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Tracking with time delays (t.d.) at 20 ms (black), 40 ms (red) and 60 ms (blue). Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop , the β p performance index J βp . Middle panels from left to right: time traces of the ι points at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι point at x = 0.4, the actuated ICRH power P ICRH , the LHCD power P LHCD , and the ι performance index J ι . The reference trajectories for ι and β p are denoted by green dashed lines, the power limits for the ICRH and LHCD are indicated by blue and magenta dashed lines, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Disturbance rejection of β p control. Top panel: time traces of β p setpoints (green dashed) and evolutions (black solid), with the associated parameter variation intervals: magenta areas indicate that ne is activated as a param- eter disturbance, while H 98 (y, 2) corresponds to the light purple areas and Z e is linked with cyan areas. The red dotted line represents the relative variation of each activated disturbance parameter. Middle panel: time traces of actuated powers P ICRH (blue solid) and P LHCD (red solid), as well as power ranges of ICRH (blue dashed) and LHCD (red dashed). Bottom panel: time traces of the relative error for β p , i.e. J βp . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.14 Disturbance rejection of ι control. Left-top panel: time traces of actuated powers P ICRH (blue) and P LHCD (red), power ranges of ICRH (blue dash) and LHCD (red dash). Left-bottom panel: time traces of the averaged relative error index for ι. Right panel: time traces of ι values (solid) and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control. Magenta, light purple and cyan areas are respectively indicating 30 % increase of ne , H 98 (y, 2) and Z e . . . . . . . . . . . . . . . . . .
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Disturbance rejection of simultaneous ι and β p control. Left-top panel: time traces of β p setpoints (green dashed) and evolutions (black), with magenta, light purple and cyan areas respectively indicating 30 % increase of ne , H 98 (y, 2) and Z e . Left-middle panel: time traces of actuated powers P ICRH (blue solid) and P LHCD (red solid), power limits of ICRH (blue dashed) and LHCD (red dashed). Left-bottom panel: time traces of the relative error for ι(x) (cyan solid) on x and β p (magenta solid). Right panel: time traces of ι values (solid) and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0. 3.21 Plasma identication experiment showing the responses of β p , li and ι 0 to the P LHCD@4.6GHz modulations on EAST. Upper panels: time traces of the (a) P LHCD@4.6GHz modulations in a chirping frequency waveform, tracked by a SIMC PI power controller, and of (b) β p (top), li (middle) and ι 0 (bottom) estimates by P-EFIT. Lower panels: time traces of the P LHCD@4.6GHz modulations in a PRBS waveform and of (d) β p (top), li (middle) and ι 0 (bottom) estimates by P-EFIT. Shaded gray region indicates that the LHCD system made faults and saturated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Simulated tracking of β p , li and q 0 by actuating P LHCD using the ARTAEMIS plasma simulator [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. Top panels: time evolutions of (a-top) β p and (a-bottom) its tracking error β p,err , and of (b-top) the LHCD power P LHCD and (b-bottom) vitual β p disturbance, δβ p . Middle panels: time evolutions of (c-top) li and (c-bottom) its tracking error li err , and of (d-top) the LHCD power P LHCD and (d-bottom) li disturbance, δli. Bottom panels: time evolutions of (e-top) q 0 and (e-bottom) its tracking error q 0,err , and of (f-top) the LHCD power P LHCD and (f-bottom) q 0 disturbance, denoted as δ[ 1 q 0 ]. Shade regions imply the existence of disturbances. All feedback algorithms were activated at 2.75 s. The blue, red and green lines correspond to the simulation results of the SIMC PI, H ∞ and LQI control, respectively. On the left, dashed black lines denote control targets. On the right, the dotted lines represent the LHCD power targets requested by a kinetic controller, while the solid lines are the achieved LHCD powers by a SIMC PI power controller. . . . . . . . . . . .

Plasma control experiments

showing the tracking of β p and li using the LHCD@4.6GHz power command on EAST. Upper and middle panels: time traces of (a, c) β p targets (blue), P-EFIT estimate (gray) and lowpass ltered P-EFIT estimate (red), and of (b, d) the requested P LHCD@4.6GHz (blue), the measured P LHCD@4.6GHz (red) and the PCS power command to the LHCD system (black). β p feedback was activated after 2.5 s right after the shaded light brown region. Bottom panels: time traces of li targets (blue), P-EFIT estimate (gray) and lowpass ltered P-EFIT estimate (red) and of the requested P LHCD@4.6GHz (blue) and the measured P LHCD@4.6GHz (red) and the PCS power command to the LHCD system (black). li feedback started from 2.75 s right after the shaded light brown region. Shaded cyan region indicates the LHCD power was saturated. Magenta dotted lines represent the power command limits of the LHCD power controller, while green dashed lines denote the power request limits of the kinetic controller. 

Résumé de la thèse Contributions

La thèse est consacrée au contrôle du prol de courant et des paramètres cinétiques du plasma dans des scénarios avancés de tokamak en utilisant des modèles pilotés par les données. Le contrôle simultané du prol de courant et des paramètres cinétiques est un dé pour plusieurs raisons:

• Une série d'instabilités magnétohydrodynamiques (MHD) et de microturbulences existent généralement à diérents endroits et dans diérentes phases des plasmas de tokamak, ce qui peut détériorer le connement du plasma et même entraîner des perturbations du plasma.

• Les sources d'entraînement et de dépôt de puissance qui régissent l'évolution du prol de courant et des paramètres cinétiques du plasma sont intrinsèquement non linéaires et variables dans le temps, et sont diciles à caractériser.

• Le nombre d'actionneurs de contrôle disponibles pour le contrôle du prol est limité, ce qui implique que la région de contrôle attractive des prols est restreinte.

• Il existe une série d'incertitudes liées au plasma pendant le processus de contrôle, notamment les dérives des paramètres du plasma dues aux instabilités MHD, aux impuretés et à la turbulence, les erreurs de mesure et d'estimation et les retards.

Les principales contributions de cette thèse peuvent être résumées comme suit:

• Modélisation et simulation de décharges plasma de tokamak en mode H et en régime permanent sur EAST à l'aide du code METIS;

• Identication d'un modèle d'espace d'état non linéaire de la dynamique essentielle du plasma en utilisant à la fois les approches du domaine temporel et du domaine fréquentiel;

• Le développement d'un schéma de contrôle robuste décentralisé et multifonctionnel H ∞ pour le contrôle simultané du prol du facteur de sécurité et de β p en utilisant le modèle piloté par les données à deux échelles temporelles identié à partir de simulations METIS étendues;

• Développement, évaluation et comparaison de trois techniques alternatives de commande robuste, à savoir la commande robuste H ∞ , la commande intégrale linéaire quadratique et la commande par modèle interne, à l'aide de simulations METIS étendues et d'expériences en boucle fermée sur le tokamak EAST;

• Utilisation des approches de recherche d'extremum basées sur Newton pour l'optimisation en ligne adaptative en temps réel des paramètres cinétiques sur les tokamaks EAST et ITER;

• Application du cadre de commande adaptative à référence de modèle à la commande magnétique et cinétique simultanée dans des scénarios de tokamak avancés;

• Conception du schéma de commande prédictive de modèle sans décalage pour le contrôle simultané du prol de courant du plasma et des paramètres cinétiques sur EAST;

• Test des algorithmes de contrôle à l'aide du simulateur non linéaire METIS;

• Mise en oeuvre des algorithmes de contrôle dans le système de contrôle du plasma (PCS) de EAST [START_REF] Xiao | EAST plasma control system[END_REF] et réalisation d'expériences en boucle fermée dans des scénarios opérationnels en mode H et en régime permanent pour valider les algorithmes de contrôle.

Aperçu de la thèse

Ce chapitre a présenté le concept de base de la fusion thermonucléaire, les tokamaks, les scénarios opérationnels avancés et le contrôle du plasma des tokamaks. Nous avons également introduit les sujets de la thèse, les réalisations antérieures dans cette discipline et les contributions majeures de la thèse. Le reste de la thèse est organisé comme suit:

• Le chapitre 2 présente la modélisation du transport dans le plasma du tokamak et l'identication non linéaire de la dynamique essentielle du plasma pour la conception du contrôle. Nous décrivons la modélisation de la diusion du courant dans le plasma, du transport de chaleur, du transport de quantité de mouvement et des évolutions de la densité du plasma. Ils constituent des sources importantes d'un outil intégré rapide de modélisation de tokamak, à savoir le code METIS. Même si les modèles de premier principe décrits dans ce chapitre présentent une description uide simple du transport du plasma dans les tokamaks, la complexité des modèles rend la conception et l'analyse du contrôle non triviales. Par conséquent, dans la deuxième partie du chapitre, nous proposons deux nouvelles approches d'identication non linéaire pour extraire la dynamique essentielle du plasma à partir de la simulation et des données expérimentales. La première approche combine la technique d'identication du sous-espace temporel avec l'identication itérative linéaire et non linéaire de l'erreur de sortie. Elle conduit à l'identication d'un modèle de réponse non linéaire à l'espace d'état du plasma qui présente une structure de modèle beaucoup plus simple. La deuxième approche est considérée comme une approche double de la première. Elle traite les données de simulation/expérimentation dans le domaine fréquentiel en combinant la technique du sous-espace fréquentiel et les techniques d'identication itérative linéaire et non linéaire des erreurs en sortie. Des exemples d'application sur le tokamak EAST utilisant à la fois des données de simulation et des données expérimentales sont fournis pour démontrer la validité des approches d'identication proposées.

Le chapitre 3 présente des algorithmes de contrôle robuste pour le suivi du prol du courant plasma et des paramètres cinétiques. Ce chapitre est divisé en deux parties, la première se concentrant sur le contrôle robuste décentralisé du prol q et du paramètre β p à l'aide d'un modèle à deux échelles temporelles piloté par les données. Des procédures de conception systématiques sont fournies et des simulations METIS approfondies sur EAST démontrent la performance et la robustesse du schéma de contrôle robuste proposé. Dans la deuxième partie, nous employons trois stratégies de commande robuste, à savoir la commande robuste H ∞ , la commande linéaire-quadratique-intégrale et la commande par modèle interne, pour la commande du prol q et de β p et nous eectuons des études comparatives. Des simulations et des expériences dans des scénarios de régime permanent en mode H sont eectuées pour évaluer, comparer et discuter les performances et la robustesse de ces trois techniques de contrôle.

Le chapitre 4 présente des algorithmes de contrôle adaptatif pour le suivi du prol de courant du plasma et des paramètres cinétiques. Les inadéquations entre le modèle piloté par les données utilisé pour la conception de la commande et la dynamique réelle du plasma sont inévitables, et il existe des perturbations imprévisibles qui peuvent accroître les inadéquations du modèle. Ce chapitre présente donc une idée alternative pour compenser les inadéquations du modèle par l'adaptation des paramètres. Nous explorons d'abord la stratégie de contrôle adaptatif sans modèle, c'est-à-dire le contrôle de recherche d'extremum basé sur Newton, pour le contrôle cinétique des plasmas des tokamaks avancés sur EAST et ITER. La validité de la commande est conrmée dans les simulations METIS en boucle fermée. Deuxièmement, les schémas de commande adaptative basés sur le modèle sont proposés, impliquant la commande adaptative à référence de modèle dans les modes direct et indirect. De nombreuses simulations METIS non linéaires en boucle fermée sont fournies pour montrer l'ecacité des algorithmes de contrôle adaptatif proposés. 

Nuclear energy and thermonuclear fusion

With the development of industry, economy and human society, the demand for renewable, environmentally friendly and sustainable energies is increasing [MacKay, 2008]. Solar, wind, hydro and geothermal power are among these types of energies that can be exploited for electricity production. However, the intrinsic disadvantages of the utilization of these energy sources may restrict their widespread application [START_REF] Manwell | Wind energy explained: theory, design and application[END_REF], Kalogirou, 2013, Dickson and Fanelli, 2013]. First, the exploitation of these energy sources strongly relies on their availability, which may constitute unstable energy sources inuenced by the wheather and climate changes. Second, the installation of the renewable energy devices is constrained by the locations where the sources should be plentiful, which may be far away from the cities and consumers. Third, the power density generated from these sources such as the sunlight and wind may not be suciently intense to support the numerous consumers.

These limits on the renewable energies motivate us to focus on nuclear energy. Power generated from nuclear ssion reactions has been utilized for electricity production for many years, which benets from the intense power density, controllable plant locations, no greenhouse gas emissions as well as tiny eects from the weather and climate [Marques, 2010]. However, the apparent disadvantages include the proliferation issues, the risks of nuclear safety events and the long-lasting nuclear wastes harmful to the environment [ Van der Zwaan, 2008]. In addition, the primary fuels for nuclear ssion reactions are conned by their total reserve quantity and cannot be re-generated on Earth, which makes the exploitation of nuclear ssion energy not sustainable. Inspired by stars like the Sun, an alternative source of nuclear energy can be derived from nuclear fusion reactions [START_REF] Mccracken | Fusion: the energy of the universe[END_REF]. Therefore, in the search of the clean and safe energy sources, a great eort has been devoted to the development of controlled thermonuclear fusion. In contrast to nuclear ssion, nuclear fusion does not produce long-lasting nuclear wastes that are harmful to the environment; meanwhile, the nuclear fusion fuels on Earth are more abundant which can assist in producing sucient energies for humanity for thousands of years [Freidberg, 2008, McCracken et al., 2005]. However, the construction of a nuclear fusion power plant is extremely problematic, which involves various physical and engineering challenges. Before elaborating the challenges, we briey describe the physics principles for nuclear fusion.

Among a series of nuclear fusion reactions, the most easily accessible one corresponding to the largest nuclear reaction cross-section occurs between the nuclei of deuterium D and tritium T , which are isotopes of hydrogen. Under certain condition, the nuclei of D and T can fuse and yield a helium nucleus and a neutron. The D -T reaction [Freidberg, 2008, Wesson andCampbell, 2011] can be concretely expressed as:

2 1 D + 3 1 T → 4 2 He(3.5MeV) + 1 0 n(14.1MeV) (1.1)
where He represents a helium nucleus, while n denotes a neutron. Each reaction produces 17.6 MeV of energy, with 3.5 MeV on the helium nucleus and 14.1 MeV on the neutron. The deuterium is physically stable and abundant in nature, which can easily be extracted from sea water, while the tritium is physically stable and does not appear in nature but it is a product of the nuclear reactions between Lithium and a neutron. Fortunately, Lithium is abundant on Earth and neutrons can be produced simply through nuclear reactions.

In order to achieve nuclear fusion, the nuclei of D and T should overcome the Coulomb barrier (the repulsive forces between two positively charged particles), which requires the nuclei possessing suciently high kinetic energy (temperatures), typically at 20 keV. This high level of temperature fully ionizes the fuels D and T to exhibit a state with the quasiequally distributed positive and negative particles dened as plasma state, implying that the fusion reaction must occur in the plasmas. An important concept for fusion reactions is called ignition, which denes a status where the fusion reactions can be self-sustained [START_REF] Wesson | Tokamaks[END_REF]. The condition to reach the ignition is provided by the fusion triple product criterion [Wesson andCampbell, 2011, Freidberg, 2008]. More precisely, it requires the triple product of the particle density n, temperature T and energy connement time τ E to exceed a critical value as:

nT τ E ≥ 3 × 10 21 m -3 keV s (1.2)
where n is in m -3 and T is in keV. τ E , dened as the ratio between the plasma thermal energy E th and the loss power P loss , quanties the connement performance in seconds.

There are three possible ways to achieve the ignition condition and realize self-sustained nuclear fusion reactions, i.e., gravitational connement, inertial connement, and magnetic connement. Gravitational connement [Pfalzner, 2006] utilizes the gravitational force to overcome the Coulomb barrier: this can only exist in the stars like the Sun. The basic idea of inertial connement is that a rapid pulse of energy is directed onto the surface of a fuel pellet leading to the pellet implosion, thus generating the high densities and temperatures required for fusion [START_REF] Velarde | Nuclear fusion by inertial connement: A comprehensive treatise[END_REF]. The energy connement time is thus allowed to be relatively small. Magnetic connement [START_REF] Braams | Nuclear fusion: half a century of magnetic connement fusion research[END_REF] is realized by conning the charged particles, such as D and T , with strong magnetic elds in a container and heating the particles to reach the required density, temperature and energy connement time such that the ignition occurs. There are various magnetic congurations, for example, the tokamak [START_REF] Wesson | Tokamaks[END_REF], the stellarator [Wakatani, 1998] and the reversed eld pinch [START_REF] Bodin | Reversed-eld-pinch research[END_REF], among which the tokamak conguration is the most promising one.

Tokamaks and advanced tokamak scenarios

The name of tokamak comes from the Russian acronym, TOroidal'naya KAmera s MAgnitnymi Katushkami, which means toroidal chamber with magnetic coils [START_REF] Wesson | Tokamaks[END_REF]. The tokamak device was rst invented by the Soviet physicists Andrei Sakharov and Igor Tamm in the late 1950s [Azizov, 2012]. In contrast to other magnetic fusion congurations, the evident merit of the tokamak device stems from the enhanced stability provided by its larger toroidal magnetic eld [START_REF] Wesson | Tokamaks[END_REF]. The tokamak has therefore been operated to achieve the highest value of the triple product nT τ E among all the magnetic fusion congurations and it is believed to be the most promising conguration for nuclear fusion reactors that can achieve commercial eletricity production [START_REF] Wesson | Tokamaks[END_REF].

(a) Layout of a tokamak(Image source: EFDA).(b) Magnetic eld topology in a tokamak (Image source: [START_REF] Blanken | Model-based realtime plasma electron density prole estimation and control on ASDEX Upgrade and TCV[END_REF]).

Figure 1.1: Layout of a tokamak and its nested magnetic eld topology.

A tokamak is a toroidal plasma connement system with its layout as shown in Fig. 1.1(a).

Table 1.1: Main parameters for the EAST and ITER tokamak.

EAST ITER major radius [m] 1.8 6.2 minor radius [m] 0.4 2.0 plasma current [MA] 1 15 toroidal magnetic eld [T] 3.5 5.3 EC [MW] 3.8 20 NBI [MW] 8 33 ICRH [MW] 3 20 LHCD [MW] 3.5 -

The plasma is contained in a toroidal vacuum vessel surrounded by toroidal and poloidal eld coils. The principal magnetic eld is generated by the toroidal eld coil currents, though the toroidal eld alone is not sucient to guarantee plasma connement. A poloidal magnetic eld is therefore required to balance the plasma pressure and maintain an equilibrium. Fortunately, the poloidal eld is primarily produced by the plasma current itself, which ows in the toroidal direction. The plasma current can be induced by varying the primary transformer circuit current, though fully non-inductive plasma current can be obtained by using only auxiliary current drive sources. The combination of the toroidal and poloidal magnetic elds give rise to the helical magnetic eld lines (See Fig. 1.1(b)). The outer poloidal eld coils can be leveraged to control plasma position, shape and vertical instability. In order to improve the plasma performance and stability, auxiliary heating and current drive systems are employed to inject neutral beams and launch electromagnetic waves into the plasma bulk. The commonly used heating and current drive systems comprise the neutral beam injection (NBI), electron cyclotron heating & current drive (ECH/ECCD), ion cyclotron resonance heating (ICRH) and lower hybrid current drive (LHCD).

There are various tokamaks being operated in the globe, including JET, DIII-D, ASDEX Upgrade, TCV, WEST [START_REF] Bucalossi | The WEST project: Testing ITER divertor high heat ux component technology in a steady state tokamak environment[END_REF], EAST [START_REF] Yuanxi | First engineering commissioning of EAST tokamak[END_REF] (Fig. 1.2(a)), NSTX [START_REF] Ono | Exploration of spherical torus physics in the NSTX device[END_REF] and KSTAR [START_REF] Lee | Design and construction of the KSTAR tokamak[END_REF]. Signicant progress has been made on dierent research topics in recent years, for example, magnetohydrodynamic instabilities, power exhausts, impurities, snowake divertor, wall conditioning and advanced tokamak operation. It is noticable that the feasibility of the nuclear fusion production has been experimentally demonstrated in the JET and TFTR tokamaks [START_REF] Wesson | Tokamaks[END_REF]. At present, the largest tokamak, i.e., the international thermonuclear experimental reactor (ITER) (See Fig. 2.2(b)), is being constructed in southern France, and aims at the rst plasma in 2025 [START_REF] Walker | Introduction to Tokamak Plasma Control[END_REF]. Its objective is to demonstrate the scientic and technological feasibility of fusion energy for commercial energy production and to test technologies for a demonstration fusion power plant [Rebut et al., 1995]. The present thesis is dedicated to the investigation of plasma control with examples on two superconducting tokamaks, EAST and ITER, whose main parameters are listed in Table 1.1.

In order to achieve a fusion burn on ITER, the advanced tokamak scenarios charater-ized by the high-pressure high-performance high-bootstrap current plasma are believed to be crucial [Jorin, 2007]. There are two typical advanced tokamak scenarios: the steady-state scenario and the hybrid scenario. First, the steady-state scenario is dened as a scenario whose plasma current is generated fully non-inductively by additional current drive systems such as NBI, ECCD, LHCD with a large amount of bootstrap current fraction (∼ 50%). One example of the steady-state scenario on ITER [Jorin, 2007] is described as follows: the plasma current is at 9 MA with a broad q-prole charaterized by low magnetic shear, the edge safety factor q 95 = 5, the normalized plasma pressure parameter β N ∼ 2.9, the H-mode enhancement factor is over 1.6, and the plasma density reaches 0.8 of the Greenwald value. This scenario can generate a total power of 350 MW, which results in the fusion gain factor of Q = 5. Second, the hybrid scenaro is dened as a scenario whose plasma current is primarily provided by the external current drive systems and the self-generated bootstrap current, with a small fraction of Ohmic current induced by the magnetic ux swing in the tokamak central solenoid. One example of the hybrid scenario on ITER [Green et al., 2003] is depicted as: plasma current is approximately at 13 MA, q 95 = 4, β N ∼ 2.0 -2.3, the H-factor is at 1.0 and f G = 0.85 to produce the power of 350-500 MW with Q = 5. Advanced tokamak scenarios have already been explored in existing tokamaks [Challis, 2004, Petty et al., 2017, Gong et al., 2019, Bock et al., 2017]. It should be mentioned that the achievement and sustainment of advanced tokamak scenarios are not straightforward because there are many disturbing phenomena that can potentially degrade the plasma connement, for example, the neoclassical tearing modes, edge localized modes and high-Z impurities. The active feedback control of essential plasma parameters/proles can therefore facilitate the reproducibility of the advanced tokamak scenarios. 

Tokamak plasma control

In this section, we attempt to sketch a concise map in the tokamak plasma control eld. In tokamak plasmas, there are many parameters and physical activities that should be properly controlled such that its operation can last. We can basically divide tokamak plasma control problems into the following categories:

• axisymmetric magnetic control: plasma current, position and shape control.

• magnetic and kinetic prole control: plasma current prole, density prole, toroidal rotation prole and temperature prole control.

• magnetohydrodynamic (MHD) control: sawtooth control, neoclassical tearing mode (NTM) control, resistive wall mode (RWM) control, error eld control and edge localized mode (ELM) control.

• detachment, power exhaust and radiation power control.

Axisymmetric magnetic control refers to the control of plasma position and shape in the poloidal plane. The objective is to conne the plasma in a specic position with the desired magnetic geometry (plasma shape) by adjusting the poloidal eld coil currents. This type of control has been extensively studied and is now mature in the tokamak plasma control community. Assuring the good magnetic control performance is vital to avoid the contact of the plasma with the surrounding walls and the concerntration of impurities from the wall materials in plasmas [START_REF] Walker | Introduction to Tokamak Plasma Control[END_REF]. The control of plasma shape can also facilitate the plasma connement and power exhaust. In [START_REF] Huang | Dependence of density uctuations on shape and collisionality in positive-and negative-triangularity tokamak plasmas[END_REF], it is conrmed that the negative triangularity can lead to a substantial reduction of turbulence amplitude, as well as of the spectral index and correlation length, consistent with the benecial eect on energy connement. In [START_REF] Labit | Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade[END_REF], the magnetic conguration featured by a double null (DN), can lead to a reduction of the magnetic shear in the extreme vicinity of the magnetic separatrix, which is a necessary condition for small ELM regimes with high connement. In [START_REF] Ryutov | A snowake divertor: a possible solution to the power exhaust problem for tokamaks[END_REF], it is argued that the snowake divertor conguration can potentially reduce both steady-state and intermittent heat loads on the divertor plates.

Magnetic and kinetic prole control comprise the control of plasma current, density, temperature and rotational proles. The active control of these proles is signicant because they are intimately associated with the plasma connement and performance charaterized by the energy connement time increase, the enhanced MHD stability and the growth of the bootstrap current fraction [START_REF] Walker | Introduction to Tokamak Plasma Control[END_REF]. Due to its signicance, extensive studies have been conducted in dierent tokamaks to demonstrate the eectiveness of prole control schemes in dierent operational scenarios. The control actuators involve the co-current/counter-current NBI systems, the LHCD systems, the ICRH systems, the ECH/ECCD systems. This thesis is dedicated to the control of the plasma current prole and kinetic parameters on EAST and ITER.

Magnetohydrodynamic instability control refers to the active control of a broad class of MHD instabilities in tokamak plasmas. A typical example is the real-time correction of the error elds caused by the non-axisymmetric magnetic elds. The external non-axisymmetric magnetic coil currents can be adjusted in real-time [START_REF] Lanctot | Error eld optimization in DIII-D using extremum seeking control[END_REF] to compensate the error elds. When the safety factor is smaller than 1, sawtooth crashes occur, which manifest themselves as a periodic collape of the pressure in the plasma core [START_REF] Walker | Introduction to Tokamak Plasma Control[END_REF]. When the safety factor has rational values such as 3/2 and 5/2 on some magnetic ux surfaces, NTMs appear and grow around these ux surfaces. The period and amplitude of sawtooth crashes and NTMs can be controlled in real-time by utilizing localized current drive ECCD [START_REF] Paley | From prole to sawtooth control: developing feedback control using ECRH/ECCD systems on the TCV tokamak[END_REF], Humphreys et al., 2006, Wehner and Schuster, 2012, Park et al., 2017[START_REF] Kong | Control of neoclassical tearing modes and integrated multi-actuator plasma control on TCV[END_REF].

Detachment, power exhaust, and radiation power control concerns the control of heat uxes released by the plasma bulk. The power exhaust to the divertor target can be controlled by plasma shaping [START_REF] Ryutov | A snowake divertor: a possible solution to the power exhaust problem for tokamaks[END_REF], Piras et al., 2009, Soukhanovskii et al., 2012]. An alternative strategy is to seed impurities, which can increase the fraction of the radiation power such that the heat loads onto the divertor can be relieved [START_REF] Kallenbach | Integrated exhaust control with divertor parameter feedback and pellet ELM pacemaking in ASDEX Upgrade[END_REF], Kallenbach et al., 2010, Kallenbach et al., 2015, Vijvers et al., 2014].

Problem statement and prior works

The thesis aims at the feedback control of the plasma current prole and kinetic parameters in advanced tokamak scenarios using data-driven models. The simultaneous control of current prole and kinetic parameters is challenging for several reasons:

• A series of MHD instabilities and microturbulence commonly exist in various locations and phases of tokamak plasmas that may deteriorate plasma connement and even lead to plasma disruptions [START_REF] Wesson | Tokamaks[END_REF].

• The current drive and power deposition sources that govern the evolutions of the plasma current prole and kinetic parameters are intrinsically nonlinear and time-varying, and are dicult to characterize.

• The number of available control actuators for prole control is limited, implying that the attractive region of prole control is restrictive.

• A variety of plasma uncertainties may exist during the control process, including plasma parameter drifts due to MHD instabilities, impurities and turbulence, measurement and estimation errors, and time delays.

Various control schemes for plasma prole control have been pursued both numerically and experimentally on dierent tokamaks, for example, DIII-D [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF][START_REF] Barton | Physicsmodel-based nonlinear actuator trajectory optimization and safety factor prole feedback control for advanced scenario development in DIII-D[END_REF], Schuster et al., 2017, Boyer et al., 2014, Barton et al., 2012], NSTX-U [START_REF] Goumiri | Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection[END_REF], Goumiri et al., 2017, Boyer et al., 2015], TCV [START_REF] Maljaars | Control of the tokamak safety factor prole with time-varying constraints using MPC[END_REF], Maljaars et al., 2017,Vu et al., 2016,Mavkov et al., 2018,Mavkov et al., 2017a] and JET [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], Laborde et al., 2004, Moreau et al., 2003]. Many of the control schemes are based on the rst-principles plasma models [START_REF] Witrant | A control-oriented model of the current prole in tokamak plasma[END_REF], while others are synthesized by using datadriven models identied from dedicated experimental and/or simulation data. In this thesis, linear data-driven models are used for feedback control design because we advert that given an equilibrium we wish to control the plasma, an identied data-based model is more reliable than the transport physics, especially for high connement plasma, as their dynamics cannot be fully predicted yet. First-principle-based models appear to be more dicult to generally and precisely describe the multi-scale plasma dynamics in advanced plasma scenarios, especially on the fast timescale kinetic evolutions. In view of these, [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], Moreau et al., 2011, Moreau et al., 2015] proposed a semi-empirical data-driven modelling approach that depicts the response of magnetic and kinetic proles to the variations of the heating and current drive (H&CD) actuators with a linear two-time-scale model structure arising from the rst-order singular perturbation expansion of the MHD equations governing plasma dynamics. More precisely, a black-box linear two-time-scale state-space model structure has rst been proposed in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF] to describe the plasma magnetic and kinetic responses for feedback control design on JET. The similar technique is extrapolated to the DIII-D and JT-60 tokamaks using the experimental data [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. Identication of linear state-space models for plasma poloidal magnetic ux prole and the electron temperature prole has been presented in [START_REF] Mavkov | Multiexperiment state-space identication of coupled magnetic and kinetic parameters in tokamak plasmas[END_REF]] using a time-domain approach. In contrast to the existing works regarding plasma model identication for prole control, we extend the plasma model structure into a nonlinear state-space form, which is anticipated to approximate the plasma dynamics with enhanced precision because the evolution of plasma current drive, power deposition, heat diusivities and bootstrap current are intrinsically nonlinear. Two alternative nonlinear identication approaches, handling data in time-domain and frequencydomain separately, are thus investigated.

The robust control strategies presented in the thesis are all synthesized from linear datadriven models identied from sampled simulation/experimental data in advanced tokamak scenarios. The robust synthesis for prole control using rst-principle-driven models has been proposed in [START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF] experimentally on the DIII-D tokamak. The extrapolation of the similar technique to the ITER prole control simulations is presented in [Barton et al., 2015a]. Linear quadratic integral (LQI) control based on a two-time-scale data-driven model was investigated in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF],Moreau et al., 2015] and extended to the ITER prole control simulations in [START_REF] Liu | Model-based magnetic and kinetic control of ITER scenarios[END_REF]. Data-driven models extracted from the TRANSP simulations are used to design an LQI controller for tracking of β N , I p and q 0 [START_REF] Boyer | Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP[END_REF].The extension of LQI to incorporating the feedforward and anti-windup is presented in [START_REF] Boyer | Feedback control of stored energy and rotation with variable beam energy and perveance on DIII-D[END_REF] for the simultaneous control of the stored energy and the toroidal rotation on DIII-D experimentally. In contrast to the existing works, we rst separate the two-time-scale data-driven model into three local models, i.e. fast kinetic model, slow kinetic model and magnetic model and then provide a systematic multi-functional robust synthesis approach using linear matrix inequalities (LMIs). In addition, we perform the comparative studies on the control performance of three linear robust control schemes, i.e., H ∞ robust control, the LQI control and the internal model control (IMC). The comparative study can provide some indications on the pros and cons of each robust controllers, which may be valuable for the robust prole control in advanced tokamak scenarios on ITER.

Evidently, there are some restrictions on the use of linear data-driven models for control. First, the data-driven models rely on the transport, current drive and power deposition models used in simulations and depend on the essential plasma parameters, for instance, plasma density and impurities in tokamak experiments. These can bring a lot of model uncertainties. In this regard, we provide adaptive control schemes in which the manipulated inputs are adaptively updated based on the real-time measured inputs and outputs. Two categories of adaptive controllers are attempted, i.e., the model-free extremum-seeking control (ESC) and the model reference adaptive control (MRAC). Up to our best knowledge, ESC has already been applied to the sawtooth period control [START_REF] Paley | From prole to sawtooth control: developing feedback control using ECRH/ECCD systems on the TCV tokamak[END_REF], Bolder et al., 2012], NTM control [START_REF] Wehner | Control-oriented modelling for neoclassical tearing mode stabilization via minimum-seeking techniques[END_REF] and error eld control [START_REF] Lanctot | Error eld optimization in DIII-D using extremum seeking control[END_REF]. Nonetheless, its extended version, i.e., the Newton-based ESC, has not yet been studied. The MRAC control in its direct and indirect versions [Ioannou andSun, 1996, Tao, 2014] are both taken into account in the present thesis, which is novel for the tokamak plasma control community.

As an alternate control strategy, the model predictive control (MPC) of q-prole has already been investigated in [START_REF] Maljaars | Control of the tokamak safety factor prole with time-varying constraints using MPC[END_REF], Maljaars et al., 2017] on ITER and TCV using the rst-principle-driven models. The oset-free MPC has been proposed in the control community [START_REF] Borrelli | Oset free model predictive control[END_REF], Maeder et al., 2009, Maeder and Morari, 2010], which is proved more powerful than the standard MPC for the control of uncertain linear systems. In this study, the oset-free MPC is combined with the two-time-scale data-driven model for the simultaneous control of q-prole and the poloidal plasma pressure parameter β p . Both nonlinear simulations and experiments on the EAST tokamak conrm the eectiveness of the proposed approach. We remark that, contrary to the other control schemes proposed in the thesis, the major disadvantage of the MPC scheme lies in the large computation time at each control cycle [START_REF] Maljaars | Prole control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller[END_REF].

Achievements

The main achievements of the thesis are summarised as follows:

• modelling and simulation of H-mode steady-state tokamak plasma discharges on EAST and ITER using the METIS code [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF];

• performing nonlinear state-space model identication of essential plasma dynamics on EAST and ITER using both the time-domain and frequency-domain approaches;

• developing a decentralized multi-functional H ∞ robust control scheme for the simultaneous control of q-prole and β p using a two-time-scale data-driven model identied from extensive METIS simulations;

• developing, evaluating and comparing three linear robust control techniques, i.e., the H ∞ robust control, the LQI control and the IMC control, with extensive METIS simulations and closed-loop experiments on EAST;

• using the Newton-based ESC for real-time adaptive online optimization of kinetic pa-rameters on EAST and ITER;

• applying the MRAC schemes to the magnetic and kinetic control in advanced tokamak scenarios on EAST;

• designing the oset-free MPC scheme for the simultaneous control of q-prole and β p on EAST;

• testing the control algorithms using the METIS plasma simulator;

• implementing the control algorithms into the EAST plasma control system (PCS) [START_REF] Xiao | EAST plasma control system[END_REF] and validate them by performing closed-loop experiments in an H-mode steadystate plasma scenario on the EAST tokamak.
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Outline of the Thesis

This chapter has presented the basic concept of thermonuclear fusion, tokamaks, advanced operational scenarios and tokamak plasma control. The thesis topics, prior achievements in the discipline and major contributions of the thesis are also introduced. The remainder of the thesis is organized as follows:

• Chapter 2 presents the modelling of tokamak plasma transport and nonlinear identication of essential plasma dynamics for control. We describe the modelling of plasma current diusion, heat transport, momentum transport, and plasma density evolutions, which constitute a major part of the METIS code. Even though the rst-principles models described in this chapter oer a simple uid description of tokamak plasma transport, the complexity of the models still makes the control design and analysis non-trivial. Therefore, in the second part of the chapter, we propose two novel nonlinear identication approaches to approximate the essential plasma dynamics from simulation and experimental data in tokamaks. The rst approach combines the time-domain subspace identication technique with nonlinear iterative predition-error identication, resulting in a linear-time-invariant (LTI) nonlinear polynomial state-space plasma dynamic model. The second approach, as a dual technique, handles the simulation/experimental data in the frequency-domain using the combination of the frequencydomain subspace technique and the nonlinear iterative predition-error techniques. Application examples on the EAST tokamak using both simulation and experimental data are provided to demonstrate the validity of the proposed identication approaches.

• Chapter 3 presents robust control algorithms for the tracking of q-prole and kinetic parameters. This chapter is divided into two parts, where the rst one focusses on the decentralized H ∞ robust control of q-prole and β p using a two-time-scale data-driven model. Systematic design procedures are provided and extensive METIS simulations on EAST demonstrate the performance and robustness of the proposed robust control scheme. In the second part, we develop three linear robust controllers, i.e., H ∞ robust control, the LQI control, and the IMC control for tracking of plasma kinetic parameters, with a cascade inner control loop for actuation tracking. Both simulation and experiments in H-mode steady-state scenarios are carried out to evaluate, compare and discuss the performance and robustness of each control techniques.

• Chapter 4 presents adaptive control algorithms for the tracking of the plasma kinetic parameters. The model mismatches between the data-driven model and the tokamak plasma dynamics are inevitable, and there are unpredictable disturbances that is likely to enlarge these model mistmatches. An alternative idea is to compensate the model mismatches with the real-time parameter adaptation, as described in this chapter. We rst explore the model-free adaptive control strategy, i.e., the Newton-based ESC, for the kinetic optimization in advanced tokamak plasmas on EAST and ITER. The validity is conrmed in the closed-loop METIS simulations. Secondly, the model-based MRAC schemes are proposed, involving both the single-input single-output (SISO) case and the multiple-input multiple-output (MIMO) case. Extensive nonlinear closed-loop METIS simulations are provided to show the eectiveness of the proposed MRAC algorithms.

• Chapter 5 presents the oset-free MPC for q-prole and β p in advanced tokamak scenarios. The control algorithm allows for the combination of the oset-free MPC with a linear two-time-scale data-driven model to acquire the zero steady-state tracking zero. The osetfree MPC consists of a proportional-integral (PI) Luenberger observer to estimate states and output disturbances which are then fed to the MPC controller for quadratic optimization. Both simulations and experiments conrm the eectiveness of the proposed control algorithm.

• In Chapter 6, we draw the conclusions of the thesis and provide perspectives for the future research. The modelling of tokamak plasma transport is a broad subject in the eld of nuclear fusion, which spreads from single uid modelling to comprehensive gyro-kinetic modelling [START_REF] Fasoli | Computational challenges in magnetic-connement fusion physics[END_REF]. In this chapter, we are interested in introducing a single uid modelling, i.e., the minute embedded tokamak integrated simulator (METIS) suite [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF], of essential tokamak plasma transport dynamics, comprising plasma current diusion, thermal transport, momentum transport and assumptions for density prole evolutions, and make use of this modelling tool to simulate H-mode high-performance plasma discharges on the EAST and ITER tokamaks. The METIS suite is an integrated tokamak modelling tool aiming 17 at the fast full tokamak plasma analyses and predictions. It combines 0D scaling laws for normalised heat and particle transport with 1D current diusion modelling and 2D equilibria [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF], which is built on a simplication paradigm of the plasma transport problem, and METIS allows for plasma scenario simulations in around 1 minute computation time, even for full ITER discharges with the pulse duration at ∼ 1000 s. Even though the METIS modelling appears to be simple, the objective of this code is to precisely describe the plasma prole dynamics in the timescale of the energy connement time. It has been demonstrated to be capable of simulating the plasma proles in H-mode high-performance plasma scenarios on dierent tokamaks and to be suitable for the shot-to-shot experimental scenario analyses as well as controller performance assessments [START_REF] Nilsson | Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak[END_REF], Moreau et al., 2013,Litaudon et al., 2013]. In the thesis, METIS is used as a tokamak plasma simulator that allows for the plasma discharge simulations on EAST and ITER and manifests itself as a testbed to evaluate the eectiveness and validity of the proposed model identication and feedback control strategies.

Achievement and reproducibility of high-performance steady-state plasma scenarios are essential for the current and next-generation tokamak plasma operation, which can greatly benet from precise control of crucial plasma parameters such as the plasma safety factor and rotational velocity [START_REF] Ferron | Feedback control of the safety factor prole evolution during formation of an advanced tokamak discharge[END_REF]. In order to control these parameters, the most direct and tractable way is to use the model-free proportional-integral-derivative (PID) control [Åström et al., 2006, Landau and[START_REF] Landau | [END_REF], which has been widely applied to industrial controls due to its simple implementation and attractive control performance. However, in the absence of a plasma dynamics model, the trial and error tuning of the PID parameters may take an extra amount of experimental time that is likely to cause undesirable plasma behaviour. Therefore, to improve the control eciency and reliability, a straightforward treatment is to rst develop a control-oriented plasma response model that appropriately depicts plasma response dynamics in a reduced-order model, based on which a feedback controller can then be synthesized.

There are two categories of techniques to build control-oriented plasma response models. The rst category is named the rst-principle-driven model that can be simplied from nonlinear partial-dierential-equations (PDEs) governing the plasma transport evolutions by a set of assumptions and simplication procedures [START_REF] Witrant | A control-oriented model of the current prole in tokamak plasma[END_REF], Ou et al., 2007, Barton et al., 2012], for example, linearization and spatial discretization. The second category resorts to system identication methodologies [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF],Moreau et al., 2013], which extract black-box plasma response models from the observed input-output data by assuming a stationary model structure. Ideally, rst-principle-driven models are preferred because they should have a universal domain of validity. However, the physical understanding of plasma transport and wave-plasma interaction in high-performance tokamak plasmas has not been fully claried such that many essential physical parameters can merely be estimated empirically via scaling laws [START_REF] Artaud | The cronos suite of codes for integrated tokamak modelling[END_REF], Artaud et al., 2018] and the parameter uncertainties are very dicult to be characterized and evaluated. Furthermore, in order to derive rst-principle-driven models that are suitable for plasma control, an important fraction of physical delity may be lost during the simplication process. Therefore, this chapter is dedicated to extracting control-oriented plasma response models from sophisticated nonlinear plasma simulation data and experimental data using a uniform system identication methodology.

The use of data-driven models for plasma current prole and kinetic control has already been studied. Initial works comprise the PID design using data-driven-based transfer function modelling of the plasma response dynamics for q-prole control on JET [START_REF] Moreau | Real-time control of the q-prole in JET for steady state advanced tokamak operation[END_REF], Jorin et al., 2003, Mazon et al., 2003]. Data-driven plasma response models that describe the coupled dynamics of magnetic and kinetic plasma evolutions using the singular perturbation theory are systematically investigated in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], and its validity is further conrmed by applying the system identication methodology considered in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF] to dierent tokamaks [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. In [START_REF] Kim | A potentially robust plasma prole control approach for ITER using real-time estimation of linearized prole response models[END_REF], static models for the response of the variations of plasma current prole and electron temperature prole with respect to those of auxiliary heating & current drive (H&CD) powers are identied online via the least-squares method based on which the feedback control actuations are computed and updated adaptively. Extensive nonlinear simulations on ITER with the CRONOS code [START_REF] Artaud | The cronos suite of codes for integrated tokamak modelling[END_REF] have demonstrated the eectiveness of the static data-driven models for the feedback control design. In [START_REF] Mavkov | Multiexperiment state-space identication of coupled magnetic and kinetic parameters in tokamak plasmas[END_REF], a systematic procedure is proposed to identify the coupled dynamics of the poloidal magnetic uxes and the electron temperature prole on DIII-D using the noise-free METIS simulation data in a lumped way. It assumes a LTI state-space model structure, initializes the model with a time-domain subspace method, namely multivariable output-error state-space (MOESP) identication [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF], and renes the model using the output-error identication technique [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]. Comparisons of the model-simulated output data with the corresponding output from nonlinear METIS simulations have shown the eectiveness of the identication procedure. However, the derived LTI state-space models were restricted to small output space dimensions to describe the plasma parameters proles and have not been further employed for control design and evaluations.

System identication is a subject to build mathematical models of dynamic systems from observed inputoutput data, which is lled with numerous classes of techniques depending on the identied model structures, e.g. linear, nonlinear, hybrid and non-parametric [Ljung, 2010]. Interested readers are referred to [Ljung, 2010, Noël andKerschen, 2017] for a review of this subject and to [START_REF] Ljung | Theory and practice of recursive identication[END_REF], Verhaegen and Verdult, 2007, Lennart, 1999] for reference textbooks. Since the objective of the thesis is to identify black-box models with a stationary model structure, e.g. a state-space model, for advanced control designs, we restrict our eorts to the topic of the black-box state-space model identication. In the literature, there are two major classes of state-space identication methods, i.e. the subspace methods and the prediction-error method (PEM) [Ljung, 2010, Yu et al., 2019]. The subspace methods are based on the fact that system matrices of the black-box state-space models can be related to certain subspaces of the structured block Hankel matrices lled with the observed input-output data [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]. One merit of this class of methods is that the identication is non-iterative. In order to handle the measurement noise, instrumental variables can be involved [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]. The idea of the prediction-error method is to minimize a cost functional dened as a mean squared prediction error between the sampled output and the one-step-ahead model prediction to obtain the optimal system model matrices. This method is iterative. The benet of the PEM method is that it has the best possible asymptotic accuracy. However, local minimum can often be obtained, implying its sensitivity to initial parameter estimate [START_REF] Yu | Constrained subspace method for the identication of structured state-space models[END_REF]. Combining the subspace method and PEM can naturally accumulate their advantages and compensate their limitations, which have already been conrmed in [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF] and applied to the LTI statespace identication in tokamak plasmas using noise-free simulation data [START_REF] Mavkov | Multiexperiment state-space identication of coupled magnetic and kinetic parameters in tokamak plasmas[END_REF].

