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Chapter 1

Introduction

La théorie des jeux à champ moyen permet l’étude de systèmes dans lesquels une infinité
de joueurs interagissent. Ces joueurs sont supposés indiscernables, interchangeables et
parfaitement rationnels. c’est-à-dire que chaque joueur possède un but et agit toujours de
manière optimale pour l’atteindre, malgré la présence d’autres joueurs qui sont interchange-
ables de son point de vue. Leurs interactions ont lieu à travers des quantités moyennes
agrégées qui dépendent symétriquement et faiblement de chaque joueur. De telles interac-
tions sont appelées à champ moyen. Cette terminologie vient de la physique statistique et
plus particulièrement de l’étude de systèmes mécaniques dans lesquels un grand nombre de
particules interagissent (comme les particules subatomiques, ou les étoiles d’une galaxie).

Lorsque le nombre de joueurs est fini, la théorie des jeux s’intéresse souvent aux équili-
bres de Nash dont la théorie est antérieure à celle des jeux à champ moyen. Les applications
des équilibres de Nash avec un grand nombre de joueurs sont nombreuses et variées. En
économie, le comportement d’un agent dépend souvent de quantités macro-économiques
dont les valeurs résultent des habitudes de consommation de l’ensemble des agents de
manière statistique à travers la loi de l’offre et la demande. En dynamique des populations
(humaines, animales, bactériennes . . . ), des phénomènes de foules naissent du mouvement
individuel de chaque agent. D’autres exemples viennent des réseaux sociaux, de la finance,
de l’économie des énergies fossiles et renouvelables . . . L’apparition de situations d’équilibre
dans de tels cas est observée. Cependant, l’analyse théorique de ces problèmes s’avère sou-
vent difficile et leur résolution numérique totalement impossible à cause du grand nombre
de joueurs. C’est ici que la théorie des jeux à champ moyen apporte une réponse. Le
passage à une infinité de joueurs engendre des simplifications permettant l’étude du com-
portement statistique des joueurs. La solution d’un jeu à champ moyen peut ensuite être
utilisée comme une bonne approximation d’un équilibre de Nash avec un nombre fini de
joueurs, lorsque ce nombre est très grand.

La théorie des jeux à champ moyen est assez récente puisqu’elle date des années 2005-
2006, et des travaux indépendants de Jean-Michel Lasry et Pierre-Louis Lions [82, 83, 84],
et de Minyi Y. Huang, Peter E. Caines et Roland E. Malhamé [69, 70].

1.1 La théorie des jeux à champ moyen

1.1.1 Le jeu à N joueurs

Nous introduisons ici le cadre mathématique le plus élémentaire possible. Nous considérons
des jeux différentiels, dont la théorie a été introduite par R. Isaac [72] et N.S. Pontryagin
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1.1. La théorie des jeux à champ moyen

[93]. Dans un jeu différentiel, les variables de temps et d’espace sont continues. On note
N > 1 le nombre de joueurs. L’horizon de temps est noté T > 0 et on suppose pour éviter
des détails technique que l’état des joueurs évolue dans Td = Rd/Zd le tore de dimension
d ≥ 1. L’état du joueur d’indice i ∈ {1, 2, . . . , N} varie selon un processus aléatoire noté(
Xi
t

)
t∈[0,T ]

qui satisfait l’équation différentielle stochastique suivante,

dXi
t = αitdt+

√
2νdW i

t , Xi
0 = xi ∈ Td,

où ν > 0 est le coefficient de diffusion,
(
W j
)

1≤j≤N sont N mouvements browniens in-
dépendants, et αi est le contrôle le contrôle du joueur. Nous supposons que αi est un
processus markovien dépendant de l’état de tous les joueurs ; en particulier il est de la

forme αit = αi
(
t,
(
Xj
t

)
1≤j≤N

)
, où αi est maintenant une fonction mesurable par rapport

à la tribu borélienne de [0, T ] ×
(
Td
)N dans Td. Le joueur d’indice i cherche à minimiser

son coût individuel donné par

J
(
αi,
(
αj
)
j 6=i

)
= E

[∫ T

0
L
(
t,Xi

t , α
i
t,m

i
t

)
dt+ g

(
Xi
T ,m

i
T

)]
,

où L : [0, T ]×Td×Rd×P
(
Td
)
→ Rd est le Lagrangien, g est le coût terminal, mi

t =
∑
j 6=i

δ
Xj
t

est la mesure empirique des autres joueurs, P
(
Td
)
est l’espace des mesures de probabilité

sur Td, et δ est la mesure de Dirac. On fait l’hypothèse de coercivité suivante:

(1.1.1) lim
|α|→∞

|L(t, x, α,m)|
|α|

= +∞,

pour tout (t, x,m) ∈ [0, T ]×Td×P
(
Td
)
. Rappelons la définition d’un équilibre de Nash :

Définition 1.1.1. Un équilibre de Nash (en boucle fermée) du système à N joueurs décrit
ci-dessus est un N -uplet

(
α1, . . . , αN

)
de fonctions mesurables de [0, T ]×

(
Td
)N dans Rd,

tel que
J
(
αi,
(
αj
)
j 6=i

)
≤ J

(
α,
(
αj
)
j 6=i

)
,

pour tout i ∈ {1, . . . , N} et α : [0, T ]×
(
Td
)N 7→ Rd mesurable.

DéfinissonsH le Hamiltonien du système àN joueurs comme la transformée de Legendre-
Fenchel de L par rapport à α, c.-à-d.

H (t, x, p,m) = sup
α∈Rd

−p · α− L (t, x, α,m) .

pour (t, x, p,m) ∈ [0, T ] × Td × Rd × P
(
Td
)
. Nous définissons le système de Nash à N

joueurs par les équations suivantes:
(1.1.2)
− ∂tvN,i − ν

N∑
j=1

∆xjv
N,i +H

(
t, xi,∇xivN,i,mN,i

x

)
+
∑
j 6=i
∇xjvN,i ·Hp

(
t, xj ,∇xjvN,j ,mN,j

x

)
= 0,

vN,i(T, x) = g
(
xi,mN,i

x

)
,

où vN,i : [0, T ]×
(
Td
)N → R etmN,i

x =
∑
j 6=i

δxj , pour i ∈ {1, . . . , N}. Lorsqu’une solution au

système précédent existe et est régulière, un équilibre de Nash est donné par les fonctions

2



Chapter 1. Introduction

de contrôle αi(t, x) = −Hp

(
t, x,∇xivi(t, x),mi

x

)
. Dans ce cas, l’équation stochastique

satisfaite par l’état d’un joueur devient :

(1.1.3) dXi
t = −Hp

(
t,Xi

t ,∇xivN,i
(
t,Xi

t

)
,mN,i

Xt

)
dt+

√
2νdW i

t , Xi
0 = xi ∈ Td.

Lorsque les joueurs utilisent ces contrôles, vN,i est appelée fonction valeur du joueur i, et
représente le coût le plus faible en moyenne que le joueur i puisse atteindre entre les temps
t et T si son état est donné par x au temps t.

Le système (1.1.2) est un système de N équations de Hamilton-Jacobi couplées. Nous
renvoyons aux travaux de M.G. Crandall et P.L. Lions [51], pour une étude approfondie des
équations de Hamilton-Jacobi et du cadre dans lequel elles sont bien posées: la théorie des
solutions de viscosité. Nous renvoyons aux travaux de A. Bensoussan et J. Frehse [18, 19]
pour une étude du système (1.1.2).

La principale difficulté dans l’étude du système (1.1.2) consiste en le fait qu’un joueur,
lorsqu’il change de stratégie, affecte l’ensemble des autres joueurs. Ainsi l’existence et
l’unicité de solutions de (1.1.2) sont en général des problèmes compliqués. Sous des hy-
pothèses de croissance sur le HamiltonienH, le livre d’O.A. Ladyzenskaja, V.A. Solonnikov,
et N.N Ural’ceva [81] apporte des éléments de réponse. Cependant, lorsque le nombre de
joueurs est grand, toute étude qualitative ou quantitative du comportement des solutions
de (1.1.2) devient impossible à cause du nombre d’équations et de leur fort couplage.

Contrairement à ce que laisse penser la remarque précédente, la structure des équilibres
de Nash devrait se simplifier lorsque le nombre de joueurs devient très grand puisque l’effet
de chaque joueur sur le système devient négligeable et que les lois de la statistique devraient
s’appliquer. C’est l’idée fondatrice de la théorie des jeux à champ moyen, développée en
même temps dans les travaux initiaux indépendants de Jean-Michel Lasry et Pierre-Louis
Lions [82, 83, 84], et de Minyi Y. Huang, Peter E. Caines et Roland E. Malhamé [69, 70].

1.1.2 Le système de jeu à champ moyen

Pour commencer, plaçons nous directement à la limite N = ∞, lorsqu’une infinité de
joueurs interagissent à travers leur distribution statistique. Un joueur représentatif a alors
une influence nulle sur le système total. Son état (Xt)t∈[0,T ] est donné par

(1.1.4) dXt = αtdt+
√

2νdWt,

où W est un mouvement brownien, α est le contrôle, et X0 est un processus aléatoire
indépendant de W et à valeur dans Td de loi L (X0) = m0. Le joueur représentatif cherche
à minimiser son coût, donné par

(1.1.5) J (α,m) = E
[∫ T

0
L (t,Xt, αt,m(t)) dt+ g (XT ,m(T ))

]
,

où t 7→ m(t) ∈ P
(
Td
)
est une prédiction de la distribution statistique des autres joueurs à

tous les temps t ∈ [0, T ] ; P
(
Td
)
est l’ensemble des mesures de probabilité sur Td. La loi des

grands nombres et la limite de champ moyen donne la condition d’équilibre m(t) = L (Xt)
pour tout t ∈ [0, T ]. Dans ce cas, le système d’EDPs prend la forme suivante :
(1.1.6)

− ∂tu(t, x)− ν∆u(t, x) +H(t, x,∇xu(t, x),m(t)) = 0 sur (0, T )× Td,
∂tm(t, x)− ν∆m(t, x)− div(Hp(t, x,∇xu(t, x),m(t))m(t, x)) = 0 sur (0, T )× Td,
u(T, x) = g(x,m(T )) sur Td,
m(0) = m0.

3



1.1. La théorie des jeux à champ moyen

La fonction valeur du joueur représentatif est ici notée u. Elle satisfait une équation de
Hamilton-Jacobi-Bellman rétrograde en temps qui rappelle celle du système à N joueurs
(1.1.2). Cette dernière équation est cependant plus simple puisqu’elle est posée sur (0, T )×
Td au lieu de (0, T ) ×

(
Td
)N ; de plus le terme de couplage faisant intervenir les vN,j a

disparu. La seconde équation est une équation de Fokker-Planck-Kolmogorov qui traduit
l’évolution de la distribution statistique des joueurs lorsqu’ils suivent la stratégie optimale
donnée par α(t, x) = −Hp (t, x,∇xu(t, x),m(t)).

Le système (1.1.6) n’est plus un système d’évolution (c.-à-d. le temps s’écoule dans
une direction), puisqu’il contient une équation rétrograde en temps et une équation posée
dans le sens naturel du temps. Les systèmes de ce type sont en général difficiles à étudier.
Cependant, (1.1.6) a une structure particulière : l’équation de Fokker-Planck-Kolmogorov
est le dual de l’équation linéarisée de Hamilton-Jacobi-Bellman. Cette structure simplifie
l’étude de (1.1.6), permettant notamment d’obtenir des estimations a priori sur les solu-
tions. L’existence de solutions est traitée dans de nombreux travaux [17, 20, 32, 34, 36, 37,
39, 41, 61, 64, 69, 71, 68, 85, 87]. Un critère d’unicité pour la solution du système de jeu à
champ moyen a été présenté par J.M. Lasry et P.L. Lions dans leurs premiers travaux sur
la théorie des jeux à champ moyen [85] Théorème 2.5 :

Théorème 1.1.2. Supposons que H est séparé, c’est-à-dire de la forme

(1.1.7) H (t, x, p,m) = H̃ (t, x, p)− f (t, x,m) ,

et que les fonctions f et g sont monotones au sens de Lasry-Lions, c’est-à-dire qu’elles
vérifient

(1.1.8)

∫
Td
f
(
t, x,m1

)
− f

(
t, x,m2

)
d
(
m1 −m2

)
(x) ≥ 0,∫

Td
g
(
x,m1

)
− g

(
x,m2

)
d
(
m1 −m2

)
(x) ≥ 0,

pour tout t ∈ [0, T ] et m1,m2 ∈ P
(
Td
)
. Il existe au plus une solution à (1.1.6).

Les inégalités (1.1.8) peuvent s’interpréter comme une aversion de la part de chaque
joueur aux zones à forte densité de population. Dans ses cours au Collège de France [87],
P.L. Lions étend ce résultat d’unicité au cas où H est non-séparé et dépend localement de
m ; remplaçant la première inégalité de (1.1.8) par l’hypothèse que la matrice M , définie
par

M =

(
mHpp (t, x, p,m) m

2 Hpm (t, x, p,m)
m
2 Hpm (t, x, p,m) −Hm (t, x, p,m)

)
,

soit symétrique définie positive pour tout (t, x, p,m) ∈ [0, T ]× Td × Rd × R+.
De tels résultats d’unicité ne sont pas transposables au système de Nash à N joueurs

(1.1.2). De plus, la résolution d’approximation numérique de (1.1.6) paraît possible, con-
trairement à celle de (1.1.2) si le nombre de joueurs est grand. Nous renvoyons à la
littérature sur les applications numériques des MFGs [3, 4, 5, 6, 9, 14, 27, 29, 31, 44, 45].

Il faut aussi comprendre en quoi le système 1.1.6 est bien la limite en un certain sens
du système de Nash 1.1.2 lorsque le nombre de joueurs tend vers l’infini. On sépare les
résultats dans cette direction en deux catégories :

(a) le fait qu’une solution du système de jeu à champ moyen (1.1.6) soit une bonne
approximation d’un équilibre de Nash à N joueurs, lorsque N est grand ;
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(b) la convergence des équilibres de Nash vers des solutions du système de jeu à champ
moyen, lorsque le nombre de joueurs tend vers l’infini.

Le premier point a été établi dès les prémisses de la théorie des jeux à champ moyen [69], et
semble maintenant bien compris et appréhendé par la littérature existante [39, 71, 68, 77].
Le second point (b) reste quant à lui un problème ouvert. Citons quelques travaux récents
qui en donnent des réponses partielles : le livre de P. Cardaliaguet, F. Delarue, J-M. Lasry
et P-L. Lions [35] ; le livre de R. Carmona et F. Delarue [42] ; et l’article de D. Lacker
[80]. Dans [35], les auteurs s’intéressent à la master equation, qui est une EDP (équation
aux dérivées partielles) non-locale non-linéaire posée sur l’espace infini-dimensionnel des
mesures de probabilités. Le système (1.1.6) peut-être dérivé de la master equation par
une méthode des caractéristiques en dimension infini le long des mesures de distribution
des états. Par conséquent, l’existence et l’unicité d’une solution régulière de la master
equation sont très liées à celles du système (1.1.6) ainsi qu’à sa stabilité par rapport à
la condition initiale m0. Il est démontré dans [35] que, sous certaines hypothèses, une
solution de la master equation existe, elle est unique et régulière, et c’est la limite des
solutions du système (1.1.2), voir [35] théorème 2.4.8. Un résultat similaire est présenté
dans [42], théorème 6.28, permettant de traiter le cas linéaire-quadratique. Dans [53, 54],
F. Delarue, D. Lacker et R. Kavita poursuivent les mêmes idées pour obtenir un théorème
central limite et un principe de grande déviation. Nous renvoyons à [87] pour plus de
résultats sur la master equation.

Cependant, les résultats précédents dépendent de l’unicité des solutions du système
(1.1.6), et donc de l’hypothèse de monotonie de Lasry-Lions (1.1.8). En particulier, dans
le cas non-monotone, l’approche par la master equation échoue. D. Lacker [80], propose une
définition de solution faible pour le système de jeu à champ moyen, et montre que lorsque
l’espace des contrôles est compact, alors les équilibres de Nash à N joueurs convergent vers
de telles solutions faibles.

1.1.3 Jeux à champ moyen de contrôle

Dans les deux parties précédentes, nous avons considéré des interactions de type champ
moyen qui font uniquement intervenir la distribution statistique de l’état des joueurs.
Pourtant, la majeure partie des résultats démontrés dans cette thèse porte sur des jeux
dont les interactions peuvent faire intervenir la distribution jointe des états et des contrôles
des joueurs. Nous utiliserons les dénominations jeux de contrôles et jeux à champ moyen
de contrôles (introduite dans [38]) pour faire référence à de tels jeux.

Pour introduire la théorie des jeux à champ moyen de contrôle, nous nous plaçons
encore une fois dans le cadre mathématique le plus élémentaire. Ainsi nous considérons
toujours des jeux posés dans le tore de dimension d, Td ; nous nous plaçons à la limite
N = ∞ ; l’état d’un joueur représentatif est donné par (1.1.4) ; on remplace le coût d’un
joueur (1.1.5) par le coût :

(1.1.9) J (α, µ) = E
[∫ T

0
L (t,Xt, αt, µ(t)) dt+ g (XT ,m(T ))

]
,

où µ(t) est la loi jointe de l’état et du contrôle des joueurs au temps t ∈ [0, T ], c.-à-d.
µ(t) = L (Xt, αt) ; et m(t) est la première marginale de µ(t), c’est-à-dire la loi des états
des joueurs m(t) = L (Xt). Dans ce cas le système de jeux à champ moyen 1.1.6 est
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remplacé par le système de jeu à champ moyen de contrôle,

(1.1.10a)

(1.1.10b)

(1.1.10c)

(1.1.10d)
(1.1.10e)

− ∂tu− ν∆u+H(x,∇xu(t, x), µ(t)) = 0 sur (0, T )× Td,
∂tm− ν∆m− div(Hp(x,∇xu(t, x), µ(t))m) = 0 sur (0, T )× Td,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·), µ(t))

)
#m(t) sur [0, T ],

u(T, x) = g(x,m(T )) sur Td,
m(0) = m0,

oùH est la transformée de Legendre de L par rapport à α, et
(
Id,−Hp (·,∇xu(t, ·), µ(t))

)
#m(t)

est la mesure image de m(t) par l’application x 7→ −Hp (x,∇xu(t, x), µ(t)). Les applica-
tions des jeux à champ moyen de contrôles sont nombreuses et variées dans des domaines
tels que l’économie, la finance, l’énergie, les mouvements de population. . . Citons par ex-
emple [38, 43, 41, 75] pour un modèle de stratégie optimale de trading à haute fréquence
(appelé parfois modèle d’Almgren et Chriss) ; [25, 47, 62, 65, 73, 75, 76] pour le modèle
de Bertrand et Cournot de production de ressources épuisables ; [11] pour une application
au marché de l’électricité ; [2, 75, 76] pour des modèles de mouvement de population ; [66]
pour une application à la vente d’espaces publicitaires sur internet utilisant l’apprentissage
par renforcement.

Malgré l’intérêt que présentent les jeux à champ moyen de contrôle dans de nombreuses
applications, le nombre de résultats et de travaux théoriques dans ce domaine est faible. La
majorité des questions qui ont été résolues pour les jeux à champ moyen sans interaction
par le contrôle, sont encore des questions ouvertes pour les jeux à champ moyen de contrôle.

En effet, l’étude du système (1.1.10) s’avère en général bien plus compliquée que celle
de (1.1.6). Il existe deux difficultés majeures inhérentes à (1.1.10) et qui sont absentes de
(1.1.6) :

Pb1 la loi jointe de l’état et du contrôle des joueurs est donnée par une équation de point
fixe (même lorsque u et m sont donnés) ;

Pb2 l’équation de Hamilton-Jacobi-Bellman dépend de manière non-locale du contrôle
optimal, les estimées a priori sont alors plus difficiles à obtenir.

Pour répondre au premier point, il faut supposer que le problème de point fixe (1.1.10c)
satisfait par µ est bien posé. Nous distinguons trois cas étudiés dans la littérature, qui
fournissent une telle propriété d’inversion :

H1 H est séparé, c.-à-d.

(1.1.11) H(t, x, p, µ) = H̃ (t, x, p)− f(t, x, µ),

pour tout (t, x, p, µ) ∈ [0, T ]× Td × Rd × P
(
Td × Rd

)
;

H2 la fonction L est monotone, au sens où elle vérifie l’inégalité suivante

(1.1.12)
∫
Td×Rd

L
(
t, x, α, µ1

)
− L

(
t, x, α, µ2

)
d
(
µ1 − µ2

)
(x, α) ≥ 0,

pour tout (t, x) ∈ [0, T ]× Td et µ1, µ2 ∈ P
(
Td × Rd

)
;

H3 pour tout (t, x, p,m) ∈ [0, T ]×Td×Rd×P
(
Td
)
, l’application α 7→ −Hp (t, x, p, (Id, α) #m)

est une contraction pour une certaine métrique sur l’espace des fonctions de contrôle.
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En fait, H1 peut-être vue comme un cas particulier de chacun des deux autres cas. Cette
hypothèse est utilisée dans [41, 43] ; l’existence et l’unicité dans ce cas, lorsque l’ensemble
des contrôle est supposé compact, sont démontrées dans [43]. L’hypothèse H2 est étudiée
dans [38, 41, 76] : l’unicité des solutions est démontrée [41, 76] ; l’existence de solutions
faibles est étudiée dans [38], lorsque l’opérateur de diffusion est potentiellement dégénéré,
et la dépendance de H en µ est uniformément borné ; lorsque l’opérateur de diffusion
est non-dégénéré, le résultat d’existence le plus général se trouve dans [76], où L est sup-
posé similaire à une fonction puissance en α et µ d’exposant quelconque dans (1,∞).
L’hypothèse H3 est introduite dans [75] et des résultats d’existence sont prouvés dans
différentes situations. L’unicité parait peu probable si aucune des hypothèses H1 et H2
n’est satisfaite ; un exemple où une approximation numérique de (1.1.10) admet plusieurs
solutions est présenté dans [2].

Pour illustrer la difficulté Pb2, comparons les résultats obtenus lorsque le principe
du maximum est appliqué aux systèmes de jeux à champ moyen avec et sans interaction
par la loi du contrôle : si le Hamiltonien H de (1.1.6) est suffisamment régulier alors
H(t, x, 0,m) est uniformément borné en (t, x,m) (puisque P

(
Td
)
est compact pour la

plupart des topologies usuelles), on obtient ainsi une borne uniforme sur |u| ; sous des
hypothèses de régularité similaires sur H pour le système (1.1.10), on obtient en général
uniquement une estimation de |u| qui dépend de µ. Les autres estimées usuelles sur u et m
souffrent du même problème dans le système (1.1.10). Cette difficulté n’a pu être résolue
pour l’instant qu’en ajoutant des hypothèses supplémentaires qui ne sont pas nécessaires
pour (1.1.6). Le seul cas ou les résultats des systèmes (1.1.6) et (1.1.10) semblent similaires
(mais cela demande plus de travail pour (1.1.10)) est le cas monotone, c’est-à-dire lorsque
L satisfait H2, comme démontré dans [76].

Ajoutons qu’il existe d’autres résultats sur les jeux à champ moyen de contrôle. Le cas
stationnaire est étudié dans [59], l’existence de solutions est démontrée lorsque certains
paramètres de couplage en la loi de contrôle sont petits. Dans [60], le système du premier
ordre (c.-à-d. lorsque ν = 0) est étudié par des méthodes probabilistes, et un résultat
d’existence est démontré, sous des conditions de croissances de le Hamiltonien. Un résultat
d’unicité est énoncé dans [24], pour un cas particulier de (1.1.10) où l’interaction par le
contrôle est simple (elle dépend de la moyenne des contrôles).

1.2 Organisation de la thèse

Les résultats de cette thèse sont divisés en quatre chapitres qui correspondent tous à un
article de recherche. Les chapitres 2 et 4 sont des pré-prints disponibles dur arxiv, ils
correspondent respectivement à [75] et [76]. Le chapitre 3 est un travail en collaboration
avec Y. Achdou accepté pour publication dans le journal AIMS Mathematics in Engineering
[2]. Le chapitre 5 a été réalisé en collaboration avec L.M. Briceño, D. Kalise, M. Laurière,
A. Matéos Gonzalez et F.J. Silva ; il est publié dans ESAIM : Proc. Surveys [27].

Le chapitre 2 introduit une nouvelle hypothèse de structure sur le Hamiltonien sous
laquelle plusieurs résultats d’existence pour (1.1.10) sont démontrés. Cette hypothèse de
structure a déjà été mentionnée formellement plus haut, voir : H3. Nous ne faisons pas
d’hypothèse de monotonie dans ce chapitre. Dans ce cas, l’unicité n’est pas vérifiée en
général (un exemple de non-unicité est montré dans le chapitre 3). Nous supposons que
le Hamiltonien se comporte asymptotiquement comme une fonction puissance en ses argu-
ments, dont l’exposant est quelconque. Nous démontrons alors l’existence de solutions à
(1.1.10) sous des jeux d’hypothèses différentes, détaillées plus loin. L’unicité est démon-
trée uniquement lorsque T est assez petit. Ces résultats peuvent ensuite être étendus au
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système de jeux à champ moyen de contrôle posé sur Rd plutôt que sur Td par la méthode
introduite au chapitre 4. Nous présentons aussi quatre applications des résultats énoncés.

Le chapitre 3 reprend une application introduite dans le chapitre 2 dans le cas quadra-
tique et est consacré à des simulations numériques. Pour cela nous adaptons, aux jeux à
champs moyen de contrôle, un schéma numérique inspiré de celui introduit par Y. Achdou
et I. Capuzzo-Dolcetta [3, 6] pour le système de jeux à champ moyen sans interaction par
le contrôle. Dans cette application, les agents essaient d’aller dans la même direction que
la moyenne des agents autour d’eux. Cela rappelle le modèle de Cucker et Smale [52], et
semble très bien adapté à des modèles de mouvement de foules de piétions ou au trafic
routier. L’hypothèse de monotonie n’est pas vérifiée, et nous exhibons, dans un cas partic-
ulier, plusieurs solutions au même système de jeu à champ moyen de contrôle discret. Nous
présentons un autre exemple dans lequel notre modèle permet de simuler un phénomène de
queue (les joueurs ralentissent en amont d’un obstacle et forme une queue), qui est difficile
à obtenir avec d’autres modèles. Nous faisons aussi une analyse de l’influence des différents
paramètres de notre modèle.

Dans le chapitre 4, nous nous intéressons à une extension du système (1.1.10) posé
sur Rd plutôt que sur Td, et où l’on autorise les agents à avoir des fonctions de drift
générales. Nous nous concentrons sur le cas monotone, c.-à-d. lorsque le Lagrangien satis-
fait l’hypothèse H2. Nous supposons que le Hamiltonien se comporte asymptotiquement
comme une fonction puissance en ses arguments, dont l’exposant est supérieur à un. Dans
ce cas, nous sommes capables d’obtenir des résultats d’existence et d’unicité similaires à
ceux obtenus pour 1.1.6, au prix d’efforts supplémentaires. Nous introduisons aussi une
méthode permettant d’étendre les résultats d’existence sur le tore à l’existence sur l’espace
euclidien ; et une méthode pour généraliser l’existence de solution à des fonction de drifts
générales.

Dans le chapitre 5, nous étudions une approche numérique pour le système (1.1.6) avec
couplage local. La discrétisation que nous considérons résulte d’une approche variation-
nelle décrite, pour le problème stationnaire, dans [29] et mène au schéma aux différences
finies introduit par Achdou et Capuzzo-Dolcetta dans [3, 6]. Dans le but de résoudre des
problèmes variationnels en dimension finie, les auteurs de [29] implémentent un algorithme
primal-dual introduit par Chambolle et Pock dans [46], qui consiste à résoudre itérative-
ment des systèmes linéaires et à appliquer un opérateur proximal. Nous appliquons cette
méthode à un jeu à champ moyen dépendant du temps et, lorsque le paramètre de viscosité
est assez grand, nous améliorons la résolution du système linéaire en remplaçant l’approche
directe utilisée dans [29] par des algorithmes itératifs préconditionnés. L’algorithme qui
semble donner les meilleurs résultats numériques ici utilise un préconditionnement par une
méthode de multigrille.

1.2.1 À propos des solutions classiques du système de jeu à champ
moyen de contrôle

Nous présentons ici les résultats principaux et les idées du chapitre 2, [75]. Nous donnons
des résultats d’existence de solution au système (1.1.10) sous l’hypothèseH3 qui sera écrite
rigoureusement ci-dessous.

Dans ce chapitre, une solution du système (1.1.10) est un triplet (u,m, µ) tel que :

• u est une solution classique de l’équation de Hamilton-Jacobi-Bellman (1.1.10a) ;

• m est uniformément continue et sa densité par rapport à la mesure de Lebegues est
une solution au sens des distributions de l’équation de Fokker-Planck-Kolmogorov
(1.1.10b) ;
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• µ : [0, T ] 7→ P
(
Td × Rd

)
satisfait (1.1.10c) en tout t ∈ [0, T ].

Remarquons que si (u,m, µ) est une solution de (1.1.10), alors le flot de mesures µ(t)
satisfaisant (1.1.10c) a une forme particulière : chaque mesure µ(t) est la mesure image
d’une mesure de probabilité définie sur Td, et sa seconde marginale est supportée sur un
compacte.

L’hypothèse de structure centrale (FP1 et FP2) dans ce chapitre est qu’il existe λ0 ∈
[0, 1) tel que :

(1.2.1)
|Hp (x, p, (Id, α) #m)−Hp (x, p, (Id, α̃) #m)| ≤ λ0‖α− α̃‖Lq0 (m)

|Hp (x, p, (Id, α) #m)| ≤ C0

(
1 + |p|q−1

)
+ λ0‖α‖Lq0 (m),

pour tout (x, p,m) ∈ Td×Rd×P
(
Td
)
et α, α̃ ∈ L∞ (m) ; où C0 est une constante positive,

q ∈ (1,∞) est l’exposant de croissance de le Hamiltonien, q0 ∈ [1,∞] est l’exposant
d’intégration de l’interaction à champ moyen de contrôle.

Une analyse rapide des termes dans (1.2.1) nous donne que |Hp|, |p|q−1 et ‖α‖Lq0 (m) sont
tous trois homogènes à la norme euclidienne d’un contrôle ; ainsi les exposants dans (1.2.1)
sont critiques, au sens où aucun d’eux ne peut être pris plus grand sans rendre le système
inhomogène. La même analyse dimensionnelle implique que si q est l’exposant de croissance
asymptotique de H en p, alors q′ = q

q−1 sera l’exposant de croissance asymptotique de H en
µ. De telles considérations apparaissent dans les hypothèses de croissance de le Hamiltonien
qui sont détaillées dans la partie 2.2.2 du chapitre 2.

L’hypothèse λ0 < 1 est ici essentielle pour prouver que (1.1.10c) admet un point fixe.
Nous renvoyons à la remarque 3.4.3 au chapitre 3 pour un exemple où il n’existe pas de
solution à 1.1.10, ni à son équivalent à N joueurs, dans le cas λ0 = 1.

Nous faisons également des hypothèses de régularité sur H et nous supposons que la
dépendance de g et H, respectivement enm et la première marginale de µ, est non-locale et
uniformément borné. Dans ce cadre, il existe une solution au système de jeu à champ moyen
sans interaction de contrôle (1.1.6). Cependant, pour le système (1.1.10), des hypothèses
supplémentaires sont nécessaires. Nous montrons alors l’existence de solution dans chacun
des cas suivant :

• si l’exposant asymptotique de H en µ est sous-critique ;

• si l’exposant asymptotique de Hx en µ est faible ;

• lorsque certains paramètres sont petits ;

• pour un horizon de temps T court.

L’une des principales difficultés pour prouver l’existence de solutions vient du fait qu’on
n’arrive pas à obtenir les mêmes estimations a priori que dans les cas plus classiques (voir
Pb2). En particulier, nous n’avons pas d’estimation a priori uniforme sur |u| en général.
Une contribution notable est que nous introduisons alors une méthode de type Bernstein
pour l’équation de Hamilton-Jacobi (1.1.10a) qui ne demande aucune estimée sur |u|. Nous
sommes alors capables de donner une estimation de |∇xu| qui dépend de manière au plus
linéaire de sup |u|. Une telle inégalité nous semble optimale, puisque pour des raisons
d’homogénéité évidentes, la dépendance ne devrait pas être plus faible que linéaire.

La question de l’unicité est abordée rapidement : nous montrons que la solution de
(1.1.10), dans le cas d’un horizon de temps court, est unique. L’unicité ne devrait pas sub-
sister pour des horizons de temps arbitrairement grands comme le laisse présager certains
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résultats numériques réalisés dans le chapitre 3 (où plusieurs solutions du même système
discrétisé sont exhibées).

Tous les résultats de ce chapitre traitent du système (1.1.10) qui est posé sur le tore
Td. Il serait plus réaliste pour beaucoup d’applications de considérer plutôt un système de
jeu à champ moyen posé sur Rd. Nous insistons sur le fait qu’il est possible d’étendre les
résultats de ce chapitre à Rd, en utilisant la méthode introduite dans le chapitre 4.

Enfin, nous donnons quatre applications des résultats théoriques de ce chapitre ; cha-
cune s’inspire de modèles existants dans la littérature et en propose une extension qui peut
s’avérer souhaitable :

• un modèle de production de ressources épuisables, dans lequel un agent produit
plusieurs types de ressources ; notre contribution consiste à autoriser le prix de ces
ressources à être négativement corrélé ;

• un modèle de trading à haute fréquence dans lequel on introduit un prix de type
bid-and-ask ;

• un modèle de déplacement des oiseaux migrateurs (le flocking model en anglais in-
troduit par Cucker et Smale [52]) du premier ordre, c.-à-d. sans accélération et avec
une interaction par les vitesses ;

• un modèle de déplacement de population, aussi inspiré du modèle de Cuker et Smale.

1.2.2 Approximation par la méthode des différences finies du système
de jeu à champ moyen de contrôle

Ce chapitre est issu d’un travail en collaboration avec Y. Achdou. Il est consacré à l’étude
numérique d’un modèle de dynamique des populations introduit dans le chapitre 2. Pour
qu’un tel modèle soit plus réaliste, l’espace des états est ici Ω un compact à bord régulier
inclus dans Rd.

Si µ(t) est la loi jointe de l’état et du contrôle des joueurs au temps t ∈ [0, T ], on définit
V (t, x) le déplacement moyen en x ∈ Ω par

(1.2.2) V (t, x) =
1

Z(t, x)

∫
(y,α)∈Ω×Rd

αK(x, y)dµ(t, y, α),

où K : Ω×Ω→ R+ est un noyau markovien et Z(t, x) est une constante de normalisation
définie par Z(t, x) =

∫
(y,α)∈Ω×Rd K(x, y)dµ(t, y). Nous prendrons ensuite K(x, ·) à support

compact dans une boule centrée en x. Formellement, V (t, x) est une moyenne pondérée
des contrôles des joueurs autour de x. Nous définissons le Lagrangien L : Rd×Rd → R par

L(α, V ) =
θ

2
|α− λV |2 +

1− θ
2
|α|2 , (α, V ) ∈ Rd × Rd,

où λ et θ sont deux constantes telles que λ < 1 et θ ∈ [0, 1]. Heuristiquement, si λ > 0
alors chaque joueur préfère aller dans une direction similaire à la direction moyenne des
joueurs autour de lui (représenté par V ) ; si λ < 0, alors chaque joueur préfère s’opposer
à la foule en allant dans la direction contraire à V .
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Le système de jeu à champ moyen de contrôle est donné par :

(1.2.3)



− ∂tu− ν∆u+
1

2
|∇xu− λθV |2 −

λ2θ

2
|V |2 = f(x,m), in (0, T )× Ω,

∂tm− ν∆m− div ((∇xu− λθV )m) = 0, in (0, T )× Ω,

V (t, x) = − 1

Z(t, x)

∫
Ω

(∇xu(t, y)− λθV (t, y))K(x, y)dm(t, y), in (0, T )× Ω,

Z(t, x) =

∫
Ω
K(x, y)dm(t, y), in (0, T )× Ω,

u(T, x) = φ(x), in Ω,

m(0, x) = m0(x), in Ω,

où f : Ω × R+ → R est une fonction locale définie par f(x,m) = cm + f0(x), pour c ≥ 0
et f0 une fonction de Ω dans R ; φ : Ω → R est le coût terminal. Les conditions au bord
sur ∂Ω peuvent être des conditions de Neumann ou de Dirichlet.

Pour faire des simulations numériques de ce modèle, nous adaptons une méthode des
différences finies, introduite par Y. Achdou et I. Capuzzo-Dolcetta [3, 6], à ce modèle de jeu
à champ moyen de contrôle. Ceci est ici possible car la dynamique du système ne dépend de
la loi jointe de l’état et du contrôle µ (qui est un objet de dimension infinie) que de manière
indirecte à travers le déplacement moyen V (t, x) qui est un objet fini-dimensionnel.

L’algorithme de résolution numérique consiste en une méthode de continuation sur une
suite décroissante de coefficients de viscosités ν1 > ν2 > · · · > νs > 0, pour s ≥ 1. Pour
s̃ ∈ {2, . . . , s}, nous résolvons le système de jeu à champ moyen avec ν s̃ par une méthode
de Newton en se servant de la solution obtenue avec ν s̃−1 comme choix initial. L’itération
de la méthode de Newton est faite sur le couple (f, V ), où f est le terme de droite dans
l’équation de Hamilton-Jacobi de (1.2.3), de la manière suivante :

1. nous obtenons u la solution de l’équation de Hamilton-Jacobi discrétisée avec V
comme déplacement moyen et f comme second membre ;

2. nous résolvons l’équation de Fokker-Planck discrétisée en utilisant le triplet (u, f, V ) ;

3. nous mettons à jour f avec la formule f = cm+ f0 ;

4. nous mettons à jour V en résolvant le problème de point fixe en V par une méthode
d’itération de Picard (V est le point fixe d’un opérateur contractant).

Nous analysons deux exemples dans lesquels nous prenons λ > 0 (c.-à-d. un joueur
préfère aller dans le sens de la foule autour de lui) :

• un domaine carré ; les joueurs sont initialement regroupés dans le coin inférieur
gauche et le coin supérieur droit ; leur objectif est d’arriver dans l’un des deux autres
coins avant en un temps donné ;

• un hall rectangulaire que doivent traverser les joueurs, avec une entrée à gauche et
une sortie à droite.

Nous exhibons plusieurs solutions différentes dans le premier exemple. Nous pouvons
alors imaginer que le système (1.2.3) possède aussi plusieurs solutions. Un phénomène de
rassemblement a lieu, comme dans le modèle de Cucker et Smale [52]. Dans le second ex-
emple, nous mettons en lumière un autre effet intéressant de notre modèle avec interaction
par la vitesse : les joueurs anticipent leur ralentissement (ou accélération) futur, créant
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un phénomène de queue qu’il est difficile de faire émerger d’un modèle mathématique en
général.

Nous nous intéressons aussi au nombre d’itérations nécessaires à notre algorithme pour
différent choix de paramètres et différents pas de discrétisation. En particulier, nous con-
statons que le nombre d’itérations semble dépendre faiblement du nombre total de points
de discrétisation.

1.2.3 Jeux à champ moyen avec interactions monotones par la loi des
états et des contrôles des joueurs

Contrairement aux systèmes considérés jusque là, nous nous plaçons cette fois dans l’espace
euclidien Rd, et nous autorisons la dynamique des joueurs à avoir une forme générale. Plus
précisément, l’état d’un joueur, Xt ∈ Rd, satisfait maintenant l’équation stochastique
suivante :

dXt = b (t,Xt, αt) dt+
√

2νdWt,

où b : [0, T ] × Rd × Rd 7→ Rd. Nous renvoyons à la remarque 4.2.9iv) pour le cas où l’on
autorise b à dépendre de µα(t) la loi jointe de l’état et du contrôle, c.-à-d. µα(t) = L (Xt, αt)
pour t ∈ [0, T ]. Nous introduisons µb(t) la loi jointe de l’état et du drift.

Nous supposons que b est inversible par rapport à α, et nous appelons son inverse
α∗ : [0, T ]× Rd × Rd 7→ Rd. Le système que l’on considère est alors :
(1.2.4)

− ∂tu(t, x)− ν∆u(t, x) +H (t, x,∇xu(t, x), µα(t)) = f(t, x,m(t)) in (0, T )× Rd,
∂tm(t, x)− ν∆m(t, x)− div (Hp (t, x,∇xu(t, x), µα(t))m) = 0 in (0, T )× Rd,

µα(t) =
[(
x, b̃
)
7→
(
x, α∗

(
t, x, b̃

))]
#µb(t) in [0, T ],

µb(t) =
(
Id,−Hp (t, ·,∇xu(t, ·), µα(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in Rd,
m(0, x) = m0(x) in Rd.

L’hypothèse principale est une hypothèse de monotonie, voir H2. Nous supposons de plus
que

• la dynamique b et le Lagrangien L se comportent asymptotiquement comme des
puissances de leurs arguments,

• f et g sont non-locales, régulières et uniformément bornées ainsi que leurs dérivées.

Sous de telles hypothèses, nous prouvons l’existence et l’unicité de la solution de (1.2.4).
Nous obtenons de ce fait des résultats comparables à ceux contenus dans la littérature sur
le système (1.1.6) sous des hypothèses similaires.

L’unicité est obtenue par la même méthode que pour le système (1.1.6). La majeure
partie du chapitre est alors consacrée à la preuve de l’existence de solution. Les grandes
étapes de cette preuve sont:

• nous commençons par regarder le système (1.1.10) posé sur le tore Td et avec b = α ;

• nous montrons qu’il existe un unique point fixe (1.1.10c) en utilisant principalement
l’hypothèse de monotonie H2 et le théorème de point fixe de Leray-Schauder ;

• nous obtenons des estimations a priori uniformes sur les solutions de (1.2.4) ;

12
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• le théorème de point fixe de Leray-Schauder permet de prouver l’existence de solution
à (1.2.4) ;

• toujours lorsque b = α, nous étendons le résultat d’existence précédent du tore à
l’espace euclidien en faisant tendre le diamètre du tore vers l’infini, grâce à des
propriétés de compacité induites par les estimations a priori obtenues précédemment ;

• nous généralisons au cas où b est quelconque, la preuve consiste à : exprimer le prob-
lème de contrôle optimial du système (1.2.4) comme un nouveau problème d’optimisation
sur le drift plutôt que sur le contrôle ; puis appliquer les résultats des points précé-
dents.

Il est important de préciser que les deux méthodes, introduites dans ce travail, qui nous per-
mettent d’étendre notre résultat d’existence (d’abord à Rd puis à des dynamiques générales)
préservent la monotonie du Lagrangien. Nous pensons qu’elles peuvent être adaptées à
d’autres situations. En particulier, elles permettent d’étendre les résultats du chapitre 2.

Nous présentons deux applications :

• un modèle de production de ressources épuisables en dimensions d ≥ 1 : nous général-
isons substantiellement les résultats d’existence et d’unicité démontrées dans [25] ;

• le modèle de mouvement de population introduit dans le chapitre 2 et étudié numérique-
ment dans le chapitre 3, dans le cas ou un agent cherche à aller dans la direction
opposée à la direction moyenne de la foule.

1.2.4 Un algorithme primal-dual pour des jeux à champ moyen dy-
namique du second-ordre et à couplage local

Ce chapitre est issu d’un travail en collaboration avec L.M. Briceño, D. Kalise, M. Lau-
rière, A. Matéos Gonzalez et F.J. Silva. Contrairement aux précédents travaux, nous nous
intéressons ici à un système de jeu à champ moyen sans interaction de contrôle. Nous
supposons que H est à variables séparées, c.-à-d. de la forme (1.1.7) ; la fonction de cou-
plage f : Td × R+ → R et le coût terminal g : Td × R+ → R sont des fonctions locales et
croissantes.

Nous considérons l’interpretation variationnelle du système (1.1.6),
(1.2.5)

inf(m,w)

∫ T
0

∫
Td [B(x,m(t, x), w(t, x)) + F (x,m(t, x))] dx+

∫
Td G(x,m(T, x))dx

tel que ∂tm− ν∆m+ div(w) = 0 in Td × (0, T ),

m(·, 0) = m0(·) in Td,

où B : Td × R× Rd → R ∪ {+∞} et F,G : Td × R→ R ∪ {+∞} sont définies par

B(x,m,w) =


mL(x,−w

m) si m > 0,
0 si (m,w) = (0, 0),
+∞ sinon,

F (x,m) =

{ ∫m
0 f(x,m′)dm′ si m ≥ 0,

+∞ sinon,
G(x,m) =

{ ∫m
0 g(x,m′)dm′ si m ≥ 0,

+∞ sinon.

Si L est convexe, le système (1.2.5) est convexe. Par conséquent, nous pouvons utiliser des
méthodes de dualité pour prouver l’existence et l’unicité de la solution. Nous renvoyons à
[37] pour une analyse rigoureuse.
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Dans ce chapitre, nous discrétisons (1.2.5) par la méthode des différences finies in-
troduites dans [3, 6]. Ensuite, nous résolvons numériquement le système discrétisé par
l’algorithme de Chamboll-Pock [46]. Cette méthode a déjà été utilisée dans le cas station-
naire dans [29]. Cependant, dans le cas dynamique (c.-à-d. nous ajoutons une dimension
temporelle supplémentaire), la complexité numérique du calcul demande parfois un nombre
d’itérations très grand qui rend prohibitif l’utilisation de cette méthode. Nous proposons ici
des méthodes de préconditionnement pour passer outre cette difficulté. En particulier, nous
adaptons une stratégie de préconditionnement reposant sur une méthode multigrille, intro-
duite dans [8]. Lorsque le paramètre de viscosité n’est pas très faible, nous arrivons ainsi
à résoudre rapidement le problème discrétisé. Les vitesses de convergence pour plusieurs
choix de paramètres et plusieurs coefficients de viscosité sont présentées.

1.2.5 Perspectives et travaux futurs

Comme nous l’avons décrit dans la partie 1.1, l’une des questions fondamentales de la
théorie des jeux à champ moyen est la convergence des équilibres de Nash à N joueurs
vers les solutions du système de jeu à champ moyen. Si cette question a déjà obtenu des
réponses partielles dans le cas de jeux sans interactions de contrôle ; aucun travail n’a été
réalisé à notre connaissance dans le cas de jeux à champ moyen de contrôle (dans le cas
closed-loop). J’effectue actuellement un tel travail de recherche dans un cas particulier,
lorsque l’horizon est court. L’idée que la convergence des équilibres de Nash devrait avoir
lieu en temps court (au moins pour les jeux sans interaction de contrôle) a été évoquée par
P.L. Lions dans ses cours au collège de France [87].

Il serait aussi intéressant d’étudier la master equation avec interactions de contrôle. Les
résultats du chapitre 4 laissent penser que si les interactions sont monotones, les résultats
sur les systèmes de jeu à champ moyen avec et sans interaction de contrôle sont similaires.
Dans ce cas, nous pouvons nous demander dans quelle mesure il est possible d’étendre les
résultats existants sur la master equation au cas des jeux avec interactions monotones par
le contrôle.

J’aimerais aussi étendre l’étude des systèmes de jeu à champ moyen de contrôle étudiés
dans cette thèse au cas où l’interaction par la loi du contrôle n’est pas markovienne. À
notre connaissance, aucun résultat théorique n’existe dans ce cas dans la littérature EDP.
Pourtant, il existe des applications en finance (et certainement dans d’autres domaines)
d’un tel système : par exemple le modèle d’Almgren et Chriss de trading haute fréquence,
dont la version à champ moyen est discutée dans la partie 2.6.2, fait intervenir le prix
d’actifs financiers dépendant de la loi des contrôles des joueurs à tous les instants an-
térieurs. Dans la littérature disponible, on a toujours fait une simplification permettant
de ne considérer que des interactions markoviennes. Cependant, il parait peu probable
que cette simplification reste pertinente dans des applications plus réalistes. Les résultats
du chapitre 2 semblent pouvoir être étendus à cette situation. Une étude approfondie fait
partie de mes projets de recherche.

Enfin, j’aimerais étudier les liens entre la théorie des jeux à champ moyen et le machine
learning. Les raisons pour lesquelles les méthodes récentes de deep learning sont aussi
efficaces sont encore mal connues à l’heure actuelle. Il semble que l’une des principales
difficultés dans l’étude théorique de ces méthodes vienne du grand nombre de paramètres
dans les réseaux de neurones. L’architecture des réseaux de neurones modernes fait na-
turellement intervenir des interactions de type champ moyen entre les neurones. Nous
pouvons alors imaginer que certains outils de la théorie des jeux à champ moyen peuvent
s’appliquer à des questions actuelles de la recherche en machine learning et deep learn-
ing. Nous renvoyons à [49, 67, 74, 88, 99, 98], pour des travaux sur le comportement
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asymptotique de réseaux de neurones, lorsque le nombre de neurones tend vers l’infinie.
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Chapter 2

On Classical Solutions to the Mean Field
Game System of Controls

We consider a class of mean field games in which the optimal strategy of a representative
agent depends on the statistical distribution of the states and controls.

We prove some existence results for the forward-backward system of PDEs under rather
natural assumptions. The main step of the proof consists of obtaining a priori estimates
on the gradient of the value function by Bernstein’s method. Uniqueness is also proved
under more restrictive assumptions.

Finally, we discuss some examples to which the previously mentioned existence (and
possibly uniqueness) results apply.

