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Abstract

With the emergence of MEMS and the overall decrease in the cost of sensors, the
acquisitions multichannel are becoming more widespread, particularly in the field of
acoustic source identification. The quality of source localization and quantification can be
degraded by the presence of ambient or electronic noise. In particular, in the case of in
flow measurements, the turbulent boundary layer that develops over the measuring system
can induce pressure fluctuations that are much greater than those of acoustic sources.
It then becomes necessary to process the acquisitions to extract each component of the
measured field. For this purpose, it is proposed in this thesis to decompose the measured
spectral matrix into the sum of a matrix associated with the acoustic contribution and a
matrix for aerodynamic noise. This decomposition exploits the statistical properties of
each pressure field. Assuming that the acoustic contribution is highly correlated on the
sensors, the rank of the corresponding cross-spectral matrix is limited to the number of
equivalent uncorrelated sources. Concerning the aerodynamic noise matrix, two statistical
models are proposed. A first model assumes a totally uncorrelated field on the sensors,
and a second is based on a pre-existing physical model. This separation problem is solved
by a Bayesian optimization approach, which takes into account the uncertainties on each
component of the model. The performance of this method is first evaluated on wind
tunnel measurements and then on particularly noisy industrial measurement, coming
from microphones flushmounted on the fuselage of an inflight large aircraft.

Résumé

Avec apparition des MEMS et la diminution globale du cotit des capteurs, les acquisitions
multivoies se généralisent, notamment dans le domaine de l'identification de sources
acoustiques. La qualité de la localisation et de la quantification des sources peut étre
dégradée par la présence de bruit de mesure ambiant ou induit par le systéme d’acquisition.
En particulier, dans le cas de mesures en présence d’un écoulement, la couche limite
turbulente qui se développe sur le systéme de mesure peut induire des fluctuations
de pression de niveau bien supérieur a celles des sources acoustiques. Il devient alors
nécessaire de traiter les acquisitions pour extraire chaque composante du champ mesuré.
Pour cela, on propose de décomposer la matrice spectrale mesurée en la somme d’une
matrice associée a la contribution acoustique et d’une matrice pour le bruit aérodynamique.
Cette décomposition exploite les propriétés statistiques de chaque champ de pression.
En supposant que la contribution acoustique est fortement corrélée sur les capteurs, le
rang de la matrice interspectrale associée se limite au nombre de sources décorrélées
équivalentes. Concernant la matrice du bruit aérodynamique, deux modeéles statistiques
sont proposés. Un premier modeéle fait ’hypotheése d’'un champ totalement décorrélé sur
les capteurs, et un second repose sur un modele physique préexistant. Ce probleme de
séparation est résolu par une approche d’optimisation bayésienne, qui permet de prendre
en compte les incertitudes sur chaque composante du modele. Les performances de
cette méthode sont d’abord évaluées sur des mesures en soufflerie puis sur des données
industrielles particulierement bruitées, provenant de mesures microphoniques effectuées
sur le fuselage d’un avion de ligne en vol.

VL
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Résumé étendu en francais

Financement du projet de these

Cette these est financée pour moitié par le laboratoire d’excellence Centre Lyonnais
d’Acoustique (CeLyA), financé lui-méme par le ministere de la recherche frangais.
L’autre moitié du financement provient du projet européen ADvanced Aeroacoustic
Processing Techniques (ADAPT), dans le cadre du projet Clean Sky 2. L’objectif
général du projet ADAPT est d’améliorer la compréhension des mécanismes de
génération du bruit dans le domaine de 'aéronautique, dans un objectif de réduction

du bruit émis par les avions.

Introduction

Contexte

L’objectif de ce travail de these est de développer des outils de traitement destinés aux
mesures multivoies microphoniques pour la caractérisation de sources acoustiques
en présence d’écoulement, ce qui peut étre le cas pour des mesures en extérieur
venté, en milieu sous-marin, en soufflerie ou encore sur des véhicules en mouvement.
A la mesure des sources acoustiques s’ajoutent alors les fluctuations des pressions
induites par 1’écoulement.

On s’intéresse en particulier aux mesures réalisées avec des microphones montés
sur panneau rigide, sur lequel une Couche Limite Turbulente (CLT) induite par
I’écoulement se développe alors. Le champ de pression induit par les structures
tourbillonnaires de la CLT peut étre décrit statistiquement et sa description physique
est généralement basée sur des hypotheses de stationnarité et d’homogénéité
(correspondant a des invariances statistiques en temps et espace), ce qui permet de
faire du moyennage temporel et d’étudier les longueurs de corrélation mises en jeu.
La longueur de corrélation de la CLT est connue pour décroitre rapidement dans
I’espace, contrairement a la corrélation du champ acoustique. Cela implique que,
pour des antennes dimensionnées pour la localisation de sources, les espacements
inter-microphoniques — qui sont de 'ordre de grandeur de la longueur d’onde du
champ acoustique — sont bien supérieurs a la longueur de corrélation du champ de
la CLT, et ce sur une large gamme fréquentielle.

Par conséquent, ces différences de corrélation peuvent étre exploitées pour réaliser
une séparation des deux champs. C’est cette approche qui est suivie dans le présent

travail, de fagcon a répondre a 1'un des objectifs du projet ADAPT, qui est le

1z
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Chapitre 1 : Etat de Uart sur la séparation du signal et du bruit

développement d’outils de traitement du signal pour la séparation des contributions

acoustique et aérodynamique.

Enjeux de la séparation

L’objectif de la séparation des deux composantes du champ mesuré est double.
D’une part, I’étude du champ de la CLT seule est nécessaire pour les études vibro-
acoustiques, telles que la prédiction de chargement de structure, du rayonnement a
Iintérieur des véhicules ou encore du bruit émis par les canalisations.

D’une autre part, une élimination du bruit de la CLT sur des mesures acoustiques
est nécessaire pour une localisation et une quantification correcte des sources.
En particulier, dans le domaine de 'aéronautique, il est nécessaire de connaitre
précisément le niveau de bruit émis par chaque élément d’un avion aux différentes
phases de vol, afin de mettre en place des stratégies de réduction de bruit. Ces
sources de bruits sont tres variées, tonales ou large-bandes, couvrant ’ensemble

du domaine fréquentiel de 1’audible.

Organisation du manuscrit
Dans ce contexte, il existe déja quelques stratégies de séparation du champ acoustique
et de la contribution CLT. Le premier chapitre du manuscrit présente un état de
I’art de ces méthodes de séparation. Pour palier les limites des ces méthodes,
une nouvelle méthode de post-traitement est proposée dans le deuxieme chapitre,
basée sur une hypothese de bruit CLT décorrélé. Dans le troisieme chapitre, la
méthode est étendue a une hypothese de bruit CLT corrélé et enfin, des applications

expérimentales des méthodes développées sont proposées dans le quatrieme chapitre.

Chapitre 1 : Etat de l’art sur la séparation du
signal et du bruit

Pour les applications d’imagerie acoustique, il est commun de vouloir séparer le
signal d’intérét, qui est celui des sources acoustiques étudiées, et le bruit, constitué
de toutes les autres fluctuations de pression. Cette séparation peut étre mise en
place en amont de la mesure, par des dispositif expérimentaux limitant la présence
de bruit. En particulier, quand le bruit est généré par la CLT sur 'antenne de
mesure, il est possible de déporter les microphones derriére des cavités ou des tubes,
ou bien de les protéger par des écrans. Cependant, ces installations se heurtent

a diverses contraintes techniques et ne peuvent pas toujours étre mises en place,

X
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Résumé étendu en frangais

par exemple dans le cadre des mesures en vol. De plus, la réduction du bruit CLT
qu’elles offrent n’est pas toujours suffisante.

D’autres approches de la littérature proposent un post-traitement des signaux
mesurés. Une approche historique est le filtrage en nombres d’ondes, basé sur
I’hypothese que la contribution acoustique et CLT posséde un contenu en nombres
d’ondes distinct. Cependant, cette méthode nécessite un échantillonnage spatial
important et elle montre des limites en basses fréquences ou les contenus en
nombres d’ondes se superposent. Les autres méthodes de post-traitement se basent
principalement sur une hypothese de bruit additif totalement décorrélé sur les
microphones. Dans ce cas, le bruit est concentré sur les éléments diagonaux de
la matrice interspectrale (MI) des mesures. Cette diagonale peut simplement étre
supprimée, mais cela induit une perte d’information sur 'amplitude des sources
acoustiques. Trois méthodes de reconstruction de diagonale sont également décrites
dans ce chapitre, mais leurs performances sont limitées, en particulier quand le
nombre de sources acoustiques augmente. D’autres méthodes de décomposition
matricielle sont également présentées, a savoir I’Analyse en Composantes Principales
Robuste (ACPR) ainsi que I’Analyse Canonique des Corrélations (ACC). La limite
de 'ACPR est le réglage d'un parametre de régularisation qui dépend fortement du
probléme. L’ACC ne permet pas d’identifier une nombre de composantes acoustiques
supérieur a la moitié du nombre de microphones. Les performances de ces méthodes

sont comparées a celles des méthodes proposées dans les chapitres suivants.

Chapitre 2 : Décomposition de la MI par Analyse
Factorielle, pour un bruit décorrélé

Dans ce chapitre, une méthode basée sur une Analyse Factorielle (AF) et sur
une hypothese de bruit totalement décorrélé sur les microphones est proposée.
Une adaptation du probleme d’AF original est faite pour traiter des données sous
la forme d'une MI. Ce probleme de décomposition matricielle est posé dans un
cadre probabiliste et deux algorithmes de résolution sont proposés. Le premier est
I’algorithme d’Espérance-Maximisation, qui est rapide et facile d’implémentation,
mais qui présente la limite de ne fournir qu’un optimum local. En effet, des
simulations montrent une forte dépendance des résultats a l'initialisation et au
choix du nombre de facteurs dans le modele. Un second algorithme d’optimisation
globale est donc proposé, reposant sur un formalisme bayésien. Des distributions a

priori sont choisies pour chaque inconnue du modele d’AF. Assez classiquement,

Tl
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Chapitre 3 : Identification d’une contribution CLT corrélée

chaque parametre est modélisé par une gaussienne dont la variance suit elle-méme
une loi inverse-gamma.

La parcimonie du modele est renforcée pour permettre une meilleure régularisa-
tion du probleme inverse. Pour cela, les facteurs sont pondérés a 'aide de coefficient
distribués selon une loi de Bernoulli, souvent utilisé pour forcer la parcimonie des
solutions. Le probléme est ensuite résolu a ’aide d’un échantillonneur de Gibbs
(une méthode de Monte Carlo par chaine de Markov, MCMC) et une accélération
par la marginalisation des facteurs lors de I’échantillonnage des poids. Diverses
illustrations sur un cas numérique sont données, montrant des niveaux de spectres
acoustiques reconstruits par I’AF résolu avec les MCMC meilleurs que ceux fournit
par les méthodes de la littérature. Les contraintes de cette méthode MCMC sont
les développements mathématiques des postérieures de chaque parametre, ainsi

que les temps de calcul nécessaires.

Chapitre 3 : Identification d’une contribution CLT
corrélée

Le probleme d’AF est ensuite étendu pour prendre en compte un bruit de CLT
corrélé, afin de réaliser une séparation satisfaisante dans les basses fréquences
ou ’hypothese de CLT décorrélée n’est plus respectée. Le modele de corrélation
utilisé est une décroissance exponentielle comme proposé par G. M. Corcos en 1963.
Ce modele de CLT comprend trois parametres (vitesse de convection et taux de
décroissance longitudinal et transversal). Ces parametres peuvent étre déterminés
par régression sur les données avant d’appliquer I'algorithme de séparation. Une
autre approche est également proposée, ou ces parametres sont inférés au sein
du processus de séparation. Pour cela, un algorithme de Metropolis-Hastings est
intégré a I’échantillonneur de Gibbs. Des validations sur simulations numériques sont
menées pour vérifier la bonne convergence de la méthode. Ces simulations montrent
aussi que la prise en compte de la corrélation de la partie CLT est nécessaire pour

une bonne identification du champ acoustique.

Chapitre 4 : Applications expérimentales

Le quatrieme chapitre présente des applications des méthodes de séparation dévelop-
pées au cours de cette these, sur deux types de mesures.
Les premiéres mesures sont réalisées dans le cadre du projet ADAPT, dans

des conditions controlées pour la validation des méthodes. Elles sont effectuées en

i1
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Résumé étendu en frangais

soufflerie, en présence de deux sources acoustiques et d'un écoulement uniforme
a 30 m/s. Les mesures sont réalisées dans trois configurations :

 les sources acoustiques émettent seules, sans écoulement — c¢’est la mesure de

la partie acoustique de référence,

o l’écoulement & 30 m/s est mesuré seul, sans source — c’est la mesure de la

contribution CLT de référence,

o les sources acoustiques émettent en présence de I’écoulement a 30 m/s.
L’objectif est d’appliquer les algorithmes de séparation sur cette derniere mesure et de
comparer les résultats aux mesures de référence. L’application de I’AF basée sur une
CLT décorrélée permet une bonne reconstruction des autospectres. La corrélation de
la CLT est ensuite prise en compte, ce qui permet d’améliorer la reconstruction des
autospectres acoustiques en basses fréquences. Les performances de séparation des
composantes sont également étudiées via des cartes de décompositions en nombres
d’ondes, par comparaison avec celle des mesures de référence. Chaque contribution
est correctement identifiée, sauf en trés basse fréquence ou les nombres d’ondes
acoustiques sont sous-estimés. Il est montré que les parametres de CLT identifiés au
sein de l'algorithme de séparation sont tres proches de ceux obtenus par régression
sur les données. Le cotlit d’une régression étant plus faible que celle de 'identification
bayésienne, on recommande alors de simplifier 'algorithme de séparation en utilisant
directement les parametres de la régression dans le modele bayésien.

La deuxieme application est réalisée sur des données fournies par Airbus, acquises
par une antenne de 25 microphones collés sur le fuselage d’un avion de ligne en vol.
Les sources acoustiques sont principalement le bord de fuite de I’aile et le moteur
situés a proximité de I’antenne. La vitesse d’écoulement est de I'ordre de Mach 0.85 et
la CLT n’est plus uniforme sur 'antenne. Les résultats de séparation sont comparés
a une approche d’extraction de la partie acoustique basée sur des mesures effectuées
dans la cabine de I'avion, réputées étre décorrélées de la CLT, grace au filtrage
mécanique induit par le fuselage (débruitage référencé). Les parametres de la CLT
sont initialisés par une régression sur les données, puis inférés sein du processus de
séparation, ce qui permet une légere correction des parametres en basses fréquences.

Concernant la reconstruction des éléments diagonaux, I'approche AF basée
sur une hypothése de bruit CLT décorrélé offre une tres forte réduction de la
contribution de la CLT, mais I’AF prenant en compte la corrélation de la CLT
offre une meilleure réduction et une reconstruction des autospectres tres proches
de ceux fournis par le débruitage référencé. Les performances de séparation sont
ensuite comparées en termes de cartographies fréquence-nombres d’ondes. L’AF

avec le modele de CLT corrélée offre une séparation des composantes qui semble
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Conclusion et perspectives

meilleure que le débruitage référencé, avec des résidus faibles qui montrent une

bonne adéquation du modele aux données.

Conclusion et perspectives

Les méthodes de séparations développées pendant cette theése se placent dans un
cadre tres général ou les sources a 1'origine du champ acoustique ne sont pas connues
(en termes de localisation, nombre et nature de la propagation) et ou treés peu
d’information de la CLT sont connues a priori. L’approche bayésienne permet une
régularisation intuitive du probleme, et I’échantillonneur de Gibbs, choisit pour la
résolution numérique du probleme inverse est robuste et facile d’implémentation.
Cette approche étant tres flexible, plusieurs stratégies pour améliorer la convergence
et la régularisation du probléme (via un renforcement de la parcimonie de la
décomposition) ont pu étre implémentées.
En perspectives de ce travail, d’autres méthodes de résolutions du probleme inverse
pourraient étre testées, de fagon a améliorer la convergence et réduire les temps de
calculs en vue d’un traitement d’un volume de données plus important. Le modele
pourrait étre enrichi pour prendre en compte d’autre parametres incertains de la
CLT ou bien exploiter des résultats de simulations numériques souvent menées en
compléments des mesures dans le domaine de l'aviation. Différents modeles de
sources pourraient également étre intégrés a la méthode de séparation proposée.
Enfin, I’étude pourrait étre complétée par des identifications de sources réalisées
sur les résultats de séparation de fagon a évaluer I’apport de la séparation en termes
de localisation, quantification, directivité des sources reconstruites. Etudier des
cartes d’imagerie acoustiques réalisées sur les résultats de séparation permettrait
aussi, par une analyse physique des sources, de compléter la validation des méthodes,
notamment pour les cas ou les sources ne sont pas connues, telles que pour les

mesures en vol.

Tiv
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= (Zij X%)I/Q, Frobenius norm of X

Kronecker product

“proportional to”

“has the following probability distribution”

Bernoulli distribution

Beta distribution with shape parameters a and b
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Trace operator of the matrix A
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Funding of the research project

One half of this thesis work was funded by the “Centre Lyonnais d’Acoustique”
(CeLyA), which itself is funded by the French Ministry of Research as a “Laboratoire
d’Excellence”. CeLyA brings together 10 laboratories from Lyon and Saint-Etienne.

The other half of the thesis is funded by the European project ADvanced
Aeroacoustic Processing Techniques (ADAPT), within the framework of the Clean
Sky 2 Joint Undertaking. The ADAPT consortium is composed of two academical re-
search laboratories, the Laboratory of Vibration and Acoustics (LVA)! and the Fluid
Mechanics and Acoustics Laboratory (LMFA)?, and two SME, MicrodB? and PSA3%.

Objectives of the ADAPT project

The ADAPT project aims at improving the understanding of noise emission in the
aviation field and providing the various actors in the aeronautics industry with
tools that allow them to reduce the global noise emission of the aircrafts.

Especially, Airbus conducted in 2018 and before several experimental studies,

with microphones mounted on the fuselage of an inflight large aircraft. The objectives
of these tests are to study the flight effect on the generation of the acoustic sources
associated to the different components of the aircraft, such as the engine or the
airfoil. However, the microphones are located behind a turbulent boundary layer,
which induces some pressure fluctuations which add to the measurement of the
pressure field coming from the acoustic sources of interest. Several tools are aimed
to be developed within the ADAPT project, in order to separate the contribution
of the turbulent boundary layer from the acoustic sources, applied to inflight
measurements, as well as wind tunnel measurements. These tools are based on:

o the cyclostationarity for the separation of the rotating component of the
engine,

» the Bayesian imaging to better understand the mechanisms of source genera-
tion and also study the ability of performing the separation through a back
propagation of the identified sources,

o the use of accelerometer array,

» stochastic models within a Bayesian approach.

The latter point is the object of the present thesis work.

1lva.insa—lyon.fr

2lmfa.ec—lyon.fr/
3

4
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Introduction

Context

The main motivation of the present work is the post-processing of the multichannel
measurements performed for the characterization of acoustic sources. This type of
measurements is widely conducted in many areas which require source localization,
such as ultrasonic non-destructive testing, geophysical exploration, medical imaging,
transport design, ...But in some cases, in addition to the measurements of the
acoustic sources of interest, some other contributions may be measured simultane-

ously, such as ambient or electronic noise.

In particular, for the measurements of acoustic sources in presence of a flow, a
contribution that is measured incidentally is the pressure fluctuations induced by
the flow itself. Indeed, in the case of measurements performed outdoor, underwater,
in wind-tunnel or on moving vehicles, it is not always possible to place the sensors
away from the flow —for example when a measurement has to be performed close
to an aeroacoustic source or in a closed tunnel.

In this case, the flow along the rigid measuring device induces a velocity gradient
which causes strong pressure fluctuations. For strut-mounted microphones, the
turbulences are induced by the sensor itself or its stand, whereas for wall-mounted
microphones, a turbulent boundary layer develops over the flat surface. These
pressure fluctuations are measured in addition to those induced by the acoustic
sources, sometimes leading to very low signal-to-noise ratios.

The vortex structures in the Turbulent Boundary Layer (TBL) produce a random
pressure field, which can be described statistically. The physical description of
this field is often based on the assumptions of stationary and homogeneity (i.e.
statistically invariant in time and space), which allows the time averaging of the
measured signals, and also the study of the involved correlation lengths. The study
of the statistical characteristics of the TBL has given rise to many models, in which
the correlation lengths are described with a steep decrease. This implies that over
a wide frequency range, the acoustic and TBL fields have very different correlation
lengths (see Fig. 1). Especially, the microphone spacings involved for acoustic source
localization (which are of the order of magnitude of the wavelength of the acoustic
field) are generally greater than the correlation length of the TBL.

Even though the frequency contents of the two fields overlap, making frequency
filtering impossible, the difference of correlation can be exploited to perform a post-

processing separation of the two fields, which is proposed in this work. Specifically,

3

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2020LY SEI087/these.pdf
© [A. Dinsenmeyer], [2020], INSA Lyon, tous droits réservés



Issues of the separation

the present thesis is focused on one of the objectives of the ADAPT project, which
is the development of advanced signal processing tools to perform the separation of
the aerodynamic and acoustic contributions, and a particularly targeted application

is the measurements carried out in the aviation industry.

Mean flow Acoustic source

N

Ls cayw oy Turbulences
—
J oM

Figure 1: Illustration of the wall pressure fluctuations.

Issues of the separation

The benefits of an efficient separation are twofold. On the one hand, the char-
acterization of the TBL part allows a better understanding of the vibro-acoustic
excitation. In a general context, the characterization of the wall-pressure field
beneath a turbulent boundary layer has been initiated in the late 1950s. From
then and until now, the understanding of the TBL has been a challenge for several
applications, such as the control of the fatigue loading on structures like aircraft, the
reduction of the vehicle interior noise or the noise generated by piping systems with
internal turbulent flow. In the aerospace field, the TBL noise of interest depends
on the measurement setup. The microphone array can be mounted on the walls of
a closed test section, on the outer fuselage of an aircraft, or on a stand in open test
section or outdoor, depending on the part of the aircraft one wants to study the

noise emission from.

On the other hand, a correct estimation of the acoustic part is required for an
appropriate quantification and localization of the aeroacoustic sources. Especially,
in the civil aviation industry, it is important to know the noise level produced by
each constituent element of an aircraft in order to improve its design and reduce
the global noise emitted at each flight phase (climb, cruise and descend). Smith
(1989) describes a very large number of aircraft noise sources. They can be classified
into two categories: the airframe and the engine noise. The aircraft having a large

surface area, the amount of airframe noise is significant, especially in take-off and

4
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Introduction

approach configurations, which implies the use of high-lift devices and landing gears.
The airframe noise is generated by elements of different size (from centimeters for
window surrounds, to many meters for the fuselage), which implies many scales of
turbulence and thus a broadband noise in the far-field. The engine noises are of
different kinds. They can be tonal or cyclostationary for all the rotating elements
and they can also be broadband from random pressure fluctuations, caused by
the turbulence in the inlet stream, the boundary layers or blade wakes. Finally,
another main source of broadband noise is the high-velocity jet exhaust (Tam,
1995). Consequently, a wide variety of sources are of interest, that can be spatially

extended or compact, and that cover the whole audible domain.

Overview of the thesis

In this context, several strategies already exist to perform the separation of the
acoustic field from the TBL contribution. These methods from the literature are
detailed in the first chapter. However, these experimental and post-processing
techniques, show some limitations or unsatisfying performances.

Therefore, in the second chapter, a post-processing technique for the separation
is proposed, based on the assumption of a TBL noise totally uncorrelated over the
microphones. The separation is performed through a matrix decomposition of the
measurement Cross-Spectral Matrix (CSM). The inverse problem is first addressed
with a probabilistic point of view, solved with an Expectation-Maximization (EM)
algorithm. Then, it is developed in a Bayesian framework, in order to design a more
complex model that enforces the sparsity of the solution, which makes the inversion
more robust. The proposed approach is also benchmarked against the methods
from the literature, on a numerical case. The results obtained for an uncorrelated
noise are encouraging and the Bayesian framework offers the opportunity to extend
the model to a correlated noise model.

Therefore, in the third chapter, a CSM decomposition incorporating a corre-
lated noise model is developed, based on a physical boundary layer model. This
Bayesian framework offers the possibility to infer the parameters of the TBL, taking
into account their prior uncertainties.

Finally, in the fourth chapter, some experimental applications are proposed,
first on closed wind tunnel measurements with controlled sources, then on mea-
surements acquired from an array mounted on the fuselage of an inflight aircraft.
The performance of the denoising is evaluated by analysis of autospectra, wave
number decomposition and by comparison with denoising performed using noise-

free reference channels.
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1.1 Introduction

The use of multi-channel acquisition system is widespread for acoustic imaging
application. In this context, the signal of interest is the contribution of the acoustic
sources to the antenna, and the extraction of the other contributions is then called

“denoising”. Noise reduction is a key issue for the improvement of acoustic imaging
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1.1. Introduction

performance, particularly in the field of aeroacoustics where the dominant noise

often comes from the Turbulent Boundary Layer (TBL).

1.1.1 Experimental mitigation of the TBL contribution

Some way to optimize the microphone implementation has been investigated to
reduce the effect of TBL noise especially for measurements in closed test sections
using flush mounted microphones. The microphones are for example recessed in
pinholes (Farabee and Casarella, 1986) or in tubes (Arguillat et al., 2010). They can
also be covered with wired mesh (Jaeger et al., 2000; Fleury et al., 2012). However,
these last experimental strategies are recent and still in development since they
have to fulfill a lot of crucial criteria: have a good mechanical resistance to the flow,

do not induce additive noise and do not filter out the acoustic contribution.

For in-flight measurements, where the microphones are flush-mounted on the
fuselage of the aircraft, the covering is not feasible and the microphone recession can
be performed only on the windows such as in Palumbo (2012) or Haxter and Spehr
(2017). Therefore, other experimental approaches are used to mitigate the effect of
the TBL . For example, the use of microphones with large membranes (Blake and
Chase, 1970) allows filtering out the high wavenumbers through spatial averaging.
Analogously, similar devices are used in the hydroacoustic field, with the use of

large hydrophones, embedded behind an elastomer layer (Ko and Schloemer, 1991).