In this chapter, we are dedicated to unifying the two classes of identication methods to both simulation (noise-free) and experimental (noise-corrupted) data in advanced tokamak plasma scenarios on EAST and ITER. A nonlinear model identication scheme for magnetic and kinetic parameter control is proposed using a combination of the subspace and PEM identication techniques, which aims to capture the dominant linear plasma response dynamics as well as certain nonlinearities caused by, for instance, the bootstrap eects or plasma-wave interaction. We consider the plasma dynamics to be a black-box polynomial nonlinear statespace (PNLSS) system. The objective is to identify an optimal model that approximates the plasma dynamics maximally in a prescribed model structure using the observed input-output measurements. Motivated by [START_REF] Paduart | Identication of nonlinear systems using polynomial nonlinear state space models[END_REF][START_REF] Mavkov | Multiexperiment state-space identication of coupled magnetic and kinetic parameters in tokamak plasmas[END_REF], we divide the nonlinear identication process into two stages: rst, a combination of the subspace and PEM techniques are employed to identify the dominant linear plasma responses of magnetic and kinetic parameters with respect to control actuations, and the linear identication problem is addressed both in time-domain and frequency-domain. Second, initializing the PNLSS model with the derived linear state-space (LSS) model, a prediction-error method is applied to identify the nonlinear terms while rening the linear model matrices. The drawback of the PNLSS model is that the number of estimated nonlinear parameters increases substantially with the growth of the polynomial degree, which motivates us to utilize a decoupling technique to describe them in a parsimonious representation [START_REF] Dreesen | Decoupling multivariate polynomials using rst-order information and tensor decompositions[END_REF].

The major contributions of this chapter are outlined as follows:

• Single uid modelling of plasma transport dynamics for plasma discharge simulations on EAST and ITER using the METIS code.

• Development of a systematic identication procedure for a linear state-space plasma model from simulation/experimental data in advanced tokamak plasma scenarios using both time-and frequency-domain identication approaches.

• Development of a systematic identication procedure for a nonlinear plasma response model based on the derived linear model to characterize nonlinear plasma dynamics.

• Validation of the eectiveness of the proposed identication procedures via comparisons of the model-predicted results with the associated simulation/experimental data on EAST and ITER.

In the remainder of this chapter, Section 2.1 presents the single uid METIS modelling of the plasma current density diusion, thermal transport, momentum transport and electron and ion density proles on the EAST and ITER tokamaks, with the important variable denitions listed in Table 2.1. In Section 2.2, we formulate the model identication problem, propose a nonlinear model structure, outline the identication procedure and provide guidelines to preprocess the observed data for model identication. The identication of the linear plasma dynamics is addressed using both time-domain and frequency-domain approaches. Furthermore, it is arranged to describe a PNLSS plasma model identication algorithm to characterize the nonlinear plasma dynamics. Identication results from both simulation and experimental data are presented to demonstrate the eectiveness of the proposed identication algorithms. We subsequently make a summary of the chapter and suggest possible improvements.

Tokamak plasma modelling: a single uid description

In this section, we describe the single uid modelling of tokamak plasma dynamics on the timescale of the energy connement time with the METIS code, and present the reference scenario simulations in H-mode steady-state scenarios on EAST and ITER.

Current density diusion

The plasma current diusion can be expressed in terms of the poloidal magnetic ux Ψ as in [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

∂Ψ ∂t = α 1 (t, ρ) ∂ 2 Ψ ∂ 2 ρ + α 2 (t, ρ) ∂Ψ ∂ρ + α 3 (t, ρ)j ni (2.1)
where

α 1 (t, ρ) = | ρ| 2 R 2 µ 0 σ || ρ 2 m 1 R 2 (2.2) α 2 (t, ρ) = | ρ| 2 R 2 µ 0 σ || ρ 2 m 1 R 2 ∂ ∂ρ   ln   ∂V ∂ρ | ρ| 2 R 2 F     + dρ m dt + ρ 2B 0 dB 0 dt (2.3) α 3 (t, ρ) = B 0 σ || F 1 R 2 (2.4)
Here, σ || represents the parallel conductivity, F is the diamagnetic function, j ni indicates the non-inductive current density sources, R the major radius, µ 0 the magnetic permeability of free space, ρ m the radius at the last closed ux surfaces, ρ is a normalized ux surface average radius, i.e. ρ = 1 ρm Φ πB 0 , where B 0 is the vacuum magnetic eld at the major radius R 0 , Φ being the toroidal magnetic ux. The notation is an identier indicating a ux surface average. The neoclassical electrical conductivity σ || is computed as [START_REF] Sauter | Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime[END_REF]:

σ || = c neo (ρ)k spitzer (ρ)
T e (t, ρ)

3 2 Z ef f (t, ρ) (2.5)
where c neo (ρ) is the neoclassical correction prole, k spitzer (ρ) the constant Spitzer coecient prole, T e (t, ρ) the electron temperature prole, and Z ef f (t, ρ) the eective charge prole. the second electron cyclotron resonance heating power W P ICRH the ion cyclotron resonance heating power W q safety factor prole A.U. ι inverse safety factor prole A.U.

The non-inductive current density comprises self-generated bootstrap current density j boot and the auxiliary driven current density j auxi , of which j boot is calculated as [START_REF] Sauter | Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime[END_REF]: Here k boot , L 31 , L 32 , L 34 are coecients that depend on the magnetic conguration of a plasma equilibrium and R pe is the ratio between electron and total pressures, i.e. R pe = p e /p the ratio between electron p e and total pressure p. The auxiliary current density j auxi is decomposed as:

j boot = k boot ∂Ψ/
j auxi = n N BI n=1 j N BI,n + n EC n=1 j EC,n + n IC n=1 j IC,n + n LH n=1 j LH,n (2.7)
where n N BI , n EC , n IC , n LH are respectively the number of actuators of the neutral beam injection (NBI) system, the electron cyclotron (EC) current drive system, the ion cyclotron (IC) current drive system and the lower hybrid (LH) current drive system. j N BI,n ,j EC,n ,j IC,n ,j LH,n are the non-inductive current density proles driven by the n th NBI, n th EC, n th IC and n th LH systems, respectively.

The total current density driven by the n th NBI injector j total N BI,n is computed by an analytical solution of the Fokker-Planck equation [START_REF] Wesson | Tokamaks[END_REF] in which both trapping eects and energy diusion are neglected:

j total N BI,n = p N BI,n (ρ)e E b τ s N BI,n ξ b    υ 3 0,n + υ 3 c,n υ 3 0,n 2υ 3 γ,n 3υ 3 c,n    υ 0,n υc,n 0 z 3 z 3 + 1 2υ 3 γ,n 3υ 3 c,n +1 dz (2.8)
where p N BI,n (ρ) is the n th NBI power deposition prole, τ s N BI,n the n th NBI slowing down time, υ c,n and υ γ,n are the critical velocities for the n th NBI injector and υ 0,n the fast ion initial velocity for the n th NBI injector. The electron back-current j back N BI,n is computed following the formulation in [Lin- Liu and Hinton, 1997], which is then subtracted from the total NBI current to obtain the driven current density due to the NBI injections, i.e. j N BI,n = j total N BI,n -j back N BI,n .

The total current driven by the n th EC system is computed as [START_REF] Krivenski | Improving current generation in a tokamak by electron cyclotron waves[END_REF]:

I EC,n (t) = s EC,n Γ LH,EC η EC,n (t)P EC,n (t) n e (t, x EC,n (t))R ref (t) (2.9)
where s EC,n is the direction of the wave injection for the n th EC system, i.e. s EC,n = 1 for the co-current wave injection, s EC,n = -1 for counter-current injection. Γ LH,EC is the synergy factor between the EC and the LH systems. P EC,n (t) is the total deposited power of the n th EC system, x EC,n (t) is the maximum power deposition position of the n th EC system, n e (t, x EC,n (t)) the electron density at x EC,n (t). The EC current eciency is η EC,n = γn 5+Z ef f , where Z ef f is the eective charge number and γ n is computed as [START_REF] Krivenski | Improving current generation in a tokamak by electron cyclotron waves[END_REF]:

γ n = 1 + 100 Te(t,x EC,n ) 10 3 1 -1 + 5 + Z ef f 3(1 + Z ef f ) ( √ 2u t,n ) 5+Z ef f 1+Z ef f -1
(2.10) where

µ t,n = a ref x EC,n (1 + cos(θ pol )) R ref + a ref x EC,n cos(θ pol ) (2.11)
Here T e (t, x EC,n ) is the electron temperature at the power deposition position of the n th EC system x EC,n . a ref is the small radius while R ref denotes the major radius. θ pol represents the poloidal angle of the n th EC system. We assume that the current density driven by the n th EC system j EC,n (t, ρ) = k j EC ,n (t)p EC,n (ρ), where p EC,n (ρ) is the power deposition shape for the n th EC system, which is a Gaussian curve with the width δ EC,n at the location x EC,n . k j EC ,n (t) is time-varying and computed as:

k j EC ,n (t) = I EC,n (t) ρ m 1 0 p EC,n (ρ)V (t, ρ)dρ
(2.12)

Where I EC,n is the total EC-driven current for the n th EC wave launcher.

The total driven current by the n th IC system is computed as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

I IC,n (t) = s IC,n P IC,n (t)η IC,n (t) R ref ne(t,ρ=0) 10 20 
(2.13) where s IC,n (t) is the direction of the n th IC wave injection, i.e. s IC,n = 1 for co-current injection, while s IC,n = -1 for counter-current injection. P IC,n (t) is the total power deposition from the n th IC system. η IC,n (t) is the current drive eciency for the n th IC system. n e (t, ρ = 0) is the electron density at the magnetic axis. It is assumed that the driven current density by the n th IC system is j IC,n (t, ρ) = k j IC ,n (t)j shape IC,n (t, ρ), where the driven current density shape for the n th IC system is expressed as:

j shape IC,n (ρ)(t, ρ) = n e (t, ρ)T e (t, ρ)σ || B out (t, ρ) 3 V (t, ρ) (2.14)
n e (t, ρ) and T e (t, ρ) are respectively the electron density and temperature proles. σ || is the parallel electron conductivity. The normalized coecient k j IC ,n (t) is computed as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

k j IC ,n (t) = I IC,n (t) ρ m 1 0 j shape EC,n (t, ρ)V (t, ρ)dρ (2.15)
where I IC,n (t) is the n th IC-driven current.

The total current density driven by the n th LH system is expressed as:

j LH,n (t, ρ) = η LH,n (t, ρ) P LH,n (t, ρ) n e (t, ρ) 1 - 5+Z ef f (t,ρ) 2(1+Z ef f (t,ρ)) 5 + Z ef f (t, ρ) (2.16)
where n e (t, ρ) is the electron density prole. Z ef f (t, ρ) is the eective charge prole. P LH,n (t, ρ) is the local power deposition prole for the n th LH system. η LH,n is the current drive eciency for the n th LH system [Fisch, 1978].

Thermal transport

Even though many eorts have been made in tokamak fusion research, the modelling of the heat transport in the core of tokamak plasmas features large uncertainties. In order to simultaneously capture important physics characteristics for heat transport and minimize the computational time, a mixed 0D-1D approach is adopted in two steps by separating the temporal and spatial dimensions [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF].

In the rst step, the total plasma thermal energy W th is calculated by a rst-order ordinary dierential equation (ODE) as:

dW th dt = - W th τ E + P heat -P rad (2.17)
where τ E is the energy connement time in second, which, in tokamaks, is most commonly expressed with the help of a scaling law. For H-mode plasmas, the scaling law ITERH-98P(y,2) is applied, while for L-mode the scaling law ITERL-96 (th) is used. P heat and P rad are the total heating and radiation powers respectively, which can be expressed as:

P heat -P rad = P ohm + P auxi + P α -P brem -P cyclo -f line P line (2.18)
Here, P ohm is the ohmic power, P auxi represents the auxiliary deposited power, which is given by P auxi = n N BI n=1 P N BI,n + n EC n=1 P EC,n + n IC n=1 P IC,n . P α is the total power arising from generated α particles due to D-T reactions, which is derived as P α = 1 0 p α,th (t, ρ)dρ, where p α,th (t, ρ) is the α power density prole, and is computed as:

p α,th (t, ρ) = eE α,T (d,n)He 4 n D (t, ρ)n T (t, ρ) συ T (d,n)He 4 [T i (t, ρ)]
(2.19)

Here E α,T (d,n)He 4 = 3.6 MeV, e is the unit of electric charge, n D and n T are respectively the deuterium and tritium density proles. συ T (d,n)He 4 [T i (t, ρ)] is the D-T fusion reaction cross section [START_REF] Bosch | Improved formulas for fusion crosssections and thermal reactivities[END_REF] which is closely related to the ion temperature prole T i (t, ρ).

P brem , P cyclo and P rad are respectively the total power radiated by thermal Bremsstrahlung, cyclotron and line radiation, of which P brem is calculated as:

P brem (t) = ρ m 1 0 p brem (t, ρ)V dx (2.20)
where p brem (t, ρ) is the Bremsstrahlung radiation power density [START_REF] Rybicki | Radiative processes in astrophysics[END_REF]:

p brem (t, x) = 4.8562 × 10 3 n e (t, ρ) 10 20 T e (t, ρ) 10 3 k=j C gaunt (T e (t, ρ), Z k )Z 2 k n k (t, ρ) 10 20 (2.21)
where n e (t, ρ) is the electron density prole, while T e (t, ρ) represents the electron temperature prole. C gaunt (T e (t, ρ), Z k ) is the Gaunt factor [START_REF] Matthews | Studies in JET divertors of varied geometry. II: Impurity seeded plasmas[END_REF] while Z k and n k (t, ρ) are the charge number and density for the k th ion species, respectively.

The cyclotron radiation is modelled as [START_REF] Albajar | Improved calculation of synchrotron radiation losses in realistic tokamak plasmas[END_REF]: (1 + 0.12 T e,c P 0.14 a,c

P cyclo = 0.0384(1 -r w ) 1/
) -1.51 K(α n , α T , β T )G( R ref a ref ) (2.22)
where G( To derive the line radiation power, we rst compute the combined radiation power due to both bremsstrahlung and line radiation, which is P rad = ρ m 1 0 p rad (t, ρ)V dρ, where p rad (t, ρ) is the combined radiation power density due to both Bremsstrahlung and line radiation, which is modelled as:

R ref a ref ) = 0.
p rad (t, ρ) = n e (t, ρ) k∈species l(Z k , T e (t, ρ))T i (t, ρ) (2.23)
Here, l(Z k , T e (t, ρ)) is the cooling rate based on the ADAS database [START_REF] Summers | Atomic data and modelling for fusion: the adas project[END_REF]. The line radiation power is then expressed as P line = P rad -P brem . f line ∈ [0, 1] is an ad hoc coecient.

The second step is to calculate the electron and ion temperature prole by assuming ∂Te(t,ρ) ∂t = ∂T i (t,ρ) ∂t = 0, we could then derive the following equations:

∂T e ∂ρ = - ρ 0 V Q e (t, ρ)dρ n e (t, ρ)χ e (ρ)V | ρ| 2 , ∂T i ∂ρ = - ρ 0 V Q i (t, ρ)dρ n i (t, ρ)χ i (t, ρ)V | ρ| 2 (2.24)
where Q e (t, ρ) and Q i (t, ρ) are respectively electron and ion power deposition proles, and χ e and χ i respectively indicate the electron and ion heat diusivity proles. Q e and Q i are expressed as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

Q e = n N BI n=1 Q e N BI,n + n EC n=1 Q e EC,n + n IC n=1 Q e IC,n + n LH n=1 Q e LH,n + Q Ω + Q e f us -Q ei -Q e brem -Q e cyclo -Q e line (2.25) Q i = n N BI n=1 Q i N BI,n + n EC n=1 Q i EC,n + n IC n=1 Q i IC,n + n LH n=1 Q i LH,n + Q Ω + Q i f us + Q ei -Q i brem -Q i cyclo -Q i line (2.26)
where Q e N BI,n ,Q e EC,n ,Q e IC,n , Q e LH,n are respectively the power density prole for the n th NBI, EC, IC and LH system deposited on the electrons, Q Ω the ohmic power density, Q e f us the fusion power density on the electrons. Q e brem , Q e cyclo and Q e line are respectively the total power radiated by thermal Bremsstrahlung, cyclotron and line transition from electrons.

Q i N BI,n ,Q i EC,n ,Q i IC,n
and Q i LH,n are the power density prole for the n th NBI, EC, IC and LH system deposited on the ions, respectively. Q i brem , Q i cyclo and Q i line are the total power radiated by thermal Bremsstrahlung, cyclotron and line transition from ions, respectively. Q i f us the fusion power density on the ions. Q ei is the equipartition power from electrons to ions.

The electron diusivity from the magnetic axis to the pedestal top is expressed as χ e (t, ρ) = χ 0 e (t)χ 1 e (t, ρ), where χ 0 e (t) is a coecient that is used to ensure that the total thermal energy derived from equation (2.24) is consistent with the result of equation (2.17), while χ 1 e (t, ρ) is the diusivity shape, which is modelled as χ 1 e (t, ρ) = 2.514×10 -4 |∇neTe| neB 0 q 2 . The ion diusivity coecient is modelled as χ i (t, ρ) = µ e,i χ 0 e (t)χ 1 e (ρ), where µ e,i is a constant factor. The timevarying electron diusivity coecient χ 0 e (t) is derived by solving the energy conservation equation, which is expressed as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

3 2 ρ ped 0 (n e ρ ρ ped ∂T e ∂ρ dρ + n i ρ ρ ped ∂T i ∂ρ dρ)V dρ = W th -W ped (2.27)
where ρ ped is the normalized radius of the pedestal top, which is xed at 0.95, while W ped is the pedestal energy. After simple mathematical deductions, we could derive the time-varying electron diusitivity coecient as:

χ 0 e (t) = 3 2 1 0 n e ρ ρ ped -ρ 0 V Qedρ neχ 1 e (t,ρ)V | ρ| 2 dρ + n i ρ ρ ped -ρ 0 V Q i dρ n i µ e,i χ 1 e (t,ρ)V | ρ| 2 dρ V dρ W th -W ped (2.28)
Then the electron and ion diusivity coecients can be obtained, thus the electron and ion temperature proles are computed as:

T e (t, ρ) = T ped,e - ρ ρ ped ρ 0 V Q e dρ n e χ e (t, ρ)V | ρ| 2 dρ
(2.29)

T i (t, ρ) = T ped,i - ρ ρ ped ρ 0 V Q e dρ n e χ i (t, ρ)V | ρ| 2 dρ
(2.30)

Momentum transport

In this section, we present the momentum transport modelling in METIS for the nonlinear simulation study. The estimation of the toroidal rotation is performed mainly in order to account for the neutral beam injection eects and the intrinsic plasma rotation. The eects of magnetic eld ripple losses, fast ion losses and fast ion momentum transport cannot be described by simple models and they are neglected in METIS. Nevertheless, the model is sucient to characterise NBI-dominated plasmas, even for a reactor such as ITER.

The total momentum R tot is dened as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

R tot = 1 0 N ion k=1 m p A k n k Rυ φ,k V dx (2.31)
where m p represents the proton mass, A k the number of the nucleons in the k th ion species, n k the k th ion density. υ φ,k is the toroidal velocity of the species k, R the major radius, N ion the total number of dierent ion species.

Analogous to the thermal energy computation, the volume-averaged toroidal angular momentum can be expressed as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

dR tot dt = - R tot τ φ + N N BI k=1 S φ,N BI,k + S φ,intrinsic + S φ,RF + S φ,E + S φ,ripple + F n,0 (2.32)
where τ φ is the toroidal rotation connement time, dened as τ φ = f τ,rot min(τ E , τ ii ), and f τ,rot is an adjustable factor with the order O(1). τ ii is the ion connement time dened as

τ ii = e 1 0 n i T i V dx 1 0 (Q i +Q e,i )V dx
, and τ E is the plasma energy connement time.

S φ,N BI,k denotes the rotational torque from the k th NBI system, which is computed as:

S φ,N BI,k = k∈{H,D,T } m k 1 0 R axe (x) P N BI,k (x) eE k,0 2eE k,0 m k µ k (x)V (x)dx (2.33)
Here, m k denotes the k th injected species mass. R axe represents the average major radius of each poloidal ux surface, P N BI,k (x) the power deposition prole due to the k th NBI source, µ k (x) the pitch angle prole, E k,0 the injected energy of the k th ion species, and e the electron charge.

The intrinsic torque S φ,intrinsic is modelled as S φ,intrinsic =

Γ φ υ φ,self τ φ
, where Γ φ is a conversion factor between velocity and momentum, expressed as:

Γ φ = 1 υ φ,shape 1 0 k∈species m p A k n k Rυ φ,shape V dx (2.34) υ φ,shape = 1 0 υ φ,shape V dx 1 0 V dx
, where υ φ,scaling is the rotation velocity following the Rice scaling [START_REF] Rice | Intermachine comparison of intrinsic toroidal rotation in tokamaks[END_REF].

The toroidal torque arising from the interaction between RF waves and the plasma is given by [START_REF] Eriksson | Toroidal plasma rotation induced by fast ions without external momentum injection in tokamaks[END_REF]:

S φ,RF = -(2D LH -1)R ref n n ||,0 P LH,th c - s EC R ref P EC 2c (2.35)
Here, D LH is the directivity of the LH waves, and s EC is a constant xed at 0.5, R ref denoting the major radius of the geometric center, c is the light velocity, P LH,th is the LH power absorbed by thermal electrons while P EC is the total EC power, and n n ||,0 is the parallel refractive index.

The toroidal torque due to the parallel electric eld is modelled as [START_REF] Kim | Neoclassical poloidal and toroidal rotation in tokamaks[END_REF]:

S φ,E || = m e em p Γ φ τ φ M ef f Z ef f I Ω + I runaway n e S p (2.36)
where M ef f is the plasma eective mass, I Ω and I runaway are respectively the ohmic and runaway currents, n e the volume-averaged electron density while S p is the plasma poloidal cross section.

S φ,ripple is the rotation torque due to ripple eects. The toroidal rotation at the plasma edge can be slowed down by the friction eects from cold neutrals, which is modelled as

F n0 = -m p 1 0 k∈H,D,T A k n k συ cx R axe υ φ n 0 V dx (2.37)
where n 0 is the neutral hydrogen isotope density, and συ cx denotes the charge exchange reaction cross section.

The edge toroidal rotation is calculated using a simple model that only considers the convective eect, which reads:

R rot,edge = N N BI k=1 S φ,N BI,k + S φ,intrinsic + S φ,RF + S φ,E + S φ,ripple k∈species A k n k k∈speciesZ k n k m p n out R ref -F n,0 (2.38)
Here, n out is the ion exchange ux through the LCFS due to interchange, cold neutrals, pellet injection and neutral beam injection. Note that the interchange component plays an important role for the ion exchange ux.

Plasma density proles

Since particle sources and sinks at the plasma edge are the result of complicated recycling phenomena that depend on plasma wall interaction and are quite dicult to describe using rst principle models, a simple modelling technique is used to characterize the essential features of the density prole evolution in METIS. Primary attention is given to the electron density prole evolution, which is determined by 3 parameters, i.e. the line-averaged electron density n e (t) along the vertical chord crossing the plasma through the magnetic axis, the peaking factor υ e (t) = n e,0 (t) ne (t) (with n e,0 (t) denoting the central electron density) and the electron density at the plasma edge n e,a (t). The peaking factor and edge electron density are computed by using scaling laws.

For L-mode plasmas, the shape of the electron density prole is modelled as [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]:

n e (t, ρ) = (n e,0 (t) -n e,a (t))(1 -ρ 2 ) νn(t) + n e,a (t) (2.39)
where ν n (t) is dened as ν n (t) = υ e (t) -1.

For H-mode plasmas, where an electron density pedestal is present, the electron density prole is determined by three points: the central electron density (ρ = 0), the electron density at the pedestal top (ρ = 0.95) and the edge electron density (ρ = 1). The electron density at the pedestal top is maximized by constraining the spatial derivative of the electron temperature prole ∂Te(t,ρ) ∂ρ < 0. A piecewise cubic Hermite polynomial interpolation is then used to compute the electron density prole at the other points ensuring that ∂ne (t,ρ) ∂ρ | ρ=0 = 0.

METIS reference scenario simulations

In this section, we present the open-loop simulations of H-mode steady-state plasma discharges on the EAST and ITER tokamaks using the METIS code.

2.1.5.1 Simulation of an H-mode steady-state plasma discharge on EAST

The EAST tokamak is a D-shaped fully superconducting divertor tokamak intended for the high-performance steady-state operation, with a major radius at 1.8 m, a minor radius at 0.4 m and the elongation of 1.5 -2.0. The reference scenario simulated by the METIS code is a fully non-inductive upper-single-null (USN) H-mode plasma discharge, based on the shot number #62946. In this discharge, the toroidal magnetic eld B T = 2.5 T, the central electron density n e0 ≈ 3.5 × 10 19 m -3 and plasma current I p = 0.42 MA. The discharge was obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s with an H-mode enhancement factor H 98 (y, 2) ∼ 1.1. The q-prole exhibited a small negative shear in the plasma core, with minimum q around 1.5 and q 0 ∼ 2 on axis. The plasma proles were retrieved from the EFIT magnetic equilibrium reconstruction code using real-time magnetic and kinetic measurements, for instance, interfero-polarimetry data from the POINT diagnostics [START_REF] Liu | Initial measurements of plasma current and electron density proles using a polarimeter/interferometer (POINT) for long pulse operation in EAST[END_REF], Liu et al., 2016a, Huang et al., 2017]. The initialization of the METIS code is preset to be consistent with shot #62946 at 3.1 s. The plasma poloidal magnetic equilibrium is shown in Fig. 2.1(d) and is consistent with the real-time EFIT reconstruction at 3.1 s. The plasma density prole used in the METIS code is tted with the equilibrium reconstruction from the same shot using the POINT diagnostics [Liu et al., 2016a]. The plasma current and density proles are set to be consistent with the EAST experiments at the at-top phase. The METIS transport coecients, power and current driven models are tuned to have the internal inductance l i and the diamagnetic energy W dia consistent with the EFIT reconstructions and have the temperature and current deposition proles consistent with the TRANSP simulations [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. The simulation results of the reference scenario in METIS are therefore shown in Fig. 2.1 and the electron density, temperature proles, the current drive and power deposition proles at 6.78 s are shown in Fig. 2.2. The total current prole is approximately equal to the non-inductive current prole with the loop voltage at -20 mV, indicating an H-mode steady-state operational scenario.

Simulation of an H-mode steady-state burning plasma discharge on ITER

The ITER tokamak is the largest superconducting divertor tokamak in the world and is under construction in southern France with the rst plasma foreseen in 2025. This subsection presents the METIS simulation of an H-mode steady-state (i.e. fully non-inductive) burning plasma scenario in ITER. The magnetic equilibrium used in METIS is shown in Fig. 2.3(d), with the major and minor radius at 6.2 m and 2.0 m, respectively. The toroidal magnetic eld is B T = 5.3 T, central electron density, n e0 ≈ 6.524 × 10 19 m -3 , central ion temperature T i0 ≈ 40 keV and plasma current I p = 9 MA. Fig. 2.3 shows the time evolutions of important plasma parameters from the METIS simulation. The plasma scenario is obtained with 33 MW of co-current NBI, 20 MW of ECRH, 40 MW of LHCD and 20 MW of ICRH. The transition to H-mode occurs at 1.5 s with an H-factor, H 98(y,2) ∼ 1.5. At the steady-state equilibrium, the poloidal plasma pressure parameter β p , the normalized plasma pressure parameter β n and the internal inductance l i are respectively 2.48, 3.03 and 0.85. The q-prole is monotonic along the normalized radius, with q 0 ∼ 1.25 on axis and q 95 ∼ 5.6 near the magnetic separatrix. The loop voltage is very small at around 2 mV, conrming that this scenario is an H-mode steady-state scenario. Fig. 2.4 illustrates the temperature, density proles, the current drive and power deposition proles at 925.9 s. One can notice that the NBI-driven, LH-driven and bootstrap current constitute the major current fraction in the core region, while the current prole in the pedestal region near the separatrix is mainly composed of the bootstrap current. The plasma heating is primarily provided by the generated α particles from nuclear fusion reactions. The EC heating is localized at the normalized radius 0.4, while the power deposition prole of NBI, IC and LH are broader than that of EC, but much smaller than the heating from the generated α particles.

Conclusion of Section 2.1

In this section, the modelling of the plasma current density diusion, thermal and momentum transport as well as density prole have been described. Simulations of H-mode steady-state plasma discharge on the EAST and ITER tokamaks via the METIS code are presented as well. It should be noted that the METIS modelling not only involves the models presented in sub-sections 2.1.2 to 2.1.4, but also involves a number of other models, for example, the scrapeo-layer (SOL) models, impurity models and MHD instability models. Since the objective of the thesis is to develop advanced identication methods using data and provide robust and adaptive solutions for the control of magnetic and kinetic parameters in advanced tokamak scenarios, the modelling details presented above are ample to assist in understanding the relevant plasma dynamics and provide the physical insights in developing eective control algorithms. 2.2 Identication of PNLSS plasma models

Model structure

Plasma magnetic and kinetic transport dynamics can be modelled as MHD uid equations [START_REF] Hinton | Theory of plasma transport in toroidal connement systems[END_REF], which are intrinsically nonlinear time-varying PDEs. However, in view of model identication, it is preferable to describe plasma response models as nonlinear ordinary dierential equations (ODEs), which may be obtained by discretizing the PDEs in the spatio-temporal domain. In this regard, the sampled input-output data from interpretative plasma simulations or tokamak plasma experiments can therefore be used for model identication. We describe the plasma dynamics in a general nonlinear discrete state-space form as:

x(t + 1) = f (x(t), u(t)) y(t) = g (x(t), u(t)) (2.40)
where u(t) ∈ R nu represents the model inputs at time t, x(t) ∈ R n denotes the model states at time t, while y(t) ∈ R ny indicates the model outputs at time t. A more convenient model structure to characterize the combined eects from the dominant linear dynamics and the auxiliary nonlinear dynamics can be expressed as:

x(t + 1) = Ax(t) + Bu(t) + f N L (x(t), u(t)) y(t) = Cx(t) + Du(t) + g N L (x(t), u(t)) (2.41)
where

A ∈ R n×n , B ∈ R n×nu , C ∈ R ny×n , D ∈ R ny×nu
are LSS matrices that depict the linear system dynamics. f N L (x(t), u(t)) and g N L (x(t), u(t)) are nonlinear functions of the system states x(t) and inputs u(t), which can be approached by a combination of nonlinear basis functions, for example, monomials, sigmoid functions, hyperbolic tangents and radial basis functions [START_REF] Relan | Data driven discrete-time parsimonious identication of a nonlinear state-space model for a weakly nonlinear system with short data record[END_REF]. Due to the exibility and eectiveness of monomials, we use a set of monomials as basis functions to approximate the nonlinear plasma dynamics. We dene

f N L (x(t), u(t)) = Eζ(t) and g N L (x(t), u(t)) = F η(t)
, where E ∈ R n×n ζ and F ∈ R ny×nη are coecients of the basis functions ζ(t) ∈ R n ζ and η(t) ∈ R nη , respectively. Hence, the plant model can then be transformed into a more compact form as:

x(t + 1) = Ax(t) + Bu(t) + Eζ(t) y(t) = Cx(t) + Du(t) + F η(t) (2.42)
Here, (A, B, C, D, E, F ) are constant coecient matrices to be identied, in which (A, B, C, D) describe the linear dynamics with the degree of monomials at 1, while (E, F ) depict the nonlinear dynamics with the degree of monomials greater than 1. ζ(t) and η(t) contain nonlinear monomials in x(t) and u(t) of degree 2 up to a threshold degree l (design parameter).

Specically, ζ(t) and η(t) are formed by all possible products of the input and state variables raised to l. For example, dene ζ l 1 u ,..,l nu u ,l 1 x ,...l n

x as one element of ζ(t), it can be expressed as:

ζ l 1 u ,..,l nu u ,l 1 x ,...,l n x = Π nu i=1 u l i u i Π n j=1 x l j x j s.t. nu i=1 l i u + n j=1 l j x ∈ {2, 3, ..., l}, l i u ∈ N, l j x ∈ N (2.43)
where l i u is the degree of the i-th element of u(t), while l j x represents the degree of the j-th element of x(t). The merits of using polynomial expansions are twofold: to set universal approximation properties and to be amenable for multivariate extensions.

Let us dene the concatenation of the input and state variables as:

υ = [u 1 (t), u 2 (t), ..., u nu (t), x 1 (t), x 2 (t), ..., x n (t)] T (2.44)
where υ ∈ R nu+n . Combining equations (2.43) and (2.44), the total number of elements for ζ(t), i.e. n ζ , can be calculated as

n ζ = n u + n + l l -(n u + n) -1 (n u + n) (2.45)
We choose the same set of basis functions to approximate nonlinear output dynamics, thus η(t) = ζ(t) and n η = n ζ . According to equation (2.45), we nd that the number of estimated parameters for nonlinear components rely on the number of states, inputs and the threshold degree. For a high-order system, the value of n ζ and n η can be extremely large, which may cause identiability problem. As suggested in [START_REF] Paduart | Identication of a WienerHammerstein system using the polynomial nonlinear state space approach[END_REF], to keep the number of the estimated nonlinear parameters under control, it is practical to restrict the threshold degree at 3 and to optionally eliminate the model inputs from the nonlinear combinations.

Identication procedure

The procedure to identify a PNLSS plasma model as expressed in equation (2.42) for control from sampled input-output data is illustrated in Fig. 2.5. First, we determine the identication objective, including the model inputs and outputs. The model inputs are the selected auxiliary heating & current drive powers. For dierent applications, the model inputs are allowed to be dierent. They comprise the neutral beam injection power P N BI , the electron cyclotron heating power P EC , the ion cyclotron resonance heating power P IC and the lower hybrid current drive power P LH . The model outputs are the selected magnetic and kinetic parameters including the poloidal pressure parameter β p , the normalized pressure parameter β n , the average toroidal rotation angular speed ω φ , the α particle power P α , the central rotational transform ι 0 and the central electron temperature T e,0 . Likewise, for dierent applications, the model outputs are permitted to vary depending on the availability of these variables.

Once the model inputs and outputs are determined, the desired input waveforms in terms of the pseudorandom binary sequences (PRBS) and chirping signals are designed to excite the dominant plasma dynamics and then implemented into a tokamak plasma simulator or PCS. Subsequently, we perform the identication experiments either with a plasma simulator or a tokamak device. For the case of real tokamak plasma identication experiments, the model inputs are forced to track the desired input waveforms, which may necessitate a feedback controller. In addition, the model inputs and outputs should either be directly measured by tokamak plasma sensors, e.g. the electron temperature from the Thomson scattering diagnostic, or be estimated by the kinetic-magnetic equilibrium reconstruction code [START_REF] Lao | Reconstruction of current prole parameters and plasma shapes in tokamaks[END_REF], Ferron et al., 1998]. In this thesis, we focus on the technical problems of the identication procedure, including how to preprocess the sampled input-output data for identication, how to identify LSS models and how to derive a PNLSS plasma response model, which are summarised in the red frames in Fig. 2.5.

The major steps of the identication process are described below:

Data-preprocessing The measured inputs and outputs from the experiments are rst selected and merged into an input and output dataset, respectively. The datasets are then handled by a lowpass lter with the same time constant to remove the measurement noise. Then the means of the input and output datasets are removed before normalizing them into the domain of [-1,1] [Ljung, 1995]. The new input-output data are divided into three sets: identication dataset for model identication, selection dataset to select an optimal model and testing dataset to evaluate the predictive performance of the selected model.

Linear model identication Two LSS model identication approaches are introduced, in which the rst one handles the identication dataset in the time domain while the second analyze it in the frequency domain.

Time-domain approach: First, determine the linear system order and obtain an initial guess of the LSS model using the time-domain subspace identication technique. In particular, the input-output data sequences are stacked into a block Hankel matrix, which is analyzed via the RQ factorization and the singular value decomposition (SVD) to determine the order of the linear system. The system matrices A and C are then estimated up to a similarity transformation [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF], while B and D are calculated by solving a least-squares problem. Second, nonlinear Levenberg-Marquardt (LM) [Marquardt, 1963] optimization of a cost function that penalizes the prediction errors, between the linear model estimates and the associated outputs, is adopted to improve the linear model accuracy.

Frequency-domain approach: First, non-parametric estimate of the frequency response functions (FRF) of the identication dataset is derived based on the local polynomial method (LPM) [START_REF] Pintelon | Estimation of nonparametric noise and FRF models for multivariable systemsPart I: Theory[END_REF]. Second, approximating plasma dynamics using an LSS model structure regardless of the nonlinear terms in equation ( 41), the weighted mean square deviation, between the nonparametric FRF and the FRF of the LSS model, is minimized to estimate an optimal LSS model using the frequency-domain subspace identication technique [START_REF] Pintelon | System identication: a frequency domain approach[END_REF]. Third, the model estimates of (A, B, C, D) are further optimized to improve the model accuracy in the frequency domain.

PNLSS model identication

The LM optimization technique is used to estimate the PNLSS plasma model coecients, specically the system matrices (A, B, C, D, E, F ) and the initial states υ(t 0 ), where t 0 represents the initial time used for the identication. First, assuming E = 0, F = 0 and υ(t 0 ) = 0, the nonlinear model is initialized with the optimal LSS model (A, B, C, D). Second, a cost function that denes the weighted mean square deviation, between the modelled and measured output spectra, is minimized via the LM algorithm such that both the system matrices of the PNLSS model and the initial conditions can be optimally approximated. Third, derive a parsimonious representation of the PNLSS plasma response model [START_REF] Relan | Data driven discrete-time parsimonious identication of a nonlinear state-space model for a weakly nonlinear system with short data record[END_REF], as described in section 2.4.

Model selection and evaluation Assess the predictive performance of the identied PNLSS models and select an optimal one. The selection dataset is used to determine the optimal PNLSS model. The eectiveness of the model identication algorithm is evaluated by examining the root-mean-square (RMS) errors between model estimates from each PNLSS model candidates and the output measurements. The nal chosen model should pass the cross-validation test and exhibit the lowest RMS error. The optimal PNLSS model is then used to predict the model outputs in the testing dataset and the predictive performance is further examined.

Data-preprocessing for plasma model identication

The collected data from simulations/experiments are not likely to be in shape for immediate use in an identication algorithm [Ljung, 1995]. For experimental application on EAST, the experimental measurements can intrinsically involve noise, which generally appears in the high-frequency domain beyond the bandwidth of the dominant plasma dynamics. Preltering the input and output data via a lowpass lter L(s) = 1 τ f s+1 is therefore adopted where τ f is a small time constant, typically at 0.003 s. Preltering does not change the input-output relation for a linear system in the frequency domain of interest while it can improve the identication performance in the range of the dominant plasma dynamics [Ljung, 1995]. Due to the pulse duration limit in tokamak plasma discharges, the identication dataset may need to contain the input-output measurements from many independent simulations and/or experiments. In addition, there are a number of phases in a tokamak plasma discharge, where the kinetic control is preferably scheduled from the early at-top phase to the end of the at-top phase. Therefore, it is naturally benecial to select the dedicated simulation/experimental data in the at-top phase and merge them into the input-output datasets. Assume that there are m merged plasma discharges, where each discharge has the number of samplings at N i , the input-output dataset can thus be expressed as:

U (k) = U 1 (k 1 ), U 2 (k 2 ), . . . , U m (k m ) , Y (k) = Y 1 (k 1 ), Y 2 (k 2 ), . . . , Y m (k m ) k i = 1, 2, . . . , N i , i = 1, 2, . . . , m; k = 1, 2, . . . , N, N = m i=1 N i (2.46)
where N is the total number of sampling points, U (k) and Y (k) represent the input and output vectors at the sampling time k, respectively. U i (k i ) and Y i (k i ) represent the input and output vectors of the i-th plasma discharge at the sampling time k i , respectively.

In practice, the input-output measurements are collected and recorded in physical units, the levels of which can be quite arbitrary. For example, the typical average toroidal rotation is of the order of 10 4 rad/s, while β n is of the order of 10 -2 . It is benecial to subtract sample means ( U , Y ) from the input-output datasets and normalize them with the maximum allowed variations (U norm , Y norm ) in each input-output channel as:

U(k) = U (k) -U U norm , Y(k) = Y (k) -Y Y norm , k = 1, 2, ..., N (2.47)
where U and Y are the mean vector of the inputs and measured outputs. U(k) and Y(k) are, respectively, input and output deviations from the operating point ( U , Y ). U norm and Y norm are dened as the maximum and minimum input and output values in the collected dataset, respectively.

Subsequently, the new input-output datasets are divided into three subsets as:

(U id (k id ), Y id (k id )) = (U(k a ), Y(k a )) (U sel (k sel ), Y sel (k sel )) = (U(k b ), Y(k b )) (U test (k test ), Y test (k test )) = (U(k c ), Y(k c )) k id = 1, 2, . . . , N id , k a = 1, 2, . . . , N id k sel = 1, 2, . . . , N sel , k b = N id + 1, . . . , N id + N sel k test = 1, 2, . . . , N test , k c = N id + N sel + 1, . . . , N N = N id + N sel + N test (2.48)
where N id , N sel and N test are respectively the number of samplings for model identication, selection and testing.

(U id (k id ), Y id (k id )), (U sel (k sel ), Y sel (k sel )) and (U test (k test ), Y test (k test ))
represent the dataset for model identication, selection and testing, respectively.

Identication of the linear plasma dynamics

In this section, the linear plasma dynamics is identied using a combination of subspace and PEM techniques. The objective is to identify the system matrices (A, B, C, D) in equation (2.41) using the identication dataset (U id (k id ), Y id (k id )), k id = 1, 2, . . . , N id . Two alternative approaches that take into account the problem in the time-and frequency-domain are investigated in parallel.

A time-domain approach

Time-domain subspace identication The time-domain subspace identication technique is employed to identify a linear state-space model. The idea of the subspace identication is that the system matrices of the signal-generating state-space model is associated with certain subspaces of the structured block Hankel matrix lled with the input-output data [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]. Subspace identication is a non-iterative identication technique which does not require any parameterization, and it can also assist in determining the system order. Its linear parameter-varying extensions can be found in [Verdult and[START_REF] Verdult | [END_REF]Verhaegen, 2005]. The multiple-input multiple-output (MIMO) subspace identication of the discrete linear time-invariant (LTI) state-space system matrices is considered, regardless of the nonlinear terms. The state-space model structure reads:

X(t + 1) = AX(t) + BU id (t) Y id (t) = CX(t) + DU id (t) (2.49)
where

A ∈ R n×n , B ∈ R n×nu , C ∈ R ny×n , D ∈ R ny×nu
are the linear system matrices to be estimated. n is the order of the linear system to be determined, and X(t) ∈ R n represents a state vector. n u and n y are the number of model inputs and outputs, respectively.

We rst construct input and output block Hankel matrices using the pre-processed identication data set as

U 1,s,N =      U id (1) U id (2) . . . U id (N id -s + 1) U id (2) U id (3) . . . U id (N id -s + 2) . . . . . . . . . . . . U id (s) U id (s + 1) . . . U id (N id )      Y 1,s,N =      Y id (1) Y id (2) . . . Y id (N id -s + 1) Y id (2) Y id (3) . . . Y id (N id -s + 2) . . . . . . . . . . . . Y id (s) Y id (s + 1) . . . Y id (N id )      (2.50)
where s is an arbitrary positive integer, greater than the system order n, but much smaller than N id . Using equation (2.49), we can derive an equation which relates the input and output block Hankel matrices with the system matrices as

Y 1,s,N id = O s X 1,N id + T s U 1,s,N id (2.51)
where

O s =        C CA CA 2 . . . CA s-1        , T s =        D 0 0 . . . 0 CB D 0 . . . 0 CAB CB D . . . 0 . . . . . . . . . . . . 0 CA s-2 B CA s-3 B . . . CB D        , X 1,N id = X(1) X(2) . . . X(N id ) (2.52)
where O s ∈ R nys×n is the extended observability matrix containing A and C, while T s ∈ R nys×nus comprises A, B and C. One idea of estimating A and C up to a similarity transformation is to cancel the term T s U 1,s,N id by post-multiplying an orthogonal matrix of

U 1,s,N id , i.e. Π ⊥ U 1,s,N id = I N id -U T 1,s,N id U 1,s,N id U T 1,s,N id -1
U 1,s,N id , and then exploit the column space of Y 1,s,N Π ⊥ U 1,s,N . A more computationally ecient technique is to concatenate the input and output block Hankel matrices and perform the RQ factorization as

U 1,s,N Y 1,s,N = R 11 0 0 R 21 R 22 0   Q 1 Q 2 Q 3   (2.53) where R 11 ∈ R nus×nus , R 21 ∈ R nys×nus , R 22 ∈ R nys×nys , Q 1 ∈ R nus×N id , Q 2 ∈ R nys×N id . Given the factorization in equation (2.53), we have Y 1,s,N Π ⊥ U 1,s,N = R 22 Q 22 (See Lemma 9.2
in [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]). By assuming that the rank of X 1,N id U 1,s,N id equals (n+n u s), we can further obtain the relation: range(O s ) = range(R 22 ), where the symbol 'range()' denotes the column space of a matrix (See Theorem 1 in [START_REF] Verhaegen | Filtering and system identication: a least squares approach[END_REF]). It implies that the estimates of A and C up to the similarity transformation can be extracted directly from the low dimensional matrix R 22 .