17



2.1. Introduction

2.1 Introduction

The theory of Mean Field Games (MFG for short) has been introduced in the independent
works of J.M. Lasry and P.L. Lions [83, 84, 85], and of M.Y. Huang, P.E. Caines and
R.Malhamé [69, 70]. It aims at studying deterministic or stochastic differential games
(Nash equilibria) as the number of agents tends to infinity. The agents are supposed to
be rational (given a cost to be minimized, they always choose the optimal strategies),
and indistinguishable. Furthermore, the agents interact via some empirical averages of
quantities which depend on the state variable.

At the limit when N → +∞, the game may be modeled by a system of two coupled
partial differential equations (PDEs), which is named the MFG system. On the one hand,
there is a Fokker-Planck-Kolmogorov equation describing the evolution of the statistical
distribution m of the state variable; this equation is a forward in time parabolic equation,
and the initial distribution at time t = 0 is given. On the other hand, the optimal value of
a generic agent at some time t and state x is noted u(t, x) and is defined as the lowest cost
that a representative agent can achieve from time t to T if it is at state x at time t. The
value function satisfies a Hamilton-Jacobi-Bellman equation posed backward in time with
a terminal condition involving a terminal cost. In the present work, we will restrict our
attention to the case when the costs and the dynamics are periodic in the state variable,
and we will work in the d-dimensional torus Td (as it is often done in the MFG literature for
simplicity). We will take a finite horizon time T > 0, and will only consider second-order
non-degenerate MFG systems. In this case, the MFG system is often written as:

(2.1.1a)

(2.1.1b)

(2.1.1c)

(2.1.1d)

− ∂tu(t, x)− ν∆u(t, x) +H(t, x,∇xu(t, x)) = f(x,m(t)) in (0, T )× Td,
∂tm(t, x)− ν∆m(t, x)− div(Hp(t, x,∇xu(t, x))m) = 0 in (0, T )× Td,
u(T, x) = g(x,m(T )) in Td,
m(0, x) = m0(x) in Td.

We refer the reader to [35] for some theoretical results on the convergence of the N -agents
Nash equilibrium to the solutions of the MFG system. For a thorough study of the well-
posedness of the MFG system, see the videos of P.L.Lions’ lecture at the Collège de France,
and some lecture notes [33].

There is also an important literature on the probabilistic aspects of MFGs, see [39, 79]
for some examples and [41, 42] for a detailed presentation of the probabilistic viewpoint.

For applications of MFGs, numerical simulations are crucial because it is most often
impossible to find explicit or semi-explicit solutions to the MFG system. We refer to [3]
for a survey on finite difference methods and to [7] for applications to crowd motion.

Most of the literature on MFGs is focused on the case when the mean field interactions
only involves the distributions of states. Here we will consider a more general situation
in which the cost of an individual agent depends on the joint distribution µ of states and
optimal strategies. To underline this, we choose to use the terminology Mean Field Games
of Controls (MFGCs) for this class of MFGs; the latter terminology was introduced in [38].
Within this framework, the usual MFG system (2.1.1) is replaced by the following MFGC
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system,

(2.1.2a)

(2.1.2b)

(2.1.2c)

(2.1.2d)

(2.1.2e)

− ∂tu(t, x)− ν∆u(t, x) +H(x,∇xu(t, x), µ(t)) = 0 in (0, T )× Td,
∂tm(t, x)− ν∆m(t, x)− div(Hp(x,∇xu(t, x), µ(t))m) = 0 in (0, T )× Td,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·), µ(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in Td,
m(0, x) = m0(x) in Td.

We would like to point out two of the main difficulties that one may encounter when
studying (2.1.2) and which are not present in the study of (2.1.1).

1) The joint law of states and controls satisfies a fixed point relation described by
(2.1.2c).

2) The HJB equation (2.1.2a) is non-local with respect to ∇xu. Consequently, it is
much more difficult to obtain uniform a priori estimates on u and the its derivatives.

Difficulty 1) is in general not straightforward and one needs to make assumptions for the
fixed point in µ to have a unique solution when (∇xu,m) are given. An example in which
this fixed point relation does not admit any solution is given in [2] Remark 4.3.

Let us provide a simple illustration for describing difficulty 2) by comparing the results
obtained when we apply the maximum principle on parabolic equations to (2.1.1a) and
(2.1.2a) respectively: if u satisfies (2.1.1a) where f and g are assumed to be uniformly
bounded with respect to m, then u is uniformly bounded; under the same assumption on
g, if u is a solution to (2.1.2a) and H is not uniformly bounded with respect to µ, we can
only say that u is bounded in absolute value by a constant depending on µ. The other
estimates used in the usual arguments of existence in MFG sytems suffer the same lack
of uniformity with respect to µ. Conversely, the estimates of µ depend on ∇xu. It is not
obvious a priori how to combine the estimates on µ and (u,m) in order to obtain uniform
estimates on u. Consequently, compactness results are harder to obtain for (2.1.2) than
for (2.1.1).

The main assumption of this paper, namely FP1 and FP2 described below, is an
original structural assumption designed to address difficulty 1). In particular, it implies
that the map

µ 7→ µ̃ =
(
Id,−Hp (·,∇xu(t, ·), µ)

)
#m,

is a contraction in a convenient metric space, when (t, u,m) are given.
Moreover, we also assume that the HamiltonianH(x, p, µ) behaves like a power function

when p tends to infinity. See paragraph 2.2.2 for more details.
The main objective of this work is to discuss existence of the solutions of the MFGC

system (2.1.2) within this framework. We will also give a uniqueness result under a short
time horizon assumption. We refer to [2] for a numerical application with multiple solu-
tions. Indeed, uniqueness does not hold in general for arbitrary time horizon. It can be
obtained though, under a monotonicity assumption which is investigated in the companion
paper [76]. In [76], existence and uniqueness of solutions of the MFGC system are proved
under the above-mentioned monotonicity assumption and with Hamitonian having similar
growth as in the present paper. This monotonicity condition implies that the agents favor
moving in a direction opposite to the mainstream. Such an assumption is adapted to some
models coming from finance or economy; and may be unrealistic in several situations, in
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particular in models of crowd motions. This explains why here we introduce a new struc-
tural assumption and refrain from assuming monotonicity or investigating uniqueness in
the general case.

Related literature

In the first articles devoted to MFGCs, [59, 60], D. Gomes and his collaborators have
given several existence results for MFGCs in various cases, using the terminology extended
MFGs instead of MFGCs. For instance, [60] contains existence results for stationary games
(infinite horizon) under the assumption that some of the parameters involved in the models
are small. We refer to [24, 38, 43, 41, 76] for other existence and uniqueness results for
MFGC systems.

Uniqueness is a major issue in MFG theory, it has been proved for (2.1.1) in [85, 87]
under an assumption called the Lasry-Lions monotonicity on the coupling function f and
the terminal cost g in the case of non-local coupling. This assumption has been extended
to MFGC and discussed in [59, 41, 76] in which uniqueness is proved. It translates the fact
that the agents prefer directions opposite to the mainstream direction; therefore it is not
adapted to a large class of MFGC systems like crowd motion models in which an agent is
more likely to go in the mainstream direction.

The latter example of population dynamic is the typical application we had in mind
when writing the assumptions in the present paper, see paragraphs 2.6.3 and 2.6.4. To
our knowledge, existence results for such MFGC systems have not been discussed in the
literature before. Uniqueness should not hold in general but under a short-time assumption.
We refer to [2] in which the MFGC system is discretized using a finite-difference scheme and
simulations are provided where the approximating discrete MFGC system admits several
different solutions.

For other applications of MFGCs we refer to [38] for an model of optimal trading,
[25, 47, 62, 65, 73] in the case of competition between firms producing the same goods, or
[11] for energy storage.

Organization of the paper

Section 2.2 describes the notations, assumptions and main results in this paper. In Section
2.3, we address difficulty 1) which consists of inverting the fixed point relation in µ (2.1.2c)
and providing estimates on the resulting flow of measures. Section 2.4 is devoted to proving
a priori estimates on the solutions to (2.1.2) and addresses difficulty 2). Section 2.5 contains
the proofs of the main results. Finally, we discuss several applications in Section 2.6.
Namely, we study

• the Bertrand and Cournot competition for exhaustible ressources and introduce an
extension to negatively correlated ressources (for instance gold and other raw mate-
rials);

• a model of price impact for high-frequency trading by Almgren and Chriss in which
we discuss the possibility for the bid and ask prices to be different;

• a first-order flocking model;

• a crowd motion model.
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2.2 Notations and assumptions

2.2.1 Notations and definitions

The spaces of probability measures are equipped with the weak* topology. We denote by
P∞

(
Td × Rd

)
the subset of measures µ in P

(
Td × Rd

)
with a second marginal compactly

supported. For µ ∈ P∞
(
Rd × Rd

)
and q̃ ∈ [1,∞), we define the quantities Λq̃(µ) and

Λ∞(µ) by,

(2.2.1)
Λq̃(µ) =

(∫
Rd×Rd

|α|q̃ dµ (x, α)

) 1
q̃

,

Λ∞(µ) = sup {|α| , (x, α) ∈ suppµ} .

Jensen inequality states that,

(2.2.2) Λq1(µ) ≤ Λq2(µ),

for any 1 ≤ q1 ≤ q2 ≤ ∞.
For R > 0, we denote by P∞,R

(
Rd × Rd

)
the subset of measures µ in P∞

(
Rd × Rd

)
such that Λ∞ (µ) ≤ R. The probability measures µ involved in (2.1.2) have a particular
form, since they are the images of a measure m on Td by (Id, α), where α is a bounded
measurable functions from Td to Rd; in particular they are supported on the graph of α.
For m ∈ P

(
Td
)
, we call Pm

(
Td × Rd

)
the set of such measures. For µ ∈ Pm

(
Td × Rd

)
,

we set αµ to be the unique element of L∞ (m) such that µ = (Id, α
µ) #m. Here, Λq̃(µ)

and Λ∞(µ) defined in (2.2.1) are given by

(2.2.3)
Λq̃(µ) = ‖αµ‖Lq̃(m),

Λ∞(µ) = ‖αµ‖L∞(m).

If X is a normed space and | · |X is its norm, for n ≥ 1 we denote by C0 (X;Rn)
the set of bounded continuous functions from X to Rn; it is endowed with the norm
‖v‖∞ = supx∈X |v(x)|X .

We define C0,1
(
[0, T ]× Td;R

)
as the set of the functions v ∈ C0

(
[0, T ]× Td;R

)
dif-

ferentiable at any point with respect to the state variable, and such that its gradient
satisfies ∇xv ∈ C0

(
[0, T ]× Td;Rd

)
. This is a Banach space equipped with the norm

‖v‖C0,1 = ‖v‖∞ + ‖∇xv‖∞.
For β ∈ (0, 1) and n ≥ 1, we denote by C

β
2
,β
(
[0, T ]× Td;Rn

)
the parabolic space of

Hölder continuous functions which is commonly defined by

C
β
2
,β
(

[0, T ]× Td;Rn
)

=

v ∈ C
0([0, T ]× Td;Rn), ∃C > 0 s.t. ∀(t1, x1), (t2, x2) ∈ [0, T ]× Td,

|v(t1, x1)− v(t2, x2)| ≤ C
(
|x1 − x2|2 + |t1 − t2|

)β
2

 .

This is a Banach space equipped with the norm,

‖v‖
C
β
2 ,β

= ‖v‖∞ + sup
(t1,x1)6=(t2,x2)

|v(t1, x1)− v(t2, x2)|

(|x1 − x2|2 + |t1 − t2|)
β
2

.

The space C
1+β
2
,1+β([0, T ]× Td;R) is defined as the set of the functions v ∈ C0,1([0, T ]×

Td;R) such that ∇xv ∈ C
β
2
,β
(
[0, T ]× Td;Rn

)
and which admits a finite norm defined by,

‖v‖
C

1+β
2 ,1+β

= ‖v‖∞ + ‖∇xv‖
C
β
2 ,β

+ sup
(t1,x)6=(t2,x)∈[0,T ]×Td

|v(t1, x)− v(t2, x)|
|t1 − t2|

1+β
2

.
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We set C1,2
(
[0, T ]× Td;R

)
to be the set of functions which admit first derivative with

resepct to time and second derivatives with respect to the state variables, such that these
derivatives are continuous with respect to time and state.

Throughout the paper, what we call a solution to (2.1.2) is precisely defined by the
following definition.

Definition 2.2.1. The triple (u,m, µ) is a solution to (2.1.2) if u ∈ C1,2([0, T ] × Td)
is a pointwise solution to the Hamilton-Jacobi-Bellman equation (2.1.2a) with terminal
condition (2.1.2d), m ∈ C0

(
[0, T ]× Td;R

)
is solution to the Fokker-Planck-Kolmogorov

equation (2.1.2b) in the sense of distribution with initial condition (2.1.2e), and µ ∈
C0
(
[0, T ];P∞

(
Td × Rd

))
satisfies (2.1.2c) at any t ∈ [0, T ].

A simple way to overcome difficulty 2) is to assume that the Hamiltonian H and some
of its derivatives admit uniform bounds with respect to µ. In this case, the well-posedness
of the MFGC system with a possibly degenerate diffusion is investigated in [38]. Here we
avoid such an assumption for (2.1.2) but we introduce the following approximating system
which satisfies it,

(2.2.4a)

(2.2.4b)

(2.2.4c)

(2.2.4d)

(2.2.4e)

− ∂tuM − ν∆uM +H(x,∇xuM (t, x), µM (t)) = 0 in (0, T )× Td,
∂tm

M
t − ν∆mM − div(Hp(x,∇xuM (t, x), µM (t))mM ) = 0 in (0, T )× Td,

µM (t) =
[
Id, TM

(
−Hp

(
·,∇xuM (t, ·), µM (t)

))]
#mM (t) in [0, T ],

uM (T, x) = g(x,mM (T )) in Td,
mM (0) = m0,

where M is a positive constant and TM is a truncation map defined by

TM (v) =


v if |v| ≤M,

M

|v|
v otherwise.

The latter definition can be naturally extended to the case when M = ∞ by taking
T∞ = IdRd . In this case systems (2.1.2) and (2.2.4) coincide. A solution to (2.2.4) is
defined by replacing (2.1.2) by (2.2.4) in Definition 2.2.1.

If M < ∞ and
(
uM ,mM , µM

)
is a solution to (2.2.4), µM (t) is compactly supported

in BRd(0,M) the closed ball in Rd centered at 0 with radius M , for any t ∈ [0, T ]. Conse-
quently, uM and mM should satisfy estimates depending on M and uniform with respect
to µM . Therefore, compactness results for (2.2.4) should be less demanding than for (2.1.2)
and difficulty 2) should vanish.

2.2.2 Assumptions

Let us start with some reasonable assumptions about the regularity and the boundedness
of the Hamiltonian, the terminal cost and the inital distribution of agents. We introduce
two constants: C0 > 0 and β0 ∈ (0, 1).

A1 H = H(x, p, µ) is convex with respect to p, and differentiable with respect to (x, p);
Hp is locally β0-Hölder continuous with respect to p; H and Hp are continuous with
respect to µ on P∞,R

(
Td × Rd

)
for any R > 0, where P∞,R

(
Td × Rd

)
is defined in

paragraph 2.2.1 and equipped with the weak* topology.
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A2 g : Td×P
(
Td
)
→ R is continuous, and we suppose that x 7→ g(x,m) is in C2+β0

(
Td
)
,

with a norm bounded uniformly with respect to m, i.e.

‖g(·,m)‖C2+β0 ≤ C0, ∀m ∈ P(Td).

A3 m0 ∈ P(Td) is absolutely continuous with respect to the Lebesgue measure on Td
and we also name m0 its density (abuse of notation). Assume that m0 ∈ Cβ0(Td)
and is positive (see Remark 2.2.2 below to drop out the positivity assumption).

These assumptions are not restrictive when looking for solutions with the regularity given
in Definition 2.2.1. However, they can be relaxed if we are interested in weaker solutions
of systems (2.1.2).

In this paper we consider nonlocal coupling through the controls. More precisely, we
assume that these interactions involve the quantity Λq0(µ) defined in (2.2.1).

Let us introduce the assumptions used to address difficulty 1) which consists of solving
the fixed point relations in µ given in (2.1.2c) and (2.2.4c), when (u,m) are fixed and have
the same regularity as in Definition 2.2.1. We introduce λ0 ∈ [0, 1), for all (x, p,m) ∈
Td × Rd × P

(
Td
)
, and µ, µ1, µ2 ∈ Pm

(
Td × Rd

)
, we assume that,

FP1 |Hp(x, p, µ)| ≤ C0(1 + |p|q−1) + λ0Λq0(µ).

FP2
∣∣Hp(x, p, µ

1)−Hp(x, p, µ
2)
∣∣ ≤ λ0

∥∥∥αµ1 − αµ2∥∥∥
Lq0 (m)

.

These structural assumptions for MFGC are new in the literature and participate to the
originality and novelty of the results presented in this paper. Moreover they do not seem
to be restrictive as it is explained in what follows.

We recall that the optimal control of a representative agent is given by α = −Hp (x,∇xu, µ).
Since Λq0(µ) is homogeneous to the norm of a control, we cannot expect the dependency
of Hp upon µ to involve an exponent larger than one. Moreover if m is the first marginal
of µ, taking the Lq0(m)-norm in FP1 makes Λq0(µ) appear in both sides of the resulting
inequality; this explains the form of the right-hand side in FP1 and the necessity of choos-
ing λ0 smaller than 1. Similar arguments can provide insights on FP2, by noticing that if
Λq0 was seen as a norm on Pm

(
Td × Rd

)
then

∥∥∥αµ1 − αµ2∥∥∥
Lq0 (m)

would be the associated

distance. We refer to Remark 4.3 in [2] for a concrete example of a MFGC system which
does not admit solution if λ0 = 1.

As in a large part of the literature on MFG or HJB equations, we consider Hamiltonians
that are power-like functions in p at least asymptotically. Let q ∈ (1,∞) be this asymptotic
exponent, and q′ the conjugate exponent of q defined by q′ = q

q−1 . Namely, we assume
that H satisfies the following inequalities, for all x ∈ Td, p ∈ Rd, m ∈ P

(
Td
)
, and

µ ∈ Pm
(
Td × Rd

)
,

B1 |H(x, 0, µ)| ≤ C0 + λ2Λq0(µ)q
′ , with λ2 ≥ 0.

B2 |Hx(x, p, µ)| ≤ C0

(
1 + |p|q + Λq0(µ)q

′
)
.

B3 Hp(x, p, µ) ·p−H(x, p, µ) ≥ C−1
0

(
|p|q − λ1Λq0 (µ)q

′
)
−C0, where λ1 is a nonnegative

constant satisfying 0 ≤ λ1 <
(1−λ0)q

′

Cq
′

0

.
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One may notice that the dependencies of H upon p and µ involve different exponents
(which happen to be equal when q = 2). Indeed the Legendre transform applied to a
power-like function make the exponent change into its conjugate. Since H is defined as
the Legendre transform of the Lagrangian L, the exponent in the dependency of L upon α
should be q′. Moreover, Λq0(µ) is homogeneous to the norm of a control, therefore L should
at most involve Λq0(µ)q

′ . Going back to the Hamiltonian by the Legendre transform, the
exponent on Λq0(µ) stays the same which explains the right-hand side in B1-B3. One may
find the above-mentioned growth conditions on L in [76].

Assumption B3 is a convexity property of H with respect to p. In MFG without
coupling through the controls, such an assumption is common, the only difference is that
the term in Λq0(µ) does not appear. This assumption will be particularly useful to obtain
energy integral estimates by taking advantage of the duality properties of the forward-
backward systems (2.1.2a), (2.1.2b) and (2.2.4a), (2.2.4b). The inequality satisfied by λ1

is needed in the calculation for getting these estimates. Let us mention that the right-hand
side in this inequality comes from the estimates in Lemma 2.3.1, and that the constant C0

can be identified with the one in FP1.
In order to obtain classical solutions of the HJB equations (2.1.2a) and (2.2.4a), we

need Hölder continuity of (t, x) 7→ H (x,∇xu(t, x), µ(t)). While the space regularity of the
latter map is straightforward here, its time regularity may be more demanding and we need
assumptions which allow one to compare H at different measures µ1, µ2 ∈ P∞

(
Td × Rd

)
.

Assumption FP2 is not enough since it requires µ1 and µ2 to share the same marginal
with respect to Td.

T For R > 0, there exists a constant CR > 0 such that∣∣H (x, p, µ1
)
−H

(
x, p, µ2

)∣∣ ≤ CR (∥∥m1 −m2
∥∥β0
∞ +

∥∥∥αµ1 − αµ2∥∥∥
∞

)
,∣∣Hp

(
x, p, µ1

)
−Hp

(
x, p, µ2

)∣∣ ≤ CR (∥∥m1 −m2
∥∥β0
∞ +

∥∥∥αµ1 − αµ2∥∥∥
∞

)
,

for
(
x, p,mi, µi

)
such that (x, p) ∈ Td×Rd with |p| ≤ R, mi ∈ P

(
Td
)
∩C0

(
Td
)
with

mi ≥ R−1, µi ∈ Pmi
(
Td × Rd

)
with αµi ∈ C0

(
Td × Rd

)
and

∥∥∥αµi∥∥∥
∞
≤ R, i = 1, 2.

One may notice that when µ1 and µ2 have the same first marginal with respect to Td the
second inequality in T is implied by FP2. If one is only interested in weak solution to
(2.1.2), T can be removed.

Remark 2.2.2. Letting CR depends on
∥∥∥(mi

)−1
∥∥∥
∞

was motivated by models of popula-
tion dynamics which are discussed in paragraphs 2.6.3 and 2.6.4. The drawback of this
assumption is that we have to assume that the initial distribution of agents m0 is positive.

All the results in this paper hold if we do not assume m0 to be positive in A3, and we
remove the condition mi ≥ R−1 in T.

2.2.3 Main results

We recall that assumptions FP1 and FP2 are designed to address difficulty 1), and T to
obtain time regularity of the fixed point µ in 2.1.2c or 2.2.4c. More precisely, we state the
following lemma that will be proved in Section 2.3.

Lemma 2.2.3. Assume A1, FP1, FP2 and T. Take p ∈ C
β
2
,β
(
[0, T ]× Td;Rd

)
and m ∈

C
β
2
,β
(
[0, T ]× Td

)
such that m ≥ R−1 and m(t) ∈ P

(
Td
)
for t ∈ [0, T ], where β ∈ (0, 1)
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Chapter 2. On Classical Solutions to the Mean Field Game System of Controls

and R > 0 are constants. For any t ∈ [0, T ], there exists a unique µ(t) ∈ P
(
Td × Rd

)
satisfying

µM (t) =
[
Id, TM

(
−Hp

(
·, p(t, ·), µM (t)

))]
#m(t),

where M ∈ (0,∞]. Moreover, the map (t, x) 7→ αµ
M (t)(x) is in C

ββ0
2
,ββ0

(
[0, T ]× Td;Rd

)
,

and its associated norm can be estimated from above by a constant which depends on
‖p‖

C
β
2 ,β

, ‖m‖
C
β
2 ,β

, and the constants in the assumptions.

In Section 2.4, we prove the a priori estimates stated in the following lemma.

Lemma 2.2.4. Assume A1-A3, B2, B3, FP1, FP2 and T. If (u,m, µ) is a solution to
(2.2.4) for M ∈ (0,∞], then

• ‖∇xu‖∞ ≤ C (1 + ‖u‖∞) and ‖u‖∞ ≤ C (1 + ‖∇xu‖q∞), where C is independent of
M and depends only on the constants in the assumptions,

• m is positive,

• u ∈ C1+β
2
,2+β

(
[0, T ]× Td

)
,

• m ∈ C
β
2
,β
(
[0, T ]× Td;R

)
,

• (t, x) 7→ αµ(t)(x) is in C
β
2
,β
(
[0, T ]× Td;Rd

)
,

where β ∈
(
0, β2

0

)
. Moreover,

∥∥m−1
∥∥
∞ and the norms associated with the last three items

above depend only on ‖u‖∞,
∥∥m−1

0

∥∥
∞, β and the constants in the assumptions.

These estimates are weaker than their equivalents for MFG systems without interaction
through controls. In particular, u is not uniformly bounded in ‖·‖∞-norm. However, we
believe that our estimate of ‖∇xu‖∞ is the best that we can achieve in our framework since
its right-hand side should be at least linear with respect to ‖u‖∞. To our knowledge, such
an estimate for systems of MFG with nonlocal dependency on ∇xu (or more generally for
MFG systems in which we do not have a uniform a priori estimate on u) is new in the
literature.

Here, these a priori estimates are not sufficient to address the difficulty 2) and to obtain
existence of solutions. However, existence can be obtained under several different kinds of
assumptions; below, we supply a list of existence results under various assumptions:

Theorem 2.2.5. Assume A1-A3, B1-B3, FP1, FP2, T. There exists a solution to
(2.1.2) if one of the following assertions is satisfied

a) q0 ≤ q′ and |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)q̃

)
, where q̃ is a constant satisfying q̃ < q′

(Proposition 2.5.4),

b) q0 ≤ q′ and λ1 +C0λ2 <
(1−λ0)q

′

Cq
′

0

where λ1 and λ2 are respectively defined in B3 and

B1, the C0 on the left-hand side comes from C−1
0 in B3 and the C0 on the right-hand

side comes from FP1 (Proposition 2.5.3),

c) |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)q

′−1
)
, for any (x, µ) ∈ Td × P

(
Td × Rd

)
(Proposition

2.5.5),

d) |Hx(x, p, µ)| ≤ C0

(
1 + |p|+ Λq0 (µ)q

′−1
)
, for any (x, p, µ) ∈ Td × Rd × P

(
Td × Rd

)
(Proposition 2.5.6),
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2.3. The fixed point relation in µ and the proof of Lemma 2.2.3

e) T ≤ T0, where T0 is a constant depending on the constants in the assumptions (Propo-
sition 2.5.8).

An other additional assumption under which existence holds is the monotonicity con-
dition addressed in [76].

We also give a uniqueness result under a short time horizon assumption.

Theorem 2.2.6 (Uniqueness with short time horizon). Assume A1, A2, A3, B1, B2,
B3, FP1, FP2, and that the following three assumptions are satisfied,

• Hp is locally Lipschitz continuous with respect to p,

• g satisfies

(2.2.5)
∥∥g(·,m1)− g(·,m2)

∥∥
C1+β ≤ C0Wq1

(
m1,m2

)
,

for any m1,m2 ∈ P
(
Td
)
, where q1 ∈ [1,∞) and Wq1 is the q1-Wassertein distance

on measures,

• the two inequalities in T hold when we replace
∥∥m1 −m2

∥∥β0
∞ by Wq1

(
m1,m2

)
.

There exists T1 > 0 such that if T < T1 then there is at most one solution to (2.1.2).

We believe that this uniqueness result can be easily extended to more general Hamilto-
nians, but that the short-time assumption is essential. Indeed numerical examples in which
non-uniqueness occurs are presented in [2]. In these examples, we consider groups of agents
who start from some crowded areas at time t = 0, and travel through the domain to arrive
at some target areas. Imposing a short time assumption in such an example results in the
agents not trying to reach the targets at all. Indeed in this case the kinetic cost makes it
more expensive for them to cross the domain very quickly before the end of the game than
to do nothing and just wait passively at their starting point. For this reason we were not
interested in finding less restrictive assumptions in Theorem 2.2.6. This theorem should
be only seen as an example of uniqueness result with a short time horizon assumption. In
particular we wanted the proof in paragraph 2.5.4 to stay simple.

Remark 2.2.7. i) In this work, we only consider MFGC systems in the d-dimensional
torus Td. However, we believe that our existence results (Theorem 2.2.5) hold under
the same assumptions on the Euclidean space Rd, and that the method introduced in
[76] to pass from Td to Rd can applied here.

ii) We did not include the case q = 1 in this work (i.e. when the Hamiltonian is Lipschitz
continuous in p). In this case, systems (2.1.2) and (2.2.4) coincide when M is large
enough, therefore there exists a solution to (2.1.2) under assumptions A1-A3, B1-
B3, FP1, FP2 and T, by the same arguments as in Lemma 2.5.1.

2.3 The fixed point relation in µ and the proof of Lemma
2.2.3

We recall that (2.1.2) and (2.2.4) conincide when M =∞. Here, we take M ∈ (0,∞].
The following lemma takes advantage of the structural assumptions FP1 and FP2 to

solve the fixed point relations (2.1.2c) and (2.2.4c) which consists of difficulty 1). It also
states a priori estimates on µ which will be of great use in the next section to obtain a
priori estimates on u and its derivatives.
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Lemma 2.3.1. Assume A1, FP1 and FP2. Take p ∈ C0
(
Td;Rd

)
, and m ∈ P(Td). The

following two assertions are satisfied.

(i) There exists a unique µM ∈ P(Td × Rd) such that

(2.3.1) µM =
[
Id, TM

(
−Hp

(
·, p(·), µM

))]
#m.

For any q̃ ∈ [1,∞], it satisfies

(2.3.2) Λq̃
(
µM
)
≤ C0

1− λ0

(
1 +

∥∥∥|p|q−1
∥∥∥
Lmax(q0,q̃)(m)

)
.

(ii) The map (p,m) 7→ µM given by (2.3.1), is continuous from C0
(
Td;Rd

)
× P(Td)

to P(Td × Rd). We recall that the spaces of measures are equipped with the weak-*
topology.

Proof. (i) Let us define the following map,

ΦM
(p,m) :

C0
(
Td;Rd

)
→ C0

(
Td;Rd

)
α 7→

{
Td → Rd

x 7→ TM (−Hp (x, p(x), (Id, α) #m)) .

This map is well defined by (A1). It is λ0-Lipschitz continuous by FP2 and the
fact that TM is 1-Lipschitz continuous, we recall that λ0 < 1. Therefore it admits a
unique fixed point by the Banach fixed point theorem. If µM ∈ P

(
Td × Rd

)
satisfies

(2.3.1) then αµM is the only fixed point of ΦM
(p,m). Conversely, if we denote by α the

fixed point of ΦM
(p,m), then µM defined by µM = (Id, α) #m satisfies (2.3.1). This

implies that (2.3.1) admits a unique fixed point that we name µM in what follows.
From FP1, µM satisfies,

Λq̃
(
µM
)

=
∥∥∥αµM∥∥∥

Lq̃(m)

≤
∥∥∥C0

(
1 + |p|q−1

)
+ λ0Λq0

(
µM
)∥∥∥
Lq̃(m)

≤ C0

(
1 +

∥∥∥|p|q−1
∥∥∥
Lq̃(m)

)
+ λ0Λq̃

(
µM
)
,

for q̃ ≥ q0, where we obtained the last line by using the triangle inequality for the
Lq̃-norm, and (2.2.2). This implies (2.3.2) for any q̃ ≥ q0. Then we extend this result
to 1 ≤ q̃ < q0 by combining (2.2.2) and (2.3.2) applied to q0.

(ii) Let (pn,mn)n∈N ∈
(
C0
(
Td × Rd

)
;P(Td)

)N be a convergent sequence to (p,m) in
C0
(
Td;Rd

)
×P

(
Td
)
. We define µN as before, and

(
µN,n

)
n∈N the fixed points satis-

fying

(2.3.3) µN,n =
[
Id, TM

(
−Hp

(
·, pn(·), µN,n

))]
#mn

for n ∈ N. The sequence (pn)n∈N is bounded in C0
(
Td;Rd

)
, thus (2.3.2) with q̃ =∞

yields that
(
µN,n

)
n∈N are uniformly compactly supported. The sequence

(
µN,n

)
is

compact in P
(
Td × Rd

)
endowed with the weak-* topology. Let µ̃ be the limit of

a subsequence
(
µN,ϕ(n)

)
n∈N, for ϕ : N → N an increasing function. By continuity
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of Hp and TM , we can pass to the limit in (2.3.3) taken at ϕ(n) when n tends to
infinity, this gives that µ̃ satisfies the same fixed point relation as µ. By uniqueness
of this fixed point, we deduce that µ̃ = µ. This implies that the entire sequence(
µN,n

)
tends to µ.

Therefore the map (p,m) 7→ µM is continuous from C0
(
Td;Rd

)
×P

(
Td
)
to P

(
Td × Rd

)
.

In particular if q0 ≤ q′, (2.2.2) and (2.3.2) yield

(2.3.4) Λq0(µ) ≤ Λq′(µ) ≤ C0

1− λ0

(
1 + ‖p‖q−1

Lq(m)

)
,

and then we use the inequality (a + b)q
′ ≤ aq

′

θq′−1 + bq
′

(1−θ)q′−1 which holds for a, b > 0 and
for any θ ∈ (0, 1), to obtain

(2.3.5) Λq0(µ)q
′ ≤ Cq

′

0

(1− λ0)q′

(
θ1−q′ + (1− θ)1−q′‖p‖qLq(m)

)
.

If q ∈ [1,∞] without restriction, we obtain

(2.3.6) Λq0(µ)q
′ ≤ Cq

′

0

(1− λ0)q′

(
θ1−q′ + (1− θ)1−q′‖p‖q∞

)
.

These latter three inequalities will be of great use in Section 2.4 for getting a priori esti-
mates.

Given (u,m) as regular as in definition 2.2.1, we can use Lemma 2.3.1 to prove that the
fixed point relations (2.1.2c) and (2.2.4c) are well-posed, and that if (u,m, µ) is a solution
to (2.1.2) or (2.2.4) then µ is continuous with respect to time. However, we need a better
regularity in time to get classical solution of the HJB equations (2.1.2a) and (2.2.4a). In
Lemma 2.3.2, we use T to obtain an estimate of the distance between two fixed points
of (2.3.1) associated with different (u,m). We will be particularly interested in using this
estimate on a solution to (2.2.4) at different times.

Lemma 2.3.2. Assume A1, FP1, FP2 and T. Take p1, p2 ∈ C0
(
Td;Rd

)
, and m1,m2 ∈

P
(
Td
)
∩C0

(
Td;R

)
some positive probability measures. We define µ1, µ2 ∈ P

(
Td × Rd

)
as

the fixed point in (i) in Lemma 2.3.1 associated with
(
p1,m1

)
and

(
p2,m2

)
, respectively.

There exists a constant C such that

(2.3.7)
∥∥∥αµ1 − αµ2∥∥∥

∞
≤ C

(∥∥p1 − p2
∥∥β0
∞ +

∥∥m1 −m2
∥∥β0
∞

)
,

where C depends on
∥∥pi∥∥∞, ∥∥∥(mi

)−1
∥∥∥
∞
, for i = 1, 2, and the constants in the assumptions.

Proof. We define µ̃ by µ̃ =
(
Id, α

µ1
)

#m2. The triangle inequality and the fact that TM
is a contraction imply that for any x ∈ Td,∣∣∣αµ1(x)− αµ2(x)

∣∣∣ ≤ ∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p2(x), µ2

)∣∣
≤
∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p1(x), µ̃

)∣∣
+
∣∣Hp

(
x, p1(x), µ̃

)
−Hp

(
x, p1(x), µ2

)∣∣
+
∣∣Hp

(
x, p1(x), µ2

)
−Hp

(
x, p2(x), µ2

)∣∣ .
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The measures µ1 and µ̃ are the image measures by the same function
(
Id, α

µ1
)
, of m1 and

m2 respectively. From T, we obtain∣∣Hp

(
x, p1(x), µ1

)
−Hp

(
x, p1(x), µ̃

)∣∣ ≤ CR∥∥m1 −m2
∥∥β0
∞ ,

where R = max
(∥∥pi∥∥∞,∥∥∥(mi

)−1
∥∥∥
∞

)
and CR is the constant defined in T. We recall that

Λ∞
(
µi
)
can be estimated from above by a quantity which only depends on

∥∥pi∥∥∞ and the
constants in the assumptions, by (2.3.2).

Since µ̃ and µ2 have the same marginal with respect to Td, FP2 yields that,∣∣Hp

(
x, p1(x), µ̃

)
−Hp

(
x, p1(x), µ2

)∣∣ ≤ λ0

∥∥∥αµ1 − αµ2∥∥∥
∞
.

Then Hp is locally β0-Hölder continuous by A1 so,∣∣Hp

(
x, p1(x), µ2

)
−Hp

(
x, p2(x), µ2

)∣∣ ≤ C∥∥p1 − p2
∥∥β0
∞ ,

for some constant C. Combining the latter four inequalities, we obtain,∥∥∥αµ1 − αµ2∥∥∥
∞
≤ C1

(∥∥p1 − p2
∥∥β0
∞ +

∥∥m1 −m2
∥∥β0
∞

)
+ λ0

∥∥∥αµ1 − αµ2∥∥∥
∞
,

which implies (2.3.7) up to replacing C with (1− λ0)−1 max (C,CR).

Lemma 2.2.3 is a straightfoward consequence of Lemmas 2.3.1 and 2.3.2.

2.4 A priori estimates and the proof of Lemma 2.2.4

Here we take M ∈ (0,∞], and (u,m, µ) a solution to (2.2.4) defined in Definition 2.2.1.
We will look for estimates independent ofM which allow us to address difficulty 2). These
a priori estimates imply compactness results and play an essential role in the proofs of
existence in Section 2.5.

2.4.1 A priori estimates on u

When we consider MFG without interactions through controls and with bounded coupling
function and terminal cost, we can apply the maximum principle on parabolic differential
equations to (2.4.3) below and get an a priori estimates of ‖u‖∞ which only depends on
the constants in the assumptions. However, for MFGC systems and more generally for
HJB equations with non-local interactions in ∇xu, it is not possible to get such a strong
a priori estimate directly from the maximum principle. Instead we get (2.4.1) and (2.4.2)
which involve non-local quantities depending on ∇xu.

Lemma 2.4.1. Under assumptions A1, A2, B1, FP1, FP2, and q0 ≤ q′, for θ ∈ (0, 1)
u satisfies,
(2.4.1)

‖u‖∞ ≤ C0 (1 + T ) +
λ2C

q′

0

(1− λ0)q′

(
θ1−q′T + (1− θ)1−q′

∫ T

0

∫
Td
|∇xu|q dm(t, x)dt

)
,

where λ2 is defined in B1. More generally, for any q0 ∈ [1,∞] u satisfies,

(2.4.2) ‖u‖∞ ≤ C0 (1 + T ) +
λ2C

q′

0

(1− λ0)q′

(
θ1−q′T + (1− θ)1−q′ ‖∇xu‖q∞

)
.
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Proof. Here, we can rewrite (2.2.4a) in the following way,

(2.4.3) − ∂tu(t, x)− ν∆u(t, x) +

[∫ 1

0
Hp(x, s∇xu, µ(t))ds

]
· ∇xu(t, x) = −H(x, 0, µ(t)),

for (t, x) ∈ (0, T )×Td. The maximum principle for parabolic second-order equation applies
to u and −u,

(2.4.4) ‖u‖∞ ≤ ‖u(T, ·)‖∞ +

∫ T

0
‖H (·, 0, µ(t))‖∞dt.

Moreover, |H (x, 0, µ(t)) | ≤ C0 +λ2Λq0 (µ(t))q
′
and |u(T, x)| ≤ C0 come from B1 and A2,

respectively. We combine the latter inequalities with (2.3.5) and (2.3.6) to get (2.4.1) when
q0 ≤ q′, and (2.4.2) respectively.

The non-local term in (2.4.1) involving ∇xu corresponds roughly speaking to an energy.
Moreover this is a quantity that naturally appears in MFG literature thanks to duality
properties in the forward-backward systems (2.1.1), (2.1.2), or (2.2.4). More precisely, the
FPK equations is the dual equation of the linearized HJB equation with respect to u.
Lemma 2.4.2 provides an a priori estimate of this quantity.

Lemma 2.4.2. Under assumptions A1, A2, B3, FP1, FP2, and q0 ≤ q′, the following
inequality is satisfied,

(2.4.5)
∫ T

0

∫
Td
|∇xu|q dm(t, x)dt ≤(

1− λ1C
q′

0

(1− θ)q′−1(1− λ0)q′

)−1(
C0‖u‖∞ + C2

0 (1 + T ) +
λ1C

q′

0 T

θq′−1(1− λ0)q′

)
,

for any θ ∈ (0, 1) such that λ1 <
(1−θ)q′−1(1−λ0)q

′

Cq
′

0

.

Proof. We multiply (2.2.4a) by −m and (2.2.4b) by u; we add up and integrate over
(0, T )×Td the resulting quantities; after performing some integrations by part, we obtain∫ T

0

∫
Td

[Hp (x,∇xu(t, x), µ(t)) · ∇xu−H (x,∇xu(t, x), µ(t))] dm(t, x)dt

=

∫
Td
u(0, x)dm0(x)−

∫
Td
g(x,m(T ))dm(T, x),

that we can combine with B3 and A2 to get,

C−1
0

∫ T

0

∫
Td
|∇xu|q dm(t, x)dt ≤ ‖u‖∞ + C0(1 + T ) + C−1

0 λ1

∫ T

0
Λq0 (µ(t))q

′
dt.

We integrate (2.3.5) over (0, T ),∫ T

0
Λq0 (µ(t))q

′
dt ≤ Cq

′

0

(1− λ0)q′

(
θ1−q′T + (1− θ)1−q′

∫ T

0

∫
Td
|∇xu|q dm(t, x)dt

)
,

where we can choose θ ∈ (0, 1) such that λ1 < (1−θ)q′−1(1−λ0)q
′

Cq
′

0

, since λ1 satisfies the

inequality in B3. The latter three inequalities imply (2.4.5).
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Roughly speaking, Lemma 2.4.1 with q0 ≤ q′ and Lemma 2.4.2 provide opposite inequal-
ities which may become complementary under a smallness condition on the parameters,
implying a uniform estimate on ‖u‖∞. This condition is explicitely given in the following
corollary.

Corollary 2.4.3. Under Assumptions A1, A2, B1, B3, FP1, FP2, q0 ≤ q′, and λ1 +

C0λ2 <
(1−λ0)q

′

Cq
′

0

, u is bounded by a quantity which only depends on the constants in the

assumptions.

Proof. Combing (2.4.1) and (2.4.5) results in,

‖u‖∞ ≤
λ2C

q′

0

(1− θ)q′−1(1− λ0)q′
C0

(
1− λ1C

q′

0

(1− θ)q′−1(1− λ0)q′

)−1

‖u‖∞ + Cθ

≤ C0λ2

(
(1− θ)q′−1(1− λ0)q

′

Cq
′

0

− λ1

)−1

‖u‖∞ + Cθ

where θ ∈ (0, 1) may be chosen such that λ1 +C0λ2 <
(1−θ)q′−1(1−λ0)q

′

Cq
′

0

, and Cθ is a positive

constant depending on the constants in the assumptions and θ. This implies

‖u‖∞ ≤

1− C0λ2

(
(1− θ)q′−1(1− λ0)q

′

Cq
′

0

− λ1

)−1
Cθ,

where C0λ2

(
(1−θ)q′−1(1−λ0)q

′

Cq
′

0

− λ1

)−1

< 1, which concludes the proof.

Let us mention that in the assumption λ1 + C0λ2 <
(1−λ0)q

′

Cq
′

0

in Corollary 2.4.3, the

constant C0 in the left-hand side comes from the C−1
0 in B3, and the C0 in the right-hand

side comes from FP1.

2.4.2 A priori estimates on m

In order for the HJB equations (2.1.2a) and (2.2.4a) to admit classical solutions, we want
µ to be regular in time. Since m is the marginal of µ with respect to Td, we first prove
that m is regular in the following lemma. Moreover, we also prove that m stays positive,
which is required in Lemma 2.2.3 to obtain time regularity on µ.

Lemma 2.4.4. Under assumptions A1, A3, FP1, FP2, m is in C
β
2
,β
(
[0, T ]× Td;R

)
for

β ∈ (0, β0) and its C
β
2
,β
(
[0, T ]× Td,R

)
-norm can be estimated from above by a constant

which depends on ‖m0‖Cβ0 , ‖∇xu‖∞, β and the constants in the assumptions.
Furthermore, m is positive everywhere and admits a positive lower bound which only

depends on
∥∥m−1

0

∥∥
∞, ‖∇xu‖∞ and the constants in the assumptions.

Proof. The distribution of agents m satisfies the second-order parabolic FPK equation
(2.2.4b), which is supplemented with a β0-Hölder continuous initial condition. Theorem
2.1 section V.2 in [81] states that m is uniformly bounded by a constant which depends
on ‖m0‖∞ and ‖Hp (·,∇xu, µ)‖∞. This, (FP1) and (2.3.4) yield that mHp (·,∇xu, µ,m)
is bounded by a constant which depends on ‖m0‖∞, ‖∇xu‖∞ and the constant of the
assumptions. Finally, Theorem 6.29 in [86] yields that m ∈ C

β
2
,β
(
[0, T ]× Td

)
for β ∈
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(0, β0), and its associated norm can be estimated from above by a constant which depends
on ‖m0‖Cβ0 , ‖∇xu‖∞, β and the constants in the assumptions.

We define Tε = inf
({
t ∈ [0, T ],

∥∥m(t)−1
∥∥
∞ ≥ ε

−1
}
∪ {T}

)
, for 0 < ε <

∥∥m−1
0

∥∥
∞. In

particular Tε is positive, since we proved in the latter paragraph that m is continuous. On
[0, Tε]×Td we define the function n by n = m−1, it satisfies the following partial differential
equation in the sense of viscosity,

∂tn− ν∆n− div (αn) + 2α · ∇xn = −2ν
|∇xn|2

n
,

supplemented with the initial condition n(0) = m−1
0 , where α(t, x) = −Hp (x,∇xu(t, x), µ(t))

for (t, x) ∈ [0, T ] × Td. We define ñ as the unique weak solution of the following partial
differential equation defined on [0, T ]× Td,

(2.4.6) ∂tñ− ν∆ñ− div (αñ) + 2α · ∇xñ = 0,

supplemented with the initial condition ñ(0) = m−1
0 . Theorem 2.1 section V.2 in [81] states

that ñ is bounded from above by a constant which depends on
∥∥m−1

0

∥∥
∞, ‖α‖∞ and T .

Moreover, n is a subsolution of the restriction of (2.4.6) to [0, Tε]×Td, with the same initial
condition as ñ. Therefore, by a comparison argument for second-order parabolic equations
in divergence form (Theorem 9.7 in [86] for instance), n and ñ satisfy n ≤ ñ. This implies
that there exists C a positive constant independent of Tε, such that ‖n‖∞ ≤ C. We
conclude the proof by taking ε = 2−1C−1 and recalling that ‖α‖∞ can be estimated from
above using FP1 and (2.3.4).

2.4.3 A priori estimates on derivatives of u

Bernstein methods are useful tools when studying HJB equations or MFG systems. They
allow one to obtain a priori estimates on ∇xu by considering the partial differential equa-
tions satisfied by some well-chosen functions depending on u and ∇xu. See for example
the video of the lecture of P.L. Lions on November the 23rd 2018 [87], in which Bernstein
estimates are derived for MFG systems without interactions through controls. More pre-
cisely, P.L. Lions used the function defined by |∇xu|2 e−ηu, for small η. Here this method
might work only if we knew a uniform estimates on ‖u‖∞ and if q = 2. After significant
changes in the latter method, we can derive an estimate on u which is weaker than the
one for MFG without interactions through controls. Namely, we state that ‖∇xu‖∞ is
bounded by a quantity that depends linearly on ‖u‖∞ by studying the functions w and
ϕ defined in (2.4.11) below. To our knowledge, such estimates for systems of MFG with
nonlocal dependency on ∇xu (or more generally for MFG systems in which we do not have
a uniform a priori estimate on u) are new in the literature. We believe that this result may
hold for more general HJB equations with nonlocal dependency on ∇xu.

Lemma 2.4.5. Under assumptions A1, A2, B2, B3, FP1 and FP2, there exists C > 0
depending only on the constants of the assumptions, such that

(2.4.7) ‖∇xu(t)‖∞ ≤ C
(

1 + max
t≤s≤T

‖u‖∞
)
,

for any t ∈ [0, T ].

Proof. In what follows, we only prove that (2.4.7) holds for t = 0, however the proof does
not use additional information available at t = 0 (the initial condition on m for example),
so it can be repeated for any t ∈ [0, T ] and the constant C in (2.4.7) does not depend on t.
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Here we wish to differentiate (2.2.4a) with respect to x; however we did not assume
in Definition 2.2.1 enough regularity on u for such an operation to have sense pointwisely
on (0, T ) × Td. Especially the time derivative of ∇xu and the third derivatives of u with
respect to x are not required to exist. This leads us to introducing ρ ∈ C∞

(
[−1

2 ,
1
2)d
)
a

non-negative mollifier such that ρ(x) = 0 if |x| ≥ 1
4 and

∫
Rd ρ(x)dx = 1. We introduce

ρδ = δ−dρ
( ·
δ

)
and uδ(t) = ρδ ? u(t), for any 0 < δ < 1 and t ∈ [0, T ], where ? denotes the

convolution operator.
Thus uδ depends smoothly on the state variable and its partial derivatives in space at

any order have the same regularity in time as u, moreover it solves the following partial
differential equation with final condition,

(2.4.8)

{
− ∂tuδ(t, x)− ν∆uδ(t, x) + ρδ ? (H(·,∇xu(t, ·), µ(t))) (x) = 0 in (0, T )× Td,
uδ(T, x) = ρδ ? (g(·,m(T, ·))) (x) in Td,

Let us take the gradient with respect to the state variable of the latter equation and the
scalar product of the resulting equality with ∇xuδ,

(2.4.9) − 1

2
∂t

∣∣∣∇xuδ∣∣∣2 − ν∇xuδ ·∆(∇xuδ)+∇xuδ ·D2
x,xu

δHp

(
x,∇xuδ, µ

)
+∇xuδ ·Hδ

x (x,∇xu, µ) = ∇xuδ ·Rδ(t, x),

where Hδ and Rδ are defined by

Hδ(x, p, µ) = ρδ ? (H(·, p(·), µ)) (x),

Rδ(t, x) = D2
x,xu

δHp

(
x,∇xuδ, µ

)
− ρδ ?

