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Résumé de la thèse

Contributions

La thèse est consacrée au contrôle du pro�l de courant et des paramètres cinétiques du plasma
dans des scénarios avancés de tokamak en utilisant des modèles pilotés par les données. Le
contrôle simultané du pro�l de courant et des paramètres cinétiques est un dé� pour plusieurs
raisons:

•Une série d'instabilités magnétohydrodynamiques (MHD) et de microturbulences existent
généralement à di�érents endroits et dans di�érentes phases des plasmas de tokamak, ce qui
peut détériorer le con�nement du plasma et même entraîner des perturbations du plasma.

• Les sources d'entraînement et de dépôt de puissance qui régissent l'évolution du pro�l de
courant et des paramètres cinétiques du plasma sont intrinsèquement non linéaires et variables
dans le temps, et sont di�ciles à caractériser.

• Le nombre d'actionneurs de contrôle disponibles pour le contrôle du pro�l est limité, ce
qui implique que la région de contrôle attractive des pro�ls est restreinte.

• Il existe une série d'incertitudes liées au plasma pendant le processus de contrôle, no-
tamment les dérives des paramètres du plasma dues aux instabilités MHD, aux impuretés et
à la turbulence, les erreurs de mesure et d'estimation et les retards.

Les principales contributions de cette thèse peuvent être résumées comme suit:

• Modélisation et simulation de décharges plasma de tokamak en mode H et en régime
permanent sur EAST à l'aide du code METIS;

• Identi�cation d'un modèle d'espace d'état non linéaire de la dynamique essentielle du
plasma en utilisant à la fois les approches du domaine temporel et du domaine fréquentiel;

• Le développement d'un schéma de contrôle robuste décentralisé et multifonctionnel H∞
pour le contrôle simultané du pro�l du facteur de sécurité et de βp en utilisant le modèle piloté
par les données à deux échelles temporelles identi�é à partir de simulations METIS étendues;

• Développement, évaluation et comparaison de trois techniques alternatives de commande
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robuste, à savoir la commande robuste H∞, la commande intégrale linéaire quadratique et la
commande par modèle interne, à l'aide de simulations METIS étendues et d'expériences en
boucle fermée sur le tokamak EAST;

• Utilisation des approches de recherche d'extremum basées sur Newton pour l'optimisation
en ligne adaptative en temps réel des paramètres cinétiques sur les tokamaks EAST et ITER;

• Application du cadre de commande adaptative à référence de modèle à la commande
magnétique et cinétique simultanée dans des scénarios de tokamak avancés;

• Conception du schéma de commande prédictive de modèle sans décalage pour le contrôle
simultané du pro�l de courant du plasma et des paramètres cinétiques sur EAST;

• Test des algorithmes de contrôle à l'aide du simulateur non linéaire METIS;

• Mise en oeuvre des algorithmes de contrôle dans le système de contrôle du plasma (PCS)
de EAST [Xiao et al., 2008] et réalisation d'expériences en boucle fermée dans des scénarios
opérationnels en mode H et en régime permanent pour valider les algorithmes de contrôle.

Aperçu de la thèse

Ce chapitre a présenté le concept de base de la fusion thermonucléaire, les tokamaks, les
scénarios opérationnels avancés et le contrôle du plasma des tokamaks. Nous avons égale-
ment introduit les sujets de la thèse, les réalisations antérieures dans cette discipline et les
contributions majeures de la thèse. Le reste de la thèse est organisé comme suit:

• Le chapitre 2 présente la modélisation du transport dans le plasma du tokamak et
l'identi�cation non linéaire de la dynamique essentielle du plasma pour la conception du con-
trôle. Nous décrivons la modélisation de la di�usion du courant dans le plasma, du transport
de chaleur, du transport de quantité de mouvement et des évolutions de la densité du plasma.
Ils constituent des sources importantes d'un outil intégré rapide de modélisation de tokamak,
à savoir le code METIS. Même si les modèles de premier principe décrits dans ce chapitre
présentent une description �uide simple du transport du plasma dans les tokamaks, la com-
plexité des modèles rend la conception et l'analyse du contrôle non triviales. Par conséquent,
dans la deuxième partie du chapitre, nous proposons deux nouvelles approches d'identi�cation
non linéaire pour extraire la dynamique essentielle du plasma à partir de la simulation et
des données expérimentales. La première approche combine la technique d'identi�cation du
sous-espace temporel avec l'identi�cation itérative linéaire et non linéaire de l'erreur de sor-
tie. Elle conduit à l'identi�cation d'un modèle de réponse non linéaire à l'espace d'état du
plasma qui présente une structure de modèle beaucoup plus simple. La deuxième approche
est considérée comme une approche double de la première. Elle traite les données de simula-
tion/expérimentation dans le domaine fréquentiel en combinant la technique du sous-espace
fréquentiel et les techniques d'identi�cation itérative linéaire et non linéaire des erreurs en
sortie. Des exemples d'application sur le tokamak EAST utilisant à la fois des données de
simulation et des données expérimentales sont fournis pour démontrer la validité des approches
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d'identi�cation proposées.

Le chapitre 3 présente des algorithmes de contrôle robuste pour le suivi du pro�l du courant
plasma et des paramètres cinétiques. Ce chapitre est divisé en deux parties, la première se
concentrant sur le contrôle robuste décentralisé du pro�l q et du paramètre βp à l'aide d'un
modèle à deux échelles temporelles piloté par les données. Des procédures de conception
systématiques sont fournies et des simulations METIS approfondies sur EAST démontrent
la performance et la robustesse du schéma de contrôle robuste proposé. Dans la deuxième
partie, nous employons trois stratégies de commande robuste, à savoir la commande robuste
H∞, la commande linéaire-quadratique-intégrale et la commande par modèle interne, pour la
commande du pro�l q et de βp et nous e�ectuons des études comparatives. Des simulations
et des expériences dans des scénarios de régime permanent en mode H sont e�ectuées pour
évaluer, comparer et discuter les performances et la robustesse de ces trois techniques de
contrôle.

Le chapitre 4 présente des algorithmes de contrôle adaptatif pour le suivi du pro�l de
courant du plasma et des paramètres cinétiques. Les inadéquations entre le modèle piloté par
les données utilisé pour la conception de la commande et la dynamique réelle du plasma sont
inévitables, et il existe des perturbations imprévisibles qui peuvent accroître les inadéquations
du modèle. Ce chapitre présente donc une idée alternative pour compenser les inadéquations
du modèle par l'adaptation des paramètres. Nous explorons d'abord la stratégie de contrôle
adaptatif sans modèle, c'est-à-dire le contrôle de recherche d'extremum basé sur Newton, pour
le contrôle cinétique des plasmas des tokamaks avancés sur EAST et ITER. La validité de la
commande est con�rmée dans les simulations METIS en boucle fermée. Deuxièmement, les
schémas de commande adaptative basés sur le modèle sont proposés, impliquant la commande
adaptative à référence de modèle dans les modes direct et indirect. De nombreuses simulations
METIS non linéaires en boucle fermée sont fournies pour montrer l'e�cacité des algorithmes
de contrôle adaptatif proposés.

Le chapitre 5 présente un algorithme de contrôle alternatif, c'est-à-dire un contrôle prédictif
de modèle (MPC) sans décalage pour le pro�l de courant et les paramètres cinétiques dans
des scénarios avancés de plasma de tokamak. L'algorithme de contrôle permet de combiner
le MPC sans o�set avec le modèle linéaire à deux échelles temporelles piloté par les données
a�n de garantir une erreur de suivi nulle en régime permanent. Le contrôle MPC sans o�set
consiste en un observateur Luenberger proportionnel-intégral pour estimer les états et les
perturbations de sortie qui sont transmis au contrôleur MPC pour l'optimisation quadratique.
Les simulations et les expériences con�rment l'e�cacité de l'algorithme de contrôle proposé.

Dans le chapitre 6, nous tirons les conclusions de la thèse et fournissons des perspectives
pour les recherches futures.
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1.1 Nuclear energy and thermonuclear fusion

With the development of industry, economy and human society, the demand for renewable,
environmentally friendly and sustainable energies is increasing [MacKay, 2008]. Solar, wind,
hydro and geothermal power are among these types of energies that can be exploited for
electricity production. However, the intrinsic disadvantages of the utilization of these energy
sources may restrict their widespread application [Manwell et al., 2010,Kalogirou, 2013,Dick-
son and Fanelli, 2013]. First, the exploitation of these energy sources strongly relies on their
availability, which may constitute unstable energy sources in�uenced by the wheather and
climate changes. Second, the installation of the renewable energy devices is constrained by
the locations where the sources should be plentiful, which may be far away from the cities and
consumers. Third, the power density generated from these sources such as the sunlight and
wind may not be su�ciently intense to support the numerous consumers.

These limits on the renewable energies motivate us to focus on nuclear energy. Power gen-
erated from nuclear �ssion reactions has been utilized for electricity production for many years,
which bene�ts from the intense power density, controllable plant locations, no greenhouse gas
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emissions as well as tiny e�ects from the weather and climate [Marques, 2010]. However, the
apparent disadvantages include the proliferation issues, the risks of nuclear safety events and
the long-lasting nuclear wastes harmful to the environment [Van der Zwaan, 2008]. In addi-
tion, the primary fuels for nuclear �ssion reactions are con�ned by their total reserve quantity
and cannot be re-generated on Earth, which makes the exploitation of nuclear �ssion energy
not sustainable. Inspired by stars like the Sun, an alternative source of nuclear energy can
be derived from nuclear fusion reactions [McCracken et al., 2005]. Therefore, in the search
of the clean and safe energy sources, a great e�ort has been devoted to the development of
controlled thermonuclear fusion. In contrast to nuclear �ssion, nuclear fusion does not pro-
duce long-lasting nuclear wastes that are harmful to the environment; meanwhile, the nuclear
fusion fuels on Earth are more abundant which can assist in producing su�cient energies
for humanity for thousands of years [Freidberg, 2008,McCracken et al., 2005]. However, the
construction of a nuclear fusion power plant is extremely problematic, which involves various
physical and engineering challenges. Before elaborating the challenges, we brie�y describe the
physics principles for nuclear fusion.

Among a series of nuclear fusion reactions, the most easily accessible one corresponding
to the largest nuclear reaction cross-section occurs between the nuclei of deuterium D and
tritium T , which are isotopes of hydrogen. Under certain condition, the nuclei of D and T can
fuse and yield a helium nucleus and a neutron. The D − T reaction [Freidberg, 2008,Wesson
and Campbell, 2011] can be concretely expressed as:

2
1D + 3

1T→ 4
2He(3.5MeV) + 1

0n(14.1MeV) (1.1)

where He represents a helium nucleus, while n denotes a neutron. Each reaction produces
17.6 MeV of energy, with 3.5 MeV on the helium nucleus and 14.1 MeV on the neutron. The
deuterium is physically stable and abundant in nature, which can easily be extracted from sea
water, while the tritium is physically stable and does not appear in nature but it is a product
of the nuclear reactions between Lithium and a neutron. Fortunately, Lithium is abundant on
Earth and neutrons can be produced simply through nuclear reactions.

In order to achieve nuclear fusion, the nuclei of D and T should overcome the Coulomb
barrier (the repulsive forces between two positively charged particles), which requires the
nuclei possessing su�ciently high kinetic energy (temperatures), typically at 20 keV. This
high level of temperature fully ionizes the fuels D and T to exhibit a state with the quasi-
equally distributed positive and negative particles de�ned as plasma state, implying that the
fusion reaction must occur in the plasmas. An important concept for fusion reactions is called
ignition, which de�nes a status where the fusion reactions can be self-sustained [Wesson and
Campbell, 2011]. The condition to reach the ignition is provided by the fusion triple product
criterion [Wesson and Campbell, 2011,Freidberg, 2008]. More precisely, it requires the triple
product of the particle density n, temperature T and energy con�nement time τE to exceed a
critical value as:

nTτE ≥ 3× 1021m−3keV s (1.2)

where n is in m−3 and T is in keV. τE , de�ned as the ratio between the plasma thermal energy
Eth and the loss power Ploss, quanti�es the con�nement performance in seconds.
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There are three possible ways to achieve the ignition condition and realize self-sustained
nuclear fusion reactions, i.e., gravitational con�nement, inertial con�nement, and magnetic
con�nement. Gravitational con�nement [Pfalzner, 2006] utilizes the gravitational force to
overcome the Coulomb barrier: this can only exist in the stars like the Sun. The basic idea
of inertial con�nement is that a rapid pulse of energy is directed onto the surface of a fuel
pellet leading to the pellet implosion, thus generating the high densities and temperatures
required for fusion [Velarde et al., 1992]. The energy con�nement time is thus allowed to be
relatively small. Magnetic con�nement [Braams and Stott, 2002] is realized by con�ning the
charged particles, such as D and T , with strong magnetic �elds in a container and heating the
particles to reach the required density, temperature and energy con�nement time such that the
ignition occurs. There are various magnetic con�gurations, for example, the tokamak [Wesson
and Campbell, 2011], the stellarator [Wakatani, 1998] and the reversed �eld pinch [Bodin and
Newton, 1980], among which the tokamak con�guration is the most promising one.

1.2 Tokamaks and advanced tokamak scenarios

The name of tokamak comes from the Russian acronym, TOroidal'naya KAmera s MAgnit-
nymi Katushkami, which means toroidal chamber with magnetic coils [Wesson and Campbell,
2011]. The tokamak device was �rst invented by the Soviet physicists Andrei Sakharov and
Igor Tamm in the late 1950s [Azizov, 2012]. In contrast to other magnetic fusion con�gura-
tions, the evident merit of the tokamak device stems from the enhanced stability provided by
its larger toroidal magnetic �eld [Wesson and Campbell, 2011]. The tokamak has therefore
been operated to achieve the highest value of the triple product nTτE among all the magnetic
fusion con�gurations and it is believed to be the most promising con�guration for nuclear fu-
sion reactors that can achieve commercial eletricity production [Wesson and Campbell, 2011].

(a) Layout of a tokamak(Image source: EFDA).(b) Magnetic �eld topology in a tokamak (Im-
age source: [Blanken et al., 2019]).

Figure 1.1: Layout of a tokamak and its nested magnetic �eld topology.

A tokamak is a toroidal plasma con�nement system with its layout as shown in Fig. 1.1(a).
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Table 1.1: Main parameters for the EAST and ITER tokamak.

EAST ITER
major radius [m] 1.8 6.2
minor radius [m] 0.4 2.0
plasma current [MA] 1 15
toroidal magnetic �eld [T] 3.5 5.3
EC [MW] 3.8 20
NBI [MW] 8 33
ICRH [MW] 3 20
LHCD [MW] 3.5 -

The plasma is contained in a toroidal vacuum vessel surrounded by toroidal and poloidal �eld
coils. The principal magnetic �eld is generated by the toroidal �eld coil currents, though the
toroidal �eld alone is not su�cient to guarantee plasma con�nement. A poloidal magnetic �eld
is therefore required to balance the plasma pressure and maintain an equilibrium. Fortunately,
the poloidal �eld is primarily produced by the plasma current itself, which �ows in the toroidal
direction. The plasma current can be induced by varying the primary transformer circuit
current, though fully non-inductive plasma current can be obtained by using only auxiliary
current drive sources. The combination of the toroidal and poloidal magnetic �elds give rise
to the helical magnetic �eld lines (See Fig. 1.1(b)). The outer poloidal �eld coils can be
leveraged to control plasma position, shape and vertical instability. In order to improve the
plasma performance and stability, auxiliary heating and current drive systems are employed to
inject neutral beams and launch electromagnetic waves into the plasma bulk. The commonly
used heating and current drive systems comprise the neutral beam injection (NBI), electron
cyclotron heating & current drive (ECH/ECCD), ion cyclotron resonance heating (ICRH) and
lower hybrid current drive (LHCD).

There are various tokamaks being operated in the globe, including JET, DIII-D, ASDEX
Upgrade, TCV, WEST [Bucalossi et al., 2014], EAST [Yuanxi et al., 2006] (Fig. 1.2(a)),
NSTX [Ono et al., 2000] and KSTAR [Lee et al., 2001]. Signi�cant progress has been made
on di�erent research topics in recent years, for example, magnetohydrodynamic instabili-
ties, power exhausts, impurities, snow�ake divertor, wall conditioning and advanced tokamak
operation. It is noticable that the feasibility of the nuclear fusion production has been ex-
perimentally demonstrated in the JET and TFTR tokamaks [Wesson and Campbell, 2011].
At present, the largest tokamak, i.e., the international thermonuclear experimental reactor
(ITER) (See Fig. 2.2(b)), is being constructed in southern France, and aims at the �rst
plasma in 2025 [Walker et al., 2020]. Its objective is to demonstrate the scienti�c and techno-
logical feasibility of fusion energy for commercial energy production and to test technologies
for a demonstration fusion power plant [Rebut et al., 1995]. The present thesis is dedicated to
the investigation of plasma control with examples on two superconducting tokamaks, EAST
and ITER, whose main parameters are listed in Table 1.1.

In order to achieve a fusion burn on ITER, the advanced tokamak scenarios charater-
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ized by the high-pressure high-performance high-bootstrap current plasma are believed to be
crucial [Jo�rin, 2007]. There are two typical advanced tokamak scenarios: the steady-state
scenario and the hybrid scenario. First, the steady-state scenario is de�ned as a scenario whose
plasma current is generated fully non-inductively by additional current drive systems such as
NBI, ECCD, LHCD with a large amount of bootstrap current fraction (∼ 50%). One example
of the steady-state scenario on ITER [Jo�rin, 2007] is described as follows: the plasma current
is at 9 MA with a broad q-pro�le charaterized by low magnetic shear, the edge safety factor
q95 = 5, the normalized plasma pressure parameter βN ∼ 2.9, the H-mode enhancement fac-
tor is over 1.6, and the plasma density reaches 0.8 of the Greenwald value. This scenario can
generate a total power of 350 MW, which results in the fusion gain factor of Q = 5. Second,
the hybrid scenaro is de�ned as a scenario whose plasma current is primarily provided by the
external current drive systems and the self-generated bootstrap current, with a small fraction
of Ohmic current induced by the magnetic �ux swing in the tokamak central solenoid. One
example of the hybrid scenario on ITER [Green et al., 2003] is depicted as: plasma current
is approximately at 13 MA, q95 = 4, βN ∼ 2.0 − 2.3, the H-factor is at 1.0 and fG = 0.85 to
produce the power of 350-500 MW with Q = 5. Advanced tokamak scenarios have already
been explored in existing tokamaks [Challis, 2004,Petty et al., 2017,Gong et al., 2019,Bock
et al., 2017]. It should be mentioned that the achievement and sustainment of advanced toka-
mak scenarios are not straightforward because there are many disturbing phenomena that can
potentially degrade the plasma con�nement, for example, the neoclassical tearing modes, edge
localized modes and high-Z impurities. The active feedback control of essential plasma param-
eters/pro�les can therefore facilitate the reproducibility of the advanced tokamak scenarios.

(a) EAST (b) ITER

Figure 1.2: (a) The inner view of the EAST tokamak and (b) the cutway diagram of the ITER
tokamak.
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1.3 Tokamak plasma control

In this section, we attempt to sketch a concise map in the tokamak plasma control �eld. In
tokamak plasmas, there are many parameters and physical activities that should be properly
controlled such that its operation can last. We can basically divide tokamak plasma control
problems into the following categories:

• axisymmetric magnetic control: plasma current, position and shape control.

• magnetic and kinetic pro�le control: plasma current pro�le, density pro�le, toroidal
rotation pro�le and temperature pro�le control.

• magnetohydrodynamic (MHD) control: sawtooth control, neoclassical tearing mode
(NTM) control, resistive wall mode (RWM) control, error �eld control and edge localized
mode (ELM) control.

• detachment, power exhaust and radiation power control.

Axisymmetric magnetic control refers to the control of plasma position and shape in the
poloidal plane. The objective is to con�ne the plasma in a speci�c position with the desired
magnetic geometry (plasma shape) by adjusting the poloidal �eld coil currents. This type
of control has been extensively studied and is now mature in the tokamak plasma control
community. Assuring the good magnetic control performance is vital to avoid the contact
of the plasma with the surrounding walls and the concerntration of impurities from the wall
materials in plasmas [Walker et al., 2020]. The control of plasma shape can also facilitate
the plasma con�nement and power exhaust. In [Huang et al., 2018], it is con�rmed that the
negative triangularity can lead to a substantial reduction of turbulence amplitude, as well as
of the spectral index and correlation length, consistent with the bene�cial e�ect on energy
con�nement. In [Labit et al., 2019], the magnetic con�guration featured by a double null
(DN), can lead to a reduction of the magnetic shear in the extreme vicinity of the magnetic
separatrix, which is a necessary condition for small ELM regimes with high con�nement.
In [Ryutov et al., 2012], it is argued that the snow�ake divertor con�guration can potentially
reduce both steady-state and intermittent heat loads on the divertor plates.

Magnetic and kinetic pro�le control comprise the control of plasma current, density, tem-
perature and rotational pro�les. The active control of these pro�les is signi�cant because they
are intimately associated with the plasma con�nement and performance charaterized by the
energy con�nement time increase, the enhanced MHD stability and the growth of the boot-
strap current fraction [Walker et al., 2020]. Due to its signi�cance, extensive studies have been
conducted in di�erent tokamaks to demonstrate the e�ectiveness of pro�le control schemes in
di�erent operational scenarios. The control actuators involve the co-current/counter-current
NBI systems, the LHCD systems, the ICRH systems, the ECH/ECCD systems. This thesis
is dedicated to the control of the plasma current pro�le and kinetic parameters on EAST and
ITER.

Magnetohydrodynamic instability control refers to the active control of a broad class of
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MHD instabilities in tokamak plasmas. A typical example is the real-time correction of the
error �elds caused by the non-axisymmetric magnetic �elds. The external non-axisymmetric
magnetic coil currents can be adjusted in real-time [Lanctot et al., 2016] to compensate the
error �elds. When the safety factor is smaller than 1, sawtooth crashes occur, which manifest
themselves as a periodic collape of the pressure in the plasma core [Walker et al., 2020]. When
the safety factor has rational values such as 3/2 and 5/2 on some magnetic �ux surfaces, NTMs
appear and grow around these �ux surfaces. The period and amplitude of sawtooth crashes
and NTMs can be controlled in real-time by utilizing localized current drive ECCD [Paley
et al., 2009,Humphreys et al., 2006,Wehner and Schuster, 2012,Park et al., 2017,Kong et al.,
2019].

Detachment, power exhaust, and radiation power control concerns the control of heat �uxes
released by the plasma bulk. The power exhaust to the divertor target can be controlled
by plasma shaping [Ryutov et al., 2012, Piras et al., 2009, Soukhanovskii et al., 2012]. An
alternative strategy is to seed impurities, which can increase the fraction of the radiation power
such that the heat loads onto the divertor can be relieved [Kallenbach et al., 2005,Kallenbach
et al., 2010,Kallenbach et al., 2015,Vijvers et al., 2014].

1.4 Problem statement and prior works

The thesis aims at the feedback control of the plasma current pro�le and kinetic parameters
in advanced tokamak scenarios using data-driven models. The simultaneous control of current
pro�le and kinetic parameters is challenging for several reasons:

• A series of MHD instabilities and microturbulence commonly exist in various locations
and phases of tokamak plasmas that may deteriorate plasma con�nement and even lead to
plasma disruptions [Wesson and Campbell, 2011].

• The current drive and power deposition sources that govern the evolutions of the plasma
current pro�le and kinetic parameters are intrinsically nonlinear and time-varying, and are
di�cult to characterize.

• The number of available control actuators for pro�le control is limited, implying that
the attractive region of pro�le control is restrictive.

• A variety of plasma uncertainties may exist during the control process, including plasma
parameter drifts due to MHD instabilities, impurities and turbulence, measurement and esti-
mation errors, and time delays.

Various control schemes for plasma pro�le control have been pursued both numerically
and experimentally on di�erent tokamaks, for example, DIII-D [Moreau et al., 2013,Barton
et al., 2015b,Schuster et al., 2017,Boyer et al., 2014,Barton et al., 2012], NSTX-U [Goumiri
et al., 2016, Goumiri et al., 2017, Boyer et al., 2015], TCV [Maljaars et al., 2015,Maljaars
et al., 2017,Vu et al., 2016,Mavkov et al., 2018,Mavkov et al., 2017a] and JET [Moreau et al.,
2008,Laborde et al., 2004,Moreau et al., 2003]. Many of the control schemes are based on the
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�rst-principles plasma models [Witrant et al., 2007], while others are synthesized by using data-
driven models identi�ed from dedicated experimental and/or simulation data. In this thesis,
linear data-driven models are used for feedback control design because we advert that given an
equilibrium we wish to control the plasma, an identi�ed data-based model is more reliable than
the transport physics, especially for high con�nement plasma, as their dynamics cannot be
fully predicted yet. First-principle-based models appear to be more di�cult to generally and
precisely describe the multi-scale plasma dynamics in advanced plasma scenarios, especially
on the fast timescale kinetic evolutions. In view of these, [Moreau et al., 2008,Moreau et al.,
2011, Moreau et al., 2015] proposed a semi-empirical data-driven modelling approach that
depicts the response of magnetic and kinetic pro�les to the variations of the heating and
current drive (H&CD) actuators with a linear two-time-scale model structure arising from the
�rst-order singular perturbation expansion of the MHD equations governing plasma dynamics.
More precisely, a black-box linear two-time-scale state-space model structure has �rst been
proposed in [Moreau et al., 2008] to describe the plasma magnetic and kinetic responses for
feedback control design on JET. The similar technique is extrapolated to the DIII-D and
JT-60 tokamaks using the experimental data [Moreau et al., 2011]. Identi�cation of linear
state-space models for plasma poloidal magnetic �ux pro�le and the electron temperature
pro�le has been presented in [Mavkov et al., 2017b] using a time-domain approach. In contrast
to the existing works regarding plasma model identi�cation for pro�le control, we extend the
plasma model structure into a nonlinear state-space form, which is anticipated to approximate
the plasma dynamics with enhanced precision because the evolution of plasma current drive,
power deposition, heat di�usivities and bootstrap current are intrinsically nonlinear. Two
alternative nonlinear identi�cation approaches, handling data in time-domain and frequency-
domain separately, are thus investigated.

The robust control strategies presented in the thesis are all synthesized from linear data-
driven models identi�ed from sampled simulation/experimental data in advanced tokamak
scenarios. The robust synthesis for pro�le control using �rst-principle-driven models has been
proposed in [Barton et al., 2012] experimentally on the DIII-D tokamak. The extrapolation
of the similar technique to the ITER pro�le control simulations is presented in [Barton et al.,
2015a]. Linear quadratic integral (LQI) control based on a two-time-scale data-driven model
was investigated in [Moreau et al., 2008,Moreau et al., 2015] and extended to the ITER pro�le
control simulations in [Liu et al., 2012]. Data-driven models extracted from the TRANSP
simulations are used to design an LQI controller for tracking of βN , Ip and q0 [Boyer et al.,
2017].The extension of LQI to incorporating the feedforward and anti-windup is presented
in [Boyer et al., 2019] for the simultaneous control of the stored energy and the toroidal
rotation on DIII-D experimentally. In contrast to the existing works, we �rst separate the
two-time-scale data-driven model into three local models, i.e. fast kinetic model, slow kinetic
model and magnetic model and then provide a systematic multi-functional robust synthesis
approach using linear matrix inequalities (LMIs). In addition, we perform the comparative
studies on the control performance of three linear robust control schemes, i.e., H∞ robust
control, the LQI control and the internal model control (IMC). The comparative study can
provide some indications on the pros and cons of each robust controllers, which may be valuable
for the robust pro�le control in advanced tokamak scenarios on ITER.
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Evidently, there are some restrictions on the use of linear data-driven models for control.
First, the data-driven models rely on the transport, current drive and power deposition models
used in simulations and depend on the essential plasma parameters, for instance, plasma
density and impurities in tokamak experiments. These can bring a lot of model uncertainties.
In this regard, we provide adaptive control schemes in which the manipulated inputs are
adaptively updated based on the real-time measured inputs and outputs. Two categories of
adaptive controllers are attempted, i.e., the model-free extremum-seeking control (ESC) and
the model reference adaptive control (MRAC). Up to our best knowledge, ESC has already
been applied to the sawtooth period control [Paley et al., 2009, Bolder et al., 2012], NTM
control [Wehner and Schuster, 2012] and error �eld control [Lanctot et al., 2016]. Nonetheless,
its extended version, i.e., the Newton-based ESC, has not yet been studied. The MRAC
control in its direct and indirect versions [Ioannou and Sun, 1996,Tao, 2014] are both taken
into account in the present thesis, which is novel for the tokamak plasma control community.

As an alternate control strategy, the model predictive control (MPC) of q-pro�le has
already been investigated in [Maljaars et al., 2015,Maljaars et al., 2017] on ITER and TCV
using the �rst-principle-driven models. The o�set-free MPC has been proposed in the control
community [Borrelli and Morari, 2007,Maeder et al., 2009,Maeder and Morari, 2010], which
is proved more powerful than the standard MPC for the control of uncertain linear systems.
In this study, the o�set-free MPC is combined with the two-time-scale data-driven model for
the simultaneous control of q-pro�le and the poloidal plasma pressure parameter βp. Both
nonlinear simulations and experiments on the EAST tokamak con�rm the e�ectiveness of the
proposed approach. We remark that, contrary to the other control schemes proposed in the
thesis, the major disadvantage of the MPC scheme lies in the large computation time at each
control cycle [Maljaars et al., 2017].

1.5 Achievements

The main achievements of the thesis are summarised as follows:

• modelling and simulation of H-mode steady-state tokamak plasma discharges on EAST
and ITER using the METIS code [Artaud et al., 2018];

• performing nonlinear state-space model identi�cation of essential plasma dynamics on
EAST and ITER using both the time-domain and frequency-domain approaches;

• developing a decentralized multi-functional H∞ robust control scheme for the simul-
taneous control of q-pro�le and βp using a two-time-scale data-driven model identi�ed from
extensive METIS simulations;

• developing, evaluating and comparing three linear robust control techniques, i.e., the
H∞ robust control, the LQI control and the IMC control, with extensive METIS simulations
and closed-loop experiments on EAST;

• using the Newton-based ESC for real-time adaptive online optimization of kinetic pa-
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rameters on EAST and ITER;

• applying the MRAC schemes to the magnetic and kinetic control in advanced tokamak
scenarios on EAST;

• designing the o�set-free MPC scheme for the simultaneous control of q-pro�le and βp on
EAST;

• testing the control algorithms using the METIS plasma simulator;

• implementing the control algorithms into the EAST plasma control system (PCS) [Xiao
et al., 2008] and validate them by performing closed-loop experiments in an H-mode steady-
state plasma scenario on the EAST tokamak.
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1.7 Outline of the Thesis

This chapter has presented the basic concept of thermonuclear fusion, tokamaks, advanced
operational scenarios and tokamak plasma control. The thesis topics, prior achievements in
the discipline and major contributions of the thesis are also introduced. The remainder of the
thesis is organized as follows:

• Chapter 2 presents the modelling of tokamak plasma transport and nonlinear identi�-
cation of essential plasma dynamics for control. We describe the modelling of plasma current
di�usion, heat transport, momentum transport, and plasma density evolutions, which consti-
tute a major part of the METIS code. Even though the �rst-principles models described in
this chapter o�er a simple �uid description of tokamak plasma transport, the complexity of
the models still makes the control design and analysis non-trivial. Therefore, in the second
part of the chapter, we propose two novel nonlinear identi�cation approaches to approximate
the essential plasma dynamics from simulation and experimental data in tokamaks. The �rst
approach combines the time-domain subspace identi�cation technique with nonlinear iterative
predition-error identi�cation, resulting in a linear-time-invariant (LTI) nonlinear polynomial
state-space plasma dynamic model. The second approach, as a dual technique, handles the
simulation/experimental data in the frequency-domain using the combination of the frequency-
domain subspace technique and the nonlinear iterative predition-error techniques. Application
examples on the EAST tokamak using both simulation and experimental data are provided
to demonstrate the validity of the proposed identi�cation approaches.

• Chapter 3 presents robust control algorithms for the tracking of q-pro�le and kinetic
parameters. This chapter is divided into two parts, where the �rst one focusses on the de-
centralized H∞ robust control of q-pro�le and βp using a two-time-scale data-driven model.
Systematic design procedures are provided and extensive METIS simulations on EAST demon-
strate the performance and robustness of the proposed robust control scheme. In the second
part, we develop three linear robust controllers, i.e., H∞ robust control, the LQI control, and
the IMC control for tracking of plasma kinetic parameters, with a cascade inner control loop
for actuation tracking. Both simulation and experiments in H-mode steady-state scenarios are
carried out to evaluate, compare and discuss the performance and robustness of each control
techniques.

• Chapter 4 presents adaptive control algorithms for the tracking of the plasma kinetic
parameters. The model mismatches between the data-driven model and the tokamak plasma
dynamics are inevitable, and there are unpredictable disturbances that is likely to enlarge
these model mistmatches. An alternative idea is to compensate the model mismatches with the
real-time parameter adaptation, as described in this chapter. We �rst explore the model-free
adaptive control strategy, i.e., the Newton-based ESC, for the kinetic optimization in advanced
tokamak plasmas on EAST and ITER. The validity is con�rmed in the closed-loop METIS
simulations. Secondly, the model-based MRAC schemes are proposed, involving both the
single-input single-output (SISO) case and the multiple-input multiple-output (MIMO) case.
Extensive nonlinear closed-loop METIS simulations are provided to show the e�ectiveness of
the proposed MRAC algorithms.
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• Chapter 5 presents the o�set-free MPC for q-pro�le and βp in advanced tokamak sce-
narios. The control algorithm allows for the combination of the o�set-free MPC with a linear
two-time-scale data-driven model to acquire the zero steady-state tracking zero. The o�set-
free MPC consists of a proportional-integral (PI) Luenberger observer to estimate states and
output disturbances which are then fed to the MPC controller for quadratic optimization.
Both simulations and experiments con�rm the e�ectiveness of the proposed control algorithm.

• In Chapter 6, we draw the conclusions of the thesis and provide perspectives for the
future research.
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The modelling of tokamak plasma transport is a broad subject in the �eld of nuclear fusion,
which spreads from single �uid modelling to comprehensive gyro-kinetic modelling [Fasoli
et al., 2016]. In this chapter, we are interested in introducing a single �uid modelling, i.e.,
the minute embedded tokamak integrated simulator (METIS) suite [Artaud et al., 2018], of
essential tokamak plasma transport dynamics, comprising plasma current di�usion, thermal
transport, momentum transport and assumptions for density pro�le evolutions, and make use
of this modelling tool to simulate H-mode high-performance plasma discharges on the EAST
and ITER tokamaks. The METIS suite is an integrated tokamak modelling tool aiming
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at the fast full tokamak plasma analyses and predictions. It combines 0D scaling laws for
normalised heat and particle transport with 1D current di�usion modelling and 2D equilibria
[Artaud et al., 2018], which is built on a simpli�cation paradigm of the plasma transport
problem, and METIS allows for plasma scenario simulations in around 1 minute computation
time, even for full ITER discharges with the pulse duration at ∼ 1000 s. Even though the
METIS modelling appears to be simple, the objective of this code is to precisely describe
the plasma pro�le dynamics in the timescale of the energy con�nement time. It has been
demonstrated to be capable of simulating the plasma pro�les in H-mode high-performance
plasma scenarios on di�erent tokamaks and to be suitable for the shot-to-shot experimental
scenario analyses as well as controller performance assessments [Nilsson et al., 2013,Moreau
et al., 2013,Litaudon et al., 2013]. In the thesis, METIS is used as a tokamak plasma simulator
that allows for the plasma discharge simulations on EAST and ITER and manifests itself as
a testbed to evaluate the e�ectiveness and validity of the proposed model identi�cation and
feedback control strategies.

Achievement and reproducibility of high-performance steady-state plasma scenarios are
essential for the current and next-generation tokamak plasma operation, which can greatly
bene�t from precise control of crucial plasma parameters such as the plasma safety factor
and rotational velocity [Ferron et al., 2006]. In order to control these parameters, the most
direct and tractable way is to use the model-free proportional-integral-derivative (PID) control
[Åström et al., 2006, Landau and Zito, 2007], which has been widely applied to industrial
controls due to its simple implementation and attractive control performance. However, in the
absence of a plasma dynamics model, the trial and error tuning of the PID parameters may take
an extra amount of experimental time that is likely to cause undesirable plasma behaviour.
Therefore, to improve the control e�ciency and reliability, a straightforward treatment is
to �rst develop a control-oriented plasma response model that appropriately depicts plasma
response dynamics in a reduced-order model, based on which a feedback controller can then
be synthesized.

There are two categories of techniques to build control-oriented plasma response models.
The �rst category is named the �rst-principle-driven model that can be simpli�ed from non-
linear partial-di�erential-equations (PDEs) governing the plasma transport evolutions by a
set of assumptions and simplication procedures [Witrant et al., 2007,Ou et al., 2007,Barton
et al., 2012], for example, linearization and spatial discretization. The second category resorts
to system identi�cation methodologies [Moreau et al., 2008,Moreau et al., 2013], which extract
black-box plasma response models from the observed input-output data by assuming a station-
ary model structure. Ideally, �rst-principle-driven models are preferred because they should
have a universal domain of validity. However, the physical understanding of plasma transport
and wave-plasma interaction in high-performance tokamak plasmas has not been fully clari�ed
such that many essential physical parameters can merely be estimated empirically via scaling
laws [Artaud et al., 2010,Artaud et al., 2018] and the parameter uncertainties are very di�-
cult to be characterized and evaluated. Furthermore, in order to derive �rst-principle-driven
models that are suitable for plasma control, an important fraction of physical �delity may
be lost during the simplication process. Therefore, this chapter is dedicated to extracting
control-oriented plasma response models from sophisticated nonlinear plasma simulation data
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and experimental data using a uniform system identi�cation methodology.

The use of data-driven models for plasma current pro�le and kinetic control has already
been studied. Initial works comprise the PID design using data-driven-based transfer func-
tion modelling of the plasma response dynamics for q-pro�le control on JET [Moreau et al.,
2003, Jo�rin et al., 2003,Mazon et al., 2003]. Data-driven plasma response models that de-
scribe the coupled dynamics of magnetic and kinetic plasma evolutions using the singular
perturbation theory are systematically investigated in [Moreau et al., 2008], and its validity is
further con�rmed by applying the system identi�cation methodology considered in [Moreau
et al., 2008] to di�erent tokamaks [Moreau et al., 2011]. In [Kim and Lister, 2012], static
models for the response of the variations of plasma current pro�le and electron temperature
pro�le with respect to those of auxiliary heating & current drive (H&CD) powers are identi�ed
online via the least-squares method based on which the feedback control actuations are com-
puted and updated adaptively. Extensive nonlinear simulations on ITER with the CRONOS
code [Artaud et al., 2010] have demonstrated the e�ectiveness of the static data-driven models
for the feedback control design. In [Mavkov et al., 2017b], a systematic procedure is proposed
to identify the coupled dynamics of the poloidal magnetic �uxes and the electron temperature
pro�le on DIII-D using the noise-free METIS simulation data in a lumped way. It assumes a
LTI state-space model structure, initializes the model with a time-domain subspace method,
namely multivariable output-error state-space (MOESP) identi�cation [Verhaegen and Ver-
dult, 2007], and re�nes the model using the output-error identi�cation technique [Verhaegen
and Verdult, 2007]. Comparisons of the model-simulated output data with the corresponding
output from nonlinear METIS simulations have shown the e�ectiveness of the identi�cation
procedure. However, the derived LTI state-space models were restricted to small output space
dimensions to describe the plasma parameters pro�les and have not been further employed
for control design and evaluations.

System identi�cation is a subject to build mathematical models of dynamic systems from
observed input�output data, which is �lled with numerous classes of techniques depending
on the identi�ed model structures, e.g. linear, nonlinear, hybrid and non-parametric [Ljung,
2010]. Interested readers are referred to [Ljung, 2010,Noël and Kerschen, 2017] for a review
of this subject and to [Ljung and Söderström, 1983, Verhaegen and Verdult, 2007, Lennart,
1999] for reference textbooks. Since the objective of the thesis is to identify black-box models
with a stationary model structure, e.g. a state-space model, for advanced control designs,
we restrict our e�orts to the topic of the black-box state-space model identi�cation. In the
literature, there are two major classes of state-space identi�cation methods, i.e. the subspace
methods and the prediction-error method (PEM) [Ljung, 2010,Yu et al., 2019]. The subspace
methods are based on the fact that system matrices of the black-box state-space models can be
related to certain subspaces of the structured block Hankel matrices �lled with the observed
input-output data [Verhaegen and Verdult, 2007]. One merit of this class of methods is that
the identi�cation is non-iterative. In order to handle the measurement noise, instrumental
variables can be involved [Verhaegen and Verdult, 2007]. The idea of the prediction-error
method is to minimize a cost functional de�ned as a mean squared prediction error between
the sampled output and the one-step-ahead model prediction to obtain the optimal system
model matrices. This method is iterative. The bene�t of the PEM method is that it has the
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best possible asymptotic accuracy. However, local minimum can often be obtained, implying
its sensitivity to initial parameter estimate [Yu et al., 2019]. Combining the subspace method
and PEM can naturally accumulate their advantages and compensate their limitations, which
have already been con�rmed in [Verhaegen and Verdult, 2007] and applied to the LTI state-
space identi�cation in tokamak plasmas using noise-free simulation data [Mavkov et al., 2017b].

In this chapter, we are dedicated to unifying the two classes of identi�cation methods to
both simulation (noise-free) and experimental (noise-corrupted) data in advanced tokamak
plasma scenarios on EAST and ITER. A nonlinear model identi�cation scheme for magnetic
and kinetic parameter control is proposed using a combination of the subspace and PEM
identi�cation techniques, which aims to capture the dominant linear plasma response dynamics
as well as certain nonlinearities caused by, for instance, the bootstrap e�ects or plasma-wave
interaction. We consider the plasma dynamics to be a black-box polynomial nonlinear state-
space (PNLSS) system. The objective is to identify an optimal model that approximates the
plasma dynamics maximally in a prescribed model structure using the observed input-output
measurements. Motivated by [Paduart et al., 2010, Mavkov et al., 2017b], we divide the
nonlinear identi�cation process into two stages: �rst, a combination of the subspace and PEM
techniques are employed to identify the dominant linear plasma responses of magnetic and
kinetic parameters with respect to control actuations, and the linear identi�cation problem
is addressed both in time-domain and frequency-domain. Second, initializing the PNLSS
model with the derived linear state-space (LSS) model, a prediction-error method is applied
to identify the nonlinear terms while re�ning the linear model matrices. The drawback of the
PNLSS model is that the number of estimated nonlinear parameters increases substantially
with the growth of the polynomial degree, which motivates us to utilize a decoupling technique
to describe them in a parsimonious representation [Dreesen et al., 2015].

The major contributions of this chapter are outlined as follows:

• Single �uid modelling of plasma transport dynamics for plasma discharge simulations
on EAST and ITER using the METIS code.

• Development of a systematic identi�cation procedure for a linear state-space plasma
model from simulation/experimental data in advanced tokamak plasma scenarios using
both time- and frequency-domain identi�cation approaches.

• Development of a systematic identi�cation procedure for a nonlinear plasma response
model based on the derived linear model to characterize nonlinear plasma dynamics.

• Validation of the e�ectiveness of the proposed identi�cation procedures via compar-
isons of the model-predicted results with the associated simulation/experimental data
on EAST and ITER.

In the remainder of this chapter, Section 2.1 presents the single �uid METIS modelling of
the plasma current density di�usion, thermal transport, momentum transport and electron and
ion density pro�les on the EAST and ITER tokamaks, with the important variable de�nitions
listed in Table 2.1. In Section 2.2, we formulate the model identi�cation problem, propose



20 Chapter 2. Tokamak Plasma Modelling and Identi�cation

a nonlinear model structure, outline the identi�cation procedure and provide guidelines to
preprocess the observed data for model identi�cation. The identi�cation of the linear plasma
dynamics is addressed using both time-domain and frequency-domain approaches. Further-
more, it is arranged to describe a PNLSS plasma model identi�cation algorithm to characterize
the nonlinear plasma dynamics. Identi�cation results from both simulation and experimental
data are presented to demonstrate the e�ectiveness of the proposed identi�cation algorithms.
We subsequently make a summary of the chapter and suggest possible improvements.

2.1 Tokamak plasma modelling: a single �uid description

In this section, we describe the single �uid modelling of tokamak plasma dynamics on the
timescale of the energy con�nement time with the METIS code, and present the reference
scenario simulations in H-mode steady-state scenarios on EAST and ITER.

2.1.1 Current density di�usion

The plasma current di�usion can be expressed in terms of the poloidal magnetic �ux Ψ as
in [Artaud et al., 2018]:

∂Ψ

∂t
= α1(t, ρ)

∂2Ψ

∂2ρ
+ α2(t, ρ)

∂Ψ

∂ρ
+ α3(t, ρ)jni (2.1)

where

α1(t, ρ) =
〈 |5ρ|

2

R2 〉
µ0σ||ρ2

m〈 1
R2 〉

(2.2)

α2(t, ρ) =
〈 |5ρ|

2

R2 〉
µ0σ||ρ2

m〈 1
R2 〉

∂

∂ρ

ln

 ∂V
∂ρ 〈

|5ρ|2
R2 〉
F

+
dρm
dt

+
ρ

2B0

dB0

dt
(2.3)

α3(t, ρ) =
B0

σ||F 〈 1
R2 〉

(2.4)

Here, σ|| represents the parallel conductivity, F is the diamagnetic function, jni indicates the
non-inductive current density sources, R the major radius, µ0 the magnetic permeability of
free space, ρm the radius at the last closed �ux surfaces, ρ is a normalized �ux surface average

radius, i.e. ρ = 1
ρm

√
Φ
πB0

, where B0 is the vacuum magnetic �eld at the major radius R0,

Φ being the toroidal magnetic �ux. The notation 〈〉 is an identi�er indicating a �ux surface
average. The neoclassical electrical conductivity σ|| is computed as [Sauter et al., 1999]:

σ|| = cneo(ρ)kspitzer(ρ)
Te(t, ρ)

3
2

Zeff (t, ρ)
(2.5)

where cneo(ρ) is the neoclassical correction pro�le, kspitzer(ρ) the constant Spitzer coe�cient
pro�le, Te(t, ρ) the electron temperature pro�le, and Zeff (t, ρ) the e�ective charge pro�le.
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Table 2.1: Parameter de�nition.

Variables Description Units
ψ poloidal magnetic �ux pro�le T · m2

Wth thermal energy J
jni noninductive current density A · m−2

σ parallel conductivity Ω−1· m−1

µ0 permeability of free space: 4π× 10−7 H· m−1

τE energy con�nement time s
Ploss loss power W
Qe electron heat �ux W
Qi ion heat �ux W
Te electron temperature pro�le eV
Ti ion temperature pro�le eV
ne electron density pro�le m−3

ni ion density pro�le m−3

χe electron di�usivity m2· s−1

χi ion di�usivity m2· s−1

Paux auxiliary power W
Pα α particle power due to fusion reaction W
Pbrem Bremstranglur radiation power W
Pcyclo cyclotron radiation power W
Prad line radiation power W
Zeff e�ective charge number A.U.
F diamagnetic function T · m
ρ surface average normalized radius A.U.