The column space of the extended observability matrix is examined by performing SVD on R 22 as R 22 = W ΣV T , we may sort out the dominant subspace of linear dynamics by truncating the subspace corresponding to the small singular values. In this regard, we impose the singular value decomposition on R 22 as

R 22 = W 1 W 2 Σ 1 0 0 Σ 2 V 1 V 2 T W 1 Σ 1 V T 1 (2.54)
where -n) , where the order of the system model is specied by n. The estimate of A and C can be obtained by examining the left singular vector space W 1 . Obviously, C = W 1 (1 : n y , :). We dene

W 1 ∈ R nys×n , W 2 ∈ R nys×(nys-n) , Σ 1 ∈ R n×n , Σ 2 ∈ R (nys-n)×(nys-n) , V 1 ∈ R nys×n , V 2 ∈ R nys×(nys
Υ 0 = W 1 (1 : n y (s -1), :) and Υ 1 = W 1 (n y + 1 : n y s, :). Dening M ∈ R n×n , N ∈ R n×n , A = M N -1
, A can be obtained by performing a constrained optimization by minimizing a cost function:

V TL1 (A) = Υ 1 N -Υ 0 M F subject to: δ ⊗ N + β ⊗ M + β T ⊗ M T ≥ 0 N T = N > 0, β = 0 1 -1 0 (2.55)
where δ is a small number that limits the imaginary part of the poles of A. The symbol F is the Frobenius matrix norm, where ⊗ denotes a Kronecker product.

In order to calculate B, D and the initial states X(1), we parameterize the input-output equation as:

y(k) = φ(k) T θ (2.56)
where

φ = CA k k-1 i=0 u(i) T ⊗ CA k-i-1 u T ⊗ I q θ = X(1) T vec(B) T vec(D) T T
where the symbol vec() denotes a vector constructed by stacking the columns of a matrix on top of each other. Hence, X(1), B and D are derived by minimizing the cost function

V TL2 = min θ N id k=1 y(k) -φ(k) T θ 2 2 (2.57)
Prediction-error identication A linear state-space model identied from the identication dataset via the time-domain subspace method can provide an initial guess on the linear plasma response dynamics. The model can be further rened by involving a nonlinear iterative optimization routine [Ljung, 1995]. we dene the parameter vector θ L = vec(A) T , vec(B) T , vec(C) T , vec(D) T T . The parameter vector can be estimated by optimizing the cost function as:

V TL3 = min N id k=1 y(k) -ŷ(u(k), θ L ) 2 2 (2.58)
where θ L is initialized with the model derived from the subspace identication. The parameters θ L are estimated by minimizing the cost function V TS3 using the LM optimization method. This method is essentially a mixture of the gradient-descent and Gauss-Newton methods and a trade-o factor λ is used to determine its characteristic. More precisely, when λ → ∞, the LM algorithm tends to behave like a gradient-descent method, when λ → 0, the LM algorithm gradually exhibits the feature of the Gauss-Newton method. The gradientdescent method is more robust than the Gauss-Newton algorithm if the parameter estimate is far away from the local minimum, while the Gauss-Newton converges much faster than the gradient-descent method when the parameter estimate approaches the local minimum. The LM algorithm can therefore accumulate the advantages of these two optimization algorithms in one optimization setup. Iterative LM optimization results in a set of rened system matrices as

(A * T L , B * T L , C * T L , D * T L ).

A frequency-domain approach

A frequency-domain approach, as an alternate method, is applied to identify an LSS model. The best linear approximation (BLA) of plasma response dynamics is rst introduced via LPM [START_REF] Pintelon | Estimation of nonparametric noise and FRF models for multivariable systemsPart I: Theory[END_REF]. Then the frequency-domain subspace method is used to extract an LSS model consistent with the non-parametric BLA estimate, which is further rened using the LM optimization algorithm.

Non-parametric BLA The BLA of plasma dynamics refers to the best approximation of the measured output in a given model set G in a least-squares sense, expressed as:

ĜBLA (k) = arg min G(k)∈G E u { Y (k) -G(k)U (k) 2 2 } (2.59)
where ĜBLA (k) represents the estimate of the FRF of the BLA, Y (k) and U (k) denote the discrete Fourier spectra of the output and the input at the frequency line k, respectively. G(k) indicates the FRF of a linear system in G. E u is an average of the frequency bandwidth of interest.

Parametric BLA With the given non-parametric estimate ĜBLA , we subsequently identify a linear parametric model, estimated by the frequency-domain subspace method [START_REF] Mckelvey | Subspace-based multivariable system identication from frequency response data[END_REF]. The model tting quality is evaluated by a weighted least-squares cost function as:

V F L1 = n f k=1 H F L1 (k)W F L1 (k) F L1 (k), F L1 (k) = ĜBLA (k) -ĜF L1 (A, B, C, D, k) (2.60)
where n f represents the number of processed frequency lines, and W F L1 (k) denotes the weighting matrix, while the superscript H is a symbol of the Hermitian transpose. F L1 (k) denotes the deviation between the non-parametric FRF estimate ĜBLA (k) and the parametric model estimate ĜF L1 (A, B, C, D, k), given by:

ĜF L1 (A, B, C, D, k) = C(z k I n -A) -1 B + D, z k = e j 2πk
N id

(2.61)

where (A, B, C, D) are model parameters to be estimated, and z k is a z-transform variable, while n represents the optimal model order (free parameter). Using the non-iterative subspace identication, we therefore derive a parametric model with the system matrices as

M * F L1 = (A * F L1 , B * F L1 , C * F L1 , D * F L1
) with an optimal model order at n * .

Prediction-error identication To improve the tting accuracy, an iterative LM optimisation method is utilized, whose cost function is expressed as:

V F L2 = n f k=1 H F L2 (k)W P I (k) F L2 (k) F L2 (k) = vec ĜBLA (k) -ĜF L2 (A, B, C, D, k) ĜF L2 (A, B, C, D, k)| i=0 = ĜF L1 (A * F L1 , B * F L1 , C * F L1 , D * F L1 , k) (2.62)
where V F L2 and F L2 (k) are the cost function and model prediction error, respectively. W F L2 (k) represents the weighting matrix at the frequency line k. The initial guess of ĜF L2 (A, B, C, D, k)| i=0 is assumed to be the one obtained via the frequency-domain subspace method. The nonlinear optimization requires the calculation of the Jacobian of the model error F L2 (k) with respect to the model parameters as

∂ (k) A ij = vec C(z k I n * -A) -1 I n * ×n * ij C(z k I n * -A) -1 B ∂ (k) B ij = vec C(z k I n * -A) -1 I n * ×nu ij ∂ (k) C ij = vec I ny×n * ij C(z k I n * -A) -1 B ∂ (k) D ij = vec I ny×nu ij (2.63)
where I m×n ij ∈ R m×n represents a matrix with the (i, j) element at 1 and all the other elements at 0. Using the LM optimization, an optimal discrete LSS model, denoted as

(A * F L , B * F L , C * F L , D * F L )
, is therefore identied such that V F L2 can be driven to a good local minimum or a global minimum. The optimal discrete LSS model can be further transformed into a continuous one for control design or predictive simulations.

Identication of the nonlinear plasma dynamics

In this section, a PNLSS plasma model is identied based on an optimal LSS model, either derived from the time-domain approach or from the frequency-domain approach. Next, a parsimonious representation of the PNLSS model is obtained by using the canonical polyadic decomposition (CPD) technique [START_REF] Dreesen | Decoupling multivariate polynomials using rst-order information and tensor decompositions[END_REF].

Identication of a PNLSS plasma model

In advanced tokamak scenarios, the response of magnetic and kinetic parameters with respect to additional heating powers may exhibit nonlinear behaviours. In this regard, it is necessary to identify the nonlinear terms E and F in equation ( 2.42) such that nonlinear dynamics can be captured. First, we initialize the nonlinear (NL) model

(A N L , B N L , C N L , D N L , E N L , F N L )
with an optimal LSS model plus the null nonlinear terms as

(A * p , B * p , C * p , D * p , 0 n×n ζ , 0 n×nη ), p ∈ {T L, F L}, which is parameterized as: θ N L = vec(A N L ) T , vec(B N L ) T , vec(C N L ) T , vec(D N L ) T , vec(E N L ) T , vec(F N L ) T
(2.64)

The vector θ N L is then estimated by minimizing the weighted cost function that penalizes the output errors as:

V N L (θ N L ) = n f k=1 E H N L (k)W N L (k)E N L (k) (2.65)
with respect to θ N L . W N L (k) denotes the user-dened frequency domain weighting matrix, through which one can weigh the importance of the frequency bandwidth. Typically, this matrix is prescribed as the inverse covariance matrix of the output. The output error is dened as

E N L = Y M EA (k) -Y N L (k, θ N L )
, where Y M EA (k) and Y N L (k) are the discrete Fourier spectra of the measured (MEA) and NL model-simulated outputs, respectively. The optimal model parameter vector θ * N L is optimized as:

θ * N L = arg min θ N L V N L (θ N L ) (2.66)
Analogous to the linear cases, the LM algorithm is used to optimize θ N L , which requires the computation of the Jacobian of the output prediction error with respect to the model parameters:

∂E(k) ∂θ N L = ∂Y N L (k, θ N L ) ∂θ N L (2.67)
As mentioned in [START_REF] Paduart | Identication of nonlinear systems using polynomial nonlinear state space models[END_REF], Paduart et al., 2012], the explicit calculation of ∂E(k) ∂θ N L in the frequency domain is not practical. Hence, an implicit technique is adopted: we rst compute these terms in the time-domain, which are then transformed into the frequency domain via discrete Fourier transform (DFT) for optimization.

Parsimonious representation of the PNLSS plasma model

Although the standard PNLSS modelling is potential to approximate nonlinear plasma dynamics, its obvious drawback is that the model parameter number grows substantially with the increase of polynomial degree and the number of states and inputs. The signicant growth of the parameter number may result in identiability issues and over-tting [START_REF] Relan | Data driven discrete-time parsimonious identication of a nonlinear state-space model for a weakly nonlinear system with short data record[END_REF].

Inspired by [START_REF] Relan | Data driven discrete-time parsimonious identication of a nonlinear state-space model for a weakly nonlinear system with short data record[END_REF], we adopt a decoupling method that calculates the decoupled representation of the multivariate polynomials via the CPD of a tensor containing Jacobians for a set of samplings. The idea of the decoupling method is that a multivariate polynomial vector function is decomposed into a linear transformation V , followed by a set of parallel univariate polynomials g 1 , g 2 , g r , and another linear transformation W, which therefore removes insignicant cross-terms in the multivariate polynomials.

Let us consider the nonlinear terms in the PNLSS model jointly as:

h(υ(t)) = Eζ(υ(t)) F η(υ(t)) , υ(t) = [x(t) T , u(t) T ] T ∈ R n+nu (2.68)
The aim of the decoupling algorithm is to transform equation (2.68) into a form

h((υ(t)) = W α V T υ(t) , W = W x W y (2.69)
where V ∈ R (n+nu)×r and W ∈ R (n+ny)×r are two constant mapping matrices. In particular, denoting υ = V T υ(t), V maps the joint vector of states and inputs υ(t) into a new coordinate υ(t) ∈ R r with the reduced dimension r. In the new coordinate, the univariate functions α i (υ i ), i = 1, 2, ..., r are able to operate on the variables υ i , i = 1, 2, ..., r separately, where υ i and α i denote the i-th element of the vector υ and the polynomial functions α(υ(t)). The mapping matrix W then transforms the results of the univariate functions into the nonlinear terms consistently with the process and output equations in the PNLSS model. Specically, W x relates the process nonlinear term Eζ(υ(t)) with α(υ(t)), while W y links the output nonlinear term F η(υ(t)) to α(υ(t)).

In order to calculate the mapping matrices W and V as well as the univariate polynomial functions α i (υ), i = 1, 2, ..., r, we rst calculate the Jacobians of h(υ(t)) with respect to υ at a set of sampling points k = 1, 2, ..., N s as:

J i,j,k = ∂h i (υ k j ) ∂υ k j , i = 1, 2, ..., (n + n y ), j = 1, 2, ..., (n + n u ), k = 1, 2, ..., N id (2.70)
where υ k j ∈ R n+nu denotes the j-th element of υ at the sampling point k. Subsequently, we accumulate all the Jacobians into a tensor bank with the dimension at (n+n y )×(n+n u )×N id . Performing the CPD decomposition, the Jacobians can thus be truncated into a form as:

J i,j,k = r q=1 w iq v jq χ kq (2.71)
where W = [w iq ] (n+ny)×r and V = [v jq ] (n+nu)×(r) are computed easily. The univariate polynomial functions are calculated by following the Lemma.

Lemma 1. [START_REF] Dreesen | Decoupling multivariate polynomials using rst-order information and tensor decompositions[END_REF] The rst-order derivatives of the parameterization (69)

are given by J

(u) = W diag(g i (v T i u))V T , where g i (v T i u)
. Therefore, we have the relation

χ kq = g q (υ k q ).
We dene the univariate polynomial functions as α q (υ q ) = c q,1 υ q + c q,2 υ 2 q + ... + c q,2 υ d-1 q , where d is the order of the univariate polynomials α q (υ q ). For the i-th branch g q (υ q ), the coecients are simply derived by polynomial tting as:

    (υ 1 q ) 1 (υ 1 q ) 2 ... (υ 1 q ) d-1 (υ 2 q ) 1 (υ 2 q ) 2 ... (υ 2 q ) d-1 ... (υ Ns q ) 1 (υ Ns q ) 2 ... (υ Ns q ) d-1          c q,1 c q,2 ... c q,d-1      =     χ 1q χ 2q ... χ Ns,q     (2.72)
where (υ k q ) p represents the q-th element of the vector υ at the sampling point k to the p-th power. Once the derivative of univariate functions α q (υ q ) are tted, the univariate functions are consequently obtained as α q (υ q ) = υ q 0 α q (υ q )dυ q .

Identication results

In this section, the nonlinear model identication scheme described above is applied to identifying PNLSS plasma models. The identication performance is extensively evaluated, compared and discussed through simulations and/or experiments on the EAST and ITER tokamaks. Specically, we compare the model predicted outputs with the outputs sampled from METIS simulations or experiments and introduce the RMS error to quantify the identication performance, which reads:

e RM S = 1 N t Nt t=1 (y(t) -y mod (t)) 2 (2.73)
where y mod represent the model-predicted outputs, while y(t) denotes the original outputs, either from METIS simulations or from the EFIT reconstructions [START_REF] Huang | Development of real-time plasma current prole reconstruction with POINT diagnostic for EAST plasma control[END_REF] in tokamak plasma experiments. N t is the total number of sampling points in y(t).

Identication results from METIS simulations on EAST

In the rst case, the noise-free data generated from the nonlinear plasma simulator METIS in an H-mode steady-state plasma discharge on the EAST tokamak, i.e. shot #62946, is collected to identify LSS and PNLSS models. The key plasma parameters for the discharge simulation are described in Section 1.4 and the METIS tuning procedure for advanced tokamak plasma discharge simulations is referred to [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF]. Our objective is to identify the responses of β p (poloidal plasma pressure parameter), β n (normalized plasma pressure parameter), T e,0 (the central electron temperature), ω φ (the average toroidal rotation angular speed) and ι 0 (the central rotational transform) with respect to the heating powers of ICRH at 33 MHz and of LHCD at 4.6 GHz. In order to excite the dominant plasma eigenmodes, ve dedicated METIS simulations are performed, among which two heating powers are modulated using PRBS waveforms [Ljung, 1995, Landau and[START_REF] Landau | [END_REF], while all the other METIS simulation setup remain unchanged. As shown in Fig. 2.6(f), the ICRH power varies in the range 0 MW-1.5 MW while the LHCD power is limited to the interval 0.85 MW-2.6 MW. The measurements of both the control actuations and the plasma parameters of interest are taken with the sampling time at 0.02 s, and the pulse duration for each simulations vary between 15 and 20 s. Accounting for the plasma dynamics in the at-top phase, the control inputs and measurements in the interval 4-15 s of each simulation are selected as datasets for model identication, selection and testing. Five selected datasets are rst merged and then divided into three subsets, with one half used for identication (See the upper panel in Fig. 2.6(f)), a quarter for model selection (See the left bottom panel in Fig. 2.6(f)) and the remaining for predictive tests (See the right bottom panel in Fig. 1(f)). The green dashed lines denote the starting/ending sampling of each selected numerical shots. For convenience, we label TD as the time-domain approach, while denoting FD as the frequency-domain approach.

With the identication dataset, an LSS plasma model of order 4 is identied by the TD approach, and the characteristic time constants are 0.6019 s, 0.0597 s, 0.005 s. The modelsimulated outputs from the TD approach are compared with the corresponding METIS simulation outputs in Fig. 2.6, indicating that the TD-LSS and TD-PNLSS model predictions are consistent with the METIS simulations in both identication, selection and testing phases. In contrast to the TD-LSS model, it is found that enhanced identication performance has been obtained with the TD-PNLSS model for all the outputs. More specically, the RMS errors of β p , β n and ω φ decrease from 0.1134, 0.0823, 0.5362 to 0.0762, 0.0556 and 0.4036 in the testing phase, respectively. The underlying reason is that the TD-PNLSS model involves two nonlinear polynomial terms in both the process and output equations for nonlinear dynamics accommodation.

Compared with the TD approach, the FD approach cannot identify an appropriate LSS using the given identication dataset, as listed in Table 2.2, perhaps because the linear couplings are more dicult to be captured by the FD approach in the MIMO setup. The RMS errors for all the output variables are around twice larger than those corresponding to the TD-LSS model. Nonetheless, initializing the PNLSS model with the identied FD-LSS model, significant model prediction error reduction has been achieved with the FD-PNLSS model, whose RMS errors in all the output variables are comparable to those obtained by the TD-LSS model, but not as small as those predicted by the TD-PNLSS model due to improper model initialization.

To sum up, the identication results have shown that both the TD-LSS, TD-PNLSS and FD-PNLSS models can properly describe the responses of plasma parameters β p , β n , T e,0 , ω φ , and ι 0 with respect to the ICRH power at 33MHz and the LHCD power at 4.6GHz in a broad frequency bandwidth. The enhanced identication performance has been demonstrated by involving nonlinear polynomial terms at both the state and output equations. In addition, good LSS initialization is proved benecial to the identication performance of the generated PNLSS model. [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF] was used to track the desired 4.6 GHz LHCD power modulations in the current attop phase. The objective here is to identify the responses of β p , β n , li and ι 0 with respect to the LHCD power at 4.6 GHz. Two identication experiments have been performed by modulating the LHCD power in the PRBS (shot #93298) and chirping (shot #93297) waveforms, respectively. The LHCD power coupled to the plasma was measured as shown in Fig. 2.7. The magnetic and kinetic parameters of interest are estimated by the GPUaccelerated EFIT reconstruction code, i.e. P-EFIT [START_REF] Huang | Development of real-time plasma current prole reconstruction with POINT diagnostic for EAST plasma control[END_REF], taking into account a large number of magnetic and kinetic measurements, whose estimates are considered as experimental measurements. All the input-output measurements are taken with the sampling time at 1 ms, and the pulse durations for shot #93297 and #93298 are about 9.0 s, including plasma ramp-down phase. The input-output measurements of shot #93298 in the period [3.5, 7]s are chosen for model identication, while the input-output measurements of shot #93297 in the intervals 3.5-5.25 s and 5.25-7 s are used for model selection and testing, respectively. A lowpass lter with the time constant at 0.003 s was used to remove the measurement noise.

Both the TD and FD approaches are used for model identication. The model-simulated outputs from the TD-LSS, TD-PNLSS, FD-LSS and FD-PNLSS models are compared with the EFIT estimates in the identication dataset, as illustrated in Fig. 2.8. It is found that the evolutions of β p and β n predicted by TD-LSS and TD-PNLSS models match the P-EFIT estimates satisfactorily, with the RMS errors at 0.0217 and 0.0184, respectively (See Table 2.3). Obviously, enhanced identication performance has been obtained by the PNLSS model. The TD-LSS and TD-PNLSS models can both predict the evolution of li and ι 0 at a reasonable level, but the tting errors exhibit a linear downward drift, due to the poloidal magnetic measurement faults at the plasma boundary. This disturbance caused ι 0 and li to drift linearly at the rate of -0.01 s -1 . Nonetheless, the PNLSS model shows better identication performance compared to the LSS model in the identication dataset. The identied TD-LSS and TD-PNLSS models are then tested in shot #93297. As illustrated in Fig. 2.9, the TD-LSS and TD-PNLSS models can simulate the evolutions of β p and β n fairly well, with the RMS errors at 0.0245 and 0.0176 for the TD-PNLSS model. For li and ι 0 , a drift with the rate at -0.01 s -1 happens similarly in shot #93297. In addition to that, an oset of 0.02 for li and ι 0 are observed, which are attributed to the dierence between the plasma density evolution in shot #93298 (steady at 4.2 × 10 19 m -3 ) and in shot #93297, where the density control was poor for t < 4 s, with a nal steady density of 3.7 × 10 19 m -3 for t > 4 s.

Table 2.3 shows the comparison of the RMS errors among the four identied models. In this case, the TD-LSS model still outperforms the FD-LSS model in all the RMS errors, suggesting that it may be preferable to apply the TD approach for linear model identication if the control inputs are designed as PRBS signals. However, the predictive performance of the FD-PNLSS model slightly outperforms that of the FD-PNLSS model in β p and β n thanks to better PNLSS model optimization. It should be remarked that the TD-PNLSS model shows comparable predictive performance with the FD-PNLSS model in this case primarily because the FD identication method is more eective in the single input setup.

To sum up, the identication results have demonstrated that the proposed identication scheme can successfully extract linear and nonlinear models describing the responses of plasma kinetic parameters with respect to the variations of the LHCD power from dedicated experimental data. Furthermore, enhanced identication performance has been obtained by the PNLSS models with respect to the LSS models. It is evident that the disturbances in li and ι 0 are not solely dependent on the variations of the LHCD power at 4.6 GHz. Hence, the disturbance dynamics cannot be modelled directly using the available inputs and outputs, even involving polynomial nonlinear model expansions. Nevertheless, these disturbances are the combination of constant and linear drifts, whose values are predictable and possibly linked, for instance, to the plasma density evolution. 

Identication results from METIS simulations on ITER

In the third case, the proposed identication scheme is extrapolated to the noise-free data sampled from METIS simulations of H-mode steady-state burning plasma scenarios on the ITER tokamak. The key plasma parameters congured for METIS simulations are illustrated in Section 1.4. The objective now is to identify the responses of β p , β n , ω φ and P α (the α particle power generated from D-T fusion reactions) with respect to the co-current neutral beam injection power P NBI . Analogously, we design the P NBI references in PRBS waveforms to excite the dominant plasma eigenmodes governing kinetic evolutions. More precisely, two dedicated METIS simulations are performed, whilst the other parameters for METIS setup are kept unchanged. The co-current NBI power is limited to the interval of 5-16.5 MW. The sampling time is xed at 1 s, and the pulse duration for each simulations is over 2800 s. The control input and output measurements in the period 1000-2500 s are chosen as datasets for model identication, selection and testing. Similarly, the selected datasets are rst merged and then divided into three subsets, with one half for model identication, a quarter for model selection and the rest for model testing. Both the TD and FD approaches are used to identify the LSS and PNLSS models. The outputs predicted by the FD-LSS and FD-PNLSS models are compared with the METIS simulated outputs as depicted in Fig. 2.10, showing that the FD-LSS and FD-PNLSS models can both successfully predict kinetic responses under the perturbation of P NBI . The RMS errors corresponding to all the identied models are listed in Table 2.4, which demonstrates that the PNLSS models are able to predict plasma kinetic evolutions with more precision than the LSS models. In contrast to EAST identication results, the FD-LSS model now achieves smaller RMS errors than the TD-LSS model in β p and β n since in this case we involve only one control input, where the FD approach turns out to be eective. When moving onto model selection and testing datasets, it is conrmed that the FD-LSS model has a high accuracy of predictive performance, and the FD-PNLSS model acquires much smaller RMS errors than those corresponding to the TD-PNLSS model, thanks to the enhanced model initialization and the single control input setup. 

Discussion

In contrast to other model structures such as LSS models and neural networks, there are a number of advantages to use the PNLSS model structure for plasma dynamics approximation.

First, the PNLSS model structure takes into account the dominant linear dynamics in conjunction with moderate nonlinearities, which can thus deliver enhanced predictive performance with respect to the LSS models. Second, the identication scheme has no dicult parameter setup, e.g., the number of neurons. Third, the PNLSS model identication scheme is systematic and general, and it can be easily extrapolated to data-driven modelling in dierent tokamaks, including both simulations and experiments.

However, it should be mentioned that there are a few restrictions on the use of this identication scheme. First, the PNLSS model structure is more suitable to approximate low-order systems, whose order is typically less than 10. For high-order systems, the number of estimated model parameters in nonlinear terms grow substantially, likely to cause identiability issues. However, it is possible to overcome this problem by tweaking the estimated model parameters. For instance, the monomials in the polynomial expansion can be constrained to certain inputs and states that play an important role in causing nonlinearities. The second restriction is that, due to the use of PEM for model renement, the optimization may result in a local minimum instead of a global one, but this is a common issue for nonlinear system identication.

Conclusion of Section 2.2

In this section, the identication of PNLSS plasma model, as a natural extension of LSS model identication, has been investigated using a combination of subspace and PEM identication techniques. In contrast to prior works [START_REF] Mavkov | Multiexperiment state-space identication of coupled magnetic and kinetic parameters in tokamak plasmas[END_REF], Moreau et al., 2008], two alternative LSS identication approaches handling data in both frequency-domain and time-domain have been presented to identify the LSS models for plasma control. Up to the best of our knowledge, the PNLSS model identication scheme has, for the rst time, been applied to describing the dynamics of plasma kinetic parameters in tokamaks. The identication methodology proposed in this chapter is systematic, general and powerful, and can be easily adapted to data-driven modelling of other tokamak plasma parameters or proles for control, especially for those problems where the rst-principles-driven modelling fails or proves dicult but where the input-output measurements are abundant. One potential topic for future investigations is that plasma nonlinearities can be characterized by other types of basis functions, for example, radial basis functions, wavelets, hyperbolic tangents. One may nd an optimal set of basis functions that can achieve the optimal predictive performance in characterzing tokamak plasma nonlinearities by conducting further studies.

Summary of Chapter 2

In this chapter, the single uid modelling of tokamak plasma transport using the METIS code has been described, with applications to H-mode steady-state plasma discharge simulations on the EAST and ITER tokamaks. In order to control plasma kinetic parameters in H-mode steady-state tokamak scenarios, a nonlinear model identication scheme has been proposed based on the subspace and prediction-error methods. This identication scheme has been applied to both simulated and experimental data on the EAST and ITER tokamaks, whose eectiveness and validity have been demonstrated. The following chapters will present robust, adaptive and model predictive control strategies using linear data-driven models to support advanced tokamak plasma operation and greatly improve the reproducibility of high performance high bootstrap current plasma discharges.

Chapter 3

Linear Robust Control One of the main challenges for the tokamak plasma operation is to achieve and maintain advanced scenarios with high plasma pressures and temperatures such that a high gain nuclear fusion burn can be sustained [START_REF] Wesson | Tokamaks[END_REF]. However, since a series of MHD instabilities and microturbulence commonly exist in various locations and phases of tokamak plasmas that are likely to deteriorate plasma connement and even lead to disruptions [START_REF] Wesson | Tokamaks[END_REF], it is demanding to deliver and sustain advanced tokamak plasma scenarios without active feedback control. Among the numerous tokamak plasma parameters, the safety factor q, dened as the rate of change of toroidal magnetic ux (Φ) with poloidal magnetic ux (Ψ), i.e. q = -dΦ dΨ , is a particularly important parameter whose shape and magnitude are directly associated with some deleterious MHD events and microinstabilities [START_REF] Kessel | Improved plasma performance in tokamaks with negative magnetic shear[END_REF],Humphreys et al., 2015]. For instance, sawtooth crashes occur in the region where the plasma safety factor is less than 1 [START_REF] Denton | Skin currents and compound sawteeth in tokamaks[END_REF]; neoclassical tearing modes (NTMs) appear and grow around plasma ux surfaces where the safety factor 56 exhibits rational values [START_REF] Westerhof | Control of sawteeth and triggering of NTMs with ion cyclotron resonance frequency waves in JET[END_REF]. Moreover, it is inferred that the negative central magnetic shear (s = r q ∂q ∂r ) is a key stabilizing factor to reduce turbulence transport in the pressure gradient region, thus supporting the formation of ion/electron internal transport barriers (i/eITBs) [Wolf, 2002, Ida andFujita, 2018]. In view of multiple timescales involved in plasma dynamics, simultaneous control of the q-prole and kinetic parameters (e.g. the stored energy, W, the normalized pressure parameter, β N , or the poloidal pressure parameter, β p ) is preferred to the control of q-prole alone [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF], Barton et al., 2015a]. Therefore, in the rst part of the chapter, simultaneous control of q-prole and β p is numerically investigated. β p is a ratio between the total plasma kinetic energy and the energy stored in the poloidal magnetic eld, expressed as β p = 4W (1+κ 2 ) 3µ 0 aRI 2 p , where W represents the plasma kinetic energy, κ the elongation, µ 0 the magnetic permeability in vacuum space, a the minor radius, R the major radius, I p plasma current. The active control of kinetic parameters such as β p , the average rotational velocity (ω φ ) and the α particle power generated from nuclear fusion reactions should occur in a much faster timescale than magnetic control, e.g. q-prole control. These kinetic parameters are intimately related to fast timescale kinetic evolutions that are much easier to suer from nonlinear disturbing eects, which, however, provides a prerequisite for eective magnetic control. In the second part of the chapter, the active control of plasma kinetic parameters based on linear data-driven models in advanced tokamak plasma scenarios is pursued. static models of the current density and electron temperature proles are identied in realtime, which are then used to compute the control actuations, and the static adaptive feedback controller is numerically assessed via CRONOS [START_REF] Artaud | The cronos suite of codes for integrated tokamak modelling[END_REF] simulations for ITER hybrid scenarios.

In contrast to the existing works, the objective of the chapter is to provide systematic, practical, eective and robust control strategies for plasma magnetic and kinetic parameters in advanced tokamak plasma scenarios using linear data-driven models. We advert that modelling the current prole, momentum and thermal transport in advanced tokamak scenarios for control using the FPD models is not as straightforward as in L-mode scenarios due to dierent levels of plasma disturbances arising from, for instance, plasma-wave interactions, bootstrap current eects, MHD instabilities, microturbulence and impurity eects [Wesson andCampbell, 2011, Fasoli et al., 2016]. Therefore, we utilize linear models identied from the sampled input and output measurements in an interesting plasma scenario, e.g. H-mode steady-state operational scenario, via system identication methodologies [Ljung andSöderström, 1983, Moreau et al., 2008] for controller design. Since the plasma transport dynamics is intrinsically nonlinear, it necessitates the data-driven model-based controllers to be sufciently robust against model mismatches and parameter uncertainties. Hence, we devote ourselves primarily to developing a controller that retrieves the most appropriate information from the data-driven models while acquiring good control performance and reasonable robustness against various engineering constraints. The chapter is divided into two parts: the rst part shows a decentralized data-driven model-based robust control scheme by combining the multivariate H ∞ norm optimal control with the singular perturbation theory and demonstrates its eectiveness in both control performance and robustness via extensive nonlinear closed-loop simulations for an EAST H-mode steady-state scenario with the METIS code [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]. The second part reports comparative studies of plasma kinetic control in advanced tokamak scenarios on EAST, comprising both simulations and experiments, where four alternative controllers are considered.

The main contributions of the chapter are summarized as follows:

• Developing a decentralized robust control scheme for q-prole and β p in advanced tokamak scenarios based on a two-time-scale data-driven model by solving LMIs, and provide benecial control implementation techniques to handle engineering restrictions in tokamak plasma experiments such as time-delays, power saturations, constrained attractive control region and control switching.

• Developing four optional kinetic control strategies, namely the H ∞ robust control, LQI and IMC, for essential kinetic parameters in advanced tokamak scenarios using LSS models and involve a cascade actuator controller to enable the enhanced tracking of control actuations.

• Evaluating the eectiveness of the decentralized H ∞ robust control scheme through METIS simulations on EAST; assessing and comparing the performance of the twolayer cascade kinetic control scheme through nonlinear METIS simulations on EAST.

• Implementing the two-layer cascade kinetic control scheme into the EAST PCS using the embedded MATLAB coder (EMC) toolbox and experimentally validating the eectiveness in a typical H-mode plasma scenario on the EAST tokamak.

The rest of the chapter is organized as follows: Section 1 presents the decentralized H ∞ robust control scheme for q-prole and β p in advanced tokamak scenarios based on a twotime-scale data-driven model, whose eectiveness is conrmed by extensive nonlinear METIS simulations on EAST. In Section 2, we develop a two-layer cascade kinetic control scheme containing four alternative kinetic controllers and SIMC PI actuator controllers for advanced tokamak plasma operation based on LSS models, whose validity is evaluated, discussed and compared both numerically and experimentally on the EAST tokamak. Consequently, we draw the conclusion of the chapter and outline possible extensions.

3.1 Decentralized robust control of q-prole and β p In this section, a novel H ∞ robust feedback controller for q-prole and poloidal plasma pressure parameter has been developed using a two-time-scale data-driven model. Due to the simplicity and robustness properties, the H ∞ optimal control technique has been applied to various tokamak plasma control problems. In [START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF][START_REF] Barton | Physicsmodel-based nonlinear actuator trajectory optimization and safety factor prole feedback control for advanced scenario development in DIII-D[END_REF], an H ∞ optimal controller combined with a feedforward optimizer synthesized from FPD models has been applied to track the trajectories of the poloidal ux gradient prole in L-mode and H-mode plasma scenarios on DIII-D experimentally. In [START_REF] Nouailletas | Robust Vertical Plasma Stabilization of the future tungsten divertor conguration of Tore Supra[END_REF], a robust PI control technique using DD models is employed to stabilize the vertical instability on the WEST tokamak numerically. In [START_REF] Nouailletas | WEST magnetic control[END_REF], the similar technique has been extended to control the poloidal eld coil currents, plasma position and shape parameters on WEST experimentally. In [START_REF] Blanken | Model-based realtime plasma electron density prole estimation and control on ASDEX Upgrade and TCV[END_REF], the plasma electron density is successfully controlled by using H ∞ robust synthesis on ASDEX-Upgrade and TCV. Next, a two-time-scale plasma dynamic model for q-prole and β p is briey described. Subsequently, a decentralized H ∞ feedback controller is synthesized from the model and benecial control implementation techniques are presented. Afterwards, extensive nonlinear closed-loop METIS simulations are conducted to numerically evaluate the eectiveness of the control scheme on EAST. Consequently, we draw conclusions and suggest possible extensions.

Two-time-scale plasma model

In tokamak plasmas, there are multiple time scales in which various parameters/proles evolve [START_REF] Wesson | Tokamaks[END_REF]. Specically, the inversed safety factor prole has much slower dynamics than plasma pressure in medium-sized (e.g. EAST) and large (e.g. ITER) tokamaks. By virtue of this, we describe the coupled dynamics of ι, dened as an inverse of the safety factor q, and β p in a two-time-scale manner, linearized around a plasma equilibrium [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], Moreau et al., 2011, Moreau et al., 2015]. The model reads as:

∂Ψ(x,t) ∂t ∂Ξ(x,t) ∂t = M Ψ,Ψ (x) M Ψ,Ξ (x) M Ξ,Ψ (x) M Ξ,Ψ (x) Ψ(x, t) Ξ(x, t) + M Ψ,U (x) M Ξ,U (x) U (t) (3.1)
where x, namely the ux-averaged normalized radius, is dened as (Φ/Φ max ) 1/2 , in which Φ(x) is the toroidal magnetic ux within a given ux surface, and Φ max is the maximum value at the last closed ux surface (LCFS). Ψ(x, t) represents the poloidal magnetic ux minus its value at the plasma boundary, while Ξ(x, t) a combination of kinetic parameters/proles. U (t) is a vector of actuators containing the heating and current drive powers. The constant denotes a typical value of the ratio between the kinetic and magnetic time constants, which makes the various elements of the M matrix of comparable magnitude.

In order to obtain nite dimensional variables for control design, a projection of equation (3.1) onto cubic spline basis functions is carried out. For the EAST tokamak, is typically 0.05, hence a singular perturbation approach is employed. Then the linearized PDE is transformed into a two-time-scale LSS model as described below. Dening:

Ξ(t) = Ξ S (t) + Ξ F (t), U (t) = U S (t) + U F (t) (3.2)
The slow model is:

Ψ(t) =A S Ψ(t) + B S U S (t) Ξ S (t) =C S Ψ(t) + D S U S (t) (3.3)
while the fast model is:

ΞF (t) = A F Ξ F (t) + B F U F (t) (3.4)
where Ξ(t) is a vector of kinetic variables, comprising the slow Ξ S and fast Ξ F components. Likewise, U (t) is a vector of actuated powers with the slow part U S (t) and fast part U F (t).

The control of ι-prole motivates us to model the ι-prole dynamics. ι(ρ, t) is dened as

ι(ρ, t) = - dΨ(ρ, t) dΦ(ρ, t) = - ∂Ψ(ρ, t) ∂ρ ∂ρ ∂Φ(ρ, t) = - π Φ max (t) 1 ρ ∂Ψ(ρ, t) ∂ρ (3.5)
Linearizing ι(ρ, t) around a reference prole ι ref (ρ), projecting ι(ρ, t) on the cubic basis functions, we then obtain

ι(t) = C ι Ψ(t), ι(t) = ι(t) -ῑ (3.6)
where ι are a vector of the perturbed ι prole around a reference prole ῑ. C ι is a constant coecient matrix by assuming the constant Φ max , which is satised when the plasma shape parameters and the toroidal magnetic elds remain constant. Combining the equations (3.2), (3.3), (3.4) and (3.6), we derive the two-time-scale plasma response model that describes the ι-prole and kinetic parameter dynamics in a structural form.

In this work, the objective is to acquire the response of ι and β p to actuated powers from the ICRH and LHCD systems for an H-mode EAST plasma at the at-top phase, in which ι is a vector evolving only at the magnetic timescale, uniformly distributed in 10 points, i.e. x = 0, 0.1, 0.2, ..., 0.9, while β p is a scalar evolving both at the magnetic and kinetic timescales. Specically, the model for ι and β p is given as follows. The slow model is:

    Ψ0 (t) Ψ1 (t) ... ΨN-1 (t)     = A Ψ     Ψ 0 (t) Ψ 1 (t) ... Ψ N -1 (t)     + B Ψ U S,IC (t) U S,LH (t) , N = 10 (3.7)        ι 0 (t) ι 1 (t) ... ι N -1 (t) β p,S (t)        = C ι C β p,S     Ψ 0 (t) Ψ 1 (t) ... Ψ N -1 (t)     + D ι D β p,S U S,IC U S,LH (3.8)
while the fast model is:

βp,F (t) = A βp,F β p,F (t) + B β p,F U F,IC U F,LH (3.9)
and the controlled input is decomposed as:

U IC U LH = U S,IC U S,LH + U F,IC U F,LH (3.10) 

Control design

In this section, we present the robust feedback design using the two-time-scale model. First we describe the overall control scheme. Then details of the feedback synthesis are illustrated, including the control-oriented model formulation, local controllers design, the control decoupling and some remarks on controller tunings. Subsequently, we introduce benecial control implementation techniques to guarantee the performance and robustness of the proposed controller in nonlinear closed-loop simulations and real-time tokamak plasma experiments.

In order to design a robust feedback controller that possesses sucient freedom, available for control of ι and β p both separately and simultaneously (with multi-function), feedback controllers with dierent control objectives are synthesized separately and then integrated for composite control. As depicted in Fig. 3.1, the controller is divided into two components: feedforward and feedback. The feedforward component is a simple module involving constant H&CD powers at the plasma equilibrium around which the model is linearized, and a lowpass lter with two time constants for β p and ι respectively, to make the reference trajectories smooth. The feedback component consists of a low-pass lter, three local controllers and a decoupling module. The low-pass lter in the feedback component, with a time constant between kinetic and magnetic timescales, is designed to split the β p estimation into the fast and slow components such that the fast one is controlled by the fast β p controller in the kinetic timescale, while the slow one is controlled by the slow β p controller in the magnetic timescale. The ι controller is designed separately using the slow model for ι. The decoupling module is employed to formulate the simultaneous control of ι and β p . The control conditioning module is involved to attenuate the negative eects from moderate actuation time delays and power saturations [Skogestad andPostlethwaite, 2007, Hanus et al., 1987].

Feedback synthesis

The feedback control objective is to minimize tracking errors from any reference inputs, attenuate the eects from system disturbances as well as involve minimum control eorts. The denition of gain for a transfer function matrix (or in terms of a state-space representation) is given by its singular values [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF]. By shaping the singular values of appropriately specied transfer function matrices, the closed-loop control performance can therefore be guaranteed. As shown in Fig. 3.2(a), the plant G and the controller K interconnection is driven by the reference inputs r, output disturbances d and measurement noise n. The vector y denotes the controlled variables while u represents the controlled input. The sensitivity function is then expressed as S = (I + GK) -1 , which maps the control error e from y, r, d. The transfer function KS describes the mapping from y, r, d to u. Shaping the maximum singular value of S and KS in the frequency domain can then be transformed into minimizing the H ∞ norm of the integrated transfer function matrix W S S W KS KS , where W S and W KS are appropriately designed weighting functions for S and KS, respectively. Therefore, the feedback control synthesis problem is formulated as an H ∞ norm optimization problem, which is easily solved by using LMIs.

Solving the H ∞ norm optimization problem using LMIs We consider a general statespace model G = (A 0 , B 0 , C 0 , D 0 ). As shown in Fig. 3.2(b), the weighting functions W S = We then augment the plant model G into a generalized LTI state-space form P as:

  ẋ z y   =   A B 1 B 2 C 1 D 11 D 12 C 2 D 21 D 22     x w u   (3.11)
where

A =   A 0 0 0 -B S C 0 A S 0 0 0 A KS   , B 1 =   0 B S 0   , B 2 =   B 0 -B S D 0 B KS   , C 1 = -D S C 0 C S 0 0 0 C KS C 2 = C 0 0 0 , D 11 = D S 0 , D 12 = -D S D 0 D KS , D 21 = 0, D 22 = D 0
and x is the state vector of the plant G plus the state vector of the weighting functions W S and W KS . We assume that

x ∈ X ⊂ R n , z ∈ Z ⊂ R nz , y ∈ Y ⊂ R ny , w ∈ W ⊂ R nw and u ∈ U ⊂ R nu .
In order to synthesize the robust feedback controller K for the plant G, the following theorem is applied.

Theorem 2. [START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF][START_REF] Scherer | Multiobjective outputfeedback control via LMI optimization[END_REF]). A dynamical output feedback con-

troller K : (A c , B c , C c , D c )
with n u outputs and n y inputs that solves the H ∞ norm problem is obtained by solving the following LMIs in (X, Y, Ã, B, C, D) while minimizing γ:

    M 11 ( * ) T ( * ) T ( * ) T M 21 M 22 ( * ) T ( * ) T M 31 M 32 M 33 ( * ) T M 41 M 42 M 43 M 44     < 0 X I n I n Y > 0 (3.12)
where

M 11 =AX + XA T + B 2 C + CT B T 2 M 21 = Ã + A T + C T 2 DT B T 2 M 22 =Y A + A T Y + BC 2 + C T 2 BT M 31 =B T 1 + D T 21 DT B T 2 M 32 =B T 1 Y + D T

21

BT ;

M 33 = -γI nu M 41 =C 1 X + D 12 C M 42 =C 1 + D 12 DC 2 M 43 =D 11 + D 12 DD 21 M 44 = -γI ny
Then, the dynamical feedback controller K is given in the state space form with matrice coecients:

D c = D C c =( C -D c C 2 X)M -T B c =N -1 ( B -Y B 2 D c ) A c =N -1 ( Ã -Y AX -Y B 2 D c C 2 X -N B c C 2 X -Y B 2 C c M T )M -T (3.13)
where M and N are such that M N T = I n -XY .

