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Résumé des Travaux de Thèse

Introduction

Au cours de la dernière décennie, les communications sans fil et les services Inter-
net se sont infiltrés dans la société et ont radicalement changé notre vie, dépassant
toutes les attentes. Ils sont devenus un réel besoin pour beaucoup d’entre nous. En
outre, la demande en communications sans fil fiables continue de croître rapidement
lorsque les mobiles sans fil prenant en charge les communications vocales vers des
services multimédia à haut débit sont déployés avec succès. Pour répondre à cette
demande, depuis les années 1980, diverses technologies et normes innovantes ont été
proposées pour faire évoluer les systèmes de communications.

Afin de desservir les utilisateurs mobiles dans une zone géographique donnée,
les concepteurs ont proposé de partitionner cette zone en petites surfaces appelées
cellules. Les utilisateurs qui se trouvent dans chaque cellule sont desservis par une
station de base située au centre de la cellule. Les communications cellulaires sont
bidirectionnelles. Liaison montante permet à la station de base de détecter les
signaux envoyés par les utilisateurs. La liaison descendante permet à la station de
base transmettre des signaux à ses utilisateurs.

L’objectif est maintenant de concevoir un réseau cellulaire efficace offrant des
communications sans fil fiables sur les ressources spectrales attribuées et limité par
une puissance de transmission maximale. À cette fin, les chercheurs ont défini les
paramètres de performance à optimiser. Un paramètre important à prendre en
compte est l’efficacité spectrale justifiée par la rareté et le coût élevé du spectre
radio-magnétique.

De la 2G à la 3G, des canaux SISO à entrée unique et à sortie unique ont été
considérés en combinaison avec des techniques d’accés multiples telles que TDMA,
FDMA et CDMA. À partir de la 4G et au-delà, avec l’augmentation importante du
nombre d’utilisateurs et l’utilisation de techniques d’accés multiples, le spectre radio-
magnétique risque de saturer et de nouvelles technologies doivent être proposées.

Grâce à l’expérience du V-BLAST implémenté en temps réel dans le laboratoire
Bell Labs, les systèmes sans fil multi-antennes ont retenu l’attention des chercheurs.
Ces derniers ont démontré que les systèmes MIMO pouvaient améliorer l’efficacité
spectrale en augmentant le nombre d’antennes sans augmenter la puissance ou la
bande passante par rapport aux systèmes SISO. En raison de ces avantages, la
technologie MIMO est implémentée dans la 4G. Cependant, elle est utilisée avec un
nombre d’antennes ne dépassant pas dix dans la plupart des cas.

Des chercheurs ont récemment découvert que le potentiel des systèmes MIMO
à atteindre une efficacité spectrale très élevée n’a pas été complètement exploité.
En conséquence, une nouvelle version de MIMO appelée MIMO à grande échelle
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est devenue un domaine de recherche dynamique. L’idée est d’utiliser un grand
nombre, par exemple des dizaines voire des centaines d’antennes au niveau de la
station de base. Cela peut conduire à des efficacités spectrales très élevées avec
l’augmentation du débit de données sans modification de la bande passante. Ces
avantages par rapport aux systèmes MIMO font des systèmes MIMO à grande échelle
une technologie prometteuse pour la 5G afin de répondre à la demande croissante
de communications sans fil dans les années à venir.

L’objectif de la thèse était de concevoir des algorithmes de détection adaptés au
contexte des systèmes MIMO à grande échelle afin d’exploiter leur potentiel.

Le modèle du système et les algorithmes de
l’état de l’art

Figure 1: Communication MIMO multi-utilisateurs

Dans cette première partie, nous avons présenté le modèle mathématique des
systèmes des communications MIMO à grande échelle dans le lien montant comme
illustré sur la Figure. 1. Le modèle (1) repose sur l’expression d’un vecteur y dont
les éléments sont les différentes observations au niveau des antennes à la station de
base. Ce vecteur peut s’écrire sous la forme de la somme du vecteur représentant
le bruit de l’environnement ζ et d’une transformation du vecteur x contenant les
différents symboles émis par les différents utilisateurs à l’aide de la matrice du canal
H qui représentent l’état de canal entre les antennes à l’émission et à la réception.

y = Hx+ ζ, (1)
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Dans la première partie de la thèse, nous avons supposé que la matrice de canal
est parfaitement connue et que les symboles émis appartiennent à une modulation
d’alphabet fini et de constellation uniforme et carrée. Notre objectif est alors la
détection des symboles émis tout en connaissant l’état de canal et le vecteur des
observations au niveau de la station de base.

Dans notre état de l’art nous avons considéré deux groupes d’algorithmes de
détection qui peuvent nous servir comme des références de la littérature et nous
permettre de positionner nos algorithmes.

Une première classe est basée sur le critère de maximum de vraisemblance (MV)
qui nécessite une recherche exhaustive. Cependant, dans les systèmes MIMO, en
augmentant le nombre d’antennes, le critère MV devient un problème NP-hard qui
ne peut pas être résolu. L’algorithme de décodage par sphère est une solution al-
ternative. C’est un algorithme de décodage basé sur le critère MV qui peut avoir
une complexité polynomiale pour certaines plages de valeurs de SNR. Lorsque les
dimensions du système MIMO augmentent, la complexité de décodage de la sphère
est nettement inférieure à la complexité exponentielle de la détection MV. L’idée
est de limiter l’espace de recherche des points de réseau à une sphère centrée sur le
point reçu. Cependant, pour les valeurs de SNR faibles et moyennes, sa complexité
reste exponentielle, ce qui le rend inadapté lorsque les dimensions du système sont
élevées.
La deuxième classe comprend les algorithmes de détection linéaires. Le filtrage
adapté (MF), le forçage à zéro (ZF) et la minimisation de l’erreur quadratique
moyenne (MMSE) sont des algorithmes de détection linéaire bien connus qui, con-
trairement au décodage par sphère, peuvent être appliqués lorsque les dimensions
du système sont élevées en raison de leur complexité polynomiale. Mais ils obti-
ennent dans de tels cas une performance de détection médiocre par rapport aux
algorithmes optimaux. Pour remédier à cet inconvénient, des schémas d’annulation
d’interférence successive non linéaires basés sur des détecteurs linéaires ont été pro-
posés, tels que ZF-SIC et MMSE-SIC. Leur complexité reste polynomiale et les per-
formances de détection sont améliorées par rapport aux structures linéaires d’origine.
La détection linéaire peut également être améliorée en utilisant les techniques de ré-
duction de réseau de points.
Pour toute technique de détection proposée, deux critères d’intérêt sont la complex-
ité et la performance de détection. L’objectif est donc d’obtenir un algorithme peu
complexe et performant. Ceci est difficile à réaliser dans la plupart des cas. À titre
d’exemple, le décodeur par sphère réalise les performances MV avec une complexité
élevée contrairement aux détecteurs linéaires qui présentent une complexité faible
et des performances faibles. Les chercheurs sont souvent obligés de gérer ce com-
promis qui doit encore être amélioré, en particulier dans le cas des systèmes MIMO
à grande échelle. Un phénomène intéressant qui apparaît quand les dimensions du
système deviennent suffisantes peut être exploité, il s’agit du durcissement de canal.
Il est montré que lorsqu’un système MIMO surdéterminé est pris en compte (le
nombre d’antennes de réception est beaucoup plus élevé que le nombre d’antennes
d’émission), les détecteurs linéaires tels que MF, ZF et MMSE tendent vers des
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performances optimales grâce au phénomène de durcissement de canal. Cependant,
dans ce cas, l’efficacité spectrale est limitée par le nombre d’antennes d’émission qui
doit être faible. Par conséquent, nous perdons l’un des avantages les plus impor-
tants des grands systèmes MIMO. Pour obtenir une efficacité spectrale élevée, les
deux dimensions du système MIMO doivent être grandes, ce qui mène à une dégra-
dation des performances à cause des interférences entre les différents utilisateurs.
Pour résoudre ce problème, des algorithmes basés sur la recherche locale convien-
nent parfaitement aux systèmes MIMO à grande échelle, tels que LAS et RTS, qui
atteignent des performances quasi-optimales tout en conservant la même complexité
que la détection linéaire. L’idée ici est d’obtenir une première solution fournie par la
détection linéaire et de l’améliorer en recherchant un meilleur minimum local choisi
parmi les voisins de la sortie de la détection linéaire.

Détection basée sur l’acquisition comprimée

Dans la première partie de nos contributions, nous avons abordé le problème
de la détection dans les systèmes MIMO à grande échelle. Nous avons proposé
d’abord un critère de détection pour les systèmes de mélange sans bruit de signaux
d’alphabet fini en exploitant leur simplicité. Un vecteur est simple lorsqu’il contient
des élements égaux à ses bornes. Le terme simplicité a été introduit pour la pre-
mière fois par Donoho. Il a démontré que des systèmes de mélange sous-déterminés
où le nombre de sources dépasse le nombre d’observations peuvent être détectés
avec succès. Nous avons montré que cette propriété peut être exploitée de la même
façon que la propriété de parcimonie de tels signaux afin de proposer de nouveaux
algorithmes basés sur la technique de l’acquisition comprimée. Nous avons ensuite
étendu le critère proposé, basé sur la simplicité, au cas bruité, afin de concevoir un
détecteur de faible complexité pour les systèmes MIMO à grande échelle. À notre
connaissance, il s’agit du premier algorithme proposé capable de se comporter effi-
cacement dans des configurations de systèmes MIMO à grande échelle, déterminés
et sous-déterminés. On peut s’attendre à une telle configuration dans les commu-
nications montantes car le nombre d’utilisateurs multiplié par le nombre de leurs
antennes pourrait être beaucoup plus élevé que le nombre d’antennes à la station de
base.

Ensuite, nous avons montré l’efficacité du critère proposé appelé (FAS) par rap-
port aux algorithmes de détection les plus efficaces en analysant théoriquement les
conditions de succés de détection, la probabilité dâerreur de détection et la com-
plexité de calcul.

En premier lieu, nous avons examiné la condition nécessaire d’unicité et
d’existence de la solution du critère proposé. Cette condition couvre le cas déter-
miné et partiellement le cas sous-déterminé. Par rapport aux techniques précédentes
basées sur la parcimonie, nous avons obtenu une réduction suffisante des coûts de
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calcul avec une préservation du taux d’erreur. Les résultats de la simulation ont
corroboré avec l’analyse théorique. Nous avons ensuite comparé le critère proposé
aux algorithmes de l’état de l’art. Sur la Figure. 2, on remarque que l’algorithme
FAS est meilleur que les algorithmes de détection linéaire ainsi que leurs versions
améliorées. Sur la Figure 3, on compare l’algorithme proposé avec les algorithmes
de recherche locale (LAS et RTS). Le critère proposé (FAS) surpasse l’algorithme
LAS dans tous les cas étudiés et dépasse le RTS au-dessous d’un seuil de BER qui
augmente en augmentant l’ordre de modulation. La distribution théorique de la
sortie du détecteur a aussi été demontrée et validée par des simulations. Dans la
partie suivante, les résultats analytiques seront utilisés premièrement pour définir
un récepteur itératif basé sur le concept de zone d’ombre afin d’améliorer encore
les performances dans le cas non codé et deuxièmement pour définir un récepteur
itératif de type turbo prenant en compte un décodeur FEC.
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Figure 2: Comparaison de taux d’erreur binaire pour un système 64⇥ 64 avec une
modulation 4-QAM.

Algorithmes itératifs basés sur le FAS

Dans la deuxième partie de nos contributions, nous avons de nouveau considéré
le problème de la détection dans les systèmes MIMO à grande échelle et nous avons
défini des récepteurs itératifs qui utilisent l’algorithme de détection basé sur la sim-
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Figure 3: Comparaison de taux d’erreur binaire pour un système 32 ⇥ 32 avec 4-
QAM,16-QAM and 64-QAM.

plicité (FAS). Dans un premièr lieu, nous avons travaillé sur les systèmes MIMO à
grande échelle non codés. Nous avons proposé un nouvel algorithme d’annulation
d’interférence successif appelé (FAS-SAC), basé sur le principe de la zone d’ombre
et nous avons optimisé ses paramètres en exploitant l’analyse théorique de la sor-
tie du détecteur. En deuxième lieu, nous avons considéré les systèmes MIMO à
grande échelle codés et notre objectif était la définition des récepteurs itératifs de
type turbo. Nous avons proposé un récepteur itératif, appelé (FAS-ML), basé sur
une détection de type ML dont les sous-ensembles de candidats sont définis comme
le voisinage de la sortie du critère FAS. Pour réduire davantage la complexité du
récepteur, nous avons également introduit un autre récepteur basé sur un algorithme
FAS dont le critère est pénalisé par une fonction de la valeur absolue de lâerreur
moyenne pondérée par les sorties fiables du décodeur. Le paramètre de régulari-
sation été défini analytiquement. Nous avons appelé ce récepteur (FAS-MAE). Les
résultats de la simulation sur la Figure 4 ont montré que l’algorithme FAS-SAC pro-
posé surpasse de manière significative les algorithmes standard FAS, LAS et RTS
dans presque tous les cas, avec le même ordre de complexité de calcul. Dans le cas
codé, sur la Figure 5, nous avons montré que les deux récepteurs itératifs proposés
sont meilleurs que le Turbo-MMSE dans toutes les configurations déterminées et
sous-déterminées et que FAS-MAE donne de meilleurs résultats que FAS-ML pour
les modulations de taille élevée. Jusqu’à présent, tout le travail effectué repose sur
une connaissance parfaite de la matrice de canal. Néanmoins, dans le cas de sys-
tèmes MIMO à grande échelle, ce scénario est difficile à obtenir. La partie suivante
est consacrée à l’évaluation d’impact de l’estimation de canal sur les performances
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du récepteur et à la conception d’algorithmes efficaces traitant de l’estimation de
canal.
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Figure 4: Comparaison de taux d’erreur binaire pour un système 32 ⇥ 32 avec 4-
QAM,16-QAM and 64-QAM.

Estimation de canal dans les systèmes MIMO
à grande échelle

Dans les premières parties, les algorithmes de détection étaient présentés sous
l’hypothèse d’une connaissance parfaite du canal au niveau du récepteur. Toutefois,
dans la pratique, les gains de canal sont estimés au niveau du récepteur, soit à
l’aveugle, soit en semi-aveugle, soit en utilisant des séquences pilotes seulement. En
raison du bruit et du nombre fini des séquences pilotes, les estimations de canal ne
sont pas parfaites. Cela a une influence sur la capacité du canal MIMO et sur les
performances des algorithmes de détection. Dans cette dernière partie, nous avons
traité tout d’abord l’effet de l’estimation imparfaite de canal sur la performance du
système MIMO. Ensuite, nous avons proposé des algorithmes d’estimation de canal
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rithmes FAS-MAE, FAS-ML and Turbo-MMSE avec une modulation 4-QAM codé.

semi-aveugles dans les systèmes MIMO à grande échelle non codés et codés avec des
alphabets finis en supposant une longueur de séquence pilote limitée. Nous avons
proposé des schémas d’estimation de canal fondés sur des décisions souples et dures
des algorithmes FAS et FAS-SAC. Nous avons montré qu’il suffisait de prendre en
compte un nombre de séquences pilotes égal au nombre d’utilisateurs. Des études
théoriques pour les deux algorithmes ont été menées et nous avons déterminé les
bornes de Crame Rao (CRB) lorsque des décisions souples sont prises en compte et
les erreurs quadratiques moyennes (EQM) asymptotiques lorsque des décisions dures
sont utilisées. Les résultats de simulation ont montré la validité de l’étude théorique.
Ensuite, nous avons proposé un récepteur basé sur le turbo FAS-MAE qui combine
l’estimation, la détection et le décodage FEC et nous avons défini deux manières de
mettre à jour l’estimation de canal basée sur FAS à partir de la sortie du décodeur
FEC. Les résultats de simulations sur les Figures 6, 7 et 8 ont montré l’efficacité
du schéma proposé, qui fonctionne presque à la limite inférieure des performances
avec estimation du canal MV basée sur une connaissance de toute la séquence de
symboles émis, avec une supériorité des schémas basées sur celles basées sur les
décisions dures dans le cas non codé, est des schémas basées sur celles basées sur les
décisions dures dans le cas codé.
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Figure 6: EQM vs RSB (Décision dure (FAS)), TEB vs RSB (Décision dure (FAS))
avec une modulation 4-QAM non codée, n = N = 64, Tp = 64 and T = 1280.

Conclusions

Cette thèse était motivée par les nouvelles opportunités offertes par les systèmes
MIMO à grande échelle et par les différents défis à relever pour les rendre opéra-
tionnels. Par exemple, les algorithmes connus pour bien fonctionner avec un petit
nombre d’antennes ne peuvent pas supporter le passage aux grandes dimensions.
Par conséquent, de nouvelles approches et alternatives sont nécessaires.

Les travaux de la thèse peuvent être résumés comme suit :
Dans la première partie, nous avons d’abord présenté les systèmes MIMO et



xi

5 10 15 20

SNR(dB)

10-5

10-4

10-3

10-2

10-1

M
S

E

ML Training

Iter. estimation/FAS-detection, # iter=1

Iter. estimation/FAS-detection, # iter=2

Iter. estimation/FAS-SAC-detection, # iter=1

Iter. estimation/FAS-SAC-detection, # iter=2

ML Full Data

5 7 9 11 13 15 17 19 21

SNR(dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Perfect channel knowledge

Initial channel estimate

Iter. estimation/detection, # iter=1

Iter. estimation/detection, # iter=2

Figure 7: EQM vs RSB (Décision dure (FAS-SAC)), TEB vs RSB (Décision dure
(FAS-SAC)) avec une modulation 4-QAM non codée, n = N = 64, Tp = 64 and
T = 1280.

nous avons montré les avantages de tels systèmes par rapport aux systèmes SISO.
Différents paramètres de performance tels que l’efficacité spectrale et la probabilité
d’erreur ont été présentés. Nous avons ensuite présenté certains défis lorsque de tels
systèmes sont déployés, tels que la nécessité d’algorithmes de faible complexité pour
le traitement des systèmes d’antennes à grande dimension. L’estimation de canal a
également été évoquée.

Ensuite, nous avons présenté l’état de l’art sur les techniques et les algorithmes
de détection dans les systèmes MIMO et les systèmes MIMO à grande échelle. Nous
avons détaillé les différents algorithmes et nous avons montré leurs points forts et
leurs points faibles.

Dans la deuxième partie consacrée à la détection dans les systèmes MIMO
à grande échelle, nous avons examiné les techniques de détection basées sur
l’acquisition comprimée. Nous avons examiné les signaux à alphabet fini et nous
avons exploité leur propriété de simplicité pour proposer des algorithmes efficaces
dans les cas bruité et non bruité. Le cas sans bruit a été théoriquement étudié pour
obtenir les conditions nécessaires de la bonne détection. Le schéma de récupération
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Figure 8: EQM vs RSB (FAS-MAE), TEB vs RSB (FAS-MAE) avec une modulation
4-QAM codée„ n = N = 64, Tp = 64 and T = 1280.

proposé a ensuite été étendu aux systèmes MIMO à grande échelle et une étude
théorique des statistiques de sortie de détection a été réalisée avec succès. Nous
avons montré que l’algorithme proposé présente le même ordre de complexité que
les algorithmes peu complexes de l’état de lâart (MMSE, LAS, RTS) et atteint des
meilleures performances (gains importants par rapport au LAS et au MMSE).

Ensuite, notre objectif était d’intégrer l’algorithme proposé dans une procédure
itérative pour les cas non codés et codés afin d’améliorer ses performances. Au
premier abord, nous avons examiné le cas non codé et nous avons proposé un schéma
d’annulation successive d’interférences basé sur le principe de la zone d’ombre, avec
des paramètres théoriquement fixés sur la base des statistiques de la sortie du critère
proposé à l’origine. Nous avons ensuite proposé d’intégrer le schéma original dans
un récepteur itératif de type turbo.

Dans la dernière partie, nous avons examiné le cas d’une estimation imparfaite
de canal et nous avons introduit des algorithmes itératifs d’estimation semi-aveugles
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basés sur le critère des moindres carrés alimentés par les sorties des algorithmes de
détection proposés. Le cas codé a également été traité et des schémas d’estimation
de canal et de détection itératifs de type turbo ont été proposés.
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1.1 Introduction

During last decade, wireless communications and internet services have infiltrated
the society and changed our life seriously exceeding all expectations. They became
a real need for many of us. In addition, the demand of reliable wireless communica-
tions is still growing rapidly when wireless mobiles that support voice communica-
tions to high data rate multimedia services are successfully deployed. To meet this
demand, since 1980s, various and novel technologies and standards have been pro-
posed as demonstrated in Fig. 1.1 from the first generation to the fifth generation
communications systems.

In order to serve mobile users in a given geographic area, the designers proposed
to partition this area into small surfaces called cells. Then, the users who are in each
cell will be served by a base station located in the center of the cell as demonstrated
in Fig. 1.2. The wireless communications are two-way. A first one is the uplink,
when base station detects its assigned users signals. The other way is the downlink
when the base station transmits signals to its users.

The objective now is to design an efficient cellular network that provides reliable
wireless communications over the allocated spectrum resources and constrained by
a maximum transmission power. To that purpose, researchers defined performance
parameters to be optimized. An important parameter that should be taken into
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Figure 1.1: Wireless communications evolution

Figure 1.2: Cellular communication

account is the spectral efficiency justified by the scarcity and then the high cost of
the radio spectrum.

From 2G to 3G, single-input single-output SISO channels were considered in
combination with multiple access techniques such as TDMA, FDMA and CDMA.
From 4G and beyond, as the number of users highly increases, using previous multi-
ple access techniques, the radio spectrum risks to be saturated and new technologies
must be proposed.

Motivated by the experience of the vertical BLAST (Bell Laboratories Layered
Space-Time) or V-BLAST system implemented in real-time in the Bell Labs labo-
ratory [1], multiantenna wireless systems have regained the attention of researchers.
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One of the first theoretical study of these systems referred to as multiple-input mul-
tiple output (MIMO) systems was published in [2]. The authors demonstrated that
the MIMO system can lead to better spectral efficiency increasing the number of
antennas without extra power nor bandwidth compared to the SISO systems. Due
to these advantages the MIMO technology is implemented in the 4G. However, it is
used with a number of antennas that does not exceed ten in most cases.

Recently, researchers in MIMO field discover that the full potential of MIMO
systems to achieve very high spectrum efficiency has not been yet exploited in prac-
tice. Consequently a new version of MIMO called large-scale MIMO has become an
attractive field of research. The idea is to use large number such as tens to hundreds
of antennas at the base station (BS). This can lead to achieve very high spectral
efficiencies when increasing the data rate without changing the bandwidth. These
advantages over MIMO systems make large MIMO systems a promising technology
for 5G to meet the growing demand of wireless communications in the coming years.

In this chapter, we first present the encoded MIMO system communication and
we detail the performance achieved by the MIMO communication compared to SISO
communication. Then we show the motivation to migrate to large-scale systems.

1.2 MIMO communication

1.2.1 Point-to-point MIMO communication

Figure 1.3: Point-to-point MIMO system

1.2.1.1 MIMO system model

In the point-to-point MIMO systems (Fig. 1.3), the encoded system model can be
described by:

y = Hxc + ζ, (1.1)

where y is the received vector, xc is the transmitted vector, ζ is the additive white
Gaussian noise and E[ζζH ] = σ2In with σ2 the noise variance at each receiver
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antenna. H is the (N⇥n) channel matrix with entries assumed to stay constant over
the signaling interval and modeled as independent and identically distributed (i.i.d).
The matrix H can be estimated using pilot symbol vectors known at the receiver
during a training phase. To approach the limit performance, the transmitted vector
xc is encoded. Then the information bits are grouped into messages that correspond
to vectors belonging to a codebook X. Each message contains R = log2|X| bits where
R is defined as the transmission rate.

To study the utility of considering the MIMO system, the capacity of the trans-
mission channel must be determined. The MIMO capacity for a codeword xc is
given by:

CMIMO(SNR,H) = log2 det

✓

IN +
1

σ2
HE[xcx

H
c ]HH

◆

(1.2)

where E[xcx
H
c ] is the transmit covariance matrix with tr(E[xcx

H
c ]) = Pt, Pt is the

average power of the transmitted vector. The SNR is then defined as the ratio Pt
σ2 .

