. IEEE. 2014, pp. 233–238.

[197] T. Wang and A. Roychoudhury. “Dynamic slicing on Java bytecode traces”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS)
30.2 (2008), pp. 1–49.

143



Bibliography

[198] M. Webb et al. “Smart 2020: Enabling the low carbon economy in the
information age”. In: The Climate Group. London 1.1 (2008), pp. 1–1.

[199] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal. “Indus-
trial adoption of model-driven engineering: Are the tools really the problem?”
In: International Conference on Model Driven Engineering Languages and
Systems. Springer. 2013, pp. 1–17.

[200] B. A. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward,
and D. Marsh. “Industrial perspective on static analysis”. In: Software
Engineering Journal 10.2 (1995), pp. 69–75.

[201] R. Winterhalter. Byte Buddy.

[202] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. “A survey on
software fault localization”. In: IEEE Transactions on Software Engineering
42.8 (2016), pp. 707–740.

[203] Q. Wu, M. Pedram, and X. Wu. “Clock-gating and its application to low
power design of sequential circuits”. In: IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications 47.3 (2000), pp. 415–420.

[204] B. M. Yildiz, C. Bockisch, A. Rensink, and M. Aksit. “A Java Bytecode
Metamodel for Composable Program Analyses”. In: Federation of Interna-
tional Conferences on Software Technologies: Applications and Foundations.
Springer. 2017, pp. 30–40.

[205] S. Yoo and M. Harman. “Regression testing minimization, selection and
prioritization: a survey”. In: Software Testing, Verification and Reliability
22.2 (2012), pp. 67–120.

[206] H. Zhang and H Hoffman. “A quantitative evaluation of the RAPL power
control system”. In: Feedback Computing (2015).

[207] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang.
“Accurate online power estimation and automatic battery behavior based
power model generation for smartphones”. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis. 2010, pp. 105–114.

[208] L. Zhang. “Hybrid regression test selection”. In: Proceedings of the 40th
International Conference on Software Engineering. ACM. 2018, pp. 199–209.

[209] L. Zhang, M. Kim, and S. Khurshid. “FaultTracer: a change impact and
regression fault analysis tool for evolving Java programs”. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. ACM. 2012.

144






	Résumé Français
	Contexte
	Énoncé du problème
	Contributions
	Analyse dynamique de programmes Java

	Contexte de la thèse

	Context
	Introduction
	Problem Statement
	Contributions
	Outline of the thesis
	Scientific Production

	Background
	Model-Driven Engineering
	Models, Meta-Models and Languages
	Meta-models
	Models
	Languages

	Model transformations
	Executable meta-modeling
	Meta-modeling Standards

	Software analysis
	Static analysis
	Dynamic analysis
	Instrumentation
	Model-driven dynamic analysis

	Execution traces
	Impact analysis
	Regression test selection
	CPS monitoring

	Energy efficiency
	Energy measurements
	Power-meters
	Specialized systems for energy monitoring
	Application level energy measurement tools

	Energy estimation
	Energy-aware software engineering


	Model-driven tracing of software execution
	Introduction
	Modeling software execution traces
	Approach
	Model Driven Reverse Engineering
	Code Instrumentation
	Execution and Injection

	Evaluation
	Execution environment
	Discussion

	Conclusion

	Characterizing the source code model with energy measurements
	Introduction
	Approach
	Energy Measurements Computation
	Energy Measurements Modeling
	Discussion
	Threat to validity
	Conclusion

	Trace model applied to regression test selection
	Introduction
	Running Example
	Approach
	Computation of the impact analysis model
	Using the model to select impacted tests
	Modification
	Insertion
	Deletion

	Evaluation
	Setup
	Workflow
	Results

	Discussion
	RQ1: Precision
	RQ1: Safety
	RQ2: Performance
	RQ3: Complementary use of the Model

	Threats to the validity
	Commits analyzed
	Single machine
	State of the prototype
	Scalability

	Conclusion

	Chapter conclusion

	Model-driven monitoring of CPS
	Introduction
	Sensor and Actuator Network Modeling
	Foundations
	SAN Meta-Model

	Monitoring platform
	Client Management
	Client States Control
	Callback edition

	Mapping SAN models to Emit
	Network
	Features
	Events
	Mapping from other meta-models

	Application
	Modeling a case study
	Mapping to Emit
	Monitoring with Emit

	Conclusion

	Trace-based energy estimation
	Introduction
	Running Example
	Energy-Estimation Modeling
	An Energy-Estimation Model
	The Energy-Estimation Language
	Evaluation Semantics
	The Energy-Estimation Modeling Process
	Discussion and Limitations
	Implementation Details

	Evaluation
	Expressiveness
	Estimation Accuracy
	Deployment Platforms.
	ArduinoML EEM
	ArduinoML Model Estimation
	Deployment and Physical Measurements
	Discussion

	EEL and Emit

	Conclusion

	Conclusion and Perspectives
	Synthesis
	Limits
	Scalability
	Incrementality
	Accuracy
	Expressiveness

	Perspectives
	Evolution of MoDisco
	Hybrid model-driven RTS
	Automated EEL model definition
	GPL energy estimation with EEL
	Energy-aware source code refactoring
	Improving monitoring of sensors and actuators networks


	List of Figures
	List of Tables
	Bibliography