(
D2
x,xuHp (·,∇xu, µ)

)
.

By simple calculus, we notice that

∇x
∣∣∣∇xuδ∣∣∣2 = 2D2

x,xu
δ∇xuδ,

∆
∣∣∣∇xuδ∣∣∣2 = 2∇xuδ ·∆

(
∇xuδ

)
+ 2

∣∣∣D2
x,xu

δ
∣∣∣2 ,

that we can combine with (2.4.9) and obtain

(2.4.10) − 1

2
∂t

∣∣∣∇xuδ∣∣∣2 − ν

2
∆
∣∣∣∇xuδ∣∣∣2 + ν

∣∣∣D2
x,xu

δ
∣∣∣2 +

1

2
∇x
∣∣∣∇xuδ∣∣∣2 ·Hp

(
x,∇xuδ, µ

)
= −∇xuδ ·Hδ

x (x,∇xu, µ) +∇xuδ ·Rδ(t, x).

We define the functions ϕ and wδ by

(2.4.11)
ϕ(v) = exp

(
exp

(
−
(
a+ b‖u‖−1

∞ v
)))

, for |v| ≤ ‖u‖∞,

wδ(t, x) = ϕ(uδ(T − t, x))
∣∣∣∇xuδ∣∣∣2 (T − t, x),

where a > 1 and b > 0 are constants that will be defined below. The derivatives of ϕ are
given by

(2.4.12)
ϕ′(v) = −b‖u‖−1

∞ e−(a+b‖u‖−1
∞ v)ϕ(v),

ϕ′′(v) = b2‖u‖−2
∞ e−(a+b‖u‖−1

∞ v)
(

1 + e−(a+b‖u‖−1
∞ v)

)
ϕ(v),
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which implies that ϕ and ϕ′ satisfy,

(2.4.13)
1 ≤ ϕ(v) ≤ ee−a+b ,

b‖u‖−1
∞ e−a−b ≤ |ϕ

′(v)|
ϕ(v)

≤ b‖u‖−1
∞ e−a+b.

Roughly speaking, we introduced a and b in order to have ‖ϕ‖∞
∥∥ϕ−1

∥∥
∞ and ‖ϕ′‖∞

∥∥(ϕ′)−1
∥∥
∞

as close as possible to 1. This will be achieved by taking a large enough, and b small enough.
For simplicity of the notations, we will omit to write the argument of ϕ since it is

always uδ.
The derivatives of wδ verify the following equalities,

−ϕ∂t
∣∣∣∇xuδ∣∣∣2 = ∂tw

δ +
ϕ′

ϕ
wδ∂tu

δ,

ϕ∇x
∣∣∣∇xuδ∣∣∣2 = ∇xwδ −

ϕ′

ϕ
wδ∇xuδ,

ϕ∆
∣∣∣∇xuδ∣∣∣2 = ∆wδ − ϕ′

ϕ
wδ∆uδ − 2

ϕ′

ϕ
∇xwδ · ∇xuδ −

ϕ′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2
.

We multiply (2.4.10) by 2ϕ and use the latter equalities in the resulting relation,

(2.4.14) ∂tw
δ − ν∆wδ +∇xwδ ·Hp

(
x,∇xuδ, µ

)
+ 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ + 2νϕ

∣∣∣D2
x,xu

δ
∣∣∣2

=
ϕ′

ϕ
wδ
[
−∂tuδ − ν∆uδ +∇xuδ ·Hp

(
x,∇xuδ, µ

)]
− ν ϕ

′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2

− 2ϕ∇xuδ ·Hδ
x (x,∇xu, µ) + 2ϕ∇xuδ ·Rδ(t, x).

We can rewrite the first line of (2.4.8) in the following way,

−∂tuδ − ν∆uδ = −H
(
x,∇xuδ, µ

)
−Qδ,

where Qδ is defined by,

Qδ(t, x) = Hδ (x,∇xu(t), µ(t))−H
(
x,∇xuδ(t, x), µ(t)

)
.

This and (2.4.14) imply that

(2.4.15) ∂tw
δ − ν∆wδ +∇xwδ ·Hp

(
x,∇xuδ, µ

)
+ 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ + 2νϕ

∣∣∣D2
x,xu

δ
∣∣∣2

=
ϕ′

ϕ
wδ
[
∇xuδ ·Hp

(
x,∇xuδ, µ

)
−H

(
x,∇xuδ, µ

)]
− ν ϕ

′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2

− 2ϕ∇xuδ ·Hδ
x (x,∇xu, µ) + 2ϕ∇xuδ ·Rδ(t, x)− ϕ′

∣∣∣∇xuδ∣∣∣2Qδ(t, x).

In the following we will estimate from above the right-hand side of the latter expression.
We notice that the second term of the right-hand side is negative since

(2.4.16) ϕ′′ϕ− 2
(
ϕ′
)2 ≥ 0.

We notice that Rδ and Qδ are uniformly convergent to 0 as δ tends to 0, so we can assume
that,

(2.4.17)
∥∥∥Rδ∥∥∥

∞
+
∥∥∥Qδ∥∥∥

∞
≤ ε

2e‖∇xu‖∞ + ‖ϕ′‖∞‖∇xu‖
2
∞
,
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for δ small enough and depending on ε > 0.
The first term in the last line of (2.4.15) can be bounded using B2,

(2.4.18) − 2ϕ∇xuδ ·Hδ
x (x,∇xu, µ) ≤ 2C0ϕ

∥∥∥∇xuδ∥∥∥
∞

(
1 + ‖∇xu‖q∞ + Λq0 (µ(t))q

′
)
.

In fact we are going to use the latter inequality to obtain (2.4.19) below, only by noticing
that using (2.3.6), the right-hand side involves only terms with exponents in

∥∥wδ∥∥∞ or∥∥w0
∥∥
∞ not larger than 1+q

2 .
Then we use B3 on the first term of the right-hand side of (2.4.15) since ϕ′ < 0,

ϕ′

ϕ
wδ
[
∇xuδ ·Hp

(
x,∇xuδ, µ

)
−H

(
x,∇xuδ, µ

)]
≤ −C−1

0

|ϕ′|
ϕ1+ q

2

(
wδ
)1+ q

2

+ C0
|ϕ′|
ϕ
wδ + C−1

0 λ1
|ϕ′|
ϕ
wδΛq0 (µ(t))q

′
.

The term involving −
(
wδ
)1+ q

2 is a key element in this proof. On the one hand, it will
allow us to cancel the term in wδΛq0 (µ(t))q

′
. On the other hand, we will use the fact that

it has a larger exponent than any of the remaining terms.
From (2.3.6) and (2.4.13), we obtain

|ϕ′|
ϕ

Λq0 (µ(t))q
′
≤ b‖u‖−1

∞ e−a+b Cq
′

0

(1− λ0)q′

(
θ1−q′ + (1− θ)1−q′∥∥w0

∥∥ q2
∞

)
,

where θ ∈ (0, 1) will be defined below. Then (2.4.13) implies,

|ϕ′|
ϕ1+ q

2

≥ b‖u‖−1
∞ e−a−be−

q
2
e−a+b

Combining the latter six inequalities, (2.4.15), and the fact that
∥∥wδ∥∥∞ ≤ ‖ϕ‖∞∥∥ϕ−1

∥∥
∞
∥∥w0

∥∥
∞ ≤

ee
−a(eb−e−b)∥∥w0

∥∥
∞, we obtain the following partial differential inequality,

(2.4.19) ∂tw
δ − ν∆wδ +∇xwδ ·Hp

(
x,∇xuδ, µ

)
+ 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ

≤ −C−1
0 b‖u‖−1

∞ e−a−be−
q
2
e−a+b

(
wδ
)1+ q

2
+ b‖u‖−1

∞ e−a+b λ1C
q′−1
0 ee

−a(eb−e−b)

(1− θ)1−q′(1− λ0)q′
∥∥w0

∥∥1+ q
2

∞

+ ε+ Ca,b,θ

(
1 + ‖u‖−1

∞

)(
1 +

∥∥w0
∥∥ 1+q

2

∞

)
where Ca,b,θ is a positive constant which only depends on the constants in the assumptions

and in (a, b, θ). We systematically used the inequality
∥∥w0

∥∥r
∞ ≤ 1 +

∥∥w0
∥∥ 1+q

2
∞ on every

term of the form
∥∥w0

∥∥r
∞ with 0 < r < 1+q

2 .

Let us mention the following result: the function y+ defined by y+ = max

(
y0,K

− 1
k ‖f‖

1
k∞

)
is a super-solution of the following differential equation,{

y′(t) = −Ky(t)k + f(t)

y(0) = y0

posed on [0, T ], where k and y0 are positive constants and f is a bounded positive function.
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This and ‖w(0)‖∞ ≤ eC2
0 which comes fromA2 and (2.4.13), yield that a super-solution

to (2.4.19) is given by

[
λ1C

q′

0 e
2be

q
2
e−a+bee

−a(eb−e−b)

(1− θ)q′−1(1− λ0)q′
∥∥w0

∥∥1+ q
2

∞ + Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞ + ε

)] 2
2+q

,

where we replace Ca,b,θ with Ca,b,θ +
(
eC2

0

)1+ q
2 .

From a comparison argument for parabolic second-order equation, wδ is not larger than
the latter expression. This result holds for w0 by letting δ and ε tend to 0, thus w0 verifies
the following inequality,

∥∥w0
∥∥1+ q

2

∞ ≤ λ1C
q′

0 e
2be

q
2
e−a+be

e−a(eb−e−b)

(1− θ)q′−1(1− λ0)q′
∥∥w0

∥∥1+ q
2

∞ + Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞

)
.

By B3, we can choose a > 1 large enough, b > 0 and θ ∈ (0, 1) small enough such that
λ1C

q′
0 e

2be
q
2 e
−a+b

e
e−a(eb−e−b)

(1−θ)q′−1(1−λ0)q′
< 1. This implies

(2.4.20)
∥∥w0

∥∥1+ q
2

∞ ≤ Ca,b,θ (1 + ‖u‖∞)

(
1 +

∥∥w0
∥∥ 1+q

2

∞

)
,

where we increased Ca,b,θ into

(
1− λ1C

q′+1
0 e2be

q
2 e
−a+b

e
e−a(eb−e−b)

(1−θ)q′−1(1−λ0)q′

)−1

Ca,b,θ.

We make out two cases: the first case is when
∥∥w0

∥∥ 1
2
∞ ≤ 2Ca,b,θ (1 + ‖u‖∞). The

second case is when
∥∥w0

∥∥ 1
2
∞ > 2Ca,b,θ (1 + ‖u‖∞). In the latter case, (2.4.20) implies that∥∥w0

∥∥1+ q
2

∞ ≤ 1
2

∥∥w0
∥∥ 1

2
∞

(
1 +

∥∥w0
∥∥ 1+q

2
∞

)
, which implies that

∥∥w0
∥∥
∞ ≤ 1. Therefore, in any

of the two latter cases we obtain∥∥w0
∥∥ 1

2

∞ ≤ 1 + 2Ca,b,θ (1 + ‖u‖∞) .

This and (2.4.13) yield (2.4.7) when t = 0, this concludes the proof.

Now, we can combine the estimates obtained in this section with classical results on
parabolic second-order equations and get further estimates of u and its derivatives and on
m.

Lemma 2.4.6. Assume A1, A2, B2, B3, FP1, FP2 and T. The function u is in
C1+β

2
,2+β

(
[0, T ]× Td

)
for any β ∈

(
0, β2

0

)
, where β0 was introduced in the assumptions.

Its C1+β
2
,2+β-norm can be bounded by a quantity depending only on ‖u‖∞, β, and the

constants in the assumptions.

Proof. Lemma 2.4.5 states that ‖∇xu‖∞ is bounded by a quantity which depends on ‖u‖∞
and the constants in the assumptions. So is Λq0(µ) by (2.3.2). Then u is the solution of
the heat equation with a right-hand side equal to −H (x,∇xu, µ) which is bounded in
L∞. Classical results (see for example Theorem 6.48 in [86]) state that for any β ∈ (0, 1),
the C

1
2

+β
2
,1+β-norm of u is bounded by a constant which depends on the L∞-norm of the

right-hand side, the terminal condition, and β.
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Lemma 2.4.4 yields that m is in C
β
2
,β
(
[0, T ]× Td

)
for β ∈ (0, β0), is positive, and that

both its C
β
2
,β
(
[0, T ]× Td

)
-norm and its lower bound depend on ‖u‖∞,

∥∥m−1
0

∥∥
∞, β, and

the constant of the assumptions.
Therefore, Lemma 2.2.3 yields that

[
(t, x) 7→ αµ(t)(x)

]
∈ C

ββ0
2
,ββ0

(
[0, T ]× Td;Rd

)
.

From A1, H is locally Lipschitz continuous with respect to (x, p). This and T imply
that [(t, x) 7→ H (t,∇xu (t, x) , µ(t))] ∈ C

ββ0
2
,ββ0

(
[0, T ]× Td

)
. Thus u is the solution of the

backward heat equation with a right-hand side in C
ββ0
2
,ββ0 supplemented with terminal

condition in C2+β0 . Classical results (see for instance Theorem 4.9 in [86]) yield that u is in
C1+

ββ0
2
,2+ββ0 , and its C1+

ββ0
2
,2+ββ0-norm depends on ‖g(·,m(T ))‖C2+β0 and the C

ββ0
2
,ββ0-

norm of the right-hand side. We recall that β is any constant in (0, β0). The proof of the
lemma is complete.

Following precisely the dependencies in the above estimates, we obtain that the C1+
ββ0
2
,2+ββ0

norm of u can be estimated from above by a constant which depends on ‖u‖∞,
∥∥m−1

0

∥∥
∞,

β, and the constants in the assumptions.

The conclusions of Lemmas 2.4.1, 2.4.4, 2.4.5 and 2.4.6 are summarized in Lemma
2.2.4.

2.5 Existence and uniqueness results under additional as-
sumptions

2.5.1 Solving the MFGC systems for M <∞

Lemma 2.5.1. Under assumptions A1-A3, B2, B3, FP1, FP2, T and M ∈ (0,∞),
there exists at least one solution to (2.2.4).

Proof. For (u,m) ∈ C0,1
(
[0, T ]× Td;R

)
×C0

(
[0, T ];P

(
Td
))
, we define µM ∈ C0

(
[0, T ];P

(
Td × Rd

))
by

µM (t) =
[
Id, TM

(
−Hp

(
·,∇xu(t, ·), µM (t)

))]
#m(t) in [0, T ],

using Lemma 2.2.3. Then we define uM as the viscosity solution of the following backward
HJB equation with a final condition,

(2.5.1)

{
− ∂tuM (t, x)− ν∆uM (t, x) +H(x,∇xuM (t, x), µM (t)) = 0

uM (T, x) = g(x,m(t)).

We can rewrite the first line of the latter system in the following way,

−∂tuM − ν∆uM +∇xuM ·
∫ 1

0
Hp

(
x, s∇xuM , µM (t)

)
ds = −H

(
x, 0, µM (t)

)
,

where the right-hand side is bounded using Λ∞ (µ(t)) ≤M , B1 and (2.2.2). The maximum
principle for second-order parabolic equation provides that uM is bounded. Here, the proof
of Lemma 2.4.5 can be repeated to prove that ‖∇xu‖∞ is bounded by a constant which
depends on M and the constants in the assumptions. Then with the same argument as in
Lemma 2.4.6, uM is bounded in C

1
2

+β
2
,1+β-norm, for all β ∈ (0, 1).

We define mM as the solution in the sense of distributions of the following Fokker-
Planck-Kolmogorov equation with an initial condition,{

∂tm
M
t (t, x)− ν∆mM (t, x) + div

(
b(t, x)mM

)
= 0 in (0, T )× Td,

mM (0) = m0,
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with b(t, x) = −Hp

(
x,∇xuM (t, x), µM (t)

)
which is a continuous function with respect to

(t, x). Using the same arguments as in Lemma 2.4.4, we get that m ∈ C
β
2
,β
(
Td;R

)
for

β ∈ (0, β0).
Moreover, ‖u‖

C
1
2+

β
2 ,1+β

, ‖m‖
C
β
2 ,β

are bounded by a constant which depends on M ,

β and the constants in the assumptions. The map (u,m) 7→ µM is continuous from
C0,1

(
[0, T ]× Td;R

)
×C0

(
[0, T ];P

(
Td
))

to C0
(
[0, T ];P

(
Td × Rd

))
by Lemma 2.3.1. The

map
(
m,µM

)
7→ uM is continuous from C0

(
[0, T ];P

(
Td
))
× C0

(
[0, T ];P

(
Td × Rd

))
to

C0,1
(
[0, T ]× Td;R

)
by the stability of the solutions of viscosity. The map

(
uM , µM

)
7→

mM is continuous from C0,1
(
[0, T ]× Td;R

)
×C0

(
[0, T ];P

(
Td × Rd

))
to C0

(
[0, T ];P

(
Td
))

by linearity of the FPK equation.
Thus the map (u,m) 7→ (uM ,mM ) is continuous from C0,1

(
[0, T ]× Td;R

)
×C0

(
[0, T ];P

(
Td
))

to itself. Its fixed points are exactly the solutions to (2.2.4). The image of this map is a
subset of a convex compact set. Therefore, there exists a fixed point by Schauder theorem,
see [56] Corollary 11.2.

Using the same arguments as in the proof of Lemma 2.4.6, such a fixed point u satisfies
u ∈ C1+β

2
,2+β

(
[0, T ]× Td;R

)
for any β ∈

(
0, β2

0

)
.

Considering M < ∞ in (2.2.4) consists of enforcing the condition Λ∞ (µ(t)) ≤ M , i.e.
the fact that the support of µ(t) is embedded in the compact set Td × BRd (0,M), for
t ∈ [0, T ]. Therefore, the interactions through controls are uniformly bounded. Lemma
2.5.1 relies on that to state the existence of solutions to (2.2.4). For M = ∞, we can not
obtain such a uniform estimate by combining only the results of Section 2.4. However if
such an estimate exists, the result of Lemma 2.5.1 holds forM =∞ and yields the existence
of solutions to (2.1.2). More precisely, if a solution to (2.2.4) satisfies Λ∞ (µ(t)) < M for
any t ∈ [0, T ], then it is also a solution to (2.1.2). This is summarized in the following
Corollary.

Corollary 2.5.2. Under the same assumptions as in Lemma 2.5.1, if, for any M > 0,
any solution (u,m, µ) to (2.2.4) satisfies ‖u‖∞ ≤ C, or ‖∇xu‖∞ ≤ C, for some C > 0,
then there exists at least one solution to (2.1.2).

Proof. By Lemma 2.5.1, we define (u,m, µ) as a solution to (2.2.4) for M ∈ (0,∞) that
will be defined later. By Lemma 2.2.4, assuming that ‖u‖∞ is bounded is equivalent to
assuming that ‖∇xu‖∞ is bounded. Therefore, without loss of generality, we can assume
that ‖∇xu‖∞ ≤ C. From FP1 and (2.3.4), we obtain

‖Hp (x,∇xu, µ)‖∞ ≤ C0

(
1 + Cq−1

)
+

λ0C0

1− λ0

(
1 + Cq−1

)
.

We define M = 1 + C0

(
1 + Cq−1

)
+ λ0C0

1−λ0

(
1 + Cq−1

)
, then the truncation TM leaves

−Hp

(
·,∇xuM , µ

)
unchanged. Hence (u,m, µ) is a solution to (2.1.2).

2.5.2 Existence results when q0 ≤ q′

When q0 ≤ q′, we can use integral energy estimates. More precisely, inequalities (2.4.1)
and (2.4.5) hold. Therefore, the assumptions under which we can prove existence should
be weaker than in the case q0 > q′ in which we have less estimates at our disposal.

In particular, Corollary 2.4.3 provides a uniform estimate on ‖u‖∞ under suitable
assumptions. Corollary 2.5.2 then yields the existence of a solution to (2.1.2): hence we
may state the following theorem:
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Proposition 2.5.3 (Existence of solution with small non-linearities). Under assumptions

A1-A3, B1-B3, FP1, FP2, T, q0 ≤ q′, and λ1 + C0λ2 <
(1−λ0)q

′

Cq
′

0

, there exists at least

one solution to (2.1.2).

Instead of assuming that the multiplicative parameters are small like in Proposition
2.5.3; we suppose in Propositions 2.5.5 below the exponent for the interactions through
controls is in fact smaller than the one appearing in B1.

Proposition 2.5.4. Assume A1-A3, B2, B3, FP1, FP2, T, q0 ≤ q′, and that H satisfies

|H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)q̃

)
,

for (x, µ) ∈ Td × P
(
Td × Rd

)
, where q̃ ∈ [0, q′) is a constant. There exists a solution to

(2.1.2).

Proof. Let (u,m, µ) be a solution to (2.2.4) for M ∈ (0,∞). From A2, (2.4.4) and the
new assumption, we obtain that,

‖u‖∞ ≤ C0 (1 + T ) + C0

∫ T

0
Λq0 (µ(t))q̃ dt

≤ C0 (1 + T ) + C0T
q′−q̃
q′

(∫ T

0
Λq0 (µ(t))q

′
dt

) q̃
q′

,

where the second line is obtained by a Hölder inequality, since q̃ < q′. Let us recall that
the inequality (a+ b)

q̃
q′ ≤ a

q̃
q′ + b

q̃
q′ holds for any a, b > 0. The latter two inequalities and

(2.3.5) with θ = 1
2 imply,

‖u‖∞ ≤ C + C

(∫ T

0

∫
Td
|∇xu(t, x)|q dm(t, x)dt

) q̃
q′

,

where C > 0 is a constant which depends on the constants in the assumptions. This and
(2.4.5) yield that,

‖u‖∞ ≤ C + C‖u‖
q̃
q′
∞,

up changing the value of C. Let us make out two cases: the first case is when ‖u‖∞ ≤

(2C)
q′
q′−q̃ . The second case is when ‖u‖∞ > (2C)

q′
q′−q̃ , which implies ‖u‖∞ ≤ C + 1

2‖u‖∞.
In any of the two cases, u is uniformly bounded with respect to M . The desired result
then stems from Corollary 2.5.2.

2.5.3 Existence results which do not need the assumption q0 < q′

Here, we do not make the assumption q0 ≤ q′. We can still obtain an existence result
in the same spirit as the one provided in Proposition 2.5.4. In the following proposition,
the exponent for the interactions through controls is assumed to be smaller than the one
appearing in B1 or in Proposition 2.5.4.

Proposition 2.5.5. Assume A1-A3, B2, B3, FP1, FP2, T, and that H satisfies

(2.5.2) |H(x, 0, µ)| ≤ C0

(
1 + Λq0 (µ)q

′−1
)

for any (x, µ) ∈ Td × P
(
Td × Rd

)
. There exists a solution to (2.1.2).
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Proof. Take (u,m, µ) a solution to (2.2.4) for M ∈ (0,∞). Let us combine (2.4.3), (2.3.6)
for θ = 1

2 , (2.4.7), (2.5.2), and the inequality (a+ b)
1
q ≤ a

1
q + b

1
q which holds for a, b > 0;

this yields

(2.5.3) − ∂tu− ν∆u+∇xu ·
∫ 1

0
Hp (x, s∇xu(t, x), µ(t)) ds ≤ C

(
1 + max

t≤s≤T
‖u(s)‖∞

)
,

for a constant C > 0 which depends only on the constants in the assumptions. We
recall that ‖u(T )‖∞ ≤ C0 by A2. We consider y+, y− ∈ C1 ([0, T ];R) defined as y+(t) =
Ct+C0e

Ct and y−(t) = −Ct−C0e
Ct such that they are solution to the following differential

equations {
y′+(t) = C(1 + y+(t))

y+(0) = C0,{
y′−(t) = C(−1 + y−(t))

y−(0) = −C0.

By a comparison argument for second-order parabolic equation we obtain,

−CT − C0e
CT ≤ y−(T − t) ≤ u(t, x) ≤ y+(t) ≤ CT + C0e

CT ,

for (t, x) ∈ [0, T ]× Td. Therefore u is uniformly bounded with respect to M . The desired
result then stems from Corollary 2.5.2.

In Propotitions 2.5.4 and 2.5.5, we changed the exponent appearing in B1. In the
following proposition, we assume a smaller exponent than the one appearing in B2 instead.

Proposition 2.5.6 (Existence with more restrictive assumptions on Hx). Assume A1-A3,
B1, B3, FP1, FP2, T, and the following inequality,

(2.5.4) |Hx(x, p, µ)| ≤ C0

(
1 + |p|+ Λq0 (µ)q

′−1
)
,

for any (x, p, µ) ∈ Td × Rd × P
(
Td × Rd

)
. There exists at least one solution to (2.1.2).

Proof. Take (u,m, µ) a solution to (2.2.4), for M ∈ (0,∞).
First step: we prove the following inequality,

(2.5.5) ‖∇xu(t)‖q∞ ≤ C

(
1 + sup

t≤s≤T
‖u(s)‖∞

)
,

for any t ∈ [0, T ], where C > 0 is a constant depending only on the constants in the
assumptions. We will only prove this inequality for t = 0, however the proof does not use
the additional information available at t = 0 (the initial condition on m for example), so
it can be repeated for any t ∈ [0, T ] and the constant C in (2.5.5) does not depend on t.

We introduce ϕ,wδ, a, b, δ and ε as in the proof of Lemma 2.4.5. Using (2.5.4) instead
of B2, we obtain

−2ϕ∇xuδ ·Hδ
x (x,∇xu, µ) ≤ 2C0ϕ

∥∥∥∇xuδ∥∥∥
∞

(
1 +

∥∥∥∇xuδ∥∥∥
∞

+ Λq0 (µ(t))q
′−1
)
.

From this and (2.3.2), one may notice that the right-hand side of the latter inequality only
involves terms with exponents in

∥∥wδ∥∥∞ or
∥∥w0

∥∥
∞ nor larger than 1

2 (1 + (q − 1)(q′ − 1)) =
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1. This and the same arguments as in the proof of Lemma 2.4.5 between (2.4.18) and
(2.4.19), lead to the following inequality,

∂tw
δ − ν∆wδ +∇xwδ ·Hp

(
x,∇xuδ, µ

)
− 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ

≤ −C−1
0 b‖u‖−1

∞ e−a−be−
q
2
e−a+b

(
wδ
)1+ q

2
+ b‖u‖−1

∞ e−a+b λ1C
q′

0 e
e−a(eb−e−b)

(1− θ)1−q′(1− λ0)q′
∥∥w0

∥∥1+ q
2

∞

+ ε+ Ca,b,θ

(
1 + ‖u‖−1

∞

) (
1 +

∥∥w0
∥∥
∞
)
,

instead of (2.4.19), where the novelty is the exponent on
∥∥w0

∥∥
∞ at the last line which

changed from 1+q
2 to 1. Then following the same steps as in the proof of Lemma 2.4.5 until

the end, we obtain that,
‖∇xu‖q∞ ≤ Ca,b,θ (1 + ‖u‖∞) .

This concludes the first step of the proof.
Second step: obtaining a uniform estimate on u.
Using B1, (2.3.6) with θ = 1

2 and (2.5.5), we obtain that,

|H (x, 0, µ(t))| ≤ C0

(
1 + Λq0 (µ(t))q

′
)

≤ 2C0 +
Cq
′+1

0 2q
′−1

(1− λ)q′
(1 + ‖∇xu(t)‖q∞)

≤ C
(

1 + max
t≤s≤T

‖u(s)‖∞
)
,

where the constant C from the previous step may have been increased. This implies that u
satisfies the same partial differential inequality as in the proof of Proposition 2.5.5, namely
(2.5.3). Therefore the same arguments as in Proposition 2.5.5 apply and we conclude that
there exists a solution to (2.1.2).

Remark 2.5.7. Note that the exponent q′ − 1 actually appears in several applications:
for instance, the price impact model described in paragraph 2.6.2 in the quadratic case
(i.e. q = 2) with ε = 0 (i.e. when the bidding and asking prices are equal), satisfies the
assumptions in both Propositions 2.5.5 and 2.5.6 with an exponent exactly equal to q′ − 1.

2.5.4 Existence and uniqueness results with a short-time horizon as-
sumption

Under a short-time horizon assumption, existence and even uniqueness of solutions are
well-known in the MFG literature. Indeed, when the time horizon is small, one may obtain
strong a priori estimates under non-restrictive assumptions. These estimates combined
with Corollary 2.5.2 yield existence of solution to (2.1.2) as stated in the following propo-
sition.

Proposition 2.5.8 (Existence with short time horizon). Assume A1, A2-B1, B2-FP1,
FP2, and T. There exists T0 > 0 such that, if T ≤ T0 then there exists a solution to
(2.1.2).

Proof. Take (u,m, µ) a solution to (2.2.4) for M ∈ (0,∞). We combine (2.4.3), FP1,
(2.3.6), (2.4.7), and the convex inequality (a+ b)q ≤ 2q−1 (aq + bq), and we obtain

(2.5.6) − ∂tu− ν∆u+∇xu ·
∫ 1

0
Hp (x, s∇xu(t, x), µ(t)) ds ≤ C

(
1 + max

t≤s≤T
‖u(s)‖q∞

)
,
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where C is a positive constant which depends only on the constants in the assumptions.
We recall that ‖u(T )‖∞ ≤ C0 by A2. Let us consider the following differential equation,{

y′(t) = C (1 + yq)

y(0) = C0.

There exists T0 > 0 such that the latter differential equation admits a bounded solution
on [0, T0]. We suppose that T ≤ T0, then (t, x) 7→ y(T − t) is a super-solution to (2.5.6).
Hence by a comparison principle, we get that u ≤ y. The same argument applies in order
to prove that u ≥ −y. Therefore u is uniformly bounded with respect to M , and there
exists a solution to (2.1.2) by Corollary 2.5.2.

We will now prove Theorem 2.2.6 which states that uniqueness is achieved under a short-
time horizon assumption. We believe that this uniqueness result can be easily extended
to more general Hamiltonians, but that the short-time assumption is essential. Indeed,
numerical simulations in [2] show that uniqueness does not hold for the discrete MFGC
system obtained by approximating (2.1.2) with finite differences; we believe that uniqueness
does not hold for (2.1.2) either. Theorem 2.2.6 should be interpreted only as a simple
example of uniqueness result with a short-time horizon assumption.

Proof of Theorem 2.2.6. We suppose that T1 ≤ T0, where T0 was defined in Proposition
2.5.8, so that a solution to (2.1.2) satisfies uniform estimates on ‖u‖∞, ‖ui‖C1,2 and ‖mi‖C0

by Lemma 2.4.6, for i = 1, 2. Take (u1,m1, µ1) and (u2,m2, µ2) two solutions to (2.1.2).
We define u = u1 − u2, m = m1 −m2 and α = αµ

1 − αµ2 .
In this proof C > 0 is a constant which may differ from line to line and depends only

on the constants in the assumptions, ‖ui‖C1,2 and ‖mi‖C0 , for i = 1, 2.
We can repeat the proof of Lemma 2.3.2 replacing

∥∥m1 −m2
∥∥β0
∞ and

∥∥p1 − p2
∥∥β0
∞ re-

spectively with Wq1

(
m1,m2

)
and

∥∥p1 − p2
∥∥β0
∞ everywhere and we obtain that,

(2.5.7) ‖α(t)‖∞ ≤ C
(
‖∇xu(t)‖∞ +Wq1

(
m1(t),m2(t)

))
,

for any t ∈ [0, T ]. Let us consider X1 and X2 two random processes defined by

dX1
t = αµ

1
(t,X1)dt+

√
2νdWt

dX2
t = αµ

2
(t,X2)dt+

√
2νdWt

X1
0 = X2

0 = X0,

whereX0 is a random variable on Td with lawm0 andW is a Brownian motion independent
of X0. The respective laws of

(
X1
t , α

µ1(t,X1
t )
)
and

(
X2
t , α

µ2(t,X2
t )
)
are µ1(t) and µ2(t).

Then we obtain,

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 = E

[∣∣∣∣∫ t

0
αµ

1 (
s,X1

s

)
− αµ2

(
s,X2

s

)
ds

∣∣∣∣q1]
1
q1

≤
∫ t

0
E
[∣∣∣αµ1 (s,X1

s

)
− αµ2

(
s,X2

s

)∣∣∣q1] 1
q1 ds

≤
∫ t

0
E
[∣∣∣αµ1 (s,X1

s

)
− αµ1

(
s,X2

s

)∣∣∣q1] 1
q1 + E

[∣∣∣αµ1 (s,X2
s

)
− αµ2

(
s,X2

s

)∣∣∣q1] 1
q1 ds,

where we used the triangle inequality for the Lq1-norm twice. By the first additional
assumption of the theorem and A1, αµ1 is Lipschitz continuous with respect to x and its
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Lipschitz constant depends on
∥∥ui∥∥

C0,1 and Λ∞
(
µ1
)
. Using the estimates from the proof

of Proposition 2.5.8, it only depends on the constants in the assumptions. This, the latter
inequality and (2.5.7) imply

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 ≤ C

∫ t

0
E
[∣∣X1

s −X2
s

∣∣q1] 1
q1 ds+CT sup

0≤t′≤T

(∥∥∇xu(t′)
∥∥
∞ +Wq1

(
m1(t′),m2(t′)

))
.

This and Gronwall’s inequality yield that,

sup
0≤t≤T

E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 ≤ CT sup

0≤t≤T

(
‖∇xu(t)‖∞ +Wq1

(
m1(t),m2(t)

))
.

From now on, we assume that T ≤ 1
2C , so that (1− CT ) ≥ 1

2 . Since Wq1(m1(t),m2(t)) ≤
E
[∣∣X1

t −X2
t

∣∣q1] 1
q1 , we obtain:

(2.5.8) sup
0≤t≤T

Wq1

(
m1(t),m2(t)

)
≤ CT sup

0≤t≤T
‖∇xu(t)‖∞.

Hence u satisfies the following equation,{
− ∂tu− ν∆u = −H

(
x,∇xu1, µ1

)
+H

(
x,∇xu2, µ2

)
,

u(T, x) = g(x,m1(T ))− g(x,m2(T )).

The right-hand side of the first line can be estimated in absolute value from above as
follows: ∣∣H (x,∇xu1, µ1

)
−H

(
x,∇xu2, µ2

)∣∣ ≤ C sup
0≤t′≤T

∥∥∇xu(t′)
∥∥
∞,

by T, (2.5.7) and (2.5.8). Since u(T, ·) ∈ C1+β
(
Td
)
, Theorem 6.48 in [86] yields that

u ∈ C
1
2

+β
2
,1+β

(
[0, T ]× Td

)
and it satisfies:

sup
t∈[0,T ]

‖∇xu(t)‖∞ ≤
∥∥∇x (g(·,m1(T ))− g(·,m2(T ))

)∥∥
∞

+ CT
β
2 sup
t∈[0,T ]

(
‖∇xu(t)‖∞ +

∥∥g(·,m1(T ))− g(·,m2(T ))
∥∥
C1+β

)
.

This, (2.2.5) and (2.5.8) yield,

sup
t∈[0,T ]

‖∇xu(t)‖∞ ≤ CT
β
2 sup
t∈[0,T ]

‖∇xu(t)‖∞.

Thus if we suppose furthermore that T < C
− 2
β , then ∇xu = 0, so m = 0 by (2.5.8), then

µ1 = µ2 by (2.5.7), and finally u1 and u2 solve the same Hamilton-Jacobi-Bellman equation
with the same terminal condition, so by uniqueness u = 0.

Therefore, we proved the uniqueness for T < T1 where T1 is defined by T1 = minT0,
(
C
− 2
β , C−1

)
.

2.6 Applications

Here, we are going to work on Td, while it would be more realistic to work in the whole
space Rd for the applications considered below. We would like to recall that the existence
results contained in the present work hold for MFGC systems on Rd using the method
introduced in [76] to pass from the torus to the whole Euclidean space. Therefore, the
conclusions of this section may be adapted to treat the same applications on Rd.
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2.6.1 Exhaustible ressource model with nonpositively correlated ressources

This model is often referred to as Bertrand and Cournot competition model for exhaustible
ressources, introduced in the independent works of Cournot [50] and Bertrand [23]; its mean
field game version in dimension one was introduced in [65] and numerically analyzed in
[47]; for theoretical results see [25, 62, 73, 63]. We consider a continuum of producers
selling exhaustible ressources. The production of a representative agent is (qt)t∈[0,T ]; the
agents differ in their production capacities Xt ∈ T (the state variable), that satifies,

dXt = −qtdt+
√

2νdWt,

where ν > 0 and W is a Brownian motion. Each producer is selling a different ressource
and has her own consumers. However, the ressources are substitutable and any consumer
may change her mind and buy from a competitor depending on the degree of competition
in the game (which is characterized by ε in the linear demand case below for instance).
Therefore, the selling price per unit of ressource that a producer can make when she sales
q units of ressource, depends naturally on q and on the quantity produced by the other
agents. The price satisfies a supply-demand relationship, and is given by P (q, q), where q
is the aggregate demand which depends on the overall distribution of productions of the
agents. A producer tries to maximize her profit, or equivalently to minimize the following
quantity,

E
[∫ T

0
−P (qt, qt) · qtdt+ g (XT )

]
,

where g is a terminal cost which often penalizes the producers who have non-zero produc-
tion capacities at the end of the game. In the Cournot competition, see [50], a producer is
controling her production q. Like the MFG version of the Bertrand and Cournot compe-
tition introduced in [47], here we consider the Bertrand formulation [23], where an agent
directly controls her selling price α = P (q, q). After inverting the latter equality, the pro-
duction can be viewed as a function of the price and the mean field. Mathematically this
corresponds to writing q = Q (α, α).

In [47], the authors considered a linear demand system depending on qlin =
∫
T q(x)dm(x),

and a price satisfying α = Plin(q, qlin) = 1 − q − εqlin. In this case, the running cost Llin

and its Legendre transform H lin are defined by

Llin (α, µ) = α2 +
ε

1 + ε
αα− 1

1 + ε
α,

H lin (p, µ) =
1

4

(
p+

ε

1 + ε
α− 1

1 + ε

)2

,

where α, p ∈ R, µ ∈ P (T× R) and α is defined by α =
∫
T×R α̃dµ(y, α̃). Therefore the

system of MFGC has the following form,

(2.6.1)



− ∂tu− ν∆u+
1

4

(
∇xu+

ε

1 + ε
α− 1

1 + ε

)2

= 0,

∂tm− ν∆m− div

(
1

2

(
∇xu+

ε

1 + ε
α− 1

1 + ε

)
m

)
= 0,

α(t) = −
∫
T

1

2

(
∇xu+

ε

1 + ε
α(t)− 1

1 + ε

)
dm(t, x),

u(T, x) = g(x),

m(0, x) = m0(x),
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for (t, x) ∈ [0, T ] × T. Roughly speaking, ε = 0 corresponds to a monopoly in which
a producer does not suffer from competition, and she plays as if she was alone in the
game. Conversely, ε = ∞ stands for all the producers selling the same ressource and the
consumers not having any preference.

Here, Theorem 2.2.5 d) implies the following existence result.

Proposition 2.6.1. If m0 and g satisfy A2 and A3, there exists a solution to (2.6.1) for
any ε ∈ (0,∞).

To prove it, we may take q = 2, q0 = 1, λ0 = ε
2(1+ε) , λ1 = 1, and C0 = 1

2 in FP1; then
we check the assumptions of Theorem 2.2.5 d). In this case, the inequality in B3 has the

form 1 <
(

2+ε
1+ε

)2
, and is satisfied for any ε ∈ (0,∞).

Here, the Lagrangian Llin satisfies a monotonicity assumption, but the latter existence
result does not take advantage of it. We refer to [76] for a uniqueness result and an other
existence result for the solution to (2.6.1) using this monotonicity assumption. General-
izations of (2.6.1) to larger dimensions with more general Hamiltonians and prices are also
discussed in [76] under the monotonicty assumption.

In what follows, we provide a simple example of a generalization of (2.6.1) in which the
monotonicity assumption does not hold and the results in [76] do not apply anymore. How-
ever, the results in the present work may hold in some cases even without the monotonicity
assumption.

Let us consider a model in which every producer sells d different kinds of ressources.
The price of each ressource depends on the mean field like in (2.6.1). Namely, we take
Q = Mα−α which is now a d-dimensional vector and where M ∈ Rd×d is a given matrix.
This leads to the following MFGC system,

(2.6.2)



− ∂tu− ν∆u+
1

4
(∇xu+Mα)2 = f(x,m),

∂tm− ν∆m− div

(
1

2
(∇xu+Mα)m

)
= 0,

α(t) = −
(
Id +

1

2
M

)−1 ∫
Rd
∇xu(t, x)dm(t, x),

u(T, x) = g(x),

m(0, x) = m0(x),

Proposition 2.6.2. Assume A2, A3, that M has an operator norm smaller than 1, and
that f is continuous, and differentiable with respect to x with continuous derivatives. There
exists a solution to (2.6.3).

The proof consists in taking q = 2, q0 = 1, λ1 = 1, C0 = 1
2 in FP1, and λ0 =

‖M‖
2 ,

where ‖M‖ is the operator norm of M ; and we check the assumptions of Theorem 2.2.5
d).

The monotonicity assumption discussed in [76] is equivalent to assuming that M is a
positive semi-definite matrix. Here, we do not make such an assumpion.

What we have in mind in the latter example is the case where the prices of the different
ressources may be negatively correlated, like cars and oil (if the production of cars increases,
then the demand for oil also increases and the price of oil rises while the price of cars
decreases), or pesticides and medicines, or gold and other raw materiels. To our knowledge,
such a generalization of the exhaustible ressource model to negatively correlated ressources
is new in the MFG literature.

45



2.6. Applications

More generally, we believe that our results hold for the following MFGC system under
various different sets of assumptions that we will not detailed here,

(2.6.3)



− ∂tu− ν∆u+H (x,∇xu+Q(t, x, µ)) = f(t, x,m(t)),

∂tm− ν∆m− div (Hp (x,∇xu+Q(t, x, µ))m) = 0,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·) +Q(t, ·, µ(t))) #m(t)

u(T, x) = g(x,m(T )),

m(0, x) = m0(x),

where Q : [0, T ] × Td × P
(
Td × Rd

)
→ Rd is a vector characterizing the mean field inter-

actions.

2.6.2 Price impact models with bid and ask prices

The price impact model without bid and ask prices is inspired by the Almgren and Chriss’s
model [13], and was introduced in the MFG literature in [38] and [43] where existence and
uniqueness results are proved when the admissible controls stay in a compact set. Here we
consider an extension with bid and ask prices.

We suppose that a continuum of agents are trading an asset, the state of a representative
agent is Xt the amount of this asset she owns. Her control α is the quantity she buys (if
α ≥ 0) or sell (if α < 0). The state space is the one-dimensional torus T, and Xt is given
by,

dXt = αtdt+ σdWt,

where W is a Brownian motion, and σ > 0 is a real constant. We define St as the asking
price of the asset, and ε (µ(t)) as the difference between the bidding and asking prices,
where µ(t) is the law of (Xt, αt). The agent buys at the bidding price St + ε (µt), thus her
cash is given by

dKt = − (αtSt + αtε (µ(t)) + `(αt)) dt,

where ` is a differentiable function standing for the transaction cost. The price St evolves
accordingly with the amount of transactions at time t, it satisfies the following SDE,

dSt = A (µ(t)) dt,

where A (µ(t)) =

∫
T×R

`′(α)dµ(t, x, α),

The wealth of a representative agent is given by Vt = V0 + XtSt + Kt and it satisfies the
following SDE,

(2.6.4) dVt = (XtA (µ(t))− ` (αt)− ε (µ(t))αt) dt+ σStdWt.

The objective function that she will try to maximize is given by,

E
[
VT −

∫ T

0
f(Xt)dt− g(XT )

]
,

where f and g are penalization costs for holding stocks. Here, the Lagrangian and Hamil-
tonian are given by,

LPI (x, α, µ) = `(α) + αε (µ)− xA (µ) ,

HPI (x, p, µ) = h (p+ ε (µ)) + xA (µ) ,
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for (x, α, µ) ∈ T× R× P (T× R), where h is the Legendre transform of `.
The linear-quadratic case with ε = 0 is treated in [41]. Here, taking ε = 0 corresponds

to assuming that the bidding and asking prices coincide. In this case the optimal control
is given by −hp(p) and does not depend explicitely on µ. If ε 6= 0, the optimal control
depends explicitely on µ and LPI is not separable in α and µ, this prevents us from using
the results in [41].

Let us give an example of choices for the functions ` and ε under which our result apply
and a solution of the MFGC price impact model exists.

Proposition 2.6.3. Assume A2, A3, that f is C1, and that c and ε are respectively given

by `(α) = |α|2
2 and ε (µ) = ε̃

(∫
T×R |α|

2dµ (x, α)
) 1

2 , where 0 < ε̃ < 1
2 . There exists a

solution to (2.1.2) with HPI.

This existence result is a consequence of 2.2.5 c), where the assumptions are satisfied
for q = q0 = 2, λ0 = ε, λ1 = 1

4 and C0 = 1 in FP1. We would like to insist on the fact
that Theorem 2.2.5 c) provides the existence of solutions for a wild class of Hamiltonian,
larger than the one of the latter proposition and which goes beyond the linear-quadratic
case.

Let us mention that we would be interested in defining the bidding price by (1 + ε̃)St,
where ε̃ > 0. The associated MFGC system cannot be using the conclusions of the present
work because the mean field interaction at time t would depend not only on µt but on
(µs)s∈[0,t]. However, we believe that existence holds under similar assumptions as here,
and we plan to prove it in forthcoming works.

2.6.3 First-order flocking model with velocity as controls

Cucker and Smale proposed a form of Vicseck model in [52] to illustrate the behavior of
flocks of birds. This model is of second-order in the sense that the state of an agent is given
by a couple (x, v) standing for her position and velocity respectively, and the equation of
evolution of her state involves considering her acceleration.

A game version of this model in which an agent controls her acceleration has been
introduced in [91], the authors derived a MFG formulation in the infinite horizon case.
Here we are interested in the finite horizon problem which was studied in [43, 41]. This
model is still of second-order. More precisely the state of an agent is given by (Xt, Vt)t∈[0,T ]

respectively her position and velocity, two random processes which satisfy the following
system of stochastic differential equations,

dXt = Vtdt,

dVt = atdt+ σdWt,

where at is the individual’s acceleration vector and her control, W is a d-dimensional
Brownian motion, and σ ∈ Rd×d is a positive definite matrix. The cost that a representative
agent tries to minimize is given by

E

[∫ T

0

|at|2

2
+

1

2

∣∣∣∣∫
Td

(
v − V i

t

)
ϕ
(∣∣x−Xi

t

∣∣) dµ(t, x, v)

∣∣∣∣2 + f(Xt)dt

]
,

where µ(t) ∈ P
(
Td × Rd

)
is the joint distribution of states and velocities of the agents, ϕ is

a C1 nonincreasing function, and f is a C1 function modeling the spatial preferences of the
agents (for instance, we can take f significantly smaller in some areas which corresponds
to where the food is).
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Here we consider an alternative viewpoint in which an agent directly controls her ve-
locity. This is a first-order model since the state of an agent is now given by a vector of
Td, and the acceleration does not appear anymore in the dynamics of a given agent, which
is given by

dXt = αtdt+ σdWt.

Here, the cost that an agent tries to minimize is given by

E

[∫ T

0

|αt|2

2
+

1

2

∣∣∣∣∫
Td×Rd

(α̃− αt)ϕ
(∣∣x−Xi

t

∣∣) dµ(t, x, α̃)

∣∣∣∣2 + f (Xt) dt

]
.

First-order physical models are generally easier to study than second-order models. How-
ever the price we paid here to go from a second-order model to a first-order model is
to consider a MFGC system instead of a MFG system without interaction through the
controls.

If µ ∈ P
(
Td × Rd

)
and m ∈ P

(
Td
)
are such that m is the marginal of µ with respect

to Td, we define A(x, µ) and Z(x, µ) by,
A(x, µ) =

∫
Td×Rd

α̃ϕ (|x− y|) dµ(y, α̃),

Z(x, µ) =

∫
Td
ϕ (|x− y|) dm(y),

for x ∈ Td. We define the Lagrangian of the first-order flocking model by,

LFM (x, α, µ) =
|α|2

2
+

1

2
|Z(x, µ)α−A(x, µ)|2 + f(x),

for (x, α, µ) ∈ Td × Rd × P
(
Td × Rd

)
, and the Hamiltonian by,

HFM(x, p, µ) =
1

2 (1 + Z(x, µ)2)

(
|p|2 − 2Z(x, µ)A(x, µ) · p− |A(x, µ)|2

)
− f(x),

for p ∈ Rd, such that HFM is the Legendre’s transform of LFM.

Proposition 2.6.4. Under assumptions A2 and A3, there exists T0 > 0 such that if
T < T0, there exists a unique solution to (2.1.2) with HFM.

Hereafter, we present an other model for crowd motion which is very similar to the
first-order flocking model discussed above. The main difference between these two models
is the normalization constants. However, the assumptions and conclusions of this work
are more adapted to the following crowd motion model and we can derive more existence
results for it. We believe that these results can be adapted to the first-order Cucker-Smale
system.