Given the MIMO capacity, to get a low error probability detection of the codeword
xc, the transmission rate R should be inferior to CMIMO(SNR,H). Without the
knowledge of the channel state information (CSI) at the transmitter, for a given
SNR value, the transmission rate is fixed arbitrary. The transmitter uses a fixed
codebook that does not change when changing the channel gains and the transmitter
codebook selection depends highly on whether the channel is slow or fast fading.

With slow fading, the channel may remain approximately constant long enough
to allow reliable estimation of CSI at the receiver. The channel does not change
during the length of the codeword. If the transmission rate R is chosen such that
CMIMO(SNR,H) < R, it is impossible to successfully recover the transmitted
vector.

In order to design a performing transmission-reception scheme, it is proposed to
evaluate the probability of that scenario which is called the outage probability. Its
theoretical limit for large-length codewords is defined as:

Poutage(SNR,R) = min
x|tr(E[xxH ])=Pt

Pr(CMIMO(SNR,H) < R) (1.3)

With a transmission rate R satisfying CMIMO(SNR,H) < R, any encoding-
decoding scheme would have a codeword error rate higher than the channel outage
probability given in 1.3. Therefore, researchers look for designing encoding-decoding
schemes that can perform close to the channel outage probability for all values of
SNR and R.

For the slow fading MIMO channels, the diversity gain which is a reliability mea-
sure and the multiplexing gain which measures the degrees of freedom are important
to design efficient coding schemes. They are related by the so-called diversity-
multiplexing gain tradeoff [3]. Their maximum values are about nN and min(n,N)

respectively. For example, the maximum diversity order of V-BLAST algorithm [1]
is only n. This is because the transmitted symbols are independent and they reach
the receiver through n different paths. Another performing scheme, which achieves
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the maximum diversity gain is the Alamouti space-time block code [4] thanks to the
coding across both space and time.

In a fast fading channel, the channel changes many times over the duration of
the used codeword. The codeword reception can be more reliable by spreading the
codeword over different fades. In such scenario, an error-free communication can be
achieved when the transmission rate R is below the ergodic MIMO capacity defined
as follows:

Cergodic(SNR) = max
x|tr(E[xxH ])=Pt

EH [CMIMO(SNR,H)] (1.4)

Note that the ergodic capacity is achieved when E[xxH ] = (Pt/N)IN and is
therefore given by:

Cergodic(SNR) = EH



log2 det

✓

In +
SNR

N
HHH

◆]

(1.5)

It can be approximated as follows:

Cergodic(SNR) ⇡ min(n,N) log2(1 + SNR) (1.6)

The ergodic MIMO capacity linearly increases when increasing n = N [5]. Note
that when the channel state information (CSI) is known at the transmitter side,
the ergodic capacity of slow fading MIMO channel can be achieved with indepen-
dent Gaussian beamformed signals where the linear precoding depends on singular
vectors of the channel. In such a case, the MIMO channel can be transformed
into min(N,n) parallel non-interfering subchannels. Then, applying the waterfill-
ing power allocation over these subchannels the ergodic capacity is achieved [5].

In addition, when the channel state information is available at the transmitter,
the channel capacity can be increased by allocating more power to the most reliable
channels with higher channel gain.

1.2.2 Multiuser MIMO communication

The multiuser MIMO communication refers to the communication between the base
station and the user terminals in cellular communication. This is illustrated in Fig.
1.4. The uplink and the downlink are a multipoint-to-point communication and
a point-to-multipoint communication respectively. In order to serve different user
terminals, different multiple access techniques are used like TDMA, FDMA, CDMA
and orthogonal frequency multiple access (OFDMA). In a broadcast channel (equiv-
alent to the downlink of a cellular communication), the base station sends informa-
tion to all users simultaneously and then each user extracts its private message. The
dirty paper coding (DPC) [6] can achieve the maximum capacity of the broadcast
channel. The sum capacity which is the sum of all data rates achieved by the users
linearly increases with the number of transmit antennas at the base station and the
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Figure 1.4: Multiuser MIMO system

System dimension Error probability Channel capacity
SISO (non-fading) n = N = 1 exp(−SNR) log2 (1 + SNR)

MIMO (non-fading) n > 1, N > 1 (SNR)−1 log2 (1 + SNR)

MIMO (fading) n > 1, N > 1 (SNR)−nN min(n,N) log2 (1 + SNR)

Table 1.1: Performance indicators for SISO and MIMO systems.

number of single antenna user terminals. When a large number of transmit anten-
nas is considered as significantly exceeding the number of user terminals, simple
encoding-decoding techniques can achieve high performance thanks to additional
spatial diversity.

1.2.3 Advantages of MIMO over SISO communication

In Table 1.1, a brief comparison of the link reliability in terms of error probability
and channel capacity is given for both SISO and MIMO cases. In SISO non-fading
channel, it is shown that the channel increases logarithmically contrary to the error
probability which decreases exponentially with the SNR increases. However, when
fading is considered the error probability decreases only linearly when increasing
SNR. This performance degradation can be alleviated by considering MIMO systems
exploiting the diversity of multiple channels and the error probability can be reduced
exponentially when increasing the system dimensions. Compared to SISO systems,
in addition to the gain in terms of link reliability, it is also shown that the channel
capacity can be multiplied by the minimum of the system dimensions in MIMO
systems. This makes MIMO systems more attractive in terms of both channel
capacity and link reliability. The spectral efficiency can be increased either by
increasing the size of the constellation alphabet (in SISO and MIMO systems) or
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Figure 1.5: SISO and MIMO systems with the same spectral efficiency (4 bits per
channel use)
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Figure 1.6: Bit error performance comparison of SISO and MIMO systems for the
same spectral efficiency (4 bits per channel use)
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the number of the transmitted antennas only in MIMO systems. For instance,
given a frequency bandwidth to transmit 4 bits per channel use, a small modulation
order (4-QAM) with two transmit antennas can be used in MIMO whereas a 16-
QAM is required in SISO (see Fig.1.5). In Fig. 1.6 we show the bit error rate
performance based on the zero forcing detection in both cases. The SISO system
with 16-QAM achieves poor performance and the improvement when SNR increases
is slow. This can be explained as mentioned in Table 1.1 by the linear dependency
on the SNR value Perror / SNR(−1). However, when increasing the number of
antennas, the MIMO system outperforms significantly the SISO systems thanks to
spatial diversity. Therefore, increasing the number of antennas is a better choice to
increase spectral efficiency.

To rise the data trafic explosion and to better exploit the detailed benefits of
MIMO systems compared to SISO systems, researchers have proposed large-scale
MIMO systems motivated by increasing the different communication performance
indicators such as link reliability and spectral efficiency when increasing the MIMO
system dimensions. In next Section, large-scale MIMO systems are introduced and
their different benefits as well as raised challenges are presented.

1.3 Large-scale MIMO systems

1.3.1 Description

Large-scale MIMO systems involve a large number of antennas in both transmission
and reception sides. This number goes from tens to hundreds. They include different
MIMO configurations. The point-to-point MIMO configuration can be considered
when the number of antennas is large. A typical real scenario for such configuration
is the communication between two neighboring base stations possessing both a large
number of antennas. The multiuser MIMO is also taken into account in large-scale
MIMO systems. For the case of cellular communication, a multipoint-to-point uplink
communication and point-to-multipoint downlink communication between the base
station and the user terminals are established.

As user terminals are size-limited, large number antenna array is infeasible and
the interference has to be managed at the base station either thanks to interfer-
ence cancellation algorithms (uplink) or sophisticated beamforming (downlink). The
higher the number of antennas at the base station the higher the degrees of freedom
(space diversity).

1.3.2 Motivations

1.3.2.1 Full exploitation of MIMO advantages

Large-scale MIMO systems present numerous advantages. First, thanks to the addi-
tional degrees of freedom, they should support the expected increase of data traffic.
Indeed according to Table 1.1 the capacity is proportional to the minimum between
transmit and receive antenna number, and thus higher-data rate applications can
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be afforded. Second as the maximum diversity gain equals the product of transmit
and receive antennas, the transmission quality is ensured and services sensitive to
errors should be better protected. Third, thanks to large number of antennas at
the base station, the maximum number of users that can be served by the base
station should increase and beamforming solutions with interference limited to the
immediate neighboring of the user should be made possible which makes the re-
source allocation and scheduling less complex but requires accurate channel state
information at the base station.

1.3.2.2 Channel hardening

Large-scale MIMO communications can offer new benefits which can not be ex-
ploited in smaller dimensions and which come from the large-scale MIMO channel
properties. Channel matrix is all the better conditioned as its dimensions are high.
More precisely, when the channel matrix becomes larger keeping the ratio of its
dimensions fixed, the distribution of its singular values becomes less sensitive to
the actual distribution of its entries. This was evoked as the Marchenko-Pastur
law [7]. This phenomenon is also known as channel hardening [8]. As the size of H
increases, the diagonal entries of the matrix HHH are relatively more prominent
than the non-diagonal entries. This can be illustrated in Fig. 1.7. The channel
hardening can be well exploited and offers a lot of advantages for large-scale MIMO
communications. It can help simple detection scheme to achieve higher performance
in large dimensions. Also as shown in Fig. 1.7 increasing the system dimensions
the matrix HHH tends to be proportional to the identity matrix and thus enables
algorithms based on matrix inversion less complex and faster. In brief, benefiting
from this phenomenon, designers can exploit some approximations to propose new
detection schemes with affordable complexity.

1.3.3 Challenges

Large-scale MIMO communications seem promising to establish efficient and reli-
able communications. With such systems one can expect multigigabit rate transmis-
sions with hundreds of bits per channel. However, practical implementation raises
many technical challenges. Low complexity signal processing algorithms are needed
for channel estimation, synchronization, detection and encoding-decoding schemes.
Channel estimation is one major bottleneck of the performance of such systems.
Without accurate knowledge of the channel, large-scale MIMO won’t keep their
promises. In classical systems, CSI is acquired with the help of transmitted pilot
sequences known at the receiver. The number of necessary pilots increases linearly
with the system dimensions. The problem is twice. First the design of orthogonal
pilot sequences is difficult when their number increases. Second it involves long
sequences, which results in extended overhead and thus a loss in terms of spectral
efficiency.

New encoding frame schemes are thus necessary for large-scale MIMO commu-
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Figure 1.7: Intensity of HHH

nications.

Another critical technological barrier is the detection of large dimensional sys-
tems. Near-optimal maximum-likelihood solutions suffer from a complexity which
signifigantly increases with the system dimensions making them impractical.
Linear detection is of course compatible with practical implementation but its per-
formance is too poor. New schemes of enhancement of existing ones are required to
keep the promises of large-scale MIMO systems.

An utmost issue in large-scale MIMO communications is the multicell design. Its
organization and functioning must be re-addressed like cell dimensions, neighboring
base stations link, resource allocation and inter-cell interference management (in-
terference between the users of different neighboring cells). In particular, as earlier
mentioned, channel estimation requires new pilot sequence formats. The risk with
existing pilot sequences is to have non-orthogonal pilot sequences between neigh-
boring cells. This phenomenon called pilot contamination can disturb the multicell
system and could be reduced by cells cooperation. Further investigation is still
in-progress.

1.4 Scope of the thesis

This thesis is motivated by the new opportunities in large-scale MIMO systems
and the different challenges to be addressed to make them operational. We have
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undertaken two main studies.
The first challenge that the PhD aims to rise to is large-scale MIMO detection.

After a deep state-of-the-art, we investigate solutions based on compressed-sensing
which exploit the finite source alphabet simplicity property. The proposed algorithm
is theoretically analysed and its insertion within an iterative procedure either with
successive interference cancellation in the case of uncoded systems or with forward
error correction code decoder is carefully designed. The algorithm and its extensions
are compared to state-of-the-art schemes in terms of detection error and computation
cost.

The second line of research is channel estimation. Our goal is to preserve the
large-scale MIMO potential in terms of spectral efficiency by proposing efficient
channel estimation algorithms that use the least possible number of pilot symbols.
To that purpose, we propose to integrate the simplicity-based detection algorithms
in an iterative semi-blind channel estimation in both uncoded and coded cases. An
analytical study supported by simulations is carried out to evaluate the performance
of the resulting CSI estimation algorithms compared to the state-of-the-art.

1.5 Outline of the thesis

The document is organized as follows:
Chapter 2 is dedicated to state-of-the–art detection algorithms for MIMO and

large-scale MIMO systems. We stress weak and strong points of each algorithm.
In Chapter 3, we address the problem of large-scale MIMO detection. We exploit

the simplicity property of finite alphabet signals to propose an efficient detection
algorithm. We first focus on the noiseless case and we determine the necessary con-
ditions on system dimensions for successful recovery. Then, we extend the principle
to the noisy case and investigate the theoretical statistics of the algorithm output
and we establish its theoretical error probability.

In Chapter 4, we insert the proposed simplicity-based detection algorithm within
an iterative procedure. We first consider uncoded large-scale MIMO systems. We
propose a successive interference cancellation scheme based on shadow area con-
straints applied to the simplicity-based algorithm. Then we focus on FEC-coded
large-scale MIMO systems. We first design ML-like detection whose search area is
fixed by the simplicity-based detection output. Then to further reduce the iterative
receiver complexity, we propose a second scheme based on a regularization of the
original detection criterion which uses the decoder output.

Chapter 5 is devoted to the channel state information estimation in both cases:
uncoded and coded large-scale MIMO systems. First, we investigate semi-blind
channel estimation algorithms based on the simplicity-based detection in the un-
coded case. Different versions are studied. The proposed estimation schemes are
theoretically analyzed and simulations support the conclusions. Second, we focus on
the uplink of FEC-coded large-scale MIMO systems. We combine the iterative algo-
rithm developed in Chapter 4 with the optimized estimation algorithm to propose
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an iterative receiver which processes CSI estimation, large-scale MIMO detection
and FEC decoding.

Finally Chapter 6 concludes the document and gives some perspectives.
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2.1 Introduction

Detection in MIMO systems is an important key to get an efficient communication.
Migrating from SISO to MIMO communications, the detection task becomes more
complicated because of the additional interference due to the simultaneous signals
transmission from the other transmit antennas. Consequently, the design and the
development of new detection algorithms are needed.

A first reflex is to extend the detection algorithms of multiuser CDMA detection
to be candidates in the case of MIMO communications motivated by the structure
similarities of their two system models. The algorithms which can implemented in
MIMO systems are classified into two groups.
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A first class is based on Maximum Likelihood (ML) criterion which needs an
exhaustive search to find the solution [9]. However, in MIMO systems, by increasing
the number of antennas, the ML criterion becomes an NP-hard problem which
cannot be solved. An alternative solution is the sphere decoding algorithm. It is
an ML-based decoding algorithm that can have a polynomial complexity for certain
range of SNR values [10]. When the MIMO system dimensions increase, the sphere
decoding complexity is significantly less than the exponential complexity of the ML
detection. The idea is to limit the search space of lattice points to a sphere centered
at the received point. However, for low and medium SNR values its complexity
remains exponential which makes it not suitable when the system dimensions are
high.

Another class consists of linear detection algorithms which are extended from
CDMA detection. The matched filter (MF), zero forcing (ZF) and minimum mean
square error (MMSE) are well-known linear detection algorithms which, contrary to
the sphere decoding, can be applied when the system dimensions are high thanks to
their polynomial complexity. But they achieve in such cases a poor detection perfor-
mance compared to the optimum algorithms. To overcome this drawback, non-linear
successive interference cancellation schemes based on linear detectors were proposed
such as ZF-Successive Interference Cancellation and MMSE-SIC [11]. Their com-
plexity keeps polynomial and the detection performance is improved compared to
original linear structures. Linear detection can be also improved by using lattice
reduction techniques [12].

The research goes on to find even more efficient algorithms and other domains
such as machine learning and artificial intelligence emerge to look for promising
solutions [13].

For any proposed detection technique, there are two criteria of interest which
are the complexity and the detection performance. Hence, the objective is to get an
algorithm with low complexity and good performance. This is difficult to achieve in
most cases. As an example, the sphere decoder achieves the ML performance with
a high complexity contrary to the linear detectors which have low complexity with
low performance. The researchers are often forced to manage this trade-off which
needs again to be improved especially in the case of large-scale MIMO systems.
An interesting phenomenon in large-scale MIMO can be exploited, it is the channel
hardening [8]. It is shown that when an overdetermined MIMO system is consid-
ered (the number of receive antennas is much higher than the number of transmit
antennas), the linear detectors such as MF, ZF and MMSE perform close to the
optimum thanks to the channel hardening phenomenon and become attractive from
an implementation point of view. However, in this case the spectral efficiency is
limited by the number of transmit antennas which must be low. Hence, we lose
one of the most important benefits of large MIMO systems. To get high spectral
efficiency, the two MIMO system dimensions should be large and the performance of
linear detectors degrades in that case. To overcome this problem, local search-based
algorithms well suited for large-scale MIMO systems like Likelihood Ascent Search
(LAS) [14] and Reactive Tabu Search (RTS) represent near optimal performance
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while keeping the same range of complexity as linear detectors. The task here is
to get a first solution delivered by linear detection and to improve it looking for
a better chosen local minimum from the solution neighbors of the linear detection
output.

In this chapter, we first describe the MIMO system model and its extension to
large-scale MIMO. Next, selected well-known detection algorithms are detailed. In
addition to the structure description, we discuss their performance and complexity.

2.2 System model

Herein, we present the MIMO system model which is taken into account in the
PhD report. Let N and n stand for the number of transmit and receive antennas
respectively. We consider a noisy mixing model which can be described by the
following linear equations:

y = Hx+ ζ, (2.1)

where x 2 C
N is the N ⇥ 1 complex-valued source vector. The elements of x

come from a known modulation alphabet β (for example QAM constellation) and
E[xxH ] = IN , y 2 C

n is the n⇥1 complex-valued observation vector and H 2 C
n⇥N

is an n ⇥ N complex-valued random matrix that represents the channel matrix.
We assume that the components of H are i.i.d and circularly symmetric complex
Gaussian with zero mean and unit variance and ζ is a complex AWGN noise vector
with variance σ2 such that E[ζζH ] = σ2In. We assume that the channel matrix H

is perfectly known at the receiver and the output statistical distribution given the
input vector and the channel matrix is defined by:

Pr(y|H,x) =
1

(⇡σ2)n
exp

✓

− 1

σ2
ky −Hxk22

◆

(2.2)

Most detection algorithms work directly with the complex-valued system model.
For computational reasons researchers consider the equivalent real-valued system.
As the vector x belongs to a complex-valued finite alphabet β = {β1, . . . , βM},
it can be decomposed from its real and imaginary parts as x = a + jb where
(a, b) 2 FN ⇥ FN and F = {↵1, ↵2, .., ↵p}. We denote by M = p2 the complex
alphabet size. The equivalent real-valued system can be then written as:

y = Hx+ ζ, x 2 F2N , (2.3)

where x =
(

Re (x) Im (x)
)T

, y =
(

Re (y) Im (y)
)T

, ζ =
(

Re (ζ) Im (ζ)
)T

and

H =

✓

Re (H) − Im (H)

Im (H) Re (H)

◆

.

Note that in the case of QAM constellation, the elements of the real vector x

belong to the associated PAM alphabet.
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2.3 Maximum-Likelihood detection

At the receiver side, the mission is to detect the transmitted vector from the received
signal. The optimal detector which minimizes the probability of detection error is
ruled by the ML criterion which minimizes the Euclidean distance between the
received vector y and the mixed vector Hx such that x belongs to the set βN . The
ML solution reads then as:

x̂ML = arg min
x2βN

ky −Hxk22 (2.4)

To obtain the exact solution for the ML optimization criterion, we need an ex-
haustive search which requires exponential complexity proportional to N . Therefore,
it can only be implemented for small values of N . When N is large the computation
of the ML solution becomes infeasible due to the high complexity. Knowing the
exact ML solution is desired in order to make it a benchmark helping designers to
assess how proposed detectors perform compared to the optimal one. An alternative
is the sphere decoding, but its complexity is also exponential especially in low and
medium SNR values when the number of antennas N is high. To overcome this
problem, designers choose to compare their algorithms taking the case of non-faded
SISO AWGN for which a lower bound of ML performance can be computed.

2.3.1 Sphere decoding

The sphere decoding algorithm [15] is a detection method that performs close to
the ML solution with reduced complexity. The ML real-valued system formulation
reads as follows:

arg min
x2FN

ky −Hxk22 (2.5)

The idea behind the sphere decoding is to only consider lattice points that lie in a
sphere of center y and radius r instead of an exhaustive search over the entire lattice
to reduce the search space and then the complexity of ML optimization problem.
The problem here is the choice of the radius r. The larger r, the more points to test
and hence the higher the complexity. However, a small value of r can lead to few
points inside the sphere. The key question of the sphere decoding is to determine
the optimal choice of lattice points inside the sphere. One observes that when lattice
points along one-dimension are determined it is then easy to find those along the
second dimension that lie in the two-dimensional sphere of the same radius r. It
is thus proposed to find the lattice points successively from one dimension to the
others. Let us now describe the algorithm that exploits the above observations. The
lattice vector Hx lies inside the sphere of radius r if and only if

ky −Hxk22 r2 (2.6)
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One then considers the QR decomposition of the matrix H in order to decompose
the 2N -dimensional problem into multiple one-dimensional subproblems as follows:

H = [Q1Q2]

✓

R

0(2n−2N)⇥2N

◆]

, (2.7)

where R is a 2N⇥2N upper triangular matrix, Q = [Q1Q2] is a 2n⇥2n orthogonal
matrix with Q1 and Q2 of dimensions 2N ⇥ 2n and 2n⇥ (2n− 2N) respectively.
Thereby, using the condition (2.6) we get:

∥

∥

∥

∥
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 r2 (2.8)

kQH
1 y −Rxk22+kQH

2 yk22 r2 (2.9)

Defining a new radius r̃ by r̃2 = r2 − kQH
2 yk22, we then get:

kQH
1 y −Rxk22 r̃2. (2.10)

Let ỹ = QH
1 y, the equation (2.10) is now equivalent to:

2N
X

i=1

0

@ỹ
i
−

2N
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ri,jxj

1

A

2

 r̃2, (2.11)

where ỹ
i
is the ith element of ỹ, ri,j denotes the (i, j)th entry of R and xj is the jth

element of x. Exploiting that R is upper triangular matrix, the expansion of (2.11)
yields:

⇣

ỹ
2N

− r2N,2Nx2N

⌘2
+
⇣

ỹ
2N−1

− r2N−1,2Nx2N − r2N−1,2N−1x2N−1

⌘2
+ ...  r̃2,

(2.12)
where the first term depends only on x2N , the second term depends only on
x2N , x2N−1 and so on. Therefore, to get the lattice points Hx inside the sphere, a
necessary condition is to have the first term inferior to the radius, That is to say:

⇣

ỹ
2N

− r2N,2Nx2N

⌘2
 r̃2, (2.13)

which amounts to:
⇠−r̃ + ỹ2N

r2N,2N

⇡

 x2N 
⌊

r̃ + ỹ2N
r2N,2N

⌫

. (2.14)

Then, for every x2N satisfying the condition (2.14), we define:

r̃22N−1 = r̃2 −
⇣

ỹ
2N

− r2N,2Nx2N

⌘2
(2.15)

and
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ỹ2N
2N−1

= ỹ
2N−1

− r2N,2Nx2N . (2.16)

Therefore, we can define a stronger condition based on the two first terms in (2.12):

&

−r̃2N−1 + ỹ2N2N−1

r2N−1,2N−1

'

 x2N−1 
$

r̃2N−1 + ỹ2N2N−1

r2N−1,2N−1

%

. (2.17)

Based on this approach, we can continue in a similar manner for all the elements
of x and then we get all lattice points belonging to the sphere verifying (2.6). The
sphere radius can be chosen proportionally to the variance σ2 (large for low SNR
ratio and small for high SNR) to ensure the true lattice point is the sphere with
high probability.

The complexity of the SD detection algorithm stays exponential in N for low
SNR values making it inadequate for large MIMO systems [10]. Several variants
are proposed in order to reduce the complexity but the algorithm keeps impractical
beyond N = 32 [16]. One of these variants is based on Lattice Reduction technique
[17].

2.4 Linear detection

Contrary to ML detection methods, the algorithms based on linear detection apply
a linear transformation G on the received vector in order to get soft estimates of
the transmitted vector [18]. This explains their low polynomial complexity. Then,
hard decision is taken as the nearest alphabet symbol to the soft estimate.