Another way to filter out the high wavenumbers experimentally is to exploit
accelerometers mounted on a thin plate submitted to the TBL . This kind of
apparatus can be used in place of a microphone array (Lecoq et al., 2014; Leclére
et al., 2015), but also on the side of a microphone array, to be used as noise-
free references for a post-processing denoising based on the coherence (Leclere
et al., 2021; Dinsenmeyer et al., 2019). The first method requires to solve an
inverse problem, whereas the second one needs extra measurement points and
is limited by the difficulty of choosing the number of references that describes
optimally the acoustic field.

Some experimental reductions of the microphone self-noise are also inverstigated
concerning strut-mounted microphones. For example, the membrane can be
protected from the flow impact by microphone forebodies that are aerodynamically
optimized (Allen and Soderman, 1993) or by windscreens and foams balls, which

can, however, create wake noise (Mueller (2002), chap. 1).
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Chapter 1. Literature survey on the noise and signal decomposition

1.1.2 On the use of a background noise measurement

In practical situations, it is sometimes possible to measure separately the contami-
nating background noise by either simply “switching off” the sources of interest or by
performing measurements without the mock-up in wind tunnel, for instance. This
background measurement can be used to advantage to remove its influence when
the total noise field is actually measured. This can be done through post-processing
approach such as a direct subtraction (Berouti et al., 1979; Boll, 1979; Huber et al.,
2009; Blacodon and Bulté, 2014) or subspace identification described in Sec. 1.4.3.
But the main limit of these approaches is that a representative background noise
measurement (7.e. without the source of interest) is not always available since the

sources themselves can influence the noise properties.

1.1.3 Statement of the post-processing problem

Besides from the experimental approaches, there exist many post-processing tools
that have been developed to identify the acoustic contribution in the measurements.
The M pressure measurements at each microphone point can be stored into a
complex vector y, which results from the sum of an acoustic contribution a and
noise vector m, that contains mainly the TBL contribution but also all the additive

sources of noise and errors. At one frequency in the Fourier domain, this sum reads:
y=a+n. (1.1.1)

It is common in the field of acroacoustics to store the measurements in a Cross-
Spectral Matrix (CSM)!, which is defined by the covariance matrix of the Fourier

coefficients of the measurements. Theoretically, the CSM is defined as follows:

Syy = E{yy"}, (1.1.2)

where the superscript H indicates the complex conjugate transpose (or Hermitian)
operator. Since the measurement are performed on a finite duration time, this quan-
tity has to be estimated by averaging over N, successive overlapping windowed time
signal segments (hereafter called snapshots), following Welch’s periodogram method:

A 1 X ,
Syy:ﬁzyjyf; j :17"'aNS7 (113)

s j=1

where * is used to indicate an estimated quantity.

1 Also called Population Covariance Matrix (theoretical quantity) or Sample Covariance Matrix
(estimated quantity) in the signal processing field.
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autospectrum

FeO—|

~ SO
= |

Correlation between microphones 1 and 6
= cross-spectrum

Figure 1.1: Representation of the CSM for an array of M = 7 sensors. At each frequency
f, the CSM is a M x M Hermitian matrix.

This quadratic representation of the measurements reduces the size of the
stored data through averaging, while retaining the sufficient statistic — provided
that the signals are stationary — that contains all the required information for
spectral analysis or perform imaging. In addition, this representation highlights
the correlation structure of the data (and thus indirectly the coherence?), for each
microphone pair (see Fig. 1.1).

Replacing y; in Eq. (1.1.2) by the sum of Eq. (1.1.1), leads to

Syy = Sea + Sun + San + Sha- (1.1.4)

Assuming that the noise and the acoustic contributions are uncorrelated im-
plies that the cross-terms S,, and S,, converges to zero when the number of
snapshots N tends to infinity. Then, the CSM of the measurements can be

approximated as follows:
Syy =~ Saa + Snn- (1.1.5)
From this, the identification of the acoustic contribution in the measurements,

namely the denoising problem is the following:

Problem 1 Given an estimate of the CSM S’yy ~ Suu + Sun, where S,, and S,

are both unknown, recover S,,.

It is noteworthy that the noise power is allowed to vary between different microphones
and to be much higher than the acoustic source power. The present chapter is
dedicated to the presentation of the methods from the literature that aims at solving

Prob. 1 or try to minimize the contribution of the noise S,,,.

2The coherence between the microphone k and [ is defined by
‘Syykl |2

Ykl = .
Syykk Syyu
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Chapter 1. Literature survey on the noise and signal decomposition

In order to solve Prob. 1, the methods outlined in this chapter exploit the
correlation difference between the signal from the TBL and measurement noises
and the signal coming from the acoustic sources. In the case where the sensor array
is designed for the characterization of the acoustic sources, in the audible range,
with microphone interspacings ranging from centimeters to meters, the acoustic
field is strongly correlated on the antenna (see illustration in Fig. 1).

On the other hand, the correlation of the TBL noise is related to the structure
of the vortices, which depends on the TBL thickness, which in turn depends on
the mean flow profile. In the low-frequency range, the wall pressure excitation is
mainly induced by the large turbulent structures, whereas in the high-frequency
range, it is the small turbulent structures, located in the inner TBL that contribute
to the wall pressure field. Typical layer thicknesses generally go from the millimeter
to few centimeters, depending on the flow characteristics, and so is the typical
spatial correlation lengths. Moreover, the streamwise and transversal® correlations
generally decrease exponentially with the frequency (Farabee and Casarella, 1991;
Bull, 1996). Therefore, the correlation of the TBL field over the antenna is much
lower than the correlation of the acoustic field, as long as the turbulence structures
are smaller than the acoustic wavelength.

For these reasons, many methods for noise suppression in the literature consider
the TBL noise to be totally uncorrelated over the microphones. This is also the case
for all the other sources of noise, that can be ambient or electronic for example. Under

this hypothesis, the noise CSM can statistically be modeled by a diagonal matrix,
Spn = [02], (1.1.6)

where the notation [u] stands for a diagonal matrix whose diagonal entries are

the elements in vector w. This implies that

S,, ~ Seu +[02]. (1.1.7)

1.1.4 Organization of the chapter

The work presented in this thesis focuses on denoising methods that do not make
any assumptions about the nature and propagation of the acoustic sources, because
they are often uncertain when characterizing aeroacoustic sources, especially in the
case where the flow is not completely spatially uniform. Therefore, the methods
based on the use of acoustic imaging are not presented here. The reader can refer

to the work of Sijtsma et al. (2019), that gives a benchmark of the denoising results

34.e. normal to the stream axis
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1.2. Diagonal removal

obtained from imaging methods. Jiang et al. (2020) and Xia et al. (2017) also make
use of a beamforming step to reduce the diagonal of the CSM.

Moreover, the present study focuses mainly on methods that do not make use of
a background noise measurement, due to the difficulty of acquiring a representative
background noise (some popular methods using background noise are however
briefly discuss in Sec. 1.4.3).

Six approaches are discussed in the chapter, using the hypotheses of totally
uncorrelated noise and/or of high correlation of the acoustic filed. The first three
methods are historical, but still widely used today, and the last three ones are
methods that have been newly proposed in the context of aeroacoustics during
the last decade.

The principle all the methods is given here, and their performances are concur-
rently compared with the proposed approach in Sec. 2.5 on numerical test case and
in Sec. 4.1 on wind-tunnel measurements. The present chapter is partially based on
the article:

Dinsenmeyer, A., Antoni, J., Leclere, Q., and Pereira, A. A probabilistic

approach for cross-spectral matrix denoising: Benchmarking with some recent
methods. The Journal of the Acoustical Society of America, 147(5):3108-3123, 2020

1.2 Diagonal removal

As discussed in the introduction, assuming a noise uncorrelated over the microphones
can be described by a diagonal CSM when the number of snapshots tends to
infinity. Therefore, a common practice is to apply the imaging process using the
measurement CSM with its diagonal entries set to zero (Christensen and Hald,
2004; Sijtsma, 2004, 2007), which reads

Syy = Syy - (diag(syy”a (1.2.1)
=8, — [diag(S..)| — [2]. (1.2.2)

The noise can thus be theoretically totally removed, but this “trimmed” CSM is in
general positive semi-definite, due to the deletion of the term [diag(Sa.)]-

One can thus wonder what is the effect of the deletion of this term on the
beamformer output. A single source located at a point with coordinates ry and

strength ¢y generates an acoustic field
a,, = Gogmo, withm=1,... M, (1.2.3)
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Chapter 1. Literature survey on the noise and signal decomposition

at each microphone m. The vector g,,q is the propagation vector from the source

to the microphone m defined by the free space Green’s function:

efzkHrmfrng

G0 (1.2.4)

a 47T||’T'm — ’l”o||2.

The output of the classical beamformer with diagonal removal at a position

of index 7 is then

Sqqz‘ = 'wf{ (Saa - (diag@s’aaﬂ) w;, (1.2.5)
with w; the steering vector. Building a steering vector that minimizes ||w/a — qz||§
leads to

_ g;
9/9i

w; (1.2.6)

Then, Eq. (1.2.5) can be developed using the expression of this steering vector
and of the acoustic field (Eq. (1.2.3))

(1.2.7)

99 — -

5.~ Yoy GhnGom %ﬁf GomTim  om1 Do GomGimTim |
[reaEs llg:ll5

Point Spread Function Z;

The second term Z; is due to the diagonal removal and can be developed using

the expression of the propagation vector (Eq. (1.2.4)),

M s = rallg e — rlls

2
(S0 llrs = 75

Z; (1.2.8)
From these calculations, it appears that the diagonal terms of the CSM do not
contribute to the resolution of the beamforming. The diagonal terms are real and do
not carry any phase information and only act as an offset that is space-dependent
due to the divergence of the spherical waves. It only depends on the geometry of
the source map and the microphone distribution. This is illustrated in Fig. 1.2.
This figure shows a reduction of the side lobes due to the diagonal removal — for
this reason, it is sometimes used on noiseless measurements.

Looking at the source point ¢ = 0, the geometrical effect is more pronounced
if the distances between the source point and the microphones are very variable
(for example in the near-field). In practice, the beamforming is often applied in

conditions where the distance from the sources to the microphones are all of the
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1.2. Diagonal removal

BF (Syy) BF (S, — [diag(Sy,)]) BF ([diag(S,,)])

Figure 1.2: Beamforming maps (in dB) of the full CSM , with diagonal removal and of
the diagonal elements (from left to right), for a source located at the center of the map.

same order of magnitude. In this case,

Milro = tmlla” _ 1 (1.2.9)

(Ml —rals?)” M

The same results is obtained if a convected propagator is used. From this observation,
Dougherty (2002) suggests performing a correction by adding 10 log;, (%) to the
beamforming maps obtained with diagonal removal. Note that this correction term
is less than 0.1 dB for arrays made up of 44 sensors or more.

In the case where several sources contribute to the acoustic field, the output
of the beamformer with diagonal removal, under the assumption that the sources
are far enough (which implies that the associated steering vectors are orthogonal
and thus that their inner product is negligible) becomes

1 = M— ; nm ; im
(qg PSF(ro) — > qizm‘lglﬁigg H4g"mg )
n=0 7|12

@ — H

(1.2.10)

ill2

where PSF(r) is the point spread function at the point sources in rq. This shows
that the quantification error accumulates with the number of sources.

In conclusion, the effect of the uncorrelated noise can theoretically be removed
completely by the diagonal removal, with no impact on the resolution. However,
this is at the expense of the accuracy in terms of quantification. Although
these quantification errors are small in general, they accumulate when performing
area integrations, such as in the Source Power Integration method (Brooks and
Humphreys, 1999), and then become not negligible. Fenech (2009) shows some
errors going up to 1.7 dB. Moreover, Dougherty (2002) and Sijtsma (2004) suggest
considering for the integration only the source auto-powers that are less than
a given threshold below the peak level. In doing so, the small and negative

sources are neglected.
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Chapter 1. Literature survey on the noise and signal decomposition

1.3 Wavenumber filtering

Wavenumber decomposition is convenient to characterize the pressure fluctuation
under a TBL that develops over a plane surface. Concerning surfaces exposed to a
turbulent flow, the wavenumber spectrum is representative of the phase velocity of
the TBL, and is therefore needed to predict the possible excitation of this TBL.

This decomposition is also the basis for a separation of the acoustic and TBL
contributions through a filtering process. As explained in the introduction, the
correlation lengths of the two contributions are different, which in the wavenumber
plane translates into two distinct domains. These two domains are schematically
represented in Fig. 1.3, which shows the typical wavenumber spectrum obtained
below a TBL. For a detailed review on wall pressure fluctuation under TBL, the
reader can refer to the article of Bull (1996).

Sonic
region

Acoustic Subconvective  Convective Viscous
region region region region

e e

[

k<k0

<vs

:
;

|
0 kg 1/6

| | »
w/Uy  o/U, k

Figure 1.3: Schematic representation of the wavenumber spectrum at a given frequency,
at low Mach number. From Bull (1996) and after Howe (1991)

First, the acoustic region is filled by the waves whose phase velocity in the
measurement plane is greater or equal to the speed of sound in the propagation fluid.
This region is often described as the acoustic circle in reference to the non-convected
case, but in presence of a mean flow, this circle is in fact an ellipse (Koop and
Ehrenfried, 2008; Haxter and Spehr, 2019), bounded by:

2m f cos 6
co+ U.cosf

27 f sin 6
co+ U.cost

r = and ky == (131)
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1.3. Wavenumber filtering

Sensors

Figure 1.4: Effect of the incidence angle of a plane wave on its measured wavelength.

for a flow with a convection speed U,, along the z-axis, with 0 < 6§ < 27 and
co the speed of sound in the ambient air at rest. Depending on the incidence
angle of the different acoustic waves contributing to the measurement, the acoustic
circle may be more or less filled. As shown on Fig. 1.4, the measured wavelength
A* is seen larger than the real wavelength when the incident angle get closer to
the surface normal. Therefore, the measured wavelength is greater or equal to
the effective wavelength, and at a given frequency, the measured wavenumber is
smaller or equal to the effective wavenumber. The second region is centered on the
convective ridge at k = %, usually described by an elliptical shape. The width of
this region is driven by the flow parameters such as the convection speed or the
coherence loss and can be evaluated experimentally.

Looking at the turbulent components, the involved wavenumbers are higher than
the acoustic ones (especially at low Mach number). Therefore, in order to have a
resolution satisfying Shannon’s criterion, the higher the studied frequency and/or the
lower the convection velocity, the closer the sensors should be. The measurement
can be performed using only one or two line arrays (along and perpendicular
to the flow axis, as in Abraham and Keith (1998) and Palumbo (2012)), if the
transverse and longitudinal fluctuations are supposed to be independent in the
two directions. In practice, this independence is not always verified (Chase, 1980)
and the measurements have to be performed over the whole surface of interest.
This type of measurements is rather rare because of its cost, in terms of time
and number of sensors, and also because the sensor width may limit the minimal
sensor interspacing — even if the use of MEMS array should address the two latter
problems. Arguillat et al. (2010) reduce the number of sensors by using a rotating
line antenna and reduce the sensor interspacings up to the millimeter thanks to the

use of recessed microphones.

In practice, these wavenumber spectra are calculating either from a Discrete
Fourier Transform if the measurement point are regularly spaced, or approached

by a beamforming performed in the wavenumber space, which is expressed at
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Chapter 1. Literature survey on the noise and signal decomposition

one frequency by:
Ai = le yy Wi, (132)
with the steering vectors defined by plane waves:

w; = etk +1ky Yy, (1.3.3)

where & and y are the coordinates along the x and y axis of the microphones.

Using either a Fourier transform or a beamformer, a deconvolution can be
performed to reduce the side lobes induced by the finite size of the antenna (Haxter
and Spehr, 2019; Ehrenfried and Koop, 2008; Prigent et al., 2019). Then, the
acoustic and aerodynamic spectra can be obtained through an integration of the
wavenumber components of each domain.

Ehrenfried et al. (2006) also make use of the wavenumber representation to
separate the acoustic and TBL contributions. Their method, referred to as BiClean
in the literature is based on an iterative process that search for the maximum of
the beamforming in the scan plane or in the wavenumber space. A CSM is then
generated from this maximum and added either to the acoustic CSM or the noise
CSM depending on the domain to which the maximum was related.

As for the other methods based on the wavenumber decomposition, the main
limitations of this approach are the experimental costs and that they are only
effective if the acoustic and noise regions are well separated, which is generally

not the case at low frequencies.

1.4 Subspace identification

The subspace identification methods are based on the assumption that signal and
noise span different subspaces, which can be clearly identified in the distribution
of the eigenvalues. The subspace spanned by the highest eigenvalues is considered

as an approximation of the noiseless signal.

1.4.1 Distribution of the signal and noise eigenvalues

If the noise is stationary, zero-mean and complex Gaussian with a variance €2,
then the corresponding CSM S,,,, follows a Complex Wishart distribution with

covariance €2, and N, degrees of freedom, which reads

NSy ~ W(Q, N,) (1.4.1)
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1.4. Subspace identification

Under the assumptions that the noise is independent identically distributed with
common variance o2 and that the number of sensors M and snapshots N tends
to infinity, while the ratio v = M /N, remains finite, the eigenvalues A of the noise
CSM are distributed following a Marcenko—Pastur Probability Density Function
(PDF) (Marcenko and Pastur, 1967; Gerstoft et al., 2012):

VO =N =)

2rvAo?

A = g

Liepoay) with As =02 (14 ) (1.4.2)

The eigenvalues thus spread around o2 up to the upper and lower limits Ay that
depend on the ratio v. This PDF is plotted in Fig. 1.5a for different values

of v, and for o2 = 1.

In order to evaluate how the signal and noise subspaces can be identified looking
at the eigenvalue distribution, some CSMs are simulated. These CSMs are obtained
from a random noise of unit variance, uncorrelated on M = 60 sensors. Five
uncorrelated sources are also added, such as the Signal-to-Noise Ratio (SNR) is
0, -10 and -20 dB. In Figs. 1.5b to 1.5d are plotted the eigenvalues of these CSMs
for each SNR and for three different number of snapshots (which give v = 1/2, 1/3
and 1/40, as on the PDFs of Fig. 1.5a).

Theoretically, the distribution in Eq. (1.4.2) is only valid asymptotically, but
it also fits very well the eigenvalue distribution of the noise subspace for a limited
array size. These simulations show that for high SNRs, there is a clear separation
in the eigenvalue distribution of the signal and noise part. At -10 dB, even if the
signal eigenvalues are higher than the noise eigenvalues, the decay is steady and
there is no clear separation between the two subspaces. Finally, if the number of

snapshots is low, the eigenvalues of the noise are spread out and then overlap the

signal eigenvalues. This overlapping also occurs for very low SNRs.

1.4.2 Subspace identification methods

Subspace identification is widely used for various applications, such as target
detection, data visualization, classification, ... In the context of source and noise
separation, it can also be used to mitigate the effect of an uncorrelated noise
during imaging process. Moreover, subspace identification provides a reduction
of the dimension of the data.

The objective of subspace identification is to find the best subspace to project
data to minimize a cost function. There exist many subspace identification methods,

relying on different objective functions, such as the Principal Component Analysis
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Figure 1.5: (a) Eigenvalue PDF for three ratios v. Eigenvalues from simulated CSM
(dots) and predicted by Maréenko and Pastur (1967) (solid line), for the same three ratios
v and different SNR.

(PCA) (Jolliffe, 2002) and the Singular Value Decomposition (SVD) which maximizes
the data representation (see the work from Druault et al. (2013) for aeroacoustic
applications), or the Maximum noise fraction and the Noise Adjusted Singular
Value Decomposition (Lee et al., 1990), that maximizes the SNR in doing a noise
whitening (transformation to make the noise covariance become an identity matrix)
before a PCA on the whitened data. This whitening step requires a background
noise measurement.

One of the most popular imaging method based on subspace identification is
Multiple Signal Classification (MuSiC) (Schmidt, 1986). It derives from the Capon
beamforming (Capon, 1969)* in which the measurement CSM is replaced by the noise
subspace. In doing so, MuSiC minimizes the distance between the steering vectors of
the beamformer and the signal subspace, under the assumption that noise and signal
subspaces are orthogonal. Indeed, as the noise subspace is orthogonal to the signal

subspace, this minimal distance is given by the projection of the steering vectors on

4see also Pisarenko (1973) for a related approach
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1.4. Subspace identification

the noise subspace. Therefore, MuSiC induces a loss of the source levels. Note that
there is no reason for the signal and noise subspaces to be orthogonal in general.

Subspace methods can significantly improve the image resolutions, including
for aeroacoustic applications (Long, 2003; Sarradj, 2010; Suzuki, 2011). However,
as shown in Sec. 1.4.1, the distinction between signal and noise eigenvalues can
be difficult to make, and a main problem arising in the subspace approaches is
how to set the appropriate threshold which separates the two subspaces, when the
exact number of sources is unknown. The number of components to be retained can
be estimated using methods based on the Akaike Information Criterion (Akaike,
1974; Wang and Kaveh, 1985) or based on the Minimum Description Length
criterion (Wax and Kailath, 1985).

Note that some imaging techniques do not perform a clear subspace separation
but instead give weight to the highest eigenvalues of the measurement CSM before
applying a classical beamforming. For example, in the work from Huang et al.
(2012), the highest eigenvalue is amplified by a loading parameter determined
by an iterative procedure. Functional Beamforming (Dougherty, 2014) performs
an exponentiation of the eigenvalues which results in a penalization of the small
eigenvalues, and therefore enhance the dynamic range and the spatial resolution
(Merino-Martinez et al., 2016).

The present literature review is not exhaustive and the reader can also refer
to the wide literature on compressed sensing to find out more approaches for

subspace separation.

1.4.3 Subspace identification with a background noise mea-
surement

In the aeroacoustic field, it is common to perform a background noise measurement.
In wind tunnel, it is generally done by removing the object of interest from the tunnel.
It is then assumed that the background noise will not change when measuring
the sources of interest. In practice the background measurement may not be
representative, for example in the case where a source itself generates an unwanted
noise (which is the case for ducted fan noise).

The aforementioned method assumes that the signal lies in a low-rank subspace
and that the noise is uncorrelated. When a background noise measurement is
available, some other denoising method can be used, that can take into account
a correlation structure of the noise. In the case of a correlated noise, a natural

extension of the subspace methods is the oblique projection. An example of this
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Chapter 1. Literature survey on the noise and signal decomposition

approach is given in Behrens and Scharf (1994), where the noise structure is known
and the signal and noise subspace are supposed to be disjoint.

Other subspace approaches have been developed to make use of the background
measurement. Bulté (2007) build a basis from the background noise CSM and then
performs a generalized SVD on the signal and noise basis in order to decompose
the measurement CSM to be denoised.

Another recent but popular method in the aircraft industry is the Background
Subtraction proposed by Bahr and Horne (2017). It is based on an EigenValue
Decomposition (EVD) of the background noise CSM and has the main advantage
to preserve the positive semi-definiteness of the denoised CSM. Assuming that the
noise and signal are mutually uncorrelated, the measurements S, results from the
sum of an unknown signal CSM S, and a noise CSM to be removed S,,,, then, the
Background Subtraction algorithm is composed of four steps:

O Build the whitening operator B, wvia an EVD of the background noise

measurement:
S =X, T, X" =B,B/. (1.4.3)
® Apply the whitening operator to the noisy measurements:

B"S,,B, = B"S,.B, +1,
& 8, =8.+1

® Perform a second EVD to extract a positive semi-definite (and Hermitian)
signal CSM:

At this step, the eigenvalues higher than 1 are associated to the signal subspace
and those equal to 1 are associated to the noise subspace.

® Un-whiten the estimated signal CSM:
S,,=B;"S,,B".

An application of this method is proposed in the section dedicated to the application

on inflight measurements, namely Sec. 4.2.
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1.5. Diagonal reconstruction

1.5 Diagonal reconstruction

As discussed earlier, it is assumed that the noise correlation length is smaller
than the microphone interspacings, which means that the measurement CSM

can be written as:
S,y ~ Seu +[02]. (1.5.1)

In this section, we describe three methods from the aeroacoustic literature used
to reduce the self-induced noise concentrated on the diagonal of the measurement
CSM. These methods all propose to minimize the diagonal elements, while keeping

the denoised CSM positive semi-definite, which can be formulated as follows :

maximize Hai‘ L
‘ X ; (1.5.2)
subject to Sy, — [0 ] > 0,

where || - ||; is the ¢; norm. Each method solves this problem differently.

1.5.1 Solved with convex optimization

Hald (2017) directly uses semi-definite programming to solve this problem, more
specifically the SDPT3 solver from CVX Matlab toolbox (Grant and Boyd, 2014,
2008). This solver is an interior-point algorithm suitable for such conic optimization
problems (Tittnci et al., 2003).

1.5.2 Solved with linear optimization

Dougherty (2016) restates the problem of Eq. (1.5.2) as the following linear

programming problem, solved iteratively:

2
(k)

maximize HO’ L ( )
R 1.5.3
subject to V(g_l) (Syy — (Uij(k)) Vik-1) 2 0,

at the k™ iteration. V{;_1) are the eigenvectors of S’yy — [0',21](17.”7,{_1), concatenated
from the k — 1 previous iterations. This problem is later solved using the dual-
simplex algorithm from the Matlab linprog function.

The concatenation of the eigenvectors increases the problem dimension — and

therefore the calculation time — at each iteration. Consequently, the convergence

can be very slow and the final denoised CSM may not be semi-positive definite.

22

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2020LY SEI087/these.pdf
© [A. Dinsenmeyer], [2020], INSA Lyon, tous droits réservés



Chapter 1. Literature survey on the noise and signal decomposition

1.5.3 Solved with alternating projections

The minimization problem given by Eq. (1.5.2) can also be solved by an Alternating
Projections algorithm, as proposed by Leclere et al. (2015). In this case, Alternating
Projections aims at finding the intersection between 2 convex sets that are the
positive semi-definite matrices (i.e. non-negativity of eigenvalues) and the matrices
with the same extra-diagonal elements as the measurement CSM. For the sake of
clarity, Alg. 1 is the pseudo-code of this procedure. The iterations are performed

until the smallest eigenvalues reach a given tolerance threshold.