〈συ〉T (d,n)He4 D-T nuclear reaction cross section m−2

nD deuteurium density pro�le m−3

nT tritium density pro�le m−3

e unit electron charge C
PNBI1 the �rst neutral beam power W
PNBI2 the second neural beam power W
PECRH1 the �rst electron cyclotron resonance heating power W
PECRH2 the second electron cyclotron resonance heating power W
PICRH the ion cyclotron resonance heating power W
q safety factor pro�le A.U.
ι inverse safety factor pro�le A.U.
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The non-inductive current density comprises self-generated bootstrap current density jboot
and the auxiliary driven current density jauxi, of which jboot is calculated as [Sauter et al.,
1999]:

jboot =
kboot
∂Ψ/∂ρ

[
L31

∂ne
∂ρ

Te + (L31 +RpeL32 + (1−Rpe)L34)
∂Te
∂ρ

ne

]
(2.6)

Here kboot, L31, L32, L34 are coe�cients that depend on the magnetic con�guration of a plasma
equilibrium and Rpe is the ratio between electron and total pressures, i.e. Rpe = pe/p the ratio
between electron pe and total pressure p. The auxiliary current density jauxi is decomposed
as:

jauxi =

nNBI∑
n=1

jNBI,n +

nEC∑
n=1

jEC,n +

nIC∑
n=1

jIC,n +

nLH∑
n=1

jLH,n (2.7)

where nNBI , nEC , nIC , nLH are respectively the number of actuators of the neutral beam in-
jection (NBI) system, the electron cyclotron (EC) current drive system, the ion cyclotron (IC)
current drive system and the lower hybrid (LH) current drive system. jNBI,n,jEC,n,jIC,n,jLH,n
are the non-inductive current density pro�les driven by the nth NBI, nth EC, nth IC and nth

LH systems, respectively.

The total current density driven by the nth NBI injector jtotalNBI,n is computed by an an-
alytical solution of the Fokker-Planck equation [Wesson and Campbell, 2011] in which both
trapping e�ects and energy di�usion are neglected:

jtotalNBI,n =
pNBI,n(ρ)e

Eb
τ sNBI,nξb

υ3
0,n + υ3

c,n

υ3
0,n

2υ3γ,n

3υ3c,n

∫ υ0,n
υc,n

0

(
z3

z3 + 1

) 2υ3γ,n

3υ3c,n
+1

dz (2.8)

where pNBI,n(ρ) is the nth NBI power deposition pro�le, τ sNBI,n the nth NBI slowing down
time, υc,n and υγ,n are the critical velocities for the nth NBI injector and υ0,n the fast ion initial
velocity for the nth NBI injector. The electron back-current jbackNBI,n is computed following the
formulation in [Lin-Liu and Hinton, 1997], which is then subtracted from the total NBI current
to obtain the driven current density due to the NBI injections, i.e. jNBI,n = jtotalNBI,n− jbackNBI,n.

The total current driven by the nth EC system is computed as [Krivenski et al., 1985]:

IEC,n(t) =
sEC,nΓLH,ECηEC,n(t)PEC,n(t)

ne(t, xEC,n(t))Rref (t)
(2.9)

where sEC,n is the direction of the wave injection for the nth EC system, i.e. sEC,n = 1 for the
co-current wave injection, sEC,n = −1 for counter-current injection. ΓLH,EC is the synergy
factor between the EC and the LH systems. PEC,n(t) is the total deposited power of the
nth EC system, xEC,n(t) is the maximum power deposition position of the nth EC system,
ne(t, xEC,n(t)) the electron density at xEC,n(t). The EC current e�ciency is ηEC,n = γn

5+Zeff
,

where Zeff is the e�ective charge number and γn is computed as [Krivenski et al., 1985]:

γn =

(
1 +

100
Te(t,xEC,n)

103

[
1−

(
1 +

5 + Zeff
3(1 + Zeff )

(
√

2ut,n)
5+Zeff
1+Zeff

)])−1

(2.10)
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where

µt,n =

√
arefxEC,n(1 + cos(θpol))

Rref + arefxEC,n cos(θpol)
(2.11)

Here Te(t, xEC,n) is the electron temperature at the power deposition position of the nth EC
system xEC,n. aref is the small radius while Rref denotes the major radius. θpol represents
the poloidal angle of the nth EC system. We assume that the current density driven by the
nth EC system jEC,n(t, ρ) = kjEC ,n(t)pEC,n(ρ), where pEC,n(ρ) is the power deposition shape
for the nth EC system, which is a Gaussian curve with the width δEC,n at the location xEC,n.
kjEC ,n(t) is time-varying and computed as:

kjEC ,n(t) =
IEC,n(t)

ρm
∫ 1

0 pEC,n(ρ)V ′(t, ρ)dρ
(2.12)

Where IEC,n is the total EC-driven current for the nth EC wave launcher.

The total driven current by the nth IC system is computed as [Artaud et al., 2018]:

IIC,n(t) =
sIC,nPIC,n(t)ηIC,n(t)

Rref
ne(t,ρ=0)

1020

(2.13)

where sIC,n(t) is the direction of the nth IC wave injection, i.e. sIC,n = 1 for co-current
injection, while sIC,n = −1 for counter-current injection. PIC,n(t) is the total power deposition
from the nth IC system. ηIC,n(t) is the current drive e�ciency for the nth IC system. ne(t, ρ =

0) is the electron density at the magnetic axis. It is assumed that the driven current density
by the nth IC system is jIC,n(t, ρ) = kjIC ,n(t)jshapeIC,n (t, ρ), where the driven current density
shape for the nth IC system is expressed as:

jshapeIC,n (ρ)(t, ρ) =
ne(t, ρ)Te(t, ρ)σ||

Bout(t, ρ)3V ′(t, ρ)
(2.14)

ne(t, ρ) and Te(t, ρ) are respectively the electron density and temperature pro�les. σ|| is the
parallel electron conductivity. The normalized coe�cient kjIC ,n(t) is computed as [Artaud
et al., 2018]:

kjIC ,n(t) =
IIC,n(t)

ρm
∫ 1

0 j
shape
EC,n (t, ρ)V ′(t, ρ)dρ

(2.15)

where IIC,n(t) is the nth IC-driven current.

The total current density driven by the nth LH system is expressed as:

jLH,n(t, ρ) = ηLH,n(t, ρ)
PLH,n(t, ρ)

ne(t, ρ)

1− ε
5+Zeff (t,ρ)

2(1+Zeff (t,ρ))

5 + Zeff (t, ρ)
(2.16)

where ne(t, ρ) is the electron density pro�le. Zeff (t, ρ) is the e�ective charge pro�le.
PLH,n(t, ρ) is the local power deposition pro�le for the nth LH system. ηLH,n is the current
drive e�ciency for the nth LH system [Fisch, 1978].
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2.1.2 Thermal transport

Even though many e�orts have been made in tokamak fusion research, the modelling of the
heat transport in the core of tokamak plasmas features large uncertainties. In order to si-
multaneously capture important physics characteristics for heat transport and minimize the
computational time, a mixed 0D-1D approach is adopted in two steps by separating the tem-
poral and spatial dimensions [Artaud et al., 2018].

In the �rst step, the total plasma thermal energyWth is calculated by a �rst-order ordinary
di�erential equation (ODE) as:

dWth

dt
= −Wth

τE
+ Pheat − Prad (2.17)

where τE is the energy con�nement time in second, which, in tokamaks, is most commonly
expressed with the help of a scaling law. For H-mode plasmas, the scaling law ITERH-98P(y,2)
is applied, while for L-mode the scaling law ITERL-96 (th) is used. Pheat and Prad are the
total heating and radiation powers respectively, which can be expressed as:

Pheat − Prad = Pohm + Pauxi + Pα − Pbrem − Pcyclo − flinePline (2.18)

Here, Pohm is the ohmic power, Pauxi represents the auxiliary deposited power, which is given
by Pauxi =

∑nNBI
n=1 PNBI,n +

∑nEC
n=1 PEC,n +

∑nIC
n=1 PIC,n. Pα is the total power arising from

generated α particles due to D-T reactions, which is derived as Pα =
∫ 1

0 pα,th(t, ρ)dρ, where
pα,th(t, ρ) is the α power density pro�le, and is computed as:

pα,th(t, ρ) = eEα,T (d,n)He4nD(t, ρ)nT (t, ρ)〈συ〉T (d,n)He4 [Ti(t, ρ)] (2.19)

Here Eα,T (d,n)He4 = 3.6 MeV, e is the unit of electric charge, nD and nT are respectively the
deuterium and tritium density pro�les. 〈συ〉T (d,n)He4 [Ti(t, ρ)] is the D-T fusion reaction cross
section [Bosch and Hale, 1992] which is closely related to the ion temperature pro�le Ti(t, ρ).

Pbrem, Pcyclo and Prad are respectively the total power radiated by thermal Bremsstrahlung,
cyclotron and line radiation, of which Pbrem is calculated as:

Pbrem(t) = ρm

∫ 1

0
pbrem(t, ρ)V ′dx (2.20)

where pbrem(t, ρ) is the Bremsstrahlung radiation power density [Rybicki and Lightman, 2008]:

pbrem(t, x) = 4.8562× 103ne(t, ρ)

1020

√
Te(t, ρ)

103

∑
k=j

Cgaunt(Te(t, ρ), Zk)Z
2
k

nk(t, ρ)

1020
(2.21)

where ne(t, ρ) is the electron density pro�le, while Te(t, ρ) represents the electron temperature
pro�le. Cgaunt(Te(t, ρ), Zk) is the Gaunt factor [Matthews et al., 1999] while Zk and nk(t, ρ)

are the charge number and density for the kth ion species, respectively.
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The cyclotron radiation is modelled as [Albajar et al., 2001]:

Pcyclo = 0.0384(1− rw)1/2Ra1.38κ0.79B2.62
t n0.38

e,c Te,c(16 + Te,c)
2.61

(1 + 0.12
Te,c
P 0.14
a,c

)−1.51K(αn, αT , βT )G(
Rref
aref

) (2.22)

where G(
Rref
aref

) = 0.93

(
1 + 0.85e

−0.82
Rref
aref

)
, where Rref and aref are respectively the major

radius and minor radius.K(αn, αT , βT ) = (αn+3.87αT +1.46)−0.79(1.98+αT )1.36β2.14
T (β1.53

T +

1.87αT − 0.16)−1.33. αT and βT are determined from the best �t to the electron temperature
pro�le. Pa,c = 6.04×103 ane,c

Bt
. ne,c = ne(t,ρ=0)

1020
the central electron density, Te,c = Te(t,ρ=0)

103
the

central electron temperature, and ωref is the e�ective wall re�ection coe�cient for cyclotron
radiation.

To derive the line radiation power, we �rst compute the combined radiation power due to
both bremsstrahlung and line radiation, which is Prad = ρm

∫ 1
0 prad(t, ρ)V ′dρ, where prad(t, ρ)

is the combined radiation power density due to both Bremsstrahlung and line radiation, which
is modelled as:

prad(t, ρ) = ne(t, ρ)
∑

k∈species
l(Zk, Te(t, ρ))Ti(t, ρ) (2.23)

Here, l(Zk, Te(t, ρ)) is the cooling rate based on the ADAS database [Summers and O'Mullane,
2011]. The line radiation power is then expressed as Pline = Prad − Pbrem. fline ∈ [0, 1] is an
ad hoc coe�cient.

The second step is to calculate the electron and ion temperature pro�le by assuming
∂Te(t,ρ)

∂t = ∂Ti(t,ρ)
∂t = 0, we could then derive the following equations:

∂Te
∂ρ

=
−
∫ ρ

0 V
′Qe(t, ρ)dρ

ne(t, ρ)χe(ρ)V ′〈| 5 ρ|2〉
,
∂Ti
∂ρ

=
−
∫ ρ

0 V
′Qi(t, ρ)dρ

ni(t, ρ)χi(t, ρ)V ′〈| 5 ρ|2〉
(2.24)

where Qe(t, ρ) and Qi(t, ρ) are respectively electron and ion power deposition pro�les, and
χe and χi respectively indicate the electron and ion heat di�usivity pro�les. Qe and Qi are
expressed as [Artaud et al., 2018]:

Qe =

nNBI∑
n=1

QeNBI,n +

nEC∑
n=1

QeEC,n +

nIC∑
n=1

QeIC,n +

nLH∑
n=1

QeLH,n +QΩ +Qefus

−Qei −Qebrem −Qecyclo −Qeline (2.25)

Qi =

nNBI∑
n=1

QiNBI,n +

nEC∑
n=1

QiEC,n +

nIC∑
n=1

QiIC,n +

nLH∑
n=1

QiLH,n +QΩ +Qifus

+Qei −Qibrem −Qicyclo −Qiline (2.26)

where QeNBI,n,Q
e
EC,n,Q

e
IC,n, Q

e
LH,n are respectively the power density pro�le for the nth NBI,

EC, IC and LH system deposited on the electrons, QΩ the ohmic power density, Qefus the
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fusion power density on the electrons. Qebrem, Q
e
cyclo and Qeline are respectively the total

power radiated by thermal Bremsstrahlung, cyclotron and line transition from electrons.
QiNBI,n,Q

i
EC,n,Q

i
IC,n and Q

i
LH,n are the power density pro�le for the n

th NBI, EC, IC and LH
system deposited on the ions, respectively. Qibrem, Q

i
cyclo and Q

i
line are the total power radi-

ated by thermal Bremsstrahlung, cyclotron and line transition from ions, respectively. Qifus
the fusion power density on the ions. Qei is the equipartition power from electrons to ions.

The electron di�usivity from the magnetic axis to the pedestal top is expressed as χe(t, ρ) =

χ0
e(t)χ

1
e(t, ρ), where χ0

e(t) is a coe�cient that is used to ensure that the total thermal energy
derived from equation (2.24) is consistent with the result of equation (2.17), while χ1

e(t, ρ) is
the di�usivity shape, which is modelled as χ1

e(t, ρ) = 2.514×10−4 |∇neTe|
neB0

q2. The ion di�usivity
coe�cient is modelled as χi(t, ρ) = µe,iχ

0
e(t)χ

1
e(ρ), where µe,i is a constant factor. The time-

varying electron di�usivity coe�cient χ0
e(t) is derived by solving the energy conservation

equation, which is expressed as [Artaud et al., 2018]:

3

2

∫ ρped

0
(ne

∫ ρ

ρped

∂Te
∂ρ

dρ+ ni

∫ ρ

ρped

∂Ti
∂ρ

dρ)V ′dρ = Wth −Wped (2.27)

where ρped is the normalized radius of the pedestal top, which is �xed at 0.95, while Wped is
the pedestal energy. After simple mathematical deductions, we could derive the time-varying
electron di�usitivity coe�cient as:

χ0
e(t) =

3
2

∫ 1
0

(
ne
∫ ρ
ρped

−
∫ ρ
0 V
′Qedρ

neχ1
e(t,ρ)V ′〈|5ρ|2〉dρ+ ni

∫ ρ
ρped

−
∫ ρ
0 V
′Qidρ

niµe,iχ1
e(t,ρ)V ′〈|5ρ|2〉dρ

)
V ′dρ

Wth −Wped
(2.28)

Then the electron and ion di�usivity coe�cients can be obtained, thus the electron and ion
temperature pro�les are computed as:

Te(t, ρ) = Tped,e −
∫ ρ

ρped

∫ ρ
0 V

′Qedρ

neχe(t, ρ)V ′〈| 5 ρ|2〉
dρ (2.29)

Ti(t, ρ) = Tped,i −
∫ ρ

ρped

∫ ρ
0 V

′Qedρ

neχi(t, ρ)V ′〈| 5 ρ|2〉
dρ (2.30)

2.1.3 Momentum transport

In this section, we present the momentum transport modelling in METIS for the nonlinear
simulation study. The estimation of the toroidal rotation is performed mainly in order to
account for the neutral beam injection e�ects and the intrinsic plasma rotation. The e�ects
of magnetic �eld ripple losses, fast ion losses and fast ion momentum transport cannot be
described by simple models and they are neglected in METIS. Nevertheless, the model is
su�cient to characterise NBI-dominated plasmas, even for a reactor such as ITER.

The total momentum Rtot is de�ned as [Artaud et al., 2018]:

Rtot =

∫ 1

0

Nion∑
k=1

mpAknkRυφ,kV
′dx (2.31)
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where mp represents the proton mass, Ak the number of the nucleons in the kth ion species,
nk the kth ion density. υφ,k is the toroidal velocity of the species k, R the major radius, Nion

the total number of di�erent ion species.

Analogous to the thermal energy computation, the volume-averaged toroidal angular mo-
mentum can be expressed as [Artaud et al., 2018]:

dRtot
dt

= −Rtot
τφ

+

NNBI∑
k=1

Sφ,NBI,k + Sφ,intrinsic + Sφ,RF + Sφ,E‖ + Sφ,ripple + Fn,0 (2.32)

where τφ is the toroidal rotation con�nement time, de�ned as τφ = fτ,rotmin(τE , τii), and
fτ,rot is an adjustable factor with the order O(1). τii is the ion con�nement time de�ned as

τii =
e
∫ 1
0 niTiV

′dx∫ 1
0 (Qi+Qe,i)V ′dx

, and τE is the plasma energy con�nement time.

Sφ,NBI,k denotes the rotational torque from the kth NBI system, which is computed as:

Sφ,NBI,k =
∑

k∈{H,D,T}

mk

∫ 1

0
Raxe(x)

PNBI,k(x)

eEk,0

√
2eEk,0
mk

µk(x)V ′(x)dx (2.33)

Here, mk denotes the kth injected species mass. Raxe represents the average major radius of
each poloidal �ux surface, PNBI,k(x) the power deposition pro�le due to the kth NBI source,
µk(x) the pitch angle pro�le, Ek,0 the injected energy of the kth ion species, and e the electron
charge.

The intrinsic torque Sφ,intrinsic is modelled as Sφ,intrinsic =
Γφυφ,self

τφ
, where Γφ is a con-

version factor between velocity and momentum, expressed as:

Γφ =
1

〈υφ,shape〉

∫ 1

0

∑
k∈species

mpAknkRυφ,shapeV
′dx (2.34)

〈υφ,shape〉 =
∫ 1
0 υφ,shapeV

′dx∫ 1
0 V
′dx

, where υφ,scaling is the rotation velocity following the Rice scaling

[Rice et al., 2007].

The toroidal torque arising from the interaction between RF waves and the plasma is given
by [Eriksson and Porcelli, 2002]:

Sφ,RF =
−(2DLH − 1)Rrefnn||,0PLH,th

c
−
sECRrefPEC

2c
(2.35)

Here, DLH is the directivity of the LH waves, and sEC is a constant �xed at 0.5, Rref
denoting the major radius of the geometric center, c is the light velocity, PLH,th is the LH
power absorbed by thermal electrons while PEC is the total EC power, and nn||,0 is the parallel
refractive index.

The toroidal torque due to the parallel electric �eld is modelled as [Kim et al., 1991]:

Sφ,E|| =
me

emp

Γφ
τφ

Meff

Zeff

IΩ + Irunaway
〈ne〉Sp

(2.36)
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where Meff is the plasma e�ective mass, IΩ and Irunaway are respectively the ohmic and
runaway currents, 〈ne〉 the volume-averaged electron density while Sp is the plasma poloidal
cross section.

Sφ,ripple is the rotation torque due to ripple e�ects. The toroidal rotation at the plasma
edge can be slowed down by the friction e�ects from cold neutrals, which is modelled as

Fn0 = −mp

∫ 1

0

∑
k∈H,D,T

Aknk〈συ〉cxRaxeυφn0V
′dx (2.37)

where n0 is the neutral hydrogen isotope density, and 〈συ〉cx denotes the charge exchange
reaction cross section.

The edge toroidal rotation is calculated using a simple model that only considers the
convective e�ect, which reads:

Rrot,edge =

∑NNBI
k=1 Sφ,NBI,k + Sφ,intrinsic + Sφ,RF + Sφ,E‖ + Sφ,ripple∑

k∈species Aknk∑
k∈speciesZknk

mpnoutRref − Fn,0
(2.38)

Here, nout is the ion exchange �ux through the LCFS due to interchange, cold neutrals, pellet
injection and neutral beam injection. Note that the interchange component plays an important
role for the ion exchange �ux.

2.1.4 Plasma density pro�les

Since particle sources and sinks at the plasma edge are the result of complicated recycling
phenomena that depend on plasma wall interaction and are quite di�cult to describe using
�rst principle models, a simple modelling technique is used to characterize the essential features
of the density pro�le evolution in METIS. Primary attention is given to the electron density
pro�le evolution, which is determined by 3 parameters, i.e. the line-averaged electron density
〈ne〉(t) along the vertical chord crossing the plasma through the magnetic axis, the peaking
factor υe(t) =

ne,0(t)
〈ne〉(t) (with ne,0(t) denoting the central electron density) and the electron

density at the plasma edge ne,a(t). The peaking factor and edge electron density are computed
by using scaling laws.

For L-mode plasmas, the shape of the electron density pro�le is modelled as [Artaud et al.,
2018]:

ne(t, ρ) = (ne,0(t)− ne,a(t))(1− ρ2)νn(t) + ne,a(t) (2.39)

where νn(t) is de�ned as νn(t) = υe(t)− 1.

For H-mode plasmas, where an electron density pedestal is present, the electron density
pro�le is determined by three points: the central electron density (ρ = 0), the electron density
at the pedestal top (ρ = 0.95) and the edge electron density (ρ = 1). The electron density at
the pedestal top is maximized by constraining the spatial derivative of the electron temperature
pro�le ∂Te(t,ρ)

∂ρ < 0. A piecewise cubic Hermite polynomial interpolation is then used to

compute the electron density pro�le at the other points ensuring that ∂ne(t,ρ)
∂ρ |ρ=0 = 0.
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2.1.5 METIS reference scenario simulations

In this section, we present the open-loop simulations of H-mode steady-state plasma discharges
on the EAST and ITER tokamaks using the METIS code.

2.1.5.1 Simulation of an H-mode steady-state plasma discharge on EAST

The EAST tokamak is a D-shaped fully superconducting divertor tokamak intended for the
high-performance steady-state operation, with a major radius at 1.8 m, a minor radius at 0.4
m and the elongation of 1.5 - 2.0. The reference scenario simulated by the METIS code is
a fully non-inductive upper-single-null (USN) H-mode plasma discharge, based on the shot
number #62946. In this discharge, the toroidal magnetic �eld BT = 2.5 T, the central
electron density ne0 ≈ 3.5× 1019 m−3 and plasma current Ip = 0.42 MA. The discharge was
obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at
33 MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s
with an H-mode enhancement factor H98(y, 2) ∼ 1.1. The q-pro�le exhibited a small negative
shear in the plasma core, with minimum q around 1.5 and q0 ∼ 2 on axis. The plasma
pro�les were retrieved from the EFIT magnetic equilibrium reconstruction code using real-time
magnetic and kinetic measurements, for instance, interfero-polarimetry data from the POINT
diagnostics [Liu et al., 2016b,Liu et al., 2016a,Huang et al., 2017]. The initialization of the
METIS code is preset to be consistent with shot #62946 at 3.1 s. The plasma poloidal magnetic
equilibrium is shown in Fig. 2.1(d) and is consistent with the real-time EFIT reconstruction
at 3.1 s. The plasma density pro�le used in the METIS code is �tted with the equilibrium
reconstruction from the same shot using the POINT diagnostics [Liu et al., 2016a]. The
plasma current and density pro�les are set to be consistent with the EAST experiments at the
�at-top phase. The METIS transport coe�cients, power and current driven models are tuned
to have the internal inductance li and the diamagnetic energy Wdia consistent with the EFIT
reconstructions and have the temperature and current deposition pro�les consistent with the
TRANSP simulations [Moreau et al., 2011]. The simulation results of the reference scenario
in METIS are therefore shown in Fig. 2.1 and the electron density, temperature pro�les, the
current drive and power deposition pro�les at 6.78 s are shown in Fig. 2.2. The total current
pro�le is approximately equal to the non-inductive current pro�le with the loop voltage at -20
mV, indicating an H-mode steady-state operational scenario.

2.1.5.2 Simulation of an H-mode steady-state burning plasma discharge on ITER

The ITER tokamak is the largest superconducting divertor tokamak in the world and is un-
der construction in southern France with the �rst plasma foreseen in 2025. This subsection
presents the METIS simulation of an H-mode steady-state (i.e. fully non-inductive) burning
plasma scenario in ITER. The magnetic equilibrium used in METIS is shown in Fig. 2.3(d),
with the major and minor radius at 6.2 m and 2.0 m, respectively. The toroidal magnetic
�eld is BT = 5.3 T, central electron density, ne0 ≈ 6.524× 1019 m−3 , central ion temperature
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(a) (b)

(c) (d)

Figure 2.1: Simulation of an H-mode steady-state plasma scenario on EAST. (a) Left: time
traces of plasma current and the loop voltage; Right: time traces of the auxiliary heating
powers. (b) Left: time traces of plasma poloidal parameter and internal inductance; Right:
time traces of the safety factors at typical points. (c) Left: time traces of electron temperatures
at typical points; Right: time traces of electron densities at typical points. (d) The EAST
magnetic equilibrium and �ux surfaces in a poloidal cross-section at 3.1 s.

Ti0 ≈ 40 keV and plasma current Ip = 9 MA. Fig. 2.3 shows the time evolutions of important
plasma parameters from the METIS simulation. The plasma scenario is obtained with 33 MW
of co-current NBI, 20 MW of ECRH, 40 MW of LHCD and 20 MW of ICRH. The transition to
H-mode occurs at 1.5 s with an H-factor, H98(y,2) ∼ 1.5. At the steady-state equilibrium, the
poloidal plasma pressure parameter βp, the normalized plasma pressure parameter βn and the
internal inductance li are respectively 2.48, 3.03 and 0.85. The q-pro�le is monotonic along
the normalized radius, with q0 ∼ 1.25 on axis and q95 ∼ 5.6 near the magnetic separatrix.
The loop voltage is very small at around 2 mV, con�rming that this scenario is an H-mode
steady-state scenario. Fig. 2.4 illustrates the temperature, density pro�les, the current drive
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Figure 2.2: The magnetic and kinetic pro�les of the reference scenario for H-mode steady-
state plasma on EAST at 6.78 s. Left panels: plasma density pro�les (top), and plasma
temperature pro�les (bottom); Right panels: plasma current drive pro�les(top), and plasma
deposited power pro�les (bottom).

and power deposition pro�les at 925.9 s. One can notice that the NBI-driven, LH-driven and
bootstrap current constitute the major current fraction in the core region, while the current
pro�le in the pedestal region near the separatrix is mainly composed of the bootstrap current.
The plasma heating is primarily provided by the generated α particles from nuclear fusion re-
actions. The EC heating is localized at the normalized radius 0.4, while the power deposition
pro�le of NBI, IC and LH are broader than that of EC, but much smaller than the heating
from the generated α particles.

2.1.6 Conclusion of Section 2.1

In this section, the modelling of the plasma current density di�usion, thermal and momentum
transport as well as density pro�le have been described. Simulations of H-mode steady-state
plasma discharge on the EAST and ITER tokamaks via the METIS code are presented as
well. It should be noted that the METIS modelling not only involves the models presented in
sub-sections 2.1.2 to 2.1.4, but also involves a number of other models, for example, the scrape-
o�-layer (SOL) models, impurity models and MHD instability models. Since the objective of
the thesis is to develop advanced identi�cation methods using data and provide robust and
adaptive solutions for the control of magnetic and kinetic parameters in advanced tokamak
scenarios, the modelling details presented above are ample to assist in understanding the
relevant plasma dynamics and provide the physical insights in developing e�ective control
algorithms.
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(a) (b)

(c) (d)

Figure 2.3: Simulation of an H-mode steady-state plasma scenario on ITER. (a) Left: time
traces of plasma current and the loop voltage; Right: time traces of the auxiliary heating
powers. (b) Left: time traces of plasma poloidal parameter and internal inductance; Right:
time traces of the safety factors at typical points. (c) Left: time traces of electron temperatures
at typical points; Right: time traces of electron densities at typical points. (d) The ITER
magnetic equilibrium and �ux surfaces in a poloidal cross-section at 600 s.

2.2 Identi�cation of PNLSS plasma models

2.2.1 Model structure

Plasma magnetic and kinetic transport dynamics can be modelled as MHD �uid equations
[Hinton and Hazeltine, 1976], which are intrinsically nonlinear time-varying PDEs. However,
in view of model identi�cation, it is preferable to describe plasma response models as nonlinear
ordinary di�erential equations (ODEs), which may be obtained by discretizing the PDEs in
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(a) (b)

Figure 2.4: The magnetic and kinetic pro�les of the reference scenario for H-mode steady-
state plasma on ITER at 925.9 s. Left panels: plasma density pro�les (top), and plasma
temperature pro�les (bottom); Right panels: plasma current drive pro�les(top), and plasma
deposited power pro�les (bottom).

the spatio-temporal domain. In this regard, the sampled input-output data from interpre-
tative plasma simulations or tokamak plasma experiments can therefore be used for model
identi�cation. We describe the plasma dynamics in a general nonlinear discrete state-space
form as:

x(t+ 1) = f (x(t), u(t))

y(t) = g (x(t), u(t))
(2.40)

where u(t) ∈ Rnu represents the model inputs at time t, x(t) ∈ Rn denotes the model states
at time t, while y(t) ∈ Rny indicates the model outputs at time t. A more convenient model
structure to characterize the combined e�ects from the dominant linear dynamics and the
auxiliary nonlinear dynamics can be expressed as:

x(t+ 1) = Ax(t) +Bu(t) + fNL (x(t), u(t))

y(t) = Cx(t) +Du(t) + gNL (x(t), u(t))
(2.41)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu are LSS matrices that depict the linear
system dynamics. fNL (x(t), u(t)) and gNL (x(t), u(t)) are nonlinear functions of the system
states x(t) and inputs u(t), which can be approached by a combination of nonlinear basis
functions, for example, monomials, sigmoid functions, hyperbolic tangents and radial basis
functions [Relan et al., 2018]. Due to the �exibility and e�ectiveness of monomials, we use a
set of monomials as basis functions to approximate the nonlinear plasma dynamics. We de�ne
fNL (x(t), u(t)) = Eζ(t) and gNL (x(t), u(t)) = Fη(t), where E ∈ Rn×nζ and F ∈ Rny×nη are
coe�cients of the basis functions ζ(t) ∈ Rnζ and η(t) ∈ Rnη , respectively. Hence, the plant
model can then be transformed into a more compact form as:

x(t+ 1) = Ax(t) +Bu(t) + Eζ(t)

y(t) = Cx(t) +Du(t) + Fη(t)
(2.42)
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Here, (A,B,C,D,E, F ) are constant coe�cient matrices to be identi�ed, in which (A,B,C,D)

describe the linear dynamics with the degree of monomials at 1, while (E,F ) depict the
nonlinear dynamics with the degree of monomials greater than 1. ζ(t) and η(t) contain
nonlinear monomials in x(t) and u(t) of degree 2 up to a threshold degree l (design parameter).

Speci�cally, ζ(t) and η(t) are formed by all possible products of the input and state vari-
ables raised to l. For example, de�ne ζl1u,..,lnuu ,l1x,...l

n
x
as one element of ζ(t), it can be expressed

as:

ζl1u,..,l
nu
u ,l1x,...,l

n
x

= Πnu
i=1u

liu
i Πn

j=1x
ljx
j

s.t.
nu∑
i=1

liu +
n∑
j=1

ljx ∈ {2, 3, ..., l}, liu ∈ N, ljx ∈ N
(2.43)

where liu is the degree of the i-th element of u(t), while ljx represents the degree of the j-th
element of x(t). The merits of using polynomial expansions are twofold: to set universal
approximation properties and to be amenable for multivariate extensions.

Let us de�ne the concatenation of the input and state variables as:

υ = [u1(t), u2(t), ..., unu(t), x1(t), x2(t), ..., xn(t)]T (2.44)

where υ ∈ Rnu+n. Combining equations (2.43) and (2.44), the total number of elements for
ζ(t), i.e. nζ , can be calculated as

nζ =

[(
nu + n+ l

l

)
− (nu + n)− 1

]
(nu + n) (2.45)

We choose the same set of basis functions to approximate nonlinear output dynamics, thus
η(t) = ζ(t) and nη = nζ . According to equation (2.45), we �nd that the number of estimated
parameters for nonlinear components rely on the number of states, inputs and the threshold
degree. For a high-order system, the value of nζ and nη can be extremely large, which may
cause identi�ability problem. As suggested in [Paduart et al., 2012], to keep the number of the
estimated nonlinear parameters under control, it is practical to restrict the threshold degree
at 3 and to optionally eliminate the model inputs from the nonlinear combinations.

2.2.2 Identi�cation procedure

The procedure to identify a PNLSS plasma model as expressed in equation (2.42) for control
from sampled input-output data is illustrated in Fig. 2.5. First, we determine the identi�cation
objective, including the model inputs and outputs. The model inputs are the selected auxiliary
heating & current drive powers. For di�erent applications, the model inputs are allowed to
be di�erent. They comprise the neutral beam injection power PNBI , the electron cyclotron
heating power PEC , the ion cyclotron resonance heating power PIC and the lower hybrid
current drive power PLH . The model outputs are the selected magnetic and kinetic parameters
including the poloidal pressure parameter βp, the normalized pressure parameter βn, the
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average toroidal rotation angular speed ωφ, the α particle power Pα, the central rotational
transform ι0 and the central electron temperature Te,0. Likewise, for di�erent applications,
the model outputs are permitted to vary depending on the availability of these variables.

Once the model inputs and outputs are determined, the desired input waveforms in terms
of the pseudorandom binary sequences (PRBS) and chirping signals are designed to excite the
dominant plasma dynamics and then implemented into a tokamak plasma simulator or PCS.
Subsequently, we perform the identi�cation experiments either with a plasma simulator or a
tokamak device. For the case of real tokamak plasma identi�cation experiments, the model
inputs are forced to track the desired input waveforms, which may necessitate a feedback
controller. In addition, the model inputs and outputs should either be directly measured by
tokamak plasma sensors, e.g. the electron temperature from the Thomson scattering diag-
nostic, or be estimated by the kinetic-magnetic equilibrium reconstruction code [Lao et al.,
1985,Ferron et al., 1998]. In this thesis, we focus on the technical problems of the identi�ca-
tion procedure, including how to preprocess the sampled input-output data for identi�cation,
how to identify LSS models and how to derive a PNLSS plasma response model, which are
summarised in the red frames in Fig. 2.5.

The major steps of the identi�cation process are described below:

Data-preprocessing The measured inputs and outputs from the experiments are �rst se-
lected and merged into an input and output dataset, respectively. The datasets are then
handled by a lowpass �lter with the same time constant to remove the measurement noise.
Then the means of the input and output datasets are removed before normalizing them into
the domain of [-1,1] [Ljung, 1995]. The new input-output data are divided into three sets:
identi�cation dataset for model identi�cation, selection dataset to select an optimal model
and testing dataset to evaluate the predictive performance of the selected model.

Linear model identi�cation Two LSS model identi�cation approaches are introduced, in
which the �rst one handles the identi�cation dataset in the time domain while the second
analyze it in the frequency domain.

Time-domain approach: First, determine the linear system order and obtain an initial
guess of the LSS model using the time-domain subspace identi�cation technique. In particu-
lar, the input-output data sequences are stacked into a block Hankel matrix, which is analyzed
via the RQ factorization and the singular value decomposition (SVD) to determine the order
of the linear system. The system matrices A and C are then estimated up to a similarity
transformation [Verhaegen and Verdult, 2007], while B and D are calculated by solving a
least-squares problem. Second, nonlinear Levenberg-Marquardt (LM) [Marquardt, 1963] op-
timization of a cost function that penalizes the prediction errors, between the linear model
estimates and the associated outputs, is adopted to improve the linear model accuracy.

Frequency-domain approach: First, non-parametric estimate of the frequency response
functions (FRF) of the identi�cation dataset is derived based on the local polynomial method
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Figure 2.5: Schematic of the PNLSS plasma model identi�cation procedure.

(LPM) [Pintelon et al., 2010]. Second, approximating plasma dynamics using an LSS model
structure regardless of the nonlinear terms in equation (41), the weighted mean square devia-
tion, between the nonparametric FRF and the FRF of the LSS model, is minimized to estimate
an optimal LSS model using the frequency-domain subspace identi�cation technique [Pintelon
and Schoukens, 2012]. Third, the model estimates of (A,B,C,D) are further optimized to
improve the model accuracy in the frequency domain.

PNLSS model identi�cation The LM optimization technique is used to estimate the
PNLSS plasma model coe�cients, speci�cally the system matrices (A,B,C,D,E, F ) and the
initial states υ(t0), where t0 represents the initial time used for the identi�cation. First,
assuming E = 0, F = 0 and υ(t0) = 0, the nonlinear model is initialized with the optimal LSS
model (A,B,C,D). Second, a cost function that de�nes the weighted mean square deviation,
between the modelled and measured output spectra, is minimized via the LM algorithm such
that both the system matrices of the PNLSS model and the initial conditions can be optimally
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approximated. Third, derive a parsimonious representation of the PNLSS plasma response
model [Relan et al., 2018], as described in section 2.4.

Model selection and evaluation Assess the predictive performance of the identi�ed
PNLSS models and select an optimal one. The selection dataset is used to determine the
optimal PNLSS model. The e�ectiveness of the model identi�cation algorithm is evaluated
by examining the root-mean-square (RMS) errors between model estimates from each PNLSS
model candidates and the output measurements. The �nal chosen model should pass the
cross-validation test and exhibit the lowest RMS error. The optimal PNLSS model is then
used to predict the model outputs in the testing dataset and the predictive performance is
further examined.

2.2.2.1 Data-preprocessing for plasma model identi�cation

The collected data from simulations/experiments are not likely to be in shape for immediate
use in an identi�cation algorithm [Ljung, 1995]. For experimental application on EAST, the
experimental measurements can intrinsically involve noise, which generally appears in the
high-frequency domain beyond the bandwidth of the dominant plasma dynamics. Pre�ltering
the input and output data via a lowpass �lter L(s) = 1

τf s+1 is therefore adopted where τf is a
small time constant, typically at 0.003 s. Pre�ltering does not change the input-output relation
for a linear system in the frequency domain of interest while it can improve the identi�cation
performance in the range of the dominant plasma dynamics [Ljung, 1995].

Due to the pulse duration limit in tokamak plasma discharges, the identi�cation dataset
may need to contain the input-output measurements from many independent simulations
and/or experiments. In addition, there are a number of phases in a tokamak plasma dis-
charge, where the kinetic control is preferably scheduled from the early �at-top phase to the
end of the �at-top phase. Therefore, it is naturally bene�cial to select the dedicated simula-
tion/experimental data in the �at-top phase and merge them into the input-output datasets.
Assume that there are m merged plasma discharges, where each discharge has the number of
samplings at Ni, the input-output dataset can thus be expressed as:

U(k) =
[
U1(k1), U2(k2), . . . , Um(km)

]
, Y (k) =

[
Y1(k1), Y2(k2), . . . , Ym(km)

]
ki = 1, 2, . . . , Ni, i = 1, 2, . . . ,m; k = 1, 2, . . . , N,N =

m∑
i=1

Ni

(2.46)

where N is the total number of sampling points, U(k) and Y (k) represent the input and
output vectors at the sampling time k, respectively. Ui(ki) and Yi(ki) represent the input and
output vectors of the i-th plasma discharge at the sampling time ki, respectively.

In practice, the input-output measurements are collected and recorded in physical units,
the levels of which can be quite arbitrary. For example, the typical average toroidal rotation
is of the order of 104 rad/s, while βn is of the order of 10−2. It is bene�cial to subtract sample
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means (〈U〉, 〈Y 〉) from the input-output datasets and normalize them with the maximum
allowed variations (Unorm, Ynorm) in each input-output channel as:

U(k) =
U(k)− 〈U〉
Unorm

,Y(k) =
Y (k)− 〈Y 〉
Ynorm

, k = 1, 2, ..., N (2.47)

where 〈U〉 and 〈Y 〉 are the mean vector of the inputs and measured outputs. U(k) and Y(k)

are, respectively, input and output deviations from the operating point (〈U〉, 〈Y 〉). Unorm and
Ynorm are de�ned as the maximum and minimum input and output values in the collected
dataset, respectively.

Subsequently, the new input-output datasets are divided into three subsets as:

(Uid(kid),Yid(kid)) = (U(ka),Y(ka))

(Usel(ksel),Ysel(ksel)) = (U(kb),Y(kb))

(Utest(ktest),Ytest(ktest)) = (U(kc),Y(kc))

kid = 1, 2, . . . , Nid, ka = 1, 2, . . . , Nid

ksel = 1, 2, . . . , Nsel, kb = Nid + 1, . . . , Nid +Nsel

ktest = 1, 2, . . . , Ntest, kc = Nid +Nsel + 1, . . . , N

N = Nid +Nsel +Ntest

(2.48)

where Nid, Nsel and Ntest are respectively the number of samplings for model identi�cation,
selection and testing. (Uid(kid),Yid(kid)), (Usel(ksel),Ysel(ksel)) and (Utest(ktest),Ytest(ktest))
represent the dataset for model identi�cation, selection and testing, respectively.

2.2.3 Identi�cation of the linear plasma dynamics

In this section, the linear plasma dynamics is identi�ed using a combination of subspace and
PEM techniques. The objective is to identify the system matrices (A,B,C,D) in equation
(2.41) using the identi�cation dataset (Uid(kid),Yid(kid)), kid = 1, 2, . . . , Nid. Two alterna-
tive approaches that take into account the problem in the time- and frequency-domain are
investigated in parallel.

2.2.3.1 A time-domain approach

Time-domain subspace identi�cation The time-domain subspace identi�cation tech-
nique is employed to identify a linear state-space model. The idea of the subspace identi-
�cation is that the system matrices of the signal-generating state-space model is associated
with certain subspaces of the structured block Hankel matrix �lled with the input-output
data [Verhaegen and Verdult, 2007]. Subspace identi�cation is a non-iterative identi�cation
technique which does not require any parameterization, and it can also assist in determin-
ing the system order. Its linear parameter-varying extensions can be found in [Verdult and
Verhaegen, 2002,Verdult and Verhaegen, 2005]. The multiple-input multiple-output (MIMO)
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subspace identi�cation of the discrete linear time-invariant (LTI) state-space system matrices
is considered, regardless of the nonlinear terms. The state-space model structure reads:

X(t+ 1) = AX(t) +BUid(t)
Yid(t) = CX(t) +DUid(t)

(2.49)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu are the linear system matrices to be
estimated. n is the order of the linear system to be determined, and X(t) ∈ Rn represents a
state vector. nu and ny are the number of model inputs and outputs, respectively.

We �rst construct input and output block Hankel matrices using the pre-processed iden-
ti�cation data set as

U1,s,N =


Uid(1) Uid(2) . . . Uid(Nid − s+ 1)

Uid(2) Uid(3) . . . Uid(Nid − s+ 2)
...

...
. . .

...
Uid(s) Uid(s+ 1) . . . Uid(Nid)



Y1,s,N =


Yid(1) Yid(2) . . . Yid(Nid − s+ 1)

Yid(2) Yid(3) . . . Yid(Nid − s+ 2)
...

...
. . .

...
Yid(s) Yid(s+ 1) . . . Yid(Nid)


(2.50)

where s is an arbitrary positive integer, greater than the system order n, but much smaller
than Nid. Using equation (2.49), we can derive an equation which relates the input and output
block Hankel matrices with the system matrices as

Y1,s,Nid = OsX1,Nid + TsU1,s,Nid (2.51)

where

Os =


C

CA

CA2

...
CAs−1

 , Ts =


D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
. . . . . . 0

CAs−2B CAs−3B . . . CB D

 ,
X1,Nid =

[
X(1) X(2) . . . X(Nid)

]
(2.52)

where Os ∈ Rnys×n is the extended observability matrix containing A and C, while Ts ∈
Rnys×nus comprises A, B and C. One idea of estimating A and C up to a similarity transfor-
mation is to cancel the term TsU1,s,Nid by post-multiplying an orthogonal matrix of U1,s,Nid ,

i.e. Π⊥U1,s,Nid
= INid − UT1,s,Nid

(
U1,s,NidUT1,s,Nid

)−1
U1,s,Nid , and then exploit the column space

of Y1,s,NΠ⊥U1,s,N . A more computationally e�cient technique is to concatenate the input and
output block Hankel matrices and perform the RQ factorization as

[
U1,s,N

Y1,s,N

]
=

[
R11 0 0

R21 R22 0

]Q1

Q2

Q3

 (2.53)
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where R11 ∈ Rnus×nus, R21 ∈ Rnys×nus, R22 ∈ Rnys×nys, Q1 ∈ Rnus×Nid , Q2 ∈ Rnys×Nid .
Given the factorization in equation (2.53), we have Y1,s,NΠ⊥U1,s,N = R22Q22 (See Lemma 9.2

in [Verhaegen and Verdult, 2007]). By assuming that the rank of
[
X1,Nid

U1,s,Nid

]
equals (n+nus), we

can further obtain the relation: range(Os) = range(R22), where the symbol 'range()' denotes
the column space of a matrix (See Theorem 1 in [Verhaegen and Verdult, 2007]). It implies
that the estimates of A and C up to the similarity transformation can be extracted directly
from the low dimensional matrix R22.

The column space of the extended observability matrix is examined by performing SVD
on R22 as R22 = WΣV T , we may sort out the dominant subspace of linear dynamics by
truncating the subspace corresponding to the small singular values. In this regard, we impose
the singular value decomposition on R22 as

R22 =
[
W1 W2

] [Σ1 0

0 Σ2

] [
V1 V2

]T 'W1Σ1V
T

1 (2.54)

where W1 ∈ Rnys×n,W2 ∈ Rnys×(nys−n),Σ1 ∈ Rn×n,Σ2 ∈ R(nys−n)×(nys−n), V1 ∈
Rnys×n, V2 ∈ Rnys×(nys−n), where the order of the system model is speci�ed by n. The
estimate of A and C can be obtained by examining the left singular vector space W1. Obvi-
ously, C = W1(1 : ny, :). We de�ne Υ0 = W1(1 : ny(s − 1), :) and Υ1 = W1(ny + 1 : nys, :).
De�ning M ∈ Rn×n, N ∈ Rn×n, A = MN−1, A can be obtained by performing a constrained
optimization by minimizing a cost function:

VTL1(A) =‖ Υ1N −Υ0M ‖F
subject to: δ ⊗N + β ⊗M + βT ⊗MT ≥ 0

NT = N > 0, β =

[
0 1

−1 0

] (2.55)

where δ is a small number that limits the imaginary part of the poles of A. The symbol ‖‖F
is the Frobenius matrix norm, where ⊗ denotes a Kronecker product.