2.6.4 A model of crowd motion

This model of crowd motion has been numerically studied in [2] in the quadratic case,
and has some similarities with the first-order flocking model presented in the previous
paragraph. For (x, µ) ∈ Td × P

(
Td × Rd

)
, we define V (x, µ) and Zq0(x, µ) by

V (x, µ) =
1

Zq0(x, µ)

∫
Td×Rd

α̃k(x, y)dµ(y, α̃),

Zq0(x, µ) =

(∫
Td
k(x, y)q

′
0dm(y)

) 1
q′0
,
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where q0 ∈ (1,∞], q′0 is the conjugate exponent of q0, k : Td × Td → R+ is a nonnegative
C1 kernel, and m ∈ P

(
Td
)
is the marginal of µ with respect to Td. The quantity V (x, µ)

is called the average drift.
The state of a representative agent is given by her position Xt ∈ Td and she controls

her velocity αt,
dXt = αtdt+

√
2νdWt.

Her objective is to minimize the cost given by,

E
[∫ T

0

θ

a′

∣∣∣αt − λ̃V (Xt, µ(t))
∣∣∣a′ + 1− θ

b′
|αt|b

′
+ f(Xt)dt+ g(XT )

]
,

where −1 < λ̃ < 1 and 0 ≤ θ ≤ 1 are two constants standing for the preference of an
individual to have a similar (resp. opposite) control as the mainstream when λ̃ > 0 (resp.
λ̃ < 0), f and g are respectively the running cost and the terminal cost which encode the
spatial preferences of the agents, and a′, b′ > 1 are exponents.

Here, we take q = min(a, b). In this model we define the Lagrangian by,

(2.6.5) L (x, α, µ) =
θ

a′

∣∣∣α− λ̃V (x, µ)
∣∣∣a′ + 1− θ

b′
|α|b

′
,

and the Hamiltonian as its Legendre transform. If a = b = 2, H is given by

H(x, p, µ) =
|p|2

2
− λ̃θp · V (x, µ)− λ̃2θ(1− θ)

2
|V (x, µ)|2.

If θ = 1, H satisfies

H(x, p, µ) =
1

a
|p|a − λ̃p · V (x, µ).

For other choices of the parameters a,b and θ, H does not admit an explicit form.

Proposition 2.6.5. Assume that g and m0 satisfy A2 and A3 respectively. There exists
a solution to (2.1.2) where H is the Legendre transform of L given in (2.6.5), under one
of the following assertions,

a) q0 ≤ q′ and a 6= b,

b) q0 ≤ q′ and one of the following assertions is satisfied,

i) θ < θ0,

ii) θ > 1− θ0,

iii)
∣∣∣λ̃∣∣∣ < λ0,

where θ0, λ0 ∈ (0, 1) are constants coming from Theorem 2.2.5 c),

c) θ = 1,

d) k(x, y) is constant,

e) T < T0, where T0 is a positive constant coming from Theorem 2.2.5 e).
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Proof. We refer to the appendix, Lemma 2.6.7 for the proof that H satisfies A1-A3, B1-
B3, FP1-FP2, and T. The existence results c), d) and e) are direct consequences of
Theorem 2.2.5 c), d) and e) respectively.

We define L̃(α, V ) by

L̃(α, V ) =
θ

a′

∣∣∣α− λ̃V ∣∣∣a′ + 1− θ
b′
|α|b

′
,

for α, V ∈ Rd, H̃(p, V ) as the Legendre transform of L̃ with respect to its first argument,
and α(p, V ) as the unique control which achieves the maximum in the definition of H̃ (it
is unique because L̃ is strictly convex with respect to α).

Proof of a). Take V ∈ Rd and α = α(0, V ), since α achieves the maximum in the
definition of H̃(0, V ), we know that

0 = θ
∣∣∣α− λ̃V ∣∣∣a′−2

(α− λ̃V ) + (1− θ) |α|b
′−2 α,

which implies

(2.6.6) θ
∣∣∣α− λ̃V ∣∣∣a′−1

= (1− θ) |α|b
′−1 ,

and then
(2.6.7)(

θa−1(1− θ)2−a|α|
(a′−2)(b′−1)

a′−1 + (1− θ)|α|b′−2

)
α = λ̃θa−1(1− θ)2−a|α|

(a′−2)(b′−1)

a′−1 V.

The two latter equalities yield lim
V→+∞

|α(0, V )| = +∞. We make out two cases:

• if a > b then we have (a′−2)(b′−1)
a′−1 < b′ − 2, and |α| = o

+∞
(|V |). Therefore, (2.6.7)

yields

|α|b
′−1− (a′−2)(b′−1)

a′−1 = O
+∞

(|V |),

and b′ − 1− (a′−2)(b′−1)
a′−1 = a−1

b−1 > 1, so we obtain

|α| = O
+∞

(
|V |

b−1
a−1

)
,

which yields
H̃(0, V ) = O

+∞

(
|V |a′

)
+ O

+∞

(
|V |

b−1
a−1

b′
)
,

with a′ < b′, and b−1
a−1b

′ < b′, and b = q.

• if a < b then we have (a′−2)(b′−1)
a′−1 > b′− 2, and α = λ̃V + o

+∞
(|V |). Therefore, (2.6.7)

yields (
1 + O

+∞

(
|V |b

′−2− (a′−2)(b′−1)

a′−1

))
α = λ̃V.

We notice that b′ − 2− (a′−2)(b′−1)
a′−1 = b′−a′

a′−1 < 0, and we obtain

α = λ̃V + O
+∞

(
|V |1+ b′−a′

a′−1

)
= λ̃V + O

+∞

(
|V |

a−1
b−1

)
.

This implies

H̃(0, V ) = O
+∞

(
|V |

b′−1
a′−1

a′
)
,+ O

+∞

(
|V |b′

)
,

with b′ < a′, and a−1
b−1a

′ < a′, and a = q.
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We conclude by (2.6.8) and Theorem 2.2.5 a).
Proof of b)
Here, we assume that a = b since the case a 6= b is addressed in a).
Take V ∈ Rd, and α = α(0, V ). In this case, H̃(0, V ) admits an explicit form given by

H̃(0, V ) = −

∣∣∣λ̃∣∣∣a′
a′

θ(1− θ)a + (1− θ)θa

((1− θ)a−1 + θa−1)a
′ |V |a

′
.

Therefore, taking λ̃, θ or (1 − θ) small enough allows one to conclude by (2.6.8) and
Theorem 2.2.5 b).

Appendix: verification of the assumptions for the model of
crowd motion

We start by establishing some properties of the function V in the following lemma.

Lemma 2.6.6. The function V is C1 with respect to x and it satisfies

(2.6.8) ‖V (·, µ)‖∞ ≤ Λq0 (µ) ,

where µ ∈ P
(
Td × Rd

)
.

For m ∈ P
(
Td
)
and µ1, µ2 ∈ Pm

(
Td × Rd

)
, the following inequality is satisfied,

(2.6.9)
∥∥V (·, µ1

)
− V

(
·, µ2

)∥∥
∞ ≤

∥∥∥αµ1 − αµ2∥∥∥
Lq0 (m)

.

For R > 0, there exists CR > 0 a constant such that,

(2.6.10)
∥∥V (·, µ1

)
− V

(
·, µ2

)∥∥
∞ ≤ CR

(∥∥∥αµ1 − αµ2∥∥∥
∞

+
∥∥m1 −m2

∥∥
∞

)
,

for
(
mi, µi

)
such that mi ∈ P

(
Td
)
∩ C0

(
Td
)
with mi ≥ R−1, µi ∈ P

(
Td × Rd

)
with

αµ
i ∈ C0

(
Td × Rd

)
and

∥∥∥αµi∥∥∥
∞
≤ R, i = 1, 2.

Proof. The function V has at least the same regularity as k with respect to the state
variable since V is the convolution product of k with a probability measure. Then (2.6.8)
and (2.6.9) are straightforward using Hölder inequality. Let us take the same notation as
in (2.6.10), for x ∈ Td we get

∣∣V (x, µ1
)
− V

(
x, µ2

)∣∣ ≤ 1

Zq0 (x, µ1)

∫
Td
k(x, y)

∣∣∣αµ1(y)− αµ2(y)
∣∣∣ dm1(y)

+
1

Zq0 (x, µ1)

∫
Td
k(x, y)

∣∣∣αµ2(y)
∣∣∣ ∣∣m1(y)−m2(y)

∣∣ dy
+

∣∣∣∣ 1

Zq0 (x, µ1)
− 1

Zq0 (x, µ2)

∣∣∣∣ ∫
Td
k(x, y)

∣∣∣αµ2(y)
∣∣∣ dm2(y)

≤
∥∥∥αµ1 − αµ2∥∥∥

∞
+

1

Zq0 (x, µ1)

∫
Td
k(x, y)dy

∥∥∥αµ2∥∥∥
∞

∥∥m1 −m2
∥∥
∞

+
1

Zq0 (x, µ1)

∥∥∥αµ2∥∥∥
Lq0 (m2)

∣∣Zq0 (x, µ1
)
− Zq0

(
x, µ2

)∣∣ .
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Moreover, we know that Zq0
(
x, µ1

)
≥ R

− 1
q′0

(∫
Td k(0, y)q

′
0dy
) 1
q′0 > 0 where the right-hand

side does not depend on x, and

∣∣Zq0 (x, µ1
)
− Zq0

(
x, µ2

)∣∣ ≤ max
i=1,2

(
1

q′0

(
Zq0

(
x, µi

)q′0) 1
q′0
−1
) ∣∣∣Zq0 (x, µ1

)q′0 − Zq0 (x, µ2
)q′0∣∣∣

≤ 1

q′0

(
min
i=1,2

Zq0
(
x, µi

))1−q′0 ∫
Td
k(0, y)q

′
0dy
∥∥m1 −m2

∥∥
∞

≤ 1

q′0
R

1
q0

(∫
Td
k(0, y)q

′
0dy

) 1
q′0 ∥∥m1 −m2

∥∥
∞.

The latter two chains of inequalities imply (2.6.10) with CR = 1 +R
1+ 1

q′0 + 1
q′0
R2.

Here, we assume θ ∈ (0, 1). Indeed, H admits an explicit form when θ = 0 or θ = 1,
then checking A1-A3, B1-B3, FP1-FP2, and T is straightforward.

Lemma 2.6.7. Assumptions A1, B1-B3, FP1, FP2, and T are satisfied when L is
defined in (2.6.5).

Proof. We define L̃, H̃ and α as in the proof of 2.6.5.
Checking A1, B1 and B2.
The Legendre transform of a function is convex, therefore H is convex with respect to

p. Since L is strictly convex, H is differentiable with respect to p. Moreover, α = −Hp

thus Hp is continuous by the Maximum theorem. Then H(x, p, µ) = p · Hp (x, p, µ) −
L (x,−Hp (x, p, µ) , µ), so H is continuous. Finally, H is differentiable with respect to x by
the envelop theorem and

(2.6.11) Hx (x, p, µ) = −Lx (x,−Hp (x, p, µ) , µ) ,

for (x, p, µ) ∈ Td × Rd × P
(
Td × Rd

)
.

Using the growth properties of L, we can prove that there exists C0 > 0 such that

|Hp (t, x, p, µ)| ≤ C0

(
1 + |p|q−1 + Λq′ (µ)

)
,(2.6.12)

|H (t, x, p, µ)| ≤ C0

(
1 + |p|q + Λq′ (µ)q

′
)
,(2.6.13)

|Hx (t, x, p, µ)| ≤ C0

(
1 + |p|q + Λq′ (µ)q

′
)
,(2.6.14)

for any (x, p, µ) ∈ Td×Rd×P
(
Rd × Rd

)
. We refer to [76] Lemma 2.5 for a complete proof.

One may prove that the function h : z ∈ Rd 7→ |z|a′ ∈ R satisfies h(z)− h(y)−∇h(y) ·
(y − x) ≥ C−1

R |y − z|max(a′,2) for y, z ∈ Rd such that |y| ≤ R, |z| ≤ R, where CR > 0 is a
constant. This implies that for R > 0 there exists CR > 0 a constant such that L satisfies

L
(
x, α2, µ

)
− L

(
x, α1, µ

)
−
(
α2 − α1

)
· Lα

(
x, α1, µ

)
≥ C−1

R

∣∣α2 − α1
∣∣max(q′,2)

,

for
(
α1, α2, µ

)
∈ Rd × Rd × P∞

(
Td × Rd

)
, such that

∣∣αi∣∣ ≤ R and Λq0 (µ) ≤ R. This
implies (

α2 − α1
)
·
(
Lα
(
x, α2, µ

)
− Lα

(
x, α1, µ

))
≥ 2C−1

R

∣∣α2 − α1
∣∣max(q′,2)

.

Take pi ∈ Rd and αi = −Hp

(
x, pi, µ

)
, i = 1, 2. Recalling the conjugacy relation pi =

−Lα
(
x, αi, µ

)
we obtain that Hp is locally Hölder continuous with respect to p.
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Checking B3.
Take (p, V ) ∈ R2d and α = α(p, V ), the optimal control α satisfies

(2.6.15) p = −DαL̃(α, V ) = −θ|α− λ̃V |a′−2(α− λ̃V )− (1− θ)|α|b′−2α,

If (p, V ) 6= (0, 0), this implies

(2.6.16) α =
−p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2
,

and

(2.6.17) α− λ̃V =
−p+ λ̃(1− θ)|α|b′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2
.

From (2.6.15), we deduce that

θ|α− λ̃V |a′−1 ≥ 1

2
|p|, or (1− θ)|α|b′−1 ≥ 1

2
|p|.

We recall that α = −Hp(p, V ), hence

H̃p(p, V ) · p− H̃(p, V ) = L̃(α, V )

=
θ

a′
|α− λ̃V |a′ + 1− θ

b′
|α|b′ ,

≥ min

(
|p|a

2aa′θa−1
,

|p|b

2bb′(1− θ)b−1

)
,

which implies B3.
Proof that α is differentiable with respect to V at (0, 0).
Take V ∈ Rd that will eventually tend to 0 and α = α(0, V ). From (2.6.15) we obtain

0 = θ
∣∣∣α− λ̃V ∣∣∣a′−2

(α− λ̃V ) + (1− θ) |α|b
′−2 α,

Let us recall inequalities (2.6.6) and (2.6.7).

• if a > b then (a′−2)(b′−1)
a′−1 < b′−2, and we obtain the following expansion as |V | tends

to 0,
α = λ̃V + o(|V |).

• if a = b we obtain,

(2.6.18) α = λ̃
θa−1

θa−1 + (1− θ)a−1V.

• if a < b then (a′−2)(b′−1)
a′−1 > b′ − 2, and we obtain the following estimate as |V | tends

to 0,
α = o(|V |).

Therefore the derivatives of α with respect to V in any of the above three cases are:

(2.6.19) DVα(0, 0) =


λ̃Id if b < a

λ̃
θa−1

θa−1 + (1− θ)a−1 Id if b = a

0 if b > a.
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Proof that the operator norm of DVα =
(
∂V jα

i
)

1≤i,j≤d ∈ Rd×d is not larger than λ.

Here, the norm of a square matrix A ∈ Rd×d is defined by ‖A‖ = supX 6=0
|AX|
|X| . Let us

introduce

v1 = 1
α−λ̃V 6=0

α− λ̃V∣∣∣α− λ̃V ∣∣∣ , B = Id + (a′ − 2)v1v
T
1 ,

v2 = 1α 6=0
α

|α|
, C = Id + (b′ − 2)v2v

T
2 .

We recall that if vi 6= 0, then vivTi is the orthogonal projection onto Rvi for i = 1, 2.
If α = λ̃V = 0 then (p, V ) = (0, 0), we see on (2.6.19) that DVα is a positive semi-

definite matrix with eigenvalues in [−λ, λ]. Therefore, we can now assume that (α, V ) 6=
(0, 0).

Let us assume temporarily that a′ 6= 2, b′ 6= 2,α−λ̃V 6= 0,α 6= 0. Then we differentiate
the i-th component of (2.6.15) with respect to V j ,

0 = θ
∣∣∣α− λ̃V ∣∣∣a′−2 (

∂V jα
i − λ̃δi,j

)
+ θ(a′ − 2)

∣∣∣α− λ̃V ∣∣∣a′−4
d∑

k=1

(
∂V jα

k − λ̃δk,j
)(

αi − λ̃V i
)(

αk − λ̃V k
)

+ (1− θ)|α|b′−2∂V jα
i + (1− θ)(b′ − 2)|α|b′−4

d∑
k=1

∂V jα
kαiαk.

This implies

0 = θ
∣∣∣α− λ̃V ∣∣∣a′−2

B
(
DVα− λ̃Id

)
+ (1− θ)|α|b′−2CDVα,

and thus

(2.6.20) DVα = λ̃

Id +
(1− θ)|α|b′−2

θ
∣∣∣α− λ̃V ∣∣∣a′−2

B−1C


−1

.

We can check that this last equation holds in the general case for any (α, V ) 6= (0, 0), a′, b′.

• If (a′ − 2)v1 = 0 (i.e. B = Id) or (b′ − 2)v2 = 0 (i.e. C = Id), then (2.6.20) yields
that DVα is a positive definite matrix with eigenvalues in (−λ, λ).

• If (a′ − 2)v1 6= 0 , (b′ − 2)v2 6= 0 and v1, v2 are aligned, Then B and C commute
and B−1C is a positive definite matrix. Then (2.6.20) yields that DVα is a positive
definite matrix with eigenvalues in (−λ, λ).

• The last case consists of assuming that (a′ − 2)v1 6= 0 , (b′ − 2)v2 6= 0, and v1, v2

are linearly independent. We define k by k = (1−θ)|α|b′−2

θ|α−λ̃V |a
′−2 > 0. The two orthogonal

subspaces Span(v1, v2) and {v1, v2}⊥ are stable by DVα, B, C. The restriction of
DVα to {v1, v2}⊥ is positive definite with eigenvalues in (−λ, λ).

Let us denote by Ã, B̃, C̃ ∈ M2×2(R) respectively the restriction of DVα, B and C
to Span(v1, v2). We notice that

B̃−1 = Id +
(
(a′ − 1)−1 − 1

)
v1v
⊥
1 ,

54



Chapter 2. On Classical Solutions to the Mean Field Game System of Controls

thus the eigenvalues of B̃−1 are 1 and (a′−1)−1 ≤ 1 since a′ ≥ 2. The eigenvalues of C̃
are 1 and (b′−1) ≥ 1. Lemma 2.6.8 below yields thatM = (Id+kB̃−1C̃)(Id+kC̃B̃−1)
is a positive definite matrix with eigenvalues not smaller than 1. This implies

‖ÃX‖2 = λ2
〈
M−1X,X

〉
≤ λ2‖X‖2.

This concludes the proof that the norm of DVα is not larger than λ.

Proof of FP2.
Take (p, V 1, V 2) ∈ R3d and αi = −H̃p

(
p, V i

)
, i = 1, 2, then∣∣∣H̃p (p, V1)− H̃p (p, V2)

∣∣∣ ≤ sup
s∈[0,1]

{‖DVα(p, sV1 + (1− s)V2)‖}
∣∣V 1 − V 2

∣∣
≤ λ

∣∣V 1 − V 2
∣∣ .

Combining the latter inequality and (2.6.9), we conclude that FP2 is satisfied.
Proof of FP1.
Let (p, V ) ∈ R2d, we take α = −Hp (p, V ).

• We suppose b′ ≥ a′, we make out two cases: the first case is when |α| ≤ |p|b−1; the
second case is when |α| > |p|b−1 = |p|

1
b′−1 which implies

|α| ≤

∣∣∣∣∣ −p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2

∣∣∣∣∣
≤ |p|

(1− θ)|α|b′−2
+ λ|V |

≤ (1− θ)−1|p|1−
b′−2
b′−1 + λ|V |,

using (2.6.16). We recall that 1− b′−2
b′−1 = b− 1, hence

(2.6.21)
∣∣∣H̃p (p, V )

∣∣∣ = |α| ≤ (1− θ)−1|p|b−1 + λ|V |.

• We suppose that b′ < a′, we make out two cases: the first case is when |α − λ̃V | ≤
|p|a−1; the second case is when |α− λ̃V | > |p|

1
a′−1 which implies

|α| ≤

∣∣∣∣∣ −p+ λ̃θ|α− λ̃V |a′−2V

θ|α− λ̃V |a′−2 + (1− θ)|α|b′−2

∣∣∣∣∣
≤ |p|
θ|α− λ̃V |a′−2

+ λ|V |

≤ θ−1|p|1−
a′−2
a′−1 + λ|V |,

where we used (2.6.16). From the equality 1− a′−2
a′−1 = a− 1, we deduce

(2.6.22) |Hp (p, V )| = |α| ≤ θ−1|p|a−1 + λ|V |.
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This concludes the proof of FP1.
Proof of T.
We proved above that α is locally Lipschitz continuous with respect to V and we recall

that L̃ is C1. Therefore H̃ is also locally Lipschitz with respect to V . This and (2.6.10)
implies that T holds.

Lemma 2.6.8. Let B,C ∈ M2×2 (R) be two positive definite matrices with eigenvalues
(1, r) and (1, s) respectively, and 0 < r ≤ 1, s ≥ 1. Then for any k > 0 the matrix M
defined by

M = Id + k(BC + CB) + k2BC2B,

is positive definite with eigenvalues not smaller than 1.

Proof. We can assume that B,C have the following form:

C =

(
1 0
0 s

)
, B = U

(
1 0
0 r

)
UT , with U ∈ O2 (R) ,

since the eigenvalues of M are invariant by taking the conjugate of B and C by the same

orthogonal matrix. The same argument and noticing that C commutes with
(

1 0
0 −1

)
,

imply that we can assume that U admits a positive determinant, and thus we can write it
as

U =

(
cosχ sinχ
− sinχ cosχ

)
,

with χ ∈ [0, 2π). In this case, M is given by

M = Id + k(BC + CB) + k2BC2B

∼ Id + kUT
(

1 0
0 s

)
U

(
1 0
0 r

)
+ k

(
1 0
0 r

)
UT
(

1 0
0 s

)
U + k2

(
1 0
0 r

)
UT
(

1 0
0 s2

)
U

(
1 0
0 r

)
.

We name M̃ the matrix in the last line of the latter calculation, M and M̃ have the same
eigenvalues. Let us compute M̃

M̃ =

(
cos2 χ(1 + k)2 + sin2 χ(1 + ks)2 −k(s− 1) [1 + r + kr(1 + s)] cosχ sinχ

−k(s− 1) [1 + r + kr(1 + s)] cosχ sinχ cos2 χ(1 + krs)2 + sin2 χ(1 + kr)2

)
,

its trace is given by

tr(M̃) = cos2 χ(1 + k)2 + sin2 χ(1 + kr)2 + cos2 χ(1 + krs)2 + sin2 χ(1 + ks)2,

and its determinant by

det(M̃) = (1 + k)2(1 + krs)2 cos4 χ+ (1 + kr)2(1 + ks)2 sin4 χ

+ 2(1 + k)(1 + kr)(1 + ks)(1 + krs) cos2 χ sin2 χ

=
[
(1 + k)(1 + krs) cos2 χ+ (1 + kr)(1 + ks) sin2 χ

]2
.

The eigenvalues of M̃ are the roots of the following second-order polynomial function,

X2 − tr(M̃)X + det(M̃),

its smallest root is
1

2

(
tr(M̃)−

√
tr2(M̃)− 4 det(M̃)

)
,
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which is not smaller than 1 if and only if

tr2(M̃)− 4 det(M̃) ≤
(
tr(M̃)− 2

)2
.

Therefore, it is sufficient to check that tr(M̃) ≤ det(M̃) + 1 to conclude. We define the
function f : R→ R by

f(x) = (1 + k)2(1 + krs)2x2 + (1 + kr)2(1 + ks)2(1− x)2

+ 2(1 + k)(1 + kr)(1 + ks)(1 + krs)x(1− x) cos2 χ(1 + k)2

+ sin2 χ(1 + kr)2 + cos2 χ(1 + krs)2 + sin2 χ(1 + ks)2 + 1.

This is a second-order polynomial in x with

f(0) =
(
(1 + kr)2 − 1

) (
(1 + ks)2 − 1

)
≥ 0

f(1) =
(
(1 + k)2 − 1

) (
(1 + krs)2 − 1

)
≥ 0,

f ′′(x) = 2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2 .

If (1+k)(1+krs)−(1+kr)(1+ks) = 0, then f is linear and thus f(x) ≥ 0 for all x ∈ [0, 1].
If (1+k)(1+krs)−(1+kr)(1+ks) 6= 0, then the minimum of this polynomial function

on R is obtained at xmin defined as

xmin =
(1 + k)2 + (1 + krs)2 − (1 + ks)2 − (1− kr)2

2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2

=
(1− r2)(1− s2)k2 + 2(1− r)(1− s)k

2 [(1 + k)(1 + krs)− (1 + kr)(1 + ks)]2
≤ 0,

since 0 < r ≤ 1, s ≥ 1 and k > 0. Thus f has no local minimum on [0, 1], then f(x) ≥ 0
for all x ∈ [0, 1] since f(0) ≥ 0 and f(1) ≥ 0.

Since det(M̃)− tr(M̃) + 1 = f(cos2 χ) ≥ 0, this concludes the proof of the lemma.
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Chapter 3

Mean Field Games of Controls: Finite
Difference Approximations

Joint work with Yves Achdou.

We consider a class of mean field games in which the agents interact through both their
states and controls, and we focus on situations in which a generic agent tries to adjust her
speed (control) to an average speed (the average is made in a neighborhood in the state
space). In such cases, the monotonicity assumptions that are frequently made in the theory
of mean field games do not hold, and uniqueness cannot be expected in general.

Such model lead to systems of forward-backward nonlinear nonlocal parabolic equa-
tions; the latter are supplemented with various kinds of boundary conditions, in particular
Neumann-like boundary conditions stemming from reflection conditions on the underlying
controled stochastic processes.

The present work deals with numerical approximations of the above mentioned systems.
After describing the finite difference scheme, we propose an iterative method for solving the
systems of nonlinear equations that arise in the discrete setting; it combines a continuation
method, Newton iterations and inner loops of a bigradient like solver.

The numerical method is used for simulating two examples. We also make experiments
on the behaviour of the iterative algorithm when the parameters of the model vary.
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3.1 Introduction

The theory of mean field games, (MFGs for short), aims at studying deterministic or
stochastic differential games (Nash equilibria) as the number of agents tends to infinity. It
supposes that the rational agents are indistinguishable and individually have a negligible
influence on the game, and that each individual strategy is influenced by some averages
of quantities depending on the states (or the controls as in the present work) of the other
agents. MFGs have been introduced in the pioneering works of J-M. Lasry and P-L. Lions
[83, 84, 85]. Independently and at approximately the same time, the notion of mean field
games arose in the engineering literature, see the works of M.Y. Huang, P.E. Caines and
R.Malhamé [69, 70].

The present work deals with numerical approximations of mean field games in which the
agents interact through both their states and controls; it follows a more theoretical work
by the second author, [75], which is devoted to the mathematical analysis of the related
systems of nonlocal partial differential equations. There is not much literature on MFGs in
which the agents also interact through their controls, see [60, 59, 38, 41, 25, 75]. To stress
the fact that the latter situation is considered, we will sometimes use the terminology mean
field games of control and the acronym MFGC.

The MFGC that is considered in the present work is described by the following system
of nonlocal partial differential equations:

(3.1.1)



− ∂tu− ν∆u+H (x,∇xu(t, x), µ(t)) = f(x,m(t)) in [0, T )× Ω,

∂tm− ν∆m− div (Hp (x,∇xu(t, x), µ(t))m) = 0 in (0, T ]× Ω,

µ(t) =
(
Id,−Hp (·,∇xu(t, ·), µ(t))

)
#m(t) in [0, T ],

u(T, x) = φ(x) in Ω,

m(0, x) = m0(x) in Ω.

Here, the state space Ω is a bounded domain of Rd with a piecewise smooth boundary,
while the controls are vectors of Rd. The time horizon is T > 0, and the parameter ν > 0 is
linked to the level of noise in the trajectories (the dynamics of a given agent is described by
dXt = αtdt+

√
2νdBt where (Bt) is a standard d-dimensional Brownian motion and αt ∈ Rd

is the control at time t). A special feature of the present model is that the third argument
of the Hamiltonian H is a probability measure µ(t) ∈ P

(
Ω× Rd

)
, which stands for the

joint probability of the states and optimal controls of the agents at time t. In (3.1.1),
u : [0, T ] × Ω → R and m : [0, T ] × Ω → R+ respectively stand for the value function
of a representative agent and the distribution of states. The first, respectively second
line in (3.1.1) is the Hamilton-Jacobi-Bellman equation (HJB for short) which leads to
the optimal control of a representative agent, respectively the Fokker-Planck-Kolmogorov
equation (FP for short) which describes the transport-diffusion of the distribution of states
by the optimal control law. The HJB equation is a backward w.r.t. time parabolic equation
and is supplemented with a condition at t = T which involves the terminal cost function
φ : Ω → R, whereas the FP equation is forward w.r.t. time and is supplemented with an
initial condition, which translates the fact that the initial distribution of states is known.
The HJB equation also involves the so-called coupling function f : Ω × R+ → R, or, in
other words, f(Xt,m(t,X(t))) is part of the running cost of a representative agent. We
shall discuss later the boundary conditions on (0, T ) × ∂Ω associated with the first two
equations in (3.1.1). The third equation in (3.1.1) gives the connection between µ(t) and
m(t), and shows in particular that µ(t) is supported by a d-dimensional geometrical object,
namely the graph of the feedback law: Ω→ Rd, x 7→ −Hp(x,∇u(t, x), µ(t)).
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3.1.1 A brief discussion on the mathematical analysis of (3.1.1)

Recall that the Hamiltonian of the problem is (x, p, µ) 7→ H(x, p, µ), (x, p, µ) ∈ Ω× Rd ×
P
(
Ω× Rd

)
.

From the viewpoint of mathematical analysis, a priori estimates for (3.1.1) are more
difficult to obtain than in the case when the agents interact only via the distribution
of states m. Indeed, in the latter case, if for example the costs f and φ are uniformly
bounded, then a priori estimates on ‖u‖∞ stem from the maximum principle for second-
order parabolic equations. By contrast, since the Hamiltonian in (3.1.1) depends non-
locally on ∇xu, the maximum principle applied to the HJB equation only permits to
bound ‖u‖∞ by a quantity which depends (quadratically under standard assumptions on
H) on ‖∇xu‖∞, and this information may be useless without additional arguments.

If the agents interact only through the distribution of states and if the Hamiltonian
depends separately on p and m, a natural assumption is that the latter is monotone with
respect tom, see [83, 84, 85]; it implies existence and uniqueness of solutions, see in [87, 85].
Such an assumption is quite sensible in many situations, since it models the aversion of
the agents to highly crowded regions of the state space. It is possible to extend these
arguments to MFGCs, see [41] for a probabilistic point of view and [38] for a PDE point
of view, and the monotonicity assumption then means that the agents favor controls that
are opposite to the main stream. In [75] and in the present work, we prefer to avoid such
an assumption, because it is generally not satisfied, at least in models of crowd motion:
indeed, in models of traffic or pedestrian flows, a generic agent would rather try to adjust
her speed (control) to the average speed in a neighborhood of her position.

The third equation in (3.1.1) can be seen as a fixed point problem for µ given u and
m, which turns to be well-posed under the Lasry-Lions monotonicity assumption adapted
to MFGC, provided that u and m are smooth enough. We shall replace this assumption
by a new structural condition which has been introduced in [75], namely that Hp depends
linearly on the variable µ and is a contraction with respect to µ (using a suitable distance
on probability measures). In the context of crowd motion, this structural condition is
satisfied if the representative agent targets controls that are proportional to an average of
the controls chosen by the other agents nearby, with a positive proportionality coefficient
smaller than one. Were this coefficient equal to or larger than one, it would be easy to
cook up examples in which there is no solution to (3.1.1) or even to the N -agent game, see
Remark 3.4.3 below.

In [75], the focus is put on the existence of solutions rather than on their uniqueness.
Indeed, without the monotonicity condition, uniqueness is unlikely in general if T is not
small. Consider for example a game in which the function φ has two perfectly symmetrical
minima (the targets), f = 0 and where the initial distribution of states has the same
symmetry. If H depends on |∇u(t, x)| only (no interaction through the controls), then
a representative agent will simply travel to the minimum which is closest to her initial
position. On the contrary, if the representative agent favors a control close to the average
one, then there are at least two symmetrical solutions in which the whole distribution
moves toward one of the two minima.

Going back to existence results, it is now frequent in the MFG literature to obtain
energy estimates by testing the HJB equation by m, the FP equation by u, summing
the resulting equations, integrating in the time and state variables then making suitable
integrations by parts. If the value function is uniformly bounded from below (which is often
the case even if there are interactions through the controls), this results in a relationship
between the L∞

(
[0, T ];L1 (Ω)

)
-norm of the positive part of u and the L2

m

(
[0, T ]× Ω;Rd

)
-

norm of ∇xu; this observation can then be used to obtain additional a priori estimates,

61



3.1. Introduction

which may be combined with the ones obtained from the maximum principle and discussed
above, and finally with Bernstein method. This strategy has been implemented in [75] and
leads to the existence of a solution to (3.1.1) under suitable assumptions. Existence was
proved in [75] for periodic problems in any of the following cases:

• short time horizon

• monotonicity

• small enough parameters (in particular the contraction factor mentioned above, see
the parameters λ and θ in (3.1.7)-(3.1.10) below)

• weak dependency of the average drift on the state variable

Note that in [43], existence and uniqueness have been proved with probabilistic arguments
in the case where the Hamiltonian depends separately on p and µ.

3.1.2 A more detailed description of the considered class of MFGCs

For any x ∈ ∂Ω, let n(x) be the outward pointing unit normal vector to ∂Ω at x. The
dynamics of a representative agent is given by

(3.1.2) dXt = αtdt+
√

2νdBt − 2νn(Xt)dLt, Xt ∈ Ω, 0 ≤ t ≤ T,

where (Bt)t∈[0,T ] is a standard d-dimensional Brownian motion, (αt)t∈[0,T ] is the control,
a stochastic process adapted to (Bt) with values in Rd, Lt is the local time of the process
Xt on ∂Ω. We assume that X|t=0 is a random variable in Ω, independent of (Bt) for all
t > 0, whose law is L

(
X|t=0

)
= m0.

In what follows, the part of the running cost which models the interactions via the controls
will involve an average drift V ∈ Rd:

(3.1.3) V (t, x) =
1

Z(t, x)

∫
(y,α)∈Ω×Rd

αK(x, y)dµ(t, y, α),

for (t, x) ∈ [0, T ] × Ω, where K is a nonnegative kernel, Z(t, x) =
∫

ΩK(x, y)dm(t, y) is
a normalization factor, µ(t, ·, ·) is the law of the joint distribution of the states and the
controls, and m(t, ·) is the law of the distribution of states.
Hereafter, we are going to focus in MFGCs in which the cost to be minimized by a repre-
sentative agent is
(3.1.4)

J(α) = E
[∫ T

0

(θ
2
|αt − λV (t,Xt)|2 +

1− θ
2
|αt|2 + cm(t,Xt) + f0(Xt)

)
dt+ φ(XT )

]
,

where λ, θ are real numbers such that −1 < λ < 1 and 0 < θ ≤ 1. This leads us to define
the Lagrangian

(3.1.5) L(α, V ) =
θ

2
|α− λV |2 +

1− θ
2
|α|2 , (α, V ) ∈ Rd × Rd,

which is convex with respect to α, and its Legendre transform (with respect to α):

(3.1.6) H(p, V ) =
1

2
|p− λθV |2 − λ2θ

2
|V |2 , (p, V ) ∈ Rd × Rd.
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With this definition of the running cost, the first three lines of (3.1.1) can be written as
follows:

− ∂tu− ν∆u+
1

2
|∇xu− λθV |2 −

λ2θ

2
|V |2 = cm+ f0(x), in [0, T )× Ω,(3.1.7)

∂tm− ν∆m− div ((∇xu− λθV )m) = 0, in (0, T ]× Ω,(3.1.8)

V (t, x) = − 1

Z(t, x)

∫
Ω

(∇xu(t, y)− λθV (t, y))K(x, y)dm(t, y), in (0, T )× Ω,(3.1.9)

Z(t, x) =

∫
Ω
K(x, y)dm(t, y), in [0, T )× Ω,(3.1.10)

u(T, x) = φ(x), in Ω,(3.1.11)
m(0, x) = m0(x), in Ω.(3.1.12)

We can now specify the boundary conditions on (0, T ) × ∂Ω. First, assuming that u is
smooth enough, the optimal control of a representative player is given by the feedback law:

α∗(t, x) = −
(
∇xu(t, x)− λθV (t, x)

)
.

The reflection condition at the boundary translates into the Neumann boundary conditions:

(3.1.13)
∂u

∂n
(t, x) = 0, on [0, T )× ∂Ω.

Now, from the definition of m,
∫

Ω
m(t, x)ψ(x)dx = E

(∫
Ω
m0(x)ψ(Xt,x)dx

)
for all smooth

enough test-function ψ such that ∂ψ
∂n (x) = 0 on ∂Ω. Taking the time derivative of the latter

equality, and using (3.1.13), we deduce that

(3.1.14) ν
∂m

∂n
(t, x)− λθm(t, x)V (t, x) · n(x) = 0, on (0, T ]× ∂Ω.

Note that (3.1.8), (3.1.13) and (3.1.14) imply that the total mass
∫

Ωm(t, x)dx is conserved.
We have studied or will sometimes consider other kinds of boundary conditions on some

parts of the boundary, for example:

• periodic conditions, i.e. we set (3.1.7)-(3.1.12)) in the flat torus Ω = Rd/Zd

• At a part of the boundary standing for an exit, there is an exit cost. This yields a
Dirichlet condition on u. The Dirichlet condition on m: m = 0 at exits, means that
the agents stop taking part in the mean field game as soon as they reach the exit.
Such boundary conditions will be simulated numerically in paragraph 3.4.2 below.

• If a part of the boundary stands for an entrance, then it is natural to impose a
Dirichlet condition on u to prevent the agents from crossing the entrance outward,
and a flux-like condition onm to specify the entering flux of agents, see also paragraph
3.4.2 below.

3.1.3 Organization of the paper

Section 3.2 is devoted to the description of the finite difference scheme; it is based on a
monotone upwind scheme for the HJB equation, and a scheme for the FP equation which
is obtained by differentiating the discrete HJB equation and taking the adjoint. It is an
extension of the finite difference schemes proposed and studied by the first author and I.
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Capuzzo-Dolcetta in [6, 3] for simpler MFGs. Designing an efficient strategy for solving
the system of non linear equations arising in the discrete version of MFGCs is a challenging
task, in particular because

• the underlying system of PDEs is forward-backward and cannot be solved by simply
marching in time

• there is no underlying variational structure

• Equation (3.1.9) is non local.

In Section 3.3, we propose a strategy for solving the system of non linear equations: it
is a continuation method in which the viscosity parameter (for instance) is progressively
decreased to the desired value, and for each value of the latter parameter, the system of
non linear equations is solved by a Newton method with inner iterations of a bi-gradient
like algorithm.

Finally, in Section 3.4, we discuss the results of numerical simulations in two cases. In
the first example, we show in particular that there exist multiple solutions and we discuss
how the iteration count of the solver is affected by the variation of the parameters in the
model. The second case is a model for a crowd of agents crossing a rectangular hall from
an entrance to an exit: we consider situations in which queues occur, and we show how
the solution depends on the parameters.

3.2 Finite difference methods

In order to approximate (3.1.7)-(3.1.12) numerically, we propose a finite difference method
reminiscent of that introduced in [6, 3] for MFGs without coupling through the controls.
The important features of such methods are as follows

• they are based on monotone finite difference schemes for (3.1.7). Hence, a comparison
principle still holds at the discrete level.

• the special structure of (3.1.7)-(3.1.8) is preserved at the discrete level, namely that
the FP equation can be obtained by differentiating the HJB equation w.r.t. u and
by taking the adjoint of the resulting equation. This results in a monotone approxi-
mation of (3.1.8), which ensures that the discrete version of m remains non negative
at all time if m0 is non negative. The discrete FP equation will also preserve mass.

To simplify the discussion, let us focus on the case when d = 2 and Ω = (0, 1)2. More
complex domains (even with holes) can be handled by the present method, but an addi-
tional effort would be needed if the domain had boundaries not aligned with the axes of
the underlying grid that will be introduced soon. We also assume for simplicity that the
boundary conditions are of the type (3.1.13)-(3.1.14) on the whole ∂Ω.

3.2.1 Notations and definitions

For two positive integers NT , Nh, we set ∆t = T/NT , the time step, and h = 1/Nh, the step
related to the state variables. Consider the set of discrete times T∆t = {tk = k∆t, k = 0, . . . , NT }
and the grid Ωh = {xi,j = (ih, jh), i, j = 0, . . . , Nh}.

The goal will be to approximate u (tk, xi,j) and m (tk, xi,j) respectively by uki,j and
mk
i,j , for all k ∈ {0, . . . , NT } and (i, j) ∈ {0, . . . , Nh}2, by solving the discrete version of
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(3.1.7)-(3.1.14) arising from the finite difference scheme.

Let us define the discrete time derivative of y : T∆t × Ωh → R by the collection of real
numbers:

(3.2.1) Dty
k
i,j =

yk+1
i,j − yki,j

∆t
,

for k = 0, . . . , NT − 1, i, j = 0, . . . , Nh.
Given a grid function y : Ωh → R, we introduce the first order right sided difference

operators

(3.2.2)

(
D+

1 y
)
i,j

=
yi+1,j − yi,j

h
,(

D+
2 y
)
i,j

=
yi,j+1 − yi,j

h
,

and the five point discrete laplace operator:

(3.2.3) (∆hy)i,j = − 1

h2
(4yi,j − yi+1,j − yi−1,j − yi,j+1 − yi,j−1) ,

for all (i, j) such that 0 ≤ i, j ≤ Nh. Note that the definition of these operators at boundary
nodes of Ωh needs to extend the grid function y on a layer of nodes outside Ωh. This is
done by using discrete versions of the Neumann conditions (3.1.13)- (3.1.14): assume that
the boundary condition for y is of the type ∂y

∂n = z, where z is a given continuous function.
Let (zki,j) is a suitable grid function approximating z. We then choose the discrete version
of the latter equation (first order scheme):

(3.2.4)
yk−1,j = yk0,j + hzk0,j and ykNh+1,j = ykNh,j + hzkNh,j ,

yki,−1 = yki,0 + hzki,0 and yki,Nh+1 = yki,Nh + hzki,Nh ,

for i, j = 0, . . . , Nh and k = 0, . . . , NT .

Remark 3.2.1. We have chosen a first order scheme for the boundary condition in order to
preserve the monotonicity of the discrete Hamiltonian at boundary nodes, see later. Since
the overall scheme is monotone as it was already mentioned above, thus first order, it would
be pointless to choose a higher order scheme for the boundary conditions.

Remark 3.2.2. Note that the previously mentioned discrete operators are not needed at
the nodes of ∂Ωh at which Dirichlet boundary conditions are imposed.

For a grid function V : Ωh → R, we define the value of V at half-integer indices by
linear interpolation:
(3.2.5)

Vi+ 1
2
,j =

Vi+1,j + Vi,j
2

, V− 1
2
,j = V0,j , and VNh+ 1

2
,j = VNh,j , 0 ≤ i ≤ Nh − 1, 0 ≤ j ≤ Nh,

Vi,j+ 1
2

=
Vi,j+1 + Vi,j

2
, Vi,− 1

2
= Vi,0, and Vi,Nh+ 1

2
= Vi,Nh , 0 ≤ i ≤ Nh, 0 ≤ j ≤ Nh − 1.

In order to define the Godunov scheme for (3.1.7), we introduce the map Φ: for two
grid functions y : Ωh → R and V : Ωh → R2, the grid function Φ(y, V ) : Ωh → R4 is

65



3.2. Finite difference methods

defined by

(3.2.6) Φ(y, V )i,j =



[(
D+

1 y
)
i,j
− λθVi+ 1

2
,j,1

]
−

−
[(
D+

1 y
)
i−1,j

− λθVi− 1
2
,j,1

]
+[(

D+
2 y
)
i,j
− λθVi,j+ 1

2
,2

]
−

−
[(
D+

2 y
)
i,j−1

− λθVi,j− 1
2
,2

]
+


for i, j = 0, . . . , Nh.

Finally, let us introduce the function g : R4 × R2 → R:

(3.2.7) g(q, V ) =
1

2
|q|2 − λ2θ

2
|V |2 .

3.2.2 The scheme

With the ingredients defined in paragraph 3.2.1, we are ready to propose the discrete
version of (3.1.7)- (3.1.10):

−Dtu
k
i,j − ν

(
∆hu

k
)
i,j

+ g

(
Φ
(
uk, V k

)
i,j
, V k

i,j

)
= cmk+1

i,j + f0(xi,j),(3.2.8)

Dtm
k
i,j − ν

(
∆hm

k+1
)
i,j
− T

(
Φ
(
uk, V k

)
,mk+1

)
i,j

= 0,(3.2.9)

V k
i,j,1 = − 1

Zki,j

∑
r,s

(
ukr+1,s − ukr−1,s

2h
− λθV k

r,s,1

)
K (xi,j , xr,s)m

k+1
r,s ,(3.2.10)

V k
i,j,2 = − 1

Zki,j

∑
r,s

(
ukr,s+1 − ukr,s−1

2h
− λθV k

r,s,2

)
K (xi,j , xr,s)m

k+1
r,s ,(3.2.11)

Zki,j =
∑
r,s

K (xi,j , xr,s)m
k+1
r,s ,(3.2.12)

for i, j = 0, . . . , Nh, k = 0, . . . , NT − 1, where the discrete transport operator T is defined
by

(3.2.13) T (q,m)i,j =
1

h
(−qi,j,1mi,j + qi−1,j,1mi−1,j + qi,j,2mi,j − qi+1,j,2mi+1,j

−qi,j,3mi,j + qi,j−1,3mi,j−1 + qi,j,4mi,j − qi,j+1,4mi,j+1) ,

for any i, j = 0, . . . , Nh. Note that (3.2.6) is not enough in order to fully determine
T(Φ(u, V ),m) at the boundary nodes. We also need the following quantities:

(3.2.14)

Φ(u, V )−1,j,1 =
[(
D+

1 u
)
−1,j
− λθV0,j,1

]
−

= [λθV0,j,1]+ ,

Φ(u, V )Nh+1,j,2 = −
[(
D+

1 u
)
Nh,j
− λθVNh,j,1

]
+

= − [λθVNh,j,1]− ,

Φ(u, V )i,−1,3 =
[(
D+

2 u
)
i,−1
− λθVi,0,2

]
−

= [λθVi,0,2]+ ,

Φ(u, V )i,Nh+1,4 = −
[(
D+

2 u
)
i,Nh
− λθVi,Nh,2

]
+

= − [λθVi,Nh,2]− ,

for i, j = 0, . . . , Nh, where the last identity in each line comes from (3.2.16) below. The
discrete version of (3.1.11) and (3.1.12) is

(3.2.15) uNTi,j = φ(xi,j), and m0
i,j = m0 (xi,j) , 0 ≤ i, j ≤ Nh.
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The discrete version of (3.1.13)- (3.1.14) is{
uk−1,j = uk0,j and ukN+1,j = ukN,j ,

uki,−1 = uki,0 and uki,N+1 = uki,N ,
(3.2.16) 

ν
(
mk+1
−1,j −m

k+1
0,j

)
−h
[
λθV k

0,j,1

]
+
mk+1

0,j + h
[
λθV k

0,j,1

]
−
mk+1
−1,j = 0,

ν
(
mk+1
N,j −m

k+1
N+1,j

)
+h
[
λθV k

N,j,1

]
+
mk+1
N,j − h

[
λθV k

N,j,1

]
−
mk+1
N+1,j = 0,

ν
(
mk+1
i,−1 −m

k+1
i,0

)
−h
[
λθV k

i,0,1

]
+
mk+1
i,0 + h

[
λθV k

i,0,1

]
−
mk+1
i,−1 = 0,

ν
(
mk+1
i,N −m

k+1
i,N+1

)
+h
[
λθV k

i,N,1

]
+
mk+1
i,N − h

[
λθV k

i,N,1

]
−
mk+1
i,N+1 = 0,

(3.2.17)

for i, j = 0, . . . , Nh and k = 0, . . . , NT − 1.
Note that (3.2.8) is an implicit scheme for (3.1.7), (recall that (3.1.7) is backward w.r.t.

time), whereas (3.2.9) is an implicit scheme for (3.1.8), (recall that (3.1.8) is forward w.r.t.
time). This explains why no restriction is made on the time step.

The discrete Hamiltonian introduced in (3.2.7) g : R4 ×R2 → R, (q, V ) 7→ g(q, V ), has
the following properties:

H1 (monotonicity) if q = (q1, q2, q3, q4), then g is nonincreasing with respect to q1 and
q3 and nondecreasing with respect to q2 and q4

H2 (consistency) g (q1, q1, q3, q3, V ) = H (q1, q3, V )

H3 (regularity) g is C1.

Remark 3.2.3. We aim at using Newton iterations in order to solve the system of non-
linear equations arising from the discrete scheme. For that purpose, we need to linearize
the discrete version of the Fokker-Planck equation. Therefore, for another small positive
parameter ε, we may replace the definition (3.2.6) of Φ by the following:

(3.2.18) Φ(y, V )i,j =



[(
D+

1 y
)
i,j
− λθVi+ 1

2
,j,1

]
−,ε

−
[(
D+

1 y
)
i−1,j

− λθVi− 1
2
,j,1

]
+,ε[(

D+
2 y
)
i,j
− λθVi,j+ 1

2
,2

]
−,ε

−
[(
D+

2 y
)
i,j−1

− λθVi,j− 1
2
,2

]
+,ε


for i, j = 0, . . . , Nh,

where the C1 approximation a 7→ a+,ε of a 7→ a+ = a1a>0 is defined by

(3.2.19) a+,ε =
1

2

(
e−
|a|
ε − 1

)
ε+ 1a>0a,

and a−,ε = a+,ε − a. We may modify (3.2.14) and (3.2.17) accordingly.

