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“Dictionary: The universe in alphabetical order.”

“Un dictionnaire, c’est tout l’univers par ordre alphabétique”

“Ein Wörterbuch ist das gesamte Universum in alphabetischer Reihenfolge”

Anatole France
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Abstract

Dictionaries could be considered as the most comprehensive reservoir of hu-
man knowledge, which carry not only the lexical description of words in one
or more languages, but also the commun awareness of a certain community
about every known piece of knowledge in a time frame. Print dictionaries
are the principle resources which enable the documentation and transfer of
such knowledge. They already exist in abundant numbers, while new ones
are continuously compiled, even with the recent strong move to digital re-
sources.

However, a majority of these dictionaries, even when available digitally,
is still not fully structured due to the absence of scalable methods and tech-
niques that can cover the variety of corresponding material. Moreover, the
relatively few existing structured resources present limited exchange and
query alternatives, given the discrepancy of their data models and formats.

In this thesis we address the task of parsing lexical information in print
dictionaries through the design of computer models that enable their auto-
matic structuring. Solving this task goes hand in hand with finding a stan-
dardised output for these models to guarantee a maximum interoperability
among resources and usability for downstream tasks.

First, we present different classifications of the dictionaric resources to de-
limit the category of print dictionaries we aim to process. Second, we intro-
duce the parsing task by providing an overview of the processing challenges
and a study of the state of the art. Then, we present a novel approach based
on a top-down parsing of the lexical information. We also outline the archi-
tecture of the resulting system, called GROBID-Dictionaries, and the method-
ology we followed to close the gap between the conception of the system and
its applicability to real-world scenarios.

After that, we draw the landscape of the leading standards for structured
lexical resources. In addition, we provide an analysis of two ongoing initia-
tives, TEI-Lex-0 and LMF, that aim at the unification of modelling the lexical
information in print and electronic dictionaries. Based on that, we present a
serialisation format that is inline with the schemes of the two standardisation
initiatives and fits the approach implemented in our parsing system.

After presenting the parsing and standardised serialisation facets of our
lexical models, we provide an empirical study of their performance and be-
haviour. The investigation is based on a specific machine learning setup and
series of experiments carried out with a selected pool of varied dictionaries.
We try in this study to present different ways for feature engineering and
exhibit the strength and the limits of the best resulting models. We also ded-
icate two series of experiments for exploring the scalability of our models
with regard to the processed documents and the employed machine learning
technique.

Finally, we sum up this thesis by presenting the major conclusions and
opening new perspectives for extending our investigations in a number of
research directions for parsing entry-based documents.
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Résumé

Les dictionnaires peuvent être considérés comme le réservoir le plus com-
préhensible de connaissances humaines, qui contiennent non seulement la
description lexicale des mots dans une ou plusieurs langues, mais aussi la
conscience commune d’une certaine communauté sur chaque élément de
connaissance connu dans une période de temps donnée. Les dictionnaires
imprimés sont les principales ressources qui permettent la documentation et
le transfert de ces connaissances. Ils existent déjà en grand nombre, et de
nouveaux dictionnaires sont continuellement compilés.

Cependant, la majorité de ces dictionnaires dans leur version numérique
n’est toujours pas structurée en raison de l’absence de méthodes et de tech-
niques évolutives pouvant couvrir le nombre du matériel croissant et sa var-
iété. En outre, les ressources structurées existantes, relativement peu nom-
breuses, présentent des alternatives d’échange et de recherche limitées, en
raison d’un sérieux manque de synchronisation entre leurs schémas de struc-
ture.

Dans cette thèse, nous abordons la tâche d’analyse des informations lex-
icales dans les dictionnaires imprimés en construisant des modèles qui per-
mettent leur structuration automatique. La résolution de cette tâche va de
pair avec la recherche d’une sortie standardisée de ces modèles afin de garan-
tir une interopérabilité maximale entre les ressources et une facilité d’utilisation
pour les tâches en aval.

Nous commençons par présenter différentes classifications des ressources
dictionnaires pour délimiter les catégories des dictionnaires imprimés sur
lesquelles ce travail se focalise. Ensuite, nous définissions la tâche d’analyse
en fournissant un aperçu des défis de traitement et une étude de l’état de l’art.
Nous présentons par la suite une nouvelle approche basée sur une analyse en
cascade de l’information lexicale. Nous décrivons également l’architecture
du système résultant, appelé GROBID-Dictionaries, et la méthodologie que
nous avons suivie pour rapprocher la conception du système de son applica-
bilité aux scénarios du monde réel.

Ensuite, nous prestons des normes clés pour les ressources lexicales struc-
turées. En outre, nous fournissons une analyse de deux initiatives en cours,
TEI-Lex-0 et LMF, qui visent à unifier la modélisation de l’information lex-
icale dans les dictionnaires imprimés et électroniques. Sur cette base, nous
présentons un format de sérialisation conforme aux schémas des deux initia-
tives de normalisation et qui est assorti à l’approche développée dans notre
système d’analyse lexicale.

Après avoir présenté les facettes d’analyse et de sérialisation normalisées
de nos modèles lexicaux, nous fournissons une étude empirique de leurs per-
formances et de leurs comportements. L’étude est basée sur une configura-
tion spécifique d’apprentissage automatique et sur une série d’expériences
menées avec un ensemble sélectionné de dictionnaires variés. Dans cette
étude, nous essayons de présenter différentes manières d’ingénierie des car-
actéristiques et de montrer les points forts et les limites des meilleurs modèles
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résultants. Nous consacrons également deux séries d’expériences pour ex-
plorer l’extensibilité de nos modèles en ce qui concerne les documents traités
et la technique d’apprentissage automatique employée.

Enfin, nous clôturons cette thèse en présentant les principales conclusions
et en ouvrant de nouvelles perspectives pour l’extension de nos investiga-
tions dans un certain nombre de directions de recherche pour l’analyse des
documents structurés en un ensemble d’entrées.
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Chapter 1

Introduction

1.1 Overview

Computational lexicography is a field which has emerged from the combination
of lexicography - the field dealing with the design and compilation of lexica
for human use - with computational methods. This "adventurous" combina-
tion, as called by Hanks, 2013, that started in the late 60’s freed western lex-
icographers from the content dictated alphabetical order compilation to the
logical order proceeding. The impact of further computerising lexicography
has been significant and led to the establishment of a large field which, ac-
cording to Gibbon, 2000, covers tasks such as text mining for corpus-based lexi-
con construction, the construction of lexica for Natural Language Processing
(NLP) applications, automatic acquisition of syntactic or semantic information
from texts, re-use of Machine-Readable Dictionaries (MRDs) for new lexica,
and computer production of lexica for human use.

The creation of lexica for NLP use has been focused in the last two decades
on corpus based approaches at the expense of endeavours dealing with the
reuse of MRDs which represent in general the digitised version of print dic-
tionaries. This imbalanced situation has actually been the consequence of in-
creased accessibility of large corpora coupled with a rapidly growing number
of advanced dedicated processing tools. To favorise lexical acquisition from
corpora over exploiting MRDs, Lemnitzer and Kunze, 2005 further argued
that such resources are too old, internally and mutually inconsistent, narrow
in scope, missing important information like frequency and distribution in-
formation and finally biased towards infrequent phenomena such as obsolete
senses and usages.

In the previous decade, such a claim used to be relatively valid for well-
resourced languages (e.g., English, French, German, Dutch..) and was strongly
questionable for under-resourced languages where print dictionaries always
represented the backbone for creating NLP lexica. In fact, print dictionar-
ies encapsulate semi-structured lexical information vital for either rapidly
harvesting material for building lexica in less resourced languages or for
enriching well established resources with information about the diachrony
of words. But after the retro-digitisation movement following the break-
throughs in Optical Character Recognition (OCR) techniques, legacy dictio-
naries have returned in the recent years to the spotlight. Currently an abun-
dant number of digitised dictionaries are constantly uploaded to publicly
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accessible repositories 1 2. In addition, the copyright clearance of such doc-
uments, as result of ageing or freely born intellectual properties, has opened
up the possibility of their re-use. In parallel, established concepts in cor-
pus linguistics, such as comparable corpora (Kenning, 2010), have raised the
question of applying the same approaches for lexical acquisition from the
large newly available corpora of dictionaries.

These facts, along with relatively primitive approaches to automatically
structuring such resources, have unwittingly created a huge gap where most
of the dedicated methods are ad-hoc and, consequently, unable to cover the
important stream of dictionary material for NLP downstream applications.

1.2 Task Definition & Research Questions

In this thesis, we aim to reduce the aforementioned gap by studying the na-
ture of digital print dictionaries and finding a suitable approach for structur-
ing such resources on a large scale.

The task we are trying to solve comprises two major steps: the first deals
with automatically parsing lexical information encapsulated in the text of a
digital dictionary. The identification of such constructs greatly depends on
a second milestone which studies the design of a scheme that supports dif-
ferent organisations of lexical information in the target classes of dictionar-
ies. Therefore, we are considering the exploration of dedicated standards
for modelling lexica as they provide a suitable framework for scaling up the
creation of interoperable lexica (Calzolari, 2008). Switching back and forth
between the two sub-tasks is necessary as the complexity of the lexical infor-
mation needs to be supported by the parsing technique and the parser(s)’s
grammar.

For the first sub-task, most existing approaches have been focused on
rule-based methods (Mykowiecka, Rychlik, and Waszczuk, 2012; Fahmy and
Fayed, 2014; Maxwell and Bills, 2017; Ranaivo-Malançon et al., 2017; Ste-
ingrímsson, 2018) with few attempts to make use of machine learning tech-
niques (Karagol-Ayan, Doermann, and Dorr, 2003; Crist, 2011; Bago and
Ljubešić, 2015). The dictionaries tested in these approaches have a relatively
flat structure and the main task addressed has been tagging the tokens of
dictionary articles. None of the state of the art methods has proposed an end-
to-end architecture for structuring print dictionaries that have different and
deep structures such as nested entries or senses. The only exception to this
is the work of Karagol-Ayan, Doermann, and Dorr, 2003 who have built a
framework for digitising, parsing and generating lexica focused on salient
structures in bilingual dictionaries.

In the above mentioned related works, few addressed (Maxwell and Bills,
2017) or mentioned (Mykowiecka, Rychlik, and Waszczuk, 2012) the need to
generate standardised lexica using Text Encoding Initiative (TEI) (Budin, Ma-
jewski, and Mörth, 2012) or Lexical Markup Framework (LMF) (Francopoulo

1https://archive.org/search.php?query=dictionaries
2https://galica.bnf.fr/conseils/content/dictionnaire
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et al., 2006). Other lexicographic projects (Eckle-Kohler and Gurevych, 2012;
Czaykowska-Higgins, Holmes, and Kell, 2014) have been more focused on
the standardisation of existing NLP resources and shared the use of TEI and
LMF, which are considered to be key frameworks within the lexicographic
community. The need to find a unified scheme and guidelines that com-
bine the best of the two standards has been clearly formalised (Czaykowska-
Higgins, Holmes, and Kell, 2014; Romary, 2015) with some practical sugges-
tions, as the division in their use within the lexicographic community repre-
sents an obstacle to the large scale interoperability dream. It is important to
point out that the task of categorising lexical structures and their modelling
using possible alternatives offered by a standard already represents a highly
debatable subject among lexicographers.

These challenges raise the following research questions, which we tackle
in this thesis:

• RQ1 - Sample-agnostic Models for Print Dictionary Parsing: The first
question concerns the study of different existing print dictionaries by
analysing their physical and logical facets and the consequent process-
ing complexity. Then we want to explore building generic lexical models
to parse different categories of dictionaries. We call a model a parser
that enables the analysis and the structuring of text blocks in a dictio-
nary according to a defined scheme.

• RQ2 - Unified Scheme for Structured Dictionaries: The second inves-
tigation will be carried out on the leading standards for modelling lex-
ica, namely TEI and LMF. The goal is to find a compromising scheme
that meets both the lexicographic requirements and parsing constraints
identified in the first question.

• RQ3 - Scaling-up Lexical Models: In the last question we will empir-
ically address the leverage of the constructed lexical models by study-
ing the improvement of their performance on the same dictionary and
other dictionaries. The possibility of finding more generic models cov-
ering documents with similar content is by no means excluded from
our investigation.

Approaching all these research questions at once represents in itself a core
research question in Digital Humanities (DH): to what extent could a collab-
oration be possible between the computational and the humanist?

1.3 Thesis Organisation

This research work is structured in eight chapters. In the current section, we
present an overview of the organisation of the thesis:

Chapter 2 - Dictionaric Resources

Having established the context, in this chapter we will present a classification
of existing digital print dictionaries. The goal of such a step is to gradually
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delimit, based on different aspects of such material, the category of dictio-
naric resources that fall within the scope of our research.

Chapter 3 - Parsing Lexical Structures in Print Dictionaries

In the third chapter we present the challenges related to the parsing of lexi-
cal information in the already defined target dictionaric resources. Then we
will draw the state of the art by reporting related studies and explain how
they approached the aforementioned difficulties. We will also discuss the
most advanced techniques to position our work within the computational
landscape.

Chapter 4 - Lexical Models for Automatically Structuring Print
Dictionaries

The fourth chapter is dedicated to the presentation of our approach and the
architecture of the lexical models. We show how we were inspired by the
analogy between the parsing of bibliographic data and our task and we will
demonstrate how we succeeded in adapting an existing machine learning
infrastructure to the requirements of our context. Details about the pro-
cess of building these models for the new infrastructure called GROBID-
Dictionaries, the challenges, and the consequent conceptual and technical
solutions will be provided.

Chapter 5 - Standards for Structured Lexical Resources

In this chapter we give an overview of the most widely used standards within
the lexicographic community. We set out to explain the shortcomings of these
frameworks with respect to the requirements of automatic processing tasks,
mainly the parsing application presented in Chapter 4.

Chapter 6 - Novel Standardised Schemes for Encoding Dictio-
naries

The pitfalls identified in Chapter 5 will be tackled in this chapter, where
we present standardisation initiatives in line with our unification goals. We
will present our involvement in shaping TEI-Lex-0 and the new LMF frame-
works and how such interaction has been translated into the definition of the
scheme of our lexical models.

Chapter 7 - GROBID-Dictionaries in Action

In this chapter more experiments, carried out with GROBID-Dictionaries and
different dictionaries in different setups, will be described and evaluated.
The goal here is to provide an extensive overview of the performance of our
machine learning models when they are exposed to different dictionaric ma-
terial. The limits of the architecture and the possibilities to scale up parsing
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dictionaries based on the collected data and more advanced techniques will
be discussed. Experiments performed on non-dictionaric resources will also
be presented to show the genericity of our approach and resulting models.

Chapter 8 - Summary and Perspectives

The last chapter will be dedicated to the conclusions drawn from the results
of the experiments presented and community feedback. We will also present
our vision for building on our work with respect to the requirements of the
task undertaken and the advances in machine learning techniques.
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Chapter 2

Dictionaric Resources

2.1 Introduction

Dictionaries or lexica (the plural of lexicon) have different representations and
content, and therefore can be categorised according to different aspects. This
thesis is focused on a parsing task applied to a specific category of dictio-
naric resources. To define this task, we firstly aim in this chapter to present
the most common classifications of dictionaries and establish the nature of
the material we are dealing with. The following categories are based on sev-
eral dimensions that touch on the macro-logical structure, format, age and
content of a digital dictionary.

2.2 Macro-Logical Structure

By macro-logical structure in this context, we denote the representation of
relationships among words, meanings and concepts in a dictionary. Semasi-
ology and Onomasiology are directly opposite approaches for studying and
presenting such relationships.

2.2.1 Onomasiological Dictionaries

An onomasiological - from the Greek ónoma (name) and logos (study) - ap-
proach focuses on categorising words expressing a certain concept based on
a possible synonymy of the words. It tries to answer the question "How is a
concept expressed?". Figure 2.1 illustrates the word synonymy mechanism
addressed in an onomasiological system.

Such an approach is commonly applied for building terminologies, but
is also followed by lexicographers for compiling thesauri (Roget, 1911; Lamy
and Towell, 1998) and synonymy dictionaries (Urdang, 1986) .

Onomasiological resources are beyond the scope of the dictionaries stud-
ied in this thesis.

2.2.2 Semasiological Dictionaries

Semasiology - from the Greek semasia (meaning) - deals with polysemy, the
coexistence of possible meanings of a particular word. The question to be
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FIGURE 2.1: Onomasiological Approach

answered in such an approach is "What does a word mean?". Figure 2.2 il-
lustrates the polysemy mechanism studied in a semasiological system.

FIGURE 2.2: Semasilogical Approach

Classic dictionaries (Hornby et al., 1974; Hindley et al., 2000), used by
language learners, are the most common form of dictionaries compiled fol-
lowing the semasiological approach.

In the context of this thesis, it is semasiological dictionaries that we are
interested in.

2.3 Format

The format of a dictionary is determinant for the techniques to be used for the
NLP task that we are addressing. We are interested in dictionaries in digital
formats having specific features. In this section, we present a classification of
possible formats of dictionaries and we specify the ones that fall within the
present context.
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2.3.1 Born-digital Dictionaries

This category denotes dictionaries that have been originally compiled us-
ing computers and generated as a file that could be displayed using a web
browser, a text editor or any other dedicated software (e.g., Microsoft Word,
PDF viewer, etc). Their text content is usually represented as a sequence of
text searchable by a machine and its quality greatly depends on the tool used
to generate the file.

2.3.2 Digitised Dictionaries

This class gathers dictionaries in digital format resulting from the application
of an Optical Character Recognition (OCR) system on scans or images of a
print dictionary. Such resources are called also "retro-digitised" or "OCR’d"
dictionaries.

The automatically recognised text, also known as OCRs, can be exported
by the OCR tool as a separate text document or on the original scan as text
layer, visible upon selection. The quality of the text and its layout informa-
tion in such dictionaries varies widely, depending on the characteristics of
the original scans, the OCR tool and the conditions in which the digitisation
process has been carried out.

Both digital born and digitised dictionaries represent a typical format for
resources to be structured using methods developed in the context of this
work.

2.3.3 Machine Readable Dictionaries

Certain born digital dictionaries are generated from MRDs (Atkins, 1991;
Muller and Beddow, 2002; Dendien and Pierrel, 2003) which are resources
that consist of text files controlled by pieces of code guiding the typesetting
process. Such a format is commonly used by publishers to produce print and
digital versions of dictionaries.

For the structuring task we are addressing, we do not consider processing
this kind of resources.

2.3.4 Computerised Dictionaries, Lexical Databases and NLP
Lexica

Computerised dictionaries are structured resources reflecting the logical struc-
ture of lexical entries such as part of speech, definitions, examples, etc. The
explicit structure can be easily transformed into resources, suitable for com-
putational tasks, called "Lexical Databases" or "NLP Lexica".

In the context of the present thesis, such a class of resources represents
the target format.
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2.4 Time

Time is reflected in dictionaries through certain lexicographic designs and
practices which could lead to different dictionaries for very similar content.
We distinguish two broad categories of resources: modern and legacy. It is
hard to draw a clear line between the two of them as the classification is
relatively subjective. But we will try to describe both categories based on our
experience with different materials we have been dealing with.

2.4.1 Modern Dictionaries

These are the dictionaries that we use nowadays where, from the layout per-
spective, there are clear boundaries among the lexical entries and their main
lexical information. Typographic information is omnipresent and in most
cases consistently used as they have been generated and controlled automat-
ically. The lexical information in such resources is usually expressed in mod-
ern language with fewer prolix descriptions.

2.4.2 Legacy Dictionaries

The age of existing legacy dictionaries ranges from a few decades (Larousse,
1948; Hornby et al., 1974) to few centuries (Furetière, 1701; Littré, 1873). Prose
lexical descriptions, poetic examples and old language constructs and formu-
lations are very common in the content of such resources. Besides the com-
plex semasiological system in representing relatively similar lexical struc-
tures such as entries, sub-entries, related entries and senses, inconsistency
in the use of the very system can be noticed in different parts of the same
dictionary. This fact is totally natural as such resources took years, in some
cases decades, to be compiled and often by more than one lexicographer.
Typographic information is usually poor, which is not helpful for a human
reader to infer the lexicographic system followed by the creator of the dic-
tionary. Figure 2.3 shows a case of a less informative typography in a legacy
dictionary along with a complex logical structure of entries, senses and re-
lated entries that could be interpreted differently.

Most digital legacy dictionaries were originally retro-digitised from print
dictionaries that were produced before the use of computers was introduced.
In addition to the logical complexity briefly explained above, issues related to
the OCR process, which will be explained in Section 3.2, make the recognition
of the text in such documents very challenging for any advanced OCR system
and consequently result in a noisy text in the digitised version.

Modern and legacy dictionaries are both in the center of focus of this the-
sis.

2.5 Content

We see the content of a dictionary as having two dimensions: multilinguality
and of lexicographic information.
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FIGURE 2.3: Excerpt from Basnage Dictionary (Furetière, 1701)
of the entry ABORDER
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2.5.1 Multilinguality Dimension

The number of languages to be used in a semasiological system has a direct
impact on the constructs in the content of a dictionary.

a. Monolingual

Monolingual dictionaries represent the basic form of dictionaries where words
in a certain language are explained and described in the same language. Ref-
erencing words in other languages remains however possible, especially for
expressing relationships between words and their origins, a study called ety-
mology or diachrony.

b. Bilingual

Translation equivalents, along with explanations of varying length, consti-
tute the core of bilingual dictionaries. Such resources are often used by learn-
ers of new languages to find translations of words in a newly learnt language
or the other way around. In such dictionaries, it is very common to find
two parts: one part for language A to language B and the second part for
language B to language A. Compared to monolingual dictionaries, bilingual
ones have shorter entries as the goal in this case is not to give an exhaustive
lexical description.

c. Multilingual

Multilingual dictionaries are the least common form of dictionaries as mul-
tilingualism is relatively less frequent among people. The lexical descrip-
tion in such a category is even more compact than in bilingual dictionaries
as an alignment between translation equivalents in three or more languages
should be preserved for readability and pedagogical purposes.

2.5.2 Lexicographic Dimension

The last dimension in our classification of dictionaric resources represents
the category of the lexicographic content.

a. Lexical

Lexical dictionaries are known as the default dictionaries for most dictionary
users. This kind of document has the goal of representing the meaning and
other lexical aspects related to lexemes, or words of a language. Named entities,
such as person or city names, are not in the scope of such dictionaries, but
are included in the following category.

b. Encyclopaedic

As mentioned earlier, named entities fall in the scope of encyclopaedic con-
tent in dictionaries. Such a content can be found in separate documents called
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encyclopaedic dictionaries or encyclopaedias (Hindley, 1971; Larousse, 1982) as
it can usually constitute a separate part in a dictionary. However, in many
cases, the encyclopaedic content is mixed with the lexical content in one dic-
tionary and the alphabetical order is the only sorting system that applies.

c. Etymological & Diachronic

As signalled earlier, etymology and diachrony are disciplines for studying the
origin of words, which implies investigating relationships between words
not only in the same language but also in different ones. Such a description
could be condensed within the description of an entry in a lexical dictionary
but may be separated and exhaustively described in dedicated documents
called etymological dictionaries (Ernout et al., 1951; Ernest, 1966).

2.6 Chapter Summary

In this chapter we presented a classification of dictionaries that goes from
macro structures and format to the class of content that a dictionary can en-
compass. In Figure 2.4 we summarise the consequent classification of digital
dictionaries we are dealing with in the following chapters.

The rectangles in green represent the class of dictionary material we might
have as input to structure, whereas the one in orange is the target category
we want to reach.
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FIGURE 2.4: Classification of Dictionaric Resources
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Chapter 3

Parsing Lexical Information in
Print Dictionaries

3.1 Introduction

According to the Oxford English Dictionary 1, parse as a verb has two mean-
ings. The first is defined as "resolve (a sentence) into its component parts and
describe their syntactic roles" while the second is a sub-sense of the former,
related to the computing domain, and has the meaning of "analyse (a string
or text) into logical syntactic components". Both senses apply in the context
of the parsing task we are aiming at. The second has a broader computa-
tional meaning and in the case of dictionaries could be parsing the text of a
page to recognise structures such as headers, footers, lexical entries or their
components.

Dictionaries falling in the target categories defined in the previous chapter
represent several challenges for their parsing. Previous studies have tried to
overcome these obstacles partially or entirely to reach different levels of text
analysis. In the current chapter we showcase the challenges for parsing print
dictionaries and present the state of the art.

3.2 Challenges

Parsing print dictionaries comes up against several obstacles that need to be
studied in order to have a better understanding of the computational chal-
lenges involved. We try to decode these aspects by focusing on two axes.

3.2.1 Born-digital vs Digitised Documents

Print dictionaries in digital format have been produced using computers by
means of either Dictionary Writing Systems (DWSs) for the case of born-digital
dictionaries or digitisation softwares obviously for digitised ones.

Abel, 2012 gives a general overview of the different DWS uses and new
trends in compiling dictionaries, following the era of pen and paper. In-house
systems, implemented in academic projects such as DEB (Horák and Ram-
bousek, 2007) and Jibiki (Mangeot-Nagata, 2006), and off-the-shelf tools, used

1https://en.oxforddictionaries.com/definition/parse
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extensively by publishers as well as in academia, for instance TshwaneLex (Joffe
and De Schryver, 2004), DPS (McNamara, 2003), or ABBYY Lingvo (Kuzmina
and Rylova, 2010), along with other commercial tools and ad-hoc editors
have helped lexicographer to compile, retype or convert dictionaries.

The diversity of the technologies used remained, however, uncontrolled
which resulted in pre-print versions that can represent serious challenges for
automatic processing. For instance, but not limited to, a large number of dic-
tionaries are exported and available as PDF files. PDF stands for Portable
Document Format (PDF) which is the de facto and de jure exchange format
that still causes computational headaches and remains an active research
topic especially for extracting text and its typography from the original doc-
uments (Tiedemann, 2014; Thaiprayoon and Haruechaiyasak, 2016).

(a) The original dictionary

(b) Metadata added to the raw text of the dictionary

FIGURE 3.1: Metadata text introduced by a PDF engine in the
text of dictionary pages (Publishing, 2009)

Figure 3.1 shows an example of anomalies that can be introduced by a
PDF engine. In this case, metadata information has been found in almost all
the pages of the dictionary but it is only seen in the raw text when extracted
from the PDF file.

Processing digitised dictionaries is, in its turn, facing more complexity,
not only because of the different compilation workflows and OCR systems,
but also given the state of the raw documents. Unclear scans resulting from
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damaged pages or low resolutions, obsolete fonts, old scripts and old orthog-
raphy among many other issues, challenge the most advanced digitisation
techniques.

(a) The scan in PDF format

(b) OCR output by Transkribus (Kahle et al., 2017)

FIGURE 3.2: Digitised entry in Basnage dictionary (Furetière,
1701)

An OCR software sometimes puts spaces in the middle of words, and it
can incorrectly recognise an individual letter in a word, such as misrepresent-
ing the letter "I" for the letter "i." or the sequence "rn" for the letter "m". Cor-
rectly and consistently identifying typography used to markup microstruc-
ture in dictionaries also remains questionable for state of the art OCR sys-
tems, such as OCRpus (Breuel, 2008), Transkribus (Kahle et al., 2017), Cala-
mari(Wick, Reul, and Puppe, 2018), or ABBYY Finereader2. In Figure 3.2 we
can clearly notice many text recognition errors in the OCR output for a legacy
dictionary (Furetière, 1701). We see here an illustration of the impact of the
scan quality and the old orthography on the digitisation outcome.

Several studies in the literature have investigated the impact of noisy data
on basic downstream NLP tasks such as sentence boundary detection, tokeni-
sation, and POS tagging (Lopresti, 2009) as well as more advanced computa-
tional applications like topic modelling (Mutuvi et al., 2018).

This digitisation issue represents a serious obstacle for any parser aiming
at decoding the logical system behind the typography conventions imple-
mented in a dictionary, as we explain in the following section.

2https://www.abbyy.com/en-eu/finereader/
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3.2.2 Logical Structure vs Physical Structure

Dictionaries as a whole and their lexical entries are highly structured objects
embedding recurrent components. The organisation of a print dictionary can
be analysed from two related perspectives: logical and physical structures

Logical Structure

The logical structure of a dictionary represents the functional constructs and
their mutual connections, enabling the representation of the lexical informa-
tion designed by the creator of the lexicon.

Semasiological dictionaries for alphabet-based languages share a general
logical organisation. Such a dictionary is usually segmented into chapters
where each chapter contains a list of dictionary articles, also called lexical en-
tries, starting with the same letter and ordered alphabetically. In bilingual
dictionaries, it is common to have chapters organised by pairs of languages.

Lexical entries are considered the elementary constructs of semasiologi-
cal dictionaries and therefore it is important to define their key components
to understand their logical representation and the links between them. Each
entry contains a range of predetermined possible constructs that may differ,
depending on the entry type and the purpose of the dictionary. It is beyond
the scope of this thesis to give an exhaustive list of the possible lexical ele-
ments in lexical entries in all kinds of dictionaries. But to give some indica-
tion of the complexity of logical structures in lexical entries it is useful to sum
up these constructs in the following items:

• headword: called also lemma. This is considered to be the key element in
a dictionary article which is the subject of the lexical or encyclopaedic
description and represents a written or spoken form. It usually occu-
pies the first position in the lexical entry and marked with bold charac-
ters.

• variant form: a variant form of a headword. For instance, "color" is the
American variant form of a headword "colour" in a British dictionary

• inflected form: a form resulting from the application of a regular or irreg-
ular inflection paradigm (i.e. pattern) to an original word. For example,
"colored" is the inflected form of "color" representing its past participle.

• part of speech (POS): grammatical category of a word that may be a verb,
noun, adjective, preposition, etc

• morphological information: any kind of information related to the mor-
phology of a word form such as orthography, variant and inflected
forms, etc. It describes the headword as well as its related forms.

• grammatical information: carries the grammatical description of a form
such as the POS, gender, number, etc.
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• sense: represents one possible meaning of the headword and is expressed
through definitions, examples, usage domain, etc. A sense could carry
a multi level nesting of sub-senses and may replace the function a lexi-
cal entry in some dictionaric designs (see Figure 3.3)

• etymology: provides information about the origins of the headword and
its senses. Etymology may figure as a brief description in several possi-
ble spots within the dictionary article, or it can occupy the whole focus
of the lexical entry’s description in the case of etymological dictionaries.

• translation equivalent: maps a headword to its equivalent in another lan-
guage and can be accompanied by definitions or examples. Such a de-
scription is the core representation in bilingual dictionaries.

• related entry: also called compound or Multi Word Expression (MWE). It
represents the use of the headword or one of its senses in more complex
constructs such as idioms, collocations, etc.

• cross references: are links to other lexical entries having a semantic rela-
tion such as synonymy or antonymy and are usually triggered by the
use of "see X" or "cf. X" or their equivalents in other languages.

FIGURE 3.3: Left: Entry ACT in (Publishing, 2009). Right: En-
tries ABUSE (Publishing, 2009)

In Figure 3.3 the red, green, purple and pink fields represent respectively
the headword, pronunciation, POS and related entry. The article act is a ho-
mograph which has been represented in this dictionary as a lexical entry hav-
ing one sense as noun and another one as a verb (the blue fields). Each sense
has sub-senses and the second has an embedded related entry. This repre-
sentation may also be interpreted as a noun entry having a sub-entry as a
verb. In both cases, the sense representation differs from the logical pattern
followed to model another homograph in the same dictionary, abuse, which
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could also be a noun and a verb. The logical structure of morphological and
grammatical information remains the same, however.

The highlighted inconsistency in modelling entries is one of a number of
phenomena that can be observed in modern dictionaries and is more fre-
quent in legacy materials. The logical structure, or the syntax, of lexical
entries translated in the presence of certain information or their order may
totally change in a different dictionary. The difference depends on the multi-
lingualty, lexicographic and time dimensions introduced in Chapter 2.

Figure 3.4 illustrates a high degree of diversity in the structures of entries
from different dictionaries. Such internal and external variations represent a
true challenge for having a unified parser that covers all these varieties.

Physical Structure

The logical structure of entries is translated in print dictionaries through a
series of navigational components and markers such as font, font size and
symbols (e.g. squares, bullets, diamonds). A fixed and predictable typo-
graphical system is essential to allow dictionary users to quickly and easily
find the information they are looking for. The same applies to a parser which
will decode the syntax of lexical entries based on their markup system.