In order to calculate B, D and the initial states X(1), we parameterize the input-output
equation as:

y(k) = φ(k)T θ (2.56)

where

φ =
[
CAk

∑k−1
i=0 u(i)T ⊗ CAk−i−1 uT ⊗ Iq

]
θ =

[
X(1)T vec(B)T vec(D)T

]T
where the symbol vec() denotes a vector constructed by stacking the columns of a matrix on
top of each other. Hence, X(1), B and D are derived by minimizing the cost function

VTL2 = min
θ

Nid∑
k=1

‖ y(k)− φ(k)T θ ‖22 (2.57)
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Prediction-error identi�cation A linear state-space model identi�ed from the identi�-
cation dataset via the time-domain subspace method can provide an initial guess on the
linear plasma response dynamics. The model can be further re�ned by involving a non-
linear iterative optimization routine [Ljung, 1995]. we de�ne the parameter vector θL =[
vec(A)T , vec(B)T , vec(C)T , vec(D)T

]T . The parameter vector can be estimated by optimiz-
ing the cost function as:

VTL3 = min

Nid∑
k=1

‖ y(k)− ŷ(u(k), θL) ‖22 (2.58)

where θL is initialized with the model derived from the subspace identi�cation. The parameters
θL are estimated by minimizing the cost function VTS3 using the LM optimization method.
This method is essentially a mixture of the gradient-descent and Gauss-Newton methods
and a trade-o� factor λ is used to determine its characteristic. More precisely, when λ →
∞, the LM algorithm tends to behave like a gradient-descent method, when λ → 0, the
LM algorithm gradually exhibits the feature of the Gauss-Newton method. The gradient-
descent method is more robust than the Gauss-Newton algorithm if the parameter estimate
is far away from the local minimum, while the Gauss-Newton converges much faster than the
gradient-descent method when the parameter estimate approaches the local minimum. The
LM algorithm can therefore accumulate the advantages of these two optimization algorithms
in one optimization setup. Iterative LM optimization results in a set of re�ned system matrices
as (A∗TL, B

∗
TL, C

∗
TL, D

∗
TL).

2.2.3.2 A frequency-domain approach

A frequency-domain approach, as an alternate method, is applied to identify an LSS model.
The best linear approximation (BLA) of plasma response dynamics is �rst introduced via
LPM [Pintelon et al., 2010]. Then the frequency-domain subspace method is used to extract
an LSS model consistent with the non-parametric BLA estimate, which is further re�ned using
the LM optimization algorithm.

Non-parametric BLA The BLA of plasma dynamics refers to the best approximation of
the measured output in a given model set G in a least-squares sense, expressed as:

ĜBLA(k) = arg min
G(k)∈G

Eu{‖ Y (k)−G(k)U(k) ‖22} (2.59)

where ĜBLA(k) represents the estimate of the FRF of the BLA, Y (k) and U(k) denote the
discrete Fourier spectra of the output and the input at the frequency line k, respectively. G(k)

indicates the FRF of a linear system in G. Eu is an average of the frequency bandwidth of
interest.

Parametric BLA With the given non-parametric estimate ĜBLA, we subsequently identify
a linear parametric model, estimated by the frequency-domain subspace method [McKelvey
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et al., 1996]. The model �tting quality is evaluated by a weighted least-squares cost function
as:

VFL1 =

nf∑
k=1

εHFL1(k)WFL1(k)εFL1(k), εFL1(k) = ĜBLA(k)− ĜFL1(A,B,C,D, k) (2.60)

where nf represents the number of processed frequency lines, andWFL1(k) denotes the weight-
ing matrix, while the superscript H is a symbol of the Hermitian transpose. εFL1(k) denotes
the deviation between the non-parametric FRF estimate ĜBLA(k) and the parametric model
estimate ĜFL1(A,B,C,D, k), given by:

ĜFL1(A,B,C,D, k) = C(zkIn −A)−1B +D, zk = e
j 2πk
Nid (2.61)

where (A,B,C,D) are model parameters to be estimated, and zk is a z-transform variable,
while n represents the optimal model order (free parameter). Using the non-iterative subspace
identi�cation, we therefore derive a parametric model with the system matrices as M̂∗FL1 =

(A∗FL1, B
∗
FL1, C

∗
FL1, D

∗
FL1) with an optimal model order at n∗.

Prediction-error identi�cation To improve the �tting accuracy, an iterative LM optimi-
sation method is utilized, whose cost function is expressed as:

VFL2 =

nf∑
k=1

εHFL2(k)WPI(k)εFL2(k)

εFL2(k) = vec
(
ĜBLA(k)− ĜFL2(A,B,C,D, k)

)
ĜFL2(A,B,C,D, k)|i=0 = ĜFL1(A∗FL1, B

∗
FL1, C

∗
FL1, D

∗
FL1, k)

(2.62)

where VFL2 and εFL2(k) are the cost function and model prediction error, respectively.
WFL2(k) represents the weighting matrix at the frequency line k. The initial guess of
ĜFL2(A,B,C,D, k)|i=0 is assumed to be the one obtained via the frequency-domain sub-
space method. The nonlinear optimization requires the calculation of the Jacobian of the
model error εFL2(k) with respect to the model parameters as

∂ε(k)

Aij
= vec

(
C(zkIn∗ −A)−1In

∗×n∗
ij C(zkIn∗ −A)−1B

)
∂ε(k)

Bij
= vec

(
C(zkIn∗ −A)−1In

∗×nu
ij

)
∂ε(k)

Cij
= vec

(
I
ny×n∗
ij C(zkIn∗ −A)−1B

)
∂ε(k)

Dij
= vec

(
I
ny×nu
ij

)
(2.63)

where Im×nij ∈ Rm×n represents a matrix with the (i, j) element at 1 and all the other
elements at 0. Using the LM optimization, an optimal discrete LSS model, denoted as
(A∗FL, B

∗
FL, C

∗
FL, D

∗
FL), is therefore identi�ed such that VFL2 can be driven to a good local

minimum or a global minimum. The optimal discrete LSS model can be further transformed
into a continuous one for control design or predictive simulations.
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2.2.4 Identi�cation of the nonlinear plasma dynamics

In this section, a PNLSS plasma model is identi�ed based on an optimal LSS model, either
derived from the time-domain approach or from the frequency-domain approach. Next, a
parsimonious representation of the PNLSS model is obtained by using the canonical polyadic
decomposition (CPD) technique [Dreesen et al., 2015].

2.2.4.1 Identi�cation of a PNLSS plasma model

In advanced tokamak scenarios, the response of magnetic and kinetic parameters with respect
to additional heating powers may exhibit nonlinear behaviours. In this regard, it is necessary
to identify the nonlinear terms E and F in equation (2.42) such that nonlinear dynamics can
be captured. First, we initialize the nonlinear (NL) model (ANL, BNL, CNL, DNL, ENL, FNL)

with an optimal LSS model plus the null nonlinear terms as (A∗p, B
∗
p , C

∗
p , D

∗
p, 0n×nζ , 0n×nη), p ∈

{TL, FL}, which is parameterized as:

θNL =
[
vec(ANL)T , vec(BNL)T , vec(CNL)T , vec(DNL)T , vec(ENL)T , vec(FNL)T

]
(2.64)

The vector θNL is then estimated by minimizing the weighted cost function that penalizes the
output errors as:

VNL(θNL) =

nf∑
k=1

EHNL(k)WNL(k)ENL(k) (2.65)

with respect to θNL. WNL(k) denotes the user-de�ned frequency domain weighting matrix,
through which one can weigh the importance of the frequency bandwidth. Typically, this
matrix is prescribed as the inverse covariance matrix of the output. The output error is
de�ned as ENL = YMEA(k) − YNL(k, θNL), where YMEA(k) and YNL(k) are the discrete
Fourier spectra of the measured (MEA) and NL model-simulated outputs, respectively. The
optimal model parameter vector θ∗NL is optimized as:

θ∗NL = arg min
θNL

VNL(θNL) (2.66)

Analogous to the linear cases, the LM algorithm is used to optimize θNL, which requires
the computation of the Jacobian of the output prediction error with respect to the model
parameters:

∂E(k)

∂θNL
=
∂YNL(k, θNL)

∂θNL
(2.67)

As mentioned in [Paduart et al., 2010,Paduart et al., 2012], the explicit calculation of ∂E(k)
∂θNL

in the frequency domain is not practical. Hence, an implicit technique is adopted: we �rst
compute these terms in the time-domain, which are then transformed into the frequency
domain via discrete Fourier transform (DFT) for optimization.
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2.2.4.2 Parsimonious representation of the PNLSS plasma model

Although the standard PNLSS modelling is potential to approximate nonlinear plasma dy-
namics, its obvious drawback is that the model parameter number grows substantially with the
increase of polynomial degree and the number of states and inputs. The signi�cant growth of
the parameter number may result in identi�ability issues and over-�tting [Relan et al., 2018].
Inspired by [Relan et al., 2018], we adopt a decoupling method that calculates the decoupled
representation of the multivariate polynomials via the CPD of a tensor containing Jacobians
for a set of samplings. The idea of the decoupling method is that a multivariate polynomial
vector function is decomposed into a linear transformation V , followed by a set of parallel uni-
variate polynomials g1, g2, gr, and another linear transformation W, which therefore removes
insigni�cant cross-terms in the multivariate polynomials.

Let us consider the nonlinear terms in the PNLSS model jointly as:

h(υ(t)) =

[
Eζ(υ(t))

Fη(υ(t))

]
, υ(t) = [x(t)T , u(t)T ]T ∈ Rn+nu (2.68)

The aim of the decoupling algorithm is to transform equation (2.68) into a form

h((υ(t)) = Wα
(
V Tυ(t)

)
,W =

[
Wx

Wy

]
(2.69)

where V ∈ R(n+nu)×r and W ∈ R(n+ny)×r are two constant mapping matrices. In particular,
denoting υ = V Tυ(t), V maps the joint vector of states and inputs υ(t) into a new coordinate
υ(t) ∈ Rr with the reduced dimension r. In the new coordinate, the univariate functions
αi(υi), i = 1, 2, ..., r are able to operate on the variables υi, i = 1, 2, ..., r separately, where υi
and αi denote the i-th element of the vector υ and the polynomial functions α(υ(t)). The
mapping matrix W then transforms the results of the univariate functions into the nonlinear
terms consistently with the process and output equations in the PNLSS model. Speci�cally,
Wx relates the process nonlinear term Eζ(υ(t)) with α(υ(t)), while Wy links the output
nonlinear term Fη(υ(t)) to α(υ(t)).

In order to calculate the mapping matrices W and V as well as the univariate polynomial
functions αi(υ), i = 1, 2, ..., r, we �rst calculate the Jacobians of h(υ(t)) with respect to υ at
a set of sampling points k = 1, 2, ..., Ns as:

Ji,j,k =
∂hi(υ

k
j )

∂υkj
, i = 1, 2, ..., (n+ ny), j = 1, 2, ..., (n+ nu), k = 1, 2, ..., Nid (2.70)

where υkj ∈ Rn+nu denotes the j-th element of υ at the sampling point k. Subsequently, we
accumulate all the Jacobians into a tensor bank with the dimension at (n+ny)×(n+nu)×Nid.
Performing the CPD decomposition, the Jacobians can thus be truncated into a form as:

Ji,j,k =
r∑
q=1

wiqvjqχkq (2.71)
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where W = [wiq](n+ny)×r and V = [vjq](n+nu)×(r) are computed easily. The univariate poly-
nomial functions are calculated by following the Lemma.

Lemma 1. [Dreesen et al., 2015] The �rst-order derivatives of the parameterization (69)

are given by J(u) = Wdiag(g′i(v
T
i u))V T , where g′i(v

T
i u). Therefore, we have the relation

χkq = g′q(υ
k
q ).

We de�ne the univariate polynomial functions as α′q(υq) = c′q,1υq + c′q,2υ
2
q + ...+ c′q,2υ

d−1
q ,

where d is the order of the univariate polynomials αq(υq). For the i-th branch g′q(υq), the
coe�cients are simply derived by polynomial �tting as:

(υ1
q)

1 (υ1
q)

2 ... (υ1
q)
d−1

(υ2
q)

1 (υ2
q)

2 ... (υ2
q)
d−1

...

(υNsq )1 (υNsq )2 ... (υNsq )d−1



c′q,1
c′q,2
...

c′q,d−1

 =


χ1q

χ2q

...

χNs,q

 (2.72)

where (υkq )
p represents the q-th element of the vector υ at the sampling point k to the p-th

power. Once the derivative of univariate functions α′q(υq) are �tted, the univariate functions
are consequently obtained as αq(υq) =

∫ υq
0 α′q(υq)dυq.

2.2.5 Identi�cation results

In this section, the nonlinear model identi�cation scheme described above is applied to iden-
tifying PNLSS plasma models. The identi�cation performance is extensively evaluated, com-
pared and discussed through simulations and/or experiments on the EAST and ITER toka-
maks. Speci�cally, we compare the model predicted outputs with the outputs sampled from
METIS simulations or experiments and introduce the RMS error to quantify the identi�cation
performance, which reads:

eRMS =

√√√√ 1

Nt

Nt∑
t=1

(y(t)− ymod(t))2 (2.73)

where ymod represent the model-predicted outputs, while y(t) denotes the original outputs,
either from METIS simulations or from the EFIT reconstructions [Huang et al., 2017] in
tokamak plasma experiments. Nt is the total number of sampling points in y(t).

2.2.5.1 Identi�cation results from METIS simulations on EAST

In the �rst case, the noise-free data generated from the nonlinear plasma simulator METIS
in an H-mode steady-state plasma discharge on the EAST tokamak, i.e. shot #62946, is
collected to identify LSS and PNLSS models. The key plasma parameters for the discharge
simulation are described in Section 1.4 and the METIS tuning procedure for advanced tokamak
plasma discharge simulations is referred to [Moreau et al., 2013]. Our objective is to identify
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the responses of βp (poloidal plasma pressure parameter), βn (normalized plasma pressure
parameter), Te,0 (the central electron temperature), ωφ (the average toroidal rotation angular
speed) and ι0 (the central rotational transform) with respect to the heating powers of ICRH
at 33 MHz and of LHCD at 4.6 GHz. In order to excite the dominant plasma eigenmodes, �ve
dedicated METIS simulations are performed, among which two heating powers are modulated
using PRBS waveforms [Ljung, 1995, Landau and Zito, 2007], while all the other METIS
simulation setup remain unchanged. As shown in Fig. 2.6(f), the ICRH power varies in the
range 0 MW-1.5 MW while the LHCD power is limited to the interval 0.85 MW-2.6 MW. The
measurements of both the control actuations and the plasma parameters of interest are taken
with the sampling time at 0.02 s, and the pulse duration for each simulations vary between
15 and 20 s. Accounting for the plasma dynamics in the �at-top phase, the control inputs
and measurements in the interval 4-15 s of each simulation are selected as datasets for model
identi�cation, selection and testing. Five selected datasets are �rst merged and then divided
into three subsets, with one half used for identi�cation (See the upper panel in Fig. 2.6(f)),
a quarter for model selection (See the left bottom panel in Fig. 2.6(f)) and the remaining for
predictive tests (See the right bottom panel in Fig. 1(f)). The green dashed lines denote the
starting/ending sampling of each selected numerical shots. For convenience, we label TD as
the time-domain approach, while denoting FD as the frequency-domain approach.

With the identi�cation dataset, an LSS plasma model of order 4 is identi�ed by the TD
approach, and the characteristic time constants are 0.6019 s, 0.0597 s, 0.005 s. The model-
simulated outputs from the TD approach are compared with the corresponding METIS simu-
lation outputs in Fig. 2.6, indicating that the TD-LSS and TD-PNLSS model predictions are
consistent with the METIS simulations in both identi�cation, selection and testing phases. In
contrast to the TD-LSS model, it is found that enhanced identi�cation performance has been
obtained with the TD-PNLSS model for all the outputs. More speci�cally, the RMS errors
of βp, βn and ωφ decrease from 0.1134, 0.0823, 0.5362 to 0.0762, 0.0556 and 0.4036 in the
testing phase, respectively. The underlying reason is that the TD-PNLSS model involves two
nonlinear polynomial terms in both the process and output equations for nonlinear dynamics
accommodation.

Compared with the TD approach, the FD approach cannot identify an appropriate LSS us-
ing the given identi�cation dataset, as listed in Table 2.2, perhaps because the linear couplings
are more di�cult to be captured by the FD approach in the MIMO setup. The RMS errors
for all the output variables are around twice larger than those corresponding to the TD-LSS
model. Nonetheless, initializing the PNLSS model with the identi�ed FD-LSS model, signif-
icant model prediction error reduction has been achieved with the FD-PNLSS model, whose
RMS errors in all the output variables are comparable to those obtained by the TD-LSS
model, but not as small as those predicted by the TD-PNLSS model due to improper model
initialization.

To sum up, the identi�cation results have shown that both the TD-LSS, TD-PNLSS and
FD-PNLSS models can properly describe the responses of plasma parameters βp, βn, Te,0, ωφ,
and ι0 with respect to the ICRH power at 33MHz and the LHCD power at 4.6GHz in a broad
frequency bandwidth. The enhanced identi�cation performance has been demonstrated by
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Comparison of the model-predicted outputs and the outputs generated from
METIS simulations on EAST. Upper panels of (a)-(e): comparison of the TD-LSS predictions
(blue dashed), the TD-PNLSS predictions (red) and the METIS simulation outputs (black)
of (a) βp ,(b) βn,(c) Te,0 ,(d) ωφ (e) ι0 in the identi�cation data set. Bottom panels of (a)-(e):
comparison of the TD-LSS predictions (blue dashed), the TD-PNLSS predictions (red) and
the METIS simulation outputs (black) of (a) βp ,(b) βn,(c) Te,0 ,(d) ωφ,(e) ι0 in the validation
(left half) and testing (right half) data set. Upper panel of (f) Time traces of the ICRH power
(black) and LHCD power (red) in the identi�cation data set; Bottom panel of (f): Time traces
of the ICRH power (black) and LHCD power (red) in the validation (left half) and testing
(right half) data set. The green dashed lines separate di�erent METIS simulation shots.

involving nonlinear polynomial terms at both the state and output equations. In addition,
good LSS initialization is proved bene�cial to the identi�cation performance of the generated
PNLSS model.



48 Chapter 2. Tokamak Plasma Modelling and Identi�cation

Table 2.2: Comparison of the RMS errors from METIS simulations on EAST.

Option TD-LSS TD-PNLSS FD-LSS FD-PNLSS
No. of parameters 54 747 54 747

βp model iden. 0.1529 0.1138 0.5740 0.1394
[a.u.] model val. 0.1497 0.1313 0.5630 0.2153

model test 0.1134 0.0762 0.5671 0.1205
βn model iden. 0.1049 0.0763 0.3752 0.0723
[%] model val. 0.1181 0.0983 0.3466 0.1208

model test 0.0823 0.0556 0.3723 0.0683
Te,0 model iden. 0.5120 0.4392 1.0388 0.4841
[keV] model val. 0.4959 0.4251 1.1325 0.6273

model test 0.3853 0.3230 0.9544 0.4064
ωφ model iden. 0.7191 0.5522 2.1946 0.6359
[krad/s] model val. 0.8428 0.7736 2.1307 1.0908

model test 0.5362 0.4036 2.1600 0.6383
ι0 model iden. 0.1222 0.1029 0.2906 0.1349
[a.u.] model val. 0.0834 0.0804 0.1844 0.1815

model test 0.1193 0.1123 0.3031 0.1567

2.2.5.2 Identi�cation results from H-mode plasma experiments on EAST

In the experimental case, the noise-corrupted data obtained from the EAST experiments are
used for plasma model identi�cation. The reference plasma discharge has the toroidal �eld
at 2.5 T, the central electron density at around 4.2 × 1019 m−3, the plasma current at 350
kA and the central electron temperature at around 4 keV. The LHCD power was injected at
2.45 GHz during the plasma current ramp-up phase, speci�cally 0.6 MW in the period [0.95,
2.25] s. In addition, 0.9 MW of ECRH power was injected during the current �at-top phase
(in the time interval [1.98, 7.91] s), from two gyrotrons at 140 GHz. The LHCD power at 4.6
GHz varies in the range of 1.0-2.5 MW. The ICRH system was not available during the whole
experiments. Simple internal model control with proportional integral (SIMC PI) [Skogestad
and Postlethwaite, 2007] was used to track the desired 4.6 GHz LHCD power modulations
in the current �attop phase. The objective here is to identify the responses of βp, βn, li and
ι0 with respect to the LHCD power at 4.6 GHz. Two identi�cation experiments have been
performed by modulating the LHCD power in the PRBS (shot #93298) and chirping (shot
#93297) waveforms, respectively. The LHCD power coupled to the plasma was measured as
shown in Fig. 2.7. The magnetic and kinetic parameters of interest are estimated by the GPU-
accelerated EFIT reconstruction code, i.e. P-EFIT [Huang et al., 2017], taking into account
a large number of magnetic and kinetic measurements, whose estimates are considered as
experimental measurements. All the input-output measurements are taken with the sampling
time at 1 ms, and the pulse durations for shot #93297 and #93298 are about 9.0 s, including
plasma ramp-down phase. The input-output measurements of shot #93298 in the period [3.5,
7]s are chosen for model identi�cation, while the input-output measurements of shot #93297
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in the intervals 3.5-5.25 s and 5.25-7 s are used for model selection and testing, respectively.
A lowpass �lter with the time constant at 0.003 s was used to remove the measurement noise.

Both the TD and FD approaches are used for model identi�cation. The model-simulated
outputs from the TD-LSS, TD-PNLSS, FD-LSS and FD-PNLSS models are compared with
the EFIT estimates in the identi�cation dataset, as illustrated in Fig. 2.8. It is found that
the evolutions of βp and βn predicted by TD-LSS and TD-PNLSS models match the P-
EFIT estimates satisfactorily, with the RMS errors at 0.0217 and 0.0184, respectively (See
Table 2.3). Obviously, enhanced identi�cation performance has been obtained by the PNLSS
model. The TD-LSS and TD-PNLSS models can both predict the evolution of li and ι0 at
a reasonable level, but the �tting errors exhibit a linear downward drift, due to the poloidal
magnetic measurement faults at the plasma boundary. This disturbance caused ι0 and li to
drift linearly at the rate of -0.01 s−1. Nonetheless, the PNLSS model shows better identi�cation
performance compared to the LSS model in the identi�cation dataset. The identi�ed TD-LSS
and TD-PNLSS models are then tested in shot #93297. As illustrated in Fig. 2.9, the TD-LSS
and TD-PNLSS models can simulate the evolutions of βp and βn fairly well, with the RMS
errors at 0.0245 and 0.0176 for the TD-PNLSS model. For li and ι0, a drift with the rate at
-0.01 s−1 happens similarly in shot #93297. In addition to that, an o�set of 0.02 for li and ι0
are observed, which are attributed to the di�erence between the plasma density evolution in
shot #93298 (steady at 4.2 × 1019 m−3) and in shot #93297, where the density control was
poor for t < 4 s, with a �nal steady density of 3.7× 1019 m−3 for t > 4 s.

Table 2.3 shows the comparison of the RMS errors among the four identi�ed models. In
this case, the TD-LSS model still outperforms the FD-LSS model in all the RMS errors,
suggesting that it may be preferable to apply the TD approach for linear model identi�cation
if the control inputs are designed as PRBS signals. However, the predictive performance of the
FD-PNLSS model slightly outperforms that of the FD-PNLSS model in βp and βn thanks to
better PNLSS model optimization. It should be remarked that the TD-PNLSS model shows
comparable predictive performance with the FD-PNLSS model in this case primarily because
the FD identi�cation method is more e�ective in the single input setup.

To sum up, the identi�cation results have demonstrated that the proposed identi�cation
scheme can successfully extract linear and nonlinear models describing the responses of plasma
kinetic parameters with respect to the variations of the LHCD power from dedicated exper-
imental data. Furthermore, enhanced identi�cation performance has been obtained by the
PNLSS models with respect to the LSS models. It is evident that the disturbances in li and
ι0 are not solely dependent on the variations of the LHCD power at 4.6 GHz. Hence, the dis-
turbance dynamics cannot be modelled directly using the available inputs and outputs, even
involving polynomial nonlinear model expansions. Nevertheless, these disturbances are the
combination of constant and linear drifts, whose values are predictable and possibly linked,
for instance, to the plasma density evolution.
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(a) (b)

(c) (d)

Figure 2.7: Comparison of the model-predicted outputs and the measured outputs in EAST
shot #93298 (identi�cation data set). Upper panels of (a)-(d): comparison of the TD-LSS
predictions (blue dashed), the TD-PNLSS predictions (red) and the EFIT estimates (black)
of (a) βp ,(b) βn,(c) li ,(d) ι0. Bottom panels of (a)-(d): the predictive errors of (a) βp ,(b)
βn,(c) li ,(d) ι0 by the TD-LSS model (black) and the TD-PNLSS model (red).

2.2.5.3 Identi�cation results from METIS simulations on ITER

In the third case, the proposed identi�cation scheme is extrapolated to the noise-free data
sampled from METIS simulations of H-mode steady-state burning plasma scenarios on the
ITER tokamak. The key plasma parameters con�gured for METIS simulations are illustrated
in Section 1.4. The objective now is to identify the responses of βp, βn, ωφ and Pα (the α
particle power generated from D-T fusion reactions) with respect to the co-current neutral
beam injection power PNBI. Analogously, we design the PNBI references in PRBS waveforms
to excite the dominant plasma eigenmodes governing kinetic evolutions. More precisely, two
dedicated METIS simulations are performed, whilst the other parameters for METIS setup
are kept unchanged. The co-current NBI power is limited to the interval of 5-16.5 MW. The
sampling time is �xed at 1 s, and the pulse duration for each simulations is over 2800 s. The
control input and output measurements in the period 1000-2500 s are chosen as datasets for
model identi�cation, selection and testing. Similarly, the selected datasets are �rst merged
and then divided into three subsets, with one half for model identi�cation, a quarter for model
selection and the rest for model testing.
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(a) (b)

(c) (d)

Figure 2.8: Comparison of the model-predicted outputs and the measured outputs in EAST
shot #93297 (testing data set). Upper panels of (a)-(d): comparison of the TD-LSS predictions
(blue dashed), the TD-PNLSS predictions (red) and the EFIT estimates (black) of (a) βp ,(b)
βn,(c) li ,(d) ι0. Bottom panels of (a)-(d): comparison of the predictive errors of (a) βp ,(b)
βn,(c) li ,(d) ι0 by the TD-LSS model (black) and the TD-PNLSS model (red).

Both the TD and FD approaches are used to identify the LSS and PNLSS models. The
outputs predicted by the FD-LSS and FD-PNLSS models are compared with the METIS
simulated outputs as depicted in Fig. 2.10, showing that the FD-LSS and FD-PNLSS models
can both successfully predict kinetic responses under the perturbation of PNBI. The RMS
errors corresponding to all the identi�ed models are listed in Table 2.4, which demonstrates
that the PNLSS models are able to predict plasma kinetic evolutions with more precision than
the LSS models. In contrast to EAST identi�cation results, the FD-LSS model now achieves
smaller RMS errors than the TD-LSS model in βp and βn since in this case we involve only
one control input, where the FD approach turns out to be e�ective. When moving onto model
selection and testing datasets, it is con�rmed that the FD-LSS model has a high accuracy of
predictive performance, and the FD-PNLSS model acquires much smaller RMS errors than
those corresponding to the TD-PNLSS model, thanks to the enhanced model initialization
and the single control input setup.
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Table 2.3: Comparison of the RMS errors from experiments on EAST.

Option TD-LSS TD-PNLSS FD-LSS FD-PNLSS
No. of parameters 40 440 40 440

βp model iden. 0.0217 0.0184 0.0386 0.0153
[a.u.] model val. 0.0254 0.0245 0.0372 0.0278

model test 0.0193 0.0188 0.0272 0.0145
βn model iden. 0.0154 0.0138 0.0313 0.0117
[%] model val. 0.0187 0.0176 0.0293 0.0213

model test 0.0153 0.0137 0.0231 0.0138
li model iden. 0.0212 0.0142 0.0243 0.0125
[a.u.] model val. 0.0255 0.0226 0.0268 0.0267

model test 0.0362 0.0433 0.0366 0.0373
ι0 model iden. 0.0181 0.0123 0.0234 0.0110
[a.u.] model val. 0.0214 0.0192 0.0245 0.0227

model test 0.0298 0.0357 0.0322 0.0313

Table 2.4: Comparison of the RMS errors from METIS simulations on ITER.

Option TD-LSS TD-PNLSS FD-LSS FD-PNLSS
No. of parameters 40 440 40 440

βp model iden. 0.0140 0.0033 0.0183 0.0098
[a.u.] model val. 0.0185 0.0127 0.0138 0.0047

model test 0.0214 0.0269 0.0110 0.0101
βn model iden. 0.0223 0.0034 0.0138 0.0105
[%] model val. 0.0219 0.0164 0.0087 0.0055

model test 0.0268 0.0328 0.0085 0.0114
ωφ model iden. 0.0710 0.0358 0.2318 0.0622
[krad/s] model val. 0.0909 0.1389 0.2220 0.0605

model test 0.0963 0.1658 0.2541 0.0721
Pα model iden. 0.6548 0.1180 0.6117 0.2299
[MW] model val. 0.3680 0.3422 0.6060 0.1859

model test 0.4121 0.4165 0.4669 0.1756
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Figure 2.9: Time traces of the coupled lower hybrid current drive system power at 4.6GHz
in shots #93297 and #93298 on EAST. In both shots, the data in the time interval [3.5, 7.0]s
are selected and merged. In particular, the data (black) in shot #93298 is used for model
identi�cation, and the data (red) in the interval [3.5,5.25]s of the shot #93297 are arranged for
model validation, while the data (blue) in the interval [5.25,7]s of the same shot are utilized
for model testing.

2.2.5.4 Discussion

In contrast to other model structures such as LSS models and neural networks, there are a
number of advantages to use the PNLSS model structure for plasma dynamics approximation.
First, the PNLSS model structure takes into account the dominant linear dynamics in con-
junction with moderate nonlinearities, which can thus deliver enhanced predictive performance
with respect to the LSS models. Second, the identi�cation scheme has no di�cult parameter
setup, e.g., the number of neurons. Third, the PNLSS model identi�cation scheme is sys-
tematic and general, and it can be easily extrapolated to data-driven modelling in di�erent
tokamaks, including both simulations and experiments.

However, it should be mentioned that there are a few restrictions on the use of this identi-
�cation scheme. First, the PNLSS model structure is more suitable to approximate low-order
systems, whose order is typically less than 10. For high-order systems, the number of esti-
mated model parameters in nonlinear terms grow substantially, likely to cause identi�ability
issues. However, it is possible to overcome this problem by tweaking the estimated model
parameters. For instance, the monomials in the polynomial expansion can be constrained to
certain inputs and states that play an important role in causing nonlinearities. The second
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(c) (d)

Figure 2.10: Comparison of the model-predicted outputs and the outputs generated from
METIS simulations on ITER. Upper panels of (a)-(d): comparison of the FD-LSS predictions
(blue dashed), the FD-PNLSS predictions (red) and the METIS simulation outputs (black)
of (a) βp ,(b) βn,(c) ωφ ,(d) Pα in the identi�cation data set. Bottom panels of (a)-(d):
comparison of the FD-LSS predictions (blue dashed), the FD-PNLSS predictions (red) and
the METIS simulation outputs (black) of (a) βp ,(b) βn,(c) ωφ ,(d) Pα in the validation (left
half) and testing (right half) data set. The green dashed lines separate di�erent METIS
simulation shots.

restriction is that, due to the use of PEM for model re�nement, the optimization may result
in a local minimum instead of a global one, but this is a common issue for nonlinear system
identi�cation.

2.2.6 Conclusion of Section 2.2

In this section, the identi�cation of PNLSS plasma model, as a natural extension of LSS
model identi�cation, has been investigated using a combination of subspace and PEM iden-
ti�cation techniques. In contrast to prior works [Mavkov et al., 2017b,Moreau et al., 2008],
two alternative LSS identi�cation approaches handling data in both frequency-domain and
time-domain have been presented to identify the LSS models for plasma control. Up to the
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best of our knowledge, the PNLSS model identi�cation scheme has, for the �rst time, been
applied to describing the dynamics of plasma kinetic parameters in tokamaks. The identi-
�cation methodology proposed in this chapter is systematic, general and powerful, and can
be easily adapted to data-driven modelling of other tokamak plasma parameters or pro�les
for control, especially for those problems where the �rst-principles-driven modelling fails or
proves di�cult but where the input-output measurements are abundant. One potential topic
for future investigations is that plasma nonlinearities can be characterized by other types of
basis functions, for example, radial basis functions, wavelets, hyperbolic tangents. One may
�nd an optimal set of basis functions that can achieve the optimal predictive performance in
characterzing tokamak plasma nonlinearities by conducting further studies.

2.3 Summary of Chapter 2

In this chapter, the single �uid modelling of tokamak plasma transport using the METIS
code has been described, with applications to H-mode steady-state plasma discharge simu-
lations on the EAST and ITER tokamaks. In order to control plasma kinetic parameters
in H-mode steady-state tokamak scenarios, a nonlinear model identi�cation scheme has been
proposed based on the subspace and prediction-error methods. This identi�cation scheme has
been applied to both simulated and experimental data on the EAST and ITER tokamaks,
whose e�ectiveness and validity have been demonstrated. The following chapters will present
robust, adaptive and model predictive control strategies using linear data-driven models to
support advanced tokamak plasma operation and greatly improve the reproducibility of high
performance high bootstrap current plasma discharges.
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One of the main challenges for the tokamak plasma operation is to achieve and main-
tain advanced scenarios with high plasma pressures and temperatures such that a high gain
nuclear fusion burn can be sustained [Wesson and Campbell, 2011]. However, since a series
of MHD instabilities and microturbulence commonly exist in various locations and phases of
tokamak plasmas that are likely to deteriorate plasma con�nement and even lead to disrup-
tions [Wesson and Campbell, 2011], it is demanding to deliver and sustain advanced tokamak
plasma scenarios without active feedback control. Among the numerous tokamak plasma
parameters, the safety factor q, de�ned as the rate of change of toroidal magnetic �ux (Φ)
with poloidal magnetic �ux (Ψ), i.e. q = − dΦ

dΨ , is a particularly important parameter whose
shape and magnitude are directly associated with some deleterious MHD events and micro-
instabilities [Kessel et al., 1994,Humphreys et al., 2015]. For instance, sawtooth crashes occur
in the region where the plasma safety factor is less than 1 [Denton et al., 1986]; neoclassical
tearing modes (NTMs) appear and grow around plasma �ux surfaces where the safety factor
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exhibits rational values [Westerhof et al., 2002]. Moreover, it is inferred that the negative
central magnetic shear (s = r

q
∂q
∂r ) is a key stabilizing factor to reduce turbulence transport in

the pressure gradient region, thus supporting the formation of ion/electron internal transport
barriers (i/eITBs) [Wolf, 2002, Ida and Fujita, 2018]. In view of multiple timescales involved
in plasma dynamics, simultaneous control of the q-pro�le and kinetic parameters (e.g. the
stored energy, W, the normalized pressure parameter, βN , or the poloidal pressure parameter,
βp) is preferred to the control of q-pro�le alone [Moreau et al., 2013, Barton et al., 2015a].
Therefore, in the �rst part of the chapter, simultaneous control of q-pro�le and βp is numeri-
cally investigated. βp is a ratio between the total plasma kinetic energy and the energy stored

in the poloidal magnetic �eld, expressed as βp = 4W (1+κ2)
3µ0aRI2p

, where W represents the plasma
kinetic energy, κ the elongation, µ0 the magnetic permeability in vacuum space, a the minor
radius, R the major radius, Ip plasma current. The active control of kinetic parameters such
as βp, the average rotational velocity (ωφ) and the α particle power generated from nuclear
fusion reactions should occur in a much faster timescale than magnetic control, e.g. q-pro�le
control. These kinetic parameters are intimately related to fast timescale kinetic evolutions
that are much easier to su�er from nonlinear disturbing e�ects, which, however, provides a
prerequisite for e�ective magnetic control. In the second part of the chapter, the active control
of plasma kinetic parameters based on linear data-driven models in advanced tokamak plasma
scenarios is pursued.

Various control schemes have been proposed for tailoring plasma magnetic and kinetic
parameters, a majority of which are based on control-oriented plasma response models, either
in terms of PDEs or ODEs, either using �rst-principle-driven (FPD) models or data-driven
(DD) models. Those control schemes are then veri�ed numerically and/or experimentally in
some region of attraction in certain tokamak plasma scenarios. For instance, the proposed
control techniques comprise simple PID control [Moreau et al., 2003], LQI control [Boyer et al.,
2013,Moreau et al., 2008], H∞ robust control [Barton et al., 2012,Barton et al., 2015a,Barton
et al., 2015b], MPC [Maljaars et al., 2015, Maljaars et al., 2017], passivity-based control
[VU et al., 2014,Vu et al., 2016,Vu et al., 2017], Lyapunov-based control [Argomedo et al.,
2013,Mavkov et al., 2018], backstepping control [Boyer et al., 2014], sliding mode control [Gaye
et al., 2011] and adaptive control [Kim and Lister, 2012]. More precisely, in [Moreau et al.,
2003], a simple PID controller is designed to control the central safety factor using the lower
hybrid waves on JET. In [Boyer et al., 2013], an LQI optimal controller is combined with
nonlinear input transformation to ensure the minimum weighted norm of tracking errors and
control e�orts in L-mode plasmas on DIII-D. In [Maljaars et al., 2017], a model-predictive
controller is employed to track q-pro�le and plasma β that accounts for the time-varying
operational and physics limits and tested experimentally in L-mode plasmas on TCV. In [Vu
et al., 2017], the interconnection and damping-assignment passivity-based control (IDA-PBC)
is developed and evaluated experimentally in L-mode plasmas on TCV. In [Mavkov et al.,
2018], a Lyapunov-based q-pro�le controller combined with SIMC PI for βp is validated both
numerically and experimentally in a TCV L-mode plasma. In [Boyer et al., 2014], an adaptive
backstepping feedback control technique is proposed for a DIII-D L-mode plasma. In [Gaye
et al., 2011], a sliding model controller for a Tore Supra plasma is developed and evaluated
via nonlinear closed-loop METIS [Artaud et al., 2018] simulations. In [Kim and Lister, 2012],
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static models of the current density and electron temperature pro�les are identi�ed in real-
time, which are then used to compute the control actuations, and the static adaptive feedback
controller is numerically assessed via CRONOS [Artaud et al., 2010] simulations for ITER
hybrid scenarios.

In contrast to the existing works, the objective of the chapter is to provide systematic,

practical, e�ective and robust control strategies for plasma magnetic and kinetic parameters
in advanced tokamak plasma scenarios using linear data-driven models. We advert that mod-
elling the current pro�le, momentum and thermal transport in advanced tokamak scenarios
for control using the FPD models is not as straightforward as in L-mode scenarios due to
di�erent levels of plasma disturbances arising from, for instance, plasma-wave interactions,
bootstrap current e�ects, MHD instabilities, microturbulence and impurity e�ects [Wesson
and Campbell, 2011, Fasoli et al., 2016]. Therefore, we utilize linear models identi�ed from
the sampled input and output measurements in an interesting plasma scenario, e.g. H-mode
steady-state operational scenario, via system identi�cation methodologies [Ljung and Söder-
ström, 1983,Moreau et al., 2008] for controller design. Since the plasma transport dynamics
is intrinsically nonlinear, it necessitates the data-driven model-based controllers to be suf-
�ciently robust against model mismatches and parameter uncertainties. Hence, we devote
ourselves primarily to developing a controller that retrieves the most appropriate informa-
tion from the data-driven models while acquiring good control performance and reasonable
robustness against various engineering constraints. The chapter is divided into two parts: the
�rst part shows a decentralized data-driven model-based robust control scheme by combining
the multivariate H∞ norm optimal control with the singular perturbation theory and demon-
strates its e�ectiveness in both control performance and robustness via extensive nonlinear
closed-loop simulations for an EAST H-mode steady-state scenario with the METIS code [Ar-
taud et al., 2018]. The second part reports comparative studies of plasma kinetic control in
advanced tokamak scenarios on EAST, comprising both simulations and experiments, where
four alternative controllers are considered.

The main contributions of the chapter are summarized as follows:

• Developing a decentralized robust control scheme for q-pro�le and βp in advanced toka-
mak scenarios based on a two-time-scale data-driven model by solving LMIs, and provide
bene�cial control implementation techniques to handle engineering restrictions in toka-
mak plasma experiments such as time-delays, power saturations, constrained attractive
control region and control switching.

• Developing four optional kinetic control strategies, namely the H∞ robust control, LQI
and IMC, for essential kinetic parameters in advanced tokamak scenarios using LSS
models and involve a cascade actuator controller to enable the enhanced tracking of
control actuations.

• Evaluating the e�ectiveness of the decentralized H∞ robust control scheme through
METIS simulations on EAST; assessing and comparing the performance of the two-
layer cascade kinetic control scheme through nonlinear METIS simulations on EAST.
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• Implementing the two-layer cascade kinetic control scheme into the EAST PCS using
the embedded MATLAB coder (EMC) toolbox and experimentally validating the e�ec-
tiveness in a typical H-mode plasma scenario on the EAST tokamak.

The rest of the chapter is organized as follows: Section 1 presents the decentralized H∞
robust control scheme for q-pro�le and βp in advanced tokamak scenarios based on a two-
time-scale data-driven model, whose e�ectiveness is con�rmed by extensive nonlinear METIS
simulations on EAST. In Section 2, we develop a two-layer cascade kinetic control scheme
containing four alternative kinetic controllers and SIMC PI actuator controllers for advanced
tokamak plasma operation based on LSS models, whose validity is evaluated, discussed and
compared both numerically and experimentally on the EAST tokamak. Consequently, we
draw the conclusion of the chapter and outline possible extensions.

3.1 Decentralized robust control of q-pro�le and βp

In this section, a novel H∞ robust feedback controller for q-pro�le and poloidal plasma pres-
sure parameter has been developed using a two-time-scale data-driven model. Due to the
simplicity and robustness properties, the H∞ optimal control technique has been applied to
various tokamak plasma control problems. In [Barton et al., 2012,Barton et al., 2015b], an
H∞ optimal controller combined with a feedforward optimizer synthesized from FPD mod-
els has been applied to track the trajectories of the poloidal �ux gradient pro�le in L-mode
and H-mode plasma scenarios on DIII-D experimentally. In [Nouailletas et al., 2014], a ro-
bust PI control technique using DD models is employed to stabilize the vertical instability
on the WEST tokamak numerically. In [Nouailletas et al., 2019], the similar technique has
been extended to control the poloidal �eld coil currents, plasma position and shape param-
eters on WEST experimentally. In [Blanken et al., 2019], the plasma electron density is
successfully controlled by using H∞ robust synthesis on ASDEX-Upgrade and TCV. Next, a
two-time-scale plasma dynamic model for q-pro�le and βp is brie�y described. Subsequently,
a decentralized H∞ feedback controller is synthesized from the model and bene�cial control
implementation techniques are presented. Afterwards, extensive nonlinear closed-loop METIS
simulations are conducted to numerically evaluate the e�ectiveness of the control scheme on
EAST. Consequently, we draw conclusions and suggest possible extensions.

3.1.1 Two-time-scale plasma model

In tokamak plasmas, there are multiple time scales in which various parameters/pro�les evolve
[Wesson and Campbell, 2011]. Speci�cally, the inversed safety factor pro�le has much slower
dynamics than plasma pressure in medium-sized (e.g. EAST) and large (e.g. ITER) tokamaks.
By virtue of this, we describe the coupled dynamics of ι, de�ned as an inverse of the safety
factor q, and βp in a two-time-scale manner, linearized around a plasma equilibrium [Moreau
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et al., 2008,Moreau et al., 2011,Moreau et al., 2015]. The model reads as:[
∂Ψ(x,t)
∂t

ε∂Ξ(x,t)
∂t

]
=

[
MΨ,Ψ(x) MΨ,Ξ(x)

MΞ,Ψ(x) MΞ,Ψ(x)

] [
Ψ(x, t)

Ξ(x, t)

]
+

[
MΨ,U (x)

MΞ,U (x)

]
U(t) (3.1)

where x, namely the �ux-averaged normalized radius, is de�ned as (Φ/Φmax)1/2, in which
Φ(x) is the toroidal magnetic �ux within a given �ux surface, and Φmax is the maximum value
at the last closed �ux surface (LCFS). Ψ(x, t) represents the poloidal magnetic �ux minus
its value at the plasma boundary, while Ξ(x, t) a combination of kinetic parameters/pro�les.
U(t) is a vector of actuators containing the heating and current drive powers. The constant ε
denotes a typical value of the ratio between the kinetic and magnetic time constants, which
makes the various elements of the M matrix of comparable magnitude.

In order to obtain �nite dimensional variables for control design, a projection of equation
(3.1) onto cubic spline basis functions is carried out. For the EAST tokamak, ε is typically 0.05,
hence a singular perturbation approach is employed. Then the linearized PDE is transformed
into a two-time-scale LSS model as described below.
De�ning:

Ξ(t) = ΞS(t) + ΞF (t), U(t) = US(t) + UF (t) (3.2)

The slow model is:

Ψ̇(t) =ASΨ(t) +BSUS(t)

ΞS(t) =CSΨ(t) +DSUS(t)
(3.3)

while the fast model is:
Ξ̇F (t) = AFΞF (t) +BFUF (t) (3.4)

where Ξ(t) is a vector of kinetic variables, comprising the slow ΞS and fast ΞF components.
Likewise, U(t) is a vector of actuated powers with the slow part US(t) and fast part UF (t).

The control of ι-pro�le motivates us to model the ι-pro�le dynamics. ι(ρ, t) is de�ned as

ι(ρ, t) = −dΨ(ρ, t)

dΦ(ρ, t)
= −∂Ψ(ρ, t)

∂ρ

∂ρ

∂Φ(ρ, t)
= − π

Φmax(t)

(
1

ρ

∂Ψ(ρ, t)

∂ρ

)
(3.5)

Linearizing ι(ρ, t) around a reference pro�le ιref (ρ), projecting ι(ρ, t) on the cubic basis
functions, we then obtain

ι̃(t) = CιΨ(t), ι̃(t) = ι(t)− ῑ (3.6)

where ι̃ are a vector of the perturbed ι pro�le around a reference pro�le ῑ. Cι is a constant
coe�cient matrix by assuming the constant Φmax, which is satis�ed when the plasma shape
parameters and the toroidal magnetic �elds remain constant. Combining the equations (3.2),
(3.3), (3.4) and (3.6), we derive the two-time-scale plasma response model that describes the
ι-pro�le and kinetic parameter dynamics in a structural form.

In this work, the objective is to acquire the response of ι and βp to actuated powers from
the ICRH and LHCD systems for an H-mode EAST plasma at the �at-top phase, in which
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ι is a vector evolving only at the magnetic timescale, uniformly distributed in 10 points, i.e.
x = 0, 0.1, 0.2, ..., 0.9, while βp is a scalar evolving both at the magnetic and kinetic timescales.
Speci�cally, the model for ι and βp is given as follows. The slow model is:

Ψ̇0(t)

Ψ̇1(t)

...

Ψ̇N−1(t)

 = AΨ


Ψ0(t)

Ψ1(t)

...

ΨN−1(t)

+BΨ

[
US,IC(t)

US,LH(t)

]
, N = 10 (3.7)


ι0(t)

ι1(t)

...

ιN−1(t)

βp,S(t)

 =

[
Cι
Cβp,S

]
Ψ0(t)

Ψ1(t)

...

ΨN−1(t)

+

[
Dι

Dβp,S

][
US,IC
US,LH

]
(3.8)

while the fast model is:

β̇p,F (t) = Aβp,Fβp,F (t) +Bβp,F

[
UF,IC
UF,LH

]
(3.9)

and the controlled input is decomposed as:[
UIC
ULH

]
=

[
US,IC
US,LH

]
+

[
UF,IC
UF,LH

]
(3.10)

3.1.2 Control design

In this section, we present the robust feedback design using the two-time-scale model. First we
describe the overall control scheme. Then details of the feedback synthesis are illustrated, in-
cluding the control-oriented model formulation, local controllers design, the control decoupling
and some remarks on controller tunings. Subsequently, we introduce bene�cial control imple-
mentation techniques to guarantee the performance and robustness of the proposed controller
in nonlinear closed-loop simulations and real-time tokamak plasma experiments.