Algorithm 1 Alternating Projections

Require: Syy
> set diaggnal to zero
Syy) = Syy — diag(Syy>
for k£ do
> computes eigenvalues and eigenvectors :
S(r) = eigenvalues(Syy,, )
Vix) := eigenvectors(Syy,,, )

> set negative eigenvalues to zero :
ot
S(k) = S(k)

> inject in measurement CSM :

Syy(k+1) = Pyy ) + [diag(‘/(g diag(s(k)) W@)J
end for

Return: updated S'yy

1.5.4 Comparison on numerical simulations

The three diagonal reconstruction methods solve a very similar problem. In order
to see if they provide comparable results, let us apply them on a numerical test case.
This test case explores different properties of the CSMs to be denoised, namely
noise level, rank of the signal CSM (7.e. the number of statistically independent
acoustic sources) and number of snapshots. The CSMs are numerically simulated

through the procedure described in the following section.

1.5.4.1 Description of the test case

The way CSMs are simulated is inspired by a benchmark case from the aeroacoustic
context, described in Sarradj et al. (2017) and studied by Hald (2019). A line of

free-field acoustic monopoles with spectra q radiates up to a circular array, which
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1.5. Diagonal reconstruction

can be expressed as the linear system a = H g, using the following Green’s functions:

e—zkHrm—ran

H,, = (1.5.4)

AT |7 — 7l

with k& being the acoustic wavenumber % and r,, the coordinate vector for
the location of the microphone m. The location of the sources and receivers

is represented on Fig. 1.6.

Source spectra are independently drawn from a centered complex Gaussian

2 .

distribution, with common variance o :

;] = Ne (0,071 ) . (1.5.5)

where j refers to the realization number and K is the number of uncorrelated sources.

An independent Gaussian noise is then added to each signal a (see Eq. (1.1.1)):

n;] =N (0, [a2]),

(1.5.6)
with o} = diag(oy HH") 1075N%/10,

And finally, the CSM of measurements is estimated using the CSM estimates
of Eq. (1.1.3) and the CSM without noise is also estimated in the same way:
S’aa = N%Z;-N:SI a;a!’. The objective of the denoising process is to recover this
last quantity. The deviation of the denoised CSM (written S,.) from the noise-
free simulation is evaluated looking at the reconstruction error of the diagonal

elements, given by:

_ Hdiag(S'aa) — diag(S’aa) ‘2
s8],

where diag(A) is the vector containing the diagonal elements of A and || - ||2

(1.5.7)

is the ¢, norm.

This reconstruction error is investigated for each denoising method and for
varying parameters of the simulation :
o the rank of the signal matrix S,,, given by the number of uncorrelated
monopoles,
 the noise level, given by an SNR varying from -10 to 10 dB,
« the number of snapshots N, from 10 to 5 x 10*.
When a parameter is varied, the others remain constant, given by the default

values from Tab. 1.1.
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Chapter 1. Literature survey on the noise and signal decomposition

Parameter Default value
Frequency (invariant) f =15 kHz
Sound velocity (inv.) 340 m/s

Number of receivers (inv.) M =93

Number of monopoles K =20
SNR SNR=10 dB

Number of snapshots N, =104

Table 1.1: Default values for the numerical simulations.

(m)
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Figure 1.6: Receiver (o) and source (+) positions for acoustic field simulations, inspired
by Sarradj et al. (2017)

1.5.4.2 Results

For the three diagonal reconstruction methods, a rough estimation of the computing
time is given in Tab. 1.2. The computing time for Alternating Projection highly de-
pends on the level of the tolerance threshold for the smallest eigenvalues. Concerning
Linear optimization, the dimension of the problem increases at each iteration and

thus provide rather high computing time compared to the convex optimization solver.

Denoising method Acronym Computing time

Convex optimization DRec 1 sec
Linear optimization - 60 sec
Alternating projections - 3 sec

Table 1.2: List of the diagonal reconstruction methods and their approximate computing
time to denoise one 93 x 93 CSM, using non-optimized Matlab codes on a laptop.

For each method, the error curves are given in Fig. 1.7, as a function of the rank
of the signal CSM (a), the noise level (b) and the number of snapshots (c).

As expected, when no denoising is applied, the error is given by the opposite value
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Figure 1.7: Relative reconstruction error of the diagonal terms of the signal CSM, as a
function of the number of sources (a), SNR (b) and the number of snapshots (c). The
diagonal reconstruction methods are : Alternating Projections (=== ), linear optimization
(+++=+), convex optimization (=), no denoising (—).

of the SNR. The performance of each method mainly differs regarding the signal rank.
As shown in Hald (2017), the error increases suddenly when the rank of the signal
CSM is too high for the problem to remain identifiable. Convex optimization is less
sensible to the increase of the number of sources, thanks to its faster convergence.

For 20 sources, sensitivity to noise level is the same for all the methods, and the
error decreases linearly with an increasing SNR, and the same behavior is observed
for a logarithmic increase of the number of snapshots.

As convex optimization runs faster and provides a more accurate denoising, it
is used for comparison with the other methods in the next chapter, referred to

in the following as Diagonal Reconstruction (DRec).

1.6 Robust Principal Component Analysis

Another strategy to solve Prob. 1 is to use two particular properties of S,, and
S,n, namely, low-rankness and sparsity.

From an experimental point of view, the number of acquisition channels in recent
systems has been rapidly increasing. It is common nowadays to take measurements
with a large number of simultaneously acquired signals, leading to high-dimensional
data. Thus, in many practical situations, the number of independent sources of
interest is much lower than the number of measurement channels, which justifies
the assumption of a low-rank model to cross-spectral matrices in acoustics.

The use of a sparse model for a CSM of uncorrelated noise has been discussed
in the introductive Sec. 1.1.3: the CSM tends to be diagonal when the number
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Chapter 1. Literature survey on the noise and signal decomposition

of snapshots tends to infinity. Thus, when the number of channels is large, the
noise CSM may be approximated by a sparse matrix, since the number of non-zero

diagonal elements is much less than the null off-diagonal ones.

Finally, the decomposition of the CSM in sparse and low-rank matrices can

be written as the following optimization problem :

minimize | Sa| + A [ S|, (1.6.1)

subject to S’aa + S’nn = S'yy.

The nuclear norm |- ||, (sum of the eigenvalues) and the ¢; norm (|| A|l; = >;; |A4|)
are convex relaxations of low rank and sparsity constraints, respectively. The
trade-off between sparsity of the noise and low-rankness of the source CSM is

handled by the regularization parameter .

This procedure, known as Robust Principal Component Analysis (RPCA), has
been used by Finez et al. (2015) and Amailland et al. (2018) to denoise aeroacoustic
and hydroacoustic data. It falls in the category of the so-called “low-rank and
sparse matrix decompositions”, that can be written under different optimization
problem and solved using various solvers (Bouwmans et al., 2016). It finds many
applications in image processing, and especially video-surveillance. Thereofre, a
collection of algorithms can be found to solve this convex problem. For example,
the reader can refer to the LRSLibrary Sobral et al. (2015); Sobral in which the
Accelerated Proximal Gradient algorithm, developed by Wright et al. (2009), is

used for the denoising applications of the present thesis.

Selection of the regularization parameter

The trade-off parameter A has to be chosen appropriately given that it may impact
greatly the solution. According to Wright et al. (2009) and Candes et al. (2011), a
constant parameter equal to M =3 can be chosen as far as the rank of the signal
matrix is reasonably low. As shown by Amailland (2017), this parameter is not
always accurate but it is far easier to implement than a trade-off curve analysis.
As shown on Fig. 1.8, the trade-off curve is very oscillating and its use can be

thorny since it has several maximum curvature points.
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Figure 1.8: Trade-off curve as a function of A (for default values from Tab. 1.1).

Another solution is to choose the regularization parameter that minimizes
the reconstruction error ||S,, — Sy, |l2, excluding the case where S, is null. In
Fig. 1.9, this regularization parameter is compared to Wright’s (M ’%) and to the
optimal regularization parameter that gives the smallest relative error (unknown

on non-synthetic case).

0 0
% -5 . -5
= ;
5 1) a - ~10
3 o
g -15 = —15
= ~
T —20 _
o~ 20
—925 —24
Rank of S,, A § (dB)
(a) (b)

Figure 1.9: Error § on the reconstructed diagonal solving RPCA as a function of the
rank of the signal matrix, for three selection methods for the regularization parameter A:
optimal (—), minimize reconstruction error (—) and M “2=0.1 (—).

(b) Lines highlight the value of the regularization parameter for each selection method
and their associated errors, depending on the rank of the signal matrix.

On Fig. 1.9b, the gray-scale map corresponds to the relative error as a function
of the rank of the signal matrix and the regularization parameter. From this map
one can see that the optimal A (given by the blue curve) has to increase with the

rank of S,,, in order to maintain a balance in Eq. (1.6.1). That is why a constant
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Chapter 1. Literature survey on the noise and signal decomposition

A gives good results only for very low rank of S,,. The regularization parameter
that minimizes the reconstruction error gives a very unstable solution mostly far
from the optimal solution.

In general, RPCA performances highly depend on the choice for A and it is essential

to find an appropriate way to set this parameter, for any configuration.

1.7 Canonical coherence denoising

The use of Canonical Coherence Analysis (CCA) to denoise the measurement
CSM in a context of aeroacoustic measurements has been introduced recently
by Hald (2019). The principle of CCA is to find the linear combination of two
subgroups of sensors with the highest mutual correlation. The vector of pressure
measurements p; at the j snapshot is divided into two sub-sets ; and y; of T
and J channels, with M = I + J, such that

xj = L,c;+n,, and y;=L,c;+n,, (1.7.1)

with ¢; a vector of N uncorrelated equivalent sources, where N < min(/,J).
Setting E{cc”} = Iy (with Iy the identity matrix of dimension N), without loss

of generality since matrices L, and L, can always be defined accordingly, one has

Sye = L, L + E{n,n!},
Sy, = L,L, +E{n,n;}, (1.7.2)
Sy = L,L,.
The last equation shows that noise is canceled if it is uncorrelated between the
two groups = and y. This gives hope to get estimates of the factors L, and

L,, say L, and f}y, from the measurement CSM S’xy. If so, the signal CSM

can in turn be estimated as

A A H
A L L
= /\Z‘ /\I . 1. .

Estimates of the factors are obtained from a generalized singular value de-
composition (GSVD)

Yy

S, =Usv (1.7.4)

where U = §J2U and V = 82V and with U and V the left and right singular
vectors of S/ QS'xyS'y_yl/ 2, respectively. Upon truncating the GSVD to its N leading
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1.7. Canonical coherence denoising

singular values,
L,=Uy=} and L,=VyZ}, (1.7.5)

where Uy (resp. VN) stands for the matrix containing the corresponding N “leading”

left (resp. right) singular vectors, the complete denoised CSM reads

& _ SeUNsE Y\ [ 8rUNsE e
aa — Sd/Q 21/2 5,1/2 21/2 ( b )
vy Vviy vy Vi

The thresholding of the singular values proposed in Hald (2019) is empirical.

The classical CCA is not able to extract a number of canonical components
that is higher than the number of channels in the smallest subgroup, which is a
limitation to represent a high number of uncorrelated sources. Therefore, Hald
proposed to overcome this limitation by performing several CCA iteratively with
different sub-groups, on the residuals of the denoised matrix from the previous
iteration. However, the number of iterations has to be adapted to the number of

sources in the acoustical field. An idea of the procedure is given in Alg. 2.

Algorithm 2 Canonical Coherences
Require: S,,,S,,,S,, for two sub-arrays
K :=S."S,,S5,"

> perform a singular value decomposition of K
K =UxXVv*

> thresholding of the canonical coherences
Eij =0 if Eij < Othres

> computes the canonical components
P =S/rUx'?
Q=S5Vx',
> built the denoised CSM
S _ PP" PQ"
“~\QP" QQ"

Repeat: For other sub-arrays, depending on the number of significant canonical
coherences
Return: S,,
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1.8 Conclusion

This chapter offers an overview of some methods of the literature for the denoising
of the CSM in the framework of multi-sensor acoustic measurements. The historical
methods presented first show some limitations: the diagonal removal induces a loss
of amplitude information, whereas the wavenumber filtering requires a high spatial
sampling, which is not adapted to measurements for acoustic source localization.

Three diagonal reconstruction methods have been investigated, giving compara-
ble results and with the advantage of not having input parameters to set. However,
they show some limitations in terms of denoising performance, especially when
the rank of the acoustic CSM is low.

One way to improve the denoising for low-rank signal CSM is to add a low-
rankness constrain within the denoising optimization problem, which is done by the
RPCA approach. Many penalized versions of CCA also exist, some of which induces
a decomposition of the CSM into a reduced number of components (see works in
genetics such as Witten et al. (2009)). This falls in the vast literature of the penalized
matrix decomposition, which also includes many sparsity-constrained extensions of
the PCA problems. A review of these problems is given in Zou and Xue (2018).

However, these optimization problems need to be regularized, either by knowing
in advance the number of independent components in the signal, or by tuning
regularization parameters. They can also be written within a Bayesian framework
to transpose these regularization techniques into corresponding priors, which is the

approach we have adopted in the denoising method subsequently proposed.
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2.1. Introduction

2.1 Introduction

In this chapter, a method for separating the acoustic contribution from an uncorre-

lated noise is proposed. Like many methods in the literature, the proposed method

exploits the correlation properties of these two contributions.

The proposed approach is a penalized matrix decomposition, aiming at fitting

the measured Cross-Spectral Matrix (CSM) over a structured covariance model,

with the following constraints:

o The source matrix is of reduced rank, which is equivalent to describing the

acoustic field with a linear combination of a limited number of variables. The

acoustic contribution a at the M microphone points can thus be written

a; = I/Cj7

(2.1.1)

where a and ¢ are Fourier coefficients at a given frequency for each observation

7. In this factorization, L is an M x k complex matrix that relates the data

to the vector of complex variables c.

o The structure of the noise CSM is diagonal. This constraint does not account

for a correlated noise model but has the advantage of strongly constraining

the problem to ensure a proper identifiability. This reads

S = [a2].

n

(2.1.2)

Therefore, under the assumption that the acoustic and noise are mutually inde-

pendent, the model for the total measured pressure field is
S,, = LS.L"+[o2],

which gives the following matrix representation:

2
S,, LS, L" (o]
= H O/ +
(MxDM) (Mxk)(kXK)(KXM) (MxDM)
————
Measured Reduced rank Uncorrelated
matrix matrix noise
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uncorrelated noise

For zero-mean observations, this model is that of the statistical method called
Factor Analysis (FA) (Bartholomew et al., 2011). It is very close to the Principal
Component Analysis (PCA) model, with the main difference being that the PCA
model is based on an isotropic noise model, which means that its covariance is
proportional to the identity: [62| = 021, (Tipping and Bishop, 1999).

FA falls into the category of the latent variable models. The idea of a latent
variable model is to describe some data of dimension M (in our case the number of
measurement points) with a reduced number of unobserved factors. By imposing
an uncorrelated noise model, the latent factors are thus intended to describe the
correlation structure of the data. Latent variable models are studied since the
beginning of the 20" century, for applications in social science and econometrics
(for an historical overview, see Bartholomew et al. (2011), p. 12-17). Yet, this kind
of matrix factorization problems is still topical, and has received a renewed interest
for the development of recommender system of on-line commercial applications
or social networks (Mehta and Rana, 2017).

The FA model is particularly suitable for the denoising of CSMs because, as
shown in the present chapter, it can be solved using only the CSM form of the
data. Moreover, this method does not require any knowledge about the nature of
the sources or an acoustic propagation model. Therefore, the denoising problem is
solved in a rather small dimension space, since it does not make use of a source
map (which generally contains a number of source points much higher than the
number of sensors). Moreover, this inverse problem can be solved using a Bayesian
approach, which provides a suitable context for taking into account the a priori
level of knowledge of the problem. The Bayesian framework being flexible, it is
easily possible to move away from the classic FA model to adapt more precisely
to the separation issue in aeroacoustics.

In this chapter, the probabilistic framework of the factor analysis model is first
detailed. Then, a first approach to solve the inference problem is described, using
an Expectation-Maximization (EM) procedure, written for CSM data. However, as
EM has no guaranty to converge toward the global optimum, the problem is then
formulated in a Bayesian way, which offers global optimization solvers, among which
the Gibbs sampler is selected. In order to regularize the problem, the model is
rephrased to promote a sparse solution. Finally, an acceleration of the optimization
process is proposed through a marginalization of the Gibbs sampler and some
numerical experiments are finally carried out, to compare the proposed approach

with some methods of the literature.
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2.2. The Factor Analysis model

2.2 The Factor Analysis model

2.2.1 Probabilistic modeling of the direct problem

In the classical FA model, the latent variables are supposed to be independent, with

a distribution given by a centered unit-covariance Gaussian:
lej] = Nc(0,1,,). (2.2.1)

The notation Ng(p, Q) refers to the multivariate complex normal distribution
with mean p and covariance matrix 2. The Identity form of the latent variables
covariance matrix is not a limitation here, since different gains may be affected
through the mixing matrix coefficients.

According to the Central Limit Theorem, the random noise is also supposed to be

centered Gaussian, with a variance which may vary from one microphone to another:
[n] = Nc(0,[o7]). (2.2.2)

It then follows that the likelihood is also Gaussian,
[y; | 00] = N (Lej, [o7]), (2.2.3)

where “| 00” is to be understood as “conditioned to all the other variables of
the model”. The unknown parameters L and o2 can thus be inferred through a
maximum likelihood estimation, or a maximum a posteriori estimation in case
of a Bayesian approach.

Note that in general, in the FA model, the mixing matrix and the factors are
not uniquely identifiable. However, the product Lc is uniquely identifiable, which
is sufficient for the denoising application.

In the overall denoising problem Prob. 1, the objective is thus, in a probabilistic

framework, to find an estimate of the conditional random variable S, | S'yy.

2.2.2 Sparse representation

First of all, let us introduce the notion of sparsity. In the present thesis, the term
“sparsity” refers to a sparsity known as weak (Starck et al., 2010, p. 3). It means
that one can consider as sparse a description of the data with a number M of atoms,
whose coefficients decrease very rapidly and which is thus very well represented by a
few r-largest coefficients (the M — k others being negligible but not necessarily null).

In the FA model, k is not directly inferred. It must therefore be a priori chosen

and it is not certain that in case of overestimation, the optimization converges
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towards a sparse solution. The sparsity of the model acts as a regularization, and
therefore the choice of this number is important. It should not be too small (i.e.
less than the true number K of components of the acoustic field) nor too large
to avoid over-fitting. In other words, x should be the optimal number of factors
which reasonably describes the data, and for which the data is less well described
with x — 1 factors and not significantly better described with x + 1 factors. This
is what is subsequently referred to as a sparse solution.

The choice of this number can be left to the discretion of the user, if she/he
has a good knowledge of the acoustic field, and some selection strategies can also
be implemented. For example, it is possible to take successive values for x in turn
and then see what value is more appropriate in term of likelihood ratio (Bishop,
1999). The difficulty of this approach is to find a trade-off between the model
order and the goodness of fit. Otherwise, many criteria exist in the literature
to estimate the optimal number of factors, based on this trade-off (Minka, 2001;
Preacher et al., 2013; Bouveyron et al., 2019).

In the present work, the strategy to avoid over-fitting is based on a Bayesian
approach. It is shown hereafter that using Markov Chain Monte Carlo (MCMC)
computational tools, a Bayesian model-based approach is able to automatically

select the dimensionality that best fit the acoustic subspace.

2.2.3 Bayesian hierarchical inference

In Bayesian inference, all the parameter of a fitting model are seen as random
variables to which are associated probability laws before any measurements. These
Probability Density Function (PDF) are called priors. The goal of the Bayesian
inference is to find the parameter set ® that has the highest joint probability

knowing the measured data, called posterior probability, that is:
©* = argmax {@ | S’yy] , (2.2.4)

where [z | y] stands for the conditional PDF of x given . S'yy is an estimate of the
measurement CSM obtained from a limited number of snapshots. From the Bayes’
rule, the unknown posterior distribution in Eq. (2.2.4) can be written from two known

quantities: the likelihood of the measured data and the prior functions. This reads
[© 8, x [0][S,, | ©]. (2.2.5)

If this distribution does not have an explicit form, it has to be approximated through

numerical methods such as Monte Carlo Markov Chain approaches, which performs
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2.2. The Factor Analysis model

an iterative sampling of each parameter in its own posterior. The parameters
which are found to maximize the posterior probability are then called maximum

a posteriori estimates.

2.2.4 Hierarchical graphs

The hierarchical relation between all the unknown parameters of the problem
can be summarily represented using a graph (Bishop, 2006, chap. 8). On these
graphs, the variables of the model are embodied by nodes, linked together by
arrows which indicate their hierarchical relationships. The arrows go from nodes
called parents to nodes called children. The parent nodes are variables involved
in priors while the child nodes are involved in the likelihood. This graphical
representation allows writing the posterior distribution of each parameter, by

completing the following Bayes formula:

[0 | 00] o [0 | Parents of 6] x ] { i*" child of @ | Parents of i child } . (2.2.6)

i

Prior Likelihood

The graph representing the classical FA model is given in Fig. 2.1. The graphical
convention used is the following: the shaded case indicates the observations, the
other round circles stand for random variables to be inferred and the constant
parameters are denoted without any border. Moreover, squares nodes indicates the
density of the variables and the dashed box indicates a duplication of the pattern,

called the plate notation (for example, for each snapshot).

Figure 2.1: Bayesian hierarchical graph for the classical FA model
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Chapter 2. Cross-spectral matriz decomposition based on Factor Analysis and
uncorrelated noise

2.3 Model estimation via the EM algorithm

2.3.1 The Expectation-Maximization algorithm

The EM algorithm is a very popular tool used to find maximum a posteriori or
maximum likelihood estimators, especially for latent variable models. In the FA
model, the objective is to find the maximum likelihood estimates of the parameters

L and o2, which reads
(L*,O'Z*) = argmax {y | L,oﬂ . (2.3.1)

This problem could be solved by any classical gradient descent algorithm (see
McLachlan and Krishnan (2007), p. 5-7), but the EM algorithm is particularly
well-suited for likelihood from the exponential family, as in the present case
(see Eq. (2.2.3)).

The idea of EM is to maximize the complete-data (i.e. of both the data y
and the missing values ¢) log-likelihood, but as it is unobservable, it is replaced
by its expectation using the current estimates of the parameters (Bishop, 2006, p.
439-441). This procedure is hereafter developed to find the maximum likelihood
estimates of the parameters, using CSM data. The EM algorithm alternates

between 2 steps at each iteration i:

0 Expectation-step: Perform the expectation with respect to [¢; | y;] of the

complete-data log-likelihood P (i.e. including the missing values c;)

E{P}=E {m (]:[ [y.¢; | L, ai]) } . (2.3.2)

where
lyj,c; | L,o) = Ne (Ley, [o7 ) Ne (0, L) (2.3.3)
This leads to
E{P}=- ; (In (det([o2))) + y)'Toy 2 y; — E{c;}" L[, %]y, (2.3.4)

—yf(a;QJLE{cj} + tr(LH(a;ZJLE{cjcf} + E{cjcf})) )

At this step, we make use of the posterior distribution of latent variables

c; | o] to calculate E{c;} and E{c;c}. This posterior is obtained from the
j j 755
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2.3. Model estimation via the EM algorithm

Bayes’ rule and Eqgs. (2.2.1) and (2.2.3):

[ | yj] o< [y; | oo][eyl,
x Nec (Lej, [o7]) Ne (0, ),
x N¢ (Q.L"o, 2 y;, Q) , (2.3.5)
with Q. = (I, + L"[o;2|L) " .
This gives the following statistics, in which the parameters L and o2 are
replaced by their estimates from the previous iteration:
E{c;} = By, (2.3.6)
and E {cjcf} = var(c) + E{c;}E{c;}" = Q. + By,y; B", (2.3.7)
with B = Q.L"[o2].

® Maximization-step: Find the parameters that maximize the expected value

from the previous step:
(f), 6',%) = argmax E {P}. (2.3.8)

The updated parameters, written L and 62, are thus obtained when the
derivative of E{P} is null. Using some properties given in Eqs. (B.1.1)
to (B.1.4) leads to'

8E8{LP} = le (2o yiE{e;}" 0,2 LE{e;c]}) (2.3.9)
JE{P} L

o =0 ([o2) — yjy) + 2LE{c;}y) — LE{c;c/}"L").  (2.3.10)
n 7j=1

and using the expression of E{c;} and E{c;c}'} in Egs. (2.3.6) and (2.3.7)

provides the updated parameters:

L=38,B"(2.+BS,B") (2.3.11)

52 = diag((IM ~LB)S,, (L, —LB)" + EQCEH> . (2.3.12)

The reader can also refer to the section 12.2.4 of Bishop (2006) for detailed

calculations and implementation of the EM algorithm for FA.

The pseudo-code for this procedure is given in Alg. 3.

OE{P} _

— =
’ Oo,,

1 OE{P} =0

since 0',% #0 0 is equivalent to Hez
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Chapter 2. Cross-spectral matriz decomposition based on Factor Analysis and
uncorrelated noise

Algorithm 3 FA solved with EM
Initialization: Ly, o2 S,

Require: S'yy, Ky Tmaz, €

for : do
Estimation of S.., using Eq. (2.3.7)
Estimation of L; using Eq. (2.3.11)
Estimation of o using Eq. (2.3.12)
> Convergence criteria
if @ > o or |lon — o |l2/lloz |2 < € then

Stop

end if

end for

2
return L;, S.., o,

It can be shown that iteratively maximizing P using the current estimates of
L and o2 is equivalent to improving the marginal likelihood [y | L, a?] (see for
example Bishop (2006), p. 450-454). The EM algorithm can be used only if the
joint distribution [y;, ¢; | L, o2] has a known closed form, which is the case for the
present model. The main drawback of this procedure, is that if this distribution is
multimodal, the EM algorithm may converge toward a local maximum. Multiple
strategies exist to avoid this situation, e.g. performing several EM iterations with
different random initializations.