Such a structure remains relatively preserved in the case of the same born-
digital dictionary. But given the highly probable deformation of both the
text and its typography in digitised documents, explained in Section 3.2.1,
the physical structure would be greatly impacted. Consequently, features
reflecting the typography of the lexical components would be weak, and in
many cases, biasing for a parser aiming at predicting the labels to be assigned
to the tokens of lexical constructs.

For both, digitised and born-digital dictionaries, the physical structure
depends on the purpose of the lexicographic document as well as the choices
of the lexicographer who will have a certain background, practices and ty-
pography preferences. Therefore, the combination of all these factors yields
a wide range of physical representations of the lexical information (see Fig-
ure 3.4) which challenges their uniform parsing.

3.3 State of the art

The problem of parsing the structure of print documents, including dictio-
naries, has been addressed in the literature by different approaches. In this
section, we provide on overview of the commonly used techniques. We put
the focus on the most advanced methods which have made use of machine
learning to solve the parsing task as well as similar tasks.

3.3.1 Rule-based

Rule-based techniques are very common in computational fields. They have
been popular since the early use of computers as, for instance, they had been
used for building early expert systems (Buchanan and Duda, 1983). Such a
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(A) Lexical,
Monolin-
gual (Pub-
lishing,
2009)

(B) Etymological (Ernest,
1966)

(C) Bilingual (Galley,
1964)

(D) Ency-
clopaedic (Berth-
elot, 1886)

FIGURE 3.4: Excerpts from different dictionaries with different
logical structure

method relies on deterministic rules defined by observing patterns in a data
sample. The rules are basically conditional instructions:

if condition→do action

The set of defined rules constitutes a grammar that gives a formal descrip-
tion of certain patterns within the observed sample. A parser relies on such
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a grammar to perform the analysis of text structures.
Many ad-hoc rule-based approaches are still being used today to parse

dictionaries using tailored grammars. In fact, one way (Khemakhem et al.,
2009; Fayed et al., 2014) is to rely mainly on textual markers in the lexical
description to infer the function of the parsed structures. Such an approach
is commonly used when typography information do not exist and the text of
the digitised or retyped dictionary is the only available material to analyse,
as is the case for several MRDs.

Other studies (Mykowiecka, Rychlik, and Waszczuk, 2012; Maxwell and
Bills, 2017; Steingrímsson, 2018) make use of the typography information,
collected from the OCR output, combined with the textual markers to build
the parsing grammar. Old but efficient platforms for a flexible writing gram-
mar for new parsers are still in use, such as for example the LexParse tool (Hauser
and Storrer, 1993; Lemnitzer and Kunze, 2005).

On the one hand, such an approach has several attractive sides, especially
for small projects. First, the rules could be quickly implemented, or just writ-
ten in the case of existing platforms like LexParse, and results could be ob-
tained within a few days or weeks. Second, the system can be considered as
a simulator of the decision process of an expert, but on a larger scale. This
fact makes the interpretation of the results straightforward by humans and
consequently the rules easy to fine-tune. It also represents a major upside for
independent lexicographers who have limited little IT skills, as it frees them
from the intervention of IT staff in their own workflow. Finally, since no ad-
vanced IT knowledge is needed to develop such a technique, such a choice
can drastically reduce the costs for limited budget projects.

On the other hand, the above-mentioned studies have shown that such an
approach can be useful to parse dictionaries with a flat structure, bilingual
dictionaries for instance, or the shallow constructs in relatively more com-
plex dictionaries. It remains, however, limited for parsing deep and exten-
sive lexical descriptions where the lexicographic information becomes more
complex along with possible inconsistencies in the representation of the log-
ical and physical structures. For instance, the dictionary article FRANCE in
La grande encyclopédie (Berthelot, 1886) has 91 pages, AIR has 52 pages and
FRANCO-ALLEMANDE (GUERRE) 31 pages. Any rules defined by humans
are too subjective to cover all the patterns hidden in the body of such large
lexical entries. The scalability question is not limited to large or legacy sam-
ples. The adaptation of the extracted rules to new samples may be costly and
in many cases impossible as the dimensions of the new dictionary can vary
widely.

3.3.2 Probabilistic Models

The need for scalable methods to parse print dictionaries has become clearly
apparent. The use of machines can go beyond simply looking for patterns
defined by a human expert. Probabilistic models have shown in the literature a
great potential to leverage the capacities of machine learning techniques when
human observation is limited or impossible.
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In this section we introduce a family of probabilistic models gathering
certain techniques suitable for our target parsing task.

Text Sequence Labelling

The parsing task we are addressing may be seen as the task of assigning a
label from a set of possible tags to each token in a sequence of text. Let us as-
sume we want to label this excerpt of an entry "act /akt/ noun 1. something
which is done". A probabilistic model has the aim of predicting the prob-
ability of assigning a label to each token based on a learnt distribution from
previously seen data. A label starting with "I-" marks the beginning of a new
field in the sequence, whereas other labels (i.e "<def>") mean we are in the
middle or end of a field. In this example: <lemma> marks a lemma, <pron>
pronunciation, <pos> part of speech of the headword, <num> numbering
tokens and <def> definition of a sense.

<I−lemma>
act

<I−pron>
/akt/

<I−pos>
noun

<I−num>
1 <num>.

<I−de f>
something

<de f>
which

<de f>
is

<de f>
done

FIGURE 3.5: Text Sequence Labelling

Such a text sequence labelling task is common in the NLP field, where POS
Tagging and Named Entity Recognition (NER) are among the most popular
tasks that have been addressed in the literature by applying a family of prob-
abilistic models called graphical models.

Graphical Models for Sequence Labelling

The key assumption in graphical modeling is that a distribution over many
variables can often be represented as a product of local functions that each
depends on a smaller subset of variables. This factorisation shows a close
connection to certain conditional independence relationships among these
variables. The graphical appellation comes from the fact that both types of
information can be represented by a graph.

These models describe the probability distribution P based on X and Y,
where X and Y are random variables respectively ranging over observation
sequences and their corresponding label sequences. The probability distri-
bution P is calculated differently from one graphical model to another and
the difference lies in how the independence among variables is modelled.

In this section, we present the conceptual difference between two types of
graphical models which have been the most widely used in the literature for
sequence labelling: Hidden Markov Models (HMMs) and Conditional Random
Fields (CRF)s.

Hidden Markov Models (HMMs) An HMM is a generative model for de-
scribing a probability p(y1:N, x1:N) over observation x1:N and label y1:N se-
quences. It is defined as the product:
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p(y1:N, x1:N) =
N

∏
n=1

p(yn|yn−1)p(xn|yn)

(3.1)
where p(yn|yn−1) denotes the transition between two successive states

and p(xn|yn) represents the distribution of an observation given its state.
To estimate such a joint probability distribution, a HMM needs to enu-

merate all possible observation sequences for tasks where an observation
typically represents an atomic entity, a word in a document or a token in
a sentence. Theoretically, such a model can not take into account features of
each observation or those of neighbouring entities.

To calculate, for instance, the probability p(y3, x3) of the sequence de-
picted in Figure 3.5, a typical HMM considers the token "noun" as an ob-
servation and the label "I-<pos>" as its state. The label and its transition
are taken into account but no typographic features (e.g. bold, italic, etc) of
"noun", "1.", "/akt/" or any token in the sequence can be considered.

Conditional Random Fields (CRFs) Conditional Random Fields are also
a probabilistic framework for labeling a sequence of observations. Whereas
an HMM is generative assuming independence among input sequence x1:N, a
CRF tries to relax this independence relationship by describing a conditional
probability distribution p(yn, xn) defined as:

p(y1:N|x1:N) =
1
Z

exp

(
N

∑
n=1

F

∑
i=1

λi fi(yn−1, yn, x1:N, n)

)
(3.2)
where xn is an observation and yn is a state which respectively belongs

to the x1:N and y1:N sequences. fi denotes an arbitrary set of feature func-
tions and λi :F are their associated parameters to be learned. The scalar Z is
a normalisation factor to make p(y1:N|x1:N) a valid probability over label se-
quences. Z is defined as

Z = ∑
y1:N

exp

(
N

∑
n=1

F

∑
i=1

λi fi(yn−1, yn, x1:N, n)

)
(3.3)
which has an exponential number of terms, difficult to compute in gen-

eral. Note that Z implicitly depends on x1:N and the parameters λ.
A CRF model removes the constraint that observations only depend on

the hidden states in the same event. In fact, CRF provides the ability to model
how observations affect each other. Such an ability is enabled through the fi:N
functions, also called feature functions, which look at pairs of adjacent states
yn−1 and yn, the set of input x1:N, and where we are in the sequence.

For example, we can define a simple feature function for the text sequence
in Figure 3.5 which produces binary values: it is 1 if the current token is
"noun", and 0 if the current state yn is "I-<pos>":



3.3. State of the art 25

f1(yn−1, yn, x1:N, n) =

{
1 if yn = I− < pos > and xn = noun
0 otherwise

}

(3.4)
A feature function is used depending on its corresponding weight λ1. If

λ1 > 0, whenever fi is active (i.e. we see the token "noun" in the sentence
and its corresponding tag is "I-<pos>"), it increases the probability of the tag
sequence y1:N . This is another way of saying “the CRF model should prefer
the tag I-<pos> for the token "noun”. If on the other hand λ1 < 0, the CRF
model will try to avoid the tag "I-<pos>" for "noun". And when λ1=0, this
feature has no effect.

To define λ1 one may set λ1 by domain knowledge (most probably being
positive), or learn λ1 from corpus (let the data tell us), or both.

As another function, let us consider:

f2(yn−1, yn, x1:N, n) =

{
1 if yn−1 = I− < pron > and xn+1 = 1
0 otherwise

}

(3.5)
This feature function is active if the previous tag is "I-<pron>" and the

following token is "1". One would therefore expect a positive λ2 to go with
the feature. Consequently, f1 and f2 can both be active for a sequence as in
Figure 3.5. This is an example of overlapping features describing the obser-
vations and states of a sequence.

The input sequence x1:N is not limited to tokens. x1:N can be the font of
token or an attribute marking if a token is bold or not, italic or not etc. In
practice, such a representation would be possible by generating for each to-
ken (i.e. observation) a vector containing the identity of the token along with
its typographic description. Defining a feature function would then consist
of selecting attributes from the vector representing the current observation.
In such a setup, a feature can, for instance, be:

f3(yn−1, yn, x1:N, n) =

{
1 if yn = I− < pos > and xn = ITALIC
0 otherwise

}

(3.6)
Such a feature is active when the current tag is I-<pos> and the current

font is italic.
At this point, it becomes clear how much more flexible CRFs are than

HMMs for defining candidate features extracted from the observation and
state sequences. Such a flexibility gives the model the ability to use the dif-
ferent hints about the physical structure of dictionary articles to structure
their text sequences.
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Evaluation metrics

The performance of a model (i.e. tagging algorithm) is usually evaluated
using a variety of different metrics, measured against gold standard data
which have been tagged by human annotators and are known to be correct.
To calculate them, it is necessary to count the different possible decisions:

• True Positives (TP), i.e., positive instances correctly predicted

• True Negatives (TN), i.e., negative instances correctly predicted (the tar-
get label has not been used to tag wrong tokens)

• False Positives (FP), i.e., instances which are tagged with a target label
where it should not be

• False Negatives (FN), i.e., instances which are not tagged with the tar-
get label but should be

Precision reports how many of the model’s decisions to tag a token are
correct, i.e. the higher the precision of a tagging algorithm is, the more con-
fident we can be about the labelling of tokens with the current tag. Precision
is formally defined as:

Precision =
TP

TP + FP
Recall reports how many of the positive examples in the gold standard

are found by our algorithm, i.e. the higher the recall of our algorithm the
more confident we can be that all tokens that should have the target label are
correctly tagged. Recall is formally defined as:

Recall =
TP

TP + FN

F1-score (or F-measure ) represents a weighted average of precision and
recall. It is usually considered as the most significant metric, as precision
and recall are not useful in isolation. These two measures can be considered
antagonistic: good precision might be achieved by tagging few but correctly
(no incorrect prediction has been made), while perfect recall can be achieved
by tagging everything with the target label. The F-measure is defined as:

F1 =
2 · Precision · Recall
Precision + Recall

Accuracy reports how many of the decisions made by the algorithm are
correct in total, i.e. considering both positive and negative examples. While
this is also an indicator of tagging quality, it should be carefully judged de-
pending on the dataset. It is considered as a good measure only when we
have balanced datasets where the values of false positives and false nega-
tives are almost same. Otherwise, a good accuracy can easily be achieved by
always assigning the majority class. Thus, the F1-score is usually considered
to be the more meaningful measure. Accuracy is formally defined as:
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Accurracy =
TP + TN

TP + TN + FP + FN

Token/Field level Token, or word, level reports the labelling quality for
each different token, where field, also called phrase, level evaluates the qual-
ity over a whole sequence of tokens. Field level quality is usually harder to
achieve as one wrongly labelled token in a sequence is enough to consider
the labelling has failed for the whole sequence.

Previous Work

The are not too many studies in the literature that have made use of machine
learning for the purpose of parsing dictionaries. The few relevant endeav-
ours have carried out experiments using mainly one of the two categories of
the previously introduced graphical models: HMMs and CRFs.

HMM-based

Approach: Ma et al., 2003 presented a system for the acquisition and pars-
ing of lexical information in print bilingual dictionaries. Processing of the
content of an OCR’d dictionary page is carried out in two stages before the
generation of a structured lexicon. The first step called "Dictionary Parsing"
has the task of extracting each entry and marking its main fields (i.e. func-
tional properties of a group of tokens). It is broken into 3 phases:

• Dictionary acquisition: by adjusting the setup for scanning and storing
dictionary page scans

• Entry Segmentation: the step addresses the automatic identification of
the starting and ending lines of each entry based on textual and typo-
graphic features (e.g. special symbols, word font and size, indentation,
spacing..) that are manually extracted and then used to train a Bayesian
framework. The process is iterative and relies on a human in the loop
to provide corrections of the results to generate better samples for re-
training the framework. The workflow yielded accurate segmentation
results (between 96% and 99% accuracy)

• Functional Labelling: Each identified entry in the previous phase is pro-
cessed at this level to differentiate fields containing Latin scripts from
those that do not. Such fields, called "functional", can be pronunciation
or translations, etc. A Nearest Neighbor Matching (Ma and Doermann,
2003) and Support Vector Machine (Burges, 1998) classifiers have been
experimented to identify these functional fields. The Support Vector
Machine classification has been reported to perform better (above 90%
average accuracy).

The second step comes after applying an OCR system and is dedicated
to tagging entry tokens, which represents the previously explained sequence
labelling task. Ma et al., 2003 experimented two approaches:
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• Rule-based: the approach is very similar to those presented in Section 3.3.1
and based on observing the lexical description typography to tune a
tagger’s grammar incrementally. Experimented with dictionaries with
highly regular structures, this approach has been reported to work "ef-
ficiently".

• HMMs-based: for dictionaries with relatively more complex structures
and noisy OCRs, HMM models have been used to leverage the joint dis-
tribution of features in the dictionaric data. Karagol-Ayan, Doermann,
and Dorr, 2003 give an exhaustive description of the same approach
which has been used to parse similar bilingual dictionaries (see Figure
3.6). Manual annotation has been carried out for 400 randomly selected
tokens to be tagged with their functional categories. For the training
of the HMM, seven features have been used: (i) Content: Category of
the keyword (keyword, special symbol, number, and NULL otherwise)
(ii) Font: Font style of the token (normal, bold, italic, etc.). (iii) Starting
symbol: marks if the token begins with a special punctuation, NULL
otherwise. (iv) Ending symbol: marks if the last character of the token
is a special punctuation, NULL otherwise. (v) Second ending symbol:
marks if the second to last character of the token is a special punctu-
ation, NULL otherwise. (vi) Is-first token: True if the current token is
the first token of an entry, false otherwise. (vii) Is-Latin: True if the
characters in the token are Latin-based characters, false otherwise.

Given HMMs’s limitations to model such features for each observa-
tion (see Section 3.3.2), the implemented HMM framework (DeMen-
thon and Vuilleumier, 2003) allows through a workaround each token
to be converted to a vector of the seven features then tagged with the
corresponding category. The predicted states are later mapped to the
original tokens.

FIGURE 3.6: Example of bilingual dictionaries processed
by (Ma et al., 2003) and (Karagol-Ayan, Doermann, and Dorr,

2003)
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On the token level, both studies (Ma et al., 2003; Karagol-Ayan, Doer-
mann, and Dorr, 2003) have reported comparable F1-scores (around 0.75 for
French-English) and (around 0.87 for English-Turkish) using rule-based and
HMM-based parsers. On the field level, the former performed clearly better
(around 0.75 for French-English and around 0.88 for English-Turkish) than
the stochastic approach (around 0.70 for French-English and around 0.77 for
English-Turkish). Karagol-Ayan, Doermann, and Dorr, 2003 reported lower
stochastic performance with a Hindi-English sample on the field level (0.51
F1-score). They tried to boost the results by applying a rule-based post-
processing to the stochastic output. The hybrid method gave relatively better
results but remained limited for certain samples.

Discussion: Ma et al., 2003 succeeded in the design of a pipeline compris-
ing several modules implementing different techniques to parse bilingual dic-
tionaries using ad-hoc and adaptive methods. The attempt to implement a
scalable technique with a human in the loop to adjust the entry extraction
results of a Bayesian system was successful. However, the random selection
of tokens to build a HMM model, is questionable for the sake of learning
labelling lexical sequences, even after tweaking the HMM modelling setup.

The HMM-based approach presented for the identification of salient log-
ical structures in bilingual lexical entries can not be reliable for a scalable
processing, given the limitation by design of such models.

CRF-based

Approach 1: The exhaustive study carried out by Crist, 2011 can be con-
sidered the most relevant work to this part of the thesis. He first explained
the conceptual complementarity between logistic regression and HMMs for
the purpose of modelling observations and their hidden states in a sequence
labelling setup. This analogical study, also shared by several introductory
studies to graphical modelling (Zhu, 2010; Sutton and McCallum, 2012), has
been used to justify his choice for CRFs, which is considered a combination
of the best of both techniques, to parse two digitised dictionaries.

The first sample was a bilingual Lau-English dictionary and has relatively
few and simple structure entries. All of the 1365 entries of the dictionary,
containing over 15 000 tokens, were tagged with 10 different tags marking
(i) headwords, (ii) integers distinguishing homographs, (iii) morphological
category, (iv) indentation, (v) single letter headers, (vi) use of the headword
in a context (vii) English definitions, (viii) abbreviations indicating POS or
other morpho-syntactic categories, (ix) cross references and (x) English prose
discussions. For each token, a set of 24 features is generated to describe the
typography (e.g. bold, italic) and the category of the current token, part of
it or preceding token (e.g, final character is semi colon or not, its preceding
token ends with a comma, etc).

The second sample of the experiment was an old English dictionary with
over 1300 pages and 60000 articles. 13 randomly selected pages containing
306 entries and over 20000 tokens were manually tagged with 17 labels. The
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new tags give more precision regarding the categories of the logical lexi-
cal structure of each token, such as Latin translations, Greek translations,
morpho-syntactic information, etymlogy, etc. Each token was extensively
described using 35 features, with more focus on the language, the morphol-
ogy and belonging of each token to existing vocabularies (e.g. abbreviations
used in the dictionary).

The training of the two CRF models was performed through the use of the
MALLET framework (McCallum, 2002). Accuracy was the measure chosen
to evaluate the results and behaviour of each model. In the first experiment, a
plateau of 95% was reached by using 3100 tokens, where the mean number of
tokens per entry is around 10. The second experiment reported 94% accuracy
reached by using over 7400 tokens, where an entry contains on average 65
tokens.

The remainder of the work studies in depth the structure of 100 digitised
dictionaries and focuses on the crucial steps for digitising and parsing dictio-
nary highlighting the role played by the OCR quality in such a process.

Discussion 1: Through his exhaustive survey, Crist, 2011 managed to ex-
pose the diversity and the complexity of the logical and physical structures
in digitised dictionaries, and consequently, the need for a flexible parsing
framework as CRFs. Empirically, he succeeded in leveraging the modelling
capacity of CRFs to machine learn the parsing of two different dictionaries.
Moreover, his experiments showcased the difference in complexity between
dictionaries and the consequent need for more descriptive features and larger
training datasets.

However, the implemented technique remains experimental and focused
on parsing already extracted lexical entries, with no practical solutions for
identifying entries’ boundaries which is a non-negligible issue. The general
accuracy measures provided do not give a precise evaluation of the models
for parsing the different structures exhaustively analysed. In fact, the large
number of labels to infer at once seems to be overwhelming for one model.
We also have reservations about the representativity of the randomly selected
entries in the training dataset to cover all the structures to be predicted in
the evaluation dataset. Regarding the features used, their selection was tai-
lored to the sample, which limits the ability of the resulting models to scale
up. Less language dependent along with long-range features (i.e. features
describing several tokens preceding and following the current token) could
have resulted in a CRFs model that supports both samples with only more
training.

Approach 2: Another work presented by Bago and Ljubešić, 2015 has stud-
ied the use of CRFs for the purpose of speeding up language and structural
annotation in a multilingual legacy dictionary.

The first use case has the goal of learning the inference of a token’s lan-
guage based on its context in the dictionary article. Over 100 entries, com-
prising around 2% of all the tokens of the dictionary, were randomly selected.
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These tokens were annotated with 3 labels indicating the language: (i) Croat-
ian, (ii) Italian, (iii) and Latin, with a domination of Croatian tokens (i.e. over
half). A variable set of around 20 features, mostly focused on the text of the
token and its neighbouring, was generated for each token. A set of features
includes: Boolean variable whether the token is lower-case or not, the sur-
rounding tokens and their lower-case form, and the frequency of the token’s
sequential trigraphs. An incremental experiment was carried out to find the
final subset of best features giving the highest accuracy and F1-score: (i) 0.98
for Croatian, (ii) 0.97 for Italian, (iii) and 0.99 for Latin,.

The second use case deals with parsing the lexical structures carried by
the tokens by applying the same approach with a slight adjustment of the
features and new task-specific labels. Language and suffix of 4 character
length were added to the feature set of the incremental experiment and kept
in the final subset of informative features. 19 different tags were used to label
the data with flat structural category of a token, such as POS, citation, cross
reference, bibliography, punctuation, etc. Given the fact that the entries were
randomly selected, the performance of the trained CRFs model significantly
varied from zero, for non frequent labels in the training dataset, to 0.99 and
1.0 for punctuation and line beginning tags.

The CRFsuite (Okazaki, 2007) has been used to train the CRFs models
with the annotated data. The learning curve shows that 40% of the data
brings the model close to the plateau, which confirms the findings of Crist,
2011, showing the efficiency of CRFs models to quickly learn the hidden
states in dictionary text sequences.

Discussion 2: Through the language labelling use case, Bago and Ljubešić,
2015 have demonstrated the positive impact of long range features on the
performance of CRFs models. They have also shown the power of text based
features for some specific tasks when there are no structure categories to be
identified. However, the second use case has exposed the need to have ob-
servations describing the physical structure to infer the logical structures in
a dictionary.

Statistics about each label in the training and test batches are missing but
it is clear that the dataset is imbalanced for the use case of structural aspects
learning. Thus, this is another experiment showing the specificity of lexical
data and the need to have lexicographic expertise for the selection of a train-
ing sample. Another part of the issue of having low performance over all the
labels in the second experiment could be explained by the fact that several
heterogeneous labels have to be learned by one model.

The approach is reported to speed up the annotation process but still not
reliable for full automatic labelling of lexical constructs, even with a sample
that has no lexical depth.

3.3.3 Probabilistic Models for Parsing Bibliographic Data

All the related studies presented so far have followed a bottom-up approach
for decoding lexical information in print dictionaries. The reviewed machine
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learning approaches have manifested difficulties in capturing heterogeneous
lexical structures using one model.

Our study of the literature led us to find a top-down a approach for pars-
ing bibliographic information in a category of print documents, representing
several similarities with the parsing task we are addressing. In what follows
we present this approach implemented in a framework called GROBID.

GROBID (GeneRation Of Bibliographic Data)

GROBID (GROBID 2008–2020; Romary and Lopez, 2015) is a machine learn-
ing framework that implements a modular approach for the analysis and ex-
traction of bibliographic constructs in scientific papers and patent documents.

GROBID has used over 10 CRFs models to orchestrate the parsing of such
documents in a cascade fashion. Each model is responsible for the identifica-
tion of a homogeneous set of structures. At its first extraction level, GROBID
detects the main blocks of a paper such as the header, the body, the refer-
ences, annexes, etc. These main parts are further structured at the following
level, like the header which is recognised and parsed in a second stage to
extract the title, authors, their affiliations, abstract and keywords. The ref-
erences are also extracted in separate items and then parsed one by one to
detect the titles, the authors and the other publication details.

FIGURE 3.7: Illustration of the Hyper-Level zones in a scientific
paper recognised by Header Segmentation Model in GROBID
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Figure 3.7 depicts an intermediary segmentation level (i.e Header seg-
mentation) linking a general segmentation model and several sub-models
for parsing each detected hyper-zone.

GROBID (up to version 0.5.3) relies on an advanced version of CRFs (Lavergne,
Cappé, and Yvon, 2010) which allows the modelling of a large number (mil-
lions) of features per model. Each model is designed with dedicated features
and labels supporting the parsing of a certain level of the bibliographic infor-
mation. For the first segmentation model, for instance, each line in a docu-
ment is described with over 30 seed observations3 that are expanded in more
local and long range features based on the text, layout and typography.

Such an extensive use of features results in more complex feature engi-
neering and a longer learning process but the outcome of the models shows
it pays off. The framework has been ranked for years among the best system
for such a task (Saleem and Latif, 2012; Lipinski et al., 2013; Torre et al., 2018;
Tkaczyk et al., 2018) with high accuracy information extraction, thanks to its
cascading sequence labelling and the leverage of CRFs modelling capacities.

3.4 Chapter Summary

In this chapter, we have shown the bottlenecks for parsing lexical structures
in print dictionaries. The difficulties lie mainly in the noisy digital material to
process and the complexity and possible inconsistency of the logical structure
to dismantle, through physical clues highly impacted by the varying noise in
the material.

The study of the literature has shown that it is still of actuality to use
ad-hoc approaches (Maxwell and Bills, 2017; Steingrímsson, 2018), based
on parsing grammars defined on the basis of human expert observations.
HMMs-based methods (Karagol-Ayan, Doermann, and Dorr, 2003; Ma et al.,
2003) have tried to relax the dependence on human expertise by relying on
probabilistic models to learn the distribution of labelled sequences. The at-
tempt was partly successful as comparable results have been achieved by
an adaptive HMMs system for several dictionaric samples. However, the
approach remained focused on capturing salient structures in a category of
resources (bilingual dictionaries) and did not leverage the context of tokens,
given the conceptual limits by design of HMMs.

CRFs based approaches (Crist, 2011; Bago and Ljubešić, 2015) have been
adopted to overcome the limits of HMMs and provide a scalable framework
that integrates noise and uncertainty along with the rich contextual clues that
are often present in print dictionaries. The visited CRFs setups have illus-
trated ways to benefit from the textual and typographic information of to-
kens in a context. However, the solution for the different sequence labelling
tasks suffered from the "one model does it all" strategy. It risks sanctioning
certain labels which are less represented in the training dataset. Moreover,
the evaluation of such an issue is usually hard given the large number of

3https://github.com/kermitt2/grobid/blob/master/grobid-core/src/main/
java/org/grobid/core/features/FeaturesVectorSegmentation.java

https://github.com/kermitt2/grobid/blob/master/grobid-core/src/main/java/org/grobid/core/features/FeaturesVectorSegmentation.java
https://github.com/kermitt2/grobid/blob/master/grobid-core/src/main/java/org/grobid/core/features/FeaturesVectorSegmentation.java
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heterogeneous labels per model. The attempt to reduce labels per model has
shown positive results with dictionaries (Bago and Ljubešić, 2015). A larger
modular approach (Romary and Lopez, 2015) has also given highly accurate
results with a similar complex parsing task, which supports the "divide and
conquer" strategy.

We hypothesise that the use of CRFs can be improved and tuned to build
models that are generic enough to cover several categories of lexica. Follow-
ing a waterfall approach for the parsing case of print dictionaries seems to
have the potential to solve the issue of overwhelming lexical labels. These as-
sumptions are our starting point to find answers to the generecity and mod-
ularity questions.
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Chapter 4

Lexical Models for Parsing Print
Dictionaries

4.1 Introduction

Previous work introduced in Chapter 3 has left open questions regarding
the ability of probabilistic models to parse complex lexical information along
with the variations and inconsistencies in different dictionaric print material.
Parsing print dictionaries using probabilistic models, CRFs more specifically,
seems to have the potential to overcome the scalability issues. However,
more investigations need to be carried out to find additional assets for us-
ing such probabilistic models as well as their limits.

Given the unrealistic short-term goal of structuring all kinds of dictionar-
ies by the click of one button, our aim in this thesis is not limited to a proof
of the scalable structuring concept but we also aim at building an end-to-end
infrastructure for structuring dictionaries which can be easily adapted and
extended. Getting domain experts, who may have limited IT skills, involved
in shaping the lexical models is on our agenda for two reasons: first because
we do not have the knowledge required to annotate data in several categories
of dictionaries in a multitude of languages. Second, we do not have enough
resources to perform such large-scale and complex annotations, which are the
cornerstone for conducting any machine learning experiment.

In this chapter, we present our approach which has been inspired from an-
other task dealing with a different category of text documents. We also give
details about building GROBID-Dictionaries 1, a new architecture of machine
learning models dedicated to the analysis and extraction of lexical structures
from digital and digitised dictionaries, following the novel approach. An
overview on the challenges encountered and the solutions to implement our
approach, are also discussed in the following sections.

4.2 Cascading Parsing

Lexical information in print dictionaries has several granularity levels which
represent the logical structure of the lexicon. Recognising all these elements

1https://traces1.inria.fr/grobid-dictionaries/

https://traces1.inria.fr/grobid-dictionaries/
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at once is not an obvious task as the complexity we want to dismantle in-
volves hierarchies of lexical components and different constructs that do not
have the same physical structure. Therefore, we addressed the parsing task
by adopting a top-down approach where several parsers are built in cascade
to go from the less to the more granular. To be easily adaptable to new dic-
tionary samples, we chose machine learning over rule-based techniques to
build the cascading models. And since CRF models have been the more suc-
cessful in the literature for sequence labelling tasks, we decided to explore
them to implement our approach.

4.2.1 Approach

We followed a divide-and-conquer strategy to dismantle text constructs in a
print dictionary, based initially on observations of their layout. Main pages
(see Figure 4.1) in almost any dictionary share three blocks: a header (green),
a footer (blue) and a body (orange). The body is, in its turn, made up of
several entries (red).

Each lexical entry can be further broken down (see Figure 4.2) into: form
(green), etymology (blue), sense (red) or/and related entry. The same logic
could be applied further for each extracted block, as long as the finest lexical
structures have not yet been reached.

Such a cascading approach ensures a better understanding of the learn-
ing process’s output and consequently simplifies the selection process of the
machine learning features. Limited exclusive text blocks per level help to
diagnose the cause of prediction errors significantly. Moreover, it would be
possible to detect and replace at an early stage any irrelevant selected fea-
tures that can bias a trained model. In such a segmentation, it becomes more
straightforward to notice that, for instance, the token position in the page is
very relevant to detect headers and footers but has almost no relevance for
capturing a sense in a lexical entry, which is very often split over two pages.

Such a generic approach enables the modular creation and the flexible
tuning of any required number of models to parse certain constructs. But at
the same time, the flexibility should be controlled to avoid ending up with
an architecture tailored for one sample or category of lexica. The balance
we are aiming to strike should be translated in an architecture of models
that is generic enough to be adapted to any dictionary by simply annotating
a small sample, a key known asset for CRFs. Therefore, this milestone is
highly connected to the modelling decisions and best practices that will be
discussed in Chapter 6. Switching between the two processes to adapt either
the architecture or the modelling to each other, is necessary to make sure that
the outputs of the two stages are compatible.