In order to design a robust feedback controller that possesses su�cient freedom, available
for control of ι and βp both separately and simultaneously (with multi-function), feedback
controllers with di�erent control objectives are synthesized separately and then integrated for
composite control. As depicted in Fig. 3.1, the controller is divided into two components:
feedforward and feedback. The feedforward component is a simple module involving constant
H&CD powers at the plasma equilibrium around which the model is linearized, and a low-
pass �lter with two time constants for βp and ι respectively, to make the reference trajectories
smooth. The feedback component consists of a low-pass �lter, three local controllers and
a decoupling module. The low-pass �lter in the feedback component, with a time constant
between kinetic and magnetic timescales, is designed to split the βp estimation into the fast
and slow components such that the fast one is controlled by the fast βp controller in the kinetic
timescale, while the slow one is controlled by the slow βp controller in the magnetic timescale.
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Figure 3.1: Feedback-feedforward control scheme for ι and βp using timescales separation.

The ι controller is designed separately using the slow model for ι. The decoupling module is
employed to formulate the simultaneous control of ι and βp. The control conditioning module
is involved to attenuate the negative e�ects from moderate actuation time delays and power
saturations [Skogestad and Postlethwaite, 2007,Hanus et al., 1987].

3.1.2.1 Feedback synthesis

The feedback control objective is to minimize tracking errors from any reference inputs, at-
tenuate the e�ects from system disturbances as well as involve minimum control e�orts. The
de�nition of gain for a transfer function matrix (or in terms of a state-space representation) is
given by its singular values [Skogestad and Postlethwaite, 2007]. By shaping the singular val-
ues of appropriately speci�ed transfer function matrices, the closed-loop control performance
can therefore be guaranteed. As shown in Fig. 3.2(a), the plant G and the controller K
interconnection is driven by the reference inputs r, output disturbances d and measurement
noise n. The vector y denotes the controlled variables while u represents the controlled input.
The sensitivity function is then expressed as S = (I +GK)−1, which maps the control error e
from y, r, d. The transfer function KS describes the mapping from y, r, d to u. Shaping the
maximum singular value of S and KS in the frequency domain can then be transformed into
minimizing the H∞ norm of the integrated transfer function matrix

[
WSS WKSKS

]
, where

WS and WKS are appropriately designed weighting functions for S and KS, respectively.
Therefore, the feedback control synthesis problem is formulated as an H∞ norm optimization
problem, which is easily solved by using LMIs.

Solving the H∞ norm optimization problem using LMIs We consider a general state-
space model G = (A0, B0, C0, D0). As shown in Fig. 3.2(b), the weighting functions WS =
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Figure 3.2: Schematic of the H∞ norm feedback control formulation.

(AS, BS, CS, DS) and WKS = (AKS, BKS, CKS, DKS) are respectively interconnected to the
feedback control error e and the controlled input u with the combined output as z. The
controller is realized as K = (Ac, Bc, Cc, Dc) with the input as y and the output as u. The
reference inputs r, the output disturbances y and [?] noise n are combined in the vector w.
We then augment the plant model G into a generalized LTI state-space form P as: ẋ

z

y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x

w

u

 (3.11)

where

A =

 A0 0 0

−BSC0 AS 0

0 0 AKS

 , B1 =

 0

BS

0

 , B2 =

 B0

−BSD0

BKS

 , C1 =

[
−DSC0 CS 0

0 0 CKS

]

C2 =
[
C0 0 0

]
, D11 =

[
DS

0

]
, D12 =

[
−DSD0

DKS

]
, D21 = 0, D22 = D0

and x is the state vector of the plant G plus the state vector of the weighting functions WS

and WKS . We assume that x ∈ X ⊂ Rn, z ∈ Z ⊂ Rnz , y ∈ Y ⊂ Rny , w ∈ W ⊂ Rnw and
u ∈ U ⊂ Rnu . In order to synthesize the robust feedback controller K for the plant G, the
following theorem is applied.
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Theorem 2. (Scherer et al., 1997 [Scherer et al., 1997]). A dynamical output feedback con-

troller K : (Ac, Bc, Cc, Dc) with nu outputs and ny inputs that solves the H∞ norm problem is

obtained by solving the following LMIs in (X,Y, Ã, B̃, C̃, D̃) while minimizing γ:


M11 (∗)T (∗)T (∗)T
M21 M22 (∗)T (∗)T
M31 M32 M33 (∗)T
M41 M42 M43 M44

 < 0

[
X In
In Y

]
> 0

(3.12)

where

M11 =AX +XAT +B2C̃ + C̃TBT
2

M21 =Ã+AT + CT2 D̃
TBT

2

M22 =Y A+ATY + B̃C2 + CT2 B̃
T

M31 =BT
1 +DT

21D̃
TBT

2

M32 =BT
1 Y +DT

21B̃
T ;

M33 =− γInu
M41 =C1X +D12C̃

M42 =C1 +D12D̃C2

M43 =D11 +D12D̃D21

M44 =− γIny

Then, the dynamical feedback controller K is given in the state space form with matrice
coe�cients:

Dc =D̃

Cc =(C̃ −DcC2X)M−T

Bc =N−1(B̃ − Y B2Dc)

Ac =N−1(Ã− Y AX − Y B2DcC2X

−NBcC2X − Y B2CcM
T )M−T

(3.13)

where M and N are such that MNT = In −XY .

In order to apply the above theorem to solving the H∞ norm optimization problem and
synthesize a robust feedback controller that satis�es the feedback control objective, the two-
time-scale model derived in Section 2, i.e., equations (3.7)-(3.10), is reformulated as three
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sub-models which are expressed in the state-space form as:

Gβp,F =

[
Aβp,F Bβp,F

1 0

]
Gβp,S =

[
AΨ BΨ

Cβp,S Dβp,S

]
Gι =

[
AΨ BΨ

Cι Dι

] (3.14)

where Gβp,F , Gβp,S and Gι respectively represent the fast βp model, the slow βp model and the
ι model. The three models are considered as three plants and are utilized for local controllers
design.

Local controllers design In this section, we develop three local controllers for the fast and
slow βp control as well as ι control. The design procedure is illustrated in Fig. 3.3.

Figure 3.3: Schematic of the local controllers design.

The fast βp controller is synthesized by shaping the mixed-sensitivity functions of the fast
βp model. Since the number of controlled variables is less than that of actuators, a singular
value decomposition (SVD) technique is employed on the fast βp model at a cut-o� frequency
ωc,βp,F to extract the principal output and input control channels, expressed as G1 = W1Σ1V

T
1 ,

where G1 = (ωc,βp,F I − Aβp,F )−1Bβp,F . The cut-o� frequency ωc,βp,F represents the lower
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closed-loop bandwidth for the fast βp controller, which is set at 1 rad/s to extract the fast
component of βp. W1 are the left singular vectors, V1 are the right singular vectors, Σ1 the
diagonal matrix with singular values of G1 on its diagonal. Assume the �rst left and right
singular vectors as well as the �rst singular value to be W1,1, V1,1 and Σ1,1, respectively,
which represent the principal control channel for the fast βp dynamics. Projecting Gβp,F
onto the principal output and input control channels yields Gβp,F ,1 = W1,1Gβp,F V1,1Σ−1

1,1.
Assume that Kβp,F ,1 represents the transfer function of the controller for the plant model
Gβp,F ,1, and then the sensitivity function Sβp,F ,1 is derived as (1 + Gβp,F ,1Kβp,F ,1)−1. Using
the LMI optimization method, the controller Kβp,F ,1 is synthesized by minimizing the H∞
norm of Tzw,βp,F =

[
WS,βp,FSβp,F ,1 WKS,βp,FKβp,F ,1Sβp,F ,1

]
, where WS,βp,F and WKS,βp,F are

two weighting functions. The fast βp controller is then obtained asKβF = V1,1Σ−1
1,1Kβp,F ,1W1,1.

The slow βp controller is synthesized by shaping the mixed-sensitivity functions of the
slow βp model. Similarly, an SVD technique is performed on the slow βp model at a cut-
o� frequency ωc,βp,S = 0 rad/s to obtain the principal output and input control channels,
expressed as G2 = W2Σ2V

T
2 , where G2 = −Cβp,SA

−1
Ψ BΨ + Cβp,S . For the slow βp con-

troller, the lower closed-loop bandwidth is 0 rad/s, so ωc,βp,S = 0 rad/s. Assume the �rst
left and right singular vectors to be W2,1 and V2,1, which respectively represent the prin-
cipal output and input control channel. The �rst singular value is Σ2,1. Projecting Gβp,S
onto the principal output and input control channels yields Gβp,S ,1 = W2,1Gβp,SV2,1Σ−1

2,1. As-
sume that Kβp,S ,1 represents the transfer function of the controller for the plant Gβp,S ,1,
we then obtain the sensitivity function Sβp,S ,1 = (I + Gβp,S ,1Kβp,S ,1)−1. Using the LMI
optimization method, the controller Kβp,S,1 is synthesized by minimizing the H∞ norm
of Tzw,βp,S =

[
WS,βp,SSβp,S ,1 WKS,βp,SKβp,S ,1Sβp,S ,1

]
, where WS,βp,S and WKS,βp,S are two

weighting functions. The slow βp controller is then obtained as KβS = V2,1Σ−1
2,1Kβp,S,1W2,1.

The ι controller is synthesized by shaping the mixed-sensitivity functions of the ι model.
Similarly, an SVD technique is performed on the ι model at a cut-o� frequency ωc,ι = 0 rad/s
to obtain the principal output and input control channels, expressed as G3 = W3Σ3V

T
3 , where

G3 = −CιA−1
Ψ BΨ + Cι. For the ι controller, the lower closed-loop bandwidth is 0 rad/s, so

ωc,ι = 0 rad/s. Assume that the �rst n left and right singular vectors to be W3,n and V3,n,
which represent the �rst n principal output and input control channels. The �rst n singular
values are Σ3,n. In our case, n is set at 1 because analysis shows that the second singular value
is much smaller than the �rst one. Projecting Gι onto the principal output and input control
channels yields Gι,1 = W3,1GιV3,1Σ−1

3,1. Assume that Kι,1 represents the transfer function of
the controller for the plant Gι,1, we then obtain the sensitivity function Sι,1 = (I+Gι,1Kι,1)−1.
Using the LMI optimization method, the controller Kι,1 is synthesized by minimizing the H∞
norm of Tzw,ι =

[
WS,ιSι,1 WKS,ιKι,1Sι,1

]
, whereWS,ι andWKS,ι are two weighting functions.

The ι controller is consequently obtained as Kι = V3,1Σ−1
3,1Kι,1W3,1.

Combining the inputs for composite control In order to achieve the simultaneous
control of ι and βp, the outputs of the ι and βp controllers should be combined to generate
a set of actuated powers for the H&CD systems. Suppose that the output of the fast βp
controller, of the slow βp controller and of the ι controller are ~uβp,F , ~uβp,S and ~uι, respectively.
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Figure 3.4: Geographic illustration

Denoting ~uβp = ~uβp,F + ~uβp,S , the feedback controller output is expressed as:

~uFB = (1 + λβp)~uβp + (1 + λι)~uι (3.15)

Here, λβp and λι are the coupling coe�cients which ensure that the projection of ~uFB onto
the direction of ~uβp is the magnitude of ~uβp and meanwhile, the projection of ~uFB onto the
direction of ~uι is the magnitude of ~uι. As shown in Fig. 3.4, the problem can be formulated
as:

~uFB ·
~uβp
‖~uβp‖

= ‖~uβp‖, ~uFB ·
~uι
‖~uι‖

= ‖~uι‖ (3.16)

Combining equations (3.15) and (3.16), we can derive:

λβp‖~uβp‖2 + λι~uι · ~uβp =− ~uι · ~uβp
λι‖~uι‖2 + λβp~uβp · ~uι =− ~uβp · ~uι

(3.17)

Solving equations (3.17), we obtain the coupling coe�cients λβp and λι as:

λβp =

(
~uι·~uβp
‖~uι‖‖~uβp‖

)2
− ~uι·~uβp
‖~uβp‖2

1−
(

~uι·~uβp
‖~uι‖‖~uβp‖

)2 , λι =

(
~uβp ·~uι
‖~uβp‖‖~uι‖

)2
− ~uβp ·~uι
‖~uι‖2

1−
(

~uβp ·~uι
‖~uβp‖‖~uι‖

)2

We consider the constant feedforward ~uFF to be the steady-state powers for the plasma equi-
librium around which the model is linearized. The total actuated powers for the H&CD
systems are then obtained as U = ~uFB + ~uFF .
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Table 3.1: Weighting functions for S/KS.

Option WS WKS

I
s
M

+ωB
s+ωBA

1

II
( s√

Mp
+ωp)2

(s+ωp
√
Ap)2

( s√
Mu

+ωu)2

(s+ωu
√
Au)2

Remarks on the weighting functions In this study, two options of the weighting func-
tions WS/WKS [Skogestad and Postlethwaite, 2007, Barton et al., 2015a] are attempted to
shape the H∞ norm of the mixed sensitivity function S/KS, as listed in Table 3.1.

In option I, the sensitivity function S is shaped by the weighting function WS =
s
M

+ωB
s+ωBA

.
We select A << 1 to ensure the approximate integral action with S(0) ≈ 0 such that the
tracking error can be made small and the output disturbance can be attenuated. We keep M
�xed at 2 for all the controlled outputs. The desired closed-loop bandwidth ωB are tuned by
trials and errors, which is directly related to the transient performance. A large value of ωB
yields a faster response for the controlled output, but it may result in larger overshoots.

In option II, the mixed-sensitivity functions S and KS are respectively shaped by
( s√

Mp
+ωp)2

(s+ωp
√
Ap)2

and
( s√

Mu
+ωu)2

(s+ωu
√
Au)2

, implying more tuning parameters. The parameters Mp and Mu

are associated with the high frequency behaviour, which are �xed at 2. The parameters Ap
and Au are related to the low frequency behaviour and we select them to be small for good
tracking and disturbance rejection. The parameters ωp and ωu determine the closed-loop
control bandwidth [Barton et al., 2012], which are tuned by trials and errors.

3.1.2.2 Control implementation

Setpoints selection The setpoints selection is essential for the situation where the number
of outputs is larger than that of inputs, because if the setpoints are speci�ed out of the
attractive control region they should never be achieved even with the maximum/minimum
allowed actuations. In this study, the ι and βp sepoints are determined semi-empirically
by nonlinear closed-loop METIS simulations such that all the setpoints are located in the
attractive control region.

Control discretization and model reduction Using theH∞ norm optimization approach
we consequently derive a set of continuous dynamical controllers with di�erent orders. The
real-time application to plasma control requires the discretisation of these controllers. Ac-
counting for the constraints of the equilibrium reconstruction and energy con�nement time on
EAST, we discretize the controller with the sampling time Ts = 20 ms.

For simplicity, one can further perform model reduction on these discrete controllers to
remove insigni�cant controller dynamics and obtain their minimal realizations [Skogestad and
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Postlethwaite, 2007]. After model reduction, the order of the fast βp controller remains at 2
by using the weighting functions in option I. The initial order of the fast βp controller (2) is
equal to the sum of the order of the fast βp model (1) and of the weighting functions (1). The
slow βp controller order substantially decreases for example by using the weighting functions
in option II, from 14 to 8. The initial order of the slow βp controller (14) is the sum of the
order of the slow βp model (10) and of the weighting functions (2+2). The order of ι controller
drops from 14 to 5. The initial order of the ι controller (14) is the sum of the order of the ι
model (10) and of the weighting functions (2 + 2).

Feedforward and control initialization The control initialization is important for good
control performance, because if it is not well con�gured, the actuations are probably saturated
which may cause large overshoots, even plasma disruptions. To avoid the possibilities of
potential plasma disruptions arising from improper control initialization, a feedforward in
terms of discrete low-pass �lters for ι and βp is designed. The characteristic time for the ι
and βp pre-�lters are respectively of the order of the resistive di�usion time τmag = 0.4 s and
the energy con�nement time τkin = 0.04 s. The feedforward trajectories are then obtained as
follows in the discrete state space form:[

xι[k + 1]

xβp [k + 1]

]
=

[
Af,ι 0

0 Af,βp

] [
xι[k]

xβp [k]

]
+

[
Bf,ι 0

0 Bf,βp

] [
ιref[k]

βp,ref[k]

]
[
ιm[k]

βp,m[k]

]
=

[
Cf,ι 0

0 Cf,βp

] [
xι[k]

xβp [k]

] (3.18)

where ιref[k] and βp,ref[k] are respectively the setpoints selected in section (3.3.1) for ι and
βp at time k, xι[k] and xβp [k] the �lter states at time k, while ιm[k] and βp,m[k] respectively
denote the ι and βp reference trajectories at time k for the feedback controller to track.

To avoid undesirable bump and power saturations due to control switching [Hanus et al.,
1987], the initial states of the ι and βp �lters are then computed as:

[
xι[0]

xβp [0]

]
=

[
Cf,ι 0

0 Cf,βp

]−1 [
ιmea[0]

βp,mea[0]

]
(3.19)

Here we assume that k = 0 represents the starting time when the feedback controller is switched
on. ιmea[0] and βp,mea[0] indicate the initial measured/estimated ι and βp respectively, which
are equal to their corresponding initial setpoints ιref[0] and βp,ref[0].

Actuator dynamics In order to mimick the experimental conditions for auxiliary H&CD
power actuators on EAST, actuation dynamics are considered to evaluate the performance
and robustness of the feedback control algorithm. The actuation dynamics for the ICRH and
LHCD are modelled separately as a �rst-order transfer function with time-delay:

Gi(s) =
ki

τis+ 1
e−θis, i ∈ {ICRH,LHCD} (3.20)
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Table 3.2: ICRH and LHCD power actuator model parameters.

Actuators τi [ms] θi [ms] Sm [MW] Sr [MW· s −1]
ICRH 1 [0, 60] [0, 1.5] [-8, 8]
LHCD 1 [0, 60] [0, 3] [-8, 8]

where i is an indicator for power actuators, ki the i-th steady-state gain which is �xed at 1, τi
the i-th characteristic time, θi the i-th time delay and Gi(s) the transfer function for the i-th
power actuator. A saturation module that accounts for both the magnitude and rate limits
of ICRH and LHCD is considered. Table 3.2 lists the related parameter values, where Sm and
Sr respectively denote the magnitude and rate limits allowed by the actuators.

Control conditioning and anti-windup compensation Since there is a series of dynam-
ics in the actuated power systems, the actual delivered powers are never totally equal to the
control commands requested by the controller at each time slice. However, the controller can-
not automatically identify whether the commands are followed or not unless an extra closed
loop is involved. In some cases, for instance, due to power saturations and time delays, the
states of the controller may wind up because the plant does not respond accordingly, so that
the behaviour of the system will deteriorate dramatically. To handle this problem, an anti-
windup compensator is designed to keep the controller well-behaved and avoid undesirable
oscillations when saturations and moderate time delays are present, which is expressed in a
discrete state-space form:

[
xaw[k + 1]

yaw,d[k]

]
=



[
Aaw Baw

Caw Daw

][
xaw[k]

δu[k]

]
, if δu[k] 6= 0[

Aexp

Cexp

]
xaw[k] , if δu[k] = 0

(3.21)

Here, δu = ua[k] − uc[k], ua[k] denotes the measurements of the actuated powers and uc[k]

denotes the control outputs of the controller. The system matrices (Aaw, Baw, Caw, Daw) of
the anti-windup compensator are chosen identical to the discrete form of the system matrices
in the two-time-scale plasma model. (Aexp, Cexp) is a discrete state-space realization of the
asymptotically stable equation ẋaw(t) = λxaw(t), and λ is set to be -50. yaw,d[k] is the modi�ed
reference arising from the actuation dynamics to be added to the reference trajectories for
controller states conditioning in real-time. This conditioning technique can be combined with
the fast and slow βp controller to cope with up to 60 ms of time delays plus power saturations,
which will be demonstrated in Section 4.2.

Real-time capability Testing on a computer with Intel(R) Xeon (R) CPU X5660@2.8GHz
processors shows that the average computational time for one control cycle is 40.6 µs (less
than the 20 ms sampling time). Considering that the current implementation of the control
algorithms is based on the MATLAB/Simulink framework, the computation time for each
control cycle should be further reduced when the algorithm is realized by the C/C++ code
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and implemented into the EAST PCS using the embedded MATLAB coder (EMC) toolbox.
Therefore, we conclude that this algorithm meets the real-time constraints.

Performance indexes The feedback control performance is evaluated based on a set of
indexes that can be used to represent the control performance in di�erent aspects. The �rst
index is the rise time, which is de�ned as the total time required for the response to rise/fall
from 10 % (90 %) to 90 % (10 %) of its regulation height in a speci�c time window. Speci�cally,
we assume that there areN time windows for the regulation of ι and βp in a controlled scenario,
and the starting time for the ι and βp setpoint transition remain the same. In a given time
window n, the rise time of ι at x = 0, 0.1, 0.2, ..., 0.9 (tr,ι(n, x)) and βp (tr,βp(n)) read as:

tr,ι(n, x) =t(ι1a(n, x))− t(ι0a(n, x))

tr,βp(n) =t(β1
p,a(n))− t(β0

p,a(n))
(3.22)

where [
ι1a(n, x) β1

p,a(n)

ι0a(n, x) β0
p,a(n)

]
=

[
0.1 0.9

0.9 0.1

] [
ι0(n, x) βp,0(n)

ι1(n, x) βp,1(n)

]
n =1, 2, .., N, x = 0, 0.1, 0.2, ..., 0.9

Here, ι0(n, x) and βp,0(n) are the starting setpoints of ι(x) and βp in the time window n

respectively, while ι1(n, x) and βp,1(n) indicate the �nal setpoints. Likewise, ι0a(n, x) and
β0
p,a(n) are the estimated/measured values at the 10 % of the regulation heights in a given

time window n, while ι1a(n, x) and β1
p,a(n) are those at the 90 % of the regulation heights.

Once the rise times for ι and βp in a time window are obtained, we can then calculate
the averaged values. For ι, averaging the rise time tr,ι(n, x) on n leads to the averaged
rise time at each point over all the time windows, i.e. 〈tr,ι(n, x)〉n, meanwhile averaging
tr,ι(n, x) on x results in the integrated rise time of ι points in di�erent time windows, i.e.
〈tr,ι(n, x)〉x. 〈tr,ι〉 and 〈tr,βp〉 are two scalars which show the comprehensive response time for
ι and βp respectively. Note that W (x) is the normalized weighting matrix which represents
the importance of each point. The averages are computed as:

〈tr,ι〉 =
1

10N

0.9∑
x=0

N∑
n=1

W (x)tr,ι(n, x), 〈tr,βp〉 =
1

N

N∑
n=1

tr,βp(n)

〈tr,ι(n, x)〉n =
1

N

N∑
1

tr,ι(n, x), 〈tr,ι(n, x)〉x =
1

10

0.9∑
x=0

W (x)tr,ι(n, x)

The second performance index is the overshoot, de�ned as the maximum amount a system
overshoots its �nal value divided by its �nal value, often expressed in percentage. In tokamak
plasma operation, large overshoots of ι and βp can result in undesirable MHD and kinetic
instabilities, thus it is good to quantify this index to re�ect the control performance. For our
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problem, since ι and βp are not the same kind of physical quantities, we de�ne los,ι(n, x) and
los,βp(n) respectively as the overshoot of ι(x) and βp at a given time window n:

los,ι(n, x) =
ιmax(n, x)− ιss(n, x)

ιss(n, x)
× 100%

los,βp(n) =
βp,max(n)− βp,ss(n)

βp,ss(n)
× 100%

n =1, 2, .., N, x = 0, 0.1, 0.2, ..., 0.9

(3.23)

where ιmax(n, x) and βp,max(n) are the maximum values exceeding their corresponding steady
state values ιss(n, x) and βp,ss(n), respectively.

With the similar technique, we can derive two scalars, i.e., 〈los,ι〉 and 〈los,βp〉 for the
comprehensive evaluation of ι and βp overshoots in the whole controlled scenario. Two partial
averaged values 〈los,ι(n, x)〉n and 〈los,ι(n, x)〉x represent the overshoots of ι in two di�erent
aspects. The weighting matrix W (x) is the same as the one for the rise time calculation.

〈los,ι〉 =
1

10N

0.9∑
x=0

W (x)
N∑
n=1

los,ι(n, x), 〈los,βp〉 =
1

N

N∑
n=1

los,βp(n)

〈los,ι(n, x)〉n =
1

N

N∑
n=1

los,ι(n, x), 〈los,ι(n, x)〉x =
1

10

0.9∑
x=0

W (x)los,ι(n, x)

The third performance index is the relative error index, which represents the relative error
of the controlled output against its setpoint. For our problem, Jι[k] and Jβp [k] are two time-
variant relative error indexes for ι and βp respectively. These two indexes are de�ned as:

Jι[k] =
διT [k]Qδι[k]

ιTr [k]Qιr[k]
, δι[k] = ι[k]− ιr[k]

Jβp [k] =
δβTp [k]δβp[k]

βTp,r[k]βp,r[k]
, δβp[k] = βp[k]− βp,r[k]

(3.24)

where Q is the weighting matrix for ι, δι (δβp) is the error between the estimation ι[k] (βp[k])
and the setpoint ιr[k] (βp,r[k]). Averaging them can as well attain the overall relative error
indexes for ι, i.e. 〈Jι〉 and βp, i.e. 〈Jβp〉, where K is the number of samplings in the whole
controlled process.

〈Jι〉 =
1

K

K∑
k=1

Jι[k], 〈Jβp〉 =
1

K

K∑
k=1

Jβp [k]

We do not combine them by adding these two scalars for a comprehensive representation of
the control performance because we note that they may evolve in di�erent orders, and adding
them may neglect important information about control performance.
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3.1.3 Simulation results

In order to evaluate the control scheme proposed in the previous section, closed-loop simula-
tions were carried out by coupling the controller with the METIS code, which is a nonlinear
plasma simulator. The two-time-scale model is identi�ed from 20 di�erent METIS open loop
simulations with random power modulations: the details of the system identi�cation method-
ology can be found in [Moreau et al., 2008,Moreau et al., 2011,Moreau et al., 2015]. The
reference scenario around which the model is identi�ed is a steady-state, fully non-inductive
single-null H-mode discharge in the EAST tokamak, i.e. shot #62946, with the toroidal
magnetic �eld BT = 2.5 T, the central electron density ne0 ≈ 3.5 × 1019 m−3 and plasma
current Ip = 0.42 MA. The discharge was obtained using LHCD (0.6 MW at 2.45 GHz and
2 MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The
transition to H-mode occurred at 3.1 s with an H-mode enhancement factor H98(y, 2) ∼ 1.1.
The q-pro�le exhibited a small negative shear in the plasma core, with minimum q around
1.5 and q0 ∼ 2 on axis. The plasma pro�les were retrieved from the EFIT magnetic equi-
librium reconstructions available in real-time using magnetic and kinetic measurements, for
instance, interfero-polarimetry data from the POINT diagnostics [Liu et al., 2016b,Liu et al.,
2016a,Huang et al., 2017].

The initialization of the METIS code is preset to be consistent with shot #62946 at 3.1
s, including plasma current, shape, magnetic �uxes, kinetic pro�les and actuated powers.
The plasma transport model is described in detail in [Artaud et al., 2018] and was chosen
consistent with the standard ITER-EIV H-mode scaling law [Cordey et al., 2005]. With this
scaling law, an H-factor of 0.99 was used in METIS simulations to �t the measured plasma
energy content. This H-factor can be varied in some simulations to study the e�ect of model
perturbations. Some other �tting parameters were chosen in order to �t the temperature
pro�les measured in shot #62946 and then �xed for all simulations. The LHCD model is also
described in [Artaud et al., 2018]. The lower hybrid power deposition pro�le is based on a
probabilistic ad-hoc formulation which takes into account the limits of the wave propagation
domain in space and parallel wave-index and the Landau absorption criterion as a function of
local plasma temperature. With the chosen parameters, the LHCD was generally deposited
o�-axis, which could lead to reverse magnetic shear at high power, and to the formation
of electron internal transport barriers in some cases. Plasma parameters such as plasma
current, geometry, densities and e�ective charge numbers are assumed to be regulated by
dedicated controllers. The sampling time is �xed to 20 ms. The LHCD power at 2.45 GHz
and the ECRH power at 140 GHz are not considered as control actuators. They are always
at their reference values in every simulation, 0.6 MW and 0.3 MW respectively, and since
METIS allows for only one lower hybrid system, they are combined into a single heating
system providing 0.9 MW with given power and current deposition pro�les into the plasma
at constant plasma current and density. The control actuators are the LHCD power at 4.6
GHz and the ICRH power at 33 MHz and their feedforward components are constant at
2 MW and 0.32 MW, respectively, as in the reference discharge. The time constants for
βp and ι pre�lters are respectively 0.04 s and 0.4 s, whose initial states are respectively
1.0282 (βp,0) and [0.9200, 0.9032, 0.9745, 0.9901, 0.7892, 0.6195, 0.4602, 0.3383, 0.2496, 0.1866]
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(ιi,0, i = 0, 0.1, 0.2, ..., 0.9) corresponding to the counterparts at 3.1 s in shot #62946. The
time constant and initial state for the low-pass �lter in the feedback component are 1 s and
0, respectively. The actuated powers are the 4.6 GHz LHCD spreading between 0 and 3 MW
and the 33 MHz ICRH from 0 to 1.5 MW.

3.1.3.1 Tracking of q-pro�le and βp

Separate control of βp and the core ι pro�le The simplest control evaluation case is
the nominal control of βp, with the safety factor control relaxed as shown in Fig. 3.5. There
are totally 6 setpoints which are required to be achieved, sequentially 1.5, 2, 3, 1.9, 2.3 and
2.8. It is obvious that the combination of fast βp and slow βp controllers is able to track
βp with good control performance, e.g. the averaged rise time 〈tr,βp〉 at 132 ms, very small
overshoots (〈los,βp〉 = 3.2 %) and negligible steady-state errors under the condition that the
powers of ICRH and LHCD are not saturated. In each control phase, the averaged relative
error for βp, i.e. 〈Jβp〉, initially increases due to the sudden change of its regulation point, and
then decreases substantially to around 10−7. This allowed extensive closed-loop simulations
to be performed in a reasonable time despite the complexity of the METIS code, and also
provided realistic simulations of the closed-loop experiments on EAST, in which the sampling
time has to match the requirements of the real-time magnetic reconstruction. This sampling
time is adequate for the slow βp controller (the characteristic time of the slow model is τmag
= 0.4s), but discrepencies between the (ideal) continuous dynamics and the discrete ones due
to sampling may in�uence the fast control of βp (the characteristic time of the fast model is
τkin = 0.04s). Since the rise time 〈tr,βp〉 is around six times the sampling interval and 3.5 τE ,
this in�uence appears to be insigni�cant. Concerning the evolution of the ι values at di�erent
radii, we note that the plasma temperature increases when the ICRH power and βp increases,
which makes the LHCD deposition more o�-axis and also drives more bootstrap current, thus
leading to the increase of the core safety factor pro�le.

The second case is the nominal control of ι values at normalized radius x = 0, 0.1, 0.2, ...,
0.5 with the βp feedback control relaxed. Three sets of setpoints were prescribed, with the �rst
setpoint globally positive magnetic shear, the second one being weakly negatively sheared in
the plasma core, and the third being strongly centrally negatively sheared. As shown in Fig.
3.6, the setpoints are achieved with the averaged rise time 〈tr,ι〉 = 607 ms and the averaged
overshoots 〈los,βp〉 = 1.4 %. In each control phase, the averaged relative error for ι, i.e. 〈Jι〉,
initialy increases due to its limited control bandwidth, and then decreases exponentially to
around 10−6. Since the plasma pressure is not actively controlled, in other words, the fast
and slow βp controllers are not switched on, the βp value remains at around 1.5 due to very
small variations of the ICRH power. It indicates that, as expected, the LHCD system is more
suitable for ι control than for βp control, while the ICRH system is just in reverse. In addition,
small variations of βp indicate that the control of ι points in the plasma core via LHCD does
not obviously impact the value of plasma pressure.
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Figure 3.5: Tracking βp. Left-top panel: time traces of βp setpoints (green dashed) and
evolutions (black) with βp feedback control. Left-middle panel: time traces of actuated powers
PICRH (blue) and PLHCD (red), as well as the ICRH (blue dashed) and LHCD (red dashed)
power limits. Left-bottom panel: time traces of the relative error index for βp. Right panel:
time traces of ι setpoints (dashed) and evolutions (solid) at x = 0 (black), 0.1 (green), 0.2
(red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι control relaxed.

Simultaneous control of βp and the core ι pro�le The nominal control of both ι and
βp is shown in Fig. 3.7. Three βp setpoints, namely 2, 2.5 and 3 are prescribed, i.e. 2 in the
time interval [3.1, 7.1] s, 2.5 in [7.2, 11.2] s and 3 in [11.3, 15.6] s. Likewise, three groups of
setpoints for ι at 0, 0.1,..., 0.4 are speci�ed, i.e. positive central magnetic shear between 3.1
s and 7.1 s, weakly central negative shear from 7.2 s to 11.2 s and strongly central negative
shear in [11.3, 15.6] s. Clearly, all the targets are achieved using only the limited LHCD and
ICRH powers, with the averaged rise time vector (〈tr,βp〉, 〈tr,ι〉) at (0.113, 1.11) s, the averaged
overshoot vector (〈los,βp〉, 〈los,ι〉) at (1.44, 3.47) %. In each regulation window, Jι evolves from
10−3 to 10−5 and Jβp decreases from 10−2 to approximately 10−9.

The corresponding evolutions of q-pro�le, the bootstrap current pro�le, electron and ion
temperature pro�les are depicted in Fig. 3.8. With the decrease of the central magnetic shear
and the βp increase, the bootstrap current was increased due to the increase of electron tem-
peratures and their gradients and the LH-driven current was increased as well via actuating
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Figure 3.6: Tracking ι points at 0, 0.1, 0.2, ...,0.4. Left-top panel: time traces of βp setpoints
(green dashed) and evolutions (black) with βp control relaxed. Left-middle panel: time traces
of actuated powers PICRH (blue) and PLHCD (red), as well as the ICRH (blue dashed) and
LHCD (red dashed) power limits. Left-bottom panel: time traces of the averaged relative
error index for ι. Right panel: time traces of ι setpoints (dashed) and evolutions (solid) at
x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback
control.

more LHCD power. An internal transport barrier was formed on the electron channel as one
can notice a strong increase of Te and Jboot in the center. However, the increase of electron
temperatures implies the reduction of the electron-ion collision frequency (proportionally to
T−1.5
e ), hence the ions could not be heated by electrons. Taking the ion radiation and power

loss into account, the ions temperature dropped slightly. The EAST tokamak is a super-
conducting tokamak which is suitable for the long-pulse steady-state plasma operation. The
second case involves the simulatenous control of βp and ι in H-mode steady state operational
scenarios. In order to design appropriate ι and βp setpoints for H-mode steady-state plasma
control, we perform trial simulations by regulating one set of ι values via the proposed ι con-
troller and tracking βp to di�erent levels via the proposed βp controller. The pair of ι and
βp values associated with zero surface loop voltage are selected as setpoints. Note that Uloop
is not an actuator, and the condition of the zero loop voltage with the constant total plasma
current is sati�ed by appropriately coordinating the values of ι and βp. With the procedure,
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Figure 3.7: Tracking ι points at 0, 0.1, 0.2, ..., 0.4 and βp simultaneously. Top panels from
left to right: time traces of plasma poloidal pressure βp, plasma current Ip, the loop voltage
Uloop, the averaged relative error for βp, 〈Jβp〉. Middle panels from left to right: time traces
of the ι septpoints (green dashed) and evolutions (black solid) at x = 0, 0.1, 0.2, 0.3. Bottom
panels: time traces of the ι setpoints (green dashed) and evolutions (black solid) at x = 0.4,
the actuated ICRH power PICRH (black solid) associated with its power limits (green dashed),
the ICRH power PLHCD (black solid) associated with its power limits (magenta dashed), and
the averaged relative error for ι, 〈Jι〉.

three pairs of setpoints for ι and βp are therefore designed. The tracking of these designed
setpoints using the proposed control scheme is then performed with the results shown in Fig.
3.9. In each regulation window, the setpoints are reached with the averaged rise time vector
(〈tr,βp〉, 〈tr,ι〉) at (0.146, 1.34) s, the averaged overshoot vector at (〈los,βp〉, 〈los,ι〉) at (2.13,
3.86) %, small steady state errors, and meanwhile, with the loop voltage approaching zero.

More interesting physical results are illustrated in Fig. 3.10. It seems that the increase of
the absolute value of central magnetic shear combined with the βp decrease can ensure the sum
of bootstrap current and LH driven current approximately kept at a level so that the ohmic
current would not play a role. With the decrease of the ICRH power, βp drops from 2.8 to
2.2, associated with the global reduction of the electron temperature. The decrease of electron
temperatures results in the growth of the collision frequency between electrons and ions, thus
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Figure 3.8: Simulation of a hybrid scenario. Left-top panel: typical q-pro�le setpoints (asterisk
and dashed) and evolutions (square and solid) at 6.8 s (red), 11 s (blue) and 15 s (black).
Right-top panel: contour plot of the bootstrap current jboot evolution. Left-bottom panel:
contour plot of the electron temperature pro�le Te evolution. Right-bottom panel: contour
plot of the ion temperature pro�le Ti evolution.

the ion temperatures globally increased via acquiring the energy from electrons. The two
obvious bulbs for the loop voltage evolution, shown in Fig. 3.10, between scenario transition
are attributed to the sudden decrease of the bootstrap current arising from the sudden decrease
of electron temperatures and their gradients due to the decrease of the ICRH power. In order
to compensate for the loss of the bootstrap current and keep the plasma current constant, the
ohmic current increases in response to the loop voltage, Uloop (See [Wesson and Campbell,
2011] for its de�nition), delivered by the plasma current controller. Therefore, Uloop transiently
increases before it is reduced to about 0 on a longer time scale due to the growth of PLHCD and
of the associated LH driven current, which leads to an increase of the central safety factor and
shear reversal. Even though it plays a negligible role in the steady state scenarios, the ohmic
current can be used transiently after setpoint changes or plasma disturbances considering the
di�erent time scales in which various parameters such as the bootstrap current or the LH
driven current evolve.
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Figure 3.9: Tracking of ι points at 0, 0.1, 0.2, ..., 0.4 and βp simultaneously. Top panels from
left to right: time traces of plasma poloidal pressure βp, plasma current Ip, the loop voltage
Uloop (black solid) with the zero loop voltage line (red dashed) , the averaged relative error for
βp, 〈Jβp〉. Middle panels from left to right: time traces of the ι setpoints (green dashed) and
evolutions (black solid) at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces
of the ι setpoints (green dashed) and evolutions (black solid) at x = 0.4, the actuated ICRH
power PICRH (black solid) associated with its power limits (green dashed), the LHCD power
PLHCD (black solid) associated with its power limits (magenta dashed), and the averaged
relative error for ι, 〈Jι〉.

3.1.3.2 Tracking with moderate time delays and power saturations

In this section, we �rst present the METIS simulation results with di�erent levels of time de-
lays. Then comparison of the simulations with and without the control conditioning module is
provided to highlight the importance of online control conditioning for the feedback controller
in attenuating the negative e�ects from time delays and power saturations.

Basically, the tokamak operation system is a time delay system, in which the time delays
may arise from the PCS sampling, �ltering, communication with the associated systems,
the actuator systems, the diagnostic systems and the real-time equilibrium reconstruction
algorithm. For time delay systems, the e�ects from time delays can be neglected if they
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Figure 3.10: Simulation of a steady-state scenario. Left-top panel: typical q-pro�le setpoints
(asterisk and dashed) and evolutions (square and solid) at 6.8 s (red), 11 s (blue) and 15 s
(black). Right-top panel: contour plot of the bootstrap current jboot evolution. Left-bottom
panel: contour plot of the electron temperature pro�le Te evolution. Right-bottom panel:
contour plot of the ion temperature pro�le Ti evolution.

are under a particular threshold. However, exceeding the threshold may result in undesirable
oscillations, sometimes even inducing closed-loop instability. Since the pro�le control sampling
time is �xed at 20 ms, the time delays that appear in the discrete pro�le controller should be
a multiple of the pro�le control sampling time. The actuation and measurement time delays
can be as small as 1 ms because their sampling frequencies are much larger, e.g. 1000 Hz.
The PCS pro�le control algorithm and the equilibrium reconstruction algorithm with larger
sampling time at 20 ms thus constitute a primary source of time delays, which may cause time
delays as large as 20 ms, 40 ms and even 60 ms. In this study, we evaluate the performance
of the controller under the time delay environment by arti�cially varying the time delays in
the actuation dynamics at 20 ms, 40 ms and 60 ms, respectively. The simulation results are
illustrated in Fig. 3.11. By comparing the evolution of βp and ι values in the plasma core
with the actuation time delays at 20 ms, 40 ms and 60 ms, we can conclude that the control
performance is not obviously damaged with the increase of time delays, which is bene�cial
from the online control conditioning for the controller states using the values of the control
commands provided by the controller and of the actual powers provided by the ICRH and



3.1. Decentralized robust control of q-pro�le and βp 81

LHCD power systems.

Figure 3.11: Tracking with time delays (t.d.) at 20 ms (black), 40 ms (red) and 60 ms (blue).
Top panels from left to right: time traces of plasma poloidal pressure βp, plasma current Ip,
the loop voltage Uloop, the βp performance index Jβp . Middle panels from left to right: time
traces of the ι points at x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of
the ι point at x = 0.4, the actuated ICRH power PICRH, the LHCD power PLHCD, and the
ι performance index Jι. The reference trajectories for ι and βp are denoted by green dashed
lines, the power limits for the ICRH and LHCD are indicated by blue and magenta dashed
lines, respectively.

Normally, under ideal circumstances if the reference trajectories are properly prescribed,
the magnitude and power rate limits of the ICRH and LHCD systems are never violated.
However, unpredictable disturbances in tokamak plasmas could drive the plasma to abnormal
states, which can probably cause power saturations, sometimes accompanied with time delays.
In order to identify whether the controller with online control conditioning can e�ectively at-
tenuate the e�ects from both the power saturations and time delays, control performance with
and without the anti-windup module are compared in Fig. 3.12. In the scenario without con-
trol conditioning imposed, there are obvious oscillations of the βp evolution at the beginning,
which is caused by oscillations of the ICRH power mainly due to 60 ms time delays (i.e. 3
Ts). At 7.1 s, the βp setpoints are increased from 2.0 to 3.5 exponentially. However, since the
highest ICRH power that can be provided can not support the achievement of βp at 3.5, the



82 Chapter 3. Linear Robust Control

ICRH power is saturated until 11.2 s. Then the reference trajectory starts to decrease from
3.5 to 3.0: one can notice that the βp value immediately follows the reference trajectory for
the scenario with control conditioning, but the scenario without control conditioning can not
respond accordingly for as long as 4 s. As for ι one can notice that at the beginning the relative
errors, i.e. Jι[k], for two scenarios are approximately consistent, because the ι controller does
not respond to the high frequency references/disturbances. After the saturation is relaxed, the
relative error for ι with control conditioning is obviously much smaller than the one without
control conditioning.

To sum up, using the controller outputs and the actual power measurements, we can
calculate the actuation errors due to power saturations or time delays with respect to the
control commands based on the two-time-scale plasma model. Then these errors are fed back
to the controller for control states conditioning. This technique can attenuate negative e�ects
from long time delays, e.g. 60 ms, and from the evolution after the power saturations are
relaxed.

3.1.3.3 Tracking with varying weighting functions

The objective of this section is to compare the closed-loop simulation results using the feedback
controller tuned with various weighting functions. Six simulation scenarios were evaluated,
whose results are listed in Table 3.3. All the simulation scenarios have achieved the simulta-
neous control of q-pro�le and βp, implying the potential robustness of the feedback controller
to the weighting function parameters.

In the scenarios a-c, all three local controllers are tuned with the weighting functions
as listed in the option I of Table 3.3. The tuning parameters M and A are respectively
kept at 2 and 10−5, and the desired closed-loop bandwidths are increased from the scenario
a to c. Results show that the performance indexes 〈~tr〉 and 〈 ~J〉 are gradually descreased
for both βp and ι tracking, which is accompanied with the increase of the overshoot index
〈~los〉. In the scenarios d-f, the fast βp controller is tuned with the weighting functions in the
Option I, while the slow βp and ι controllers are tuned with the weighting functions in the
Option II. Likewise, the tuning parameter M is �xed at 2 for all the weighting functions,
while the desired closed-loop bandwidths and the low frequency tuning parameters are varied.
Results imply that with the increase of the desired closed-loop bandwidths, the transient
control performance is improved because the performance indexes 〈~tr〉 and 〈 ~J〉 are decreased
gradually and the overshoot index 〈~los〉 is increased in the scenarios d-f. In addition, statistics
show that the averaged rise time 〈tr,βp〉, lies in 90-132 ms, i.e. (2.25-3.3) τE and also 4.5-
6.6 times the sampling interval, which is physically reasonable and is a tradeo� between the
control performance and robustness. The robustness performance to parameter disturbances
will be evaluated in the next section.

Comparing the scenarios a-f, we conclude that when using the option II for control design,
the ι control can be improved slightly, but the βp control performance is damaged. To sum
up, the tuning of the desired closed-loop bandwidths is essential for the control performance,
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Figure 3.12: Comparison of tracking with 60 ms of time delays (t.d.) plus power saturations
with (black solid) and without (red solid) online control conditioning. Top panels from left to
right: time traces of plasma poloidal pressure βp, plasma current Ip, the loop voltage Uloop,
the βp performance index Jβp . Middle panels from left to right: time traces of the ι points at
x = 0, 0.1, 0.2, 0.3. Bottom panels from left to right: time traces of the ι point at x = 0.4,
the actuated ICRH power PICRH, the ICRH power PLHCD, and the ι performance index Jι.
The reference trajectories for ι and βp are denoted by green dashed lines, the power limits for
the ICRH and LHCD are indicated by blue and magenta dashed lines respectively.

which should be carefully considered. In addition, the tuning parameter A should be made
small, for example, at 10−5 to guarantee small tracking errors.

3.1.3.4 Robustness to plasma parameter uncertainties

In tokamak experiments, there are numerous parameters/pro�les that were assumed to be
constant but possibly vary and in�uence, in di�erent degrees, the values of safety factors and
plasma pressures. For example the line averaged density 〈n̄e〉, the con�nement enhancement
factor H98(y, 2) and the ion e�ective charge number Ze� are among the most important ones.
Hence, we consider those quantities as the sources of typical disturbances that occur in the
course of the simulation and evaluate the robustness of the closed-loop system. Plasma current
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Table 3.3: Weighting functions for the local controllers design and performance indexes.

Option Index ωB,βp,F ωB,βp,S ωB,ι Aβp,F Aβp,S Aι - - - - 〈~tr〉 [s] 〈~los〉 [%] 〈 ~J〉× 104 [A.U.]