2.4.1 Matched filter (MF) detection

Equation (2.1) can be formulated as follows:

y =

N
X

i=1

hixi + ζ

= hkxk +
N
X

i=1,i 6=k

hixi + ζ (2.18)

where hi, i = 1, 2, ..., N is the i-th column of the channel matrix H. The first
term in (2.18) is the component corresponding to the kth symbol and the second
term is the interference due to the other symbols. The MF detection is based on
simple linear transformation that ignores both second term and noise. The MF soft
estimate of xk is computed as:

x̂k = hH
k y, (2.19)

The MF output is thus given by:

x̂MF = HHy. (2.20)
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The MF linear transformation GMF = HH has a complexity order of nN . It
performs close to the optimum only when an overdetermined system is considered
(i.e n >> N). However, its performance degrades when increases the number of
sources N increases that is to pay as soon as the contribution of the second term in
(2.18) becomes significant.

2.4.2 Zero forcing (ZF) detection

To enhance the performance of the MF detector, it is proposed to consider the
interference contribution of the other symbols. The ZF detector is a linear detector
which uses the pseudo-inverse of the channel matrix H to cancel the interference
term. The transformation matrix GZF is then defined by:

GZF = (HHH)−1HH . (2.21)

The ZF estimate of the symbol xk is given by:

x̂k = gky

= gk(Hx+ ζ)

= xk + gkζ, (2.22)

where gk is the k-th column of the transformation matrix G. The ZF technique
completely cancels the interference from other symbols at the price of noise en-
hancement which is a weak point especially at low SNR. The SNR corresponding to
the k-th ZF detection output equals:

SNRk =
|xk|2

σ2||gk||2
. (2.23)

Hence, the ZF technique enhances the noise variance by a factor of ||gk||2. As a
result for low SNR values, the noise enhancement effect dominates and the ZF can
represent a worse performance compared to the MF detector. Otherwise for high
SNR, the interference cancellation dominates and the performance becomes better
than the last one. The ZF detection output vector is thus given by:

x̂ZF = GZFy, (2.24)

Compared to the MF detector, the ZF detector has an increased complexity
order of N2, which remains however attractive for large-scale MIMO systems. Un-
fortunately, its performance degrades as N gets higher.

2.4.3 Minimum-mean square error (MMSE) detection

The MMSE detection algorithm aims at minimizing the mean square error between
the transmitted vector and the transformed received vector. The transformation
matrix is determined by solving the following optimization problem:

arg min
G

E
⇥

kx−Gyk22
⇤

(2.25)
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Deriving the equation (2.25), the optimal MMSE transformation matrix is given
by:

GMMSE = (HHH + σ2IN )−1HH . (2.26)

The MMSE output vector is then computed as:

x̂MMSE = GMMSEy, (2.27)

The MMSE detection method performs better than the two previous linear detectors
on the whole SNR range. It takes advantage of their strong points. At low SNR, it
is equivalent to the MF detection (HHH negligible compared to σ2IN ) whereas at
high SNR it behaves the same as the ZF detector (HHH predominant compared to
σ2IN ). Note also that the MMSE detector needs the knowledge of the noise variance
contrary to the other linear detectors described above. It represents the same order
of complexity as the ZF technique due to the matrix inversion in (2.26).

2.5 Successive interference cancellation

Successive interference cancellation-based detectors [11] are considered as non-linear
detectors. Symbols are estimated one after the other and their contribution to the
interference is canceled immediately. The principle is to first compute the linear
detection matrix and the post SINR. Then, sources are sorted according to the
descending order arrangement of SINR. Sources with highest SINR are detected
first to reduce the error propagation phenomenon.

An early test of MIMO wireless communication architecture using successive
interference cancellation technique known as vertical BLAST (Bell Laboratories
Layered Space-Time) or V-BLAST was implemented in real-time in the Bell Labs
laboratory [1] in 1990s. The detection algorithm is now referred to as ZF-successive
interference cancellation (ZF-SIC). The V-BLAST detection is detailed in following
Algorithm 1.

Algorithm 1 V-BLAST algorithm

1: Input: y, H.
2: Initialization: y(0) = y, H(0) = H, j = 0.
3: Detection of the i-th symbol: x̂i = g

(ZF )
i y, g(ZF )

i is the i-th column of GZF

defined in equation (2.21).
4: Interference estimation: âi = hix̂i
5: Interference Cancellation: y(j+1) = y(j) − hix̂i
6: Update the channel matrix: H(j+1) = H(j+1)[1 : k−1,0n⇥1, k+1 : N ], j = j+1.
7: Output: x̂. =0

A matrix inversion is done in each stage and the resulted complexity is about
O(N4) with one more order compared to the original ZF algorithm.



2.6. Lattice Reduction-aided linear detection 25

2.6 Lattice Reduction-aided linear detection

Based on Lattice Reduction (LR)-techniques [12], we can derive new versions of
linear detectors while preserving low complexity. The idea here is to transform the
system model (2.1) into an equivalent system obtained by applying LR techniques.
It is given by:

y = H̃x̃+ ζ. (2.28)

H̃ is a transformed channel matrix designed to be better conditioned (orthogonality)
than the original channel matrix H. The vector x̃ is a transformation of the original
transmitted vector x using an unimodular matrix T . The choice of H̃ and T from
H can be done based on a low-complexity iterative algorithm like the Seysen’s
Algorithm (SA) detailed in [19].
The columns of H can be interpreted as components of a lattice basis. Considering
the transformed matrix H̃ = HT , it generates the same lattice as H if and only if
T is unimodular. The LR-technique aims to get the transformed matrix H̃ better
conditioned than the original one. The matrix H̃ defines a new basis with vectors of
shortest length being the more orthogonal possible. As the unimodular matrix has
unitary determinant its inverse always exists. So, defining H̃ = HT and x̃ = T−1x,
the system model can be written as follows:

y = Hx+ ζ

= HTT−1x+ ζ

= H̃x̃+ ζ, (2.29)

Once the LR-technique is applied, the detector computes ˆ̃xLR−ZF as an estimate
of x̃ computed as:

ˆ̃xLR−ZF = (H̃HH̃)−1H̃Hy, (2.30)

Thanks to the "higher orthogonality" of H̃, the noise enhancement is reduced

compared to the original ZF detector.

The ZF linear detection can be substituted with the MMSE detection which

gives the following LR-MMSE detection output:

x̂LR−MMSE = (H̃HH̃ + σ2IN )−1H̃Hy, (2.31)

To further improve the performance, one can minimize a metric denoted by q(H̃)

which measures the orthogonality of the channel and which reads:

q(H̃) =
N
X

i=1

||h̃i||2||h̃
0
i||2 (2.32)

The goal here is to find the matrix T that minimizes q(H̃).

Note that the Lattice Reduction-based ZF/MMSE represent the same order of com-

plexity as the ZF/MMSE algorithms that is to say O(N3).
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2.7 Local search-based detection

Local search technique is an heuristic method for solving NP-hard optimization

problems. An important point for this technique is the choice of the neighborhood

function. The idea is to start with an initial solution and then try to find a better

solution on the defined neighbors. Previously linear detectors can be used to obtain

the initial solution. Then the algorithm searches among the neighbors for a solution

with less cost to replace the current solution and the search continues in this way.

The key of this algorithm is the neighborhood definition and the stopping criteria

choice. Both depend on the considered problem. The initial solution can also impact

the accuracy of the final solution. There are many ways to define the neighborhood

space. Let us consider a 4-QAM constellation as an example. The elements of the

real-valued transmitted vector belong to the BPSK constellation with two elements

and then the entire neighborhood space contains 22N vectors. This number grows

exponentially with N which makes the consideration of all neighbors impossible. To

overcome this problem, a simple way is to only consider the solutions that differ

in only one element compared to the previous original solution. The number of

neighbors to be considered is thus reduced to 2N and grows linearly in the system

dimensions. It makes it attractive when the system dimensions are large especially

for large-scale MIMO. Another way is to take into account D different elements

instead of one element of the given solution to define the neighbors and we get

the neighborhood size equal to
(

2N
D

)

. The problem of local search method is that

sometimes we get stuck in a bad local optimum. Escape strategies can be considered.

The main idea is to extend the solution space and to explore more solutions. A first

way is to increase the value of D to define a better space. Another way is to move to

the local optimum’s best neighbor solution even it is worse than it and to continue

the search. This can lead to another local optimum with better performance. This

strategy is adopted by the Tabu search method.

From the system model (2.3) and the ML criterion, we define the function C(x) =

xTHTHx − 2yTHx as the ML cost which will be considered in the local search

algorithms described hereinafter.

2.7.1 Likelihood ascent search (LAS)

2.7.1.1 Description

A basic version of LAS algorithm [20] is 1-LAS algorithm which just considers one

element to define the neighbor space. When a local optimum is found it will be

considered as a final solution. The LAS algorithm [21] starts first by estimating an

initial solution x(0) which can be found by one of the linear detectors as (MF, ZF

or MMSE...). The ML cost function C will be considered to refine the resulting

solution at each iteration. For all i = 1, ..., 2N , the i-th element of the vector x will

be updated in the (k + 1)-th iteration as follows:

x(k+1) = x(k) + λ
(k)
i ei, (2.33)
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Figure 2.1: LAS algorithm flowchart

where all components of ei equal zero except the i-th element which equals 1. In

order to get x(k+1) 2 F2N , λ
(k)
i can only take certain integer values that correspond

to the value difference of the i-th symbol to the other symbols in F. By denoting

by ∆C(k+1) the ML cost difference between solutions at iterations k and (k + 1), it

can be written as follows:

∆C(k+1) = C(x(k+1))− C(x(k))

=
⇣

λ
(k)
i

⌘2
(HTH)i,i − 2λ

(k)
i (HT (y −Hx(k)))i (2.34)

Let us define z(k) = HT (y−Hx(k)) and z
(k)
i the i-th element of z(k). Then, we get

∆C(k+1) =
⇣

λ
(k)
i

⌘2
(HTH)i,i − 2λ

(k)
i z

(k)
i . (2.35)

In order to improve the solution from the k-th iteration to the (k + 1)-th iteration,

the quantity ∆C(k+1) must be negative and then λ
(k)
i and z

(k)
i should have the same

sign and the ML cost difference becomes:

∆C(k+1) =
⇣

λ
(k)
i

⌘2
(HTH)i,i − 2|λ(k)

i ||z(k)i |. (2.36)
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The necessary and sufficient condition to get ∆C(k+1) negative is then given by:

|λ(k)
i |< 2|z(k)i |

(HTH)i,i
(2.37)

A first solution to find λ
(k)
i is to evaluate ∆C(k+1) for all possible integer values of

λ
(k)
i that correspond to the moves to the other alphabet symbols but this process

becomes expensive when the constellation size increases. To overcome this problem,

exploiting the condition (2.37), the algorithm keeps l
(k)
i = |λ(k)

i | as follows:

l
(k)
i,opt = 2

$

|z(k)i |
2(HTH)i,i

'

(2.38)

The i-th symbol update is then done according to the following equation:

x
(k+1)
i = x

(k)
i + l

(k)
i,optsgn (z

(k)
i ), (2.39)

The algorithm described above is called 1-LAS algorithm (one-coordinate up-

date) because it only considers one element to define the neighbors. The final

solution is a local optimum that can be improved by considering an escape strategy.

The escape strategy consists in using multiple LAS stages, each stage contributes

to increase the likelihood function of the current solution. Each stage is itself splitted

into different substages. The first substage updates the solution by applying the

one-coordinate algorithm to reach a local optimum which will initiate next substage.

The second substage uses the 2-symbols update algorithm and the solution neighbor

space contains all vectors which differ in two symbols with respect to the current

solution. At the end of this substage, if the likelihood function has increased, the

process goes to next stage. Otherwise, it jumps to third substage where 3-symbols

update algorithm is used. The procedure goes on in this way. The maximum number

of substages equals D and the whole algorithm is referred to as D-LAS. The value

of D is a trade-off between complexity and performance.

When the aim is to update P symbols, there are about
(

2N
D

)

different ways to

choose the symbols to be updated. Defining j1, j2, ..., jD the indices of the chosen

symbols in the resulted vector at k-th iteration to be updated in the (k + 1)-th

iteration, we get:

x(k+1) = x(k) +

D
X

p=1

λ
(k)
jd

ejd . (2.40)

The elements of x(k+1) must be in F. Then, the values of λ
(k)
jd

should be integers

for all iterations and all indices d. The ML cost difference function can be written

as follows:

∆C(k+1) =

D
X

d=1

⇣

λ
(k)
jd

⌘2
(HTH)jd,jd

+ 2
D
X

`=1

D
X

m=`+1

λ
(k)
jm

λ
(k)
j`

(HTH)jm,j` − 2
D
X

d=1

λ
(k)
jd

z
(k)
jd

. (2.41)



2.7. Local search-based detection 29

The objective now is to get ∆C(k+1) negative. Herein, it is possible to have multiple

D-tuples (λ
(k)
j1

, λ
(k)
j2

, ..., λ
(k)
jD

) with negative difference cost so the best choice is to

take into account the P -tuple with the most negative ∆C(k+1).

This task is very difficult. That’s why approximate methods are adopted to

get lower complexity. The difference cost can be reformulated by using matrices as

follows:

∆C(k+1) = Λ(k)TFΛ(k) − 2Λ(k)T z(k), (2.42)

where Λ(k) = [λ
(k)
j1

, λ
(k)
j2

, ..., λ
(k)
jD

]T , z(k) = [z
(k)
j1

, z
(k)
j2

, ..., z
(k)
jD

]T and F 2 R
D⇥D with

(F )m,` = (HTH)jm,j` . To reduce the complexity, the optimum solution can be

found by applying ZF technique which gives:

Λ
(k)
ZF = F−1z(k). (2.43)

In order to get the solution verifying the necessary and sufficient conditions, the

rounding function is applied to Λ
(k)
ZF and we get:

Λ
(k)
opt = 2b

Λ
(k)
opt

2
e (2.44)

The LAS algorithm is summarized in Fig. 2.1.

2.7.1.2 Complexity study

The complexity of the LAS algorithm is dominated by three operations. The first

one is the computation of the initial solution which can be found by ZF or MMSE

algorithms and induces a complexity order of O(N2) per-symbol due to the ma-

trix inversion. The second one is the calculation of HTH which represents also a

complexity order of O(N2) per-symbol. However, the final one which is the search

operation requires a complexity order of about O(N) per-symbol. Therefore, the

total complexity is about O(N2) per-symbol dominated by the two first steps.

2.7.2 Reactive tabu search (RTS)

2.7.2.1 Description

The RTS algorithm is also a local search algorithm [22, 23]. It begins similarly to

LAS algorithm by looking for an initial solution vector to be improved. However,

it defines the neighbor vectors based on another neighborhood criterion. It replaces

the current vector by the best neighbor vector even if it is worse in terms of ML

cost function. The process continues for a number of iterations and then the best

swept solution over all iterations is chosen as the final solution. When, we increase

the number of iterations, there is a risk to fall into a solution already treated which

is called cycling problem. To overcome this problem, RTS technique proposes to

record the last moves defined as tabu and the number of iterations considered is

defined as tabu period to be parametrized.
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Figure 2.2: RTS algorithm flowchart

Let us consider the real valued-system model. The searched vector x belongs

to the real modulation alphabet F = {↵1, ↵2, .., ↵p} with cardinality p. Define

N(↵i), i = 1, ..., p, the set of neighbors of the symbol ↵i. Denoting its car-

dinality by |N(↵i)|= S the set will contain the S nearest elements in the real-

valued modulation alphabet F to the symbol ↵i based on the Euclidean distance.

Then, the neighborhood space contains the 2CN vectors which differ from the

current in only one element. Let ws(↵i), s = 1, .., S, denote the s-th neigh-

bor symbol of ↵i, the (r, s)-th neighbor vector of x = [x1, x2, ..., x2N ] is given

by n(r, s) = [n1(r, s), n2(r, s), ..., n2N (r, s)], r = 1, ..., 2N , s = 1, ..., S where for

j = 1, ..., 2N , nj(r, s) = xj if j 6= r and nj(r, s) = ws(xr) if j = r.

The operation of replacing the current vector x(k) by x(k+1) = n
(k)
j (r, s) which

belongs to the neighbor set of the solution at the k-th iteration is called a (r, s) move.

In order to avoid the cycling problem, a tabu matrix T of dimensions (2Np ⇥ S)

is proposed. It considers all the possible moves (r, s) at any iteration and takes

a positive value at some (r, s) coordinates considered as tabu values of move to

designate an already treated move which must be ignored. For each element of

the solution vector, there are p rows in T . The rows of indices (r − 1)p + 1 to rp
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correspond to the neighbors differing by the r-th element. The (m, `)-th entry of

T corresponds to the move (r, s) when r = b(m − 1)/pc + 1, s = ` and x
(k)
r = ↵j ,

where j = mod (m− 1, p) + 1.

Hereinafter, we describe the RTS algorithm. First, it starts with an initial

solution given for example by a linear detector such as ZF or MMSE. Let us denote

by x
(k)
opt the best solution at the k-th iteration in terms of likelihood function C(k)

defined in (2.40). The algorithm consists of different steps.

The first step consists in determining the current solution neighbors n(k)(r, s),

r = 1, ..., 2N , s = 1, ..., S described above. Then, their ML costs C(k) are calcu-

lated to find the optimal move (r⇤, s⇤). This move should verify the following two

conditions (2.45) and (2.46) to be accepted.

C(k)(n(k)(r⇤, s⇤)) < C(k)(x
(k)
opt) (2.45)

T ((r⇤ − 1)p+ i, s⇤) = 0. (2.46)

When the move (r⇤, s⇤) does not verify these conditions, it is not accepted and

another move is calculated minimizing the ML cost on the neighbor space excluding

the previously found moved. Then, its acceptance is checked. When, it is also

not accepted the procedure continues until a move (r⇤, s⇤) verifies the above two

conditions. In the end, the new solution obtained at (k + 1)-th iteration is defined

by:

x
(k+1)
⇤ = n(k)(r⇤, s⇤). (2.47)

Let us define i(k), i(k+1), s(k+1) by ↵i(k) = x
(k)
r⇤ = ws(k+1)(x

(k+1)
r⇤ ) and ↵i(k+1) = x

(k+1)
r⇤ .

Let drep stand for the average of iteration number between two repetitions of the

same solution. It gives an idea about the number of iterations needed to get a

solution for a second time. Ptabu is the tabu period fixed initially by the user and

updated by the algorithm. It represents, when a move is considered as a tabu in an

iteration, the number of next iterations until a move is accepted. Once the solution

is found by (2.47), it will be checked for repetition by comparing its ML cost to those

of previous solutions. When a repetition exists, drep is updated based on the number

of iterations to get the found repetition. The tabu period Ptabu is incremented by

1. Then, we check if the number of iterations needed to change Ptabu from its last

value exceeds γdrep, where γ is a constant fixed by the user, the new value of the

tabu period is Ptabu = max (1, Ptabu − 1). The modifications of the tabu matrix T

involved by an accepted move (r⇤, s⇤) are the following:

If C(k)(x
(k+1)
⇤ ) < C(k)(x

(k)
opt), make:

T ((r⇤ − 1)p+ i(k), s⇤) = T ((r⇤ − 1)p+ i(k+1), s(k+1)) = 0. (2.48)

x
(k+1)
opt = x

(k+1)
⇤ (2.49)

else

T ((r⇤ − 1)p+ i(k), s⇤) = T ((r⇤ − 1)p+ i(k+1), s(k+1)) = Ptabu + 1. (2.50)
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x
(k+1)
opt = x

(k)
opt (2.51)

Next, the matrix T is modified again for m = 1, ..., 2Np, ` = 1, ..., S as:

T (m, `) = max (T (m, `)− 1, 0) (2.52)

Finally, the algorithm stops when the number of iterations fixed by the user is

achieved or when the number of repetitions of solutions exceeds a maximum prede-

fined value and the final solution is the best one found along the algorithm. The

RTS algorithm is summarized in Fig. 2.2.

2.7.2.2 Complexity study

Like the LAS algorithm, the total complexity of the RTS algorithm mainly comes

from two operations. The first one is the detection of the initial solution. The MMSE

detection has for example a complexity order O(N2n). Second, the computation

of HTH is also about O(N2n). The difference with the LAS algorithm is the

search operation whose complexity is not deterministic. The overall complexity

is dominated by the two parts to have a whole complexity of O(N2n). It makes it

attractive for Large-scale MIMO systems. However, compared to the LAS algorithm,

it represents an extra complexity due to the implemented escape strategy.

2.7.3 Comparison of selected local search algorithms

The LAS is a local search-based algorithm where the definition of the neighbor space

is static. The first detected minimum is declared as the final solution. To enhance

its performance, a multistage LAS is proposed where an escape strategy is proposed

and the algorithm uses more than one coordinate for the neighborhood definition.

It considers all vectors that differ in more than one element of the found solution to

form the neighbor space and a better local minimum can thus be found. However,

the RTS algorithm uses a dynamic neighborhood definition where some candidate

vectors are removed in order to avoid the cycling problem while searching for a better

solution than the previous one. Compared to LAS-based algorithms, it represents

a significant performance improvement thanks to the implemented escape strategy

which accepts moves to neighbors even if they imply worse performance than the

current solution.

2.8 Conclusion

In this chapter, we have described the detection problem in MIMO and large-scale

MIMO systems. Then, we have detailed the well-known algorithms which can be

considered for large-scale MIMO communications. We have shown that they can

be classified into different families. The first one contains the ML-based algorithms

such as the sphere decoding (SD) which performs close to the optimum but can not

be implemented in the case of large-scale MIMO due to its exponential complexity.
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Then, the family of linear detection algorithms (MF, ZF and MMSE) has been

presented by stressing their weak and strong points. We have exhibited large-scale

MIMO contexts for which they can be attractive. Next, we have evoked that linear

detectors can be improved either by using Successive Interference Cancellation or

by using combinatorial analysis-based techniques such as the local search method.

In next chapter, we will show how Compressive Sensing (CS) techniques can be

exploited to design a detection algorithm suited to large-scale MIMO with promising

performance compared to the state-of-the-art algorithms.
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3.1 Introduction

In this chapter, we address the problem of large-scale MIMO detection. We first

propose a recovery scheme for noiseless mixing systems of finite alphabet signals

exploiting their simplicity in order to determine the limits of such systems. The

term simplicity was first introduced by Donoho et al. in [24]. It is demonstrated

that underdetermined mixing systems where the number of sources exceeds the

0This chapter was partially published in: Z. Hajji, and A. Aïssa-El-Bey, and K. Amis,

"Simplicity-based recovery of finite-alphabet signals for large-scale MIMO systems" Digital Sig-

nal Processing,vol. 80, pp. 70-82, September 2018
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number of observations can be successfully recovered exceeding the limits of the

well-known Shannon-Nyquist sampling theorem. We show that this property can

be exploited as the sparsity property of such signals to propose novel algorithms for

Compressive Sensing (CS) applications. We then extend the proposed simplicity-

based recovery scheme to the noisy case to design a low-complexity detector for large-

scale MIMO systems. To our knowledge, it is the first proposed algorithm that can

behave efficiently in determined and underdeterminded large-scale MIMO systems

configurations. Such configuration can be expected in uplink communications, as

the number of connected users times their transmit antenna number could be much

higher than the base station receive antenna number.

Afterwards, we show the efficiency of the proposed scheme compared to the state-

of-the-art detection algorithms by investigating the success detection conditions, the

error rate performance and the computational complexity.

3.2 Overview of CS recovery and detection schemes and

first tracks

3.2.1 Noise-free large-scale MIMO systems

We first consider the noise-free communications. The real-valued system model (2.3)

becomes as follows:

y = Hx, x 2 F2N . (3.1)

We assume that the elements of F are equiprobable under the realization of x

respectively. Then, our problem is the recovery of x from y given H and F.

A special case was introduced by Mangasarian et al. in [25]. They considered a

real-valued problem y = Hx with H an n⇥N real-valued generic random matrix1

and the vector x belonging to the real-valued finite alphabet {−1, 1}. In this case,

x can be recovered by solving the `1-norm minimization

(P1) : arg min
x

kxk1 subject to y = Hx. (3.2)

This optimization system was reformulated by a linear programming problem and

the authors proved that the probability of successful recovery equals the probability

that all of the columns of the generic random matrix lie in the same hemisphere.