At the end of the EM procedure, E{c;c}'} can be used as an estimator of
S... The denoised matrix is then LS..L" (f) being the last estimation of L),

which is positive by construction.

2.3.2 Numerical validation

In order to assess the implementation of the EM algorithm and evaluate its
characteristics, some simple numerical experiment are lead. A measurement CSM is
generated by solving the direct problem described in Sec. 2.2. The chosen constants
for the simulation are:

o number of sensors: M = 30,

o number of components for the acoustic field: K =5,

« number of snapshots: N, = 10%,

« and the Signal-to-Noise Ratio (SNR) is 10 dB.
The EM algorithm is then applied to the simulated noisy CSM. Note that for the
present toy case, the computation time is very small (less than one second on a

laptop). To evaluate the denoising performance of EM, two indicators are studied.
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2.3. Model estimation via the EM algorithm

First, the likelihood marginalized with respect to the factors, [y; | L, 2], which

is what EM is supposed to maximize. Its expression is

ly; | 0_e] = Ne(0,B) with B =LL" +[o2], (2.3.13)

7 indicates “conditioned to all the other variables except x”. This

where “| co_,
result is obtained by completing squares in the exponential, as demonstrated
in appendix C.1.

Then, the deviation of the denoised CSM (written S,,) from the noise-free simu-
lation is evaluated looking at the normalized Root Mean Square Error (RMSE), given

by

||Saa - SaaHF
HSaaHF ’

where ||Al|p is the Frobenius norm of A (= \/X;; A7)).

These two indicators are plotted for each iteration of the EM algorithm, for

Normalized RMSE = (2.3.14)

three different number of input factors in the model, written x (whereas the number

of simulated independent components in the acoustic field remains K = 5).

2.3.2.1 Initialization of the EM algorithm

Since EM may converge into a local optimum, many starting values have been tested
for the parameter set { Ly, JZO}, and only two of them are presented in this section,
in order to illustrate the typical influence of the initialization on the EM algorithm.

A first initial parameter set is obtained from a Sub-Space Identification (SSI)
approach. After performing an eigenvalue decomposition of the data CSM | the &
highest eigenvalues A;.. and associated eigenvectors Uy., are used to build Ay =
UMP&/;J, and in a same way, the noise variance is obtained from the remaining
eigencomponents: o, = diag(UHH:MD\HH:MJUIQL’H:M).

The second initial parameter set is simply assigned a very small value: Ly, 0',210 =
10716, Note that for the EM algorithm, setting both parameters to exactly zero

would prevent the new parameters from being updated.

2.3.2.2 Results

The corresponding log-likelihood and RMSE are given in Figs. 2.2 and 2.3, for the
two initialization strategies and three different number of factors k.

In order to illustrate some aspects of the optimization procedure, a minimum
number of iterations is set at 50. As expected, the log-likelihood increases contin-

uously, which partially validates the algorithm. However, it increases in steps. A
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uncorrelated noise

= —10
20 T : <
! _920 | .
s % 20
o) —30 | |
= 19 1 2
40 — k=5 S
3 —kr = 10 = —40 | .
g
k=15 5
18 ‘ ‘ Z 50 |
0 20 40 0 20 40
Iteration Iteration
(a) Log-likelihood (b) Normalized RMSE

Figure 2.2: Likelihood and RMSE indicators at each iteration of the EM procedure,
starting from Lo, o2 obtained with SSI.
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Figure 2.3: Likelihood and RMSE indicators at each iteration of the EM procedure,
starting from Ly, 0'7210 = 10716,

stopping criterion for the algorithm is the evolution rate of the o2 parameter, which
corresponds indirectly to the evolution of the likelihood. Therefore, it is very likely
to stop at the first step, depending on the chosen tolerance threshold. For example,
for the parameters initialized at zero, with a threshold at 1073, the algorithm should
have stopped around iteration 10, which corresponds to a RMSE of -2 dB.

In general, these figures also illustrate the fact that EM converges to a local
maximum and therefore gives different results depending on the initialization.
Initialize with a small value gives a slower log-likelihood growth, but a more certain
decrease in terms of RMSE. This empirical observation has also been checked on
many other numerical and experimental applications.

To complement the analysis, the log-likelihood and the RMSE for the two
initializations are plotted in Fig. 2.4 as a function of the chosen number of

components in the model x, while the simulated number of independent sources
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2.4. Model estimation via the Gibbs sampler
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Figure 2.4: RMSE of the reconstructed acoustic CSM, as a function of the assumed
number of factors in the FA model. The number of independent components used to
simulate the baseline CSM is 5. The initial parameter set is obtained from SSI (—) and
very small (—).

is kept to K = 5.

From this figure, it is visible that the SSI initialization provides very degraded
performance in term of RMSE when the number of components is overestimated. In
contrast, the initialization near zero is not really sensitive to the increase of k. From
this figure, it is also clear that the minimal number of factors which maximizes
the likelihood is 5 for the two initializations, which is thus a way to determine the

optimal number of factors that gives the sparsest solution, as shown in Bishop (1999).

2.4 Model estimation via the (Gibbs sampler

In order to overcome the limitations of the EM solver, a Bayesian approach is then
adopted. If offers a flexible framework to take into account the uncertainties on
each parameter of the model, and the regularization of the problem is consequently
done through the choice of the priors.

The use of MCMC numerical solvers offers the possibility of an easy modification
of the FA model, which is convenient for an extension that accounts for a correlated
noise, such as in chapter 3. Among the MCMC methods, the Gibbs sampler is
chosen for the present application, due to its simplicity of implementation and its

versatility. It also comes with some guarantees of global convergence.

2.4.1 Sparse model

In Bayesian inference, all the parameters are seen as random variables and are

assigned a prior PDF. The design of these priors is a key step of the model design.
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Chapter 2. Cross-spectral matriz decomposition based on Factor Analysis and
uncorrelated noise

For the reasons given previously (see Sec. 2.2.2), the model detailed in the following
is chosen to promote the sparsity of the solution.

In a Baysesian framework, one way to enforce the sparsity is to choose priors
that promote sparsity. In the FA model, these sparse priors has to be chosen in
order to encourage the smallest factors to reach zero. Therefore, they can concern
the factor variance, the mixing matrix L or even the Singular Value Decomposition
(SVD) of L as in Minka (2001). The strategy adopted in this work is to weight each
factor with a variable which itself has a prior promoting sparsity. These weights

are stored in a diagonal matrix [q|, and the extended FA model is then

In this section, the FA model is first developed in a Bayesian framework. Then,
the weighting strategy for sparsity is detailed. An implementation of the numerical
solver for the inference problem is then provided, which is a Gibbs sampler. And
finally, an acceleration of the convergence of this sampler is proposed through

a collapsed Gibbs sampler.

2.4.1.1 Parameter priors

In Bayesian inference, all the sought parameters are assigned a prior distribution and
the parameter of these priors (called hyperparameters) may also be considered as
unknowns of the problem and then be assigned their own prior (called hyperpriors).

The choice of the priors is important since it plays the role of regularization of
the inverse problem. It can be motivated by a physical or experimental knowledge
of the problem. Depending on the confidence given to the data or the model,
some priors can be chosen in order to give more weight to either the data or
prior during the optimization.

If a prior distribution is chosen to have a heavier tail® than the likelihood, this
means that the prior will be less sensitive to the outliers and the model will give
more weight to the data. This strategy has to be adopted when there is more
confidence in the data than in the priors. On the contrary, if a physical phenomenon
is very well described, this can be used to design prior with thinner tails (compared
to the likelihood’s one), which will be robust with respect to the data — i.e. the
solution will be more driven by the priors. Finally, between these two strategies,
when the data and the prior are thought to be pretty in agreement, the conjugate
priors are commonly used — a prior is said conjugated for the likelihood if it is such

that the posterior and the prior are in the same PDF family.

2{.e. with a slower decrease
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2.4. Model estimation via the Gibbs sampler

According to the Central Limit theorem applied to Fourier coefficients, the

likelihood function of the measured data tends to be Gaussian, which reads

[y; | o0] = Nc (Llglej,[o7]) (2.4.2)

for the j"* measurement at a given frequency. As for the classical FA model, the noise

is modeled by M centered Gaussian variables with a diagonal covariance matrix:
] = Nz (0,[02)) (2.4.3)

The variance of the noise o2 being unknown, it is assigned its own PDF. An
inverse-gamma law (written ZG) is chosen due to its positive support and its
conjugacy with the Gaussian which also provides an algebraic convenience (it gives

a closed-form expression for the posterior):
[02] = ZG(an, by). (2.4.4)

This prior is also convenient because its shape and scale parameters can be easily
tuned to specify different levels of prior information, from very precise to very vague.
This is a classical choice for variance parameters (see Gelman et al. (2014), p.42-43).

In FA, no physical interpretation can be made about the mixing matrix L. There-
fore, for simplicity, it is assigned a centered complex Gaussian, with a normalized

variance, such that the energy of the signal part is only driven by the factors:

(L] = N (0, If“) . (2.4.5)

The factors are supposed to be a priori independent and heteroscedastic, i.e.

each factor has its own variance
] = N=(0, [2). (2.4.6)

The choice for heteroscedasticity of the factors is motivated by the fact that
it is prompt to provide sparse solution, as shown in Antoni et al. (2019). It is
equivalent to a mixture of Gaussians with different variances following inverse
Gamma laws, which is known to generate a Student-t marginal distribution for
the factors ¢ (see Bishop (2006), p.102-103).

As for the noise variance, an inverse-gamma distribution is chosen for the

factor variances ~2:

['72] =1G(a,,b,). (2.4.7)
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2.4.1.2 Bernoullian prior for the factor weights

The objective of the factor loading is to induce sparsity of the factors by that
of the weight vector q.

Many heavy-tailed priors are known to induce sparsity, such as the Student-t or
the Laplace distribution. However, a strong sparsity constrain can also be induced
by the use of a Bernoullian prior, which is analogous to a minimization constrain
over a fp-norm, which is the number of non-zero elements. This prior is for example
employed by Faure (2017) and Ge et al. (2011) for comparable models.

Sampled from a Bernoullian process, the x weights q can only take two

values, 0 or 1:
lq] = Bern(1). (2.4.8)

Depending on the level of sparsity, they thus switch off or on a certain number of
factors. The level of sparsity is driven by the hyperparameter [, that is also inferred,

based on a Beta prior, which is conjugated with the Bernoullian distribution:
] = Beta(ay, by). (2.4.9)

This model for FA is very close to those refer to as Beta-Bernoulli process in the
literature (Zhou et al., 2011; Dang, 2016), used for model order selection.

The sampling of the binaries q is implemented through an acceptance-rejection
step, which determines whether the model order is updated (the details of this step
are given in Sec. 2.4.2.1. This procedure is very similar to a reversible jump MCMC
used in Lopes and West (2004), that treats the number of factors as a parameter of
the model and allows jumping between models of different dimensionality through
an acceptance-rejection procedure.

In Dinsenmeyer et al. (2020), the weights are assigned an exponential prior
instead of a Bernoullian one, which is equivalent to a mixture of Gaussians with
different variances exponentially distributed, leading to a Laplace distribution for
the product [g|e (Eltoft et al., 2006). The results presented afterwards show no
difference between the two models, nevertheless, the Bernoullian prior on the weights
presents some advantages over the exponential one. First, as the weights are either
1 or 0, they do not carry any variance information. Therefore, it avoids some scale
ambiguity with the factors (see Sec. 2.4.2.2) that may harm the convergence of
the sampler. Moreover, the initialization is more intuitive since it only represents
a number of supposed uncorrelated sources. Also, the prior on the sparsity can
easily be tuned through the [ parameter.

The overall graph for this model is given in Fig. 2.5.
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Figure 2.5: Hierarchical graphs for the sparse FA model.

2.4.2 Implementation of the Gibbs sampler

The inference problem is solved by maximizing the full posterior density:

cc)

L*, q*, 8%, 0%, ~**, I* = argmax [L, q,S..,0%, %1 | S’yy} (2.4.10)

As this posterior has no closed-form expression, it is evaluated from the univariate
posterior distribution of each parameter, using a Gibbs sampler. The Gibbs sampler
is used to draw random samples from a target joint distribution without using its
explicit expression, which may be unknown. The principle is to sample iteratively
each random variable from its own distribution conditioned on the current values
of the other variables (which has to be known). For each parameter, a chain is
built from a fixed number N,,, of samples. It can be shown that the stationary
distribution converges toward the sought joint distribution (Gelman et al., 2014).
A generic pseudo-code for the Gibbs sampler is given in Alg. 4 performed over

N iterations over an arbitrary set of parameters ©.

Algorithm 4 Generic Gibbs sampler
Initialization: O,
for : =1 to Ny, do
for 8 in ® do
sample 6; in [0 | all the other variables| (see Eq. (2.2.6))
end for
end for

return Posterior distributions of all the 8 in ®

In order to denoise the CSM data, the posterior used in the Gibbs sampler

have to be written accordingly. The same approach as in Antoni et al. (2019) is
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followed, and therefore, the CSM of the factor is directly sampled in block from
the multivariate posterior. The blocking strategy is also known to improve the
mixing of the Markov chains and thus the convergence of the sampler, compared
to an iterative univariate sampling, especially when there is a strong correlation
between the concerned variables (Brown et al., 2019).

The counter-part of the block sampling is the manipulation (and especially
inversion) of large covariance matrices. For the present application, the covariance
matrices which have to be inverted are of size M x M, which is reasonable (M
being the number of sensors). A block updating strategy is also adopted for the
sampling of the mixing matrix L, which requires the inversion of an Mx x Mk
matrix. However, this inversion is cheap since this matrix is (band) sparse.

The Gibbs sampler version used for the present denoising problem is given in

Alg. 5 and the needed posterior distributions are detailed in the next section.

Algorithm 5 FA solved with the Gibbs sampler
Initialization: Lo, o2, 73, qo

Require: S'yy,li, ay, b, a,, b,, a;,b;, N
fori=1,..., Ny, do
Sample S, following Eq. (2.4.15)
Sample L; in Eq. (2.4.17)
Sample v? in Eq. (2.4.20)
Sample [ in Eq. (2.4.26)
Sample g; in Eq. (2.4.25)
Sample o, in Eq. (2.4.21)
end for
return Posterior PDFs of S.., L, o2, 4%, g

2.4.2.1 Posterior distributions for sampling

From the model described previously, the posterior distribution for each unknown
parameter has to be computed using the Bayes’ rule in Eq. (2.2.6), in order to

implement the Gibbs sampler.

Sampling of S..
From the expressions of the likelihood Eq. (2.4.2) and the prior in Eq. (2.4.6),

the posterior of the factors c is:

[¢j | o] o [ej][y; | o]

o Ne(0, [v2))Ne (Ll qle;, [o2]) (2.4.11)
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2.4. Model estimation via the Gibbs sampler
Using the multiplication rule of Gaussians (see for example Ahrendt (2005)) directly
gives
e | 00] o¢ N ( ey, ) (2.4.12)
with . = ([q/L"[0,?|L[q) +[v %))
and Hec; = QC[QJLH[U;ﬂyj

In order to build a CSM-based Gibbs sampler, the same approach as in Antoni

et al. (2019) is followed. As ¢; | oo is Gaussian, it can be written

Cj | 00 = M + T with [CCJ] = NC(O, QC) (2413)
Then,
1 X 1 X 2 X
H H H
Scc = ﬁs z:l MCjHCj + ﬁs Z:l L + ﬁs Zl m]Al'l’c]-' (2414)
J= J= J=

Since x; and p., are independent random variables, the last terms tends to

zero, and then

. 1
S| oo~ QJq|L"[a;%]S,,[0.2]" Lq|Q" + ~ We, (2.4.15)

where W, is a random matrix that follows a complex Wishart distribution, with

N, degrees of freedom and variance matrix €2..

Sampling of L
The sampling of L is made using a vectorized form of L, written A = vec(L).

The posterior of X is given by

Ns

(A | oo] o (A ] w; | o]

J=1

o N (07 IM”) Ne (L[qle;, [02]). (2.4.16)

R

Using the fact that
y; = vec(L[qlej) +nj = ((qijT ® IM) A+ny,
and some properties of the Kronecker product ® (given appendix B.2) lead to:

[A | 00] oc Ne(pan, 1), (2.4.17)
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with Q' = ([q)S}.[q)) ® [0,%] + kL,
and  py = Dy vec ([0,2]S,[q]) -

*

where -* is the conjugate operator. Note that Q)" is sparse, which can be taken
into account to reduce the numerical cost of its inversion. In this last equation, S,
is estimated using the same decomposition of ¢; as before (see Eq. (2.4.13)),

1 Y
Zygucﬁfzyg
s] 1 s] 1

A

~ 8,,[02|L[q)Q". (2.4.18)

Sampling of ~?
Still using the Bayes’ rule (see Eq. (2.2.6)), the posterior for the k™element in

the vector 42 can be written as follows:
N,
i | o0] H ¢ | i,
x IG(a.,b 1‘[/\/C 7)) (2.4.19)

The use of the conjugacy of the inverse-gamma with the Gaussian directly gives

the expression of the posterior:

(i | o0] x ZG (@, + Ns, by, + See,,) - (2.4.20)

Sampling of o2
From the inverse-gamma prior assigned to a2 and the Gaussian likelihood function,

N

(o7 | oc] ¢ [o7)] l_Il[yj | o0],
o« IG(an,b HNC (L[q|c;,[a2]), (2.4.21)

7j=1
the conjugacy of the inverse-gamma with the Gaussian directly gives the expression

of the posterior:

2

o |

o ] x ZG (a,,, + Ng,b,,, + Trm), m=1,..., M, (2.4.22)
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2.4. Model estimation via the Gibbs sampler

where T — ;. S (y; — Llqle;) (p; — Llgle))",

5 j=1

= 8, + L[q|S.[q|L" — S,.[q)L" — L[q|S.,.

Making use of the expression of Sy, given in Eq. (2.4.18) and replacing S.. by

its expression given in Eq. (2.4.15) gives

T = (I~ B)S,,(I ~ B) + + L[a)W.[q|L" (2.4.23)
where B = L[q|Q.[q|L"[o%] = B". (2.4.24)

By doing so, it is visible that the semi-positivity of T is ensured.

Sampling of ¢q

The Bernoullian prior for the binary weights g leads to the following posterior:

[qr|o0] o< [qy] H [y qr, o] ,

j
o 195(1 — 1) e Z]-(er(chj)”fO'QQJ(erquCj)7

e tr([d;2JT(qk)) —qi 1n(%71)7

x e*Q(Qk)’

where T is given by Eq. (2.4.23). The state of a binary g is changed by adding
0 = (—1)%. The binary g with a modified state is thus written qx__, = qx + .
The probability that a binary changes its state is:

[qktrlod |OO] X [qkrrxod] H [y] ’qkmod’ OO]

J

o tr([U;2JT(kaod)) k04 ln(%*l)

oc e 9@k 0q)

These two probabilities have to be normalized in order to have a sum equal

to 1. The probability that a binary changes its state becomes:

e_g(qknlod )

(@hoa|00] = e 9 ko) 1 o—9lar)

= ! (2.4.25)

1+e” (Q(Qk)_g(’Ikmod ))

The sampling is then performed through an acceptance-rejection procedure. A

sample ¢ ~ U(0, 1) is compared to [gy, ., | 00]. If the sample ¢ is lower, the change
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of state is accepted. Otherwise, the binary keeps its current state. In practice, as
T can be high (especially if Ny is high), it is numerically safer to implement an

acceptation of the change of state through the equivalent comparison:
1
—In (t - 1) < 9(ar) = 9(Q,poa)-

Sampling of [
The posterior for the sparsity parameter [ arises from the use of the conjugacy
of the Beta distribution with the Bernoullian:

1] q] x H qr | o0,
x Beta(ay, by) HBern(l)
k
[(a;+br) 4y h-1T 1—
7[‘” 1_l 1 l‘]k 1_l Qk’
I'(a)L(br) (= a=h

x Beta (a;+ Ny, by + k — N, (2.4.26)

where N, = >27_, qx, which is the number of non-zero binaries.

2.4.2.2 Sampling of a scale parameter

As the L[q|ec decomposition of y is not unique, the parameters L and ¢ can take
any value. Therefore, it is hard to check the convergence by looking at those
chains. Moreover, it implies that L and ¢ will be correlated, which can induce
a bad mixing of the chains and slows down the convergence of the sampler. In

general, a scale ambiguity appears for problems written as
z=hx*xx+Db,

where x is any bilinear operator. In this case, for each couple (z,h) and s #

(sx) % (g) =z xh.

In the FA model, this situation appears for each product L,c; if g, = 1. Veit

0, we can write

et al. (2008) suggest to sample a scale parameter to remedy this scale ambiguity
without modifying the target distribution. We introduce k scale factors s, in a

diagonal matrix written S = [s] such that:
y = Llqc+n=(LS")q)(Sc) +n
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2.4. Model estimation via the Gibbs sampler

The calculus details for the posterior of S are given in appendix C.2. The
numerical cost added by the sampling of S is small as compared to the sampling
of all the other (non-scalar) parameters. The effects of the sampling of these
scale parameters is illustrated by a numerical toy case in appendix C.2. It is
shown that the scaling is able to increase the mixing of the chains, but this effect

becomes negligible at low SNR.

2.4.3 Marginalization of the Gibbs sampler

It is expected that ¢ and g have a highly correlated posterior. This kind of situation
generally causes the Gibbs sampler to explore the full posterior with small steps,
leading to slow convergence rates. As the joint distribution of ¢ and ¢ is not known,
it is not possible to do blocking to improve the convergence. Therefore, it is decided
to implement a strategy of partial marginalization of the Gibbs sampler (also called
collapsed Gibbs sampler), which is known in the literature to strongly increase the
convergence speed (van Dyk and Park, 2011). The idea of the marginalization is
to project the joint distribution on one of the variable. By doing so, the posterior
distribution is replaced by a posterior conditioned on fewer unknowns and the Gibbs
sampler takes larger steps, thereby improving global convergence.

The sampling of q is thus performed in a new posterior, but the overall sampler
is not really more complicated. However, it induces an additional cost. As shown
in the marginalized posterior given below, x + 1 full and complex covariance

matrices of size M x M (k matrices Bs(gs,.,) and one By(q)) have to be inverted.

mod)
Champagnat et al. (1996) suggest a way to compute the modified inverse matrices
Bs(quoq) ! directly from Bsy(q)~!. However, this solution has not been implemented
for simplicity, since the number of sensors M is supposed to be relatively small
for array denoising application.

Whereas permuting steps of a classical Gibbs sampler does not affect the
stationary distribution, Park and Van Dyk (2009) suggest that the order of the
draws of the collapsed sampler may sometimes alter the stationary distribution. The
collapsed sampling of g | co_. induces a loss of the correlation structure between q
and c. Therefore, this correlation has to be restored through the sampling of ¢ | g, oo,
in order to correctly converge towards the target full posterior. For the present
work, several orders for the draws of g and ¢ have been tested, and no significant
difference was found from this order in our case. The current order was chosen so

as to reduce the number of intermediate quantities that have to be computed.
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Sampling of ¢ with marginalization with respect to c

The posterior distribution of ¢ marginalized with respect to ¢ is given by

[qrloo—c] o< [qi] [J[yslo0—c]-

J

It can be shown that (following the same calculations as in appendix C.1)

[yjloo-c] = N0, L[q][v*][q]L" +[o7]). (2.4.27)

B>

Then, the marginalized posterior distribution is
o > vy Baaw) " 'y;
| Ba(qi) |

- efu(Bz(qk)—lﬁyy)st ln\Bz(qk)|quln(%fl)’

[qr|oo-c] oc 1%(1 — 1)~

o e 9@r)

As before, the probability that the binary changes its state is

ei Zj nyQ(qkmod)_lyj

|B2 (qkmod>

[qkmod ‘OO*C] X lqkmod (1 — l)liqkmod N

oxX e_g(qkmod ) .

After normalization of the probability, the change of state for the binary g, is ac-

cepted if

—In (1 — 1) < 9(qr) = 9(@kpnoa)-

2.4.4 Numerical validation

The same experiment as for the assessment of the EM algorithm is led, for which
the model and the data are in perfect accordance. A signal plus noise CSM is
simulated solving the FA direct problem, with the same constant (M = 30, K =5,
N, = 10%), but with an SNR of -10 dB in order to enhance some characteristics
of the MCMC algorithm.

The effect of the heteroscedasticity of the factor in the model is illustrated, as
well as the effect of the partial marginalization of the Gibbs sampler. Moreover,
some results from the same numerical experiments concerning the effect of the

scaling strategy are given in appendix C.2.
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2.4. Model estimation via the Gibbs sampler

2.4.4.1 Initialization and prior parameters

Before running the denoising algorithm, the constant parameters for the priors and
hyperpriors have to be set by the user, and all the parameters have to be initialized.
First, all the priors are set very vague (i.e. nearly flat PDF):
« a uniform prior for the sparsity is chosen by setting a;, b, = 1,
« flat priors are set for the factor and for the noise variance, with a., b,, a,, b, =
1074,

Even if the Gibbs sampler is supposed to perform global optimization, a proper
initialization can lower the convergence time. The SNR is supposed to be close
to 0 dB, therefore half of the measured signal variance is assigned to the noise
and another half is assigned to the factor variance. All the parameters are thus
initialized as follows, assuming x = 15:

e L, sampled in N¢ ( I“”),

. o2 —05d1ag(S )

o« V2= elggﬂ Trace(S'yy)

* g =1,
where the eig, (A) refers to the k highest eigenvalues of A, normalized in order to
have >, eig,.(A) = 1. The matrix S.. does not require to be initialized since

it is drawn first.