4.2.2 Bibliographic Information and Lexical Information: Pars-
ing Similarities and Differences

Our study of the literature led us to notice a remarkable analogy between
the structures that can be extracted by GROBID (Romary and Lopez, 2015),



4.2. Cascading Parsing 37

FIGURE 4.1: First and second segmentation levels of a dictio-
nary page (Larousse, 1972)

FIGURE 4.2: Example of the segmentation performed by the
Lexical Entry model (Larousse, 1972)
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in the case of full scientific articles, and the actual constructs we wanted to
extract from print dictionaries.

FIGURE 4.3: Left: Excerpt from Bibliographic References Sec-
tion in (Khemakhem, Herold, and Romary, 2018). Right: Ex-

cerpt of Lexical Entries in (Publishing, 2009)

Figure 4.3 illustrates visually such an analogy between the structure of
bibliographic entries in a scientific paper and lexical entries in a print dictionary.
The underlined fields highlight the analogue structures we noticed respec-
tively between: author names versus headword (red), publication year versus
pronunciation (green), publication title versus POS (blue) and book title versus
sense (orange). To these backbone structures in both categories of documents,
additional fields can be joined to the description of an entry such as location
and month of a conference versus a general note about a dictionary article (pur-
ple). Note that the transitions between the fields of bibliographic and lexical
entries are marked by a consistent change in either the typographic features
(e.g. bold, italic, font change, etc.), or/and textual markers (e.g. parenthesis,
slash, number, dot, etc.).

This correspondence is reinforced by the fact that GROBID actually relies
on these features to perform a cascading parsing of the text of a scientific
paper and, in particular bibliographic references, in the same way shown in
Figure 4.3. These facts incite us to investigate the adaptation of such models
to the parsing of lexical entries.

Scientific papers processed by GROBID and the print dictionaries we are
targeting represent, however, logical and physical differences. First, the log-
ical structure of many categories of dictionaries is more granular than bibli-
ographic information and can support different interpretations of structure
classifications, depending on the background of the expert (see Figure 2.3).
Consequently, annotating lexical information is more costly and less consis-
tent than bibliographic data in scholarly articles. Second, the vast major-
ity of available scholarly papers are the product of work dating back to few
decades ago which consequently means that most of them are born-digital
as opposed to the available dictionaries we are targeting, which are mostly
digitised. This implies more obstacles for processing and classifying the text
they contain.
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4.2.3 GROBID

GROBID was initially implemented as a machine learning system for parsing
and extracting bibliographic data from scholarly articles, mainly text docu-
ments in PDF format. It relies on CRF models (Lavergne, Cappé, and Yvon,
2010) to perform a multi-level sequence labelling of text blocks in a cascade
fashion which are then extracted and encoded in TEI elements.

Such an approach has been very accurate for that use case and the sys-
tem’s Java API 2 has been one of the most widely used by bibliography re-
search platforms and research bodies worldwide, including ResearchGate3,
HAL4, Mendeley5, CERN6 among many others.

FIGURE 4.4: Excerpt from GROBID’s architecture7

GROBID as a platform for manipulating PDF documents has powerful
functionalities to extract and manipulate text in digital and digitised mate-
rial. In addition, its API provides a benchmark for measuring the perfor-
mance of newly developed CRF models and represents a suitable framework
for conducting machine learning experiments. The API benefits from an ac-
tive developer community guaranteeing the sustainability and the constant
evolution of the embedded NLP libraries.

On the other hand, the cascading behaviour of the system comes from a
modular structure of the API which makes CRF models, implemented fol-
lowing the same logic, portable and easily pluggable to the core GROBID
models (Lindemann, Khemakhem, and Romary, 2018).

2https://github.com/kermitt2/grobid
3researchgate.net
4https://hal.archives-ouvertes.fr/
5https://www.mendeley.com
6https://home.cern/
7the full architecture can be found in GROBID documentation https://grobid.

readthedocs.io/en/latest/grobid-04-2015.pdf

https://github.com/kermitt2/grobid
researchgate.net
https://hal.archives-ouvertes.fr/
https://www.mendeley.com
https://home.cern/
https://grobid.readthedocs.io/en/latest/grobid-04-2015.pdf
https://grobid.readthedocs.io/en/latest/grobid-04-2015.pdf
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Given all these conceptual analogies and technical conveniences, we chose
GROBID as a core platform to implement our approach. In the following sec-
tion, we present the novel architecture for parsing lexical information called
GROBID-Dictionaries.

4.3 GROBID-Dictionaries

GROBID-Dictionaries (Khemakhem, Foppiano, and Romary, 2017; Khemakhem,
Herold, and Romary, 2018) is a machine learning infrastructure which relies
on cascading CRF models for parsing text content of dictionary pages. It
takes as an input a PDF text document and generates a TEI P5 (Budin, Ma-
jewski, and Mörth, 2012) compliant encoding where the various segmenta-
tion levels are associated with an appropriate XML tessellation.

4.3.1 Cascading Lexical Models

Our cascading models are designed in a way to support the encoding of the
detected structures in multiple TEI constructs. The TEI schemes and the de-
cisions behind modellings granular information will be discussed in detail
in Chapter 6. But for the purpose of explaining the scope of each model, we
are focusing more on the adequacy of a certain TEI modelling to the imple-
mented cascading mechanism.

After having fully encoded a lexical entry, the task becomes more specific
and more challenging when it comes to defining the TEI structures to be ex-
tracted by each model. It is a question of finding the appropriate mapping
between the TEI elements and the labels to be set for the models that share
the task of structuring the text in cascade. In addition, the process is at the
same time constrained by the need to avoid having structures from different
hierarchy levels being extracted at once. In fact, the CRF models, as they
could be used from the GROBID core, do not allow the labelling of nested
text sequences. A modification of such an aspect is still possible but it could
be costly and is not necessary for implementing our approach, as we want
to keep the models the least complex possible to ease the feature selection
process.

The matrix in Figure 4.5 represents a set of feature vectors (see Appendix A
for the description of each feature) describing a lexical entry condenser, which
will be labelled by the "Lexical Entry" model. The latter has the task of detect-
ing the main blocks in a lexical entry, if they exist. For the sense information,
the model has been trained to extract each parsed text sequence representing
a sense. Each vertical column is a specific feature for all the tokens of the
lexical entry and each horizontal line corresponds to all the features of each
token. The feature vectors and columns serve as the basis for the feature
selection process that will be explained in Section 4.3.2.

In the second phase, comes the role of the trained model to give a pre-
diction of a suitable label for each token, based on all its feature values. A
structure corresponds then to the sequence of tokens having the same label,
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FIGURE 4.5: Sequence labelling a dictionary article (Larousse,
1972) using the "Lexical Entry" segmentation model

where the I-Label marks the beginning of a new sequence. Label can be a TEI
element or a tag reflecting the semantic of a structure that will be transformed
into a TEI compliant structure in the final serialisation. Following this tech-
nique, it is obviously not possible in this model to structure the example "le
froid condense la vapeur d’eau"(see Figures 4.2 and 4.5) in the sense, since just
one label is allowed per token. Therefore, the segmentation of the examples
should be delegated to another model that follows the current one.

Having this logic in mind and after observing different TEI encoding
schemes for a wide range of dictionaric samples, we defined the lexical mod-
els of our parsing architecture iteratively. The hierarchy of the CRF models
implemented in GROBID-Dictionaries is illustrated in Figure 4.6

We give below a description of each model and its labels :

• Dictionary Segmentation: This is the first model and has the goal of
segmenting each dictionary page into three main blocks: headnote for
header and head-note information, body for all the text area containing
the lexical entries of a page labelled as body, and footnote for footer and
footnote information.

7for the sake of conciseness, Figure 4.6 represents only some of the possible labels sup-
ported by certain models. The full list of labels is given in the descriptive text of the figure.
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• Dictionary Body Segmentation: The second model gets the page body,
recognised by the first model, and processes it to recognise the bound-
aries of each lexical entry by labelling each sequence with the Lexical
Entry label.

• Lexical Entry: The third model parses each "Lexical Entry", recognised
by the second model, to segment it into: lemma, variant, or inflected for
morphological and grammatical information related to a "Form", et-
ymology for etymological and diachronic description, senseGramGroup
for grammatical information related to a "Sense", sense for semantic in-
formation or a "Sense", sub-entry for an embedded entry, reference for
a reference to another entry, related entry for a related entry, note for
general remarks about the whole entry, and formGramGroup for general
grammatical description.

Another instance of this model can be used recursively to parse gen-
erated labelled sub-Entry and Related entry text blocks, as the logical
structure of these sub-structures follows the same scheme as a Lexical
Entry construct.

• Form: This model analyses any "Form" block such as lemma, variant,
or inflected, generated by the Lexical Entry model, and segments the in-
formation it contains. The list of possible labels for this model contains
for the moment: orthography to contain the orthography of a "Lemma"
or a "Variant", part to contain the extent of an othography of an "In-
flected From", pronunciation for pronunciation, gramGroup for grammat-
ical information, such as POS, gender, number, etc, language for lan-
guage information about a "Form", name for headwords in encyclope-
dic dictionaries, description and note for prose descriptions and notes
related to morphology or grammar, and usage for usage information of
the analysed form.

• Grammatical Group: This model is plugged at several levels of the
architecture and has the task of parsing a group of grammatical infor-
mation generated by Lexical Entry, Form, Sense or Sub-Sense models.
The actual list of labels contains: pos for POS, gramElement for a piece
of grammatical information that is going to be typed, tense for tense of
a verb, gender for gender information, number for number, subcategori-
sation for information about transitivity, count-ability, etc., and note for
prose notes about grammar.

• Cross Ref: Such a model makes it possible to parse cross reference con-
structs generated by the Lexical Entry model and potentially at other
levels where the logical and physical structures are represented in a
similar way. The main labels predicted by this model are: label for tex-
tual triggers of a reference (e.g. "See", "voir" or "V.", etc), reference for a
internal or external reference, and relation to type the reference instance
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(e.g. synonym, antonym, false friend, etc). Other labels are also en-
abled for this segmentation level such as bibliography for bibliographic
information or note for further notes.

• Sense & Sub-Sense: These two models orchestrate the decomposition
of the hierarchy of senses, if sense nesting occurs. For the Sense model,
the supported labels are subSense for an embedded sense, gramGroup for
existing grammatical information, num for sense numbering, and note
for any prose description related to the upper sense. The mission of this
segmentation model is to extract senses that will be parsed by the Sub-
Sense model to recognise possible gramGroup for embedded grammat-
ical information, definition containing a definition of a sub-sense, exam-
ple for sense illustration, translation for translation equivalents, usage for
usage information, related entry for possible embedded related entries,
etymology for diachronic information related to the sense, and finally
reference for recognised cross references. Note that, if no sense nesting
occurs, these two steps still need to be followed one after the other. For
an entry that has only one sense, this sense needs to be annotated first as
a sense for the Lexical Entry model and then as a subSense for the Sense
model. A control for displaying the final output will make sure that
redundant sense tags are removed. Finally, an additional sense nesting
level can be triggered when the senseGramGroup label is used and all
the sense elements recognised by the Lexical Entry model along with
senseGramGroup will be wrapped in a sense construct inside a Lexical
Entry.

• Etym/Quote & Etymology: parsing etymological and diachronic infor-
mation is carried out through two successive steps. The first makes
use of the Etym/Quote model to differentiate quote text blocks from
the rest of the etymological description, which is labelled as segment.
Then both recognised blocks are parsed in the second step with an Ety-
mology model to extract definition, mentioned for etymologically related
words, language for information about the related word’s language, bib-
liography for bibliographic details, and possible nested segment(s). Such
cascading processing is necessary as quote could have a complex struc-
ture that needs to be processed in the same way as segment constructs.
These cascaded models can be used to parse diachronic information
wherever it appears (e.g. under subSense, related entry, etc).

For all the models presented above, two more labels are required: punc-
tuation, which represents an abstract label for any punctuation or symbol
marking the separation among fields recognised by a CRF model, such as
the full stop marking the end of a lexical entry’s description, bullets marking
the beginning of a definition or an example, etc. Such an abstraction helps
the models to converge quickly, especially for some feature setups where the
label of the previous token in a sequence is used as a feature to predict the
label of a current token. This aspect will be explained further in Section 4.3.2.
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The second label we added to the set of elements to be recognised by a model
is dictionary scrap, which can be considered as a trash collector used to encode
any text sequence that can not be labelled with any of the tags permitted for
a model. Such a label is very useful when it comes to labelling a noisy text
resulting from an OCR output or meta-data information that could figure in
the text of the dictionary at any random position.

Finally, all these tags can be used more than once per level, as for multiple
lexical entry to segment a body or definition to structure a subSense.

4.3.2 Feature Engineering

Given the impact of selected features on the learning of CRF models ex-
plained in Section 3.3.2, the feature engineering or selection step is crucial.

The process begins with preparing vectors describing the text sequence
we want to structure (i.e. the text of a whole page, the text of a lexical entry,
the text of a sense, etc). To do so, we designed the vectors based on two
variations:

• Token vs Line based clues: The descriptive vectors are based on text
and layout features of single tokens (see Figure 4.5). The vector gener-
ation mechanisms we implemented can adjust the level on which the
descriptive matrix is focused. For the first model, Dictionary Segmen-
tation, which has the task of parsing all the text of the document, is
more efficient in terms of learning the distributions and guaranteeing
a fast processing to use the first two tokens (punctuation marks with
their preceding token are considered as one token) of each line rather
than using all its tokens. Our decision was initially based on the obser-
vation of similar behaviour of analogue models in GROBID. Moreover,
the experiments on several samples confirmed the rapid and efficient
prediction results. This choice was dropped starting from the second
model, Dictionary Body Segmentation, where lexical markers at dif-
ferent positions of the lines are often crucial for the model to learn the
triggers for starting labelling a new field. For that, each vector describes
each token of the text sequence.

• Generic vs Lexical clues: For the Dictionary Segmentation model, we
used features based on a descriptive matrix analogous to the one defined
for GROBID’s first segmentation model (a detailed description of the
vectors is provided in A.1.1). This choice was motivated by the power
of such a model to detect macro areas in a document, a task which is
similar to the scope of the first model in our architecture. For the rest
of the models in GROBID-Dictionaries, we chose to rely on restricted
descriptive vectors where we drop the information that is unlikely to
be useful. The token position in the page, for instance, is very infor-
mative for the Dictionary Segmentation model to differentiate a page
body from headnotes and footnotes but has almost no relevance, and is
probably misleading for capturing a sense in a lexical entry that is very
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often split over two pages. Excluding such input for the CRF mod-
els results in reducing the number of feature functions of a model and
consequently making its training process and its size more compact.
Therefore, we extracted only 16 descriptive features (see columns in
Figure 4.5): 8 based on the text and the rest carrying layout and typog-
raphy clues about each token, such as a change of font or line breaks
(for more details, see Appendix A.1.2). However, we tried to maximise
the abstraction over key lexicographic markers, namely field separators.
In fact, we dedicated one flag feature to mark the tokens that are a punc-
tuation, opening or closing brackets (parenthesis, square brackets, and
braces are considered brackets in this case).

From the resulting descriptive matrix we used Wapiti 8, a CRF library im-
plemented by Lavergne, Cappé, and Yvon, 2010 and adapted within GRO-
BID to perform the feature engineering process by experimenting combina-
tions of selected features from each descriptive vector and its neighbouring
tokens. Wapiti allows feature tuning to be performed through dedicated files
specifying a set of feature templates (i.e. selected features). We studied the
tuning of feature templates empirically to find the best combination for each
model, based on the various samples we collected and annotated. Given the
fact that the templates select the features from the descriptive matrix, the
feature engineering process follows the same separation between the first
model and the rest of GROBID-Dictionaries’ architecture. In other terms, we
prepared three classes of template combinations and for each class we define
one combination for the first model of the architecture and another one for
the rest of the models. We detail the combinations in the following:

• Unigram and Bigram Feature Templates: These two classes of tem-
plates differ in the possibility to take into consideration or not the tran-
sition probability from one label to another. A template is called a Uni-
gram feature template when a label predicted by a trained model is based
only on the features of the input sequence, whereas a more complex
variation called Bigram feature templates, also takes the predicted label
of the previous token into account. For the Dictionary Segmentation
model we used the templates of GROBID’s first model in their Unigram
(see Appendix A.2.1) and Bigram variations (see Appendix A.2.3). Start-
ing from Dictionary Body Segmentation, we used the newly defined
descriptive matrices to define own Unigram (see Appendix A.2.2) and
Bigram templates (see Appendix A.2.4). We defined these templates
based on those used for the Dictionary Segmentation model and fol-
lowed the same logic to define the descriptive matrices, by dropping
information like the position of a token within a block or a page, or the
description of the current line. For the remaining templates, we defined
a combination that has a restricted bidirectional window of information
about neighbouring tokens.

8https://wapiti.limsi.fr/manual.html

https://wapiti.limsi.fr/manual.html
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• Engineered Feature Templates: As a third class, we used Engineered
feature templates that we define based on rounds of feature selection. En-
larging the bidirectional window mentioned above is the main engineer-
ing action for this class. For the Dictionary Segmentation model we
were not able to find a better combination that could significantly im-
prove the existing Bigram combination. For the rest of the models, the
idea was to find an advanced set of feature templates that could operate
on data which have different levels of complexity and for a mid-level
complexity sequence labelling model. For that, we relied on the corre-
sponding set of Bigram feature templates and we tried to tweak it (see
Appendix A.2.5) using two different dictionaries, a modern English
born-digital dictionary (see Section 7.2.3) and a legacy French digitised
dictionary (see Section 7.2.3), and the Lexical Entry model, which we
consider to be the component of our architecture that has the average
complexity level of parsing (i.e. in terms of granularity). For all fea-
tures focusing on information about neighbouring tokens, we enlarged
the window by 3 in both directions to provide longer range clues for
predicting the class of a token. For instance, the window of templates
focusing on the token and its neighbours goes from 4 to 7 and tem-
plates pointing to the typography of tokens in the sequence go from 1
to 4 neighbouring words.

For Unigram templates, the total T of generated distinct features is L × N,
where L is the number of labels and N is the number of unique features
generated by the templates. For Bigram and Engineered templates, T equals
L× L× N. As a result of feature engineering, a larger L in the case of Bigram
templates and a larger N in the case of Engineered templates produce a larger
number of distinct features T. It is worth pointing out that the cost of a grow-
ing T is a slower training process and heavier resulting models which could
slow similarly heavy models when they are called in cascade.

The impact of the presented set of template combinations on the labeling
performance of the models will be exhaustively presented in Chapter 7.

4.3.3 Model Activation & Call

To use the models of the architecture, two stages need to be followed through
the functionalities available in the two facets that the system represents.

Models Activation: MATTER Workflow

The activation of the architecture presented is enabled by following the MAT-
TER methodology (Model–Annotate–Train–Test–Evaluate–Revise, see Figure 4.7)
introduced by Pustejovsky and Stubbs, 2012. Projected onto GROBID-Dictionaries
and the processing of lexical resources, the individual steps are as follows:

Model: define a CRF model for predicting different text structures at one
stage and determine the corresponding feature set. This phase requires
a programmer to create the defined models and integrate them into the
cascading architecture.



48 Chapter 4. Lexical Models for Parsing Print Dictionaries

Annotate: assign a TEI tag to each text block representing a lexical entity
defined within a model’s scope. This task must be performed on an
XML representation of the data and must be strictly synchronised with
the corresponding feature matrix file. The annotation guidelines9 need
to be respected.

Train: use each annotated batch of data to train a corresponding model. The
cascading architecture of the models should be respected here.

Test: this step gives just a rough idea about how the trained model behaves
on unseen data. There are many ways to accomplish this goal. The
easiest one is to run the corresponding web service from the web appli-
cation on a held-out sample.

Evaluate: a precise evaluation with different measures is possible at the end
of the training process as long as annotated data are provided under
the dedicated location in the dataset.

Revise: the last stage concerns reviewing the modelling and annotation steps
that have been described in the guidelines. Four possible measures are
the outcome of this step:

• annotate more data when an improvement in the results was achieved,

• refine the annotation guidelines for new variations observed in the
last training batch

• proof-read the performed annotations when minor anomalies are
noticed

• think about redefining the modelling when the results represent
unexplainable anomalies. This could be translated either into a
simple feature engineering process or into a change of the logic
behind and the scope of the models or their architecture.

Models Call: Cascading REST Services

After activation/training of the selected parsing models, these are called
through REST services of the system’s web application facet 10. After call-
ing the macro levels parsing service, the micro level parsing is organised
according the required depth of the analysis of the lexical information.

After giving an input dictionary file, calling the Parse dictionary service
triggers the Dictionary Segmentation model and the parsing result is then
displayed in the web navigator. If the result is good enough, calling the sec-
ond service on the list is then meaningful and the second model in the ar-
chitecture is launched to parse the extracted body. Upon having good seg-
mentation results, the Lexical Entry model can be called through the third
service on the list. The final service on the list, Parse full dictionary, triggers

9https://github.com/MedKhem/grobid-dictionaries/wiki/How-to-Annotate%3F
10https://traces1.inria.fr/grobid-dictionaries/

https://github.com/MedKhem/grobid-dictionaries/wiki/How-to-Annotate%3F
https://traces1.inria.fr/grobid-dictionaries/
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FIGURE 4.7: Implemented MATTER Workflow

FIGURE 4.8: Cascading Model Selection in GROBID-
Dictionaries
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the customisable orchestration process of the rest of models. At this stage,
the users have full control over calling the models they need for the parsing
depth they want. Figure 4.8 shows a case of the cascading model activation
process, where the users have the choice of calling one or several models for
parsing the constructs of detected by the Lexical Entry model. They can then
combine the output of the models they choose to get the best possible parsing
result. More screenshots of the web application are provided in Appendix B.

It is worth pointing out that after each step at any parsing level, the users
have the option to export the output they find the best as a TEI valid docu-
ment. They can then continue the encoding of the structures in the exported
document.

4.4 Lexicographic Knowledge Acquisition

Throughout the development of our approach and the implementation of the
models in GROBID-Dictionaries, we faced several challenges that impacted
on our priorities and pushed us to carry out more experiments in order to
identify the nature of the issues and think about possible ways of overcoming
them.

Extensive lexicographic expertise was required to define generic cascad-
ing models that satisfy the maximum of the lexicographic needs at each seg-
mentation level. Making sure that the lexical models are applicable to dif-
ferent categories of dictionaries and languages that we do not master, was
also a priority for us after encountering several modelling challenges. There-
fore, we thought of collecting early feedback from domain experts through
three measures. First, easing the setup of the system to attract more users, in
particular those who have no IT knowledge or support to install and operate
relatively complex tools in different running environments. Second, relaxing
the complexity of the annotation workflow with more user-assistance and
steps controls. Finally, offer collective training sessions to test the enhanced
setup and collect feedback directly from the end users.

4.4.1 Easing Setup

To explain the improvement targeting the setup of the tool by a user with
little IT skills, one needs to have an idea about the initial configuration of the
tool.

Initial Configuration: IT Expert Use

GROBID-Dictionaries depends on core utilities and libraries provided by
GROBID. The installation of the system must be preceded by the installa-
tion and setup of the parent project. Therefore GROBID-Dictionaries needs
to be cloned as an extension module within GROBID’s project structure and
must be built after its parent project.

Due to differences in technical preferences of the project leaders, two dif-
ferent automation build technologies need to be used to build each project:
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Gradle11 for GROBID and Maven12 for GROBID-Dictionaries. Successful
builds of the system are packaged as Java libraries in two formats:

• a JAR (Java ARchive): this file is required for all processing stages
which precede the training of each model, and

• a WAR (Web Application Resource or Web application ARchive): in the
case of GROBID-Dictionaries this is not only a standalone web appli-
cation but also a self-contained one that can be run after the training
of the CRF models. It provides a graphical user interface to the exist-
ing web services, each corresponding to one or more of the cascading
classification models.

GROBID-Dictionaries has been developed, tested and documented for
the Linux and Mac operating systems. The behaviour of the resulting li-
braries is expected to be the same when run on other operating systems.
However, there is no explicit guarantee for such uniform behaviour.

Enhanced Usability & Unified Execution Environment: DH Use

As a first measure, we investigated different ways to streamline the setup
process and to guarantee a unique behaviour of the system across different
execution environments.

One possible solution would have been to use a system image runnable
on a virtual machine. Such an image should have a Linux-based operating
system, a Java development kit (JDK) and the different automated build sys-
tems installed. GROBID and GROBID-Dictionaries should also already be
cloned and built correctly. This type of solution suffers from two main is-
sues. Firstly, the size of the image would be huge as it would include several
unnecessary tools and system files that are still part of the operating system.
Secondly, the static nature of such an image would make it complicated to
update after a new version of GROBID-Dictionaries has been released. Up-
dates to GROBID-Dictionaries are published frequently since the tool is un-
der continuous development.

However, a system image containing the above-mentioned components
can be built in a more efficient way using a different technique. Docker13 is
a state of the art software technology which is also based on the virtualisa-
tion of the execution environment. In contrast to the static image approach
sketched out initially, Docker allows for the flexible composition of an im-
age. An image is shaped by instructions written in a Docker file14. These
instructions ensure that only the required components are included in the
image. Moreover, several alternatives are available to efficiently update a
build within an image starting from pushing a newly created image to the
online Docker Hub repository15, to linking the corresponding GitHub and

11https://gradle.org
12https://maven.apache.org
13https://www.docker.com
14https://github.com/MedKhem/grobid-dictionaries/blob/master/Dockerfile
15https://hub.docker.com/r/medkhem/grobid-dictionaries/

https://gradle.org
https://maven.apache.org
https://www.docker.com
https://github.com/MedKhem/grobid-dictionaries/blob/master/Dockerfile
https://hub.docker.com/r/medkhem/grobid-dictionaries/
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Docker Hub repositories coupled with activating the automatic build to syn-
chronise the image after each update of the code.

FIGURE 4.9: A GROBID-Dictionaries image in a Docker con-
tainer

To run a Docker image of GROBID-Dictionaries (see Figure 4.9), a user
needs to install the version of the Docker software corresponding to the user’s
operating system and pull the latest image of the tool from Docker Hub. The
pulled image (orange box) will not be run directly on top of the operating
system of the host machine but rather inside a Docker controlled container
(yellow box). Thus testing the tool on Docker is enough to guarantee a uni-
fied behaviour, regardless of the particular system configuration of a user’s
computer environment.

It is also possible to synchronise files on the host machine with a running
image in the Docker container. This feature allows the tool hosted inside a
Docker container to directly interact with files stored on the host machine.
We took advantage of this alternative to make the dataset directory shared
between the two environments. With this mechanism, the user can exploit
the full functionality of the tool living in the Docker image to train the ma-
chine learning models on the data residing locally on the user’s machine.

In addition, thanks to the self-contained nature of the tool’s web appli-
cation coupled with its fluid setup and manipulation through the Docker
image, using the GROBID-Dictionaries image enables both the desktop and
web based functionality to be run on the user’s local machine. Such a feature
represents an asset for researchers who are concerned about the security of
their data and experiments.

4.4.2 Lightening Annotation

The second major category of improvements specifically targets the annota-
tion workflow. Annotating data for the training process involves challenging
manual work and requires precautionary measures to ensure data integrity
and validity.
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Creating Training Data

To train a model in GROBID-Dictionaries based on a PDF file containing the
raw text and the typographical features of a lexical resource, two additional
files are necessary: a TEI document containing the corresponding reference
encoding and a feature file describing textual and typographical information
of each printed line or token.

To generate the training files, embedded functionalities of the tool should
be used following one of the two following options:

• pre-annotated training data: this used to be the default mode for auto-
matically creating training data, inherited directly from GROBID’s core
functionality. This mode is useful when a model was trained on a sub-
stantial amount of data. The task of the annotator is then to correct the
automatically placed TEI tags by moving, adding or removing them.

• raw training data: this constitutes new functionality we have imple-
mented to shortcut the checkout and cleaning of the tags automatically
generated by using the default mode. The idea is simply to create train-
ing data without pre-annotations. Despite being obvious, starting to
annotate a document from scratch was not possible before integrating
this new feature. Such a mode breaks with the old practice of correcting
the predictions made by a model trained on different samples, to make
it possible to start annotating totally fresh data. Besides giving more
choices to the annotator, such a mode saves time and effort, especially
if an old model was trained with multiple TEI elements.

A legitimate question remains as yet unanswered: how can a user gen-
erate training data based on a selection of specific pages from the possibly
hundreds of pages a dictionary may comprise?

After annotating different lexical samples in PDF format, we could qual-
ify splitting an existing document into separate pages, or sequences of pages,
as a very critical step. With some supposedly dedicated PDF manipulation
tools producing damaged pages, we found only one tool reliably useful for
the purpose of separating PDF pages16 which seems to produce a quality
split as good as the original document. Using workaround solutions for this
purpose, such as the print-to-file functionality in web browsers, is also not
recommended.

Training Data Annotation

As previously stated, GROBID-Dictionaries generates a preprocessed XML
representation from PDF files containing the raw text of a lexical resource. To
create training data for the tool, the user is then required to introduce seman-
tic mark-up for the different models. Typically, an XML aware editor should
be used to perform this task. Some advanced editors such as oXygen17 allow
for the visual annotating of XML files (see Figure 4.10 for an example).

16http://community.coherentpdf.com
17https://www.oxygenxml.com/

http://community.coherentpdf.com
https://www.oxygenxml.com/
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We aimed to take advantage of the visual feature to avoid performing in-
line annotation directly on the text of the XML elements. This is catered for
by a new feature in GROBID-Dictionaries that for each model now provides
both a schema description (in Relax NG)18 and a presentational stylesheet (in
CSS). The schema description enables the editing software to check or even
enforce schema compliance of the training data. The stylesheet can be ex-
ploited by the editing software to allow users to mark up the training data
semantically by highlighting portions of the text and then enclosing the high-
lighted portion with a suitable XML tag. The colours attributed to each ele-
ment can be customised by a simple modification in the stylesheet.

FIGURE 4.10: Training data annotation in oXygen author mode
for the first model: page headers vs. page body

Train, Test and Evaluate

For this segment of the MATTER workflow, the user is provided with straight-
forward shell commands to execute, a graphical mode to test and varied
measures to evaluate and decide whether a model has reached an acceptable
level of accuracy. A simple but effective trick could however be employed at
this stage to verify the accuracy of the annotations performed in the previ-
ous step. Where in a normal case the annotated data should be split between
training and evaluation datasets, the training dataset could be also used as an
evaluation dataset to verify any inconsistencies that might have accrued dur-
ing the annotation process. In such a setup, and when a reasonable number

18http://www.relaxng.org

http://www.relaxng.org
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of pages have been annotated, a correct annotation should give almost 100 %
accuracy, which means that model could reproduce what it has learnt cor-
rectly. Any other result should lead to the last step described in Section 4.3.3.

4.4.3 Training Domain Experts and Collecting Feedback

To test and adjust the two previous categories of enhanced usability mea-
sures, we chose to collect feedback from domain experts while and after ma-
nipulating and getting familiar with the GROBID-Dictionaries ecosystem.

Hands-on Sessions with End-Users

Besides the motivation, we had the opportunity to expose the under-development
infrastructure, during different periods of its implementation process, to real
users. These user experiences were organised as workshop series in the con-
text of Masterclasses for lexicographic data19,20, inter-disciplinary consor-
tium gathering21, and dedicated events for promoting the new system22,23,24.

The goal of the workshop was to familiarise the participants with the
MATTER workflow as implemented in GROBID-Dictionaries (see Section 4.3.3),
while excluding the first modelling step which requires programming skills.
Note that none of the participants was familiar with the tool prior to the tu-
torial.

The average duration of a workshop is 5 hours. After a short introduction
to the architecture of the system, the users were guided through the process
of installing and running the docker image25. Once the docker image was
running, the participants were then able to reproduce the results reported
in Khemakhem, Foppiano, and Romary, 2017 which are based on a modern
English monolingual dictionary (Publishing, 2009). As the next step, several
users used the possibility to experiment with their own lexical samples by
repeating the workflow they had learnt and crafting new models for their
individual datasets26.