In order to apply the above theorem to solving the H ∞ norm optimization problem and synthesize a robust feedback controller that satises the feedback control objective, the twotime-scale model derived in Section 2, i.e., equations (3.7)-(3.10), is reformulated as three sub-models which are expressed in the state-space form as: 

G β p,F = A βp,F B β p,F 1 0 G β p,S = A Ψ B Ψ C β p,S D β p,S G ι = A Ψ B Ψ C ι D ι ( 
G 1 = W 1 Σ 1 V T
1 , where G 1 = (ω c,β p,F I -A βp,F ) -1 B βp,F . The cut-o frequency ω c,β p,F represents the lower closed-loop bandwidth for the fast β p controller, which is set at 1 rad/s to extract the fast component of β p . W 1 are the left singular vectors, V 1 are the right singular vectors, Σ 1 the diagonal matrix with singular values of G 1 on its diagonal. Assume the rst left and right singular vectors as well as the rst singular value to be W 1,1 , V 1,1 and Σ 1,1 , respectively, which represent the principal control channel for the fast β p dynamics. Projecting G β p,F onto the principal output and input control channels yields

G β p,F ,1 = W 1,1 G β p,F V 1,1 Σ -1
1,1 . Assume that K β p,F ,1 represents the transfer function of the controller for the plant model G β p,F ,1 , and then the sensitivity function S β p,F ,1 is derived as

(1 + G β p,F ,1 K β p,F ,1 ) -1 . Using the LMI optimization method, the controller K β p,F ,1 is synthesized by minimizing the H ∞ norm of T zw,β p,F = W S,β p,F S β p,F ,1 W KS,β p,F K β p,F ,1 S β p,F ,1
, where W S,β p,F and W KS,β p,F are two weighting functions. The fast β p controller is then obtained as

K β F = V 1,1 Σ -1 1,1 K β p,F ,1 W 1,1 .
The slow β p controller is synthesized by shaping the mixed-sensitivity functions of the slow β p model. Similarly, an SVD technique is performed on the slow β p model at a cuto frequency ω c,β p,S = 0 rad/s to obtain the principal output and input control channels, expressed as

G 2 = W 2 Σ 2 V T 2 , where G 2 = -C β p,S A -1 Ψ B Ψ + C β p,S .
For the slow β p controller, the lower closed-loop bandwidth is 0 rad/s, so ω c,β p,S = 0 rad/s. Assume the rst left and right singular vectors to be W 2,1 and V 2,1 , which respectively represent the principal output and input control channel. The rst singular value is Σ 2,1 . Projecting G β p,S onto the principal output and input control channels yields

G β p,S ,1 = W 2,1 G β p,S V 2,1 Σ -1
2,1 . Assume that K β p,S ,1 represents the transfer function of the controller for the plant G β p,S ,1 , we then obtain the sensitivity function S β p,S ,1 = (I + G β p,S ,1 K β p,S ,1 ) -1 . Using the LMI optimization method, the controller K β p,S,1 is synthesized by minimizing the H ∞ norm of T zw,β p,S = W S,β p,S S β p,S ,1 W KS,β p,S K β p,S ,1 S β p,S ,1 , where W S,β p,S and W KS,β p,S are two weighting functions. The slow β p controller is then obtained as

K β S = V 2,1 Σ -1 2,1 K β p,S,1 W 2,1 .
The ι controller is synthesized by shaping the mixed-sensitivity functions of the ι model. Similarly, an SVD technique is performed on the ι model at a cut-o frequency ω c,ι = 0 rad/s to obtain the principal output and input control channels, expressed as

G 3 = W 3 Σ 3 V T 3 , where G 3 = -C ι A -1 Ψ B Ψ + C ι .
For the ι controller, the lower closed-loop bandwidth is 0 rad/s, so ω c,ι = 0 rad/s. Assume that the rst n left and right singular vectors to be W 3,n and V 3,n , which represent the rst n principal output and input control channels. The rst n singular values are Σ 3,n . In our case, n is set at 1 because analysis shows that the second singular value is much smaller than the rst one. Projecting G ι onto the principal output and input control channels yields

G ι,1 = W 3,1 G ι V 3,1 Σ -1
3,1 . Assume that K ι,1 represents the transfer function of the controller for the plant G ι,1 , we then obtain the sensitivity function S ι,1 = (I +G ι,1 K ι,1 ) -1 . Using the LMI optimization method, the controller K ι,1 is synthesized by minimizing the H ∞ norm of T zw,ι = W S,ι S ι,1 W KS,ι K ι,1 S ι,1 , where W S,ι and W KS,ι are two weighting functions. The ι controller is consequently obtained as

K ι = V 3,1 Σ -1 3,1 K ι,1 W 3,1 .
Combining the inputs for composite control In order to achieve the simultaneous control of ι and β p , the outputs of the ι and β p controllers should be combined to generate a set of actuated powers for the H&CD systems. Suppose that the output of the fast β p controller, of the slow β p controller and of the ι controller are u βp,F , u βp,S and u ι , respectively. 

I s M +ω B s+ω B A 1 II ( s √ Mp +ωp) 2 (s+ωp √ Ap) 2 ( s √ Mu +ωu) 2 (s+ωu √ Au) 2
Remarks on the weighting functions In this study, two options of the weighting functions W S /W KS [Skogestad andPostlethwaite, 2007, Barton et al., 2015a] are attempted to shape the H ∞ norm of the mixed sensitivity function S/KS, as listed in Table 3.1.

In option I, the sensitivity function S is shaped by the weighting function W S = s M +ω B s+ω B A . We select A << 1 to ensure the approximate integral action with S(0) ≈ 0 such that the tracking error can be made small and the output disturbance can be attenuated. We keep M xed at 2 for all the controlled outputs. The desired closed-loop bandwidth ω B are tuned by trials and errors, which is directly related to the transient performance. A large value of ω B yields a faster response for the controlled output, but it may result in larger overshoots.

In option II, the mixed-sensitivity functions S and KS are respectively shaped by

( s √ Mp +ωp) 2 (s+ωp √ Ap) 2 and ( s √ Mu +ωu) 2 (s+ωu √ 
Au) 2 , implying more tuning parameters. The parameters M p and M u are associated with the high frequency behaviour, which are xed at 2. The parameters A p and A u are related to the low frequency behaviour and we select them to be small for good tracking and disturbance rejection. The parameters ω p and ω u determine the closed-loop control bandwidth [START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF], which are tuned by trials and errors.

Control implementation

Setpoints selection The setpoints selection is essential for the situation where the number of outputs is larger than that of inputs, because if the setpoints are specied out of the attractive control region they should never be achieved even with the maximum/minimum allowed actuations. In this study, the ι and β p sepoints are determined semi-empirically by nonlinear closed-loop METIS simulations such that all the setpoints are located in the attractive control region.

Control discretization and model reduction Using the H ∞ norm optimization approach we consequently derive a set of continuous dynamical controllers with dierent orders. The real-time application to plasma control requires the discretisation of these controllers. Accounting for the constraints of the equilibrium reconstruction and energy connement time on EAST, we discretize the controller with the sampling time T s = 20 ms.

For simplicity, one can further perform model reduction on these discrete controllers to remove insignicant controller dynamics and obtain their minimal realizations [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF]. After model reduction, the order of the fast β p controller remains at 2 by using the weighting functions in option I. The initial order of the fast β p controller (2) is equal to the sum of the order of the fast β p model (1) and of the weighting functions (1). The slow β p controller order substantially decreases for example by using the weighting functions in option II, from 14 to 8. The initial order of the slow β p controller ( 14) is the sum of the order of the slow β p model ( 10) and of the weighting functions (2+2). The order of ι controller drops from 14 to 5. The initial order of the ι controller ( 14) is the sum of the order of the ι model ( 10) and of the weighting functions (2 + 2).

Feedforward and control initialization The control initialization is important for good control performance, because if it is not well congured, the actuations are probably saturated which may cause large overshoots, even plasma disruptions. To avoid the possibilities of potential plasma disruptions arising from improper control initialization, a feedforward in terms of discrete low-pass lters for ι and β p is designed. The characteristic time for the ι and β p pre-lters are respectively of the order of the resistive diusion time τ mag = 0.4 s and the energy connement time τ kin = 0.04 s. The feedforward trajectories are then obtained as follows in the discrete state space form: To avoid undesirable bump and power saturations due to control switching [START_REF] Hanus | Conditioning technique, a general anti-windup and bumpless transfer method[END_REF], the initial states of the ι and β p lters are then computed as:

x ι [k + 1] x βp [k + 1] = A f,ι 0 0 A f,βp x ι [k] x βp [k] + B f,ι 0 0 B f,βp ι ref [k] β p,ref [k] ι m [k] β p,m [k] = C f,ι 0 0 C f,βp x ι [k] x βp [k]
x ι [0] x βp [0] = C f,ι 0 0 C f,βp -1 ι mea [0] β p,mea [0] (3.19)
Here we assume that k = 0 represents the starting time when the feedback controller is switched on. Actuator dynamics In order to mimick the experimental conditions for auxiliary H&CD power actuators on EAST, actuation dynamics are considered to evaluate the performance and robustness of the feedback control algorithm. The actuation dynamics for the ICRH and LHCD are modelled separately as a rst-order transfer function with time-delay: 

G i (s) = k i τ i s + 1 e -θ i s , i ∈ {ICRH, LHCD} (3.20)
Actuators τ i [ms] θ i [ms] S m [MW] S r [MW• s -1 ] ICRH 1 [0, 60] [0, 1.5] [-8, 8] LHCD 1 [0, 60] [0, 3] [-8, 8]
where i is an indicator for power actuators, k i the i-th steady-state gain which is xed at 1, τ i the i-th characteristic time, θ i the i-th time delay and G i (s) the transfer function for the i-th power actuator. A saturation module that accounts for both the magnitude and rate limits of ICRH and LHCD is considered. Table 3.2 lists the related parameter values, where S m and S r respectively denote the magnitude and rate limits allowed by the actuators.

Control conditioning and anti-windup compensation Since there is a series of dynamics in the actuated power systems, the actual delivered powers are never totally equal to the control commands requested by the controller at each time slice. However, the controller cannot automatically identify whether the commands are followed or not unless an extra closed loop is involved. In some cases, for instance, due to power saturations and time delays, the states of the controller may wind up because the plant does not respond accordingly, so that the behaviour of the system will deteriorate dramatically. To handle this problem, an antiwindup compensator is designed to keep the controller well-behaved and avoid undesirable oscillations when saturations and moderate time delays are present, which is expressed in a discrete state-space form:

x aw [k + 1] y aw,d [k] =            A aw B aw C aw D aw x aw [k] δu[k] , if δu[k] = 0 A exp C exp x aw [k] , if δu[k] = 0 (3.21) Here, δu = u a [k] -u c [k], u a [k]
denotes the measurements of the actuated powers and u c [k] denotes the control outputs of the controller. The system matrices (A aw , B aw , C aw , D aw ) of the anti-windup compensator are chosen identical to the discrete form of the system matrices in the two-time-scale plasma model. (A exp , C exp ) is a discrete state-space realization of the asymptotically stable equation ẋaw (t) = λx aw (t), and λ is set to be -50. y aw,d [k] is the modied reference arising from the actuation dynamics to be added to the reference trajectories for controller states conditioning in real-time. This conditioning technique can be combined with the fast and slow β p controller to cope with up to 60 ms of time delays plus power saturations, which will be demonstrated in Section 4.2.

Real-time capability Testing on a computer with Intel(R) Xeon (R) CPU X5660@2.8GHz processors shows that the average computational time for one control cycle is 40.6 µs (less than the 20 ms sampling time). Considering that the current implementation of the control algorithms is based on the MATLAB/Simulink framework, the computation time for each control cycle should be further reduced when the algorithm is realized by the C/C++ code and implemented into the EAST PCS using the embedded MATLAB coder (EMC) toolbox. Therefore, we conclude that this algorithm meets the real-time constraints.

Performance indexes The feedback control performance is evaluated based on a set of indexes that can be used to represent the control performance in dierent aspects. The rst index is the rise time, which is dened as the total time required for the response to rise/fall from 10 % (90 %) to 90 % (10 %) of its regulation height in a specic time window. Specically, we assume that there are N time windows for the regulation of ι and β p in a controlled scenario, and the starting time for the ι and β p setpoint transition remain the same. In a given time window n, the rise time of ι at x = 0, 0.1, 0.2, ..., 0.9 (t r,ι (n, x)) and β p (t r,βp (n)) read as:

t r,ι (n, x) =t(ι 1 a (n, x)) -t(ι 0 a (n, x)) t r,βp (n) =t(β 1 p,a (n)) -t(β 0 p,a (n)) (3.22)
where

ι 1 a (n, x) β 1 p,a (n) ι 0 a (n, x) β 0 p,a (n) 
= 0.1 0.9 0.9 0.1

ι 0 (n, x) β p,0 (n) ι 1 (n, x) β p,1 (n) 
n =1, 2, .., N, x = 0, 0.1, 0.2, ..., 0.9

Here, ι 0 (n, x) and β p,0 (n) are the starting setpoints of ι(x) and β p in the time window n respectively, while ι 1 (n, x) and β p,1 (n) indicate the nal setpoints. Likewise, ι 0 a (n, x) and β 0 p,a (n) are the estimated/measured values at the 10 % of the regulation heights in a given time window n, while ι 1 a (n, x) and β 1 p,a (n) are those at the 90 % of the regulation heights.

Once the rise times for ι and β p in a time window are obtained, we can then calculate the averaged values. For ι, averaging the rise time t r,ι (n, x) on n leads to the averaged rise time at each point over all the time windows, i.e. t r,ι (n, x) n , meanwhile averaging t r,ι (n, x) on x results in the integrated rise time of ι points in dierent time windows, i.e.

t r,ι (n, x) x . t r,ι and t r,βp are two scalars which show the comprehensive response time for ι and β p respectively. Note that W (x) is the normalized weighting matrix which represents the importance of each point. The averages are computed as:

t r,ι = 1 10N 0.9 x=0 N n=1 W (x)t r,ι (n, x), t r,βp = 1 N N n=1 t r,βp (n) t r,ι (n, x) n = 1 N N 1 t r,ι (n, x), t r,ι (n, x) x = 1 10 0.9 x=0 W (x)t r,ι (n, x)
The second performance index is the overshoot, dened as the maximum amount a system overshoots its nal value divided by its nal value, often expressed in percentage. In tokamak plasma operation, large overshoots of ι and β p can result in undesirable MHD and kinetic instabilities, thus it is good to quantify this index to reect the control performance. For our problem, since ι and β p are not the same kind of physical quantities, we dene l os,ι (n, x) and l os,βp (n) respectively as the overshoot of ι(x) and β p at a given time window n:

l os,ι (n, x) = ι max (n, x) -ι ss (n, x) ι ss (n, x) × 100% l os,βp (n) = β p,max (n) -β p,ss (n) β p,ss (n) × 100%
n =1, 2, .., N, x = 0, 0.1, 0.2, ..., 0.9

(3.23)
where ι max (n, x) and β p,max (n) are the maximum values exceeding their corresponding steady state values ι ss (n, x) and β p,ss (n), respectively.

With the similar technique, we can derive two scalars, i.e., l os,ι and l os,βp for the comprehensive evaluation of ι and β p overshoots in the whole controlled scenario. Two partial averaged values l os,ι (n, x) n and l os,ι (n, x) x represent the overshoots of ι in two dierent aspects. The weighting matrix W (x) is the same as the one for the rise time calculation.

l os,ι = 1 10N 0.9 x=0 W (x) N n=1 l os,ι (n, x), l os,βp = 1 N N n=1 l os,βp (n) l os,ι (n, x) n = 1 N N n=1 l os,ι (n, x), l os,ι (n, x) x = 1 10 0.9 x=0 W (x)l os,ι (n, x)
The third performance index is the relative error index, which represents the relative error of the controlled output against its setpoint. For our problem, J ι [k] and J βp [k] are two timevariant relative error indexes for ι and β p respectively. These two indexes are dened as:

J ι [k] = δι T [k]Qδι[k] ι T r [k]Qι r [k] , δι[k] = ι[k] -ι r [k] J βp [k] = δβ T p [k]δβ p [k] β T p,r [k]β p,r [k] , δβ p [k] = β p [k] -β p,r [k] (3.24)
where Q is the weighting matrix for ι, δι (δβ p ) is the error between the estimation ι

[k] (β p [k]) and the setpoint ι r [k] (β p,r [k]
). Averaging them can as well attain the overall relative error indexes for ι, i.e. J ι and β p , i.e. J βp , where K is the number of samplings in the whole controlled process.

J ι = 1 K K k=1 J ι [k], J βp = 1 K K k=1 J βp [k]
We do not combine them by adding these two scalars for a comprehensive representation of the control performance because we note that they may evolve in dierent orders, and adding them may neglect important information about control performance.

Simulation results

In order to evaluate the control scheme proposed in the previous section, closed-loop simulations were carried out by coupling the controller with the METIS code, which is a nonlinear plasma simulator. The two-time-scale model is identied from 20 dierent METIS open loop simulations with random power modulations: the details of the system identication methodology can be found in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], Moreau et al., 2011, Moreau et al., 2015]. The reference scenario around which the model is identied is a steady-state, fully non-inductive single-null H-mode discharge in the EAST tokamak, i.e. shot #62946, with the toroidal magnetic eld B T = 2.5 T, the central electron density n e0 ≈ 3.5 × 10 19 m -3 and plasma current I p = 0.42 MA. The discharge was obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s with an H-mode enhancement factor H 98 (y, 2) ∼ 1.1. The q-prole exhibited a small negative shear in the plasma core, with minimum q around 1.5 and q 0 ∼ 2 on axis. The plasma proles were retrieved from the EFIT magnetic equilibrium reconstructions available in real-time using magnetic and kinetic measurements, for instance, interfero-polarimetry data from the POINT diagnostics [START_REF] Liu | Initial measurements of plasma current and electron density proles using a polarimeter/interferometer (POINT) for long pulse operation in EAST[END_REF], Liu et al., 2016a, Huang et al., 2017].

The initialization of the METIS code is preset to be consistent with shot #62946 at 3.1 s, including plasma current, shape, magnetic uxes, kinetic proles and actuated powers. The plasma transport model is described in detail in [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF] and was chosen consistent with the standard ITER-EIV H-mode scaling law [START_REF] Cordey | Scaling of the energy connement time with β and collisionality approaching iter conditions[END_REF]. With this scaling law, an H-factor of 0.99 was used in METIS simulations to t the measured plasma energy content. This H-factor can be varied in some simulations to study the eect of model perturbations. Some other tting parameters were chosen in order to t the temperature proles measured in shot #62946 and then xed for all simulations. The LHCD model is also described in [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]. The lower hybrid power deposition prole is based on a probabilistic ad-hoc formulation which takes into account the limits of the wave propagation domain in space and parallel wave-index and the Landau absorption criterion as a function of local plasma temperature. With the chosen parameters, the LHCD was generally deposited o-axis, which could lead to reverse magnetic shear at high power, and to the formation of electron internal transport barriers in some cases. Plasma parameters such as plasma current, geometry, densities and eective charge numbers are assumed to be regulated by dedicated controllers. The sampling time is xed to 20 ms. The LHCD power at 2.45 GHz and the ECRH power at 140 GHz are not considered as control actuators. They are always at their reference values in every simulation, 0.6 MW and 0.3 MW respectively, and since METIS allows for only one lower hybrid system, they are combined into a single heating system providing 0.9 MW with given power and current deposition proles into the plasma at constant plasma current and density. The control actuators are the LHCD power at 4.6 GHz and the ICRH power at 33 MHz and their feedforward components are constant at 2 MW and 0.32 MW, respectively, as in the reference discharge. The time constants for β p and ι prelters are respectively 0.04 s and 0.4 s, whose initial states are respectively 1.0282 (β p,0 ) and [0.9200, 0.9032, 0.9745, 0.9901, 0.7892, 0.6195, 0.4602, 0.3383, 0.2496, 0.1866] (ι i,0 , i = 0, 0.1, 0.2, ..., 0.9) corresponding to the counterparts at 3.1 s in shot #62946. The time constant and initial state for the low-pass lter in the feedback component are 1 s and 0, respectively. The actuated powers are the 4.6 GHz LHCD spreading between 0 and 3 MW and the 33 MHz ICRH from 0 to 1.5 MW.

3.1.3.1 Tracking of q-prole and β p Separate control of β p and the core ι prole The simplest control evaluation case is the nominal control of β p , with the safety factor control relaxed as shown in Fig. 3.5. There are totally 6 setpoints which are required to be achieved, sequentially 1.5, 2, 3, 1.9, 2.3 and 2.8. It is obvious that the combination of fast β p and slow β p controllers is able to track β p with good control performance, e.g. the averaged rise time t r,βp at 132 ms, very small overshoots ( l os,βp = 3.2 %) and negligible steady-state errors under the condition that the powers of ICRH and LHCD are not saturated. In each control phase, the averaged relative error for β p , i.e. J βp , initially increases due to the sudden change of its regulation point, and then decreases substantially to around 10 -7 . This allowed extensive closed-loop simulations to be performed in a reasonable time despite the complexity of the METIS code, and also provided realistic simulations of the closed-loop experiments on EAST, in which the sampling time has to match the requirements of the real-time magnetic reconstruction. This sampling time is adequate for the slow β p controller (the characteristic time of the slow model is τ mag = 0.4s), but discrepencies between the (ideal) continuous dynamics and the discrete ones due to sampling may inuence the fast control of β p (the characteristic time of the fast model is τ kin = 0.04s). Since the rise time t r,βp is around six times the sampling interval and 3.5 τ E , this inuence appears to be insignicant. Concerning the evolution of the ι values at dierent radii, we note that the plasma temperature increases when the ICRH power and β p increases, which makes the LHCD deposition more o-axis and also drives more bootstrap current, thus leading to the increase of the core safety factor prole.

The second case is the nominal control of ι values at normalized radius x = 0, 0.1, 0.2, ..., 0.5 with the β p feedback control relaxed. Three sets of setpoints were prescribed, with the rst setpoint globally positive magnetic shear, the second one being weakly negatively sheared in the plasma core, and the third being strongly centrally negatively sheared. As shown in Fig. 3.6, the setpoints are achieved with the averaged rise time t r,ι = 607 ms and the averaged overshoots l os,βp = 1.4 %. In each control phase, the averaged relative error for ι, i.e. J ι , initialy increases due to its limited control bandwidth, and then decreases exponentially to around 10 -6 . Since the plasma pressure is not actively controlled, in other words, the fast and slow β p controllers are not switched on, the β p value remains at around 1.5 due to very small variations of the ICRH power. It indicates that, as expected, the LHCD system is more suitable for ι control than for β p control, while the ICRH system is just in reverse. In addition, small variations of β p indicate that the control of ι points in the plasma core via LHCD does not obviously impact the value of plasma pressure. Simultaneous control of β p and the core ι prole The nominal control of both ι and β p is shown in Fig. 3.7. Three β p setpoints, namely 2, 2.5 and 3 are prescribed, i.e. 2 in the time interval [3.1, 7.1] s, 2.5 in [7.2, 11.2] s and 3 in [11.3, 15.6] s. Likewise, three groups of setpoints for ι at 0, 0.1,..., 0.4 are specied, i.e. positive central magnetic shear between 3.1 s and 7.1 s, weakly central negative shear from 7.2 s to 11.2 s and strongly central negative shear in [11.3, 15.6] s. Clearly, all the targets are achieved using only the limited LHCD and ICRH powers, with the averaged rise time vector ( t r,βp , t r,ι ) at (0.113, 1.11) s, the averaged overshoot vector ( l os,βp , l os,ι ) at (1.44, 3.47) %. In each regulation window, J ι evolves from 10 -3 to 10 -5 and J βp decreases from 10 -2 to approximately 10 -9 .

The corresponding evolutions of q-prole, the bootstrap current prole, electron and ion temperature proles are depicted in Fig. 3.8. With the decrease of the central magnetic shear and the β p increase, the bootstrap current was increased due to the increase of electron temperatures and their gradients and the LH-driven current was increased as well via actuating more LHCD power. An internal transport barrier was formed on the electron channel as one can notice a strong increase of T e and J boot in the center. However, the increase of electron temperatures implies the reduction of the electron-ion collision frequency (proportionally to T -1.5 e ), hence the ions could not be heated by electrons. Taking the ion radiation and power loss into account, the ions temperature dropped slightly. The EAST tokamak is a superconducting tokamak which is suitable for the long-pulse steady-state plasma operation. The second case involves the simulatenous control of β p and ι in H-mode steady state operational scenarios. In order to design appropriate ι and β p setpoints for H-mode steady-state plasma control, we perform trial simulations by regulating one set of ι values via the proposed ι controller and tracking β p to dierent levels via the proposed β p controller. The pair of ι and β p values associated with zero surface loop voltage are selected as setpoints. Note that U loop is not an actuator, and the condition of the zero loop voltage with the constant total plasma current is satied by appropriately coordinating the values of ι and β p . With the procedure, Figure 3.7: Tracking ι points at 0, 0.1, 0.2, ..., 0.4 and β p simultaneously. Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop , the averaged relative error for β p , J βp . Middle panels from left to right: time traces of the ι septpoints (green dashed) and evolutions (black solid) at x = 0, 0.1, 0.2, 0.3. Bottom panels: time traces of the ι setpoints (green dashed) and evolutions (black solid) at x = 0.4, the actuated ICRH power P ICRH (black solid) associated with its power limits (green dashed), the ICRH power P LHCD (black solid) associated with its power limits (magenta dashed), and the averaged relative error for ι, J ι . three pairs of setpoints for ι and β p are therefore designed. The tracking of these designed setpoints using the proposed control scheme is then performed with the results shown in Fig. 3.9. In each regulation window, the setpoints are reached with the averaged rise time vector ( t r,βp , t r,ι ) at (0.146, 1.34) s, the averaged overshoot vector at ( l os,βp , l os,ι ) at (2.13, 3.86) %, small steady state errors, and meanwhile, with the loop voltage approaching zero.

More interesting physical results are illustrated in Fig. 3.10. It seems that the increase of the absolute value of central magnetic shear combined with the β p decrease can ensure the sum of bootstrap current and LH driven current approximately kept at a level so that the ohmic current would not play a role. With the decrease of the ICRH power, β p drops from 2.8 to 2.2, associated with the global reduction of the electron temperature. The decrease of electron temperatures results in the growth of the collision frequency between electrons and ions, thus the ion temperatures globally increased via acquiring the energy from electrons. The two obvious bulbs for the loop voltage evolution, shown in Fig. 3.10, between scenario transition are attributed to the sudden decrease of the bootstrap current arising from the sudden decrease of electron temperatures and their gradients due to the decrease of the ICRH power. In order to compensate for the loss of the bootstrap current and keep the plasma current constant, the ohmic current increases in response to the loop voltage, U loop (See [START_REF] Wesson | Tokamaks[END_REF] for its denition), delivered by the plasma current controller. Therefore, U loop transiently increases before it is reduced to about 0 on a longer time scale due to the growth of P LHCD and of the associated LH driven current, which leads to an increase of the central safety factor and shear reversal. Even though it plays a negligible role in the steady state scenarios, the ohmic current can be used transiently after setpoint changes or plasma disturbances considering the dierent time scales in which various parameters such as the bootstrap current or the LH driven current evolve. Figure 3.9: Tracking of ι points at 0, 0.1, 0.2, ..., 0.4 and β p simultaneously. Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop (black solid) with the zero loop voltage line (red dashed) , the averaged relative error for β p , J βp . Middle panels from left to right: time traces of the ι setpoints (green dashed) and evolutions (black solid) at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι setpoints (green dashed) and evolutions (black solid) at x = 0.4, the actuated ICRH power P ICRH (black solid) associated with its power limits (green dashed), the LHCD power P LHCD (black solid) associated with its power limits (magenta dashed), and the averaged relative error for ι, J ι .

Tracking with moderate time delays and power saturations

In this section, we rst present the METIS simulation results with dierent levels of time delays. Then comparison of the simulations with and without the control conditioning module is provided to highlight the importance of online control conditioning for the feedback controller in attenuating the negative eects from time delays and power saturations.

Basically, the tokamak operation system is a time delay system, in which the time delays may arise from the PCS sampling, ltering, communication with the associated systems, the actuator systems, the diagnostic systems and the real-time equilibrium reconstruction algorithm. For time delay systems, the eects from time delays can be neglected if they Figure 3.10: Simulation of a steady-state scenario. Left-top panel: typical q-prole setpoints (asterisk and dashed) and evolutions (square and solid) at 6.8 s (red), 11 s (blue) and 15 s (black). Right-top panel: contour plot of the bootstrap current j boot evolution. Left-bottom panel: contour plot of the electron temperature prole T e evolution. Right-bottom panel: contour plot of the ion temperature prole T i evolution.

are under a particular threshold. However, exceeding the threshold may result in undesirable oscillations, sometimes even inducing closed-loop instability. Since the prole control sampling time is xed at 20 ms, the time delays that appear in the discrete prole controller should be a multiple of the prole control sampling time. The actuation and measurement time delays can be as small as 1 ms because their sampling frequencies are much larger, e.g. 1000 Hz. The PCS prole control algorithm and the equilibrium reconstruction algorithm with larger sampling time at 20 ms thus constitute a primary source of time delays, which may cause time delays as large as 20 ms, 40 ms and even 60 ms. In this study, we evaluate the performance of the controller under the time delay environment by articially varying the time delays in the actuation dynamics at 20 ms, 40 ms and 60 ms, respectively. The simulation results are illustrated in Fig. 3.11. By comparing the evolution of β p and ι values in the plasma core with the actuation time delays at 20 ms, 40 ms and 60 ms, we can conclude that the control performance is not obviously damaged with the increase of time delays, which is benecial from the online control conditioning for the controller states using the values of the control commands provided by the controller and of the actual powers provided by the ICRH and LHCD power systems. Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop , the β p performance index J βp . Middle panels from left to right: time traces of the ι points at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι point at x = 0.4, the actuated ICRH power P ICRH , the LHCD power P LHCD , and the ι performance index J ι . The reference trajectories for ι and β p are denoted by green dashed lines, the power limits for the ICRH and LHCD are indicated by blue and magenta dashed lines, respectively.

Normally, under ideal circumstances if the reference trajectories are properly prescribed, the magnitude and power rate limits of the ICRH and LHCD systems are never violated. However, unpredictable disturbances in tokamak plasmas could drive the plasma to abnormal states, which can probably cause power saturations, sometimes accompanied with time delays. In order to identify whether the controller with online control conditioning can eectively attenuate the eects from both the power saturations and time delays, control performance with and without the anti-windup module are compared in Fig. 3.12. In the scenario without control conditioning imposed, there are obvious oscillations of the β p evolution at the beginning, which is caused by oscillations of the ICRH power mainly due to 60 ms time delays (i.e. 3 T s ). At 7.1 s, the β p setpoints are increased from 2.0 to 3.5 exponentially. However, since the highest ICRH power that can be provided can not support the achievement of β p at 3.5, the ICRH power is saturated until 11.2 s. Then the reference trajectory starts to decrease from 3.5 to 3.0: one can notice that the β p value immediately follows the reference trajectory for the scenario with control conditioning, but the scenario without control conditioning can not respond accordingly for as long as 4 s. As for ι one can notice that at the beginning the relative errors, i.e. J ι [k], for two scenarios are approximately consistent, because the ι controller does not respond to the high frequency references/disturbances. After the saturation is relaxed, the relative error for ι with control conditioning is obviously much smaller than the one without control conditioning.

To sum up, using the controller outputs and the actual power measurements, we can calculate the actuation errors due to power saturations or time delays with respect to the control commands based on the two-time-scale plasma model. Then these errors are fed back to the controller for control states conditioning. This technique can attenuate negative eects from long time delays, e.g. 60 ms, and from the evolution after the power saturations are relaxed.

Tracking with varying weighting functions

The objective of this section is to compare the closed-loop simulation results using the feedback controller tuned with various weighting functions. Six simulation scenarios were evaluated, whose results are listed in Table 3.3. All the simulation scenarios have achieved the simultaneous control of q-prole and β p , implying the potential robustness of the feedback controller to the weighting function parameters.

In the scenarios a-c, all three local controllers are tuned with the weighting functions as listed in the option I of Table 3.3. The tuning parameters M and A are respectively kept at 2 and 10 -5 , and the desired closed-loop bandwidths are increased from the scenario a to c. Results show that the performance indexes t r and J are gradually descreased for both β p and ι tracking, which is accompanied with the increase of the overshoot index l os . In the scenarios d-f, the fast β p controller is tuned with the weighting functions in the Option I, while the slow β p and ι controllers are tuned with the weighting functions in the Option II. Likewise, the tuning parameter M is xed at 2 for all the weighting functions, while the desired closed-loop bandwidths and the low frequency tuning parameters are varied.

Results imply that with the increase of the desired closed-loop bandwidths, the transient control performance is improved because the performance indexes t r and J are decreased gradually and the overshoot index l os is increased in the scenarios d-f. In addition, statistics show that the averaged rise time t r,βp , lies in 90-132 ms, i.e. (2.25-3.3) τ E and also 4.5-6.6 times the sampling interval, which is physically reasonable and is a tradeo between the control performance and robustness. The robustness performance to parameter disturbances will be evaluated in the next section.

Comparing the scenarios a-f, we conclude that when using the option II for control design, the ι control can be improved slightly, but the β p control performance is damaged. To sum up, the tuning of the desired closed-loop bandwidths is essential for the control performance, Figure 3.12: Comparison of tracking with 60 ms of time delays (t.d.) plus power saturations with (black solid) and without (red solid) online control conditioning. Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop , the β p performance index J βp . Middle panels from left to right: time traces of the ι points at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι point at x = 0.4, the actuated ICRH power P ICRH , the ICRH power P LHCD , and the ι performance index J ι . The reference trajectories for ι and β p are denoted by green dashed lines, the power limits for the ICRH and LHCD are indicated by blue and magenta dashed lines respectively. which should be carefully considered. In addition, the tuning parameter A should be made small, for example, at 10 -5 to guarantee small tracking errors.

Robustness to plasma parameter uncertainties

In tokamak experiments, there are numerous parameters/proles that were assumed to be constant but possibly vary and inuence, in dierent degrees, the values of safety factors and plasma pressures. For example the line averaged density ne , the connement enhancement factor H 98 (y, 2) and the ion eective charge number Z e are among the most important ones. Hence, we consider those quantities as the sources of typical disturbances that occur in the course of the simulation and evaluate the robustness of the closed-loop system. Plasma current [23.86, 24.36] disturbances are not taken into account in this study because the plasma current is tightly regulated separately through a dedicated controller.

Simulation results of disturbance rejection by the β p controller are depicted in Fig. 3.13, where 18 squared wave disturbances emerge in separate periods of the whole simulation as listed in Table 3.4. Specically, the value of the averaged density is increased by 30% at 3.6 s (β p at 2), 6.22 s (β p at 2.5) and 8.74 s (β p at 3) respectively and remains constant for 0.5 s before it returns to the original value. The value of the averaged density is decreased by 30% suddenly at 19.82 s (β p at 2.0), 22.34 s (β p at 2.5) and 24.86 s (β p at 3) and remains the same for 0.5 s before returning to the initial value. The H factor is articially decreased by 30% in the time periods [4.7, 5.2] [21.34, 21.84] s the eective charge number is decreased by 30 %. We can conclude from our simulations that, in addition to good reference tracking, the fast and slow controllers are as well able to reject the 30% changes of ne , H 98 (y, 2) and Z e with a response time at around 0.25 s when the ICRH power is not saturated. We note that if the upper limit of the ICRH power is 1.5 MW, it is not possible to reject the 30% decrease of H 98 (y, 2) when β p is over 2.5 and also it cannot reject 30 % decrease of ne and Z e when β p is at 3. The reason is that under those conditions the available ICRH power is not able to compensate the reduced part of β p arising from the decrease of H 98 (y, 2), ne and/or Z e . Importantly, we highlight that among all three parameters, H 98 (y, 2) is the most important parameter that can signicantly aect β p . The robustness test of the ι controller against typical squared wave disturbances is presented in Fig. 3.14. In this case, three squared wave disturbances are imposed in the periods of [4, 4.5] s (30 % increase of ne ), [8, 8.5] s (30 % increase of H 98 (y, 2))and [12, 12.5] s (30% increase of Z e ). Even though the simulation experienced large and sudden disturbances in the rst two phases, two groups of setpoints are nally reached without exceeding the limits of ICRH and LHCD powers. As for the third phase, since the model mistmatches are enlarged with strongly negative magnetic shear due to nonlinearity, the setpoints are reached after a few oscillations.

The simultaneous control of ι at 0, 0.1, 0.2, ..., 0.5 and β p with typical disturbances is shown in Fig. 3.15. There are three squared wave disturbances with the amount of 30% growth occurring in the time intervals [4, 4.5] s (for averaged density), [8, 8.5] s (for H factor) and [12, 12.5] s (for eective charges). In addition to reference tracking, β p is well regulated against the three sudden and large disturbances with a response time of 0.2 s. The ι controller is able to reject the disturbances of both H factor and plasma density and nally reaches the targets. For the strongly negative shear case, it takes more time to achieve the target since the model mismatches are much larger, but it is nevertheless approached as closely as possible. Note that when β p is at 3.0, a large amount of ICRH power is needed to sustain this value and only a limited amount of power is left to reject the disturbance, thus the ICRH power is saturated between 12 s and 12.5 s.

Conclusion of Section 3.1

In this work, a new H ∞ robust controller has been developed for the tracking of q-prole and β p , based on a two-time-scale data-driven model. The model is divided into 3 sub-models for and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control. separate control synthesis and eventually all the local controllers are combined for composite feedback control. In order to attenuate the negative eects from power saturations and time delays, a controller states conditioning loop is utilized to compensate for the actuation errors due to power saturation and time delays. Meanwhile, to avoid undesirable bumps, overshoots and power saturations at the control initialization, some pre-congurations on the setpoints and pre-lters are carefully made. The control tunings and relevant control performance have been evaluated numerically to provide some indications on experimental control tunings for the robust feedback controller. Importantly, extensive nonlinear closed-loop simulations with the METIS code show that using LHCD@4.6GHz and ICRH@33MHz systems as control actuators the proposed controller can successfully achieve and regulate the monotonic q-prole and reversed magnetic shear with high β p in H-mode steady-state scenarios on EAST. Robustness tests indicate that it is possible to maintain the states by rejecting the disturbances of up to dierent levels of plasma density variation, H-factor variation and eective charge variation separately.

In the future, the implementation of the control algorithms into the EAST PCS is expected and experimental tests on EAST are foreseen to further validate the eectiveness of the proposed control scheme. Furthermore, a series of extensions can be made based on the proposed controller. Firstly, control adaptivity can be imposed on the feedback controller (treated as a central controller) to enhance its control performance, for example, reducing the overshoots and steady-state errors, especially for the fast timescale kinetic control and the central safety factor control. In addition, a plant model-based feedforward can be combined with the feedback controller to not only actively control the response time but also optimally reduce the transient errors between measurements/estimations and setpoints, while the disturbance model-based feedforward can be implemented to deal with typical disturbances at the timescale beyond the control bandwidth of the fast controller. It is also interesting to explore the high plasma current, high plasma pressure, high bootstrap current fraction steady-state scenarios with the inclusion of NBIs and ECCDs as control actuators for the integrated control of q-prole, ion temperature and plasma rotation proles and MHD instabilities.

Robust real-time feedback alternatives for kinetic control

In recent years, various control schemes have been proposed for tailoring plasma magnetic and kinetic parameters/proles. Nonetheless, we nd that performance comparison of dierent feedback controllers, even in a specic operational scenario, rarely appears in the literature. For the sake of routine tokamak plasma operation, it is interesting to have comprehensive knowledge of the characteristics of these feedback control schemes such that one can immediately select an optimal controller from a set of alternative ones for a specic control objective. In this section, we make the rst attempt to provide practical and valuable designs along this line. Specically, we develop a set of popular nite-dimensional kinetic controllers based on the same LTI data-driven model, and then evaluate and compare their performance and robustness by carrying out nonlinear closed-loop simulations and dedicated plasma experiments. A two-layer two-time-scale kinetic control scheme is thus developed for the comparative study, including an inner-layer with a low sampling frequency aimed at plasma kinetic control, whilst the high sampling frequency outer-layer deals with measurement preprocessing and actuation tracking. Four alternative nite-dimensional feedback controllers are introduced, namely H ∞ robust control, LQI control and the observer-based IMC for plasma kinetic tracking and the SIMC PI for kinetic/actuation tracking. In addition, the plasma parameters of interest, experimentally reconstructed or measured by the GPU-accelerated real-time equilibrium code, P-EFIT [START_REF] Huang | Gpu-optimized fast plasma equilibrium reconstruction in ne grids for real-time control and data analysis[END_REF], using magnetic measurements, as well as coupled power measurements are handled by a set of average horizon lters in real-time for noise removal. Next, we present a compact LSS model for plasma feedback controller design. A two-layer two-timescale kinetic control scheme is subsequently proposed, including a number of alternative kinetic control algorithms, measurement preprocessing module and cascade actuation controllers. The performance of the feedback control scheme is assessed, discussed and compared numerically with the METIS plasma simulator [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]. Afterwards, the initial experimental results achieved on the EAST tokamak are reported. Finally, we draw the conclusions and outline possible extensions.

Plasma dynamic model for control

In this section, we rst revisit a linear two-time-scale model structure to approximate the plasma kinetic dynamics in an H-mode scenario on EAST. Subsequently, a model reduction technique based on the input lowpass ltering and SVD is employed onto this model for integrated feedback controller design.

Two-time-scale plasma model

The dynamic evolutions of plasma kinetic parameters with respect to control actuators, e.g. the LHCD power, in medium-sized or large tokamaks can be characterized by a lumpedparameter LTI two-time-scale model structure as demonstrated in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF],Moreau et al., 2011, Moreau et al., 2013, Moreau et al., 2015]. This dynamic model comprises a slow sub-model illustrating the slow responses of plasma kinetic parameters with respect to the poloidal magnetic uxes as:

ẊΨ (t) =A S X Ψ (t) + B S U S (t) Ξ S (t) =C S X Ψ (t) + D S U S (t) (3.25)
and a fast sub-model depicting the fast plasma kinetic evolutions possibly arising from plasma temperature prole variations as:

ẊF (t) = A F X F (t) + B F U F (t) Ξ F (t) = C F X F (t) + D F U F (t) (3.26)
in which

U (t) = U S (t) + U F (t), Ξ(t) = Ξ S (t) + Ξ F (t) U (t) def = U 0 (t) -Ū (t), Ξ(t) def = Ξ 0 (t) -Ξ(t) (3.27)
Here, U (t) is dened as a perturbing vector of the control inputs U 0 (t) around their input reference Ū (t), with its slow and fast components denoted by U S (t) and U F (t), respectively. Analogously, Ξ(t) is dened as a perturbing vector of the plasma kinetic parameters of interest Ξ 0 (t) around their reference Ξ(t), comprising its slow part as Ξ S and its fast part as Ξ F . X Ψ (t) represents a perturbing vector of the poloidal magnetic uxes against their reference values, while X F (t) is a perturbed kinetic state vector. The state-space matrices (A S , B S , C S , D S ) and (A F , B F , C F , D F ) contain the model coecient matrices, which can either be identied by using subspace and prediction-error approaches [Ljung, 1995] or be obtained by performing linearization and discretisation on the sophisticated PDEs governing the plasma transport evolution. The approaches to obtaining these model coecient matrices are beyond the scope of this part and interested readers can refer to Chapter 2 and [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF], Ljung, 1995] for more details.

Model reduction for integrated kinetic control design

We are now in a position to show that the linear two-time-scale plasma model [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF] with Eqs. (3.25) -(3.27) can be transformed into a compact form suitable for integrated feedback controller design. Involving a low-pass lter on the perturbed control inputs U (t) with its characteristic time τ c satisfying τ kin τ c τ mag , where τ kin and τ mag represent the kinetic and magnetic characteristic times, respectively. After some algebraic manipulations, the two-time-scale plasma model is therefore augmented into a state-space form as:

G = A B C D (3.28)
where

A =   A S 0 B S 0 A F -B F 0 0 C f A f C -1 f I   , B =   0 B F C f B f I   , C = C S C F D S , D = 0 (3.29) Here, (A f , B f , C f , D f ) is a state-space realization of the lowpass lter G f = 1 τcs+1 , in which s is a Laplace operator.
When the controlled degrees of freedom are greater than the number of control actuators, the system is called an underactuated system [START_REF] Reyhanoglu | Dynamics and control of a class of underactuated mechanical systems[END_REF], which is usually the case for tokamak plasma kinetic control. In this regard, minimizing the tracking error to zero may not be possible unless the given reference targets are located in an achievable region. Before synthesizing a feedback controller for an underactuated system, it is necessary to examine which output and input directions are most inuential [START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF]. We therefore perform SVD [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF] on the steady-state gain matrix of the model G(s) to extract the most inuential input and output control channels. In particular, to weigh the importance of each controlled outputs and manipulated inputs, symmetric positive denite matrices Q and R are rst multiplied to the output and input of the model G(s), generating a weighted dynamic model

G w = Q 1 2 G(s)R 1 2
. Subsequently, we perform SVD on the steady-state gain matrix of the weighted model, yielding G w (0) = U 0 Σ 0 V T 0 . Σ 0 = diag{Σ I , Σ II } is a diagonal matrix with the singular values in a descending order as

σ 1 ≥ σ 2 ≥ ... ≥ σ n I σ n I +1 ... σ n d , n d = min{n y , n u },
with n y and n u respectively denoting the number of outputs (controlled kinetic variables) and inputs (control actuators). Σ I contains the largest n I singular values while Σ II contains the remaining insignicant ones. The left singular vectors U 0 = [U I , U II ] ∈ R ny×nu are divided into the level I and II vector spaces, in which the level I singular vectors represent the most controllable output directions. Likewise, V 0 = [V I , V II ] ∈ R nu×nu have the rst n I columns retained, as they correspond to the most inuential input directions V I . We remark that Q and R are the weighting gain matrices that can be iteratively adjusted to reach various control objectives. The decision on the restricted number of retained control channels n I is heuristic, which can empirically be determined by following the condition σ n I +1 ≤ 0.1σ 1 . With such a procedure, the integrated plasma model G(s) can thus be transformed into a reduced one, which is proper, stabilizable and detectable. The reduced model is therefore given by G r (s) = M T y G(s)M u , where M y = U T I and M u = V I Σ -1 I , and its state-space form can be expressed as:

G r (s) = A r B r C r D r (3.30)

Robust linear feedback algorithms

Having obtained a control-oriented state-space plasma dynamic model, alternative real-time kinetic feedback control algorithms can immediately be synthesized. We rst present an overall control architecture for plasma kinetic control. Next, a set of alternate kinetic feedback algorithms are designed based on a given kinetic model, along with some benecial techniques for measurement preprocessing and control actuation tracking. As shown in Fig. 3.16, the overall kinetic feedback control framework for the EAST tokamak comprises two control layers that dier in the sampling frequency. The inner control layer, within the dashed purple frame, has a low sampling frequency at 50 Hz. It contains a set of alternate kinetic controllers such as the H ∞ robust control, the LQI control and the IMC control, along with a switch for real-time controller selection. Details on the design of these alternate kinetic controllers are given in Sections 3.2.4.2-3.2.4.4. The outer control layer, within the green frame but outside of the purple frame, has a higher sampling frequency at 1000 Hz. It is primarily devoted to two separate tasks: 1). to preprocess the measured actuations from relevant actuator sensors and the real-time estimates of the plasma parameters of interest after the magnetic equilibrium reconstruction from, for instance, magnetic probes and polarimeter/interferometer diagnostics [START_REF] Ferron | Real time equilibrium reconstruction for tokamak discharge control[END_REF], Baylor et al., 2004, Liu et al., 2014]; 2). to track the actuator commands requested by a selected inner-layer kinetic controller. Cascaded with an inner-layer kinetic controller, the actuation controller is designed for actuation tracking, as illustrated in Section 3.2.4.5. In the measurement preprocessing module, a set of simple average horizon lters [Ljung, 1995] are used to handle the highfrequency measurement noise. Following the same technique as in [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF], the anti-windup modules are designed to mitigate the eects from the actuator saturations. We remark that the idea of the two-layer kinetic control framework originates from the following facts: 1). The time constant of the actuator dynamics such as the LHCD system is much smaller than the energy connement time on EAST. 2). Plasma model uncertainties located in the high frequency domain beyond τ E are not likely to damage the tracking performance if we properly prescribe the inner-layer sampling time to the level a few times smaller than τ E [Ljung, 1995]. 3). The inner-layer kinetic controller can greatly benet from the precise tracking of the requested commands enabled by the outer-layer actuation controller within one inner-layer sampling interval.