2.4.4.2 Effect of the heteroscedasticity of the factors

In the model described before, a heteroscedastic prior is assumed for the factors
(which means that [¢] = N¢(0,[~4?]), where 42 is a vector of different values). In
order to show the motivation for this choice, a comparison is here performed with an
homoscedastic prior for the factors (which means that [¢] = N¢(0,72L,), where 72
is a scalar). In this case, a single variance parameter for the factors is sampled. The
evolution of the factor for the two samplers is given in Fig. 2.6, for which the weights
q are all fixed to 1 throughout the iterations, and the scale parameters are sampled.

In the case where the factors are homoscedastic, even if the factor could be
driven by the likelihood far from their assigned prior variance, they all remain
close to the same value. On the contrary, when a different variance is sampled
for each parameter, they are all more prompt to evolve independently. Therefore,
5 representative factors increase and the other factors slowly decrease, tending
towards a sparse representation of the data.

This illustrates the mechanism behind the sparsity induced by a heteroscedastic

model for the factors. With a more appropriate initialization (for example lowering
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(a) g = 1, homoscedastic factors (b) g = 1, heteroscedastic factors

Figure 2.6: Evolution of the factors, without sampling of the weights (all g = 1), in
the case of a homoscedastic (left) and heteroscedastic factors (right).

the initial factors), the convergence is improved and the solution can tend faster

to the optimally sparsest solution.

2.4.4.3 Effect of the marginalization

The effect of the partial marginalization of the Gibbs sampler is now illustrated.
The results presented in this section are obtained without the sampling of scale
parameters. In Fig. 2.7 are plotted the absolute value of the weighted factors
throughout the iterations, as well as the number of non-null weights, without

and with marginalization.
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(a) No marginalization (b) With marginalization

Figure 2.7: Evolution of the factors and their weights, from the non-marginalized (left)
and marginalized (right) Gibbs sampler, without the scaling strategy.
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2.5. Comparison of the denoising performance with methods from the literature

First, looking at the figure without marginalization (Fig. 2.7a), in comparison
with the case where the weights g are not sampled (Fig. 2.6b), it appears that the
sampling of the weights slightly enforces the sparsity by canceling a few small factors.

Then, looking at the case with the marginalization of the sampler, almost all
the small factors are rapidly shrunk to zero, keeping only 5 dominant factors.
Theoretically, the marginalization does not affect the target posterior distribution.
Therefore, the solution with and without marginalization should tend to be similar
after a larger amount of iterations. However, as expected, the marginalization

increases significantly the convergence rate of the sampler.

2.5 Comparison of the denoising performance with
methods from the literature

In this section, the performance of each investigated approach to denoise the
synthesized data is compared, based on the different configurations of the numerical
experiment described in Sec. 1.5.4.1. The default parameter values for the numerical

simulations are recalled in Tab. 2.1.

Parameter Default value
Frequency (invariant) f =15 kHz
Sound velocity (inv.) 340 m/s

Number of receivers (inv.) M =93

Number of monopoles K =20
SNR SNR=10 dB

Number of snapshots N, =104

Table 2.1: Default values for the numerical simulations.

It is also recalled that in this numerical case, the cross-terms are preserved
during the simulation of the noisy CSMs, which causes the noise to deviate from
the assumption of a total decorrelation over the sensors, especially for low SNR
or/and low number of snapshots (in contrast to the numerical validation performed
previously in the chapter for which no cross-term was simulated).

The relative reconstruction error given in Eq. (1.5.7) is studied for several
denoising methods, first considering only the diagonal elements of the acoustical
CSM and then looking at the reconstruction of the off-diagonal elements. The

denoising methods of interest are:
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o Convex optimization for diagonal reconstruction, referred to as Diagonal
Reconstruction (DRec) (method described in Sec. 1.5.1),

» Robust Principal Component Analysis (RPCA) with a constant regularization
parameter close to 1/v/M ~ 0.1, as suggested in Wright et al. (2009) (method
described in Sec. 1.6),

o RPCA with the regularization parameter that gives the minimal error, written
Aoptimal- Note that this optimal value will never be known in practice, since
its calculation requires the knowledge of the ground-truth CSM S,,,

« Canonical Coherence Analysis (CCA) with both thresholding of the canonical
coherences and adaptive iteration count (method described in Sec. 1.7),

o FA solved with the EM algorithm, referred to as FA-EM, initialized as in
Sec. 2.3.2.1,

o FA solved with the marginalized Gibbs sampler, referred to as FA-MCMC,
with the same initialization and priors as in Sec. 2.4.4.1,

e no denoising applied.

A list of the studied methods is given in Tab. 2.2 with a rough approximation
of the computing time required by each method to denoise one 93 x 93 CSM, using
non-optimized Matlab codes on a laptop. For the Gibbs sampler, a thousand of
iterations are performed and the returned estimate of denoised matrix results from
the mean over the last 500 samples. Considering that these last samples tend to
have a stationary, symmetric, and unimodal distribution, the maximum a posteriori

is assumed to be well estimated by the mean value.

Denoising method Acronym Computing time
Convex optimization DRec 1 sec
Linear optimization 60 sec
Alternating projections 3 sec
Robust Principal Component RPCA 0.5 sec
Analysis
Canonical Coherence Analysis CCA < 0.1 sec
Factor analysis, solved with EM FA-EM 1 sec
Factor analysis, solved with FA-MCMC 300 sec for k = 92
MCMC 10 sec for k = 10

Table 2.2: List of the denoising methods and their approximate computing time to
denoise one 93 x 93 CSM, using non-optimized Matlab codes on a laptop.
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2.5. Comparison of the denoising performance with methods from the literature

2.5.1 Reconstruction of the autospectra

As all the studied denoising methods are based on the assumption of an uncorrelated
noise, we first look at their ability to reconstruct the diagonal elements of the acoustic
CSM. In Fig. 2.8 is plotted the reconstruction error of the acoustic CSM as a function

of the number of sources, SNR and number of averages N.
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Figure 2.8: Relative reconstruction error of the diagonal terms of the signal CSM, as a
function of the number of sources (a), SNR (b) and the number of snapshots (c). The
denoising methods are : DRec (——), RPCA with A = 0.1 (---), RPCA with Agptimal
(---), CCA (=), FA-MCMC (— =), FA-EM (:---+), no denoising (——). The default
parameter values for the simulations are given in Tab. 2.1.

The results from the FA denoising achieved with EM and MCMC are very
similar because both methods rely on the formulation of a very similar inverse
problem. However, when the number of sources is high, EM performs better than
MCMC, because the latter makes a stronger assumption on low-rankness of the
signal CSM. Moreover, for very low number of sources, or low number of snapshots,
EM does not converge toward an optimal solution, whereas MCMC, being a global
optimization algorithm, converges better.

Concerning RPCA, one can see that the selection of a regularization parameter
can have a strong impact on the denoising performance, especially when the number
of sources increases. The parameter A = 0.1 proposed by Wright is tuned for
low rank signal matrix. When the number of sources increases, the regularization
parameter must also increase to keep the balance between the low-rankness of the
signal CSM and sparsity of the noise CSM.

When proper assumptions are fulfilled (low rank signal CSM and high number of
snapshots), the FA solution is similar to one given by RPCA when using the optimal

regularization parameter, whereas the DRec error is most of the time 5 dB higher.
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The reconstruction error given by CCA is very similar to those presented in
Hald (2019) since the simulated case is nearly the same. The number of iterations
automatically selected from the number of significant canonical coherences is also
comparable to Hald (2019). This varying number of iterations induces significant
discontinuities on the CCA error plotted versus the number of sources, which can
be corrected by an appropriate tuning of the empirical thresholding values and
iteration count criterion. Note that the CCA method generally suffers from a
bias error — due to the fact that the square root matrices S;.!/2 and S;yl/ % used
in Alg. 2 carry over the presence of noise — which probably explains why it has

an error a few dB higher than FA and RPCA.

2.5.2 Reconstruction of the cross-spectra

All the studied methods make the assumption that the noise CSM is diagonal or
nearly diagonal. Consequently, the extra-diagonal elements are expected to be
almost unchanged by the denoising process.

To verify this fact, we can compare the relative error of the off-diagonal elements,

defined as follows:
Hgaa - gaa - [diag(s\’aa - S’aa)JH

bost = —
' |S1c —[ding(8.) || .

E (2.5.1)

where || - || is the Frobenius norm, S,, is the simulated acoustic CSM and S,,
is the denoised CSM.

The relative error curves of the cross-spectra are plotted in Fig. 2.9, for the
denoising performed with FA, RPCA and CCA, always from the same numerical
experiments.

On this figure, one can see that FA and RPCA denoising do not significantly
change the off-diagonal terms, except that FA provides a slight denoising for very low
SNR. Neither RPCA nor FA gives a worse error than without any denoising. This
is not the case for CCA which modifies the cross-spectra, except when the number

of sources is lower than 10 and when the number of snapshots is lower than 6000.

2.6 Conclusion

In this chapter, two ways to solve the FA problem have been proposed. The first
one, the EM solver, is fast and provides satisfying results if the initialization is
appropriate. Its main drawback, however, is to converge toward local maxima, which

can be a problem for experimental applications for which the model errors and the
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Figure 2.9: Relative reconstruction error of the signal CSM cross-spectra obtained from
3 denoising methods: RPCA with Aoptimal (- - - ), FA-MCMC (— —), FA-EM (----), CCA
(=—-) and without denoising (——), as a function of the number of sources (a), SNR (b)
and number of snapshots (c). The default parameter values for the simulations are given
in Tab. 2.1.

noise can be high. Therefore, a more robust approach is also explored using a MCMC
method. The Bayesian estimators obtained from the Gibbs sampler come with their
whole posterior distribution, unlike the EM algorithm that returns point estimates.
These distributions can then be exploited in order to provide credible intervals.

Several strategies have been employed to design and regularize a model which
rapidly converges towards a sparse solution: heteroscedasticity of the factors
(equivalent to a Gaussian mixture), Bernoullian factor weights, block sampling and
partial marginalization of the sampler. This latter induces an extra cost which can be
compensated by a reduction of the number of required iterations until convergence.

It should be noted that, as observed by Faure (2017), the model with Bernoullian
weights is a little difficult to initialize, as compared to the model without weights,
especially in the case where the data cannot be described by a sparse model.
Therefore, this sparse model is not recommended for uncertain initializations. A
strategy could be to first perform an inference using the model without weights
(a simple Gaussian mixture) and then use the result to initialize the sparse model
with Bernoullian weights. Some other MCMC samplers could also be implemented
that may be more robust with respect to the initialization, such as Metropolis—
Hastings (MH) samplers with adaptive proposal (see for example path-adaptive MH
in van Dyk and Park (2011), Hamiltonian Monte Carlo in Neal (2011), Metropolis-
Adjusted Langevin in Roberts and Rosenthal (1998)).

Finally, it has been shown that the Bayesian-based FA allows for a high level

of denoising, as compared to the other methods from the literature, and that
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MCMC offers a flexible framework, which opens up the possibility of including

the correlation of the noise into the statistical model.
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The separation approach described in this chapter is an extension of the Factor
Analysis (FA) model that has been introduced in the previous chapter. The objective
of this extension is to deal with the situation where the Turbulent Boundary Layer
(TBL) noise is correlated over the antenna, so that the assumption of uncorrelated
noise done in the FA model no longer fits the data satisfactorily. This happens at low
frequencies or high Mach number, when the size of the turbulent structures within the
TBL becomes high enough to induce correlation lengths larger than the microphone
interspacings. Therefore, the proposed extension of the FA denoising accounts for
a correlated noise model for the identification of the TBL noise contribution, and
is further called Factor Analysis with Correlated noise model (FA-Corr).

The chapter is organized as follows. The choice of the TBL model is first discussed
and the model extension is mathematically developed. Then, some strategies for the

estimation of the physical parameters for the TBL which are needed in the model,
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3.1. Wall-pressure models

such as the convection speed or the coherence decay rates, are discussed. And finally,

the limits of the proposed separation method are discussed on a numerical toy case.

3.1 Wall-pressure models

Let us consider a flat, motion-less and rigid wall, immersed in an incompressible
flow parallel to it. When it is far enough away from the wall, the fluid does not
interact with the wall and its velocity is then denoted U,,. In the vicinity of the
wall, the interaction is no longer negligible and the velocity gradually decreases until
it becomes zero at the wall. In this region of interaction, called the boundary layer,
the fluid behavior depends on several physical parameters such as the viscosity,
the density and the Reynolds number. The acoustic radiation from the TBL is
supposed to be negligible since its associated energy is known to be proportional
to the fifth power of Mach number (Hwang et al., 2003).

In the case of turbulent flow, the eddies in the boundary layer are convected
with a velocity U, which can be determined empirically, and generally falls within

the following range:
06 Uy < U, <08 Uy.

Considering that the pressure field below a TBL is stationary and homogeneous
in space, it can be described statistically by the cross-correlation of the pressure
field. There exist several empirical models in the literature describing this spatial
cross-correlation.

However, they are often written in the wavenumber domain, for several reasons.
On the one hand, even if the space and wavenumber spectra theoretically carry
the same information, it has been difficult for a long time to make measurements
which are sufficiently accurate for analytic studies of the spatial correlation (Bull,
1996). And on the other hand, the wavenumber analysis is very well suited for the
study of the vibroacoustic response of elastic plates to the TBL loading, which is a
great advantage for many applications. The reader can refer to Bull (1996) and
Graham (1997) for a comparison of the wavenumber-frequency spectrum models.
These models describe the correlation length differently but are generally based
on an exponential decay of the cross-spectra in space.

These exponential models mainly derive from the observations first made by
Corcos (1963), who proposed a model based on the assumption of an uncorrelated

decrease of the correlation along the longitudinal and transverse axes of the flow.
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Chapter 3. Identification of a correlated TBL noise model

The statistical model proposed by Corcos for the covariance of the TBL noise for a

pair of microphones (k,1) with coordinates (x;,y;) and (xy, yx), at a frequency f is

Sy (f) = F(f)e—%(OtacIivk—ﬂﬂl|+Oéy|yk—yz|—Z(93k—9ﬂl))7 (3.1.1)
for the case where the flow is along the x direction, with I'(f) a scalar that depends
on the frequency f, and where a, and «, are the longitudinal and transverse decay
rates of the coherence, classically ranging from 0.1 to 0.12 and from 0.7 to 1.2,
respectively (Hwang et al., 2003). In this model, the longitudinal and transverse
correlation lengths are calculated as:

U.

oy 21 fo,,

(3.1.2)

Several criticisms have been made about this model. First, the decoupling of the
coherence decays along the x and y axes has been refuted. Indeed, several models
combining the two axes have been proposed, leading to an elliptical distribution of
the wavenumbers (Mellen, 1990; Smol’Yakov et al., 1991; Singer, 1996). Moreover,
this model assumes that the parameters U, o, and «, are constant with the
frequency, which does not agree with measurements (Farabee and Casarella, 1991;
Schloemer, 1966; Arguillat et al., 2010). Finally, the model has been shown to

overestimate the low wavenumbers, which has led to numerous derived models.

However, this model also has many advantages, and seems suitable to be used
in the FA-Corr denoising model, for the following reasons:
e it is written in the space domain, which is necessary since the model for the
acoustic part is also written in space,
« it has a low number of parameters which have to be inferred or experimentally
estimated,
 as the denoising at each frequency line is considered as a separate problem, it
is possible to vary the parameter with the frequency to provide a more precise
model.
As a first approach, the denoising model can therefore be based on the exponential
decrease proposed by Corcos. However, the reader can easily adapt the reasoning
and calculations developed in this chapter to any other model written in the space

domain, especially Mellen’s, which is very close in appearance to the Corcos’ one:

—2nf o |xy— oy lyr— —i(xp—x
SMellen(f) :F(f)e Ue (\/( |z —x1]) 2+ (aylyr—yi])2 —1(xr l)) (313)

nn
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3.2. Extension of the PFA model

3.2 Extension of the PFA model

3.2.1 Problem statement

In order to state the separation problem, let us first introduce the vector of
measurements y; that concatenates the Fourier coefficients for each sensor at one
frequency and one snapshot j. As said previously, these measurements result from
the sum of a contribution coming from the acoustic sources written a; and another
major contribution induced by the TBL noise, written ;. A minor contribution
is also added, which models the other sources of microphone self-noise €;, as well

as the modeling errors. The sum of all the contributions reads:

This measured field is supposed to be statistically stationary in time, and
thus an estimate of the Cross-Spectral Matrix (CSM) is obtained by averaging
over N, snapshots at a given frequency. Assuming that the three terms in the
sum (3.2.1) are statistically uncorrelated, such as the cross terms are negligible,

the measurement CSM can be decomposed as follows:
Syy = Saa + Snn + See. (3.2.2)

The separation method proposed in this chapter performs jointly the identification
of each CSM of this sum, with a Bayesian approach. In order to make this inverse
problem identifiable, the same constraints in terms of correlation structure and
priors as in the classical FA model are first added to the acoustic and uncorrelated
self-noise terms.

The acoustic field is still supposed to be highly correlated over the microphones,

and to be possibly described by a few unobserved latent variables, which gives
a; = Liqle;. (3.23)

with ¢; the complex vector of kK < M latent variables, g a vector of x binary weights
and L € CM*K an unknown mixing matrix. The same priors and hyperpriors

are also assigned:

[L] = Ne(0, Insi/k), (3.2.4)

[c] = Ne(0,[~2)) with [v*] = ZG(a,,b,), (3.2.5)

lq] = Bern(l) with [I] = Beta(ay, by). (3.2.6)
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Chapter 3. Identification of a correlated TBL noise model

The additive random self-noise is supposed to be totally uncorrelated over

the microphones and heteroscedastic. This can be statistically modeled by a
diagonal CSM:

S. = [o?]. (3.2.7)

This noise is supposed to be Gaussian, according to the Central Limit Theorem

applied to Fourier coefficients:

€] = Ne(0,[0?)) (3.28)
and an inverse-gamma distribution is chosen for the variance prior:

[07] = IG(a..b.). (3.2.9)

Finally, another constrain is added to the model concerning the CSM of the TBL
contribution. Among the existing models, the Corcos’ one is chosen. Therefore, the

theoretical covariance model for the TBL noise, at each frequency is

S = |p|2e_%(aw‘mk_ml|+ay‘yk_yl|_l(mk—ml)) (3.2.10)
nng ) ot

= [p|*x2 (0), (3.2.11)

VEl

with k,l =1,..., M and where 8 = {U,, o, o } is the set of Corcos’ parameters.
In this model, the flow is supposed to be oriented along the z direction. The
amplitude term |p|? is a real positive scalar. A first attempt to model the amplitude
term with a complex vector has been undertaken. The objective was to enable
the amplitude to vary over the microphone, which gave an amplitude term in the
form pyp;, with p complex. However, this model makes the parameter set 8 not
uniquely identifiable, which would make its physical interpretation impossible.
As the latent variable factorization which describes the acoustic part can
theoretically capture any correlation structure, the correlated TBL noise can be
inferred within this decomposition, leading to an underestimation of the TBL part
(and an overestimation of the acoustic one). This is why this inference problem
has to be appropriately regularized, which is done by choosing informative priors
for the TBL parameters. A Gaussian prior, which is easy to parameterize to
take prior information into account is adopted for the sampling of the complex

amplitude term p:
[p] = Ne(ap, 7). (3.2.12)

Equivalently, |p|> could have been sampled in a Chi-square distribution.
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3.2. Extension of the PFA model

Then, a random vector v representing the normalized TBL field can be sampled

with a Gaussian prior distribution,
[v] = Ne(0,32(9)), (3.2.13)
in order to build the estimated CSM for the TBL contribution,
Sun = [pI*S.0. (3.2.14)

As the additive noise € is not directly sought, its sampling is not required. On the
contrary, the sampling of S, is required for the posterior expression of some other
parameters and it is also desirable, as it would allow the TBL CSM to slightly

deviate from the Corcos’ variance model, driven by the likelihood of the data.

Finally, concerning the set of Corcos’ parameters 8 = {U,, o, i }, two kinds
of strategy can be adopted to estimate them. First, they can be estimated before
performing the denoising, and then be used as it is in the model, without being
sampled nor updated. This can be done by a regression over the measurement
CSM, or from additional measurements with a dense microphone array designed
for the characterization of the TBL for example. This kind of complementary
measurements can be done in closed wind-tunnel, however, they are not always
available, especially for inflight measurements. Otherwise, if these parameters
cannot be precisely known prior to the denoising, they can be inferred along with all
the other parameters of the model, during the denoising process. For this purpose,

the proposed prior for these parameters are multivariate Gaussian:
(0] = Nr(wo, 23). (3.2.15)

More details about these strategies for the estimation of the TBL parameters
are given bellow in Sec. 3.3.

To summarize the overall model, a hierarchical graph is given in Fig. 3.1.

3.2.2 Posterior distributions for sampling

For the development of the posterior expressions, the calculation steps are very
similar to those from the previous chapter. The general form of most of the
posteriors is the same, but some new cross-terms are added, viz. S, and S,..
Incidentally, the implementation of the Gibbs sampler has to properly handle

the updating of these cross-terms.
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Chapter 3. Identification of a correlated TBL noise model

Figure 3.1: Hierchical graph for the FA-Corr model.

Using the fact that the likelihood is given by
ly; | oo] = Nc (Llqle; + pyj, [o?]), (3.2.16)

the expressions of the posterior are given in appendix D.1, except for the case of
the hyperparameter @ whose inference is discussed below.

It would also be possible to write the direct problem in a matrix form as follows:

y; =L pIy| UgJ I(H [cﬂ +ny, (3.2.17)

in order to facilitate the update of the cross-terms, and to allow block sampling
in multivariate Gaussian. However, this strategy has not been adopted, so that

different families of priors can be easily experimented.

3.3 Estimation of the TBL parameters

In order to identify the unknown CSM S,,,,, the variance given by the Corcos’ model
in Eq. (3.2.15) has to be known. Therefore, the Corcos’ parameters 8 = {a,, o, U.}
have to be determined from the measurements. To do so, two procedures are
proposed: a least squares regression procedure to be performed before the denoising

and a Bayesian inference approach to be added within the FA-Corr algorithm.

3.3.1 Least squares regression

The first approach to estimate the Corcos’ parameters is inspired from Arguillat
et al. (2010). A Non-Linear Least Squares (NLLS) fitting is performed on the
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3.3. Estimation of the TBL parameters

measurement CSM before the separation procedure, which solves the following

optimization problem at each frequency:

N 2
S
(Ue, o, ovyy)* = argmin 17@/21 - G(U,, oy, ) (3.3.1)
M tr(Syy> F
with
Gu(U., o, ay) _ e*%(az|mk*$l|+O‘y‘yk*yl|*z(mk*$l)). (3.3.2)

This method is fast and simple to implement since many ready-to-use functions
exist to solve NLLS problems. In addition, at the end of the NLLS optimization,
the covariance matrix can be estimated from the variance X2 and the Jacobian

matrix J of the residuals:
»2 22 (J ) (3.3.3)

where -T indicates the pseudo-inverse operator. The Jacobian matrix of the residuals
is often required for the gradient descent algorithms, and is thus available at the
end of the regression. In the present work, the Levenberg—Marquardt algorithm
implemented in the Matlab function 1sqnonlin has been used.

The NLLS approach could be used to directly perform the separation, but
this method comes with some limitations. Indeed, the acoustic part is not taken
into account for the data fitting. The acoustic CSM could be estimated from the
residuals of the fitting process, but it may lead to a negative CSM.

3.3.2 Bayesian inference

Another way to estimate the Corcos’ parameters, is to infer them within the Gibbs
sampler, along with all the other unknown parameters of the model.
In this case, they have to be assigned a prior distribution. As said before, a

possible prior that easily integrates prior information is the multivariate Gaussian:
(6] = N (k0. 25).- (3.3.4)

The prior mean value pg can be known, either from physical considerations, or
from the NLLS regression introduced before. Another less precise but simpler
approach is to look at the phase and coherence between the sensors. Indeed, the

convection speed can be estimated from a linear regression on the unwrapped phase
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Chapter 3. Identification of a correlated TBL noise model

¢ of the cross-spectra, since in the Corcos’ model,

w(azk — 33[)

6=

(3.3.5)

and on the coherence v between sensors aligned on the flow axis or on its normal

axis should give an approximation of the parameters o, and «, since

|Skl|2 w
n () = In (\/ 5.5, Uc%|mk x| (3.3.6)

for a pair of sensors aligned along the z direction, and

w

Ucay|yk -y (3.3.7)

In (yu) =

for a pair of sensors aligned along the y direction. Once an approximate range
of possible values is known, the prior variance for @ can be tuned manually, and

the posterior distribution can be computed:

Ns
6 ] co] o [6] [[[v; | o], (3.3.8)
j=1
0™ 25 Vi B O o~ (0-10)" 2y (0—puo) 3.39)
X ..
[1; 132(0)] =3

No closed-form of this expression can be developed for the sampling, therefore, a

Metropolis—Hastings (MH) step is implemented within the Gibbs sampler.

3.3.2.1 Metropolis-Hastings within Gibbs implementation

The principle of the MH algorithm is to iteratively pick a parameters set in a
candidate distribution based on the current set, and then accept or reject it as the
new set with some probability. In the case of a symmetric proposal distribution, the
probability of acceptance is given by the ratio of the posterior distribution computed
with the current parameter set and with the proposed ones. The acceptation-
rejection procedure is thus performed in three steps. First, a parameter set is

sampled in a Gaussian proposal distribution

91' - N]R(o(i—l), 21?)rop)’ (3310)
where 6;_1) is the Corcos’ parameter set at the current state and Egmp is the
covariance of the proposal. Then, the acceptance rate r is computed by

[ [0 | OO])
r=min |1, —————|, (3.3.11)
( [6; | oo
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3.4. Numerical validation
where -; indicates the i'" iteration. And finally the update is rejected if r is smaller
than a sample u drawn in a uniform distribution (0, 1), and accepted otherwise.