I
a 2π π π 10−5 10−5 10−5 - - - - (0.107,0.808) (4.02,3.43) (9.78,14.0)
b 3π 1.5π 1.5π 10−5 10−5 10−5 - - - - (0.0933,0.771) (5.12,3.80) (9.09,13.0)
c 4π 2π 2π 10−5 10−5 10−5 - - - - (0.100,0.752) (6.19,4.12) (8.94,12.0)

ωB,βp,F ωp,βp,S ωu,ι ωp,3 ωu,ι Aβp,F Ap,βp,S Au,βp,S Ap,ι Au,ι

II
d 2π 10−0.3 1 10−0.3 1 10−5 10−4.5 100.1 10−4.5 100.1 (0.113,1.11) (1.44,3.47) (9.96,30.0)
e 3π 10−0.15 1.2 10−0.15 1.2 10−5 10−5.25 100.1 10−5.25 100.1 (0.0933,0.906) (3.33,4.46) (9.12,26.0)
f 4π 10−0.10 1.5 10−0.3 1.5 10−5 10−6 100.2 10−6 100.2 (0.0933,0.885) (4.69,5.18) ( 9.01,26.0)

NOTE: 〈~tr〉
def
= (〈tr,βp〉, 〈tr,ι〉), 〈~los〉

def
= (〈los,βp〉, 〈los,ι〉), 〈 ~J〉

def
= (〈Jβp〉, 〈Jι〉).

Table 3.4: List of the parameter variations.

βp δn̄e [%], T.I. [s] δH98(y, 2)[%], T.I. [s] δZe� [%], T.I. [s]
2 +30 %, [3.7, 4.2] +30%, [11.26, 11.76] +30%, [12.26, 12.76]

-30 %, [19.82, 20.32] -30%, [4.7, 5.2] -30%, [14.78, 15.28]
2.5 +30%, [6.22, 6.72] +30%, [13.78, 14.28] +30%, [17.30, 17.80]

-30%, [22.34, 22.84] -30%, [7.22, 7.72] -30%, [18.82, 19.32]
3 +30%, [8.74, 9.24] +30%, [16.30, 16.80] +30%, [21.34, 21.84]

-30%, [24.86, 25.36] -30%, [9.74, 10.24] -30%, [23.86, 24.36]

disturbances are not taken into account in this study because the plasma current is tightly
regulated separately through a dedicated controller.

Simulation results of disturbance rejection by the βp controller are depicted in Fig. 3.13,
where 18 squared wave disturbances emerge in separate periods of the whole simulation as
listed in Table 3.4. Speci�cally, the value of the averaged density is increased by 30% at 3.6
s (βp at 2), 6.22 s (βp at 2.5) and 8.74 s (βp at 3) respectively and remains constant for 0.5
s before it returns to the original value. The value of the averaged density is decreased by
30% suddenly at 19.82 s (βp at 2.0), 22.34 s (βp at 2.5) and 24.86 s (βp at 3) and remains
the same for 0.5 s before returning to the initial value. The H factor is arti�cially decreased
by 30% in the time periods [4.7, 5.2] s, [7.22, 7.72] s and [9.74, 10.24] s, while in the time
periods [11.26, 11.76] s, [13.78, 14.28] s and [16.30, 16.80] s it grows by 30%. During the
time intervals [12.26, 12.76] s, [17.30, 17.80] s and [21.34, 21.84] s we respectively increase the
e�ective charge number by 30% while during the time intervals [14.78, 15.28] s, [18.82, 19.32]
s and [21.34, 21.84] s the e�ective charge number is decreased by 30 %. We can conclude
from our simulations that, in addition to good reference tracking, the fast and slow controllers
are as well able to reject the 30% changes of 〈n̄e〉, H98(y, 2) and Ze� with a response time
at around 0.25 s when the ICRH power is not saturated. We note that if the upper limit of
the ICRH power is 1.5 MW, it is not possible to reject the 30% decrease of H98(y, 2) when
βp is over 2.5 and also it cannot reject 30 % decrease of 〈n̄e〉 and Ze� when βp is at 3. The
reason is that under those conditions the available ICRH power is not able to compensate the
reduced part of βp arising from the decrease of H98(y, 2), 〈n̄e〉 and/or Ze�. Importantly, we
highlight that among all three parameters, H98(y, 2) is the most important parameter that
can signi�cantly a�ect βp.
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Figure 3.13: Disturbance rejection of βp control. Top panel: time traces of βp setpoints
(green dashed) and evolutions (black solid), with the associated parameter variation inter-
vals: magenta areas indicate that n̄e is activated as a parameter disturbance, while H98(y, 2)

corresponds to the light purple areas and Ze� is linked with cyan areas. The red dotted line
represents the relative variation of each activated disturbance parameter. Middle panel: time
traces of actuated powers PICRH (blue solid) and PLHCD (red solid), as well as power ranges
of ICRH (blue dashed) and LHCD (red dashed). Bottom panel: time traces of the relative
error for βp, i.e. Jβp .

The robustness test of the ι controller against typical squared wave disturbances is pre-
sented in Fig. 3.14. In this case, three squared wave disturbances are imposed in the periods
of [4, 4.5] s (30 % increase of 〈n̄e〉), [8, 8.5] s (30 % increase of H98(y, 2))and [12, 12.5] s (30%
increase of Ze�). Even though the simulation experienced large and sudden disturbances in
the �rst two phases, two groups of setpoints are �nally reached without exceeding the limits
of ICRH and LHCD powers. As for the third phase, since the model mistmatches are enlarged
with strongly negative magnetic shear due to nonlinearity, the setpoints are reached after a
few oscillations.

The simultaneous control of ι at 0, 0.1, 0.2, ..., 0.5 and βp with typical disturbances is
shown in Fig. 3.15. There are three squared wave disturbances with the amount of 30%
growth occurring in the time intervals [4, 4.5] s (for averaged density), [8, 8.5] s (for H factor)
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Figure 3.14: Disturbance rejection of ι control. Left-top panel: time traces of actuated
powers PICRH (blue) and PLHCD (red), power ranges of ICRH (blue dash) and LHCD (red
dash). Left-bottom panel: time traces of the averaged relative error index for ι. Right panel:
time traces of ι values (solid) and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red),
0.3 (blue), 0.4 (magenta), 0.5 (cyan) with ι feedback control. Magenta, light purple and cyan
areas are respectively indicating 30 % increase of n̄e, H98(y, 2) and Ze�.

and [12, 12.5] s (for e�ective charges). In addition to reference tracking, βp is well regulated
against the three sudden and large disturbances with a response time of 0.2 s. The ι controller
is able to reject the disturbances of both H factor and plasma density and �nally reaches the
targets. For the strongly negative shear case, it takes more time to achieve the target since the
model mismatches are much larger, but it is nevertheless approached as closely as possible.
Note that when βp is at 3.0, a large amount of ICRH power is needed to sustain this value
and only a limited amount of power is left to reject the disturbance, thus the ICRH power is
saturated between 12 s and 12.5 s.

3.1.4 Conclusion of Section 3.1

In this work, a new H∞ robust controller has been developed for the tracking of q-pro�le and
βp, based on a two-time-scale data-driven model. The model is divided into 3 sub-models for
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Figure 3.15: Disturbance rejection of simultaneous ι and βp control. Left-top panel: time
traces of βp setpoints (green dashed) and evolutions (black), with magenta, light purple and
cyan areas respectively indicating 30 % increase of n̄e, H98(y, 2) and Ze�. Left-middle panel:
time traces of actuated powers PICRH (blue solid) and PLHCD (red solid), power limits of ICRH
(blue dashed) and LHCD (red dashed). Left-bottom panel: time traces of the relative error
for ι(x) (cyan solid) on x and βp (magenta solid). Right panel: time traces of ι values (solid)
and setpoints (dashed) at x = 0 (black), 0.1 (green), 0.2 (red), 0.3 (blue), 0.4 (magenta), 0.5
(cyan) with ι feedback control.

separate control synthesis and eventually all the local controllers are combined for composite
feedback control. In order to attenuate the negative e�ects from power saturations and time
delays, a controller states conditioning loop is utilized to compensate for the actuation errors
due to power saturation and time delays. Meanwhile, to avoid undesirable bumps, overshoots
and power saturations at the control initialization, some pre-con�gurations on the setpoints
and pre-�lters are carefully made. The control tunings and relevant control performance have
been evaluated numerically to provide some indications on experimental control tunings for the
robust feedback controller. Importantly, extensive nonlinear closed-loop simulations with the
METIS code show that using LHCD@4.6GHz and ICRH@33MHz systems as control actuators
the proposed controller can successfully achieve and regulate the monotonic q-pro�le and
reversed magnetic shear with high βp in H-mode steady-state scenarios on EAST. Robustness
tests indicate that it is possible to maintain the states by rejecting the disturbances of up to
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di�erent levels of plasma density variation, H-factor variation and e�ective charge variation
separately.

In the future, the implementation of the control algorithms into the EAST PCS is ex-
pected and experimental tests on EAST are foreseen to further validate the e�ectiveness of
the proposed control scheme. Furthermore, a series of extensions can be made based on the
proposed controller. Firstly, control adaptivity can be imposed on the feedback controller
(treated as a central controller) to enhance its control performance, for example, reducing the
overshoots and steady-state errors, especially for the fast timescale kinetic control and the
central safety factor control. In addition, a plant model-based feedforward can be combined
with the feedback controller to not only actively control the response time but also optimally
reduce the transient errors between measurements/estimations and setpoints, while the distur-
bance model-based feedforward can be implemented to deal with typical disturbances at the
timescale beyond the control bandwidth of the fast controller. It is also interesting to explore
the high plasma current, high plasma pressure, high bootstrap current fraction steady-state
scenarios with the inclusion of NBIs and ECCDs as control actuators for the integrated control
of q-pro�le, ion temperature and plasma rotation pro�les and MHD instabilities.

3.2 Robust real-time feedback alternatives for kinetic control

In recent years, various control schemes have been proposed for tailoring plasma magnetic and
kinetic parameters/pro�les. Nonetheless, we �nd that performance comparison of di�erent
feedback controllers, even in a speci�c operational scenario, rarely appears in the literature.
For the sake of routine tokamak plasma operation, it is interesting to have comprehensive
knowledge of the characteristics of these feedback control schemes such that one can immedi-
ately select an optimal controller from a set of alternative ones for a speci�c control objective.
In this section, we make the �rst attempt to provide practical and valuable designs along this
line. Speci�cally, we develop a set of popular �nite-dimensional kinetic controllers based on
the same LTI data-driven model, and then evaluate and compare their performance and ro-
bustness by carrying out nonlinear closed-loop simulations and dedicated plasma experiments.
A two-layer two-time-scale kinetic control scheme is thus developed for the comparative study,
including an inner-layer with a low sampling frequency aimed at plasma kinetic control, whilst
the high sampling frequency outer-layer deals with measurement preprocessing and actuation
tracking. Four alternative �nite-dimensional feedback controllers are introduced, namely H∞
robust control, LQI control and the observer-based IMC for plasma kinetic tracking and the
SIMC PI for kinetic/actuation tracking. In addition, the plasma parameters of interest, ex-
perimentally reconstructed or measured by the GPU-accelerated real-time equilibrium code,
P-EFIT [Huang et al., 2020], using magnetic measurements, as well as coupled power mea-
surements are handled by a set of average horizon �lters in real-time for noise removal. Next,
we present a compact LSS model for plasma feedback controller design. A two-layer two-time-
scale kinetic control scheme is subsequently proposed, including a number of alternative kinetic
control algorithms, measurement preprocessing module and cascade actuation controllers. The
performance of the feedback control scheme is assessed, discussed and compared numerically
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with the METIS plasma simulator [Artaud et al., 2018]. Afterwards, the initial experimental
results achieved on the EAST tokamak are reported. Finally, we draw the conclusions and
outline possible extensions.

3.2.1 Plasma dynamic model for control

In this section, we �rst revisit a linear two-time-scale model structure to approximate the
plasma kinetic dynamics in an H-mode scenario on EAST. Subsequently, a model reduction
technique based on the input lowpass �ltering and SVD is employed onto this model for
integrated feedback controller design.

3.2.1.1 Two-time-scale plasma model

The dynamic evolutions of plasma kinetic parameters with respect to control actuators, e.g.
the LHCD power, in medium-sized or large tokamaks can be characterized by a lumped-
parameter LTI two-time-scale model structure as demonstrated in [Moreau et al., 2008,Moreau
et al., 2011,Moreau et al., 2013,Moreau et al., 2015]. This dynamic model comprises a slow
sub-model illustrating the slow responses of plasma kinetic parameters with respect to the
poloidal magnetic �uxes as:

ẊΨ(t) =ASXΨ(t) +BSUS(t)

ΞS(t) =CSXΨ(t) +DSUS(t)
(3.25)

and a fast sub-model depicting the fast plasma kinetic evolutions possibly arising from plasma
temperature pro�le variations as:

ẊF(t) = AFXF(t) +BFUF(t)

ΞF(t) = CFXF(t) +DFUF(t)
(3.26)

in which

U(t) = US(t) + UF (t),Ξ(t) = ΞS(t) + ΞF (t)

U(t)
def
= U0(t)− Ū(t),Ξ(t)

def
= Ξ0(t)− Ξ̄(t)

(3.27)

Here, U(t) is de�ned as a perturbing vector of the control inputs U0(t) around their input
reference Ū(t), with its slow and fast components denoted by US(t) and UF(t), respectively.
Analogously, Ξ(t) is de�ned as a perturbing vector of the plasma kinetic parameters of interest
Ξ0(t) around their reference Ξ̄(t), comprising its slow part as ΞS and its fast part as ΞF. XΨ(t)

represents a perturbing vector of the poloidal magnetic �uxes against their reference values,
while XF (t) is a perturbed kinetic state vector. The state-space matrices (AS, BS, CS, DS)

and (AF, BF, CF, DF) contain the model coe�cient matrices, which can either be identi�ed by
using subspace and prediction-error approaches [Ljung, 1995] or be obtained by performing
linearization and discretisation on the sophisticated PDEs governing the plasma transport
evolution. The approaches to obtaining these model coe�cient matrices are beyond the scope
of this part and interested readers can refer to Chapter 2 and [Moreau et al., 2008, Ljung,
1995] for more details.
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3.2.1.2 Model reduction for integrated kinetic control design

We are now in a position to show that the linear two-time-scale plasma model [Moreau et al.,
2008] with Eqs. (3.25)−(3.27) can be transformed into a compact form suitable for integrated
feedback controller design. Involving a low-pass �lter on the perturbed control inputs U(t)

with its characteristic time τc satisfying τkin � τc � τmag, where τkin and τmag represent the
kinetic and magnetic characteristic times, respectively. After some algebraic manipulations,
the two-time-scale plasma model is therefore augmented into a state-space form as:

G =

[
A B

C D

]
(3.28)

where

A =

AS 0 BS
0 AF −BF
0 0 CfAfC

−1
f I

 , B =

 0
BF
CfBfI

 , C =
[
CS CF DS

]
, D = 0 (3.29)

Here, (Af, Bf, Cf, Df) is a state-space realization of the lowpass �lter Gf = 1
τcs+1 , in which

s is a Laplace operator.

When the controlled degrees of freedom are greater than the number of control actua-
tors, the system is called an underactuated system [Reyhanoglu et al., 1999], which is usually
the case for tokamak plasma kinetic control. In this regard, minimizing the tracking error
to zero may not be possible unless the given reference targets are located in an achievable
region. Before synthesizing a feedback controller for an underactuated system, it is necessary
to examine which output and input directions are most in�uential [Barton et al., 2012]. We
therefore perform SVD [Skogestad and Postlethwaite, 2007] on the steady-state gain matrix of
the model G(s) to extract the most in�uential input and output control channels. In partic-
ular, to weigh the importance of each controlled outputs and manipulated inputs, symmetric
positive de�nite matrices Q and R are �rst multiplied to the output and input of the model
G(s), generating a weighted dynamic model Gw = Q

1
2G(s)R

1
2 . Subsequently, we perform

SVD on the steady-state gain matrix of the weighted model, yielding Gw(0) = U0Σ0V
T

0 .
Σ0 = diag{ΣI,ΣII} is a diagonal matrix with the singular values in a descending order as
σ1 ≥ σ2 ≥ ... ≥ σnI � σnI+1 � ... � σnd , nd = min{ny, nu}, with ny and nu respectively
denoting the number of outputs (controlled kinetic variables) and inputs (control actuators).
ΣI contains the largest nI singular values while ΣII contains the remaining insigni�cant ones.
The left singular vectors U0 = [UI, UII] ∈ Rny×nu are divided into the level I and II vector
spaces, in which the level I singular vectors represent the most controllable output directions.
Likewise, V0 = [VI, VII] ∈ Rnu×nu have the �rst nI columns retained, as they correspond to
the most in�uential input directions VI. We remark that Q and R are the weighting gain
matrices that can be iteratively adjusted to reach various control objectives. The decision on
the restricted number of retained control channels nI is heuristic, which can empirically be
determined by following the condition σnI+1 ≤ 0.1σ1. With such a procedure, the integrated
plasma model G(s) can thus be transformed into a reduced one, which is proper, stabiliz-
able and detectable. The reduced model is therefore given by Gr(s) = MT

y G(s)Mu, where
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My = UTI and Mu = VIΣ
−1
I , and its state-space form can be expressed as:

Gr(s) =

[
Ar Br
Cr Dr

]
(3.30)

3.2.2 Robust linear feedback algorithms

Having obtained a control-oriented state-space plasma dynamic model, alternative real-time
kinetic feedback control algorithms can immediately be synthesized. We �rst present an
overall control architecture for plasma kinetic control. Next, a set of alternate kinetic feedback
algorithms are designed based on a given kinetic model, along with some bene�cial techniques
for measurement preprocessing and control actuation tracking.

3.2.2.1 Two-layer cascade kinetic control framework

Figure 3.16: Layout of the two-layer cascade kinetic control framework.

As shown in Fig. 3.16, the overall kinetic feedback control framework for the EAST toka-
mak comprises two control layers that di�er in the sampling frequency. The inner control
layer, within the dashed purple frame, has a low sampling frequency at 50 Hz. It contains
a set of alternate kinetic controllers such as the H∞ robust control, the LQI control and the
IMC control, along with a switch for real-time controller selection. Details on the design of
these alternate kinetic controllers are given in Sections 3.2.4.2-3.2.4.4. The outer control layer,
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within the green frame but outside of the purple frame, has a higher sampling frequency at
1000 Hz. It is primarily devoted to two separate tasks: 1). to preprocess the measured ac-
tuations from relevant actuator sensors and the real-time estimates of the plasma parameters
of interest after the magnetic equilibrium reconstruction from, for instance, magnetic probes
and polarimeter/interferometer diagnostics [Ferron et al., 1998,Baylor et al., 2004,Liu et al.,
2014]; 2). to track the actuator commands requested by a selected inner-layer kinetic con-
troller. Cascaded with an inner-layer kinetic controller, the actuation controller is designed
for actuation tracking, as illustrated in Section 3.2.4.5. In the measurement preprocessing
module, a set of simple average horizon �lters [Ljung, 1995] are used to handle the high-
frequency measurement noise. Following the same technique as in [Wang et al., 2020], the
anti-windup modules are designed to mitigate the e�ects from the actuator saturations. We
remark that the idea of the two-layer kinetic control framework originates from the following
facts: 1). The time constant of the actuator dynamics such as the LHCD system is much
smaller than the energy con�nement time on EAST. 2). Plasma model uncertainties located
in the high frequency domain beyond τE are not likely to damage the tracking performance
if we properly prescribe the inner-layer sampling time to the level a few times smaller than
τE [Ljung, 1995]. 3). The inner-layer kinetic controller can greatly bene�t from the precise
tracking of the requested commands enabled by the outer-layer actuation controller within
one inner-layer sampling interval.

3.2.2.2 H∞ robust kinetic control design

H∞ robust control is a popular feedback control technique whose synthesis combines H∞
robust stabilization with loop-shaping [Skogestad and Postlethwaite, 2007]. Basically, the
design procedure is composed of two steps: 1). to augment the pre- and post-compensators
on an open-loop system plant to acquire expected singular value shaping in the frequency-
domain; 2). to synthesize a feedback controller by make the augmented system plant robust
against model uncertainties via the H∞ norm optimization. Thanks to its simplicity and
robustness properties, it has already been applied to real-time magnetic and kinetic control in
tokamak plasmas. In [Barton et al., 2012], the robust synthesis based on a �rst-principle-driven
dynamic model for q-pro�le control was experimentally tested in L-mode plasmas on DIII-D.
In [Nouailletas et al., 2019], H∞ robust control was applied to plasma coil current and shape
control on WEST experimentally. In [Wang et al., 2021], the performance of a decentralized
H∞ robust controller for the q-pro�le and βp tracking on EAST is assessed numerically. In the
present study, we adopt the similar synthesis method used in [Wang et al., 2021], but extend
its application scope to multiple kinetic parameters and experimental setup. Another subtle
di�erence is that in the present work, a single H∞ robust controller is designed based on an
integrated kinetic model containing both the fast and slow kinetic dynamics.

Our H∞ robust control problem is to synthesize a feedback controller using the reduced
model Gr(s) derived in Eq. (3.30) via the mixed-sensitivity H∞ norm optimization [Skogestad
and Postlethwaite, 2007,Wang et al., 2021]. First of all, assuming the to-be-designed con-
troller as Kr,HINF(s), we calculate the sensitivity function Sr(s) = (I +Gr(s)Kr,HINF(s))−1,
which maps the control errors from the reference setpoints or the output disturbances. Next,
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we design the proper weighting matrices WHINF,S(s) and WHINF,KS(s) to shape the sensi-
tivity function Sr(s) and Kr,HINF(s)Sr(s), respectively. Then, using the LMIs optimization
technique [Wang et al., 2021] and the YALMIP toolbox [Lofberg, 2004] for MATLAB, the
controller Kr,HINF(s) for Gr(s) is synthesized by minimizing the H∞ norm of the mixed-
sensitivity function Tzw,HINF =

[
WS,HINFSr WKS,HINFKr,HINFSr

]
. After the inverse sin-

gular vector transformation, the H∞ robust feedback controller for the plant G(s) is ex-
pressed as KHINF(s) = MuKr,HINF(s)My. Therefore, the feedback ouputs are computed as
ufb,H∞ = KHINF(s)(ym − y + yaw), ufb ∈ Rnu , ym, y, yaw ∈ Rny , where ufb are the feedback
outputs, y denotes the measured controlled variables and yaw are the anti-windup compo-
nents [Wang et al., 2021]. Combining constant feedforwards um and the feedback outputs
yields the kinetic control inputs as uH∞ = ufbH∞ + um.

3.2.2.3 LQI kinetic control design

LQI control, a linear optimal control technique [Skogestad and Postlethwaite, 2007], extends
the traditional linear quadratic regulator (LQR) to involve the penalization of the control
error integral in the cost function, with the goal of achieving a zero steady-state tracking error
under constant disturbances. This technique was �rst proposed in [Young and Willems, 1972],
which has then been applied to many industrial and physical control problems [Anderson and
Moore, 2007,Hassen et al., 2009,ElMadany and Abduljabbar, 1999,Gurung et al., 2017]. The
merits of this technique are that it can be employed systematically for MIMO systems and
that the controller performs satisfactorily in attenuating system disturbances. Notably, LQI
has found its applications in many tokamak plasma control problems. In [Moreau et al., 2013],
LQI was used to track the poloidal �ux pro�le and βN simultaneously in H-mode plasmas on
DIII-D. In [Boyer et al., 2013], experimental tests have con�rmed the performance of an LQI
controller in tailoring q-pro�le in an L-mode plasma on DIII-D. In [Vail et al., 2019], the
snow�ake divertor con�guration is achieved numerically by an LQI controller on NSTX�U.

In the present work, we design an LQI controller using the reduced model Gr(s), and
compare its performance with the other controllers. The LQI control objective is to minimize
a combination of state errors and the control error integrals using minimum actuations. This
control algorithm consists of a feedforward controller to estimate the input and state references,
a Luenberger observer to estimate system states and a static feedback controller to compute
the actuation commands.

Feedforward design The state reference xm and the input reference um are obtained by
solving the reduced model Gr(s) at steady-state, i.e., 0 = Arxm +Brum, ym = Crxm, as:

[
xm
um

]
=

[
Ar Br
Cr 0

]−1 [
0

I

]
ym (3.31)

where ym represents the controlled output reference.
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Luenberger observer The LQI control requires the knowledge of system states that may
not be measurable in plasma experiments. However, an observer can be designed to estimate
them if the system is observable. In our study, a simple Luenberger observer is employed as:

˙̂x = Arx̂+Bru+ L(y − Crx̂) (3.32)

where u, y and x̂ are the measured inputs, the measured outputs and the state estimates,
respectively. L is a tuning gain matrix chosen to arti�cially place the eigenvalues of the
estimation error dynamics such that the state estimates can converge exponentially faster
than the system evolution.

Feedback design The LQI feedback commands ufb,LQI are computed by minimizing a cost
function Jfb,LQI that penalizes both the state errors, the output error integrals and the control
inputs as:

arg
ufb,LQI

min Jfb,LQI =
1

2

∫ ∞
t0

(eTaQea + uTfb,LQIRufb,LQI)dt (3.33)

where QT = Q ≥ 0 is a weighting matrix for the state errors xerr = xm − x̂ and the output
error integrals z =

∫ t
0 (ym − y)dt. RT = R > 0 is a weighting matrix for the control inputs.

ea = [xTerr, z
T ]T and ufb,LQI represents the optimal feedback commands, parameterized as

ufb,LQI = −Kfb,LQIea. The feedback synthesis objective is to obtain an optimal gain matrix
Kfb,LQI that minimizes Eq. (3.33). To compute Kfb,LQI, we �rst augment the plasma plant
with a vector of additional states z as:[

ẋ

ż

]
= MA

[
x

z

]
+MBu+MW ym (3.34)

where

MA =

[
A 0

−C 0

]
,MB =

[
B

0

]
,MW =

[
0

I

]
(3.35)

Given the augmented system matrices, the optimal gain matrix is then expressed as
Kfb,LQI = −R−1MT

BP , where P is a symmetric positive-de�nite matrix that satisi�es an
algebraic Riccati equation [Skogestad and Postlethwaite, 2007] as:

PMA +MT
AP − PMBR

−1MT
BP +Q = 0 (3.36)

The optimal feedback commands are thus calculated as ufb,LQI = Kfb,LQI(ym − y +

yaw), ufb,LQI ∈ Rnu , ym, y, yaw ∈ Rny , where yaw are the anti-windup compensated compo-
nents [Wang et al., 2021]. Combining the feedforward um and feedback commands ufb,LQI, the
LQI control inputs are uLQI = ufb,LQI + um.

3.2.2.4 Observer-based IMC kinetic control design

IMC is a robust control technique �rst proposed in [Garcia and Morari, 1982]. The key idea
of IMC resides in the internal model principle, stating that control can be achieved only if the
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control system involves, either implicitly or explicitly, some representation of the controlled
process [Saxena and Hote, 2012]. IMC has a simple design procedure providing a tradeo�
between closed-loop performance and robustness to model inaccuracies with a single tuning
parameter, which explains why it has found widespread applications [Harnefors and Nee,
1998, Narayanan et al., 1997, Yazdanian and Mehrizi-Sani, 2014]. The concept of IMC has
already been used in tokamak plasma control, in which a typical example is the design of an
anti-windup compensator to handle the actuator saturations [Wang et al., 2021]. Nonetheless,
a pivotal drawback of the standard IMC lies in its restrictive applicability to an internally
stable system, implying that control of unstable plasma phenomena such as vertical instability
[Qiu et al., 2016,Gruber et al., 1993] using IMC seems unfeasible. Inspired by [Pannocchia and
Heath, 2020,Heath et al., 2017], we develop an o�set-free IMC control algorithm based on a
PI observer for plasma kinetic tracking, which can potentially be adapted to control unstable
and marginally stable plasma dynamics. The design of the observer-based IMC controller
is composed of three steps: First, we use a Luenberger observer to estimate the states and
disturbances. Second, we design a state feedback controller to stabilize the system dynamics.
Third, a standard IMC control is adopted to achieve desirable control performance.

State and disturbance estimation To estimate the system states and disturbances, we
assume constant system disturbances, i.e. ḋ = 0 [Pannocchia and Heath, 2020], and extend
the reduced model Eq. (3.30) as:

ẋ =Arx+Bru+Bdd

ḋ =0

y =Crx+ Cdd

(3.37)

where x ∈ Rnx , u ∈ Rnu , d ∈ Rnd , y ∈ Rny are respectively the states, the inputs, the distur-
bances and the outputs. Bd and Cd are coe�cient matrices to be determined. To guarantee
the detectability of the augmented plasma model, we must prescribe the matrices (Bd, Cd) to

satisfy the condition rank
[
A Bd
C Cd

]
= nx+nd. By setting Bd = 0, Cd = I, the disturbances at

the output are observed, while by prescribing Bd = Bp, Cd = 0, the disturbances at the input
are estimated. In this study, we choose the former setup, i.e. Bd = 0, Cd = I.

Combining the states x and the disturbances d into a state vector, i.e. X = [xT , dT ]T , we
formulate the extended model in a compact form as:

Ẋ =AeX +Beu

y =CeX
(3.38)

where Ae =

[
Ar Bd
0 Cd

]
, Be =

[
Br
0

]
, Ce =

[
Cr Cd

]
.

The Luenberger observer is then expressed as:

˙̂
X = AeX̂ +Beu+ L(y − ŷ)

ŷ = CeX̂
(3.39)
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where X̂ = [x̂T , d̂T ]T represents the estimate of X while ŷ denotes the estimate of y. L is a
gain matrix that can be tuned by placing the eigenvalues of Ae.

State feedback stabilization With the given observer, the states and disturbances can
therefore be estimated in real-time. To stabilize the plasma plant, we use the reduced model
to design a state feedback controller, parameterized as usf = −Fsfx̂. Fsf is a static gain matrix
to place the system poles to desirable stable region (with negative real eigenvalues), which is
a crucial trick for control of unstable or marginally stable plasma dynamics [Pannocchia and
Heath, 2020].

O�set-free internal model control The o�set-free IMC control inputs comprise the stan-
dard IMC control component usIMC for disturbance rejection, the state feedback component
usf for state stabilization and the preset feedforward component um, which reads:

uIMC = usIMC − usf + um (3.40)

where usIMC = Q(s)(r −Md̂), in which the to-be-designed terms include a stable transfer
matrix Q(s) and a static gain matrix M . To design them, we formulate the stabilized plasma
dynamic model Gsf(s) and the disturbance dynamic model Gdist(s) as:

Gsf(s) =

[
Ar − FsfBr Br

Cr 0

]
, Gdist(s) =

[
Ar − FsfBr Bd

Cr Cd

]
(3.41)

IMC requires the steady-state gain of the open-loop transfer matrix to be an iden-
tity matrix, i.e. Gsf(0)Q(0) = I. For simplicity, we design Q(s) = F (s)Gsf(0)† =

−F (s)
(
Cr (Ar − FsfBr)−1Br

)†
, where † represents the pseudoinverse. The lowpass �lter

transfer matrix F (s) is expressed as F (s) = diag (f1 (s) , . . . , fnu (s)) , fk(s) = 1
(λks+1) , k =

1, 2, . . . , nu, in which λi are free parameters to be tuned [Pannocchia and Heath, 2020]. The
static gain matrix M is designed as M = Gdist(0) = −Cr(Ar − FsfBr)−1Bd + Cd.

3.2.2.5 SIMC PI actuation control design

In order to characterize the experimental conditions for H&CD actuation in tokamak plasma
operation, actuator dynamics are considered to develop a set of actuator controllers to track
the commands requested by an inner-layer kinetic controller. We assume that the additional
heating power dynamics can be modelled as a set of �rst-order transfer functions with time-
delay as:

Gouter,i(s) =
ki

τis+ 1
e−θis, i ∈ {ICRH,LHCD} (3.42)

where i is an indicator for an H&CD actuator, ki denoting the steady-state gain for the i-th
actuator, τi the characteristic time for the i-th actuator, while θi represents the time delay
for the i-th actuator. Gouter,i(s) is a transfer function for the i-th actuator determined by
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three model parameters, i.e. ki, τi and θi. These model parameters can easily be identi�ed
from the observed input-output data in dedicated plasma experiments using the subspace and
prediction-error methods [Ljung, 1995].

Once the actuator dynamics are characterized by a simple model structure as shown in
Eq. (3.43), we can then use a tuning rule based on the internal model principle to design an
outer-layer PI actuator controller [Skogestad and Postlethwaite, 2007] . We de�ne uinner,i(t)
as the command requested by the inner-layer kinetic controller for the i-th actuator controller
and umea,i(t) as the corresponding measured actuation for the i-th actuator. The actuation
tracking error eouter,i is thus computed as eouter,i = uinner,i(t) − umea,i(t). The commands
requested by the actuator controller for each H&CD systems uouter,i(t) are then expressed as:

uouter,i(t) = −Kp,ieouter,i −KI,i

∫ t

0
eouter,idt+ uo�set,i, i ∈ {ICRH,LHCD} (3.43)

in which

Kp,i =
τi

ki(τc,i + θi)
,KI,i =

Kp,i

τI,i
, τI,i = min{τi, (τc,i + θi)} (3.44)

where Kp,i and KI,i are the proportional and integral gains for the i-th actuator, respectively.
uo�set,i denotes the i-th reference value around which the actuator model Gouter,i(s) is iden-
ti�ed. τc,i is a tuning parameter for the i-th actuator, which provides a trade-o� between
control performance and robustness against disturbances. More precisely, increasing τc,i can
result in the growth of the response time but the control robustness can thus be improved,
and it is suggested to have τc,i ≥ θi. We emphasize that, in order to guarantee the actuation
tracking performance, the sampling time for the actuator controllers (typically at 1 ms on
EAST) should be smaller than the characteristic time for each H&CD systems and far less
than that for the kinetic controller (∼ τE).

3.2.3 Simulation results

We now demonstrate the e�ectiveness of the two-layer kinetic control scheme and compare the
performance and robustness of the alternate real-time kinetic controllers on EAST using the
METIS code [Artaud et al., 2018]. First, we show the performance of nominal tracking of three
essential plasma kinetic parameters, namely the poloidal beta βp, the average toroidal angular
rotation velocity Ωφ and the central electron temperature Te,0 by actuating the ion ICRH
power PIC and the LHCD power PLH, enabled by three optional kinetic controllers, i.e. H∞
robust, LQI and the observer-based IMC, and two SIMC PI power controllers for ICRH and
LHCD, respectively. Second, the robustness tests, under the variations of the line-averaged
electron density 〈n̄e〉 and e�ective ion charge Ze�, are conducted and compared.

3.2.3.1 METIS simulation setup and control con�guration

The two-layer cascade control architecture is �rst developed and implemented in the MAT-
LAB/Simulink environment, which is then coupled with METIS [Artaud et al., 2018], for
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Figure 3.17: Tracking of plasma kinetic parameters with three alternative real-time feedback
algorithms. (a)-(c): tracking of (a) βp, (b) Ωφ and (c) Te,0 values in the nominal case. (d)-(f):
tracking of (d) βp, (e) Ωφ and (f) Te,0 values by perturbing 〈ne〉 . (g)-(i): tracking (g) βp, (h)
Ωφ and (i) Te,0 values by perturbing Ze�.

closed-loop control assessments. The reference scenario around which the model is identi�ed
is a steady state, fully non-inductive single-null H-mode discharge in the EAST tokamak,
i.e. shot #62946, with the toroidal magnetic �eld BT = 2.5 T, the central electron density
ne0 ≈ 3.5×1019 m−3 and plasma current Ip = 0.42 MA. More details about the METIS setup
is given in Section 1 of the chapter. The three alternative kinetic feedback control algorithms
are designed and implemented based on a LSS model identi�ed from extensive dedicated sim-
ulations via the subspace and predition-error methods given in Chapter 2. The actuators, the
ICRH and LHCD powers, are allowed to vary in the ranges of [0, 1.5] MW and [0, 3.0] MW, re-
spectively. As illustrated in Fig. 3.17, the plasma kinetic control scheme is separated into two
control layers with two timescales: in the outer layer, the powers coupled to the plasma, from
the ICRH and LHCD systems, are tracked in the fast timescale with the sampling frequency at
1kHz; in the inner layer, the kinetic parameters are controlled simultaneously by an alternate
kinetic controller in the slow timescale with the sampling frequency at 50 Hz (larger than
1
τE
). The actuator dynamics for the ICRH and LHCD systems are modelled by two separate

�rst-order time-delay transfer functions, respectively. Guided by the experimental data on
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(a) (b) (c)

(d) (e) (f)

Figure 3.18: Tracking of the powers coupled to the plasma from the additional heating &
current drive systems. (a)-(c): time traces of the ICRH power request (dashed) and the
actuated ICRH power (solid) with the H∞ (black), LQI (red) and IMC (blue) controllers in
the nominal case (a), the 〈ne〉 perturbing case (b) and the Ze� perturbing case. (d)-(f): time
traces of the LHCD power request (dashed) and the actuated LHCD power (solid) with the
H∞ (black), LQI (red) and IMC (blue) controllers by perturbing Ze�.

EAST, the actuation time constants for the ICRH and LHCD systems are chosen to be 5 ms,
and the e�ective time delay for the actuators is uniformly set at 2 ms, while the steady-state
gains are prescribed to be 1. With the actuator dynamics models, two separate SIMC PI
power controllers are thus synthesized, with τc,i = 0.005 s and θi = 0.002 s for both actuators
(i ∈ {ICRH,LHCD}). Note that the actuator control parameters can be adjusted according
to the speci�c control requirements. In order to mimick the experimental conditions, white
noise with power magnitude at 10−6 is imposed onto the measured powers obtained from the
simple actuator dynamics models. The noise is thus handled by a moving average �lter with
the time horizon at 10 ms. Three alternative kinetic controllers were designed with the same
linear state-space model. For the H∞ controller, a desired closed-loop bandwidth is prescribed
to be 0.15π, and the parameters A and M are respectively set at 2 and 10−6. For the LQI
controller, the weighting gains for the states, controlled variables and manipulated variables
are optimized to achieve the desired control performance. For the IMC controller, the tuning
parameter, the time constant, in the low pass �lter τIMC, is prescribed at 0.08 s.
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3.2.3.2 Nominal tracking in the current �at-top phase

The three alternative control schemes were used to track βp, Ωφ and Te,0 simultaneously by
actuating the ICRH and LHCD powers. All the feedback controllers are activated at 3.5 s in
the current �attop phase. Three sets of reference setpoints for βp, Ωφ and Te,0 are prescribed to
be tracked. Fig. 2(a)-(c) shows the comparison of the kinetic parameter evolutions with three
alternative control algorithms. It is evident that all the kinetic controllers based on the same
data-driven model are capable of tracking the plasma parameters of interest e�ectively and
comparable control performance has been obtained. One can notice that there are some small
oscillations even at steady-state for Te,0, primarily due to the measurement noise imposed on
PICRH and PLHCD. Compared with the other kinetic parameters, the evolution of Te,0 is very
sensitive to the evolution of additional heating powers. The requested (dashed) and actuated
(solid) powers by these control schemes are shown in Fig. 3(a) and 3(d). We �nd that the
SIMC PI power feedback controller can satisfactorily track the requested powers by the inner-
layer kinetic controllers in three di�erent cases. The requested powers are at similar levels in
all the control schemes for the ICRH system, but di�er in the LHCD system, implying that
the ICRH system plays the dominant role in the kinetic control for parameters that do not
depend strongly on the current density pro�le such as βp, Ωφ and Te,0.

3.2.3.3 Robustness to plasma parameter uncertainties

In order to further evaluate the robustness of each controllers, we perform closed-loop METIS
simulations with the control algorithms in which we perturbed a number of important plasma
parameters at selected time intervals. Fig. 2(d)-(f) shows comparison of the kinetic parame-
ter evolutions with the H∞, LQI and IMC controllers under the perturbation of the averaged
electron density. Particularly, in the time interval [4.0, 4.65]s, the value of 〈n̄e〉 is increased
by a fraction of 10 %, which leads to the decrease of βp, Ωφ and Te,0. In order to attenuate
the disturbances, the feedback controllers request more powers on the ICRH and/or LHCD
systems as shown in Fig. 3(b)-3(e). Within 0.3 s the disturbances on βp are fully compensated
while the disturbances on Ωφ and Te,0 are attenuated e�ectively. After 4.65 s, 〈n̄e〉 returns to
the initial value, which results in the increase of βp, Ωφ and Te,0. These new disturbances are
successfully attenuated by the H∞ and LQI controllers, but not with the IMC controller. In
the time interval [6.0,8.1]s, 〈n̄e〉 is arti�cially decreased by 10 %, leading to the increase of the
plasma parameters of interest. These 〈n̄e〉-driven disturbances on the controlled parameters
are attenuated by decreasing the ICRH power except Te,0, possibly arising from the consider-
able model mismatch and the variation of the achievable control region in Te,0. After 8.1 s,
〈n̄e〉 returns to the intial value, the disturbances on βp, Ωφ and Te,0 are successfully rejected
by all the proposed control schemes.

Comparison of the kinetic parameter evolutions with the proposed control algorithms under
the perturbation of the e�ective ion charge are shown in Figs. 2(g) - (i). Analogously, in the
time interval [4.0,4.65]s, Ze� is arti�cially increased by 10 %, which makes all the kinetic
control variables drop. Results indicate that all the control schemes are capable of rejecting
the disturbances arising from the Ze� increase by adjusting the ICRH and LHCD powers (See
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Figure 3.19: Diagram showing the procedure for the kinetic control algorithm implementation
into the PCS.

Fig. 3(c)-(f)). In the time interval [6.0,8.1], Ze� is arti�cially reduced by 10 %, which makes
all the kinetic control variables grow. Similarly, results suggest that all the controllers can
fairly attenuate the disturbances caused by the Ze� decrease.Similarly, the attenuation of Te,0
disturbance driven by the Ze� variation is not satisfactory in the period [6,8] s, which may be
explained by the enhanced model mismatch.

3.2.4 EAST experiments

In order to further evaluate and compare the performance of the proposed kinetic control
scheme and algorithms, dedicated experiments have been performed in an H-mode operational
scenario on the EAST tokamak, with the goal of tracking βp, li and PLHCD by adjusting the
LHCD power command in real-time.

3.2.4.1 Control algorithm implementation in the PCS

Fig. 4 shows a procedure on how real-time feedback control algorithms can be implemented
into the EAST plasma control system (PCS). We �rst develop the kinetic control algorithms
in the MATLAB/Simulink environment, which are subsequently transformed into the C/C++
programming language using the embedded MATLAB coder (EMC) toolbox. Afterwards, the
generated code is coupled with the PCS and jointly compiled for real-time application. The
e�ectiveness of the algorithm implementation can be veri�ed by performing test simulations
via the EAST data simserver. Speci�cally, by feeding the same real-time EFIT estimates
from a typical EAST plasma discharge to both versions of the kinetic control scheme, one
implemented in MATLAB/Simulink and the other being coupled with the EAST PCS, the
simulated outputs from both versions should be consistent with each other. This was checked,
proving that no issues have appeared in the course of the control algorithm implementation
in the PCS.
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3.2.4.2 Diagnostics, actuators and experimental setup

Plasma parameters/pro�les such as βp and li are estimated by the GPU-accelerated real-
time equilibrium reconstruction code, P-EFIT [Huang et al., 2020]. The POlarimeter-
INTerferometer (POINT) diagnostic measures the plasma electron density [Qian et al.,
2016, Liu et al., 2016b], regulated in real-time by a dedicated PID controller in the PCS.
Due to reliability issues with the polarimeter diagnostic, the internal poloidal �eld measure-
ments are not available for the P-EFIT reconstruction. Plasma current, position and shape
are regulated by a set of feedback control algorithms in the PCS [Yuan et al., 2013]. The
controlled parameters, βp, li and the coupled power PLHCD, are fed to the kinetic control
scheme every 1 ms (outer-layer sampling time) to generate a power command for a control ac-
tuator, in which the kinetic control algorithms are activated every 20 ms (inner-layer sampling
time). The measurement noise is handled by a moving average �lter with a time horizon of 10
ms [Ljung, 1995]. The control actuator is the LHCD system at 4.6 GHz with coupled powers
between 1.0 MW and 2.5 MW, tracked in real-time by a SIMC PI power feedback controller.
We note that the minimum LHCD power is preset at 1.0 MW to guarantee that the plasma
maintains in H-mode, without any H-L/L-H transitions in the course of control. The LHCD
power dynamics at 4.6GHz is approximated by a �rst-order time-delay transfer function (See
Eq. (D.1)) with its model coe�cients identi�ed from typical experimental data on EAST.
Given the model coe�cients, a SIMC PI rule is then adopted, resulting in a set of actuator
feedback control coe�cients as Kp,LHCD = 0.41, KI,LHCD = 343.69, uo�set,LHCD = −0.45, to-
gether with a static feedforward K� = 1.38 to enhance the transient performance. The LHCD
power actuation time delays are dealt with by a Smith predictor, with the prediction model
as G(z) = 0.4141

z−0.4307 , where z refers to the Z-transform, and the estimated pure time delay at
2 ms. The PCS power command to the LHCD system is restricted to the range from 1 V
to 3 V. Hence, an anti-windup module [Wang et al., 2021] is used to compensate the LHCD
power command saturation. All the control references and coe�cients are prescribed o�ine
and loaded into the PCS before performing the experiments.

In the experimental study, the current �at-top phase of a pure radio-frequency (RF) upper-
single-null (USN) H-mode plasma discharge is considered as the reference scenario, particularly
with the toroidal �eld at 2.5 T, the plasma current at 350 kA, the central electron density
at ∼ 4.2 × 1019 m−3 and the central electron temperature at ∼ 4 keV. In addition to the
4.6 GHz LHCD power, some LHCD power is injected at 2.45 GHz for current drive in the
ramp-up phase, speci�cally 0.6 MW in the period [0.95, 2.25] s. Moreover, 0.9 MW of ECRH
power is actuated during the current �at-top phase (in the time interval [1.98, 7.91] s) from
two gyrotrons at 140 GHz to heat the plasma and maintain it in H-mode. The ICRH system
is not available during the entire experiments.

The kinetic feedback control experiments are divided into two stages: �rst, the identi�ca-
tion experiment is carried out to collect a set of sampled data for identi�cation of a plasma
dynamic model used for feedback control design; second, the performance of the real-time
control algorithms is demonstrated experimentally.
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Figure 3.20: Design of LHCD power reference modulations to excite the dominant plasma
eigenmodes. Upper panel: comparison of the PLHCD,ref modulations in chirping (red) and
PRBS (blue) signals. Bottom panel: comparison of the amplitude spectra of the PLHCD,ref
modulations in chirping (red) and PRBS (blue) signals.