Two-layer cascade kinetic control framework

H ∞ robust kinetic control design

H ∞ robust control is a popular feedback control technique whose synthesis combines H ∞ robust stabilization with loop-shaping [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF]. Basically, the design procedure is composed of two steps: 1). to augment the pre-and post-compensators on an open-loop system plant to acquire expected singular value shaping in the frequencydomain; 2). to synthesize a feedback controller by make the augmented system plant robust against model uncertainties via the H ∞ norm optimization. Thanks to its simplicity and robustness properties, it has already been applied to real-time magnetic and kinetic control in tokamak plasmas. In [START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF], the robust synthesis based on a rst-principle-driven dynamic model for q-prole control was experimentally tested in L-mode plasmas on DIII-D. In [START_REF] Nouailletas | WEST magnetic control[END_REF], H ∞ robust control was applied to plasma coil current and shape control on WEST experimentally. In [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF], the performance of a decentralized H ∞ robust controller for the q-prole and β p tracking on EAST is assessed numerically. In the present study, we adopt the similar synthesis method used in [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF], but extend its application scope to multiple kinetic parameters and experimental setup. Another subtle dierence is that in the present work, a single H ∞ robust controller is designed based on an integrated kinetic model containing both the fast and slow kinetic dynamics.

Our H ∞ robust control problem is to synthesize a feedback controller using the reduced model G r (s) derived in Eq. (3.30) via the mixed-sensitivity H ∞ norm optimization [Skogestad andPostlethwaite, 2007, Wang et al., 2021]. First of all, assuming the to-be-designed controller as K r,HINF (s), we calculate the sensitivity function S r (s) = (I + G r (s)K r,HINF (s)) -1 , which maps the control errors from the reference setpoints or the output disturbances. Next, we design the proper weighting matrices W HINF,S (s) and W HINF,KS (s) to shape the sensitivity function S r (s) and K r,HINF (s)S r (s), respectively. Then, using the LMIs optimization technique [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF] and the YALMIP toolbox [Lofberg, 2004] for MATLAB, the controller K r,HINF (s) for G r (s) is synthesized by minimizing the H ∞ norm of the mixedsensitivity function T zw,HINF = W S,HINF S r W KS,HINF K r,HINF S r . After the inverse sin- gular vector transformation, the H ∞ robust feedback controller for the plant G(s) is expressed as K HINF (s) = M u K r,HINF (s)M y . Therefore, the feedback ouputs are computed as u fb,H∞ = K HINF (s)(y m -y + y aw ), u fb ∈ R nu , y m , y, y aw ∈ R ny , where u fb are the feedback outputs, y denotes the measured controlled variables and y aw are the anti-windup components [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF]. Combining constant feedforwards u m and the feedback outputs yields the kinetic control inputs as u H∞ = u fbH∞ + u m .

LQI kinetic control design

LQI control, a linear optimal control technique [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF], extends the traditional linear quadratic regulator (LQR) to involve the penalization of the control error integral in the cost function, with the goal of achieving a zero steady-state tracking error under constant disturbances. This technique was rst proposed in [START_REF] Young | An approach to the linear multivariable servomechanism problem[END_REF], which has then been applied to many industrial and physical control problems [START_REF] Anderson | Optimal control: linear quadratic methods[END_REF], Hassen et al., 2009, ElMadany and Abduljabbar, 1999, Gurung et al., 2017]. The merits of this technique are that it can be employed systematically for MIMO systems and that the controller performs satisfactorily in attenuating system disturbances. Notably, LQI has found its applications in many tokamak plasma control problems. In [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF], LQI was used to track the poloidal ux prole and β N simultaneously in H-mode plasmas on DIII-D. In [START_REF] Boyer | First-principlesdriven model-based current prole control for the DIII-D tokamak via LQI optimal control[END_REF], experimental tests have conrmed the performance of an LQI controller in tailoring q-prole in an L-mode plasma on DIII-D. In [START_REF] Vail | Design and simulation of the snowake divertor control for nstxu[END_REF], the snowake divertor conguration is achieved numerically by an LQI controller on NSTXU.

In the present work, we design an LQI controller using the reduced model G r (s), and compare its performance with the other controllers. The LQI control objective is to minimize a combination of state errors and the control error integrals using minimum actuations. This control algorithm consists of a feedforward controller to estimate the input and state references, a Luenberger observer to estimate system states and a static feedback controller to compute the actuation commands.

Feedforward design The state reference x m and the input reference u m are obtained by solving the reduced model G r (s) at steady-state, i.e., 0 = A r x m + B r u m , y m = C r x m , as:

x m u m = A r B r C r 0 -1 0 I y m (3.31)
where y m represents the controlled output reference.

Luenberger observer The LQI control requires the knowledge of system states that may not be measurable in plasma experiments. However, an observer can be designed to estimate them if the system is observable. In our study, a simple Luenberger observer is employed as:

ẋ = A r x + B r u + L(y -C r x) (3.32)
where u, y and x are the measured inputs, the measured outputs and the state estimates, respectively. L is a tuning gain matrix chosen to articially place the eigenvalues of the estimation error dynamics such that the state estimates can converge exponentially faster than the system evolution.

Feedback design The LQI feedback commands u fb,LQI are computed by minimizing a cost function J fb,LQI that penalizes both the state errors, the output error integrals and the control inputs as:

arg u fb,LQI min J fb,LQI = 1 2 ∞ t 0 (e T a Qe a + u T fb,LQI Ru fb,LQI )dt (3.33)
where Q T = Q ≥ 0 is a weighting matrix for the state errors x err = x m -x and the output error integrals z = t 0 (y m -y)dt. R T = R > 0 is a weighting matrix for the control inputs. e a = [x T err , z T ] T and u fb,LQI represents the optimal feedback commands, parameterized as u fb,LQI = -K fb,LQI e a . The feedback synthesis objective is to obtain an optimal gain matrix K fb,LQI that minimizes Eq. (3.33). To compute K fb,LQI , we rst augment the plasma plant with a vector of additional states z as:

ẋ ż = M A x z + M B u + M W y m (3.34)
where

M A = A 0 -C 0 , M B = B 0 , M W = 0 I (3.35)
Given the augmented system matrices, the optimal gain matrix is then expressed as K fb,LQI = -R -1 M T B P , where P is a symmetric positive-denite matrix that satisies an algebraic Riccati equation [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF] as:

P M A + M T A P -P M B R -1 M T B P + Q = 0 (3.36)
The optimal feedback commands are thus calculated as u fb,LQI = K fb,LQI (y m -y + y aw ), u fb,LQI ∈ R nu , y m , y, y aw ∈ R ny , where y aw are the anti-windup compensated components [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF]. Combining the feedforward u m and feedback commands u fb,LQI , the LQI control inputs are u LQI = u fb,LQI + u m .

Observer-based IMC kinetic control design

IMC is a robust control technique rst proposed in [START_REF] Garcia | Internal model control. a unifying review and some new results[END_REF]. The key idea of IMC resides in the internal model principle, stating that control can be achieved only if the control system involves, either implicitly or explicitly, some representation of the controlled process [START_REF] Saxena | Advances in internal model control technique: A review and future prospects[END_REF]. IMC has a simple design procedure providing a tradeo between closed-loop performance and robustness to model inaccuracies with a single tuning parameter, which explains why it has found widespread applications [START_REF] Harnefors | Model-based current control of ac machines using the internal model control method[END_REF], Narayanan et al., 1997, Yazdanian and Mehrizi-Sani, 2014]. The concept of IMC has already been used in tokamak plasma control, in which a typical example is the design of an anti-windup compensator to handle the actuator saturations [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF]. Nonetheless, a pivotal drawback of the standard IMC lies in its restrictive applicability to an internally stable system, implying that control of unstable plasma phenomena such as vertical instability [START_REF] Qiu | Simulation of east vertical displacement events by tokamak simulation code[END_REF],Gruber et al., 1993] using IMC seems unfeasible. Inspired by [Pannocchia andHeath, 2020, Heath et al., 2017], we develop an oset-free IMC control algorithm based on a PI observer for plasma kinetic tracking, which can potentially be adapted to control unstable and marginally stable plasma dynamics. The design of the observer-based IMC controller is composed of three steps: First, we use a Luenberger observer to estimate the states and disturbances. Second, we design a state feedback controller to stabilize the system dynamics. Third, a standard IMC control is adopted to achieve desirable control performance.

State and disturbance estimation To estimate the system states and disturbances, we assume constant system disturbances, i.e. ḋ = 0 [START_REF] Pannocchia | Oset-free IMC with generalized disturbance models[END_REF], and extend the reduced model Eq. (3.30) as: Combining the states x and the disturbances d into a state vector, i.e. X = [x T , d T ] T , we formulate the extended model in a compact form as: (3.38) where

ẋ =A r x + B r u + B d d ḋ =0 y =C r x + C d d (3.37) where x ∈ R nx , u ∈ R nu , d ∈ R n d ,
Ẋ =A e X + B e u y =C e X
A e = A r B d 0 C d , B e = B r 0 , C e = C r C d .
The Luenberger observer is then expressed as:

Ẋ = A e X + B e u + L(y -ŷ) ŷ = C e X (3.39)
where X = [x T , dT ] T represents the estimate of X while ŷ denotes the estimate of y. L is a gain matrix that can be tuned by placing the eigenvalues of A e .

State feedback stabilization With the given observer, the states and disturbances can therefore be estimated in real-time. To stabilize the plasma plant, we use the reduced model to design a state feedback controller, parameterized as u sf = -F sf x. F sf is a static gain matrix to place the system poles to desirable stable region (with negative real eigenvalues), which is a crucial trick for control of unstable or marginally stable plasma dynamics [START_REF] Pannocchia | Oset-free IMC with generalized disturbance models[END_REF].

Oset-free internal model control The oset-free IMC control inputs comprise the standard IMC control component u sIMC for disturbance rejection, the state feedback component u sf for state stabilization and the preset feedforward component u m , which reads:

u IMC = u sIMC -u sf + u m (3.40)
where

u sIMC = Q(s)(r -M d)
, in which the to-be-designed terms include a stable transfer matrix Q(s) and a static gain matrix M . To design them, we formulate the stabilized plasma dynamic model G sf (s) and the disturbance dynamic model G dist (s) as:

G sf (s) = A r -F sf B r B r C r 0 , G dist (s) = A r -F sf B r B d C r C d (3.41)
IMC requires the steady-state gain of the open-loop transfer matrix to be an identity matrix, i.e. G sf (0)Q(0) = I. For simplicity, we design

Q(s) = F (s)G sf (0) † = -F (s) C r (A r -F sf B r ) -1 B r †
, where † represents the pseudoinverse. The lowpass lter transfer matrix F (s) is expressed as

F (s) = diag (f 1 (s) , . . . , f nu (s)) , f k (s) = 1 (λ k s+1) , k = 1, 2, .
. . , n u , in which λ i are free parameters to be tuned [START_REF] Pannocchia | Oset-free IMC with generalized disturbance models[END_REF]. The static gain matrix M is designed as

M = G dist (0) = -C r (A r -F sf B r ) -1 B d + C d .

SIMC PI actuation control design

In order to characterize the experimental conditions for H&CD actuation in tokamak plasma operation, actuator dynamics are considered to develop a set of actuator controllers to track the commands requested by an inner-layer kinetic controller. We assume that the additional heating power dynamics can be modelled as a set of rst-order transfer functions with timedelay as:

G outer,i (s) = k i τ i s + 1 e -θ i s , i ∈ {ICRH, LHCD} (3.42)
where i is an indicator for an H&CD actuator, k i denoting the steady-state gain for the i-th actuator, τ i the characteristic time for the i-th actuator, while θ i represents the time delay for the i-th actuator. G outer,i (s) is a transfer function for the i-th actuator determined by three model parameters, i.e. k i , τ i and θ i . These model parameters can easily be identied from the observed input-output data in dedicated plasma experiments using the subspace and prediction-error methods [Ljung, 1995].

Once the actuator dynamics are characterized by a simple model structure as shown in Eq. (3.43), we can then use a tuning rule based on the internal model principle to design an outer-layer PI actuator controller [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF] . We dene u inner,i (t) as the command requested by the inner-layer kinetic controller for the i-th actuator controller and u mea,i (t) as the corresponding measured actuation for the i-th actuator. The actuation tracking error e outer,i is thus computed as e outer,i = u inner,i (t) -u mea,i (t). The commands requested by the actuator controller for each H&CD systems u outer,i (t) are then expressed as:

u outer,i (t) = -K p,i e outer,i -K I,i t 0 e outer,i dt + u oset,i , i ∈ {ICRH, LHCD} (3.43) in which K p,i = τ i k i (τ c,i + θ i ) , K I,i = K p,i τ I,i , τ I,i = min{τ i , (τ c,i + θ i )} (3.44)
where K p,i and K I,i are the proportional and integral gains for the i-th actuator, respectively. u oset,i denotes the i-th reference value around which the actuator model G outer,i (s) is identied. τ c,i is a tuning parameter for the i-th actuator, which provides a trade-o between control performance and robustness against disturbances. More precisely, increasing τ c,i can result in the growth of the response time but the control robustness can thus be improved, and it is suggested to have τ c,i ≥ θ i . We emphasize that, in order to guarantee the actuation tracking performance, the sampling time for the actuator controllers (typically at 1 ms on EAST) should be smaller than the characteristic time for each H&CD systems and far less than that for the kinetic controller (∼ τ E ).

Simulation results

We now demonstrate the eectiveness of the two-layer kinetic control scheme and compare the performance and robustness of the alternate real-time kinetic controllers on EAST using the METIS code [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]. First, we show the performance of nominal tracking of three essential plasma kinetic parameters, namely the poloidal beta β p , the average toroidal angular rotation velocity Ω φ and the central electron temperature T e,0 by actuating the ion ICRH power P IC and the LHCD power P LH , enabled by three optional kinetic controllers, i.e. H ∞ robust, LQI and the observer-based IMC, and two SIMC PI power controllers for ICRH and LHCD, respectively. Second, the robustness tests, under the variations of the line-averaged electron density ne and eective ion charge Z e , are conducted and compared.

METIS simulation setup and control conguration

The two-layer cascade control architecture is rst developed and implemented in the MAT-LAB/Simulink environment, which is then coupled with METIS [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF], for EAST, the actuation time constants for the ICRH and LHCD systems are chosen to be 5 ms, and the eective time delay for the actuators is uniformly set at 2 ms, while the steady-state gains are prescribed to be 1. With the actuator dynamics models, two separate SIMC PI power controllers are thus synthesized, with τ c,i = 0.005 s and θ i = 0.002 s for both actuators (i ∈ {ICRH, LHCD}). Note that the actuator control parameters can be adjusted according to the specic control requirements. In order to mimick the experimental conditions, white noise with power magnitude at 10 -6 is imposed onto the measured powers obtained from the simple actuator dynamics models. The noise is thus handled by a moving average lter with the time horizon at 10 ms. Three alternative kinetic controllers were designed with the same linear state-space model. For the H ∞ controller, a desired closed-loop bandwidth is prescribed to be 0.15π, and the parameters A and M are respectively set at 2 and 10 -6 . For the LQI controller, the weighting gains for the states, controlled variables and manipulated variables are optimized to achieve the desired control performance. For the IMC controller, the tuning parameter, the time constant, in the low pass lter τ IMC , is prescribed at 0.08 s.

Nominal tracking in the current at-top phase

The three alternative control schemes were used to track β p , Ω φ and T e,0 simultaneously by actuating the ICRH and LHCD powers. All the feedback controllers are activated at 3.5 s in the current attop phase. Three sets of reference setpoints for β p , Ω φ and T e,0 are prescribed to be tracked. Fig. 2(a)-(c) shows the comparison of the kinetic parameter evolutions with three alternative control algorithms. It is evident that all the kinetic controllers based on the same data-driven model are capable of tracking the plasma parameters of interest eectively and comparable control performance has been obtained. One can notice that there are some small oscillations even at steady-state for T e,0 , primarily due to the measurement noise imposed on P ICRH and P LHCD . Compared with the other kinetic parameters, the evolution of T e,0 is very sensitive to the evolution of additional heating powers. The requested (dashed) and actuated (solid) powers by these control schemes are shown in Fig. 3(a) and 3(d). We nd that the SIMC PI power feedback controller can satisfactorily track the requested powers by the innerlayer kinetic controllers in three dierent cases. The requested powers are at similar levels in all the control schemes for the ICRH system, but dier in the LHCD system, implying that the ICRH system plays the dominant role in the kinetic control for parameters that do not depend strongly on the current density prole such as β p , Ω φ and T e,0 .

Robustness to plasma parameter uncertainties

In order to further evaluate the robustness of each controllers, we perform closed-loop METIS simulations with the control algorithms in which we perturbed a number of important plasma parameters at selected time intervals. Fig. 2(d)-(f) shows comparison of the kinetic parameter evolutions with the H ∞ , LQI and IMC controllers under the perturbation of the averaged electron density. Particularly, in the time interval [4.0, 4.65]s, the value of ne is increased by a fraction of 10 %, which leads to the decrease of β p , Ω φ and T e,0 . In order to attenuate the disturbances, the feedback controllers request more powers on the ICRH and/or LHCD systems as shown in Fig. 3(b)-3(e). Within 0.3 s the disturbances on β p are fully compensated while the disturbances on Ω φ and T e,0 are attenuated eectively. After 4.65 s, ne returns to the initial value, which results in the increase of β p , Ω φ and T e,0 . These new disturbances are successfully attenuated by the H ∞ and LQI controllers, but not with the IMC controller. In the time interval [6.0,8.1]s, ne is articially decreased by 10 %, leading to the increase of the plasma parameters of interest. These ne -driven disturbances on the controlled parameters are attenuated by decreasing the ICRH power except T e,0 , possibly arising from the considerable model mismatch and the variation of the achievable control region in T e,0 . After 8.1 s, ne returns to the intial value, the disturbances on β p , Ω φ and T e,0 are successfully rejected by all the proposed control schemes.

Comparison of the kinetic parameter evolutions with the proposed control algorithms under the perturbation of the eective ion charge are shown in Figs. 2(g) -(i). Analogously, in the time interval [4.0,4.65]s, Z e is articially increased by 10 %, which makes all the kinetic control variables drop. Results indicate that all the control schemes are capable of rejecting the disturbances arising from the Z e increase by adjusting the ICRH and LHCD powers (See Fig. 3(c)-(f)). In the time interval [6.0,8.1], Z e is articially reduced by 10 %, which makes all the kinetic control variables grow. Similarly, results suggest that all the controllers can fairly attenuate the disturbances caused by the Z e decrease.Similarly, the attenuation of T e,0 disturbance driven by the Z e variation is not satisfactory in the period [6,8] s, which may be explained by the enhanced model mismatch.

EAST experiments

In order to further evaluate and compare the performance of the proposed kinetic control scheme and algorithms, dedicated experiments have been performed in an H-mode operational scenario on the EAST tokamak, with the goal of tracking β p , li and P LHCD by adjusting the LHCD power command in real-time.

Control algorithm implementation in the PCS

Fig. 4 shows a procedure on how real-time feedback control algorithms can be implemented into the EAST plasma control system (PCS). We rst develop the kinetic control algorithms in the MATLAB/Simulink environment, which are subsequently transformed into the C/C++ programming language using the embedded MATLAB coder (EMC) toolbox. Afterwards, the generated code is coupled with the PCS and jointly compiled for real-time application. The eectiveness of the algorithm implementation can be veried by performing test simulations via the EAST data simserver. Specically, by feeding the same real-time EFIT estimates from a typical EAST plasma discharge to both versions of the kinetic control scheme, one implemented in MATLAB/Simulink and the other being coupled with the EAST PCS, the simulated outputs from both versions should be consistent with each other. This was checked, proving that no issues have appeared in the course of the control algorithm implementation in the PCS.

Diagnostics, actuators and experimental setup

Plasma parameters/proles such as β p and li are estimated by the GPU-accelerated realtime equilibrium reconstruction code, P-EFIT [START_REF] Huang | Gpu-optimized fast plasma equilibrium reconstruction in ne grids for real-time control and data analysis[END_REF]. The POlarimeter-INTerferometer (POINT) diagnostic measures the plasma electron density [START_REF] Qian | East equilibrium current prole reconstruction using polarimeter-interferometer internal measurement constraints[END_REF][START_REF] Liu | Initial measurements of plasma current and electron density proles using a polarimeter/interferometer (POINT) for long pulse operation in EAST[END_REF], regulated in real-time by a dedicated PID controller in the PCS. Due to reliability issues with the polarimeter diagnostic, the internal poloidal eld measurements are not available for the P-EFIT reconstruction. Plasma current, position and shape are regulated by a set of feedback control algorithms in the PCS [START_REF] Yuan | Plasma current, position and shape feedback control on EAST[END_REF]. The controlled parameters, β p , li and the coupled power P LHCD , are fed to the kinetic control scheme every 1 ms (outer-layer sampling time) to generate a power command for a control actuator, in which the kinetic control algorithms are activated every 20 ms (inner-layer sampling time). The measurement noise is handled by a moving average lter with a time horizon of 10 ms [Ljung, 1995]. The control actuator is the LHCD system at 4.6 GHz with coupled powers between 1.0 MW and 2.5 MW, tracked in real-time by a SIMC PI power feedback controller. We note that the minimum LHCD power is preset at 1.0 MW to guarantee that the plasma maintains in H-mode, without any H-L/L-H transitions in the course of control. The LHCD power dynamics at 4.6GHz is approximated by a rst-order time-delay transfer function (See Eq. (D.1)) with its model coecients identied from typical experimental data on EAST. Given the model coecients, a SIMC PI rule is then adopted, resulting in a set of actuator feedback control coecients as K p,LHCD = 0.41, K I,LHCD = 343.69, u oset,LHCD = -0.45, together with a static feedforward K = 1.38 to enhance the transient performance. The LHCD power actuation time delays are dealt with by a Smith predictor, with the prediction model as G(z) = 0.4141 z-0.4307 , where z refers to the Z-transform, and the estimated pure time delay at 2 ms. The PCS power command to the LHCD system is restricted to the range from 1 V to 3 V. Hence, an anti-windup module [START_REF] Wang | Robust control of q-prole and βp using data-driven models on east[END_REF] is used to compensate the LHCD power command saturation. All the control references and coecients are prescribed oine and loaded into the PCS before performing the experiments.

In the experimental study, the current at-top phase of a pure radio-frequency (RF) uppersingle-null (USN) H-mode plasma discharge is considered as the reference scenario, particularly with the toroidal eld at 2.5 T, the plasma current at 350 kA, the central electron density at ∼ 4.2 × 10 19 m -3 and the central electron temperature at ∼ 4 keV. In addition to the 4.6 GHz LHCD power, some LHCD power is injected at 2.45 GHz for current drive in the ramp-up phase, specically 0.6 MW in the period [0.95, 2.25] s. Moreover, 0.9 MW of ECRH power is actuated during the current at-top phase (in the time interval [1.98, 7.91] s) from two gyrotrons at 140 GHz to heat the plasma and maintain it in H-mode. The ICRH system is not available during the entire experiments.

The kinetic feedback control experiments are divided into two stages: rst, the identication experiment is carried out to collect a set of sampled data for identication of a plasma dynamic model used for feedback control design; second, the performance of the real-time control algorithms is demonstrated experimentally. 

Plasma identication experiment

Since the LHCD power at 4.6 GHz is allowed to vary in real-time ranging from 1.0 MW to 2.5 MW and the dominant plasma kinetic eigenmode, ∼ 1 τ E , is estimated to be around 25 s -1 , the goal now is to design LHCD power reference waveforms that maximally excite the dominant magnetic and kinetic eigenmodes, as shown in Fig. 5, including the chirping and PRBS power modulations. Since the expected τ E is around 0.04 s, the designed frequency bandwidth of the LHCD power references in both signals is therefore restricted to be less than 30 rad/s, as shown in Fig. 5(b). Using the SIMC PI power feedback controller as given in Section 5.2, the open-loop power modulation experiment has been carried out on the EAST tokamak, with the results depicted in Fig. 6. Evidently, the chirping power reference, ranging from 1.0 MW to 2.5 MW, for the LHCD system was satisfactorily tracked in shot #93297 (See Fig. 6(a)), with the plasma parameters of interest β p , li and ι 0 suciently responsive as shown in Fig. 6(b). In particular, β p ranges from 1.5 to 1.9, li spreading from 0.9 to 1.2, while ι 0 lies in the interval [0.3, 0.5]. It is found that both li and ι 0 exhibit linear downward drifts, probably because of the transmission of the magnetic probing faults mounted at the plasma boundary to the P-EFIT equilibrium reconstruction. We remark that in the interval [2.5, 3.5] s, the LHCD system at 4.6 GHz made an actuation fault, which explains why the LHCD power reference cannot be well tracked in this period. Fig. 4(c)-4(d) shows another plasma power modulation discharge, with the PRBS power reference tracked using the same power feedback controller. One can notice that the responses of β p , li and ι 0 with respect to the LHCD power are persistently exciting for model identication, and the systematic linear downward drifts occurring in li and ι 0 should bring some issues on their feedback control. 

Control assessment with the ARTAEMIS plasma simulator

By adopting the system identication methodology used in [START_REF] Moreau | A two-time-scale dynamicmodel approach for magnetic and kinetic prole control in advanced tokamak scenarios on JET[END_REF],Moreau et al., 2011], a two-time-scale data-driven model that describes the responses of β p , li and ι 0 to the LHCD power has been identied from the power modulation data, containing ve slow eigenmodes and one fast eigenmode. More precisely, the characteristic times for the slow τ S and fast τ F dynamics are 1.05 s and 0.017 s, respectively. The identied two-time-scale model was then transformed into a standard linear state-space (LSS) model by inserting a lowpass lter with τ lt = 0.1 s at the control input. After model reduction, three alternative controllers described in Appendices are therefore designed using the reduced model. Bottom panels: time evolutions of (e-top) q 0 and (e-bottom) its tracking error q 0,err , and of (f-top) the LHCD power P LHCD and (f-bottom) q 0 disturbance, denoted as δ[ 1 q 0 ]. Shade regions imply the existence of disturbances. All feedback algorithms were activated at 2.75 s. The blue, red and green lines correspond to the simulation results of the SIMC PI, H ∞ and LQI control, respectively. On the left, dashed black lines denote control targets. On the right, the dotted lines represent the LHCD power targets requested by a kinetic controller, while the solid lines are the achieved LHCD powers by a SIMC PI power controller. lists the tuning parameters used for the kinetic controller design. The design of the SIMC PI controller for each plasma kinetic parameters is performed separately by transforming the reduced model into a rst-order transfer function with time delay (θ = 20 ms). Prescribing the tuning parameter τ c = 4θ, we therefore obtain the feedback coecients K p and K i for β p , li and ι 0 , respectively. The feedforward gain G FF is computed by simply inverting the model coecient k i as given in Eq. (D.1). The design of the H ∞ kinetic controller for each parameters is conducted subsequently, the weighting function K S = s/M +w b s+w b A is adjusted to shape the sensitivity functions, where the tuning of the closed-loop bandwidth ω b is essential to balance the control performance and robustness. Finally, the design of the LQI kinetic controller for β p , li and ι 0 is carried out, in which the tuning parameters Q s , Q o,int and R weigh the importance of the states, the output error integrals and the controlled inputs in the cost function J fb,LQI as dened in Eq. (B.3), respectively. One can notice that the primary weights are put on the output error integrals to enable the transient control performance.

With the given control setup, the performance of each kinetic controllers is assessed using the identied linear two-time-scale model, simply called the ARTAEMIS model [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF], as a plasma simulator. The simulation results are shown in Fig. 7, indicating that all the controllers can achieve the eective tracking of β p , li, q 0 (= 1 ι 0 ) and P LHCD , despite the presence of articially prescribed disturbances. In the nominal cases, the performance of the SIMC PI controller outperforms that of the LQI and H ∞ controllers in both β p , li and q 0 tracking, because its design primarily focusses on the fast integral control. In situations with disturbances, SIMC PI has the best robustness in β p and li tracking due to its fast integral control, while LQI and H ∞ exhibit better robustness than SIMC PI in q 0 tracking because their designs account for the eect of slow plasma eigenmodes.

Closed-loop feedback control experiment

In the closed-loop control experiment, the performance of the two-time-scale cascade kinetic control scheme is further evaluated by tracking a plasma kinetic parameter and the coupled LHCD power simultaneously on the EAST tokamak.

The control of β p using the SIMC PI tuning rule was performed experimentally in EAST shot #95195, with the feedforward and feedback gains shown in Table 1. A total of 5 targets, consistent with those used in ARTAEMIS simulations, were required to be achieved, sequentially 1.75, 1.90, 1.70, 1.85 and 1.80. Fig. 5(a)-(b) depict the evolution of β p and the coupled LHCD power. Evidently, all the targets for β p and P LHCD were achieved using the cascade two-time-scale kinetic control scheme, despite the presence of the large measurement noise in β p , except during the period [3.6, 4.8] s, when the LHCD actuator had an exceptional fault and was saturated to an upper limit lower than the expected value 2.5 MW. The control of β p using the H ∞ kinetic controller was carried out in shot #95197, whose tuning parameters are listed in Table 1. The same SIMC PI power feedback controller was cascaded with the H ∞ kinetic controller while the same set of β p targets were prescribed. The evolution of β p and P LHCD are shown in Fig. 5(c)-(d). Although all the targets were achieved, β p exhibits an oscillatory trend and the tracking performance is not as good as in shot #95195, bacause of the β p measurement noise and the LHCD power saturation. Comparing these two discharges, 

Figure 3.23: Plasma control experiments showing the tracking of β p and li using the LHCD@4.6GHz power command on EAST. Upper and middle panels: time traces of (a, c) β p targets (blue), P-EFIT estimate (gray) and lowpass ltered P-EFIT estimate (red), and of (b, d) the requested P LHCD@4.6GHz (blue), the measured P LHCD@4.6GHz (red) and the PCS power command to the LHCD system (black). β p feedback was activated after 2.5 s right after the shaded light brown region. Bottom panels: time traces of li targets (blue), P-EFIT estimate (gray) and lowpass ltered P-EFIT estimate (red) and of the requested P LHCD@4.6GHz (blue) and the measured P LHCD@4.6GHz (red) and the PCS power command to the LHCD system (black). li feedback started from 2.75 s right after the shaded light brown region. Shaded cyan region indicates the LHCD power was saturated. Magenta dotted lines represent the power command limits of the LHCD power controller, while green dashed lines denote the power request limits of the kinetic controller.

one can conclude that the SIMC PI controller performs slightly better than the H ∞ controller in the noise-corrupted experimental environment, consistent with the ARTAEMIS simulation result.

The control of li using the SIMC PI controller was performed in shot #95196, where two targets were prescribed, i.e. 1.07 and 0.99 and the SIMC PI kinetic controller gains for li are listed in Table 1. The same LHCD power feedback control algorithm and measurement preprocessing were congured. The evolution of li and P LHCD are shown in Fig. 5(e)-(f). Analogous to β p control, the signal-to-noise ratio (SNR) on li is still very large and the use of the moving average lter on li and P LHCD turns out to be eective. As shown in Fig. 5(e), the rst target was achieved with some oscillations, due to the presence of measurement noise and model uncertainties. Between 3.0 s and 3.5 s, the reference trajectory linearly dropped from 1.07 to 0.99 and the li controller was able to track the reference trajectories with some oscillations, until the LHCD power saturated at 2.3 MW. After 3.38 s, due to the power saturation, the second target could not be reached. As shown in Fig. 5(f), the LHCD power was precisely tracked via the inner-loop SIMC PI power feedback controller. One can notice that the attractive domain for li control is fairly narrow if only involving the LHCD power as the control actuator for li tracking. In addition, the measurement fault of the magnetic probes mounted at the plasma boundary is responsible for the unphysical linear drift of li, thus leading to the enhanced control diculty. Involving more actuators such as the NBI systems is likely to broaden the attractive control region for li. Furthermore, it is anticipated that the removal of the measurement drift arising from the magnetic probing fault should make the li control more tractable.

Conclusion of Section 3.2

A two-layer kinetic control scheme has been proposed for plasma kinetic control in advanced tokamak scenarios. This control scheme is composed of an inner-layer with a set of alternate controllers to track plasma kinetic parameters of interest, and an outer-layer to preprocess the equilibrium measurements, compensate actuation saturations and track the requested additional heating powers. Taking advantage of the timescale separation property of the kinetic and additional power dynamics evolutions on the EAST tokamak, the kinetic control scheme uses two sampling frequencies, with the inner-layer at 50 Hz and the outer-layer at 1000 Hz. Even though the design of all these real-time kinetic feedback algorithms is based on a linear model identied from the sampled simulation/experimental data, the techniques can straightforwardly be extrapolated to cover those linear models obtained from the rst-principles plasma theory. For comparison, three alternative kinetic controllers, the H ∞ , LQI and observer-based IMC, are synthesized from the same reduced model, which are subsequently evaluated and compared in closed-loop METIS simulations. These nonlinear simulation results suggest that the proposed kinetic controllers can achieve the prescribed control targets of β p , Ω φ and T e,0 using P IC and P LH simultaneously with comparable levels of performance and robustness, which are intimately related to the tuning parameters of each algorithms. This new control scheme has then been implemented into the EAST PCS using the EMC toolbox. Preliminary experiments on the EAST tokamak show that β p , li and P LH can successfully be tracked with two simple kinetic controllers, SIMC PI and H ∞ , with a 10 ms time-horizon moving average lter and a cascade SIMC PI power tracker. We conclude, from our simulations and initial experiments, that for an intrinsically stable SISO plasma control problem, it is advisable to start with a SIMC PI controller, as it is proven eective and easy to be designed, implemented and tuned experimentally; for an uncertain MIMO plasma control problem, the H ∞ robust kinetic controller is suggested because its design primarily focuses on enabling sucient robustness against model uncertainties and meanwhile, its tuning is not very complicated.

In the future, extensive experimental tests on EAST are anticipated by involving more actuators and measurements, for example, the co-current NBI systems and the polarimeter/interferometer diagnostics. It would also be interesting to adopt adaptive laws to rene the control coecients in real-time based on the observed input-output measurements. Furthermore, coordinating a set of local kinetic controllers for dierent operating points using gain scheduling can be explored easily under the proposed kinetic control scheme.

Summary of Chapter 3

In this chapter, robust control of q-prole and kinetic parameters in advanced tokamak scenarios based on linear data-driven models has been investigated. It consists of two major parts: the rst part shows that simultaneous control of q-prole and β p in an H-mode steady-state scenario on EAST can be achieved by a decentralized H ∞ control scheme synthesized from a two-time-scale data-driven model. A systematic feedback control synthesis is proposed and benecial control implementation techniques are elaborated. Extensive closed-loop nonlinear METIS simulations have demonstrated the validity of the proposed control scheme. The second part primarily focusses on the comparison of the performance and robustness of three linear kinetic control algorithms, namely H ∞ , LQI and IMC. In order to enhance actuation tracking, cascade actuator controllers based on the SIMC PI tuning rule are designed and implemented, running in a much faster timescale and proving eective in both METIS simulations and EAST experiments. Future works entail the development of robust control schemes synthesized from a nonlinear dynamic model such as a PNLSS model as depicted in Chapter 2. More extensive experiments on EAST are foreseen to sort out an optimal control scheme among a set of candidates for routine tokamak plasma operation. In Chapter 4, some contributions will be made regarding the use of online parametric adaptation for the characterization and compensation of plasma model uncertainties with a series of adaptive control laws. Chapter 4 Adaptive Control The connement performance of a tokamak plasma is characterized by a variety of magnetic and kinetic parameters, many of which can be controlled in feedback by launching the associated actuator systems. However, nonlinear multi-scale disturbing phenomena such as microturbulence [Yoshizawa et al., 2003,Wesson andCampbell, 2011], MHD instabilities [Zohm, 2015] and impurity accumulation [START_REF] Vershkov | Role of impurities in current tokamak experiments[END_REF], are likely to play a detrimental role in the course of tokamak plasma operation by rendering the plasma to an unfavorable status. With the occurrence of large plasma uncertainties, the LSS model-based feedback controller may behave poorly, even with a risk of control instability. In Chapter 3, we have shown, both numerically and experimentally, that linear models identied from the sampled data can conveniently be applied for a number of robust control designs to track certain plasma parameters/proles around a certain operating point in advanced tokamak scenarios on EAST. Nonetheless, like the majority of the proposed control schemes for plasma control, the design of linear feedback controllers is based on an implicit assumption that they should at least work eectively around a specic operating point, for instance, in a given plasma scenario.

To proceed a step further, one interesting question is whether it is feasible to enable a feedback controller to run eectively in a broader operating space. In order to nd a solution, in this chapter, we shall develop adaptive control algorithms emerging in the control community to tracking plasma parameters of interest in advanced tokamak scenarios. Adaptive control, a control methodology assuming the known model (controller) structure but with unknown parameters slowly time-varying or time-invariant, is capable of dealing with uncertain systems to achieve desirable control performance [Tao, 2014, Hou andJin, 2013]. There is a rich literature regarding the techniques for design, analysis, performance and applications [START_REF] Ioannou | Robust adaptive control[END_REF], which can be roughly divided into model-free and model-based adaptive control techniques. Among the model-free adaptive techniques, typical examples include ESC [START_REF] Ariyur | Real-time optimization by extremum-seeking control[END_REF], the dynamic linearization based adaptive control [START_REF] Hou | Model free adaptive control: theory and applications[END_REF], fuzzy adaptive control [START_REF] Chen | Adaptive fuzzy output tracking control of mimo nonlinear uncertain systems[END_REF] and the neural networks based adaptive control [START_REF] Fu | Nonlinear multivariable adaptive control using multiple models and neural networks[END_REF]. Model-based adaptive controllers comprise adaptive backstepping control [START_REF] Krstic | Nonlinear and adaptive control design[END_REF], MRAC [Tao, 2014, Ioannou andSun, 1996], adaptive pole placement control [START_REF] Lozano | Adaptive pole placement without excitation probing signals[END_REF], robust adaptive control [Ioannou andSun, 1996, Landau et al., 2011] and gain scheduling control [START_REF] Leith | Survey of gain-scheduling analysis and design[END_REF].

As the rst part of this chapter, we focus on the application of the ESC algorithms for plasma kinetic optimization in advanced tokamak scenarios. ESC is a model-free adaptive online optimization approach [START_REF] Ariyur | Real-time optimization by extremum-seeking control[END_REF], which slowly drives a system to an optimum where the cost function reaches a local minimum or maximum. This approach was rst proposed in [Leblanc, 1922], which has found many industrial applications in various disciplines, including aerospace and propulsion control [START_REF] Binetti | Formation ight optimization using extremum seeking feedback[END_REF], combustion instability control [START_REF] Banaszuk | An adaptive algorithm for control of combustion instability[END_REF], ow control [Wang et al., 2000] and robot control [START_REF] Kumar | Extremum seeking control for model-free auto-tuning of powered prosthetic legs[END_REF]. The rst rigorous assessment of the stability of ESC is given in [Wang and Krstic, 2000], which has later been extended to multivariate LTI Newton-based ESC (NESC) control [Ghaffari et al., 2012]. As an alternate, the time-varying NESC control is proposed in [START_REF] Keating | Time-varying newton based extremum seeking for optimization of vapor compression systems[END_REF] and applied to the online optimization of vapor compression systems. For more recent achievements on ESC, interested readers are referred to [START_REF] Dürr | Lie bracket approximation of extremum seeking systems[END_REF], Guay and Dochain, 2017,Guay and Atta, 2018,Dürr et al., 2017,Yin et al., 2018] and the fundamentals of ESC are illustrated in [START_REF] Ariyur | Real-time optimization by extremum-seeking control[END_REF]. Notably, ESC has also found its applications in tokamak plasma control, specically in the control of MHD instabilities and the kinetic optimization. In [START_REF] Ou | Design and simulation of extremum-seeking open-loop optimal control of current prole in the DIII-D tokamak[END_REF], the feedforward optimization for the current prole control is achieved by using the standard multivariable ESC. In [START_REF] Paley | From prole to sawtooth control: developing feedback control using ECRH/ECCD systems on the TCV tokamak[END_REF], ESC is used to maximize the sawteeth period by actuating the ECCD system in real-time on TCV. In [START_REF] Bolder | Robust sawtooth period control based on adaptive online optimization[END_REF], the performance of ESC on the sawtooth period control is improved by replacing a lowpass lter with a moving average lter for the gradient estimation in conjection with a sliding mode optimizer. In [START_REF] Wehner | Control-oriented modelling for neoclassical tearing mode stabilization via minimum-seeking techniques[END_REF], combined with the magnetic island width estimate, ESC allows for the minimization of the island-beam misalignment and the time required for NTM stabilization on DIII-D. In [START_REF] Lanctot | Error eld optimization in DIII-D using extremum seeking control[END_REF], the toroidal angular momentum is maximized experimentally by actuating the error eld coil currents based on the standard ESC. In this chapter, we are dedicated to optimizing plasma parameters of interest online using the multivariable NESC method. In contrast to the standard ESC scheme, the NESC enables the online estimation of the Hessian and Hessian inverse of a cost function (performance index) with respect to manipulated inputs. The evident benet is that the control convergence rate can thus be assigned articially, which is however not feasible with the standard ESC. More precisely, a decoupling technique with an extra closed-loop is used to estimate the Hessian and its inverse while the same technique that inherits from the standard ESC is for the gradient estimation. The performance of the NESC and standard ESC schemes are evaluated and compared via closed-loop METIS simulations in H-mode plasma scenarios on EAST and ITER.

The second and third parts of this chapter present the model reference adaptive control (MRAC) of plasma kinetic parameters in advanced tokamak scenarios. MRAC is an adaptive control strategy that has been extensively studied and its theory and design methodologies have been systematically established [Tao, 2014]. The essential characteristic of MRAC is that the closed-loop system dynamics are forced to match with a reference model system, through the cancellation of the system zeros that are assumed stable. We rst study a SISO case, where the direct and indirect MRAC (dMRAC and iMRAC) control schemes are pursued in parallel. In particular, the dMRAC scheme assumes a stationary controller structure and updates the controller coecients in real-time based on a set of adaptive laws. As a dual approach, the iMRAC scheme assumes a stationary model structure, whose coecients are estimated in real-time by adopting adaptive laws before being used for updating the controller coecients by following the model-matching conditions. With the similar idea, we then extend the dMRAC scheme into a MIMO version using the combination of the adaptive laws, driven by the normalized estimation errors (NEEs), and the LDS decomposition [Tao, 2014]. Nonlinear METIS simulations performed on EAST demonstrate the eectiveness of the proposed MRAC algorithms.

The main achievements of the chapter are listed below:

• Development of the NESC and ESC algorithms to achieve the online optimization of plasma kinetic parameters in H-mode scenarios on EAST and ITER.

• Development of the dMRAC and iMRAC schemes for tracking of essential plasma kinetic parameters in H-mode scenarios on EAST.

• Development of a MIMO dMRAC scheme for the simultaneous tracking of q 0 and β p in H-mode scenarios on EAST.

• Demonstrating the eectiveness of the proposed ESC and MRAC algorithms via nonlinear closed-loop METIS simulations.