In order to explore properly the target distribution, the proposal should have
the same shape as the target. This implies that the covariance of the proposal
has to be adjusted so that the proposed steps are large enough to ensure good
convergence, but not too large to avoid having a too high rejection rate. This
covariance can be tuned automatically with adaptive MH algorithm, or manually
by checking the convergence rate. It has been shown that the optimal trade-off
between the step size and the number of rejections is reached when the acceptance
rate is 23.4% for a univariate Gaussian proposal and 44% for a Gaussian whose

dimension tends to infinity (Brooks et al., 2011).

3.3.2.2 Pseudo-code

The overall pseudo-code for FA-Corr is given in Alg. 6. In this code, many
options are implemented:
o the ‘scaling’ option is the sampling of a scale parameter as described in the
previous chapter, in Sec. 2.4.2.2,
o the ‘marginalization’ option is the sampling of the factor weights g in a
posterior marginalized with respect to the factors, as described in Sec. 2.4.3,
o the ‘sampled’ option for X2 is the sampling of the TBL parameters  and
thus the update of 32(6),
o the ‘fixed’ option for X2 is the absence of sampling of 8, which remains at its
initial value.
Another option, not shown in the pseudo-code, consists in keeping the correlated
noise matrix to zero (p = 0 and S,,, = 0) across the iterations, which is equivalent
to the FA problem with uncorrelated noise.
The main difference in terms of input parameters for FA-Corr versus FA is
that the distances between the sensors dx, dy have to be known, as well as the

frequency f, which is also necessary for the TBL model.

3.4 Numerical validation

The approach is now tested on numerical experiments. The data are simulated by
solving the direct problem described in Sec. 3.2.1. The various constants used for
these simulations are similar to the validation case from the previous chapter: the
number of microphones is M = 30, the number of uncorrelated sources is K = 5 and
the number of snapshots is N, = 10*. Concerning the simulation of the TBL CSM, a
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Chapter 3. Identification of a correlated TBL noise model

Algorithm 6 FA-Corr solved with the CSM-based Gibbs sampler.
Initialization: Lo, 02, 7§, qo, Su,, 07,, 00, Po

Require: S,,, s, a,, b,, a, b., a;, by, i, o2, o, X5, Mo, 0, 0y, f, 32
fori=1,..., Ny do

Sample S, following Eq. (D.1.6)

Sample L; in Eq. (D.1.14)

if ‘Scaling’” option activated then
Sample s; in Eq. (C.2.3)
Scale S.., and L; doing Ly, := ’;—: and ¢ := ¢S
Sample vZ in Eq. (2.4.20)
Update Q. using the new L and S,
Resample W, using the new €2,

else
Sample 42 in Eq. (2.4.20)

end if

Update S, following Eq. (D.1.25)

Sample S,,, following Eq. (D.1.12)

Update S, following Eq. (D.1.27)

Sample p in Eq. (D.1.21)

if ‘Fixed’ option for X2 activated then
=32

else ‘Sampled’ option for 32 activated
Sample 6; in Eq. (3.3.10)
Calculate the acceptance rate as Eq. (3.3.11)
if r < (u~U(0,1)) then

0;, = 0;,_1 Rejection of the sample

237, = 212/2'71
else

X2 = G(0;) with G given by Eq. (3.3.2)
end if

end if

Sample /; in Eq. (2.4.26)

if ‘Marginalization” option activated then
Sample g; in Eq. (D.1.46)

else
Sample g; in Eq. (D.1.39)
end if
Sample o2 in Eq. (D.1.32)
end for

return Posterior PDFs of S.., S,., p, L, 0‘3, ¥, q

Corcos’ model is chosen with the following parameters: U, = 10 m/s, a,, = 0.12 and
a, = 1. The ratio between the acoustic signal and the TBL noise is -10 dB, whereas

the ratio between the acoustic signal and the additive uncorrelated noise is 10 dB.
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3.4. Numerical validation

The microphones are randomly distributed on a squared area of 50 x 50 cm and
the frequency of the study is 38 Hz. The TBL noise is highly correlated over the
microphones at this frequency, since the correlation length along the flow axis is
about 34 cm, which is twice the average microphone interspacing (L., = 28).

For a better analysis of the chains, the scale option is activated. Even if the
calculation details have been given for the implementation of a marginalized Gibbs
sampler, it has been observed a strong instability of the marginalized sampler
for the inference of the correlated noise. Therefore, it is recommended to not
use the marginalization in unfavorable cases, such as low acoustic to TBL ratio,
low number of snapshots or sensors or low frequency. As all these conditions
are present in the numerical simulations, the factor weights are sampled without

marginalization in the following.

3.4.1 Initialization and priors

Prior parameters

Flat priors are set for the acoustic part and the additive uncorrelated noise:

o a uniform prior for the sparsity is chosen by setting a;, b, = 1,

« for the factor variance, a., b, and for the uncorrelated variance a.,b. = 107*.
Informative priors are chosen for the TBL noise, with

. a,= \/Trace(gyy)/M and o7 = 10 Trace(S,,)/M,

o ap={0.9U,,0.90q,,0.9q,}, 3 =[0.1U. 0.5c, 0.5a,].

Initialization

The parameters are initialized as follows:
o K =15,
e L, sampled in N¢ (0, I“%),
« 02 =05 diag(Syy),

. 2= 7eig~2§§yy) Trace(S,,),

* go= 17
* Po = Gy,
o 00 = Qy,

o Su =2,(60),
where the eig, (A) refers to the k highest eigenvalues of A, normalized in order to
have Y, eig,.(A) = 1. Even if the additive uncorrelated noise is expected to be low,
it is preferable to set its initial value rather high, in order to start with a rather

flat likelihood and ensure a good exploration before the chain stabilizes.
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Chapter 3. Identification of a correlated TBL noise model

Proposal distribution for the Metropolis-Hastings step

As previously said, the proposal distribution is a Gaussian, with mean 6 from the
previous iteration. However, as the algorithm is not adaptive, the variance of the
proposal distribution has to be set by the user. It is chosen empirically in order to
have an acceptance rate between 23 and 44 %. This corresponds to a variance of
about 107*32. Note that this acceptance rate is difficult to tune precisely since it

may decrease gradually as the chain stabilizes, the posterior becoming narrower.

3.4.2 Results

Some chains which are representative of the behavior of the sampler are shown,
for three different options of the sampler:

o with the sampling of the Corcos’ parameters, starting from arbitrary values
0, = {0.9U.,0.9a,,0.9, }, in Fig. 3.2,

o without the sampling of the Corcos’ parameters, which are kept at the same
arbitrary value (only the amplitude parameter p and the TBL CSM S,,, are
sampled), in Fig. 3.3,

« with the correlated noise kept at zero, which is equivalent to the FA problem
with uncorrelated noise only, in Fig. 3.4.

For each of these denoising configuration, the eigenvalues of the acoustic and TBL

CSM are also given, in Fig. 3.5.

6 3.5
ibj 41 . 3 .
g =
g 2 ) 2.5 |
g .
i
b o o ———

0 = 0 | N ) A 2 | | | |
0 02 04 06 08 1 0 02 04 06 08 1 0 0204 06 08 1
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Figure 3.2: Chains of several inferred parameters, from FA-Corr with the Corcos’

parameters sampled. The dashed lines indicate the target values.
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Figure 3.3: Chains of several inferred parameters, from FA-Corr with the Corcos’
parameters kept constant at 8 = {0.9U,, 0.90,0.9a, }. The dashed lines indicate the
target values.
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Figure 3.4: Chains of several inferred parameters, from the FA model, without inferring

any correlated noise, with marginalization of the sampler. The dashed line indicates the
target value for the additive noise.

The chains obtained from the solver with inference of the Corcos’ parameters
(Fig. 3.2) all converge toward the target values, with a correct selection of the rank
for the acoustic part. However, the number of iterations before the chains stabilize is
more than 8000, which is much higher than for the FA denoising with uncorrelated
noise model since the number of inferred parameters is higher. The convergence
of each parameters depends on many factors in the data set. For example, the
parameter o2 which drives the variance of the likelihood converges much faster when
the number of sensors increases (this is illustrated in appendix, Fig. D.1). Another
effect on the convergence may be the frequency. For example, if the frequency is 4
times higher, which corresponds to a much smaller correlation length of the TBL
noise (L., = 0.58x), the TBL parameters converge at a slower pace, and with a
higher variance, as illustarted in appendix, Fig. D.2. Many other elements can have
an effect on the convergence, such as the microphone configuration, the level ratio

between the different contributions, and so on.

Without the sampling of the TBL parameters, the TBL CSM is underestimated,

and consequently the additive noise and acoustic part are overestimated, as well
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Chapter 3. Identification of a correlated TBL noise model

as the number of factors. The reconstruction error on the acoustic CSM is -13 dB
with the sampling of the TBL parameters, whereas without their sampling, this
error is 3 dB. And for the case of inference without any correlated noise model, this
reconstruction error is much larger (7 dB), which shows that taking into account a
TBL model, even with an inaccurate prior is better than just considering a totally

uncorrelated noise model.

1
T— Estimated Sy,
1 08fp —— Estimated S,, |
- 0.6+ True S, |
1 o4l —— True S,., |
- 02 8
0 \ ! | 0 ! ! | I
0 10 20 30 0 10 20 30 0 10 20 30
(a) From FA-Corr, 8 sampled. (b) From FA-Corr, 0 fixed. (¢) From FA with

uncorrelated noise only.

Figure 3.5: Normalized eigenvalues of the estimated and true CSM, for the acoustic
and TBL contributions.

The chain analysis can be complemented by an examination of the eigenvalues of
each simulated and inferred contribution. These eigenvalues are given in Fig. 3.5 for
the three solver options. First, looking at the eigenvalues for the TBL part (.S,,),
it appears that the baseline and the inferred eigenvalues perfectly superimpose.
However, it doesn’t necessarily guarantee a good reconstruction of the TBL part,
because several TBL parameter sets can provide the same eigenvalues. Indeed,
this happens as long as the correlation structure of the CSM is preserved, which
is the case when the ratio between the parameters is preserved. For example, in
the present case, the eigenvalues of the initial CSM with the starting parameters
{0.9U,,0.90;, 0.9cr,, } are similar to those from the simulated CSM with {U., a,, o }.
However, there is no problem of identifiability, since only one parameter (U,) drives
the phase of the CSM. This parameter is quickly updated and consequently, the
other parameters are updated to finally infer the correct correlation structure
with the correct parameter set.

Concerning the eigenvalue of the acoustic part, only the sampling of the TBL
parameters guarantees a correct estimation of the rank. For the two other solvers,

the rank is overestimated to compensate for the error made on the other contribution.
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3.5. Conclusion

About the parametrization of the TBL model

The parametrization of the correlated noise variance was done on the basis of
the physical model, but it is questionable whether it is appropriate. Indeed, if
the parameters are prompt to be correlated, the chains may have a bad mixing
and a slow convergence. To evaluate this, the last 2000 samples (considered as
stationary) are plotted in Fig. 3.6, which corresponds to about 600 different samples
for the Corcos’ parameters since the acceptance rate is about 30%. The associated
correlation coefficients are also given on the same figure. These bivariate scatter

plots allow a visual diagnosis of the cross-correlation between the parameters. All
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Figure 3.6: Plot of the last 2000 samples of the Corcos’ and amplitude parameters. The
correlation coefficients of each parameter pair is also given.

the plots seem wide enough to indicate that the correlation between the parameters
is small, which is confirmed by the smallness of all the correlation coefficients.

Therefore, this parameterization seems suitable to favor the sampler convergence.

3.5 Conclusion

In this chapter, an extension of the FA denoising problem has been proposed in

order to account for the presence a of correlated TBL noise within the fitting model.
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Chapter 3. Identification of a correlated TBL noise model

A Corcos’ model has been chosen to model the TBL correlation structure, and the
Bayesian approach accounts for the uncertainty about the physical parameters of
this model. From the numerical toy case, it has been shown that the acoustic and
TBL CSMs can be jointly identified. The Le decomposition for the acoustic part
could theoretically capture any correlation structure and thus the correlated TBL
noise could be identified as an acoustic contribution. However, the problem is made
identifiable thanks to the use of informative priors over the TBL parameters.

Compared to FA, this extension requires more knowledge about the data set,
such as the microphone interspacing, and a rough idea of the flow characteristics.
But still, no assumption about the acoustic sources is made.

However, a strong hypothesis is made about the TBL, which is considered as
spatially homogeneous. If this assumption is reasonable for application in closed
tunnel where the flow is controlled, it does not hold true for other applications
such as inflight measurements. Moreover, for practical applications, the TBL model
may differ from a Corcos’ one and the ratio with the acoustic part can be much
lower than -10 dB. Also, if the array is designed for the characterization of acoustic
sources, the identification of the TBL part may be challenging and thus affect the
quality of the separation of the contributions.

In order to evaluate the ability of the FA-Corr method to perform an efficient
separation of the acoustic and TBL fields in such conditions, an assessment on
experimental data is needed. This assessment is proposed in the next chapter,
which is dedicated to the applications of the FA and FA-Corr denoising to closed

tunnel and inflight measurements.
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Experimental applications
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Some applications of the Factor Analysis (FA) denoising and Factor Analysis with
Correlated noise model (FA-Corr) separation approaches introduced before are given
in this chapter. The objective is to see if their identifications of the acoustic and TBL
contributions (the latter for FA-Corr only) are efficient under conventional conditions
of imaging applications, with antennas designed for acoustic source localization.

The methods are first tested on measurements performed in a wind tunnel

with a closed test section in the framework of the ADAPT project, for which the
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4.1. Measurements in closed-section wind tunnel

acoustic sources power and location are known and the flow is controlled. In this
situation, the validation is done by measuring the acoustic and TBL contributions
separately. As the acoustic sources are loudspeakers inside the tunnel roof, their
effect on the flow is negligible. Conversely, the flow has a slight impact on the
propagation of the sources, and the subsequent perturbation can be quantified.
Therefore, the measurement of the sources with flow is considered as the sum
of the two independent contributions.

In a second step, another set of data is employed, provided by Airbus. These
data are obtained from microphones flushmounted on the fuselage of a large aircraft
and the measurements are made during a flight in cruise conditions. The general
objectives of these measurements is the study of jet, airframe and engine noise and
also of the understanding of the TBL excitation which is a major source of noise
in the cabine (Maury et al., 2002). The measurement conditions are such that the
aeroacoustic sources are unknown and the precise nature of the boundary layer is not
known. Therefore, the validation of the separation results is more challenging. Some
accelerometers located inside the cabin, which are known to be partially coherent

with the external acoustic sources are therefore used to provide a baseline separation.

4.1 Measurements in closed-section wind tunnel

4.1.1 Experimental setup

The measurements are performed in a closed-section wind-tunnel at Ecole Centrale
de Lyon (LMFA laboratory), shown in Fig. 4.1a, within the framework of the
ADAPT project. As shown on the sketch in Fig. 4.1b, two sources are mounted in
the ceiling of the test-section, excited by two uncorrelated white noises. An array
composed of 76 Microelectromechanical systems (MEMS) microphones is mounted in
the floor of the section, arranged as shown on Fig. 4.1c. The microphone interspacing
varies from 0.2 cm to 27.4 cm. The acquisitions are performed synchronously, during
30 s, and the CSMs are computed with a frequency resolution of 16 Hz, Hanning
window and 66 % overlapping rate (the apparent number of snapshots is thus 994).

Three measurements are performed with the MEMS array:

« configuration A : with the sources switched on and without flow,

« configuration T30 : without sources and with a flow at 30 m/s,

« configuration AT30 : with the sources switched on and the flow at 30 m/s.

I'The apparent number of snapshots takes into account the window type and the overlapping
rate to compensate for the redundancy between the snapshots induced by the overlapping ( see
for example Welch (1967); Antoni and Schoukens (2009)).
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Figure 4.1: Description of the experimental setup for the wind-tunnel measurements.

The objective is to separate the acoustic and TBL contributions from the mea-
surements AT30 and compare them with the baseline measurements A and T30.
Note that the proposed separation processes do not compensate for the convection
effect on the acoustic part. Therefore, the identified acoustic part cannot be exactly
similar to the not-convected measurement A.

Another measurement is performed in the same wind-tunnel using a dense
rotating linear array in place of the MEMS array. This array is made of 63 remote
microphones spaced by 1 mm. The measurement is performed only in the T30
configuration and for three angular positions: parallel, normal and at 7/4 rad from
the flow axis. The records last 60 s, and the CSMs are computed with a 4 Hz
resolution, and 66% overlapping rate. As this type of array is much denser than

the MEMS one, it is supposed to be more appropriate to characterize the TBL.

4.1.2 Beamforming maps of the measurements

The wavenumber content of the measurements is shown in the form of a k,-k, map at
2096 Hz in Fig. 4.2. It is computed by means of a plane wave beamforming process, as
given in Eq. (1.3.2), but skipping the autospectra thanks to a vectorized computation,

such as in Leclere et al. (2021). By doing so, only the cross-spectra are represented
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4.1. Measurements in closed-section wind tunnel
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Figure 4.2: Beamforming maps obtained at 2096 Hz from the measurement
configurations AT30 (left), A (center), T30 (right), using the MEMS array. The three
maps are scaled with the same color bar (in dB). The black circle indicates the convected
acoustic domain.

by the beamforming maps. On these maps is plotted in black the convected acoustic
circle (given by Eq. (1.3.1)). At this frequency, the acoustic and TBL domains are

clearly visible, without overlapping on such a k space representation.
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Figure 4.3: Beamforming maps, as a function of the frequency at k£, = 0, from the
measurement configurations AT30 (left), A (center), T30 (right), using the MEMS
array. The three maps are scaled with the same color bar (in dB). The two black dashed
lines indicate the acoustic domain.

The wavenumber content is also shown in the form of a k,-f map, at k, = 0,
in Fig. 4.3. On these maps is also plotted the acoustic circle, that appears as a
cone nearly centered on k, = 0. These maps show that the two domains overlap

below 500 Hz. At low frequencies, the convective ridge is duplicated along the
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Figure 4.4: Example of the autospecta at 3008 Hz Figure 4.5: Enlarged center
denoised with RPCA (---), FA (—) and its 95% part of the antenna.

credible interval (), along with the baseline source

autospectra (=) and the raw measurements (—).

k. axis because of aliasing effects. This aliasing is also visible above 3 kHz, on
the map of the configuration A, leading to some duplications of the acoustic spot.
It is also clear that the order of magnitude of each contribution is very different

depending on the frequency.

4.1.3 Denoising with uncorrelated noise models

In this section, some results from several denoising methods which rely on an
uncorrelated TBL noise model are given. Some methods from the literature are
compared with the FA approach. For the latter method, the prior parameters and
initial values are the same as those given in Sec. 2.3.2.1 and Sec. 2.4.4.1.

These results are presented without taking into account the denoising of 3 of
the 76 microphones. Indeed, as three microphones of the antenna are very close
to each other, the TBL noise is strongly correlated on them and their denoising
provided by FA is very low since they are particularly far from the assumptions of
uncorrelated noise. An example of autospectra denoised by FA (solved with the
Markov Chain Monte Carlo (MCMC) algorithm) and Robust Principal Component
Analysis (RPCA) is given in Fig. 4.4. Tt is visible that three microphones are poorly
denoised by FA, corresponding to the three microphones represented by green circles
on Fig. 4.5, which are separated by only 3 mm and aligned along the flow direction.

The reconstruction error presented below is calculated as follows:

|diag(S;,) — diag(Sa)

5= : , 411
[diag(S2)1, (4.1.1)
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4.1. Measurements in closed-section wind tunnel

with S,, is the denoised CSM and S¥, is the baseline source CSM. Using an ¢,
norm for this error gives more weight to the outliers and therefore, including the
problematic microphones in the calculation causes the error to be much higher for
FA than for RPCA, while all the other autospectra are much better reconstructed
by FA than by RPCA.

It could be possible to exclude these microphones from the dataset, however
their presence has very little impact on the denoising of other microphones and
they will further be useful for the identification of TBL noise for the FA-Corr
method. Therefore, these channels are included during the separation processes

but excluded from all the results presented below.

4.1.3.1 Denoised autospectra

Fig. 4.6a shows the autospectra, averaged over the microphones, of various CSMs
denoised with Diagonal Reconstruction (DRec), RPCA, Canonical Coherence
Analysis (CCA), FA solved with the MCMC and Expectation-Maximization (EM)
algorithm, respectively refer to as FA-MCMC and FA-EM, along with the baseline
source autospectrum and the 95% credible interval provided by the FA-MCMC
denoising. As the noise may vary over the microphones, the average autospectra
may not be fully representative of the denoising level. Therefore, a denoising error
that encompass all microphones is also given for each method in Fig. 4.6b, which
illustrates the distance from each microphone autospectrum to the corresponding
baseline autospectrum, given by Eq. (4.1.1).

In the present section, the analysis is limited to the autospectra of the acoustic
part because it gives a good idea of the overall denoising performance of each
method. However, in the following, in comparison with the results from FA-Corr, we
also present the reconstruction curves of the acoustic cross-spectra (see Fig. 4.14),
as well as an analysis of the autospectra of the TBL part (see Fig. 4.15).

It is not possible to have S,, = S, in general, first because of the estimation
error due to the limited number of snapshots and second, because of the convection
effect. Indeed, the denoised CSM contains the acoustical part subjected to a
convection effect, which is not compensated by the denoising process, whereas
the baseline source CSM comes from measurements without any convection effect.
Therefore, even after an optimal denoising, the denoising error should be limited
by these two thresholds, which are numerically evaluated further below.

The major differences between the experimental data and the previous numerical
simulations concern the noise properties. In the real measurements, the TBL

contribution dominates the data, leading to a very poor signal-to-noise ratio (from
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Figure 4.6: Mean autospectra and associated error from CSMs denoised with DRec
(—), RPCA with A\ = M~Y/2 (---), CCA (---), FAMCMC (— —), FA-EM (----+), and
the CSM not denoised (—). On (a) is also plotted the baseline mean autospectrum
(—) and the 95% credible interval for FA-MCMC ().

more than -25dB at low frequencies to -10dB at high frequencies). Moreover, the
TBL noise is highly correlated over the microphones in the low frequency range,
which does not fulfill the requirements of the denoising methods investigated in the
present section. Therefore, low performance is expected from every methods at low

frequencies.

CCA and FA associate all the coherent field to the signal CSM, possibly including
the one from the TBL noise. Therefore, the signal CSM is overestimated in the
frequency range where the TBL noise is highly correlated over the microphones.
RPCA provides a more efficient denoising below 1.2 kHz, thanks to the value of
the regularization parameter (A = M~1/2 M being the number of sensors), which
drives the solution to a favorable low-rankness of the signal CSM, and slightly
prevent the autospectra from being overestimated.

The denoising performance provided by FA-EM is very variable over frequencies,
because the algorithm converges to local maxima that depend on the initialization
and the choice of the stopping criteria. Below 2.5 kHz, FA-EM provides a very
unstable solution, which sometimes leads to rather high denoising error as compared
to those from the other methods, whereas above 2.5 kHz, FA-EM identifies only
one equivalent source, which leads to an underestimation of the autospectra.

On the whole frequency range, the efficiency of CCA could be improved by a
better thresholding of the canonical coherences, but the appropriate thresholding is

hard to set in practice when no information about the real source CSM is available.
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4.1. Measurements in closed-section wind tunnel

Above 2.5 kHz, FA-MCMC provides an estimate of the mean source autospectra
very close to the measurement without noise, thanks to a sparse model that leads to
an estimation of around 2 uncorrelated components in the acoustic field. However,
the denoising error is limited by the convection effect on the acoustic propagation.
Indeed, the effect of the flow on the acoustic propagation imposes a lower bound
for the denoising error of Eq. (4.1.1). This bound can be evaluated numerically,

by simulating the source propagation with and without convection.
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Figure 4.7: Same error curves as in Fig. 4.6b, along with the error due to the convection
effect on the acoustic field (=) and the estimation error of the autospectra (==-).

Knowing the positions for the sources and microphones from the experimental
setup, two measurement CSMs are simulated. First, the baseline source CSM is

simulated using free-field Green functions:

ctklIrmnll2

H,, = (4.1.2)

47T||rmn||27

where r,,, = r,, — 7, is the difference between the microphone m and the source
n position vectors. Then, another acoustic CSM is simulated using a convected

propagation, in the far field and in a uniform flow (Sijtsma, 2004):

ezk:Armn

47\ /(M - 702 + B2

conv __
H>" =

(4.1.3)

with Aryp, = 25 (=M -7y + \/(M Pn)? + B2||Pmn|3) and where M is the Mach
number vector, 32 = 1 — ||M||3 and - indicates a dot product. The two simulated
CSMs are then injected in Eq. (4.1.1) (S,, being the convected acoustic CSM and
S*, the free-field one) and the error is plotted in Fig. 4.7. This error depends on the
frequency because of the directivity of the dipole. On this figure is also plotted the

estimation error of the autospectra due to the finite number of snapshots, determined
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Chapter 4. Experimental applications

numerically. One can see that the denoising error from 3.5 kHz is clearly limited by

the convection effect on the denoised spectra, but not by the estimation error.

4.1.3.2 Rank of the denoised CSMs

As several denoising methods rely on a low-rankness assumption for the acoustic
CSM, Fig. 4.8 shows the eigenvalues of the denoised CSM at 3 different frequencies.
On this figure, one can see that RPCA does not preserve the positive-semidefiniteness
of the denoised CSM. A positivity constrain could be added to the RPCA problem,
as proposed in Amailland et al. (2018). It is also visible that DRec performs a
reduction of the eigenvalues, until the smallest one reaches zero.

An overview of the eigenvalues of the denoised CSM against frequency is also
given in Fig. 4.9. The number of significant eigenvalues are plotted on this figure
— an eigenvalue is arbitrarily considered significant if it is greater than 1% of the
highest one. At low frequencies, all the methods overestimate the rank of the
denoised CSM, because of the correlation of the TBL noise over the microphones,
whereas FA-EM often provides only one significant eigenvalue (which is related
to the underestimation of the mean autospectra on Fig. 4.6a). Above 2700 Hz,
FA-MCMC provides a CSM with a number of significant eigenvalues close to 2,
with an estimation of only one source in the region where the acoustic signal is low,
corresponding to destructive interferences due to the tunnel geometry. The CSMs
denoised by CCA have a nearly constant number of significant eigenvalues, due to
the thresholding step during the denoising process. In general, the experimental
setup with 2 uncorrelated sources is favorable to the FA-MCMC approach which is

able, thanks to its strong sparsity constraint, to provide a very low-rank CSM.