19https://digilex.hypotheses.org/250
20https://lexmc18.sciencesconf.org/resource/page/id/3
21https://cahier.hypotheses.org/3640
22https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-

pretoria-tickets-49730494247
23https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-

potchefstroom-tickets-49732031846
24https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-

stellenbosch-tickets-49731001765
25see instructions at https://github.com/MedKhem/grobid-dictionaries/wiki/

Docker_Instructions
26A more detailed description of the conditions of the experiment can be found in a blog-

post at https://digilex.hypotheses.org/250 and https://digilex.hypotheses.org/
category/posts as shared by several participants.

https://digilex.hypotheses.org/250
https://lexmc18.sciencesconf.org/resource/page/id/3
https://cahier.hypotheses.org/3640
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-pretoria-tickets-49730494247
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-pretoria-tickets-49730494247
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-potchefstroom-tickets-49732031846
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-potchefstroom-tickets-49732031846
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-stellenbosch-tickets-49731001765
https://www.eventbrite.com/e/sadilar-grobid-dictionaries-workshop-stellenbosch-tickets-49731001765
https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
https://digilex.hypotheses.org/250
https://digilex.hypotheses.org/category/posts
https://digilex.hypotheses.org/category/posts
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Participants with Diverse Backgrounds

The tutorial groups consisted of users with various profiles, such as lexicog-
raphers, linguists, computational linguists, computer scientists, philologists
and translators. Most of the participants had not previously trained machine
learning tools.

After the very first workshop, we asked the participants of our tutorial
to respond to a questionnaire created as a Google Form27. The questionnaire
gives an overview of the typical profiles and user experience, which we tried
to improve after collected feedback. Although it was our first tutoring experi-
ence and the usability improvements were still freshly implemented, all the
participants reported being confident that they were able to re-apply what
they had learnt on other lexical resources.

The workshop series was held 8 times with pending ones to be organised
after writing this thesis. The workshop series allowed us to train and collect
feedback from over 100 users from different academic and industrial institu-
tions, who also succeeded in tutoring new users in their institutions. Over
10 users are actively using the system and providing us with feedback and
samples.

Various tested Material

The lexical resources brought to the tutorials were considerably varied. They
included different types of dictionaries (some digitised, some born-digital
with no explicit semantic markup) such as general monolingual, bilingual
and etymological dictionaries as well as a dictionary from a language doc-
umentation field project (see Table 4.1). The tested samples confirmed the
generic nature of our models and the fact they are language agnostic, as long
as the samples are from alphabet-based languages.

Some separate experiments with arabic samples were not successful given
a problem originating from the library responsible for extracting the text from
the original document. We assume that the problem would be the same for
other languages sharing the same writing system (from the right to the left).

Outcome & Gathered insights

Having motivated inter-disciplinary experts participating in the tutorial as
well as testing the tool on new lexical samples provided us with the oppor-
tunity to spot some issues and several possible improvements.

We were able to fix some of the minor triggered implementation issues
in the course of the tutorials. Other issues have been filed as new tickets
on GitHub, e. g. issues concerning the treatment of lexical entries that stretch
over more than two pages in print. Some technical issues related to the GRO-
BID core still need to be resolved such as support for some classes of special
characters which are wrongly encoded in the pre-processing of the raw input
text. The annotation guidelines were also further refined to provide clearer

27https://goo.gl/Zt2gDy

https://goo.gl/Zt2gDy
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Type Language(s) Size
general, bilingual Greek, English ≈ 17 000 entries
general, monolingual Basque ≈ 16 000 pages
etymological, bilingual Hittite (a language of the

ancient Near East), English
≈ 470 pages

lang. documentation French, Yemba (an African
language family)

≈ 2 100 entries

lang. documentation German (Bavarian dialects
in Austria)

≈ 75 000 entries

general, monolingual English ≈ 370 pages
Dialectal Serbian ≈ 320 pages
Domain specific, Bilingual German, Serbian (Mining

Dictionary)
≈ 4, 000 entries

general, multilingual Macedonian, Serbian, En-
glish, French, Russian and
German

unknown

TABLE 4.1: Some of the Dictionaries experimented with in
some sessions of the workshop series

definitions of constructs to be annotated. But we made sure that the changes
are not great to avoid confusing the trained users after the tutorials.

Lexicographers and linguists among the participants who gave us use-
ful domain expertise comments, were many of which were taken up and
resulted in implementing new labels for our models or even modifying the
models behaviour. The limits of our modelling were exposed when the sys-
tem had the challenge of parsing new samples according to different lexico-
graphic practices.

Such a user experience helped us not only to verify our assumptions and
improve our implemented approach but also to provide us with data we can
use for our advanced experiments (see Chapter 7) and initiate cooperation
that allowed us to widen the scope of our lexical models (see Section 7.6.1).

4.5 Chapter Summary

This chapter provided an in-depth presentation of our approach and the dif-
ferent solutions we found for the theoretical and practical challenges that we
encountered.

We have presented GROBID-Dictionaries, a double-faceted ecosystem for
parsing print dictionaries, which allows users with no advanced IT skills to
train and customise the use of an architecture of machine learning models.
We have also sketched out possible ways of leveraging the training of CRF
models from an engineering perspective. This aspect will be showcased in
Chapter 7 where we will present in detail the performances of the different
models, given different combinations of features and varied tested samples.
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Solutions to overcome the lack of lexicographic knowledge were also ex-
plained through practical and empirical measures. Our investigations in this
direction may not be qualified as a user study but we managed to bridge the
gap between engineers and domain experts by foreseeing such an obstacle.
The positive results of such an early measure and the common issues discov-
ered in related fields in humanities encouraged us to dig in new directions
and open up new perspectives for our endeavours. We will further develop
this aspect of our work in Section 7.6.1.

We have also highlighted some decisions regarding the encoding of lex-
ical structures with respect to the implemented cascading mechanism. In
Chapter 6 we will provide more details about the challenges of using a stan-
dard to encode dictionaric resources and coming up with generic schemes
that ease exchange and automatic processing. But before we dive into new
standardisation schemes for lexical resources, the following chapter gives an
overview of the state of the art of the standards for such resources and the
obstacles facing the community regarding scalability and exchange.
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Chapter 5

Standards for Structured Lexical
Resources

5.1 Introduction

The dictionary parsing architecture we are presenting in this thesis aims not
only at generating structured lexica for NLP downstream tasks, but also
at allowing high exchange and interoperability with existing resources and
querying tools. Thus, awareness and compliance with the existing practices
and standards for structured lexical resources is required for the purpose of
scalability.

Our study of the literature has shown a dominance of two standards,
namely Text Encoding Initiative (TEI), Lexical Markup Framework (LMF)
and one standardisation initiative, OntoLex-Lemon, for modelling lexical re-
sources. Each of these modelling frameworks has been initiated to satisfy
specific needs that represent several overlappings.

In this chapter we present the history and the motivations behind the
foundation of these standards. We then provide a comparative study 1 of all
of them with a focus on the strengths of each framework, and how it could
fit the requirements of te structured output we wish to deliver.

5.2 TEI

TEI is a well-established standard that has proved popular within the lexi-
cographic community. In this section, we give an overview of the standard
from an engineering and lexicography newbie perspective.

5.2.1 Background

TEI (Sperberg-McQueen and Burnard, 1994) is a standardisation initiative
that was launched in the late 80’s with a view to finding a common frame-
work for encoding text documents. The initiative has become a de facto stan-
dard and has been widely adopted in major humanities and documentation
fields for academic, governmental and industrial projects2.

1Our survey is based on the state and the guidelines of these standards at the time when
the work on this thesis started, specifically, September 2016

2https://tei-c.org/activities/projects/

https://tei-c.org/activities/projects/
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In fact, the TEI guidelines give flexible and effective alternatives to struc-
ture texts for various purposes. They offer a strong document representation
framework, with over 600 XML elements covering the needs to model al-
most any text. Its flexibility also lies in its specification language, ODD - One
Document Does it all, which makes it straightforward to adapt the existing
guidelines for close structuring requirements and supports the creation of
new extensions for totally new needs.

The TEI guidelines are actively maintained and the P5 revision (Budin,
Majewski, and Mörth, 2012) devotes an extended chapter to encoding lexi-
cal resources of different kinds. The impact of this initiative is clear in the
lexicography domain, where it has been adopted as a main encoding format
for large scale projects and resources in the field. Such success comes from
the fact that a varied community of contributors is involved in shaping the
standard and the reviewing process is pretty flexible and quicker than those
for de jure standards.

5.2.2 Modelling Perspectives

The TEI guidelines provide a formal modelling of text in documents through
a set of categories gathering related XML elements, called modules. The P5
version of the standard comprises 21 modules 3 for marking up almost any
piece of text, where the ninth is dedicated to encoding dictionaries.

Encoding Level

The TEI guidelines allow two levels of text encoding in print documents,
where often one or the other is targeted by a user of the standard. The first
level aims at reflecting the physical structure of a document by using ele-
ments from the “core module”. Such TEI elements can be used to encode
paragraph and line beginnings, highlighted words, etc. Some elements can
also be typed in to provide more precision on how they are typographically
presented in the original print document. Figure 5.1 (C) illustrates the use
of elements from the core module (i.e. <p> 4, <lb> 5, and <hi> 6) to encode
respectively a paragraph beginning, a line beginning and highlighted text
segments in the lexical entry. Note the typed <hi> elements to markup the
italic - i - and bold - b - in the text. Such a use is very common in the docu-
mentation and archive projects where the goal is to preserve every detail of
the physical aspects of the text material.

The second level of encoding enabled by the TEI guidelines deals with
the semantic and logical function of text structures. For lexica encoding, the
“dictionaries module” provides a lexicon designer with an exhaustive set of
TEI elements modelling different linguistic levels of the lexical information.

3https://tei-c.org/release/doc/tei-p5-doc/en/html/ST.html#STMA
4https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-p.html
5https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lb.html
6https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-hi.html

https://tei-c.org/release/doc/tei-p5-doc/en/html/ST.html##STMA
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-p.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lb.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-hi.html
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Such an encoding is also influenced by the linear description of print dic-
tionaries, where common practices involve respecting the order of fields as
they appear in the original document. Figure 5.1 (B) depicts the use of the el-
ements of the specific module and shows the difference between this and the
previous encoding level. Such a use is more popular within the lexicographic
community and projects.

(A) Original PDF Ex-
cerpt

(B) TEI Encoding of the Logi-
cal Structure

(C) TEI Encoding of the Physical Structure

FIGURE 5.1: Entry CABBAGE in (Mueller, 1878) and examples
of its two Levels of TEI encoding

Encoding Workflow & Choices

Each module is described in the guidelines in a chapter that contains a formal
description of the use of its elements. The use of TEI elements of a certain
module does not exclude those from other modules.

A newbie willing to follow these guidelines needs to verify the adequacy
of an element he/she chooses for the piece of information he/she wants to
model by:

• reading the prose description provided in the guidelines for the chosen
element (e.g. <entry> 7)

• exploring the different instances of the use of the element in different
contexts of the text to encode, which are often provided in more than
one language

7https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-entry.html

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-entry.html
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• verifying the validity to use a certain element as a child of one of its
possible containers, indicated in the section “contained by”

• anticipating the modelling of child components by checking out the
allowed elements for lower level, specified in the section “may contain”

In addition, a lexicon designer can stop at any depth of encoding when
he/she considers that the necessary needs have been met. Figure 5.2 illus-
trates two valid modellings with different encoding elements and depths for
the same dictionary article.

FIGURE 5.2: Different Depths of TEI encoding for Logical Struc-
ture

Note the use of <entry> and <entryFree>8 to encode the same macro-
structure. <entryFree> is more favoured when the encoded entry has no
clearly structured description. Moreover, using <entryFree> can substitute,
to a large extent, the use of <entry>, and even gives more options to en-
code child components not allowed within <entry> (e.g <orth>9 for encod-
ing orthography or <superEntry>10 for certain cases of nesting entries). The
modelling of orthography is also different in the two TEI samples, where the
encoding depth varies. In fact, the use of <entry> forces the use of <form> to
enable the encoding of orthography with <orth> element, where the same
information can be encoded by directly using the <orth> element within
<entryFree>. The granularity of the <etym>11 block is also different in the
two encoding examples. The designer of the lexicon on the left seems to be
interested only in differentiating the lemma and the etymological informa-
tion, while in the example on the right, more focus is given to identifying the
micro-structure of the <etym> block.

8https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-entryFree.html
9https://www.tei-c.org/release/doc/tei-p5-doc/en/html/examples-orth.html

10https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-superEntry.html
11https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-etym.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-entryFree.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/examples-orth.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-superEntry.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-etym.html
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5.2.3 TEI-based Lexical Resources

It is hard to enumerate all the existing lexical resources encoded in TEI, given
its previously mentioned popularity. Nevertheless, we can differentiate be-
tween TEI resources that describe the physical structure and those which fo-
cus on the logical constructs.

For the first category, we can cite the work 12 of the Berlin-Brandenburg
Academy of Sciences for digitising and transcribing legacy dictionaries such
as Mueller, 1878; Uhlenbeck, 1900; Goedel, 1902; Kluge and Lutz, 1898.

For the second, we can cite EDBL (Aduriz et al., 1998), MULTEXT-East (Er-
javec, 2004) or the work by Declerck, Mörth, and Lendvai, 2012 to convert
Wiktionary data13 into a TEI compliant resource.

It is also worth mentioning that some OCR systems, such as Transkribus (Kahle
et al., 2017), offer the option to export the OCR’d documents in TEI format.
Such an output carries only markups for the physical description of an input
print dictionary and can be referred to as “TEI resource” or “TEI version” of
the original dictionary.

5.2.4 Discussion

Given the flexibility to choose from different encoding options for the same
piece of information, lexica encoded in TEI can have different schemes. This
freedom coupled with the wide adoption among lexicographers, having their
own backgrounds and visions of the logical structure of a dictionary, has
yielded a big bang of lexicon schemes and practices. Ironically, a standard
that was supposed to unify the encoding formats under the umbrella of a
common framework has turned into an uncontrolled modelling space.

TEI schemes are influenced by the documentation aspect of the standard
given the fact that the linear aspect of the encoded constructs highly impacts
the possible modelling options. Such a factor constrains the choices for a lex-
icographer and results in a non-optimal scheme dictated by all the possible
orders of the lexical information in a sample, even the inconsistent ones. Such
a fact adds a layer of complexity to the diversity of practices and schemes.
Consequently, interoperability and exchange between resources compliant
to the same standard have been significantly reduced.

5.3 LMF (2008)

LMF is a de jure standard published by the International Organization for
Standardisation (ISO) for modelling lexical databases and MRDs. It was
launched as ISO 24613 and is maintained by the standardisation sub-committee
ISO-TC 37/SC 4 14, and more specifically Working Group (WG) 4. In this sec-
tion, we present a brief history of this standard as well as a theoretical and
technical survey concerning its usage.

12https://gitlab.com/xlhrld/retro-dict
13https://www.wiktionary.org/
14https://www.iso.org/committee/297592.html

https://gitlab.com/xlhrld/retro-dict
https://www.wiktionary.org/
https://www.iso.org/committee/297592.html
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5.3.1 Background

LMF was initiated a bit later than TEI, as a followup initiative to multiple in-
ternational projects such as ACQUILEX (Copestake, 1992), EAGLES/ISLE(Calzolari,
Zampolli, and Lenci, 2002) and MILE (Bertagna et al., 2004). The most stable
and well-known version of LMF, published by ISO in 2008 (Francopoulo et
al., 2006) 15, has offered a framework for modelling, publishing and sharing
lexical resources with a special focus on requirements arising from the NLP
domain.

The LMF workflow follows the standardisation practices within ISO where
proposals and decisions are discussed and made within a high-level com-
mittee (i.e. ISO-TC 37/SC 4/WG 4) of experts and then validated/modified
through an international balloting process. Compared to TEI, there is less
transparency of the “in-between decisions” and less interaction with the fu-
ture users. The use of the LMF standard is also charged, unlike TEI which
is free. Nevertheless, it has gained a considerable number of users from
academia and governmental institutions who have adopted the standard to
take advantage of the combination of lexicographic and engineering exper-
tise for the purpose of building universal and sustainable lexical databases.

5.3.2 Meta-model

LMF has proposed a meta-model for designing lexical resources formalised
mainly in Unified Modelling Language (UML) (Fowler and Scott, 2004). The
meta-model is composed of a core component and pluggable interlinked ex-
tensions defining an abstract model for different linguistic levels of the lex-
ical information (see Figure 5.3). Examples of such extensions are Machine
Readable Dictionaries, Morphology, Semantic and Syntax extensions. The
meta-model is linked to data category registry (ISOcat - ISO 12620) 16 that
represents the elementary linguistic properties of the model components.

The meta-model introduces a number of interlinked classes and relation-
ships, which are categorised into one of the aforementioned extensions. An
instance of the diagram can be enabled by the instantiation of these classes
and relationships and respecting their specified multiplicities. Figure 5.4 de-
picts an instance of the LMF meta-model.

Lexical Entry is the key class of any LMF meta-model and it holds the
backbone of the lexical description. Morphological information and semantic
information are respectively presented by means of Form and Sense classes
and their sub-classes. List Of Components and Components classes, belonging
to several overlapping extensions, represent the core modelling mechanism

15the academic publication about the standard was a mature draft of the main aspects of
LMF that were accepted within the ISO-TC 37/SC 4/WG 4 and later went through the ISO
validation and publication processes to be published later on in 2008

16ISOcat is no longer an ISO project after the decision to make such a project open to
the user community. DatCatInfo took up the mission of representing such categories. It is
maintained by LTAC Global / TerminOrgs. Further details can be found in: http://www.
datcatinfo.net/#/history

http://www.datcatinfo.net/##/history
http://www.datcatinfo.net/##/history
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FIGURE 5.3: Dependencies between the LMF (2008) core and
extension packages (Soria, Monachini, and Vossen, 2009)

of MWEs. Further details about LMF modelling principles are highlighted
by Francopoulo et al., 2006.

5.3.3 Serialisation

LMF recommends an ad-hoc serialisation that represents a direct mapping
between the class names in the meta-model and the XML element names
or attributes. This serialisation figures in the standard as an Annex to the
meta-model and through some scattered possible serialisation examples. But
there is no comprehensive guide for serialising each element, defined in the
standard’s manual. Note that the serialisation can be carried out in any other
format, since the XML option remains the recommended alternative but is
not exclusive.

The standard is more NLP-oriented, which means that it gives almost no
importance to the linear structures of lexical information in print dictionaries.
The physical structure is also not considered as an aspect to be represented
with the LMF meta-model. These facts give an idea about the scope of the
resulting serialisation, in particular in comparison to a standard like TEI.

5.3.4 LMF-based Lexical Resources

A number of projects have adopted LMF as the main modelling framework
to build lexical databases in different formats. The most known publicly
available project resources is probably UBY (Gurevych et al., 2012) which
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FIGURE 5.4: LMF (2008) Object Diagram for Modelling the
MWE "DEAD CENTER"
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is a database composed of 12 lexica in two languages (English and Ger-
man). Commonly used lexical resources and knowledge bases like Wik-
tionary, WordNet, GermaNet and Wikipedia are among the lexica in UBY,
having pairwise links on the sense level (Matuschek and Gurevych, 2013).

UBY has been natively implemented as an SQL Database but the UBY API
enables the export of lexica as an XML serialised resource. Several down-
stream applications have been using UBY to carry out different tasks such
as semantic annotation (Miller et al., 2016), machine translation (Beinborn,
Zesch, and Gurevych, 2013), personality profiling (Flekova and Gurevych,
2015), and many others. The high coverage and the usability alternatives of
a resource like UBY are to a great extent enabled thanks to the LMF meta-
model behind.

El Madar (Khemakhem et al., 2016), a lexicon for the Arabic language
modelling of MRDs, is another LMF-based resource that shows the meta-
model’s lexical coverage and extendibility. In fact, Khemakhem et al., 2016
managed to model over 37,000 lexical entries using the existing extensions
and building on them new components, extending the existing meta-model.
Using LMF to model dictionary entries in a highly inflectional and syntacti-
cally rich language like Arabic proves the genericity and the flexibility of the
meta-model.

The list of resources instantiating the standard goes beyond these two re-
sources and includes lexica in several languages or pairs of languages (Maks,
Tiberius, and Veenendaal, 2008; Mykowiecka, Rychlik, and Waszczuk, 2012).

5.3.5 Discussion

LMF managed to overcome several obstacles towards a uniform represen-
tation of lexical resources for the NLP usages. The standard left, however,
different gaps that restrained its wide adoption and becoming the de facto
framework for modelling lexica. On the form level, the standard has an im-
balanced structure with just 20 pages for the main content and over 60 pages
for normative and informative annexes. In addition, only a few modelling
examples come with a recommended serialisation. Consequently, the bal-
ance and the analogy of the content, required for an intuitive understanding
are highly questionable for the case of this standard.

On the modelling level, the potential richness and the multi-layered na-
ture of linguistic descriptions in lexical resources has resulted in the LMF
meta-model taking on a great deal of complexity in its attempt to reflect these
various different linguistic facets. Complex relationships between classes
(e.g. useless Component class in Figure 5.4) and redundant mapping mech-
anisms (different mechanisms for the same abstract phenomenon e.g. syn-
onymy, MWE, etc) were the side effects of the modelled lexical complexity.
The latter has been propagated to the ad-hoc serialisation, which made the
querying and the enrichment of the resulting resources challenging. Finally,
key areas of linguistics such as etymology (and diachronic lexical informa-
tion in general) were not covered by the meta-model which sanctions a whole
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category of valuable resources that are supposedly within the scope of such
a standard.

5.4 OntoLex-Lemon

OntoLex-Lemon is an evolving initiative for the representation of lexical data
on the Semantic Web. In this section we present the history of its develop-
ment, the theoretical and technical foundations, and the limitations of the
resulting modelling.

5.4.1 Background

The rise of the Linked Open Data movement, mirrored on the linguistics field
as Linguistic Linked Open Data 17, has created the need to represent lexical
data as an ontology for the semantic web usage. LExicon Model for ONtolo-
gies (Lemon) (McCrae, Spohr, and Cimiano, 2011) was the first attempt to
find a dedicated model. After the foundation of the OntoLex Community 18

at the end of 2011, the group took on the improvement of Lemon and its
upgrade to create the so called OntoLex-Lemon (McCrae et al., 2017). W3C,
however, frames its role into a host of the discussions of the group and re-
mains distant from the views and decisions of the latter 19

Since its creation, the OntoLex group has focused on more structuring of
the model and the collection of several use cases for the purpose of widening
the coverage of the Lemon model. In parallel, the proliferation of the tools
that facilitate querying, linking and visualising of such resources has been
attractive for many projects. The transparency of the workflow has to some
extent helped the standard to strengthen interest in its use within the lexico-
graphic community, aiming at representing their resources on the Semantic
Web.

5.4.2 Modelling

The most recent version of OntoLex-Lemon, published in the official report of
the OntoLex Community Group, defines a model structured into four main
modules, besides a core model. The latter represents the description of a lexi-
cal entry as a constellation of concepts (see Figure 5.5) such as Lexical Concept
and Concept Set, and main components, like Form, Lexical Sense and Affix. The
other modules carry the representation of Syntactic and Semantics, the Decom-
position of multi-word lexical entries, Variation and Translation aspects, and
Linguistic Metadata.

17http://linguistic-lod.org/
18https://www.w3.org/community/ontolex/
19An explicit note from the consortium in the community page clarifies its position re-

garding the work of the Ontolex Community group : “Community Groups are proposed
and run by the community. Although W3C hosts these conversations, the groups do not
necessarily represent the views of the W3C Membership or staff.”

http://linguistic-lod.org/
https://www.w3.org/community/ontolex/
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FIGURE 5.5: OntoLex-Lemon Core Model (McCrae et al., 2017)

OntoLex-Lemon’s modelling remains faithful to the semantic web formal-
ism which is based on representing concepts and their relationships using
Resource Description Framework (RDF) triplets: subject, predicate and object.
The resulting model follows the principle of semantics by reference (McCrae
et al., 2012), where the logical structure of a lexical entry is expressed by ref-
erence to an individual, class or property defined in the ontology. In some
cases, the lexicon itself can reference object properties that belong to other
ontological models such as LexInfo 20. In fact, the defined triple-based vo-
cabulary specifies lexical concepts and possible internal links, forming the
definition of a lexical entry, and external relationships that represent links
among lexical entries. The modelling principles are heavily inspired by those
implemented in other models, like LMF’s.

In Figure 5.6, we show an instance of the OntoLex-Lemon model for rep-
resenting the same compound (i.e MWE) “dead centre”, already modelled
using LMF and depicted in Figure 5.4. We can notice the LMF inspiration
in modelling the components of the MWE and in the representation of Sense
and Form information. The modelling diagram is however ad-hoc, despite a
great resemblance to UML schematisation.

The triple-based vocabulary is manifested in each concept, as for instance:
centre_n is a Lexical Entry, and between two concepts, such as: centre_n is a
noun.

Note the complex modelling of the geographical variant forms of the canoni-
cal form (i.e. lemma) in centre_n_form concept, where the written and phonetic
representation have composite values. In addition to being less intuitive, in
comparison to other modelling frameworks like LMF, such a representation
makes it more complicated for automatic systems to enrich or query atomic
values for each attribute of a property.

20https://www.lexinfo.net/

https://www.lexinfo.net/
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FIGURE 5.6: First Instance of OntoLex-Lemon Model for the
MWE "DEAD CENTRE"

OntoLex-Lemon offers the possibility to encode a MWE differently, by
considering it an elementary form and consequently short-cutting the need
to model its components. Figure 5.7 depicts such a different design.

FIGURE 5.7: Another Example of Instantiating OntoLex-Lemon
Model for the MWE "DEAD CENTRE"

We noticed that the official report of OntoLex-Lemon does not provide
guidelines for modelling other categories of lexical information like deeper
sense relations or Etymology. But defining customised extensions for sup-
porting information, having such granularity and category, is also possible.
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And as long as the design in the OntoLex-Lemon report and the triplet mod-
elling principles are respected, a new extension can be qualified as “OntoLex-
Lemon compliant”.

Related work has succeeded in modelling such advanced extensions like
polyLemon (Khan et al., 2017) for deeper sense information, and lemonEtym (Khan,
2018) for etymological description. The ongoing revisions of the model are
also focused on its enrichment by improving existing extensions as for mor-
phology 21 , or defining new ones as for frequency 22.

5.4.3 Serialisation

The serialisation of OntoLex-Lemon relies mainly on the syntax and vocabu-
lary of RDF (Klyne, 2004) and RDFS (McBride, 2004). Another Semantic Web
framework, OWL (McGuinness and Van Harmelen, 2004), is also used within
OntoLex-Lemon’s serialisation to express more complex relationships along
with constraints on data values, such as cardinality and data range.

The defined serialisation can be created in different formats, such as RDF/XML
and JSON, while the Ontolex documents uses Turtle 23 as the main language
to serialise the examples of modelling diagrams.

Figure 5.8 illustrates a Turtle serialisation of the entry, modelled in Fig-
ure 5.6, by following the OntoLex-Lemon vocabulary. Note that every line
represents a triplet expressed in the diagram. The referencing to the internal
modules is manifested in, for example, the definition of components of the
MWE:

centre_component a decomp:Component

There are also instances of external links to object properties, such as the
one to LexInfo in:

lexinfo:partOfSpeech a lexinfo:adjective

The choice of a certain serialisation format does not exclude a straight-
forward migration to the others. In fact, through the existing translation
tools24,25 for semantic web technologies, it is possible to transform any RDF
serialisation into other formats, like JSON and Turtle, upon the click of a
button. Such a feature ensures more interoperability and exchange for the
Ontlex-Lemon resources on the Semantic Web.

5.4.4 OntoLex-Lemon-based Resources

Theoretically, OntoLex-Lemon allows the modelling of unstructured lexical
data in print dictionaries. In practice, the ontological model has been mostly

21https://www.w3.org/community/ontolex/wiki/Morphology
22https://acoli-repo.github.io/ontolex-frac/
23https://www.w3.org/TR/turtle/
24https://rdf-translator.appspot.com/
25http://www.easyrdf.org/converter

https://www.w3.org/community/ontolex/wiki/Morphology
https://acoli-repo.github.io/ontolex-frac/
https://www.w3.org/TR/turtle/
https://rdf-translator.appspot.com/
http://www.easyrdf.org/converter
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FIGURE 5.8: Turtle Serialisation of the MWE "DEAD CENTRE"
and its Components
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used as a scheme to transform already structured lexical data into lexical
databases. To our knowledge, only a very small number of small sized lexica
have used it as a native model/serialisation. From our newbie experience,
our explanation for such a phenomenon is the need to break down every-
thing in a lexical description into at least one triplet and often into more than
one. Such a modelling principle is not very intuitive and not practical, espe-
cially when it comes to encoding from scratch complex lexical information
that involves composition, rich atomic values (e.g. the phonetic and written
representations in Figure 5.8) or structure nesting.

A number of transformation experiments have been successfully carried
out with TEI and LMF-based databases among other native formats. The
best known examples of such a conversion are probably the resources re-
sulting from the transformation of NLP lexica, widely used in field, like
UBY (Gurevych et al., 2012) transformed into UBY-Lemon (Eckle-Kohler, Mc-
Crae, and Chiarcos, 2015), and BabelNet (Navigli and Ponzetto, 2012) con-
verted into lemon-babelnet (Ehrmann et al., 2014), or the TEI version of Liddell-
Scott (Liddell and Scott, 1896) compiled by the Perseus project (Magazine,
1998) which has been transformed into an OntoLex-Lemon lexicon .

5.4.5 Discussion

OntoLex-Lemon managed to open new perspectives for lexical data by of-
fering a framework for its representation on the Semantic Web and conse-
quently overcoming ad-hoc serialisation and format issues.

Nevertheless, this initiative represents several limitations for the use of
its scheme, as a native format for modelling lexical structures and their re-
lationships. Firstly, this is due to the relative complexity of its triplet-based
vocabulary, compared to standards like TEI and LMF. The use cases, based
mostly on conversion scenarios, support this claim. Secondly, the different
possibilities to design the same lexical concept, such as the case of MWEs
(see Figures 5.6 and 5.7), represent an obstacle towards reaching a unified
representation of the lexical information which results in reducing exchange
and comparability alternatives. Moreover, the standard is under active revi-
sion and great progress has been already achieved to support the modelling
of more granular and new classes of information. However, it remains insuf-
ficiently mature to cover the modelling requirements in print dictionaries.

5.5 Chapter Summary

This chapter gave an overview of the state of the art of the leading standards
and initiatives for modelling structured lexical resources and we highlighted
their strengths and shortcomings.

The TEI guidelines, being the most adopted within the community, have
provided lexicon designers with multiple mechanisms to model similar lexi-
cal structures according to different perspectives and practices. The flexibil-
ity offered, however, needs to be restrained by finding more compromising
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encoding schemes/practices to ensure a maximum interoperability of result-
ing resources. Our aim is to find a modelling that converges towards a uni-
fied TEI scheme for our parsers.

LMF has more control on the encoding practices and provides a stronger
formalism for modelling the lexical information, making the approach of the
standard a candidate framework for defining the target output we want to
generate from the parsed dictionaric material. However its complexity, lack
of coverage and NLP orientation need to be relaxed in order to support the
specificity of our target dictionaries.

Ontolex-Lemon has great potential for enabling high interoperability and
exchange allowed by the Semantic Web technologies. But the lack of cov-
erage and the differences in representing the same information are not in
favour of directly adopting it for modelling the lexical output of our parsers.
Nevertheless, the active revisions and the previous conversion experiments
leave the door open for the use OntoLex-Lemon to represent the output of
our models on the Semantic Web, by using TEI or LMF serialisation as a
pivot format. Such a choice has been already adopted in ELEXIS 26, a ma-
jor European project for electronic lexicography that shares with us the same
parsing and modelling goals, which confirms the limitations of the ontologi-
cal model.

In Chapter 6, we present the endeavours targeting the improvement of
our two candidate standards TEI and LMF. We show how these initiatives
overlap with our work and how our models can generate a comparable out-
put.