This probability is determined by the following theorem.

Theorem 3.2.1 Wendel [26] Let H be a n ⇥ N real-valued generic random

matrix. The probability that all of its columns lie in the same hemisphere is precisely

equal to

Pn,N = 2−N+1
n−1
X

i=0

✓

N − 1

i

◆

. (3.3)

1A matrix H is a generic random matrix if all sets of ` columns are linearly independent with

probability 1 and each column is symmetrically distributed about the origin. [25]
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As an extension of this work, the authors in [27] generalized the problem to all size-2

constellations [↵1, ↵2] thanks to a simple translation.

In the case of real-transformed system model given by Eq. (3.1), we demonstrate

in Appendix 7.1 that given the properties of the complex-valued matrix H, its real-

valued matrix version H is random generic. Then, the probability of successful

recovery is equal to the probability that all of the columns of H lie in the first

quadrant of the complex plane, that is to say the probability that all of the columns

of H lie in the same hemisphere. According to Wendel’s theorem, this probability

denoted by Qn,N equals P2n,2N :

Qn,N = P2n,2N = 2−2N+1
2n−1
X

i=0

✓

2N − 1

i

◆

. (3.4)

In the context of underdetermined systems where the number of observations is less

than the number of sources, the CS is a good candidate to separate the sources, pro-

vided the source vector is sparse. In the case of interest, the source vector isn’t sparse

and the symbols belong to a finite constellation with non-null elements. In order to

apply recovery techniques similar to the Basis Pursuit (BP), the authors proposed

in [28] a solution based on a suitable sparse transform to benefit from the combina-

tion of sparsity and finite-alphabet constraints. They succeeded in decomposing any

element of the set F2N as a sparse vector in R
2Np. The sparse vector is composed

of 2N consecutive p-uples, such that each p-uple contains one 1 and p− 1 zeros. By

proceeding so, the problem of detection becomes equivalent to a problem of sparse

recovery from incomplete measurements. This problem can be seen as minimization

of the `0-norm of the sparse-transformed vector subject to two constraints. The first

is y = HBfs where s is the sparse-transform of x and Bf = I2N ⌦fT is the trans-

formation matrix which is defined as the Kronecker product of the identity matrix

and the real-valued alphabet vector f = [↵1, ↵2, ..↵p]
T . The second is the unique-

ness constraint which reads B1s = 1N where B1 = I2N ⌦1Tp . It imposes the sparse

reconstruction of the searched vector. However, an `0-minimization problem is NP-

hard. Therefore, to exploit the sparsity to solve the recovery and to have a problem

with feasible complexity, the `0-minimization is relaxed to an `1-minimization, by

mimicking literature on sparse reconstruction [29]. The optimization problem now

reads

(PSA,1) : arg min
s

ksk1 subject to y = HBfs, B1s = 12N , (3.5)

where s is the resulted sparse vector which contains 2N p-tuples, each with a single

element different from zero.

The main drawback of (PSA,1) is its complexity which highly depends on the alpha-

bet size. This makes it less interesting for higher sizes. To address the complexity

issue, we have proposed another sparse decomposition which is done in two steps [30].

The first is a binary decomposition as proposed in [31] which transforms the ele-

ments of a vector in F into a size-4N log2(p) vector of binary elements {−1, 1}. The

second step is the application of the previous sparse decomposition to the resulting
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binary vector. The problem becomes the recovery of a half-sparse vector with half

of null elements. The resulting problem, denoted by (PHSA,1), reads

(PHSA,1) : arg min
s

ksk1 subject to y = HBβ Bp s, B1s = 12`N , (3.6)

where ` = log2(M) = 2k, B1 = I`N ⌦ 1T2 , Bβ = IN ⌦ β with β = [2k−1, ..., 21, 20]

and B⇢ = I`N ⌦ ρ with ρ = [−1, 1]. Bβ defines the binary decomposition and B⇢

the half-sparse decomposition.

(PHSA,1) is less complex than (PSA,1) while achieving the same successful recovery

probability. It reduces by about

✓

2 log2 (p)

p

◆2

the computation cost [30].

3.2.2 Noisy large-scale MIMO systems

Let us now consider the real-valued noisy large-scale MIMO system model (2.3).

The main objective is to estimate x from y given H and F by exploiting the sparse

decomposition of x. This objective can be achieved by an `1-minimization problem

that involves ✏ as a variable parameter depending on the current signal-to-noise

ratio (SNR) value to ensure that the estimated vector is close to the emitted one.

The authors proposed in [32] to apply the sparse decomposition and solve the noisy

MIMO recovery problem by the following constrained `1-minimization:

arg min
s

ksk1 subject to ky −HBfsk2 ✏, B1s = 12N . (3.7)

The efficiency of the algorithm depends on the choice of ✏. To counterbalance

the critical choice of the parameter, they proposed another quadratic optimization

system which can be seen as relaxation of the (ML) in another quadratic system

with `0-equality as a constraint to ensure the sparsity of the searched vector. The

`1 constraint is equivalent to a positivity constraint. The result is a quadratic

programming model with linear equality constraints and non-negative variables. It

can be resolved by polynomial-complexity algorithms. In the end, the optimization

problem reads

(PSA,2) : arg min
s

ky −HBfsk2 subject to B1s = 12N , s ≥ 0. (3.8)

Like (PSA,1), the complexity of (PSA,2) highly depends on the constellation size.

The same decomposition as used in (PHSA,1) can be applied to obtain the reduced-

complexity problem (PHSA,2) which reads [30]

(PHSA,2) : arg min
s

ky −HBβB⇢sk2 subject to B1s = 12lN , s ≥ 0. (3.9)

In this chapter, we present a new method for compressive sensing that does not

require the sparsity of the signal to be recovered. It exploits the alphabet proper-

ties and looks for a solution in a convex space containing the alphabet elements.

Compared to previously described methods (PHSA,i) and (PSA,i), it brings further

complexity reduction to adapt to high finite-alphabet size with recovery performance

conservation.
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3.3 Simplicity property exploitation to solve the noise-

free recovery

3.3.1 Proposed method definition and theoretical study

In this section, we consider the real-valued noise-free system (3.1) and we propose

a new recovery scheme. The maximum likelihood (ML) detector requires an ex-

haustive search over all possible mixed symbol vectors and selects the solution that

corresponds to the closest point to the searched signal in the known alphabet [15].

In other words, it selects the vector with elements in the alphabet that satisfies the

equality y = Hx.

(PML,1) : arg min
x

1T2Nx subject to y = Hx, x 2 F2N . (3.10)

The main drawbacks of this detector are twofold: first, the (PML,1) criterion is

not convex and second, it suffers from high computational complexity caused by

the exhaustive search over the set F2N . Herein, we propose a new detection

scheme which is based on a relaxation of the ML detector constraint. We relax

the solution space {x 2 F2N |y = Hx} by substituting it with the convex set

{x 2 [↵1, ↵p]
2N |y = Hx}. Exploiting this relaxation, the new resulting optimiza-

tion problem can be resolved by polynomial algorithms for convex optimization

using the following proposition.

Proposition 3.3.1 x 2 [↵1, ↵p]
2N is the unique solution to the problem

arg min
x

1T2N x subject to y = Hx, x 2 F2N

if and only if its corresponding vector r 2 R
4N is the unique solution to the opti-

mization problem:

arg min
r

1T4N r subject to y = HB↵r, B1 r = 12N , r ≥ 0, (3.11)

where B↵ is defined as B↵ = I2N ⌦ [↵1, ↵p].

[Proof of Proposition 3.3.1] Let G = {x 2 R
2N |y = Hx,x 2 [↵1, ↵p]

2N} and

H = {x 2 R
2N |y = Hx,x = B↵ r; r 2 R

4N , B1r = 12N and r ≥ 0}. H stands

for the feasible set of the problem defined in (3.11). Then, it suffices to show the

equality between G and H.

Suppose that x 2 G. Then the i-th element of x can be written as xi = r2i↵1+r2i+1↵p

where r2i + r2i+1 = 1, 0  r2i, r2i+1  1. Thus x 2 H. Reciprocally H ⇢ G. We

deduce that G = H. It is important to mention that due to the positivity constraint

and the fact that the `1-norm of a vector is the sum of the absolute values of

its elements, the proposed optimization system is equivalent to the following `1-

minimization problem:

(PSI,1) : arg min
r

krk1 subject to y = HB↵r, B1r = 12N . (3.12)
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The new optimization problem (PSI,1) is a linear programming model with linear

equality constraints. It can be solved by the simplex [33] or the interior point

methods [34]. On the whole of the Phd dissertation, we take an interest in the

algorithms based on the interior point methods. These algorithms start by finding

an interior point of the polytope defined by the constraints and then proceed to the

optimal solution by moving inside the polytope.

In order to study the necessary and sufficient conditions of the solution unique-

ness of the proposed optimization problem, we exploit the geometry of the system

model and we utilize a face counting technique [24]. The following theorem gives the

solution uniqueness probability from which we can derive the conditions of successful

recovery.

Theorem 3.3.1 (i) Given the alphabet size p ≥ 2, if H is a 2n ⇥ 2N generic

random complex matrix, the probability that (PSI,1) has a unique solution is

given by:

Qn,N (p) =
2n−1
X

k=0

✓

2N

k

◆✓

2

p

◆2N−k ✓p− 2

p

◆k

P2n−k,2N−k. (3.13)

(ii) By assuming that (n,N) grows proportionally, Qn,N (p) tends to 0 when n
N <

p−1
p and tends to 1 when n

N > p−1
p .

[Proof of Theorem 3.3.1] The proof of Statement (i) of Theorem 3.3.1 requires

the introduction of the simplicity concept defined herinafter.

Definition 3.3.1 Simplicity [35] A given vector x 2 [↵1, ↵p]
2N is called k-

simple if it has exactly k entries different from ↵1 and ↵p.

According to Theorem 3.3.1, calculating the solution uniqueness probability of the

optimization problem amounts to calculate the probability that the equation y =

Hx;x 2 [↵1, ↵p]
2N has only one root. It can also be formulated as: y = Hx,x 2 P

with P = {x 2 R
2N |x = B↵ r; r 2 R

4N , B1r = 12N and r ≥ 0} where B↵ =

I2N ⌦α, α = [↵1, ↵p] and B1 = I2N ⌦ 1T2 . The convex hull of this polytope which

is the minimal convex set containing all the elements of P is the set {h 2 R
2N |hi =

↵1 or hi = ↵p, 1  i  2N}. It contains all the vectors with entries equal to the

bounds. Let x 2 R
2N be a k-simple vector in P, in other words, with exactly k

entries strictly different from the elements of the vectors of the convex hull of P.

Let F denote the associated k-face of P. Given the system y = Hx,x 2 P, it is

showed in [35, Lemma 5.2] that the condition of solution unicity is equivalent to the

condition that HF is a k-face of HP. In [35, Theorem 1.10], exploiting the fact

that H is completely general2, it is demonstrated that this condition is satisfied

with probability 1 − P2(N−n),2N−k = P2n−k,2N−k. As the elements of x take on

values with equal probability in the set F = {↵1, ↵2, . . . , ↵p}, the probability that

2For definition and proof see Appendix 7.1
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Dimension Cost per iteration Total

(PSA,1) MN O(M2N2(N + n)) O(M2N2(N + n)3/2)

(PHSA,1) log2(M)N O((log2(M))2N2(N + n)) O((log2(M))2N2(N + n)3/2)

(P1) 2N O(N2(N + n)) O(N2(N + n)3/2)

(PSI,1) 2N O(N2(N + n)) O(N2(N + n)3/2)

Table 3.1: Computation cost with the interior point method.

it is k-simple is
(

2N
k

)

⇣

2
p

⌘2N−k ⇣
p−2
p

⌘k
. According to Bayes’ axiom the probability

that x is the unique k-simple solution is equal to
(

2N
k

)

⇣

2
p

⌘2N−k ⇣
p−2
p

⌘k
P2n−k,2N−k.

Hence, the proof of Statement (i). Now that Statement (i) is established, the proof

of Statement (ii) can be obtained by following the same reasoning as in [27, Proof

of Theorem 3, page 2012].

3.3.2 Complexity Analysis

The interest of the proposed detection scheme comes from its complexity order. The

CVX toolbox relies on the interior point method whose complexity is a function of

the number of constraints and the dimension of the searched vector [36, 37]. A

convex optimization problem defined over R
m subject to d constraints requires,

in the worst case, O(
p
d) iterations for a computation cost order of O(m2d) per

iteration and yields a total computation cost order equal to O(m2d3/2) [38]. Applied

to the different convex optimization problems dealt with in this section, we obtain

the computation costs reported in Table 3.1. According to these estimations, the

half-sparse decomposition enables to reduce the computation cost by
⇣

p
log2(p)

⌘2
.

However, in the case of binary alphabets, (P1) is the most interesting because its

complexity order is the lowest. For higher-size alphabets, (P1) does not apply and

(PSI,1) becomes the most relevant problem to solve. Its computation cost is the

same as (P1) and keeps constant whatever the alphabet size.

3.3.3 Simulation results

The following simulation results illustrate the theoretical framework exposed above.

The experimental setup is common to all simulations. We use even values of p

and choose F = {±(2k − 1) : k = {1, 2, ..., p/2}}. For each simulation, we fix

N 2 {64, 128, 256} and make n vary so as to assess a significant number of values

for the ratio of n/N . For each pair (n,N), 1000 iterations are carried out. For each

iteration, we generate a realization of the complex-valued generic random matrix

of size n ⇥ N . The matrix coefficients are independent and identically Gaussian

distributed with zero mean and unit variance. We then transform it in a real-valued

formulation with size 2n ⇥ 2N . We generate x with 2N entries drawn uniformly

from F. We solve the optimization problem by using the Matlab CVX toolbox [36].

The simulation results are obtained by using a PC equipped with Linux Ubuntu
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14.04 OS, Intel Core i3-2350M processor (2.3 GHz) and 8GB RAM. A solution x̂ is

returned and we assume that the recovery is correct if the relative error
||x̂− x||2
||x||2

is less than 10−6.

Fig. 3.1 is the phase diagram in the case p = 2 for the proposed simplicity-based

approach. The simulated successful recovery probability corroborates Theorem 3.3.1

and it coincides with the analytical expression. In particular, we observe that the

breakpoint occurs when n/N = 1/2 with a successful recovery probability equal to

one half, as established theoretically. We also recall that the proposed simplicity-

based recovery method performs the same as Mangasarian approach.
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Figure 3.1: Phase diagrams of the proposed method, for p = 2 and N 2
{64, 128, 256}.

We now address the case p > 2, for which the Mangasarian et al. approach is not

applicable. Fig. 3.2 provides the phase diagrams of the proposed approach (PSI,1)

for p = 4 and p = 8 and different values of N . The simulated successful recovery

probability coincides with the analytical expression. The simulation results confirm

the theoretical study presented above. The breakpoint occurs when n
N equals the

value p−1
p , that is to say 3

4 for p = 4 and 7
8 for p = 8.
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Figure 3.2: Phase diagrams of the proposed method, for p = 4, p = 8 and N 2
{64, 128, 256}.

3.4 Application of the simplicity principle to noisy large-

scale MIMO systems

3.4.1 Proposed method definition and theoretical analysis

We consider in this section the real scenario of large MIMO communication when

a noisy channel is considered as (2.3). We propose to recover the vector x thanks

to the previously introduced decomposition that exploits the fact that the real-

transformed symbols belong to the interval [↵1, ↵p].

We proceed in the same way as in the noise-free case and based on the Theorem

3.3.1, we propose to solve the following optimization problem:

FAS : arg min
r

ky −HB↵rk2 subject to B1r = 12N , r ≥ 0.

The resulted detector is referred to as Finite Alphabet Simplicity (FAS) detector in

the remaining of the PhD dissertation. To evaluate its performance, we search for

the conditions for a stationary point and we investigate the statistical distribution of

the detection output. Let us define the necessary sets used to establish the analytical

results.

Definition 3.4.1 Let Ω, the set of active constraints, defined by Ω = {i|xi = ↵1

or xi = ↵p} and Λ the set of binding constraints defined by Λ = {i|xi = ↵1 and

{HT (Hx̂ − y)}i ≥ 0 or xi = ↵p and {HT (Hx̂ − y)}i  0}. The cardinality of Λ
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defines the simplicity order of the searched vector.

The complementary set Λ̄ corresponds to the non-binding constraint set. Its cardi-

nality is denoted by C = Card(Λ̄).

The following theorem gives the conditions for a solution to be a stationary point

for FAS.

Theorem 3.4.1 Stationary point condition [39]

r̂ is a stationary point for FAS (a point satisfying the first order necessary conditions

for optimality) if and only if x̂ = B↵r̂ is feasible and {HT (Hx̂− y)}Λ̄ = 0.

The output solution verifies the stationary point condition. In order to define the

theoretical performance and to enhance the recovery performance either by an it-

erative scheme or by the addition of a forward error correction code soft-decision

decoder, we need the probability density function of the detector output. The fol-

lowing theorem defines its theoretical statistical distribution.

Theorem 3.4.2 Statistical distribution of the detection output

Let r̂ the solution of FAS. Then the components of x̂ = B↵r̂ follow a censored

normal distribution given by

fx̂k(x) =
1

p

p
X

j=1

fx̂k|xk=↵j (x), (3.14)

with

(3.15 )

fx̂k|xk=↵j (x) =

 

1

2
erfc

 

↵j − ↵1p
2σx̂

!

δ↵1(x) +
1

2
erfc

 

↵p − ↵jp
2σx̂

!

δ↵p(x)

+
1p
2⇡σx̂

exp

 

−(x− ↵j)
2

2σ2
x̂

!

[↵1,↵p](x)

!

and

σ2
x̂ =

2n−2
X

k=0

✓

2N

k

◆✓

1

p

◆2N−k ✓p− 1

p

◆k 2nσ2

2n− k − 1
, (3.16)

where σ2 = E[⇣2
i
], 8i = 1, . . . , 2n.

[Proof of Theorem 3.4.2] Let us consider r̂ a stationary point of FAS problem.

Then x̂ = B↵r̂ becomes feasible and {HT (Hx̂−y)}Λ̄ = 0 (see Theorem 3.4.1). Let

H Λ̄ = [H :,k]k2Λ̄ with H :,k the kth column of H. We first assume that C = Card(Λ̄)

satisfies C < 2n − 1, so that the Moore-Penrose pseudo-inverse of H Λ̄ exists and

equals H
†
Λ̄
= (HT

Λ̄
H Λ̄)

−1HT
Λ̄
. Therefore, the restriction of x̂ to the index set Λ̄

reads

x̂Λ̄ = H
†
Λ̄
(y −HΛx̂Λ). (3.17)

From Eq. (3.17) and exploiting the property that the set of binding constraints Λ

can be seen as the set of indexes of entries of x which were correctly estimated,
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according to the central limit theorem, given x and C, x̂Λ̄ is normally distributed

with mean xΛ̄. To compute the covariance matrix Σx̂
Λ̄

, we exploit the fact that

the number of non-binding constraints C is a random variable. Therefore, Σx̂
Λ̄

is

given by:

Σx̂
Λ̄
= E

⇥

E[(x̂Λ̄ − E[x̂Λ̄])(x̂Λ̄ − E[x̂Λ̄])
T |C = k]

⇤

, (3.18)

with

E[(x̂Λ̄ − E[x̂Λ̄])(x̂Λ̄ − E[x̂Λ̄])
T |C = k] = σ2

E[(HT
Λ̄H Λ̄)

−1|C = k] (3.19)

= σ2 2n

2n− k − 1
Ik,

where we have used that, given C = k, the matrix (HT
Λ̄
H Λ̄)

−1 follows an inverse

Wishart distribution and then E[(HT
Λ̄
H Λ̄)

−1|C = k] = 2n
2n−k−1Ik (see [40]). The

distribution of C is provided by the following Proposition 4.2.1.

Proposition 3.4.1 The number of non binding constraints introduced in Definition

3.4.1 follows the binomial distribution with parameters 2N and p−1
p :

C = Card(Λ̄) ⇠ B(2N,
p− 1

p
)

The proof of Proposition 4.2.1 is given in Appendix 7.2. From Proposition 4.2.1, we

observe that the probability of event C ≥ 2n− 1 is not significant and these events

will thus be neglected in the computation of Σx̂
Λ̄

. We then obtain

Σx̂
Λ̄
= σ2

x̂ IC, (3.20)

with

σ2
x̂ =

2n−2
X

k=0

Pr (C = k)
2nσ2

2n− k − 1
=

2n−2
X

k=0

✓

2N

k

◆✓

1

p

◆2N−k ✓p− 1

p

◆k 2nσ2

2n− k − 1
.

Finally, the constraints of FAS impose that x̂i 2 [↵1, ↵p] and we deduce that, given x,

the components of x̂ corresponding to the non-binding constraints follow a truncated

normal distribution with mean x and variance σ2
x̂.

As for the components of x̂ corresponding to the binding constraints, they satisfy

either xi = ↵1 and {HT (Hx̂−y)}i ≥ 0, or xi = ↵p and {HT (Hx̂−y)}i  0}. We

thus conclude that they follow a binary distribution with probability 1
2p (see 7.2 for

the justification of Pr({HT (Hx̂− y)}i ≥ 0) = 1
2).

Consequently, the conditional distribution of x̂k given xk reads

fx̂k|xk=↵j (x) =

 

1

2
erfc

 

↵j − ↵1p
2σx̂

!

δ↵1(x) +
1

2
erfc

 

↵p − ↵jp
2σx̂

!

δ↵p(x)

+
1p
2⇡σx̂

exp

 

−(x− ↵j)
2

2σ2
x̂

!

1[↵1,↵p](x)

!

.
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As demonstrated, we can see the distribution of the output vector as a mix of a

binary distribution due to the simplicity of the vector and a truncated normal dis-

tribution with variance depending on the system dimensions and the noise variance.

Depending on the system dimensions, the exact variance computation may be too

complex in practice. The following lemma provides an approximation of the vari-

ance which can be simply calculated. Its accuracy will be studied in the simulation

section.

Lemma 3.4.1 Variance approximation

Let r̂ the solution of FAS. The variance of the output vector x̂ = B↵r̂ can be

approximated for n ≥ N
⇣

p−1
p

⌘

+ 1 as

σ2
x̂ ⇡ 2nσ2

2n− 2N
⇣

p−1
p

⌘

− 1
. (3.21)

From the statistical distribution of the detection output and by exploiting the gen-

eral results available in [41], a lower bound of the symbol error probability can be

obtained. This bound is asymptotically reached when the SNR gets high, which pro-

vides an approximation of the symbol error probability. It can be used to predict

performance without simulating the whole system and its accuracy will be checked

in the simulation part.

Theorem 3.4.3 Symbol Error Probability upper-bound

The symbol error probability in the case of a M-ary QAM constellation can be upper-

bounded by:

Ps 
1

2p

p
X

k=1

p
X

j=1
j 6=k

erfc

 

↵j − ↵k

2
p
2σx̂

!

+
p− 1

2p

p
X

i=1

erfc

 

↵p − ↵ip
2σx̂

!

. (3.22)

This upper bound can be used as a tight approximation of the symbol error probability.

For high SNR, the symbol error probability can be further approximated by:

Ps ⇡
p− 1

p
erfc

 

↵2 − ↵1

2
p
2σx̂

!

. (3.23)

3.4.2 Complexity Analysis

Table 3.2 summarizes the complexity order of the decomposition-based detectors

including the proposed one referred to as FAS, the MMSE, the MMSE-SIC, the

MMSE-SIC-LR, and the SD detector. The SD detector is a high-complexity detector

especially when the modulation order or the number of antennas increase, it is the

least cost efficient. The MMSE-based detector consists of one matrix inversion and

some matrix multiplications and additions. The MMSE-SIC adds some order of

complexity. According to the complexity analysis in [12], the additional complexity

order involved in the MMSE-SIC-LR due to lattice reduction is equal to O(N2 logB)
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Iteration number Cost per iteration Total

MMSE 1 O(N3) O(N3)

MMSE-SIC 1 O(N3) + O(MN2) O(N3) + O(MN2)

+O(M2N) +O(M2N)

MMSE-SIC-LR 1 O(N3) + O(MN2) O(N3) + O(MN2)

+O(M2N) + O(N2 logB) +O(M2N) + O(N2 logB)

FAS O(
p
N) O(N2.5) O(N3)

(PHSA,2) O(
p

2 log2 (M)N) O(N2.5) O(
p

2 log2 (M)N3)

(PSA,2) O(
p
MN) O(N2.5) O(

p
MN3)

SD 1 O(
p
MN ) O(

p
MN )

Table 3.2: Computational cost with the interior point method.

where B is is the norm of the longest basis vector. In the case of determined MIMO

systems, FAS achieves the same order of complexity compared to the MMSE-based

methods.