4.1.4 Separation using FA-Corr
4.1.4.1 Estimation of the TBL parameters from NLLS

In order to estimate the Corcos’ parameters required to apply the separation process,
the NLLS procedure described in Sec. 3.3.1 is followed. First, the measurement
from the three positions of the rotating array, at configuration T30, is used, because
this antenna is supposed to be reliable for the characterization of the TBL. Then,
NLLS is also applied on the MEMS measurements, at configuration AT30 to see
if the strategy can be applied on measurements acquired with a less dense array
and in the presence of an acoustic field.

In Fig. 4.10 are plotted the estimated parameters from the two datasets, as a

function of the frequency. The longitudinal (along the stream direction, following
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Figure 4.9: Number of significant eigenvalues of the CSM denoised with DRec (--+),
RPCA with A = M~1/2 (ceceee), CCA (ceeeeeer), FA-MCMC (seeeeee ), FA-EM (sese ), also of
the CSM not denoised (------) and of the baseline source CSM (sseee) . The significant
eigenvalues are those greater than 1% of the highest eigenvalue.

the x-direction) and transverse (normal to the stream, along y-direction) correlation
lengths are calculated as:

Ue

o = — 4.1.4
T,y 27Tf0[z7y ( )

The two arrays and configurations give very similar results at low frequency, but
above 5 kHz, the interspacing of the MEMS microphones is too high to provide
an accurate estimate. The estimated convection speed follows a classical decrease,
as described in the literature (Arguillat et al., 2010; Schloemer, 1966). Similarly,

the evolution of the correlations lengths with frequency is well known (Farabee
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and Casarella, 1991).
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Figure 4.10: Convection speed (a) ; longitudinal (solid line) and transverse (dashed
line) correlations lengths (b) estimated using NLLS on the T30 measurements with the
rotating array (=) and on the AT30 measurements with the MEMS array (—).
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Figure 4.11: Beamforming maps obtained at k, = 0 from the NLLS regression
applied to the AT30 measurements. Identification of the acoustic (left) and the TBL
(right) contributions. The two maps are scaled with the same color bar (in dB). The two
black dashed lines indicate the acoustic domain.

In order to evaluate the capacity of the NLLS procedure to separate the acoustic
and TBL contributions, the k,-f beamforming maps are shown in Fig. 4.11.
The TBL part results from the Corcos’ model with the identified parameters
whereas the acoustic part results from the subtraction of the TBL CSM from
the measurement CSM.

Compared to the AT30 beamforming maps, the TBL contribution seems clearly

lowered, even if a ridge still persists around the convective wavenumber. The
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4.1. Measurements in closed-section wind tunnel

Fig. 4.11b is very similar to the map of the T30 measurements, which shows that
the Corcos’ model is able to well describe the TBL contribution in k, = 0.

4.1.4.2 Estimation of the TBL parameters from FA-Corr

Several approaches can be employed to apply the FA-Corr separation to the
measurements:

o use the TBL parameters inferred with NLLS as prior parameters and initial

values, and update these parameters during FA-Corr,

e use any arbitrary values for the TBL prior parameters and initialization, and

update them during FA-Corr,

o use the TBL parameters inferred with NLLS as prior parameters and initial

values, and do not update them,

o use any arbitrary values for the TBL prior parameters and initialization, and

do not update them.
As the solution provided by the MCMC solver is theoretically independent from the
initialization, the strategies mainly differs in the prior mean and shape. Another
strategy for the initialization of FA-Corr could be to employ the TBL parameters
inferred from the rotative antenna. However, this case is not treated here, in order
to remain in a general case where only the MEMS array is available. For all the
other parameters and priors, the same values as given in Sec. 3.4.1 are employed.

The updated TBL parameters from the two first strategies are shown in Fig. 4.12
along with the associated initial and prior values. The arbitrary initial values and
prior means are 8 = {U,, a,, a,, } = {16, 0.3, 1.2} and the arbitrary prior variance
is 32 = [4,0.001,0.05], which are deliberately chosen far from the values given by
the NLLS procedure, in order to evaluate the ability of the FA-Corr method to
update the TBL parameters to fit the data, given the priors.

The TBL parameters update by FA-Corr are similar with the different priors
and the two different initializations. This shows that the NLLS procedure is not
essential, although it is useful to reduce the iteration number of the sampler, and
therefore lower the computation time. For the present application, thanks to the
NLLS initialization, the number of iterations for one frequency line is reduced from
2500 to 1000, which reduces the computation time from 42 s to 17 s per frequency,
while an NLLS optimization takes less than 0.1 s per frequency.

The update of the parameters provided by FA-Corr is moderate, and it is shown
in the following that the effect of this small correction in terms of reconstruction

error of the acoustic and TBL parts is small.
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Figure 4.12: Initial values and priors for FA-Corr: from NLLS (---) and arbitrary
values (- --). Estimations from FA-Corr using NNLS (—) and arbitrary values (—) for
the initialization and priors.

4.1.4.3 Reconstruction of the acoustic part

The identification of the acoustic contribution is evaluated by plotting the au-
tospectra and the absolute value of the cross-spectra, as well as their associated
error obtained from the baseline measurement of the source only (configuration
A), in Fig. 4.13 and Fig. 4.14.

For the autospectra, the plotted error is defined as previously (see Eq. (4.1.1)),

whereas for the cross-spectra, the error is defined similarly:

|8t = Bua — [ding(Sz, - Saa)|

|-
1Sz, — [diag(S;)]l, (4.1.5)

50ff

On these figures are compared the results from the four strategies described just
before (in Sec. 4.1.4.2), along with the FA-MCMC (further refers to as FA) and
RPCA methods. The results are given for the low and medium frequency range

0-5000 Hz, since the differences between the methods are expected to be observed
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4.1. Measurements in closed-section wind tunnel

mainly at low frequency. Note that for these curve, the credible intervals are not
given first for a legibility reason, but also because the credible intervals depend on
the problem and the priors, and as FA and FA-Corr are based on different model,

comparing their credible intervals wouldn’t make much sense.

.
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averaged over the microphones. measurements of the sources without flow.

Figure 4.13: Mean acoustic autospectra and associated error from the denoising
with RPCA with A\ = M~1/2 (---), FA-MCMC (— .), FA-Corr with (—) and without
(---) updates of the TBL parameters starting from arbitrary values, with (—) and
without (---) update from NLLS values and the CSM not denoised (—). On (a) is also
plotted the baseline mean autospectrum (—) and on (b) the error due to the convection
effect (—).

Looking at the raw measurements, it appears that the cross-spectra decrease
much faster than the autospectra with the frequency. Above 2500 Hz, the measured
cross-spectrum is very close to the acoustic one, which shows that the contribution
of the TBL on the cross-spectra becomes very weak at this point. This is also
visible on the wavenumber beamforming of the measurements, on which the TBL
spot is low above this frequency. This corresponds to longitudinal and transverse
correlation lengths of the TBL contribution which become much lower than the
interspacing of most microphones. Therefore, the main difference between the
results from FA and FA-Corr appears in the low frequency range 0-2500 Hz, where
the convective ridge is dominant in the measurements. On this frequency range, the
autospectra and cross-spectra levels as well as the reconstruction error are much
lower for three of the four FA-Corr strategies. Among the four FA-Corr strategies,
the poorest one is unsurprisingly the one with an arbitrary initialization and without
update, which gives results similar to FA. The three others are equivalent for both

the autospectra and the cross-spectra. Among these four approaches, the one
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Figure 4.14: Mean absolute value of the acoustic cross-spectra and associated
error from the separation with RPCA with A\ = M ~1/2 (---), FA-MCMC (— ), FA-Corr
with (—) and without (---) updates of the TBL parameters starting from arbitrary
values, with (—) and without (- --) update from NLLS values and the CSM not denoised
(—). On (a) is also plotted the baseline mean cross-spectrum (—) and on (b) the error
due to the convection effect (=—).

with NLLS initialization and no update can therefore be recommended, since it
has the lowest computational cost.

Concerning the RPCA method, its performance is similar to FA at low fre-
quencies, and are then poorer than the Bayesian approaches, except when the

acoustic-to-TBL ratio becomes greater than -10 dB.

4.1.4.4 Reconstruction of the TBL part

Then, in order to evaluate the reconstruction of the TBL part, the autospectra and
the absolute value of the cross-spectra identified by each approach are plotted in
Fig. 4.15 and Fig. 4.16 respectively, along with the associated error based on the
measurement of the flow only (configuration T). No curve is plotted concerning
the cross-spectra from the FA method since it only infers the autospectra for
the TBL part.

The mean autospectra of the T and AT30 configurations overlap over most of
the frequency range, since the acoustic-to-TBL ratio is very low. Therefore, it is
difficult to evaluate the performance of the reconstructed TBL part by the various
methods, looking at the autospectra, and concerning the corresponding error, it
is bounded by the estimation error related to the limited number of snapshots.
However, it is possible to see that the RPCA results are poorer than the FA’s

one and the worst results are provided by FA-Corr with arbitrary initialization
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Figure 4.15: Mean TBL autospectra and associated error from the separation
with RPCA with A = M~1/2 (---), FA-MCMC (— ), FA-Corr with (—) and without
(---) updates of the TBL parameters starting from arbitrary values, with (—) and
without (---) update starting from NLLS values and the CSM not denoised (—). On
(a) is also plotted the TBL mean autospectrum (—) and the estimation error of the
autospectra (---) is indicated on (b).
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Figure 4.16: Mean absolute value of the TBL cross-spectra and associated error
from the separation with RPCA with A = M~1/2 (---), FA\MCMC (— ), FA-Corr with
(—) and without (- --) updates of the TBL parameters starting from arbitrary values,
with (—) and without (---) update from NLLS values and the CSM not denoised (—).
On (a) is also plotted the TBL mean cross-spectrum (—).

without update of the TBL parameters. These curves also prove that for this kind
of acoustic-to-TBL ratio, integrating a TBL autospectrum model such as those
found in the literature (Hwang et al., 2009) would not be very relevant.

Below 2000 Hz, the mean cross-spectra of the AT and T measurements overlap,

which indicates that the TBL dominates the cross-spectra. Therefore, at low
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Chapter 4. Experimental applications

frequency, the error on the cross-spectra is the same with and without applying the
separation process, except for RPCA for which most of the identified cross-spectra
are null, leading to an error that remains close to 0 dB.

The error curves from FA-Corr increases with the frequency because a large
number of the cross-spectra have an expected value very close to zero, and this
number increases with the frequency. These cross-spectra induce a high threshold
on the error, this threshold being related to the residual coherence between the
microphones, which in turn depends on the number of snapshots and also on the
small acoustic contribution present on the T baseline measurement. This error
curve could be plotted without the microphone pairs of low coherence, however, the
residual coherence threshold is difficult to determine in this case. Therefore, the
FA-Corr curves tend toward v/2 = 1.5 dB with the increasing frequency, which is the

estimation error for the limit case where all the cross-spectra have a null expectation.

4.1.4.5 Wavenumber beamforming maps

To complement the previous analyses, the wavenumber beamforming maps of
the acoustic part identified with FA are given in Fig. 4.17, as well as the two
contributions from the separation done by FA-Corr with the NLLS initialization
and without update of the TBL parameters in Fig. 4.18. As the autospectra are
not taken into account for the calculation of these maps, the dynamic is improved
and only the reconstruction of the cross-spectra are represented.

For the two methods, the beamforming map of the residuals is also given. The

residuals are calculated as follows for FA:

A

R™ =8, — (gaa + [&;ﬁ) (4.1.6)
and for FA-Corr:
RFA—Corr — S'yy _ (Saa + S’nn + S’EE> . (417)

Since FA is based on a diagonal TBL noise model, the acoustic cross-spectra
remain imprinted by the TBL, especially in the low frequencies. Therefore, the
acoustic map is very similar to the measurements (in Sec. 4.1.2). The beamforming
maps for the RPCA results are not given since, as FA, it improves mainly the
autospectra, which provides very similar results.

On the beamforming maps of the acoustic part identified by FA-Corr, the
convective ridge is well reduced as compared to the measurement map, and even

seems totally removed, except below 220 Hz, where the TBL noise is highly correlated
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Figure 4.17: Beamforming maps obtained at k, = 0 from the FA identification
applied to the AT30 measurements. Identification of the acoustic part (left) and the
residuals (right). The two black dashed lines indicate the acoustic domain.

over the microphones and where the sources emit at very low amplitudes. Up to
1500 Hz, the acoustic contribution seems to be not well reconstructed compared to
the baseline measurement (Fig. 4.3b), which means that even if the cross-spectra
are overestimated (visible on Fig. 4.14a), they do not carry any wavenumber
information related to an acoustic field. This could be confirmed by advanced
acoustic imaging (in space).

The acoustic contribution appears to be removed from the FA-Corr TBL maps
in Fig. 4.18b. However, as the missing acoustic contribution below 1500 Hz is not
visible on the residual map, it is surely identified within the TBL part.

On this residual map for the FA-Corr method, a small part of the convective
ridge persists, as well as a small part of the acoustic contribution. However, the
residuals from FA-Corr are lower than those from the FA approach, which shows
that the TBL model reduces the fitting error in general.

The separation quality from FA-Corr and the smallness of the residuals indicates
that a Corcos’ model, adapted such that its parameters vary with the frequency;,

is suitable for this kind of measurements.
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Figure 4.18: Beamforming maps obtained at k, = 0 from the FA-Corr identification
applied to the AT30 measurements. Identification of the acoustic part (top left), the TBL
contribution (top right) and the residual map (bottom). The 2 top maps are scaled with
the same color bar (in dB) and the bottom map is scaled on a smaller dynamic range.

The two black dashed lines indicate the acoustic domain.
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4.2. Application to inflight measurements

4.2 Application to inflight measurements

4.2.1 Experimental setup

The measurements are performed synchronously by 25 large microphones, flush-
mounted on the left side of the fuselage of a large Airbus aircraft. As shown
in Fig. 4.19 and Fig. 4.20, the array is behind the wing, specially designed to
characterize the engine jet and fan noise. On Fig. 4.19, the units are normalized
with the primary jet nozzle diameter. The distance between two consecutive lines
is about half a diameter. Each records lasts 60 s, and the CSMs are computed
with a resolution of 4 Hz, with 66% overlapping rate (the apparent number of
snapshots is thus 497).

normalized z axis
o
ez
Ly,
@
@

_4 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

normalized x axis

Figure 4.19: Sketch of the microphone configuration on the fuselage. The trailing edge
of the wing is drawn in solid line, as well as the rear part of the engine.

Figure 4.20: Picture of the microphone antenna, from Helffer (2018).

The measurements are performed for two configurations. The first one is at

idle engine speed, and is considered to contain mainly TBL noise. The second one
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Chapter 4. Experimental applications

is a cruise configuration, at high engine power. For these two configurations, the
aircraft is traveling at Mach number 0.85, at a classical cruise flight altitude
(about 10 km high).

The recording conditions are thus very different from the wind-tunnel experiment:
the number of sensors is much lower, the low Mach number is much higher and the
physical conditions are known to vary along the fuselage (Palumbo, 2012), which
may lead to inhomogeneous TBL pressure fields over the antenna. Moreover, the
microphone arrangement is very regular, which is prompt to produce aliasing
on the beamforming maps.

Note that in the following, the fuselage area on which the array is mounted
is assumed to have a negligible curvature, which in practice, can have an impact
on the TBL characteristics.

Also, thereafter, in order to fit a Corcos’ model over the measurements, the
angle of the flow has to be known. However, with the present array configuration,
the microphones are too far apart to be able to determine it precisely. On the
ky — k, beamforming maps, the convective ridge is imprinted by a strong aliasing,
which makes it impossible to study its tilt. Therefore, the flow is considered to
be orientated along the horizontal axis (z axis), which is a bit different from what
has been observed in the literature (Haxter and Spehr, 2019, 2017).

4.2.2 Beamforming maps of the measurements

The beamforming maps of the idle and cruise configurations are given in Fig. 4.21
scaled on two frequency bands. On these maps is also plotted the convected acoustic
circle (dashed line), which is strongly shifted toward the negative wavenumbers,
due to the high convection speed.

The cruise configuration shows a wavenumber content inside the acoustic circle,
compared to the idle configuration. A solid black line also indicates an approximated
location of the convective ridge. The position of the ridge increases linearly with the
frequency, which supposes that the convection speed is constant with the frequency.
The convective ridge is duplicated many times along the k, due to a strong aliasing.
The TBL contribution dominates the cross-spectra mainly up to Strouhal number 4
therefore, in the following, the separation results are shown only in the low frequency
range, corresponding to jet Strouhal number going from 0 to 3.85. This Strouhal
range is computed from equivalent jet diameter and velocity

_ID.

St
Ue’

(4.2.1)

103

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2020LY SEI087/these.pdf
© [A. Dinsenmeyer], [2020], INSA Lyon, tous droits réservés
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where the equivalent velocity U, and diameter D, are computed using the mass

flow rates of the primary and secondary jets, as described in Lu (1986).
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Figure 4.21: Beamforming maps obtained at k, = 0 from the measurements at idle
(left) and cruise (right) configuration, on a wide frequency band (top) and zoomed in
on the low frequency band (bottom). The four maps are scaled with the same color bar
(in dB), with 40 dB of dynamic range. The two black dashed lines indicate the acoustic
domain, and the solid line is an approximation of the center of the convective ridge.

4.2.3 Estimation of the TBL parameters

The Corcos’ parameters are first estimated using the NLLS procedure. The resulting
convection speed and correlation lengths are given in Fig. 4.22. On this figure
are also plotted the parameters estimated by FA-Corr starting from the NLLS
values. The microphone interspacings being high, the TBL parameters can be
estimated only in the low frequencies. As expected from the beamforming maps,
the estimated convection speed is nearly constant with the frequency. FA-Corr

only modifies the correlation in the low frequencies.
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Figure 4.22: Convection speed (a), longitudinal (b) and transverse correlations lengths
(c) estimated using NLLS on the measurement in idle configuration (---) and from
FA-Corr (—).

4.2.4 Comparison with a reference-based denoising

The noise affecting fuselage microphones is mainly attributed to the contribution of
the TBL. In cases where some noise-free reference signals are available, recorded
simultaneously with the microphone array signals, it is possible reduce the TBL
contribution over microphones measurements. Let & and y stand for a set of
reference and array microphone signals, respectively. The CSM of the outputs

conditioned by references is given by
Sy =Sy S, Suy- (4.2.2)

This formulation is accordance with Bendat and Piersol’s Conditioned Spectral
Analysis Bendat and Piersol (1980): autospectra on the diagonal of Sy are
corresponding to multiple coherent output spectra, the multiple coherence being
directly given by the ratio between diagonal terms of S, and Sy,.

Note that this denoising approach assumes that the noise affecting the output
signals is not contributing to references. References are not necessarily completely

noise-free, however the noise affecting references has to be independent from the noise
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4.2. Application to inflight measurements

contributing to the microphone array. Even if the assumptions and required data are
different for the reference-based denoising and the Bayesian separation approaches,
a good agreement between their results can be considered as a cross validation of
both approaches. Their separation results are thus compared in the following.
For the considered experimental application, reference signals are 6 accelerom-
eters and 9 microphones positioned on the inner side of the fuselage and inside
the aircraft cabin, respectively. Those sensors are used as references because they
are supposed to be much less affected by the TBL than external microphones :
the fuselage is known to act as a low-pass filter in the wavenumber domain, the
acoustic-to-TBL ratio of inside sensors is thus expected to be much more favorable.
Moreover, the remaining TBL contribution on references results from the TBL
excitation on the whole fuselage, that is expected to be almost incoherent with the
TBL contribution to the 25 microphones covering a very small part of the whole
fuselage. On the other hand, inside microphones are also disturbed by interior noise
sources, mainly the air conditioning system. However, this noise being independent

from the TBL, this should not cause any issue.

4.2.5 Estimation of the acoustic autospectra

In order to have an idea of the reduction of the TBL contribution over the diagonal
elements of the acoustic CSMs, the mean autospectra of the acoustic part identified
with several approaches are given in Fig. 4.23. The compared approaches are

o the reference-based denoising as described in the previous section,

o FA solved with the MCMC approach,

« the background subtraction method, introduced by Bahr and Horne (2017)
and described in Sec. 1.4.3, using the idle configuration as the background
noise,

o FA-Corr starting from NLLS TBL values and with the sampling of these
parameters.

Above the Strouhal number 11.5, as the TBL parameters estimated with NLLS
varies a lot, values averaged from the lower frequency lines are used for the starting
parameters of the FA-Corr approach.

The mean autospectra is about 3 dB higher for the cruise configuration than for
the idle configuration. But seeing the level of the various acoustic autospectra, such
an augmentation cannot be due to the acoustic contribution. Therefore, this must be
due to a modification of the TBL between the two configuration, which is probably
not due to the jet since it is rather far from the fuselage (about 6 primary jet nozzle

diameters away from the fuselage). Consequently, this difference in amplitude of
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Chapter 4. Experimental applications
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Figure 4.23: Acoustic autospectra averaged over the microphones, from the
raw measurements (—), background noise measurements (- - -), after reference-based
denoising (=), background subtraction (—), FA denoising (—-) and FA-Corr (—).
Vertical lines (-=--) indicate the blade passing frequencies.

the TBL contribution between the idle and the cruise configuration induces a rather
small reduction of the autospectra from the background subtraction method.

As for the wind-tunnel application, FA-Corr offers a greater reduction of the
autospectra than FA, especially in the very low frequency range (Strouhal between
0 and 3.85). On the Strouhal range 2.3-9.2, the measured spectra is dominated by
the BroadBand Shock-Associated Noise (BBSAN), generated by the dual-stream
underexpanded supersonic jet (Tam et al., 2009). This noise is produced by the
interactions of shock cells in the secondary stream with the convected turbulences in
the inner and outer shear layers. Harper-Bourne and Fisher (1973) propose to model
this BBSAN by regularly spaced partially coherent monopoles, which correspond to a
low number of acoustic sources, in accordance with the FA and FA-Corr assumption.
On this frequency range, the reference-based denoising and FA-Corr are in very
good agreement whereas the solution of FA is higher since its solution is a bit less
sparse than the FA-Corr’s one. In appendix E are plotted the eigenvalue distribution
for the measurement, and for the FA and FA-Corr solutions as a function of the
frequency (Fig. E.1) as well as the number of significant eigenvalues for the same
CSMs (Fig. E.2). These figures show that at least one eigenvalue clearly dominates
the measurements in the BBSAN frequency range. Whereas at higher frequencies
(above Strouhal number 9.2), no eigenvalue dominates the measurements and both
FA and FA-Corr fail to reconstruct any coherent spectra.

Note that this frequency corresponds to the limit above which the half convected

acoustic wavelength becomes smaller than the smallest microphone interspacing,
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4.2. Application to inflight measurements
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Figure 4.24: Beamforming maps of the acoustic part identified by three approaches.
The three maps are scaled with the same color bar as Fig. 4.21 (in dB). On each figure, the
two black dashed lines indicate the acoustic domain, and the solid line is an approximation
of the center of the convective ridge.

and the longitudinal correlation length also becomes smaller than this smallest
microphone distance. Therefore, the acoustic part becomes poorly identifiable
and the noise tends to be uncorrelated.

In this frequency range, the autospectra denoised by the reference-based de-
noising also decreases, but it may reach a lower bound given by the number of

reference channels used and the residual coherence between the references and

the outer microphones.

4.2.6 Beamforming maps of the separation results

4.2.6.1 Acoustic part from FA, background subtraction and reference-
based denoising

The cross-spectra of the acoustic part obtained with the reference-based, FA and
background subtraction approaches are now compared by means of wavenumber
beamforming maps, shown in Fig. 4.24. Compared to the AT measurement map,
the FA’s one is almost not modified, since FA relies on an uncorrelated noise
model. On the maps from the reference-based denoising and from the background
subtraction approach, which are comparable, the convective ridge is still visible,

but much lowered.

4.2.6.2 FA-Corr

The beamforming maps of the FA-Corr separation are given in Fig. 4.25. The color
bar and dynamic range are similar to the measurement maps (Fig. 4.21). Up to
Strouhal number 3, the estimation of the TBL noise is very similar to the measured

TBL noise at idle engine speed, which shows that the Corcos’ model is suitable to
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Figure 4.25: Beamforming maps obtained at k, = 0 from the FA-Corr separation.
Identification of the TBL (a) and the acoustic (b) contributions, and residuals (c). The
three maps are scaled with the same color bar as Fig. 4.21 (in dB), with 40 dB of dynamic
range. The two black dashed lines indicate the acoustic domain, and the solid line is an
approximation of the center of the convective ridge.

describe the TBL contribution in the low frequency range. Above Strouhal number

3, the TBL contribution becomes much lower and the identification is less precise.

On the acoustic map, most of the TBL contribution is removed, except in the
very low frequencies where a TBL contribution remains at high k, (visible on a k,-k,
map) which is then visible on the k,-f map due to the aliasing effect. The acoustic
content identified with FA-Corr has a distribution in the acoustic circle which is
similar to the one provided by the reference-based denoising, even if the two methods
are based on different requirements and hypotheses. Moreover, the map of the

residuals is low. These two observations tend to cross-validate the two approaches.
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4.8. Conclusion

4.3 Conclusion

In this chapter, several separation approaches have been tested on two different types
of measurement. First, the closed wind-tunnel measurements provide a favorable
framework for the validation of the methods developed during this thesis, since
the acoustic sources and the flow are well known and controlled.

Then, the inflight measurements are a practical application of an industrial
concern, where the measurement conditions are less favorable than the wind-tunnel
case (Mach number is 10 times higher, number of sensors is 3 times lower, the TBL
is inhomogeneous). Therefore, the performance are especially difficult to assess
since the flow is very little known and so is the expected acoustic field. A way
to validate the separation results is to apply some acoustic imaging process as
done in Dinsenmeyer et al. (2019), but some sources require a deep analysis to
evaluate whether they make physical sense (see a study about the aeroacoustic
sources from the same experiment in Leclére et al. (2020)).