26https://elex.is

https://elex.is
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Chapter 6

Novel Standardised Schemes for
Encoding Dictionaries

6.1 Introduction

The issues highlighted in Chapter 5 regarding the modelling aspects of two
leading standards for lexical resources, TEI and LMF, have been already re-
ported by the lexicography community and some concrete proposals have
consequently been made to find better modelling frameworks with mutual
improvements (Romary, 2010; Czaykowska-Higgins, Holmes, and Kell, 2014;
Romary, 2015). But these observations and suggestions lacked the context
that moves towards gathering individual interests in such a direction under
one umbrella.

The two standards have different approaches and revision workflows.
Thus, combining the best of the two standards represents a considerable
modelling challenge and requires an active involvement in both standard-
isation ecosystems. Fortunately, this thesis began when there was already
consensus within European and International projects on the need to act and
find better TEI and LMF. In addition, we had the opportunity to be closely
involved in such revision endeavours, which helped us to be aware of stan-
dardisation issues and important modelling challenges of lexica that we took
into consideration to shape the output of GROBID-Dictionaries.

In this chapter, we present two novel standardised schemes for encoding
lexical resources: TEI-Lex-0 (Romary and Tasovac, 2018) and the recently
revised version of LMF (Romary et al., 2019). We report on the modelling
aspects brought by these new frameworks and the main challenges which
impacted on some key encoding choices. We then show the overlap with the
output of GROBID-Dictionaries and the main differences.

6.2 TEI-Lex-0

The definition of a baseline encoding that enables easier exchange and ex-
ploitation of TEI lexical resources was the key driving force behind the ini-
tiation of TEI-Lex-0. Such an encoding scheme in no way replaces the TEI
dictionaries module. In fact, it has the goal of defining guidelines towards
a more systematic use of TEI elements, based on observations of common
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practices followed to encode existing TEI-based lexical resources. The guide-
lines should support newly created TEI resources, as well as, the unequivocal
transformation of existing TEI dictionaries into a unified baseline encoding.
In this section, we refer by minimal encoding to the representation of macro
structures which does not present the exhaustive encoding of fine grained
lexical information, such as <orth> within <form> or <def> within <sense>
constructs.

6.2.1 Context

The preparations for the TEI-Lex-0 initiative were initially discussed within
the “Retrodigitised Dictionaries” Working Group1 under the umbrella of the
COST Action European Network of e-Lexicography (ENeL). The DARIAH
Working Group “Lexical Resources”2 took up the work of establishing the
TEI-Lex-0 guidelines and support from the H2020 funded project PARTHENOS3,
which has been accorded within its standardisation Work Package 4 (Romary
et al., 2017). The TEI-lex-0 has been chosen to be a pivot format for compar-
ing, querying and visualising structured lexical resources. Upon the kick-off
of ELEXIS4 and given high overlapping interests, partners have also been in-
volved in the discussion around the expected interoperability requirements
expected from TEI-Lex-0.

Technically, the main discussions are carried out through several face-to-
face meetings, organised every few months. Experts, mastering several lan-
guages and having different lexicographic backgrounds, bring and discuss
different raw or already encoded lexical samples. Critical and open ques-
tions are publicly posted as github tickets5 to push the discussion forward
and collect feedback from the community. Finalised decisions are then im-
plemented in dedicated public guidelines6.

A number of simplification principles were obvious and easily got the
green light from the majority of the experts around the table (e.g. main el-
ements of a lexical entry, lemma encoding, sense made mandatory for each
dictionary article). However, several recommendation decisions were not
straightforward to reach, as compromising comes at a cost and each expert
has his/her own legitimate vision and preferences for modelling TEI struc-
tures.

In the following section, we sketch out some challenging modelling choices
to illustrate the obstacles encountered and how they were overcome.

1http://www.elexicography.eu/working-groups/working-group-2/objectives/
2https://www.dariah.eu/activities/working-groups/lexical-resources/
3http://www.parthenos-project.eu
4https://elex.is
5https://github.com/DARIAH-ERIC/lexicalresources/issues
6https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.

html

http://www.elexicography.eu/working-groups/working-group-2/objectives/
https://www.dariah.eu/activities/working-groups/lexical-resources/
http://www.parthenos-project.eu
https://elex.is
https://github.com/DARIAH-ERIC/lexicalresources/issues
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
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6.2.2 Modelling challenges

The complexity of modelling logical structures in TEI dictionaries was dis-
mantled based on the main macro structures of a lexical entry in a print dic-
tionary. These structures are then studied individually based on their com-
ponents as well as their belonging to higher level constructs (i.e., contained by
and may contain sections in the description of each TEI element).

We present encoding use cases that resulted in major recommendations
reached within TEI-Lex-0 and which were propagated to the TEI Dictionaries
module itself. For the remainder of this thesis, we denote by element@attribute
the attribute of an XML element.

Recursive entries

<entry> is a TEI element containing the description of a lexical entry in a
dictionary. The TEI guidelines provide a lexicon designer with additional
elements to encode specific categories of lexical entries and entry-like con-
structs like <entryFree> for less structured entries, <superEntry> for higher
level entries (e.g. roots in Arabic dictionaries) and <re>7 for related entries
(e.g. collocations, idioms, etc).

To ease search in multiple resources and extract comparable structures,
the TEI-Lex-0 guidelines recommend the use of only <entry> to encode all
entry and entry-like constructs. The differentiation among these different
constructs is specified by means of type values on the <entry> elements,
where these values denote properties of the entry as a whole and not ex-
pressed by means of other elements within the encoding of the entry. Such
a classification can be seen from different perspectives. Therefore, TEI-Lex-0
guidelines recommend several domain lists for such values.

The unified entry-like structure is vowed to be an autonomous and ref-
erenceable construct in a number of scenarios, such as internal mapping,
indexing, inter-resources exchange or/and language disambiguation of lex-
ica. Therefore, a recommendation, of making @id and @language attributes
mandatory for each entry construct, reached the absolute agreement among
the TEI-Lex-0 experts.

Figure 6.1 shows an instance of such a scheme in a typical case of nested
entry-like constructs in Arabic dictionaries, where dictionary articles are roots
that gather all their morphologically derived forms.

In such an example, nesting typed <entry> is required to reflect the hi-
erarchy within the lexical entries and avoid using different representations
like <superEntry> or <re>. Such a decision triggered the need to allow such
modelling within the TEI Dictionaries modules. Upon exhaustive argumen-
tation in favour, the proposal was adopted and the <entry> model in the
TEI guidelines was extended to allow recursive entries and <entry> has been
made possible within <sense> construct as related entries might be related to
a sense and not the whole entry8.

7https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-re.html
8https://github.com/DARIAH-ERIC/lexicalresources/issues/43

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-re.html
https://github.com/DARIAH-ERIC/lexicalresources/issues/43
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FIGURE 6.1: Left: Dictionary Article in an Arabic Dictio-
nary (Almonjid, 2014). Right: Corresponding Minimal TEI-Lex-

0 Encoding

As can be noticed, the values of the <entry> containers provide another
classification of the constructs encoded in the nested <entry>s (i.e entry@type=”wordFamily”
vs form@type=”root”). It is also worth mentioning that each entry that is not
typed has by default “main” value, usually meaning that it carries at least a
lemma and other sense information.

Revising the entry model

The existing <entry> model, prior to the TEI-Lex-0 discussion, required fur-
ther revision to unify the representation of its macro-structures. Besides the
required nesting of <entry> and the deletion of <re>, the use of <hom>9 for
the representation of homographs was deprecated. Two recommendations
for a more unified representation of such a phenomenon, by means of either
nested <entry> or <sense> elements, were proposed as alternatives. Fig-
ure 6.2 shows an example of the first encoding proposal10 of homographs
that have different POS (print version of the entry is provided in Figure 3.3).

Such a representation replaces the use of <hom> elements to encode the
entry as two constructs with two different POS (such as a verb and as a
noun). The use of <entry> again makes it possible to have a unique rep-
resentation that helps an automatic system to look for entry constructs that
might be inconsistently, or just differently, modelled. Some reluctance was,
however, manifested within the TEI-Lex-0 group to the adoption of such a
modelling for some dictionaries and the use of <sense>11 construct was sug-
gested instead12. Besides respecting the original modelling in the print ver-
sion, such a position can also be understood by the fact that some information

9https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-hom.html
10https://github.com/DARIAH-ERIC/lexicalresources/issues/48
11https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-sense.html
12https://github.com/DARIAH-ERIC/lexicalresources/issues/14

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-hom.html
https://github.com/DARIAH-ERIC/lexicalresources/issues/48
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-sense.html
https://github.com/DARIAH-ERIC/lexicalresources/issues/14
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FIGURE 6.2: Minimal Encoding of Homographs as Entries in
TEI-Lex-0 (Dictionary Articles from (Publishing, 2009))

related to the highest <entry> structure (e.g. etymology, usage, etc) would be
falsely included inside the entry “actNoun”. Excluding the <gramGrp>13

from that entry would leave an imbalanced representation with regard to
entry “actVerb”. The second encoding proposal, using <sense> element, is
depicted in Figure 6.3.

This encoding remains faithful to the modelling choices of the lexicogra-
pher of the original print dictionary, despite the inconsistency illustrated in
Figure 6.3 and its analysis. But the visibility of the entry-like constructs en-
coded as sense will be sanctioned, as we have explained the advantage for
the alternative encoding in Figure 6.2. To maintain analogy and allow auto-
matic comparability between semantic structures, such an encoding requires
wrapping all the first four senses of the entry “actNoun” in an additional
<sense> block. We can notice in these cases, the influence of the linear as-
pect of the lexical data in print dictionaries and the dilemma of choosing one
option between different highly supported proposals.

Written and Spoken Forms

The differences of opinion to represent written and spoken forms following
the TEI-Lex-0 guidelines are relatively less important and a consensus has

13https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-gramGrp.html

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-gramGrp.html
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FIGURE 6.3: Minimal Encoding of Homographs as Senses in
TEI-Lex-0 (Dictionary Articles from (Publishing, 2009))

been reached for a unified encoding of morphological and a large part of
grammatical information.

The representation of the lemma is recommended to be within a form@type”lemma"/orth
construct, which should also hold further information specific to the lemma-
like pronunciation. Grammatical information, such as POS, number, or tense,
related to the entire lexical entry, should be encoded directly under <entry>
by means of a <gramGrp> construct, as illustrated in Figure 6.4.

FIGURE 6.4: Left: POS Encoding Using <gram> Element.
Right: POS Encoding Using <pos> Element

As it can be noticed, two alternatives are provided to encode grammatical
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information by means of either a simplified gramGrp/gram@type or <gram-
Grp> and an explicit TEI element. The proposal14 to choose between one
of these two alternatives requires further discussion. These two recommen-
dations are also valid for encoding grammatical information within <sense>
structures.

For encoding information related to variants or inflected forms, it is rec-
ommended to use the <form> construct as shown in Figure 6.5.

FIGURE 6.5: Left: Extract from Mixtec-Spanish Dictionary (Al-
varado, 1593) Containing Inflected Forms. Right: Correspond-

ing Encoding in TEI-Lex-0

In the Mixtec-Spanish example 6.5, we can see how the tense has been
encoded within the <gramGrp> construct for an inflected form, whose or-
thography has been specified as partial in the attribute of <orth>15 element.

Further details on more recommendations about modelling morpholog-
ical and grammatical in formation have been described by Banski, Bowers,
and Erjavec, 2017.

14https://github.com/DARIAH-ERIC/lexicalresources/issues/31
15https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-orth.html

https://github.com/DARIAH-ERIC/lexicalresources/issues/31
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-orth.html
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Miscellaneous

The TEI-Lex-0 experts could make great progress on the representation of
other aspects of the lexical description. The scope of the <usg>16 element,
which allows the encoding of usage information, has undergone a drastic
restriction of its scope and more control over the classification of its possible
types. usage@type=”language” has been deprecated and such use should be
encoded by means of the <lang>17 element. Furthermore, a unified list of
possible values of usage@type has been compiled by taking into account the
existing suggested values in TEI P5 and the classifications defined by Atkins
and Rundell, 2008 and Svensén, 2009.

To encode prose information that lacks structure or does not fall within
the scope of the possible TEI elements allowed at the encoding level of the
parent element, a lexicon designer is allowed, following the TEI-Lex-0 guide-
lines, to make use of the <dictScrap>18 element. Moreover, and as it has been
shown in the encoding examples of this section, the <pc>19 element is rec-
ommended to be used to tag the separators between different physical struc-
tures, such as dots, commas, parentheses, etc. Besides the need to exclude
such separators, as shown for pronunciation in Figure 6.4, such an encoding
helps a parser to learn the features marking the transition between two fields.
We will develop this idea more in Chapter 7.

The work on the TEI-Lex-0 guidelines is still ongoing and ideas should be
further refined, as for the mentioned pending decisions, as well as for other
important constructs like etymology and collocations.

6.2.3 Serialisation Model

To summarise the major decisions that have so far been made for the recom-
mendations of TEI-Lex-0, we present a UML diagram that sketches the main
TEI components of a lexical entry and their different relationships as they are
defined in the actual guidelines.

Entry Class Diagram

Each class in the diagram presented in Figure 6.6 represents a TEI element
that holds part of the definition of a lexical entry. Elements from modules
other than the TEI dictionaries chapter are not represented in this diagram.

The serialisation model of TEI-Lex-0 represents a rich constellation of TEI
elements. <entry>, being the central component and allowing recursivity,
can be composed of:

• <gramGrp>: groups grammatical information, such the grammatical
function (i.e. pos), number, gender, etc..

16https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-usg.html
17https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lang.html
18https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-dictScrap.html
19https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-pc.html

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-usg.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lang.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-dictScrap.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-pc.html
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FIGURE 6.6: TEI-Lex-0 Serialisation for <entry> Model

• <xr>: enables the encoding of cross-references within all the compo-
nents of a lexical entry, even itself (recursive). The mapping mechanism
is enabled by means of type (i.e, xr@type) to express the relationship be-
tween the source and a target encoded with <ref>20.

• <usg>: contains usage information of a higher level component that
might be an <entry> and all its sub-elements. Typing <usg> is recom-
mended to specify the category of the modelled usage.

• <form>: holds morphological information of an entry or its compo-
nents. It can be recursive and might comprise <gramGrp>, <usg> and
<xr> constructs.

• <sense>: contains the semantics of an entry and can accommodate all
its components and even an entire entry structure (e.g. the case of re-
lated entries).

• <etym>21: allows the encoding of etymological and diachronic descrip-
tion. It can be recursive and permits the expression of usage and cross-
references by means of respectively <usg> and <xr> constructs.

• <dictScrap>: as has been previously explained, this element could be
employed to tag less structured text segments within any element of
the model.

• <lbl>22: this element is often used within an <xr> structure to encode
labels triggering a cross-reference, like “See." in English, “Voir” or “V.”

20https://www.tei-c.org/release/doc/tei-p5-doc/en/html/examples-ref.html
21https://www.tei-c.org/release/doc/tei-p5-doc/de/html/ref-etym.html
22https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lbl.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/examples-ref.html
https://www.tei-c.org/release/doc/tei-p5-doc/de/html/ref-etym.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-lbl.html
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in French, etc. It can also be used everywhere to designate any text
segment that has a label function.

Discussion

The resulting model has managed to reduce alternatives for encoding sev-
eral categories of lexical information and the scope of TEI key elements of
the dictionaries chapter. But, despite the revised scope and new recommen-
dations for a unified use of elements, the model remains complex with many
bidirectional and recursive relationships. Such a fact represents an obstacle
to finding a unified scheme for heterogeneous lexica, as the joint encoding
possibilities can grow exponentially. In other terms, a query system, devel-
oped for querying different resources following the TEI-Lex-0 scheme, might
miss the extraction of some embedded structures (e.g. <entry>s, <sense>s,
etc) as there is no nesting limit. Such an issue can be resolved by defining
multiplicities of the relationships which are missing in the guidelines. We
do not know, for example, what represents the minimal structure of an entry
(e.g. a lemma, a form, a lemma and a sense,..). Such constraints can ensure
sanity check and prohibit falsely encoded structures that might be the result
of a human manipulation of a wrongly defined transformation scheme from
an existing TEI resource.

From our experience in the TEI-Lex-0 group, we have also noticed reser-
vations about making important changes to the model of some problematic
existing TEI structures and practices. In addition, the order of the occurrence
of lexical information in a print dictionary dictates the constraints for the re-
vised encoding which reduced the scope for changing old practices and left
too much choice than if the approach had been based on the logical struc-
ture of a lexicon. In Section 6.3, we show how such constraints are relaxed
in a different approach, where the NLP requirements have more control on
the modelling choices of the lexical structure over the documentation and
human readability needs.

6.3 LMF Reloaded

As an ISO standard, LMF is the subject of revision every few years. The pro-
cess is triggered by a dedicated ballot and the availability of volunteering
experts who will lead the revision project. In this section we report the fea-
tures of the new version of the standard as a result of the recent revision work
within the ISO/TC 37/SC 4/WG 4 committee.

6.3.1 Context

In Section 5.3, we showed how the version of LMF, published 2008, suffered
from several shortcomings at the structure and the content levels. These lim-
itations were the motive for the revision work that started in 2015 and which
we joined in 2017. It was decided to structure the standard into several parts
with more focused scope and total abstraction of the meta-model from its
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serialisation. A number of simplifications and improvements have been car-
ried out to reduce the complexity of the modelling. In addition, the connec-
tion with leading standards, in particular TEI, has allowed LMF to gain more
simplicity and acquire a flexible serialisation model that enables interoper-
ability and exchange with the abundant number of TEI-based resources.

We present below the new features of the standard, with a special focus
on the modelling principles and serialisation, as well as the progress made
and our criticism of the resulting work.

6.3.2 Modelling Challenges

The LMF version (Francopoulo et al., 2006), the subject of the ongoing revi-
sion, tried to bring structure into the meta-model and its description by or-
ganising them into different extensions that complement a core model. The
definition of such packages and the conformity of the classes they contain
lacked precision and the separation among extensions was blurry in some
cases.

The experts within the ISO/TC 37/SC 4/WG 4 committee took up, firstly,
the restructuring of the standard. Secondly, they worked on simplifying the
existing classes and their relationships. Finally, the meta-model has been
enriched with new classes for existing and newly introduced extensions, re-
sulting from the restructuring step.

Our main contribution was focused, at a first stage, on the consistency
management of the UML abstract models during the Restructuring and Sim-
plification processes. In addition, we were involved in finding a suitable TEI
serialisation of the resulting models.

Restructuring

The restructuring project was initially based on the already existing exten-
sions that came as a whole in the standard. A user who might be interested
in only parts of the standard had to get the entire package and pick up what
he/she needs. The organisation of the standard has been thoroughly dis-
cussed and revised to create a new structure based on complementary mod-
ules. The multi-part standard now has the following structure:

• ISO 24613-1 – LMF Part 1 – Core Model: this represents the minimal struc-
ture of a lexicon where the defined classes provide a lexicon designer
with the necessary elements to model basic lexical information, like
lemma, form and sense.

• ISO 24613-2 – LMF Part 2 – Machine Readable Dictionary (MRD) Model:
this part complements the core model by means of classes that bring
more precision to the semantic information, like examples and their tex-
tual representation, and allows a differentiation between written and
spoken forms.
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• ISO 24613-3 – LMF Part 3 – Etymological Extension: this is a new exten-
sion that carries a whole new range of information describing etymol-
ogy and diachrony of lexical information.

• ISO 24613-4 – LMF Part 4 – TEI Serialisation: this part defines mappings
between the defined classes in the first three parts of the standard and
constructs in the different TEI P5 modules, with a focus on the dictio-
naries chapter.

• ISO 24613-5 – LMF Part 5 – LBX Serialisation: a second serialisation is
proposed in this module using the Language Base Exchange (LBX),
which had been introduced earlier by George, 2013 as an external ap-
plication of the standard.

• ISO 24613-6 – LMF Part 6 – Syntax and Semantics Extension: this part has
the role of providing deep modelling of semantics and syntax along
with their mutual relationships. The work on this extension is mainly
focused on remodelling the existing extension by following the new
principles defined in Parts 1 and 2.

• ISO 24613-7 – LMF Part 7 – Morphological Extension: this extension has
also a great input from what had been already defined for the old ver-
sion of LMF, touching on the deep modeling of morphology. Enriching
the restructured morphological classes and patterns with more preci-
sion and new classes is on the agenda of the LMF experts.

Simplification

The emphasis on abstraction and modularisation led to a series of major
simplifications affecting several classes of the meta-model. One key feature
that has been recently introduced is the CrossREF class which is a point-
ing/mapping mechanism that can be used to model a wide array of lexical
features and relationships such as semantic relations, cross references, related
entries and others witin the meta-model. As a result, some classes (e.g. List
of Components and Component) whose features have been taken on, in part,
by CrossREF have been removed altogether. Figure 6.7 illustrates the simplic-
ity of the new mechanism used to model an MWE previously represented by
classes which are now obsolete (see Figure 5.4).

Enrichment

New information has been introduced to describe essential aspects of lexical
information such as Bibliography. Such information is required to specify ref-
erences for some usages, definitions, examples, etc. Therefore the new class is
kept multi-functional to be used in case of need as determined by the editor
of a lexicon. Additionally, the differentiation of Orthographic Representation
into Form Representation and Text Representation has been designed to enable
more precision in the encoding of written forms touching on respectively
Sense and Form sub-classes.
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FIGURE 6.7: Example of Modelling the MWE "DEAD CENTRE"
and its Components using the New LMF Core and MRD Mod-

els

Figure 6.7 illustrates an instance of the new LMF meta-model for Parts
1 and 2. We can notice how the restructuring comes along with a revision
of class membership; for example, the Lemma class, which was previously
based in the MRD part (see Figure 5.4) is now part of the core model as it is a
fundamentally essential part of a lexicon.

As a second enrichment aspect, Etymology and Diachrony come out in
the new version of LMF with a whole range of information useful for the
study of words and their origins, designed for the NLP usage. It is beyond
the scope of this thesis to give an exhaustive description of the decisions
made to shape this new extension, but we can give a flavour of the new di-
mension that such a package has given to the meta-model.

Figure 6.8 shows an instance of the object diagram of the Etymology ex-
tension in connection with the Core and MRD packages. We can observe the
complementarity of the three extensions for the description of etymological
links among different forms. Etymon and Etylink represent the core mecha-
nisms for expressing an etymological relationship, in this case borrowing.
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(a) Print Version of the Dictionary Article

(b) Partial UML Object Diagram

FIGURE 6.8: Instance of the New Etymology Extension for the
Entry "DICTIONARY" in (Ernest, 1966)
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6.3.3 TEI Serialisation Model: ISO 24613-4

The resulting meta-model can be serialised by using any language that suits
the needs of the user of the standard, like XML or SQL. Given the fact that TEI
benefits from widespread adoption within the lexicographic community, the
LMF expert committee has decided to connect with the de facto standard by
proposing an XML serialisation based on mapping between the LMF classes
and TEI elements.

FIGURE 6.9: LMF Serialisation for <entry> Model

In Figure 6.9, we introduce a novel model representing key components
of the new TEI serialisation extension. The UML class diagram represents a
serialisation of the meta-model of the lexical entry structure by means of TEI
elements. For the proposed serialisation, unequivocal mappings between the
LMF meta-model classes and TEI P5 elements are kept to a maximum. Where
one-to-one alignments are not possible, we opt for the translation of the LMF
classes into TEI constructs that can be composed of more than one element
or/and element types.

The <entry> element, representing the serialisation of the Lexical Entry
class in the meta-model can contain:

• <xr>: to allow a cross-reference to other lexical entries having a rela-
tionship with the source entry, such as synonym, antonym or transla-
tion equivalent that do not yet have senses to map to. This element
also comes to replace old mapping mechanisms within the entire meta-
model, as it can be activated to enable the cross-references among nearly
all the elements of the serialisation. The mapping mechanism is en-
abled by means of (i) typing xr@type, to specify the relationship, (ii) <ref>
element to contain the text of the lemma or phrase representing the tar-
get, (iii) and specifying the ID (i.e. ref@corresp) to link to an internal
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or external target, if it exists, that can be typed (i.e, ref@type) with the
category of the target (e.g. entry, sense, etc).

• <usg>: contains subject field information of an <entry> and all its com-
ponents. The typing of <usg> is recommended to specify the category
of the modelled usage and the idea is to converge to the same list of
categories that has been compiled for TEI-Lex-0.

• <form>: holds morphological information of an entry. Typing is the
key mechanism to differentiate between the possible forms that might
be, in the first place, the lemma, along with other morphological struc-
tures like inflected forms, stem, root, etc. It might also contain gram-
matical information, encoded within <gramGrp>, as well as the <usg>
and <xr> constructs.

• <sense>: serialises a sense of an entry and allows recursivity to contain
sub-senses. It represents the provision of sense information such as
<def>23 for sense definition, <cit>24 typed with example or translation
equivalents or usage information encoded within <usg>. It might con-
tain grammatical information encoded within a <gramGrp> element
and can reference other senses (i.e synonyms, antonyms, etc) by means
of the <xr> mechanism. In some cases, when an entry has multiple
forms and senses (e.g. the case of homographs) and the grammatical
information is specified only for the forms, a link between the <sense>
and <form> constructs needs to be established to differentiate the be-
longing of the senses (see Figure 6.10). Such a detail is crucial for NLP
application where the missing link can be propagated to the syntax of
the lexical entry.

• <etym>: is the entry point to the etymological description modelled in
the third part of the standard. etym@type carries the type of etymol-
ogy description, such as borrowing, inheritance, etc. It may contain the
<usg> and <xr> constructs.

• <dictScrap>: contains elements of the lexical descriptions that do not
fall into any of the previous categories but is allowed only for the lexical
entry. It can be used by a lexical designer to markup information that
he/she wants to exclude from indexing.

• <re>: has the same logical structure as the <entry> element in the actual
specifications of the standard. This element is used to encode derived
and related forms and can also be used as an alternative mechanism to
encode MWEs (see Figure 6.11). There are, however, strong proposals
to replace it by a recursivity of the <entry> element.

Figure 6.11 shows an example of a serialisation of the MWE “dead center”
and its components. We can see how the <form> element is enriched by

23https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-def.html
24https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-cit.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-def.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-cit.html
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FIGURE 6.10: Example of LMF Modelling of Homographs with
two Form Objects
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FIGURE 6.11: Example of the new LMF Serialisation for the
MWE "DEAD CENTER" and its Components
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means of fine-grained elements such as <orth>25 for lemma, <pron>26 for
pronunciation and <seg>27 for components of the MWE. The latter represents
a use of the second mapping mechanism of the proposed standard, which
allows a pointing to other forms by means of @corresp attribute.

6.3.4 Discussion

The new version of LMF brought new changes to the existing extensions, that
helped to improve them, while they persisted to be mutually complemen-
tary with the other modules of the standard. The new serialisation answers
more to the encoding requirements of print dictionaries, as it has adopted TEI
guidelines and practices. In parallel, the new meta-model translated into TEI
constructs, remained focused on how the lexical description could be mod-
elled to carry the richest possible different information in the clearest and
more simplified way.

The differences in modelling the same lexical structures are less impor-
tant than those in TEI-Lex-0, as recursivity has been drastically reduced and
mutual inclusion between elements has been disabled. However, different
alternatives are still possible to model the same information like the case for
homographs (see Figure 6.7 and Figure 6.10). In fact, the discussions within
the expert committee were mostly focused on stabilising the core and the
MRD models. The etymology model and serialisation modules managed to
achieve relatively important progress, given the fact they are totally new. The
work on the TEI serialisation extension was mostly focused on finding the
mapping between the two standards. Consequently, the ongoing and fu-
ture revisions should build upon the resulting serialisation model and define
more restrictions on the scope of each employed TEI element to be fully com-
pliant with the new LMF specifications. The serialisation examples made
publically available would also help to obtain feedback from the community
and more use cases for future discussions of the ISO committee.

6.4 GROBID-Dictionaries Output Scheme

GROBID-Dictionaries takes into account the recommendations in the TEI-
Lex-0 and LMF to organise the recognition of the different lexical structures
and their serialisation. But the modelling and the serialisation in the novel
system also come up with explorative suggestions that were influenced by
the use cases we encountered during the annotation of different samples in
the experiments carried out.

In this section, we present main modelling challenges, the resulting serial-
isation of the CRF models introduced in Section 4.3.1 and their serialisation.

25https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-orth.html
26https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-pron.html
27https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-seg.html

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-orth.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-pron.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-seg.html
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6.4.1 Modelling Challenges

The modelling challenge at this stage lies in the translation of all the recom-
mendations dictated by lexicographic practices - TEI-Lex-0 - and NLP stan-
dardisation requirements - LMF - into CRF models able to extract lexical in-
formation and serialise it into a TEI scheme that is compliant with the novel
standardisation schemes. The workflow first begins by guaranteeing a map-
ping to TEI compliant output. Then we study the possibility of converging
to a scheme that maximally satisfies the requirements of TEI-Lex-0 and LMF.

Cascading Modelling

In section 4.2, we have already explained that the architecture of the cascad-
ing CRF models is defined by the ability to match TEI elements in a target
scheme with the labels of each model. Avoiding the extraction of constructs
that have different granularities is a requirement for the definition of the la-
bels of each model.

We explain this further by illustrating the process of defining the model
chain for the extraction of different structures from entries in an etymological
dictionary. Figure 5.1 shows an entry from the print version of the dictionary.
For this example, we rely on a TEI encoding defined by a lexicographer and
neither the TEI-Lex-0, nor the LMF guidelines are followed. An etymology
extension is the models chain responsible for parsing diachronic information
encapsulated in an <etym> block detected by the Lexical Entry model and
allows the clustering of specific constructs into TEI sub-blocks. Each sub-
block corresponds to a TEI compliant element whose significance in this use
case is described in the following table:

TEI Element Description
<seg> unclassified parts of an entry
<quote> a quotation, text quoted from another source (typically

from another dictionary)
<def> a definition, i. e. a semantic description (gloss or para-

phrase) associated with a given wordform
<lang> a language identifier (often abbreviated)
<mentioned> a mentioned wordform in any language, i. e. a wordform

that is considered in the etymological description
<bibl> a bibliographic citation (typically a scribal abbreviation)

TABLE 6.1: Main labels of the etymology extension

Projected on the print sample, such constructs have a sparse distribution
over the etymological description of a lexical entry (see Figure 6.12).

Where <def>, <lang>, <mentioned>, <seg> and <bibl> structures are rep-
resented respectively in red, orange, green, black and blue, a <quote> con-
struct has more complex content illustrated by the whole underlined segment
in the above entry.
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FIGURE 6.12: Etymological Constructs in (Mueller, 1878)

The issue of having scattered information to be recognised in the pre-
sented use case has been solved by the effectiveness of the chosen machine
learning technique. An experiment on a first etymological CRF model trained
with carefully annotated data, gives very accurate results for the extraction of
<def>, <lang>, <mentioned> and <bibl> components. However, the recog-
nition of complex structures such as <quote> within the whole etymological
description represents a second bottleneck. In the case of Cabbage, extracting
a <quote> segment and its encapsulated etymological components requires
a cascading processing. Our solution is to start by extracting complex seg-
ments by a first model (see Figure 6.13). The resulting <seg> and <quote>
blocks will be parsed by a second model to extract the elementary structures
(see Figure 6.14).

This use case showcases the need to have 2 models to parse the sparse et-
ymological constructs. We name the first Etym/Quote, as it has the goal of iso-
lating the <quote> blocks from the rest of the structures. The second model
we name it Etym, since it allows the full parsing of the pre-extracted structure
by the first etymological model. The Etym model can be recursive to parse
the blocks generated by a higher level Etym model. These two models form
the etymology extension we define in Figure 6.15.

FIGURE 6.13: Minimal TEI Encoding as an Output of the
Etym/Quote Model
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FIGURE 6.14: Minimal TEI Encoding as an Output of the Etym
Model
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Satisfying different encodings for the same structures

Our goal, to find a unequivocal mapping between the structures recognised
by the CRF models and the TEI-Lex-0 and LMF guidelines, has been chal-
lenged by the fact that, in some cases, more than one alternative has been
defined in each of these two formats for encoding same structures (e.g., the
case of homographs, explained in Section 6.2.2).

Such a need pushed us to study different heuristics to reach a target en-
coding by allowing required labels for the suitable models in different mod-
elling scenarios. From a user perspective, the activation of such labels and
the generation of one of the wanted target encoding is possible by following
two steps:

• After choosing the chain of models permitting to reach a structure and
the depth of the target TEI output, the user proceeds by annotating the
training data for the corresponding models.