The remainder of the chapter is organized as follows. In Section 1, we formulate the kinetic control problem, sketch the essentials of the ESC approach and describe the LTI NESC scheme. We then evaluate the control performance via nonlinear METIS simulations on EAST and ITER. In Section 2, we develop the dMRAC and iMRAC schemes for tracking of β p , Ω φ and T e,0 and assess their validity via nonlinear METIS simulations on EAST. In Section 3, we consider a MIMO dMRAC scheme for tailoring q 0 and β p by actuating ICRH and LHCD powers simultaneously and evaluate their performance via nonlinear METIS simulations on EAST. In Section 4, we draw conclusions and outline possible improvements.

ESC optimization of plasma kinetic parameters

In this section, we present the ESC and NESC algorithms to optimize plasma kinetic parameters online in H-mode plasma scenarios, without resorting to any plasma response models. First, we introduce the control objectives, outline the modelling of the to-be-optimized kinetic parameter evolutions and formulate the kinetic control problem. Subsequently, the NESC algorithm is illustrated in great detail. Nonlinear METIS simulations are nally carried out to assess the performance of the proposed ESC and NESC schemes.

Optimization problem formulation

Since ESC is a model-free adaptive optimization technique, it is intrinsically generic and can potentially be applied to the kinetic optimization of any simulated and experimental plasmas. Nonetheless, in order to discuss the control tuning procedure and evaluate the performance of the ESC technique, a simple uid model combined with a number of scaling laws [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF] is employed as a plasma simulator to reveal the essential physics of kinetic parameter evolutions. Before formulating the kinetic optimization problem, we rst briey describe the modelling of the to-be-optimized kinetic parameters, i.e., plasma poloidal beta β p , the average toroidal rotation angular speed Ω φ and the α particle power P α .

Modelling of plasma kinetic parameters

The plasma parameters of interest, β p , Ω φ and P α are global indicators of the plasma connement performance in tokamaks, which evolve on the timescale of the energy connement time τ E . β p is a ratio between the total plasma kinetic energy and the energy stored in the poloidal magnetic eld, expressed as:

β p = 4W th (1 + κ 2 ) 3µ 0 aRI 2 p (4.1)
where W th represents the thermal plasma energy content, κ the elongation, µ 0 the magnetic permeability in vacuum space, a the plasma minor radius, R the plasma major radius, I p the plasma current. W th is obtained by solving a rst-order ODE as:

dW th dt = - W th τ E + P heat -P rad (4.2)
Here, τ E is computed by using scaling laws. In L-mode, the ITERL-96P(th) scaling law reads:

τ e,L = 0.023I 0.96 p B 0.03 t ( n 10 20 ) 0.4 P -0.73 in R 1.83 κ 0.64 -0.06 A 0.2 (4.3)
where I p is the plasma current, B t the toroidal magnetic eld, n the average electron density, P in the input power, R the major radius, κ the elongation, the aspect ratio, A the atomic mass of the ions. In H-mode, the ITERH-98(y,2) scaling law writes:

τ e,H = 0.0562I 0.93 p B 0.15 t ( n 10 
20 ) 0.41 P -0.69 loss R 1.97 κ 0.78 0.58 A 0.19 (4.4)

Here, P loss = P heat -P rad , where P heat and P rad are respectively the total heating power and the radiation power, expressed as:

P heat = P Ω + P α + P IC + P LH + P EC + P N BI P rad = P brem + P cyclo + λ line P line (4.5) where P Ω denotes the total ohmic power, and P α the total α particle power generated from D-T reactions. P IC , P LH , P EC , P N BI are respectively the total deposited powers arising from the ICRH, LHCD, ECRH and NBI systems. P brem , P cyclo and P line are the bremsstrahlung radiative power, the power lost by synchrotron radiation and the total radiative power due to line radiation, respectively. We note that λ line indicates the fraction of the line radiation coming from the core plasma region. P α is the total power arising from the generated α particles due to D-T reactions, which is derived as P α = 1 0 p α,th (t, ρ)dρ, where p α,th (t, ρ) is the α power density prole, computed as:

p α,th (t, ρ) = eE α,T (d,n)He 4 n D (t, ρ)n T (t, ρ) συ T (d,n)He 4 [T i (t, ρ)] (4.6)
where e is the unit of electric charge, E α,T (d,n)He 4 = 3.5 MeV, n D and n T are respectively the deuterium and tritium density prole. συ T (d,n)He 4 [T i (t, ρ)] is the D-T fusion reaction cross section closely related to the ion temperature prole. The ion temperature prole is inferred from the electron temperature prole by conserving both the total energy and charge. More details on the modelling of the other power sources and of the electron and ion temperature prole evolutions are given in [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF].

The modelling of the average toroidal rotation angular speed is performed mainly in order to account for the NBI eects and the intrinsic plasma rotation. The eects of magnetic eld ripple losses, fast ion losses and fast ion momentum transport cannot be described by simple models, but they can be neglected. Nevertheless, a simple model is adequate to characterize the NBI-dominated plasmas, even for a fusion reactor such as ITER. The volume-averaged toroidal momentum is dened as:

R tot = 1 0 N ion k=1 m p A k n k Rυ φ,k V dρ (4.7)
where N ion represents the total number of ion species, m p the proton mass, A k the number of the nucleons in the k-th ion species, n k the average density of the k-th ion species, R the major radius, υ φ,k is the toroidal velocity of the ion species k, V the derivative of the plasma volume enclosed in a magnetic surface with respect to the normalised minor radius ρ. Analogous to the thermal energy computation, the volume-averaged toroidal momentum is modelled as:

dR tot dt = - R tot τ φ + N N BI k=1 S φ,N BI,k + S φ,intrinsic + S φ,RF + S φ,E + S φ,ripple + F n,0 (4.8) 
where τ φ is the toroidal rotation connement time, dened as τ φ = f τ,rot min(τ E , τ ii ), where f τ,rot is an adjustable factor with the order O(1), τ ii the ion connement time. S φ,N BI,k is the rotation source due to the k-th NBI injection, N N BI the number of NBI injectors, S φ,intrinsic the intrinsic toroidal rotation, S φ,RF the rotation source due to the radiofrequency (RF) heating, S φ,E the rotation source due to the parallel electric eld, S φ,ripple the toroidal rotation source arising from the magnetic ripple eects. F n,0 the rotation source due to the friction with cold neutrals. More details concerning these source terms are given in [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF].

Description of the kinetic optimization problem

A conceptual scheme of the kinetic parameter optimization using ESC is illustrated in Fig. 4.1(a). The objective is to optimize the control actuations online using the sampled inputoutput data such that the cost function penalizing the kinetic parameter deviations reaches a local minimum. The control actuators used in this study include the ICRH, LHCD and NBI system powers, though other actuators such as plasma current and density can also be involved for real-time optimization if necessary. The to-be-optimized kinetic parameters are the plasma poloidal beta, β p , the average toroidal rotation angular speed, Ω φ , the electron temperature on axis, T e,0 , and the α particle power, P α , for ITER burning plasmas. We remark that β p can be estimated via the real-time EFIT code [START_REF] Lao | Reconstruction of current prole parameters and plasma shapes in tokamaks[END_REF], Ferron et al., 1998] by tting the Grad-Shafranov equation with the boundary and internal magnetic diagnostics as constraints;

Ω φ may be measured by the main-ion charge exchange recombination spectroscopy (MICER) in NBI-heated plasmas [START_REF] Haskey | Active spectroscopy measurements of the deuterium temperature, rotation, and density from the core to scrape o layer on the DIII-D tokamak[END_REF]; T e,0 may be measured by Thomson scattering and electron cyclotron emission (ECE); P α can be inferred from the plasma density and ion temperature measurements, for example, Thomson scattering, interferometry and charge exchange recombination spectroscopy (CXRS) [START_REF] Wesson | Tokamaks[END_REF].

The extremum-seeking optimizer has two sets of inputs, one of which are the real-time estimates of plasma parameters of interest, while the others are their corresponding references, which are allowed to be time-varying. The evident merit of the ESC optimizer is that it does not rely on any a priori knowledge of plasma dynamics. An important constraint is that the ESC optimizer should operate in a slower timescale than that of the to-be-optimized plasma parameter evolutions such that a stable static input-output map, a sucient condition for the stability of ESC, can be obtained [START_REF] Ariyur | Real-time optimization by extremum-seeking control[END_REF]. In our studied plasma scenarios, for example, on the ITER tokamak the energy connement time τ E is approximately in the order of 1 s, and the pulse duration can reach 1000 s. Hence, the use of the ESC optimizer is theoretically feasible thanks to the long-pulse duration and the real-time capability of the H&CD systems.

The optimization problem formulation using the ESC framework

The kinetic models described in Section 4.1.1.1 can be formulated as:

ẋ = f (x, θ), J = h(x) (4.9)
Here, x ∈ R n represents the states where n is the number of states, θ ∈ R p the inputs, where p is the number of control actuators. J ∈ R is a cost function which is dened as the weighted norm of all the state errors. f : R n × R p → R n and h : R n → R are nonlinear smooth functions. More specically, in an H-mode burning plasma scenario on ITER, our objective is to optimize β p , Ω φ and P α to their desired targets β p,ref , Ω ref , P α,ref , respectively, by actuating P NBI1 and P IC in real-time, with the other three actuators P NBI2 , P EC and P LH remaining at a constant level. We dene β p , Ω φ and P α as the kinetic parameter estimates while β p,ref , Ω ref , P α,ref as their references. In this case, n = 3, p = 5, θ = [P NBI1 , P NBI2 , P EC , P IC , P LH ] T , x = [ βp , Ω, Pα ] T , where βp , Ω and Pα are dened as βp = β p -β p,ref , Ωφ = Ω φ -Ω φ,ref and Pα = P α -P α,ref , respectively. In order to formulate the ESC optimization problem, we make the following assumptions about the plasma kinetic system [START_REF] Ariyur | Real-time optimization by extremum-seeking control[END_REF]]:

1) There is a smooth function l : R n → R p such that f (x, θ) = 0 if and only if x = l(θ);

2) For each θ ∈ R n , the equilibrium x = l(θ) of the system ẋ = f (x, θ) is locally exponentially uniformly stable in θ;

3) There exists θ

* ∈ R n such that ∂ ∂θ (h • l)(θ * ) = 0 and ∂ 2 ∂θ 2 (h • l)(θ * ) < 0.
Our objective is to develop a feedback mechanism that drives the cost function J to its minimum without requiring the knowledge of either θ * or the mapping functions f , l and h. As shown in Fig. 4.1(a), the standard ESC controller perturbs the estimate θ with a periodic signal S(t) such as asin(ωt), which should be slow enough such that the plant (4.9) advances in a static map. The benet of using the perturbation signal is to force the cost function J to respond periodically and then to extract the cost function gradient Ĝ = dJ dθ . A highpass lter is rst employed on J to remove the low-frequency uncorrelated component (ω h < ω) and obtain z that is approximately sinusoidal. In order to estimate the cost function gradient Ĝ, a lowpass lter is imposed on the product of two sinusoids z and M (t), e.g. 2 a sin(ωt). Using an integrator, the actuation estimate θ is then derived, where K is an adaptive gain to control the convergence rate. We emphasize that the cuto frequency for the lowpass lter ω l should be lower than the perturbing frequency ω, and to guarantee local stability, the perturbation amplitudes a and the adaptation gain matrix K need to be kept small. Hence, in the standard ESC scheme, there are three separate timescales: (1) fast (plasma kinetic evolutions), ( 2) medium (periodic perturbation) and ( 3) slow (gradient estimate).

NESC approach

Inspired by [START_REF] Ghaari | Multivariable newtonbased extremum seeking[END_REF], we develop an NESC scheme to optimize plasma kinetic parameters online, as depicted in Fig. 4.1(b). Basically, we can divide the NESC scheme into six components: 1). diagnostics/measurements to estimate plasma parameters of interest, e.g. β p , Ω φ , P α ; 2). dene a proper cost function J to penalize the optimized kinetic parameter deviations; 3). estimate the Hessian Ĥ and Hessian inverse Γ for the gradient prediction; 4). estimate the gradient Ĝ = ∂J ∂θ ; 5). optimize the control inputs θ using an integrator; 6). launch the control actuators, e.g. the ICRH system, for real-time actuation. We remark that Components 1 and 6 rely on the associated diagnostics and actuators, while the remaining components constitute the main NESC algorithm, which should be implemented into a PCS before experimental application [START_REF] Snipes | Overview of the preliminary design of the ITER plasma control system[END_REF]. The rest part of this section presents the NESC design in more detail.

Cost function

The goal of the NESC optimizer for plasma kinetic parameters is to nd optimal beam and radiofrequency actuations to minimize a cost function that penalizes both the parameter deviations and the control eorts, expressed as:

J = (x ref -x mea ) T Λ(x ref -x mea ) + (θ ref -θ sat ) T ∆(θ ref -θ sat ) (4.10)
where x ref represents the references of plasma kinetic parameters, whilst x mea denotes the estimates of plasma kinetic parameters. θ ref is a vector of the requested actuations while θ sat denotes the amount of the actuations that have passed through the saturation limits. Λ and ∆ are two weighting matrices that weigh the importance of each input and output elements. We note that the references are allowed to be time-varying, but the settling time of the reference trajectories should be aproximately an order smaller than τ E to guarantee the timescale separation between the plasma kinetic dynamics and the optimizer dynamics. The involvement of the second term in the cost function aims to attenuate the negative eects from actuator saturations [START_REF] Mu | Real-time optimization of a chilled water plant with parallel chillers based on extremum seeking control[END_REF].

Estimator

In this subsection, we estimate the gradient, the Hessian, the Hessian inverse of the cost function with respect to the control actuations.

Estimating the gradient Re-formulating equation (4.10) as J = Q( θ + S) and using the Taylor expansion at θ yield:

J = Q( θ + S) = Q( θ) + S T ∂Q ∂ θ + R(S T S) (4.11)
To extract the term ∂Q ∂ θ and attenuate the rst term Q( θ), a highpass lter is imposed on J, yielding

J f = Q f ( θ) + S T ∂Q ∂ θ + R(S T S).
Multiplying the periodic signals M (t) on both sides of Eq. ( 4.11) and averaging it in the period Π, we thus obtain:

1 Π t 0 +Π t 0 Ĝdt = 1 Π t 0 +Π t 0 M (t)y f dσ = 1 Π t 0 +Π t 0 M (t)Q f ( θ(t))dt + 1 Π t 0 +Π t 0 M (t)S(t) T ∂Q ∂ θ dt+ 1 Π t 0 +Π t 0 M (t)R(S T S)dt (4.12) 
Here, Q f ( θ) is a low-frequency component, and we assume that

Q f ( θ) = Q(t 0 ) when t ∈ [t0, t0 + Π].
Then the rst term is transformed to Q(t 0 ) Π t 0 +Π t 0 M (t)dt, which is 0. For the third term, since R(S T S) is an order smaller than the second term, it can be neglected. We assume that ∂Q ∂ θ is constant during the interval [t 0 , t 0 + Π], which is then transformed to

1 Π t 0 +Π t 0 M (t)S(t) T dt ∂Q ∂ θ . Because 1 Π t 0 +Π t 0 M (t)S(t) T dt is a unit matrix, we consequently have 1 Π t 0 +Π t 0 Ĝdt = ∂Q ∂ θ .
Estimating the Hessian According to the assumptions made in Section 4.1.1.3, we infer that at the steady state J = h(l(θ)), θ = θ + S(t) and θ = θ * + θ. Due to the smoothness properties on f and h, we thus have J = Q(θ * + θ + S(t)). Using the Taylor series expansion, J is then expressed as:

J = Q(θ * + θ + S(t)) = J(θ * ) + 1 2 ( θ + S(t)) T H( θ + S(t)) + R( θ + S) (4.13)
We note that ∂J(θ * ) ∂θ * = 0 and the term R( θ + S) is a high order of θ + S, which is negligible. In order to decouple the Hessian H in an average sense, the cost function is multiplied by a carefully designed time-varying matrix N (t) [START_REF] Ghaari | Multivariable newtonbased extremum seeking[END_REF], which is given by:

N i,j = 16 a 2 i sin(ω i t) 2 -1 2 , if i = j 4 a i a j sin(ω i t)sin(ω j t), if i = j (4.14)
where a i and a j are dither amplitudes, while ω i are dither frequencies. Hence, the integral average of N (t)J in the common period of the probing frequencies Π = 2π × LCM{ 1 ω i }, i = 1, 2, ..., n (LCM is short for the least common multiple) yields:

1 Π Π 0 N (t)Jdσ = H + 1 Π Π 0 R( θ + S)dσ (4.15)
To approximate the Hessian in an average sense, a lowpass lter is employed as:

Ḣ = -w r H + w r Ĥ (4.16)
where w r is a cut-o frequency on the timescale of Π and the state H converges to Ĥ.

Estimating the Hessian inverse We assume Γ as the inverse of H, which means that ΓH = I. Dierentiating the equality yields ΓH + Γ Ḣ = 0, which is right-multiplied by Γ on both sides, resulting in Γ = Γ ḢΓ. Combined with equation ( 4.16), the Hessian inverse is consequently obtained as a dierential Riccati equation:

Γ = w r Γ -w r Γ ĤΓ (4.17)
This equation has two equilibria, i.e., Γ = 0 and Γ = Ĥ-1 . Further analysis indicates Γ = 0 is an unstable equilibrium, thus Γ should converge to Ĥ-1 .

Optimizer

The objective of the optimizer is to use the estimates of the gradient and/or Hessian inverse to compute the optimal control actuations such that the cost function can be minimized or maximized. As shown in Fig. 4.1, the adaptive gains K g and K n scale the convergence rate of the ESC and NESC optimizers, respectively. In the standard ESC scheme, only the gradient estimate is used for optimization while, in the NESC scheme, both the gradient and Hessian inverse estimates are involved. As an integrator, the optimizer can thus be expressed as:

θ(t) = -K g ∂Q ∂ θ , k = 0 -K n Γ ∂Q ∂ θ , k = 1 (4.18)
where k = 0 represents the standard ESC scheme, while k = 1 indicates the NESC scheme. θ represents the optimal control actuations. After integration, θ(t) = θ(t) + S(t) are output for the actuators, where S(t) represents the dither signals.

Stability analysis

Assume that θ * represents the optimal powers, and dene the estimate error θ = θ -θ * . We then formulate the NESC control system in a nonlinear state-space form as:

d dt          x θ G Γ H η          =          f (x, α(x, θ * + θ + S(t))) -K( Γ + H -1 ) Ĝ -ω l G + ω l (y -h • l(θ * ) -η)M (t) ω r ( Γ + H -1 )(I -( H + H)( Γ + H -1 )) -ω r ( H -ω r H + ω l (y -h • l(θ * -η)N (t) -ω h η + ω h (y -h • l(θ * ))          (4.19)
where the closed-loop stability is illustrated by the following theorem:

Theorem 3. Consider the feedback system (4.19) under Assumptions 1-3. There exists ω > 0 and for any ω ∈ (0, ω) > 0 there exist δ, ā > 0 such that for the given ω and any a ∈ (0, ā) and δ there exists a neighborhood of the point

(x, θ, Ĝ, Γ, Ĥ, η) = (l(θ * ), θ * , 0, H -1, H, h • l(θ * ))
such that any solution of systems (4.19) from the neighborhood exponentially converges to an O(ω + δ + |a|)-neighborhood of that point. Furthermore, J(t) converges to an O(ω

+ δ + |a|)- neighborhood of h • l(θ).
Theorem 1 is demonstrated by using the averaging and singular perturbation analysis, details of which are given in [START_REF] Ghaari | Multivariable newtonbased extremum seeking[END_REF]. For the completeness, we hereby sketch the proof essentials. Compared to the controller dynamics, the system dynamics evolve much faster. The change of variable τ = ωt formulates a standard singular perturbation system. First, we assume that ω = 0, the singular perturbation system is degenerated into a reduced system, which can be demonstrated to have a unique exponentially stable periodic solution around its equilibrium. Second, the boundary layer model is studied, based on assumption 2, the equilibrium is locally exponentially uniformly stable in θ. The combination of the reduced system and the bounday layer system leads to the closed-loop exponential stability of the full system using the Tikhonov theorem [START_REF] Khalil | Nonlinear systems[END_REF].

Simulation results

The ESC and NESC algorithms described in previous sections have been implemented into the MATLAB/Simulink framework, which are then coupled with the plasma simulator METIS [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF] for closed-loop control evaluations. We now present the nonlinear METIS simulation results regarding the ESC and NESC kinetic optimization on the EAST and ITER tokamaks. 4.1.3.1 ESC optimization of β p , Ω φ and T e,0 by adjusting P IC and P LH on EAST

The rst case consists in evaluating the performance of the ESC and NESC algorithms for the optimization of plasma kinetic parameters in a typical H-mode scenario on EAST via nonlinear METIS simulations. The reference scenario for METIS simulations is consistent with the one used in Section 2 of Chapter 3. The objective is to track the poloidal beta β p , the average toroidal rotation angular speed Ω φ and the central electron temperature T e,0 simultaneously by optimizing the ICRH and LHCD powers online using the ESC and NESC schemes. The ICRH and LHCD powers are allowed to vary in the ranges of [0, 1.5] MW and [0, 3.0] MW, respectively. The two candidate ESC optimizers were tuned using trial and error until the satisfactory performance was obtained. Table (4.1) lists the ESC tuning parameters for the ESC and NESC optimizers. The major dierence between the standard ESC and NESC lies in whether the Hessian and Hessian inverse are estimated or not. In the standard ESC optimizer, the estimation is restricted to the gradient of the cost function with respect to control actuations, while in the NESC optimizer, the Hessian and its inverse are estimated by involving an additional loop as shown in Fig. 4.1(b). The dither frequency is computed as τ dither = 2π N dither τE , where τE represents the energy connement time estimate (xed at 0.04 s in this study) and N dither is an integer ranging from 5-15 (xed at 8 in this study). The dither magnitude should be set small at 0.05 MW. The time constant for the highpass lter, the gradient-oriented lowpass lter and the Hessian-oriented lowpass lter are respectively given by τ h = 1 2 τ dither ,τ l = 1 4 τ dither and τ r = 3 20 τ dither . The adaptive gains, weights and norms are chosen by trial and error. Increasing the adaptive gains can reduce the response time while it may have the risk of causing control instability. The norms are chosen to map the measured outputs and references to the interval of [-1,1]. Adjusting the weights on each control variables can make a trade-o on the importance of each variable in the cost function.

The optimization results for the two ESC optimizers are compared in Fig. 4.2, in which two sets of references are prescribed and the optimization is activated at 3.5 s. In particular, in the time period [3.5, 5] s, the β p , Ω φ and T e,0 targets are 2.0, 8 krad/s and 4800 eV, respectively. From 5 s to 6 s, the targets for β p , Ω φ and T e,0 are linearly increased to 2.25, 9 krad/s and 5000 eV, and this new kinetic equilibrium is requested to be sustained until 8 s. We can conclude from Fig. 4.2 that two groups of setpoints are achieved and maintained by both the standard ESC and NESC schemes, in which comparable optimization performance is obtained by these two candidate ESC optimizers. Nonetheless, one can still notice that slightly better tracking is acquired with the NESC optimizer, especially for β p and Ω φ . The time evolution of the optimized ICRH and LHCD powers are shown in Fig. 4.3. It is found that to achieve the rst group of setpoints, the ICRH and LHCD powers are requested to be actuated at 0.75 MW and 1.75 MW respectively, while the second group of setpoints are reached by increasing the ICRH power to 0.95 MW and dropping the LHCD power to around 1.55 MW. The time evolution of the cost function and the gradient estimates for the two candidate ESC schemes are shown in Fig. 4.4. We can observe that between 5.6 s and 6.2 s, the cost function with the NESC optimizer is around half of that with the standard ESC optimizer, conrming that better transient tracking performance can be made with the NESC optimizer. The estimates of the Hessian inverse are depicted in Fig. 4.5, where the estimates are decreased suddenly from 5.5 s to 5.6 s and gradually increased from 5.6 s to 6.5 s, which results in the improved transient performance in the period of [5.6, 6.2] s for the NESC optimizer. Similar to the rst simulation case study, the tuning parameters for both ESC optimizers were tuned by trial and error until the satisfactory performance was obtained and Table 4.2 lists the used ESC tuning parameters for the following METIS simulations. As before, the dither frequency is determined by following the rule τ dither = 2π N dither τE . In this case, N dither is xed at 12 and τE is estimated to be 1.75 s. The dither magnitude is set at 0.4 MW and the dither phase for co-NBI and ICRH actuators are prescribed to be 0 and π 2 , respectively. The time constant for the highpass lter, the gradient-oriented lowpass lter and the Hessian-oriented lowpass lter are respectively prescribed at τ h = 1 2 τ dither ,τ l = 1 4 τ dither and τ r = 1 4 τ dither . The adaptive gains, norms and weights for β p , Ω φ and P α are set by trial and error.

The optimization results for the two candidate ESC optimizers are illustrated in Fig. 4.6. Two sets of targets for β p , Ω φ and P α are preset to be followed and the optimization is activated at 300 s. In the interval [300, 400] s, the references for β p , Ω φ and P α are 2.1, 12.4 krad/s and 58 MW. From 400 s to 600 s, the references linearly drop to 2.02, 12.2 krad/s and 54 MW. Simulation results indicate that both ESC and NESC optimizers can achieve eective tracking by adjusting the co-NBI and ICRH powers simultaneously. Fig. 4.7 shows the time evolution of the NBI and ICRH powers. Evidently, the optimized powers are mostly overlapped in the two ESC schemes. It appears that at the initial phase of optimization, the standard ESC scheme slightly outperforms the NESC scheme, which is further conrmed in Fig. 4.8(a). In the period [320,350] s, the cost function J of the standard ESC is smaller than that of NESC, because of the dierence in the gradient estimate in Fig. 4.8(b). For NESC, the Hessian inverse is also estimated as shown in Fig. 4.9. We remark that when the Hessian inverse is saturated to an identity matrix, NESC degenerates to a standard ESC scheme, which explains why the gradient and cost function of NESC overlaps with the standard ESC scheme in most occasions. assignable. The drawback of this ESC optimization strategy is that it requires the actuation perturbations to extract the information of plasma dynamics and the optimization should be carried out in a much slower timescale than the characteristic time of plasma kinetic dynamics. Nonetheless, as an alternative method, it can potentially be applied to other plasma optimization problems where the plasma dynamics are highly nonlinear while the modelling is not possible or non-trivial, for instance, NTMs mitigation and suppression, ELMs suppression, the divertor heat ux and radiative power control. 
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MRAC control of plasma kinetic parameters: a SISO case

In this section, we investigate MRAC control of plasma kinetic parameters, including the poloidal beta β p , the average toroidal rotation angular speed Ω φ and the electron temperature on axis T e,0 by actuating the ICRH power P ICRH on EAST. First, the input-output transfer function structure is used to approximate the responses of plasma kinetic parameters with respect to the ICRH power. The adaptive control problem is then formulated by making a number of assumptions. Based on the given model structure and control assumptions, the dMRAC and iMRAC schemes are developed to track plasma kinetic parameters in a SISO setup, with the METIS simulation results demonstrating their eectiveness.

Control problem formulation

Our objective is to design a controller and parameter adjustment mechanism such that all the signals are bounded and the plant outputs track the desired plasma kinetic parameter reference as close as possible by actuating a control input [START_REF] Ioannou | Robust adaptive control[END_REF]. The response of a kinetic parameter y p with respect to a control actuator u p can be expressed as an input-output transfer function:

y p = G p (s)u p (4.20) with G p (s) = k p Z p (s) R p (s) (4.21)
where Z p (s) and R p (s) are monic polynomials of degree n p,z and n p,r , respectively and k p is a constant named the high frequency gain. The reference model, which denes the desired control performance, is given by: y m = W m (s)r (4.22) where y m represents the desired trajectory to be tracked, r indicates the reference input, which is assumed to be uniformly bounded and piecewise continuous. W m (s) is the reference model which reads:

W m (s) = k m Z m (s) R m (s) (4.23)
where Z m (s) and R m (s) are monic polynomials of degree n m,z and n m,r , respectively and k m is a constant. In order to design a MRAC controller using only measured signals, i.e. without any dierentiation involved, we make a number of assumptions on the plant and reference models as follows:

For the plant model ( 4.21):

• P1: Z p (s) is a monic Hurwitz polynomial.

• P2: An upper bound of the degree of the polynomial R p (s) is known to be n.

• P3: The relative degree n * = n p,r -n p,z is known.

• P4: The sign of the high frequency gain k p is assumed to be known.

The assumption P1 ensures that the plant transfer function G p (s) is minimum phase, which indicates that the plant should be detectable and stabilizable. P2 allows the inputoutput lters designed for feedback control to be strictly proper. P3 and P4 are assumptions that can be relaxed by increasing the control complexity [Nussbaum, 1983, Morse, 1984].

For the reference model (4.23):

• R1: Z m (s) and R m (s) are both monic Hurwitz polynomials with the degree n m,z and n m,r and n m,r ≤ n.

• R2: The relative degree n * m = n m,r -n m,z of W m (s) is the same as that of the plant G p (s), i.e. n * m = n * .

In order to achieve the control objective, the dMRAC and iMRAC control schemes are considered based on the plant and reference model structures, respectively [START_REF] Ioannou | Robust adaptive control[END_REF]. We rst present the dMRAC scheme, which allows the controller structure to remain unchanged but with its control parameters directly adjusted according to the sampled inputoutput measurements by properly associating the model reference tracking errors with the control parameters. Then the iMRAC scheme is developed, which assumes a stationary model structure, and the controller parameters are calculated indirectly in two steps: the rst step consists in adapting the plant model parameters via the sampled input-output measurements, while the second step is to update the controller parameters by solving the reference model matching equations.

MRAC control: a direct approach

Based on the assumptions made for the plant and reference models, we now focus on the dMRAC design. In the rst step, we assume that the plasma plant model is known, which may be identied from sampled simulations/experiments [Ljung, 1995] or obtained through the rst-principles plasma theory [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF]. With the given plant and reference models, a model reference control (MRC) law [Morse, 1985] is thus derived by solving the reference-model matching equations. In the second step, we assume that the plasma plant model is not known exactly, and the certainty equivalence principle (CEP) [Ioannou andSun, 1996, Landau et al., 2011] is thus used to develop adaptive laws for the control parameter adjustment.

Model reference control

Let us consider the following feedback controller structure as:

u p = θ * 1 T α(s) Λ(s) u p + θ * 2 T α(s) Λ(s) y p + θ * 3 y p + c * 0 r (4.24)
where α(s) = [s n-2 , s n-3 , ..., s, 1] T , n ≥ 2 0, n < 2 and θ * 1 , θ * 2 ∈ R n-1 , θ * 3 , c * 0 ∈ R are controller parameters to be designed, and Λ(s) is an arbitrary monic Hurwitz polynomial of degree n -1 that contains Z m (s) as a factor Λ(s) = Λ 0 (s)Z m (s), where Λ 0 (s) is a monic Hurwitz polynomial with the degree n 0 = n -1 -n m,z . u p , y p and r represent the measured input, the measured output and the reference, respectively. The control parameters can be expressed in a compact form as

θ * = [θ * 1 T , θ * 2 T , θ * 3 , c * 0 ] T ∈ R 2n
, which are designed to ensure that the transfer function from r to y p is equal to the reference model W m (s).

Combining equations (4.20) and (4.24), the closed loop transfer function from r to y p is computed as:

y p = G c (s)r = c * 0 k p Z p Λ 2 Λ[(Λ -θ * 1 )R p -k p Z p (θ * 2 T α(s) + θ * 3 Λ(s))] r (4.25)
The controller parameters θ * can then be derived by solving the matching equation G c (s) = W m (s), which writes as:

c * 0 k p Z p Λ 2 Λ[(Λ -θ * 1 )R p -k p Z p (θ * 2 T α(s) + θ * 3 Λ(s))] = k m Z m (s) R m (s) (4.26)
Choosing c * 0 = km kp and Λ(s) = Λ 0 (s)Z m (s), equation (4.26) is then transformed to an algebraic equation

θ * 1 T α(s)R p (s) + k p (θ * 2 α(s) + θ * 3 Λ(s))Z p (s) = Λ(s)R p (s) -Z p (s)Λ 0 (s)R m (s) (4.27)
Multiplying 1 Rp(s) on both sides of equation ( 4.27), we obtain

Λ(s) -θ * 1 T α(s) -k p Z p (s) R p (s) θ * 2 T α(s) + θ * 3 Λ = Z p Q(s) + k p ∆ * R p (4.28)
where Q(s) and k p ∆ * respectively represent the quotient and the remainder of Λ 0 Rm Rp , i.e.

Λ 0 Rm Rp = Q(s)+ kp∆ *
Rp . We then obtain the control coecients by solving the following equations

θ * 1 T α(s) = Λ(s) -Z p (s)Q(s) θ * 2 T α(s) + θ * 3 Λ(s) = Q(s)R p (s) -Λ 0 (s)R m (s) k p (4.29)

Adaptive controller parameter estimation

In this subsection, we assume that the plant model is not available, but the plant and reference models satisfy the assumptions P1-P4 and R1-R2. The CEP is employed to design the dMRAC controller. The controller parameters θ * are now replaced by their estimates θ(t) using an adaptive law, which is developed by relating the model tracking error with the controller parameters. The controller structure remains as:

u p = θ * 1 T ω 1 + θ * 2 T ω 2 + θ * 3 y p + c * 0 r (4.30) Dening ω 1 = α(s) Λ(s) u p , ω 2 = α(s) Λ(s) y p , θ = [θ * 1 T , θ * 2 T , θ * 3 , c * 0 ] T and ω = [ω T 1 , ω T 2 , y p ,
r] T , the control law is expressed in a state-space form as:

ω1 = F ω 1 + gu p ω2 = F ω 2 + gy p u p = θ * T ω (4.31)
where

F =        -λ n-2 -λ n-3 -λ n-4 ... -λ 0 1 0 0 . . . 0 0 1 0 . . . 0 . . . . . . . . . . . . . . . 0 0 . . . 1 0        , g =        1 0 0 . . . 0        (4.32)
λ i , i = 0, ..., n -2 are the coecients of the monic Hurwitz polynomial:

Λ(s) = s n-1 + λ n-2 s n-2 + ... + λ 1 s + λ 0 = det(sI n-1 -F ) (4.33)
Incorporating the control law (4.31) and the plant (4.21), we obtain the closed-loop system in a state-space form as:

Ẏc = A 0 Y c + B c u p , Y c (0) = Y 0 y p = C c Y c (4.34)
where the state vector Y c is dened as

Y c = [x T p , ω T 1 , ω T 2 ] T and A 0 =   A p 0 0 0 F 0 gC T p 0 F   , B c =   B p g 0   , C c = C p 0 0
Here, (A p , B p , C p , D p ) is a state-space realization of the plant (4.21). Adding and subtracting the desired control input B c θ * T ω yields Ẏc = A 0 Y c + B c θ * T ω + B c (u p -θ * T ω). By a number of algebraic manipulations, we derive:

Ẏc = A c Y c + B c c * 0 r + B c (u p -θ * T ω), Y c (0) = Y 0 y p = C c Y c (4.35)
where

A c =   A p + B p θ * 3 C T p B p θ * 1 B p θ * 2 T gθ * 3 C T p F + gθ * 1 gθ * 2 gC T p 0 F  
Considering the plant and reference model matching condition, the reference model is then given by: The gradient method with known sign of ρ * ρ * represents the direction of the control input on the control output. For example, β p increases with P ICRH , indicating that ρ * > 0. ι 0 decreases with P LHCD , implying that ρ * < 0. If the sign of ρ * is known, the error equation is given by: e = ρ * (u f -θ * T φ) (4.38)

Ẏm = A c Y m + B c c * 0 r, Y c (0) = Y 0 y m = C c Y m (4.
We assume the sign of the high frequency gain k p is known and a gradient method is then employed to design the adaptive law. The error estimate ê is expressed as ê = ρ(t) u f -θ(t) T φ , where ρ(t) and θ(t) are the estimates of ρ * and θ * . The normalized estimation error is then computed as = e-ê m 2 , where m 2 = 1 + n 2 s and n 2 s = φ T φ + u 2 f . Then we consider the cost function:

J(ρ, θ) = 2 m 2 2 (4.39)
Dening ξ = ρ u f -θ T φ , equation (4.39) is given by J(ρ, θ) =

((e-ρ * θ T φ-ρξ+ρ * ξ)-ρ * u f ) 2 2m 2
. Because of the dependence of ξ on θ, J(ρ, θ) is not a convex function of ρ and θ. However, let us ignore the dependence and consider ξ as an independent variable. With the gradient method, we can then derive the adaptive laws for θ and ρ as:

θ = Γ 0 ρ * φ, ρ = γ ξ (4.40)
where Γ 0 = Γ T 0 > 0 and γ > 0. ρ * can be expressed ρ * = |ρ * |sign(ρ * ). Since the term ρ * is assumed to be constant and its sign is assumed to be known, the arbitrary adaptive gain matrix Γ 0 can be transformed to Γ = Γ 0 |ρ * |, which results in a set of implementable adaptive laws as:

θ = Γ φsign(ρ * ), ρ = γ ξ (4.41)
The gradient method with unknown sign of ρ * If we do not know the sign of the gain ρ * , we can develop adaptive laws using the Nussbaum gain. The estimate ê of the tracking error e is expressed as:

ê = N (x)ρ(u f -θ T φ) (4.42)
where the function N (x) is referred to as the Nussbaum gain

N (x) = x 2 cos(x), x = ω 2 + ρ 2 2γ , ω = 2 m 2 , w(0) = 0 (4.43)
The adaptive laws are expressed as:

θ = -N (x)Γ φ, ρ = N (x)γ ξ (4.44)
The Nussbaum gain is used to account for the unknown sign of ρ * by changing the sign of the vector eld of θ and ρ periodically with respect to the signal x.

MRAC control: an indirect approach

In this section, we develop an iMRAC scheme with normalization, based on the same assumptions used for the dMRAC design. The basic idea of the iMRAC controller is to develop adaptive laws to estimate the plant parameters of k p , Z p (s) and R p (s), and these plant parameters are then used to compute the controller parameters by solving the model-matching equation.

Adaptive model parameter estimation

The plasma plant model is assumed to be a linear input-output transfer function model structure:

y p = G p (s)u p = b m s m + b 1 s m-1 + b 2 s m-2 + ... + b 1 s + b 0 s n + a n-1 s n-1 + a n-2 s n-2 + ... + a 1 s + a 0 u p (4.45)
which can be then simplied into a linear regression form

z = θ * T φ (4.46) where z = s n Λ p (s) , θ * = [0, 0, ..., 0, b m , b m-1 , ..., b 0 , a n-1 , ..., a 0 ] T , φ = α T n-1 Λ p (s) u p , - α T n-1 Λ p (s) y p (4.47)
and Λ p (s) = s n + λ T p α n-1 is a Hurwitz polynomial, λ p = [λ n-1 , λ n-2 , λ 2 , λ 1 , λ 0 ] T . We note that the rst n -m -1 elements of θ * are prescribed as 0.

The estimate of z is given by ẑ = θT φ, where θ = [0, 0, ..., 0, p1 , p2 ], p1 = [ bm-1 , ..., b0 ] and p2 = [â n-2 , ..., â0 ]. The normalized error equation is expressed as = (z-ẑ) m 2 , where

z = y p + λ T p φ 2 , m 2 = 1 + φ T φ, φ 2 = α T n-1
Λp(s) y p . We then consider the cost function

J(p 1 , p 2 , k p ) = 2 m 2 2 (4.48)
Using the gradient method, we can obtain the adaptive laws as ṗ1 = Γ 1 φ1 , ṗ2 = Γ 2 φ 2 , kp = γφ 1m (4.49) where φ 1 = α T n-1 Λ p (s)u p . Assuming the low bound of k p is known, we can make the adaptive laws more robust by involving the projection technique , θ 1 (t), θ 2 (t) and θ 3 (t) are computed by solving the following equations:

θ 1 (t) T α(s) = Λ(s) -Ẑp (s) Q(s) θ 2 (t) T α(s) + θ 3 (t)Λ(s) = Q(s) Rp (s) -Λ 0 (s)R m (s) kp (4.51)
parameters by solving the equations (4.51). The ltering term Λ(s) = (s + 2) and the model parameters are initialized as k p = 18, k z = 100, k r = [22,40]. The β p reference trajectories are designed to have two harmonics with frequency at 2 Hz and 1.25 Hz to satisfy the persistently exciting condition. Fig. 4.10 shows the closed-loop METIS simulation results, in which the controllers are activated at 3.5 s. It is found that both the dMRAC Nussbaum controller and the iMRAC controller can achieve the satisfactory tracking for β p by adjusting the ICRH power in real-time. One can further notice that β p cannot be tracked during the initial phase by the dMRAC Nussbaum control because the control parameters are prescribed to be 0, which assumes nothing about the model information. Because of the adaptive control estimation, after 1 s, the dMRAC Nussbaum controller starts to work eectively. The evolution of the controller parameters in dMRAC Nussbaum scheme is shown in Fig. 4.10(c). The positive sign of ρ indicates that β p increases with P ICRH . The reason why the iMRAC controller has good initial control performance is that the model used for the reference control design matches the plant well. Nonetheless, the model is not good enough, so that k p and p r,1 evolves a bit which leads to the variations of the controller parameters θ 1 , θ 2 and c 0 . To sum up, both dMRAC and iMRAC control schemes can achieve satisfactory tracking of β p by actuating the power of the ICRH system. We emphasize that in order to achieve good control performance, two sets of parameters are important: 1) the adaptive gain used in the adaptive laws and 2) the initial setup of the model parameters in the iMRAC scheme and the controller parameters in the dMRAC Nussbaum scheme.

In order to further show the versatility of the MRAC schemes, we here use P ICRH to track the toroidal rotation angular speed ω φ and the central electron temperature T e,0 , separately. Analogously to the rst case, the dMRAC and iMRAC schemes have been tested in parallel. The closed-loop METIS simulation results for the control of ω φ are shown in Fig. 4.11. For the dMRAC control design, the adaptive laws with the Nussbaum gain described in equations (4.42)- (4.44) are employed to update the controller parameters θ(t) and the coecient ρ(t), with the adaptive gains Γ = 1.75I 4 and γ = 1.75. The initial value of θ and ρ are prescribed to be 0. For the iMRAC design, the plasma plant model, assumed to be a second-order transfer function, is estimated online using the adaptive laws provided in equations (4.49)-(4.50), with the adaptive gains prescribed as Γ kp = 3200, Γ pz = 3200, Γ pr = 400I 2 . The ltering term Λ = (s + 5), while the model parameters are initialized as k p = 80, k z = 28, k r = [22,40].

The reference trajectory has one harmonic at 1.5 Hz. As shown in Fig. 4.11(a), the tracking performance by the two considered adaptive schemes are satisfactory. The tracking errors of the two control schemes are illustrated in Fig. 4.11(b). One can notice that during the whole control phase, the iMRAC scheme outperforms the dMRAC Nussbaum scheme, because dMRAC Nussbaum scheme does not use any model information at the initial stage, which leads to the longer online tuning time. Although there is a model mismatch at the initial control stage, the iMRAC scheme is capable of self-tuning the model parameters to approximate the actual plasma dynamics, which generates better controller parameters and leads to the reduced tracking error.

The results of tracking the central electron temperature T e,0 using P ICRH are shown in Fig. 4.12. It is found that comparable tracking performance has been obtained by the two dierent MRAC schemes. In this case, the dMRAC Nussbaum controller performs slightly better, as 

Impact of the tuning parameters on tracking performance

The objective of this section is to investigate the impact of the tuning parameters used in the MRAC schemes on the control performance. In particular, three important tuning parameters are considered in great detail, including the adaptive gains, the control initialization and the The impact of control initialization on the tracking performance is evaluated by performing comparative simulations for the dMRAC and iMRAC controllers separately. The β p tracking errors with zero control initialization are compared with those obtained with good control initialization for the dMRAC Nussbaum scheme, as shown in Fig. 4.14(a). It is clear that if the dMRAC Nussbaum controller is congured with good control initialization, the tracking errors at the initial phase of feedback control are remarkably smaller. It suggests that good control initialization is benecial to the tracking performance at the initial control phase. Nonetheless, thanks to the adaptive laws, the tracking errors gradually converge to the same level with the controller that has been properly initialized. For the case of the iMRAC controller, we purposely initialize the model parameters k p and k z to be far away from the real values. The METIS simulation results are compared with the model parameters initialized properly in Fig. 4.14(b). As expected, at the initial control phase, the tracking errors are considerable, ranging from -1 to 1. Due to the model parameter adaptation, the tracking errors converge to the interval [-0.2,0.2], which is comparable with the case where the model parameters are properly initialized. Based on the comparative simulations for both the dMRAC and iMRAC schemes, we conclude that (1) control initialization is benecial to the tracking performance at the initial adaptive control phase; (2) the controller can adaptively tune its parameters in a direct or indirect manner such that the tracking errors substantially decrease even with bad initialization of the controller parameters (dMRAC) and of the model parameters (iMRAC). The impact of the model order on the tracking performance is evaluated via comparative simulations. The dMRAC controller for T e,0 tracking was tested by assuming dierent model orders. The METIS simulation results are shown in Fig. 4.15(a) and no obvious dierences were observed by using dierent model orders for the dMRAC controller. The model order on the control performance of an iMRAC scheme was also studied, with results shown in Fig. 4.15(b). We can see that the model-1/2 and model-2/3 seem to have comparable performance, and it appears that the tracking performance slightly descreases with the increase of the plasma plant model order.