Lemma 3.2.4. Assume that (u,m, V ) satisfies (3.2.8)-(3.2.12), (3.2.15), and (3.2.16),
(3.2.17).

The total mass of m is preserved, i.e.

(3.2.20)
∑

1≤i,j≤Nh

mk
i,j =

∑
1≤i,j≤Nh

m0
i,j ,

for any k = 0, · · · , NT .
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Proof. From (3.2.3), we deduce that

(3.2.21)
∑

0≤i,j≤Nh

ν
(

∆mk+1
)
i,j

=
ν

h2

 Nh∑
j=0

(
mk+1
Nh+1,j −m

k+1
Nh,j
−mk+1

−1,j +mk+1
0,j

)

+

Nh∑
i=0

(
mk+1
i,Nh+1 −m

k+1
i,Nh
−mk+1

i,−1 +mk+1
i,0

)]
.

Then we sum (3.2.13) for i, j = 0, . . . , Nh:

(3.2.22)∑
0≤i,j≤Nh

T(q,m)i,j =
1

h

Nh∑
j=1

−qNh,j,1mNh,j + q−1,j,1m−1,j + q0,j,2m0,j − qNh+1,j,2mNh+1,j

+
1

h

Nh∑
i=1

−qi,Nh,3mi,Nh + qi,−1,3mi,−1 + qi,0,4mi,0 − qi,Nh+1,4mi,Nh+1.

From (3.2.6), (3.2.14), (3.2.16) and (3.2.17), the sums of the right hand sides of (3.2.22)
and (3.2.21) vanish if q = Φ

(
uk, V k

)
, for any k = 0, . . . , NT − 1.

From the observations above, summing (3.2.9) on i, j = 0, . . . , Nh yields∑
0≤i,j≤Nh

mk+1
i,j =

∑
0≤i,j≤Nh

mk
i,j ,

then the desired result.

3.2.3 Solving the discrete version of the Hamilton-Jacobi-Bellman equa-
tion

For brevity, we will use the notation (yki,j) for a grid function, omitting that the indices i, j
take their values in {0, . . . , Nh} and that k takes its values in {0, . . . , NT }. This paragraph
is devoted to solving the system of nonlinear equations satisfied by the grid function (uki,j),
given the grid functions (mk

i,j) and (V k
i,j). Let f̃ = (f̃ki,j) denote the grid function defined

by

(3.2.23) f̃ki,j = cmk+1
i,j + f0 (xi,j) .

We may then rewrite (3.2.8),(3.2.16) and the first identity in (3.2.15) in the compact form

(3.2.24) u = Fu

(
f̃ , V

)
.

Finding u given m and V amounts to solving a discrete version of a nonlinear parabolic
equation posed backward in time with Neumann boundary conditions. This is much simpler
than solving the complete forward-backward system for (u,m, V ), because a backward
time-marching procedure can be used. Since, as it was already observed above, the scheme
is implicit, each time step consists of solving the discrete version of a nonlinear elliptic
partial differential equation which is local because V is given. Starting from the terminal
time step NT for which (3.2.15) gives an explicit formula for uNT , the k-th step of the
backward loop consists of computing uk by solving (3.2.8) and (3.2.16) given uk+1, mk+1

and V k. This is done by means of Newton iterations.
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For completeness, let us give a few details on Newton iterations. We introduce the
operator Ru,

(3.2.25) Ru(u′, v′, f ′, V ′)i,j = u′i,j−v′i,j+∆t
[
−ν
(
∆hu

′)
i,j

+ g
(

Φ
(
u′, V ′

)
i,j
, V ′i,j

)
− f ′i,j

]
,

for u′, v′, f ′ : Ωh → R, V ′ : Ωh → R2, and i, j = 0, . . . , Nh. Note that in (3.2.25), u′ is
extended outside Ωh thanks to (3.2.16). We aim at approximating the solution of

(3.2.26) Ru(u′, uk+1, f̃k, V k) = 0.

Starting from an initial guess noted uk,0 : Ωh → R, the Newton iterations consist of
computing by induction a sequence uk,` of approximations of the solution to (3.2.26):
given uk,`, uk,`+1 is found by solving the system of linear equations

duRu
(
uk,`, uk+1, f̃k, V k

)
(uk,`+1 − uk,`) = −Ru

(
uk,`, uk+1, f̃k, V k

)
.

In the latter equation, the Jacobian matrix duRu
(
uk,`, uk+1, f̃k, V k

)
is sparse since the

PDE is local, and invertible since the scheme is monotone. Note that duRu
(
uk,`, uk+1, f̃k, V k

)
depends neither on uk+1 nor on f̃k, so we can write it duRu

(
uk,`, ·, ·, V k

)
. The system of

linear equations is solved by using special algorithms for sparse matrices. In the numer-
ical simulations presented below, we use the C-library UMFPACK, see [1], implementing
unsymmetric multifrontal method and direct sparse LU factorization.

Note that one may choose the initial guess uk,0 = uk+1. The Newton iterations are
stopped when the residual |Ru(uk,`, uk+1, f̃k, V k)| is small enough, say for ` = `0. Then
we set uk = uk,`0 . It is well known that the Newton algorithm for (3.2.8) is equivalent to
an optimal policy iteration algorithm, that it is convergent for any initial guess, and that
the convergence is quadratic.

3.2.4 Solving the discrete version of the Fokker-Planck-Kolmogorov equa-
tion

This paragraph is devoted to solving the system of linear equations satisfied by the grid
function (mk

i,j), given the grid functions (uki,j) and (V k
i,j). We may then rewrite (3.2.9), (3.2.17)

and the second identity in (3.2.15) in the compact form

(3.2.27) m = Fm (u, V ) .

Findingm given u and V amounts to solving a discrete version of a linear parabolic equation
posed forward in time with Neumann boundary conditions. Since the scheme is implicit,
each time step consists of solving the discrete version of a linear elliptic partial differential
equation which is local. Starting from the terminal time step 0 for which (3.2.15) gives an
explicit formula for m0, the k-th step of the forward loop consists of computing mk+1 by
solving (3.2.9), (3.2.17) given mk, uk+1 and V k. It is easy to see that the matrix of the
latter system of linear equations is exactly the transposed of duRu

(
uk, ·, ·, V k

)
which has

been introduced in the previous paragraph. Therefore, it is sparse and invertible. In the
numerical simulations presented below, we use the C-library UMFPACK again.

3.3 Newton algorithms for solving the whole system (3.2.8)-
(3.2.17)

The solution of the system of nonlinear equations (3.2.8)-(3.2.17 is not easy because
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3.3. Newton algorithms for solving the whole system (3.2.8)-(3.2.17)

1. the system is the discrete version of a system of forward-backward equations, which
precludes a simple time marching algorithm

2. The easiest instances of MFGs can be interpreted as optimal control problems driven
by a partial differential equation, which opens the way to algorithms based on the
variational structure. In the MFGC considered here, there is no underlying varia-
tional principle and these algorithms cannot be used.

Following previous works of the first author, see [3], we choose to use a continuation method
(for example with respect to the viscosity parameter ν) in which every system of nonlinear
equations (given the parameter of the continuation method) is solved by means of Newton
iterations. With Newton algorithm, it is important to have a good initial guess of the
solution; for that, we take advantage of the continuation method by choosing the initial
guess as the solution obtained with the previous value of the parameter. Alternatively,
we have sometimes taken the initial guess from the simulation of the same problem on a
coarser grid, using interpolation.

It is also important to implement the Newton algorithm on a “well conditioned” system.
Therefore, we shall not directly address (3.2.8)-(3.2.17), but we shall rather eliminate the
unknowns u and m by using the time-marching loops described in paragraphs 3.2.3 and
3.2.4 and see (3.2.8)-(3.2.17) as a fixed point problem for (f̃ , V ).

Before describing the algorithm, we need to provide a numerical method for obtaining
the average drift given u and m, i.e. for solving (3.2.10)-(3.2.11) at least approximately.

3.3.1 The coupling cost and the average drift

Let us introduce Ff which maps the grid function m defined on T∆t × Ωh to the grid
function f̃ given in (3.2.23). We also define the maps Z and V by

Z(m′)i,j =
∑
r,s

K (xi,j , xr,s)m
′
r,s,(3.3.1)

V(u′,m′, V ′)i,j,1 = −
∑
r,s

(
u′r+1,s − u′r−1,s

2h
− λθV ′r,s,1

)
K (xi,j , xr,s)

m′r,s
Z(m′)i,j

,(3.3.2)

V(u′,m′, V ′)i,j,2 = −
∑
r,s

(
u′r,s+1 − u′r,s−1

2h
− λθV ′r,s,2

)
K (xi,j , xr,s)

m′r,s
Z(m′)i,j

,(3.3.3)

for u′,m′ : Ωh → R, V ′ : Ωh → R2 and i, j = 0, . . . , Nh.
It can be proved exactly in the same manner as in the continuous case, see [75, Lemma

2.4], that V ′ 7→ V(u′,m′, V ′) is a contraction in the maximum-norm for instance, with a
contraction factor |λ|θ.

For a positive integer L, we define the map FV by :

FV (u,m, V ) = Ṽ ,(3.3.4)
Ṽ k = Ṽ k,L, for k = 0, . . . , NT − 1,(3.3.5)

where Ṽ k,0 = V k and the sequence Ṽ k,` is defined by the following induction:

(3.3.6) Ṽ k,` = V
(
uk,mk+1, Ṽ k,`−1

)
, 1 ≤ ` ≤ L.

Remark 3.3.1. 1. With a slight abuse of notation, if L =∞, then Ṽ k is the fixed point
of the map V ′ 7→ V

(
uk,mk+1, V ′

)
.
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2. The induction (3.3.6) corresponds to Jacobi iterations and can be easily parallelised.
It is also possible to implement Gauss-Seidel iterations, which are a little more com-
plex to write. They consist of using the components of Ṽ k,` as soon as they are
obtained (instead of those of Ṽ k,`−1) in order to compute the components of Ṽ k,`

which have not been obtained yet . In our implementation, we have in fact used the
Gauss-Seidel iterations with a lexicographic ordering of the components of the grid
functions.

Remark 3.3.2. As we shall see in paragraph 3.4.1.4, the choice of L does not impact the
convergence of the overall iterative algorithm. Therefore, a good choice turns out to be
L = 1.

3.3.2 The linearized operators

3.3.2.1 Notation

Let u,m, f : T∆h × Ωh → R be generic grid functions standing respectively for discrete
versions of the value function, the law of the distribution of states, the right hand side
of the discrete HJB equation (3.2.8). Let V : T∆h × Ωh → R2 be a generic grid function
standing for the average drift. Let us introduce the operators obtained by differentiation
of the maps Fu, Fm and FV :

(3.3.7)

Bu,f = DfFu(f, V ), Bu,V = DV Fu(f, V ),

Bm,V = DuFm(u, V ), Bm,V = DV Fm(u, V ),

Cf,m = DmFf (m), CV,u = DuFV (u,m, V ),

CV,m = DmFV (u,m, V ), CV,V = DV FV (u,m, V ).

In the three paragraphs below, we explain how these differential operators can be computed.

3.3.2.2 Linearized Hamilton-Jacobi-Bellman equation

The variation du of u = Fu(f, V ) induced by variations df and dV of f and V is given by

(3.3.8) du =
(
Bu,f Bu,V

)( df
dV

)
.

More explicitly, du is obtained by linearizing (3.2.8), (3.2.16) and (3.2.15). It satisfies
(3.3.9)
−Dtdu

k
i,j−ν

(
∆hdu

k
)
i,j

+Φ
(
uk, V k

)
i,j
·
(
dΦ
(
uk, V k

)(
duk, dV k

))
i,j
−λ2θV k

i,j ·dV k
i,j = dfki,j ,

for i, j = 0, . . . , Nh and k = 0, . . . , NT . The first (respectively second) inner product
appearing in (3.3.9) takes place in R4 (respectively R2). The set of equations (3.3.9) is
supplemented with the terminal condition

(3.3.10) duNTi,j = 0,

and the boundary conditions

(3.3.11)

{
duk−1,j = duk0,j , dukNh+1,j = dukNh,j ,

duki,−1 = duki,0, duki,Nh+1 = duki,Nh .

Given df and dV , the variation du is found by solving (3.3.9),(3.3.10) and (3.3.11). This
is done by marching backward in time and at each time step solving a system of linear
equations with a sparse and invertible matrix (of the same form as in the Newton iterations
described in 3.2.3). Again, we use the library UMFPACK for that.
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3.3. Newton algorithms for solving the whole system (3.2.8)-(3.2.17)

3.3.2.3 Linearized Kolmogorov-Fokker-Planck equation

The variation dm of m = Fm(u, V ) induced by variations du and dV of u and V is given
by

(3.3.12) dm =
(
Bm,u Bm,V

)(du
dV

)
.

The grid function dm is obtained by linearizing (3.2.9), (3.2.17) and (3.2.15). It satisfies
(3.3.13)
Dtdm

k
i,j−ν

(
∆hdm

k+1
)
i,j
−Ti,j

(
dΦ
(
uk, V k

)(
duk, dV k

))
,mk+1

)
−Ti,j

(
Φ
(
uk, V k

)
, dmk+1

)
= 0,

for i, j = 0, . . . , Nh and k = 0, . . . , NT . The set of equations (3.3.13) is supplemented with
the initial condition

(3.3.14) dm0
i,j = 0, i, j = 0, . . . , Nh,

and the boundary conditions

(3.3.15)

ν
(
dmk+1
−1,j − dm

k+1
0,j

)
−h
[
λθV k

0,j,1

]
+
dmk+1

0,j + h
[
λθV k

0,j,1

]
−
dmk+1
−1,j = 0,

ν
(
dmk+1

N,j − dm
k+1
N+1,j

)
+h
[
λθV k

N,j,1

]
+
dmk+1

N,j − h
[
λθV k

N,j,1

]
−
dmk+1

N+1,j = 0,

ν
(
dmk+1

i,−1 − dm
k+1
i,0

)
−h
[
λθV k

i,0,1

]
+
dmk+1

i,0 + h
[
λθV k

i,0,1

]
−
dmk+1

i,−1 = 0,

ν
(
dmk+1

i,N − dm
k+1
i,N+1

)
+h
[
λθV k

i,N,1

]
+
dmk+1

i,N − h
[
λθV k

i,N,1

]
−
dmk+1

i,N+1 = 0.

Here again, (3.3.13), (3.3.14) and (3.3.15) is solved by marching in time and solving a
system of linear equations at each time step (using UMFPACK).

3.3.2.4 Linearized coupling costs and average drifts

The variation of f̃ = Ff (m) induced by a variation dm of m is obviously given by df̃ki,j =

cdmk
i,j , hence Cf,mdm = cdm.

Let us turn to the variation of Ṽ = FV (u,m, V ) induced by the variations du, dm and dV
of u, m and V . Differentiating (3.3.4)-(3.3.6) leads to

dṼ k,0 = dV k,

dṼ k,` = V
(
duk,mk+1, dṼ k,`−1

)
+ dmV

(
uk,mk+1, Ṽ k,`−1

)
dmk+1,

dṼ k = dṼ k,L,

see (3.3.6) for the definition of Ṽ k,L.
This permits to compute

dṼ =
(
CV,u CV,m CV,V

)du
dm
dV

 .

To sumarize, (
df̃

dṼ

)
= C

du
dm
dV

 , with C =

(
0 Cfm 0

CV,u CV,m CV,V

)
.
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3.3.3 The algorithm for solving (3.2.8)-(3.2.17)

We see (3.2.8)-(3.2.17) as a fixed point problem for the pair (f, V ), which we write

(3.3.16) Gf (f, V ) = 0, and GV (f, V ) = 0,

where Gf ,GV are defined by

Gf (f, V ) = f − Ff ◦ Fm
(
Fu(f, V ), V

)
,(3.3.17)

GV (f, V ) = V − FV

(
Fu(f, V ),Fm (Fu(f, V ), V ) , V

)
.(3.3.18)

Remark 3.3.3. Given u and m, V 7→ W = FV (u,m, V ) is obtained as follows: for
each k, computing W k consists of iterating W k ×VL(uk,mk+1,W k) L times starting from
W k = V k. Recall that V(uk,mk+1, ·) is in (3.3.2) and (3.3.3), and is a contraction with
a unique fixed point. Therefore, FV (u,m, ·) has also a unique fixed point which does not
depend on L. Since Fu and Fm do not depend on L, neither do the the solutions of (3.3.16).

The Newton iterations involve the JacobianA(f, V ) of the map (f, V ) 7→
(
Gf (f, V )),GV (f, V )

)
.

We set

(3.3.19)

{
Af,f (f, V ) = DfGf (f, V ), Af,V (f, V ) = DV Gf (f, V ),

AV,f (f, V ) = DfGV (f, V ), AV,V (f, V ) = DV GV (f, V ),

and the blocks of the Jacobian A(f, V ) are defined by:

Af,f (f, V ) = IN − Cf,mBm,uBu,f ,(3.3.20)
Af,V (f, V ) = −Cf,m (Bm,uBu,V +Bm,V ) ,(3.3.21)
AV,f (f, V ) = −CV,uBu,f − CV,mBm,uBu,f ,(3.3.22)
AV,V (f, V ) = I2N − CV,uBu,V − CV,m (Bm,uBu,V +Bm,V )− CV,V ,(3.3.23)

where Bu,f , Bu,V , Bm,u, Bm,V , CV,u, CV,m, CV,V are given by (3.3.7) with u = Fu(f, V )
and m = Fm(u, V ). In an equivalent manner, we can write
(3.3.24)

A(f, V ) = I3N−
(

Cf,mBm,uBu,f Cf,m (Bm,uBu,V +Bm,V )
CV,uBu,f + CV,mBm,uBu,f CV,uBu,V + CV,m (Bm,uBu,V +Bm,V ) + CV,V

)
,

or

(3.3.25) A(f, V ) = I3N −
(

0N Cf,m 0N,2N
CV,u CV,m CV,V

) IN 0N,2N
Bm,u Bm,V
02N,N I2N

( Bu,f Bu,V
02N,N I2N

)
.

Every Newton iteration for solving (3.3.16) consists of solving a system of linear equations
of the form

(3.3.26) A(f `, V `)

(
f `+1 − f `
V `+1 − V `

)
= −

(
Gf (f `, V `)
GV (f `, V `)

)
.

In our implementation, this system is solved iteratively by BiCGStab algorithm, see [101].
Note that BiCGStab algorithm only requires a function that computes

A(f `, V `)

(
f̂

V̂

)
,

for any grid functions f̂ : T∆t×Ωh → R and V̂ : T∆t×Ωh → R2. Ths is done using (3.3.25)
and combining the methods described in paragraph 3.3.2. The assembly of the Jacobian
matrix is not needed.
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3.4 Numerical simulations

We are going to discuss the results of numerical simulations in two cases, both related to
crowd motion.

3.4.1 First example

3.4.1.1 Description of the model

The state space is the square Ω = (−0.5, 0.5)2 and the time horizon is T = 1.
We consider the MFGC described by (3.1.7)-(3.1.14), in which

1. The kernel k in (3.1.9) is radial, i.e. of the form K(x, y) = Kρ(|x − y|). Here
r 7→ Kρ(r) is a non-increasing C1 function defined on R+, with

(3.4.1) Kρ(r) = 0, if r ≥ ρ, and Kρ(r) = 1, if r ≤ 0.9ρ,

for a positive number ρ > 0, which is the radius of the disc in the state space that a
reprensative agent uses for computing the average of the controls.

2. The parameter c in (3.1.7) is chosen as c = 10−3. Recall that the cost cm(t, x) reflects
the aversion of a representative player to crowded regions of the state space.

3. At time t = 0, the agents are distributed in the top-right and the bottom-left corners
of the domain Ω, see the left part of Figure 3.1. The density is piecewise constant,
with values appearing on Figure 3.1.

4. The terminal cost is also piecewise constant. It takes a small value in the top-left
and the bottom-right corners of the domain Ω, see the right part of Figure 3.1 for
the chosen values. This cost attracts the agents to the latter two corners of Ω.

5. The function f0 in (3.1.7) is chosen to be proportional to the terminal cost, with a
factor 0.1. This term is linked to the running cost and has the same effect as the
terminal cost.

6. Recall that the boundary conditions (3.1.13)-(3.2.17) rule out the entry or exit of
agents. The total mass of m is conserved.

Remark 3.4.1. Note that the problem is symmetric with respect to the two diagonals of
the square domain. The grid of the domain is chosen to have the same symmetry.

Remark 3.4.2. The two parts of the running cost: cm(t,Xt) and θ
2 |α− λV (t,Xt)|2 may

have competing effects: indeed, the former cost may incitate the agents to spread all over
the state space, whereas the latter may result in the agents selecting the same controls
therefore staying grouped. Although the constant c = 10−3 seems small, it is chosen in
such a way that the above-mentioned two costs have the same orders of magnitude for e.g.
θ = 1 and λ = 0.9.

Initial distribution Terminal cost

0

0

2

5

5

10−4
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Figure 3.1 – Example 1. Left: the initial distribution of states. Right: the terminal cost.

3.4.1.2 The results of the simulations: discussion

In the present simulation, we choose the parameters as follows:

ν = 10−3, θ = 1, λ = 0.9, ρ = 0.2, c = 10−3.

On Figure 3.2, we display snapshots of m, u and the optimal feedback law at several times.
Since both the problem and the grid are symmetric with respect to the two diagonals, m,
u and the feedback have the same symmetry for all times. Let us describe the evolution of
the distribution of states, that we can name “gathering-kissing-splitting” referring to the
“drafing-kissing-tumbling” phenomenon in fluid mechanics (for the interaction of particles
in a fluid).

• The term cm(t,Xt) in the running cost prevents the part of the distribution initially
supported in one of the opposite corners (say the bottom-left corner) to travel directly
to one of the targets (say the bottom-right corner). On the other hand, the interaction
through controls prevents this part of the distribution to split into two equal parts
which would travel directly to the two targets, because the agents favor controls close
to the local average. Therefore, the part of the distribution initially supported in one
of the opposite corners first travels to the center of the domain. This is the gathering
phase of the evolution.

• The two parts of the distribution reach the center of the domain, where the local
average of the velocity becomes small; the dominating cost then becomes the one
which attracts the agents to the bottom-right and top-left corners. Because of the
repulsive effect due to the part cm(t,Xt) of the running cost, the part of the distri-
bution initially supported in one of the opposite corners (say the bottom-left corner)
and having traveled toward the center of the domains splits into two parts which
make each a ninety-degrees turn. This is the kissing phase of the evolution.

• After the kissing phase, the distribution of states splits into parts which travel to
the targets.

Finally, we see that the paths followed by the agents is far from being a shortest path to
the targets.

Let us compare these results with a simulation of the MFG obtained by cancelling either
θ or λ in (3.1.7)-(3.1.14) while keeping all the other parameters and the grid unchanged.
Since the problems remains symmetric with respect to the two diagonals, the obtained
results have the same symmetry. On Figure 3.3, we display snapshots of m, u and the
optimal feedback law at several times. We see that the evolution is quite different from
that displayed on Figure 3.2, since the two parts of the distribution initially supported in
two opposite corners of the domain symmetrically split into two parts each, which travels
directly to the targets. The initial splitting phase is due to the coupling cost cm(t,Xt)
which favors the spread of the distribution. The path followed by the agents is close to a
shortest path to the targets.
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Figure 3.2 – Example 1. Gathering-kissing-splitting; snapshots at t = 0, 0.2, 0.4, 0.6, 0.8, 1.
Left: contours of m. Center: contours of u. Right: optimal feedback α.
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Figure 3.3 – Example 1. Same parameters except θλ = 0; snapshots at t =
0, 0.2, 0.4, 0.6, 0.8, 1. Left: contours of m. Center: contours of u. Right: optimal feed-
back α.

3.4.1.3 Non-uniqueness of solutions

The solution of the MFGC displayed on Figure 3.2 is likely to be unstable because the
paths followed by the agents are significantly longer than the shortest paths to the tar-
gets. We expect that there are other solutions. We are going to see that this is indeed
the case. For that purpose, we are going to introduce a vanishing perturbation of the
initial distribution which breaks the symmetry of the problem. This will lead to different
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solutions to (3.1.7)-(3.1.14). An example of perturbation is displayed on Figure 3.4. It
consists of adding very little mass at the top and the bottom of the domain; the perturbed
distribution is no longer symmetric with respect to the diagonals. We expect that the
agents initially distributed near the bottom target will go to the right, and that all the
agents initially distributed at the bottom of the domain will follow them, because of the
interaction through controls. Similarly, we expect that all the agents initially located at
the top of the domain will go to the left.
In our simulations, we use a continuation method, i.e. we consider perturbations corre-
sponding to a decreasing sequence of nonnegative parameters (πn)n∈0,...,N . The last value
πN = 0 corresponds to the distribution displayed on the left of Figure 3.1. For each new
value πn+1 of the parameter, we initialize the Newton iterations described in Section 3.3
by the solution corresponding to the preceding value πn. For positive values of πn, the
simulated solution is not symmetric with respect to the diagonals, and this property is
preserved for the last value πN = 0.

ε→
(
10−4

)+

5

5

ε→
(
10−4

)+

10−4

Initial Condition 0 < t < T

Figure 3.4 – Example 1. A continuation method leading to a different solution. Left: a
vanishing perturbation of the initial distribution. Right: the expected evolution of the
distribution.

On Figure 3.5, we display three different solutions (the distribution of states at different
times) obtained with three different sequences of vanishing perturbations of the initial
distribution displayed on Figure 3.1: the solution displayed on the left corresponds to the
sequence of perturbations displayed on Figure 3.4; applying to the pertubation a symmetry
with respect to a diagonal, we obtain the solution displayed on the center; the solution
displayed on the right is obtained by another kind of perturbation symmetric with respect
to one diagonal only, located at the top and at the left of the domain: for this solution,
we again notice gathering and kissing phases, and that the paths followed by the agents
deviate from the shortest ones.
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Figure 3.5 – Example 1. Different solutions obtained by adding vanishing perturbations
to the initial distribution of states. The distribution at time t = 0, 0.2, 0.4, 0.6, 0.8, 1. The
three columns correspond to three different sequences of perturbations.

3.4.1.4 Behaviour of the algorithm

In this paragraph, we investigate how the behaviour of the algorithm described in Sec-
tion 3.3 is affected by the variations of the parameters in the model. Recall that the
algorithm is based on Newton iterations with a BiCGStab inner loop at each step.

We start by the grid size and the viscosity parameter ν: in the experiments reported
below, the stopping criterion for the outer Newton iteration is that the normalized Eu-
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clidean norm of the residual is smaller than 10−8. The stopping criterion for the inner
BiCGStab iterations is that the ratio of the norms of the current and the initial residuals
is smaller than 10−7 (hence, it involves a relative error). The parameters of the model are
set to

θ = 1, λ = 0.9, c = 10−3, ρ = 0.2, L = 1.

Table 3.1 displays the iterations counts for the outer Newton and the inner BiCGStab
loops for different viscosities and grid sizes. We notice that the number of iterations is
not very sensitive to the grid size, as expected because the map G− Id, with G defined in
(3.3.17) (3.3.18), is the discrete version of a map which has compactness properties. The
iteration counts increase as ν is decreased.

Table 3.1 – Number of outer Newton iterations and average number of inner BiCGStab
iterations per Newton step (the stopping criteria are given in the text) with different
viscosities and grid sizes.

ν 26× 26× 26 51× 51× 51 76× 76× 76 101× 101× 101

Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab
0.5 3 13.67 3 12.67 3 15 3 14.33

0.1 9 14.67 10 21.9 12 15.08 12 18.25

0.05 4 16.5 4 17.25 4 16.25 4 19.25

0.01 4 42.5 4 29 5 30.4 5 28.8

Table 3.2 displays the iteration counts for different choices of λ and θ, and fixed values
the other parameters:

ν = 10−3, c = 10−3, ρ = 0.2, L = 1,

with a 101× 101 nodes grid and 101 time steps.
In fact, the numbers in Table 3.2 are obtained by running a continuation method in θ

and λ: for each cell of the table, the solution corresponding either to the left or the upper
neighboring cell is used as an initial guess for the Newton iterations. If a cell has two such
neighbors, the choice of the initial guess is made as follows: in the top-right triangular
part of the table, strictly above the diagonal, we choose the initial guess corresponding
to the left neighboring cell. In the bottom-left triangular part of the table, including the
diagonal, we choose the initial guess corresponding to the cell immediately above.
We see that changing λ and θ mostly impacts the number of iterations of the inner loop.
A reason for that is that V is obtained by solving a linear fixed point problem whose
contraction factor is λθ. Hence, it is sensible that the number of iterations necessary to
solve the systems of linear equations arising in the Newton steps increases as λθ tends to
1.

Recall that we use a continuation method, consisting of decreasing progressively ν until
it reaches the desired value; in Figure 3.6 (respectively Figure 3.7), we plot the average
number of BiCGStab iterations versus ν, (respectively the number of Newton iterations
versus ν) for different values of λ, θ and c. The stopping criteria have been described above.
The grid contains 101×101 nodes and there are 101 time steps. We recover the information
contained in Tables 3.1 and 3.2, i.e. that ν mostly impacts the number of iterations in the
inner loop. We also notice that when ν is large, the number of iterations seems to depend
more on λ and θ than on c and that it becomes highly sensitive to c when ν is small, but
we do not really know how to explain this. The number of iterations in the outer Newton
loop seems much less sensitive than the number of inner BiCGStab iterations. Looking

80



Chapter 3. Mean Field Games of Controls: Finite Difference Approximations

Table 3.2 – Sensitivity to λ and θ.

(a) Average number of BiCGStab iterations.

λ
θ

0.2 0.4 0.6 0.8 1

0.2 3.5 4.5 7 8 8

0.4 4.5 7 8 9 10.67

0.6 5 8 9 12 15.67

0.8 7 8.67 10.67 15.67 27.25

0.9 7.33 8.67 12 18 40

(b) number of Newton iterations.

λ
θ

0.2 0.4 0.6 0.8 1

0.2 2 2 2 2 2

0.4 2 3 2 3 3

0.6 2 3 3 3 3

0.8 3 3 3 3 4

0.9 3 3 3 3 6

at the overall number of BiCGStab iterations, they are not very different for the choices
(λ, θ, c) = (0.9, 1, 0) and (λ, θ, c) = (0, 0, 0.1), since the latter case needs more Newton
iterations but less BiCGStab iterations per Newton steps.
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Figure 3.6 – Average number of iterations of BiCGStab iterations per Newton step versus
ν for different choices of λ, θ and c.
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Figure 3.7 – Number of iterations of Newton iterations versus ν for different choices of λ,
θ and c.

Finally, we investigate the sensitivity of the algorithm to L, the number of fixed point
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iterations yielding a proxy of V , see paragraph 3.3.1. Table 3.3 contains the iteration
counts of the inner and outer loops for different values of ν and L, and two choices of (λ, θ)
(all the other parameters are fixed c = 10−3, ρ = 0.2). We notice that the choice of L
seems to have little impact on the iteration count. For these reasons, L = 1 appears to be
a good choice.

Table 3.3 – Number of outer Newton iterations and average number of inner BiCGStab
iterations per Newton step (the stopping criteria are given in the text) with different
viscosities and L.

λ = θ = 0.8

ν
L

1 2 3 5

Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab
0.1 3 7.33 3 6 3 6 3 5.33

0.01 3 13.67 3 13 3 15.33 3 13.67

0.001 2 14.5 2 14.5 2 17.5 2 16

0.0001 3 22 3 22.67 3 22.33 3 24.67

λ = 0.9, θ = 1

ν
L

1 2 3 5

Newton BiCGStab Newton BiCGStab Newton BiCGStab Newton BiCGStab
0.1 4 26.75 4 19.75 4 19.5 4 19.25

0.01 4 29 4 25.75 5 28 5 29

0.001 3 36.67 3 34 3 38.67 3 37.67

0.0001 3 55 3 58.33 3 64 3 63.33

3.4.2 Second example

As a second example, we consider a model for a crowd crossing a hall, with an entrance
at the left and an exit at the right. Roughly speaking, a generic agent will interact with
those located in a cone ahead of her.

3.4.2.1 Description of the model

The state space is the rectangle Ω = (−1, 1) × (−0.1, 0.1) and the time horizon is T = 8.
Let ` denote the length of the bottom and upper sides of ∂Ω: ` = 2.

The boundary of Ω is split into three parts ΓND, ΓNN and ΓDD which respectively
stand for an entrance, some walls and an exit:
(3.4.2)
ΓDD = {1}×[−0.05, 0.05], ΓND = {−1}×[−0.05, 0.05], ΓNN = ∂Ω\ (ΓDD ∩ ΓND) ,

and we consider the following boundary conditions:
∂u
∂n(t, x) = 0

ν ∂m∂n (t, x)− λθm(t, x)V (t, x) · n(x) = 0

}
on ΓNN ,(3.4.3)

u(t, x) = 6

ν ∂m∂n (t, x) +m(t, x)Hp(∇u(t, x), V (t, x))) · n(x) = −2

}
on ΓND,(3.4.4)

u(t, x) = −4
m(t, x) = 0

}
on ΓDD,(3.4.5)

82



Chapter 3. Mean Field Games of Controls: Finite Difference Approximations

where H is defined below.
The system of PDEs is still (3.1.7)-(3.1.10), with the following new features:

• compared to (3.1.5), the part ot the running cost accounting for the interaction
through controls is multiplied by a positive normalization factor a:

(3.4.6) L(α, V ) = a
θ

2
|α− λV |2 + a

1− θ
2
|α|2,

and the associated Hamiltonian by the Legendre’s transform is

(3.4.7) H(p, V ) =
a

2

∣∣∣p
a
− λθV

∣∣∣2 − aλ2θ

2
|V |2.

We choose the normalization factor a as follows:

(3.4.8) a = ã(1− λ2θ)−1,

where ã is a positive constant (independent of λ or θ). As we shall see later, the
normalization allows us to compare the solutions obtained with different values of
λ and θ. We shall also see that this normalization is specific to the example under
consideration and may not be relevant in other situations.

• The kernel K is given by

(3.4.9) K(x, y) = 1y1≥x1Kρ(|x− y|)κ(|ω|),

where ω is the angle made by the vector y − x with the vector (1, 0) and

1. kρ is defined as in the first example

2. κ is a nonincreasing C1 function defined such that

κ =

{
1, if 0 ≤ ω ≤ 0.9ω0,
0, if ω ≥ ω0,

for a given angle ω0 ∈ (0, π2 ).

• The parameter c in (3.1.7) is chosen to be zero

• We shall consider various functions f0 modeling the cost for staying at a given point
in the domain.

The initial condition is m0(x) = 10−4 for all x ∈ Ω, and the terminal cost is 0.

3.4.2.2 The case when f is constant: comparisons with a one-dimensional
problem

In this paragraph, we choose f0(x) = F for all x ∈ Ω.
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Simplification: a one-shot one-dimensional game We approximate the MFGC by
a one-shot one-dimensional game. The state space is the interval [0, `]. The points x = 0
and x = ` respectively stand for an entrance and an exit. When she enters the domain, a
representative agent chooses her drift α ∈ R+ once and for all, and her dynamics is given
by x′(t) = α for t = `/α. The distribution of drifts is a probability measure µ on R+ and
the average drift is V =

∫
α∈R+

αdµ(α). There is no entry or exit costs.
With the running cost L(α, V ) + F , where L is given by (3.4.6), the mean field Nash
equilibrium reads

support(µ) ⊂ argminα
`

α

(
a

(
θ

2
(α− λV )2 +

1− θ
2

α2

)
+ F

)
.

Given V , one checks that the unique solution of the minimization problem in α is

(3.4.10) α∗(V ) =

(
2F + aθλ2V 2

a

) 1
2

.

Hence µ = δα∗(V ), and the static mean field Nash equilibrium reads

V =

(
2F + aθλ2V 2

a

) 1
2

,

which yields

(3.4.11) α∗ = V =

(
2F

a(1− θλ2)

) 1
2

.

This leads us to choose a = ã/(1− θλ2), which yields α∗ = V =
√

2F
ã . Note that the value

corresponding to the mean field Nash equilibrium is

(3.4.12) JMFG =
`

α∗

(
a

(
θ

2
(α∗ − λα∗)2 +

1− θ
2

(α∗)2

)
+ F

)
= `

1− λθ
1− λ2θ

√
2F ã.

Remark 3.4.3. Note that if θ = λ = 1, then (3.4.10) implies that α∗(V ) > V , while
an equilibrium corresponds to V = α∗(V ). Thus, there is no mean field equilibrium if
θ = λ = 1.

Remark 3.4.4 (Comparison with the one-shot mean field type control problem). The
Nash equilibrium must be distinguished from the situation in which the drift of the agents
is determined in order to minimize the global cost; the latter problem belongs to the class
of mean field type control problems (MFTC for short)) studied by A. Bensoussan and his
collaborators, [21] and R. Carmona and F. Delarue, [40].
In this case, the problem reads

inf
µ

∫
α∈R+

`

α

(
a

(
θ

2

(
α− λ

∫
β∈R+

βdµ(β)

)2

+
1− θ

2
α2

)
+ F

)
dµ(α).

Looking for the solution as the Dirac mass δα∗∗, we see that α∗∗ minimizes

α 7→ `

α

(
a

(
θ

2
(α− λα)2 +

1− θ
2

α2

)
+ F

)
,
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thus

α∗∗ =

(
2F

a(1− 2θλ+ θλ2)

) 1
2

.

The value of the problem is

JMFTC = `
√

2Fa(1− λθ(2− λ)) ≤ `

2

√
2Fa

1− λθ(2− λ)√
1− λ2θ

+
`

2

√
2Fa(1− λ2θ) = JMFG,

from Young’s inequality y ≤ y2

2z + z
2 , with y =

√
1− λθ(2− λ) and z =

√
1− λ2θ. The

value of the MFTC is lower than the value of the MFG, which is natural since in the former
case, the agents are collaborating to minimize the global cost. Moreover, the values of the
two problems coincide only if λθ = 0 , i.e. when there are no interactions through controls.

Comparison with the one-shot one-dimensional problem We have made numerical
simulations of the MFGC described in paragraph 3.4.2.1 with f0(x) = F = 1 for all x ∈ Ω,
a = ã(1 − λ2θ)−1 and ã = 2. We wish to compare the results with the explicit formulas
obtained above for the one-shot one-dimensional MFG. If the latter problem is a good
approximation of the former one, we should find α1 close to

√
2F
ã = 1, therefore mostly

independent of λ and θ. Note that the approximation by the one-shot one-dimension
mean field game is sensible only if the time remaining to the horizon is large enough,
i.e. significantly larger than `/α∗ = `. If T − t is small, then the optimal strategy for a
representative player located on the left part of the domain is not to move.

On Figure 3.8, we display the norm of the optimal feedback for several values of λ and
θ. We see that the optimal drift is close to 1 in agreement with the explicit formula found
for the simplified one-shot one-dimensional MFG. We also see that the agents located at
the bottom and top of Ω head toward the center of the domain (i.e. x2 = 0) before reaching
the exit. Thus, the second coordinate of α gets large and there are singularities on both
sides of the exit, whose amplitude increases as λθ tends to 1.

1
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(a) λ = θ = 0

1

1.02

(b) λ = θ = 0.25

1

1.02

(c) λ = θ = 0.5
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(d) λ = θ = 0.75

1

1.05

1.1

(e) λ = 0.9, θ = 0.9

1

1.1

(f) λ = 0.9, θ = 1

Figure 3.8 – Example 2, f0(x) = 1. The optimal feedback α for different choices of λ and
θ at t = T/2.

85



3.4. Numerical simulations

3.4.2.3 Queues

Here, we choose f as follows:

f0(x) =


4, if x ≤ −0.1,

1, if x ≥ 0.1,

2.5− 15x, otherwise;

hence, an agent pays a cost for staying in Ω which is higher in the left part of the domain.

The parameters are

ν = 0.001, ã = 2, λ = 0.95, θ = 0.95, ρ = 0.25, ω0 =
π

3
.

The grid has 101× 21 nodes and there are 101 time steps.

The evolution of the distribution of states and of the optimal feedback is displayed on
Figure 3.9. We compare these results with a simulation of the MFG obtained by cancelling
either θ or λ while keeping all the other parameters and the grid unchanged, see Figure
3.10. On Figure 3.9, we see that a well distributed queue takes place from the entrance to
the exit, by contrast with Figure 3.10 where we see that the agent rush and accumulate in
the right part of the domain. Similarly, the deceleration is much stiffer in the latter case.
It is not surprising that the interactions through controls have the effect of smoothing the
distribution of states and the optimal feedback law. On the bottom of Figure 3.10, we
see that when t is close to the horizon, the distribution is mainly concentrated near the
middle of the domain but slightly on the right: this corresponds to the agents that have
reached the zone where f0 has the smaller value, i.e. 1, but for which reaching the exit
before T becomes too costly. There is also a smaller bump near the entrance corresponding
to agents that would pay too high a cost to reach the right part of the domain before T .
These phenomena are clearly a side effects due to the finite horizon. These side effects are
also present on Figure 3.9, but they are attenuated by the interaction through the controls.

Remark 3.4.5. In models accounting for congestion effects, the cost of motion depends
on the density of the distribution of states and gets higher in the crowded regions. We
refer to [87] for a pioneering discussion of MFG models including congestion, to [10] for
the analysis of the system of PDEs that arise with these models, and to [7] for numerical
simulations. Such models also permit to describe queueing phenomena, because the agents
located in crowded regions pay a large cost for moving. In [7], since the congestion effects
are taken into account in a local manner, the queues take place in small regions of the
state domain. By contrast, the present nonlocal model accounts for the fact that the agents
anticipate low speed regions, making the traffic more fluid and the distribution of state
smoother. Although it is quite possible to do, we have not incorporated congestion effects
in the present model. We plan to do it in forthcoming works.
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Figure 3.9 – Example 2. Interaction via controls: snapshots at t = 0, 0.4, 0.8, 2, 4, 7. Left:
the distribution of states. Center: the norm of the optimal feedback. Right: the optimal
feedback.
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Figure 3.10 – Example 2. Same parameters except λθ = 0: snapshots at t =
0, 0.4, 0.8, 2, 4, 7. Left: the distribution of states. Center: the norm of the optimal feedback.
Right: the optimal feedback.

3.4.2.4 Stationary regime

We now look for a stationary equilibrium. For that, we use an iterative method in order
to progressively diminish the effects of the initial and terminal conditions: starting from
(u0,m0, V 0), the numerical solution of the finite horizon problem described above, we
construct a sequence of approximate solutions (u`,m`, V `)`≥1 by the following induction:
(u`+1,m`+1, V `+1) is the solution of the finite horizon problem with the same system of
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PDEs in (0, T )×Ω, the same boundary conditions on (0, T )× ∂Ω, and the new initial and
terminal conditions as follows:

u`+1(T, x) = u`
(
T

2
, x

)
, x ∈ Ω,(3.4.13)

m`+1(0, x) = m`

(
T

2
, x

)
, x ∈ Ω.(3.4.14)

As ` tends to +∞, we observe that (u`,m`, V `) converge to time-independent functions.
At the limit, we obtain a steady solution of

−ν∆u+ a
2

∣∣ 1
a∇xu− λθV

∣∣2 − aλ2θ2 |V |
2 = cm+ f0(x), in Ω,

−ν∆m− div
((

1
a∇xu− λθV

)
m
)

= 0, in Ω,

V (x) = − 1

Z(x)

∫
Ω

(
1

a
∇xu(y)− λθV (y)

)
K(x, y)dm(y), in Ω,

Z(x) =
∫

ΩK(x, y)dm(y), in Ω,

with the boundary conditions on ∂Ω given by (3.4.3)-(3.4.5).
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Figure 3.11
Example 2. Solutions of the stationary problem for different choices of λ, θ and ρ. Top six
figures: the distribution of states m. Bottom six figures: norm of the optimal controls.
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Chapter 4

Mean Field Games with monotonous
interactions through the law of states and

controls of the agents

We consider a class of Mean Field Games in which the agents may interact through the
statistical distribution of their states and controls. It is supposed that the Hamiltonian
behaves like a power of its arguments as they tend to infinity, with an exponent larger than
one. A monotonicity assumption is also made. Existence and uniqueness are proved using
a priori estimates which stem from the monotonicity assumptions and Leray-Schauder
theorem. Applications of the results are given.

93



4.1. Introduction

4.1 Introduction

The theory of Mean Field Games (MFG for short) aims at studying deterministic or
stochastic differential games (Nash equilibria) as the number of agents tends to infinity. It
has been introduced in the independent works of J.M. Lasry and P.L. Lions [83, 84, 85],
and of M.Y. Huang, P.E. Caines and R.Malhamé [69, 70]. The agents are supposed to be
rational (given a cost to be minimized, they always choose the optimal strategies), and in-
distinguishable. Furthermore, the agents interact via some empirical averages of quantities
which depend on the state variable.

The most common Mean Field Game systems, in which the agents may interact only
through their states can often be summarized by a system of two coupled partial differential
equations which is named the MFG system. On the one hand, the optimal value of a generic
agent at some time t and state x is denoted by u(t, x) and is defined as the lowest cost
that a representative agent can achieve from time t to T if it is at state x at time t. The
value function satisfies a Hamilton-Jacobi-Bellman equation posed backward in time with a
terminal condition involving a terminal cost. On the other hand, there is a Fokker-Planck-
Kolmogorov equation describing the evolution of the statistical distribution m of the state
variable; this equation is a forward in time parabolic equation, and the initial distribution
at time t = 0 is given. Here we take a finite horizon time T > 0, and we only consider
second-order nondegenerate MFG systems. In this case, the MFG system is often written
as:

(4.1.1)


− ∂tu(t, x)− ν∆u(t, x) +H(t, x,∇xu(t, x)) = f(t, x,m(t)) in (0, T )× Rd,
∂tm(t, x)− ν∆m(t, x)− div(Hp(t, x,∇xu(t, x))m) = 0 in (0, T )× Rd,
u(T, x) = g(x,m(T )) in Rd,
m(0, x) = m0(x) in Rd.

We refer the reader to [35] for some theoretical results on the convergence of the N -agent
Nash equilibrium to the solutions of the MFG system. For a thorough study of the well-
posedness of the MFG system, see the videos of P.L. Lions’ lecture at the Collège de France,
and the lecture notes [33].

In this paper we are considering a class of Mean Field Games in which agents may
interact through their states and controls. To underline this, we choose to use the ter-
minology Mean Field Games of Controls (MFGCs); this terminology was introduced in
[38].

Since the agents are assumed to be indistinguishable, a representative agent may be
described by her state, which is a random process with value in Rd denoted by (Xt)t∈[0,T ]

and satisfying the following stochastic differential equation,

(4.1.2) dXt = b (t,Xt, αt) dt+
√

2νdWt,

where X0 is a random process whose law is denoted by m0, (Wt)t∈[0,T ] is a Brownian
motion on Rd independefn with X0, and αt is the control chosen by the agent at time t.
The diffusion coefficient ν is assumed to be uncontrolled, constant and positive. The drift
b naturally depends on the control, and may also depend on the time and the state; see
Remark 4.2.9iv) below for allowing b to depend on µα the joint distribution of states and
controls of the agents. At the equilibrium µα should be the law of the state and the control
of the representative agent, i.e. µα(t) = L (Xt, αt), for t ∈ [0, T ]. The aim of an agent is
to minimize the functional given by,

(4.1.3) E
[∫ T

0
L (t,Xt, αt, µα(t)) + f (t,Xt,m(t)) dt+ g (XT ,m(T ))

]
,
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where m(t) is the distribution of agents at time t, which should satisfy m(t) = L (Xt)
at the equilibrium. The coupling function f and the terminal cost g depend on m in a
nonlocal manner. From L the Lagrangian and b the drift, we define H the Hamiltonian
by,

(4.1.4) H (t, x, p, µα) = sup
α∈Rd

−p · b (t, x, α)− L (t, x, α, µα) ,

for (t, x) ∈ [0, T ] × Rd, p ∈ Rd and µα ∈ P
(
Rd × Rd

)
, where P

(
Rd × Rd

)
is the set

of probability measures on Rd × Rd. Under some assumptions on b and L that will be
introduced later, there exists a unique α which achieves the supremum in the latter equality
and it also satisfies,

b (t, x, α) = −Hp (t, x, p, µα) .

In an attempt to keep this paper easy to read, we introduce µb as the joint law of states
and drifts defined by

(4.1.5) µb(t) =
(
πx, b (t)

)
#µα,

where πx : (x, α) 7→ x is the projection onto the first variable, b (t) is the map (x, α) 7→ b (t, x, α),
and

(
πx, b (t)

)
#µα is the pushforward measure of µα by the map (x, α) 7→ (x, b (t, x, α)).

We believe that the fixed point relation satisfied by µα at equilibrium is more clear if
we distinguish µb from µα. We assume that b is invertible with respect to α, we denote
α∗ : [0, T ]× Rd × Rd → Rd its inverse map, see Assumption B1 below. This implies that
the equality (4.1.5) can be inverted to express µα in term of µb and we obtain (4.1.6c)
below. Within this framework, the usual MFG system (4.1.1) is replaced by the following
Mean Field Game of Controls (MFGC for short) system,

(4.1.6a)

(4.1.6b)

(4.1.6c)

(4.1.6d)

(4.1.6e)

(4.1.6f)

− ∂tu− ν∆u+H (t, x,∇xu(t, x), µα(t)) = f(t, x,m(t)) in (0, T )× Rd,
∂tm− ν∆m− div (Hp (t, x,∇xu(t, x), µα(t))m) = 0 in (0, T )× Rd,

µα(t) =
(
πx, α

∗ (t)
)

#µb(t) in [0, T ],

µb(t) =
(
Id,−Hp (t, ·,∇xu(t, ·), µα(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in Rd,
m(0, x) = m0(x) in Rd,

where α∗ (t) is the map (x, b̃) 7→ α∗
(
t, x, b̃

)
. The structural assumption under which we

prove existence and uniqueness of the solution to (4.1.6) is that L satisfies the following
inequality, ∫

Rd×Rd

(
L
(
t, x, α, µ1

)
− L

(
t, x, α, µ2

))
d
(
µ1 − µ2

)
(x, α) ≥ 0.

for any t ∈ [0, T ], µ1, µ2 ∈ P
(
Rd × Rd

)
. This is the Lasry-Lions monotonicity assumption

extended to MFGC that will be referred to as A3. This assumption is particularly adapted
to applications in economics or finance.