Some trends for the FA and FA-Corr methods can be extracted from the
behaviors that are common to both experiments, which complement the numerical
studies made in the previous chapters. It appears that FA offers a good reduction of
the autospectra but the uncorrelated noise model shows some limits in low frequency
where the noise is more correlated and where the convective ridge overlaps the
acoustic circle in the wavenumber domain. The FA-Corr model is then more adapted
and offers a better separation of the acoustic and TBL parts.

NLLS is a convenient way of initializing the TBL parameters for these appli-
cations, which provides a fast convergence and even makes it possible to obtain
satisfying separation results by keeping the initial state of these parameters during
the separation. However, whether they are identified by NLLS or by FA-Corr,
the accuracy of the parameters depends on the array configuration, which should
preferably be composed of close enough sensors and ideally with some sensors

aligned in different axes related to the flow.
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Conclusions and further researches

Conclusions

The separation problem was conducted within a general framework where no reliable
measurement of the TBL contribution is available and where the sources generating
the acoustic field are not known (in terms of location, number, type of propagation,
etc). The literature review on this problem shows that some post-processing methods
have already been developed in addition to the experimental approaches to reduce
the effect of the TBL contribution on the measurements, especially concerning
the diagonal elements of the measurement CSM.

Some methods aiming at reconstructing only the diagonal of the CSMs are
computationally inexpensive and easy to implement, but their performance is
limited as soon as the noise is correlated over the sensors or when the number
of sources is very low, as shown on a numerical benchmark and on closed wind
tunnel measurements. Some advanced methods, RPCA and CCA provide a more
reliable reduction of the TBL noise, however their performance relies on the setting
of empirical parameters, a regularization parameter and a thresholding of the

canonical coherences, respectively.

In this context, an alternative post-processing approach has been proposed in
this thesis work. The inverse problem of separating the two contributions is based
on the differences of the statistical properties of the two pressure fields. The problem
is regularized and solved using a Bayesian framework. Two different models have
been proposed, the first one relying on an uncorrelated TBL contribution, as it
is the case for most of the methods from the literature. This approach is in fact
related to the well-known FA problem, adapted to quadratic input data (under the
form of a CSM). Like for the other methods in the literature, the assumption of
uncorrelated TBL noise is too restrictive in the low frequency range, but this first
FA model provides an insight into the possibilities of the Bayesian approach, as
compared to the existing methods. Applications on a numerical test case shows
some promising reconstruction of the acoustic autospectra and this model is thus
extended to give rise to a second approach aiming at improving the separation

performance at low frequency.

In this second model, called FA-Corr, the assumptions made for the identification
of the acoustic part are preserved, but the TBL noise model is modified, based

on the correlation model proposed by Corcos (1963). Some simple numerical test
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cases confirm that the problem is identifiable, provided a vague prior knowledge
of the TBL physical parameters. As the TBL pressure field often dominates the
measurements, it is possible to analyze the coherence loss and the phase shift between
the measurement points to get an idea of these parameters. If these parameters are
uncertain, they are treated as unknowns of the inverse problem and, the Bayesian
approach provides a range of probable values at the end of the separation process.

The last chapter, dedicated to some applications on two very different data sets,
highlights the strengths of the two proposed methods. The Bayesian framework
offers an intuitive way to regularize the problem, as well as some efficient numerical
tools among which the MCMC algorithms that ensure a global convergence of the
solver. This approach is very versatile and therefore, the model can be adapted,
for example to integrate more constraints, such as the factor shrinkage proposed
to enforce the low-rankness of the acoustic CSM. The methods do not require any
source propagation model, which is beneficial in cases such as inflight measurements
where the propagation is very poorly known.

However, these benefits also comes with some limitations. First, the calculations
involved in the numerical solver (the Gibbs sampler) can be cumbersome for the
non-specialists, as well as the design of the priors which has to be performed by
the user and which is crucial for the proper identification of the inverse problem.
Moreover, in Bayesian inference, the solution of the problem is driven by the data,
but also by the priors, which sometimes makes the result difficult to interpret. Also,
the problem being data-driven, the quality of the separation necessarily depends
on the quality of the data, and is therefore limited by the number of sensors, their
arrangement, etc. But the experimental applications have proved that an acoustic
array can be well adapted to extract the TBL and acoustic contributions, at low
and medium frequency. Note that this type of separation can also be used for
computational fluid dynamics simulations and, in this case, there is less constraints
on the position and number of the measurement points.

Finally, the various applications show how the developed approaches perform as
compared to those from the literature and it follows that in the low and medium
frequency range, FA-Corr is more efficient for the overall separation of the acoustic
and TBL contributions on the auto and cross-spectra. At medium frequencies, FA
is efficient for the denoising of the acoustic autospectra and at high frequencies,
the diagonal reconstruction methods from the literature are sufficient. In the very
low frequency range, where the acoustic and TBL wavenumber contents overlap,

the separation is still difficult to achieve.
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Conclusions and further researches

Perspectives

Many perspectives for this work can be proposed. First, concerning numerical
aspects for the resolution of the Bayesian inference problem, other samplers may
be implemented with various benefits and limitations. For example, Variational
Bayesian methods (Gelman et al., 2014, p. 331-338) can be employed to reduce
the computation time, but this comes without guarantee of global convergence and
requires more analytical development efforts. This may be useful to exploit very large
data sets. For examples, during inflight tests, several engine and flight configurations
may be recorded which provides a dataset that can be exploited globally such as in

Dinsenmeyer et al. (2019), but for which the MCMC are computationally expensive.

Then, the versatility of the Bayesian framework makes it possible to extend
the model to different needs. For application to flight test measurements, a spatial
evolution of the TBL along the fuselage could be taken into account, as proposed
in a model of Berton (2014), where the TBL parameters can vary locally. Other
uncertainties can be integrated to the model, such as the angle of attack of the flow
on the fuselage, which should improve the fitting of the TBL model. More advanced
TBL models could also be implemented instead of the Corcos’ one (Hwang et al.,
2009; Graham, 1997), and the Bayesian framework offers different indicators for
the selection of the most probable models (Ando, 2010). Moreover, in the field of
aviation, it is frequent that numerical simulations of the TBL on the fuselage are
available, so the possibility of using these simulation results as input for separation
should be considered. Concerning source models, in the present study, only the
random broadband acoustic sources have been taken into account, but other sources
models could be implemented, such as cyclostationary sources for the study of tonal

components of the aircraft engine noise.

Finally, many post-processing analyses of the separation results could be led. In
general, a deep study of the effect of the separation methods on acoustic imaging
maps should be conducted, in order to evaluate how the proposed separation can
improve the localization, quantification or directivity of the imaged sources, as
initiated in Dinsenmeyer et al. (2019). Acoustic imaging in space can be also an
appropriate tool to validate the separation results when no baseline measurement
is available. For example, in the case of the inflight measurements, the localized
sources from the different contributions identified with FA-Corr can be analyzed to

determine if they have any physical sense, in terms of location, directivity, frequency
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content, etc. Once the separation approach is assessed, the components of the
identified acoustic field can be physically analyzed to extract statistical properties
of the sources, especially for applications on commercial aircraft engine jet noise

whose noise generation mechanisms are still not fully understood.
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Matrix properties

See Petersen and Pedersen (2008) for more matrix properties.

B.1 Derivatives

Let a and b be two complex vectors and X, A and B be matrices.

0a”Xb .
= ab (B.1.1)
da"X"b
aic (X"AXB)= AXB + A"XB" (B.1.3)
9 —H
2 n|det(X)| = X (B.1.4)

0X

B.2 Kronecker product

vec (AX B) = (B" ® A) vec (X) (B.2.1)
(A® B)" = A" @ B" (B.2.2)

(A® B)"= A*® B (B.2.3)

(A® B)(C ® D) = (AC) @ (BD) (B.2.4)
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Appendices of the Chapter 2

C.1 Marginalized likelihood

The marginalization is done by summing the joint Probability Density Function

(PDF) [y;,c;] over the values of ¢;:

[y; | oo cg /ijcj de;
/yj|cj ¢;]de;
Yet,
—(yj—Le))" [0 | (yj—Lej) ge'le;

o e ¥ oty o @ep)[oi? |y i fon® |Lej (—(e))" (@7 [o0? | LIy )e;

ly; | ¢jlle;] o< e
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c; ch W 7% ﬂcj cj c; ch c;j
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Y

with Q. = (L[, 2|L + I,) ", (C.1.1)
and p., = Q. L"[0,%]y;. (C.1.2)
And C; can be identified as follows:
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C.1. Marginalized likelihood

n

And as A = [o,,?%] (I + (LL") ' [o2] )_1, this gives
——

-1
Ay

B = A +[0;?| = (0,2 + [0, (I + Ay '[o2))) (T + Ay o))
= (Ay+[o2))7".

Finally, the marginal likelihood is

[y; | co—¢,] = /[yj | ¢j]lej]d ey (C.1.3)
ox Cl/./\fc(uj,ch)dcj (C.1.4)
_ N(0,B), N (C.15)

with B = LL" + [o2].
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Chapter C. Appendices of the Chapter 2

C.2 Sampling of the scale parameter s;

Following the approach of Veit et al. (2008), as ¢, and L; are independent, the

sampling distribution for the scale parameters s, associated to each factor is given by

81, | 00] o |3k:|2(NS_M_1)[CkaLk | sk,

Ny M
[si | 00] o< [s "N M T ews] T (Lot (C.2.1)
7=1 m=1

with |s;|? = sps;. Writing the change of variable r, = |s;|?, leads to
N—M-1-1 _ Ho=20 0 -1 H
[Tk | OO] 7, s 270 Tk Zj Cij T~ Ckj e "k Zm L"LkHLmk,

Ns—M—1

-1
2
X T

—2 -1 H
e_rk"fk Scckk e_Tk Hzm Lkamk

Then 7y, follows a Generalized Inverse Gaussian (GIG) law such as:

Pr

2 pr—1 1
fara(r) = (Z”) oy i e 3kt s (C.2.2)
Pr

) (o)

where Y, (-) is the Bessel fonction of the second kind. Identifying each term, gives

a’?“k = QIYIC_QSCCMQ’
by, = 26> LI Ly,

1
=N, — M — -
P 2

Once 7 is sampled, we get
sk = /Tee’® with ¢ ~ U(0,27). (C.2.3)

The pseudo-code of the Gibbs sampler with the sampling of the scale parameter
is given in Alg. 7, in which the lines added for the scaling are highlighted in gray.

C.2.1 Effect of the scaling

In order to illustrate the effect of the sampling of a scale parameter on the exploration
of the posterior distribution by the Gibbs sampler, some numerical examples using
the same toy case as given in Sec. 2.4.4 are studied. The data are fisrt simulated in

presence of a low noise (SNR = 10 dB) and then for a higher noise (SNR = —10 dB).
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C.2. Sampling of the scale parameter sy,

Algorithm 7 FA solved with the Gibbs sampler, with the sampling of a scale
parameter.

Initialization: Lo, o2, 73, qo

Require: gyy,m, ay, b, a,, b,, a;,b, Noun
fori=1,..., Ny, do
Sample S, following Eq. (2.4.15)
Sample L; in Eq. (2.4.17)
Sample s; in Eq. (C.2.3)

Scale S.., and L; doing Ly, := ’;‘—: and ¢ := ¢Sk

Sample 4? in Eq. (2.4.20)
Update €2, using the new L and S,
Resample W, using the new (2.
Sample [; in Eq. (2.4.26)
Sample g; in Eq. (2.4.25)
Sample o in Eq. (2.4.21)
end for
return Posterior PDFs of S, L, o2, 4%, q

C.2.1.1 For an SNR of 10 dB

In order to evaluate the effect of the scaling, the chains for the absolute value
of the weighted factors |gxci| as well as the fo-norm of the vector of the mixing
matrix || Ly||2 are plotted in Fig. C.1. On this figure, the weight are sampled in
the posterior marginalized with respect to the factors.

As the model perfectly fits the data, the two approaches (with and without
scaling) provide the same denoising error. However, the scaling induces a larger
variance of the factors, and thus a better mixing of the chains, which is prompt
to produce a more efficient exploration of the posterior distribution.

The numerical case being favorable, the convergence is quickly reached (i.e the
chain of product L[q]c is quickly stationary. However, looking only at the chains
of Fig. C.1, the diagnosis of convergence is easier to do on the scaled parameters,
for which the chains are more clearly stabilized. These results are in accordance
with those of Veit et al. (2008).

C.2.1.2 For an SNR of -10 dB

The evolution of the factors and their associated number of non-null weights are
provided in Fig. C.2, based on the numerical experiment performs with an Signal-to-
Noise Ratio (SNR) of -10 dB. These results can thus be compared with the Fig. 2.7,

obtained in the same configuration, but without scaling.
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Figure C.1: Evolution of the factors and mixing matrix from the marginalized Gibbs
sampler, without (top) and with (bottom) the scaling strategy.
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Figure C.2: Evolution of the factors and their weights, from the non-marginalized (left)
and marginalized (right) Gibbs sampler, with the scaling strategy.

At a high level of noise, the effect of the scaling is less visible. Compared to the

Fig. 2.7, the chains with scaling given in Fig. C.2 rapidly stop increasing. However,
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C.2. Sampling of the scale parameter sy,

as the noise level is high, the chains are well mixed, due to the high variance of the

likelihood. In this case, the effect of the scaling becomes less significant.
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Appendices of the Chapter 3

D.1 Posteriors for the Gibbs sampler

In this section are given the expressions of the posterior distributions required
for the implementation of the CSM-based Gibbs sampler, to solve the separation

problem based on a correlated noise model.

Sampling of c

Using the expression of the likelihood in Eq. (3.2.16) and the Gaussian prior
on ¢ (Eq. (3.2.5)) leads to:

[ej | oo] o [¢5]ly; | o, (D.1.1)

o Nt ), (D12

with pe;, = QJQJLH(Ue_ﬂ(yj — pvj), (D.1.3)
and Q. = ([q|L"[o?|Llq) + [+ ")) (D.1.4)

For the implementation of the quadratic Gibbs sampler, the same approach as
in Sec. 2.4.2.1 is followed:

1
See | 00 = E{pe, p } + FWC (D.1.5)
1
= TcH (Syy +pSWpH - pSVy - Syl/pH> Tc + 7WC, (D16)

N
where W, is a random matrix that follows a complex Wishart distribution, with

N, degrees of freedom and variance matrix €2.. The expression of the CSMs S,

and Sy, are given later in Eq. (D.1.27).
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D.1. Posteriors for the Gibbs sampler

Sampling of v
Similarly, from the Gaussian prior assigned to v in Eq. (3.2.15),

) | oo o< [py][y; | oc],

X N(C(l'l’lljv QV)?

with p,, = QyprGeJ_Q (y; — Llqlc;),
TH

v

and Q, = (p"[o2lp +2,(0) %) .
For the CSM-based Gibbs sampler:

1
S, | oo~ E{Nujﬂfj} + W,

N,
=T, (S,, + L[q]S.[q/L" — L[q|S., — S,.[q|L")T,
1
+ EWW

(D.1.11)

(D.1.12)

where W, follows a complex Wishart distribution, with Ny degrees of freedom

and variance matrix €,. The expression of the CSMs S., and S, are given

later in Eq. (D.1.25)

Sampling of L

From the prior on L given in Eq. (3.2.4), the posterior is calculated as follows:

N

[A | oo] o< [A] H[yj | oo,
oc Ne(pa, ),

J

= (([q)S:lq) @ [o72) + KIu) "

and pr =Y (g @ Iu) [0, (y; — pvy)

= O, vec (fa_Qj(y- - pl/j)cﬂ(ﬂ)
= Q)\ vec (’7 J (SyC[qJ pSl/c’VqJ» :
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Chapter D. Appendices of the Chapter 3

The expression of the CSMs S and S, is given later in Egs. (D.1.25) and (D.1.29)

respectively.

Sampling of p

The complexe scalar parameter p is assigned a Gaussian prior (Eq. (3.2.12)), which

gives the following posterior:

[p | o] o< [p ]y | o], (D.1.20)

x Ne(pp, ), (D.1.21)

with Q, = (tr(02S,,) +0,7) (D.1.22)
and pu, =, (tr(af(Syl, - L(quc,,)) + afap) : (D.1.23)

The expression of the CSMs S, and S, is given later in Egs. (D.1.27) and (D.1.29)

respectively.

Expression of the cross-correlation matrices

The previous calculations require the expression of some cross-correlations, which
are detailed in the present section. The same approach as in Sec. 2.4.2 is followed,

for the implementation of the CSM-based Gibbs sampler.

Starting from,
Ns
Sye = >_yjcy, (D.1.24)
j=1

and replacing ¢; by its posterior mean value (given in Eq. (D.1.3)) leads to

Sye = (Syy — Sy) T. = S%. (D.1.25)
Similarly,
Ns
Sy =Yy, (D.1.26)
j=1

and replacing v by its posterior mean value (given in Eq. (D.1.9)) leads to
Sy = (Syy — Sylq|L") T, = S,,. (D.1.27)
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D.1. Posteriors for the Gibbs sampler

Again the calculations for S, starts from,
N
So =Y ¢y, (D.1.28)
j=1
and at this step, either v or ¢ can be replaced by its mean posterior. Choosing
arbitrarily to replace v leads to
Se, = (Sey — See[q|L™) T, = S.. (D.1.29)

As all these cross-correlations are inter-dependent, they have to be properly
updated during the Gibbs sampler, and some of them have to be initialized. An

example of initialization is given in Sec. 3.4.1.

Sampling of o?

The posterior expression of the additive noise is very similar to the one from the

uncorrelated noise model, although a little longer:

[o? | oo] o [62]]][y; | o], (D.1.30)
J

N
x TG(a.,b.) [ Ne (Elale; + puy, [02)), (D.1.31)

j=1
xZG(a.+ I;,b.+ T, ), (D.1.32)

with
T, =) (y; — Llqlc; — pv)) (y; — L[qle; — pv;)" (D.1.33)
J
:Syy + LIVqJScc[qJLH + pSWpH - Sycl—qJLH - LI—qJScy

- S, —pS,y, + L{q|S.p" +pS..[q|L". (D.1.34)

However, due to the iterative process, this expression can be slightly negative,
which can lead to a negative parametrization of the inverse-gamma. Therefore, an
alternative expression is proposed, replacing ¢; by ¢; | 00 = p., +x; with [x;] =
Nc(0,9,) in Eq. (D.1.33):

Ty~ (y; —pv; — LqIT (y; — pvy) (y; — pv; — LlqI T (y; — pv;))"

+ L{q]W [q|L" (D.1.35)
=(In — L[q|T.")(Syy + pSuup™ — Syup” — pSyy) Iy — Telq|L")
+ L{q]W [q|L". (D.1.36)
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Chapter D. Appendices of the Chapter 3

Sampling of | and ~2

The sampling posterior of 42 and [ are the same as the one from the previous

chapter, see Sec. 2.4.2.1.

Sampling of g

The sampling of q is the same as from the previous chapter.

Without marginalization

According to the Beta prior assigned to q (see Eq. (3.2.6)), the posterior is given by

[gxloo] o< ] I [yslan, oo, (D.1.37)
o e_tr([ae_QJTﬂQk))—qk 1n(%—1)’ (D.1.38)
o e 9k, (D.1.39)

with Ty given in Eq. (D.1.36).

With marginalization with respect to c
The calculation of the posterior distribution of g marginalized with respect to ¢

requires the expression of the marginal likelihood, given by:
[y; | 00—c,] = /[yj\cj][cj] de; (D.1.40)
Yet, by doing similar calculation as in appendix C.1,

ly; | ¢;lle;] o e Wimker—pei)" [on *Jwi-Les—prp) e [Y? o

—(ej—1;)"Qe; (cj—p5)
o< C2e 3 H ci \CG—Hj ,

with CQ X N([j(pl/j7 BQ), (D141)
and By = L[~*|L" +[a72|. (D.1.42)

Therefore, the marginalized likelihood is
[y; | 00—¢,] = Ne(pyy, Be). (D.1.43)
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D.1. Posteriors for the Gibbs sampler

Then, the posterior distribution of ¢ marginalized with respect to c is

[axloo—c] o< [gi] [ T[yjlo0-c], (D.1.44)

J
x e tr(B2(’-1k)71 (Syy_psuy_syupH+pvapH))_Ns In |B2 (Qk)

—aemn(i-1) (D.1.45)
oc e92(4k), (D.1.46)

Then, the probability of state change for each binary is evaluated the same way
as in Sec. 2.4.3.

150

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2020LY SEI087/these.pdf
© [A. Dinsenmeyer], [2020], INSA Lyon, tous droits réservés



Chapter D. Appendices of the Chapter 3

D.2 Complementary figures for the numerical val-
idations

D.2.1 Effect of the number of sensors on the chain con-
vergence

In order to evaluate the effect of the number of sensors on the convergence of the
sampler, the chains of the mean additive noise for different numbers of sensors
are plotted in Fig. D.1. The mean of the additive noise o? is representative of
the variance of the likelihood and thus gives an idea of the global convergence
of the Gibbs sampler.

2 :
—M=30
— 1.5 — M=60 H
)
=
g
g
gEf--==-=-- |jm======= T=--=
0 2,000 4,000
Iterations

Figure D.1: Chains of the mean additive noise for different numbers M of sensors. The
dashed line indicate the target value.

D.2.2 Effect of the frequency on the chain convergence

The convergence speed of each parameter can differ from one to another depending
on the data to fit. To illustrate this fact, the data set is simulated at a frequency four
times higher than the original one, that is 152 Hz instead of 38 Hz. This induces a
correlation length four times smaller than the original one, that is L., = 0.56x. The
chains for different parameters of the model are given in Fig. D.2, which shows that

the TBL parameters converge slower than for the simulation at lower frequency.
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D.2. Complementary figures for the numerical validations
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Figure D.2: Chains of several inferred parameters, from FA-Corr applied at a frequency
of 152 Hz, which is four times higher than the original simulation. The Corcos parameters
are sampled and the dashed lines indicate the target values.
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Appendix for the chapter 4

E.1 Inflight measurements — Eigenvalues of the
acoustic part

The five highest eigenvalues are plotted in Fig. E.1 as a function of the frequency
for three CSMs:

o the raw measurements in cruise configuration,

» the acoustic part identified by the FA approach,

» the acoustic part identified by the FA-Corr approach.
For the three CSMs, the number of significant eigenvalues (defined as higher than
1% of the greatest eigenvalue) is also plotted in Fig. E.2.
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E.1. Inflight measurements — Figenvalues of the acoustic part
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Figure E.1: Five highest normalized
eigenvalues of the acoustic CSM for each
frequency. Vertical lines (---) indicate
the blade passing frequencies.

Figure E.2: Number of significant
eigenvalues the acoustic CSM at each
frequency.
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Probabilistic approach for the separation of the acoustic and
aerodynamic wall pressure fluctuations

Abstract

With the emergence of MEMS and the overall decrease in the cost of sensors, the acquisitions
multichannel are becoming more widespread, particularly in the field of acoustic source
identification. The quality of source localization and quantification can be degraded by the
presence of ambient or electronic noise. In particular, in the case of in flow measurements,
the turbulent boundary layer that develops over the measuring system can induce pressure
fluctuations that are much greater than those of acoustic sources. It then becomes necessary
to process the acquisitions to extract each component of the measured field. For this purpose,
it is proposed in this thesis to decompose the measured spectral matrix into the sum of
a matrix associated with the acoustic contribution and a matrix for aerodynamic noise.
This decomposition exploits the statistical properties of each pressure field. Assuming that
the acoustic contribution is highly correlated on the sensors, the rank of the corresponding
cross-spectral matrix is limited to the number of equivalent uncorrelated sources. Concerning
the aerodynamic noise matrix, two statistical models are proposed. A first model assumes a
totally uncorrelated field on the sensors, and a second is based on a pre-existing physical
model. This separation problem is solved by a Bayesian optimization approach, which
takes into account the uncertainties on each component of the model. The performance
of this method is first evaluated on wind tunnel measurements and then on particularly
noisy industrial measurement, coming from microphones flushmounted on the fuselage of an
inflight large aircraft.

Approche probabiliste pour la séparation des composantes acous-
tique et aérodynamique dans les champs de pression pariétale

Résumé

Avec lapparition des MEMS et la diminution globale du cofit des capteurs, les acquisitions
multivoies se généralisent, notamment dans le domaine de l'identification de sources
acoustiques. La qualité de la localisation et de la quantification des sources peut étre
dégradée par la présence de bruit de mesure ambiant ou induit par le systéeme d’acquisition.
En particulier, dans le cas de mesures en présence d’un écoulement, la couche limite turbulente
qui se développe sur le systeme de mesure peut induire des fluctuations de pression de niveau
bien supérieur a celles des sources acoustiques. Il devient alors nécessaire de traiter les
acquisitions pour extraire chaque composante du champ mesuré. Pour cela, on propose de
décomposer la matrice spectrale mesurée en la somme d’une matrice associée a la contribution
acoustique et d’une matrice pour le bruit aérodynamique. Cette décomposition exploite
les propriétés statistiques de chaque champ de pression. En supposant que la contribution
acoustique est fortement corrélée sur les capteurs, le rang de la matrice interspectrale
associée se limite au nombre de sources décorrélées équivalentes. Concernant la matrice
du bruit aérodynamique, deux modeles statistiques sont proposés. Un premier modele
fait I’hypothese d’un champ totalement décorrélé sur les capteurs, et un second repose sur
un modele physique préexistant. Ce probleme de séparation est résolu par une approche
d’optimisation bayésienne, qui permet de prendre en compte les incertitudes sur chaque
composante du modele. Les performances de cette méthode sont d’abord évaluées sur des
mesures en soufflerie puis sur des données industrielles particulierement bruitées, provenant
de mesures microphoniques effectuées sur le fuselage d’un avion de ligne en vol.
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