• After training each model properly, the user can compose the output
he/she wants by selecting in the web application (see Figure 4.8) the
models he/she trained according the scenario he/she chose.

Following this setup, we managed to enable two encodings for modelling
structures that could be interpreted differently. For instance, we managed to
allow the modelling of homographs following two different scenarios. The
first scenario, having the output presented in Figure 6.2 as the target, should
allow a “Lexical Entry” model to recognise sub-entries within <entry> and
then parse the sub-entry, serialised as <entry> (i.e. the entry having as ID
“actVerb”), by using a second entry model. The second scenario, followed to
generate the output of Figure 6.3, relies instead on a “Sense” model to parse
a <sense> block and isolate <gramGrp> from senses that will be parsed by
a “Sub-Sense” model to extract related entries and other components like
definitions and examples (not represented in the figure). The two figures,
representing TEI-Lex-0 serialisation instances, recommend the use of typed
<entry> to represent a related entry. The models of GROBID-Dictionaries
were not all implemented in parallel with the discussions of the TEI-Lex-0.
As the decision to use <entry> for all entry-like constructs is relatively recent,
related entries are still serialised as <re> the models which remain an LMF
compliant choice.

The guidelines for encoding the two formats, TEI-Lex-0 and LMF, are also
not fully compatible. For instance, there is a difference between modelling a
recognised <gramGrp> block related to the entire entry, such as the POS.
We can see in Figure 6.3, that TEI-Lex-0 recommends the encoding such a
<gramGrp> as a direct child of <entry>, whereas in LMF, such an encoding
is not allowed by the serialisation model (see Figure 6.11) and it is only al-
lowed inside the <form type=”lemma”> element. We chose to allow the first
alternative, as it reflects the physical structure of most of the dictionaries we
tested and our users give more importance such a representation. Encoding
such a logical structure according to the LMF serialisation model remains,
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however, easy to implement thanks to a dedicated separation between the
recognition and the serialisation stages that we made sure to have.

Further details about the encoding supported by GROBID-Dictionaries
are summed up in the serialisation model presented in Figures 6.15 and 6.16.

6.4.2 Serialisation Models

The parsing models within GROBID-Dictionaries generate two XML seriali-
sations: the first is for internal use and the second represents the final output
that results from the call of the REST services through the web application
facet (see Figure 4.8).

Internal Serialisation

The first serialisation, illustrated in Figure 6.15, uses XML elements that in
many cases share the same labels as homologous TEI elements. This serialisa-
tion is used to annotate data, train and evaluate the CRF models. The reason
behind the use of labels different from those existing in the TEI guidelines
is to give more semantics the tagged components. For instance, we make
use of <fromGramGrp> to denote <gramGrp> related to the entire entry and
to differentiate such a component from <senseGramGrp> which represents a
<gramGrp> related to a sense. There are also some cases where we use labels
for elements, that might be confused with TEI elements, but we use them to
denote different structures. For example, we use <body> element to mark the
body part of page whereas <body>28 in the TEI guidelines is usually used to
mark the entire body matter of a monograph or a dictionary.

We present below both serialisations of the elements of each model in
the architecture. In the remainder of this section, by serialised in we mean
the element serialised internally and transformed into the second (i.e. final)
serialisation as:

• Dictionary Segmentation: The first model of the architecture has three
main labels:

– <headnote> for header and head-note information, serialised in <fw
type=”header”>29

– <body> for all the text area containing the lexical entries of a page,
serialised in <ab>30

– <footnote> for footer and footnote information serialised in <fw
type=”footer”>

• Dictionary Body Segmentation: The second model parses a <body>
block, recognised by the first model, and processes it to recognise <en-
try> constructs that are the same in both serialisations.

28https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-body.html
29https://www.tei-c.org/release/doc/tei-p5-doc/de/html/ref-fw.html
30https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-ab.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-body.html
https://www.tei-c.org/release/doc/tei-p5-doc/de/html/ref-fw.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-ab.html
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• Lexical Entry: The third model parses each <entry>, to segment it into:

– <lemma> serialised in, <form type=”lemma”>

– <variant> serialised in, <form type=”variant”>

– <inflected> for morphological and grammatical information re-
lated to a "Form", serialised in <form type=”inflected”>

– <senseGramGrp> for grammatical information related to a "Sense",
and <formGramGroup> for a general grammatical description, are
both serialised in <gramGrp>

– <subEntry> for an embedded entry, serialised in <entry>

– <reference> for a reference to another entry, serialised in <xr>

– <sense> for semantic information, <re> for a related entry, <etym>
for etymological description, all have the same labels in both seri-
alisations.

• Form: This model analyses blocks representing a "Form" such as <lemma>,
<variant>, or <inflected>, generated by the Lexical Entry model, and
segments the information it contains. The current list of possible labels
for this model contains:

– <orth> to contain the orthography of a "Lemma" or a "Variant",
<pron> for pronunciation, <gramGrp> for grammatical informa-
tion, such as part of speech, gender, number, etc, <lang> for lan-
guage information about a "Form", <name> for headwords in en-
cyclopedic dictionaries, <desc> to encode the brief description com-
ing after the headword of an article and <usg> for usage informa-
tion of the analysed form. All these labels remain the same for
both serialisations

– <part> to contain the extent of an orthography of an "Inflected
From", serialised in <orth type=”part”>

• Grammatical Group: This model has the task of parsing a <gramGrp>
wherever it appears in the architecture. The actual list of labels con-
tains:

– <pos> for POS, <gram> for a piece of grammatical information
that is going to be typed, <tns> for tense of a verb, <gen> for gen-
der information, <number> for number, <subc> for information
about transitivity, countability, etc., There is no difference in labels
between the two serialisations for these elements.

• Cross Ref: Such a model makes it possible to parse cross references
<xr> wherever they appear in the architecture. The main labels pre-
dicted by this model are:

– <ref> for an internal or external reference, and serialised in <xr>

– <relation> to type the reference instance (e.g. synonym, antonym,
false friend, etc) serialised in the type for the parent <xr> element
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– <bibl> for bibliographic information and <lbl> for textual triggers
of a reference (e.g. "See", "voir" or "V.", etc), both remain the same
in the two serialisations.

• Sense & Sub-Sense: These two models orchestrate the decomposition
of the hierarchy of senses, if sense nesting occurs. For the Sense model,
the supported labels are:

– <subSense> for an embedded sense, serialised in <sense>

– <gramGroup> for existing grammatical information, serialised in
<gramGrp>

– <num> for sense numbering, and note for any prose description
related to the upper sense, <def> containing a definition of a sub-
sense, <usg> for usage information, <re> for possible embedded
related entries, <etym> for diachronic information related to the
sense, and <xr> for recognised cross references. These elements
have the same labels in the internal and final serialisations.

– <example> for sense illustration, serialised in a
<cit type=”example”><quote> construct.

– <translation> for translation equivalents, serialised in
<cit type=”translation”><quote> construct.

• Etym/Quote & Etymology: the labels of these models remain identical
to what has been already described in Section 6.4.1 for the internal and
final serialisation.

Additionally, we use the elements <dictScrap> and <pc> for all models to
mark, respectively, junk text resulting from digital conversion (e.g. metadata,
conversion errors, etc) or digitisation (i.e. OCR noise), and punctuation. We
make use of another label <note>31 for related prose descriptions and notes,
replacing the use of <dictScrap> in TEI-Lex-0 and LMF, given the fact that
their guidelines do not recommend any element to use to encore noisy text in
digitised dictionaries. All these elements are serialised using the same labels
in the internal and the final serialisations.

Final Serialisation & Discussion

The model of the final TEI serialisation can be partially represented as a UML
class diagram, to have an overview of the main serialisation elements that can
be compared to the TEI-Lex-0 (Figure 6.6) and LMF (Figure 6.9) schemes.

Figure 6.16 represents the final serialisation model of the <entry> struc-
ture, its components and their mutual relationships.

On the one hand, we can notice that GROBID-Dictionaries’s entry model
contains all the TEI elements used for the serialisations of TEI-Lex-0 and the

31https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-note.html

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-note.html
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FIGURE 6.16: Final Serialisation of the <entry> Model in
GROBID-Dictionaries

new LMF - except <lbl>. The elements for the serialisation of the morpho-
logical, grammatical and semantic structures - partially represented in Fig-
ure 6.16 - are also included in the GROBID-Dictionaries’s serialisation. Thus,
using the parsing models of our system enables, in a great number of mod-
elling use cases, the generation of macro TEI serialisation that is compliant to
the two new standardised schemes.

On the other hand, GROBID-Dictionaries’s final serialisation model rep-
resents more constrained relationships than TEI-Lex-0 and gives more en-
coding alternatives than LMF. The affected relationships, like the mutual in-
clusions or the recursivity of certain elements in TEI-Lex-0 (i,e. <from> and
<etym>) or the cross-reference modelling in LMF (i.e. <xr> being n-ary re-
lationship), are not driven from print dictionaries modelling but rather the
needs of NLP databases. These relationships can be added to the output of
our system by applying a post-processing, such as enabling the mapping be-
tween recognised entries and their cross-references triggered in the source or
the target by an <xr> element.

Our modelling anticipates some serialisation choices and provides dedi-
cated serialisation, such as the different use of <note> and <dictScrap> which
is driven from practical use cases encountered during the annotation of di-
verse print dictionaries. The need to encode the entire text of a parsing level
forced us to find suitable encoding elements in the TEI guidelines, such as
<dictScrap> for OCR noise or <num> for the numbering of entries or senses
in some dictionaries.

Finally, the composition associations in this diagram, as in Figure 6.6 and
as opposed in Figure 6.9, mean that none of the child elements can exist in
the final output without its parent. In fact, this precision reflects the origin
of the serialisation, which is not the result of the conversion of a relational
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database, but rather an output generated from a cascading approach where
a parent triggers and accommodates its child components.

6.4.3 Chapter Summary

This chapter presented two novel standardised schemes for lexical resources,
TEI-Lex-0 and LMF, and their inspiration for the serialisation of the parsing
models in GROBID-Dictionaries.

TEI-Lex-0, having the goal of defining a baseline encoding for print dictio-
naries, has managed to reduce TEI modelling alternatives towards more uni-
fied encoding guidelines. LMF has undergone an important revision work
that has brought more structuring and richer information to the meta-model
and its serialisation. The TEI serialisation for LMF managed to propose ini-
tial mappings between the two standards. More work is needed to inves-
tigate the applicability of the primary serialisation model on complex mod-
elling scenarios and granular lexical information. We have shown the differ-
ent modelling challenges, as well as the resulting serialisation for both new
schemes.

We have also presented the two serialisation facets of GROBID-Dictionaires’s
models and the overlapping of its final TEI serialisation with TEI-Lex-0 and
the new LMF. The compatibility with these two new standardised schemes
has been kept maximal, despite the differences between the standardisation
approaches. The degree of compliance of our models depends on the evolu-
tion of these two novel formats, as they are not yet finalised.

In Chapter 7 we present parsing experiments on different print resources
using the described models of GROBID-Dictionaries. We give an exhaustive
analysis of the strengths and weaknesses of the models employed and, more
importantly, we focus on the possibility of scaling up the parsing while using
the presented standardised scheme.
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Chapter 7

GROBID-Dictionaries in Action

7.1 Introduction

After having presented the parsing architecture and the corresponding seri-
alisation scheme, we now aim at assessing the performance of each lexical
model against different print dictionaries. To this end, we need appropri-
ate annotated data in order to conduct the various machine learning experi-
ments.

In fact, the parsing scenarios we want to experiment require real world
data that are able to exhibit different categories of digitisation anomalies (see
Section 3.2.1). Consequently, the annotation of the lexical structures should
take into consideration the specificities of our new serialisation model, along
with these anomalies in raw documents. Besides, given the fact that the ex-
isting TEI lexical resources do not cover both specificities, we have carried
out the work from scratch and annotated a pool of dictionaries that covered
the diversity we needed for our experiments.

This final round of large-scale experiments has allowed us to use, in a
uniform manner, the most stable version of the annotation scheme to a rep-
resentative collection of dictionaries and thus annotate uniformly substantial
amounts of data for several cascading models. Through the annotation and
the training of the lexical models, we encountered additional challenges re-
lated to the quality and the balance of the data in terms of observable features
and complexity. Besides the design and the feature selection for the parsing
models, such data-related aspects appeared to significantly impact the ma-
chine learning experiments.

In this chapter, we present our machine learning setup by explaining
our experimental goals and major factors interfering with the introduced se-
quence labelling task. Then we give an overview of the dictionaries pool
and main challenges encountered while applying the annotation scheme to
each dictionary. Next, we detail the series of experiments we carried out
with various print dictionaries, using a selected set of cascading models of
GROBID-Dictionaries’ architecture, and show the extent to which our tech-
nique and the performed feature engineering can support their parsing. Fi-
nally we explore, through another series of experiments, the possibility of
scaling up our system either by applying the system on similar structures in
print documents or/and by integrating new generation models.
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7.2 Machine Learning Experiment Setup

Before presenting the details and the evaluation of our experiments, we de-
fine the goals of our investigation and outline the factors interfering with the
experimental setup to prepare a solid ground for the analysis of the results.

7.2.1 Experimental goals

Our experiments focus on studying the variation in performance observed
for each model in the cascading chain, along with their learning behaviour
when exposed to diverse dictionaric content. The performance of each lexical
model is studied with regard to:

• Feature engineering: our aim is to investigate the impact of basic and
advanced tweaking of certain features that can improve the perfor-
mance of essential sequence labelling models in our architecture. For
that, we used the combinations of feature templates introduced in Sec-
tion 4.3.2. A first set of experiments presents the difference in perfor-
mances resulting from the use of the Unigram and Bigram templates.
Another set of experiments is carried out with the Engineered templates
to observe the impact of advanced feature engineering.

• Generalising capacities: given the best overall performance of a fea-
ture combination, we want to explore the ability of each model to gen-
eralise over the data that were used for its training. Two main varia-
tions are to be investigated: testing the models with data from already
seen dictionaries and from unseen samples.

• Learning curve: for experiments that have the best performances, we
want to study the learning behaviour of the models involved. More
precisely, we want to gain insight into the evolution of each model’s
learning given a number of annotated pages used for its training. Such
an aspect is studied with regard to the category and the quality of each
dictionary.

To this end, our experiments focus on a selection of models from different
levels of lexical parsing. We have chosen seven models of the cascading ar-
chitecture. Besides the first three models necessary to activate the rest of the
architecture explained in Figure 4.6, we selected Form, GramGrp, Sense and
Sub-sense models. The choice of these models was based on the stability of
their TEI encoding, as well as the fact that they are the most commonly used
models by the early users of the system.

7.2.2 Interfering Factors

In the early stages of this work, we assumed that the task we are addressing
starts with a dictionary file to parse and ends with the corresponding stan-
dardised structured output. Although such an assumption sound plausible
and even relatively straightforward after gaining hands-on experience, we
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discovered that the task is more complex than it might at first appear and
starts much earlier. Drawing up an exhaustive list of the obstacles and issues
involved is beyond the scope of this thesis. Nevertheless, we shed light on
different aspects of sample representativity and the importance of digitisa-
tion details explored in different categories of print material. This will help
later on in the evaluation of the various experiments that we carried out with
different dictionaries.

Sample Selection and Annotation

To train a supervised machine learning model, the annotation of a representa-
tive sample is required. In the case of GROBID-Dictionaries, a representative
sample can vary from one model to another. For instance, a representative
sample for the Dictionary Body Segmentation model, which has the task of
recognising the boundaries of each dictionary article in a page body, should
contain dictionary pages having enough:

• entries of different sizes,

• and different spots of the entries in a page: beginning of page, begin-
ning of a column, end of a page, split over several pages or columns,
etc.

On the other hand, a representative sample for the Lexical Entry model,
which is responsible for parsing the main components of a lexical entry,
should contain, for instance:

• entries having a simple structure

• entries having a complex structure. Such entries should comprise:

– items representing different physical structures (typographic, lay-
out, etc.)

– items representing different logical structures, especially less fre-
quent components: for instance entries with and without related
entries or cross-references that could be less present in dictionary
articles than forms or senses

• entries with more textual markup variation, especially when typographic
information is poor

• in some cases, entries with and without hyphenation where the latter
is frequent and occurring at the beginning or the end of the text se-
quences, or when the dictionary articles are very short (i.e. few tokens
per entry)

The representativity of samples varies from one dictionary to another.
And given the differences in the representativity needed to train each model



108 Chapter 7. GROBID-Dictionaries in Action

of our machine learning architecture, selecting pages that contain all the vari-
ations required for the convergence of all models is extremely challenging.
Selecting different pages for training different models can lead to the prop-
agation of the recognition errors by higher level models in the training data
of subsequent models. This would result in an imprecise evaluation as the
model being tested may not itself be responsible for any potential recogni-
tion errors. In addition, the conventional dataset split ratios 1, for training,
development and testing, can not always be respected.

Model Training Evaluation
Dictionary Body Segmentation 572 <entry> 270 <entry>

Lexical Entry

572 <sense>
572 <lemma>
28 <inflected>

10 <re>

269 <sense>
270 <lemma>
10 <inflected>

4 <re>
Sense 856 <subSense> 302 <subSense>

Form
756 <orth>
31 <part>

31 <gramGrp>

269 <orth>
11 <part>

11 <gramGrp>

Sub-Sense

905 <def>
32 <usg>

7 <gramGrp>
9 <translation>

319 <def>
11 <usg>

8 <gramGrp>
2 <translation>

TABLE 7.1: Page Sampling Statistics (Bowers, Khemakhem, and
Romary, 2019)

Table 7.1 gives an overview of the statistics of a page sampling process
for an experiment (Bowers, Khemakhem, and Romary, 2019) with a Mixtec-
Spanish dictionary represented by the sample in Figure 7.1.

For training 5 models of the architecture, we selected and annotated 14
pages from different spots in the dictionary: 10 for training and validation,
and 4 for testing. We detail the annotated instances for each model, except for
the first one dealing with the prediction of main regions of a page. The page
sampling shows different ratios for each label of each model. For example,
for the Sub-Sense model, the ratios for the instances of <def> labels in the
training and evaluation datasets are very close to the 2/3, 1/3 ratios, whereas
the <gramGrp> testing proportion exceeds the training one. The number
of <gramGrp> instances is also small compared to <def>. Annotating more
separate instances of <gramGrp> and adding them to the training and testing
datasets would be misleading for the model as the context of the sequence
must be preserved for the model to learn the right features. The sample in

1There are two main conventions for dataset splitting ratios. First, 2/3 for training and
validation and 1/3 for testing. Second, 80% for training and validation and 20% for testing.
The choice of these conventional ratios depends on the amount of data available and the
preferences of designer of the machine learning experiment, as the first convention is more
challenging for a trained model.
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Figure 7.1 shows several hyphenated tokens in small size dictionary articles.
The hyphenation occurs in different spots in the entries. Thus, including such
a variation in the training dataset is crucial for more than one parsing model.

OCR Impact

The second major factor that impacts on the machine learning experiments
that we want to conduct is related to the OCR quality, particulary in the case
of digitised material.

To investigate such an impact, we carried out an experiment (Khemakhem
et al., 2019) with two versions of a retro-digitised legacy dictionary (Furetière,
1701). We use the term OCRisation to designate the process of using an OCR
system, or any character recognition system, to recognise the layout and the
text of a document. For this experiment, we carried out the OCRisation by
using the Transkribus platform (Kahle et al., 2017) and following the work-
flow described by Lindemann, Khemakhem, and Romary, 2018. The process
consists of using a default OCR model to produce a first layer of OCRs that
will be manually corrected and then used to train a Handwritten Text Recog-
nition (HTR) model to produce higher quality digitised text.

The first sample was compiled from a low image quality document that
was OCRised with an HTR model trained with 28 pages. The second sample
was created using an HTR model trained with 108 pages applied on a high
image quality document. We annotated the same 45 pages from each sample
of the dictionary. We tried to select the pages that covered the maximum
number of variations required for training the first three models of GROBID-
Dictionaries. For each parsing level, two instances of the CRF models with
the same features were trained and evaluated.

Sample 1 Sample 2
Tag Precision Recall F1 Precision Recall F1

<body> 75 70 72.41 81.48 73.33 77.19
<footnote> 91.67 73.33 81.48 84.62 91.67 88
<headnote> 88.46 82.14 85.19 100 90 94.74

TABLE 7.2: Field Level Evaluation of the Dictionary Segmenta-
tion Model

Sample 1 Sample 2
Tag Precision Recall F1 Precision Recall F1

<dictScrap> 81.82 85.71 83.72 100 90 94.74
<entry> 85.85 80.53 83.11 89.47 91.07 90.27

<pc> 92.59 96.15 94.34 93.75 97.56 95.62

TABLE 7.3: Field Level Evaluation of the Dictionary Body Seg-
mentation Model
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FIGURE 7.1: Excerpt from a Mixtec-Spanish Dictionary (Al-
varado, 1593)
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Sample 1 Sample 2
Tag Precision Recall F1 Precision Recall F1

<etym> 87.5 60 71.19 73.68 71.79 72.73
<form> 94.44 92.73 93.58 92.24 96.4 94.27

<pc> 90.91 69.44 78.74 88.97 80.13 84.32
<re> 33.33 9.09 14.29 55.56 22.73 32.26

<sense> 67.65 59.28 63.19 77 76.65 76.84
<xr> 100 80 88.89 100 100 100

TABLE 7.4: Field Level Evaluation of the Lexical Entry Model

The results2 of the experiment, represented in the evaluation of the CRF
models in Table 7.2, 7.3 and 7.4, show the different measures on the field level.
We can notice the differences in the performance of each model to recognise
the different labels.

Three main conclusions can be drawn from this experiment: firstly the
OCR quality plays an important role in boosting or deteriorating the perfor-
mance of our machine learning models. Secondly, despite the noisy OCRs,
the CRF models can still operate and produce for the recognition of some
labels comparable results to high quality OCRised material. Finally, the im-
pact of the OCRs is more visible for the extraction of fine grained information
which can be explained by the importance of the textual and markup at such
levels.

7.2.3 Dictionary Samples & Annotation

Selecting dictionaries for our experiments was a challenge in itself as sev-
eral anomalies were often only discovered after many rounds of cascading
annotation, especially for OCRised samples. Our final dictionaries pool is
composed of 5 dictionaries, each reflecting several aspects of the classifica-
tion established at the beginning of this thesis (see Figure 2.4): monolingual
or bilingual, born-digital or digitised, modern or legacy, and with lexical
or/and encyclopaedic content.

The multi-stage annotation of the different dictionaries was carried out
manually and semi-automatically by using the two modes introduced in Sec-
tion 4.4.2 (raw and pre-annotated training data). One person was in charge of
the whole annotation/correction task for all the dictionaries. The raw and
annotated data, along with the results of the experiments have been released
on a freely available repository 3.

In this section we present each dictionary with regard to these criteria
as well as the information about its structural complexity. We also highlight
main consequential specificities encountered during the annotation of a num-
ber of lexical structures.

2In this chapter, the labels presented in the evaluation of the models are of the internal
serialisation of the architecture and not the final one

3https://github.com/MedKhem/grobid-dictionaries_data

https://github.com/MedKhem/grobid-dictionaries_data
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Dictionnaire de la Langue Française (DLF)

Description: "Dictionnaire de la Langue Française" (Littré, 1873) is a legacy
monolingual French dictionary that contains both lexical and encyclopaedic
articles. Besides the classic explanation of entries, exceeding 78 000 arti-
cles, the lexicographer provides an exhaustive historical and etymological
description of lexemes with nearly 300 000 citations. The retro-digitised ver-
sion4 that we used for the purpose of our experiments comprises 4 volumes
with over 5 000 article pages each organised in 3 columns (see Figure 7.2). We
do not have enough information about the digitisation process but we assess
the OCRs quality in the PDF we used to be relatively good.

Dictionary & Annotation Specificities: We consider this dictionary to be
the most complex sample we used for our study, as it represents challenges at
almost all parsing levels. Lexical markups, namely parenthesis, bold and italic,
are omnipresent, especially for distinguishing the structures at the Lexical
Entry level. Such markers are much less present at the Sense and Sub-Sense
levels where pipes and numbering are visually the most helpful clues. We can
group the main challenges we faced during the annotation of DLF by model:

• Lexical Entry: The dictionary articles have a high variation in length,
from few tokens up to several columns. Inflected forms such as “Etudi-
ant, E” were not marked as inflected forms at the Lexical Entry level, as
it will break the annotation of grammatical information related to the
main form. We also made the same decision for variants that occur after
lemmas with no geographic or other more elaborate information. Con-
sequently, we postponed the annotation of these structures to the Form
level, where we annotate them as <part>s.

• Sub-Sense: DLF has a very rich semantic representation and it is often
a challenge to human experts to differentiate the boundaries of defi-
nitions and examples. In fact, most of the examples are citations from
classic French literature although some brief usage examples may occur
just after a definition. To overcome this issue, we based our approach
on the choices made to compile a structured version5 of the dictionary
and we considered examples to be only citations.

Easier English Basic Dictionary (EEBD)

Description: "Easier English Basic Dictionary" (Publishing, 2009) is a mono-
lingual dictionary for English which contains over 5,000 entries, published in
2009. For our experiments, we used the 370 pages containing the body of the
dictionary. The PDF version which we used, is a digitally born one that has
two columns per page.

4https://gallica.bnf.fr/ark:/12148/bpt6k5406710m
5https://www.littre.org

 https://gallica.bnf.fr/ark:/12148/bpt6k5406710m
https://www.littre.org
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FIGURE 7.2: Excerpt from the Dictionnaire de la Langue
Française Dictionary (Littré, 1873)
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FIGURE 7.3: Excerpt from the Easier English Basic Dictio-
nary (Publishing, 2009)
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Dictionary & Annotation Specificities: As Figure 7.3 illustrates, the dictio-
nary has a very modern and clear typography and its markup system. Pro-
nunciation, sense definition, examples and related entries are clearly marked
up. We consider such a dictionary to have medium complexity level as it
represents a few parsing challenges:

• On the structural level, the major challenge is the representation of re-
lated entries and notes which occur at the Lexical Entry and Sub-Sense
levels. We annotate the notes only at the Sub-Sense level. We are aware
that a post-processing is necessary to reassign some notes which are
related to the whole entry. Related entries marked with diamonds are
annotated within the lexical entry, the rest are annotated within Sub-
Sense

• Other issues present in the versions of the dictionary that we had to
deal with are related to the character encoding, especially for pronunci-
ation constructs, which is different from the one supported by GROBID
core. Lemmas are represented physically by redundant strings which
we annotated as <dictScrap>s. Finally, the PDF we used originated
from different steps, starting from the first download till the sampling
process. We suspect that one of the PDF engines we used resulted in the
introduction of some meta-data at the end of almost all the pages. We
used that version for the tutorial6 series we organised for early system
users. This anomaly surprisingly disappeared when we restarted the
workflow from scratch to generate data for our experiments.

Mixtec-Spanish Dictionary (MxSp)

Description: We refer by Mixtec-Spanish7 dictionary to a PDF document
that was compiled and published in 2009 by Jansen and Perez Jiménez from
“Voces del Dzaha Dzahui’”, a historical lexical resource published by the Do-
minican fray Francisco Alvarado in the year 1593. This bilingual dictionary,
documenting a legacy lexicon, has over 370 pages with modern layout and
short entries arranged in two columns (see Figure 7.1).

Dictionary & Annotation Specificities: We consider this dictionary to be
the easiest to parse, given the length of the entries and the clear and clean ty-
pography. The parsing of this dictionary was the fruit of a collaboration with
a linguist working on endogenous languages. The most challenging part
was the sampling process, since the annotator did not speak both languages
of the dictionary and had to collaborate with the linguist for the sampling
process to cover the required logical and physical representativity explained
in Section 7.2.2

6https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
7Mixtepec-Mixtec is an Otomonguean language spoken by roughly 9,000 – 10,000 peo-

ple, and in addition to the native communities in Mexico, it is also spoken by small commu-
nities of people spread over several cities in the United States. The Spanish variation of this
dictionary is Castilian.

https://github.com/MedKhem/grobid-dictionaries/wiki/Docker_Instructions
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Fang-French (FangFr) & French-Fang (FrFang) Dictionary

Description: The Fang-French8 & French-Fang dictionary (Galley, 1964) is
a bilingual dictionary gathered in one volume that has over 500 pages of
lexical entries split into two parts. The dictionary was published in 1964
but later digitised and the PDF version we used has a medium OCR quality.
For our experiments, we consider the first part FangFr, containing over 390
pages, to be a separate dictionary from the second part FrFang, with over 140
pages.

Dictionary & Annotation Specificities: As Figures 7.4 and 7.5 show, the
markup system is based on typographic change along with textual clues to
markup field transition. For the page sampling milestone, we detected dif-
ferent anomalies in the OCRs such as messy text order of footnotes and some
important text blocks (e.g. section titles, page numbers, parts of entries, etc.)
disappearing in the extracted text. We suspect the origin of such anomalies to
be the recognition of text regions as images by the OCR system. We encoun-
tered several challenges during the annotation process and the decisions we
made could be gathered by parsing level for each part of the dictionary:

• FangFr: Two models represented difficulties for their annotation

– Sense: Finding the boundaries of non-numbered senses was not
obvious

– Sub-sense: We used <note> for any prose description. However,
it was hard to distinguish the different fields, especially <note>
from <def>. We chose to annotate the first sentence or any short
description (gloss) as <def>. Any that comes after, which is neither
an example nor a cross reference, is considered a <note>

• FrFang:

– Lexical Entry: We used <sense> to annotate

* Definitions followed by a set of translation equivalents. For
instance:

· ANCÊTRE aïeul, grand-père, grand-mère, mvam (h)

* A definition and one translation or more. For example:
· AMULETTE fétiche, grigri, ñgîr (b)

* Simple translation equivalents and their pronunciation. For
instance:

· ANANAS aloès, ñkuba (h), ñkôkh ô sekh (hm)

We used <re> to annotate related entries, which often represents
the rest of the lexical description of a dictionary article

8Fang is a language spoken by around 1 million people in several central African coun-
tries
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FIGURE 7.4: Excerpt from the Fang-French & French-Fang Dic-
tionary (Galley, 1964) (FangFr)

– Sub-Sense: The definition and translation equivalents are differ-
ently annotated from MxSp

* For the MxSp dictionary, the differentiation between transla-
tions and definitions in the target language is too fuzzy. The
recommendation made by the linguist was to annotate infor-
mation that does not represent grammatical or usage informa-
tion, as one or many definitions.

* For the FrFang dictionary, it is straightforward to recognise
the French definitions followed by translation equivalents in
Fang

7.3 Experiment Series 1: Training with One Dic-
tionary

Having introduced the general setup of the experiments we want to conduct,
in this section we present a first series of experiments. Each of the experi-
ments uses one dictionary to train all the selected models of the architecture.
First, we report and discuss the evaluation of each model using the three fea-
ture templates introduced in Section 4.3.2. Then, we present the results of
our experiments revealing further the behaviour of the best models for each
dictionary, in particular the learning curve.
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FIGURE 7.5: Excerpt from the Fang-French & French-Fang Dic-
tionary (Galley, 1964) (FrFang)
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7.3.1 Feature Engineering Experiments

The goal of these experiments is to understand the impact of feature engi-
neering on the outcome of each model based on common characteristics of
the dictionary samples at each parsing level. For training9 and testing each
model, we selected annotated data taken from different parts of a dictionary.
We tried to respect as much as possible 3

4
1
4 ratios for splitting the train-

ing/testing data, but it was not always possible given the reasons explained
in Section 7.2.2. For MxSp, we wanted to challenge the models by trying 2

3
1
3

ratios.

Experiments

In the following, we present, model by model, the evaluation 10 of seven pars-
ing levels for each sample of the five selected dictionaries. For each model,
except Dictionary Segmentation, we experimented with the three categories
of templates: Unigram, Bigram and Engineered. The number of pages used
for training/testing is different from one dictionary to another, depending on
the complexity of the sample. More information about the number of train-
ing pages is provided in Section 7.3.2.