This work follows naturally the analysis in [75] in which a MFGC system in the d-
dimensional torus and with b = α is considered. In [75], the monotonicity assumption
is replaced by another structural assumption, namely that the optimal control −Hp is a
contraction with respect to the second marginal of µ (when the other arguments and the
first marginal are fixed) and that it is bounded by a quantity that depends linearly on the
second marginal of µ with a coefficient smaller than 1.
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Related works

Monotonicity assumptions for MFGC like A3 have already been discussed in [38, 41, 59].
In [59], the authors proved uniqueness of the solution to (4.1.6) with b = α and ν = 0 when
it exists. In [41] Section 4.6, existence and uniqueness are proved in the quadratic case
with a uniformly convex Lagrangian and under an additional linear growth assumption on
Hx. In [38], the existence of weak solutions to a MFGC system with a possibly degenerate
diffusion operator is proved assuming that the inequalities satisfied by H, its derivatives
or the optimal control (here defined in B1 as α∗), are uniform with respect to the joint
law of states and controls µα.

A particular application of MFGC satisfying A3, namely the Bertrand and Cournot
competition for exhaustible ressource described in paragraph 4.3.1, has been broadly in-
vestigated in the literature. Let us mention a non exhaustive list of such works: [25, 47,
62, 65, 73]. Its mean field version has been introduced in [65], and obtained from the
N -agent game in [47] in the case of a linear supply-demand function. A generalization to
the multi-dimensional case is discussed in [25], and an extension to negatively correlated
ressources is addressed in [75].

A class of MFGC in which the Lagrangian depends separately on α and µ, has been
investigated in [43] and [41]. In this case, A3 is naturally satisfied since the left-hand side
of the inequality is identically equal to 0. An existence result is proved in [43] under the
additional assumption that the set of admissible controls is compact. The existence of
solution is also proved in [41] Theorem 4.65 when the dependency of L upon µ is uniformly
bounded with respect to µ.

The non-monotone case has been studied in [60, 75]. In [60], an existence result is
proved in the stationary setting and under the assumption that the dependence of H on
µ is small. In [75], the existence of solutions to the MFGC system in the d-dimensional
torus and with b = α is discussed under similar growth assumptions as here. Existence of
solutions to a MFGC system posed on the d-dimensional torus and with b = α was proved
in [75] in any of the following cases:

• short time horizon,

• small enough parameters,

• weak dependency of H upon µ,

• weak dependency of Hx upon µ,

and uniqueness is proved only for a short time horizon. Indeed without a monotonicity
assumption, it is unlikely that uniqueness holds in general, numerical examples of non-
uniqueness of solutions to discrete approximations of (4.1.6) with b = α and in a bounded
domain are showed in [2].

Organization of the paper

In Section 4.2, the notations and the assumptions are described, the case when the control
is equal to the drift is discussed. The main results of the paper, namely the existence and
uniqueness of solution to (4.1.6), are stated in paragraph 4.2.3. We give some insights
on our strategy for proving the main results in paragraph 4.2.3. Two applications of the
MFGC system (4.1.6) are presented in Section 4.3. Section 4.4 is devoted to solving the
fixed point relation in the joint law of state and control in the particular case when the drift
is equal to the control. Section 4.5 consists in giving a priori estimates for a MFGC system
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posed on the d-dimensional torus. In Section 4.6, we prove existence and uniqueness of the
solution to (4.1.6) and of an intermediate MFGC system.

4.2 Assumptions

4.2.1 Notations

The spaces of probability measures are equipped with the weak* topology. We denote
by P2

(
Rd
)
the subset of P

(
Rd
)
of probability measures with finite second moments, and

P∞
(
Rd × Rd

)
the subset of measures µ in P

(
Rd × Rd

)
with a second marginal compactly

supported. For µ ∈ P∞
(
Rd × Rd

)
and q̃ ∈ [1,∞), we define the quantities Λq̃(µ) and

Λ∞(µ) by,

(4.2.1)
Λq̃(µ) =

(∫
Rd×Rd

|α|q̃ dµ (x, α)

) 1
q̃

,

Λ∞(µ) = sup {|α| , (x, α) ∈ suppµ} .

For R > 0, we denote by P∞,R
(
Rd × Rd

)
the subset of measures µ in P∞

(
Rd × Rd

)
such

that Λ∞ (µ) ≤ R. The probability measures µα and µb involved in (4.1.6), have a particular
form, since they are the images of a measure m on Rd by (Id, α) and (Id, b) respectively,
where α and b are bounded measurable functions from Rd to Rd; in particular they are
supported on the graph of α and b respectively. For m ∈ P

(
Rd
)
, we call Pm

(
Rd × Rd

)
the set of such measures. For µ ∈ Pm

(
Rd × Rd

)
, we set αµ to be the unique element of

L∞ (m) such that µ = (Id, α
µ) #m. Here, Λq̃(µ) and Λ∞(µ) defined in (4.2.1) are given by

(4.2.2)
Λq′(µ) = ‖αµ‖

Lq′ (m)
,

Λ∞(µ) = ‖αµ‖L∞(m).

Let C0
(
[0, T ]× Rd;Rn

)
be the set of bounded continuous functions from [0, T ] × Rd to

Rn, for n a positive integer. We define C0,1
(
[0, T ]× Rd;R

)
as the set of the functions

v ∈ C0
(
[0, T ]× Rd;R

)
differentiable at any point with respect to the state variable, and

whose its gradient ∇xv is in C0
(
[0, T ]× Rd;Rd

)
the set of continuous functions from

[0, T ] × Rd to Rd. We shall have the use of the parabolic spaces of Hölder continuous
functions C

β
2
,β([0, T ]× Rd;Rn) defined for any β ∈ (0, 1) and n ≥ 1 by,

C
β
2
,β
(

[0, T ]× Rd;Rn
)

=

v ∈ C
0([0, T ]× Rd;Rn), ∃C > 0 s.t. ∀(t1, x1), (t2, x2) ∈ [0, T ]× Rd,

|v(t1, x1)− v(t2, x2)| ≤ C
(
|x1 − x2|2 + |t1 − t2|

)β
2

 .

This is a Banach space equipped with the norm,

‖v‖
C
β
2 ,β

= ‖v‖∞ + sup
(t1,x1)6=(t2,x2)

|v(t1, x1)− v(t2, x2)|

(|x1 − x2|2 + |t1 − t2|)
β
2

.

Then we introduce the Banach space C
1+β
2
,1+β([0, T ] × Rd;R) for β ∈ (0, 1) as the set of

the functions v ∈ C0,1([0, T ] × Rd;R) such that ∇xv ∈ C
β
2
,β
(
[0, T ]× Rd;Rn

)
and which

admits a finite norm defined by,

‖v‖
C

1+β
2 ,1+β

= ‖v‖∞ + ‖∇xv‖
C
β
2 ,β

+ sup
(t1,x) 6=(t2,x)∈[0,T ]×Rd

|v(t1, x)− v(t2, x)|
|t1 − t2|

1+β
2

.
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When the drift b is equal to the control α, (4.1.6) can be simplified in the following
system,

(4.2.3a)

(4.2.3b)

(4.2.3c)

(4.2.3d)

(4.2.3e)

− ∂tu− ν∆u+H (t, x,∇xu(t, x), µ(t)) = f(t, x,m(t)) in (0, T )× Rd,
∂tm− ν∆m− div (Hp (t, x,∇xu(t, x), µ(t))m) = 0 in (0, T )× Rd,

µ(t) =
(
Id,−Hp (t, ·,∇xu(t, ·), µ(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in Rd,
m(0, x) = m0(x) in Rd.

Here, making a distinction between µα and µb is pointless since they coincide. Therefore,
we simply use the notation µ. For the system (4.2.3), the Hamiltonian is defined as the
Legendre transform of L,

(4.2.4) H (t, x, p, µ) = sup
α∈Rd

−p · α− L (t, x, α, µ) .

Definition 4.2.1. We say that (u,m, µα, µb) is a solution to (4.1.6) if

• u ∈ C0,1
(
[0, T ]× Rd;R

)
is a solution to the heat equation in the sense of distributions

with a right-hand side equal to (t, x) 7→ f(t, x,m(t))−H (t, x,∇xu, µ(t)), and satisfies
the terminal condition (4.1.6e),

• m ∈ C0
(
[0, T ];P

(
Rd
))

is a solution to (4.1.6b) in the sense of distributions, and
satisfies the initial condition (4.1.6f),

• µα(t), µb(t) ∈ P
(
Rd × Rd

)
satisfy (4.1.6c) and (4.1.6d) for any t ∈ [0, T ].

We say that (u,m, µ) is a solution to (4.2.3) if u and m respectively satisfy the first two
points of the latter definition with (4.2.3) instead of (4.1.6), and if µ(t) ∈ P

(
Rd × Rd

)
satisfies (4.2.3c) for any t ∈ [0, T ].

4.2.2 Hypotheses

The monotonicity assumption made in this paper concerns the Lagrangian. For this reason
and the fact that sometimes it may be hard to obtain an explicit form of the Hamiltonian
(like in the example of paragraph 4.3.2 below), all the assumptions will be formulated in
term of the Lagrangian and never in term of the Hamiltonian. In particular, working with
the Lagrangian gives more flexibility in the arguments of the proofs.

The constants entering the assumptions are C0 a positive constant, q ∈ (1,∞) an
exponent, q′ = q

q−1 its conjugate exponent, and β0 ∈ (0, 1) a Hölder exponent.

A1 L : [0, T ]×Rd×Rd×P
(
Rd × Rd

)
→ R is differentiable with respect to (x, α); L and

its derivatives are continuous on [0, T ] × Rd × Rd × P∞,R
(
Rd × Rd

)
for any R > 0;

we recall that P∞,R
(
Rd × Rd

)
is endowed with the weak* topology on measures; we

use the notation Lx, Lα and L(x,α) for respectively the first-order derivatives of L
with respect to x, α and (x, α) .

A2 The maximum in (4.1.4) is achieved at a unique α ∈ Rd.

A3 L satisfies the following monotonicity condition,∫
Rd×Rd

(
L
(
t, x, α, µ1

)
− L

(
t, x, α, µ2

))
d
(
µ1 − µ2

)
(x, α) ≥ 0.

for any t ∈ [0, T ], µ1, µ2 ∈ P
(
Rd × Rd

)
.
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A4 L(t, x, α, µ) ≥ C−1
0 |α|q

′ − C0

(
1 + Λq′ (µ)q

′
)
, where Λq′ is defined in (4.2.1),

A5 |L(t, x, α, µ)| ≤ C0

(
1 + |α|q′ + Λq′ (µ)q

′
)
, and |Lx(t, x, α, µ)| ≤ C0

(
1 + |α|q′ + Λq′ (µ)q

′
)
,

A6
∫
Rd |x|

2dm0(x) ≤ C0,
∥∥m0

∥∥
Cβ0
≤ C0, ‖f(t, ·,m)‖C1 ≤ C0, ‖g(·,m)‖C2+β0 ≤ C0, for

any t ∈ [0, T ] and m ∈ P
(
Rd
)
.

Assumption A3 can be interpreted as a natural extension of the Lasry-Lions monotonicity
condition to MFGC. Roughly speaking, the Lasry-Lions monotonicity condition in the
case of MFG without interaction through controls, translates the fact that the agents have
aversion for crowed regions of the state space. In the case of MFGC, the monotonicity
condition implies that the agents favor moving in a direction opposite to the mainstream.
Such an assumption is adapted to models of agents trading goods or financial assets. Indeed
in most of the models coming from economics or finance, a buyer may prefer to buy when
no one else is buying, and conversely a seller may prefer to sell when no one else is selling.

Assumptions A4 and A5 imply that at least asymptotically when α tends to infinity,
L behaves like a power of α of exponent q′. Under the monotonicity assumption A3,
uniqueness is in general easier to obtain than existence. For uniqueness, we assume that f
and g are also monotonous, this is the purpose of the following assumption.

U For m1,m2 ∈ P
(
Rd
)
, and t ∈ [0, T ], assume that,∫

Rd

(
f
(
t, x,m1

)
− f

(
t, x,m2

))
d
(
m1 −m2

)
(x) ≥ 0,∫

Rd

(
g
(
x,m1

)
− g

(
x,m2

))
d
(
m1 −m2

)
(x) ≥ 0.

In fact, assuming that f satisfies the inequality in U, implies that we can take f = 0 up
to replacing L by L + f and H by H − f . However, since U is not assumed for proving
the existence of solutions, we have chosen to write this assumption explicitly, and keeping
f 6= 0 is not pointless.

Let us now make assumptions on the drift function b, which concern the system (4.1.6),

B1 There exists a function α∗ : [0, T ]×Rd×Rd → Rd such that the map b̃ 7→ α∗
(
t, x, b̃

)
is the inverse map of α 7→ b (t, x, α), for any (t, x) ∈ [0, T ] × Rd. Moreover α∗ is
continuous, differentiable with respect to x and b̃, with continuous derivatives.

B2 b and α∗ satisfy

|b (t, x, α, µα)| ≤ C0 (1 + |α|q0) ,∣∣∣α∗ (t, x, b̃, µb)∣∣∣q0 +
∣∣∣α∗x (t, x, b̃, µb)∣∣∣q0 ≤ C0

(
1 + |b̃|

)
,

for some exponent q0 such that 0 ≤ q0 ≤ q′.

The inequalities inB2mean that |b| behaves asymptotically like a power of α with exponent
q0, when |α| is large.

99



4.2. Assumptions

4.2.3 Main results

The two main results in this work are Theorems 4.2.2 and 4.2.3 below, which respectively
state the existence and uniqueness of the solution to (4.1.6).

Theorem 4.2.2. Under assumptions A1-A3, U and B1 there is at most one solution to
(4.1.6).

Uniqueness results for MFGC systems with a monotonicity assumption have been
proved in [59] and [41]. In [59], uniqueness is proved when the diffusion coefficient is
equal to 0 and the drift is equal to the control, i.e. ν = 0 and b = α. In [41] Section 4.6,
the authors stated uniqueness in the quadratic case. Theorem 4.2.2 is new in the sense
that it yields uniqueness for a large new class of Lagrangians and drift functions. Indeed,
beside the monotonicity assumption A3 and U, we only assume that L satisfies A1 and
A2, and that the drift b is invertible in the sense of B1.

Theorem 4.2.3. Under assumptions A1-A6 and B1-B2, there exists a solution to (4.1.6).

The existence of solutions of the MFGC system is in general much more demanding
than for MFG systems without interactions through the controls. Under monotonicity
assumptions similar to A3, existence has been proved in [41] Section 4.6, for quadratic and
uniform convex Lagrangians with a growth condition on the derivatives of the Hamiltonian.
In [38], the existence of weak solutions of the monotonous MFGC system is discussed with a
possibly degenerate diffusion operator, under assumptions which are uniform with respect
to the joint law of states and controls.

Here, we prove existence of solutions of the monotonous MFGC system for a large class
of Lagrangians and the drifts. Namely, we assume that the Lagrangians and drifts behave
asymptotically like a power of α; we allow them to have a growth in the law of the controls
of at most the same order as the order of dependency upon α.

Before starting the discussion on existence of solutions to the MFGC systems (4.1.6)
and (4.2.3), we introduce a new MFGC system set in the torus, so that the solutions should
have more compactness properties. We define Tda = Rd/

(
aZd

)
the d-dimensional torus of

radius a > 0. Namely, we consider:

(4.2.5a)

(4.2.5b)

(4.2.5c)

(4.2.5d)

(4.2.5e)

− ∂tu− ν∆u+H (t, x,∇xu(t, x), µ(t)) = f(t, x,m(t)) in (0, T )× Tda,
∂tm− ν∆m− div (Hp (t, x,∇xu(t, x), µ(t))m) = 0 in (0, T )× Tda,

µ(t) =
(
Id,−Hp (t, ·,∇xu(t, ·), µ(t))

)
#m(t) in [0, T ],

u(T, x) = g(x,m(T )) in Tda,
m(0, x) = m0(x) in Tda.

All the assumptions in paragraph 4.2.2 are stated in Rd. When considering that L :
[0, T ]×Tda ×Rd ×P

(
Tda × Rd

)
→ R (like in (4.2.5)) satisfies one of those assumptions, we

shall simply replace Rd by Tda as the state set in the chosen assumption.
The fixed point satisfied by the joint law of states and controls, namely (4.1.6c)-(4.1.6d),

(4.2.3c) or (4.2.5c), may be a difficult issue for MFGC systems. Here, using mainly the
monotonicity assumption A3 and the compactness of the state space of (4.2.5), we prove
in Section 4.4 the following lemma which states well-posedness for the fixed point (4.2.5c),
and ensures continuity with respect to time.

Lemma 4.2.4. Assume A1-A5. Let p ∈ C0
(
[0, T ]× Tda;Rd

)
and m ∈ C0

(
[0, T ];P

(
Tda
))

be such that t 7→ p(t, ·) is continuous with respect to the topology of the local uniform
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convergence and m(t) admits a finite second moment uniformly bounded with respect to
t ∈ [0, T ]. For any t ∈ [0, T ], there exists a unique µ(t) ∈ P

(
Tda × Rd

)
such that

µ(t) = (Id,−Hp (t, ·, p(t, ·), µ(t))) #m(t).

Moreover, the map t 7→ µ(t) is continuous where P
(
Tda × Rd

)
is equipped with the weak*

topology.

The next step in our strategy for proving existence is to look for a priori estimates for
the solutions of the MFGC systems and obtain compactness results to use a fixed point
theorem. In section 4.5, we prove the a priori estimates stated in the following lemma for
solutions to (4.2.5).

Lemma 4.2.5. Assume A1-A6. If (u,m, µ) is a solution to (4.2.5), then ‖u‖∞, ‖∇xu‖∞
and sup

t∈[0,T ]
Λ∞ (µ(t)) are uniformly bounded by a constant independent of a.

Let us mention that the a priori estimates of Lemma 4.2.5 rely on the monotonicity
assumption on L and a Bernstein method introduced in [75]. To our knowledge, these
are the first results in the literature of MFGC which use the monotonicity assumption for
getting a priori estimates. They are the key ingredients of the proof of the existence of
solutions to (4.2.5) in the following theorem, proved in paragraph 4.6.1.

Theorem 4.2.6. Under assumptions A1-A6, there exists a solution to system (4.2.5).

Therefore, for any a > 0 we can construct a solution to (4.2.5) which satisfies uniform
estimates with respect to a. This allows us to construct a compact sequence of approxi-
mating solutions to (4.2.3). Passing to the limit for a subsequence allows us to generalize
the conclusion of Theorem 4.2.6 to system (4.2.3). This leads to the following theorem
proved in paragraph 4.6.2.

Theorem 4.2.7. Under assumptions A1-A6, there exists a solution to (4.2.3).

Uniqueness relies on the monotonicity assumptions A3 and U, the following theorem
is proved in paragraph 4.6.3.

Theorem 4.2.8. Under assumptions A1-A3 and U, there is at most one solution to
(4.2.3) or (4.2.5).

The idea to pass from (4.2.3) to (4.1.6), is to change the optimization problem in α
into a new optimization problem expressed in term of b. In paragraph 4.6.4, we prove the
equivalence between the solutions of these two optimization problems. A first existence
results for (4.1.6) is stated in Corollary 4.6.3 which uses this equivalence. Theorem 4.2.3 is
a consequence of Corollary 4.6.3 with more tractable assumptions. Let us mention that for
proving Theorem 4.2.3, the structure of the Lagrangian should be invariant when passing
from one optimization problem to the other. In particular, one may figure out that the
assumptions on the Lagrangian behaving asymptotically like a power of α are preserved
under our assumptions on the drift function b.

Finally, Theorem 4.2.2 is a consequence of Theorem 4.2.8 and the above-mentioned
equivalence between the two optimization problems.

Remark 4.2.9. i) If the Lagrangian admits the following form,

L (t, x, α, µ) = L0 (t, x, α) + L1 (t, µ) ,
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we say that the Lagrangian is separated. Then A3 is automatically satisfied since the
left-hand side of the inequality is identically equal to 0. In this case, the assumptions
on L are satisfied if L0 behaves asymptotically like a power of α of exponenent q′,
and L1 at most involves Λq0(µ)q

′ .

Here, we do not provide an explicit application in which the Lagrangian is separated,
however this is a general hypothesis in the MFGC literature. Therefore, our frame-
work in the present paper can be seen as an extension of the case when L is separated.

ii) All our assumptions are uniform with respect to the state variable x. In particular,
we restrain from considering more general functions f and g since this topic has been
investigated in the literature devoted to MFG systems without interaction through
controls; we believe that the same tools can be applied to the present case, and that
our results may be extended so.

iii) We did not address the case without diffusion, i.e. ν = 0. However, all the a priori
estimates of Sections 4.4 and 4.5 are uniform with respect to ν. Here, the diffusion is
used to easily obtain compactness results which are central for proving our existence
results since the proofs rely on a fixed point theorem and approximating sequences of
solutions. Using weaker topological spaces and tools from the literature devoted to
weak solutions of systems of MFGs without interaction through controls, we believe
that we can extend our results to weak solutions to MFGC systems without diffusion
or with possibly degenerate diffusion operators. We plan to address this question in
forthcoming works.

iv) We may also assume that b and α∗ depend on µα and µb respectively, i.e. b, α∗ :
[0, T ]×Rd ×Rd ×P

(
Rd × Rd

)
7→ Rd. In this case, Theorems 4.2.2 and 4.2.3 hold if

we replace A3 by the following monotonicity condition:

A’3 For any t ∈ [0, T ] and µi ∈ P
(
Rd × Rd

)
, i = 1, 2, we set µiα =

(
πx, α

∗ (t, µi))#µi

and µ̃iα =
(
πx, α

∗ (t, µ3−i))#µi. We assume that L satisfies

∫
Rd×Rd

(
L
(
t, x, α, µ1

α

)
− L

(
t, x, α, µ̃2

α

))
dµ1

α(x, α)

+

∫
Rd×Rd

(
L
(
t, x, α, µ2

α

)
− L

(
t, x, α, µ̃1

α

))
dµ2(x, α) ≥ 0.

In this case, we may relax Assumption B2 by adding the terms C0Λq′ (µα)q0 and
C0Λ q′

q0

(µb) to the right-hand sides of the first and second inequalities respectively.

When B1 holds and α∗ does not depend on µb, Assumptions A’3 and A3 are equiv-
alent.

General outline

The present work aims at proving Theorems 4.2.2 and 4.2.3. We list below the main steps
of our analysis to make it easier for the reader to understand the structure of the proofs.

I We solve the fixed point (4.2.5c) in µ, which proves Lemma 4.2.4, in three steps:

I.a in Lemma 4.4.1 we state a priori estimates for a solution of (4.2.5c);
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I.b using the Leray-Schauder fixed point theorm (Theorem 4.4.2), we solve the fixed
point (4.2.5c) at any time t ∈ [0, T ], in Lemma 4.4.3;

I.c we prove that the fixed point µ(t) defined at any t ∈ [0, T ] in step I.b, is
continuous with respect to time (Lemma 4.4.4); this implies lemma 4.2.4.

II We prove the existence of a solution to (4.2.5), stated in Theorem 4.2.6, in two steps:

II.a we obtain a priori estimates for solutions to (4.2.5) (Lemmas 4.2.5 and 4.5.1);

II.b in paragraph 4.6.1, we use Leray-Schauder fixed point theorem (Theorem 4.4.2)
and the estimates of step II.a to conclude.

III We prove existence and uniqueness of the solution to (4.2.3) (Theorems 4.2.7 and
4.2.8):

III.a the proof of Theorem 4.2.7 is given in paragraph 4.6.2;

III.b the proof of Theorem 4.2.8 is given in paragraph 4.6.3;

IV The proof of existence and uniqueness of the solution to (4.1.6) (Theorems 4.2.2 and
4.2.3) is given in paragraph 4.6.4.

Contribution

An important novelty in the present work comes from the assumptions we are considering.
On the one hand, we consider a general class of monotonous Lagrangians which behave
asymptotically like a power of α with any exponent in (1,∞) (while most of the results
in the literature only address the quadratic case with uniformly convex Lagrangian); they
may depend on moments of µα at most of the same order as the above-mentioned exponent
of L in α; we do not require them to depend separately on (x, α) and µα. On the other
hand, the drift functions are also general since we allow them to behave like power functions
and to be not separated too. See the assumptions in paragraph 4.2.2 for more details.

Moreover, most contributions focus on MFG systems stated on Td for simplicity. Here,
we introduce a method to extend an existence result for a MFGC system stated on the
torus to its counterpart on the whole Euclidean space. In particular, this method holds
for MFG system without interaction through controls and the proof becomes easier. See
paragraph 4.6.2. We also introduce a method to extend the well-posedness of MFGC (or
MFG) systems to general drift functions, see paragraph 4.6.4. We would like to insist
on the fact that our techniques are designed in order to preserve the structure of the
Lagrangian when passing from one setting to another. Here, namely it preserves the
monotonicity assumption A3. Furthermore, these methods apply to the conclusions of
[75] and consequently generalize them.

4.2.4 Properties of the Lagrangian and the Hamiltonian in (4.2.3) and
(4.2.5)

Here, we write the results and the proofs for the Lagrangian and Hamiltonian involved
in system (4.2.3). However, none of the arguments below is specific to the domain Rd,
therefore the conclusions hold and the proofs can be repeated for the Lagrangian and
Hamiltonian involved in (4.2.5).

We start by proving that under the assumptions of paragraph 4.2.2, when b = α, L is
strictly convex.
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Lemma 4.2.10. If L is coercive and differentiable with respect to α, and b = α, assuming
that L is strictly convex is equivalent to A2.

Proof. If L is stricly convex and coercive, it is straightforward to check A2.
Conversely, we take (t, x, µ) ∈ [0, T ] × Rd × P

(
Rd × Rd

)
. We set `(α) = L (t, x, α, µ).

It is sufficient to prove that ` is strictly convex.
First step: proving that ` is convex.
We define `∗∗ as the biconjugate of `, `∗∗ is in particular the Legendre transform of

H (t, x, ·, µ). The map `∗∗ is convex and continuous since ` is coercive, and it satisfies
`∗∗ ≤ `. In what follows, we will prove that `∗∗ = `.

We assume by contradiction that `∗∗ 6= `: there exists α0 ∈ Rd such that `∗∗
(
α0
)
<

`
(
α0
)
. We recall that ` and `∗∗ admit the same convex envelope, therefore by Carathéorthéodory’s

theorem, there exists
(
αi
)

1≤i≤d+1
∈
(
Rd
)d+1 and

(
λi
)

1≤i≤d+1
∈ (R+)d+1 such that

α0 =
d+1∑
i=1

λiαi, `∗∗
(
α0
)

=
d+1∑
i=1

λi`
(
αi
)
, and

d+1∑
i=1

λi = 1.

Using the inequality `∗∗ ≤ `, we obtain that

`∗∗(α) =
d+1∑
i=1

λi`
(
αi
)
≥

d+1∑
i=1

λi`∗∗
(
αi
)
.

This inequality is in fact an equality since `∗∗ is convex, which implies that `∗∗
(
αi
)

= `
(
αi
)

for any i ∈ {1, 2, . . . , d+ 1}. Take p ∈ ∂`∗∗
(
α0
)
, where ∂`∗∗

(
α0
)
is the subdifferential of

`∗∗ at α0. For i ∈ {1, . . . , d+ 1}, this implies

`
(
αi
)

= `∗∗
(
αi
)
≥ `∗∗

(
α0
)

+ p ·
(
αi − α0

)
.

Multiplying the latter inequality by λi and taking the sum over i, yield that it is in fact
an equality. Then, it is straightforward to check that p ∈ ∂`∗∗

(
αi
)
for any i; this implies

that p = ∇α`
(
αi
)
, since `∗∗

(
αi
)

= `
(
αi
)
and ` is differentiable with respect to α. The

maximum in the definition of H(t, x,−p, µ) is achieved at any αi, this is a contracdition
with A2. Therefore ` = `∗∗ and ` is convex.

Second step: ` is striclty convex.
By definition of the subdifferential of a convex function, α ∈ Rd achieves the maximum

in the definition of H (t, x,−∇α` (α) , µ). Using the fact that this maximum is unique by
A2, we obtain the strict convexity of `, and the one of L with respect to α.

In paragraph 4.2.2, we assume that L behaves at infinity as a power of α of exponent q′.
Because of the conjugacy relation between L and H, it implies that H behaves at infinity
like a power of p of exponent q.

Lemma 4.2.11. Under assumptions A1, A2, A4 and A5, the map H, defined in 4.2.4,
is differentiable with respect to x and p, H and its derivatives are continuous on [0, T ] ×
Rd ×Rd × P∞,R

(
Rd × Rd

)
for any R > 0. Moreover there exists C̃0 > 0 a constant which

only depends on C0 and q such that

|Hp (t, x, p, µ)| ≤ C̃0

(
1 + |p|q−1 + Λq′ (µ)

)
,(4.2.6)

|H (t, x, p, µ)| ≤ C̃0

(
1 + |p|q + Λq′ (µ)q

′
)
,(4.2.7)

p ·Hp (t, x, p, µ)−H (t, x, p, µ) ≥ C̃−1
0 |p|

q − C̃0

(
1 + Λq′ (µ)q

′
)
,(4.2.8)

|Hx (t, x, p, µ)| ≤ C̃0

(
1 + |p|q + Λq′ (µ)q

′
)
,(4.2.9)
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for any (t, x) ∈ [0, T ]× Rd, p ∈ Rd and µ ∈ P
(
Rd × Rd

)
.

Up to replacing C0 with max(C0, C̃0), we can assume that the inequalities in Lemma
4.2.11 are satisfied with C0 instead of C̃0.

Let us notice that it is possible and not more difficult to extend the results stated in
Lemma 4.2.11 to the Hamiltonian used in (4.1.6) and defined in (4.1.4), however we will
not have any use of such results in the present paper.

Proof. First step: differentiability of H in p, and continuity of H and Hp.
For (t, x, µ) ∈ [0, T ]×Rd×P

(
Rd × Rd

)
, the map α 7→ L (t, x, α, µ) is stricly convex by

Lemma 4.2.10 and coercive byA4; Theorem 26.6 in [97] implies thatH is differentiable with
respect to p, the map α 7→ −Lα (t, x, α, µ) is invertible; its iverse map is p 7→ −Hp (t, x, p, µ)
by [97] Theorem 26.5. Theorem 26.6 in [97] also implies that the maximum in 4.2.4 is
achieved by a unique control given by −Hp (t, x, p, µ). In the next step, we prove 4.2.6
which implies that Hp maps the bounded subsets of [0, T ] × Rd × Rd × P∞,R

(
Rd × Rd

)
for R > 0 into relatively compact subspaces of Rd; we recall that Lα is continuous on
[0, T ]×Rd×Rd×P∞,R

(
Rd × Rd

)
; therefore Hp is likewise continuous on the same space.

We recall that H satisfies

H(t, x, p, µ) = p ·Hp (t, x, p, µ)− L (t, x,−Hp (t, x, p, µ) , µ) ,

therefore H is also continuous on the same spaces.
Second step: proving the first three inequalities of the Lemma. Using the growth as-

sumptions on L, we first prove (4.2.6). On the one hand we have that

H (t, x, p, µ) ≥ −L (t, x, 0, µ) ≥ −C0

(
1 + Λq′(µ)q

′
)
,

by A4 and the condition of optimality in (4.2.4). On the other hand, A5, the fact that
−Hp (t, x, p, µ) satisfies the optimality condition in (4.2.4), and the Young inequality y ·z ≤
|y|q
q + |z|q′

q′ for y, z ∈ Rd, yield that,

H (t, x, p, µ) = p ·Hp (t, x, p, µ)− L (t, x,−Hp (t, x, p, µ) , µ)

≤ 1

q′C0
|Hp (t, x, p, µ)|q

′
+
C

q
q′
0

q
|p|q − C−1

0 |Hp (t, x, p, µ)|q
′
+ C0

(
1 + Λq′(µ)q

′
)

≤ − 1

qC0
|Hp (t, x, p, µ)|q

′
+
C

q
q′
0

q
|p|q + C0

(
1 + Λq′(µ)q

′
)
.

Therefore, using the latter two chains of inequalities, and the fact that q
q′ = q − 1, we

obtain that,

(4.2.10)
1

qC0
|Hp (t, x, p, µ)|q

′
≤ Cq−1

0

q
|p|q + 2C0

(
1 + Λq′(µ)q

′
)
.

This and the inequality |y + z|
1
q′ ≤ |y|

1
q′ + |z|

1
q′ for y, z ∈ R, imply that

|Hp (t, x, p, µ)| ≤ Cq−1
0 |p|q−1 +

(
2qC2

0

) 1
q′
(
1 + Λq′(µ)

)
.

From A5 and (4.2.10), we obtain that,

|H (t, x, p, µ)| = |p ·Hp (t, x, p, µ)− L (t, x,−Hp (t, x, p, µ) , µ)|

≤ |p|
q

q
+
|Hp (t, x, p, µ)|q

′

q′
+ C0

(
1 + |Hp (t, x, p, µ)|q

′
+ Λq′(µ)q

′
)

≤
(

1

q
+
Cq0
q′

)
|p|q + C0

(
1 + 2qC0

(
1

q′
+ C0

))(
1 + Λq′(µ)q

′
)
.
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We still have to prove (4.2.8). Let ε be a positive constant depending only on C0 such that
ε− C0ε

q′ ≥ ε
2 , by the optimality condition in (4.2.4) used with α = −ε|p|q−2p, we have,

H (t, x, p, µ) ≥ ε|p|q − L
(
t, x,−ε|p|q−2p, µ

)
≥ ε|p|q − C0

(
1 + εq

′ |p|(q−1)q′ + Λq′ (µ)q
′
)

≥ ε

2
|p|q − C0

(
1 + Λq′ (µ)q

′
)
.

Then from A5,

H (t, x, p, µ) = p ·Hp (t, x, p, µ)− L (t, x,−Hp (t, x, p, µ) , µ)

≤ ε

4
|p|q +

(
4qε−1

) q′
q

q′
|Hp (t, x, p, µ)|q

′
+ C0

(
1 + |Hp (t, x, p, µ)|q

′
+ Λq′(µ)q

′
)
.

Combining the latter two chains of inequalities, there exists C a positive constant depending
only on C0 such that

|Hp (t, x, p, µ)|q
′
≥ C−1|p|q − C

(
1 + Λq′ (µ)q

′
)
.

This and A4 yield that

p ·Hp (t, x, p, µ)−H (t, x, p, µ) = L (t, x,−Hp (t, x, p, µ) , µ)

≥ C−1
0 |Hp (t, x, p, µ)|q

′
− C0

(
1 + Λq′ (µ)q

′
)

≥ (C0C)−1 |p|q −
(
C0 + C−1

0 C
) (

1 + Λq′(µ)q
′
)
.

Third step: the smothness properties and the last inequality.
From (4.2.6), −Hp(t, x, p, µ) is locally uniformly bounded, therefore we can reduce the

set of admissible controls α in (4.2.4) from Rd to a compact subset of Rd. Within this
framework, the envelop theorem states that H is differentiable in x and its derivatives are
defined by,

Hx (t, x, p, µ) = −Lx (t, x,−Hp (t, x, p, µ) , µ) .

The continuity property of Hx relies on the ones of Lx and Hp. Moreover, from A5 and
(4.2.10), we obtain

|Hx (t, x, p, µ)| ≤ Cq+1
0 |p|q + C0

(
1 + 2qC2

0

) (
1 + Λq′ (µ)q

′
)
.

This concludes the proof.

4.3 Applications

4.3.1 Exhaustible ressource model

This model is often referred to as Bertrand and Cournot competition model for exhaustible
ressources, introduced in the independent works of Cournot [50] and Bertrand [23]; its mean
field game version in dimension one was introduced in [65] and numerically analyzed in
[47]; for theoretical results see [25, 62, 73, 63]. We consider a continuum of producers
selling exhaustible ressources. The production of a representative agent A reprensentative
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agent contols her production αt ≥ 0; the agents differ in their production capacity Xt ∈ R
(the state variable), that satifies,

dXt = −αtdt+
√

2νdWt,

where ν > 0 and W is a d-dimensional Brownian motion. Each producer is selling a
different ressource and has her own consumers. However, the ressources are substitutable
and any consumer may change her mind and buy from a competitor depending on the
degree of competition in the game (which stands for ε in the linear demand case below
for instance). Therefore the selling price per unit of ressource that a producer can make
when she sales α units of ressource, depends naturally on α and on the quantity produced
by the other agents. The price satisfies a supply-demand relationship, and is given by
P (α, α), where α is the accumulated demand which depends on the overall distribution
of productions of the agents. A producer tries to maximize her profit, or equivalently to
minimize the following quantity,

E
[∫ T

0
−P (αt, αt) · qtdt+ g (XT )

]
,

where g is a terminal cost which often penalizes the producers who have non-zero pro-
duction capacity at the end of the game. In [47], the authors considered a linear demand
system depending on αlin =

∫
R×R αdµ(x, α) where µ is the joint law of states and controls,

and a price defines by Plin(α, αlin) = 1−α− εαlin. In this case, Llin the running cost, and
Hlin its Legendre transform are defined by

Llin (α, µ) = α2 + εαα− α,

H lin (p, µ) =
1

4
(p+ εα− 1)2 ,

where α, p ∈ R, µ ∈ P (R× R) and α is defined by α =
∫
R×R α̃dµ(y, α̃). Therefore the

system of MFGC has the following form,

− ∂tu− ν∆u+
1

4
(∇xu+ εα− 1)2 = 0,

∂tm− ν∆m− div

(
1

2
(∇xu+ εα− 1)m

)
= 0,

α(t) = −
∫
Rd

1

2
(∇xu+ εα(t)− 1) dm(t, x),

u(T, x) = g(x),

m(0, x) = m0(x),

for (t, x) ∈ [0, T ]×R. Roughly speaking, ε = 0 corresponds to a monopolist who does not
suffer from competition, and she plays as if she was alone in the game. Conversely, ε =∞
stands for all the producers selling the same ressource and the consumers not having any
a priori preference.

Let us consider the following generalization of the latter system to the d-dimensional
case with a more general Hamiltonian and interaction through controls,

(4.3.1)



− ∂tu− ν∆u+H
(
t, x,∇xu+ ϕ(x)TP (t)

)
= f(t, x,m(t)),

∂tm− ν∆m− div
(
Hp

(
t, x,∇xu+ ϕ(x)TP (t)

)
m
)

= 0,

P (t) = Ψ

(
t,−

∫
Rd
ϕ(x)Hp

(
t, x,∇xu+ ϕ(x)TP (t)

)
dm(t, x)

)
,

u(T, x) = g(x,m(T )),

m(0, x) = m0(x),
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where ϕ : Rd 7→ Rd×d and Ψ : Rd 7→ Rd×d are given functions. The counterpart of the
latter system posed on Td has been introduced in [25]. Theorem 4.2.2 and 4.2.3 provide
the existence and the uniqueness respectively of the solution of this MFGC system.

Proposition 4.3.1. Assume A1, A2, U. If the function Ψ is continuous, Ψ(t, ·) is mono-
tone, locally Lipschitz continuous, and admits at most a power-like growth of exponent q′−1
with a coefficient uniform in t ∈ [0, T ], there exists at most one solution to (4.3.1).

Proposition 4.3.2. Assume A1, A2, A4-A6, and that Ψ satisfies the same assumptions
as in Proposition 4.3.1. There exists a solution to (4.3.1).

Proof. Take the drift function as b = α. We define the Lagrangian ` by

` (t, x, α, µ) = L (t, x, α) + ϕ(x)α · P (t, µ) + f(t, x,m),

where L is the Legendre transform of the map H in (4.3.1), and P (t, µ) is defined by
P (t, µ) = Ψ

(
t,
∫
Rd×Rd ϕ(x)αdµ(x, α)

)
, for (t, x, α,m, µ) ∈ [0, T ] × Rd × Rd × P

(
Rd
)
×

P
(
Rd × Rd

)
such that m is the first marginal of µ. We take h as the Legendre transform

of ` with respect to α.
If Ψ satisfies the assumptions in 4.3.1, any of the assumptions A1, A2, A4, or A5 is

preserved by replacing L by `. Moreover, a straightforward calculation yields that∫
Rd×Rd

(
`
(
t, x, α, µ1

)
− `
(
t, x, α, µ2

))
d
(
µ1 − µ2

)
(x, α)

=
(
P
(
t, µ1

)
− P

(
t, µ2

))
·
∫
Rd×Rd

ϕ(x)αd
(
µ1 − µ2

)
(x, α),

for t ∈ [0, T ] and µ1, µ2 ∈ P
(
Rd × Rd

)
. This and the monotonicity of Ψ implies that `

satisfies A3. Therefore, Propositions 4.3.1 and 4.3.2 are direct consequences of Theorems
4.2.2 and 4.2.3 respectively.

In [25], similar existence and uniqueness results for the counterpart of (4.3.1) posed on
Td are given in the quadratic setting, with a uniformly convex Lagrangian and Ψ being the
gradient of a convex map. Here, we generalize their results to a wider class of Lagrangians
and functions Ψ.

For an extension of this model to the case when Ψ is non-monotone, see [75].

4.3.2 A model of crowd motion

This model of crowd motion has been introduced in [75] in the non-monotone setting. It has
been numerically studied in [2] in the quadratic non-monotone case. For µ ∈ P

(
Rd × Rd

)
we define V (µ) the average drift by,

V (µ) =
1

Z(µ)

∫
Rd×Rd

αk(x)dµ(x, α),

where Z(µ) is a normalization constant defined by Z(µ) =
(∫

Rd×Rd k(x)q1dµ(x, α)
) 1
q1 , for

some constant q1 ∈ [q,∞] where q is defined below. To be consistent with the notations
used in [75], k : Rd → R+ is a non-negative kernel. By convention, if Z (µ) = 0, we take
V (µ) = 0.
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The state of a representative agent is given by her position Xt ∈ Rd which she controls
through her velocity α via the following stochastic differential equation,

dXt = αtdt+
√

2νdWt.

Her objective is to minimize the cost functional given by,

E
[∫ T

0

θ

2
|αt + λV (µ(t))|2 +

1− θ
a′
|αt|a

′
+ f(t,Xt,m(t))dt+ g(XT ,m(T ))

]
,

where λ ≥ 0 and 0 ≤ θ ≤ 1 are two constants standing for the intensity of the preference
of an individual to have an opposite control as the stream one, and a′ > 1 is an exponent.
In this model we define the Lagrangian L by,

L (x, α, µ) =
θ

2
|α+ λV (µ)|2 +

1− θ
a′
|α|a

′
,

and the Hamiltonian H as its Legendre transform. The map H does not admit an explicit
form for every choice of the parameters a′. We take q′ = max (2, a′), and q = q′

q′−1 its
conjugate exponent.

Here, since the control is equal to the drift, the MFGC system is of the form of (4.2.3).
Therefore, the following proposition is a consequence of Theorems 4.2.2 and 4.2.3.

Proposition 4.3.3. Under assumption A6, there exists a solution to the above MFGC
system of crowd motion.

Under assumption U, this solution is unique.

The proof is straightforward, it consists in checking that L satisfies A1-A5.
For existence results of the MFGC system of this model with λ < 0, see [75].

4.4 The fixed point (4.2.5c) and the proof of Lemma 4.2.4

This section is devoted to step I. In paragraph 4.4.1, we state a priori estimates on a fixed
point of (4.2.5c) (Lemma 4.4.1); then we we use these estimates and Leray-Schauder fixed
point theorem (Theorem 4.4.2) and obtain the existence of a fixed point (4.2.5c) at any
time t ∈ [0, T ] (Lemma 4.4.3). We address the continuity with respect to time of the fixed
point, i.e. step I.c, in Lemma 4.4.4.

In this section and the next one, we work on Tda = Rd/
(
aZd

)
Tda the d-dimensional torus

of radius a > 0. Here we take L : [0, T ]×Tda×Rd×P
(
Tda × Rd

)
→ R. All the assumptions

in paragraph 4.2.2 are stated in Rd, but, when considering that L satisfies one of those
assumptions, we shall simply replace Rd by Tda as the state set in the chosen assumption
(note that we keep Rd as the set of admissible controls). The initial distribution m0 is
now in P

(
Tda
)
. The Hamiltonian H is still defined as the Legendre transform of L, i.e. it

satisfies (4.2.4).

4.4.1 Leray-Schauder Theorem for solving the fixed point in µ

We start by stating a priori estimates for solutions of the fixed point in µ (4.2.5c), involving
Λq′ (µ) and Λ∞ (µ) defined in (4.2.1).

Lemma 4.4.1. Assume that L satisfies A1-A5 For any t ∈ [0, T ], m ∈ P
(
Tda
)
and

p ∈ C0
(
Tda;Rd

)
, if there exists µ ∈ P

(
Tda × Rd

)
such that

(4.4.1) µ = (Id,−Hp (t, ·, p(·), µ)) #m,
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then it satisfies

Λq′ (µ)q
′
≤ 4C2

0 +
(q′)q−1 (2C0)q

q
‖p‖qLq(m),(4.4.2)

Λ∞ (µ) ≤ C0

(
1 + ‖p‖∞ + Λq′ (µ)

)
.(4.4.3)

Proof. We use A3 with m⊗ δ0 and µ satisfying (4.4.1),
(4.4.4)∫
Tda×Rd

(L (t, x, α, µ)− L (t, x, α,m⊗ δ0)) dµ(x, α)+

∫
Tda

(L (t, x, 0,m⊗ δ0)− L (t, x, 0, µ)) dm(x) ≥ 0.

From A5, we obtain

(4.4.5)
∫
Tda
L (t, x, 0,m⊗ δ0) dm(x) ≤ C0.

The latter two inequalities, A4 and the convexity of L (stated in Lemma 4.2.10) yield

C−1
0

∫
Tda×Rd

|α|q
′
dµ(x, α)− C0 ≤ C0 +

∫
Tda

(L (t, x, αµ(x), µ)− L (t, x, 0, µ)) dm(x)

≤ C0 +

∫
Tda×Rd

α · Lα (t, x, α, µ) dµ(x, α),

where αµ is defined in paragraph 4.2.1. We recall that p(x) = −Lα (t, x, αµ(x), µ). Using

the inequality yz ≤ yq
′

cq′q′
+ cqzq

q which holds for any y, z, c > 0, we obtain

1

C0

∫
Tda×Rd

|α|q
′
dµ(x, α) ≤ 2C0 +

(2C0q
′)
q
q′

q

∫
Tda
|p(x)|q dm(x) +

1

2C0

∫
Tda×Rd

|α|q
′
dµ(x, α).

This, the equality q
q′+1 = q, and (4.2.6) imply (4.4.2) and (4.4.3), we recall that we assume

C0 = C̃0.

Here, we shall use Leray-Schauder fixed point theorem as stated in [56] Theorem 11.6.

Theorem 4.4.2 (Leray-Schauder fixed point theorem). Let B be a Banach space and let Ψ
be a compact mapping from [0, 1]×B into B such that Ψ(0, x) = 0 for all x ∈ B. Suppose
that there exists a constant C such that

‖x‖B ≤ C,

for all (θ, x) ∈ [0, 1]× B satisfying x = Ψ(θ, x). Then the mapping Ψ(1, ·) of B into itself
has a fixed point.

From Lemma 4.4.1 and Theorem 4.4.2, we obtain the following existence result for a
fixed point (4.2.5c).

Lemma 4.4.3. Assume A1-A5. For t ∈ [0, T ], m ∈ P
(
Tda
)
and p ∈ C0

(
Tda;Rd

)
, there

exists a unique µ ∈ P
(
Tda × Rd

)
such that µ = (Id,−Hp (t, ·, p(·), µ)) #m. Moreover, µ

satisfies the inequality stated in Lemma 4.4.1.

In the following proof, we will take advantage of the flexibily offered when making all
assumptions on the Lagrangian, instead of the Hamiltonian. We will introduce a sequence
of new Lagrangians. The associated Hamiltonians may not admit explicit form; therefore
it would be difficult to check assumptions on them. Here on the one hand, checking the
assumptions on the new Lagrangians is straightforward. On the other hand, we obtain the
same conclusions on the new Hamiltonian as stated in Lemma 4.2.11.
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Proof. Take (t, p,m) satisfying the same assumptions as (t, p,m) in Lemma 4.4.3. In order
to use the Leray-Schauder fixed point theorem later, we introduce the following family of
Lagrangians indexed by λ ∈ [0, 1],

(4.4.6) Lp,λ (x, α, µ) = λL (t, x, α, µ) + (1− λ)

(
|α|q

′

q′
− α · p(x)

)
,

for (x, α, µ) ∈ Tda×Rd×P
(
Tda × Rd

)
. We denote by Hp,λ the Legendre transform of Lp,λ.

For λ = 0 it satisfies

(4.4.7) Hp,0 (x, p, µ) =
1

q
|p− p(x)|q .