3.4.3 Simulation results

In this section, we assume perfect channel state information and we evaluate the

error rate achieved by the proposed detector based on FAS. We consider n ⇥ N

MIMO systems, where N and n are the number of symbols to be recovered and the

number of observations, respectively. H is a complex valued generic random matrix

of size n ⇥N . We transform it in a real-valued formulation H with size 2n ⇥ 2N .

The channel coefficients are independent and identically Gaussian distributed with

zero mean and unit variance, and the data symbols belong to a finite QAM alphabet.

We use the Matlab CVX toolbox again. The quadratic minimization problem FAS

is solved by the Gurobi optimizer [42].

3.4.3.1 Comparison of the simulation results with the theoretical anal-

ysis

We first check that the simulated histogram of detection output is in accordance with

the theoretical statistical distribution given in Theorem 3.4.2 and Lemma 4.2.1. Fig.

3.3, Fig. 3.4, Fig. 3.5 and Fig. 3.6 give the results for a 64⇥64 system (n = N = 64)

and 16-QAM with SNR = 15dB and SNR=30dB and 64-QAM with SNR=20dB

and SNR=35dB respectively. From these figures, we observe that the theoretical

distribution (exact as well as approximate) coincides with the simulated histogram

for both low and high SNRs and different modulation orders.

In Fig. 3.7, both simulated SER and theoretical symbol error probability ap-

proximations are plotted for n = N = 32 and 16-QAM. We observe that the ap-

proximation given by Eq. (3.22) coincides with the simulated SER. The other one

given by Eq. (3.23) is slightly more optimistic than simulated SER for very low

SNR values. These observations validate the theoretical analysis.
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Figure 3.3: Output statistics for 64 ⇥ 64 systems with 16-QAM and SNR=15dB

(low SNR).
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Figure 3.4: Output statistics for 64 ⇥ 64 systems with 16-QAM and SNR=30dB

(high SNR).
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Figure 3.5: Output statistics for 64 ⇥ 64 systems with 64-QAM and SNR=20dB

(low SNR).
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Figure 3.6: Output statistics for 64 ⇥ 64 systems with 64-QAM and SNR=35dB

(high SNR).
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3.4.3.2 Comparison with the SD (underdetermined case)

Fig. 3.8 shows the performance of the proposed scheme FAS for the underdetermined

MIMO system of size 24⇥18 with 4-QAM. We observe that it achieves a BER under

10−3 for the SNR values higher than 20dB. Beyond 8dB, the SD outperforms the

proposed scheme, e.g., at BER 10−3, the gain is about 6.3dB. However, as the

MIMO system dimensions increase, the SD computation cost will rapidly become

too high to be implemented in practice, making the SD inadequate for large-scale

MIMO applications.
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Figure 3.7: SER performance for 32⇥ 32 systems with 16-QAM.

3.4.3.3 Comparison with MMSE-based detection schemes (determined

case)

Fig. 3.9 considers a determined system with N = n = 64 and 4-QAM. We com-

pare simplicity-based detection FAS to MMSE, MMSE-SIC and MMSE-SIC-LR in

terms of BER. We observe that the proposed detector outperforms both MMSE

and MMSE-SIC over the whole SNR region and better exploits the receive diversity

thanks to joint detection and box constraint effect which reduce the error propa-

gation. At BER 10−3, the proposed detector outperforms the MMSE by about 7

dB and the MMSE-SIC by about 1.5 dB. This gain increases with the growth of

the SNR values to achieve about 2 dB at BER 10−4 compared to the MMSE-SIC.

FAS outperforms the MMSE-SIC-LR for medium SNR values (a gain of 0.6 dB is

observed for BER 10−3). The advantage over the MMSE-SIC-LR decreases with
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Figure 3.8: BER performance comparison for 24 ⇥ 18 systems ( n
N = 0.75) with

4-QAM.
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Figure 3.9: BER performance comparison for 64⇥ 64 systems and 4-QAM.
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Figure 3.10: BER performance comparison in 64⇥ 64 systems and 16-QAM.

increasing SNR and both schemes perform the same for high SNR values. In Fig.

3.10, we also show that the gain of the proposed scheme FAS over MMSE-based

schemes is maintained for higher order modulation. For 16-QAM, the proposed

detector outperforms the MMSE-SIC by about 2 dB for BER 10−4.

3.4.3.4 Comparison with local search-based detection schemes

Fig. 3.11 considers a determined system with N = n = 32 and 4-QAM. We compare

simplicity-based detection FAS to LAS and RTS algorithms described previously in

Section 2.7 in terms of BER. The initial solution for LAS and RTS algorithms is

chosen as the MMSE output. We observe that for 4-QAM modulation, the proposed

detector performs close to the LAS algorithm with slight loss for low SNR values

and slight gain that starts from SNR = 14 dB and continues to increase slowly

for high SNR values. However, we show that the RTS outperforms the proposed

FAS and LAS for the whole SNR range. Increasing the modulation order (16-QAM,

64-QAM), we show that the FAS significantly outperforms the LAS algorithm for

medium and high SNR values and becomes more efficient than RTS for high SNR.

At BER 10−3, the RTS outperforms the proposed detector FAS by about 2.5 dB.

This gain increases with the growth of the SNR values to achieve about 3 dB at

BER 10−4 compared to FAS for 4-QAM. In the case of 16-QAM, we show that

for BER 10−2 the RTS still outperform the FAS by about 3dB, this gain decreases

until vanishing at SNR = 25 dB for BER 10−3. From SNR = 25 dB, the FAS

outperforms the RTS algorithm and the gain increases when SNR increases. The
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same holds for the 64-QAM with inflection point at SNR = 37 dB.
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Figure 3.11: BER performance comparison in 32⇥32 systems with 4-QAM,16-QAM

and 64-QAM.

3.5 Conclusion

This chapter focused on finite-alphabet source signal recovery in large-scale MIMO

systems. We first proposed a simplicity-based `1-minimization combined with box

constraints to solve the noise-free case. For the proposed criterion, we investigated

the necessary condition of uniqueness and existence of a solution which is given by
n
N > p−1

p (see Statement (ii) of Theorem 3.3.1). This condition covers the deter-

mined case and partially the underdetermined case. Compared to previous existing

sparsity-based techniques, we obtained a sufficient computation cost reduction with

recovery success rate preservation. Simulation results corroborated the theoretical

analysis. By exploiting the necessary condition of successful recovery on the prob-

lem parameters, we studied performance of the proposed criterion in the case of

large-scale MIMO systems. The low-complexity resulting algorithm is well-adapted

to such applications and its computation cost doesn’t depend on the constellation

size. Compared to LAS and RTS algorithms, the proposed FAS outperforms LAS in

all studied cases and surpasses RTS below a BER threshold which increases as the

modulation order gets higher. The theoretical distribution of the detector output

was then validated through simulations. In next chapter, the analytical results will
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be used to define an iterative shadow area-based detection to further improve the

performance and to define a turbo-like iterative receiver to take into account an

outer FEC code.
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4.1 Introduction

In this chapter, we consider large-scale MIMO detection and we define iterative

receivers which use the simplicity-based detection algorithm (FAS) proposed in pre-

vious Chapter 3. In a first part, we focus on uncoded large-scale MIMO systems.

We propose a novel successive interference cancellation algorithm with an iterative

processing based on the shadow area principle and we optimize its parameters by

exploiting the theoretical analysis of the detector output. In a second part, we as-

sume FEC-encoded large-scale MIMO systems and our purpose is the definition of

turbo-like iterative receivers. We propose an iterative receiver based on a ML-like

detection whose restricted candidate subset is defined by the FAS detection out-

put. We also introduce another receiver based on FAS algorithm whose criterion is

penalized with the mean absolute error function.

0This chapter was partially proposed for publication in IEEE Transactions on Communications:

Z. Hajji, and K. Amis, and A. Aïssa-El-Bey, "Iterative receivers for large-scale MIMO systems with

finite-alphabet simplicity-based detection". (Major revision)
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This chapter is organized as follows. Section 4.2 deals with the iterative

detection problem in the uncoded case solved thanks to the shadow area principle

applied with FAS algorithm. Section 4.3 focuses on the design of turbo-like it-

erative receivers based on FAS detection. Finally, Section 4.4 concludes the chapter.

4.2 Iterative Detection Based on the Shadow area prin-

ciple

In this section, our purpose is to improve the FAS detection performance by in-

cluding it within an iterative detection procedure. To that purpose, we consider

shadow area constraints (SAC) used in [43] to limit error propagation [44, 45] in

successive interference cancellation (SIC) schemes. Contrary to usual SIC, multiple

feedback SIC with shadow area constraints (MF-SIC-SAC) feeds back more than

one constellation point to the IC. Symbols are selected according to their belonging

to a shadow area or not. In [43], the parameter which defines shadow areas is fixed

empirically. Herein, we propose to apply a similar approach to FAS detection and to

exploit the theoretical distribution of its output (Theorem. 3.4.2) to fix the optimal

parameter that limits the shadow areas.

4.2.1 Shadow area and detection reliability

In the detection method described in previous section, all sources are detected at

once and some decisions may be less reliable than others. In this section, we propose

a reliability measure based on the shadow area principle [46–48] that exploits the

output statistics reminded in Section 3.4. We first define the centers as the elements

of F. The principle is to take decision on components xk such that x̂k is close enough

to one center and cancel their contribution in the observation y so as to proceed a

novel detection iteration. To do so, we propose to take into account the reliabilities

of the output x̂k. According to Theorem. 3.4.2, the distribution of x̂k given xk = ↵i

has a Gaussian shape centered on ↵i and moving away from the center makes the

symbol less reliable. From this observation, we define shadow areas as intervals

whose middle isn’t a center and whose width depends on a threshold to be fixed

hereinafter. x̂k is considered either as unreliable when it falls in a shadow area, or as

reliable otherwise. We take decisions on reliable x̂k, cancel their contribution from

y and proceed another detection. Adjacent to shadow areas, the high-reliability

intervals are defined as intervals of length 2⌘ and are centered on the different

symbols of F. Let us denote by A the set of indices k such that x̂k is considered as

reliable. The decision on x̂k, k 2 A is taken as the nearest symbol value in F. We

denote by x̃A the resulting decision vector. The equivalent notations for unreliable

elements (falling in shadow areas) are respectively A for the set of indices and vN
for its cardinality. The observation after interference cancellation is denoted by ỹ

and equals
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ỹ = y −HAx̃A

= H
A
x
A
+ ζ̃, (4.1)

where ζ̃ = HA(xA − x̃A) + ζ. The task is to estimate the vector x
A

which can be

recovered by the following problem:

argmin
r̃

kỹ −H
A
B̃↵r̃k2 subject to B̃1r̃ = 1vN and r̃ ≥ 0. (4.2)

where B̃↵ = IvN ⌦ [↵1, ↵p], B̃1 = IvN ⌦ 1T2 and r̃ 2 [0, 1]2vN .

Algorithm 2 Shadow Area Constrained (SAC) - FAS detection

1: Input: H, y

2: r = argmin
r

ky −HB↵rk2 subject to B1r = 12N and r ≥ 0.

3: Compute x̂ = B↵ r.

4: Define A =

⇢

k | min
↵i2F

|x̂k − ↵i| ⌘, k 2 {1, . . . , 2N}
}

, vN = card(A).

5: Compute x̃A by x̃k = argmin
↵i2F

|x̂k − ↵i|, k 2 A and ỹ = y −HAx̃A.

6: r̃ = argmin
r̃

kỹ −H
A
B̃↵r̃k2 subject to B̃1r̃ = 1vN and r̃ ≥ 0.

7: Compute x̃
A
= B̃↵r̃.

8: Output: x̃. =0

The shadow area constrained (SAC)- FAS detection procedure is detailed in

Algorithm 2. The performance of the proposed iterative procedure highly depends

on the choice of the parameter ⌘, which needs optimization. We chose to use the error

probability as an optimization criterion. The error probability is a monotonically

increasing function of the variance of the components of the detector output. Then,

we propose to optimize the parameter ⌘ so as to minimize the variance σ2
x̃. Theorem

4.2.1 provides an approximation of σ2
x̃.

Theorem 4.2.1 Variance of the iterative detector-output

Let x̃ be the output of Algorithm 2 for a given ⌘ 2 R
+. Then, the variance of its

components can be approximated by:

σ2
x̃(⌘) = (1− Z⌘)

2nσ2
⇣̃
(⌘)

2n− 2N(1− Z⌘)− 1
+ Z⌘Y⌘. (4.3)



58 Chapter 4. Iterative receivers for large-scale MIMO systems

where Z⌘ is the probability that x̂k is reliable and is equal to

Z⌘ = Pr(k 2 A) =

p
X

i=1

Pr(|x̂k − ↵i|< ⌘) (4.4)

=

p−1
X

`=0

1

p

 

(p− `)erfc

 

`∆− ⌘p
2σx̂

!

− (p− `− 1)erfc

 

`∆+ ⌘p
2σx̂

!!

(4.5)

+
1

2

 

erfc

 

⌘p
2σx̂

!

− erfc

 

−⌘p
2σx̂

!!

.

with ∆ =
↵p−↵1

p−1 . Y⌘ is the variance of the components of the vector x̃A given by

Y⌘ = E[x̃2k | k 2 A]− E[x̃k | k 2 A]2 (4.6)

=
∆2

Z⌘

p−1
X

`=1

`2

p

 

(p− `)erfc

 

`∆− ⌘p
2σx̂

!

− (p− `− 1)erfc

 

`∆+ ⌘p
2σx̂

!!

.

and σ2
⇣̃
(⌘) is the variance of the components of the vector ⇣̃:

σ2
⇣̃
(⌘) =

1

2n
Y⌘ + σ2. (4.7)

The proof of equation (4.5) and (4.6) is provided in the Appendix.

[Proof of Theorem 4.2.1] Let x̃ be the output of Algorithm 2 for a given ⌘ 2 R
+.

Then, the variance of its components is given by:

σ2
x̃(⌘) = var(x̃k) = var(x̃k | k 2 A) Pr(k 2 A) + var(x̃k | k 2 A) Pr(k 2 A)

Z⌘ = Pr(k 2 A) and 1− Z⌘ = Pr(k 2 A) (4.8)

Y⌘ = var(x̃k | k 2 A) for any k 2 A. (4.9)

To compute the variance var(x̃k | k 2 A), let us study the covariance matrix Σx̃
A

by exploiting the fact that the number of elements of A denoted by vN is a random

variable independent from x̃. Therefore, Σx̃
A

is given by:

Σx̃
A
= E

⇥

E[(x̃
A
− E[x̃

A
])(x̃

A
− E[x̃

A
])T |vN = k]

⇤

. (4.10)

By assuming that the vector x̃
A

can be estimated by

x̃
A
= (HT

A
H

A
)−1HT

A
ỹ = x

A
+ (HT

A
H

A
)−1HT

A
ζ̃, (4.11)

we can compute the covariance matrix as

Σx̃
A
= σ2

⇣̃
(⌘)E[(HT

A
H

A
)−1|vN = k] = σ2

⇣̃
(⌘)

2n

2n− k − 1
Ik, (4.12)

where we have exploited that, given vN = k, the matrix (HT
A
H

A
)−1 follows an

inverse Wishart distribution and then E[(HT
A
H

A
)−1|vN = k] = 2n

2n−k−1Ik (see [40]).

The distribution of vN is provided by following Proposition 4.2.1.
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Proposition 4.2.1 The number of elements of the set A follows the binomial dis-

tribution with parameters 2N and (1− Z⌘):

vN = Card(A) ⇠ B(2N, 1− Z⌘).

From Proposition 4.2.1, we observe that the probability of event vN ≥ 2n− 1 is not

significant and these events will thus be neglected in the computation of Σx̃
A
. We

then obtain

Σx̃
A
= var(x̃k | k 2 A) IvN , (4.13)

with

var(x̃k | k 2 A) =

2n−2
X

k=0

Pr (vN = k)
2nσ2

⇣̃
(⌘)

2n− k − 1

=
2n−2
X

k=0

✓

2N

k

◆

Z2N−k
⌘ (1− Z⌘)

k
2nσ2

⇣̃
(⌘)

2n− k − 1
.

Lemma 4.2.1 Variance approximation

The variance of the components of the vector x̃
A

can be approximated for n >

N (1− Z⌘) + 1 as

var(x̃k | k 2 A) ⇡
2nσ2

⇣̃
(⌘)

2n− 2N (1− Z⌘)− 1
. (4.14)

In the simulation results section, the proposed iterative scheme will be mentioned

as FAS and FAS-SAC for the first and second iterations respectively.

4.2.2 Simulation results

In this section, we evaluate the performance of the proposed FAS-SAC detection for

a QAM constellation with different modulation orders. We also check the validity

of the theoretical analysis and we optimize the parameters through simulations.

In Fig. 4.1, the variance of the detector output is plotted as a function of ⌘

for different SNR values, N = 32, n = 32 and 4-QAM. The parameter ⌘ should be

chosen so as to get the minimum value of the variance.

In Fig. 4.2, we have plotted the BER after first (FAS) and second (FAS-SAC)

iteration of proposed detection compared to RTS and LAS algorithms for N = 64,

n = 64 and different M -QAM (M = p2 = 4, 16, and 64). We observe that the

proposed FAS-SAC detection improves the performance of the FAS algorithm at

all SNR values and for all QAM modulations. For instance, FAS-SAC detection

achieves a gain of around 2dB to 3dB at 10−3 BER.

We also show that the FAS-SAC better exploits the receive diversity than the

LAS detector and it achieves a gain that gets higher as the BER decreases or M

increases. For 4-QAM, the FAS-SAC outperforms the LAS by 2.2dB at 10−3 BER,

the gain increases when M increases to achieve 7dB at 10−2 BER (64-QAM).
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Figure 4.1: FAS output variance variation in function of the parameter ⌘ for SNR =

15 to 30dB (up-to-down) and 16-QAM.

As for RTS algorithm, we observe that it outperforms the FAS by 1dB at 10−2

BER for 4-QAM. As the modulation order increases the FAS gets better than RTS

from a given BER value (5.10−4 BER for 16-QAM, 4.10−3 BER for 64-QAM) with

a flattering effect on the RTS performance curve. The FAS-SAC performs colse to

the RTS for 4-QAM and gets beller than RTS below 3.10−3 BER for 16-QAM and

2.10−2 BER for 64-QAM.

In Fig. 4.3 and 4.4, we consider underdetermined systems with 4-QAM and

16-QAM respectively. We observe that proposed FAS-SAC algorithm performs re-

markably even with underdetermined configurations. For instance, at BER 10−4,

the gains of FAS-SAC over FAS vary between 1 dB and 2 dB for 4-QAM and between

2 dB and 3.8 dB for 16-QAM.

4.2.3 Complexity Analysis

Table 4.1 summarizes the complexity order of proposed FAS-SAC algorithm com-

pared to standard FAS algorithm. We observe that they have the same order of

complexity.
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Figure 4.2: BER performance comparison of FAS, FAS-SAC detection and local

search-based algorithms for N = n = 32 and 4-QAM, 16-QAM and 64-QAM

4.3 Proposed turbo detection scheme

In this section, we focus on FEC-coded large-scale MIMO systems. Our goal is the

design of an iterative receiver consisting of a detector based on the FAS algorithm

and a soft-input soft-output FEC decoder. The best iterative receiver of the state-of-

the-art includes a soft-input soft-output maximum-likelihood detection. It provides

the FEC decoder with log-likelihood ratios (LLR) whose computation involves the

consideration of all possible transmitted sequences, which makes its practical use

limited to low-order modulations and low-dimensional systems. In this section, we

first propose to use the FAS detection to reduce the set involved in the computation

of log-likelihood ratios. Although decreased, the computaton cost of the resulting

receiver keeps high in the case of high-order modulations. We then design a second

iterative receiver, whose detection uses an optimized regularization of the FAS cri-

terion. Compared to the first proposed scheme, the complexity of the second one is

significantly lower at the cost of a contained performance loss.
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Figure 4.3: BER performance of FAS-SAC detection for N = 64, n = 64, 50, 46 and

4-QAM

4.3.1 Iterative receiver principle and notations

Let us first mention the assumptions regarding the transmitter. We consider that the
binary stream is FEC-encoded, then randomly interleaved before being converted
into QAM symbols and passed through a serial-to-parallel converter.
Let m = log2(p) and let c be the coded and interleaved binary information sequence
of length L. Let also  be the binary-to-symbol conversion defined by:

 : [ckm ckm+1 ... c(k+1)m−1] 2 {0, 1}m 7! xk 2 F (4.15)

and c(j) =  −1(↵j).

The receiver structure is depicted in Fig. 4.5. Λdec
in and Λdec

out stand for the soft

FEC input and output LLR respectively. Both proposed iterative schemes differ

from the detection box definition. We denote by Λdet
in and Λdet

out the detection input

and output respectively. Λdet
in is defined as the interleaving of the difference between

Λdec
out and Λdec

in (extrinsic information).
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Figure 4.4: BER performance of FAS-SAC detection for N = 64 and n = 64, 60 and

50 and 16-QAM.

Detector + ⇡−1

⇡ +

Decoder
y Λdet

out

+

Λdet
in

−

Λdec
in Λdec

out

+

-

Figure 4.5: Iterative receiver scheme.
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Iteration number Computational cost per iteration Total

FAS O(
√
N) O(N2.5) O(N3)

FAS-SAC O(
√
N) O(

p

1− Z⌘N
2.5) O((2− Z⌘)N

3)

+O(
p

(1− Z⌘)N)

Table 4.1: Computational cost with the interior point method.

4.3.2 FAS Maximum Likelihood like iterative receiver (FAS-ML)

Usual turbo-detection schemes are based on a ML detection followed by a decoder

[49]. In such a scheme the detection output Λdet
out is defined as follows:

Λdet
out(k) = log

✓

Pr(ck = 1|y)
Pr(ck = 0|y)

◆

(4.16)

= log

 P

x2Xk,+1
f(y|x)Pr

(

x|Λdet
in

)

P

x2Xk,−1
f(y|x)Pr

(

x|Λdet
in

)

!

(4.17)

= log

0

B

B

@

P

x2Xk,+1
exp

⇣

− ||y−Hx||2

2σ2

⌘

exp

✓

c̃(Λdetin )
T

2

◆

P

x2Xk,−1
exp

⇣

− ||y−Hx||2

2σ2

⌘

exp

✓

c̃(Λdetin )
T

2

◆

1

C

C

A

≈ max
x2Xk,+1

 

c̃
(

Λdet
in

)T

2
−

||y −Hx||2
2σ2

!

− max
x2Xk,−1

 

c̃
(

Λdet
in

)T

2
−

||y −Hx||2
2σ2

!

(4.18)

where c̃ = 2c− 1 and Xk,✏ corresponds to the set of sequences x such that ck = ✏.

The complexity of such a detection increases exponentially with M and N .

Therefore we propose to reduce the complexity by substituting a limited-size subset

Ξk,✏ for Xk,✏. For that purpose, we first run the FAS detection once and make a

hard decision on its output x̂. We denote by x̃det
out this hard decision output. Then

we define the subset Ξ such that it includes x̃det
out and sequences x which differ by

one element from x̃det
out. To limit the size of Ξ, we only take neighbors of x̃det

out. More

precisely, if x̃det
out and x differ from their i-th element, then xi is an adjacent symbol

of x̃detout,i in F. After the initialization step during which the FAS detection is carried

out, an iterative process is applied alternating from a ML-like detection and a FEC

decoder. The ML-like detection computes Λdet
out from Λdet

in and y as follows:

Λdet
out(k) ≈ max

x2Ξk,+1

 

c̃
(

Λdet
in

)T

2
−

||y −Hx||2
2σ2

!

− max
x2Ξk,−1

 

c̃
(

Λdet
in

)T

2
−

||y −Hx||2
2σ2

!