We report the macro-average F1-score11 of each label recognised in every
sample, as well as of the macro-average F1-score of field level evaluation for
all the labels of a model. We chose macro-average measurement because of
the imbalanced number of instances of the classes of each model. The field
level choice made the feature engineering more challenging, as we have often
noticed an improvement at the token level but one single wrongly recognised
token, quite often a full stop or an OCR garbage, sanctions the performance
on a whole text block. For labels not encountered in a dictionary sample,
their scores are rendered as -1. One dictionary, FrFang, did not not have
any grammatical information to be parsed and consequently the GramGrp
model was not activated, which explains why its scores are rendered as -1.

Dictionary Segmentation Figure 7.6 shows an identical performance of the
two categories of templates with perfect recognition for 3 dictionaries and
lower recognition error by the bigram variation (less than 4%) for DLF, de-
spite the sample’s relatively complex layout. The lowest score of both tem-
plates observed for FrFang reflects the struggle of the model to differentiate

9Training data in this context also includes the development set. The GROBID training
module automatically manages the split between the two datasets

10all evaluation figures in this chapter are generated using https://github.com/
MedKhem/grobid-benchmark

11We have noticed that some experiments do not have always the exact same results,
when they are run on different occasions. The difference is estimated to be around 1.5% in
the F1-Score. As we discovered such a minor anomaly at the very end of this thesis, we
did not have enough time to find the exact origin of such a behaviour in the WAPITI imple-
mentation we used. But we suspect the dynamic allocation of threads, used to perform the
training, to be one main source of this inaccuracy. Therefore, our comparison for the out-
come of the different templates takes this into consideration by tolerating such differences
in the selection of the best template category

https://github.com/MedKhem/grobid-benchmark
https://github.com/MedKhem/grobid-benchmark
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headnotes from the bodies of pages. This is mainly due to the fact that some
headnotes were not recognised as text regions by the OCR system and it con-
sequently affects the learning of the model when they disappear from the
text sequences.

(a) Unigram Templates

(b) Bigram Templates

FIGURE 7.6: Mono-sample Evaluation of the Dictionary Seg-
mentation Model Using two Classes of Templates

Dictionary Body Segmentation Figure 7.7 shows no difficulties to recog-
nise the boundaries of entries in digital-born samples which have short and
mid-size dictionary articles along with consistent clear layout and typogra-
phy. Difficulties appear for identifying bigger entries in digitised samples.
The fluctuant score for the <dictScrap> label, which we used to tag dictio-
nary sections, is related to its limited occurrences in the training data (a ratio
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of less than 2 per 400 instances). In general, engineered templates seem to
combine the best of the bigram and unigram features. They have slightly
better results, especially for recognising less frequent instances, with Macro-
average F-1 scores exceeding 95% for 4 dictionaries.

Lexical Entry For this model, the comparison of performances represented
in Figure 7.8 is reduced between the bigram and the engineered templates
with a mutual competition on certain samples.The boosted general scores for
EEBD and DLF illustrate the feature engineering impact that we aimed at by
tweaking the bigram templates. The difficulty for both templates concerns
the recognition of less frequent constructs: notes, related entries, usage, cross
references and OCR garbage, tagged as <dictScrap>. Nevertheless, longer
range features again prove to be useful for recognizing less frequent labels
in relatively long sequences. The parsing performance for inflected forms and
etymology is insensitive to the addition of templates to the bigram combina-
tion. More information about neighbouring tokens seem to slightly harm the
identification of lemma blocks coming always at the beginning of a main se-
quence, where the recognition of semantic blocks presents a small variation
between the two best templates that depends on the sample.

Form As shown in Figure 7.9, the three classes of templates have very sim-
ilar performances for all the dictionaries except for MxSp, where the bigram
templates win. For the latter, the overall recognition is good with individ-
ual F1-score for labels exceeding 95%, except for <part>, <lbl>, <pc>, and
<usg>. The difficulties in recognising these constructs mainly stems from
their low number in the training data. For <part> the model with bigram
templates manages to reach a score of 85%, despite the occurrence limitation.
This shows the positive impact of the previous label and the negative impact
of long range features on the predictions of the model.

GramGrp Unigram templates beat the rest of the templates with almost
perfect recognition, where the worst score exceeds 97% for the FangFr sam-
ple (see Figure 7.10). For this fine grained lexical information, the sequence
labelling model gives its best when the clues used are more focused on the
current token.

Sense The sense model has the smallest number of labels to be predicted
on relatively long text sequences. Figure 7.11 shows a stable performance
of the bigram templates over all samples. But all the templates still have
comparably good, often perfect, results.

Sub-Sense This is the model with the biggest number of classes to be dif-
ferentiated with over 10 labels. From the results reported in Figure 7.12, we
notice that the longer the text of the sense is, the worse the Unigram tem-
plates perform. Except for the less frequent labels, the other two templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.7: Mono-sample Evaluation of the Dictionary Body
Segmentation Model Using three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.8: Mono-sample Evaluation of the Lexical Entry
Model Using three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.9: Mono-sample Evaluation of the Form Model Us-
ing three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.10: Mono-sample Evaluation of the GramGrp Model
Using three Classes of Templates



126 Chapter 7. GROBID-Dictionaries in Action

(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.11: Mono-sample Evaluation of the Sense Model Us-
ing three Classes of Templates
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give very accurate results with a slight extra-strength for the bigram tem-
plates.

Discussion

The previous experiments can be summarised by Table 7.5, where U stands
for Unigram templates, BB for Basic Bigram templates, EB for Engineered
Bigram templates and A for any category of templates.

From these experiments, we can draw the following conclusions:

• For parsing short text sequences, as in the case of the GramGrp model,
simple Unigram features are more efficient.

• For the rest of the models, where text sequences are relatively longer,
the label of the previous token is a very important clue.

• Engineered templates, with long-range features, are generally the best
choice for labelling lexical constructs in longer text sequences

• The Bigram templates beat in many cases the Engineered templates,
despite the previous conclusions made by (Lavergne, Cappé, and Yvon,
2010), favouring larger numbers of features per model.

Model MxSp EEBD FangFr FrFang DLF Best
Dictionary Segmentation A A A A BB BB
Dictionary Body Segmentation A A U EB EB BB EB EB
Lexical Entry BB EB EB BB EB BB EB EB BB EB
Form BB A A A A BB
GramGrp A A U - U U
Sense A U BB A A EB BB BB
Sub-Sense U BB BB EB BB BB EB EB BB BB

TABLE 7.5: Summary of the First Series of Experiments

7.3.2 Learning Curve Experiments

A second behaviour of the models we want to know more about, is actually
the learning curve of the best models selected in the previous experiments.

Experiments

To generate such a learning curve, we designed our experiments by having
for each model to be trained on one dictionary sample, 4 batches that do
not necessarily contain the same number of annotated pages. The pages in
each batch are chosen from different parts of the dictionary. For each dic-
tionary we report the number of annotated pages for each model and the
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.12: Mono-sample Evaluation of the Sub-Sense Model
Using three Classes of Templates
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performance of each model after adding a new batch of annotated pages. As
pointed out earlier, the number of pages annotated for each dictionary varies
according to the complexity of the sample. In what follows, we present the
learning curve of all models observed for each sample in our dictionary pool.

DLF The evolution of the learning of the different models illustrated in Fig-
ure 7.13 shows a convergence and a stability for a number of pages between
35 and 40 for 6 models. The seventh model, Dictionary Segmentation, reaches
such convergence after approximately twice the number of pages. This is due
to the fact that the scope of such a model requires more pages to cover most
of the variations in the structure and layout of the pages that have a dense
text and slightly changing clues.

FIGURE 7.13: Learning Curve of the Different Models Given
the Number of Training Pages from DLF

EEBD The curve reported in Figure 7.14 shows that fewer pages are re-
quired for this less complicated sample to reach the best performance and
stability of the different models. Moreover, 10 pages were enough to achieve
a high labelling accuracy. The additional pages were useful to stabilize the
recognition of certain labels and further strengthen the quickly achieved ac-
curacy.

MxSp Fewer than 10 pages were enough for the second digital-born bilin-
gual dictionary to reach perfect performance for 4 models. Except for the
Form model, the other the models seem to be reaching a plateau by the 8th
page. It is worth remembering, that the low F1 score in such a curve (see
Figure 7.15) is actually due to difficulties recognising less frequent labels.

FangFr For 5 models, 10 pages enabled the labellers to reach a plateau of
their best performance (see Figure 7.16). The Sub-Sense model gives better
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FIGURE 7.14: Learning Curve of the Different Models Given
the Number of Training Pages from EEBD

FIGURE 7.15: Learning Curve of the Different Models Given
the Number of Training Pages from MxSp
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results much earlier, after only 6 pages, but its performance stabilizes after 20
pages. The Form model is as quick as the first 5 models, but <lbl>, a rarely
occurring label, causes a fluctuant learning behaviour due to the uncertainty
that seems to grow with more added batches.

FIGURE 7.16: Learning Curve of the Different Models Given
the Number of Training Pages from FangFr

FrFang The threshold of 10 pages also remains enough for 4 models, ap-
plied to the FrFang sample, to reach the plateau (see Figure 7.17). Sub-Sense
and Dictionary Body Segmentation needed respectively 10 and 15 pages more
before their learning curve stabilised.

FIGURE 7.17: Learning Curve of the Different Models Given
the Number of Training Pages from FrFang
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Discussion

Through these experiments we can notice a rapid convergence of the dif-
ferent models, where a plateau could often be reached after annotating 10
pages. For models operating on longer text sequences, such as the case for
the Dictionary Segmentation model, more pages are required. In general, the
difference in the rapidity and the evolution of the learning are related to a
number of factors. Digitisation origin, the quality of the OCRs, the repre-
sentativity of the sample and the presence of less frequent labels are among
these determinant factors.

7.4 Experiment Series 2: Training with Multiple
Dictionaries

The models, upon selecting their best feature templates, often yield a very
accurate recognition of the mono-sample lexical structures they are exposed
to. We aim at further investigating the behaviour of these models, tuned
with the same feature templates, by experimenting their training with multi-
samples at once. The goal is to study the generalisation capacities of each
model and the impact of the combination of samples on the learning curves.
To do so, we selected 5 sample combinations:

• 2 BL: stands for 2 Bilingual dictionaries that have the same pair of lan-
guages and are most likely designed and compiled by the same lexi-
cographer(s). From our pool, this represents the case of the two parts
of the Fang-French and French-Fang dictionary

• 3 BL: stands for 3 Bilingual dictionaries where the language pairs are
different and the design and the compilation of the lexicons are carried
out by different lexicographers. For that, we added the Mixtec-Spanish
sample to the previous combination.

• DB: stands for Digital-Born samples, which are represented in our dic-
tionary pool by the English and Mixtec-Spanish dictionaries. Such sam-
ples have a very little amount of noisy text as the main source, the
OCRs, are present in this combination.

• ML: stands for Monolingual samples where the lexical description in
the dictionary articles is in the same language and have, on average,
longer text sequences than those in the bilingual samples. The modern
English and the legacy French dictionaries are the constituents of this
combination.

• ALL: The final combination gathers all the samples we collected and
annotated, where the multi-linguality is mixed with the different digi-
tisation and aging aspects.
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7.4.1 Feature engineering Experiments

The first set of experiments focuses on investigating the stability of the per-
formance of the templates experimented with separate samples, by training
the labelling models on different dictionaries at once.

Experiments

Dictionary Segmentation As illustrated in Figure 7.18, the Bigram tem-
plates remain the best variation of this labelling level, despite the relatively
good performances of the Unigram templates. None of the combinations of
samples seems to harm the performance of the models.

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.18: Multi-sample Evaluation of the Dictionary Seg-
mentation Model Using two Classes of Templates
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Dictionary Body Segmentation Figure 7.19 shows the Bigram templates
taking the lead from the Engineered ones experimented with the mono-sample
training. Average score is reached when the two samples containing the
<dictScrap> label (i.e. 2 BL) are mixed. The model a little confused when
only one sample is added to the training (i.e. 3 BL). However, trained with
more samples (i.e. ALL) enables good performances to be achieved again.

Lexical Entry As for the mono-sample experiments, this model, with text
sequences from different sizes and multiple classes to predict, gives its best
performances with the Bigram and Engineered templates. The latter outper-
form the former on the 2 BL, 3 BL and DB combinations. The generalization
of the model over all samples is identical for both categories of templates.
The most interesting aspect at this lexical parsing level, observed with the
Engineered Templates, is that the F1-score obtained with all samples is iden-
tical to, and often better than individual scores obtained with the best model
from mono-sample training.

Form On the partial combinations of samples, the Bigram and Engineered
templates enable the model to reach its best performances with the best re-
sults on the ML sample achieved by the Bigram variation. Nevertheless, the
evaluation in Figure 7.21 shows identical performances of all templates when
training with a combination of all samples. For the best templates, mixing
samples boosts the macro average performance reported for single sample
training. Such a behaviour is observed for DB and 3 BL. However, that is not
always the case as we see a little deterioration in the overall performance for
All.

GramGrp As for the mono-sample experiments, the Unigram templates
achieve the best scores with almost perfect recognition for all combinations.
And compared to the performance on individual samples, the multi-sample
training shows only a slight regression. The suitability of simple features for
this model is also further confirmed.

Sense Another model, with the limited number of labels but operating on
longer text sequences, that shows its preference for simple features, as illus-
trated in Figure 7.23. The overall performance is also very comparable to the
ones achieved by models trained on one sample.

Sub-Sense Macro-average scores reported in Figure 7.24 show a better gen-
eralisation capacity for the Engineered templates when the model is trained
with all the samples of the pool. Good results are also achieved on other
combinations but the Bigram variation has better results. We also notice no
deterioration in the performances of the models as a result of combining the
training data.
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.19: Multi-sample Evaluation of the Dictionary Body
Segmentation Model Using three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.20: Multi-sample Evaluation of the Lexical Entry
Model Using three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.21: Multi-sample Evaluation of the Form Model Us-
ing three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.22: Multi-sample Evaluation of the GramGrp Model
Using three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.23: Multi-sample Evaluation of the Sense Model Us-
ing three Classes of Templates
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(a) Unigram Templates

(b) Bigram Templates

(c) Engineered Templates

FIGURE 7.24: Multi-sample Evaluation of the Sub-Sense Model
Using three Classes of Templates
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Discussion

We sum up the results of this series of experiments in Table 7.6.

Model 2 BL 3 BL DB ML All Best
Dictionary Segmentation BB BB A BB BB BB
Dictionary Body Segmentation BB A A A BB BB
Lexical Entry EB EB EB BB EB EB BB EB
Form A BB EB BB EB BB U A BB
GramGrp U U U BB U EB A U
Sense A A U A A U
Sub-Sense BB BB BB EB BB EB EB B

TABLE 7.6: Summary of the Second Series of Experiments

The main conclusion to be drawn from these experiments is that, in most
cases, mixing samples does not harm the learning of a model and can often
boost it. Such a combination seems to be healthy for the lexical models to
overcome potential over-fitting to data coming from one source. Compared
with the analogous table for mono-sample experiments, in Table 7.6 we no-
tice changes of the best templates for each model. The Unigram templates
appear to be the most suitable for parsing lexical structures in relatively short
text sequences with models having few classes to predict. Engineered tem-
plates are the best for the Lexical Entry model over most of the combined
samples and remain in tight competition with the Bigram variation. The lat-
ter dominates the competition with other templates for the rest of the parsing
levels.

7.4.2 Learning Curve

After investigating the impact of mixing samples on the feature engineering
choices, we aim at studying the impact on the learning curve of each model
for the same combinations used in the previous experiments.

Experiments

The same design of the experiments with mono-sample training was fol-
lowed to generate the learning curve for the different combinations of these
experiments. We simply summed the page numbers of analogous batches
and selected the best models observed in the previous series of experiments.
The learning curves per combination of samples are presented in Figures 7.25, 7.26, 7.27, 7.28
and 7.29.

Discussion

Given the limited number of samples we used for this experiment, we can
not be sure about the origin of some behaviours when certain categories of
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FIGURE 7.25: Learning Curve of the Different Models Given
the Number of Training Pages from 2 BL

FIGURE 7.26: Learning Curve of the Different Models Given
the Number of Training Pages from 3 BL
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FIGURE 7.27: Learning Curve of the Different Models Given
the Number of Training Pages from DB

FIGURE 7.28: Learning Curve of the Different Models Given
the Number of Training Pages from ML
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FIGURE 7.29: Learning Curve of the Different Models Given
the Number of Training Pages from All

samples are mixed. But we can observe more harmony in the learning curves
when:

• a relatively small number of mixed samples comes from the same com-
pilation process, such as the case of 2 BL compared to 3 BL or DB

• a bigger number of samples are mixed, as observed for All compared
to 3 BL and ML. Such a combination seems to help the models to have
a more abstract prediction over the variety of the training samples.

We can also observe, as for models trained on mono-samples (see Sec-
tion 7.3.2), that a model has a more stable learning curve when it is operating
on long text sequences.

Finally, the convergence of models remains quick as a proportion of pages
between 1/4 and 1/3 of the total number of annotated pages allows most of
the models to reach performances close to the plateau.

7.5 Experiment Series 3: Testing with Unseen Dic-
tionaries

After studying the behaviour of our models on seen samples, we want to
get more insight into the performance of the best models trained with one
or more dictionaries and tested with a different sample. In fact, this section
sets out to answer a question that we not only asked ourselves, but one that
we have been asked several times by the community: “Could the models of
GROBID-Dictionaries parse dictionaries that the tool was not initially trained
on?”

To answer this question, we carried out the following experiments.
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Experiments

We train each model using for each sample the templates that give the best
performance, as observed in Tables 7.6 and 7.5, and we change the test dataset
to have a sample that the model did not see during the training. We designed
5 experiments where we used samples from previous experiments. There-
fore, the previous abbreviations for naming the sample remain valid and we
add a dash to differentiate respectively the training from the testing datasets.
The training and testing pairs are the following:

• EEBD-DLF & DLF-EEBD: the training and the testing is performed
with one monolingual dictionary in each dataset then we permute the
sample, train and test again.

• 2BL-MxSp & MxSp-2BL: the same approach applies for this experi-
ment with bilingual dictionaries.

• ML-BL: for this experiment, we want to further push the models to
their limits by training on monolingual samples and testing on bilin-
gual ones.

FIGURE 7.30: Evaluation of the Dictionary Segmentation
Model Using the Best Templates and Testing with Unseen Sam-

ple

Discussion

Figures 7.30, 7.31, 7.32, 7.33, 7.34, 7.35 and 7.36 show very deteriorated per-
formance of the models at different levels of the lexical parsing. The best av-
erage performances, around 50% F1-score, are achieved by the pairs ML-BL
for the Dictionary Segmentation model and DLF-EEBD for the GramGrp
model. Some individual good predictions for some labels are also visible
such as for <orth> or <subSense> but not for all pairs of samples.
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FIGURE 7.31: Evaluation of the Dictionary Body Segmentation
Model Using the Best Templates and Testing with Unseen Sam-

ple

FIGURE 7.32: Evaluation of the Lexical Entry Model Using the
Best Templates and Testing with Unseen Sample
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FIGURE 7.33: Evaluation of the Form Model Using the Best
Templates and Testing with Unseen Sample

FIGURE 7.34: Evaluation of the GramGrp Model Using the Best
Templates and Testing with Unseen Sample
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FIGURE 7.35: Evaluation of the Sense Model Using the Best
Templates and Testing with Unseen Sample

FIGURE 7.36: Evaluation of the Sub-Sense Model Using the Best
Templates and Testing with Unseen Sample
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This behaviour was somehow expected as theoretically, and often, either
the models are trained to predict certain labels which do not exist in the test-
ing sample or the testing sample has labels that the model was not trained to
recognise. That is the case of <usg> and <xr> labels of lexical entry models
where these classes of structure exist in the 2 BL sample but the model trained
with the MxSp sample has no clue about their recognition as they were not
among the labels to predict during the training. For the labels which are in
common between the training and test sets, the difference in the logical and
physical structures seems to be too hard to be contained by the features acti-
vated in the training.

The question asked at the beginning of this section seems to be straight-
forward to answer, given the results of these experiments: in order to achieve
accurate predictions, the models need to be trained on the testing sample.

7.6 Scaling up

The scalability aspect of our models was a constant concern during the prepa-
ration of this thesis. In this section, we address the issues involved, while
putting our work in context with regard to other research projects. We carried
out this investigation through two series of experiments: the first addresses
scalability by using different categories of data and the second explores the
possibility to shift to a new generation of machine-learning techniques.

7.6.1 Experiment Series 4: Beyond dictionaries

Exposing our system at the early stages of its development to scholarly users
led us to explore the applicability of the models we designed for similarly
structured documents, mainly entry-based ones. Such “side” investigations
helped us to gain a better understanding of the behaviour of our parsing
models, to find ways to widen their scope and to scale up their performance.
Consequently, we were driven to become familiar with common issues in the
digital humanities that could be solved by a tool like GROBID-Dictionaries.

Legacy Manuscript Auction Catalogs

Introduction Manuscript Sales Catalogues (MSC)s, called also Manuscript
Auction catalogues, are essential documents for Catalogue business as well
as for the traceability of the movements of historical documents. An in-
creasing number of such documents is made available to the public and re-
searchers in related humanities fields are keen to acquire methods and tools
for extracting structured information from such material. Most of these avail-
able catalogues are legacy documents that may date back to the beginning of
the 19th century.

The documents in Figure 7.38 represent excerpts from an Encyclopaedic
Dictionary and an MSC. One could see how both samples appear similar and
that it could be difficult to differentiate between them at first sight. Such an



150 Chapter 7. GROBID-Dictionaries in Action

observation pushed us to investigate, as a first step, the applicability of our
lexical encoding schema to this new class of documents.

(a) Excerpt from a Manuscripts Auction Catalogue (1889)

(b) Excerpt from an Encyclopedic Section in Petit Larousse Illustré Dictionary (1948)

FIGURE 7.37: Resemblance between MSCs and Encyclopedic
Dictionaries

In Khemakhem et al., 2018a, we propose, in collaboration with interested
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humanities experts, two encodings for both categories of documents (see Ta-
ble 7.38).

FIGURE 7.38: Encoding of an MSC

To reach this target, we use the following from our modelling schema:

• <name> is used to encode headwords at the Form level to be then
parsed by a future subsequent model to differentiate <persName> <addName>
and <surName> constructs.

• <desc> element to encode the brief description coming after the head-
word of an article in both types of documents

• <def>, <bibl> and <note> to model semantic information

We customised the schema of <entry> to allow <num> to markup the order-
ing on entries in dictionaries and MSCs. And given the fact that the whole
semantic description is related to one sense, the humanities experts in charge
of the annotation chose to annotate <note> at the Sense level and not Sub-
Sense.

As a second step, we wanted to experiment the ability of our lexical mod-
els to learn the recognition of constructs in such documents. In the following
section, we describe the experiments we conducted to this end, based on a
study focused on parsing MSCs (Rondeau Du Noyer et al., 2019).
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Experiments To study the performance of the models on MSCs, we carried
out two experiments. The first, named Cat, is focused on training and testing
the models with different catalogues, whereas the second, named Cat+Dict,
makes use of the same catalogues as well as all the dictionaries in our pool to
train and test the models.

We used 5 models only after we excluded the GramGrp and Sub-Sense
models, since the information in the MSCs did not require an activation of
these two models. Figures 7.39, 7.40, 7.41, 7.42 and 7.43 present the evalu-
ation of the different models with the Bigram templates, which gave the best
results. In these Figures, we also recall the results of the models trained with
only the combination of all dictionaries, already reported in previous experi-
ments as All. Since the focus of these experiments is on the MSCs, we report
the F1-score of individual labels that occur in these documents and exclude
the tags which occur only in dictionaric samples.

FIGURE 7.39: Evaluation of the Dictionary Segmentation
Model Trained and Tested with MSCs and Dictionaries

Discussion The evaluation of the different models shows very accurate
prediction results for the Cat models with the F1-score exceeding 90%, except
for the Dictionary Segmentation model where more annotated data seem to
be required. The performance of the models for the recognition of MSCs
constructs is very comparable to the results achieved by the models trained
to recognise only lexical structures. The combination of samples, Cat+Dict,
does not harm the learning and the models show a great generalization ca-
pacity, except for the Dictionary Body segmentation model where a rarely
occurring label <dictScrap> is the origin of a low macro-average score. These
experiments confirm the possibility of scaling up our lexical models to a new
category of documents by simply applying the modelling schemes in cascade
with a minor customisation of the TEI encoding. The possibility of build-
ing super-models for parsing similar structures in different documents that
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FIGURE 7.40: Evaluation of the Dictionary Body Segmentation
Model Trained and Tested with MSCs and Dictionaries

FIGURE 7.41: Evaluation of the Lexical Entry Model Trained
and Tested with MSCs and Dictionaries
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FIGURE 7.42: Evaluation of the Form Model Trained and Tested
with MSCs and Dictionaries

FIGURE 7.43: Evaluation of the Sense Model Trained and
Tested with MSCs and Dictionaries
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encapsulate lexical and encyclopedic-like content, and are organised in an
entry-based layout, is a second aspect that is confirmed by these experiments.

Address Directories

Introduction The lack of adequate information extraction tools and the en-
hanced usability of the GROBID-Dictionaries and its workflow attracted more
researchers in the DH fields to try our models on newer categories of docu-
ments. In what follows we present preliminary work that we carried out in
this direction, in collaboration with other researchers .

Time Machine 12 is a major large-scale project, that was launched after the
interest raised by the potential of a seed project (Kaplan, 2015), aiming at
analysing and valorising the content of legacy documents for the ultimate
purpose of redrawing the historical, social and economical heritage of Eu-
rope. Browsing a legacy map representing a geographical snapshot of histor-
ical cities is far from being accomplished. The difficulty is firstly due to the
lack of structured data allowing a system to map a given address to a throw-
back location. Such information is abundantly available in dedicated paper
resources, such as legacy address directories. But even digitised, mining the
content of these resources remains limited due to the ad-hoc information ex-
traction techniques that are currently employed.

Experiments In the context of joint studies within a local consortium, Paris
Time Machine13, we explored the possibility of applying GROBID-Dictionaries’
models on legacy address directories “Annuaires-almanach” of Paris, made
available by the French National Library14. We were struck by the similar-
ities between the structures of dictionaries and address directories, where
both resources share a semasiological representation. In fact, such directories
could be perceived as encyclopedic resources where locations are described
as unique concepts.

As a first step, we tried to find a TEI encoding that converged to the mod-
elling of our lexical parsers. In Table 7.7, we distinguish between two cat-
egories of entries. The first is reserved for each entry describing a single
occupant in a unique or a shared address. In other terms, to each number in
a street, one or many occupants could be assigned and an entry for each one
of them. The second category of entries gathers the description blocks of a
common street. An entry in this case encapsulates information like the name
of the street, its length, neighbouring streets, etc.

In Khemakhem et al., 2018b, we present promising preliminary results of
first experiments carried out to extract macro-structures of the entries of these
directories. The OCR quality was a serious obstacle for us to pursue more
advanced experiments. Nevertheless, such attempts confirmed the potential
of our approach and the resulting models to be applied on a larger scale for
entry-based documents.

12http://timemachineproject.eu
13https://paris-timemachine.huma-num.fr/groupe-adresses-et-annuaires/
14https://gallica.bnf.fr/ark:/12148/bpt6k9763088f/f1198.image

http://timemachineproject.eu
https://paris-timemachine.huma-num.fr/groupe-adresses-et-annuaires/
https://gallica.bnf.fr/ark:/12148/bpt6k9763088f/f1198.image
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Sample Encoding

TABLE 7.7: Proposed TEI Encoding of Entries in Address Di-
rectories (Didot-Bottin, 1901)

7.6.2 Experiment Series 5: Deep Learning

Introduction

Deep Learning (DL) is a relatively new machine-learning paradigm, based
on artificial neural networks, that is constantly gaining more territory in re-
search and industry. In fact, the growing computing capacities, the abun-
dance of data generated daily by the Internet users, and the democratisation
of libraries and best practices for data science has resulted in a large move-
ment to deep learn almost any computational task. In the NLP field, Machine
Translation (Wu et al., 2016; Artetxe et al., 2017; Cheng, 2019), Part of Speech
Tagging (Plank, Søgaard, and Goldberg, 2016; Gui et al., 2017; Meftah and
Semmar, 2018; Martin et al., 2019) and Named Entity Recognition (Lample et
al., 2016; Peters et al., 2017; Martin et al., 2019; Le et al., 2019) are typical tasks
that have benefited from the deep learning race, where the last two tasks
represent a certain analogy with the lexical parsing of print dictionaries.

Many readers of this thesis, like many fellow researchers, might well ask
the obvious question: why did we not investigate the use of DL and gain
inspiration from these analogous tasks to solve the present parsing task? In
fact, several reasons lie behind our choice not to favour the investigation of
such advanced machine-learning techniques. First, at the outset of our work,
we did not have enough understanding of the obstacles that left state-of-
the-art methods for parsing dictionaries so limited and did not profit from
simpler machine learning techniques. Second, at the time we started our
investigations, the understanding of DL architectures was not as developed
as it has subsequently become. In addition, deep architectures still required a
heavy implementation effort and resources that we were not sure to have. So
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we considered that it was a bit risky to rely on such a technology for a very
little explored territory. Therefore, we made our choice to build our work
upon an evolving implementation, GROBID, which was based on established
machine-learning techniques and offered us a minimal framework to start
with and adapt.

By the time we had gathered enough knowledge about the requirements
of the task we wanted to solve, we discovered several practical limitations of
DL models in this sense. One could notice that most of the tasks solved by
such models deal with text sequences that do not exceed a few words or sen-
tences. With regard to the specificity of our parsing task, it is still technically
impossible to use deep learning models to process batches of text (exceed-
ing 1024 tokens) like the whole text of a dictionary to find macro structures
such as the <body> in a dictionary page or <entry>s within a <body> con-
struct. Even parsing separate dictionary articles can encounter this issue for
the case of many legacy dictionaries, where the lexical description can take
up several columns or pages. Parsing such large structures is vital for the
first three models of our architecture, which are key models in the cascading
parsing chain. For the rest of the models, we did not find enough annotated
datasets that contained real-world data, as we explained at the beginning of
this chapter (see Section 7.1).

The simpler technique that we used helped us to quickly explore the pars-
ing complexity for the different lexical models. Moreover, the quick conver-
gence and high accuracy of the models built enabled the annotation of raw
data to be speeded up, by using automatic annotation and fewer manual
post-corrections. Luckily, our bet on using GROBID did pay off in the end,
as in parallel with our work, core functionality in this scholarly parsing sys-
tem evolved and it became possible to integrate DL models.

In the following section, we present preliminary experiments with deep
learning models, when it was technically possible.

Experiments

Through these experiments we aim at showing the possibility to integrate a
new generation of DL models within our system. We also want to get insight
into preliminary results of an example of a more advanced machine learning
technique compared to the classic CRF we used to implement our sequence
labelling models.

We used DeLFT 2018–2020, an advanced library implementing Deep Learn-
ing Architectures, which benefits from a native integration within GROBID.
From this framework, we used an implementation of the architecture pro-
posed by Lample et al., 2016 which relies on a BidLSTM-CRF model with
glove-840B word embeddings. For these experiments, we skip the evaluation
of the Dictionary Segmentation and Dictionary Body Segmentation models,
given the technical limitation of such deep architectures to handle the corre-
sponding long text segments, and we present the results of the other models.
To train and test the new labelers, we chose the EEBD sample given its mid-
complexity and its fitness of the used word embeddings to the language and
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its modernity. In Figures 7.44, 7.45, 7.46, 7.47 and 7.48, we report the evalu-
ation of the DL and Wapiti models trained and tested with the same English
dictionary.

FIGURE 7.44: Evaluation of the Lexical Entry Model Trained
and Tested with EEBD Using Deep Learning and Wapiti Label-

ers

FIGURE 7.45: Evaluation of the Form Model Trained and Tested
with EEBD Using Deep Learning and Wapiti Labelers

The results of these experiments show comparable performances with
identical scores for one model, GramGrp, and better results achieved by
Wapiti for the rest of the models. More data and different tuning of the deep
models need to be further experimented in order to improve the labelling
capacities of the models at a larger scale and to overcome the limitations of
classic machine learning models. Such a study goes beyond the goals of this
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FIGURE 7.46: Evaluation of the GramGrp Model Trained and
Tested with EEBD Using Deep Learning and Wapiti Labelers

FIGURE 7.47: Evaluation of the Sense Model Trained and
Tested with EEBD Using Deep Learning and Wapiti Labelers
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FIGURE 7.48: Evaluation of the Sub-Sense Model Trained and
Tested with EEBD Using Deep Learning and Wapiti Labelers

thesis. Nevertheless, we have already started to explore in this direction in
the context of new research projects that build upon the results of the current
work.