Conclusion of Section 4.2

In this section, two dierent MRAC schemes have been applied to tracking plasma kinetic parameters in tokamak plasmas by actuating the ICRH system. The rst control scheme (dMRAC) assumes a stationary controller structure and updates the controller parameters, system inputs, references and outputs simultaneously. The controller parameters are estimated by a set of adaptive laws driven by a normalized estimation error. The use of a Nussbaum gain enables the eectiveness of the dMRAC control even when the sign of ρ is unknown. The second control scheme (iMRAC) assumes a stationary model structure, with the model parameters estimated online according to the sampled input-output data. Next, the controller parameters are derived by solving the model-matching equations aiming to approximate the reference model at best. Closed-loop METIS simulations performed on EAST suggest that these two MRAC control schemes can achieve the reference tracking eectively. Compared with iMRAC, the dMRAC Nussbaum controller does not require any model information in the course of control, though good control initialization can ensure better tracking performance at the initial control phase. However, the idea of iMRAC control is much more straightforward, and may be more suitable for the situation where the plasma plant model has sucient quality.

MRAC control of plasma kinetic parameters: a MIMO case

In this section, the dMRAC scheme described in Section 4.2 is extended to a MIMO version for the tracking of plasma kinetic parameters in advanced tokamak scenarios. The MIMO extension of the output MRC is introduced rst. Assuming unknown controller parameters, a MIMO version of dMRAC is then developed based on CEP, with simulation examples showing the eectiveness of the MIMO dMRAC scheme.

MRAC control: a direct approach

Let us assume the plasma dynamics to be a MIMO LTI transfer matrix with m inputs and m outputs:

y(t) = G(s)[u](t) (4.54)
where y(t) ∈ R m represents the system outputs containing the plasma parameters of interest, while u(t) ∈ R m denotes the system inputs including the available control actuators. s is a Laplace transform variable or the dierentiation operation. G(s), an unknown and nonsingular transfer matrix, can be factorized as G(s) = Z(s)P (s) -1 , where Z(s) and P (s) are m × m coprime polynomial matrices, with P (s) column proper.

We can then derive a left modied interactor matrix (LMI) [Tao, 2014] of G(s) as ξ m (s):

ξ m (s) =        l 1 (s) 0 0 ... 0 h m 21 (s) l 2 (s) 0 ... 0 h m 31 (s) h m 32 (s) l 3 (s) ... 0 ... ... ... ... ... h m m1 (s) h m m2 (s) ... ... l m (s)        (4.55)
where l i (s), i = 1, 2, ..., m are monic Hurwitz polynomials, and h m ij (s), i, j = 1, 2, ..., m are polynomials. Since the system is assumed to be proper and nonsingular, the LMI matrix has a stable inverse that indicates the zero structure of G(s) at innity. In addition, ξ m (s) is associated with the high frequency gain matrix (HFGM) of G(s) in the following relation

K p = lim s→∞ ξ m (s)G(s) (4.56)
where K p ∈ R m×m denotes the HFGM of G(s) that is nite and nonsingular.

In order to achieve the MRAC control stability, we make the following assumptions on the plasma system dynamics: (e) All the leading principle minors of the HFGM K p are not zero whose signs are known. Assumption (a) ensures that the plasma system is stabilizable and detectable; Assumption (b) is satised to design proper input-output lters; Assumption (c) and (d) are utilized to design a reference model; Assumption (e) is analogous to know the sign of the high frequency gain in a SISO case, which is satised to guarantee the correct convergent direction.

Reference model

The reference model refers to the desired system dynamics to be followed, expressed as:

y m (t) = W m (s)[r](t) (4.57)
where y m (t) ∈ R m represents the desired output while r(t) denotes the reference input which is assumed to be bounded and piecewise continuous. W m (s) is the reference model designed as the inverse of the LMI matrix, i.e. W m (s) = ξ -1 m (s).

Adaptive law

In this section, we assume that the plasma plant model parameters are unknown, which motivates us to develop adaptive laws that estimate the appropriate control parameters online.

Consider the same controller structure as equation ( 4.58) and dene the true and unknown control parameters as

Θ * = [Θ * 1 T , Θ * 2 T , Θ * 20 , Θ * 3 ] (4.64)
Since we do not know the exact values of the true control parameters Θ * , the CEP [Tao, 2014] is used to replace the true control parameters by their estimates

Θ = [Θ T 1 (t), Θ T 2 (t), Θ 20 (t), Θ 3 (t)] (4.65)
Dening the estimation error as Θ = Θ(t) -Θ * , the associated regressor is expressed as:

ω(t) = [ω T 1 (t), ω T 2 (t), ω 20 , ω 3 ] T (4.66)
Decomposition of the HFGM K p Assumption (d) indicates that K p has all non-zero leading principle minors, and K p can be non-uniquely decomposed as K p = LDS, where L, D, S ∈ R m×m , L represents a lower triangular matrix, S is a symmetric positive denite matrix, S = S T > 0, and

D = diag sign (∆ 1 ) γ 1 , sign ∆ 2 ∆ 1 γ 2 , ..., sign ∆ m ∆ m-1 γ m (4.67)
Substituting the gain matrix K p = LDS into equation (4.63), we obtain

DS u(t) -Θ * 1 T ω 1 (t) -Θ * 2 T ω 2 (t) -Θ * 20 y(t) -Θ * 3 r(t) = L -1 ξ m (s)[y -y m ](t) (4.68)
Parameterizing the control law u(t) = Θ T (t)ω, and the tracking error e(t) = y(t) -y m (t), we obtain

L -1 ξ m (s)[e](t) = DS ΘT ω. Next, introducing a new matrix Λ * = L -1 -I m , one has Λ * =        0 0 0 . . . 0 λ * 2,1 0 0 . . . 0 λ * 3,1 λ * 3,2 0 . . . 0 . . . . . . . . . . . . 0 λ * m,1 λ * m,2 . . . λ * m,m-1 0        (4.69) Replacing L -1 by Λ * yields ξ m (s)[e](t) + Λ * ξ m (s)[e](t) = DS ΘT ω (4.70) Parameterizing Λ * with m -1 column vectors λ * 2 = λ * 2,1 ∈ R λ * 3 = [λ * 3,1 , λ * 3,2 ] T ∈ R 2 . . . = . . . λ * m-1 = [λ m-1,1 , λ m-1,2 , ..., λ m-1,m-2 ] ∈ R m-2 λ * m = [λ m,1 , λ m,2 , ..., λ m,m-1 ] ∈ R m-1 (4.71)
where λ i,j represents the estimate of the Λ * elements, while λ * i T denotes the estimate of the row vectors of Λ * .

We then dene a monic Hurwitz polynomial f (s), with its degree equal to the maximum degree of ξ m (s), and design a stable lter with h(s) = 1 f (s) and impose h(s) on the equation ( 4 Adaptive parameter estimation We dene the parameter errors as

Θ = Θ(t) -Θ * , Υ = Υ(t) -Υ * , λi = λ i (t) -λ * i , i = 2, 3, ..., m (4.77) 
Since we assume that the unknown parameters are constant, the derivatives of the unknown parameters are given by

Θ(t) = Θ, Υ(t) = Υ, λi (t) = λi , i = 2, 3, ..., m (4.78) 
By using the gradient estimate technique, the adaptive laws are expressed as

Θ = - D ζ s 2 , Υ = - Γ Υ ξ T s 2 , λi = - Γ λ,i i η i s 2 (4.79)
where s is a normalized value,

s 2 = 1+ζ T (t)ζ(t)+ξ T (t)ξ(t)+ m i=2 η i (t) T η i (t)
and Γ Υ ∈ R m×m and Γ λ,i ∈ R (i-1)×(i-1) are both the adaptive gain matrices, which satisfy

Γ Υ = Γ T Υ > 0, Γ T λ,i = Γ λ,i > 0, i = 2, 3, ..., m.

Simulation results

The MIMO dMRAC scheme described in Section 4.3.1 was rst implemented into the MAT-LAB/Simulink framework, which was then coupled with METIS for closed-loop control evaluation. The METIS simulations are based on the same reference scenario used in Section 4.2.4. The objective is to track β p and ι 0 simultaneously by actuating P ICRH and P LHCD on EAST using the MIMO dMRAC scheme. To do so, we rst make a number of assumptions: all the zeros of the transfer matrix G(s) mapping β p and ι 0 from the ICRH and LHCD powers are stable, the upper bound of the observability index is 2, and G(s) is proper and nonsingular.

After some trial and error, the LMI matrix ξ m is dened as 0.05s + 1 0 0 (0.05s + 1) 2 . In ad- dition, we assume that all the leading principle minors of the HFGM K p are not zero. Based on the physical intuition, it is found that increasing the ICRH power leads to the growth of β p and rising the LHCD power results in the drop of ι 0 . Hence, we have sign (∆ 1 ) = 1 and sign ∆ 2 ∆ 1 = -1. The adaptive gains for Θ, Υ and λ i are prescribed by trial and error. In this case, we nd that DD = 8 × 10 4 0 0 -4 × 10 3 , Γ Υ = 10 6 0 0 10 6 and λ i = 10 6 yields good tracking performance. The controller parameters are initialized as Θ| t=t 0 = -0.0873 -0.0152 0.0549 0.0283 -1.1420 0.3359 0.8505 0.3518 0.0018 -0.0043 -0.0018 0.0045 -0.0247 0.0408 -0.0257 -0.0274 T Υ| t=t 0 = 0.1909 0.0002 -0.0046 -0.0263 and λ| t=t 0 = 0 0.0024 0 0 ,where t 0 is the initial time when the controller is switched on. The lter h(s) is 1 (s+10) 2 and the lowpass lter for the observed input and output are 1 (s+1) .

With this conguration, the MIMO dMRAC scheme has been tested through the closedloop METIS simulations. The simultaneous tracking results are shown in Fig. 4.16. In order to test the controller with a time-varying reference input, a harmonic reference with the frequency at 1 Hz is prescribed for β p , while another slower harmonic reference with the frequency at 0.1 Hz is prescribed for ι 0 . The references for β p and ι 0 are tracked with the ICRH and LHCD powers fairly well. In particular, the MIMO dMRAC controller automatically favors the LHCD power to track ι 0 and the ICRH power to track β p according to the adaptive laws driven by the observed input-output data. Fig. 4.17-4.18 shows the evolution of the estimated elements of λ and Υ, respectively, while Fig. 4.19-4.21 illustrates the evolution of the estimated elements of Θ. These results demonstrate the adaptivity of the MIMO dMRAC scheme in the simultaneous tracking of β p and ι 0 .

Conclusion of Section 4.3

In this section, a MIMO dMRAC control scheme is proposed for the simultaneous control of β p and ι 0 in advanced tokamak scenarios on EAST. This control approach manifests itself as a MIMO extension of the dMRAC scheme described in Section 4.2. Similar to the idea of the SISO dMRAC scheme, the MIMO dMRAC scheme assumes a stationary multivariable controller structure and updates the controller parameters adaptively, driven by the normalized estimation errors. The LDS decomposition of the HFGM allows for the available information about the plasma dynamics to be minimum, enabling the system stability and the asymptotic output tracking, despite the occurrence of system parameter uncertainties. Dedicated METIS simulations on EAST have numerically demonstrated the validity of the proposed MIMO dMRAC scheme. Future eorts entails the implementation of this control algorithm into the EAST PCS for experimental validation. It is also interesting to explore the impact of the tuning parameters on the control performance and to seek a systematic tuning procedure for this scheme. 

Summary of Chapter 4

In this chapter, adaptive control of essential plasma kinetic parameters in advanced tokamak scenarios has been investigated numerically, which is divided into three parts: The rst part shows that the NESC scheme can be applied for the adaptive online optimization of plasma kinetic parameters in advanced tokamak scenarios. The benet of NESC is that in addition to the gradient estimate, the Hessian and Hessian inverse can be estimated as well, making the closed-loop convergence rate articially-assignable. Nonlinear METIS simulations performed on EAST and ITER indicate that comparable optimization performance can be obtained with the NESC and standard ESC schemes. Compared with other controller schemes, for instance, LQI and H ∞ controllers, the apparent drawback of ESC lies in its long response time. Nonetheless, the ESC optimization results can be used as the feedforward baseline trajectories. Furthermore, ESC may prove to be more eective than other linear feedback controllers for the real-time optimization of strong nonlinear dynamics, for instance, the ELM suppression with the resonant magnetic perturbations (RMP). The second and third parts deal with the application of the MRAC algorithms for plasma magnetic kinetic control in advanced tokamak scenarios. For the SISO case, two dierent MRAC schemes (dMRAC and iMRAC) are proposed and tested with nonlinear METIS simulations. Results indicate that both dMRAC and iMRAC schemes can successfully be applied for the adaptive tracking of kinetic parameters by actuating the ICRH power, which may broaden the attractive control region of linear controllers proposed in Chapter 3. For the MIMO case, a dMRAC scheme has been considered and tested with nonlinear METIS simulations. We can infer, from our simulations, that the MIMO dMRAC scheme is capable of tracking plasma magnetic and kinetic parameters simultaneously with multiple control actuators. In the future, the proposed adaptive control algorithms should be implemented into a PCS for experimental evaluations. Meanwhile, possible improvements towards an optimization of the MIMO MRAC scheme can be made. In the next chapter, another powerful control technique will be introduced and evaluated for the simulatenous control of q-prole and β p in H-mode plasmas on EAST, the oset-free MPC scheme.

Chapter 5

Model Predictive Control Simultaneous magnetic and kinetic plasma control based on extremely simple LSS models identied using a two-time-scale approximation has been developed in recent years and the models used in Chapter 3 were based on this approximation [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. Ideally, rst-principles plasma transport models could be preferred as they should have a universal domain of validity, but despite their increasing complexity, they still depend on many uncertain parameters and their accuracy cannot be widely assessed, even in their linearized version for real-time control applications. So the idea here is to free oneself from the complexity of such models and to reduce the control computational cost, at the expense of a more restricted applicability (e.g. to a given device, actuator set and operation scenario). In the so-called ARTAEMIS two-time-scale models [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF] and in the associated control algorithms, the fast component of the kinetic plasma dynamics, including in particular momentum and thermal diusion, is considered as a singular perturbation of a quasi-static equilibrium, which itself is governed on the resistive timescale by the ux diusion equation. The system identication problem is thus made tractable by the partial decoupling of the slow and fast dynamics. Combined with linear-quadratic optimal control theory, the eectiveness of this approach to simultaneously control the plasma poloidal ux prole and the normalized pressure parameter, in non-inductive, high-β N discharges was demonstrated experimentally on the DIII-D tokamak [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF]. Using the same approach, simultaneous control of the safety factor prole, q(x), and plasma pressure was also achieved in closed-loop nonlinear plasma transport simulations [START_REF] Moreau | Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semiempirical modelling[END_REF]. However, in such simulations the desired steady-state q-proles were obtained either much too slowly, or after a large undershoot of the safety factor in the plasma core with respect to its target value and a damped oscillation. A non-monotonic approach of the q-prole to its target prole is not desirable, as it may lead to MHD instabilities during the build up of the plasma equilibrium. In this regard, the model predictive control (MPC) [Maciejowski, 2002], an alternate control approach combined with the ARTAEMIS plasma dynamic model, is expected to achieve enhanced control performance for the tracking of plasma magnetic and kinetic parameters/proles in tokamaks.

The control of plasma magnetic and kinetic parameters in tokamaks using MPC has already been investigated [START_REF] Ouarit | Validation of plasma current prole model predictive control in tokamaks via simulations[END_REF],Maljaars et al., 2015,Maljaars et al., 2017,Wehner et al., 2016]. MPC control solves a receding-horizon optimization problem where an unconstrained/constrained cost function that penalizes both predictive errors and control eorts in a prescribed time horizon is minimized online to nd an optimal control actuation [START_REF] Garcia | Model predictive control: theory and practicea survey[END_REF]. In [START_REF] Ouarit | Validation of plasma current prole model predictive control in tokamaks via simulations[END_REF], control of q-prole via MPC was initiated and its eectiveness was veried in Tore Supra plasma simulations. In [START_REF] Maljaars | Control of the tokamak safety factor prole with time-varying constraints using MPC[END_REF], rst-principle-driven (FPD) models linearized around a set of operating points are treated as predictive models and nonlinear RAPTOR simulations [START_REF] Felici | Real-time physics-model-based simulation of the current density prole in tokamak plasmas[END_REF] have demonstrated the validity of MPC in q-prole tracking on ITER. The similar technique was then extended to track q-prole and plasma β simultaneously in L-mode plasmas, whose eectiveness has been validated experimentally on the TCV tokamak [START_REF] Maljaars | Prole control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller[END_REF]. In [START_REF] Wehner | Predictive control of the tokamak q prole to facilitate reproducibility of high-q min steadystate scenarios at DIII-D[END_REF], the FPD-MPC control of q-prole and the stored energy for high performance steady-state operation has been pursued on DIII-D experimentally. In [START_REF] Moreau | Model-predictive kinetic control for steady state plasma operation scenarios on east[END_REF], using a twotime-scale data-driven model, the oset-free MPC [START_REF] Borrelli | Oset free model predictive control[END_REF], Maeder et al., 2009, Maeder and Morari, 2010] for the q-prole and β p tracking was rst demonstrated in an H-mode steady-state scenario on EAST via nonlinear closed-loop METIS simulations. The validity of this approach has recently been conrmed through dedicated plasma experiments on the EAST tokamak [START_REF] Moreau | Model predictive kinetic control experiments on EAST[END_REF]. This chapter presents the METIS simulation and experimental results reported in [START_REF] Moreau | Model-predictive kinetic control for steady state plasma operation scenarios on east[END_REF], Moreau et al., 2021].

MPC is a form of control in which the current actuation is obtained by solving a nitehorizon optimal control problem at each sampling instant with the current plant state as the initial state, which yields an optimal sequence of future actuations. The rst actuator values of each sequence are applied to the plant [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF]]. In the literature, the applications of MPC were initiated in the works [START_REF] Cutler | Dynamic matrix control?? A computer control algorithm[END_REF],Prett and Gillette, 1980, Rachael et al., 1978]. The state-space interpretation of MPC is rst proposed in [START_REF] Lee | State-space interpretation of model predictive control[END_REF], and the stability of constrained MPC is proved in [START_REF] Rawlings | The stability of constrained receding horizon control[END_REF]. Interested readers are referred to [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF] for a complete survey of MPC control and to [Maciejowski, 2002, Alamir, 2013] for tutorials. In order to deal with system disturbances, an oset-free MPC technique was proposed and proved to be eective [START_REF] Borrelli | Oset free model predictive control[END_REF],Maeder et al., 2009,Maeder and Morari, 2010,Morari and Maeder, 2012]. The benets of MPC are that it can easily handle multivariable cases, system constraints, model uncertainties as well as nonlinearities in an intuitive way. On the other hand, its high computational burden is considered as an apparent disadvantage over other control strategies such as LQI control and H ∞ robust control. This chapter is dedicated to developing an oset-free MPC by using a data-driven two-time-scale plasma response model for the tracking of q-prole and β p in H-mode scenarios on the EAST tokamak. Both numerical simulations and experiments are investigated.

The main achievements of the chapter are summarised as follows:

• Developing an oset-free MPC control scheme, based on a two-time-scale plasma response model [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF], Moreau et al., 2013, Moreau et al., 2015] for tracking of q-prole and β p in H-mode scenarios on EAST.

• Coupling the oset-free MPC controller with the plasma simulator METIS [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF], and numerically evaluating the control performance on EAST.

• Implementing the oset-free MPC controller into the EAST PCS and experimentally demonstrating its eectiveness by tracking β p and q 0 in H-mode scenarios on EAST.

The rest of the chapter is organized as follows: In Section 1, we review the two-timescale model structure and formulate the oset-free MPC control problem. The PI Luenberger observer for states and disturbances estimation using the linear two-time-scale model is elaborated. Closed-loop METIS simulation results are shown to conrm the eectiveness of the control algorithm in Section 2. The rst, proof-of-principle model predictive kinetic control experiments performed on EAST are reported in Section 3. Finally, we draw conclusions and outline the future plans.

Oset-free MPC approach

In this section, the predictive model used in MPC for q-prole and β p control is rst revisited, based on which a PI Luenberger observer is designed to estimate plasma states and modelling errors online. Afterwards, the oset-free MPC control problem is formulated using the predictive model, state and disturbance estimates, prescribed references and actuation constraints. The controller output requests are solved by a quadratic programming optimizer.

Predictive model

The ARTAEMIS model [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF] used in the present work describes the coupled time evolution of ψ(x, t) = ψ(x, t) -ψ b (t) where x is a normalized radial coordinate dened below, ψ(x, t) is the poloidal magnetic ux prole in Weber and ψ b (t) its value at the plasma boundary, of ι(x, t) = 1 q(x,t) , and of the slow (quasi-static) and fast components of β p (t) (β p,S and β p,F , respectively), with β p (t) = β p,S (t) + β p,F (t). Details concerning this approximation and the identication of a two-time-scale plasma dynamic model from sampled experimental or simulated data are given in references [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF], Moreau et al., 2013, Moreau et al., 2015] and in the previous chapters. The general structure of the model is postulated from the projection onto radial basis functions (cubic splines) of a set of coupled plasma response equations that only depend on x and t, and which stem from the linearized uxaveraged plasma transport equations. A lumped-parameter LTI control-oriented model is thus obtained, in which all distributed variables and unknown operators reduce to nite dimension vectors and matrices. It combines a slow dynamic model, which couples ψ and β p as:

ẊS (t) = A S X S (t) + B S U S (t) ψ(t) = C ψ X S (t) β p,S = C S X S (t) + D S U S (t) (5.1)
and a fast dynamic model,

ẊF (t) = A F X F (t) + B F U F (t) β p,F (t) = C β X F (t) (5.2)
where A S and A F are regular matrices with negative eigenvalues. The vector U , containing the actuator inputs, is also splitted into a slow and a fast component (U = U S + U F ). The q-prole is controlled through its inverse as:

ι(x, t) = 1 q(x, t) = - ∂ψ(x, t) ∂x ∂Φ(x, t) ∂x -1
(5.3)

where Φ(x, t) is the toroidal magnetic ux in Weber, Φ max = Φ(x = 1) is its value at the plasma boundary, which is assumed constant, and x = Φ Φmax 1 2 . After linearization around the reference plasma equilibrium and projection of ψ(x, t) and of ι(x, t) on the radial basis functions, the vector ι(t) can therefore be related to the vector ψ(t) through a linear output equation as:

ι(t) = Γ ι ψ(t) = C ι X S (t) (5.4)
In order to identify the various matrices in the ARTAEMIS model corresponding to the selected operation scenario on EAST, a large number of nonlinear simulations were performed using the METIS plasma simulator tuned for the reference discharge #62946, until a fair agreement with experimental data and interpretative TRANSP simulation results was obtained. This procedure was previously used for DIII-D and is described in [START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. The resulting datasets were then used in the ARTAEMIS prediction-error system identication algorithm. The reference scenario around which the linear response model was identied was a steady state, fully non-inductive single-null H-mode discharge, at a toroidal magnetic eld, B T = 2.5 T, central electron density, n e0 ≈ 3.5×10 19 m -3 , and plasma current, I p = 0.42 MA. The discharge had been obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s with an H-factor, H 98(y,2) ∼ 1.1. The steady state poloidal β and internal inductance parameters were β p = 1.3 and l i = 1.2, respectively, and the q-prole exhibited a small negative shear in the plasma core, with a minimum q around 1.5 and q 0 ∼ 2 on axis. The plasma parameter proles are obtained from EFIT magnetic equilibrium reconstructions, which are available in real-time using magnetic and kinetic measurements, including interfero-polarimetry data from the POINT diagnostic [START_REF] Huang | Development of real-time plasma current prole reconstruction with POINT diagnostic for EAST plasma control[END_REF][START_REF] Liu | Initial measurements of plasma current and electron density proles using a polarimeter/interferometer (POINT) for long pulse operation in EAST[END_REF]. Two important parameters characterizing the identied models are the largest (negative) eigenvalues of A S and A F , found as -1.19 and -24.8 s -1 , which correspond to time constants τ S = 0.840 s and τ F = 0.040 s for the resistive (slow model) and thermal (fast model) diusion timescales, respectively.

State and disturbance estimation

In order to make the controller robust against uncertainties, the identied model is augmented with an output disturbance model to estimate the mismatch between measured and predicted outputs [START_REF] Borrelli | Oset free model predictive control[END_REF]. Hence, at each time step, an observer provides an estimate of the system states and output disturbances, and the controller uses the augmented model to predict the behavior of the system over a future prediction horizon, assuming the mismatch is constant. In its continuous time version, the augmented model reads:

                 ẊS = A S X S (t) + B S U S (t) ẊF = A F X F (t) + B F U F (t) ḋι = 0 ḋβ = 0 ι = C ι X S (t) + d ι (t) β p = C S X S (t) + D S U S (t) + C β X F (t) + d β (t)
(5.5) where d ι (t) and d β (t) are disturbance vectors representing the errors on ι(t) and β p (t), respectively. U S (t) is obtained through a simple lowpass lter and U F (t) = U (t) -U S (t). The lter cuto frequency, f f ilt = 1 τ f ilt , is chosen during the model identication and is such that τ F τ f ilt τ S . The lter states that allow U S (t) and U F (t) to be computed in the observer at time t, are transmitted to the controller with the estimated system states and disturbances and with the real-time measurements of the controlled variables, ι m (t) and β p,m (t).

The state and disturbance estimator is a PI observer based on the augmented system above, and is designed as follows: where symbols with a hat represent the estimates of the system states and disturbances, and the K i,j matrices are chosen so that [K 31 , K 32 ] is non-singular, and the estimator is stable and converges rapidly. The observer then tracks the measurements without steady-state error ( ḋι = 0, ḋβ = 0). In addition, by denition, the fast variables U F , X F and β p,F vanish in steady-state, and the observer therefore satises (the ∞ symbol indicates steady-state):

                               ẊS (t
XS,∞ = -A -1 S B S U ∞ (5.7)

and

K S U ∞ = ι m,∞ -dι,∞ β p,m,∞ -dβ,∞ (5.8) 
with

K S = -C ι A -1 S B S -C S A -1 S B S + D S
(5.9)

The controller objective is to make ι m,∞ and β p,m,∞ equal to ι target and β p,target , respectively (oset-free control), or as close as possible if the dimension of the image space of K S , spun by the actuators is smaller than the number of controlled variables. In order to avoid combinations of actuators which would lead to unnecessary actuation cost, an SVD of K S is used and the allowed actuator space will be limited to the rst n svd singular vectors of K S , i.e. U = T svd V , where n svd (the dimension of V ) is a free parameter. At each time step, the MPC algorithm then solves a quadratic programming (QP) problem using the predicted evolution of the augmented system over a time horizon τ H , which is chosen of the order of τ S , or smaller. A long time horizon may not be meaningful because the prediction is made with the assumption that the estimated error at time t will be constant between t and t + τ H . The QP problem to be solved at time t reads as follows:

For t ≤ t ≤ t + τ H , nd V (t ) that minimizes: (5.10) with U (t ) = T svd V (t ), subject to the actuator constraints, LU (t ) ≤ M , while X S (t ), X F (t ), ι ( t ), β p (t ), d ι (t ) and d β (t ) evolve according to the augmented system, with the initial conditions: X S (t = t) = XS (t), X F (t = t) = XF (t), d ι (t = t) = dι (t) and d β (t = t) = dβ (t).

I H (t) =
In order to keep the computation time small, the elements of V (t ) are constrained to be a piecewise constant functions with only n nodes independent unknowns equidistributed over the horizon τ H . The free parameters µ(x) and λ kin are weights given to the various variables to be controlled, λ f ast is a weight given to the fast model states that can moderate the kinetic control response time, and R is a positive matrix that can moderate the controller actuation eort. Once the QP problem has been solved, the rst sample U (t = t) is used for the actuator commands at time t. The minimized cost function penalizes, with appropriate weights, the deviations of the predicted controlled outputs from their targets, as well as the actuator power if R = 0. Another way to moderate the actuation eort and avoid overshoots and oscillations is to reshape the targets waveforms in I H (t) so that they approach the setpoints exponentially from their current values ι m (t) and β p,m (t), with a time constant, τ target , of the order of τ S [Maciejowski, 2002].

Simulation results

To illustrate and validate the new ARTAEMIS MPC control algorithm presented above, we shall now describe the results of nonlinear closed-loop simulations in a high-β p non-inductive scenario on EAST. The simulations were performed by inserting the METIS code at the output of the controller in a MATLAB/Simulink model, and feeding the appropriate METIS outputs back into the controller. Many plasma parameters or proles such as the plasma shape, B t , n e0 , will be assumed independent of the actuators and were xed external inputs to the code, together with all the chosen METIS options for modeling the various physical phenomena.

The time evolution of these parameters and proles was based on the actual experimental data from shot #62946 until t = 3.2 s when control was switched on. They were held constant afterwards. Also, constant feedforward LHCD at 2.45 GHz (0.6 MW) and ECRH (0.3 MW) were used in all simulations, as in the reference shot. For t ≥ 3.2 s, at each time step (with a sampling time of 20 ms) the 4.6 GHz LHCD and 33 MHz ICRH actuator powers were prescribed by the controller and the evolution of all the plasma parameters and proles that depend on the injected power (e.g. I p , V surf , li, β p , Ψ(x, t), q(x, t)), temperature proles, etc.) was simulated. The controller lter cuto time constant and the number of nodes for the predictive horizon were chosen as τ f ilt = 0.2s and n nodes = 2, respectively, and have been unchanged for all the simulations presented below. The constraint matrices L and M were dened to bound the 4.6 GHz LHCD power to 0 ≤ P LHCD ≤ 3 MW and the ICRH power to 0 ≤ P ICRH ≤ 1.5 MW.

All the simulations were performed in the current control mode in which the surface loop voltage is used to track a given I p waveform, as in the reference discharge. When the plasma state is relatively close to the required equilibrium, the controller can also be used in the voltage control mode [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF],Moreau et al., 2015] where V surf can either be xed to zero for non-inductive operation, or be used as a prole control actuator in addition to LHCD and ICRH. The plasma current is then allowed to vary within some bounds, but it is regulated through the control of the poloidal ux [START_REF] Moreau | Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models[END_REF] and of the safety factor [START_REF] Moreau | Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semiempirical modelling[END_REF] across the entire plasma cross-section (0 ≤ x ≤ 0.9).

Control of q 0 with LHCD

The simplest test of the controller is to track a given target value of the safety factor at a given normalized radius, using the 4.6 GHz LHCD actuator only. In this case, oset-free MPC is possible with the controller synthesis, as proved in [START_REF] Borrelli | Oset free model predictive control[END_REF] when the number of controlled variables is equal to the number of actuators or smaller. At constant plasma current, the most sensitive area to control the q(x) prole is the plasma core, and in particular the magnetic axis. An example is displayed on Fig. 5.1, where the controller was requested to track subsequently three dierent target values of q 0 = q(x = 0), namely q 0,target = 1.1, 3.5 and 1.7. The ICRH power was xed (0.32 MW), and the controller parameters were chosen as n svd = 1 (since there is only one actuator), R = 0, τ target = τ H = τ S = 0.84 s. The weight function, µ(x), was replaced by the Dirac distribution, δ(0) = 1 and δ(x = 0) = 0, and λ kin = λ f ast = 0 since there is no controlled kinetic variable. Fig. 5.1 also shows the time evolution of the minimum q(x) across the plasma and of β p . The tracking of the dierent q 0 targets in the time intervals 3.2 s≤ t ≤ 7.1 s, 7.2 s≤ t ≤ 13.1 s and 13.2 s≤ t ≤ 18 s, respectively, is performed in about 2 to 3 s, i.e. a few resistive times, and without steady-state oset. The time evolution of the minimum q-value (top frame, blue trace) indicates that the second q 0 target yields a q-prole with a strong negative shear in the plasma core (minimum value q min = 1.7). The bottom frame shows the evolution of the 4.6 GHz LHCD power requested by the controller and of the constant feedforward ICRH, ECRH and 2.45 GHz LH powers. Distributed control of the q-prole can also be performed using piecewise linear weight Figure 5.1: q 0 control with LHCD only. Top: q 0 (t) (red solid), q 0,target (t) (red dashed) and q min (t) (blue) vs time. Middle: β p vs time (not controlled). Bottom: 4.6 GHz LHCD actuator power (red) and feedforward powers: ICRH (blue) and ECRH plus 2.45 GHz LHCD (magenta). functions, µ(x), dened and equal to 0 or 1 at the radial knots of the basis functions, x k = 0, 0.1, 0.2, ..., 1. In this case, genuine oset-free control cannot be sought but the controller is designed to achieve a least-squares minimization of the radially integrated error signals, as can be seen in the denition of the cost function I H (t). When I p is xed, there is no need to control the safety factor in the outer edge of the plasma because it is directly related to I p . However, it is important to select target proles that are accessible (or nearly accessible) with the available actuators so that the least-squares approach is meaningful. In practice such proles can be obtained oine from open loop simulations using a plasma simulator such as METIS, or using more sophisticated models. For comparison with the previous case, an example is shown in Fig. 5.2 with three dierent q-prole targets having the same values as in Fig. 5.1 but with µ(x k ) = 1 for 0 ≤ x k ≤ 0.5. The target q-proles were chosen from METIS simulations with powers dierent from the reference discharge, and are represented by diamond symbols. The other controller parameters, constraints and feedforward powers were the same as for the previous example. The q-prole at the start of control (t = 3.2 s) is shown by the black curve on Fig. 5.2. The rst target prole was a monotonic prole with q 0 = q min = 1.1 (represented by magenta diamonds), and was tracked for 3.2 s≤ t ≤ 7.1 s. The prole represented by the magenta line is the achieved q-prole at t = 7.1 s, in steady state. It is achieved with no oset, showing that the chosen target is consistent with the family of plasma equilibria that can be obtained in this scenario with the available feedback and feedforward actuators. At this time, the target prole is suddenly changed into the negative shear safety factor prole with q 0 = 3.5 and q min = 1.7 (red diamonds) until t = 13.1 s when the target prole is changed again to the weak shear prole with q 0 = 1.7 and q min = 1.6 (blue diamonds). The controller behaves very similarly as in Fig. 5.1, but with a small steady state oset on axis, which is compensated by a better tracking of the target prole up to x = 0.5 (including the region of minimum q). The solid red and blue lines are the proles achieved at t = 13.1 s and t = 18 s, respectively. For comparison, the dashed lines on Fig. 5.2 represent the proles achieved in the previous case, i.e. with q 0 control only, at the same times. Figure 5.2: q(x) control with µ(x) = 1 for 0 ≤ x ≤ 0.5 and with LHCD only. Achieved q(x) at t = 3.2 s (black), 7.1 s (magenta), 13.1 s (red solid), and 18 s (blue solid). Target proles are constant during these intervals (diamond symbols). Dashed lines are proles achieved with q 0 control only (see Fig. 5.1).

Simultaneous control of q(x) and β p with LHCD and ICRH

The two-time-scale ARTAEMIS models describe the fast kinetic dynamics of the plasma as a singular perturbation of a quasi-static equilibrium, which is slowly evolving due to the coupling between the kinetic and magnetic plasma parameters. Local dependences of the plasma transport coecients on the safety factor prole or on the magnetic shear are wellknown examples of the various causes that lead to such coupled dynamics. When attempting to control simultaneously the safety factor prole and some other kinetic plasma parameters (e.g. β p or β N ), it may be unnecessary or even sometimes undesirable to request changes of such parameters on a timescale that is too short compared to the resistive evolution of the plasma equilibrium. Restricting the model to the zero-order equations in the singular perturbation analysis, i.e. to the slow model, will result in a slower kinetic control, but it may preserve a quasi-static equilibrium relationship between various plasma parameters during the transient evolution from an initial plasma state to the desired high performance steady state. Among other advantages, neglecting the fast model reduces the dimension of the QP problem to be solved and therefore alleviates the real-time computations at each time step. This would be mostly benecial for the control of kinetic proles (e.g. temperature, rotation) rather than of a scalar like β p . An example of the simultaneous control of q(x) and β p on the Figure 5.3: Distributed q(x) control and slow β p control with LHCD and ICRH. Top: q 0 (t) (red solid, the dotted red line is from discrete q 0 and β p control for comparison), q 0,target (t) (red dashed) and q min (t) (blue). Middle: β p (t) (red solid) and β p,target (t) (blue). Bottom: LHCD (red) and ICRH (blue) actuator powers. β p control starts at 4.2 s while q(x) control starts at 3.2 s. The dash-dot lines are from fast β p control. slow (resistive) timescale, with LHCD and ICRH, is depicted on Fig. 5.3 and Fig. 5.4. Four dierent β p targets were tracked, β p,target = 1.2 from t = 4.2 s to t = 5.1 s, and β p,target = 2, 1.5 and 2.5 for 5.2 s ≤ t ≤ 7.1 s, 7.2 s ≤ t ≤ 9.1 s and t ≥ 9.2 s, respectively. The q-prole is controlled from t = 3.2 s and between x = 0 and x = 0.5 (µ(x) = 1 for 0 ≤ x ≤ 0.5), and the target q-prole is constant while β p changes. As before, R = 0 and λ f ast = 0 (no fast model), but here τ target = τ H = τ S /2 = 0.42 s and, for t ≥ 4.2 s, n svd = 2 and λ kin = 1 (normalized variables are used in the controller). Fig. 5.3 shows the time evolution of q 0 , q min , the target and achieved β p , and the actuator powers. Fig. 5.4 shows the achieved q-proles at the start of the control phase and at the end of each constant β p,target phases, and the target q-prole. An additional prole is shown at t = 9.6 s, which corresponds to the largest transient q 0 oset during the transition to the β p = 2.5 plasma equilibrium (Fig. 5.3). As mentioned before, the steady state osets generally remain with distributed q-prole control due to the insucient number of actuators. The q-prole oset is mostly apparent near the magnetic axis where the safety factor is highly sensitive to any perturbation. The steady-state q 0 oset disappears when only q 0 and β p are controlled, as shown by the dotted red trace on Fig. 5.3 (top frame) Figure 5.4: Combined distributed q(x) control and slow β p control with LHCD and ICRH. Achieved q(x) at t =3.2 s (black), 5.1 s (magenta), 7.1 s (blue), 9.1 s (cyan), 9.6 s (green) and 12.5 s (red). These times are shown on Fig. 5.3 by vertical lines. The target q-prole is constant (diamond symbols) and µ(x) = 1 for 0 ≤ x ≤ 0.5. β p control starts at 4.2 s while q(x) control starts at 3.2 s. at t = 7.1 s, 9.1 s and 12.5 s.

Figure 5.5: Combined q 0 and fast β p control from t = 3.2 s with LHCD and ICRH. Top: q 0 (t) (red solid, the dotted red line is from distributed q(x) and fast β p control for comparison), q 0,target (red dashed) and q min (t) (blue). Middle: β p (t) (red solid) and β p,target (t) (blue). Bottom: LHCD (red) and ICRH (blue) powers. The dash-dot lines are from slow β p control.

Figure 5.6: Combined q 0 and fast β p control with LHCD and ICRH. Achieved proles at t =3.2 s (black), 5 s (green), 9 s (blue), 13 s (magenta), and 18s (red). These times are shown on Fig. 5.5 by vertical lines. The dotted lines are from distributed q(x) and fast β p control for comparison. The q(x) targets (diamond symbols) are held constant during these time intervals. β p and q(x) control starts at 3.2 s.

Faster control of β p

To illustrate the combination of MPC with singularly perturbed dynamic models with two time scales, we describe now the simultaneous control of q(x) and β p including the rst-order perturbation of the identied model, i.e. the fast model and states, in the control algorithm. The eect can be seen on Fig. 5.3 where we have superimposed the result of the fast βp control using λ f ast = 1.5 (dash-dot lines). Another example shown on Fig. 5.5 and Fig. 5.6 combines a β p ramp request for 3.2 s ≤ t ≤ 5 s up to β p = 2.5, either with fast control (λ f ast = 3, solid lines) or without (dashed lines), followed by the tracking of three dierent q-proles at constant β p , either with distributed q(x) control (dotted lines) or with discrete q 0 control (solid lines). Here τ H = τ S = 0.84 s, τ target = 2τ S = 1.68 s, n svd = 2 and λ kin = 1. The rst q-prole target has q 0 = 2.1 and q min = 1.6, the second one has q 0 = q min = 1.4, and the last one has q 0 = 3.5 and q min = 1.7 with a large negative magnetic shear over a broad region of the plasma (x ≤ 0.32). Note that increasing τ target to 2τ s results in a smooth approach to the various q 0 targets (Fig. 5.5).

Finally, in Fig. 5.7 and Fig. 5.8, combinations of four dierent values of β p,target = 1.5, 2, 2.5 and 3, and three dierent q-proles are tracked successively using the same distributed q(x) control as before, with τ H = τ S = 0.84 s, τ target = 2τ S = 1.68 s, n svd = 2 and λ kin = 1. Again, one can compare the results with fast control (λ f ast = 3, solid lines) and without (dashed lines). The q-prole targets are all reached in about 2.5 s (≈ 3 resistive times) and the actuators adjust to reach the various β p,target within about 0.2 s (≈ 5τ F ) with fast control and 0.4-0.5 s (≥ 10τ F or 0.5τ S ) with slow control, while restoring the desired q-prole shape after each large β p perturbation. Figure 5.7: Distributed q(x) and fast β p control with LHCD and ICRH. Top: q 0 (t) (red solid), q 0,target (t) (red dashed) and q min (t) (blue). Middle: β p (t) (red solid) and β p,target (t) (blue). Bottom: LHCD (red) and ICRH (blue) actuator powers. The dashed-dot lines are from slow β p control.

Figure 5.8: Distributed q(x) and fast β p control with LHCD and ICRH. Achieved q(x) at t = 3.2 s (black), 5 s (yellow), 9 s (green), 13 s (cyan) and 17 s (blue), 21 s (magenta), 25 s (red). β p and q-prole targets (diamond symbols) are held constant during these time intervals. µ(x) = 1 for 0 ≤ x ≤ 0.5.

EAST experiments

The eectiveness of the oset-free MPC control scheme in tracking of q-prole and β p was demonstrated through extensive nonlinear METIS simulations in Section 2. In this section, we report on the rst experiments using this new kinetic control algorithm in its simplest version to track time-dependent targets for the central safety factor and for the poloidal pressure on the EAST tokamak. Here, the ARTAEMIS two-time-scale identication procedure was applied to EAST experimental data instead of simulated data in a typical H-mode scenario with ECRH and LHCD. When these identication experiments were performed, the only actuator available with enough real-time dynamics was the LHCD system at 4.6 GHz, with a coupled power between 1 MW and 2.5 MW. Additional LHCD power (0.5 MW) was injected at 2.45 GHz during the plasma current ramp-up, and 0.9 MW of ECRH power was injected during the 350 kA current attop, from 2 gyrotrons at 140 GHz. The system identication data was obtained from a few discharges, with chirping frequency and PRBS modulations of the LHCD power, respectively (See Chapter 2). A linear state-space model with 9 eigenmodes was found to reproduce satisfactorily the coupled evolution of the poloidal-ux prole, ψ(x, t), of the inverse of the safety factor prole, ι(x, t) = 1 q(x,t) and of the slow and fast components (β p,slow and β p,f ast , respectively) of β p , with β p (t) = β p,slow (t) + β p,f ast (t).

In the rst discharge, the target q 0 was set at 2.4 from t = 2.7 s to t = 4.5 s and was raised to q 0 = 2.8 at t = 4.52 s (the control cycle time was 20 ms). The evolution of q 0 and the LHCD command are shown on Fig. 5.9(a) and Fig. 5.9(b), respectively. The q 0 targets are reached in about 1 s. To cope with the nonlinear response of the LHCD actuator to the command, a PI actuator control module was added in cascade with the MPC module. The eectively coupled LHCD power is also shown on Fig. 5.9(b) (blue trace). In the second discharge, a piecewise linear β p target waveform with 1.6 < β p < 1.9 was tracked. The evolution of β p was perfectly under control, as shown on Fig. 10 

Summary of Chapter 5

For complex systems with multiple timescales such as tokamak plasmas, MPC can be combined with singular perturbation theory to synthesize fast controllers based on extremely simple, data-driven, two-time-scale models. This has been demonstrated, for the rst time, through extensive nonlinear closed-loop simulations and tokamak plasma experiments for the high β p operation scenario in the EAST tokamak. Simultaneous control of q-prole and β p was achieved using LHCD and ICRH actuators in closed-loop METIS simulations. The oset-free MPC algorithm used here includes a real-time estimation of the model errors and results in a much faster and robust control than was obtained previously using linear-quadratic optimal control, with similar models [START_REF] Moreau | Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semiempirical modelling[END_REF]. In order to further evaluate the performance of this control strategy, dedicated experiments were initiated on the EAST tokamak. The rst results obtained so far have shown the eectiveness in tracking q 0 and β p using the LHCD system on EAST. In the future, the technique can be extended for the simultaneous control of the q-prole and other kinetic variables or proles (e.g. ion or electron temperature, plasma rotation, or fusion reaction rate in burning plasmas). Furthermore, incorporating feedforward control, characterizing model uncertainties, and possibly using real-time adaptive model identication may result in further performance improvements.