3.2.4.3 Plasma identi�cation experiment

Since the LHCD power at 4.6 GHz is allowed to vary in real-time ranging from 1.0 MW to
2.5 MW and the dominant plasma kinetic eigenmode, ∼ 1

τE
, is estimated to be around 25

s−1, the goal now is to design LHCD power reference waveforms that maximally excite the
dominant magnetic and kinetic eigenmodes, as shown in Fig. 5, including the chirping and
PRBS power modulations. Since the expected τE is around 0.04 s, the designed frequency
bandwidth of the LHCD power references in both signals is therefore restricted to be less than
30 rad/s, as shown in Fig. 5(b). Using the SIMC PI power feedback controller as given in
Section 5.2, the open-loop power modulation experiment has been carried out on the EAST
tokamak, with the results depicted in Fig. 6. Evidently, the chirping power reference, ranging
from 1.0 MW to 2.5 MW, for the LHCD system was satisfactorily tracked in shot #93297
(See Fig. 6(a)), with the plasma parameters of interest βp, li and ι0 su�ciently responsive
as shown in Fig. 6(b). In particular, βp ranges from 1.5 to 1.9, li spreading from 0.9 to 1.2,
while ι0 lies in the interval [0.3, 0.5]. It is found that both li and ι0 exhibit linear downward
drifts, probably because of the transmission of the magnetic probing faults mounted at the
plasma boundary to the P-EFIT equilibrium reconstruction. We remark that in the interval
[2.5, 3.5] s, the LHCD system at 4.6 GHz made an actuation fault, which explains why the
LHCD power reference cannot be well tracked in this period. Fig. 4(c)-4(d) shows another
plasma power modulation discharge, with the PRBS power reference tracked using the same
power feedback controller. One can notice that the responses of βp, li and ι0 with respect to
the LHCD power are persistently exciting for model identi�cation, and the systematic linear
downward drifts occurring in li and ι0 should bring some issues on their feedback control.
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(a) (b)

(c) (d)

Figure 3.21: Plasma identi�cation experiment showing the responses of βp, li and ι0 to the
PLHCD@4.6GHz modulations on EAST. Upper panels: time traces of the (a) PLHCD@4.6GHz

modulations in a chirping frequency waveform, tracked by a SIMC PI power controller, and
of (b) βp (top), li (middle) and ι0 (bottom) estimates by P-EFIT. Lower panels: time traces
of the PLHCD@4.6GHz modulations in a PRBS waveform and of (d) βp (top), li (middle) and
ι0 (bottom) estimates by P-EFIT. Shaded gray region indicates that the LHCD system made
faults and saturated.

3.2.4.4 Control assessment with the ARTAEMIS plasma simulator

By adopting the system identi�cation methodology used in [Moreau et al., 2008,Moreau et al.,
2011], a two-time-scale data-driven model that describes the responses of βp, li and ι0 to
the LHCD power has been identi�ed from the power modulation data, containing �ve slow
eigenmodes and one fast eigenmode. More precisely, the characteristic times for the slow
τS and fast τF dynamics are 1.05 s and 0.017 s, respectively. The identi�ed two-time-scale
model was then transformed into a standard linear state-space (LSS) model by inserting a
lowpass �lter with τ�lt = 0.1 s at the control input. After model reduction, three alternative
controllers described in Appendices are therefore designed using the reduced model. Table 1
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Simulated tracking of βp, li and q0 by actuating PLHCD using the ARTAEMIS
plasma simulator [Moreau et al., 2011]. Top panels: time evolutions of (a-top) βp and (a-
bottom) its tracking error βp,err, and of (b-top) the LHCD power PLHCD and (b-bottom)
vitual βp disturbance, δβp. Middle panels: time evolutions of (c-top) li and (c-bottom) its
tracking error lierr, and of (d-top) the LHCD power PLHCD and (d-bottom) li disturbance,
δli. Bottom panels: time evolutions of (e-top) q0 and (e-bottom) its tracking error q0,err, and
of (f-top) the LHCD power PLHCD and (f-bottom) q0 disturbance, denoted as δ[ 1

q0
]. Shade

regions imply the existence of disturbances. All feedback algorithms were activated at 2.75 s.
The blue, red and green lines correspond to the simulation results of the SIMC PI, H∞ and
LQI control, respectively. On the left, dashed black lines denote control targets. On the right,
the dotted lines represent the LHCD power targets requested by a kinetic controller, while the
solid lines are the achieved LHCD powers by a SIMC PI power controller.

lists the tuning parameters used for the kinetic controller design. The design of the SIMC
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PI controller for each plasma kinetic parameters is performed separately by transforming the
reduced model into a �rst-order transfer function with time delay (θ = 20 ms). Prescribing
the tuning parameter τc = 4θ, we therefore obtain the feedback coe�cients Kp and Ki for
βp, li and ι0, respectively. The feedforward gain GFF is computed by simply inverting the
model coe�cient ki as given in Eq. (D.1). The design of the H∞ kinetic controller for each
parameters is conducted subsequently, the weighting function KS = s/M+wb

s+wbA
is adjusted to

shape the sensitivity functions, where the tuning of the closed-loop bandwidth ωb is essential
to balance the control performance and robustness. Finally, the design of the LQI kinetic
controller for βp, li and ι0 is carried out, in which the tuning parameters Qs, Qo,int and R

weigh the importance of the states, the output error integrals and the controlled inputs in the
cost function Jfb,LQI as de�ned in Eq. (B.3), respectively. One can notice that the primary
weights are put on the output error integrals to enable the transient control performance.

With the given control setup, the performance of each kinetic controllers is assessed using
the identi�ed linear two-time-scale model, simply called the ARTAEMIS model [Moreau et al.,
2013], as a plasma simulator. The simulation results are shown in Fig. 7, indicating that all
the controllers can achieve the e�ective tracking of βp, li, q0(= 1

ι0
) and PLHCD, despite the

presence of arti�cially prescribed disturbances. In the nominal cases, the performance of the
SIMC PI controller outperforms that of the LQI and H∞ controllers in both βp, li and q0

tracking, because its design primarily focusses on the fast integral control. In situations with
disturbances, SIMC PI has the best robustness in βp and li tracking due to its fast integral
control, while LQI and H∞ exhibit better robustness than SIMC PI in q0 tracking because
their designs account for the e�ect of slow plasma eigenmodes.

3.2.4.5 Closed-loop feedback control experiment

In the closed-loop control experiment, the performance of the two-time-scale cascade kinetic
control scheme is further evaluated by tracking a plasma kinetic parameter and the coupled
LHCD power simultaneously on the EAST tokamak.

The control of βp using the SIMC PI tuning rule was performed experimentally in EAST
shot #95195, with the feedforward and feedback gains shown in Table 1. A total of 5 targets,
consistent with those used in ARTAEMIS simulations, were required to be achieved, sequen-
tially 1.75, 1.90, 1.70, 1.85 and 1.80. Fig. 5(a)-(b) depict the evolution of βp and the coupled
LHCD power. Evidently, all the targets for βp and PLHCD were achieved using the cascade
two-time-scale kinetic control scheme, despite the presence of the large measurement noise in
βp, except during the period [3.6, 4.8] s, when the LHCD actuator had an exceptional fault
and was saturated to an upper limit lower than the expected value 2.5 MW. The control of
βp using the H∞ kinetic controller was carried out in shot #95197, whose tuning parameters
are listed in Table 1. The same SIMC PI power feedback controller was cascaded with the
H∞ kinetic controller while the same set of βp targets were prescribed. The evolution of βp
and PLHCD are shown in Fig. 5(c)-(d). Although all the targets were achieved, βp exhibits an
oscillatory trend and the tracking performance is not as good as in shot #95195, bacause of
the βp measurement noise and the LHCD power saturation. Comparing these two discharges,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Plasma control experiments showing the tracking of βp and li using the
LHCD@4.6GHz power command on EAST. Upper and middle panels: time traces of (a, c) βp
targets (blue), P-EFIT estimate (gray) and lowpass �ltered P-EFIT estimate (red), and of (b,
d) the requested PLHCD@4.6GHz (blue), the measured PLHCD@4.6GHz (red) and the PCS power
command to the LHCD system (black). βp feedback was activated after 2.5 s right after the
shaded light brown region. Bottom panels: time traces of li targets (blue), P-EFIT estimate
(gray) and lowpass �ltered P-EFIT estimate (red) and of the requested PLHCD@4.6GHz (blue)
and the measured PLHCD@4.6GHz(red) and the PCS power command to the LHCD system
(black). li feedback started from 2.75 s right after the shaded light brown region. Shaded cyan
region indicates the LHCD power was saturated. Magenta dotted lines represent the power
command limits of the LHCD power controller, while green dashed lines denote the power
request limits of the kinetic controller.
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one can conclude that the SIMC PI controller performs slightly better than the H∞ controller
in the noise-corrupted experimental environment, consistent with the ARTAEMIS simulation
result.

The control of li using the SIMC PI controller was performed in shot #95196, where two
targets were prescribed, i.e. 1.07 and 0.99 and the SIMC PI kinetic controller gains for li
are listed in Table 1. The same LHCD power feedback control algorithm and measurement
preprocessing were con�gured. The evolution of li and PLHCD are shown in Fig. 5(e)-(f).
Analogous to βp control, the signal-to-noise ratio (SNR) on li is still very large and the use of
the moving average �lter on li and PLHCD turns out to be e�ective. As shown in Fig. 5(e),
the �rst target was achieved with some oscillations, due to the presence of measurement noise
and model uncertainties. Between 3.0 s and 3.5 s, the reference trajectory linearly dropped
from 1.07 to 0.99 and the li controller was able to track the reference trajectories with some
oscillations, until the LHCD power saturated at 2.3 MW. After 3.38 s, due to the power
saturation, the second target could not be reached. As shown in Fig. 5(f), the LHCD power
was precisely tracked via the inner-loop SIMC PI power feedback controller. One can notice
that the attractive domain for li control is fairly narrow if only involving the LHCD power
as the control actuator for li tracking. In addition, the measurement fault of the magnetic
probes mounted at the plasma boundary is responsible for the unphysical linear drift of li, thus
leading to the enhanced control di�culty. Involving more actuators such as the NBI systems
is likely to broaden the attractive control region for li. Furthermore, it is anticipated that the
removal of the measurement drift arising from the magnetic probing fault should make the li
control more tractable.

3.2.5 Conclusion of Section 3.2

A two-layer kinetic control scheme has been proposed for plasma kinetic control in advanced
tokamak scenarios. This control scheme is composed of an inner-layer with a set of alternate
controllers to track plasma kinetic parameters of interest, and an outer-layer to preprocess the
equilibrium measurements, compensate actuation saturations and track the requested addi-
tional heating powers. Taking advantage of the timescale separation property of the kinetic and
additional power dynamics evolutions on the EAST tokamak, the kinetic control scheme uses
two sampling frequencies, with the inner-layer at 50 Hz and the outer-layer at 1000 Hz. Even
though the design of all these real-time kinetic feedback algorithms is based on a linear model
identi�ed from the sampled simulation/experimental data, the techniques can straightfor-
wardly be extrapolated to cover those linear models obtained from the �rst-principles plasma
theory. For comparison, three alternative kinetic controllers, the H∞, LQI and observer-based
IMC, are synthesized from the same reduced model, which are subsequently evaluated and
compared in closed-loop METIS simulations. These nonlinear simulation results suggest that
the proposed kinetic controllers can achieve the prescribed control targets of βp, Ωφ and Te,0
using PIC and PLH simultaneously with comparable levels of performance and robustness,
which are intimately related to the tuning parameters of each algorithms. This new control
scheme has then been implemented into the EAST PCS using the EMC toolbox. Preliminary
experiments on the EAST tokamak show that βp, li and PLH can successfully be tracked with
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two simple kinetic controllers, SIMC PI and H∞, with a 10 ms time-horizon moving average
�lter and a cascade SIMC PI power tracker. We conclude, from our simulations and initial ex-
periments, that for an intrinsically stable SISO plasma control problem, it is advisable to start
with a SIMC PI controller, as it is proven e�ective and easy to be designed, implemented and
tuned experimentally; for an uncertain MIMO plasma control problem, the H∞ robust kinetic
controller is suggested because its design primarily focuses on enabling su�cient robustness
against model uncertainties and meanwhile, its tuning is not very complicated.

In the future, extensive experimental tests on EAST are anticipated by involving more
actuators and measurements, for example, the co-current NBI systems and the polarime-
ter/interferometer diagnostics. It would also be interesting to adopt adaptive laws to re�ne
the control coe�cients in real-time based on the observed input-output measurements. Fur-
thermore, coordinating a set of local kinetic controllers for di�erent operating points using
gain scheduling can be explored easily under the proposed kinetic control scheme.

3.3 Summary of Chapter 3

In this chapter, robust control of q-pro�le and kinetic parameters in advanced tokamak scenar-
ios based on linear data-driven models has been investigated. It consists of two major parts:
the �rst part shows that simultaneous control of q-pro�le and βp in an H-mode steady-state
scenario on EAST can be achieved by a decentralized H∞ control scheme synthesized from
a two-time-scale data-driven model. A systematic feedback control synthesis is proposed and
bene�cial control implementation techniques are elaborated. Extensive closed-loop nonlinear
METIS simulations have demonstrated the validity of the proposed control scheme. The sec-
ond part primarily focusses on the comparison of the performance and robustness of three
linear kinetic control algorithms, namely H∞, LQI and IMC. In order to enhance actuation
tracking, cascade actuator controllers based on the SIMC PI tuning rule are designed and
implemented, running in a much faster timescale and proving e�ective in both METIS simula-
tions and EAST experiments. Future works entail the development of robust control schemes
synthesized from a nonlinear dynamic model such as a PNLSS model as depicted in Chapter
2. More extensive experiments on EAST are foreseen to sort out an optimal control scheme
among a set of candidates for routine tokamak plasma operation. In Chapter 4, some contribu-
tions will be made regarding the use of online parametric adaptation for the characterization
and compensation of plasma model uncertainties with a series of adaptive control laws.
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The con�nement performance of a tokamak plasma is characterized by a variety of mag-
netic and kinetic parameters, many of which can be controlled in feedback by launching the
associated actuator systems. However, nonlinear multi-scale disturbing phenomena such as mi-
croturbulence [Yoshizawa et al., 2003,Wesson and Campbell, 2011], MHD instabilities [Zohm,
2015] and impurity accumulation [Vershkov and Mirnov, 1974], are likely to play a detrimental
role in the course of tokamak plasma operation by rendering the plasma to an unfavorable
status. With the occurrence of large plasma uncertainties, the LSS model-based feedback con-
troller may behave poorly, even with a risk of control instability. In Chapter 3, we have shown,
both numerically and experimentally, that linear models identi�ed from the sampled data can
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conveniently be applied for a number of robust control designs to track certain plasma pa-
rameters/pro�les around a certain operating point in advanced tokamak scenarios on EAST.
Nonetheless, like the majority of the proposed control schemes for plasma control, the design
of linear feedback controllers is based on an implicit assumption that they should at least work
e�ectively around a speci�c operating point, for instance, in a given plasma scenario.

To proceed a step further, one interesting question is whether it is feasible to enable a
feedback controller to run e�ectively in a broader operating space. In order to �nd a solution, in
this chapter, we shall develop adaptive control algorithms emerging in the control community
to tracking plasma parameters of interest in advanced tokamak scenarios. Adaptive control,
a control methodology assuming the known model (controller) structure but with unknown
parameters slowly time-varying or time-invariant, is capable of dealing with uncertain systems
to achieve desirable control performance [Tao, 2014, Hou and Jin, 2013]. There is a rich
literature regarding the techniques for design, analysis, performance and applications [Ioannou
and Sun, 1996], which can be roughly divided into model-free and model-based adaptive control
techniques. Among the model-free adaptive techniques, typical examples include ESC [Ariyur
and Krstic, 2003], the dynamic linearization based adaptive control [Hou and Jin, 2013], fuzzy
adaptive control [Chen et al., 2007] and the neural networks based adaptive control [Fu and
Chai, 2007]. Model-based adaptive controllers comprise adaptive backstepping control [Krstic
et al., 1995], MRAC [Tao, 2014, Ioannou and Sun, 1996], adaptive pole placement control
[Lozano and Zhao, 1994], robust adaptive control [Ioannou and Sun, 1996, Landau et al.,
2011] and gain scheduling control [Leith and Leithead, 2000].

As the �rst part of this chapter, we focus on the application of the ESC algorithms for
plasma kinetic optimization in advanced tokamak scenarios. ESC is a model-free adaptive
online optimization approach [Ariyur and Krstic, 2003], which slowly drives a system to an
optimum where the cost function reaches a local minimum or maximum. This approach was
�rst proposed in [Leblanc, 1922], which has found many industrial applications in various disci-
plines, including aerospace and propulsion control [Binetti et al., 2003], combustion instability
control [Banaszuk et al., 2004], �ow control [Wang et al., 2000] and robot control [Kumar et al.,
2019]. The �rst rigorous assessment of the stability of ESC is given in [Wang and Krstic, 2000],
which has later been extended to multivariate LTI Newton-based ESC (NESC) control [Ghaf-
fari et al., 2012]. As an alternate, the time-varying NESC control is proposed in [Keating and
Alleyne, 2017] and applied to the online optimization of vapor compression systems. For more
recent achievements on ESC, interested readers are referred to [Dürr et al., 2013,Guay and
Dochain, 2017,Guay and Atta, 2018,Dürr et al., 2017,Yin et al., 2018] and the fundamentals of
ESC are illustrated in [Ariyur and Krstic, 2003]. Notably, ESC has also found its applications
in tokamak plasma control, speci�cally in the control of MHD instabilities and the kinetic
optimization. In [Ou et al., 2008], the feedforward optimization for the current pro�le control
is achieved by using the standard multivariable ESC. In [Paley et al., 2009], ESC is used to
maximize the sawteeth period by actuating the ECCD system in real-time on TCV. In [Bolder
et al., 2012], the performance of ESC on the sawtooth period control is improved by replacing
a lowpass �lter with a moving average �lter for the gradient estimation in conjection with a
sliding mode optimizer. In [Wehner and Schuster, 2012], combined with the magnetic island
width estimate, ESC allows for the minimization of the island-beam misalignment and the
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time required for NTM stabilization on DIII-D. In [Lanctot et al., 2016], the toroidal angular
momentum is maximized experimentally by actuating the error �eld coil currents based on the
standard ESC. In this chapter, we are dedicated to optimizing plasma parameters of interest
online using the multivariable NESC method. In contrast to the standard ESC scheme, the
NESC enables the online estimation of the Hessian and Hessian inverse of a cost function
(performance index) with respect to manipulated inputs. The evident bene�t is that the con-
trol convergence rate can thus be assigned arti�cially, which is however not feasible with the
standard ESC. More precisely, a decoupling technique with an extra closed-loop is used to
estimate the Hessian and its inverse while the same technique that inherits from the standard
ESC is for the gradient estimation. The performance of the NESC and standard ESC schemes
are evaluated and compared via closed-loop METIS simulations in H-mode plasma scenarios
on EAST and ITER.

The second and third parts of this chapter present the model reference adaptive control
(MRAC) of plasma kinetic parameters in advanced tokamak scenarios. MRAC is an adaptive
control strategy that has been extensively studied and its theory and design methodologies
have been systematically established [Tao, 2014]. The essential characteristic of MRAC is
that the closed-loop system dynamics are forced to match with a reference model system,
through the cancellation of the system zeros that are assumed stable. We �rst study a SISO
case, where the direct and indirect MRAC (dMRAC and iMRAC) control schemes are pursued
in parallel. In particular, the dMRAC scheme assumes a stationary controller structure and
updates the controller coe�cients in real-time based on a set of adaptive laws. As a dual
approach, the iMRAC scheme assumes a stationary model structure, whose coe�cients are
estimated in real-time by adopting adaptive laws before being used for updating the controller
coe�cients by following the model-matching conditions. With the similar idea, we then extend
the dMRAC scheme into a MIMO version using the combination of the adaptive laws, driven by
the normalized estimation errors (NEEs), and the LDS decomposition [Tao, 2014]. Nonlinear
METIS simulations performed on EAST demonstrate the e�ectiveness of the proposed MRAC
algorithms.

The main achievements of the chapter are listed below:

• Development of the NESC and ESC algorithms to achieve the online optimization of
plasma kinetic parameters in H-mode scenarios on EAST and ITER.

• Development of the dMRAC and iMRAC schemes for tracking of essential plasma kinetic
parameters in H-mode scenarios on EAST.

• Development of a MIMO dMRAC scheme for the simultaneous tracking of q0 and βp in
H-mode scenarios on EAST.

• Demonstrating the e�ectiveness of the proposed ESC and MRAC algorithms via non-
linear closed-loop METIS simulations.

The remainder of the chapter is organized as follows. In Section 1, we formulate the
kinetic control problem, sketch the essentials of the ESC approach and describe the LTI NESC
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scheme. We then evaluate the control performance via nonlinear METIS simulations on EAST
and ITER. In Section 2, we develop the dMRAC and iMRAC schemes for tracking of βp, Ωφ

and Te,0 and assess their validity via nonlinear METIS simulations on EAST. In Section 3,
we consider a MIMO dMRAC scheme for tailoring q0 and βp by actuating ICRH and LHCD
powers simultaneously and evaluate their performance via nonlinear METIS simulations on
EAST. In Section 4, we draw conclusions and outline possible improvements.

4.1 ESC optimization of plasma kinetic parameters

In this section, we present the ESC and NESC algorithms to optimize plasma kinetic param-
eters online in H-mode plasma scenarios, without resorting to any plasma response models.
First, we introduce the control objectives, outline the modelling of the to-be-optimized kinetic
parameter evolutions and formulate the kinetic control problem. Subsequently, the NESC
algorithm is illustrated in great detail. Nonlinear METIS simulations are �nally carried out
to assess the performance of the proposed ESC and NESC schemes.

4.1.1 Optimization problem formulation

Since ESC is a model-free adaptive optimization technique, it is intrinsically generic and can
potentially be applied to the kinetic optimization of any simulated and experimental plasmas.
Nonetheless, in order to discuss the control tuning procedure and evaluate the performance of
the ESC technique, a simple �uid model combined with a number of scaling laws [Artaud et al.,
2018] is employed as a plasma simulator to reveal the essential physics of kinetic parameter
evolutions. Before formulating the kinetic optimization problem, we �rst brie�y describe the
modelling of the to-be-optimized kinetic parameters, i.e., plasma poloidal beta βp, the average
toroidal rotation angular speed Ωφ and the α particle power Pα.

4.1.1.1 Modelling of plasma kinetic parameters

The plasma parameters of interest, βp, Ωφ and Pα are global indicators of the plasma con-
�nement performance in tokamaks, which evolve on the timescale of the energy con�nement
time τE . βp is a ratio between the total plasma kinetic energy and the energy stored in the
poloidal magnetic �eld, expressed as:

βp =
4Wth(1 + κ2)

3µ0aRI2
p

(4.1)

where Wth represents the thermal plasma energy content, κ the elongation, µ0 the magnetic
permeability in vacuum space, a the plasma minor radius, R the plasma major radius, Ip the
plasma current. Wth is obtained by solving a �rst-order ODE as:

dWth

dt
= −Wth

τE
+ Pheat − Prad (4.2)
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Here, τE is computed by using scaling laws. In L-mode, the ITERL-96P(th) scaling law reads:

τe,L = 0.023I0.96
p B0.03

t (
n

1020
)0.4P−0.73

in R1.83κ0.64ε−0.06A0.2 (4.3)

where Ip is the plasma current, Bt the toroidal magnetic �eld, n the average electron density,
Pin the input power, R the major radius, κ the elongation, ε the aspect ratio, A the atomic
mass of the ions. In H-mode, the ITERH-98(y,2) scaling law writes:

τe,H = 0.0562I0.93
p B0.15

t (
n

1020
)0.41P−0.69

loss R1.97κ0.78ε0.58A0.19 (4.4)

Here, Ploss = Pheat − Prad, where Pheat and Prad are respectively the total heating power and
the radiation power, expressed as:

Pheat = PΩ + Pα + PIC + PLH + PEC + PNBI

Prad = Pbrem + Pcyclo + λlinePline
(4.5)

where PΩ denotes the total ohmic power, and Pα the total α particle power generated from
D-T reactions. PIC , PLH , PEC , PNBI are respectively the total deposited powers arising from
the ICRH, LHCD, ECRH and NBI systems. Pbrem, Pcyclo and Pline are the bremsstrahlung
radiative power, the power lost by synchrotron radiation and the total radiative power due
to line radiation, respectively. We note that λline indicates the fraction of the line radiation
coming from the core plasma region. Pα is the total power arising from the generated α

particles due to D-T reactions, which is derived as Pα =
∫ 1

0 pα,th(t, ρ)dρ, where pα,th(t, ρ) is
the α power density pro�le, computed as:

pα,th(t, ρ) = eEα,T (d,n)He4nD(t, ρ)nT (t, ρ)〈συ〉T (d,n)He4 [Ti(t, ρ)] (4.6)

where e is the unit of electric charge, Eα,T (d,n)He4 = 3.5 MeV, nD and nT are respectively the
deuterium and tritium density pro�le. 〈συ〉T (d,n)He4 [Ti(t, ρ)] is the D-T fusion reaction cross
section closely related to the ion temperature pro�le. The ion temperature pro�le is inferred
from the electron temperature pro�le by conserving both the total energy and charge. More
details on the modelling of the other power sources and of the electron and ion temperature
pro�le evolutions are given in [Artaud et al., 2018].

The modelling of the average toroidal rotation angular speed is performed mainly in order
to account for the NBI e�ects and the intrinsic plasma rotation. The e�ects of magnetic �eld
ripple losses, fast ion losses and fast ion momentum transport cannot be described by simple
models, but they can be neglected. Nevertheless, a simple model is adequate to characterize
the NBI-dominated plasmas, even for a fusion reactor such as ITER. The volume-averaged
toroidal momentum is de�ned as:

Rtot =

∫ 1

0

Nion∑
k=1

mpAknkRυφ,kV
′dρ (4.7)

where Nion represents the total number of ion species, mp the proton mass, Ak the number of
the nucleons in the k-th ion species, nk the average density of the k-th ion species, R the major
radius, υφ,k is the toroidal velocity of the ion species k, V ′ the derivative of the plasma volume
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Figure 4.1: Schematic of a) the standard ESC and b) the NESC schemes.

enclosed in a magnetic surface with respect to the normalised minor radius ρ. Analogous to
the thermal energy computation, the volume-averaged toroidal momentum is modelled as:

dRtot
dt

= −Rtot
τφ

+

NNBI∑
k=1

Sφ,NBI,k + Sφ,intrinsic + Sφ,RF + Sφ,E‖ + Sφ,ripple + Fn,0 (4.8)

where τφ is the toroidal rotation con�nement time, de�ned as τφ = fτ,rotmin(τE , τii), where
fτ,rot is an adjustable factor with the order O(1), τii the ion con�nement time. Sφ,NBI,k
is the rotation source due to the k-th NBI injection, NNBI the number of NBI injectors,
Sφ,intrinsic the intrinsic toroidal rotation, Sφ,RF the rotation source due to the radiofrequency
(RF) heating, Sφ,E‖ the rotation source due to the parallel electric �eld, Sφ,ripple the toroidal
rotation source arising from the magnetic ripple e�ects. Fn,0 the rotation source due to the
friction with cold neutrals. More details concerning these source terms are given in [Artaud
et al., 2018].

4.1.1.2 Description of the kinetic optimization problem

A conceptual scheme of the kinetic parameter optimization using ESC is illustrated in Fig.
4.1(a). The objective is to optimize the control actuations online using the sampled input-
output data such that the cost function penalizing the kinetic parameter deviations reaches a
local minimum. The control actuators used in this study include the ICRH, LHCD and NBI
system powers, though other actuators such as plasma current and density can also be involved
for real-time optimization if necessary. The to-be-optimized kinetic parameters are the plasma
poloidal beta, βp, the average toroidal rotation angular speed, Ωφ, the electron temperature
on axis, Te,0, and the α particle power, Pα, for ITER burning plasmas. We remark that βp can
be estimated via the real-time EFIT code [Lao et al., 1985,Ferron et al., 1998] by �tting the
Grad-Shafranov equation with the boundary and internal magnetic diagnostics as constraints;
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Ωφ may be measured by the main-ion charge exchange recombination spectroscopy (MICER)
in NBI-heated plasmas [Haskey et al., 2018]; Te,0 may be measured by Thomson scattering
and electron cyclotron emission (ECE); Pα can be inferred from the plasma density and
ion temperature measurements, for example, Thomson scattering, interferometry and charge
exchange recombination spectroscopy (CXRS) [Wesson and Campbell, 2011].

The extremum-seeking optimizer has two sets of inputs, one of which are the real-time
estimates of plasma parameters of interest, while the others are their corresponding references,
which are allowed to be time-varying. The evident merit of the ESC optimizer is that it does
not rely on any a priori knowledge of plasma dynamics. An important constraint is that the
ESC optimizer should operate in a slower timescale than that of the to-be-optimized plasma
parameter evolutions such that a stable static input-output map, a su�cient condition for the
stability of ESC, can be obtained [Ariyur and Krstic, 2003]. In our studied plasma scenarios,
for example, on the ITER tokamak the energy con�nement time τE is approximately in the
order of 1 s, and the pulse duration can reach 1000 s. Hence, the use of the ESC optimizer
is theoretically feasible thanks to the long-pulse duration and the real-time capability of the
H&CD systems.

4.1.1.3 The optimization problem formulation using the ESC framework

The kinetic models described in Section 4.1.1.1 can be formulated as:

ẋ = f(x, θ), J = h(x) (4.9)

Here, x ∈ Rn represents the states where n is the number of states, θ ∈ Rp the inputs, where
p is the number of control actuators. J ∈ R is a cost function which is de�ned as the weighted
norm of all the state errors. f : Rn × Rp → Rn and h : Rn → R are nonlinear smooth
functions. More speci�cally, in an H-mode burning plasma scenario on ITER, our objective is
to optimize βp, Ωφ and Pα to their desired targets βp,ref, Ωref, Pα,ref, respectively, by actuating
PNBI1 and PIC in real-time, with the other three actuators PNBI2, PEC and PLH remaining at
a constant level. We de�ne βp, Ωφ and Pα as the kinetic parameter estimates while βp,ref, Ωref,
Pα,ref as their references. In this case, n = 3, p = 5, θ = [PNBI1, PNBI2, PEC, PIC, PLH]T , x =

[β̃p, Ω̃, P̃α]T , where β̃p, Ω̃ and P̃α are de�ned as β̃p = βp − βp,ref, Ω̃φ = Ωφ − Ωφ,ref and
P̃α = Pα−Pα,ref, respectively. In order to formulate the ESC optimization problem, we make
the following assumptions about the plasma kinetic system [Ariyur and Krstic, 2003]:

1) There is a smooth function l : Rn → Rp such that f(x, θ) = 0 if and only if x = l(θ);

2) For each θ ∈ Rn, the equilibrium x = l(θ) of the system ẋ = f(x, θ) is locally exponen-
tially uniformly stable in θ;

3) There exists θ∗ ∈ Rn such that ∂
∂θ (h ◦ l)(θ∗) = 0 and ∂2

∂θ2
(h ◦ l)(θ∗) < 0.

Our objective is to develop a feedback mechanism that drives the cost function J to its
minimum without requiring the knowledge of either θ∗ or the mapping functions f , l and h.
As shown in Fig. 4.1(a), the standard ESC controller perturbs the estimate θ̂ with a periodic
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signal S(t) such as asin(ωt), which should be slow enough such that the plant (4.9) advances
in a static map. The bene�t of using the perturbation signal is to force the cost function J
to respond periodically and then to extract the cost function gradient Ĝ = dJ

dθ . A highpass
�lter is �rst employed on J to remove the low-frequency uncorrelated component (ωh < ω)
and obtain z that is approximately sinusoidal. In order to estimate the cost function gradient
Ĝ, a lowpass �lter is imposed on the product of two sinusoids z and M(t), e.g. 2

asin(ωt).
Using an integrator, the actuation estimate θ̂ is then derived, where K is an adaptive gain to
control the convergence rate. We emphasize that the cuto� frequency for the lowpass �lter
ωl should be lower than the perturbing frequency ω, and to guarantee local stability, the
perturbation amplitudes a and the adaptation gain matrix K need to be kept small. Hence,
in the standard ESC scheme, there are three separate timescales: (1) fast (plasma kinetic
evolutions), (2) medium (periodic perturbation) and (3) slow (gradient estimate).

4.1.2 NESC approach

Inspired by [Gha�ari et al., 2012], we develop an NESC scheme to optimize plasma kinetic
parameters online, as depicted in Fig. 4.1(b). Basically, we can divide the NESC scheme into
six components: 1). diagnostics/measurements to estimate plasma parameters of interest, e.g.
βp, Ωφ, Pα; 2). de�ne a proper cost function J to penalize the optimized kinetic parameter
deviations; 3). estimate the Hessian Ĥ and Hessian inverse Γ for the gradient prediction;
4). estimate the gradient Ĝ = ∂J

∂θ ; 5). optimize the control inputs θ̂ using an integrator; 6).
launch the control actuators, e.g. the ICRH system, for real-time actuation. We remark that
Components 1 and 6 rely on the associated diagnostics and actuators, while the remaining
components constitute the main NESC algorithm, which should be implemented into a PCS
before experimental application [Snipes et al., 2017]. The rest part of this section presents the
NESC design in more detail.

4.1.2.1 Cost function

The goal of the NESC optimizer for plasma kinetic parameters is to �nd optimal beam and
radiofrequency actuations to minimize a cost function that penalizes both the parameter
deviations and the control e�orts, expressed as:

J = (xref − xmea)TΛ(xref − xmea) + (θref − θsat)T∆(θref − θsat) (4.10)

where xref represents the references of plasma kinetic parameters, whilst xmea denotes the
estimates of plasma kinetic parameters. θref is a vector of the requested actuations while
θsat denotes the amount of the actuations that have passed through the saturation limits.
Λ and ∆ are two weighting matrices that weigh the importance of each input and output
elements. We note that the references are allowed to be time-varying, but the settling time
of the reference trajectories should be aproximately an order smaller than τE to guarantee
the timescale separation between the plasma kinetic dynamics and the optimizer dynamics.
The involvement of the second term in the cost function aims to attenuate the negative e�ects
from actuator saturations [Mu et al., 2017].
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4.1.2.2 Estimator

In this subsection, we estimate the gradient, the Hessian, the Hessian inverse of the cost
function with respect to the control actuations.

Estimating the gradient Re-formulating equation (4.10) as J = Q(θ̂ + S) and using the
Taylor expansion at θ̂ yield:

J = Q(θ̂ + S) = Q(θ̂) + ST
∂Q

∂θ̂
+R(STS) (4.11)

To extract the term ∂Q

∂θ̂
and attenuate the �rst term Q(θ̂), a highpass �lter is imposed on

J , yielding Jf = Qf (θ̂) + ST ∂Q
∂θ̂

+ R(STS). Multiplying the periodic signals M(t) on both
sides of Eq. (4.11) and averaging it in the period Π, we thus obtain:

1

Π

∫ t0+Π

t0

Ĝdt =
1

Π

∫ t0+Π

t0

M(t)yfdσ

=
1

Π

∫ t0+Π

t0

M(t)Qf (θ̂(t))dt+
1

Π

∫ t0+Π

t0

M(t)S(t)T
∂Q

∂θ̂
dt+

1

Π

∫ t0+Π

t0

M(t)R(STS)dt

(4.12)

Here, Qf (θ̂) is a low-frequency component, and we assume that Qf (θ̂) = Q(t0) when t ∈
[t0, t0 + Π]. Then the �rst term is transformed to Q(t0)

Π

∫ t0+Π
t0

M(t)dt, which is 0. For the
third term, since R(STS) is an order smaller than the second term, it can be neglected.
We assume that ∂Q

∂θ̂
is constant during the interval [t0, t0 + Π], which is then transformed

to 1
Π

∫ t0+Π
t0

M(t)S(t)Tdt∂Q
∂θ̂
. Because 1

Π

∫ t0+Π
t0

M(t)S(t)Tdt is a unit matrix, we consequently

have 1
Π

∫ t0+Π
t0

Ĝdt = ∂Q

∂θ̂
.

Estimating the Hessian According to the assumptions made in Section 4.1.1.3, we infer
that at the steady state J = h(l(θ)), θ = θ̂ + S(t) and θ̂ = θ∗ + θ̃. Due to the smoothness
properties on f and h, we thus have J = Q(θ∗+ θ̃+S(t)). Using the Taylor series expansion,
J is then expressed as:

J = Q(θ∗ + θ̃ + S(t)) = J(θ∗) +
1

2
(θ̃ + S(t))TH(θ̃ + S(t)) +R(θ̃ + S) (4.13)

We note that ∂J(θ∗)
∂θ∗ = 0 and the term R(θ̃ + S) is a high order of θ̃ + S, which is negligible.

In order to decouple the Hessian H in an average sense, the cost function is multiplied by a
carefully designed time-varying matrix N(t) [Gha�ari et al., 2012], which is given by:

Ni,j =

{
16
a2i

(
sin(ωit)

2 − 1
2

)
, if i = j

4
aiaj

sin(ωit)sin(ωjt), if i 6= j
(4.14)
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where ai and aj are dither amplitudes, while ωi are dither frequencies. Hence, the integral
average of N(t)J in the common period of the probing frequencies Π = 2π × LCM{ 1

ωi
}, i =

1, 2, ..., n (LCM is short for the least common multiple) yields:

1

Π

∫ Π

0
N(t)Jdσ = H +

1

Π

∫ Π

0
R(θ̃ + S)dσ (4.15)

To approximate the Hessian in an average sense, a lowpass �lter is employed as:

Ḣ = −wrH + wrĤ (4.16)

where wr is a cut-o� frequency on the timescale of Π and the state H converges to Ĥ.

Estimating the Hessian inverse We assume Γ as the inverse of H, which means that
ΓH = I. Di�erentiating the equality yields Γ̇H + ΓḢ = 0, which is right-multiplied by Γ

on both sides, resulting in Γ̇ = ΓḢΓ. Combined with equation (4.16), the Hessian inverse is
consequently obtained as a di�erential Riccati equation:

Γ̇ = wrΓ− wrΓĤΓ (4.17)

This equation has two equilibria, i.e., Γ = 0 and Γ = Ĥ−1. Further analysis indicates Γ = 0

is an unstable equilibrium, thus Γ should converge to Ĥ−1.

4.1.2.3 Optimizer

The objective of the optimizer is to use the estimates of the gradient and/or Hessian inverse
to compute the optimal control actuations such that the cost function can be minimized or
maximized. As shown in Fig. 4.1, the adaptive gains Kg and Kn scale the convergence rate of
the ESC and NESC optimizers, respectively. In the standard ESC scheme, only the gradient
estimate is used for optimization while, in the NESC scheme, both the gradient and Hessian
inverse estimates are involved. As an integrator, the optimizer can thus be expressed as:

˙̂
θ(t) =

{
−Kg

∂Q

∂θ̂
, k = 0

−KnΓ∂Q

∂θ̂
, k = 1

(4.18)

where k = 0 represents the standard ESC scheme, while k = 1 indicates the NESC scheme. θ̂
represents the optimal control actuations. After integration, θ(t) = θ̂(t) + S(t) are output for
the actuators, where S(t) represents the dither signals.
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4.1.2.4 Stability analysis

Assume that θ∗ represents the optimal powers, and de�ne the estimate error θ̃ = θ̂ − θ∗. We
then formulate the NESC control system in a nonlinear state-space form as:

d

dt



x

θ̃

G̃

Γ̃

H̃

η̃


=



f(x, α(x, θ∗ + θ̃ + S(t)))

−K(Γ̃ +H−1)Ĝ

−ωlG̃+ ωl(y − h ◦ l(θ∗)− η̃)M(t)

ωr(Γ̃ +H−1)(I − (H̃ +H)(Γ̃ +H−1))

−ωr(H̃ − ωrH + ωl(y − h ◦ l(θ∗ − η̃)N(t)

−ωhη̃ + ωh(y − h ◦ l(θ∗))


(4.19)

where the closed-loop stability is illustrated by the following theorem:

Theorem 3. Consider the feedback system (4.19) under Assumptions 1−3. There exists ω̄ > 0

and for any ω ∈ (0, ω̄) > 0 there exist δ̄, ā > 0 such that for the given ω and any a ∈ (0, ā) and

δ there exists a neighborhood of the point (x, θ̂, Ĝ,Γ, Ĥ, η) = (l(θ∗), θ∗, 0, H − 1, H, h ◦ l(θ∗))
such that any solution of systems (4.19) from the neighborhood exponentially converges to an

O(ω + δ + |a|)-neighborhood of that point. Furthermore, J(t) converges to an O(ω + δ + |a|)-
neighborhood of h ◦ l(θ).

Theorem 1 is demonstrated by using the averaging and singular perturbation analysis,
details of which are given in [Gha�ari et al., 2012]. For the completeness, we hereby sketch
the proof essentials. Compared to the controller dynamics, the system dynamics evolve much
faster. The change of variable τ = ωt formulates a standard singular perturbation system.
First, we assume that ω = 0, the singular perturbation system is degenerated into a reduced
system, which can be demonstrated to have a unique exponentially stable periodic solution
around its equilibrium. Second, the boundary layer model is studied, based on assumption 2,
the equilibrium is locally exponentially uniformly stable in θ. The combination of the reduced
system and the bounday layer system leads to the closed-loop exponential stability of the full
system using the Tikhonov theorem [Khalil and Grizzle, 2002].

4.1.3 Simulation results

The ESC and NESC algorithms described in previous sections have been implemented into
the MATLAB/Simulink framework, which are then coupled with the plasma simulator METIS
[Artaud et al., 2018] for closed-loop control evaluations. We now present the nonlinear METIS
simulation results regarding the ESC and NESC kinetic optimization on the EAST and ITER
tokamaks.

4.1.3.1 ESC optimization of βp, Ωφ and Te,0 by adjusting PIC and PLH on EAST

The �rst case consists in evaluating the performance of the ESC and NESC algorithms for
the optimization of plasma kinetic parameters in a typical H-mode scenario on EAST via
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nonlinear METIS simulations. The reference scenario for METIS simulations is consistent
with the one used in Section 2 of Chapter 3. The objective is to track the poloidal beta
βp, the average toroidal rotation angular speed Ωφ and the central electron temperature Te,0
simultaneously by optimizing the ICRH and LHCD powers online using the ESC and NESC
schemes. The ICRH and LHCD powers are allowed to vary in the ranges of [0, 1.5] MW and
[0, 3.0] MW, respectively. The two candidate ESC optimizers were tuned using trial and error
until the satisfactory performance was obtained. Table (4.1) lists the ESC tuning parameters
for the ESC and NESC optimizers. The major di�erence between the standard ESC and
NESC lies in whether the Hessian and Hessian inverse are estimated or not. In the standard
ESC optimizer, the estimation is restricted to the gradient of the cost function with respect
to control actuations, while in the NESC optimizer, the Hessian and its inverse are estimated
by involving an additional loop as shown in Fig. 4.1(b). The dither frequency is computed as
τdither = 2π

Nditherτ̂E
, where τ̂E represents the energy con�nement time estimate (�xed at 0.04 s

in this study) and Ndither is an integer ranging from 5-15 (�xed at 8 in this study). The dither
magnitude should be set small at 0.05 MW. The time constant for the highpass �lter, the
gradient-oriented lowpass �lter and the Hessian-oriented lowpass �lter are respectively given
by τh = 1

2τdither,τl = 1
4τdither and τr = 3

20τdither. The adaptive gains, weights and norms are
chosen by trial and error. Increasing the adaptive gains can reduce the response time while it
may have the risk of causing control instability. The norms are chosen to map the measured
outputs and references to the interval of [-1,1]. Adjusting the weights on each control variables
can make a trade-o� on the importance of each variable in the cost function.

The optimization results for the two ESC optimizers are compared in Fig. 4.2, in which two
sets of references are prescribed and the optimization is activated at 3.5 s. In particular, in the
time period [3.5, 5] s, the βp, Ωφ and Te,0 targets are 2.0, 8 krad/s and 4800 eV, respectively.
From 5 s to 6 s, the targets for βp, Ωφ and Te,0 are linearly increased to 2.25, 9 krad/s and 5000
eV, and this new kinetic equilibrium is requested to be sustained until 8 s. We can conclude
from Fig. 4.2 that two groups of setpoints are achieved and maintained by both the standard
ESC and NESC schemes, in which comparable optimization performance is obtained by these
two candidate ESC optimizers. Nonetheless, one can still notice that slightly better tracking
is acquired with the NESC optimizer, especially for βp and Ωφ. The time evolution of the
optimized ICRH and LHCD powers are shown in Fig. 4.3. It is found that to achieve the
�rst group of setpoints, the ICRH and LHCD powers are requested to be actuated at 0.75
MW and 1.75 MW respectively, while the second group of setpoints are reached by increasing
the ICRH power to 0.95 MW and dropping the LHCD power to around 1.55 MW. The time
evolution of the cost function and the gradient estimates for the two candidate ESC schemes
are shown in Fig. 4.4. We can observe that between 5.6 s and 6.2 s, the cost function with
the NESC optimizer is around half of that with the standard ESC optimizer, con�rming that
better transient tracking performance can be made with the NESC optimizer. The estimates
of the Hessian inverse are depicted in Fig. 4.5, where the estimates are decreased suddenly
from 5.5 s to 5.6 s and gradually increased from 5.6 s to 6.5 s, which results in the improved
transient performance in the period of [5.6, 6.2] s for the NESC optimizer.
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Table 4.1: The ESC and NESC tuning parameters used for METIS simulations on EAST.

Options Parameters Standard ESC NESC
actuator IC LH IC LH

S
dither mag. [MW] 0.05

dither freq. τdither [rad/s] 19.6350
phase 0 π/2 0 π/2

M
dither mag. [MW] 20

dither freq. τdither [rad/s] 19.6350
phase 0 π/2 0 π/2

�lters
highpass τh 9.8175

lowpass gradient τl 4.9087
lowpass Hessian τr - 2.9452

adaptive gains Kg 0.0027 -
Kn - 0.001

weights λβp 4
λΩφ 3
λTe,0 0.005

norms Nβp 1000
NΩφ 0.5
NTe,0 0.5

(a) (b) (c)

Figure 4.2: Comparison of plasma kinetic parameter optimization using the ESC and NESC
schemes on EAST. Time traces of (a) the poloidal beta βp, (b) the average toroidal rotation
angular speed Ωφ and (c) the central electron temperature Te,0.

4.1.3.2 ESC optimization of βp, Ωφ and Pα by adjusting PNBI and PIC on ITER

The second case aims at extrapolating the ESC and NESC schemes on EAST to an H-mode
burning plasma scenario on ITER. The reference scenario for METIS simulations on ITER
is in line with the one studied in Section 1 of Chapter 2. The objective is to track the
poloidal beta βp, the average toroidal rotation angular speed Ωφ and the α particle power Pα
simultaneously by optimizing the co-current NBI and ICRH powers online. The �rst co-NBI
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(a) (b)

Figure 4.3: Time traces of (a) the ICRH power and (b) the LHCD power on EAST.

(a) (b)

Figure 4.4: Time traces of (a) the performance index and (b) the gradient estimates on EAST.

and ICRH powers are initialized with 10.3 MW and 12.5 MW, respectively, and are allowed
to range in the interval of [5, 16.5] MW and [5, 20] MW. The other additional heating powers
remain constant during the whole optimization process, speci�cally the second co-NBI at 10.3
MW, the ECRH at 12.5 MW and the LHCD at 25 MW. Two ESC schemes are coupled with
the METIS code for closed-loop control evaluations using the MATLAB/Simulink framework.
Similar to the �rst simulation case study, the tuning parameters for both ESC optimizers were
tuned by trial and error until the satisfactory performance was obtained and Table 4.2 lists
the used ESC tuning parameters for the following METIS simulations. As before, the dither
frequency is determined by following the rule τdither = 2π

Nditherτ̂E
. In this case, Ndither is �xed

at 12 and τ̂E is estimated to be 1.75 s. The dither magnitude is set at 0.4 MW and the dither
phase for co-NBI and ICRH actuators are prescribed to be 0 and π

2 , respectively. The time
constant for the highpass �lter, the gradient-oriented lowpass �lter and the Hessian-oriented
lowpass �lter are respectively prescribed at τh = 1

2τdither,τl = 1
4τdither and τr = 1

4τdither. The
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(a)

Figure 4.5: Time traces of the Hessian inverse estimates on EAST. Left-top panel: time traces
of the �rst diagonal element estimate. Right-top panel: time traces of the second diagonal
element estimate. Bottom panel: time traces of the o�-diagonal element estimates.

adaptive gains, norms and weights for βp, Ωφ and Pα are set by trial and error.