(4.19)

In the remaining of the PhD dissertation, we refer to the resulting iterative receiver
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as FAS-ML. In the case of uniform square constellations and except for M = 4,

each symbol has at most four neighbors, and thus the complexity of FAS-ML only

depends on the length of c.

4.3.3 FAS Mean Absolute Error-based iterative receiver (FAS-
MAE)

To further reduce the receiver complexity, we propose a second receiver whose de-

tection is based on a regularization of the FAS criterion. The receiver structure is

detailed in Fig. 4.6. Compared to [50], two major differences can be highlighted.

First, the FEC output is directly exploited without any preprocessing in order to

preserve the information. Secondly, the regularization parameter is optimized and

an analytical expression is given.

4.3.3.1 New detection criterion design

Detector + SBC

BSC

⇡−1

⇡ +

Decoder
y x̂

det
out

+

Λdet
out Λdec

in Λdec
out

+Λdet
in

−
Pj,1≤j≤p

-

Figure 4.6: Iterative receiver scheme.

The first modification compared to [50] is the use of the Mean Absolute Error

(MAE) computed from conditional probabilities Pr(xk = ↵j |Λdet
in ). We denote this

error by ε(x̂,x|Λdet
in ) and we define it by:

ε(x̂,x|Λdet
in ) =

p
X

j=1

P T
j |r − dj |, (4.20)

where Pj =
⇥

Pr(x1 = ↵j |Λdet
in ) Pr(x2 = ↵j |Λdet

in ) . . . Pr(x2N = ↵j |Λdet
in )
⇤T

and

dj = ↵j12N .

Using Λdet
in provided by the FEC decoder, we compute Pr

(

xk = ↵j |Λdet
in

)

as follows:

Pr
⇣

xk = ↵j |Λdet
in

⌘

=
Y

0im−1

c(j)= −1(↵j)

Pr
⇣

ckm+i = c
(j)
i |Λdet

in

⌘

,



66 Chapter 4. Iterative receivers for large-scale MIMO systems

with Pr
⇣

ckm+i = c
(j)
i |Λdet

in

⌘

=
exp (ui,jvk,i)

exp (vk,i)+exp (−vk,i)
, ui,j = 2c

(j)
i − 1 and

vk,i =
Λdetin (km+i)

2 .

The MAE is introduced as a regularization term in the FAS criterion to define

the following optimization problem:

arg min
B1r=12N ,r≥0.

||y −HB↵r||2+ γ

p
X

j=1

P T
j |r − dj |, (4.21)

where γ is a positive weight less than 1. The resulting iterative receiver is referred to

as FAS-MAE in the remaining of the PhD report. On one hand, the regularization

term ε(x̂,x|Λdet

in
) can be seen as a penalty, imposed to ensure that the detector

output remains in the neighborhood of the decoder output. On the other hand, γ

enables to regulate the contribution of the FEC extrinsic information and thereby

to question the FEC decision if necessary. The idea is to ensure that the resulted

vector r is sparse. We mention that imposing its sparsity takes into account the

different probabilities delivered by the decoder.

4.3.3.2 Optimization of the regularization parameter

The performance of the proposed FAS-MAE detector highly depends on the choice

of the regularization parameter. However, its optimization is difficult. It depends

on many parameters among which the SNR value and the level of Pr(xk = ↵j |Λdet
in )

(either close to their bounds 0, 1 or not).

According to the proposed optimization criterion, the algorithm convergence

is optimum when the cost function tends to 0, that is to say when the following

condition is satisfied:

||y −HB↵r||2
Pp

j=1P
T
j |B↵r − dj |

≈ γ. (4.22)

The analytical determination of γ from (4.22) is not possible as it requires the

analytical distribution of the FEC output, which is not available. We propose two

ways to optimize γ. The first one is empirical and uses pilot symbols. The second

one gives an analytical expression for γ. In the simulations, the first one will be

used as a benchmark for the second one and we will refer to it as FAS-MAE (genie).

The first optimization requires a pilot sequence x̂pilot. Pilot symbols are usually

inserted within the data frame to help synchronization and parameter estimation.

Their position as well as their value are perfectly known at the receiver. Assuming

the transmission of the pilot sequence, we perform only one iteration (both detection

and decoding) and we compute
||y −HB↵r||2

Pp
j=1P

T
j |B↵r − dj |

by considering the true values

of r and the value of Pj delivered by the decoder. We then fix γ to the following

ratio

γ1 =
σ2
⇣

Pp
j=1P

T
j |x̂pilot − dj |

. (4.23)
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Previous optimization method suffers from two drawbacks. First, it requires the

use of pilots, yielding spectral efficiency loss and secondly, a detection step followed

by a decoding step is carried out. The second method overcomes both of them by

providing an analytical expression for γ. The problem criterion in (4.21) defines a

`1-norm penalized least squares estimator similar to the one studied in [51]. Then,

the second term of regularization in (4.21) can be seen as a weighted `1 term and

we propose to fix γ as developed in [51]. It depends on the noise variance and on

the system dimensions:

γ2 = σ⇣

r

logN

n
. (4.24)

4.3.3.3 Definition of the decoder input

In this part, we focus on the information exchange from the detector to the decoder.

Contrary to FAS-ML, we will use the statistical distribution of the FAS detection

established in [52].

Using the detector output x̂det

out, the symbol to binary converter (SBC) computes

the log likelihood ratio on the i-th bit associated to the k-th symbol, denoted by

Λdet
out(km+ i) and defined as:

Λdet
out(km+ i) = log

 
P

↵j2Fi,1
fx̂k|xk=↵j (x̂

det
out,k)Pr(xk = ↵j |Λdet

in ))
P

↵j2Fi,0
fx̂k|xk=↵j (x̂

det
out,k)Pr(xk = ↵j |Λdet

in ))

!

with Fi,✏ = {↵ ∈ F|c =  −1(↵), ci = ✏}.
Let us mention that an empirical study proved that the expression of σx̂ given by

(3.16) keeps valid throughout the iterative process.

fx̂k|xk=↵j is given by Theorem. 3.4.2. In [50], we used a Gaussian approximation

combined with the LogSumExp approximation [53] to avoid saturation precision

problems of the floating point, especially for high SNR and after some iterations.

Doing so, we degrade the information available for the symbol decisions which equal

the alphabet bounds. In this chapter, we overcome the problem by proposing a new

approximation that takes into account the hard decisions available at the FAS-MAE

output and which we previously denoted x̃detout,k. This LLR approximation is given
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by:

Λdet
out(km+ i) ≈ max

↵j2Fi,1

 

−
(x̂detout,k − ↵j)

2

2σ2
x̂

+ ui,jvk,i

!

(4.25)

− max
↵j2Fi,0

 

−
(x̂detout,k − ↵j)

2

2σ2
x̂

) + ui,jvk,i

!

, if x̃detout,k /∈ {↵1, ↵p}

≈ log
X

↵j2Fi,1

 

erfc

 

↵j − ↵1√
2σx̂

!

exp (ui,jvk,i)

!

− log
X

↵j2Fi,0

 

erfc

 

↵j − ↵1√
2σx̂

!

exp (ui,jvk,i)

!

, if x̃detout,k = ↵1

≈ log
X

↵j2Fi,1

 

erfc

 

↵p − ↵j√
2σx̂

!

exp (ui,jvk,i)

!

− log
X

↵j2Fi,0

 

erfc

 

↵p − ↵j√
2σx̂

!

exp (ui,jvk,i)

!

, if x̃detout,k = ↵p.

Performance were significantly improved thanks to this new approximation as will

be shown in Section 4.3.4 dedicated to simulations.

4.3.4 Simulation results

In this section, we study the performance of the proposed FAS-ML and FAS-MAE

iterative schemes. We also compare them to the Turbo-MMSE detector and to the

iterative receiver introduced in [50].

The convolutional code (CC) polynomials in octal are (13, 15) with a code rate equal

to 0.5. The decoder uses the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [54].

We will observe that as established in Chapter 3, FAS detection is perfectly

adapted to underdetermined systems provided the recovery success condition is sat-

isfied.

4.3.4.1 Comparison of FAS-MAE to FAS-SSE

FAS-MAE is an enhanced version of our proposed receiver detailed in [50], which will

be referred to as FAS-SSE for soft symbol error in the simulations. The detection

criterion taken into account in our previous work was

arg min
B1r=12N ,r≥0.

||y −HB↵r||2+γ||B↵r − x̂det
in ||2 (4.26)

with soft symbol decision x̂det
in computed as follows:

x̂detin,k =
X

↵j2F

↵jPr
⇣

xk = ↵j |Λdet
in

⌘

, (4.27)
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Figure 4.7: Comparison of FAS-based iterative receivers with N = n = 64 and

coded 16-QAM.

and γ chosen empirically. Performance of FAS-MAE with γ2 and FAS-SSE with

empirically optimized γ are compared in Fig. 4.7 and Fig. 4.8 for N = 64, n =

64, 50 and 16-QAM. We observe the efficiency of both the new criterion and the

optimization of γ as FAS-MAE outperforms FAS-SSE (gains of roughly 1.0 and 0.8

at BER=10−3 for n = 50 and n = 64 respectively). The gain slowly increases as

SNR gets higher.

We now consider MIMO systems with N = 64, L = 256, 4-QAM modulation and

n = 64, 50 and 40 in Fig. 4.9, 4.10 and 4.11 respectively. We have plotted the BER

measured at the FEC decoder output after 6 iterations for FAS-ML, FAS-MAE and

Turbo-MMSE receivers.

4.3.4.2 Optimization of the regularization parameter γ (Fig. 4.9, 4.10

and 4.11)

We observe that proposed FAS-MAE (genie) and FAS-MAE perform the same,

which supports the choice of the analytical expression (4.23) used to fix the penal-

ization parameter.

4.3.4.3 Comparison of FAS-MAE to FAS-ML

To compare FAS-MAE to FAS-ML, let us study the influence of the modulation

order. We remind that in order to reduce the candidate subset, given a position in

x̃, FAS-ML considers all candidates in the case of 4-QAM while it limits itself to

adjacent neighbours in the case of higher order modulations. The consequence is

that FAS-ML outperforms FAS-MAE in the case of 4-QAM while it achieves lower

results in the case of 16-QAM. Whereas the gain of FAS-ML over FAS-MAE varies
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Figure 4.8: Comparison of FAS-based iterative receivers with N = 64 and n = 50

and coded 16-QAM.
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Figure 4.9: Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with N = 64,

n = 64 and coded 4-QAM.

between 0.2 and 0.5 dB at BER=10−4 depending on n for 4-QAM, we observe

a degradation of FAS-ML compared to FAS-MAE of about 2 dB and 2.6 dB at

BER=10−4 for n = 64 and n = 50 respectively.
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Figure 4.10: Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with N = 64,

n = 50 and coded 4-QAM.
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Figure 4.11: Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with N = 64,

n = 40 and coded 4-QAM.

4.3.4.4 Comparison of FAS-MAE and Turbo-MMSE (Fig. 4.9, 4.10 and

4.11)

In all cases, FAS-ML and FAS-MAE outperform the Turbo-MMSE detection. The

gain is all the higher as the system is underdetermined. The gain of FAS-MAE over
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Figure 4.12: Comparison of FAS-MAE, FAS-ML and Turbo-MMSE with coded 4-

QAM.

Turbo-MMSE equals about 1.25 dB for n = 64, 1.5 dB for n = 50 and 2dB for

n = 40 at BER 10−4.

Fig.4.12 gathers all configurations for the three receivers (FAS-MAE, FAS,ML,

Turbo-MMSE). We observe that they achieve similar diversity orders and differ from

coding gains.

4.4 Conclusion

This chapter focused on finite-alphabet iterative source recovery for large-scale

MIMO systems either uncoded or coded. For uncoded case, we developed an itera-

tive FAS algorithm which uses shadow area constraints with an optimized shadow

area defining parameter. The simulation results showed that the proposed FAS-

SAC algorithm significantly outperforms standard FAS, LAS and RTS algorithms

in almost cases with the same order of computational complexity. Then, for FEC-

encoded case, we introduced the FAS-ML receiver which reduces the complexity of

ML detection by restricting the candidate subset from the FAS algorithm output.

To further reduce the receiver complexity, we proposed FAS-MAE receiver whose

detection is based on a regularization of the FAS criterion without any preprocessing

of the FEC-decoder output and where its regularization parameter is analytically

fixed. Simulations showed that both receivers outperform Turbo-MMSE in all cases

and that FAS-MAE achieves better results (lower error rate and less complexity

load) than FAS-ML for M -QAM with M > 4. Until now all the work done is based

on a perfect knowledge of the channel matrix. Nevertheless, in the case of large-
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scale MIMO systems, this scenario is difficult to have. Next chapter is dedicated

to the impact evaluation of imperfect channel estimation and the design of efficient

algorithms that deal with CSI estimation.
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5.1 Introduction

In previous chapters, the detection algorithms were presented under the assumption

of perfect channel knowledge at the receiver. However, in practice, the channel gains

are estimated at the receiver, either blindly/semi-blindly or through pilot training.

In FDD systems, the estimated channel gains at the receiver are fed back to the

transmitter for precoding. In TDD systems, where the channel reciprocity holds,

the transmitter can estimate the channel and use it for precoding. Due to noise and

0This chapter was partially proposed for publication in IEEE Transactions on Signal Pro-

cessing : Z. Hajji, and K. Amis, and A. Aïssa-El-Bey, "Channel estimation with finite-alphabet

simplicity-based detection for large-scale MIMO systems" .
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the finite number of pilot symbols, the channel estimates are not perfect. This has

an influence on the achieved capacity of the MIMO channel and the performance of

detection algorithms. This chapter addresses the effect of imperfect CSI on MIMO

system preformance and proposes channel estimation algorithms. Simulations con-

sider the uplink of large-scale multiuser TDD MIMO communications.

This chapter is organized as follows. Section 5.2 presents an overview of imper-

fect CSI impact and the problem of channel estimation. Section 5.3 describes the

large-scale MIMO system model and usual channel estimation algorithms. The

Cramer-Rao bound (CRB) is also investigated for semi-blind channel estimation. In

Section 5.4, we propose semi-blind channel estimation algorithms fed by the output

of FAS and FAS-SAC detection algorithms in the uncoded case. A theoretical study

is done where CRBs and asymptotic MSEs are calculated. Section 5.5 deals with

the channel estimation in the coded case combined with the FAS-MAE algorithm

detailed in Chapter 4. We propose two ways of exploitation of FEC decoder output

to update the channel estimation block. Finally, Section 5.6 concludes the chapter.

5.2 Overview of Imperfect CSI effects

The capacity of MIMO channels can be degraded when CSI is imperfect. This case

is well studied in the literature of MIMO communications and some key results are

listed hereinafter:

• Gaussian source distribution, which is the distribution that can achieve the

MIMO capacity in the case of perfect channel estimate gets suboptimal when

CSI is inaccurate [55], [56].

• When Gaussian distribution is considered, the mutual information saturates

when increasing SNR with imperfect channel estimate but it still increases

linearly with min(n,N) where n and N stand for receive antenna number and

transmit antenna number respectively [57].

• The capacity gain of perfect CSI case over imperfect one decreases when SNR

increases. This is due to the fact that the two cases share the same optimal

input covariance matrix which is the identity matrix for high SNR. However,

when the perfect CSI is exploited at the transmitter side this gain becomes

significant because in imperfect CSI the transmitter is fed by erroneous channel

estimates and lead to the saturation of the effective SNR [57].

• The effect of imperfect CSI on the achievable capacity was established, and a

lower bound on capacity was defined as a function of the Cramer-Rao bound

(CRB) [58], [59], [60].

A widely adopted technique in MIMO systems is channel estimation based on known

training sequences. This approach is well investigated in several works. The problem

of needed training sequences number is addressed in point-to-point frequency flat

and selective channels [61], [62], multiuser MIMO channels [63]. In this approach,
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the transmission is often divided into training phase and data phase. In the training

phase, pilot sequences known at the transmitter and receiver sides are transmitted

in order to calculate an estimate at the receiver. This estimate can be obtained

using ML or MMSE criterion [64] and then it is used for detection of data. When

a small number of pilot sequences is considered, the capacity loss due to pilots

is less, however, we get an inaccurate estimate of the channel which degrades the

performance of the system. On the other hand, when long pilot sequences are

considered, the quality of the channel estimate can improve but we get less time

for data transmission. This tradeoff is analyzed in [61]. The authors showed that

when allocating more transmit power for pilot sequences their optimal number can

be equal to the number of transmit antennas. However, when powers are equally

allocated between pilots and data the optimal pilot number might be much larger

than the number of transmit antennas.

The multiuser MIMO channel estimation is investigated in [63] and the question

of how many training sequences is addressed. For a given coherence time and the

number of BS antennas, the optimal number of pilot sequences and the optimal

number of users to serve simultaneously are fixed by maximizing a lower bound on

the sum-rate in the downlink.

5.3 Overview of channel estimation techniques

5.3.1 System model

Let us consider the large-scale MIMO system equipped with N antennas at the

transmitter and n antennas at the receiver. Each transmitted frame consists of Tp

pilot vectors and Td data vectors (T = Tp + Td).

Under the above assumptions, the received signal matrix can be modelled as:

Y = HX +Z. (5.1)

Y = (Yp,Yd) is the received signal matrix. Yp and Yd are the n⇥ Tp pilot received

matrix and the n⇥Td data received matrix respectively. X stands for the transmit-

ted signal matrix. This N⇥T complex matrix can be decomposed as X = (Xp,Xd).

Xp and Xd are the N ⇥ Tp pilot transmitted matrix and the N ⇥ Td data trans-

mitted matrix respectively. Note that the channel use at time t, for t = 1, . . . , T ,

corresponds to the received vector given by:

y(t) = Hx(t) + ζ(t). (5.2)

The Maximum Likelihood (ML) estimate of H based on both training and data

signals is given by

ĤML = arg max
H

log p(Y |H) (5.3)
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5.3.2 ML estimators

In this section, we present the ML-based estimator which only uses the training

sequences as well as a full data ML estimator which assumes perfect data estimation.

The last one can serve as a lower bound on the performance of semi-blind estimation

(which consists of a first step of initialization of the channel estimate thanks to pilots

followed by estimate refinement with data decisions).

5.3.2.1 ML estimation based on training Pilot Sequences

The ML estimate of the channel matrix H based on pilot sequences Xp is given by:

Ĥ
training
ML = (YpX

H
p )(XpX

H
p )−1. (5.4)

To minimize the MSE subject to the transmit power, the training sequences must

be orthogonal, i.e XpX
H
p = TpIN . The corresponding mean square error (MSE) is

then computed as

E

h

||H − Ĥ
training
ML ||22

i

=
nNσ2

Tp
(5.5)

The reliability of the channel estimate based on pilot sequences highly depends on

the number of orthogonal sequences and the estimator requires more sequences to

be more reliable.

5.3.2.2 ML estimation based on full data

The full data-based ML estimator is an estimator supposing that all data symbols

are known at the receiver side and the performance of such estimator serves the lower

bound on the performance of semi-blind estimation. In this case, all the symbols are

assumed to be known at the BS. The channel estimate based on all data X denoted

by Ĥ
full
ML is computed as:

Ĥ
full
ML = (Y XH)(XXH)−1. (5.6)

Its corresponding mean square error (MSE) equals to:

E

h

||H − Ĥ
full
ML ||22

i

= nσ2tr
(

E
⇥

(XXH)−1
⇤)

. (5.7)

5.3.3 EM algorithm

As data symbols are not known, the ML problem cannot be analytically solved in

practice. It is necessary to use iterative algorithms that converge to the solution of

(5.3). Among them, the EM algorithm updates the channel estimate based on an

old one in the following manner:

Ĥi+1 = arg max
H

EPr(Xd|Y ,Ĥi)
(log Pr(Y ,Xd|H)) . (5.8)
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As we can see, the algorithm involves an expectation step and a maximization one.

The maximization step can be simplified and the updated estimate of the channel

matrix can be written as

Ĥi+1 =

✓

YpX
H
p + Yd E

h

Xd|Y , Ĥi

iH
◆

⇥
✓

XpX
H
p + E

h

XdX
H
d |Y , Ĥi

iH
◆−1

.(5.9)

To compute the estimate (5.9), the expectation step (E-step) must be defined. Us-

ing a discrete random variables such as 4-QAM leads to complex E-step whose

complexity grows exponentially with N . To overcome this problem, in [64], the au-

thors propose to assume that the data symbols are Gaussian. Thus E
h

Xd|Y , Ĥi

iH

and E

h

XdX
H
d |Y , Ĥi

iH
can be computed from the conditional density of circularly

symmetric Gaussian random vectors and we get the updated estimate as follows:

Ĥi+1 =

0

@YpX
H
p +

T
X

t=Tp+1

y(t) (x̂(t))H

1

A⇥

0

@XpX
H
p +

T
X

t=Tp+1

⇣

x̂(t) (x̂(t))H +Σ
⌘

1

A

−1

,(5.10)

where

x̂(t) =
⇣

ĤH
i Ĥi + σ2IN

⌘−1
ĤH

i y(t), (5.11)

and

Σ = σ2
⇣

ĤH
i Ĥi + σ2IN

⌘−1
(5.12)

5.3.4 Cramer-Rao bound of semi-blind channel estimation

In order to calculate the CRB of semi-blind channel estimation, we define for t =

Tp + 1, . . . , T , the matrix Ωt as Ωt = [x1(t)H, . . . , x2N (t)H]. Let us define also xi

as the i-th line of the matrix X and the matrix Π as follows:

Π =

0

B

@

(

2
σ2 (x

1)(x1)T
)

I2N . . .
(

2
σ2 (x

1)(x2N )T
)

I2N
...

. . .
...

(

2
σ2 (x

2N )(x1)T
)

I2N . . .
(

2
σ2 (x

2N )(x2N )T
)

I2N

1

C

A
(5.13)

The following theorem gives the CRB of any unbiased semi-blind channel estimation

based on least squares algorithm.

Theorem 5.3.1 The deterministic Cramer-Rao bound of the covariance matrix of

any unbiased semi-blind estimate of H is given by:

CRB(H) =

0

@Π−
T
X

t=Tp+1

ΩT
t

(

HTH
)

Ωt

1

A

−1

(5.14)
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[Proof of Theorem 5.3.1] The log likelihood function of the received signal is

given by:

L = q −
T
X

t=1

2

σ2

∥

∥y(t)−Hx(t)
∥

∥

2
, (5.15)

where q is real and constant. The CRB of both channel coefficients and unknown

data symbols is computed as:

CRB(Xd,H) = E(IIT )−1, (5.16)

where

I = @L/@
⇥

xT (Tp + 1), ...,xT (T ),hT
1 , ...,h

T
2N

⇤

(5.17)

Following similar steps as in the proof of [65], for t = Tp + 1, . . . , T and k =

1, . . . , 2N , we can show that

@L

@x(t)
=

2

σ2
HT ζ(t) (5.18)

@L

@hk

=
2

σ2

T
X

t=1

ζ(t)xk(t) (5.19)

Using E

h

ζ(t)
(

ζ(t)
)H
i

= σ2

2 I2nδ(t−t0), for t, t0 = Tp+1, . . . , T and k, i = 1, . . . , 2N .

We then get

E

 

@L

@x(t)

✓

@L

@x(t0)

◆T
!

=
2

σ2

(

HTH
)

δ(t− t0) (5.20)

E

 

@L

@x(t)

✓

@L

@hk

◆T
!

=
2

σ2
xk(t)H

T (5.21)

E

 

@L

@hi

✓

@L

@hk

◆T
!

=
2

σ2

T
X

t=1

xi(t)xk(t) (5.22)

Substituting (5.20), (5.21) and (5.22) in (5.16), we get

CRB(H) =

0

B

B

B

@

2
σ2

(

HTH
)

. . . 0 Ω(Tp+1)
...

. . .
...

...

0 . . . 2
σ2

(

HTH
)

Ω(T )

ΩH
(Tp+1) . . . ΩH

(T )) Π

1

C

C

C

A

−1

(5.23)

By results on the inverse of a block matrix, the CRB of the channel matrix H

CRB(H) =

0

@Π−
T
X

t=Tp+1

ΩT
t

(

HTH
)

Ωt

1

A

−1

(5.24)
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Figure 5.1: Frame structure

Remark 5.3.1 When the symbols are all correctly detected, we get the
PT

t=Tp+1Ω
T
t

(

HTH
)

Ωt = 0 and the CRB is computed as CRB(H) = Π−1 which is

equal to the covariance matrix of the full data and we get the MSE of the semi-blind

estimation equal to tr(Π−1) = E(||H − Ĥ
full
ML ||22) as defined in (5.7).