Chapter 6

Conclusion and Perspectives

In the thesis, the data-driven modelling and active feedback control of q-prole and kinetic parameters in advanced tokamak scenarios are investigated. The main objectives are to approximate nonlinear plasma dynamics using a generic system identication approach, and develop robust and adaptive control schemes to enable enhanced control performance in magnetic and kinetic control. The plasma parameters used for feedback control comprise q-prole, the poloidal beta β p , the internal inductance li, the average toroidal rotation angular speed Ω φ , the electron temperature on axis T e,0 , the α particle power P α , the coupled LHCD power P LHCD , the coupled ICRH power P ICRH and the coupled NBI power P NBI . The control actuators include the ICRH system, the LHCD system and the NBI system. Two tokamak devices, namely the EAST and ITER tokamaks, have been accounted for in this thesis. Both nonlinear METIS simulations and dedicated experiments have been performed on the EAST tokamak to evaluate and compare the proposed identication and control algorithms, whilst these algorithms are numerically tested on ITER through METIS simulations.

The rst part of the thesis presents the identication of a PNLSS plasma dynamic model using sampled simulation/experimental data. Two alternate linear identication methods handling data in the time-and frequency-domains are proposed. The rst one uses the TD subspace and PEM identication methods to extract and rene an LSS model from data, based on which a PNLSS dynamic model is obtained via the LM optimization. The second method manipulates the observed data in the frequency-domain: rst, the collected data is transformed into the frequency-domain and then an LSS model is identied using the FD subspace identication and PEM methods, and the PNLSS plasma model is subsequently derived via the LM optimization by initializing its linear coecient matrices with the obtained LSS model. The validity and eectiveness of the nonlinear identication scheme has been conrmed, both numerically and experimentally, on the EAST and ITER tokamaks. Enhanced predictive performance regarding the PNLSS model over its LSS counterpart has been demonstrated.

The second part of the thesis concerns the robust control of q-prole and kinetic param-eters in advanced tokamak scenarios on the EAST tokamak. First, a decentralized robust design is proposed based on a two-time-scale data-driven model, which takes full advantage of the powers of LMIs and timescale separation. The novelty of this control scheme contains the use of plasma timescale separation and a decoupling technique to acquire multi-functional capabilities, and of the internal model principle to absorb moderate time-delays and the actuation dynamics eects. Three general TD performance indexes are proposed to characterize q-prole control performance quantitatively for analysis and comparison. A procedure is given to eciently design magnetic and kinetic references, enabling the accessibility of an H-mode steady-state scenario. Benecial control implementation techniques are provided as well. Second, we compare three common robust control schemes, namely, H ∞ robust control, the LQI control and the IMC control. The performance of each control scheme is evaluated, discussed and compared both numerically and experimentally on the EAST tokamak. Extensive simulation and initial experimental results imply that, for the SISO control, it is advisable to start with the SIMC PI technique because of its simplicity, easy implementation and reasonable performance while, for the MIMO control, H ∞ robust control is preferred due to its simple tuning rule and robustness against model uncertainties. In addition, a cascade loop dedicated to the tracking of the requested actuations using the SIMC PI rule has been added to further enhance the kinetic control performance.

The third part of the thesis investigates the adaptive control of plasma magnetic and kinetic parameters in advanced tokamak scenarios. First, we have applied the NESC for the adaptive online optimization of plasma kinetic parameters, though this technique can generally be extended to other nonlinear plasma control problems, for example, the sawtooth period control, the NTM suppression, the error eld correction. METIS simulation results on EAST and ITER indicate that comparable online optimization performance can be obtained by the standard ESC and NESC, but evidently more parameters, e.g. the Hessian and its inverse, can be estimated online by NESC. Second, we have, for the rst time, introduced the MRAC algorithms for plasma kinetic control in advanced tokamak scenarios. More precisely, we rst investigate a SISO case, where dMRAC and iMRAC schemes are explored in parallel. In view of dMRAC, we use a given LTF model to design an MRC controller, whose coecients are updated online based on a set of adaptive laws driven by the NEE. The iMRAC algorithm updates the controller coecients online by matching the model parameters, adaptively estimated using the real-time input-output measurements, with a given reference model. METIS simulation results on EAST suggest that both dMRAC and iMRAC schemes can achieve good reference tracking performance. In addition, it is found that control initialization and adaptive gains are important factors to inuence the control performance in both schemes. Afterwards, we extend the dMRAC scheme to a MIMO version by adopting the LDS decomposition, whose eectiveness has been conrmed by closed-loop METIS simulations.

The fourth part of the thesis demonstrates the oset-free MPC control of q-prole and β p in advanced tokamak scenarios on EAST. Dierent from the standard MPC, the oset-free MPC uses a PI Luenberger observer to estimate the states and disturbances in real-time, which are then fed to a quadratic optimizer for feedback computation. Assuming a constant output disturbance, the observer uses a linear two-time-scale model, identied from sampled simulations/experiments, to estimate model mismatches in real-time. The same model is incorporated in the MPC optimizer, taking into account the actuation constraints. The eectiveness of this control scheme has been numerically conrmed in the simulatenous control of q-prole and β p on EAST. Recent control experiments performed on the EAST tokamak have further demonstrated the validity of this control scheme in β p and q 0 tracking. Now, in the perspective of future research, there are a number of relevant topics that can be investigated:

• The proposed PNLSS identication scheme may be eective for the approximation of nonlinear plasma dynamics in the scrape-o-layer (SOL), the pedestal and plasma-wall interaction of advanced tokamak plasmas.

• Develop nonlinear optimal control algorithms based on the PNLSS model for kinetic control in tokamak plasmas to examine whether the control performance will be enhanced or not.

• Extend the LTI data-driven model to a linear-parameter-varying (LPV) version for enhanced model predictive performance.

• Extrapolate the proposed robust and adaptive control algorithms to other tokamak plasma control problems, for example, plasma position and shape control, vertical instability control, divertor detachment and heat ux control, plasma density and temperature prole control.

• The NESC algorithm may prove eective in other nonlinear plasma control problems such as sawtooth period control, NTM mitigation and suppression, error eld correction.

• Experimental tests of the NESC and MRAC algorithms on the EAST tokamak are anticipated.

Résumé Cette thèse étudie la modélisation basée sur les données et le contrôle du prol de courant du plasma et des paramètres cinétiques dans des scénarios de tokamak avancés. Une approche de modélisation nonlinéaire basée sur les données, à savoir l'identication du modèle Polynomial NonLinear State-Space (PNLSS), est proposée dans la thèse, pour la première fois, pour incorporer la dynamique nonlinéaire dans les plasmas de tokamak avancés, par exemple, les interactions d'ondes de plasma et les eets bootstrap. En utilisant des modèles linéaires basés sur les données, un certain nombre de schémas de contrôle avancés sont développés, par exemple, le contrôle robuste H ∞ , le contrôle linéaire quadratique intégral (LQI), le contrôle interne du modèle (IMC) et le contrôle prédictif du modèle sans décalage (MPC). Des simulations METIS nonlinéaires et des expériences sur plasma ont été réalisées sur le tokamak EAST pour valider l'ecacité des schémas de contrôle proposés. Pour élargir la région de contrôle attrayante et permettre un espace opératoire plus large, des approches de contrôle adaptatif sont explorées, y compris le contrôle sans modèle de recherche d'extrémum (ESC) et le contrôle adaptatif de référence de modèle (MRAC). Ces nouveaux algorithmes de contrôle ont été implémentés et évalués numériquement via des simulations METIS nonlinéaires sur les tokamaks EAST et ITER. Abstract This thesis investigates data-driven modelling and control of plasma current prole and kinetic parameters in advanced tokamak scenarios. A nonlinear data-driven modelling approach, namely the Polynomial NonLinear State-Space (PNLSS) model identication, is proposed in the thesis, for the rst time, to incorporate nonlinear dynamics in advanced tokamak plasmas, for instance, plasma-wave interactions and bootstrap eects. Using linear data-driven models, a number of advanced control schemes are developed, for example, H ∞ robust control, linear-quadratic-integral (LQI) control, the internal model control (IMC) and the oset-free model predictive control (MPC). Both nonlinear METIS simulations and plasma experiments have been performed on the EAST tokamak to validate the eectiveness of the proposed control schemes. To broaden the attractive control region and enable broader operating space, adaptive control approaches are explored, including model-free extremum-seeking control (ESC) and model reference adaptive control (MRAC). These new control algorithms have been implemented and evaluated numerically via nonlinear METIS simulations on the EAST and ITER tokamaks.
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  Figure 1.2: (a) The inner view of the EAST tokamak and (b) the cutway diagram of the ITER tokamak.

  Figure 2.1: Simulation of an H-mode steady-state plasma scenario on EAST. (a) Left: time traces of plasma current and the loop voltage; Right: time traces of the auxiliary heating powers. (b) Left: time traces of plasma poloidal parameter and internal inductance; Right: time traces of the safety factors at typical points. (c) Left: time traces of electron temperatures at typical points; Right: time traces of electron densities at typical points. (d) The EAST magnetic equilibrium and ux surfaces in a poloidal cross-section at 3.1 s.

Figure 2

 2 Figure 2.2: The magnetic and kinetic proles of the reference scenario for H-mode steadystate plasma on EAST at 6.78 s. Left panels: plasma density proles (top), and plasma temperature proles (bottom); Right panels: plasma current drive proles(top), and plasma deposited power proles (bottom).

  Figure 2.3: Simulation of an H-mode steady-state plasma scenario on ITER. (a) Left: time traces of plasma current and the loop voltage; Right: time traces of the auxiliary heating powers. (b) Left: time traces of plasma poloidal parameter and internal inductance; Right: time traces of the safety factors at typical points. (c) Left: time traces of electron temperatures at typical points; Right: time traces of electron densities at typical points. (d) The ITER magnetic equilibrium and ux surfaces in a poloidal cross-section at 600 s.
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 24 Figure 2.4: The magnetic and kinetic proles of the reference scenario for H-mode steadystate plasma on ITER at 925.9 s. Left panels: plasma density proles (top), and plasma temperature proles (bottom); Right panels: plasma current drive proles(top), and plasma deposited power proles (bottom).
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 2 Figure 2.5: Schematic of the PNLSS plasma model identication procedure.

  Figure 2.6: Comparison of the model-predicted outputs and the outputs generated from METIS simulations on EAST. Upper panels of (a)-(e): comparison of the TD-LSS predictions (blue dashed), the TD-PNLSS predictions (red) and the METIS simulation outputs (black) of (a) β p ,(b) β n ,(c) T e,0 ,(d) ω φ (e) ι 0 in the identication data set. Bottom panels of (a)-(e): comparison of the TD-LSS predictions (blue dashed), the TD-PNLSS predictions (red) and the METIS simulation outputs (black) of (a) β p ,(b) β n ,(c) T e,0 ,(d) ω φ ,(e) ι 0 in the validation (left half) and testing (right half) data set. Upper panel of (f) Time traces of the ICRH power (black) and LHCD power (red) in the identication data set; Bottom panel of (f): Time traces of the ICRH power (black) and LHCD power (red) in the validation (left half) and testing (right half) data set. The green dashed lines separate dierent METIS simulation shots.

  Figure 2.7: Comparison of the model-predicted outputs and the measured outputs in EAST shot #93298 (identication data set). Upper panels of (a)-(d): comparison of the TD-LSS predictions (blue dashed), the TD-PNLSS predictions (red) and the EFIT estimates (black) of (a) β p ,(b) β n ,(c) li ,(d) ι 0 . Bottom panels of (a)-(d): the predictive errors of (a) β p ,(b) β n ,(c) li ,(d) ι 0 by the TD-LSS model (black) and the TD-PNLSS model (red).

  Figure 2.8: Comparison of the model-predicted outputs and the measured outputs in EAST shot #93297 (testing data set). Upper panels of (a)-(d): comparison of the TD-LSS predictions (blue dashed), the TD-PNLSS predictions (red) and the EFIT estimates (black) of (a) β p ,(b) β n ,(c) li ,(d) ι 0 . Bottom panels of (a)-(d): comparison of the predictive errors of (a) β p ,(b) β n ,(c) li ,(d) ι 0 by the TD-LSS model (black) and the TD-PNLSS model (red).

Figure 2

 2 Figure 2.9: Time traces of the coupled lower hybrid current drive system power at 4.6GHz in shots #93297 and #93298 on EAST. In both shots, the data in the time interval [3.5, 7.0]s are selected and merged. In particular, the data (black) in shot #93298 is used for model identication, and the data (red) in the interval [3.5,5.25]s of the shot #93297 are arranged for model validation, while the data (blue) in the interval [5.25,7]s of the same shot are utilized for model testing.

  Figure 2.10: Comparison of the model-predicted outputs and the outputs generated from METIS simulations on ITER. Upper panels of (a)-(d): comparison of the FD-LSS predictions (blue dashed), the FD-PNLSS predictions (red) and the METIS simulation outputs (black) of (a) β p ,(b) β n ,(c) ω φ ,(d) P α in the identication data set. Bottom panels of (a)-(d): comparison of the FD-LSS predictions (blue dashed), the FD-PNLSS predictions (red) and the METIS simulation outputs (black) of (a) β p ,(b) β n ,(c) ω φ ,(d) P α in the validation (left half) and testing (right half) data set. The green dashed lines separate dierent METIS simulation shots.

Figure 3

 3 Figure 3.1: Feedback-feedforward control scheme for ι and β p using timescales separation.

Figure 3

 3 Figure 3.2: Schematic of the H ∞ norm feedback control formulation.

  3.14) where G β p,F , G β p,S and G ι respectively represent the fast β p model, the slow β p model and the ι model. The three models are considered as three plants and are utilized for local controllers design.Local controllers design In this section, we develop three local controllers for the fast and slow β p control as well as ι control. The design procedure is illustrated in Fig.3.3.

Figure 3 . 3 :

 33 Figure 3.3: Schematic of the local controllers design.

  ι ref [k] and β p,ref [k] are respectively the setpoints selected in section (3.3.1) for ι and β p at time k, x ι [k] and x βp [k] the lter states at time k, while ι m [k] and β p,m [k] respectively denote the ι and β p reference trajectories at time k for the feedback controller to track.

  ι mea [0] and β p,mea [0] indicate the initial measured/estimated ι and β p respectively, which are equal to their corresponding initial setpoints ι ref [0] and β p,ref [0].

Figure 3

 3 Figure 3.5: Tracking β p . Left-top panel: time traces of β p setpoints (green dashed) and evolutions (black) with β p feedback control. Left-middle panel: time traces of actuated powers P ICRH (blue) and P LHCD (red), as well as the ICRH (blue dashed) and LHCD (red dashed) power limits. Left-bottom panel: time traces of the relative error index for β p . Right panel: time traces of ι setpoints (dashed) and evolutions (solid) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι control relaxed.

Figure 3

 3 Figure 3.6: Tracking ι points at 0, 0.1, 0.2, ...,0.4. Left-top panel: time traces of β p setpoints (green dashed) and evolutions (black) with β p control relaxed. Left-middle panel: time traces of actuated powers P ICRH (blue) and P LHCD (red), as well as the ICRH (blue dashed) and LHCD (red dashed) power limits. Left-bottom panel: time traces of the averaged relative error index for ι. Right panel: time traces of ι setpoints (dashed) and evolutions (solid) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control.

Figure 3 . 8 :

 38 Figure 3.8: Simulation of a hybrid scenario. Left-top panel: typical q-prole setpoints (asterisk and dashed) and evolutions (square and solid) at 6.8 s (red), 11 s (blue) and 15 s (black). Right-top panel: contour plot of the bootstrap current j boot evolution. Left-bottom panel: contour plot of the electron temperature prole T e evolution. Right-bottom panel: contour plot of the ion temperature prole T i evolution.

Figure 3 .

 3 Figure 3.11: Tracking with time delays (t.d.) at 20 ms (black), 40 ms (red) and 60 ms (blue).Top panels from left to right: time traces of plasma poloidal pressure β p , plasma current I p , the loop voltage U loop , the β p performance index J βp . Middle panels from left to right: time traces of the ι points at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι point at x = 0.4, the actuated ICRH power P ICRH , the LHCD power P LHCD , and the ι performance index J ι . The reference trajectories for ι and β p are denoted by green dashed lines, the power limits for the ICRH and LHCD are indicated by blue and magenta dashed lines, respectively.

Figure 3 .

 3 Figure 3.13: Disturbance rejection of β p control. Top panel: time traces of β p setpoints (green dashed) and evolutions (black solid), with the associated parameter variation intervals: magenta areas indicate that ne is activated as a parameter disturbance, while H 98 (y, 2) corresponds to the light purple areas and Z e is linked with cyan areas. The red dotted line represents the relative variation of each activated disturbance parameter. Middle panel: time traces of actuated powers P ICRH (blue solid) and P LHCD (red solid), as well as power ranges of ICRH (blue dashed) and LHCD (red dashed). Bottom panel: time traces of the relative error for β p , i.e. J βp .

Figure 3 .

 3 Figure 3.14: Disturbance rejection of ι control. Left-top panel: time traces of actuated powers P ICRH (blue) and P LHCD (red), power ranges of ICRH (blue dash) and LHCD (red dash). Left-bottom panel: time traces of the averaged relative error index for ι. Right panel: time traces of ι values (solid) and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control. Magenta, light purple and cyan areas are respectively indicating 30 % increase of ne , H 98 (y, 2) and Z e .

Figure 3 .

 3 Figure 3.15: Disturbance rejection of simultaneous ι and β p control. Left-top panel: time traces of β p setpoints (green dashed) and evolutions (black), with magenta, light purple and cyan areas respectively indicating 30 % increase of ne , H 98 (y, 2) and Z e . Left-middle panel: time traces of actuated powers P ICRH (blue solid) and P LHCD (red solid), power limits of ICRH (blue dashed) and LHCD (red dashed). Left-bottom panel: time traces of the relative error for ι(x) (cyan solid) on x and β p (magenta solid). Right panel: time traces of ι values (solid)and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control.

Figure 3 .

 3 Figure 3.16: Layout of the two-layer cascade kinetic control framework.

  y ∈ R ny are respectively the states, the inputs, the disturbances and the outputs. B d and C d are coecient matrices to be determined. To guarantee the detectability of the augmented plasma model, we must prescribe the matrices (B d , C d ) to satisfy the condition rank A B d C C d = n x + n d . By setting B d = 0, C d = I, the disturbances at the output are observed, while by prescribing B d = B p , C d = 0, the disturbances at the input are estimated. In this study, we choose the former setup, i.e. B d = 0, C d = I.

Figure 3 .

 3 Figure 3.17: Tracking of plasma kinetic parameters with three alternative real-time feedback algorithms. (a)-(c): tracking of (a) β p , (b) Ω φ and (c) T e,0 values in the nominal case. (d)-(f): tracking of (d) β p , (e) Ω φ and (f) T e,0 values by perturbing n e . (g)-(i): tracking (g) β p , (h) Ω φ and (i) T e,0 values by perturbing Z e .

Figure 3 .

 3 Figure 3.19: Diagram showing the procedure for the kinetic control algorithm implementation into the PCS.

Figure 3 .

 3 Figure 3.20: Design of LHCD power reference modulations to excite the dominant plasma eigenmodes. Upper panel: comparison of the P LHCD,ref modulations in chirping (red) and PRBS (blue) signals. Bottom panel: comparison of the amplitude spectra of the P LHCD,ref modulations in chirping (red) and PRBS (blue) signals.

  Figure 3.21: Plasma identication experiment showing the responses of β p , li and ι 0 to the P LHCD@4.6GHz modulations on EAST. Upper panels: time traces of the (a) P LHCD@4.6GHz modulations in a chirping frequency waveform, tracked by a SIMC PI power controller, and of (b) β p (top), li (middle) and ι 0 (bottom) estimates by P-EFIT. Lower panels: time traces of the P LHCD@4.6GHz modulations in a PRBS waveform and of (d) β p (top), li (middle) and ι 0 (bottom) estimates by P-EFIT. Shaded gray region indicates that the LHCD system made faults and saturated.

  Figure3.22: Simulated tracking of β p , li and q 0 by actuating P LHCD using the ARTAEMIS plasma simulator[START_REF] Moreau | Plasma models for real-time control of advanced tokamak scenarios[END_REF]. Top panels: time evolutions of (a-top) β p and (abottom) its tracking error β p,err , and of (b-top) the LHCD power P LHCD and (b-bottom) vitual β p disturbance, δβ p . Middle panels: time evolutions of (c-top) li and (c-bottom) its tracking error li err , and of (d-top) the LHCD power P LHCD and (d-bottom) li disturbance, δli. Bottom panels: time evolutions of (e-top) q 0 and (e-bottom) its tracking error q 0,err , and of (f-top) the LHCD power P LHCD and (f-bottom) q 0 disturbance, denoted as δ[ 1 q 0 ]. Shade regions imply the existence of disturbances. All feedback algorithms were activated at 2.75 s. The blue, red and green lines correspond to the simulation results of the SIMC PI, H ∞ and LQI control, respectively. On the left, dashed black lines denote control targets. On the right, the dotted lines represent the LHCD power targets requested by a kinetic controller, while the solid lines are the achieved LHCD powers by a SIMC PI power controller.
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Figure 4 .

 4 Figure 4.1: Schematic of a) the standard ESC and b) the NESC schemes.

Figure 4 . 2 :Figure 4 . 4 :

 4244 Figure 4.2: Comparison of plasma kinetic parameter optimization using the ESC and NESC schemes on EAST. Time traces of (a) the poloidal beta β p , (b) the average toroidal rotation angular speed Ω φ and (c) the central electron temperature T e,0 .
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 45 Figure 4.5: Time traces of the Hessian inverse estimates on EAST. Left-top panel: time traces of the rst diagonal element estimate. Right-top panel: time traces of the second diagonal element estimate. Bottom panel: time traces of the o-diagonal element estimates.
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 46448 Figure 4.6: Comparison of plasma kinetic parameter optimization using the ESC and NESC schemes on ITER. Time traces of (a) the poloidal beta β p , (b) the average toroidal rotation angular speed Ω φ and (c) the α particle power generated from D-T reactions P α . 4.1.4 Conclusion of Section 4.1

Figure 4 . 9 :

 49 Figure 4.9: Time traces of the Hessian inverse estimates on ITER. Left-top panel: time traces of the rst diagonal element estimate. Right-top panel: time traces of the second diagonal element estimate. Bottom panel: time traces of the o-diagonal element estimates.

  36)Subtracting equations(4.35) and (4.36), we obtain the error equationẊe = A c X e + B c (u p -θ * T ω) e = C c X e(4.37) where e = y p -y m andX e = Y c -Y m . Considering C c (sI -A c ) -1 B c c * 0 = W m (s) and u p = θ(t)T ω, we can simplify equation (4.37) as e = W m (s)ρ * (u p -θ * T ω). In order to construct adaptive laws, we dene u f = W m (s)u p and φ = W m (s)ω.

  kp = γφ 1m , if | kp | k 0 or | kp | = 0 and φ 1m sign(k p ) reference control law Once the plant parameters are estimated, we could immediately compute the appropriate control parameters by solving a matching equation which guarantees that the closed-loop transfer function is equal to the reference model transfer function. The plant parameters are replaced by their estimates based on the CEP. c 0 (t) = km

  kp

Figure 4 .Figure 4 .

 44 Figure 4.10: Tracking of β p using P ICRH . Upper frame of (a) : comparison of β p references (blue dashed) and the achieved β p values (black) by the direct MRAC Nussbaum controller, the achieved β p values (red) by the indirect MRAC controller. Bottom frame of (a): time traces of the associated ICRH powers requested by the direct MRAC Nussbaum controller (black) and the indirect MRAC controller (red). Frame (b): time traces of β p tracking errors by the dMRAC Nussbaum controller (black) and the iMRAC controller (red). Left frame of (c): time traces of the online estimate of ρ by the direct MRAC. Right frame of (c): time traces of the online estimate of the controller parameters for the direct MRAC. Left frame of (d): time traces of the online estimate of the model parameters by the indirect MRAC. Right frame of (d): time traces of the online update of the controller parameters by the indirect MRAC.

Figure 4 .Figure 4 .Figure 4 .

 444 Figure 4.12: Tracking of T e,0 using P ICRH . Upper frame of (a): comparison of T e,0 references (blue dashed), the achieved T e,0 values (black) by the direct MRAC Nussbaum controller and the achieved T e,0 values (red) by the indirect MRAC controller. Bottom frame of (a): time traces of the associated ICRH powers requested by the direct MRAC Nussbaum controller (black) and the indirect MRAC controller (red). Frame (b): time traces of T e,0 tracking errors by the dMRAC Nussbaum controller (black) and the iMRAC controller (red). Left frame of (c): time traces of the online estimate of ρ by the dMRAC controller. Right frame of (c): time traces of the online estimate of the controller parameters for the dMRAC controller. Left frame of (d): time traces of the online estimate of the model parameters by the iMRAC controller. Right frame of (d): time traces of the online update of the controller parameters by the iMRAC controller.

Figure 4 .

 4 Figure 4.15: Comparison of T e,0 tracking errors with dierent model orders by (a) the dMRAC Nussbaum controller and (b) the iMRAC controller. Note that, in the legends, the symbol "model-i/j" represents the plant model with i zeros and j poles.

  (a) All zeros of G(s) are stable; (b) The upper bound of the observability index of G(s) is known; (c) The transfer matrix G(s) is proper and nonsingular; (d) The LMI matrix ξ m (s) of G(s) is known;

  .70), we obtain ξ m (s)h(s)[e](t) + Λ * ξ m (s)h(s)[e](t) = DSh(s) ΘT ω (4.72) Dening the rst term on the left side of equation (4.72) as e = ξ m (s)h(s)[e](t) (4.73) where e = [e 1 , e 2 , ..., e m ] T and e i ∈ R, i = 1, 2, ..., m. Then we create the regressors η i , i = 2, ..., m, which are given by η i (t) = [e 1 , e 2 , ..., e i-1 ] T ∈ R i-1 . Then the second term on the left side of equation (4.72) is expressed as e * L = Λ * ξ m (s)h(s)[e](t) = [0, λ * 2 T η 2 , ..., λ

Figure 4 .

 4 Figure 4.16: Simultaneous tracking of β p and ι 0 using the ICRH and LHCD powers. (a) Time traces of the reference trajectories and the achieved values of β p (top) and ι 0 (bottom). (b) Time traces of the requested and achieved auxiliary heating and current drive powers.

Figure 4 .

 4 Figure 4.17: Time evolution of the estimated elements of λ.

Figure 4 .

 4 Figure 4.18: Time evolution of the estimated elements of Υ.

Figure 4 .

 4 Figure 4.19: Time evolution of the estimated elements of Θ from Θ 11 to Θ 32 .

Figure 4 .

 4 Figure 4.20: Time evolution of the estimated elements of Θ from Θ 41 to Θ 62 .

  (a). The LHCD command and coupled power are shown on Fig. 5.10(b).

  Figure 5.9: (a). Safety factor on the magnetic axis from real-time EFIT equilibrium reconstruction (blue) and target waveform (red). (b). Coupled LHCD power (blue) and MPC command (red) after a PI actuator control module. Control starts at 2.7 s.
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Table 2

 2 

		.1: Parameter denition.	
	Variables	Description	Units
	ψ	poloidal magnetic ux prole	T • m 2
	W th	thermal energy	J
	j ni	noninductive current density	A • m -2
	σ	parallel conductivity	Ω -1 • m -1
	µ 0	permeability of free space: 4π× 10 -7	H• m -1
	τ E	energy connement time	s
	P loss	loss power	W
	Q e	electron heat ux	W
	Q i	ion heat ux	W
	T e	electron temperature prole	eV
	T i	ion temperature prole	eV
	n e	electron density prole	m -3
	n i	ion density prole	m -3
	χ e	electron diusivity	m 2 • s -1
	χ i	ion diusivity	m 2 • s -1
	P aux	auxiliary power	W
	P α	α particle power due to fusion reaction	W
	P brem	Bremstranglur radiation power	W
	P cyclo	cyclotron radiation power	W
	P rad	line radiation power	W
	Z ef f	eective charge number	A.U.
	F	diamagnetic function	T • m
	ρ	surface average normalized radius	A.U.
	συ T (d,n)He 4	D-T nuclear reaction cross section	m -2
	n D	deuteurium density prole	m -3
	n T	tritium density prole	m -3
	e	unit electron charge	C
	P N BI1	the rst neutral beam power	W
	P N BI2	the second neural beam power	W
	P ECRH1	the rst electron cyclotron resonance heating power	W
	P ECRH2		

2

  Ra 1.38 κ 0.79 B 2.62

	t	n 0.38 e,c T e,c (16 + T e,c ) 2.61

Table 2 .

 2 2: Comparison of the RMS errors from METIS simulations on EAST.

		Option	TD-LSS TD-PNLSS FD-LSS FD-PNLSS
		No. of parameters 54	747	54	747
	β p	model iden.	0.1529	0.1138	0.5740	0.1394
	[a.u.]	model val.	0.1497	0.1313	0.5630	0.2153
		model test	0.1134	0.0762	0.5671	0.1205
	β n	model iden.	0.1049	0.0763	0.3752	0.0723
	[%]	model val.	0.1181	0.0983	0.3466	0.1208
		model test	0.0823	0.0556	0.3723	0.0683
	T e,0	model iden.	0.5120	0.4392	1.0388	0.4841
	[keV]	model val.	0.4959	0.4251	1.1325	0.6273
		model test	0.3853	0.3230	0.9544	0.4064
	ω φ	model iden.	0.7191	0.5522	2.1946	0.6359
	[krad/s] model val.	0.8428	0.7736	2.1307	1.0908
		model test	0.5362	0.4036	2.1600	0.6383
	ι 0	model iden.	0.1222	0.1029	0.2906	0.1349
	[a.u.]	model val.	0.0834	0.0804	0.1844	0.1815
		model test	0.1193	0.1123	0.3031	0.1567

2.2.5.2 Identication results from H-mode plasma experiments on EAST

In the experimental case, the noise-corrupted data obtained from the EAST experiments are used for plasma model identication. The reference plasma discharge has the toroidal eld at 2.5 T, the central electron density at around 4.2 × 10 19 m -3 , the plasma current at 350 kA and the central electron temperature at around 4 keV. The LHCD power was injected at 2.45 GHz during the plasma current ramp-up phase, specically 0.6 MW in the period [0.95, 2.25] s. In addition, 0.9 MW of ECRH power was injected during the current at-top phase (in the time interval [1.98, 7.91] s), from two gyrotrons at 140 GHz. The LHCD power at 4.6 GHz varies in the range of 1.0-2.5 MW. The ICRH system was not available during the whole experiments. Simple internal model control with proportional integral (SIMC PI)

Table 2 .

 2 3: Comparison of the RMS errors from experiments on EAST.

		Option	TD-LSS TD-PNLSS FD-LSS FD-PNLSS
		No. of parameters 40	440	40	440
	β p	model iden.	0.0217	0.0184	0.0386	0.0153
	[a.u.] model val.	0.0254	0.0245	0.0372	0.0278
		model test	0.0193	0.0188	0.0272	0.0145
	β n	model iden.	0.0154	0.0138	0.0313	0.0117
	[%]	model val.	0.0187	0.0176	0.0293	0.0213
		model test	0.0153	0.0137	0.0231	0.0138
	li	model iden.	0.0212	0.0142	0.0243	0.0125
	[a.u.] model val.	0.0255	0.0226	0.0268	0.0267
		model test	0.0362	0.0433	0.0366	0.0373
	ι 0	model iden.	0.0181	0.0123	0.0234	0.0110
	[a.u.] model val.	0.0214	0.0192	0.0245	0.0227
		model test	0.0298	0.0357	0.0322	0.0313
	Table 2.4: Comparison of the RMS errors from METIS simulations on ITER.
		Option	TD-LSS TD-PNLSS FD-LSS FD-PNLSS
		No. of parameters 40	440	40	440
	β p	model iden.	0.0140	0.0033	0.0183	0.0098
	[a.u.]	model val.	0.0185	0.0127	0.0138	0.0047
		model test	0.0214	0.0269	0.0110	0.0101
	β n	model iden.	0.0223	0.0034	0.0138	0.0105
	[%]	model val.	0.0219	0.0164	0.0087	0.0055
		model test	0.0268	0.0328	0.0085	0.0114
	ω φ	model iden.	0.0710	0.0358	0.2318	0.0622
	[krad/s] model val.	0.0909	0.1389	0.2220	0.0605
		model test	0.0963	0.1658	0.2541	0.0721
	P α	model iden.	0.6548	0.1180	0.6117	0.2299
	[MW]	model val.	0.3680	0.3422	0.6060	0.1859
		model test	0.4121	0.4165	0.4669	0.1756

Table 3 .

 3 1: Weighting functions for S/KS.

	Option W S	W KS

Table 3 .

 3 2: ICRH and LHCD power actuator model parameters.

Table 3 .

 3 3: Weighting functions for the local controllers design and performance indexes.

	Option Index ω B,βp,F ω B,βp,S ω B,ι	A βp,F	A βp,S	Aι	-	-	-	-	tr [s]	los [%]	J × 10 4 [A.U.]
		a	2π	π	π	10 -5	10 -5 10 -5	-	-	-	-	(0.107,0.808) (4.02,3.43)	(9.78,14.0)
	I	b	3π	1.5π	1.5π	10 -5	10 -5 10 -5	-	-	-	-	(0.0933,0.771) (5.12,3.80)	(9.09,13.0)
		c	4π	2π	2π	10 -5	10 -5 10 -5	-	-	-	-	(0.100,0.752) (6.19,4.12)	(8.94,12.0)
			ω B,βp,F ω p,βp,S ωu,ι	ωp,3	ωu,ι A βp,F A p,βp,S A u,βp,S	Ap,ι	Au,ι	
		d	2π	10 -0.3	1	10 -0.3	1	10 -5 10 -4.5	10 0.1	10 -4.5 10 0.1	(0.113,1.11)	(1.44,3.47)	(9.96,30.0)
	II	e	3π	10 -0.15 1.2 10 -0.15	1.2	10 -5 10 -5.25	10 0.1	10 -5.25 10 0.1 (0.0933,0.906) (3.33,4.46)	(9.12,26.0)
		f	4π	10 -0.10 1.5	10 -0.3	1.5	10 -5	10 -6	10 0.2	10 -6	10 0.2 (0.0933,0.885) (4.69,5.18)	( 9.01,26.0)
	NOTE: tr												

def = ( t r,βp , tr,ι ), los def = ( l os,βp , los,ι ), J def = ( J βp , Jι ).

Table 3 .

 3 4: List of the parameter variations.

	β p δn e [%], T.I. [s]	δH 98 (y, 2)[%], T.I. [s] δZ e [%], T.I. [s]
	2	+30 %, [3.7, 4.2]	+30%, [11.26, 11.76] +30%, [12.26, 12.76]
		-30 %, [19.82, 20.32] -30%, [4.7, 5.2]	-30%, [14.78, 15.28]
	2.5 +30%, [6.22, 6.72]	+30%, [13.78, 14.28] +30%, [17.30, 17.80]
		-30%, [22.34, 22.84] -30%, [7.22, 7.72]	-30%, [18.82, 19.32]
	3	+30%, [8.74, 9.24]	+30%, [16.30, 16.80] +30%, [21.34, 21.84]
		-30%, [24.86, 25.36] -30%, [9.74, 10.24]	-30%,

Table 1

 1 

Table 4 .

 4 1: The ESC and NESC tuning parameters used for METIS simulations on EAST.

	Options	Parameters	Standard ESC	NESC
		actuator	IC	LH	IC	LH
		dither mag. [MW]		0.05	
	S	dither freq. τ dither [rad/s]		19.6350	
		phase	0	π/2	0	π/2
		dither mag. [MW]		20	
	M	dither freq. τ dither [rad/s]		19.6350	
		phase	0	π/2	0	π/2
		highpass τ h		9.8175	
	lters	lowpass gradient τ l		4.9087	
		lowpass Hessian τ r	-		2.9452
	adaptive gains	K g	0.0027		-
		K n	-		0.001
	weights	λ βp		4	
		λ Ω φ		3	
		λ T e,0		0.005	
	norms	N βp		1000	
		N Ω φ			

Table 4 .

 4 2: The ESC and NESC tuning parameters used for METIS simulations on ITER.

	Options	Parameters	Standard ESC	NESC
		actuator	NBI	IC	NBI	IC
		dither mag. [MW]		0.4	
	S	dither freq. [rad/s]		0.2992	
		phase	π/2	0	π/2	0
		dither mag. [MW]		5	
	M	dither freq. [rad/s]		0.2992	
		phase	π/2	0	π/2	0
		highpass τ h		0.1496	
	lters	lowpass gradient τ l		0.0748	
		lowpass Hessian τ r		0.0748	
	adaptive gains	K g	0.0015		-
		K n	-		0.1
	weights	λ βp			

  ) = A S XS (t) + B S U S (t) + K 11 -ι m (t) + C ι XS + dι (t) + K 12 -β p,m (t) + C S XS (t) + D S U S (t) + C β XF (t) + dβ (t) ẊF (t) = A F XF (t) + B F U F (t) + K 21 (-ι m (t) + C ι XS (t) + dι (t))+ K 22 -β p,m (t) + C S XS (t) + D S U S (t) + C β XF (t) + dβ (t) ḋι (t) ḋβ (t) = K 31 -ι m (t) + C ι XS (t) + dι (t) + K 32 -β p,m(t) + C S XS (t)+ D S U S (t) + C β XF (t) + dβ (t)

	(5.6)

Le chapitre 5 présente un algorithme de contrôle alternatif, c'est-à-dire un contrôle prédictif de modèle (MPC) sans décalage pour le prol de courant et les paramètres cinétiques dans des scénarios avancés de plasma de tokamak. L'algorithme de contrôle permet de combiner le MPC sans oset avec le modèle linéaire à deux échelles temporelles piloté par les données an de garantir une erreur de suivi nulle en régime permanent. Le contrôle MPC sans oset consiste en un observateur Luenberger proportionnel-intégral pour estimer les états et les perturbations de sortie qui sont transmis au contrôleur MPC pour l'optimisation quadratique. Les simulations et les expériences conrment l'ecacité de l'algorithme de contrôle proposé.Dans le chapitre 6, nous tirons les conclusions de la thèse et fournissons des perspectives pour les recherches futures.

Various control schemes have been proposed for tailoring plasma magnetic and kinetic parameters, a majority of which are based on control-oriented plasma response models, either in terms of PDEs or ODEs, either using rst-principle-driven (FPD) models or data-driven (DD) models. Those control schemes are then veried numerically and/or experimentally in some region of attraction in certain tokamak plasma scenarios. For instance, the proposed control techniques comprise simple PID control[START_REF] Moreau | Real-time control of the q-prole in JET for steady state advanced tokamak operation[END_REF], LQI control[START_REF] Boyer | First-principlesdriven model-based current prole control for the DIII-D tokamak via LQI optimal control[END_REF],Moreau et al., 2008], H ∞ robust control[START_REF] Barton | Toroidal current prole control during low connement mode plasma discharges in DIII-D via rst-principles-driven model-based robust control synthesis[END_REF],Barton et al., 2015a[START_REF] Barton | Physicsmodel-based nonlinear actuator trajectory optimization and safety factor prole feedback control for advanced scenario development in DIII-D[END_REF], MPC[START_REF] Maljaars | Control of the tokamak safety factor prole with time-varying constraints using MPC[END_REF], Maljaars et al., 2017], passivity-based control[START_REF] Vu | Ida-pbc control for the coupled plasma poloidal magnetic ux and heat radial diusion equations in tokamaks[END_REF], Vu et al., 2016, Vu et al., 2017], Lyapunov-based control[START_REF] Argomedo | Lyapunov-based distributed control of the safety-factor prole in a tokamak plasma[END_REF],Mavkov et al., 2018], backstepping control[START_REF] Boyer | Backstepping Control of the Toroidal Plasma Current Prole in the DIII-D Tokamak[END_REF], sliding mode control[START_REF] Gaye | Sliding mode stabilization of the current prole in tokamak plasmas[END_REF] and adaptive control[START_REF] Kim | A potentially robust plasma prole control approach for ITER using real-time estimation of linearized prole response models[END_REF]. More precisely, in[START_REF] Moreau | Real-time control of the q-prole in JET for steady state advanced tokamak operation[END_REF], a simple PID controller is designed to control the central safety factor using the lower hybrid waves on JET. In[START_REF] Boyer | First-principlesdriven model-based current prole control for the DIII-D tokamak via LQI optimal control[END_REF], an LQI optimal controller is combined with nonlinear input transformation to ensure the minimum weighted norm of tracking errors and control eorts in L-mode plasmas on DIII-D. In[START_REF] Maljaars | Prole control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller[END_REF], a model-predictive controller is employed to track q-prole and plasma β that accounts for the time-varying operational and physics limits and tested experimentally in L-mode plasmas on TCV. In[START_REF] Vu | Plasma internal prole control using ida-pbc: Application to tcv[END_REF], the interconnection and damping-assignment passivity-based control (IDA-PBC) is developed and evaluated experimentally in L-mode plasmas on TCV. In[START_REF] Mavkov | Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak[END_REF], a Lyapunov-based q-prole controller combined with SIMC PI for β p is validated both numerically and experimentally in a TCV L-mode plasma. In[START_REF] Boyer | Backstepping Control of the Toroidal Plasma Current Prole in the DIII-D Tokamak[END_REF], an adaptive backstepping feedback control technique is proposed for a DIII-D L-mode plasma. In[START_REF] Gaye | Sliding mode stabilization of the current prole in tokamak plasmas[END_REF], a sliding model controller for a Tore Supra plasma is developed and evaluated via nonlinear closed-loop METIS[START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF] simulations. In[START_REF] Kim | A potentially robust plasma prole control approach for ITER using real-time estimation of linearized prole response models[END_REF],

Here, λ βp and λ ι are the coupling coecients which ensure that the projection of u F B onto the direction of u βp is the magnitude of u βp and meanwhile, the projection of u F B onto the direction of u ι is the magnitude of u ι . As shown in Fig. 3.4, the problem can be formulated as:

Combining equations (3.15) and (3.16), we can derive:

Solving equations (3.17), we obtain the coupling coecients λ βp and λ ι as:

We consider the constant feedforward u F F to be the steady-state powers for the plasma equilibrium around which the model is linearized. The total actuated powers for the H&CD systems are then obtained as

where Ẑp = [ kp , pT 1 ]α m (s), and Q is the polynomial quotient Λ 0 (s)Rm(s)

Rp(s)

. The control law is therefore expressed as:

where

Simulation results

The dMRAC and iMRAC schemes were implemented into the MATLAB/Simulink framework and coupled with the nonlinear plasma simulator, METIS [START_REF] Artaud | METIS: a fast integrated tokamak modelling tool for scenario design[END_REF], for closed-loop control assessment. The closed-loop METIS simulations are based on the reference scenario in the current attop phase of a fully non-inductive upper-single-null (USN) H-mode plasma discharge on the EAST tokamak. It has the toroidal magnetic eld B T = 2.5 T, the central electron density n e0 ≈ 3.5 × 10 19 m -3 and plasma current I p = 0.42 MA. The discharge was obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s with an H-mode enhancement factor H 98 (y, 2) ∼ 1.1. The q-prole exhibited a small negative shear in the plasma core, with minimum q around 1.5 and q 0 ∼ 2 on axis. The procedure for tuning the METIS code for interpretative simulations of advanced tokamak plasma discharges is described in [START_REF] Moreau | Combined magnetic and kinetic control of advanced tokamak steady state scenarios based on semiempirical modelling[END_REF]. The objective is to assess the capabilities of the dMRAC and iMRAC schemes in tracking plasma magnetic kinetic parameters by adjusting the ICRH power and the controller parameters simultaneously. A number of simulation cases are presented to evaluate the performance and adaptivity of the proposed schemes.

Tracking of plasma kinetic parameters

It has been shown in Chapter 3 that the ICRH power is an eective actuator to track plasma kinetic parameters such as β p , Ω φ and T e,0 . Therefore, the rst case consists in tracking β p by actuating the ICRH power. Assuming that the response of β p with respect to P IC is approximated by a second-order transfer function as

The objective is to choose P IC such that the behaviour of β p follows the reference model G m (s) = 20 s+20 . For the dMRAC controller, the controller model structure is given in equation (4.24). The ω 1 and ω 2 are computed by ltering the input PICRH and the output βp with a lter 1 (s+2) . The controller parameters θ and the coecient ρ are estimated using the adaptive laws as given in equations (4.42)-(4.44), in which the adaptive gains Γ = 70I 4 and γ = 70. The initial value of θ is set at 0, while the initial value of ρ = 0. For the iMRAC controller, the plasma plant model is estimated online rst using the adaptive laws given in equations (4.49)-(4.50). Then the derived model parameters are used to update the control

Control law

The controller structure is dened as:

where Θ 1 ∈ R m(ν-1)×m and Θ 2 ∈ R m(ν-1)×m are control parameters for the ltered inputs ω 1 (t) and outputs ω 2 (t), respectively. ν represents the upper bound of the observability index of G(s). Θ 20 ∈ R m×m and Θ 3 ∈ R m×m are the control parameters for the outputs and the reference inputs, respectively. Θ 1 can be further divided as

where

where Θ 2i ∈ R m×m , i = 1, 2, ..., ν -1. ω 1 and ω 2 are ltered input-output signals:

where

where Λ(s) is a monic Hurwitz polynomial of degree ν -1.

First, we assume the plant model is known, which can be identied from sampled inputoutput data using the system identication methodology described in Chapter 2. We can then choose Θ * We rst divide Λ(s) on the both sides of equation ( 4.60) and then post-multiply by P (s) -1 , which yields:

Then post-multiplying by u(t) on both sides of equation ( 4.61), we obtain

Subtracting Θ * 3 r on both sides, and using the relation