The optimization results for the two candidate ESC optimizers are illustrated in Fig. 4.6.
Two sets of targets for βp, Ωφ and Pα are preset to be followed and the optimization is activated
at 300 s. In the interval [300, 400] s, the references for βp, Ωφ and Pα are 2.1, 12.4 krad/s and
58 MW. From 400 s to 600 s, the references linearly drop to 2.02, 12.2 krad/s and 54 MW.
Simulation results indicate that both ESC and NESC optimizers can achieve e�ective tracking
by adjusting the co-NBI and ICRH powers simultaneously. Fig. 4.7 shows the time evolution
of the NBI and ICRH powers. Evidently, the optimized powers are mostly overlapped in the
two ESC schemes. It appears that at the initial phase of optimization, the standard ESC
scheme slightly outperforms the NESC scheme, which is further con�rmed in Fig. 4.8(a). In
the period [320, 350] s, the cost function J of the standard ESC is smaller than that of NESC,
because of the di�erence in the gradient estimate in Fig. 4.8(b). For NESC, the Hessian
inverse is also estimated as shown in Fig. 4.9. We remark that when the Hessian inverse is
saturated to an identity matrix, NESC degenerates to a standard ESC scheme, which explains
why the gradient and cost function of NESC overlaps with the standard ESC scheme in most
occasions.
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Table 4.2: The ESC and NESC tuning parameters used for METIS simulations on ITER.

Options Parameters Standard ESC NESC
actuator NBI IC NBI IC

S
dither mag. [MW] 0.4
dither freq. [rad/s] 0.2992

phase π/2 0 π/2 0

M
dither mag. [MW] 5
dither freq. [rad/s] 0.2992

phase π/2 0 π/2 0

�lters
highpass τh 0.1496

lowpass gradient τl 0.0748
lowpass Hessian τr 0.0748

adaptive gains Kg 0.0015 -
Kn - 0.1

weights λβp 1
λΩφ 1
λPα 1

norms Nβp 1000
NΩφ 0.5
NPα 0.5

(a) (b) (c)

Figure 4.6: Comparison of plasma kinetic parameter optimization using the ESC and NESC
schemes on ITER. Time traces of (a) the poloidal beta βp, (b) the average toroidal rotation
angular speed Ωφ and (c) the α particle power generated from D-T reactions Pα.

4.1.4 Conclusion of Section 4.1

In this section, an NESC scheme has been developed and applied to the adaptive online
optimization of plasma kinetic parameters in H-mode plasma scenarios on the EAST and ITER
tokamaks via nonlinear METIS simulations. Compared with the standard ESC control, the
NESC optimizer is able to estimate the Hessian and Hessian inverse of the cost function with
respect to the control actuations, which makes the closed-loop convergence rate arti�cially-
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(a) (b)

Figure 4.7: Time traces of the additional heating and current drive powers on ITER, (a). the
neutral beam injection power and (b). the ion cyclotron resonance heating power.

(a) (b)

Figure 4.8: Time traces of (a) the performance index and (b) the gradient estimates.

assignable. The drawback of this ESC optimization strategy is that it requires the actuation
perturbations to extract the information of plasma dynamics and the optimization should
be carried out in a much slower timescale than the characteristic time of plasma kinetic
dynamics. Nonetheless, as an alternative method, it can potentially be applied to other plasma
optimization problems where the plasma dynamics are highly nonlinear while the modelling is
not possible or non-trivial, for instance, NTMs mitigation and suppression, ELMs suppression,
the divertor heat �ux and radiative power control.
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Figure 4.9: Time traces of the Hessian inverse estimates on ITER. Left-top panel: time traces
of the �rst diagonal element estimate. Right-top panel: time traces of the second diagonal
element estimate. Bottom panel: time traces of the o�-diagonal element estimates.

4.2 MRAC control of plasma kinetic parameters: a SISO case

In this section, we investigate MRAC control of plasma kinetic parameters, including the
poloidal beta βp, the average toroidal rotation angular speed Ωφ and the electron temperature
on axis Te,0 by actuating the ICRH power PICRH on EAST. First, the input-output transfer
function structure is used to approximate the responses of plasma kinetic parameters with
respect to the ICRH power. The adaptive control problem is then formulated by making a
number of assumptions. Based on the given model structure and control assumptions, the
dMRAC and iMRAC schemes are developed to track plasma kinetic parameters in a SISO
setup, with the METIS simulation results demonstrating their e�ectiveness.

4.2.1 Control problem formulation

Our objective is to design a controller and parameter adjustment mechanism such that all
the signals are bounded and the plant outputs track the desired plasma kinetic parameter
reference as close as possible by actuating a control input [Ioannou and Sun, 1996]. The
response of a kinetic parameter yp with respect to a control actuator up can be expressed as
an input-output transfer function:

yp = Gp(s)up (4.20)
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with

Gp(s) = kp
Zp(s)

Rp(s)
(4.21)

where Zp(s) and Rp(s) are monic polynomials of degree np,z and np,r, respectively and kp is
a constant named the high frequency gain. The reference model, which de�nes the desired
control performance, is given by:

ym = Wm(s)r (4.22)

where ym represents the desired trajectory to be tracked, r indicates the reference input, which
is assumed to be uniformly bounded and piecewise continuous. Wm(s) is the reference model
which reads:

Wm(s) = km
Zm(s)

Rm(s)
(4.23)

where Zm(s) and Rm(s) are monic polynomials of degree nm,z and nm,r, respectively and km
is a constant. In order to design a MRAC controller using only measured signals, i.e. without
any di�erentiation involved, we make a number of assumptions on the plant and reference
models as follows:

For the plant model (4.21):

• P1: Zp(s) is a monic Hurwitz polynomial.

• P2: An upper bound of the degree of the polynomial Rp(s) is known to be n.

• P3: The relative degree n∗ = np,r − np,z is known.

• P4: The sign of the high frequency gain kp is assumed to be known.

The assumption P1 ensures that the plant transfer function Gp(s) is minimum phase,
which indicates that the plant should be detectable and stabilizable. P2 allows the input-
output �lters designed for feedback control to be strictly proper. P3 and P4 are assumptions
that can be relaxed by increasing the control complexity [Nussbaum, 1983,Morse, 1984].

For the reference model (4.23):

• R1: Zm(s) and Rm(s) are both monic Hurwitz polynomials with the degree nm,z and
nm,r and nm,r ≤ n.

• R2: The relative degree n∗m = nm,r − nm,z of Wm(s) is the same as that of the plant
Gp(s), i.e. n∗m = n∗.

In order to achieve the control objective, the dMRAC and iMRAC control schemes are
considered based on the plant and reference model structures, respectively [Ioannou and Sun,
1996]. We �rst present the dMRAC scheme, which allows the controller structure to remain
unchanged but with its control parameters directly adjusted according to the sampled input-
output measurements by properly associating the model reference tracking errors with the
control parameters. Then the iMRAC scheme is developed, which assumes a stationary model
structure, and the controller parameters are calculated indirectly in two steps: the �rst step
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consists in adapting the plant model parameters via the sampled input-output measurements,
while the second step is to update the controller parameters by solving the reference model
matching equations.

4.2.2 MRAC control: a direct approach

Based on the assumptions made for the plant and reference models, we now focus on the
dMRAC design. In the �rst step, we assume that the plasma plant model is known, which
may be identi�ed from sampled simulations/experiments [Ljung, 1995] or obtained through
the �rst-principles plasma theory [Artaud et al., 2018]. With the given plant and reference
models, a model reference control (MRC) law [Morse, 1985] is thus derived by solving the
reference-model matching equations. In the second step, we assume that the plasma plant
model is not known exactly, and the certainty equivalence principle (CEP) [Ioannou and Sun,
1996, Landau et al., 2011] is thus used to develop adaptive laws for the control parameter
adjustment.

4.2.2.1 Model reference control

Let us consider the following feedback controller structure as:

up = θ∗1
T α(s)

Λ(s)
up + θ∗2

T α(s)

Λ(s)
yp + θ∗3yp + c∗0r (4.24)

where

α(s) =

{
[sn−2, sn−3, ..., s, 1]T , n ≥ 2

0, n < 2

and θ∗1, θ
∗
2 ∈ Rn−1, θ∗3, c

∗
0 ∈ R are controller parameters to be designed, and Λ(s) is an arbitrary

monic Hurwitz polynomial of degree n−1 that contains Zm(s) as a factor Λ(s) = Λ0(s)Zm(s),
where Λ0(s) is a monic Hurwitz polynomial with the degree n0 = n − 1 − nm,z. up, yp and
r represent the measured input, the measured output and the reference, respectively. The
control parameters can be expressed in a compact form as θ∗ = [θ∗1

T , θ∗2
T , θ∗3, c

∗
0]T ∈ R2n,

which are designed to ensure that the transfer function from r to yp is equal to the reference
model Wm(s).

Combining equations (4.20) and (4.24), the closed loop transfer function from r to yp is
computed as:

yp = Gc(s)r =
c∗0kpZpΛ

2

Λ[(Λ− θ∗1)Rp − kpZp(θ∗2
Tα(s) + θ∗3Λ(s))]

r (4.25)

The controller parameters θ∗ can then be derived by solving the matching equationGc(s) =

Wm(s), which writes as:

c∗0kpZpΛ
2

Λ[(Λ− θ∗1)Rp − kpZp(θ∗2
Tα(s) + θ∗3Λ(s))]

= km
Zm(s)

Rm(s)
(4.26)
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Choosing c∗0 = km
kp

and Λ(s) = Λ0(s)Zm(s), equation (4.26) is then transformed to an algebraic
equation

θ∗1
Tα(s)Rp(s) + kp(θ

∗
2α(s) + θ∗3Λ(s))Zp(s) = Λ(s)Rp(s)− Zp(s)Λ0(s)Rm(s) (4.27)

Multiplying 1
Rp(s) on both sides of equation (4.27), we obtain

Λ(s)− θ∗1
Tα(s)− kp

Zp(s)

Rp(s)

(
θ∗2
Tα(s) + θ∗3Λ

)
= Zp

(
Q(s) + kp

∆∗

Rp

)
(4.28)

where Q(s) and kp∆
∗ respectively represent the quotient and the remainder of Λ0Rm

Rp
, i.e.

Λ0Rm
Rp

= Q(s)+
kp∆∗

Rp
. We then obtain the control coe�cients by solving the following equations

θ∗1
Tα(s) = Λ(s)− Zp(s)Q(s)

θ∗2
Tα(s) + θ∗3Λ(s) =

Q(s)Rp(s)− Λ0(s)Rm(s)

kp

(4.29)

4.2.2.2 Adaptive controller parameter estimation

In this subsection, we assume that the plant model is not available, but the plant and reference
models satisfy the assumptions P1-P4 and R1-R2. The CEP is employed to design the
dMRAC controller. The controller parameters θ∗ are now replaced by their estimates θ(t)
using an adaptive law, which is developed by relating the model tracking error with the
controller parameters. The controller structure remains as:

up = θ∗1
Tω1 + θ∗2

Tω2 + θ∗3yp + c∗0r (4.30)

De�ning ω1 = α(s)
Λ(s)up, ω2 = α(s)

Λ(s)yp, θ = [θ∗1
T , θ∗2

T , θ∗3, c
∗
0]T and ω = [ωT1 , ω

T
2 , yp, r]

T , the control
law is expressed in a state-space form as:

ω̇1 = Fω1 + gup

ω̇2 = Fω2 + gyp

up = θ∗Tω

(4.31)

where

F =


−λn−2 −λn−3 −λn−4 ... −λ0

1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 0

 , g =


1

0

0
...
0

 (4.32)

λi, i = 0, ..., n− 2 are the coe�cients of the monic Hurwitz polynomial:

Λ(s) = sn−1 + λn−2s
n−2 + ...+ λ1s+ λ0 = det(sIn−1 − F ) (4.33)
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Incorporating the control law (4.31) and the plant (4.21), we obtain the closed-loop system in
a state-space form as:

Ẏc = A0Yc +Bcup, Yc(0) = Y0

yp = CcYc
(4.34)

where the state vector Yc is de�ned as Yc = [xTp , ω
T
1 , ω

T
2 ]T and

A0 =

 Ap 0 0

0 F 0

gCTp 0 F

 , Bc =

Bpg
0

 , Cc =
[
Cp 0 0

]
Here, (Ap, Bp, Cp, Dp) is a state-space realization of the plant (4.21). Adding and subtracting
the desired control input Bcθ∗Tω yields Ẏc = A0Yc +Bcθ

∗Tω +Bc(up − θ∗Tω). By a number
of algebraic manipulations, we derive:

Ẏc = AcYc +Bcc
∗
0r +Bc(up − θ∗Tω), Yc(0) = Y0

yp = CcYc
(4.35)

where

Ac =

Ap +Bpθ
∗
3C

T
p Bpθ

∗
1 Bpθ

∗
2
T

gθ∗3C
T
p F + gθ∗1 gθ∗2

gCTp 0 F


Considering the plant and reference model matching condition, the reference model is then
given by:

Ẏm = AcYm +Bcc
∗
0r, Yc(0) = Y0

ym = CcYm
(4.36)

Subtracting equations (4.35) and (4.36), we obtain the error equation

Ẋe = AcXe +Bc(up − θ∗Tω)

e = CcXe

(4.37)

where e = yp − ym and Xe = Yc − Ym. Considering Cc(sI − Ac)
−1Bcc

∗
0 = Wm(s) and

up = θ(t)Tω, we can simplify equation (4.37) as e = Wm(s)ρ∗(up − θ∗Tω). In order to
construct adaptive laws, we de�ne uf = Wm(s)up and φ = Wm(s)ω.

The gradient method with known sign of ρ∗ ρ∗ represents the direction of the control
input on the control output. For example, βp increases with PICRH, indicating that ρ∗ > 0. ι0
decreases with PLHCD, implying that ρ∗ < 0. If the sign of ρ∗ is known, the error equation is
given by:

e = ρ∗(uf − θ∗Tφ) (4.38)

We assume the sign of the high frequency gain kp is known and a gradient method is then em-
ployed to design the adaptive law. The error estimate ê is expressed as ê = ρ(t)

(
uf − θ(t)Tφ

)
,
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where ρ(t) and θ(t) are the estimates of ρ∗ and θ∗. The normalized estimation error is then
computed as ε = e−ê

m2 , where m2 = 1 + n2
s and n2

s = φTφ + u2
f . Then we consider the cost

function:

J(ρ, θ) =
ε2m2

2
(4.39)

De�ning ξ = ρ
(
uf − θTφ

)
, equation (4.39) is given by J(ρ, θ) =

((e−ρ∗θTφ−ρξ+ρ∗ξ)−ρ∗uf )2

2m2 .
Because of the dependence of ξ on θ, J(ρ, θ) is not a convex function of ρ and θ. However,
let us ignore the dependence and consider ξ as an independent variable. With the gradient
method, we can then derive the adaptive laws for θ and ρ as:

θ̇ = Γ0ρ
∗εφ, ρ̇ = γεξ (4.40)

where Γ0 = ΓT0 > 0 and γ > 0. ρ∗ can be expressed ρ∗ = |ρ∗|sign(ρ∗). Since the term ρ∗

is assumed to be constant and its sign is assumed to be known, the arbitrary adaptive gain
matrix Γ0 can be transformed to Γ = Γ0|ρ∗|, which results in a set of implementable adaptive
laws as:

θ̇ = Γεφsign(ρ∗), ρ̇ = γεξ (4.41)

The gradient method with unknown sign of ρ∗ If we do not know the sign of the gain
ρ∗, we can develop adaptive laws using the Nussbaum gain. The estimate ê of the tracking
error e is expressed as:

ê = N(x)ρ(uf − θTφ) (4.42)

where the function N(x) is referred to as the Nussbaum gain

N(x) = x2cos(x), x = ω2 +
ρ2

2γ
, ω̇ = ε2m2, w(0) = 0 (4.43)

The adaptive laws are expressed as:

θ̇ = −N(x)Γεφ, ρ̇ = N(x)γεξ (4.44)

The Nussbaum gain is used to account for the unknown sign of ρ∗ by changing the sign of the
vector �eld of θ and ρ periodically with respect to the signal x.

4.2.3 MRAC control: an indirect approach

In this section, we develop an iMRAC scheme with normalization, based on the same as-
sumptions used for the dMRAC design. The basic idea of the iMRAC controller is to develop
adaptive laws to estimate the plant parameters of kp, Zp(s) and Rp(s), and these plant pa-
rameters are then used to compute the controller parameters by solving the model-matching
equation.
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4.2.3.1 Adaptive model parameter estimation

The plasma plant model is assumed to be a linear input-output transfer function model struc-
ture:

yp = Gp(s)up =
bms

m + b1s
m−1 + b2s

m−2 + ...+ b1s+ b0
sn + an−1sn−1 + an−2sn−2 + ...+ a1s+ a0

up (4.45)

which can be then simpli�ed into a linear regression form

z = θ∗Tφ (4.46)

where

z =
sn

Λp(s)
, θ∗ = [0, 0, ..., 0, bm, bm−1, ..., b0, an−1, ..., a0]T , φ =

[
αTn−1

Λp(s)
up,−

αTn−1

Λp(s)
yp

]
(4.47)

and Λp(s) = sn + λTp αn−1 is a Hurwitz polynomial, λp = [λn−1, λn−2, λ2, λ1, λ0]T . We note
that the �rst n−m− 1 elements of θ∗ are prescribed as 0.

The estimate of z is given by ẑ = θ̂Tφ, where θ̂ = [0, 0, ..., 0, p̂1, p̂2], p̂1 = [b̂m−1, ..., b̂0]

and p̂2 = [ân−2, ..., â0]. The normalized error equation is expressed as ε = (z−ẑ)
m2 , where

z = yp + λTp φ2, m2 = 1 + φTφ, φ2 =
αTn−1

Λp(s)yp. We then consider the cost function

J(p1, p2, kp) =
ε2m2

2
(4.48)

Using the gradient method, we can obtain the adaptive laws as

˙̂p1 = Γ1φ̄1ε, ˙̂p2 = Γ2φ2ε,
˙̂
kp = γφ1mε (4.49)

where φ1 = αTn−1Λp(s)up. Assuming the low bound of kp is known, we can make the adaptive
laws more robust by involving the projection technique

˙̂
kp =

{
γφ1mε, if |k̂p| � k0 or |k̂p| = 0 and φ1mεsign(kp) ≥ 0

0, otherwise
(4.50)

4.2.3.2 Model reference control law

Once the plant parameters are estimated, we could immediately compute the appropriate
control parameters by solving a matching equation which guarantees that the closed-loop
transfer function is equal to the reference model transfer function. The plant parameters are
replaced by their estimates based on the CEP. c0(t) = km

k̂p
, θ1(t), θ2(t) and θ3(t) are computed

by solving the following equations:

θ1(t)Tα(s) = Λ(s)− Ẑp(s)Q̂(s)

θ2(t)Tα(s) + θ3(t)Λ(s) =
Q̂(s)R̂p(s)− Λ0(s)Rm(s)

k̂p

(4.51)



134 Chapter 4. Adaptive Control

where Ẑp = [k̂p, p̂
T
1 ]αm(s), and Q̂ is the polynomial quotient Λ0(s)Rm(s)

R̂p(s)
. The control law is

therefore expressed as:
up = θT (t)ω (4.52)

where

θ(t) = [θT1 , θ
T
2 , θ3, c0]T , ω = [ωT1 , ω

T
2 , yp, r]

T , ω1 =
αn−2(s)

Λ(s)
up, ω2 =

αn−2(s)

Λ(s)
yp

4.2.4 Simulation results

The dMRAC and iMRAC schemes were implemented into the MATLAB/Simulink framework
and coupled with the nonlinear plasma simulator, METIS [Artaud et al., 2018], for closed-loop
control assessment. The closed-loop METIS simulations are based on the reference scenario
in the current �attop phase of a fully non-inductive upper-single-null (USN) H-mode plasma
discharge on the EAST tokamak. It has the toroidal magnetic �eld BT = 2.5 T, the central
electron density ne0 ≈ 3.5× 1019 m−3 and plasma current Ip = 0.42 MA. The discharge was
obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 4.6 GHz), 0.32 MW of ICRH at 33
MHz and 0.3 MW of ECRH at 140 GHz. The transition to H-mode occurred at 3.1 s with an
H-mode enhancement factor H98(y, 2) ∼ 1.1. The q-pro�le exhibited a small negative shear in
the plasma core, with minimum q around 1.5 and q0 ∼ 2 on axis. The procedure for tuning the
METIS code for interpretative simulations of advanced tokamak plasma discharges is described
in [Moreau et al., 2015]. The objective is to assess the capabilities of the dMRAC and iMRAC
schemes in tracking plasma magnetic kinetic parameters by adjusting the ICRH power and the
controller parameters simultaneously. A number of simulation cases are presented to evaluate
the performance and adaptivity of the proposed schemes.

4.2.4.1 Tracking of plasma kinetic parameters

It has been shown in Chapter 3 that the ICRH power is an e�ective actuator to track plasma
kinetic parameters such as βp, Ωφ and Te,0. Therefore, the �rst case consists in tracking
βp by actuating the ICRH power. Assuming that the response of βp with respect to PIC is
approximated by a second-order transfer function as

GPIC ,βp(s) =
kps+ kz

s2 + kr,1s+ kr,2
(4.53)

The objective is to choose PIC such that the behaviour of βp follows the reference model
Gm(s) = 20

s+20 . For the dMRAC controller, the controller model structure is given in equation
(4.24). The ω1 and ω2 are computed by �ltering the input P̃ICRH and the output β̃p with
a �lter 1

(s+2) . The controller parameters θ and the coe�cient ρ are estimated using the
adaptive laws as given in equations (4.42)-(4.44), in which the adaptive gains Γ = 70I4 and
γ = 70. The initial value of θ is set at 0, while the initial value of ρ = 0. For the iMRAC
controller, the plasma plant model is estimated online �rst using the adaptive laws given in
equations (4.49)-(4.50). Then the derived model parameters are used to update the control
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parameters by solving the equations (4.51). The �ltering term Λ(s) = (s+ 2) and the model
parameters are initialized as kp = 18, kz = 100, kr = [22, 40]. The βp reference trajectories are
designed to have two harmonics with frequency at 2 Hz and 1.25 Hz to satisfy the persistently
exciting condition. Fig. 4.10 shows the closed-loop METIS simulation results, in which the
controllers are activated at 3.5 s. It is found that both the dMRAC Nussbaum controller and
the iMRAC controller can achieve the satisfactory tracking for βp by adjusting the ICRH power
in real-time. One can further notice that βp cannot be tracked during the initial phase by
the dMRAC Nussbaum control because the control parameters are prescribed to be 0, which
assumes nothing about the model information. Because of the adaptive control estimation,
after 1 s, the dMRAC Nussbaum controller starts to work e�ectively. The evolution of the
controller parameters in dMRAC Nussbaum scheme is shown in Fig. 4.10(c). The positive sign
of ρ indicates that βp increases with PICRH. The reason why the iMRAC controller has good
initial control performance is that the model used for the reference control design matches the
plant well. Nonetheless, the model is not good enough, so that kp and pr,1 evolves a bit which
leads to the variations of the controller parameters θ1, θ2 and c0. To sum up, both dMRAC
and iMRAC control schemes can achieve satisfactory tracking of βp by actuating the power
of the ICRH system. We emphasize that in order to achieve good control performance, two
sets of parameters are important: 1) the adaptive gain used in the adaptive laws and 2) the
initial setup of the model parameters in the iMRAC scheme and the controller parameters in
the dMRAC Nussbaum scheme.

In order to further show the versatility of the MRAC schemes, we here use PICRH to track
the toroidal rotation angular speed ωφ and the central electron temperature Te,0, separately.
Analogously to the �rst case, the dMRAC and iMRAC schemes have been tested in parallel.
The closed-loop METIS simulation results for the control of ωφ are shown in Fig. 4.11. For
the dMRAC control design, the adaptive laws with the Nussbaum gain described in equations
(4.42)-(4.44) are employed to update the controller parameters θ(t) and the coe�cient ρ(t),
with the adaptive gains Γ = 1.75I4 and γ = 1.75. The initial value of θ and ρ are prescribed to
be 0. For the iMRAC design, the plasma plant model, assumed to be a second-order transfer
function, is estimated online using the adaptive laws provided in equations (4.49)-(4.50), with
the adaptive gains prescribed as Γkp = 3200,Γpz = 3200,Γpr = 400I2. The �ltering term
Λ = (s + 5), while the model parameters are initialized as kp = 80, kz = 28, kr = [22, 40].
The reference trajectory has one harmonic at 1.5 Hz. As shown in Fig. 4.11(a), the tracking
performance by the two considered adaptive schemes are satisfactory. The tracking errors
of the two control schemes are illustrated in Fig. 4.11(b). One can notice that during the
whole control phase, the iMRAC scheme outperforms the dMRAC Nussbaum scheme, because
dMRAC Nussbaum scheme does not use any model information at the initial stage, which leads
to the longer online tuning time. Although there is a model mismatch at the initial control
stage, the iMRAC scheme is capable of self-tuning the model parameters to approximate the
actual plasma dynamics, which generates better controller parameters and leads to the reduced
tracking error.

The results of tracking the central electron temperature Te,0 using PICRH are shown in Fig.
4.12. It is found that comparable tracking performance has been obtained by the two di�erent
MRAC schemes. In this case, the dMRAC Nussbaum controller performs slightly better, as
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(a) (b)

(c) (d)

Figure 4.10: Tracking of βp using PICRH. Upper frame of (a) : comparison of βp references
(blue dashed) and the achieved βp values (black) by the direct MRAC Nussbaum controller,
the achieved βp values (red) by the indirect MRAC controller. Bottom frame of (a): time
traces of the associated ICRH powers requested by the direct MRAC Nussbaum controller
(black) and the indirect MRAC controller (red). Frame (b): time traces of βp tracking errors
by the dMRAC Nussbaum controller (black) and the iMRAC controller (red). Left frame of
(c): time traces of the online estimate of ρ by the direct MRAC. Right frame of (c): time
traces of the online estimate of the controller parameters for the direct MRAC. Left frame of
(d): time traces of the online estimate of the model parameters by the indirect MRAC. Right
frame of (d): time traces of the online update of the controller parameters by the indirect
MRAC.

seen on Fig. 4.12(b) after 5 s.
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(a) (b)

(c) (d)

Figure 4.11: Tracking of ωφ using PICRH. Upper frame of (a) : comparison of ωφ references
(blue dashed), the achieved βp values (black) by the direct MRAC Nussbaum controller and
the achieved ωφ values (red) by the indirect MRAC controller. Bottom frame of (a): time
traces of the associated ICRH powers requested by the direct MRAC Nussbaum controller
(black) and the indirect MRAC controller (red). Frame (b): time traces of ωφ tracking errors
by the dMRAC Nussbaum controller (black) and the iMRAC controller (red). Left frame of
(c): time traces of the online estimate of ρ by the dMRAC controller. Right frame of (c):
time traces of the online estimate of the controller parameters for the dMRAC controller.
Left frame of (d): time traces of the online estimate of the model parameters by the iMRAC
controller. Right frame of (d): time traces of the online update of the controller parameters
by the iMRAC controller.

4.2.4.2 Impact of the tuning parameters on tracking performance

The objective of this section is to investigate the impact of the tuning parameters used in the
MRAC schemes on the control performance. In particular, three important tuning parameters
are considered in great detail, including the adaptive gains, the control initialization and the
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(a) (b)

(c) (d)

Figure 4.12: Tracking of Te,0 using PICRH. Upper frame of (a): comparison of Te,0 references
(blue dashed), the achieved Te,0 values (black) by the direct MRAC Nussbaum controller and
the achieved Te,0 values (red) by the indirect MRAC controller. Bottom frame of (a): time
traces of the associated ICRH powers requested by the direct MRAC Nussbaum controller
(black) and the indirect MRAC controller (red). Frame (b): time traces of Te,0 tracking errors
by the dMRAC Nussbaum controller (black) and the iMRAC controller (red). Left frame of
(c): time traces of the online estimate of ρ by the dMRAC controller. Right frame of (c):
time traces of the online estimate of the controller parameters for the dMRAC controller.
Left frame of (d): time traces of the online estimate of the model parameters by the iMRAC
controller. Right frame of (d): time traces of the online update of the controller parameters
by the iMRAC controller.

plasma plant model order. The adaptive gains used in both dMRAC and iMRAC schemes
are evaluated by scanning the adaptive gain values. Fig 4.13(a) shows the comparison of βp
tracking errors by actuating the ICRH power PICRH with the dMRAC controller. All the
control parameters in the dMRAC Nussbaum controller are initialized as zero, which explains
why the tracking errors are relatively large at the initial control phase. Due to the real-time
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(a) (b)

Figure 4.13: Comparison of βp tracking errors with di�erent adaptive gains for (a) the direct
MRAC Nussbaum controller, i.e. Γθ and γρ and (b) the indirect MRAC controller, i.e. γkp ,Γpz
and Γpr .

control parameter adaptation, the tracking errors converge to a small value approaching 0. It
is clear that the convergence rate grows with the increase of the adaptive gains for θ and ρ.
With the adaptive gains �xed at 5Γθ,0 and 5γρ,0, the dynamic tracking errors are remarkably
reduced to a small value in the interval [-0.05, 0.05]. The adaptive control gains were also
scanned for the iMRAC scheme, and the METIS simulation results are shown in Fig. 4.13(b).
One can notice that increasing the adaptive gains for the model coe�cients kp, pz and pr
can only slightly reduce the tracking errors, implying that the initial model coe�cients are
close to the optimal values in the given plant model structure. Besides, we remark that the
adaptive gains used for both dMRAC and iMRAC schemes should not be set large so as to
avoid control instability issues.

(a) (b)

Figure 4.14: Comparison of βp tracking errors with di�erent adaptive gains by (a) the direct
MRAC Nussbaum controller and (b) the indirect MRAC controller.
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The impact of control initialization on the tracking performance is evaluated by performing
comparative simulations for the dMRAC and iMRAC controllers separately. The βp tracking
errors with zero control initialization are compared with those obtained with good control
initialization for the dMRAC Nussbaum scheme, as shown in Fig. 4.14(a). It is clear that if the
dMRAC Nussbaum controller is con�gured with good control initialization, the tracking errors
at the initial phase of feedback control are remarkably smaller. It suggests that good control
initialization is bene�cial to the tracking performance at the initial control phase. Nonetheless,
thanks to the adaptive laws, the tracking errors gradually converge to the same level with
the controller that has been properly initialized. For the case of the iMRAC controller, we
purposely initialize the model parameters kp and kz to be far away from the real values. The
METIS simulation results are compared with the model parameters initialized properly in
Fig. 4.14(b). As expected, at the initial control phase, the tracking errors are considerable,
ranging from -1 to 1. Due to the model parameter adaptation, the tracking errors converge
to the interval [-0.2,0.2], which is comparable with the case where the model parameters are
properly initialized. Based on the comparative simulations for both the dMRAC and iMRAC
schemes, we conclude that (1) control initialization is bene�cial to the tracking performance
at the initial adaptive control phase; (2) the controller can adaptively tune its parameters in
a direct or indirect manner such that the tracking errors substantially decrease even with bad
initialization of the controller parameters (dMRAC) and of the model parameters (iMRAC).

(a) (b)

Figure 4.15: Comparison of Te,0 tracking errors with di�erent model orders by (a) the dMRAC
Nussbaum controller and (b) the iMRAC controller. Note that, in the legends, the symbol
"model-i/j" represents the plant model with i zeros and j poles.

The impact of the model order on the tracking performance is evaluated via comparative
simulations. The dMRAC controller for Te,0 tracking was tested by assuming di�erent model
orders. The METIS simulation results are shown in Fig. 4.15(a) and no obvious di�erences
were observed by using di�erent model orders for the dMRAC controller. The model order
on the control performance of an iMRAC scheme was also studied, with results shown in Fig.
4.15(b). We can see that the model-1/2 and model-2/3 seem to have comparable performance,
and it appears that the tracking performance slightly descreases with the increase of the plasma
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plant model order.

4.2.5 Conclusion of Section 4.2

In this section, two di�erent MRAC schemes have been applied to tracking plasma kinetic
parameters in tokamak plasmas by actuating the ICRH system. The �rst control scheme
(dMRAC) assumes a stationary controller structure and updates the controller parameters,
system inputs, references and outputs simultaneously. The controller parameters are estimated
by a set of adaptive laws driven by a normalized estimation error. The use of a Nussbaum
gain enables the e�ectiveness of the dMRAC control even when the sign of ρ is unknown.
The second control scheme (iMRAC) assumes a stationary model structure, with the model
parameters estimated online according to the sampled input-output data. Next, the controller
parameters are derived by solving the model-matching equations aiming to approximate the
reference model at best. Closed-loop METIS simulations performed on EAST suggest that
these two MRAC control schemes can achieve the reference tracking e�ectively. Compared
with iMRAC, the dMRAC Nussbaum controller does not require any model information in the
course of control, though good control initialization can ensure better tracking performance at
the initial control phase. However, the idea of iMRAC control is much more straightforward,
and may be more suitable for the situation where the plasma plant model has su�cient quality.

4.3 MRAC control of plasma kinetic parameters: a MIMO case

In this section, the dMRAC scheme described in Section 4.2 is extended to a MIMO version
for the tracking of plasma kinetic parameters in advanced tokamak scenarios. The MIMO
extension of the output MRC is introduced �rst. Assuming unknown controller parameters, a
MIMO version of dMRAC is then developed based on CEP, with simulation examples showing
the e�ectiveness of the MIMO dMRAC scheme.

4.3.1 MRAC control: a direct approach

Let us assume the plasma dynamics to be a MIMO LTI transfer matrix with m inputs and m
outputs:

y(t) = G(s)[u](t) (4.54)

where y(t) ∈ Rm represents the system outputs containing the plasma parameters of interest,
while u(t) ∈ Rm denotes the system inputs including the available control actuators. s is a
Laplace transform variable or the di�erentiation operation. G(s), an unknown and nonsingular
transfer matrix, can be factorized as G(s) = Z(s)P (s)−1, where Z(s) and P (s) are m × m
coprime polynomial matrices, with P (s) column proper.
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We can then derive a left modi�ed interactor matrix (LMI) [Tao, 2014] of G(s) as ξm(s):

ξm(s) =


l1(s) 0 0 ... 0

hm21(s) l2(s) 0 ... 0

hm31(s) hm32(s) l3(s) ... 0

... ... ... ... ...

hmm1(s) hmm2(s) ... ... lm(s)

 (4.55)

where li(s), i = 1, 2, ...,m are monic Hurwitz polynomials, and hmij (s), i, j = 1, 2, ...,m are
polynomials. Since the system is assumed to be proper and nonsingular, the LMI matrix has
a stable inverse that indicates the zero structure of G(s) at in�nity. In addition, ξm(s) is
associated with the high frequency gain matrix (HFGM) of G(s) in the following relation

Kp = lim
s→∞

ξm(s)G(s) (4.56)

where Kp ∈ Rm×m denotes the HFGM of G(s) that is �nite and nonsingular.

In order to achieve the MRAC control stability, we make the following assumptions on the
plasma system dynamics:

(a) All zeros of G(s) are stable;

(b) The upper bound of the observability index of G(s) is known;

(c) The transfer matrix G(s) is proper and nonsingular;

(d) The LMI matrix ξm(s) of G(s) is known;

(e) All the leading principle minors of the HFGM Kp are not zero whose signs are known.

Assumption (a) ensures that the plasma system is stabilizable and detectable; Assumption
(b) is satis�ed to design proper input-output �lters; Assumption (c) and (d) are utilized to
design a reference model; Assumption (e) is analogous to know the sign of the high frequency
gain in a SISO case, which is satis�ed to guarantee the correct convergent direction.

4.3.1.1 Reference model

The reference model refers to the desired system dynamics to be followed, expressed as:

ym(t) = Wm(s)[r](t) (4.57)

where ym(t) ∈ Rm represents the desired output while r(t) denotes the reference input which
is assumed to be bounded and piecewise continuous. Wm(s) is the reference model designed
as the inverse of the LMI matrix, i.e. Wm(s) = ξ−1

m (s).
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4.3.1.2 Control law

The controller structure is de�ned as:

u(t) = ΘT
1 ω1(t) + ΘT

2 ω2(t) + Θ20y(t) + Θ3r(t) (4.58)

where Θ1 ∈ Rm(ν̄−1)×m and Θ2 ∈ Rm(ν̄−1)×m are control parameters for the �ltered inputs
ω1(t) and outputs ω2(t), respectively. ν represents the upper bound of the observability index
of G(s). Θ20 ∈ Rm×m and Θ3 ∈ Rm×m are the control parameters for the outputs and the
reference inputs, respectively. Θ1 can be further divided as Θ1 = [Θ11,Θ12, ...,Θ1ν̄−1], where
Θ1i ∈ Rm×m, i = 1, 2, . . . , ν̄−1. Likewise, Θ2 is expressed as Θ2 = [Θ21,Θ22, ...,Θ2ν̄−1], where
Θ2i ∈ Rm×m, i = 1, 2, ..., ν̄ − 1. ω1 and ω2 are �ltered input-output signals:

ω1(t) = F (s)u(t), ω2(t) = F (s)y(t) (4.59)

where

F (s) =
I0(s)

Λ(s)
, I0(s) = [Im, sIm, ..., s

ν̄−1Im]T

where Λ(s) is a monic Hurwitz polynomial of degree ν̄ − 1.

First, we assume the plant model is known, which can be identi�ed from sampled input-
output data using the system identi�cation methodology described in Chapter 2. We can then
choose Θ∗3 = K−1

p and the control parameters Θ∗1,Θ
∗
2 and Θ∗20 are computed by solving the

following matching equation:

Θ∗1
T I0(s)P (s) + (Θ∗2

T I0(s) + Θ20Λ(s))Z(s) = Λ(s)(P (s)−Θ∗3ξm(s)Z(s)) (4.60)

We �rst divide Λ(s) on the both sides of equation (4.60) and then post-multiply by P (s)−1,
which yields:

Im −Θ∗1
TF (s)−Θ∗2

TF (s)G(s)−Θ∗20y(t) = Θ∗3W
−1
m (s)G(s) (4.61)

Then post-multiplying by u(t) on both sides of equation (4.61), we obtain

u(t)−Θ∗1ω1(t)−Θ∗2ω2(t)−Θ20y(t) = Θ∗3W
−1
m (s)[y](t) (4.62)

Subtracting Θ∗3r on both sides, and using the relation Wm(s) = ξ−1
m (s) and Θ∗3 = K−1

p , we
then derive

Kp(u(t)−Θ∗1
Tω1(t)−Θ∗2

Tω2(t)−Θ∗20y(t)−Θ∗3r(t)) = ξm(s)[y − ym](t) (4.63)

Assume that we obtain the true control parameters, i.e. u(t) = Θ∗1
Tω1(t) + Θ∗2

Tω2(t) +

Θ∗20y(t) + Θ∗3r(t). Then equation (4.63) becomes ξm(s)[y − ym](t) = 0. Due to the nonsin-
gularity of ξm(s), it implies that limt→∞(y − ym) = 0. In other words, if the true control
parameters are utilized for output feedback control, the output y converges to the reference
ym asymptotically.
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4.3.1.3 Adaptive law

In this section, we assume that the plasma plant model parameters are unknown, which
motivates us to develop adaptive laws that estimate the appropriate control parameters online.
Consider the same controller structure as equation (4.58) and de�ne the true and unknown
control parameters as

Θ∗ = [Θ∗1
T ,Θ∗2

T ,Θ∗20,Θ
∗
3] (4.64)

Since we do not know the exact values of the true control parameters Θ∗, the CEP [Tao,
2014] is used to replace the true control parameters by their estimates

Θ = [ΘT
1 (t),ΘT

2 (t),Θ20(t),Θ3(t)] (4.65)

De�ning the estimation error as Θ̃ = Θ(t)−Θ∗, the associated regressor is expressed as:

ω(t) = [ωT1 (t), ωT2 (t), ω20, ω3]T (4.66)

Decomposition of the HFGM Kp Assumption (d) indicates that Kp has all non-zero
leading principle minors, and Kp can be non-uniquely decomposed as Kp = LDS, where
L,D, S ∈ Rm×m, L represents a lower triangular matrix, S is a symmetric positive de�nite
matrix, S = ST > 0, and

D = diag
{
sign (∆1) γ1, sign

(
∆2

∆1

)
γ2, ..., sign

(
∆m

∆m−1

)
γm

}
(4.67)

Substituting the gain matrix Kp = LDS into equation (4.63), we obtain

DS
(
u(t)−Θ∗1

Tω1(t)−Θ∗2
Tω2(t)−Θ∗20y(t)−Θ∗3r(t)

)
= L−1ξm(s)[y − ym](t) (4.68)

Parameterizing the control law u(t) = ΘT (t)ω, and the tracking error e(t) = y(t)− ym(t),
we obtain L−1ξm(s)[e](t) = DSΘ̃Tω. Next, introducing a new matrix Λ∗ = L−1−Im, one has

Λ∗ =


0 0 0 . . . 0

λ∗2,1 0 0 . . . 0

λ∗3,1 λ∗3,2 0 . . . 0
...

...
...

. . . 0

λ∗m,1 λ∗m,2 . . . λ∗m,m−1 0

 (4.69)

Replacing L−1 by Λ∗ yields

ξm(s)[e](t) + Λ∗ξm(s)[e](t) = DSΘ̃Tω (4.70)
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Parameterizing Λ∗ with m− 1 column vectors

λ∗2 = λ∗2,1 ∈ R
λ∗3 = [λ∗3,1, λ

∗
3,2]T ∈ R2

... =
...

λ∗m−1 = [λm−1,1, λm−1,2, ..., λm−1,m−2] ∈ Rm−2

λ∗m = [λm,1, λm,2, ..., λm,m−1] ∈ Rm−1

(4.71)

where λi,j represents the estimate of the Λ∗ elements, while λ∗i
T denotes the estimate of the

row vectors of Λ∗.

We then de�ne a monic Hurwitz polynomial f(s), with its degree equal to the maximum
degree of ξm(s), and design a stable �lter with h(s) = 1

f(s) and impose h(s) on the equation
(4.70), we obtain

ξm(s)h(s)[e](t) + Λ∗ξm(s)h(s)[e](t) = DSh(s)Θ̃Tω (4.72)

De�ning the �rst term on the left side of equation (4.72) as

e = ξm(s)h(s)[e](t) (4.73)

where e = [e1, e2, ..., em]T and ei ∈ R, i = 1, 2, ...,m. Then we create the regressors ηi, i =

2, ...,m, which are given by ηi(t) = [e1, e2, ..., ei−1]T ∈ Ri−1. Then the second term on the left
side of equation (4.72) is expressed as

e∗L = Λ∗ξm(s)h(s)[e](t) = [0, λ∗2
T η2, ..., λ

∗
m
T ηm] (4.74)

Denoting Υ(t) as the estimate of Υ∗ = DS, ζ(t) = h(s)[ω](t) and ξ(t) = ΘT (t)ζ(t) −
h(s)[ΘTω](t), and de�ning the estimate of e∗L as eL(t) = [0, λT2 η2, ..., λ

T
mηm], we then relate

the estimation error to the parameteric error

ε(t) = e(t) + eL(t) + Υ(t)ξ(t) (4.75)

Combining equations (4.72)-(4.75), the estimate error equation is given by

ε(t) = ẽL(t) + Υ̃ξ(t) +DSΘ̃T ζ(t) (4.76)

where ẽL(t) = [0, λ̃T2 η2, ..., λ̃
T
mηm]T , and Υ̃ = Υ(t)−Υ∗. Equation (4.76) thus completes asso-

ciating the tracking error ε(t) with the parameter errors. Next, we start developing adaptive
laws to estimate the unknown parameters online.

Adaptive parameter estimation We de�ne the parameter errors as

Θ̃ = Θ(t)−Θ∗, Υ̃ = Υ(t)−Υ∗, λ̃i = λi(t)− λ∗i , i = 2, 3, ...,m (4.77)
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Since we assume that the unknown parameters are constant, the derivatives of the unknown
parameters are given by

˙̃Θ(t) = Θ̇, ˙̃Υ(t) = Υ̇,
˙̃
λi(t) = λ̇i, i = 2, 3, ...,m (4.78)

By using the gradient estimate technique, the adaptive laws are expressed as

Θ̇ = −Dεζ
s2

, Υ̇ = −ΓΥεξ
T

s2
, λ̇i = −

Γλ,iεiηi
s2

(4.79)

where s is a normalized value, s2 = 1+ζT (t)ζ(t)+ξT (t)ξ(t)+
∑m

i=2 ηi(t)
T ηi(t) and ΓΥ ∈ Rm×m

and Γλ,i ∈ R(i−1)×(i−1) are both the adaptive gain matrices, which satisfy ΓΥ = ΓTΥ > 0,ΓTλ,i =

Γλ,i > 0, i = 2, 3, ...,m.

4.3.2 Simulation results

The MIMO dMRAC scheme described in Section 4.3.1 was �rst implemented into the MAT-
LAB/Simulink framework, which was then coupled with METIS for closed-loop control evalu-
ation. The METIS simulations are based on the same reference scenario used in Section 4.2.4.
The objective is to track βp and ι0 simultaneously by actuating PICRH and PLHCD on EAST
using the MIMO dMRAC scheme. To do so, we �rst make a number of assumptions: all the
zeros of the transfer matrix G(s) mapping βp and ι0 from the ICRH and LHCD powers are
stable, the upper bound of the observability index is 2, and G(s) is proper and nonsingular.

After some trial and error, the LMI matrix ξm is de�ned as
[
0.05s+ 1 0

0 (0.05s+ 1)2

]
. In ad-

dition, we assume that all the leading principle minors of the HFGM Kp are not zero. Based
on the physical intuition, it is found that increasing the ICRH power leads to the growth of
βp and rising the LHCD power results in the drop of ι0. Hence, we have sign (∆1) = 1 and

sign
(

∆2
∆1

)
= −1. The adaptive gains for Θ, Υ and λi are prescribed by trial and error. In this

case, we �nd that DD =

[
8× 104 0

0 −4× 103

]
, ΓΥ =

[
106 0

0 106

]
and λi = 106 yields good

tracking performance. The controller parameters are initialized as

Θ|t=t0 =

[
−0.0873 −0.0152 0.0549 0.0283 −1.1420 0.3359 0.8505 0.3518

0.0018 −0.0043 −0.0018 0.0045 −0.0247 0.0408 −0.0257 −0.0274

]T

Υ|t=t0 =

[
0.1909 0.0002

−0.0046 −0.0263

]
and λ|t=t0 =

[
0 0.0024

0 0

]
,where t0 is the initial time when the

controller is switched on. The �lter h(s) is 1
(s+10)2

and the lowpass �lter for the observed input

and output are 1
(s+1) .

With this con�guration, the MIMO dMRAC scheme has been tested through the closed-
loop METIS simulations. The simultaneous tracking results are shown in Fig. 4.16. In order to
test the controller with a time-varying reference input, a harmonic reference with the frequency
at 1 Hz is prescribed for βp, while another slower harmonic reference with the frequency at
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(a) (b)

Figure 4.16: Simultaneous tracking of βp and ι0 using the ICRH and LHCD powers. (a) Time
traces of the reference trajectories and the achieved values of βp (top) and ι0 (bottom). (b)
Time traces of the requested and achieved auxiliary heating and current drive powers.