5.4 Semi-blind uplink channel estimation for large-scale

MIMO systems

In this section, we develop joint semi-blind channel estimation and detection schemes

based on FAS algorithms proposed and described in previous chapters.

5.4.1 Proposed Semi-blind uplink channel estimation algorithms

The frame structure is depicted in Fig. 5.1. A slow fading channel is assumed,

where the channel is assumed to be constant over one frame duration. Each frame

consists of a pilot block for the purpose of initial channel estimation, followed by

K data blocks. The pilot block consists of N pilot symbol vectors of length N .

Each one is allocated to a given user. Each data block consists of N information

symbol vectors, each of length N (one data symbol vector per user). Compared to

the system model of 5.3, we get Tp = N and Td = KN . Data blocks are detected

using FAS and FAS-SAC detection algorithms using an initial estimate provided

by a pilot sequences-based channel estimation. The detected data blocks are then

iteratively used to refine the channel estimates thanks to least squares based channel

estimation algorithm described below.

5.4.1.1 Initial channel estimate during pilot phase

Let xu
p denote the transmitted pilot symbol vector from user u. Let Xp =

[x1
p,x

2
p, . . . ,x

N
p ] denote the N ⇥ N pilot matrix formed by the pilot symbol vec-
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tors transmitted by all users in the pilot transmission phase. The received signal

matrix at BS, Yp, is given by:

Yp = HXp +Zp, (5.25)

where Zp is the noise matrix at the BS. The following pilot sequence is used:

xu
p = [0u⇥1, λ,0(N−u−1)⇥1], (5.26)

where λ =
√
NEs and Es is the average symbol energy. Using the scaled identity

nature of xp, an initial estimate Ĥ0 is obtained as:

Ĥ0 = Yp/λ (5.27)

= H +
1

λ
Zp

5.4.1.2 Data detection using initial channel estimate

During data transmission phase, the received signal matrix at BS, Yd, is given by:

Yd = HXd +Zd, (5.28)

where Xd is the concatenation of different data blocks. The received vector for the

channel use at time t, for t = Tp + 1, . . . , T is

y(t) = Hx(t) + ζ(t), (5.29)

The initial channel estimate Ĥ0 obtained from (5.27) is used to detect the transmit-

ted data vectors using FAS and FAS-SAC algorithms proposed in previous chapters

to get X̂d an estimate for the transmitted data matrix Xd.

One knows that Ĥ0 = H+ 1
λZp. This initial CSI error is used to calculate the statis-

tics needed to study the performance of the proposed schemes in the uncoded cases

and to interface the proposed detectors with FEC decoder and channel estimation

block in the coded case. We then get, at channel use t, y(t)− Ĥ0x(t), the updated

noise vector at first iteration with zero mean and variance (1 + N
Tp
)σ2 = 2σ2.

5.4.1.3 Channel estimation refinement based on FAS soft-decision out-

put

Let X̂FAS = [x̂(Tp +1), . . . , x̂(T )]; Where x̂(t), for t = Tp +1, ..., T , is the detected

complex-valued FAS soft-decision output at time t based on the channel estimate at

i-th iteration. To update the channel estimate at the (i+1)-th iteration, we propose

to compute the following criterion:

Ĥi+1 =
⇣

YpX
H
p + YdX̂

H
FAS

⌘⇣

XpX
H
p + X̂FASX̂

H
FAS

⌘−1
. (5.30)

In order to compute the CRB of the proposed channel estimation algorithm based

on FAS detection, let us remember that at time t, the elements of a detected real-

valued vector x̂(t) by FAS algorithm can be classified into two sets (see Definition
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3.4.1). The first set is the set of reliable elements which are equal exactly to the

transmitted symbols. This set was referred to as Λt. Its cardinality follows the

binomial distribution with parameters 2N and 1
2 assuming 4-QAM modulation.

The second set referred to as Λ̄t contains the rest of elements disturbed by noise.

Its cardinality follows the same distribution as Λt.

Let us now define for t = Tp + 1, . . . , T , the matrix GFAS
t as the matrix

H annulling the entries of all columns of indices in Λt, the matrix AFAS
t =

(

GFAS
t

)H
GFAS

t and the matrix ΩFAS
t as ΩFAS

t =
⇥

x1(t)G
FAS
t , . . . , x2N (t)GFAS

t

⇤

.

Let us also introduce CFAS
t =

⇣

HT
Λ̄t
H Λ̄t

⌘−1
. We define the matrix C

FAS
t such that

C
FAS
t

(

Λ̄t(i), Λ̄t(j)
)

= CFAS
t (i, j) for (i, j) ∈ {1, . . . , |Λ̄t|}2 and the other entries are

equal to zero.

The following theorem defines the CRB of the proposed channel estima-

tion/detection scheme.

Theorem 5.4.1 The deterministic CRB of the channel estimation based on FAS

detection algorithm at second iteration is defined by

CRB(H) =

0

@Π−
T
X

t=Tp+1

(ΩFAS
t )TCt(Ω

FAS
t )

1

A

−1

(5.31)

[Proof of Theorem 5.4.1] Following similar steps as in the proof of 5.3.4, for

t = Tp + 1, . . . , T and k = 1, . . . , 2N , we can show that

for k ∈ Λ̄t

@L

@xk(t)
=

2

σ2
hT
k ζ(t) (5.32)

for k ∈ Λt

@L

@xk(t)
= 0 (5.33)

for k ∈ {1, . . . , 2N}

@L

@hk

=
2

σ2

T
X

t=1

ζ(t)xk(t) (5.34)

We then get

for (k, k0) ∈ (Λ̄t ⇥ Λ̄t0)

E

 

@L

@xk(t)

✓

@L

@xk0(t
0)

◆T
!

=
2

σ2

(

hT
k hk0

)

δ(t− t0) (5.35)

for (k, k0) 2 (Λt ⇥ Λt0)

E

 

@L

@xk(t)

✓

@L

@xk0(t
0)

◆T
!

= 0 (5.36)
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so

E

 

@L

@x(t)

✓

@L

@x(t0)

◆T
!

=
2

σ2

(

AFAS
t

)

δ(t− t0) (5.37)

for k ∈ Λ̄t

E

 

@L

@xk(t)

✓

@L

@hk

◆T
!

=
2

σ2

(

hT
k xk(t)

)

(5.38)

for k ∈ Λt

E

 

@L

@xk(t)

✓

@L

@hk

◆T
!

= 0 (5.39)

so

E

 

@L

@x(t)

✓

@L

@hk

◆T
!

=
2

σ2
xk(t)(G

FAS
t )T (5.40)

for k ∈ {1, . . . , 2N}

E

 

@L

@hk

✓

@L

@hi

◆T
!

=
2

σ2

T
X

t=1

xk(t)xi(t) (5.41)

We then get

CRB(H) =

0

B

B

B

B

@

AFAS
(Tp+1) . . . 0 ΩFAS

(Tp+1)
...

. . .
...

...

0 . . . AFAS
(T ) ΩFAS

(T )

(ΩFAS
(Tp+1))

H . . . (ΩFAS
(T ) )H Π

1

C

C

C

C

A

−1

(5.42)

Finally,

CRB(H) =

0

@Π−
T
X

t=Tp+1

(ΩFAS
t )HC

FAS
t (ΩFAS

t )

1

A

−1

(5.43)

5.4.1.4 Channel estimation refinement based on FAS-SAC soft-decision

output

Let X̂FS = [x̂(Tp + 1), . . . , x̂(T )], where for t = Tp + 1, ..., T , x̂(t) is the detected

complex-valued FAS-SAC soft-decision output at time t based on channel estimate

at i-th iteration. We propose to update the channel estimate at the (i + 1)-th

iteration by:

Ĥi =
⇣

YpX
H
p + YdX̂

H
FS

⌘⇣

XpX
H
p + X̂FSX̂

H
FS

⌘−1
. (5.44)
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In order to determine the CRB of the channel estimation algorithm based on

FAS-SAC algorithm, we consider the iterative FAS-SAC detection with two itera-

tions. As detailed in Section 4.2, denoting by x̂(t) the output of the second iteration,

its elements belong to different sets. The set At contains the more reliable elements

that can be divided into correct decision symbols and erroneous decision symbols.

The sets of correct decisions and erroneous decisions are referred to as (Ac)t and

(Ae)t respectively and we get At = (Ac)t ∪ (Ae)t. The complementary of At is the

set Āt which contains the symbols that are re-estimated in the second iteration. The

updated noise vector in the second iteration is ζ̃(t) with variance σ2
⇣̃
(⌘) calculated

in 4.7.

Let us then define for t = Tp + 1, . . . , T , the matrix GFS
t as the matrix H an-

nulling the entries of all columns of indices in At, the matrix AFS
t =

(

GFS
t

)H
GFS

t

and the matrix ΩFS
t =

⇥

x1(t)G
FS
t , . . . , x2N (t)GFS

t

⇤

.

Let us also introduce CFS
t =

⇣

HT
Āt
HĀt

⌘−1
. We define the matrix C

FS
t such

that C
FS
t

(

Āt(i), Āt(j)
)

= CFS
t (i, j) for (i, j) ∈ {1, . . . , |Āt|}2 and the other entries

are equal to zero, for t = Tp + 1, . . . , T .

Let X̃ be the symbol matrix such that the elements of the t-th column with indices

in (Ae)t are fixed to those of the resulted matrix X̂FS and the rest of elements are

fixed to the elements of the transmitted symbol matrix X. Let then ΠFS the matrix

defined by:

ΠFS =

0

B

@

(

2
σ2 (x̃

1)(x̃1)T
)

I2N . . .
(

2
σ2 (x̃

1)(x̃2N )T
)

I2N
...

. . .
...

(

2
σ2 (x̃

2N )(x̃1)T
)

I2N . . .
(

2
σ2 (x̃

2N )(x̃2N )T
)

I2N

1

C

A
(5.45)

The following theorem gives the deterministic CRB of the proposed channel estima-

tion scheme.

Theorem 5.4.2 The deterministic CRB of the channel estimation based on FAS-

SAC detection algorithm is given by

CRB(H) =

0

@ΠFS −
T
X

t=Tp+1

(ΩFS
t )TCFS

t (ΩFS
t )

1

A

−1

(5.46)

[Proof of Theorem 5.4.2] Following similar steps as in the proof of 5.3.4, for

t = Tp + 1, . . . , T and k = 1, . . . , 2N , we can show that

for k ∈ Āt

@L

@xk(t)
=

2

σ2
⇣̃
(⌘)

hT
k ζ̃(t) (5.47)

for k ∈ At

@L

@xk(t)
= 0 (5.48)
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for k ∈ Āt

@L

@hk

=
2

σ2
⇣̃
(⌘)

T
X

t=1

ζ̃(t)xk(t) (5.49)

for k ∈ (Ac)t

@L

@hk

=
2

σ2

T
X

t=1

ζ(t)xk(t) (5.50)

for k ∈ (Ae)t

@L

@hk

=
2

σ2

T
X

t=1

ζ(t)(xk(t) + δxk(t)) (5.51)

Note that δxk(t) takes values in {−2, 2} when 4-QAM modulation is assumed.

We get then

for (k, k0) ∈ (Āt ⇥ Āt0)

E

 

@L

@xk(t)

✓

@L

@xk0(t
0)

◆T
!

=
2

σ2
⇣̃
(⌘)

(

hT
k hk0

)

δ(t− t0) (5.52)

for (k, k0) 2 (At ⇥At0)

E

 

@L

@xk(t)

✓

@L

@xk0(t
0)

◆T
!

= 0 (5.53)

for k 2 Āt

E
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@xk(t)

✓

@L

@hk

◆T
!

=
2

σ2
⇣̃
(⌘)

(

xk(t)h
T
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)

(5.54)

for k 2 At

E
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@xk(t)

✓

@L

@hk

◆T
!

= 0 (5.55)

for (k, i) 2 (Āt)
2

E

 

@L

@hk

✓

@L

@hi

◆T
!

=
2

σ2
⇣̃
(⌘)

T
X

t=1

xTk (t)xi(t) (5.56)

for (k, i) 2 (Ac)
2
t

E

 

@L

@hk

✓

@L

@hi

◆T
!

=
2

σ2

T
X

t=1

xTk (t)xi(t) (5.57)
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for (k, i) ∈ ((Ac)t ⇥ (Ae)t)

E

 

@L

@hk

✓

@L

@hi

◆T
!

=
2

σ2
⇣̃
(⌘)

T
X

t=1

xTk (t) (xi(t) + δxi(t)) (5.58)

for (k, i) 2 ((Ae)t ⇥ (Ac)t)

E
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@hi

◆T
!

=
2

σ2
⇣̃
(⌘)

T
X

t=1

(xk(t) + δxk(t))
T xi(t) (5.59)

for (k, i) 2 (Ae)
2
t

E
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@hk
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!

=
2

σ2

T
X

t=1

(xk(t) + δxk(t))
T (xi(t) + δxi(t)) (5.60)

We get then

CRB(H) =

0

B

B

B

B

@

AFS
(Tp+1) . . . 0 ΩFS

(Tp+1)
...

. . .
...

...

0 . . . AFS
(T ) ΩFS

(T )

(ΩFS
(Tp+1))

H . . . (ΩFS
(T ))

H ΠFS

1

C

C

C
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A
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(5.61)

Finally,

CRB(H) =

0

@ΠFS −
T
X

t=Tp+1

(ΩFS
t )HC

FS
t (ΩFS

t )

1

A

−1

(5.62)

5.4.1.5 Channel estimation refinement based on FAS/FAS-SAC hard

decision output

Let X̃FAS = [x̃(Tp + 1), . . . , x̃(T )], where x̃(t) is the hard decision of the detected

complex-valued FAS output at time t based on the channel estimate at the i-th

iteration. To update the channel estimate at the (i+ 1)-th iteration, we propose to

compute the following criterion:

Ĥi =
⇣

YpX
H
p + YdX̃

H
FAS

⌘⇣

XpX
H
p + X̃FASX̃

H
FAS

⌘−1
. (5.63)

Let X̃FAS−SAC = [x̃(Tp + 1), . . . , x̃(T )], where x̃(t) is the hard decision of the

detected complex-valued FAS-SAC output at time t based on the channel estimate

at the i-th iteration. To update the channel estimate at the (i+ 1)-th iteration, we

propose to compute the following criterion:

Ĥi =
⇣

YpX
H
p + YdX̃

H
FAS−SAC

⌘⇣

XpX
H
p + X̃FAS−SACX̃

H
FAS−SAC

⌘−1
. (5.64)
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The following theorem gives the asymptotic MSE of the proposed channel estimation

schemes based on hard decisions of proposed detection algorithm outputs. Let

us consider 4-QAM complex-valued symbols yielding BPSK real-valued symbols in

the real-equivalent system. The estimated data matrix X̃ based on hard decisions

simply writes X̃ = X + ∆X where ∆X is error matrix with entries in the set

{−2, 0, 2}.

Theorem 5.4.3 Let us consider 4-QAM complex-valued alphabet. The asymptotic

MSE of the channel estimation combined with hard output detection equals:

MSE = E(||H − Ĥ||2) (5.65)

=
2Nσ2

T
+

σ2

T 2
tr
(

E
⇥

((∆X)HXHHHXH(∆X)
⇤)

[Proof of Theorem 5.4.3] The channel estimate can be written as follows:

Ĥ =
⇣

Y X̃
H
⌘⇣

X̃X̃
H
⌘−1

=
1

T
(HX +Z)(X + (∆X))H

=
1

T
(HXXH +HX(∆X)H +ZXH +Z(∆X)H) (5.66)

Assuming that the frame size is very large (i.e 2N << T ), the covariance matrix of

the frame block can be approximated by XHX ≈ TI2N . The channel error can then

be written as:

∆H = Ĥ −H

=
1

T
(ZXH +Z(∆X)H +HX(∆X)H) (5.67)

Assuming that the channel noise is independent of the transmitted symbols and sym-

bols errors we get:

E [∆H] =
1

T
(E [H]E

⇥

X(∆X)H
⇤

) (5.68)

As the channel is a zero-mean random matrix, the estimation bias is always zero.

The MSE of the channel estimation reads:

E(||H − Ĥ||2) = E

h⇣

tr (H − Ĥ)(H − Ĥ)H
⌘i

(5.69)

=
1

T 2
E

h

tr
⇣

⇥

ZXH +Z(∆X)H +HX(∆X)H
⇤ ⇥

ZXH +Z(∆X)H +HX(∆X)H
⇤H
⌘i

Let us now calculate the error terms of (5.69). The first error term equals:

E

h

tr
⇣

(

ZXH
) (

ZXH
)H
⌘i

= Tσ2tr (I2N )

= 2NTσ2 (5.70)
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The second term is calculated as:

E

h

tr
⇣

(

Z(∆X)H
) (

ZXH
)H
⌘i

= σ2tr
(

E
⇥

(∆X)HX
⇤)

= −4σ2NF, (5.71)

where F is the number of errors in the detected symbols block X̂.

The third term which considers the noise, the data block and the hard decisions

errors can be calculated as follows:

E

h

tr
⇣

(

ZXH
) (

Z(∆X)H
)H
⌘i

= σ2tr
⇣

E

h

XH(∆X)
i⌘

= −4σ2NF (5.72)

Another term is computed as:

E

h

tr
⇣

(

Z(∆X)H
) (

Z(∆X)H
)H
⌘i

= σ2tr
(

E
⇥

(∆X)H(∆X)
⇤)

= 8σ2NF (5.73)

We also get,

tr
(

E
⇥

(∆X)HX
⇤)

+ tr
⇣

E

h

XH(∆X)
i⌘

+ tr
(

E
⇥

(∆X)H(∆X)
⇤)

= 0. (5.74)

Last term in (5.69) is computed as:

E

h

tr
⇣

(

HX(∆X)H
) (

HX(∆X)H
)H
⌘i

= σ2tr
(

E
⇥

(∆X)HXHHHXH(∆X)
⇤)

.

We finally get (5.65).

5.4.2 Simulation results

5.4.2.1 Comparison with EM algorithm

In Fig. 5.2, we compare the MSE of the proposed iterative channel estimation

algorithm based on soft decisions FAS-output under one iteration given in (5.30) to

the ML estimators and the EM algorithm with two iterations described in Sections

5.3.2 and 5.3.3 respectively for an overdetermined system with N = 8 and n = 64.

We show that the same performance can be achieved by the proposed algorithm in

just one iteration.

In Fig. 5.3, we consider a determined system with N = n = 64. It is shown that the

EM algorithm exhibits no improvement compared to ML training-based estimation

in such configuration. However, the proposed algorithm based on soft decision FAS

output presents a gain over the ML training-based one beyond SNR=11dB. This

gain is of about 2dB at 10−3 MSE. The second proposed algorithm based on soft

decision FAS-SAC output outperforms EM algorithm and soft decision FAS-output

algorithm over the whole SNR range. It achieves the same MSE as the full data

based estimation beyond SNR=19dB.



90 Chapter 5. Channel estimation in large-scale MIMO systems

2 4 6 8 10 12 14 16 18

SNR(dB)

10-5

10-4

10-3

10-2

10-1

M
S

E

ML Training

Iter. EM estimation/detection, # iter=2

ML Full Data

Iter. estimation/FAS-detection, # iter=1

Figure 5.2: MSE versus SNR with uncoded 4-QAM, N = 8, n = 64, Tp = 16 and

T = 512, (soft decision FAS output-based scheme).
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Figure 5.3: MSE versus SNR with uncoded 4-QAM, n = N = 64, Tp = 64 and

T = 1280, (soft decision FAS and FAS-SAC output-based schemes).

5.4.2.2 Comparison with theoretical bounds

In Fig. 5.4, the overdetermined case with N = 8 and n = 64 is considered and

we show that the performance of the proposed algorithm based on soft decision

FAS-output is close to its CRB. The same holds in Fig. 5.5 where the determined

system is considered and the soft decision FAS-SAC-output based channel estimation

algorithm is compared to its CRB.

Fig. 5.6 shows the validity of the asymptotic MSEs defined in (5.65) for both

proposed channel estimation algorithms based on hard-decision detection output

(FAS and FAS-SAC respectively).
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Figure 5.4: MSE versus SNR with uncoded 4-QAM, n = 64, N = 8, Tp = 16 and

T = 512 (overdetermined system, soft decision FAS output-based scheme).
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Figure 5.5: MSE versus SNR with uncoded 4-QAM, n = N = 64, Tp = 64 and

T = 1280 (determined system, soft decision FAS-SAC output-based scheme).

5.4.2.3 Superposition of MSE and BER of hard decision output-based

algorithms

Fig. 5.7 and Fig. 5.8 represent the MSE and BER performance of the iterative

channel estimation/detection schemes based on FAS and FAS-SAC hard decisions

outputs respectively for the determined system with N = n = 64. It can be seen

that the MSE performance can be improved for an increased number of iterations

between channel estimation and detection for both schemes. It can also be seen that
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Figure 5.6: MSE versus SNR with uncoded 4-QAM, n = N = 64, Tp = 64 and

T = 1280 (hard decision FAS and FAS-SAC outputs-based schemes).

Computational cost

ML training O(nNTp)

ML full data O(nNT )

EM O(max((Td +NQ)n2), ((T +N)nNQ))

Proposed algorithms (FAS-based) O(TdQN3)

Proposed algorithms (FAS-SAC-based) O(Td(2− Z⌘)QN3)

Table 5.1: Computational cost with the interior point (iteration number: Q).

with just two iterations of the channel estimation/detection procedure, we can get a

BER close to perfect channel detection BER. We show that the FAS and FAS-SAC

based-iterative schemes achieve 10−3 BER within 0.5dB and 0.9dB of the perfect

channel knowledge respectively.

In Fig. 5.9 and Fig. 5.10, we show that the proposed channel estima-

tion/detection schemes are efficient in underdetermined systems where N = 64 and

n = 50. It can be confirmed as the determined system that the MSE performance

can be improved increasing the number of iterations. It is the same for the BER

where we get a gain of about 2.7dB and 2.8dB over the initial channel estimation

detection for FAS and FAS-SAC hard decisions-based channel estimation/detection

schemes respectively at the second iteration.

5.4.3 Complexity analysis

We now compare the computational complexity of proposed semi-blind channel es-

timation with the ML estimators and the EM algorithms detailed in Section 5.3.

Calculation of ML training-based channel estimation consists of matrix multipli-
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Figure 5.7: MSE versus SNR (hard decision FAS and FAS-SAC output-based

schemes), BER versus SNR (hard decision FAS output-based schemes) with un-

coded 4-QAM, n = N = 64, Tp = 64 and T = 1280.

cations with dominant factor of O(nNTp) and a matrix inversion with complex-

ity O(N3). Therefore, the whole complexity order is O(nNTp). Similarly we can

show that the complexity of full data based channel estimation is about O(nNT ).

Let denote Q the number of iterations taken into account in the iterative algo-

rithms. We get that the EM channel estimation algorithm has a complexity of order

O(max((Td + NQ)n2), ((T + N)nNQ)). The complexity orders of proposed algo-

rithms based on FAS soft decision output and FAS hard decision output are the
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Figure 5.8: MSE versus SNR (hard decision FAS and FAS-SAC output-based

schemes), BER versus SNR (hard decision FAS-SAC output-based scheme) with

uncoded 4-QAM, n = N = 64, Tp = 64 and T = 1280.

same and equal O(TdQN3). The channel estimation based on FAS SAC with both

soft and hard decisions outputs represents a complexity order of O(Td(2−Z⌘)QN3).

Finally, it can be mentioned that all the proposed iterative algorithms represent the

same order of complexity as EM algorithm. The computational complexities of the

different algorithms are reported in Table 5.1.
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Figure 5.9: MSE versus SNR (hard decision FAS and FAS-SAC output-based

schemes), BER versus SNR (hard decision FAS output-based scheme) with uncoded

4-QAM, n = 64, N = 50, Tp = 64 and T = 1280.

5.5 Channel estimation for large-scale FEC-coded

MIMO systems

5.5.1 Channel estimation algorithm combined with FAS-MAE

Contrary to previous section which considered uncoded systems, we propose to take

into account the FEC constraint in uplink multiuser large-scale MIMO systems (Fig.