From Young inequality, we obtain that

|α · p(x)| ≤ |α|
q′

2q′
+

2q−1

q
‖p‖∞.

Therefore, up to changing C0 into max
(

1
2q′ ,

2q−1

q ‖p‖∞, C0

)
, we may assume that Lp,λ

satisfies A1-A5, with the same constant C0 for any λ ∈ [0, 1]. The map (λ, x, p, µ) 7→
−Hp,λ

p (x, p, µ) is continuous on [0, 1]× Tda × Rd × P∞,R
(
Tda × Rd

)
, for any R > 0, by the

same arguments as in the proof of Lemma 4.2.11.
For α ∈ C0

(
Tda;Rd

)
, we set µ = (Id, α) #m ∈ P

(
Tda × Rd

)
and α(x) = −Hp,λ

p (x, p(x), µ),
for x ∈ Tda. We define the map Ψ, from [0, 1]×C0

(
Tda;Rd

)
to C0

(
Tda;Rd

)
, by Ψ (λ, α) = α.

If α is a fixed point of Ψ(1, ·), then µ defined as above satisfies the fixed point in Lemma
4.4.3. Conversely, if µ satisfies the fixed point in Lemma 4.4.3, then αµ (defined in para-
graph 4.2.1) is a fixed point of Ψ(1, ·).

The map Ψ is continuous by the continuity of (λ, x, p, µ) 7→ −Hp,λ
p (x, p, µ). For R > 0,

the set AR, defined by AR = [0, 1] × Tda × BRd (0, R) × P∞,R
(
Tda × Rd

)
, is compact. By

Heine theorem, the map (λ, x, p, µ) 7→ −Hp,λ
p (x, p, µ) is uniformly continuous on AR. Here,

note that we use the fact that P∞,R
(
Tda × Rd

)
is a metric space since the weak* topology

coincides with the topology induced by the 1-Wassertein distance on P∞,R
(
Tda × Rd

)
.

Heine theorem also implies that p is uniformly continuous. Therefore, Ψ is a compact
mapping from [0, 1]× C0

(
Tda;Rd

)
to C0

(
Tda;Rd

)
, i.e. it maps bounded subsets of [0, 1]×

C0
(
Tda;Rd

)
into relatively compact subsets of C0

(
Tda;Rd

)
: this comes from the latter

observation and Arzelà-Ascoli theorem.
Take α a fixed point of Ψ(λ, ·), for λ ∈ [0, 1], Lemma 4.4.1 implies that ‖α‖∞ is bounded

by a constant C which does not depend on λ.
Moreover, it is straightforward to check that Ψ(0, ·) = 0. Leray-Schauder Theorem

4.4.2 implies that there exists a fixed point of the map α 7→ Ψ (1, α), which concludes the
existence part of the proof.

The proof of uniqueness relies on A3 and the strict convexity of L, see [38] Lemma 5.2
for the detailed proof.

4.4.2 The continuity of the fixed point in time

The fixed point result stated in Lemma 4.4.3 yields the existence of a map (t, p,m) 7→ µ.
The continuity of this map is addressed in the following lemma:

Lemma 4.4.4. Assume A1-A5. Let (tn,mn, pn)n∈N be a sequence in [0, T ] × P
(
Tda
)
×

C0
(
Tda;Rd

)
. Assume that
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• tn →n→∞ t ∈ [0, T ],

• (pn)n∈N is uniformly convergent to p ∈ C0
(
Tda;Rd

)
,

• (mn)n∈N tends to m in the weak* topology.

We define µn and µ as the unique solutions of the fixed point relation of Lemma 4.4.3
respectively associated to (tn,mn, pn) and (t,m, p), for n ∈ N. Then the sequence (µn)n∈N
tends to µ in P

(
Tda × Rd

)
equipped with the weak* topology.

Proof. The sequence (pn)n∈N it is uniformly bounded in the norm ‖·‖∞. Therefore (µn)n∈N
is uniformly compactly supported by Lemma 4.4.1. Thus we can extract a subsequence(
µϕ(n)

)
n∈N convergent to some limit µ̃ ∈ P

(
Rd × Rd

)
in the weak* toplogy on measures.

We recall that αµ is defined in paragraph 4.2.1. Here, since µϕ(n) and µ are fixed points
like in Lemma 4.4.3, they satisfy:

αµ
ϕ(n)

(x) = −Hp

(
tϕ(n), x, pϕ(n)(x), µϕ(n)

)
,

αµ(x) = −Hp (t, x, p(x), µ) ,

for x ∈ Tda and n ∈ N. From the continuity of Hp stated in Lemma 4.2.11,
(
αϕ(n)

)
n∈N

tends uniformly to the function α̃ : x 7→ −Hp (t, x, p, µ̃). Then
((
Id, α

ϕ(n)
)

#mn
)
n∈N tends

to (Id, α̃) #m in the weak* topology. Hence µ̃ satisfies the same fixed point relation as µ;
by uniqueness we deduce that µ̃ = µ. This implies that all the convergent subsequences of
(µn)n∈N have the same limit µ, thus the whole sequence converges to µ.

Lemma 4.4.3 states that for all time the fixed point (4.2.5c) has a unique solution. Then
Lemma 4.4.4 yields the continuity of the map defined by the fixed point under suitable
assumptions. Therefore, the conclusion of step I.c and the Lemma 4.2.4 are straightforward
consequences of these two lemmas.

Remark 4.4.5. All the conclusions of this section hold when we relax Assumption A3,
assuming that the inequality holds only when µ1 and µ2 have the same first marginal.
Some applications of MFGC do not satisfy A3, but satisfy the above-mentioned relaxed
monotonicity assumption. This is the case of the MFG version of the Almgren and Chriss’
model for price impact and high-frenquency trading, discussed in [38, 41, 43, 75].

However, the a priori estimates in the next section do not hold under this relaxed mono-
tonicity assumption. We refer to [75] for estimates which do not rely on A3 (Assumptions
FP1 and FP2 in [75] are unnecessary if L satisfies the relaxed monotonicity assumption).

4.5 A priori estimates for the solutions to (4.2.5)

In order to use the Leray-Schauder fixed point theorem later, we introduce the following
family of Lagrangians indexed by θ ∈ (0, 1],

(4.5.1) Lθ (t, x, α, µ) = θL
(
t, x, θ−1α,Θ(µ)

)
,

where the map Θ : P
(
Tda × Rd

)
→ P

(
Tda × Rd

)
is defined by Θ(µ) =

(
Id ⊗ θ−1Id

)
#µ.

Then the Hamiltonian defined as the Legendre transform of Lθ is given by

(4.5.2) Hθ (t, x, p, µ) = θH (t, x, p,Θ(µ)) .
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The definition of the Hamiltonian can naturally be extended to θ = 0 by H0 = 0, the
associated Lagrangian is L0 = 0 if α = 0 and L0 = ∞ otherwise. We introduce the
following system of MFGC,

(4.5.3a)

(4.5.3b)

(4.5.3c)

(4.5.3d)

(4.5.3e)

− ∂tu− ν∆u+Hθ (t, x,∇xu(t, x), µ(t)) = θf(t, x,m(t)) in (0, T )× Tda,

∂tm− ν∆m− div
(
Hθ
p (t, x,∇xu(t, x), µ(t))m

)
= 0 in (0, T )× Tda,

µ(t) =
(
Id,−Hθ

p (t, ·,∇xu(t, ·), µ(t))
)

#m(t) in [0, T ],

u(T, x) = θg(x,m(T )) in Tda,
m(0, x) = m0(x) in Tda.

When θ = 1, the latter system coincides with (4.2.5). When θ = 0, (4.5.3) consists in a
situation in which the state of a representative agent satisfies a non-controlled stochastic
differential equation. Alternatively it can be interpreted as a game in which the agents
pay an infinite price as soon as they try to use a control different than 0. In particular the
case θ = 0 is specific and easier than the case when θ > 0. Therefore, in the rest of this
section, we only consider θ ∈ (0, 1].

Let us mention that assumptions A1-A3 are preserved when replacing L and H by Lθ

and Hθ respectively. Moreover the inequalities from A4, A5, become respectively

Lθ(t, x, α, µ) ≥ C−1
0 θ1−q′ |α|q′ − C0θ − C0θ

1−q′Λq′ (µ)q
′
,(4.5.4) ∣∣∣Lθ(t, x, α, µ)

∣∣∣ ≤ C0θ + C0θ
1−q′

(
|α|q′ + Λq′ (µ)q

′
)
,(4.5.5)

since Λq′ (Θ(µ)) = θ−1Λq′ (µ). Furthermore, the conclusions of Lemma 4.2.11 hold and the
inequalities become respectively∣∣∣Hθ

p (t, x, p, µ)
∣∣∣ ≤ C0θ

(
1 + |p|q−1

)
+ C0Λq′ (µ) ,(4.5.6) ∣∣∣Hθ (t, x, p, µ)

∣∣∣ ≤ C0θ (1 + |p|q) + C0θ
1−q′Λq′ (µ)q

′
,(4.5.7)

p ·Hθ
p (t, x, p, µ)−Hθ (t, x, p, µ) ≥ C−1

0 θ|p|q − C0θ − C0θ
1−q′Λq′ (µ)q

′
,(4.5.8) ∣∣∣Hθ

x (t, x, p, µ)
∣∣∣ ≤ C0θ (1 + |p|q) + C0θ

1−q′Λq′ (µ)q
′
.(4.5.9)

We recall that without loss of generality, we assumed C̃0 = C0 where C̃0 is defined in
Lemma 4.2.11.

Instead of proving Lemma 4.2.5 and step II.a, we address the more general following
lemma which provides a priori estimates not only for solutions to (4.2.5) but also for
solutions to (4.5.3). This will help to use the Leray-Schauder theorem in the next section.

Lemma 4.5.1. Under assumptions A1-A6, there exists a positive constant C which only
depends on the constants in the assumptions and not on a or θ, such that the solution to
(4.5.3) satisfies: ‖u‖∞ ≤ Cθ, ‖∇xu‖∞ ≤ Cθ

1
2 and sup

t∈[0,T ]
Λ∞ (µ(t)) ≤ Cθ.

Proof. First step: controlling
∫ T

0 Λq′ (µ(t))q
′
dt

Let us take (X,α) defined by
αt = αµ(t)(t,Xt) = −Hθ

p (t,Xt,∇xu(t,Xt), µ(t)) ,

dXt = αtdt+
√

2νdBt,

X0 = ξ ∼ m0,
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where (Bt)t∈[0,T ] is a Brownian motion independent of ξ.
The function u is the value function of an optimization problem, i.e. the lowest cost

that a representative agent can achieve from time t to T if Xt = x, when the probability
measures m and µ are fixed, i.e.
(4.5.10)

α|s∈[t,T ] = argmin
α′

E
[∫ T

t
Lθ
(
s,Xα′

s , α
′
s, µ(s)

)
+ θf

(
s,Xα′

s ,m(s)
)
ds+ θg

(
Xα′
T ,m(T )

)]
,

where for a control α′, we define{
dXα′

t = α′tdt+
√

2νdB′t,

Xα′
0 = ξ′ ∼ m0,

and (B′t)t∈[0,T ] is a Brownian motion independent of ξ′. Let us recall that for any t ∈ [0, T ],
m(t) is the law of Xt, and µ(t) is the law of (Xt, αt). We introduce X̃ the stochastic process
defined by {

dX̃t =
√

2νdBt,

X̃0 = ξ ∼ m0.

We set m̃(t) = L(X̃t) and µ̃(t) = L(X̃t) ⊗ δ0 for t ∈ [0, T ]. For the strategy consisting in
taking α′ = 0, (4.5.10) yields the inequality:∫ T

0

∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ(t, x, α)dt+

∫ T

0

∫
Tda
θf (t, x,m(t)) dm(t, x)dt+

∫
Tda
θg (x,m(T )) dm(T, x)

≤
∫ T

0

∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ̃(t, x, α)dt+

∫ T

0

∫
Tda
θf (t, x,m(t)) dm̃(t, x)dt+

∫
Tda
θg (x,m(T )) dm̃(T, x).

This and A6 imply that,

(4.5.11)
∫ T

0

∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ(t, x, α)dt

≤
∫ T

0

∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ̃(t, x, α)dt+ 2C0θ (1 + T ) .

Assumption A3 with (µ(t), µ̃(t)) yields

(4.5.12)
∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ̃(t, x, α) +

∫
Tda×Rd

Lθ (t, x, α, µ̃(t)) dµ(t, x, α)

≤
∫
Tda×Rd

Lθ (t, x, α, µ(t)) dµ(t, x, α) +

∫
Tda×Rd

Lθ (t, x, α, µ̃(t)) dµ̃(t, x, α).

Moreover, from A5 we obtain that,

(4.5.13)
∫
Tda×Rd

Lθ (t, x, α, µ̃(t)) µ̃(t, d(x, α)) =

∫
Tda
θL (t, x, 0, µ̃(t)) m̃(t, dx) ≤ C0θ.

Therefore from (A4), (4.5.11), (4.5.12) and (4.5.13), we obtain,∫ T

0

∫
Tda

(
C−1

0 θ1−q′ |α|q
′
− C0θ

)
dµ(t, x, α)dt ≤

∫ T

0

∫
Tda×Rd

Lθ (t, x, α, µ̃(t)) dµ(t, x, α)dt

≤ C0θ(2 + 3T ).
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This implies

(4.5.14)
∫ T

0
Λq′ (µ(t))q

′
dt ≤ 2C2

0θ
q′(1 + 2T ).

Second step: the uniform estimate on ‖u‖∞
Let us rewrite (4.5.3a) in the following way,

−∂tu− ν∆u+

[∫ 1

0
Hθ
p (t, x, s∇xu, µ(t))ds

]
· ∇xu = Hθ(t, x, 0, µ(t)) + θf(t, x,m(t)),

for (t, x) ∈ (0, T )× Tda. The maximum principle for second-order parabolic equation, A6,
and (4.2.7) yield that

‖u‖∞ ≤ C0θ(1 + 2T ) + C0θ
1−q′

∫ T

0
Λq′ (µ(t))q

′
dt,

which implies that u is uniformly bounded using the conclusion of the previous step.
Third step: the uniform estimate on ‖∇xu‖∞.
The proof of this step relies on the same Bernstein-like method introduced in [75]

Lemma 6.5. We refer to the proof of the latter results for more details in the derivation of
the equations below.

Let us introduce ρ ∈ C∞
([
−a

2 ,
a
2

)d) a nonnegative mollifier such that ρ(x) = 0 if
|x| ≥ a

4 and
∫
[−a2 ,

a
2 )
d ρ(x)dx = 1. For any 0 < δ < 1 and t ∈ [0, T ], we introduce

ρδ = δ−dρ
( ·
δ

)
and uδ(t) = ρδ ? u(t) with ? being the convolution operator with respect to

the state variable.
Possibly after modifying the constant C appearing in the first step, we can assume that

‖u‖∞ + (1 + C0) θ1−q′ ∫ T
0 Λq′ (µ(s))q

′
ds ≤ C using the first two steps in such a way that

C depends only on the constants in the assumptions, and not on θ. Then we introduce
ϕ : [−C,C]→ R∗+ and wδ defined by
(4.5.15)

ϕ(v) = exp (exp (−v)) ,

wδ(t, x) = ϕ

(
uδ(T − t, x) + (1 + C0) θ1−q′

∫ T

T−t
Λq′ (µ(s))q

′
ds

) ∣∣∣∇xuδ∣∣∣2 (T − t, x),

for (t, x) ∈ [0, T ] × Tda, v ∈ BRd (0, C). In particular ϕ′ < 0, and ϕ, 1/ϕ, −ϕ′ and −1/ϕ′

are uniformly bounded. We refer to the proof of Lemma 6.5 in [75] for the derivation of
the following partial differential equation satisfied by wδ,

(4.5.16) ∂tw
δ − ν∆wδ +∇xwδ ·Hθ

p

(
x,∇xuδ, µ

)
+ 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ + 2νϕ

∣∣∣D2
x,xu

δ
∣∣∣2

=
ϕ′

ϕ
wδ
[
∇xuδ ·Hθ

p

(
x,∇xuδ, µ

)
−Hθ

(
x,∇xuδ, µ

)
+ (1 + C0) θ1−q′Λq′ (µ)q

′
]

− ν ϕ
′′ϕ− 2 (ϕ′)2

ϕ3

(
wδ
)2
− 2ϕ∇xuδ ·Hθ

x

(
x,∇xuδ, µ

)
+ 2θϕ∇xuδ · f δx (x,m) +Rδ(t, x)

in which Hθ, f , f δ, u, uδ and µ are taken at time T − t and wδ at time t, and where f δ
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and Rδ, are defined by,

f δ(x,m) =ρδ ? (f(·,m)) (x),

Rδ(t, x) =− ϕ′
∣∣∣∇xuδ∣∣∣2 [ρδ ? (Hθ (·,∇xu, µ)

)
(x)−Hθ

(
x,∇xuδ, µ

)]
− 2ϕ∇xuδ ·

[(
ρδ ? Hθ

x (·,∇xu(·), µ)
)

(x)−Hθ
x

(
x,∇xuδ, µ

)]
,

+ 2ϕ∇xuδ ·
[
D2
x,xu

δHθ
p

(
x,∇xuδ, µ

)
− ρδ ?

(
D2
x,xuH

θ
p (·,∇xu, µ)

)]
.

From (4.5.8), we obtain that

∇xuδ·Hθ
p

(
x,∇xuδ, µ

)
−Hθ

(
x,∇xuδ, µ

)
+(1 + C0) θ1−q′Λq′ (µ)q

′
≥ C−1

0 θ
∣∣∣∇xuδ∣∣∣q+θ1−q′Λq′ (µ)q

′
−C0θ.

Therefore, using A6, (4.5.16), (4.5.9), the facts that ϕ′ < 0, that ϕ′′ϕ − 2 (ϕ′)2 ≥ 0, that
ϕ, ϕ−1, ϕ′, (ϕ′)−1 are bounded, and the latter inequality, we get

(4.5.17) ∂tw
δ − ν∆wδ +∇xwδ ·Hθ

p

(
x,∇xuδ, µ

)
+ 2ν

ϕ′

ϕ
∇xwδ · ∇xuδ

≤ −C−1

(
θ
(
wδ
) q

2
+ θ1−q′Λq′ (µ)q

′
)
wδ

+ C
(
wδ
) 1

2

[
θ + θ

(
wδ
) 1

2
+ θ

(
wδ
) q

2
+ θ1−q′Λq′ (µ)q

′
]

+
∥∥∥Rδ∥∥∥

∞
,

up to updating C. We notice that the terms with the highest exponents in wδ and Λq′ (µ)q
′

in the right-hand side of the latter inequality is non-positive. Let us use Young inequalities
and obtain (

wδ
) 1

2
Λq′ (µ)q

′
≤ εwδΛq′ (µ)q

′
+

1

4ε
Λq′ (µ)q

′
,(

wδ
)q̃
≤ ε

(
wδ
)1+ q

2
+
q + 2− 2q̃

q + 2

(
ε(q + 2)

2q̃

)− 2
q+2−2q̃

,

for any q̃ < 1 + q
2 and ε > 0. Using systematically these two inequalities in (4.5.17) and

taking ε small enough we finally obtain,

∂tw
δ−ν∆wδ+∇xwδ·Hθ

p

(
x,∇xuδ, µ

)
−2ν

ϕ′

ϕ
∇xwδ·∇xuδ ≤ Cε

(
θ + θ1−q′Λq′ (µ)q

′
)

+
∥∥∥Rδ∥∥∥

∞
,

where Cε is a constant which depends on ε and the constants in the assumtions. From A6,
the initial condition of wδ is bounded. Therefore the maximum principle for second-order
parabolic equations implies that

(4.5.18)
∥∥∥wδ∥∥∥

∞
≤ Cε

(
θ + θT + θ1−q′

∫ T

0
Λq′ (µ(t))q

′
dt

)
+ T

∥∥∥Rδ∥∥∥
∞
.

Let us point out that ∇xu is the solution of the following backward d-dimensional parabolic
equation,

−∂t∇xu− ν∆∇xu+D2
x,xuHp (x,∇xu, µ) = ∇xf(x,m)−Hx (x,∇xu, µ) ,

which has bounded coefficients and right-hand side, and a terminal condition in C1+β0
(
Tda
)
.

Theorem 6.48 in [86] states that ∇xu and D2
x,xu are continuous. This and the continuity of
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Hθ andHθ
x stated in Lemma 4.2.11 imply that Rδ is uniformly convergent to 0 when δ tends

to 0. We conclude this step of the proof by passing to the limit in (4.5.18) as δ tends to
0, using the estimate on

∫ T
0 Λq′ (µ(t))q

′
dt computed in the first step. We obtain that ∇xu

is uniformly bounded by a constant which depends on the constants in the assumptions,
and depends linearly on θ

1
2 .

Fourth step: obtaining uniform estimates on Λq′ (µ) and Λ∞ (µ).
Repeating the calculation in the proof of Lemma 4.4.1 with L satisfying (4.5.4) and

(4.5.5), we obtain:

(4.5.19) Λq′ (µ(t))q
′
≤ 4C2

0θ
q′ +

(q′)q−1 (2C0)q

q
θq
′‖∇xu(t)‖qLq(m(t)).

This and the third step of this proof yield that supt∈[0,T ] Λq′ (µ(t)) ≤ Cθ for some C
depending only on the constants of the assumptions. We conclude that supt∈[0,T ] Λ∞ (µ(t))
satisfies a similar inequality using (4.5.6).

4.6 Existence and Uniqueness Results

Paragraph 4.6.1 is devoted to proving the existence of solutions to (4.2.5), which is step
II.b. In paragraph 4.6.2, we propose a method to extend the existence result to system
(4.2.3) which is stated on Rd; this concludes step III.a. This method relies on compactness
results using the uniform estimates of ∇xu that we obtained in Lemma 4.5.1. In paragraph
4.6.3, we prove step III.b, namely the uniqueness of the solution to (4.2.3) and (4.2.5).
Then the main results of the paper and step IV are addressed in paragraph 4.6.4. We
introduce a one-to-one correspondance between solutions to (4.1.6) and (4.2.3), which
allows us to obtain directly the existence and the uniqueness of the solution to (4.1.6) from
the ones to (4.2.3).

4.6.1 Proof of Theorem 4.2.6: existence of solutions to (4.2.5)

We will use the a priori estimates stated in Section 4.5 and the latter fixed point theorem,
in order to achieve step II.b and prove the existence of solutions to (4.2.5).

Proof of Theorem 4.2.6. We would like to use the Leray-Schauder theorem 4.4.2 on a map
which takes a flow of measures (m̃t)t∈[0,T ] ∈

(
P
(
Tda
))[0,T ] as an argument. However,

P
(
Tda
)
is not a Banach space. A way to go through this difficulty is to compose the latter

map with a continuous map from a convenient Banach space to the set of such flows of
measures. Here, we consider the map introduced in [25], namely ρ : C0

(
[0, T ]× Tda;R

)
→

C0
(
[0, T ]× Tda;R

)
defined by

ρ(m̃)(t, x) =
m̃+(t, x)− a−d

∫
m̃+(t, y)dy

max
(
1,
∫
m̃+ (t, y) dy

) + a−d,

where m̃+(t, x) = max (0, m̃(t, x)). We will also have the use of m̃0 defined as the unique
weak solution of

(4.6.1) ∂tm̃
0 − ν∆m̃0 = 0 on (0, T )× Tda, and m̃0(0, ·) = m0.

We are now ready to construct the map Ψ on which we will use the Leray-Schauder theorem
4.4.2. Take θ ∈ [0, 1], u ∈ C0,1

(
[0, T ]× Tda;R

)
and m̃ ∈ C0

(
[0, T ]× Tda;R

)
. We define
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m = ρ
(
m̃+ m̃0

)
and (µ, α) ∈ C0

(
[0, T ];P

(
Tda × Rd

))
× C0

(
[0, T ]× Tda;Rd

)
by,

α(t, x) = −Hθ
p (t, x,∇xu(t, x), µ(t))

µ(t) = (Id, α(t, ·)) #m(t).

This definition comes from the conclusions of Lemma 4.2.4 when θ > 0. For θ = 0, it
simply consists in taking α = 0 and µ(t) = m(t)⊗ δ0. Here we can repeat the calculation
and obtain inequality (4.5.19). This and (4.5.6) implies that ‖α‖∞ is bounded by Cθ for
some constant C > 0 which depends on ‖∇xu‖∞ and is independent of θ and a.

Then we define m the solution in the sense of distributions of

∂tm− ν∆m+ div (αm) = 0,

supplemented with the initial conditionm(0, ·) = m0, withm0 being β0-Hölder continuous.
Theorem 2.1 section V.2 in [81] states that m is uniformly bounded by a constant which
depends on ‖m0‖∞ and ‖α‖∞. Theorem 6.29 in [86] yields that m ∈ C

β
2
,β
(
[0, T ]× Tda

)
for

β ∈ (0, β0), and that its associated norm can be estimated from above by a constant which
depends on ‖∇xu‖∞, β, a and the constants in the assumptions. The same arguments
applied to m̃0 defined in (4.6.1) imply that m̃0 is in C

β
2
,β
(
[0, T ]× Tda

)
and its associated

norm is bounded.
Then we take µ(t) = (Id, α(t, ·)) #m(t) for any t ∈ [0, T ], and u ∈ C0,1

(
[0, T ]× Tda;R

)
the unique solution in the sense of distributions of the following heat equation with bounded
right-hand side,

−∂tu− ν∆u = −Hθ (t, x,∇xu, µ(t)) + θf(x,m(t)),

supplemented with the terminal condition u(T, ·) = θg (·,m(T )) which is in C1+β0
(
Tda
)
.

Classical results (see for example Theorem 6.48 in [86]) state that u is in C
1
2

+β
2
,1+β and

its associated norm is bounded by a constant which depends on ‖∇xu‖∞, β, a and the
constants in the assumptions.

We can now construct the map Ψ : (θ, u, m̃) 7→
(
u,m− m̃0

)
, from C0,1

(
[0, T ]× Tda;R

)
×

C0
(
[0, T ]× Tda;Rd

)
into itself. This map is continuous and compact, it satisfies Ψ (0, u, m̃) =

0 for any (u, m̃). In particular, the fact that ‖α‖∞ ≤ Cθ in the previous paragraph, im-
plies that m tends to m̃0 and u tends to 0 as θ tends to 0. This gives the continuity of
Ψ at θ = 0. Moreover the fixed points of Ψ(θ) are exactly the solutions to (4.5.3), which
are uniformly bounded by Lemma (4.5.1). Therefore, by the Leray-Schauder fixed point
theorem 4.4.2, there exists a solution to (4.2.5).

4.6.2 Proof of Theorem 4.2.7: passing from the torus to Rd

The purpose of this paragraph is to extend the existence result to the system (4.2.3) and
achieve step III.a.

Proof of Theorem 4.2.7. First step: constructing a sequence of approximate solutions.
For a > 0 we define m̃0,a = πa#m0, where πa : Rd → Tda is the quotient map. Let

χa : T1
a → R be the canonical injection from the one-dimensional torus of radius a to R,

which image is
[
−a

2 ,
a
2

)
. Take ψ̃ ∈ C2 (R;R) periodic with a period equal to 1 and such

that,

(4.6.2)
ψ̃(x) = x, if |x| ≤ 1

4
,∣∣∣ψ̃(x)

∣∣∣ ≤ |x| , for any x ∈
[
−1

2
,
1

2

]
,
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We define ψa : Tda → Rd by ψa(x)i = aψ̃
(
a−1χa(xi)

)
for i = 1, . . . , d, this is a C2 function.

Since ψ̃
( ·
a

)
has a period of a, the function ψa ◦ πa : Rd → Rd satisfies

(4.6.3) ψa ◦ πa(x)i = aψ̃
(xi
a

)
,

for i = 1, . . . , d and x ∈ Rd, and is a C2 function. We are ready to construct periodic
approximations of L, f and g defined by,

La (t, x, α, µ) = L (t, ψa(x), α, (ψa ⊗ Id) #µ) ,

fa (t, x,m) = f (t, ψa(x), ψa#m) ,

ga (x,m) = g (ψa(x), ψa#m) ,

for (t, x) ∈ [0, T ] × Tda, α ∈ Rd, µ ∈ P
(
Tda × Rd

)
. Let Ha be the periodic Hamiltonian

associated with La by the Legendre transform:

Ha (t, x, p, µ) = H (t, ψa(x), p, (ψa ⊗ Id) #µ) .

Let us point out that the fact that L, H, f and g satisfy A1-A6, implies that La, Ha,
fa and ga satisfy these assumptions too with C0

∥∥∥ψ̃′∥∥∥
∞

instead of C0. So we can define

(ũa, m̃a, µ̃a) a solution to (4.2.5) with Ha, fa, ga and m̃0,a instead of H, f , g and m0. We
define ua ∈ C0

(
[0, T ]× Rd;R

)
, ma ∈ C0

(
[0, T ];P

(
Rd
))

and µa ∈ C0
(
[0, T ];P

(
Rd × Rd

))
respectively by

ua(t, x) = ũa (t, πa(x)) , ma(t) = ψa#m̃a(t), and µa(t) = (ψa ⊗ Id) #µ̃a(t),

for (t, x) ∈ [0, T ]× Rd.
Second step: Proving that ma is compact.
We are going to use the Arzelà-Ascoli Theorem on C0

(
[0, T ];

(
P
(
Rd
)
,W1

))
(P
(
Rd
)

is endowed with the 1-Wassertein distance). First we prove that for any t ∈ [0, T ],
the sequence (ma(t))a>1 is compact with the 1-Wassertein distance, by proving that∫
Rd |x|

2dma(t, x) is uniformly bounded in a. At time t = 0, we have∫
Rd
|x|2 dma(0, x) =

∫
Tda
|ψa(x)|2 dm̃a,0(x) =

∫
Rd
|ψa ◦ πa(x)|2 dm0(x) ≤

∫
Rd
|x|2 dm0(x) ≤ C0,

using (4.6.2), (4.6.3) and A6. Let us differentiate
∫
Rd |x|

2dma(t, x) with respect to time,
perform some integrations by part and obtain that

d

dt

∫
Rd
|x|2dma(t, x) =

d

dt

∫
Tda
|ψa(x)|2 dm̃a(t, x)

=

∫
Tda
|ψa(x)|2

(
ν∆m̃a(t, x)− div

(
αµ̃

a(t)(x)m̃a(t, x)
))

dx

= 2

∫
Tda

d∑
i=1

[
νψ̃′′

(
χa(xi)

a

)
ψ̃

(
χa(xi)

a

)
+ νψ̃′

(
χa(xi)

a

)2

+ψa (x) ψ̃′
(
χa(xi)

a

)
αµ̃

a(t),i(x)

]
dm̃a(t, x)

≤ 2νd
∥∥∥ψ̃′′∥∥∥

∞

∥∥∥ψ̃∥∥∥
∞

+ 2νd
∥∥∥ψ̃′∥∥∥2

∞
+
∥∥ψ′∥∥2

∞

∥∥∥αµ̃a(t)
∥∥∥2

∞
+

∫
Tda
|ψa(x)|2 dm̃a(t, x)

≤ 2νd
∥∥∥ψ̃′′∥∥∥

∞

∥∥∥ψ̃∥∥∥
∞

+ 2νd
∥∥∥ψ̃′∥∥∥2

∞
+
∥∥∥ψ̃′∥∥∥2

∞

∥∥∥αµ̃a(t)
∥∥∥2

∞
+

∫
Rd
|x|2 dma(t, x).
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We recall that (t, x) 7→ αµ̃
a(t)(x) is uniformly bounded with respect to t and a by Lemma

4.5.1. Therefore, the latter two inequalities and a comparison principle for ordinary dif-
ferential equation imply that

∫
Rd |x|

2dma(t, x) is uniformly bounded with respect to a and
t.

We define Xa a random process on Rd by

dX
a
t = αµ

a(t)
(
πa
(
X
a
t

))
dt+

√
2νdBt, and L

(
X
a
0

)
= m0,

where B is a Brownian motion on Rd independent of Xa
0. For t, s ∈ [0, T ], we have that,

E
[∣∣Xa

t −X
a
s

∣∣] ≤ E
[∣∣Xa

t −X
a
s

∣∣2] 1
2

≤ E

[∣∣∣∣∫ t

s

√
2νdWr

∣∣∣∣2
] 1

2

+ E

[∣∣∣∣∫ t

s
αµ

a(r)dr

∣∣∣∣2
] 1

2

≤
√

2νd|t− s|
1
2 + |t− s| sup

r∈[0,T ]

∥∥∥αµa(r)
∥∥∥
∞
.

We define X̃a
t = πa

(
X
a
t

)
∈ Tda and Xa

t = ψa
(
X̃a
t

)
∈ Rd, for t ∈ [0, T ]. One may check

that the law of X̃a
t satisfies the same Fokker-Planck equation in the sense of distributions

as m̃a(t) by testing it with C∞
(
(0, T )× Td

)
test functions. Therefore, the law of X̃a

t is
m̃a(t) and the law of Xa

t is ma(t). By definition of the 1-Wassertein distance, we obtain

W1 (ma(t),ma(s)) ≤ E [|Xa
t −Xa

s |]
≤ E

[∣∣ψa ◦ πa (Xa
t

)
− ψa ◦ πa

(
X
a
s

)∣∣]
≤
∥∥∥ψ̃′∥∥∥

∞
E
[∣∣Xa

t −X
a
s

∣∣]
≤
∥∥∥ψ̃′∥∥∥

∞

(
√

2νd|t− s|
1
2 + |t− s| sup

r∈[0,T ]

∥∥∥αµa(r)
∥∥∥
∞

)
,

where we used (4.6.3) and the mean value theorem to pass from the second to the third
line in the latter chain of inequalities. Therefore by the Arzelà-Ascoli theorem, (ma)a>0 is
relatively compact in C0

(
[0, T ];

(
P
(
Rd
)
,W1

))
.

Third Step: passing to the limit for a subsequence.
We recall that ũa and ∇xũa are uniformly bounded with respect to a, so are ua and

∇xua. Moreover ua satisfies the following PDE,

−∂tua − ν∆ua +H (t, ψa ◦ πa(x),∇xu(t, x), µa(t)) = f (t, ψa ◦ πa(x),ma(t)) ,

for (t, x) ∈ (0, T ) × BRd (0, a), we recall that ψa ◦ πa(x) = x if |x| ≤ a
4 . For a0 > 0, we

choose a such that a > 4 (a0 + 1), this implies that ua satisfies a backward heat equation on
BRd (0, a0 + 1) with a bounded right-hand side, a bounded terminal condition, and bounded
boundary conditions. Classical results on the heat equation (see for example Theorem 6.48

in [86]) state that ua is in C
1
2

+β
2
,1+β ([0, T ]×BRd (0, a0) ;R) and that its associated norm is

bounded by a constant which depends on the constants in the assumptions and a0, but not
on a. Therefore

(
ua|BRd (0,a0)

)
a>1

is a compact sequence in C0,1 ([0, T ]×BRd (0, a0) ;R) for
any a0 > 0. Then by a diagonal extraction method, there exists an an increasing sequence
tending to +∞ in R+ such that

man → m in C0
(

[0, T ],
(
P
(
Rd
)
,W1

))
,

uan → u locally in C0,1,
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for some (u,m) ∈ C0,1
(
[0, T ]× Rd;R

)
× C0

(
[0, T ];

(
P
(
Rd
)
,W1

))
. Let us prove that for

t ∈ [0, T ], µan(t) converges to a fixed point of (4.2.3c) when n tends to infinity; indeed we
notice that

µan(t) = (ψan ⊗ Id) #µ̃an(t)

= (ψan ⊗ Id) #
[(
Id,−Han

p (t, ·,∇xũan (t, πan ◦ ψan(·)) , µ̃an(t))
)

#m̃an
]

= (ψan ,−Hp (t, ψan(·),∇xuan (t, ψan(·)) , µan(t))) #m̃an

= (Id,−Hp (t, ·,∇xuan (t, ·) , µan(t))) #man .

In particular, αµ̃an (t) = αµ
an (t) ◦ ψan so

∥∥αµan (t)
∥∥
L∞(m)

is not larger than
∥∥αµ̃an (t)

∥∥
L∞(m̃)

since the support ofman is contained in the image of the support of m̃an by ψan . We proved
in the previous step that (ma(t))a≥1 is compact in

(
P
(
Rd
)
,W1

)
, and so is (µan(t))n≥1 in(

P
(
Rd × Rd

)
,W1

)
, since they are the pushforward measures of (man(t))n≥1 by

(
Id, α

µan (t)
)
.

Let µ(t) ∈ P
(
Rd × Rd

)
be the limit of a convergent subsequence of (µan(t))n≥1. Passing

to the limit in the weak* topology in the latter chain of equalities implies that

µ(t) = (Id,−Hp (t, ·,∇xu (t, ·) , µ(t))) #m(t).

Moreover, the uniqueness of the fixed point 4.2.3c holds here, see [38] Lemma 5.2 for the
proof. We obtained that there exists a unique fixed point satisfying 4.2.3c, and that it is
the limit of any convergent subsequence of (µan(t)). This implies that the whole sequence
(µan(t))n≥1 tends to µ(t) in

(
P
(
Rd × Rd

)
,W1

)
.

Let us point out that man satisfies

∂tm
an − ν∆man − div (Hp (t, x,∇xuan , µan)man) = 0

in the sense of distributions on (0, T ) × B
(
0, an4

)
, by the definitions of ψa and ψ̃. Fur-

thermore, at time t = 0 we know that man(0) = (ψan ◦ πan) #m0. We recall that
ψan ◦ πan(x) = x for x ∈ BRd

(
0, an4

)
. This implies that man(0) tends to m0 in the

weak* topology of P
(
Rd
)
.

Finally we obtain that (u,m, µ) is a solution to (4.2.3), by passing to the limit as n
tends to infinity in the equations satisfied by (uan ,man , µan).

Remark 4.6.1. In the above proof, we obtain that there exists a unique fixed point satis-
fying 4.2.3c. We have thereby extended the conclusions of Lemma 4.4.3 to system 4.2.3.
Similarly, one may extend the conclusions of Lemma 4.2.4 to system (4.2.3).

4.6.3 Proof of Theorem 4.2.8: uniqueness of the solutions to (4.2.3) and
(4.2.5)

Step III.b, namely the uniqueness of the solution to (4.2.3), is obtained from the mono-
tonicity assumptions A3 and U, and the same arguments as in the case of MFG without
interaction through controls.

Proof of Theorem 4.2.8. Here, we write the proof for the system (4.2.3). However, none of
the arguments below is specific to the domain Rd, therefore this proof can be repeated for
(4.2.5).
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We suppose that (u1,m1, µ1) and (u2,m2, µ2) are two solutions to (4.2.3). Now stan-
dard arguments (see [85]) lead to

(4.6.4)

0 =

∫ T

0

∫
Rd

[
∇x(u1 − u2) ·Hp

(
t, x,∇xu1, µ1

)
−H

(
t, x,∇xu1, µ1

)
+H

(
t, x,∇xu2, µ2

)]
dm1(t, x)

+

∫ T

0

∫
Rd

[
∇x(u2 − u1) ·Hp

(
t, x,∇xu2, µ2

)
−H

(
t, x,∇xu2, µ2

)
+H

(
t, x,∇xu1, µ1

)]
dm2(t, x)

+

∫ T

0

∫
Rd

(
f(t, x,m1(t))− f(t, x,m2(t))

)
d(m1(t, x)−m2(t, x))dt

+

∫
Rd

(
g(x,m1(T ))− g(x,m2(T ))

)
d(m1(T, x)−m2(T, x)).

Recall that

(4.6.5)
L
(
t, x, αµ

i
, µi
)

= ∇xui ·Hp

(
t, x,∇xui, µi

)
−H

(
t, x,∇xui, µi

)
,

∇xui = −Lα
(
t, x, αµ

i
, µi
)
,

because L is the Legendre tranform of H. From U, (4.6.4) and (4.6.5), we obtain that,

(4.6.6)

0 ≥
∫ T

0

∫
Rd

[
L
(
t, x, αµ

1
, µ1
)
− L

(
t, x, αµ

2
, µ2
)
−
(
αµ

1 − αµ2
)
· Lα

(
t, x, αµ

2
, µ2
)]
dm1(t, x)dt

+

∫ T

0

∫
Rd

[
L
(
t, x, αµ

2
, µ2
)
− L

(
t, x, αµ

1
, µ1
)
−
(
αµ

2 − αµ1
)
· Lα

(
t, x, αµ

1
, µ1
)]
dm2(t, x)dt

The function L is strictly convex in α by Lemma 4.2.10, which implies that,

(4.6.7)
L
(
t, x, αµ

1
, µ2
)
− L

(
t, x, αµ

2
, µ2
)
−
(
αµ

1 − αµ2
)
· Lα

(
t, x, αµ

2
, µ2
)
≥ 0,

L
(
t, x, αµ

2
, µ1
)
− L

(
t, x, αµ

1
, µ1
)
−
(
αµ

2 − αµ1
)
· Lα

(
t, x, αµ

1
, µ1
)
≥ 0,

and (4.6.7) turn to identities if and only if αµ1 = αµ
2 . The latter inequalities and (4.6.6)

yield

0 ≥
∫ T

0

∫
Rd

[
L
(
t, x, αµ

1
, µ1
)
− L

(
t, x, αµ

1
, µ2
)]
dm1dt+

∫ T

0

∫
Rd

[
L
(
t, x, αµ

2
, µ2
)
− L

(
t, x, αµ

2
, µ1
)]
dm2dt

=

∫ T

0

∫
Rd×Rd

[
L
(
t, x, α, µ1

)
− L

(
t, x, α, µ2

)]
d
(
µ1 − µ2

)
(t, x, α)dt.

Assumption A3 turns the latter inequality into an equality. This, the case of equality in
(4.6.7) and the continuity of αµ1 and αµ2 yield that αµ1 = αµ

2 . This implies that m1 = m2

by the uniqueness of the solution to (4.2.3b), (4.2.3e). Therefore, we obtain µ1 = µ2, and
then u1 = u2 by the uniqueness of the solution to (4.2.3a),4.2.3d.

4.6.4 Theorems 4.2.2 and 4.2.3: existence and uniqueness of the solution
to (4.1.6)

So far, no distinction has been made between µb and µα, because they coincide for (4.2.3)
and (4.2.5). Now they may differ since the drift function and the control may be different.
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In this case µb defined by µb(t) =
(
πx, b (t)

)
#µα(t) is naturally the joint law of the

states and the drifts. The idea here to pass from (4.2.3) to (4.1.6), is to assume that b
is invertible with respect to α, which changes the optimization problem in α into a new
optimization problem expressed in term of b. This consists in changing the Lagrangian
from L (t, x, α, µα) into

Lb (t, x, b, µb) = L
(
t, x, α∗ (t, x, b, µb) ,

(
πx, α

∗ (t)
)

#µb

)
.

The Hamiltonian Hb defined as the Legendre transform of Lb is given by

(4.6.8) Hb (t, x, p, µb) = H
(
t, x, p,

(
πx, α

∗ (t)
)

#µb

)
.

Conversely, we can obtain L and H from Lb and Hb with the following relations,

L (t, x, α, µα) = Lb
(
t, x, b (t, x, α, µα) ,

(
πx, b (t)

)
#µα

)
,

H (t, x, p, µα) = Hb
(
t, x, p,

(
πx, b (t, µα)

)
#µα

)
.

Now we can state the following lemma which allows us to pass from (4.2.3) to (4.1.6), or
vice versa.

Lemma 4.6.2. Under assumption B1, (u,m, µα, µb) is a solution to (4.1.6) if and only if
(u,m, µb) is a solution to (4.2.3) with Hb instead of H.

The proof is straightforward and only consists in checking on the one hand, that (4.1.6a)
and (4.1.6b) are respectively equivalent to (4.2.3a) and (4.2.3b) with Hb instead of H; on
the other hand, that (4.1.6c) and (4.1.6d) are equivalent to (4.2.3c) with Hb, where we
take µb = µ and µα defined by (4.1.6c).

The following existence theorem is a direct consequence of Lemma 4.6.2, and Theorem
4.2.7.

Corollary 4.6.3. If Lb satisfies A1-A6, and b satisfies B1, there exists a solution to
(4.1.6).

Theorem 4.2.3, i.e. the existence part of step IV, is a consequence of the latter existence
result in which the assumptions on Lb are stated on L instead, which makes them more
tractable. However, we have to make the additional B2.

If L and b satisfy the assumptions of Theorem 4.2.3, it is straightforward to check that
Lb satisfies A1-A5. Therefore, Theorem 4.2.3 is a consequence of Corollary 4.6.3. Finally,
Theorem 4.2.2 and the uniqueness part of step IV are direct consequences of Theorem
4.2.8 and Lemma 4.6.2.
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Chapter 5

On the implementation of a primal-dual
algorithm for second order time-dependent

mean field games with local couplings

Joint work with L.M. Briceño, D. Kalise, M. Laurière, A. Matéos Gonzalez and F.J. Silva.

We study a numerical approximation of a time-dependent Mean Field Game (MFG)
system with local couplings. The discretization we consider stems from a variational ap-
proach described in [29] for the stationary problem and leads to the finite difference scheme
introduced by Achdou and Capuzzo-Dolcetta in [6]. In order to solve the finite dimensional
variational problems, in [29] the authors implement the primal-dual algorithm introduced
by Chambolle and Pock in [46], whose core consists in iteratively solving linear systems and
applying a proximity operator. We apply that method to time-dependent MFG and, for
large viscosity parameters, we improve the linear system solution by replacing the direct
approach used in [29] by suitable preconditioned iterative algorithms.

Nous étudions une approche numérique pour un système de jeu à champ moyen avec
couplage local. La discrétisation que nous considérons résulte d’une approche variationnelle
décrite, pour le problème stationnaire, dans [29] et mène au schéma aux différences finies
introduit par Achdou et Capuzzo-Dolcetta dans [6]. Dans le but de résoudre des prob-
lèmes variationnels en dimension finie, dans [29] les auteurs implémentent un algorithme
primal-dual introduit par Chambolle et Pock dans [46], dont l’essence consiste à résoudre
itérativement des systèmes linéaires et à appliquer un opérateur proximal. Nous appliquons
cette méthode à un jeu à champ moyen dépendant du temps et, lorsque le paramètre de
viscosité est assez grand, nous améliorons la résolution du système linéaire en remplaçant
l’approche directe utilisée dans [29] par des algorithmes itératifs préconditionnés.
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5.1. Introduction

5.1 Introduction

In this work we consider the following MFG system with local couplings

(MFG)


− ∂tu− ν∆u+H(x,∇u) = f(x,m(x, t)) in Td × [0, T ],

∂tm− ν∆m− div(∇pH(x,Du)m) = 0 in Td × [0, T ],

m(·, ·) = m0(·), u(·, T ) = g(·,m(·, T )) in Td.

In the notation above ν ≥ 0, d ∈ N, Td is the d-dimensional torus, H : Td × Rd → R is
jointly continuous and convex with respect to its second variable, f , g : Td × R → R are
continuous functions and m0 ∈ L1(Td) satisfies m0 ≥ 0 and

∫
Tdm0(x)dx = 1.

System (MFG) has been introduced by J.-M. Lasry and P.-L. Lions in [84, 85] in order
to describe the asymptotic behaviour of symmetric stochastic differential games as the
number of players tends to infinity. Several analytical techniques can be used to prove
the existence of solutions to (MFG) under various assumptions on the data. Despite the
recent introduction of the MFG system, the literature dedicated to its theoretical study
is already too rich to be covered exhaustively in this introduction. The interested reader
may refer to the monographs [21, 61], the surveys [33, 58] and the references therein for
the state of the art of the subject.

A useful approach that can be used to establish the existence of solutions to (MFG)
is the variational one, already presented in [85]. The main idea behind is that, at least
formally, system (MFG) can be seen as the first order optimality condition associated to
minimizers of the following optimization problem
(P)

inf(m,w)

∫ T
0

∫
Td [b(x,m(x, t), w(x, t)) + F (x,m(x, t))] dx+

∫
Td G(x,m(x, T ))dx

subject to ∂tm− ν∆m+ div(w) = 0 in Td × (0, T ),

m(·, 0) = m0(·) in Td,

(provided that they exist). In (P), the functions b : Td × R × Rd → R ∪ {+∞} and F ,
G : Td × R→ R ∪ {+∞} are defined as follows
(5.1.1)

b(x,m,w) :=


mH∗(x,−w

m) if m > 0,
0 if (m,w) = (0, 0),
+∞ otherwise,

F (x,m) :=

{ ∫m
0 f(x,m′)dm′ if m ≥ 0,

+∞ otherwise,
G(x,m) :=

{ ∫m
0 g(x,m′)dm′ if m ≥ 0,

+∞ otherwise,

where, in the definition of b, H∗(x, ·) denotes the Legendre-Fenchel conjugate of H(x, ·).
Under the assumption that f(x, ·) and g(x, ·) are non-decreasing, problem (P ) is shown
to be a convex optimization problem and convex duality techniques can be successfully
applied in order to provide existence and uniqueness results to (MFG). This argument has
been made rigorous in several articles: let us mention [34, 36] in the context of first order
MFGs (ν = 0), the paper [37] for degenerate second order MFGs, and finally [89, 90] for
ergodic second order MFGs.

The variational approach described above has also been successful in the numerical
resolution of system (MFG). In this direction, we mention the article [78] dealing with
applications in economics, the paper [4] concerned with the so-called planning problem
in MFGs, the works [16, 14] focused on the resolution of a discretization of (P) by the
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Alternating Direction Method of Multipliers (ADMM) and [29] where several first order
methods are implemented and compared for the stationary version of (MFG). Let us
mention that the variational approach is closely related to the so-called mean field optimal
control problem, for which numerical methods have been studied in [30, 12], among others.