7.7 Chapter Summary

This chapter breaks down the complexity of parsing print dictionaries from
an empirical perspective. We also presented the different factors and features
that impact on the performance of our lexical models and showed different
scaling up alternatives.

The introduction of the machine-learning setup, with regard to the speci-
ficity of the lexical parsing task, gave an overview of aspects and details that
should be taken into consideration to properly conduct machine-learning ex-
periments. Through multiple extensive experiments, we studied the impact
of feature engineering and observed how it can vary according to the lexical
parsing level and the sample. The CRF models implemented in GROBID-
Dictionaries showed the ability to adapt and parse all the dictionaries we
presented, to varying degrees. The positive combination of samples was also
an aspect that we explored along with the limitation of trained models to
differentiate structures in unseen samples. Through drawing the learning
curves, we also demonstrated that the technique we have used does not re-
quire a large amount of annotated data to achieve accurate parsing results.
More side exploratory investigations on the application of our architecture
were successful and we managed by simply applying our annotation scheme
to enable the parsing of new categories of entry-based documents. Scaling up
the technique to more sophisticated models was also addressed and prelim-
inary experiments showed the possibility of integrating DL models at differ-
ent levels of our architecture.
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Chapter 8

Summary & Perspectives

8.1 Summary

Parsing print dictionaries using lexical models that are able to dismantle the
multi-fold complexity of such resources and the generation of standardised
output enabling a maximum exchange, are two tasks that we addressed in
this thesis. We presented a novel approach relying on standard-based lex-
ical models that build on the leading encoding standards and extends the
hitherto modest state-of-the-art of parsing techniques.

A standard-based lexical model, as presented in this thesis, can be assim-
ilated as an automatic labeller:

• that uses a supervised machine-learning technique

• based on typographic and textual features

• to learn the recognition of structures in text sequences

• and serialises the recognised constructs into a standardised resource

Our initial goals were to:

• Understand why parsing dictionaries did not benefit from the great ad-
vances in machine-learning techniques

• Find an encoding that can generalise over most of dictionaries

• Build models that can fit this encoding and accelerate the structuring of
print dictionaries

We tackled the analysis of the challenges for such a parsing task by pre-
senting the specificity of digital-born and digitised documents, and the va-
rieties in the logical and physical structures of print dictionaries. We also
presented related work, which, in general, is limited and experimental, and
our inspiration from an existing successful implementation in an infrastruc-
ture for parsing bibliographic information.

We have accordingly implemented an end-to-end system, called GROBID-
Dictionaries, which relies on cascading machine-learning models to orches-
trate the analysis and the extraction of lexical structures from an input dic-
tionary. We presented the different challenges that we encountered to build
our models, which required both engineering and lexicographic skills. For
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the engineering part, we managed to adapt core functionalities of GROBID,
the implementation of our above-mentioned inspiration, and build on top of
them a platform for training multi-level CRF models for parsing dictionar-
ies. For the lexicographic part, we succeeded in enhancing the usability of
the system for its use in the humanities. In fact, we have lightened the setup
and the annotation processes and exposed the enhanced environment to real
users who, consequently, provided us with valuable feedback to shape the
design of our models and to spot real expert issues.

Building the parsing infrastructure went hand in hand with the definition
of the final standardised output. Actually, finding the match between the fi-
nal output and the designed cascading models was the guiding line of this
thesis and the most challenging part, given the implementation constraints
and the fact that the final output relies on the outcome of ongoing standard-
isation discussions.

To define the final output, we studied the most widely-used standards
and formats for modelling lexical resources, namely TEI, LMF and OntoLex-
Lemon, and we discussed their strengths as well as their limitations. Based
on that, we presented our contribution in the shaping of two emerging schemes,
TEI-Lex-0 and the new LMF, that try to unify the lexical modelling prac-
tices by following two different approaches. Our standardised output was
massively inspired from these evolving schemes and this can be observed
in the serialisation model we have presented in this thesis. We managed to
make our output converge to a model for serialising the lexical entry macro-
structure that satisfies most of the modelling of TEI-Lex-0 and LMF models.
For more granular lexical parsing, we have anticipated based on the samples
we encountered.

After building the architecture of lexical models, we aimed at studying
their performance and behaviour at each parsing level. To this end, we
needed annotated data that suited the design and the encoding of our mod-
els. Such a requirement was not easy to satisfy given the challenging aspects
of lexical data annotation and real-world data. Thanks to the efficiency of the
technique implemented for our models and the enhanced usability of the sys-
tem, we managed to semi-automatically create sliver-standard data carrying
suitable annotations.

Through an extensive experimentation, we analysed the behaviour of our
CRF models as well as ways to improve their performance, chiefly through
feature engineering. We also showed the impact of combining samples for
the training on the generalisation capacities of such sequence labellers, that
could be maintained and often improved. In addition, we have shown em-
pirically the limits of these models in the parsing of samples that were not
used in the training.

Our cascading approach showed a great ability to adapt for parsing new
categories of documents. The flexibility of the models has been tested with
non dictionaric resources that share certain physical and logical aspects with
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print dictionaries. Simply through a proper annotation of the new sam-
ples, the implemented models demonstrated a significant genericity for pars-
ing and encoding dictionaries and entry-based documents, mainly with en-
cyclopaedic content. Finally, the implementation of our approach showed
enough flexibility to easily integrate a more advanced category of machine-
learning models, in particular DL technology. Such a scalability can unlock
and speed up experiments aiming at advancing research in such a direction.

From a standardisation perspective, this thesis gives ideas and practical
solutions for structuring an increasing number of raw lexical and entry-based
documents into exchangeable resources. Such research work represents a
concrete use case where related initiatives are exposed to real extraction sce-
narios to confirm choices and to open up discussion about the applicability
of some lexical modelling decisions.

8.2 Perspectives

The work presented in this thesis has the potential to pave the way for mas-
sive information extraction from a wide range of digitised documents, mainly
dictionaries and other entry-based documents. What we have so far achieved
can be extended in several ways.

Besides carrying on the work on implementing the missing models in
GROBID-Dictionaries, in parallel with the refinement of the final encoding,
scaling up the performance of the built architecture can be investigated by
either performing more feature engineering or integrating more DL models
on more data. Regarding data, after major obstacles were clarified and over-
come, this thesis can be used to develop guidelines and a protocol for large-
scale annotation of more diverse samples. Given the rapid convergence of
our models, the generation of training data can be exponentially accelerated
to find larger sets of data to enable meaningful investigations of advanced
machine-learning techniques. For that, user interaction for the training func-
tionalities could be further improved by making them more accessible to a
greater number of users with more enhanced usability (e.g., implementing
a user interface). Given the very promising results on Catalogs, we have
already started to concretise ideas in such research directions by launching
GROBID-Cat 1 where we plan to make an in-depth customization of the ar-
chitecture and encoding for more fine grained extraction. Such collaboration
can unlock research in related fields by making more structured legacy doc-
uments available.

Being compatible with the GROBID-family tools, our models can be ex-
ploited to build new tools based on models coming from different systems. A
first attempt in this direction to parse large bibliographic collections (see Fig-
ure 8.1) was successful by combining models of GROBID-Dictionaries and
GROBID (Lindemann, Khemakhem, and Romary, 2018). We also plan to
further enrich the output of GROBID-Dictionaries by applying models from

1https://github.com/MedKhem/grobid-cat

https://github.com/MedKhem/grobid-cat


164 Chapter 8. Summary & Perspectives

Named Entity Recognition and Disambiguation system (Foppiano and Ro-
mary, 2018). Another avenue that is worth exploring in order to enrich the
output of our system is the application of tools for downstream tasks.
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FIGURE 8.1: Excerpt from the Bibliography Collection (Wie-
gand, 2014) used for Experimenting the Combination of GRO-

BID and GROBID-Dictionaries Models
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Appendix A

Descriptive Vectors and Feature
Templates

A.1 Descriptive Vectors

We used two categories of descriptive vectors: line based and token based

A.1.1 Descriptive Vectors for Dictionary Segmentation Model
(a.k.a. GROBID’s First Model)

These are line based vectors, where each vector is described by:

0. First Token

1. Second token

2. Lower-cased first token

3. Prefix 1 character

4. Prefix 2 characters

5. Prefix 3 characters

6. Prefix 4 characters

7. Block information (e.g. BLOCKSTART, BLOCKIN, BLOCKEND)

8. Page information (e.g. PAGESTART, PAGEIN)

9. Font status (e.g. NEWFONT, SAMEFONT)

10. Font size information (e.g. HIGHERFONT, SAMEFONTSIZE, LOWER-
FONT)

11. Is Bold (e.g. 0 when false, 1 when true)

12. Is Italic (e.g. 0 when false, 1 when true)

13. Capitalisation (e.g. INITCAP, NOCAP, ALLCAP)

14. Digit information (e.g. NODIGIT, ALLDIGIT, CONTAINSDIGITS)
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15. Character information (e.g 0 when false, 1 when true)

16. Is a Proper Name (e.g. 0 when false, 1 when true)

17. Is a Common Name (e.g. 0 when false, 1 when true)

18. Is a First Name (e.g. 0 when false, 1 when true)

19. Is a Year (e.g. 0 when false, 1 when true)

20. Is a Month (e.g. 0 when false, 1 when true)

21. Is a Email (e.g. 0 when false, 1 when true)

22. Is a HTTP (e.g. 0 when false, 1 when true)

23. Punctuation information (in case the token is a punctuation, NO other-
wise)

24. Relative Document Position

25. Relative page position coordinate

26. String Profile

27. Current line length

28. Is a bitmap around (e.g. 0 when false, 1 when true)

29. Is a vector around (e.g. 0 when false, 1 when true)

30. Is a repetitive pattern (e.g. 0 when false, 1 when true)

31. Is a first repetitive pattern (e.g. 0 when false, 1 when true)

32. Is the block is in the page main area (e.g. 0 when false, 1 when true)

A.1.2 Descriptive Vectors for Dictionary Body Segmentation
Model Onward

These are token based vectors, where each vector is described by:

0. Token

1. Lower-cased token

2. Prefix 1 character

3. Prefix 2 characters

4. Prefix 3 characters

5. Prefix 4 characters

6. Suffix 1 character
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7. Suffix 2 characters

8. Suffix 3 characters

9. Suffix 4 characters

10. Font size information (e.g. HIGHERFONT, SAMEFONTSIZE, LOWER-
FONT)

11. Is Bold (e.g. 0 when false, 1 when true)

12. Is Italic (e.g. 0 when false, 1 when true)

13. Capitalisation (e.g. INITCAP, NOCAPS, ALLCAPS)

14. Punctuation information (e.g. NOPUNCT, PUNCT))

15. Line status (e.g. LINESTART, LINEIN, LINEND)

16. Font status (e.g. NEWFONT, SAMEFONT)

A.2 Feature Templates

Feature templates define the selection patterns from the corresponding de-
scriptive vectors. We present for each template category, its description using
the Wapiti syntax. Each line starting by a "#" means that the line is about an
inactive feature or simply a comment.

A.2.1 Unigram Templates of Dictionary Segmentation Model
(a.k.a. GROBID’s First Model)

# First Token (0)
U00:%x[-4,0]
U01:%x[-3,0]
U02:%x[-2,0]
U03:%x[-1,0]
U04:%x[0,0]
U05:%x[1,0]
U06:%x[2,0]
U07:%x[3,0]
U08:%x[4,0]
U08:%x[5,0]

# Second token (1)
U00:%x[-4,1]
U01:%x[-3,1]
U02:%x[-2,1]
U03:%x[-1,1]
U04:%x[0,1]
U05:%x[1,1]
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U06:%x[2,1]
U07:%x[3,1]
U08:%x[4,1]

# Lower-cased first token (2)
U10:%x[-2,2]
U11:%x[-1,2]
U12:%x[0,2]
U13:%x[1,2]
U14:%x[2,2]

# Prefix 1-4 characters (3-6)
U20:%x[0,3]
U21:%x[0,4]
U22:%x[0,5]
U23:%x[0,6]

# Block info (7)
U40:%x[-1,7]
U41:%x[0,7]
U42:%x[1,7]

# page info (8)
U60:%x[-1,8]
U61:%x[0,8]
U62:%x[1,8]

# Font info (9-10)
U70:%x[-1,9]
U71:%x[0,9]
U72:%x[1,9]
U80:%x[-1,10]
U81:%x[0,10]
U82:%x[1,10]

# Bold info (11)
U90:%x[-1,11]
U91:%x[0,11]
U92:%x[1,11]

# Italic info (12)
UA0:%x[-1,12]
UA1:%x[0,12]
UA2:%x[1,12]

# Capitalisation (13)
UB0:%x[0,13]
UB1:%x[1,13]
UB2:%x[-1,13]



A.2. Feature Templates 171

# Digits (14)
UC0:%x[0,14]
UC1:%x[-1,14]
UC2:%x[1,14]

# Char info (15)
UD0:%x[0,15]
UD1:%x[-1,15]
UD2:%x[1,15]

# Dict info (16-22)
UE0:%x[0,16]
UE1:%x[0,17]
UE2:%x[0,18]
UE3:%x[0,19]
UE4:%x[0,20]
UE5:%x[0,21]
UE6:%x[0,22]
UEI:%x[1,16]
UEJ:%x[1,17]
UEK:%x[1,18]
UEL:%x[1,19]
UEM:%x[1,20]
UEN:%x[1,21]
UEO:%x[1,22]

# punctuation info (23)
UG0:%x[-1,23]
UG1:%x[0,23]
UG2:%x[1,23]

# relative document position (24)
UH0:%x[-1,24]
UH1:%x[0,24]
UH2:%x[1,24]

# relative page position coordinate (25)
UI0:%x[-1,25]
UI1:%x[0,25]
UI2:%x[1,25]

# number of punctuation charcaters in the line (26)
UI0:%x[-1,26]
UI1:%x[0,26]
UI2:%x[1,26]

# (scaled) line length (27)
UI0:%x[-1,27]
UI1:%x[0,27]
UI2:%x[1,27]
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# bitmap connected to the current block (28)
UG0:%x[-2,28]
UG1:%x[-1,28]
UG2:%x[0,28]
UG3:%x[1,28]
UG4:%x[2,28]
UG5:%x[3,28]

# vector graphic connected to the current block (29)
UG0:%x[-2,29]
UG1:%x[-1,29]
UG2:%x[0,29]
UG3:%x[1,29]
UG4:%x[2,29]
UG5:%x[3,29]

# pattern repeated on several pages
UH0:%x[-2,30]
UH1:%x[-1,30]
UH2:%x[0,30]
UH3:%x[1,30]
UH4:%x[2,30]
UH5:%x[3,30]

# if we have a repeated pattern
UI1:%x[-1,31]
UI2:%x[0,31]
UI3:%x[1,31]

# if the block is in the page main area (1)
UJ1:%x[-2,32]
UJ1:%x[-1,32]
UJ2:%x[0,32]
UJ3:%x[1,32]
UJ3:%x[1,32]

# BigramActivated
#B

A.2.2 Unigram Templates from Dictionary Body Segmenta-
tion Model Onward

# Token
U00:%x[-4,0]
U01:%x[-3,0]
U02:%x[-2,0]
U03:%x[-1,0]
U04:%x[0,0]
U05:%x[1,0]
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U06:%x[2,0]
U07:%x[3,0]
U08:%x[4,0]
U09:%x[-1,0]/%x[0,0]
U0A:%x[0,0]/%x[1,0]
U0B:%x[1,0]/%x[2,0]
U0C:%x[-2,0]/%x[-1,0]
U0E:%x[-2,0]/%x[-1,0]/%x[0,0]
U0E:%x[0,0]/%x[1,0]/%x[2,0]

# Lower-cased token
U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]
U13:%x[1,1]
U14:%x[2,1]

# Prefix 1-4 characters
U20:%x[0,2]
U21:%x[0,3]
U22:%x[0,4]
U23:%x[0,5]

# Suffix 1-4 characters
U30:%x[0,6]
U31:%x[0,7]
U32:%x[0,8]
U33:%x[0,9]

# Font Size information
U40:%x[0,10]
U41:%x[1,10]
U42:%x[-1,10]

# Is Bold
U50:%x[0,11]
U51:%x[-1,11]
U52:%x[1,11]

# Is Italic
U60:%x[0,12]
U61:%x[-1,12]
U62:%x[1,12]

# Capitalisation
U70:%x[0,13]
U71:%x[-1,13]
U72:%x[1,13]

# Punctuation information
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UA0:%x[0,14]
UA1:%x[-1,14]
UA3:%x[1,14]

# Line status
UB0:%x[-1,15]
UB1:%x[0,15]
UB2:%x[1,15]

# Font status
UC0:%x[-1,16]
UC1:%x[0,16]
UC2:%x[1,16]

# Bigram Activated
#B

A.2.3 Bigram Templates of Dictionary Segmentation Model
(a.k.a. GROBID’s First Model)

# First Token (0)
U00:%x[-4,0]
U01:%x[-3,0]
U02:%x[-2,0]
U03:%x[-1,0]
U04:%x[0,0]
U05:%x[1,0]
U06:%x[2,0]
U07:%x[3,0]
U08:%x[4,0]
U08:%x[5,0]

# Second token (1)
U00:%x[-4,1]
U01:%x[-3,1]
U02:%x[-2,1]
U03:%x[-1,1]
U04:%x[0,1]
U05:%x[1,1]
U06:%x[2,1]
U07:%x[3,1]
U08:%x[4,1]

# Lower-cased first token (2)
U10:%x[-2,2]
U11:%x[-1,2]
U12:%x[0,2]
U13:%x[1,2]
U14:%x[2,2]
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# Prefix 1-4 characters (3-6)
U20:%x[0,3]
U21:%x[0,4]
U22:%x[0,5]
U23:%x[0,6]

# Block info (7)
U40:%x[-1,7]
U41:%x[0,7]
U42:%x[1,7]

# page info (8)
U60:%x[-1,8]
U61:%x[0,8]
U62:%x[1,8]

# Font info (9-10)
U70:%x[-1,9]
U71:%x[0,9]
U72:%x[1,9]
U80:%x[-1,10]
U81:%x[0,10]
U82:%x[1,10]

# Bold info (11)
U90:%x[-1,11]
U91:%x[0,11]
U92:%x[1,11]

# Italic info (12)
UA0:%x[-1,12]
UA1:%x[0,12]
UA2:%x[1,12]

# Capitalisation (13)
UB0:%x[0,13]
UB1:%x[1,13]
UB2:%x[-1,13]

# Digits (14)
UC0:%x[0,14]
UC1:%x[-1,14]
UC2:%x[1,14]

# Char info (15)
UD0:%x[0,15]
UD1:%x[-1,15]
UD2:%x[1,15]
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# Dict info (16-22)
UE0:%x[0,16]
UE1:%x[0,17]
UE2:%x[0,18]
UE3:%x[0,19]
UE4:%x[0,20]
UE5:%x[0,21]
UE6:%x[0,22]
UEI:%x[1,16]
UEJ:%x[1,17]
UEK:%x[1,18]
UEL:%x[1,19]
UEM:%x[1,20]
UEN:%x[1,21]
UEO:%x[1,22]

# punctuation info (23)
UG0:%x[-1,23]
UG1:%x[0,23]
UG2:%x[1,23]

# relative document position (24)
UH0:%x[-1,24]
UH1:%x[0,24]
UH2:%x[1,24]

# relative page position coordinate (25)
UI0:%x[-1,25]
UI1:%x[0,25]
UI2:%x[1,25]

# number of punctuation charcaters in the line (26)
UI0:%x[-1,26]
UI1:%x[0,26]
UI2:%x[1,26]

# (scaled) line length (27)
UI0:%x[-1,27]
UI1:%x[0,27]
UI2:%x[1,27]

# bitmap connected to the current block (28)
UG0:%x[-2,28]
UG1:%x[-1,28]
UG2:%x[0,28]
UG3:%x[1,28]
UG4:%x[2,28]
UG5:%x[3,28]

# vector graphic connected to the current block (29)
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UG0:%x[-2,29]
UG1:%x[-1,29]
UG2:%x[0,29]
UG3:%x[1,29]
UG4:%x[2,29]
UG5:%x[3,29]

# pattern repeated on several pages
UH0:%x[-2,30]
UH1:%x[-1,30]
UH2:%x[0,30]
UH3:%x[1,30]
UH4:%x[2,30]
UH5:%x[3,30]

# if we have a repeated pattern
UI1:%x[-1,31]
UI2:%x[0,31]
UI3:%x[1,31]

# if the block is in the page main area (1)
UJ1:%x[-2,32]
UJ1:%x[-1,32]
UJ2:%x[0,32]
UJ3:%x[1,32]
UJ3:%x[1,32]

# BigramActivated
B

A.2.4 Bigram Templates from Dictionary Body Segmentation
Model Onward

# Token
U00:%x[-4,0]
U01:%x[-3,0]
U02:%x[-2,0]
U03:%x[-1,0]
U04:%x[0,0]
U05:%x[1,0]
U06:%x[2,0]
U07:%x[3,0]
U08:%x[4,0]
U09:%x[-1,0]/%x[0,0]
U0A:%x[0,0]/%x[1,0]
U0B:%x[1,0]/%x[2,0]
U0C:%x[-2,0]/%x[-1,0]
U0E:%x[-2,0]/%x[-1,0]/%x[0,0]
U0E:%x[0,0]/%x[1,0]/%x[2,0]



178 Appendix A. Descriptive Vectors and Feature Templates

# Lower-cased token
U10:%x[-2,1]
U11:%x[-1,1]
U12:%x[0,1]
U13:%x[1,1]
U14:%x[2,1]

# Prefix 1-4 characters
U20:%x[0,2]
U21:%x[0,3]
U22:%x[0,4]
U23:%x[0,5]

# Suffix 1-4 characters
U30:%x[0,6]
U31:%x[0,7]
U32:%x[0,8]
U33:%x[0,9]

# Font Size information
U40:%x[0,10]
U41:%x[1,10]
U42:%x[-1,10]

# Is Bold
U50:%x[0,11]
U51:%x[-1,11]
U52:%x[1,11]

# Is Italic
U60:%x[0,12]
U61:%x[-1,12]
U62:%x[1,12]

# Capitalisation
U70:%x[0,13]
U71:%x[-1,13]
U72:%x[1,13]

# Punctuation information
UA0:%x[0,14]
UA1:%x[-1,14]
UA3:%x[1,14]

# Line status
UB0:%x[-1,15]
UB1:%x[0,15]
UB2:%x[1,15]

# Font status
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UC0:%x[-1,16]
UC1:%x[0,16]
UC2:%x[1,16]

# Bigram Activated
B

A.2.5 Engineered Templates from Dictionary Body Segmen-
tation Model Onward

# Token
U00:%x[-7,0]
U01:%x[-6,0]
U02:%x[-5,0]
U03:%x[-4,0]
U04:%x[-3,0]
U05:%x[-2,0]
U06:%x[-1,0]
U07:%x[0,0]
U08:%x[1,0]
U09:%x[2,0]
U0A:%x[3,0]
U0B:%x[4,0]
U0C:%x[5,0]
U0D:%x[6,0]
U0E:%x[7,0]
U0F:%x[-1,0]/%x[0,0]
U0G:%x[0,0]/%x[1,0]
U0H:%x[1,0]/%x[2,0]
U0E:%x[-2,0]/%x[-1,0]
U0F:%x[-2,0]/%x[-1,0]/%x[0,0]
U0I:%x[0,0]/%x[1,0]/%x[2,0]

# Lower-cased token
U10:%x[-5,1]
U11:%x[-4,1]
U12:%x[-3,1]
U13:%x[-2,1]
U14:%x[-1,1]
U15:%x[0,1]
U16:%x[1,1]
U17:%x[2,1]
U18:%x[3,1]
U19:%x[4,1]
U0A:%x[5,1]

# Prefix 1-4 characters
U20:%x[0,2]
U21:%x[0,3]
U22:%x[0,4]
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U23:%x[0,5]

# Suffix 1-4 characters
U30:%x[0,6]
U31:%x[0,7]
U32:%x[0,8]
U33:%x[0,9]

# FontSize information
U40:%x[-4,10]
U41:%x[-3,10]
U42:%x[-2,10]
U43:%x[-1,10]
U44:%x[0,10]
U45:%x[1,10]
U46:%x[2,10]
U47:%x[3,10]
U48:%x[4,10]

# Is Bold
U50:%x[-4,11]
U51:%x[-3,11]
U52:%x[-2,11]
U53:%x[-1,11]
U54:%x[0,11]
U55:%x[1,11]
U56:%x[2,11]
U57:%x[3,11]
U58:%x[4,11]

# Is Italic
U60:%x[-4,11]
U61:%x[-3,11]
U62:%x[-2,11]
U63:%x[-1,11]
U64:%x[0,12]
U65:%x[1,12]
U66:%x[2,12]
U67:%x[3,12]
U68:%x[4,11]

# Capitalisation
U70:%x[-4,13]
U71:%x[-3,13]
U72:%x[-2,13]
U73:%x[-1,13]
U74:%x[0,13]
U75:%x[1,13]
U76:%x[2,13]
U77:%x[3,13]
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U78:%x[4,13]

# Punctuation information
UA0:%x[-4,14]
UA1:%x[-3,14]
UA2:%x[-2,14]
UA3:%x[-1,14]
UA4:%x[0,14]
UA5:%x[1,14]
UA6:%x[2,14]
UA7:%x[3,14]
UA8:%x[4,14]

# Line status
UB0:%x[-4,15]
UB1:%x[-3,15]
UB2:%x[-2,15]
UB3:%x[-1,15]
UB4:%x[0,15]
UB5:%x[1,15]
UB6:%x[2,15]
UB7:%x[3,15]
UB8:%x[4,15]

# Font status
UC0:%x[-4,16]
UC1:%x[-3,16]
UC2:%x[-2,16]
UC3:%x[-1,16]
UC4:%x[0,16]
UC5:%x[1,16]
UC6:%x[2,16]
UC7:%x[3,16]
UC8:%x[4,16]

#Bigram Activated
B
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Appendix B

Models Call for the "Parse Full
Dictionary" Level in
GROBID-Dictionaries’ Web
Application

Figures B.1, B.2, B.3, B.4, B.5, B.6 and B.7 illustrate the different model se-
lection cases for parsing the components of a lexical entry (i.e the output of
the Lexical Entry model). The parsing of some structures, like related entries
and cross-references, can be activated at, either the lexical entry level, or all
the levels where they appear. These two parsing alternatives can be activated
by selecting respectively, "at entries" and "all" options. The "Download TEI
Result" button in Figure B.7 enables saving the TEI output of the different
activated models. This option is possible after each call of the models of a
parsing level.

FIGURE B.1: Selecting Morphological and Grammatical Models
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FIGURE B.2: Selecting Semantic Models

FIGURE B.3: Selecting Etymological Models

FIGURE B.4: Selecting Lexical Entry Model for Parsing Related
Entries
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FIGURE B.5: Selecting Cross-Reference Models

FIGURE B.6: Selecting Lexical Entry Model for Parsing Sub-
Entries
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FIGURE B.7: State after of Full Parsing Selection



187

Primary Source References

Almonjid (2014). The Dictionary of Language and Proper Nouns. Beirut, Lebanon:
Dar el-Machreq.

Alvarado, Francisco de (1593). “Vocabulario en Lengua Mixteca. Hecho por
los Padres de la Orden de Predicadores”. In:

Berthelot, André (1886). La grande encyclopédie: inventaire raisonné des sciences,
des lettres et des arts. Vol. 1. Société anonyme de la Grande encyclopédie.

Didot-Bottin (1901). Annuaire-almanach du commerce, de l’industrie, de la magi-
strature et de l’administration : ou almanach des 500.000 adresses de Paris, des
départements et des pays étrangers : Firmin Didot et Bottin réunis. Librairie de
Firmin-Didot.

Ernest, Klein (1966). A Comprehensive etymological dictionary of the English lan-
guage. Elsevier Publishing Company.

Ernout, Alfred et al. (1951). Dictionnaire étymologique de la langue latine: histoire
des mots. Klincksieck Paris.

Furetière, Antoine (1701). Dictionnaire Universel, contenant généralement tous
les Mots François tant vieux que modernes, et les Termes des Sciences et des
Arts. Vol. 1-3. The Hague: Arnoud et Reinier Leers.

Galley, Samuel (1964). Dictionnaire fang-français et français-fang: suivi d’une
grammaire fang. H. Messeiller.

Goedel, Gustav (1902). Etymologisches Wörterbuch der deutschen Seemannssprache.
Vol. Bd. 1 (A – K). Kiel, Leipzig.

Hindley, Alan et al. (2000). Old French-English Dictionary. Cambridge Univer-
sity Press Cambridge, UK.

Hindley, Geoffrey (1971). Larousse encyclopedia of music. Chartwell Books.
Hornby, Albert Sydney et al. (1974). Oxford advanced learner’s dictionary of cur-

rent English. Vol. 1428. Oxford university press.
Kluge, Friedrich and Frederick Lutz (1898). English Etymology. A Select Glos-

sary Serving as an Introduction to the History of the English Language. Boston.
Lamy, Marie-Noklle and Richard Towell (1998). The Cambridge French-English

Thesaurus. Cambridge University Press.
Larousse (1972). Dictionnaire des noms communs en couleurs. Larousse France

loisirs, Paris.
Larousse, Librairie et al. (1982). Grand dictionnaire encyclopédique Larousse. Li-

brairie Larousse.
Larousse, Pierre (1948). Petit Larousse illustré 1948. Larousse.
Liddell, Henry George and Robert Scott (1896). An intermediate greek-english

lexicon. Harper Brothers.
Littré, Emile (1873). Dictionnaire de la langue française. L. Hachette et Cie.
Mueller, Eduard (1878). Etymologisches Wörterbuch der englischen Sprache. Vol. Bd.

1 (A – K). Cöthen.



188 PRIMARY SOURCE REFERENCES

Muller, Charles and Michael Beddow (2002). “Moving into XML Functional-
ity: The Combined Digital Dictionaries of Buddhism and East Asian Lit-
erary Terms”. In: Journal of Digital Information 3.2.

Publishing, Bloomsbury (2009). Easier English Basic Dictionary: Pre-Intermediate
Level. Over 11,000 terms clearly defined. Easier English. Bloomsbury Pub-
lishing. ISBN: 9781408102022. URL: https://books.google.de/books?
id=nwVCBAAAQBAJ.

Roget, Peter Mark (1911). Roget’s Thesaurus of English Words and Phrases... TY
Crowell Company.

Uhlenbeck, C. C (1900). Kurzgefaßtes etymologisches Wörterbuch der gotischen
Sprache. Amsterdam.

Urdang, Laurence et al. (1986). Longman synonym dictionary. Longman.
Wiegand, Herbert Ernst (2014). Internationale Bibliographie zur germanistischen

Lexikographie und Wörterbuchforschung: Band 4: Nachträge. De Gruyter Mou-
ton.

https://books.google.de/books?id=nwVCBAAAQBAJ
https://books.google.de/books?id=nwVCBAAAQBAJ


189

Scholarly References

Abel, Andrea (2012). “Dictionary Writing Systems and Beyond”. In: Electronic
Lexicography, pp. 83–106.

Aduriz, Itziar et al. (1998). “EDBL: a Multi-Purposed Lexical Support for the
Treatment of Basque”. In: Proceedings of the First International Conference on
Language Resources and Evaluation. Vol. 2. Citeseer, pp. 821–826.

Artetxe, Mikel et al. (2017). “Unsupervised Neural Machine Translation”. In:
CoRR abs/1710.11041. arXiv: 1710.11041.

Atkins, Beryl T Sue (1991). “Building a Lexicon The Contribution of Lexicog-
raphy”. In: International Journal of lexicography 4.3, pp. 167–204.

Atkins, BT Sue and Michael Rundell (2008). The Oxford guide to practical lexi-
cography. Oxford University Press.
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