5.11) and to feed the channel estimation with the FEC decoder output. We propose

to combine the coded iterative receiver FAS-MAE described in previous chapter

with a channel estimation block as shown in Fig. 5.12.

As the initial channel estimate for the first iteration is not perfect, the variance

of real-valued FAS-detected vector taken into account when the knowledge of the
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Figure 5.10: MSE versus SNR (hard decision FAS and FAS-SAC output-based

schemes), BER versus SNR (hard decision FAS-SAC output-based scheme) with

uncoded 4-QAM, n = 64, N = 50, Tp = 64 and T = 1280.

channel is perfect is changed here as follows:

σ2
x̂ =

2n−2
X

k=0

✓

2N

k

◆✓

1

p

◆2N−k ✓p− 1

p

◆k 2n(2σ2)

2n− k − 1
. (5.75)

To update the channel estimation, we propose two approaches that exploit the

probability vectors Pj delivered by the decoder: the first based on hard-decisions

and the second on soft-decisions.
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Figure 5.11: Uplink multiuser MIMO system
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Figure 5.12: Turbo joint channel estimation and FAS-MAE detection scheme

5.5.1.1 Hard decision-based estimation

Let X̃d be the n⇥ Tp hard-decision matrix computed from BSC output. Let ✓i,k =

Pr
(

xk = βi|Λdet
in

)

computed from Pj . The hard decision on xk is defined by

X̃d,k = βi⇤ with i⇤ = arg max
1iM

✓i,k. (5.76)

We then propose to update the channel estimation by

Ĥi =
⇣

YpX
H
p + YdX̃

H
d

⌘⇣

XpX
H
p + X̃dX̃

H
d

⌘−1
. (5.77)

5.5.1.2 Soft decision-based estimation

So as to preserve the information delivered by the FEC decoder, we propose to use

Θ(t) = (✓i,k(t))1iM,1kN the probabilities matrix at time t to compute soft-
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Figure 5.13: MSE versus SNR with coded 4-QAM, n = N = 64, Tp = 64 and

T = 1280.

decisions and update the FAS-MAE based channel estimation as follows:

Ĥi =

0

@YpX
H
p +

T
X

t=Tp+1

y(t)βHΘ(t)

1

A⇥

0

@XpX
H
p +

T
X

t=Tp+1

ΘT (t)β βHΘ(t)

1

A

−1

,(5.78)

where β = [β1, . . . , βM ]T is the modulation vector.
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Figure 5.14: MSE versus SNR with coded 4-QAM, n = 64, N = 50, Tp = 64 and

T = 1280.

5.5.2 Simulation results

We consider coded systems with 4-QAM and convolutional code (CC) whose poly-

nomials in octal are (13, 15) (code rate equal to 0.5). A frame consists of 1216 short

codewords of length equal to 256 coded bits, Tp = 64, which makes T = 1280.

In Fig. 5.13 (n = N = 64) and Fig. 5.14 (n = 64, n = 50), our purpose is to

evaluate the channel estimate accuracy achieved by the turbo receiver (soft decision-

based, after four iterations) as compared to the ML training-based estimation and to

the lower ML bound referred to as "ML full-data". Let us remind that ML full-data
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assumes that the whole frame (data and pilot) is known at the receiver and used as

training sequence. We observe that the proposed scheme achieves the same MSE as

the ML full-data beyond SNR = 9dB and SNR = 11dB for the determined and

the underdetermined systems respectively.

The proposed semi-blind estimation outperforms the ML training-based estima-

tion, with a gain of about 3dB-4dB at MSE = 10−2. These observations support

the efficiency of the proposed estimation.

Then, we compare the two proposed strategies to update the EM channel estima-

tion (hard-decision based and soft-decision based) and we study their impact on the

turbo receiver error rate performance. We have also plotted the performance with

perfect channel state information, ML full-data estimation and ML training-based

estimation.

In Fig. 5.13, n = N = 64. Compared to the perfect CSI knowledge lower

bound, at BER = 10−3, we observe a loss of 0.3dB for ML-full data, 1.75dB for soft

decision-based channel estimation, 1.9dB for hard decision-based channel estimation

and 3dB for ML-training. The difference between soft and hard decisions-based

versions is about 0.15dB for the whole SNR values. In Fig. 5.14, we consider the

underdetermined case with N = 64 and n = 50. We get roughly the same losses

compared to the perfect CSI knowledge as in the determined case. We can thus

deduce that the use of detected data to refine the channel estimation is efficient

as it enables to improve the receiver performance by 1.6-1.9dB depending on the

approach (either hard decision or soft decision-based).

5.6 Conclusion

In this chapter we have addressed the problem of imperfect CSI and we have pro-

posed semi-blind channel estimation in large-scale MIMO in both uncoded and FEC-

coded systems with finite alphabets assuming limited pilot sequence length. We have

proposed channel estimation schemes based on soft and hard decisions output of FAS

and FAS-SAC algorithms. We have shown that taking into account a number of pi-

lot sequences equal to the number of users is sufficient. Theoretical studies for both

algorithms are established and we have determined the CRBs when soft decisions

are considered and the asymptotic MSEs when hard decisions are used. Simula-

tion results showed their validity. Then, we proposed a turbo FAS-based detection

receiver which combines estimation, detection and FEC decoding and we defined

two ways of updating the FAS-based channel estimation from FEC decoder output.

Simulations showed the efficiency of the proposed scheme which performs close to

the ML full-data lower bound, with a superiority of the ones based on hard decisions

in the uncoded case which is not the case when coded systems are considered. The

whole work is done assuming a slow fading channel. Future work will focus how the

proposed schemes can be extended to frequency-selective channels.
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6.1 Conclusions

This thesis is motivated by the new opportunities in large-scale MIMO systems and

the different challenges to be addressed to make them operational. For example,

algorithms and techniques which are known to work well with a small number of

antennas may not support the passage to high dimensions. Therefore, new and

alternative approaches are needed. Also, in addition to increased rate and diversity

gains, large dimensions bring other advantages (e.g., channel hardening, which can

be exploited to achieve low-complexity signal processing) which do not come with

smaller-dimension systems. Bringing out such large MIMO opportunities, issues,

and solutions is our key objective. The PhD manuscript can be summarized as

follows:

In Chapter 1, we have first introduced the MIMO communication in the context

of both point-to- point as well as multiuser scenarios. We have shown the advantages

of such systems over the SISO communications. Different performance parameters

such as spectral efficiency and error probability have been presented. It has been

mentioned that the more the number of antennas the best the system. Large-scale

MIMO systems have been introduced as well as some advantages. The channel

hardening effect that happens in large dimensional MIMO channels and can simplify

the implementation of large-scale MIMO systems significantly, has been described.

Then, we have presented some challenges when such sytems are deployed such as

the necessity of low complexity signal processing algorithms to deal with very high

number of antennas. Channel estimation has also been evoked with a special focus

on pilot contamination channel in multi-cell communications.

In Chapter 2, we have presented the state-of-the-art of detection algorithms in

MIMO systems and large-scale MIMO systems. We have detailed the different al-

gorithms and we have showed their weak and strong points. We have mentioned

that the classical algorithms such as ML-based algorithms and linear detection algo-

rithms are inadequate for large-scale systems, on account of either poor performance
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or high complexity. Then, we have presented local search-based algorithms that aim

to improve the performance of low-complexity algorithms like linear detection algo-

rithms while preserving the same order of complexity. These algorithms referred to

as RTS and LAS have been used as benchmark in Chapters 3 and 4.

In Chapter 3, dedicated to large-scale MIMO detection, we have considered

Compressive sensing (CS) techniques to propose new detection algorithms with low

complexity. We have considered finite alphabet signals and we have exploited their

simplicity property to propose an efficient algorithm. Then recovery and detection

algorithms have been designed for both noiseless and noisy MIMO systems. The

noiseless case has been theoretically investigated to obtain the necessary conditions

of successful recovery. The proposed recovery scheme has been then extended to the

large-scale MIMO systems and a theoretical study of the detection output statistics

has been successfully carried out. We have showed that the proposed algorithm has

the same order of complexity as the low-complexity algorithms of the state-of-art

(MMSE, LAS, RTS) and outperform them (significant gains over LAS and MMSE).

In Chapter 4, our purpose was to integrate the proposed algorithm in Chapter 3

in an iterative procedure for both uncoded and coded cases in order to improve its

performance. First, we have considered the uncoded case and we have proposed an

iterative successive interference scheme based on the shadow area principle, with pa-

rameters theoretically fixed based on the original proposed detection scheme output

statistics. Simulation results show that the proposed scheme improves significantly

the performance of the original algorithm and preserves the same order of complex-

ity. Then, we have proposed to integrate the original scheme in a turbo-like iterative

receiver. Two turbo detection schemes have been proposed. The first scheme is an

ML-like iterative receiver with search space limited to neighbors in order to reduce

its complexity. To further reduce the receiver complexity, we have proposed a second

scheme which uses the output statistics investigated in previous chapter to feed the

decoder with reliable LLRs. A criterion reformulated as a regularized constrained

least squares problem has been designed at the detector side to keep symbols near

to the decoder output. The regularization term can be seen as the mean of absolute

error in function of the probabilities delivered by the decoder.

In Chapter 5, we have considered the case of imperfect channel state informa-

tion and we have introduced semi-blind iterative least squares channel estimation

algorithms fed with the proposed detection algorithms outputs. We have shown

that taking into account a number of pilot sequences equal to the number of users is

sufficient to obtain a reliable CSI estimate. The EM algorithm works efficiently only

in overdetermined systems. The proposed iterative channel estimation/ detection

schemes are efficient in both determined or underdetermined systems and we have

demonstrated that two iterations are sufficient to perform close to the lower bound

(perfect CSI). The coded case has also been treated and an iterative turbo-like

channel estimation and detection schemes have been proposed whose performance

is promising to expect new pilot sequences design.
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6.2 Perspectives

Short-term perspectives

Perspectives that aim to improve the performance of the proposed algorithms in

both uncoded and coded cases assuming a non frequency-selective channel are sum-

marized as follows:

First, the proposed detection schemes are based on a criterion which can be

resolved by optimization algorithms such as simplex or interior point methods. Our

aim is to propose less complex algorithms that resolve the proposed criterion ex-

ploiting the channel hardening phenomenon in large-scale MIMO systems detailed

in Chapter 1.

Second, as mentioned in Chapter 4, the calculated LLRs in 4.25 that correspond

to the output-vector elements equal to the bounds of the finite alphabet, take the

same and the highest value compared to the other output-vector elements. How-

ever, when low and medium SNR values are considered, some bounded elements are

erroneous and lead the system to consider an erroneous symbol as reliable. This

fact can degrade the performance of the iterative receiver. Therefore, other LLR

calculation strategies should be proposed to deliver more reliable soft decisions to

the decoder.

Third, the proposed algorithms could be interfaced with the local search algo-

rithms (LAS and RTS) and Lattice reduction methods to further improve detection

performance.

Fourth, in Chapter 4, the theoretical analysis is based on 4-QAM modulation.

The extension to higher order modulations should be investigated.

Mid-term perspectives

The main works on the whole PhD are done assuming a non frequency-selective

channel. In more practical scenarios, channels can be frequency-selective, causing

ISI. Future works could deal with the extension of proposed detection and channel

estimation algorithms to frequency-selective channels.

In multi-cell large-scale MIMO systems, usually, the length of the training se-

quences is not sufficient enough to separate the channels of multi-cell users which

results in pilot contamination effect [66]. It is shown that the efficiency of channel es-

timation in one cell becomes corrupted by the channel between that base station and

the users in other cells in an undesirable manner. Chapter 5 studied semi-blind esti-

mation in single cell scenarios with large-scale systems and thus neglected inter-cell

interference. Future work could investigate either pilot sequences design combined

with proposed receivers or blind estimation techniques based on sparse signal pro-

cessing. To manage interference at the terminal side, we could study whether it is

possible to exploit the simplicity property as well as compressive sensing to propose

efficient beamforming techniques.
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Chapter 7

Appendix

7.1 Generic random matrix

We assume that the components of H are independent, complex circularly-

symmetric Gaussian random variables with zero mean and unit variance. We aim

to prove that H is a generic random matrix. The assumption on the distribution of

the components of H ensures that the columns of H are symmetrically distributed

about the origin. We thus have to prove that H is completely general with prob-

ability 1, that is to say whatever `, any ` ⇥ ` submatrix of H has full-rank. This

result is given by the following Theorem A.1.

Theorem A.1 : Given a complex-valued matrix H and its real-valued trans-

form H, if H is a generic random matrix with independent circularly-symmetric

Gaussian-distributed components, then H is completely general with probability 1.

Let us prove the theorem by induction. Let H be a complex-valued matrix with

independent circularly-symmetric Gaussian-distributed components. Let us define

the property P` by "any `⇥ ` submatrix of H has full-rank with probability 1". Let

` = 1. Then, any 1⇥1 submatrix of H is a real-valued Gaussian variable, that is to

say a continuous random variable and the probability that it equals zero is null. P1

is true. Let us suppose that P` is true and let us prove that P`+1 is also true. Let S a

(`+1)⇥ (`+1) submatrix of H. Then, as P` is true, all minors of S have non-zero

determinant with probability 1. Let us compute the determinant of S according

to a given row (or column). It corresponds to the linear combination of minors,

where due to the independence of the components of H (the components of H are

circularly-symmetric Gaussian and independent) the weights and the minors form a

family of random variables that are mutually independent, continuously distributed

and different from zero with probability equal to one. Thus, the determinant of S

is a continuous random variable different from zero with probability equal to one.

7.2 Proof of Proposition 4.2.1

The number of non binding constraints of (PSI,2) can be seen as the sum of the

inactive constraint number and the non binding active constraint number. The

probability, that a constraint is inactive, is denoted by pin and corresponds to the

probability that xi /2 {↵1, ↵p}, that is to say pin = p−2
p . The probability that

a constraint is non binding and active is denoted by pnba and corresponds to the

probability that either xi = ↵1 and {HT (Hx̂−y)}i < 0, or xi = ↵p and {HT (Hx̂−
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y)}i > 0}. As a constraint cannot be active and inactive, the probability, that a

constraint is non binding, equals pnb = pin + pnba.

It remains to find the value of pnba = Pr(i ∈ Ω\Λ). To that purpose, we focus

on the sign of {HT (Hx̂ − y)}i = {HT (H(x̂ − x) − ζ)}i, i ∈ Λ. As the elements

in the set F = {↵1, ↵2, .., ↵p} are equiprobable and the real-valued matrix channel

H as well as the noise are Gaussian, we can affirm that the estimated vector x̂ is a

symmetrically erroneous version of the original vector x. Then, the sign of {(x̂−x)}i,
i ∈ Λ takes on equiprobable values. Consequently, exploiting the same hypothesis

for the channel matrix and the noise we deduce that the sign of {HT (Hx̂ − y)}i
can be negative or positive with probability 1/2. Then, pnba can be decomposed as:

pnba = Pr(xi = ↵1) Pr({H̃T (Hx̂− y)}i ≤ 0|xi = ↵1)

+ Pr(xi = ↵p) Pr({HT (Hx̂− y)}i ≥ 0|xi = ↵p)

=
1

p
⇥ 1

2
+

1

p
⇥ 1

2
=

1

p
. (7.1)

Consequently, pnb = pin + pnba = p−2
p + 1

p = p−1
p , Hence card(Λ̄) ⇠ B(2N, p−1

p ).

7.3 Symbol error probability upper-bound

[Proof of Theorem 3.4.3] Let us denote by x̃k the hard decision taken on xk from

the detection output x̂k. Then, the symbol error probability is defined by

Ps = Pr(xk 6= x̃k). (7.2)

Considering the assumptions (alphabet and equiprobability), Ps reads

Ps =
1

p

p
X

i=1

p
X

q=1
i 6=q

Pr(x̃k = ↵q|xk = ↵i). (7.3)

This probability can be computed by considering a maximum-likelihood decision

rule applied on x̂k:

Ps =
1

p

p
X

i=1

p
X

q=1
i 6=q

Pr

0

B

B

@

p
\

j=1
j 6=q

(

(x̂k − ↵q)
2  (x̂k − ↵j)

2
)

|xk = ↵i

1

C

C

A

(7.4)

 1

p

p
X

i=1

p
X

q=1
i 6=q

Pr
(

(x̂k − ↵q)
2  (x̂k − ↵i)

2|xk = ↵i

)

 1

p

p
X

i=1

p
X

q=1
i 6=q

Pr

✓

x̂k  ↵i + ↵q

2
|xk = ↵i

◆

.
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Using Theorem 3.4.2, we can write

(7.5)

Pr

✓

x̂k ≤ ↵i + ↵q

2
|xk = ↵i

◆

=
1

2
erfc

 

↵i − ↵1√
2σx̂

!

+
1

2
erfc

 

↵p − ↵i√
2σx̂

!

+

Z

↵i+↵q
2

↵1

1√
2⇡σx̂

exp

 

−(x− ↵i)
2

2σ2
x̂

!

dx.

After computation, we get

Pr

✓

x̂k ≤ ↵i + ↵q

2
|xk = ↵i

◆

=
1

2
erfc

 

↵p − ↵i√
2σx̂

!

+
1

2
erfc

 

↵i − ↵q

2
√
2σx̂

!

. (7.6)

Therefore, Ps can be upper-bounded by

Ps ≤
1

2p

p
X

i=1

p
X

q=1
i 6=q

erfc

 

↵i − ↵q

2
√
2σx̂

!

+
p− 1

2p

p
X

i=1

erfc

 

↵p − ↵i√
2σx̂

!

. (7.7)

At high SNR, due to the decreasing rate of erfc, the terms depending on differ-

ences between adjacent symbols are predominant and the following approximation

is asymptotically tight

Ps ≈
p− 1

p
erfc

 

↵2 − ↵1

2
√
2σx̂

!

. (7.8)

7.4 Proof of equations (4.5) and (4.6) of Theorem 4.2.1

In this appendix, we aim to prove the expression of Z⌘ and of Y⌘ given in (4.5) and

(4.6) respectively.

7.4.1 Proof the expression of Z⌘ given by equation (4.5)

We first remind us about the distribution of the output detector vector which reads:

(7.9)

fx̂k(x) =
1

p

p
X

`=1

 

1

2
erfc

 

↵` − ↵1√
2σx̂

!

δ↵1(x) +
1

2
erfc

 

↵p − ↵`√
2σx̂
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+
1√
2⇡σx̂

exp

 

−(x− ↵`)
2

2σ2
x̂

!

1[↵1,↵p](x)

!

,

with σ2
x̂ = 2nσ2

2n−2N( p−1
p

)−1
. Let us denote by Z⌘ the probability that a source be

decided after the first iteration, that is to say the probability that x̂k be reliable.
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We assume that ⌘ is small enough. Then

Z⌘ = Pr((∪p
i=1|x̂k − ↵i|< ⌘)) =

p
X

i=1

Pr(|x̂k − ↵i|< ⌘) =

p
X

i=1

Z

|x−↵i|<⌘
fx̂k(x)dx (7.10)
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Using the equality erfc (−x) = 2− erfc (x), we obtain
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As we can define ↵` − ↵i = (`− i)∆, we have,
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that is to say
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Finally, after simplifications, we obtain

Z⌘ =

p−1
X

`=0

1

p

 

(p− `)erfc

 

`∆− ⌘√
2σx̂

!

− (p− `− 1)erfc
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!!
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−⌘√
2σx̂

!!

.

7.4.2 Proof the expression of Y⌘ given by equation (4.6)

Let us now compute the variance of the elements of A denoted by Y⌘ and defined

as:

Y⌘ = var(x̃k | k ∈ A) (7.16)

= E
⇥

x̃2k|k ∈ A
⇤

− E [x̃k|k ∈ A]2 .

Focusing on the first term of Eq. (7.16) we get:

E [x̃k|k ∈ A] =
1

Pr(k ∈ A)

p
X

`=1

↵` Pr(|x̂k − ↵`|< ⌘) (7.17)

=
1

Z⌘

p
X

`=1

↵` Pr(|x̂k − ↵`|< ⌘)

=
1

Z⌘

p
X

`=1

↵`

Z

|x−↵`|<⌘
fx̂k(x)dx

As the distribution of x̂ is an even function and the real constellation F =

{↵1, ↵2, .., ↵p} is symmetric with respect to the origin, we get E [x̃k|k ∈ A] = 0.

The second term of Eq. (7.16) is computed as:
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E
⇥
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1

Z⌘

p
X
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=
1

Z⌘
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Following the same approach as for Z⌘, we finally get:

Y⌘ = E
⇥

x̃2k|k ∈ A
⇤

(7.20)

=
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Titre : Gestion des interf́rences dans les syst̀mes large-scale MIMO pour la 5G 

Mots clés : Large-scale MIMO, Compressive sensing, Alphabet fini 

Résumé : La th̀se s'inscrit dans la perspective 
de l'explosion du trafic de donńes ǵńŕe par 
l'augmentation du nombre d'utilisateurs ainsi 
que la croissance du d́bit qui doivent ̂tre 
prises en compte dans la d́finition des futures 
ǵńrations de communications radio- 
cellulaires. Une solution est la technologie « 
large-scale MIMO » (syst̀mes MIMO de grande 
dimension) qui pose plusieurs d́fis. La 
conception des nouveaux algorithmes de 
d́tection de faible complexit́ est indispensable 
vu que les algorithmes classiques ne sont plus 
adapt́s ̀ cette configuration ̀ cause de leurs 
mauvaises performances de d́tection ou de 
leur complexit́ trop ́lev́e fonction du nombre 
d'antennes. Une premìre contribution de la 
th̀se est un algorithme baś sur la technique de 
l'acquisition compriḿe en exploitant les 
proprít́s des signaux ̀ alphabet fini. Appliqú 
̀ des syst̀mes MIMO de grande dimension, 
d́termińs et sous-d́termińs, 

cet algorithme ŕalise des performances 
(qualit́ de d́tection, complexit́) prometteuses 
et suṕrieures compaŕ aux algorithmes de 
l'́tat de l'art. Une ́tude th́orique approfondie 
a ́t́ meńe pour d́terminer les conditions 
optimales de fonctionnement et la distribution 
statistique des sorties. Une seconde 
contribution est l'int́gration de l'algorithme 
original dans un ŕcepteur it́ratif en 
diff́renciant les cas cod́ (code correcteur 
d'erreurs pŕsent) et non cod́. Un autre d́fi 
pour tenir les promesses des syst̀mes large- 
scale MIMO (efficacit́ spectrale ́lev́e) est 
l'estimation de canal. Une troisìme 
contribution de la th̀se est la proposition 
d'algorithmes d'estimation semi-aveugles qui 
fonctionnent avec une taille minimale des 
śquences d'apprentissage (́gale au nombre 
d'utilisateurs) et atteignent des performances 
tr̀s proches de la borne th́orique.  

 

Title : Interference management in large-scale MIMO systems for 5G 

Keywords : Large-scale MIMO, Compressive sensing, Finit-alphabet 

Abstract : The thesis is part of the prospect of 
the explosion of data traffic generated by the 
increase of the number of users as well as the 
growth of the bit rate which must be taken into 
account in the definition of future generations of 
radio-cellular communications. A solution is the 
large-scale MIMO technology (MIMO systems of 
large size) which poses several challenges. The 
design of the new low complexity detection 
algorithms is indispensable since the 
conventional algorithms are no longer adapted 
to this configuration because of their poor 
detection performance or their too high 
complexity depending on the number of 
antennas. A first contribution of the thesis is an 
algorithm based on the technique of 
compressed sensing by exploiting the properties 
of the signals with finite alphabet. Applied to 
large-scale, determined and under-determined 

MIMO systems, this algorithm achieves 
promising and superior performance (quality of 
detection, complexity) compared to state-of- 
the-art algorithms. A thorough theoretical study 
was conducted to determine the optimal 
operating conditions and the statistical 
distribution of outputs. A second contribution is 
the integration of the original algorithm into an 
iterative receiver by differentiating the coded 
and uncoded cases. Another challenge to 
keeping the promise of large- scale MIMO 
systems (high spectral efficiency) is channel 
estimation. A third contribution of the thesis is 
the proposal of semi-blind channel estimation 
algorithms that work with a minimum size of 
pilot sequences (equal to the number of users) 
and reach performances very close to the 
theoretical bound.  
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