In this paper we consider a finite difference discretization of problem (P). Assuming
that f(x, ·) and g(x, ·) are non-decreasing, the discretization that we consider is such that it
preserves the convexity properties of problem (P) and the first order optimality conditions
for its solutions, which are shown to exist, coincide with the finite difference scheme for
MFGs introduced in [6]. A very nice feature of this approach is that the solutions of the
resulting discretized MFGs are shown to converge to the solutions of (MFG). We refer the
reader to [5], where the convergence result is obtained under the assumption that (MFG)
admits a unique classical solution, and to [9] in the framework of weak solutions (see [95] for
the definition of this notion). We solve the discrete convex optimization problem by using
the primal-dual algorithm introduced in [46]. As was pointed out in [29] (see also [92] in the
context of transport problems), the primal-dual algorithm we consider seems to be faster
than the ADMM when ν in (MFG) is small (or null). On the other hand, the efficiency of
both methods is arguable when ν is large. This is due to the fact that, in both algorithms,
at each iteration one has to invert a matrix whose condition number importantly increases
as the viscosity parameter increases. Naturally, preconditioning strategies (see e.g. [22])
can then be used in order to improve the efficiency of both algorithms. This strategy has
been already successfully implemented in [14] for the ADMM.

Our main objective in the present work is to take a closer look at the phenomenon
described at the end of previous paragraph when considering the primal-dual algorithm.
Therefore, we focus our analysis in the case where ν > 0. We have implemented stan-
dard indirect methods for solving the linear systems appearing in the computation of the
iterates of the primal-dual algorithm. As our numerical results suggest, it is very im-
portant to design suitable preconditioning strategies in order to be able to find solutions
of the discretization of problem (P ) efficiently, and in a robust way with respect to the
viscosity parameter. For this, we explore different preconditioning strategies, and in par-
ticular, multigrid preconditioning (see also [8, 14], where multigrid strategies have been
implemented for other solution methods).

The article is organized as follows. In section 5.2 we introduce some standard notation
and we recall the finite difference scheme for (MFG) introduced in [6]. The variational
interpretation of this finite difference scheme is discussed in section 5.3. Next, in section
5.4, we recall the primal-dual algorithm introduced in [46] and we consider its application
to the discretization of (P). In section 5.5, we summarize the preconditioning strategies
that we consider and we discuss a numerical example, which is the time-dependent version
of one of the examples treated in [6, 29].

5.2 Preliminaries and the finite difference scheme

In this section we introduce some basic notation and present the finite difference scheme
introduced in [6], whose efficient resolution will be the main subject of this article. For
the sake of simplicity, we will assume that d = 2 and that given q > 1, with conjugate
exponent denoted by q′ = q/(q − 1), the Hamiltonian H : T2 × R2 → R has the form

H(x, p) =
1

q′
|p|q′ ∀ x ∈ T2, p ∈ R2.
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In this case the function b defined in (5.1.1) takes the form

b(x,m,w) =


|w|q
qmq−1 if m > 0,

0 if (m,w) = (0, 0),
+∞ otherwise.

Let NT , Nh be positive integers and set ∆t = T/NT , the time step, and h = 1/Nh, the
space step. We associate to these steps a time grid T∆t := {tk = k∆t ; k = 0, . . . , NT }
and a space grid T2

h := {xi,j = (ih, jh) ; i, j ∈ Z}. Since T2
h intends to discretize T2,

we impose the identification zi,j = z(i mod Nh),(j mod Nh), which allows to assume that i,
j ∈ {0, . . . , Nh − 1}. A function y := T2 × [0, T ] → R is approximated by its values at
(xi,j , tk) ∈ T2

h × T∆t, which we denote by yki,j := y(xi,j , tk). Given y : T2
h → R we define

the first order finite difference operators

(5.2.1)

(D1y)i,j :=
yi+1,j − yi,j

h
, and (D2y)i,j :=

yi,j+1 − yi,j
h

,

[Dhy]i,j := ((D1y)i,j , (D1y)i−1,j , (D2y)i,j , (D2y)i,j−1),

[̂Dhy]i,j = ((D1y)−i,j ,−(D1y)+
i−1,j , (D2y)−i,j ,−(D2y)+

i,j−1),

where, for every a ∈ R, we set a+ := max(a, 0) and a− := a+ − a. The discrete Laplacian
operator ∆hy : T2

h → R is defined by

(∆hy)i,j := − 1

h2
(4yi,j − yi+1,j − yi−1,j − yi,j+1 − yi,j−1).

For y : T∆t → R we define the discrete time derivative

Dty
k :=

yk+1 − yk

∆t
.

The Godunov-type finite difference discretization of (MFG) introduced in [6] is as follows:
find u, m : T2

h × T∆t → R such that for all 0 ≤ i, j ≤ Nh − 1 and 0 ≤ k ≤ NT − 1 we have

(MFGh,∆t)


−Dtu

k
i,j − ν(∆hu

k)i,j + 1
q′ |̂[Dhuk]i,j |q

′
= f(xi,j ,m

k+1
i,j ),

Dtm
k
i,j − ν(∆hm

k+1)i,j − Ti,j(u
k,mk+1) = 0,

m0
i,j = m̄i,j , uNTi,j = g(xi,j ,m

NT
i,j ),

where

(5.2.2) m̄i,j :=

∫
|x−xi,j |∞≤h2

m0(x)dx ≥ 0,

and the operator T(u′,m′) : T2
h → R, with u′,m′ : T2

h → R, is defined by

Ti,j(u
′,m′) := 1

h

(
−m′i,j 1

q′ |[̂Dhu′]i,j |
2−q
q−1 (D1u

′)−i,j +m′i−1,j
1
q′ |[̂Dhu′]i−1,j |

2−q
q−1 (D1u

′)−i−1,j

+m′i+1,j
1
q′ |[̂Dhu′]i+1,j |

2−q
q−1 (D1u

′)+
i,j −m′i,j

1
q′ |[̂Dhu′]i,j |

2−q
q−1 (D1u

′)+
i−1,j

−m′i,j 1
q′ |[̂Dhu′]i,j |

2−q
q−1 (D2u

′)−i,j +m′i,j−1
1
q′ |[̂Dhu′]i,j−1|

2−q
q−1 (D2u

′)−i,j−1

+m′i,j+1
1
q′ |[̂Dhu′]i,j+1|

2−q
q−1 (D2u

′)+
i,j −m′i,j

1
q′ |[̂Dhu′]i,j |

2−q
q−1 (D2u

′)+
i,j−1

)
,
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with the convention:

(5.2.3) |[̂Dhu′]i,j |
2−q
q−1 [̂Dhu′]i,j = 0 if q > 0 and [̂Dhu′]i,j = 0.

The existence of a solution (uh,∆t,mh,∆t) of system (MFGh,∆t) is proved in [6, Theorem
6] as a consequence of Brouwer fixed point theorem. Furthermore, if we assume that f
and g are increasing with respect to their second argument, and one of them is strictly
increasing, this solution is unique when h is small enough (see [6, Theorem 7]). As we will
see in the next section, these results can also be obtained by variational arguments. The
convergence, as h and ∆t tend to 0, of suitable extensions of uh,∆t and mh,∆t to T2× [0, T ]
to a solution (u,m) of (MFG) is proved in [5] under the assumption that (u,m) is unique
and sufficiently regular. The later smoothness assumption has been relaxed in [9].

5.3 The finite dimensional variational problem and the dis-
crete MFG system

Following [29] in the stationary case and [4] for the planning problem, we introduce some
finite-dimensional operators that will allow us to write easily a finite dimensional version
of problem (P). Denoting by R+ the set of non-negative real numbers and by R− the
set of non-positive real numbers, we define K := R+ × R− × R+ × R− and for v =
(v(1), v(2), v(3), v(4)) ∈ R4 we denote by PK(v) = ((v(1))+,−(v(2))−, (v(3))+,−(v(4))−) its
orthogonal projection onto K. Let M := R(NT+1)×Nh×Nh , W := (R4)NT×Nh×Nh and
U := RNT×Nh×Nh . Let A : M→ U and B : W→ U be the linear operators defined by

(5.3.1)
(Am)ki,j := Dtm

k
i,j − ν(∆hm

k+1)i,j ,

(Bw)ki,j := (D1w
k,(1))i−1,j + (D1w

k,(2))i,j + (D2w
k,(3))i,j−1 + (D2w

k,(4))i,j ,

for all 0 ≤ i, j ≤ Nh − 1 and 0 ≤ k ≤ NT − 1. One can easily check (see e.g. [6]) that the
corresponding dual operators are given by

(5.3.2)

(B∗u)ki,j = −[Dhu
k]i,j for all 0 ≤ k ≤ NT − 1,

(A∗u)ki,j = −Dtu
k−1
i,j − ν(∆hu

k−1)i,j , if 1 ≤ k ≤ NT − 1,

(A∗u)0
i,j = − 1

∆t
u0
i,j ,

(A∗u)NTi,j =
1

∆t
uNT−1
i,j − ν(∆hu

NT−1)i,j ,

for all u ∈ U. For later use, notice that

Ker(B∗) = {u ∈ U | ∀ k = 0, . . . , NT − 1 there exists ck ∈ R such that uki,j = ck ∀ i, j},

and so

(5.3.3) Im(B) = Ker(B∗)⊥ =
{
u ∈ U

∣∣ ∑
i,j

uki,j = 0 ∀ k = 0, . . . , NT − 1
}
.

Let us define b̂ : R× R4 → R ∪ {+∞}

(5.3.4) b̂(m,w) :=


|w|q
qmq−1 , if m > 0, w ∈ K,

0, if (m,w) = (0, 0),

+∞, otherwise,
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and the functions B, F : M×W→ R, G : M×W→M× RNh×Nh as

(5.3.5)

B(m,w) :=
∑

1≤k≤NT ,
0≤i,j≤Nh−1

b̂(mk
i,j , w

k−1
i,j ),

F(m) :=
∑

1≤k≤NT ,
0≤i,j≤Nh−1

F (xi,j ,m
k
i,j) +

1

∆t

∑
0≤i,j≤Nh−1

G(xi,j ,m
NT
i,j ),

G(m,w) := (Am+Bw,m0).

Note that if (m,w) ∈ M ×W is such that G(m,w) = (0, m̄), where we recall that m̄ is
defined in (5.2.2), then

(5.3.6) h2
∑
i,j

mk
i,j = 1 ∀ k = 0, . . . , NT .

Indeed, by periodicity, −
∑

i,j(∆hm
k+1)i,j = 0 and

∑
i,j(Bw)ki,j = 0 for all k = 0, . . . , NT −

1. This implies that

0 =
∑
i,j

(Am+Bw)ki,j =

∑
i,jm

k+1
i,j

∆t
−
∑

i,jm
k
i,j

∆t
,

and so h2
∑

i,jm
k
i,j = h2

∑
i,j m̄i,j = 1 for all k = 0, . . . , NT .

The discretization of the variational problem (P) that we consider is

(Ph,∆t) inf
(m,w)∈M×W

B(m,w) + F(m), subject to G(m,w) = (0, m̄),

where we recall that F and G in (5.3.5) are defined in (5.1.1).
We have the following result

Theorem 5.3.1. For any ν > 0 problem (Ph,∆t) admits at least one solution (mh,∆t, wh,∆t)
and associated to it there exists uh,∆t : M × W → R such that (MFGh,∆t) holds true.
Moreover, (mh,∆t)ki,j > 0 for all k = 1, . . . , NT , i, j = 0, . . . , Nh − 1.

In order to prove the result above, let us first show a lemma that implies the feasibility
of the constraints in (Ph,∆t).

Lemma 5.3.2. There exists (m̃, w̃) ∈M×W such that

(5.3.7)
G(m̃, w̃) = (0, m̄), w̃ki,j ∈ int(K) ∀ i, j = 1, . . . , Nh − 1, k = 1, . . . , NT − 1,

m̃k
i,j > 0, ∀ i, j = 1, . . . , Nh − 1, k = 1, . . . , NT .

Proof. Let us define m̃0
i,j := m̄i,j and m̃k

i,j := 1 for all k = 1, . . . , NT and i, j. Since
h2
∑

i,j m̃
k
i,j = 1 for all k = 0, . . . , NT , by (5.3.3) and the definition of A we easily get that

Am̃ ∈ Im(B). Therefore, there exists ŵ ∈ W satisfying G(m̃, ŵ) = (0, m̄). Then, given
δ > 0, we set for all k = 0, . . . , NT − 1 and i, j

w̃k
i,j :=

(
ŵk,(1) + max

i,j
ŵ

k,(1)
i,j + δ, ŵk,(2) −max

i,j
ŵ

k,(2)
i,j − δ, ŵk,(3) + max

i,j
ŵ

k,(3)
i,j + δ, ŵk,(4) −max

i,j
ŵ

k,(4)
i,j − δ

)
,

which satisfies w̃ki,j ∈ int(K) and (Bw̃)k = (Bŵ)k. The result follows.
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Now, we prove the existence of solutions to (Ph,∆t).

Lemma 5.3.3. Problem (Ph,∆t) admits at least one solution (mh,∆t, wh,∆t) and every such
solution satisfies (mh,∆t)ki,j > 0 for all k = 1, . . . , NT , i, j = 0, . . . , Nh − 1.

Proof. Let (mn, wn) be a minimizing sequence for (Ph,∆t). Lemma 5.3.2 implies that
B(m̃, w̃) + F(m̃) < +∞. Therefore, there exists a constant C1 > 0 such that

(5.3.8) B(mn, wn) + F(mn) ≤ C1 for all n ∈ N.

As a consequence, by definition of b̂, (mn)ki,j ≥ 0 for all i, j and k and (wn)k ∈ K for all k.
Since Amn+Bwn = 0, relation (5.3.6) implies that h2

∑
i,j(m

n)ki,j = 1. In particular, there
exists C2 > 0 (independent of n) such that supi,j,k(m

n)ki,j ≤ C2. Using that, if (mn)ki,j > 0,

b̂((mn)ki,j , (w
n)ki,j) ≥

|(wn)ki,j |q

qCq−1
2

,

and that F(mn) is uniformly bounded (because F and G are continuous and mn is
bounded), relation (5.3.8) yields the existence of C3 > 0 (independent of n) such that
supi,j,k |(wn)ki,j | ≤ C3. Thus, there exists (mh,∆t, wh,∆t) ∈ M ×W such that, up to some
subsequence, mn → mh,∆t and wn → wh,∆t as n → ∞. Since G(mn, wn) = (0, m̄) we
obtain that G(mh,∆t, wh,∆t) = (0, m̄), The lower semicontinuity of B + F implies that

B(mh,∆t, wh,∆t) + F(mh,∆t) ≤ lim
n→∞

B(mn, wn) + F(mn),

which implies that (mh,∆t, wh,∆t) solves (Ph,∆t). Finally, if (m,w) ∈M×W solves (Ph,∆t)
and mk

i,j = 0 for some i, j and k = 1, . . . , NT , then, by the definition of B, we must have
that wk−1

i,j = 0. Thus, the constraint (Am+Bw)k−1
i,j = 0 can be written as

−mk−1
i,j

∆t −
ν
h2

(mk
i+1,j +mk

i−1,j +mk
i,j+1 +mk

i,j−1)

=
w
k−1,(1)
i−1,j

h − w
k−1,(2)
i+1,j

h +
w
k−1,(3)
i,j−1

h − w
k−1,(4)
i,j+1

h .

Since the left hand side above is non-positive and the right hand side is non-negative (by
definition of K), we deduce that all the terms above are zero. By repeating the argument
at the indexes neighboring (i, j), we deduce that mk ≡ 0 and so h2

∑
i,jm

k
i,j = 0 which,

by (5.3.6), contradicts G(m,w) = (0, m̄). The result follows.

Remark 5.3.4. Notice that the proof of the existence of a solution to (Ph,∆t) also works
when ν = 0.

Proof of Theorem 5.3.1. By Lemma 5.3.3 we know that there exists a solution (mh,∆t, wh,∆t)

to (Ph,∆t) and mh,∆t
i,j > 0 for all i, j. Thus, in order to conclude it suffices to show the

existence of uh,∆t such that (MFGh,∆t) holds true. For notational convenience we will omit
the superindexes h and ∆t. Define the Lagrangian L := M×W×U×RNh×Nh → R∪{+∞},
associated to (Ph,∆t), as

(5.3.9)
L(m,w, u, λ) := B(m,w) + F(m)− 〈u,Am+Bw〉 − 〈λ,m0 − m̄〉

= B(m,w) + F(m)− 〈A∗u,m〉 − 〈B∗u,w〉 − 〈λ,m0 − m̄〉.
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Note that the linear mapping M 3 m 7→ (Am,m) ∈ U × RNh×Nh is invertible as it is
shown by its matrix representation (see (5.4.7) in the next section). As a consequence G is
surjective and, hence, by standard arguments, there exists (u, λ) ∈ U×RNh×Nh such that
(5.3.10)

0 = ∂mki,j
L(m,w, u, λ) = − 1

q′
|wk−1
i,j |

q

(mki,j)
q + f(xi,j ,m

k
i,j)− [A∗u]ki,j ∀ k = 1, . . . , NT − 1, ∀ i, j,

0 = ∂m0
i,j
L(m,w, u, λ) = −λi,j − [A∗u]0i,j ∀ i, j,

0 = ∂
m
NT
i,j

L(m,w, u, λ) = − 1
q′
|wNT−1
i,j |q

(m
NT
i,j )q

+ f(xi,j ,m
NT
i,j ) + 1

∆tg(xi,j ,m
NT
i,j )− [A∗u]NTi,j ∀ i, j,

0 ∈ ∂wk−1
i,j

L(m,w, u, λ) = |wk−1
i,j |q−2 wk−1

i,j

(mki,j)
q−1 − [B∗u]k−1

i,j +NK(wk−1
i,j ) ∀ k = 1, . . . , NT , ∀ i, j,

where we have used definition (5.3.4) and that mk
i,j > 0 for all k = 1, . . . , NT and all i, j.

Defining uNTi,j := g(xi,j ,m
NT
i,j ), by the last relation in (5.3.2), the third relation in (5.3.10)

can be rewritten as

−Dtu
NT−1
i,j − ν(∆hu

NT−1)i,j +
1

q′
|wNT−1
i,j |q

(mNT
i,j )q

= f(xi,j ,m
NT
i,j ),

and hence, by the second relation in (5.3.2) and the first relation in (5.3.10), we have that

(5.3.11) −Dtu
k
i,j−ν(∆hu

k)i,j +
1

q′
|wki,j |q

(mk+1
i,j )q

= f(xi,j ,m
k+1
i,j ) ∀ k = 0, . . . , NT −1, ∀ i, j.

The last relation in (5.3.10) yields that for all k = 1, . . . , NT and all i, j
(mki,j)

q−1

|wk−1
i,j |q−2

[B∗u]k−1
i,j ∈ w

k−1
i,j +NK(wk−1

i,j ) if wk−1
i,j 6= 0,

[B∗u]k−1
i,j ∈ NK(0) if wk−1

i,j = 0,

which, by (5.3.2) and under the convention (5.2.3), is equivalent to
(5.3.12)

wk−1
i,j = mk

i,j |PK(−[Dhu]k−1
i,j )|

2−q
q−1PK(−[Dhu]k−1

i,j ) = mk
i,j | ̂[Dhuk−1]i,j |

2−q
q−1 ̂[Dhuk−1]i,j .

Shifting the index k, the expression above yields

1

q′
|wki,j |q

(mk+1
i,j )q

=
1

q′
|̂[Dhuk]i,j |

q′ ∀ k = 0, . . . , NT − 1, ∀ i, j,

which, combined with (5.3.11), implies the first equation in (MFGh,∆t). The second equa-
tion in (MFGh,∆t) is a consequence of Am + Bw = 0 and the fact that (5.3.12) provides
the identity

(Bw)ki,j = −Ti,j(uk,mk+1) ∀ k = 0, . . . , NT − 1, ∀ i, j.
The result follows.

Remark 5.3.5. (i) The proof of the existence of solutions to (MFGh,∆t) in Theorem 5.3.1
provides an alternative argument to the one in [6], based on Brouwer fixed-point theorem.
(ii)(Uniqueness) If f(x, ·) and g(x, ·) are increasing, with one of them being strictly in-
creasing, then (MFGh,∆t) has a unique solution. Indeed, under this assumption, the cost
functional in (Ph,∆t) is convex w.r.t. (m,w) and strictly convex w.r.t. m. It is easy to
check that this implies that if (m1, w1) and (m2, w2) are two solutions of (Ph,∆t) then
m1 = m2. Using this fact and the definition of b̂ (see (5.3.4)), we also get that w1 = w2.
Thus, under this monotonicity assumption, the solution (mh,∆t, wh,∆t) to (Ph,∆t) is unique.
Having this result, the uniqueness of uh,∆t follows directly from [6, Lemma 1].
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5.4 A primal-dual algorithm

As discussed in [29], for solving the optimization problem

(5.4.1) min
y∈RN

ϕ(y) + ψ(y),

and its dual

(5.4.2) min
σ∈RN

ϕ∗(−σ) + ψ∗(σ),

where ϕ : RN → R ∪ {+∞} and ψ : RN → R ∪ {+∞} are convex l.s.c. proper functions,
methods in [28, 46, 48, 55, 57] can be applied with guaranteed convergence under mild
assumptions. In [29], devoted to the stationary case, the method proposed in [46] has the
best performance when the viscosity parameter is small or zero. This method is inspired
by the first-order optimality conditions satisfied by a solution (ŷ, σ̂) to (5.4.1)-(5.4.2) under
standard qualification conditions, which reads (see [96, Theorem 8])

(5.4.3)

{
−σ̂ ∈ ∂ϕ(ŷ)

ŷ ∈ ∂ψ∗(σ̂)
⇔

{
ŷ − τ σ̂ ∈ τ∂ϕ(ŷ) + ŷ

σ̂ + γŷ ∈ γ∂ψ∗(σ̂) + σ̂
⇔

{
proxτϕ(ŷ − τ σ̂) = ŷ

proxγψ∗(σ̂ + γŷ) = σ̂,

where γ > 0 and τ > 0 are arbitrary and, given a l.s.c. convex proper function φ : RN →
]−∞,+∞],

proxγφ x := argminy∈RN
{
φ(y) +

|y − x|2

2γ

}
= (I + ∂(γφ))−1(x) ∀ x ∈ RN .

Given θ ∈ [0, 1], τ and γ satisfying τγ < 1, and starting points (y0, ỹ0, σ0) ∈ RN×RN×RM ,
the iterates {(yk, σk)}k∈N generated by

(5.4.4)

σk+1 := proxγψ∗(σ
k + γỹk),

yk+1 := proxτϕ(yk − τσk+1),

ỹk+1 := yk+1 + θ(yk+1 − yk)

converge to a primal-dual solution (ŷ, σ̂) to (5.4.1)-(5.4.2) (see, e.g., [46]).
In the case under study, the equations of the time-dependent discretization are very

similar to their stationary counterparts (see [29]). Specifically, the discrete linear operators
A and B defined in (5.3.1), by an abuse of notation, are represented by real matrices A and
B, of dimensions (NT ×N2

h)×((NT + 1)×N2
h) and (NT ×N2

h)×(NT × 4N2
h), respectively,

given by

(5.4.5) A :=


− 1

∆t IdN2
h

νL+ 1
∆t IdN2

h
0 · · · 0

0 − 1
∆t IdN2

h
νL+ 1

∆t IdN2
h

. . .
...

...
. . . . . . . . . 0

0 · · · 0 − 1
∆t IdN2

h
νL+ 1

∆t IdN2
h

 ,

and

(5.4.6) B :=


M 0 · · · 0
0 M · · · 0
...

. . .
...

0 · · · 0 M

 ,
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where L ∈ MN2
h , N

2
h
(R) is the matrix that represents −∆h on the torus T2

h and M ∈
MN2

h , 4N2
h
(R) is the matrix representing the discrete divergence. Denoting by Ã and B̃ the

((NT + 1)×N2
h)× ((NT + 1)×N2

h) and ((NT + 1)×N2
h)× (NT × 4N2

h) real matrices

(5.4.7) Ã :=

(
IdN2

h
0 · · · 0

A

)
and B̃ :=

(
0 · · · 0

B

)
,

the constraint G(m,w) = (0, m̄) in (Ph,∆t) can be rewritten as C(m,w) = (m̄, 0), where
C := [Ã | B̃].

Remark 5.4.1. (i) The matrix Ã is block lower triangular with invertible diagonal blocks
and, hence, it is invertible. Indeed, the first diagonal block IdN2

h
is obviously invert-

ible and the other blocks, given by νL+ 1
∆t IdN2

h
, are also invertible because they are

strictly diagonally dominant.

(ii) Since Ã is invertible, the matrix

(5.4.8) Q := CC∗ = ÃÃ∗ + B̃B̃∗

is positive definite and, hence, invertible.

Therefore, (Ph,∆t) is a particular instance of (5.4.1) with

ϕ(m,w) := B(m,w) + F(m), ψ(m,w) := ιkerC+{(mf ,wf )}(m,w),

where (mf , wf ) is a feasible vector (provided for instance by Lemma 5.3.2), and ιkerC+{(mf ,wf )}
is the function defined as 0 for all (m,w) ∈ kerC + {(mf , wf )} and +∞, otherwise.

Since proxγψ∗ = Id − γ proxψ/γ ◦(Id/γ) = Id − γ proxψ ◦(Id/γ) (see e.g. [15, Section
24.2]) and

proxψ : (m,w) 7→ (m,w)− C∗Q−1(C(m,w)− (m̄, 0)),

we have
proxγψ∗ : (m,w) 7→ C∗Q−1(C(m,w)− γ(m̄, 0)),

where Q is defined in (5.4.8). By setting y0 = (m0, w0), ỹ0 = (m̃0, w̃0), σ0 = (n0, v0) ∈
RNT×N2

h × RNT (4N2
h), (5.4.4) becomes

(5.4.9)



z[l+1] = −Q−1
(
Ã(n[l] + γm̃[l]) + B̃(v[l] + γw̃[l])− γ(m̄, 0)

)
,(

n[l+1]

v[l+1]

)
=

(
Ã∗z[l+1]

B̃∗z[l+1]

)
,(

m[l+1]

w[l+1]

)
= proxτϕ

(
m[l] + τn[l+1]

w[l] + τv[l+1]

)
,(

m̃[l+1]

w̃[l+1]

)
=

(
m[l+1] + θ(m[l+1] −m[l])

w[l+1] + θ(w[l+1] − w[l])

)
,

and, if γτ < 1, the convergence of (m[l], w[l]) to a solution (m̂, ŵ) to (Ph,∆t) is guaranteed
together with the convergence of (n[l], v[l]) to some (n̂, v̂) as l → ∞. In order to compute
the Lagrange multiplier û ∈ U, which solves the first equation in (MFGh,∆t), note that
(5.3.9) can be written equivalently as

(5.4.10)
L(m,w, u, λ) := ϕ(m,w)− 〈(λ, u), Ãm+ B̃w〉+ 〈λ, m̄〉

= ϕ(m,w)−
〈(

Ã∗

B̃∗

)
(λ, u),

(
m
w

)〉
+ 〈λ, m̄〉,
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and the optimality condition yields

(5.4.11)
(
Ã∗

B̃∗

)
ẑ ∈ ∂ϕ(m̂, ŵ),

where (m̂, ŵ) is the primal solution and ẑ = (λ̂, û). Therefore, in order to approximate ẑ,
note that from (5.4.9) we have

(5.4.12)

(
m[l]−m[l+1]

τ + Ã∗z[l+1]

w[l]−w[l+1]

τ + B̃∗z[l+1]

)
∈ ∂ϕ(m[l+1], w[l+1])

and, hence, since the algorithm generates converging sequences m[l] → m̂ and w[l] → ŵ
and z[l] → ẑ := −Q−1(Ã(n̂+ γm̂) + B̃(v̂ + γŵ)− γ(m̄, 0)), the closedness of the graph of
∂ϕ [15, Proposition 20.38] yields (5.4.11) and, hence, a good approximation of ẑ is z[l] for
l large enough. For obtaining [u∗]NTi,j , a good approximation is [u[l]]NTi,j = g(xi,j , [m

[l]]NTi,j ).

Remark 5.4.2. (i) In order to obtain an efficient algorithm, the computation of proxτϕ in
(5.4.9) should be fast. A complete study of proxτϕ is presented in [29, Section 3.2] showing
that its computation depends on the resolution of a real equation, which can be efficiently
solved.
(ii) An important step in (5.4.9) is the efficient computation of the inverse of Q. Different
preconditioning strategies to tackle this issue will be presented in the following section.

5.5 Preconditioning strategies

At the beginning of each iteration of the primal-dual algorithm (5.4.9), we require the
solution of a linear system

(5.5.1) Qz = b.

The purpose of this section is to discuss preconditioning strategies for the solution of this
linear system. For the stationary setting discussed in [29], the solution of such a system
via direct methods such as the backlash (mldivide) command in MATLAB 1 was feasible
for relatively fine meshes (up to the order of 100 nodes per space dimension). However,
as shown in Table 5.1, introducing a temporal dimension and thus increasing the degrees
of freedom to N2

h × NT significantly increases the computation time. Indeed, the use of
backlash on fine space and time grids – e.g. 1282 space grid points and 40 time steps –
requires an amount of RAM that is prohibitive on the machine used for our performance
tests 2, leading to “out of memory” errors. We mitigate this problem by exploring the
solution of (5.5.1) via preconditioned iterative methods, which perform efficiently for finer
space and time subdivisions and different viscosities.
We begin by illustrating the difficulties associated to the conditioning of the system in
(5.5.1). Table 5.2 shows the condition number of the system for different space-time dis-
cretizations and viscositiy values. Without any precoditioner, the condition numbers of
different discretizations scale up to 108. The same Table shows that by selecting a suit-
able preconditioner, such as the modified incomplete Cholesky factorization [22] (michol
in MATLAB), the conditioning of the system is improved by 4 orders of magnitude.

1http://uk.mathworks.com/help/matlab/ref/mldivide.html
2Intel Core i7-4600U @ 2.7GHz, 16GB RAM
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(a) NT = 10

ν
Nh 16 32 64 128

5× 10−4 7.12 62.7 452 4720
5× 10−3 6.29 60.6 345 3690
5× 10−2 1.96 18.3 113 1340

0.5 1.18 9.41 56.1 660

(b) NT = 40

ν
Nh 16 32 64 128

5× 10−4 24.2 569 15600 [OOM]
5× 10−3 18.8 496 14200 [OOM]
5× 10−2 8.10 145 5000 [OOM]

0.5 4.50 72.3 2510 [OOM]

Table 5.1 – MATLAB’s backslash computation times (seconds) for a single linear system
solved in (5.4.9) within the Chambolle-Pock algorithm under a tolerance equal to 10−4 in
in normalized `2-norm. For fine meshes [OOM] indicates an out of memory error for the
tested architecture.

We have tested different choices of preconditioners and iterative methods for our prob-
lem. Since the matrix Q in our setting is sparse, symmetric, and positive-definite, we
have implemented an incomplete Cholesky factorization with diagonal scaling, a modified
incomplete Cholesky factorization, and multigrid preconditioning. As for the choice of the
iterative method, our tests included both preconditioned conjugate gradient (pcg), and
the biconjugate gradient stabilized method (BiCGStab). The interested reader will find in
[102, Chapters 6 and 8] a thorough description of the aforementioned methods, and in the
Appendix of this article performance tables for the different methods.

Our findings suggest that the use of an iterative pcg method, preconditioned by mod-
ified incomplete Cholesky factorization is satisfactory for small viscosities (ν ≤ 0.05).
However, this algorithm fails to converge for high viscosity systems on refined grids (ν =
0.5, NT = 40, Nh ∈ {64, 128}). Exchanging the pcg method by a BiCGStab algorithm
preconditioned by modified incomplete Cholesky factorization slows down the process on
finer grids, but allows for convergence in the failure cases of pcg: ν = 0.5, NT = 40, Nh ∈
{64, 128}.

In order to deal with (and exploit) the anisotropy of the system introduced by high
viscosities, we have devised an algorithm consisting in a multigrid preconditioner with
BiCGStab iterations akin to that described in Algorithm 1. It is the only among the tested
methods which performs consistently for different viscosities and space-time discretizations.
We discuss its implementation and assess its performance in the following section 5.5.1.

Table 5.2 – Condition numbers for Q without preconditioning (a), and with modified
incomplete Cholesky factorization preconditioning (b).

(a) No preconditioner (scaling 104)

ν
DoF

322 × 1 322 × 10 322 × 20

5× 10−5 4.290 19.06 38.43
5× 10−4 4.296 19.25 39.10
5× 10−3 4.751 22.77 48.90
5× 10−2 48.43 227.7 466.0

0.5 4399 19250 36540

(b) michol preconditioning (scaling 104)

ν
DoF

322 × 1 322 × 10 322 × 20

5× 10−5 0.04217 0.08535 0.1361
5× 10−4 0.04218 0.08612 0.1370
5× 10−3 0.04272 0.09325 0.1446
5× 10−2 0.1025 0.2501 0.3579

0.5 1.255 2.743 3.770
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Algorithm 1 Preconditioned BiCGStab

xl ←BiCGStab(Ql, bl, PL, PR, x0, tol)
procedure BiCGStab(Ql, bl, PL, PR, x0, tol)

r0 := p0 := Qlx0 − bl; r̂0 := p̂0 := Plr0; ρ̂0 := 〈r0, r0〉; k := 0
while ‖rk‖ ≥ tol do

vk := QPRp̂k
v̂k := PLvk
α̂k := ρ̂k/〈v̂k, r̂0〉
sk+1 := rk − α̂kvk
ŝk+1 := PLsk+1

tk+1 := APRŝk+1

t̂k+1 := PLtk+1

ω̂k+1 := 〈ŝk+1, t̂k+1〉/〈t̂k+1, t̂k+1〉
x̂k+1 := x̂k + α̂kp̂k + ω̂k+1ŝk+1

rk+1 := sk+1 − ω̂k+1tk+1

r̂k+1 := ŝk+1 − ω̂k+1t̂k+1

ρ̂k+1 := 〈r̂k+1, r̂0〉
β̂k+1 := (α̂k/ω̂k+1)(ρk+1/ρk)
p̂k+1 := r̂k+1 + β̂k+1(p̂k − ω̂k+1v̂k)
k := k + 1

return xk := PRx̂k

5.5.1 Multigrid preconditioner

We implement a multigrid preconditioned algorithm for solving (5.5.1). We refer the reader
to [100] for an introduction and an overview of multigrid methods. We briefly review the
main concepts behind the method. Consider two linear systems A1x̄1 = b1 and A0x̄0 = b0,
stemming from two discretizations of a linear PDE over the grids G1 and G0, respectively.
Assume also that G1 is a refinement of G0. Loosely speaking, the main idea of the method
is that in order to find a good approximation of the solution x̄1 on the finer grid, we first
consider what is known as a smoothing step. This step consists in computing a few iterates
x1

1, . . . , x
η1
1 with a standard indirect method, such as Jacobi or Gauss-Seidel, and to define

the residual r1 := b1−A1x
η1
1 , which is shown to be smoother (less oscillatory) than the first

residual b1−A1x
1. Then, we consider in the coarser grid G0 the second system A0x̄0 = b0

with b0 = r̂1, where r̂1 is the restriction of r1 to G0. Assuming that we can compute a
good approximation of x̄0, which we still denote by x̄0, we then extend this solution to G1

by using a linear interpolation. Calling e1 the resulting vector, we update xη11 by redefining
it as xη11 + e1 and we end the procedure by applying again a few iterations, say η2, of a
smoothing method initialized at xη11 . This last step is called post smoothing.

The previous paragraph introduced what is known as a two grid iteration. If we consider
more grids G0, G1,. . ., G`, where for each k = 0, . . . , ` − 1, Gk ⊆ Gk+1, we can proceed
similarly and obtain a better approximation of the solution to A`x̄` = b`. As in the previous
case, we begin with the finest grid G` and we perform η1 smoothing steps to obtain the
residual r` := b`−A`xη1` whose restriction to G`−1 is denoted by r̂`. In this grid we consider
the system A`−1x`−1 = r̂` and we perform again a smoothing step and a restriction of the
residual to G`−2. The procedure continues until we get to the coarsest grid G0, where
the solution e0 to the corresponding linear system can be found easily (typically using a
direct method). Next, the solution e1 on the grid G1 is corrected with the interpolation
of e0. Another post smoothing is performed to the corrected solution on G1 and using its
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interpolation in the grid G2 we correct the previous solution on this grid. The smoothing,
interpolation and correction iterations end once we arrive to the finest grid G` to obtain
the final approximation of x̄`. The previous procedure is called a multigrid method with
a V -cycle. An alternative, to obtain a more accurate solution, is to proceed as before
going from G` to G`−1 and then for k = ` − 1, . . . , 1 to perform two consecutive coarse-
grid corrections, instead of one as in the V -cycle. The resulting procedure is known as
multigrid with a W -cycle. Finally, in between the V -cycle and the W -cycle, we have the
F-cycle, where in the process of going from the coarsest grid to the finest one, if a grid has
been reached for the first time, another correction with the coarser grids using a V -cycle
is performed.

In our context, we use one cycle of the multigrid algorithm, which is a linear operator as
a function of the residual on the finest grid, as a preconditioner for solving (5.5.1) with the
BiCGStab method. Since Q is related to the finite difference discretization of the operator
−∂2

tt + ν2∆2 − ∆ and ν is not necessarily small, as in [8], it is natural to consider the
refinements of the grid only in the space variable (we refer the reader to [100] for semi-
coarsening multigrid methods in the context of anisotropic operators). We suppose that
the spatial mesh is such that Nh = H2`, with H > 1 and ` is a positive integer (in the
numerical example in the next section H will be equal to 2 or 3, H2 being the number of
spatial points in the coarsest grid).

Let us specify the main steps of the multigrid method we use as a preconditioner.

� Hierachy of Grids: Semi-coarsened gridsGk with size (NT+1)H222k for all k = 0 . . . `.

� Cycle: We use the F-cycle.

� Restriction operator: As in [8], in order to restrict the residual on the grid Gk to the
grid Gk−1, we use the second-order operator Rk : R(2kH)2(NT+1) → R(2k−1H)2(NT+1)

defined by

(RkX)ni,j :=
1

16

(
4Xn

2i,2j + 2(Xn
2i+1,2j +Xn

2i−1,2j +Xn
2i,2j+1 +Xn

2i,2j−1)

Xn
2i−1,2j−1 +Xn

2i−1,2j+1 +Xn
2i+1,2j−1 +Xn

2i+1,2j+1

)
,

for n = 0, . . . , NT , i, j = 1, . . . , 2k−1H.

� Interpolation operator: We denote by Ik : R(2k−1H)2(NT+1) → R(2kH)2(NT+1) the
interpolation operator from the grid Gk−1 to the grid Gk. We have chosen a standard
bilinear interpolation operator in the space variable, which is also a second-order
operator and dual to the restriction operator (Ik = 4R∗k). According to [26], the sum
of the orders of Rk and Ik has to be at least equal to the degree of the differential
operator. In our context, both are equal to 4.

� Linear systems on the different grids: The linear systems are defined by the matrices

Qk := AkA
∗
k +BkB

∗
k, k = 0, . . . , `,

where we recall that Ak and Bk are the finite difference discretizations of ∂t − ν∆
and div(·), respectively, on the grid Gk (see (5.3.1)).

� Smoother: Here we have used Gauss-Seidel iterations in the lexicographic order.
There is no reason for choosing the lexicographic order, other than its simplicity.
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� Solving the system on the coarsest grid G0: We can use an exact solver such as
backlash in MATLAB. Indeed, in G0 the size of the system is really small with
respect to the size of the system on the grid G` (in G0, we can even store the inverse
of Q0 and inversion at this level just becomes a matrix multiplication).

The multigrid preconditoning procedure is summarized in Algorithm 2.

Algorithm 2 Multigrid Preconditioner for Q`x` = b`

PL : y 7→ MultigridSolver(`, 0, y,cycle)
xl ←BiCGStab(Q`, b`, PL, Id, x0, tol)
procedure MultigridSolver(k, xk, bk,cycle)

if k = 0 then
xk ← Q−1

0 bk
else

xk ←Perform η1 steps of Gauss-Seidel from xk with bk as second member.
xk−1 ← 0
xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),cycle)
if cycle is W then

xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),cycle)
if cycle is F then

xk−1 ←MultigridSolver(k − 1, xk−1, Rk(bk −Qkxk),V)
xk ← xk + Ikxk−1

xk ←Perform η2 steps of Gauss-Seidel from xk with bk as second member.
return xk

5.5.2 Numerical Tests

In this section we present a test case considered in [6], for which the stationary solution
has been computed numerically in [29] using the primal-dual algorithm presented above.

The setting is as follows: we consider system (MFG) with g ≡ 0 and

f(x, y,m) := m2 −H(x, y), H(x, y) = sin(2πy) + sin(2πx) + cos(2πx),

for all (x, y) ∈ R2 and m ∈ R+. This means that in the underlying differential game
modelled by (MFG), a typical agent aims to get closer to the maxima of H̄ and, at the
same time, he/she is adverse to crowded regions (because of the presence of the m2 term
in f).

We first validate the dynamic behavior of our solution. Figure 5.1 shows the evolution
of the mass at four different time steps. Starting from a constant initial density, the mass
converges to a steady state, and then, when t gets close to the final time T , the mass is
influenced by the final cost and converges to a final state. This behavior is referred to as
turnpike phenomenon in the literature [94]. It is illustrated by Figure 5.2, which displays as
a function of time t the distance of the mass at time t to the stationary state computed as
in [29]. In other words, denoting by m∞ ∈ RNh×Nh the solution to the discrete stationary
problem and by m ∈M the solution to the discrete evolutive problem, Figure 5.2 displays

the graph of k 7→ ‖m∞ −mk‖`2 =
(
h2
∑

i,j(m
∞
i,j −mk

i,j)
2
)1/2

, k ∈ {0, . . . , NT }.
For the multi-grid preconditioner, Table 5.3 shows the computation times for different

discretizations. It can be observed that finer meshes with 1283 degrees of freedom are
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Figure 5.1 – Evolution of the density m obtained with the multi-grid preconditioner for
ν = 0.5, T = 1, NT = 200 and Nh = 128. At t = 0.12 the solution is close to the solution
of the associated stationary MFG.
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Figure 5.2 – Distance to the stationary solution at each time t ∈ [0, T ], for ν = 0.5, T =
2, NT = 200 and Nh = 128. The distance is computed using the `2 norm as explained in the
text. The turnpike phenomenon is observed as for a long time frame the time-dependent
mass approaches the solution of the stationary MFG.
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solvable within CPU times which outperfom others methods shown in the Appendix and
in [29]. Furthermore, the method is robust with respect to different viscosities.

From Table 5.3 we observe that most of the computational time is used for solving the
second proximal operator (the third equality of (5.4.9)), which does not use a multigrid
strategy but which is a pointwise operator (see Proposition 3.1 of [29]) and thus could be
fully paralellizable.

(a) Grid with 64× 64× 64 points.

ν Total time Time first prox Iterations
0.6 116.3 [s] 11.50 [s] 20

0.36 120.4 [s] 11.40 [s] 21

0.2 119.0 [s] 11.26 [s] 22

0.12 129.1 [s] 14.11 [s] 22

0.046 225.0 [s] 23.28 [s] 39

(b) Grid with 128× 128× 128 points.

ν Total time Time first prox Iterations
0.6 921.1 [s] 107.2 [s] 20

0.36 952.3 [s] 118.0 [s] 21

0.2 1028.8 [s] 127.6 [s] 22

0.12 1036.4 [s] 135.5 [s] 23

0.046 1982.2 [s] 260.0 [s] 42

Table 5.3 – Time (in seconds) for the convergence of the Chambolle-Pock algorithm, cu-
mulative time of the first proximal operator with the multigrid preconditioner, and num-
ber of iterations, for different viscoty values ν and two types of grids. Here we used
η1 = η2 = 2, T = 1 and a tolerance between two iterations of the Chambolle-Pock algo-
rithm equal to 10−6 in normalized `2-norm.

Unlike the stationary case, low viscosities seem to make the algorithm be slightly slower.
However, Table 5.4 shows that the average number of iterations of BiCGStab stays low
regardless of the viscosity. Indeed Table 5.3 shows that more Chambolle-Pock iterations
are needed to converge. The same behavior happens when we use a direct exact solver
instead of the multi-grid preconditioned BiCGStab algorithm.

(a) iterations to decrease the residual by a
factor 10−3.

ν 32× 32× 32 64× 64× 64 128× 128× 128

0.6 1.65 1.86 2.33

0.36 1.62 1.90 2.43

0.2 1.68 1.93 2.59

0.12 1.84 2.25 2.65

0.046 1.68 2.05 2.63

(b) iterations to solve the system with an er-
ror of 10−8.

ν 32× 32× 32 64× 64× 64 128× 128× 128

0.6 3.33 3.40 3.38

0.36 3.10 3.21 3.83

0.2 3.07 3.31 4.20

0.12 3.25 3.73 4.64

0.046 2.88 3.59 4.67

Table 5.4 – Average number of iterations of the preconditioned BiCGStab with η1 = η2 =
2, T = 1 and a tolerance between two iterations of the Chambolle-Pock algorithm equal to
10−6 in normalized `2-norm.

Concluding Remarks. In this work we have developed a first-order primal-dual
algorithm for the solution of second-order, time-dependent mean field games. The proce-
dure consists of: a variational formulation for the MFG, its discretization via finite differ-
ences, the application Chambolle-Pock algorithm to the resulting minimization. While this
method has been studied for stationary MFG in [29], its numerical realization for time-
dependent MFGs was prohibitive in terms of computing time, as the Chambolle-Pock
iteration requires the solution of a large-scale linear system at each iteration. We have
overcome this difficulty by studying different preconditioning strategies for the associated
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linear system. Overall, the multigrid preconditioner with a BiCGStab iteration performs
satisfactorily for different discretizations and viscosity values.

Appendix

(a) Unpreconditioned

ν
Nh 16 32 64 128

5× 10−4 18,5 87,6 448 1720
5× 10−3 22,1 98,6 392 1750
5× 10−2 20,7 93,4 607 8240

0.5 24,9 113 [X] [X]

(b) michol

ν
Nh 16 32 64 128

5× 10−4 15,8 77,8 346 1390
5× 10−3 12,4 80,9 325 1244
5× 10−2 5,47 26,3 138 636

0.5 3,69 16,5 [X] [X]

Table 5.5 – Conjugate Gradient computation times (s). (a) Unpreconditioned. (b) Precon-
ditioned with modified incomplete Cholesky factorization. Time discretization: NT = 40.
[X] indicates no convergence.

(a) Unpreconditioned

ν
Nh 8 16 32 64 128

5× 10−4 2.42 14.2 69.0 294 1210
5× 10−3 3.09 16.3 63.9 270 1210
5× 10−2 1.41 12.9 61.3 389 5470

0.5 3.41 16.5 98.9 [X] [X]

(b) michol

ν
Nh 16 32 64 128

5× 10−4 15.7 80.4 412 1890
5× 10−3 12.2 82.2 369 1650
5× 10−2 5.25 27.2 174 894

0.5 3.53 18.8 122 2120

Table 5.6 – BiCGStab computation times (s). (a) Unpreconditioned. (b) Preconditioned
with modified incomplete Cholesky factorization. Time discretization: NT = 40. [X]
indicates no convergence.
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Quelques contributions à la théorie des jeux à champ moyen

Résumé

Cette thèse a pour objet d’étude la théorie des jeux à champs moyen. La majeure partie est
consacrée à des jeux à champ moyen dans lesquels les joueurs peuvent interagir a travers
la loi de leur état et de leur contrôle ; nous utiliserons la terminologie jeu à champ moyen
de contrôle pour désigner de tels jeux. Dans un premier temps, nous faisons une hypothèse
structure, qui consiste essentiellement à dire que la dynamique optimale dépend de la loi
de contrôle de façon lipschitzienne avec une constante inférieure à un. Dans ce cas, nous
prouvons plusieurs résultats d’existence de solutions au système de jeu à champ moyen de
contrôle, et un résultat d’unicité en temps court. Dans un second temps, nous mettons
en place un schéma numérique et faisons des simulations pour des modèles de mouvement
de populations. Dans un troisième temps, nous montrons l’existence et l’unicité lorsque
l’interaction par le contrôle satisfait une condition de monotonie. Le dernier chapitre
concerne un algorithme de résolution numérique pour des jeux à champ moyen de type
variationnel et sans interaction via la loi du contrôle ; nous utilisons une stratégie de
préconditionnement par une méthode de multi-grille pour obtenir une convergence rapide.

Mots-clefs: Jeux à champ moyen, système d’équations aux dérivées partielles, simu-
lations numériques.

Contributions to the theory of Mean Field Games

Abstract

This thesis deals with the theory of mean field games (MFG for short). The main part is
dedicated to a class of games in which agents may interact through their law of states and
controls; we use the terminology mean field games of controls (MFGC for short) to refer
to this class of games. First, we assume that the optimal dynamics depends upon the law
of controls in a Lipschitz way, with a Lipchitz constant smaller than one. In this case, we
give several existence results on the solutions of the MFGC system, and one uniqueness
result under a short-time horizon assumption. Second, we introduce a scheme and make
simulations for a model of crowd motion. Thrid, under a monotonicity assumption on the
interactions through the law of controls, we prove existence and uniqueness of the solution
of the MFGC system. Finally, we introduce an algorithm for solving MFG systems of
variational type, we use a preconditioned strategy based on a multigrid method.

Keywords: Mean Field Games, system of partial differential equations, numerical
simulations.

Université de Paris
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