0.1 Hz is prescribed for ι0. The references for βp and ι0 are tracked with the ICRH and
LHCD powers fairly well. In particular, the MIMO dMRAC controller automatically favors
the LHCD power to track ι0 and the ICRH power to track βp according to the adaptive
laws driven by the observed input-output data. Fig. 4.17-4.18 shows the evolution of the
estimated elements of λ and Υ, respectively, while Fig. 4.19-4.21 illustrates the evolution of
the estimated elements of Θ. These results demonstrate the adaptivity of the MIMO dMRAC
scheme in the simultaneous tracking of βp and ι0.

4.3.3 Conclusion of Section 4.3

In this section, a MIMO dMRAC control scheme is proposed for the simultaneous control of
βp and ι0 in advanced tokamak scenarios on EAST. This control approach manifests itself
as a MIMO extension of the dMRAC scheme described in Section 4.2. Similar to the idea
of the SISO dMRAC scheme, the MIMO dMRAC scheme assumes a stationary multivariable
controller structure and updates the controller parameters adaptively, driven by the normalized
estimation errors. The LDS decomposition of the HFGM allows for the available information
about the plasma dynamics to be minimum, enabling the system stability and the asymptotic
output tracking, despite the occurrence of system parameter uncertainties. Dedicated METIS
simulations on EAST have numerically demonstrated the validity of the proposed MIMO
dMRAC scheme. Future e�orts entails the implementation of this control algorithm into the
EAST PCS for experimental validation. It is also interesting to explore the impact of the
tuning parameters on the control performance and to seek a systematic tuning procedure for
this scheme.
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Figure 4.17: Time evolution of the estimated elements of λ.

Figure 4.18: Time evolution of the estimated elements of Υ.
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Figure 4.19: Time evolution of the estimated elements of Θ from Θ11 to Θ32.

4.4 Summary of Chapter 4

In this chapter, adaptive control of essential plasma kinetic parameters in advanced tokamak
scenarios has been investigated numerically, which is divided into three parts: The �rst part
shows that the NESC scheme can be applied for the adaptive online optimization of plasma
kinetic parameters in advanced tokamak scenarios. The bene�t of NESC is that in addition to
the gradient estimate, the Hessian and Hessian inverse can be estimated as well, making the
closed-loop convergence rate arti�cially-assignable. Nonlinear METIS simulations performed
on EAST and ITER indicate that comparable optimization performance can be obtained
with the NESC and standard ESC schemes. Compared with other controller schemes, for
instance, LQI and H∞ controllers, the apparent drawback of ESC lies in its long response
time. Nonetheless, the ESC optimization results can be used as the feedforward baseline
trajectories. Furthermore, ESC may prove to be more e�ective than other linear feedback
controllers for the real-time optimization of strong nonlinear dynamics, for instance, the ELM
suppression with the resonant magnetic perturbations (RMP). The second and third parts
deal with the application of the MRAC algorithms for plasma magnetic kinetic control in
advanced tokamak scenarios. For the SISO case, two di�erent MRAC schemes (dMRAC and
iMRAC) are proposed and tested with nonlinear METIS simulations. Results indicate that
both dMRAC and iMRAC schemes can successfully be applied for the adaptive tracking of
kinetic parameters by actuating the ICRH power, which may broaden the attractive control
region of linear controllers proposed in Chapter 3. For the MIMO case, a dMRAC scheme
has been considered and tested with nonlinear METIS simulations. We can infer, from our
simulations, that the MIMO dMRAC scheme is capable of tracking plasma magnetic and
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Figure 4.20: Time evolution of the estimated elements of Θ from Θ41 to Θ62.

kinetic parameters simultaneously with multiple control actuators. In the future, the proposed
adaptive control algorithms should be implemented into a PCS for experimental evaluations.
Meanwhile, possible improvements towards an optimization of the MIMO MRAC scheme can
be made. In the next chapter, another powerful control technique will be introduced and
evaluated for the simulatenous control of q-pro�le and βp in H-mode plasmas on EAST, the
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o�set-free MPC scheme.
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Simultaneous magnetic and kinetic plasma control based on extremely simple LSS models
identi�ed using a two-time-scale approximation has been developed in recent years and the
models used in Chapter 3 were based on this approximation [Moreau et al., 2011]. Ideally,
�rst-principles plasma transport models could be preferred as they should have a universal
domain of validity, but despite their increasing complexity, they still depend on many uncer-
tain parameters and their accuracy cannot be widely assessed, even in their linearized version
for real-time control applications. So the idea here is to free oneself from the complexity of
such models and to reduce the control computational cost, at the expense of a more restricted
applicability (e.g. to a given device, actuator set and operation scenario). In the so-called
ARTAEMIS two-time-scale models [Moreau et al., 2011] and in the associated control algo-
rithms, the fast component of the kinetic plasma dynamics, including in particular momentum
and thermal di�usion, is considered as a singular perturbation of a quasi-static equilibrium,
which itself is governed on the resistive timescale by the �ux di�usion equation. The system
identi�cation problem is thus made tractable by the partial decoupling of the slow and fast
dynamics. Combined with linear-quadratic optimal control theory, the e�ectiveness of this
approach to simultaneously control the plasma poloidal �ux pro�le and the normalized pres-
sure parameter, in non-inductive, high-βN discharges was demonstrated experimentally on
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the DIII-D tokamak [Moreau et al., 2013]. Using the same approach, simultaneous control of
the safety factor pro�le, q(x), and plasma pressure was also achieved in closed-loop nonlinear
plasma transport simulations [Moreau et al., 2015]. However, in such simulations the desired
steady-state q-pro�les were obtained either much too slowly, or after a large undershoot of the
safety factor in the plasma core with respect to its target value and a damped oscillation. A
non-monotonic approach of the q-pro�le to its target pro�le is not desirable, as it may lead to
MHD instabilities during the build up of the plasma equilibrium. In this regard, the model
predictive control (MPC) [Maciejowski, 2002], an alternate control approach combined with
the ARTAEMIS plasma dynamic model, is expected to achieve enhanced control performance
for the tracking of plasma magnetic and kinetic parameters/pro�les in tokamaks.

The control of plasma magnetic and kinetic parameters in tokamaks using MPC has al-
ready been investigated [Ouarit et al., 2011,Maljaars et al., 2015,Maljaars et al., 2017,Wehner
et al., 2016]. MPC control solves a receding-horizon optimization problem where an uncon-
strained/constrained cost function that penalizes both predictive errors and control e�orts
in a prescribed time horizon is minimized online to �nd an optimal control actuation [Gar-
cia et al., 1989]. In [Ouarit et al., 2011], control of q-pro�le via MPC was initiated and
its e�ectiveness was veri�ed in Tore Supra plasma simulations. In [Maljaars et al., 2015],
�rst-principle-driven (FPD) models linearized around a set of operating points are treated as
predictive models and nonlinear RAPTOR simulations [Felici et al., 2011] have demonstrated
the validity of MPC in q-pro�le tracking on ITER. The similar technique was then extended to
track q-pro�le and plasma β simultaneously in L-mode plasmas, whose e�ectiveness has been
validated experimentally on the TCV tokamak [Maljaars et al., 2017]. In [Wehner et al., 2016],
the FPD-MPC control of q-pro�le and the stored energy for high performance steady-state
operation has been pursued on DIII-D experimentally. In [Moreau et al., 2018], using a two-
time-scale data-driven model, the o�set-free MPC [Borrelli and Morari, 2007,Maeder et al.,
2009,Maeder and Morari, 2010] for the q-pro�le and βp tracking was �rst demonstrated in an
H-mode steady-state scenario on EAST via nonlinear closed-loop METIS simulations. The
validity of this approach has recently been con�rmed through dedicated plasma experiments
on the EAST tokamak [Moreau et al., 2021]. This chapter presents the METIS simulation
and experimental results reported in [Moreau et al., 2018,Moreau et al., 2021].

MPC is a form of control in which the current actuation is obtained by solving a �nite-
horizon optimal control problem at each sampling instant with the current plant state as
the initial state, which yields an optimal sequence of future actuations. The �rst actuator
values of each sequence are applied to the plant [Mayne et al., 2000]. In the literature, the
applications of MPC were initiated in the works [Cutler and Ramaker, 1980,Prett and Gillette,
1980, Rachael et al., 1978]. The state-space interpretation of MPC is �rst proposed in [Lee
et al., 1994], and the stability of constrained MPC is proved in [Rawlings and Muske, 1993].
Interested readers are referred to [Mayne et al., 2000] for a complete survey of MPC control and
to [Maciejowski, 2002,Alamir, 2013] for tutorials. In order to deal with system disturbances,
an o�set-free MPC technique was proposed and proved to be e�ective [Borrelli and Morari,
2007,Maeder et al., 2009,Maeder and Morari, 2010,Morari and Maeder, 2012]. The bene�ts of
MPC are that it can easily handle multivariable cases, system constraints, model uncertainties
as well as nonlinearities in an intuitive way. On the other hand, its high computational burden
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is considered as an apparent disadvantage over other control strategies such as LQI control
and H∞ robust control. This chapter is dedicated to developing an o�set-free MPC by using
a data-driven two-time-scale plasma response model for the tracking of q-pro�le and βp in
H-mode scenarios on the EAST tokamak. Both numerical simulations and experiments are
investigated.

The main achievements of the chapter are summarised as follows:

• Developing an o�set-free MPC control scheme, based on a two-time-scale plasma re-
sponse model [Moreau et al., 2011,Moreau et al., 2013,Moreau et al., 2015] for tracking
of q-pro�le and βp in H-mode scenarios on EAST.

• Coupling the o�set-free MPC controller with the plasma simulator METIS [Artaud et al.,
2018], and numerically evaluating the control performance on EAST.

• Implementing the o�set-free MPC controller into the EAST PCS and experimentally
demonstrating its e�ectiveness by tracking βp and q0 in H-mode scenarios on EAST.

The rest of the chapter is organized as follows: In Section 1, we review the two-time-
scale model structure and formulate the o�set-free MPC control problem. The PI Luenberger
observer for states and disturbances estimation using the linear two-time-scale model is elab-
orated. Closed-loop METIS simulation results are shown to con�rm the e�ectiveness of the
control algorithm in Section 2. The �rst, proof-of-principle model predictive kinetic control
experiments performed on EAST are reported in Section 3. Finally, we draw conclusions and
outline the future plans.

5.1 O�set-free MPC approach

In this section, the predictive model used in MPC for q-pro�le and βp control is �rst revisited,
based on which a PI Luenberger observer is designed to estimate plasma states and modelling
errors online. Afterwards, the o�set-free MPC control problem is formulated using the predic-
tive model, state and disturbance estimates, prescribed references and actuation constraints.
The controller output requests are solved by a quadratic programming optimizer.

5.1.1 Predictive model

The ARTAEMIS model [Moreau et al., 2011] used in the present work describes the coupled
time evolution of ψ(x, t) = ψ(x, t) − ψb(t) where x is a normalized radial coordinate de�ned
below, ψ(x, t) is the poloidal magnetic �ux pro�le in Weber and ψb(t) its value at the plasma
boundary, of ι(x, t) = 1

q(x,t) , and of the slow (quasi-static) and fast components of βp(t) (βp,S
and βp,F , respectively), with βp(t) = βp,S(t) + βp,F (t). Details concerning this approximation
and the identi�cation of a two-time-scale plasma dynamic model from sampled experimental
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or simulated data are given in references [Moreau et al., 2011,Moreau et al., 2013,Moreau
et al., 2015] and in the previous chapters. The general structure of the model is postulated
from the projection onto radial basis functions (cubic splines) of a set of coupled plasma
response equations that only depend on x and t, and which stem from the linearized �ux-
averaged plasma transport equations. A lumped-parameter LTI control-oriented model is thus
obtained, in which all distributed variables and unknown operators reduce to �nite dimension
vectors and matrices. It combines a slow dynamic model, which couples ψ and βp as:

ẊS(t) = ASXS(t) +BSUS(t)

ψ(t) = CψXS(t)

βp,S = CSXS(t) +DSUS(t)

(5.1)

and a fast dynamic model,

ẊF (t) = AFXF (t) +BFUF (t)

βp,F (t) = CβXF (t)
(5.2)

where AS and AF are regular matrices with negative eigenvalues. The vector U , containing
the actuator inputs, is also splitted into a slow and a fast component (U = US + UF ). The
q-pro�le is controlled through its inverse as:

ι(x, t) =
1

q(x, t)
= −∂ψ(x, t)

∂x

(
∂Φ(x, t)

∂x

)−1

(5.3)

where Φ(x, t) is the toroidal magnetic �ux in Weber, Φmax = Φ(x = 1) is its value at the

plasma boundary, which is assumed constant, and x =
(

Φ
Φmax

) 1
2 . After linearization around

the reference plasma equilibrium and projection of ψ(x, t) and of ι(x, t) on the radial basis
functions, the vector ι(t) can therefore be related to the vector ψ(t) through a linear output
equation as:

ι(t) = Γιψ(t) = CιXS(t) (5.4)

In order to identify the various matrices in the ARTAEMIS model corresponding to the
selected operation scenario on EAST, a large number of nonlinear simulations were performed
using the METIS plasma simulator tuned for the reference discharge #62946, until a fair
agreement with experimental data and interpretative TRANSP simulation results was ob-
tained. This procedure was previously used for DIII-D and is described in [Moreau et al.,
2011]. The resulting datasets were then used in the ARTAEMIS prediction-error system
identi�cation algorithm. The reference scenario around which the linear response model was
identi�ed was a steady state, fully non-inductive single-null H-mode discharge, at a toroidal
magnetic �eld, BT = 2.5 T, central electron density, ne0 ≈ 3.5×1019 m−3, and plasma current,
Ip = 0.42 MA. The discharge had been obtained using LHCD (0.6 MW at 2.45 GHz and 2
MW at 4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of ECRH at 140 GHz. The
transition to H-mode occurred at 3.1 s with an H-factor, H98(y,2) ∼ 1.1. The steady state
poloidal β and internal inductance parameters were βp = 1.3 and li = 1.2, respectively, and
the q-pro�le exhibited a small negative shear in the plasma core, with a minimum q around
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1.5 and q0 ∼ 2 on axis. The plasma parameter pro�les are obtained from EFIT magnetic
equilibrium reconstructions, which are available in real-time using magnetic and kinetic mea-
surements, including interfero-polarimetry data from the POINT diagnostic [Huang et al.,
2017, Liu et al., 2016b]. Two important parameters characterizing the identi�ed models are
the largest (negative) eigenvalues of AS and AF , found as -1.19 and -24.8 s−1, which corre-
spond to time constants τS = 0.840 s and τF = 0.040 s for the resistive (slow model) and
thermal (fast model) di�usion timescales, respectively.

5.1.2 State and disturbance estimation

In order to make the controller robust against uncertainties, the identi�ed model is augmented
with an output disturbance model to estimate the mismatch between measured and predicted
outputs [Borrelli and Morari, 2007]. Hence, at each time step, an observer provides an estimate
of the system states and output disturbances, and the controller uses the augmented model to
predict the behavior of the system over a future prediction horizon, assuming the mismatch
is constant. In its continuous time version, the augmented model reads:

ẊS = ASXS(t) +BSUS(t)

ẊF = AFXF (t) +BFUF (t)

ḋι = 0

ḋβ = 0

ι = CιXS(t) + dι(t)

βp = CSXS(t) +DSUS(t) + CβXF (t) + dβ(t)

(5.5)

where dι(t) and dβ(t) are disturbance vectors representing the errors on ι(t) and βp(t), re-
spectively. US(t) is obtained through a simple lowpass �lter and UF (t) = U(t) − US(t). The
�lter cuto� frequency, ffilt = 1

τfilt
, is chosen during the model identi�cation and is such that

τF � τfilt � τS . The �lter states that allow US(t) and UF (t) to be computed in the observer
at time t, are transmitted to the controller with the estimated system states and disturbances
and with the real-time measurements of the controlled variables, ιm(t) and βp,m(t).

The state and disturbance estimator is a PI observer based on the augmented system
above, and is designed as follows:

˙̂
XS(t) = ASX̂S(t) +BSUS(t) +K11

(
−ιm(t) + CιX̂S + d̂ι(t)

)
+

K12

(
−βp,m(t) + CSX̂S(t) +DSUS(t) + CβX̂F (t) + d̂β(t)

)
˙̂
XF (t) = AF X̂F (t) +BFUF (t) +K21(−ιm(t) + CιX̂S(t) + d̂ι(t))+

K22

(
−βp,m(t) + CSX̂S(t) +DSUS(t) + CβX̂F (t) + d̂β(t)

)
[

˙̂
dι(t)
˙̂
dβ(t)

]
= K31

(
−ιm(t) + CιX̂S(t) + d̂ι(t)

)
+K32

(
−βp,m(t) + CSX̂S(t)+

DSUS(t) + CβX̂F (t) + d̂β(t)
)

(5.6)

where symbols with a hat represent the estimates of the system states and disturbances, and
the Ki,j matrices are chosen so that [K31,K32] is non-singular, and the estimator is stable
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and converges rapidly. The observer then tracks the measurements without steady-state error

(
˙̂
dι = 0,

˙̂
dβ = 0). In addition, by de�nition, the fast variables UF , XF and βp,F vanish in

steady-state, and the observer therefore satis�es (the ∞ symbol indicates steady-state):

X̂S,∞ = −A−1
S BSU∞ (5.7)

and

KSU∞ =

[
ιm,∞ − d̂ι,∞
βp,m,∞ − d̂β,∞

]
(5.8)

with

KS =

[
−CιA−1

S BS
−CSA−1

S BS +DS

]
(5.9)

The controller objective is to make ιm,∞ and βp,m,∞ equal to ιtarget and βp,target, respectively
(o�set-free control), or as close as possible if the dimension of the image space of KS , spun by
the actuators is smaller than the number of controlled variables. In order to avoid combinations
of actuators which would lead to unnecessary actuation cost, an SVD of KS is used and the
allowed actuator space will be limited to the �rst nsvd singular vectors of KS , i.e. U =

TsvdV , where nsvd (the dimension of V ) is a free parameter. At each time step, the MPC
algorithm then solves a quadratic programming (QP) problem using the predicted evolution
of the augmented system over a time horizon τH , which is chosen of the order of τS , or
smaller. A long time horizon may not be meaningful because the prediction is made with the
assumption that the estimated error at time t will be constant between t and t+ τH . The QP
problem to be solved at time t reads as follows:

For t ≤ t′ ≤ t+ τH , �nd V (t′) that minimizes:

IH(t) =

∫ t+τH

t

{∫ 1

0
dxµ(x)2

[
ι(x, t′)− ιtarget(x)

]2}
dt′ +

∫ t+τH

t

{
λ2
kin [βp(t)− βp,target]2

}
dt′

+

∫ t+τH

t

{
λ2
fastXF (t)2 +R

[
U(t′)− U∞

]2}
dt′

(5.10)

with U(t′) = TsvdV (t′), subject to the actuator constraints, LU(t′) ≤M , while XS(t′), XF (t′),
ι(t
′), βp(t′), dι(t′) and dβ(t′) evolve according to the augmented system, with the initial con-

ditions: XS(t′ = t) = X̂S(t), XF (t′ = t) = X̂F (t), dι(t′ = t) = d̂ι(t) and dβ(t′ = t) = d̂β(t).
In order to keep the computation time small, the elements of V (t′) are constrained to be a
piecewise constant functions with only nnodes independent unknowns equidistributed over the
horizon τH . The free parameters µ(x) and λkin are weights given to the various variables to
be controlled, λfast is a weight given to the fast model states that can moderate the kinetic
control response time, and R is a positive matrix that can moderate the controller actuation
e�ort. Once the QP problem has been solved, the �rst sample U(t′ = t) is used for the actu-
ator commands at time t. The minimized cost function penalizes, with appropriate weights,
the deviations of the predicted controlled outputs from their targets, as well as the actuator
power if R 6= 0. Another way to moderate the actuation e�ort and avoid overshoots and
oscillations is to reshape the targets waveforms in IH(t) so that they approach the setpoints
exponentially from their current values ιm(t) and βp,m(t), with a time constant, τtarget, of the
order of τS [Maciejowski, 2002].
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5.2 Simulation results

To illustrate and validate the new ARTAEMIS MPC control algorithm presented above, we
shall now describe the results of nonlinear closed-loop simulations in a high-βp non-inductive
scenario on EAST. The simulations were performed by inserting the METIS code at the output
of the controller in a MATLAB/Simulink model, and feeding the appropriate METIS outputs
back into the controller. Many plasma parameters or pro�les such as the plasma shape, Bt,
ne0, will be assumed independent of the actuators and were �xed external inputs to the code,
together with all the chosen METIS options for modeling the various physical phenomena.
The time evolution of these parameters and pro�les was based on the actual experimental
data from shot #62946 until t = 3.2 s when control was switched on. They were held constant
afterwards. Also, constant feedforward LHCD at 2.45 GHz (0.6 MW) and ECRH (0.3 MW)
were used in all simulations, as in the reference shot. For t ≥ 3.2 s, at each time step (with
a sampling time of 20 ms) the 4.6 GHz LHCD and 33 MHz ICRH actuator powers were
prescribed by the controller and the evolution of all the plasma parameters and pro�les that
depend on the injected power (e.g. Ip, Vsurf , li, βp,Ψ(x, t), q(x, t)), temperature pro�les, etc.)
was simulated. The controller �lter cuto� time constant and the number of nodes for the
predictive horizon were chosen as τfilt = 0.2s and nnodes = 2, respectively, and have been
unchanged for all the simulations presented below. The constraint matrices L and M were
de�ned to bound the 4.6 GHz LHCD power to 0 ≤ PLHCD ≤ 3 MW and the ICRH power to
0 ≤ PICRH ≤ 1.5 MW.

All the simulations were performed in the current control mode in which the surface loop
voltage is used to track a given Ip waveform, as in the reference discharge. When the plasma
state is relatively close to the required equilibrium, the controller can also be used in the
voltage control mode [Moreau et al., 2013,Moreau et al., 2015] where Vsurf can either be �xed
to zero for non-inductive operation, or be used as a pro�le control actuator in addition to
LHCD and ICRH. The plasma current is then allowed to vary within some bounds, but it
is regulated through the control of the poloidal �ux [Moreau et al., 2013] and of the safety
factor [Moreau et al., 2015] across the entire plasma cross-section (0 ≤ x ≤ 0.9).

5.2.1 Control of q0 with LHCD

The simplest test of the controller is to track a given target value of the safety factor at a
given normalized radius, using the 4.6 GHz LHCD actuator only. In this case, o�set-free
MPC is possible with the controller synthesis, as proved in [Borrelli and Morari, 2007] when
the number of controlled variables is equal to the number of actuators or smaller. At constant
plasma current, the most sensitive area to control the q(x) pro�le is the plasma core, and in
particular the magnetic axis. An example is displayed on Fig. 5.1, where the controller was
requested to track subsequently three di�erent target values of q0 = q(x = 0), namely q0,target

= 1.1, 3.5 and 1.7. The ICRH power was �xed (0.32 MW), and the controller parameters
were chosen as nsvd = 1 (since there is only one actuator), R = 0, τtarget = τH = τS = 0.84 s.
The weight function, µ(x), was replaced by the Dirac distribution, δ(0) = 1 and δ(x 6= 0) = 0,
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and λkin = λfast = 0 since there is no controlled kinetic variable. Fig. 5.1 also shows the
time evolution of the minimum q(x) across the plasma and of βp. The tracking of the di�erent
q0 targets in the time intervals 3.2 s≤ t ≤ 7.1 s, 7.2 s≤ t ≤ 13.1 s and 13.2 s≤ t ≤ 18 s,
respectively, is performed in about 2 to 3 s, i.e. a few resistive times, and without steady-state
o�set. The time evolution of the minimum q-value (top frame, blue trace) indicates that the
second q0 target yields a q-pro�le with a strong negative shear in the plasma core (minimum
value qmin = 1.7). The bottom frame shows the evolution of the 4.6 GHz LHCD power
requested by the controller and of the constant feedforward ICRH, ECRH and 2.45 GHz LH
powers. Distributed control of the q-pro�le can also be performed using piecewise linear weight

Figure 5.1: q0 control with LHCD only. Top: q0(t) (red solid), q0,target(t) (red dashed)
and qmin(t) (blue) vs time. Middle: βp vs time (not controlled). Bottom: 4.6 GHz LHCD
actuator power (red) and feedforward powers: ICRH (blue) and ECRH plus 2.45 GHz LHCD
(magenta).

functions, µ(x), de�ned and equal to 0 or 1 at the radial knots of the basis functions, xk = 0,

0.1, 0.2, ..., 1. In this case, genuine o�set-free control cannot be sought but the controller is
designed to achieve a least-squares minimization of the radially integrated error signals, as
can be seen in the de�nition of the cost function IH(t). When Ip is �xed, there is no need
to control the safety factor in the outer edge of the plasma because it is directly related to
Ip. However, it is important to select target pro�les that are accessible (or nearly accessible)
with the available actuators so that the least-squares approach is meaningful. In practice
such pro�les can be obtained o�ine from open loop simulations using a plasma simulator such
as METIS, or using more sophisticated models. For comparison with the previous case, an
example is shown in Fig. 5.2 with three di�erent q-pro�le targets having the same values as
in Fig. 5.1 but with µ(xk) = 1 for 0 ≤ xk ≤ 0.5. The target q-pro�les were chosen from
METIS simulations with powers di�erent from the reference discharge, and are represented
by diamond symbols. The other controller parameters, constraints and feedforward powers
were the same as for the previous example. The q-pro�le at the start of control (t = 3.2 s) is
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shown by the black curve on Fig. 5.2. The �rst target pro�le was a monotonic pro�le with q0

= qmin = 1.1 (represented by magenta diamonds), and was tracked for 3.2 s≤ t ≤ 7.1 s. The
pro�le represented by the magenta line is the achieved q-pro�le at t = 7.1 s, in steady state.
It is achieved with no o�set, showing that the chosen target is consistent with the family
of plasma equilibria that can be obtained in this scenario with the available feedback and
feedforward actuators. At this time, the target pro�le is suddenly changed into the negative
shear safety factor pro�le with q0 = 3.5 and qmin = 1.7 (red diamonds) until t = 13.1 s when
the target pro�le is changed again to the weak shear pro�le with q0 = 1.7 and qmin = 1.6 (blue
diamonds). The controller behaves very similarly as in Fig. 5.1, but with a small steady state
o�set on axis, which is compensated by a better tracking of the target pro�le up to x = 0.5

(including the region of minimum q). The solid red and blue lines are the pro�les achieved at
t = 13.1 s and t = 18 s, respectively. For comparison, the dashed lines on Fig. 5.2 represent
the pro�les achieved in the previous case, i.e. with q0 control only, at the same times.

Figure 5.2: q(x) control with µ(x) = 1 for 0 ≤ x ≤ 0.5 and with LHCD only. Achieved q(x) at
t = 3.2 s (black), 7.1 s (magenta), 13.1 s (red solid), and 18 s (blue solid). Target pro�les are
constant during these intervals (diamond symbols). Dashed lines are pro�les achieved with q0

control only (see Fig. 5.1).

5.2.2 Simultaneous control of q(x) and βp with LHCD and ICRH

The two-time-scale ARTAEMIS models describe the fast kinetic dynamics of the plasma as
a singular perturbation of a quasi-static equilibrium, which is slowly evolving due to the
coupling between the kinetic and magnetic plasma parameters. Local dependences of the
plasma transport coe�cients on the safety factor pro�le or on the magnetic shear are well-
known examples of the various causes that lead to such coupled dynamics. When attempting
to control simultaneously the safety factor pro�le and some other kinetic plasma parameters
(e.g. βp or βN ), it may be unnecessary or even sometimes undesirable to request changes
of such parameters on a timescale that is too short compared to the resistive evolution of
the plasma equilibrium. Restricting the model to the zero-order equations in the singular
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perturbation analysis, i.e. to the slow model, will result in a slower kinetic control, but it may
preserve a quasi-static equilibrium relationship between various plasma parameters during
the transient evolution from an initial plasma state to the desired high performance steady
state. Among other advantages, neglecting the fast model reduces the dimension of the QP
problem to be solved and therefore alleviates the real-time computations at each time step.
This would be mostly bene�cial for the control of kinetic pro�les (e.g. temperature, rotation)
rather than of a scalar like βp. An example of the simultaneous control of q(x) and βp on the

Figure 5.3: Distributed q(x) control and slow βp control with LHCD and ICRH. Top: q0(t)

(red solid, the dotted red line is from discrete q0 and βp control for comparison), q0,target(t)

(red dashed) and qmin(t) (blue). Middle: βp(t) (red solid) and βp,target(t) (blue). Bottom:
LHCD (red) and ICRH (blue) actuator powers. βp control starts at 4.2 s while q(x) control
starts at 3.2 s. The dash-dot lines are from fast βp control.

slow (resistive) timescale, with LHCD and ICRH, is depicted on Fig. 5.3 and Fig. 5.4. Four
di�erent βp targets were tracked, βp,target = 1.2 from t = 4.2 s to t = 5.1 s, and βp,target = 2,
1.5 and 2.5 for 5.2 s ≤ t ≤ 7.1 s, 7.2 s ≤ t ≤ 9.1 s and t ≥ 9.2 s, respectively. The q-pro�le is
controlled from t = 3.2 s and between x = 0 and x = 0.5 (µ(x) = 1 for 0 ≤ x ≤ 0.5), and the
target q-pro�le is constant while βp changes. As before, R = 0 and λfast = 0 (no fast model),
but here τtarget = τH = τS/2 = 0.42 s and, for t ≥ 4.2 s, nsvd = 2 and λkin = 1 (normalized
variables are used in the controller). Fig. 5.3 shows the time evolution of q0, qmin, the target
and achieved βp, and the actuator powers. Fig. 5.4 shows the achieved q-pro�les at the start
of the control phase and at the end of each constant βp,target phases, and the target q-pro�le.
An additional pro�le is shown at t = 9.6 s, which corresponds to the largest transient q0 o�set
during the transition to the βp = 2.5 plasma equilibrium (Fig. 5.3). As mentioned before, the
steady state o�sets generally remain with distributed q-pro�le control due to the insu�cient
number of actuators. The q-pro�le o�set is mostly apparent near the magnetic axis where
the safety factor is highly sensitive to any perturbation. The steady-state q0 o�set disappears
when only q0 and βp are controlled, as shown by the dotted red trace on Fig. 5.3 (top frame)



162 Chapter 5. Model Predictive Control

Figure 5.4: Combined distributed q(x) control and slow βp control with LHCD and ICRH.
Achieved q(x) at t =3.2 s (black), 5.1 s (magenta), 7.1 s (blue), 9.1 s (cyan), 9.6 s (green)
and 12.5 s (red). These times are shown on Fig. 5.3 by vertical lines. The target q-pro�le is
constant (diamond symbols) and µ(x) = 1 for 0 ≤ x ≤ 0.5. βp control starts at 4.2 s while
q(x) control starts at 3.2 s.

at t = 7.1 s, 9.1 s and 12.5 s.

Figure 5.5: Combined q0 and fast βp control from t = 3.2 s with LHCD and ICRH. Top: q0(t)

(red solid, the dotted red line is from distributed q(x) and fast βp control for comparison),
q0,target (red dashed) and qmin(t) (blue). Middle: βp(t) (red solid) and βp,target(t) (blue).
Bottom: LHCD (red) and ICRH (blue) powers. The dash-dot lines are from slow βp control.
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Figure 5.6: Combined q0 and fast βp control with LHCD and ICRH. Achieved pro�les at
t =3.2 s (black), 5 s (green), 9 s (blue), 13 s (magenta), and 18s (red). These times are shown
on Fig. 5.5 by vertical lines. The dotted lines are from distributed q(x) and fast βp control
for comparison. The q(x) targets (diamond symbols) are held constant during these time
intervals. βp and q(x) control starts at 3.2 s.

5.2.3 Faster control of βp

To illustrate the combination of MPC with singularly perturbed dynamic models with two
time scales, we describe now the simultaneous control of q(x) and βp including the �rst-order
perturbation of the identi�ed model, i.e. the fast model and states, in the control algorithm.
The e�ect can be seen on Fig. 5.3 where we have superimposed the result of the fast βp control
using λfast = 1.5 (dash-dot lines). Another example shown on Fig. 5.5 and Fig. 5.6 combines
a βp ramp request for 3.2 s ≤ t ≤ 5 s up to βp = 2.5, either with fast control (λfast = 3,
solid lines) or without (dashed lines), followed by the tracking of three di�erent q-pro�les
at constant βp, either with distributed q(x) control (dotted lines) or with discrete q0 control
(solid lines). Here τH = τS = 0.84 s, τtarget = 2τS = 1.68 s, nsvd = 2 and λkin = 1. The �rst
q-pro�le target has q0 = 2.1 and qmin = 1.6, the second one has q0 = qmin = 1.4, and the last
one has q0 = 3.5 and qmin = 1.7 with a large negative magnetic shear over a broad region of
the plasma (x ≤ 0.32). Note that increasing τtarget to 2τs results in a smooth approach to the
various q0 targets (Fig. 5.5).

Finally, in Fig. 5.7 and Fig. 5.8, combinations of four di�erent values of βp,target = 1.5,
2, 2.5 and 3, and three di�erent q-pro�les are tracked successively using the same distributed
q(x) control as before, with τH = τS = 0.84 s, τtarget = 2τS = 1.68 s, nsvd = 2 and λkin = 1.
Again, one can compare the results with fast control (λfast = 3, solid lines) and without
(dashed lines). The q-pro�le targets are all reached in about 2.5 s (≈ 3 resistive times) and
the actuators adjust to reach the various βp,target within about 0.2 s (≈ 5τF ) with fast control
and 0.4-0.5 s (≥ 10τF or 0.5τS ) with slow control, while restoring the desired q-pro�le shape
after each large βp perturbation.
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Figure 5.7: Distributed q(x) and fast βp control with LHCD and ICRH. Top: q0(t) (red solid),
q0,target(t) (red dashed) and qmin(t) (blue). Middle: βp(t) (red solid) and βp,target(t) (blue).
Bottom: LHCD (red) and ICRH (blue) actuator powers. The dashed-dot lines are from slow
βp control.

Figure 5.8: Distributed q(x) and fast βp control with LHCD and ICRH. Achieved q(x) at
t = 3.2 s (black), 5 s (yellow), 9 s (green), 13 s (cyan) and 17 s (blue), 21 s (magenta),
25 s (red). βp and q-pro�le targets (diamond symbols) are held constant during these time
intervals. µ(x) = 1 for 0 ≤ x ≤ 0.5.

5.3 EAST experiments

The e�ectiveness of the o�set-free MPC control scheme in tracking of q-pro�le and βp was
demonstrated through extensive nonlinear METIS simulations in Section 2. In this section, we
report on the �rst experiments using this new kinetic control algorithm in its simplest version
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to track time-dependent targets for the central safety factor and for the poloidal pressure
on the EAST tokamak. Here, the ARTAEMIS two-time-scale identi�cation procedure was
applied to EAST experimental data instead of simulated data in a typical H-mode scenario
with ECRH and LHCD. When these identi�cation experiments were performed, the only
actuator available with enough real-time dynamics was the LHCD system at 4.6 GHz, with a
coupled power between 1 MW and 2.5 MW. Additional LHCD power (0.5 MW) was injected
at 2.45 GHz during the plasma current ramp-up, and 0.9 MW of ECRH power was injected
during the 350 kA current �attop, from 2 gyrotrons at 140 GHz. The system identi�cation
data was obtained from a few discharges, with chirping frequency and PRBS modulations of
the LHCD power, respectively (See Chapter 2). A linear state-space model with 9 eigenmodes
was found to reproduce satisfactorily the coupled evolution of the poloidal-�ux pro�le, ψ(x, t),
of the inverse of the safety factor pro�le, ι(x, t) = 1

q(x,t) and of the slow and fast components
(βp,slow and βp,fast, respectively) of βp, with βp(t) = βp,slow(t) + βp,fast(t).

In the �rst discharge, the target q0 was set at 2.4 from t = 2.7 s to t = 4.5 s and was raised
to q0 = 2.8 at t = 4.52 s (the control cycle time was 20 ms). The evolution of q0 and the LHCD
command are shown on Fig. 5.9(a) and Fig. 5.9(b), respectively. The q0 targets are reached
in about 1 s. To cope with the nonlinear response of the LHCD actuator to the command,
a PI actuator control module was added in cascade with the MPC module. The e�ectively
coupled LHCD power is also shown on Fig. 5.9(b) (blue trace). In the second discharge, a
piecewise linear βp target waveform with 1.6 < βp < 1.9 was tracked. The evolution of βp was
perfectly under control, as shown on Fig. 10(a). The LHCD command and coupled power are
shown on Fig. 5.10(b).

(a) (b)

Figure 5.9: (a). Safety factor on the magnetic axis from real-time EFIT equilibrium recon-
struction (blue) and target waveform (red). (b). Coupled LHCD power (blue) and MPC
command (red) after a PI actuator control module. Control starts at 2.7 s.
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(a) (b)

Figure 5.10: (a). Poloidal pressure parameter, βp, from real-time EFIT equilibrium recon-
struction (blue) and target waveform (red). (b). Coupled LHCD power (blue) and MPC
command (red) after a PI actuator control module. Control starts at t = 2.7 s.

5.4 Summary of Chapter 5

For complex systems with multiple timescales such as tokamak plasmas, MPC can be combined
with singular perturbation theory to synthesize fast controllers based on extremely simple,
data-driven, two-time-scale models. This has been demonstrated, for the �rst time, through
extensive nonlinear closed-loop simulations and tokamak plasma experiments for the high
βp operation scenario in the EAST tokamak. Simultaneous control of q-pro�le and βp was
achieved using LHCD and ICRH actuators in closed-loop METIS simulations. The o�set-free
MPC algorithm used here includes a real-time estimation of the model errors and results in a
much faster and robust control than was obtained previously using linear-quadratic optimal
control, with similar models [Moreau et al., 2015]. In order to further evaluate the performance
of this control strategy, dedicated experiments were initiated on the EAST tokamak. The
�rst results obtained so far have shown the e�ectiveness in tracking q0 and βp using the
LHCD system on EAST. In the future, the technique can be extended for the simultaneous
control of the q-pro�le and other kinetic variables or pro�les (e.g. ion or electron temperature,
plasma rotation, or fusion reaction rate in burning plasmas). Furthermore, incorporating
feedforward control, characterizing model uncertainties, and possibly using real-time adaptive
model identi�cation may result in further performance improvements.
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Conclusion and Perspectives

In the thesis, the data-driven modelling and active feedback control of q-pro�le and kinetic
parameters in advanced tokamak scenarios are investigated. The main objectives are to ap-
proximate nonlinear plasma dynamics using a generic system identi�cation approach, and
develop robust and adaptive control schemes to enable enhanced control performance in mag-
netic and kinetic control. The plasma parameters used for feedback control comprise q-pro�le,
the poloidal beta βp, the internal inductance li, the average toroidal rotation angular speed
Ωφ, the electron temperature on axis Te,0, the α particle power Pα, the coupled LHCD power
PLHCD, the coupled ICRH power PICRH and the coupled NBI power PNBI. The control ac-
tuators include the ICRH system, the LHCD system and the NBI system. Two tokamak
devices, namely the EAST and ITER tokamaks, have been accounted for in this thesis. Both
nonlinear METIS simulations and dedicated experiments have been performed on the EAST
tokamak to evaluate and compare the proposed identi�cation and control algorithms, whilst
these algorithms are numerically tested on ITER through METIS simulations.

The �rst part of the thesis presents the identi�cation of a PNLSS plasma dynamic model
using sampled simulation/experimental data. Two alternate linear identi�cation methods
handling data in the time- and frequency-domains are proposed. The �rst one uses the TD
subspace and PEM identi�cation methods to extract and re�ne an LSS model from data,
based on which a PNLSS dynamic model is obtained via the LM optimization. The second
method manipulates the observed data in the frequency-domain: �rst, the collected data is
transformed into the frequency-domain and then an LSS model is identi�ed using the FD
subspace identi�cation and PEM methods, and the PNLSS plasma model is subsequently de-
rived via the LM optimization by initializing its linear coe�cient matrices with the obtained
LSS model. The validity and e�ectiveness of the nonlinear identi�cation scheme has been
con�rmed, both numerically and experimentally, on the EAST and ITER tokamaks. En-
hanced predictive performance regarding the PNLSS model over its LSS counterpart has been
demonstrated.

The second part of the thesis concerns the robust control of q-pro�le and kinetic param-
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eters in advanced tokamak scenarios on the EAST tokamak. First, a decentralized robust
design is proposed based on a two-time-scale data-driven model, which takes full advantage
of the powers of LMIs and timescale separation. The novelty of this control scheme contains
the use of plasma timescale separation and a decoupling technique to acquire multi-functional
capabilities, and of the internal model principle to absorb moderate time-delays and the actu-
ation dynamics e�ects. Three general TD performance indexes are proposed to characterize
q-pro�le control performance quantitatively for analysis and comparison. A procedure is given
to e�ciently design magnetic and kinetic references, enabling the accessibility of an H-mode
steady-state scenario. Bene�cial control implementation techniques are provided as well. Sec-
ond, we compare three common robust control schemes, namely, H∞ robust control, the LQI
control and the IMC control. The performance of each control scheme is evaluated, discussed
and compared both numerically and experimentally on the EAST tokamak. Extensive simu-
lation and initial experimental results imply that, for the SISO control, it is advisable to start
with the SIMC PI technique because of its simplicity, easy implementation and reasonable
performance while, for the MIMO control, H∞ robust control is preferred due to its simple
tuning rule and robustness against model uncertainties. In addition, a cascade loop dedicated
to the tracking of the requested actuations using the SIMC PI rule has been added to further
enhance the kinetic control performance.

The third part of the thesis investigates the adaptive control of plasma magnetic and ki-
netic parameters in advanced tokamak scenarios. First, we have applied the NESC for the
adaptive online optimization of plasma kinetic parameters, though this technique can gener-
ally be extended to other nonlinear plasma control problems, for example, the sawtooth period
control, the NTM suppression, the error �eld correction. METIS simulation results on EAST
and ITER indicate that comparable online optimization performance can be obtained by the
standard ESC and NESC, but evidently more parameters, e.g. the Hessian and its inverse,
can be estimated online by NESC. Second, we have, for the �rst time, introduced the MRAC
algorithms for plasma kinetic control in advanced tokamak scenarios. More precisely, we �rst
investigate a SISO case, where dMRAC and iMRAC schemes are explored in parallel. In view
of dMRAC, we use a given LTF model to design an MRC controller, whose coe�cients are
updated online based on a set of adaptive laws driven by the NEE. The iMRAC algorithm
updates the controller coe�cients online by matching the model parameters, adaptively esti-
mated using the real-time input-output measurements, with a given reference model. METIS
simulation results on EAST suggest that both dMRAC and iMRAC schemes can achieve good
reference tracking performance. In addition, it is found that control initialization and adaptive
gains are important factors to in�uence the control performance in both schemes. Afterwards,
we extend the dMRAC scheme to a MIMO version by adopting the LDS decomposition, whose
e�ectiveness has been con�rmed by closed-loop METIS simulations.

The fourth part of the thesis demonstrates the o�set-free MPC control of q-pro�le and βp
in advanced tokamak scenarios on EAST. Di�erent from the standard MPC, the o�set-free
MPC uses a PI Luenberger observer to estimate the states and disturbances in real-time,
which are then fed to a quadratic optimizer for feedback computation. Assuming a constant
output disturbance, the observer uses a linear two-time-scale model, identi�ed from sampled
simulations/experiments, to estimate model mismatches in real-time. The same model is
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incorporated in the MPC optimizer, taking into account the actuation constraints. The e�ec-
tiveness of this control scheme has been numerically con�rmed in the simulatenous control of
q-pro�le and βp on EAST. Recent control experiments performed on the EAST tokamak have
further demonstrated the validity of this control scheme in βp and q0 tracking.

Now, in the perspective of future research, there are a number of relevant topics that can
be investigated:

• The proposed PNLSS identi�cation scheme may be e�ective for the approximation of
nonlinear plasma dynamics in the scrape-o�-layer (SOL), the pedestal and plasma-wall inter-
action of advanced tokamak plasmas.

• Develop nonlinear optimal control algorithms based on the PNLSS model for kinetic
control in tokamak plasmas to examine whether the control performance will be enhanced or
not.

• Extend the LTI data-driven model to a linear-parameter-varying (LPV) version for en-
hanced model predictive performance.

• Extrapolate the proposed robust and adaptive control algorithms to other tokamak
plasma control problems, for example, plasma position and shape control, vertical instability
control, divertor detachment and heat �ux control, plasma density and temperature pro�le
control.

• The NESC algorithm may prove e�ective in other nonlinear plasma control problems
such as sawtooth period control, NTM mitigation and suppression, error �eld correction.

• Experimental tests of the NESC and MRAC algorithms on the EAST tokamak are
anticipated.
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Résumé� Cette thèse étudie la modélisation basée sur les données et le contrôle du pro�l
de courant du plasma et des paramètres cinétiques dans des scénarios de tokamak avancés.
Une approche de modélisation nonlinéaire basée sur les données, à savoir l'identi�cation du
modèle Polynomial NonLinear State-Space (PNLSS), est proposée dans la thèse, pour la
première fois, pour incorporer la dynamique nonlinéaire dans les plasmas de tokamak avancés,
par exemple, les interactions d'ondes de plasma et les e�ets bootstrap. En utilisant des
modèles linéaires basés sur les données, un certain nombre de schémas de contrôle avancés
sont développés, par exemple, le contrôle robuste H∞, le contrôle linéaire quadratique
intégral (LQI), le contrôle interne du modèle (IMC) et le contrôle prédictif du modèle sans
décalage (MPC). Des simulations METIS nonlinéaires et des expériences sur plasma ont été
réalisées sur le tokamak EAST pour valider l'e�cacité des schémas de contrôle proposés.
Pour élargir la région de contrôle attrayante et permettre un espace opératoire plus large, des
approches de contrôle adaptatif sont explorées, y compris le contrôle sans modèle de recherche
d'extrémum (ESC) et le contrôle adaptatif de référence de modèle (MRAC). Ces nouveaux
algorithmes de contrôle ont été implémentés et évalués numériquement via des simulations
METIS nonlinéaires sur les tokamaks EAST et ITER.
Mots clés: Tokamak, Contrôle des Plasmas, Modélisation du Plasma Tokamak, Identi�ca-
tion du Système, Contrôle Robuste, Contrôle Adaptatif, Contrôle Prédictif de Modèle

Abstract� This thesis investigates data-driven modelling and control of plasma current
pro�le and kinetic parameters in advanced tokamak scenarios. A nonlinear data-driven
modelling approach, namely the Polynomial NonLinear State-Space (PNLSS) model identi-
�cation, is proposed in the thesis, for the �rst time, to incorporate nonlinear dynamics in
advanced tokamak plasmas, for instance, plasma-wave interactions and bootstrap e�ects.
Using linear data-driven models, a number of advanced control schemes are developed, for
example, H∞ robust control, linear-quadratic-integral (LQI) control, the internal model
control (IMC) and the o�set-free model predictive control (MPC). Both nonlinear METIS
simulations and plasma experiments have been performed on the EAST tokamak to validate
the e�ectiveness of the proposed control schemes. To broaden the attractive control region
and enable broader operating space, adaptive control approaches are explored, including
model-free extremum-seeking control (ESC) and model reference adaptive control (MRAC).
These new control algorithms have been implemented and evaluated numerically via nonlinear
METIS simulations on the EAST and ITER tokamaks.
Keywords: Tokamak, Plasma Control, Tokamak Plasma Modelling, System Identi�cation,
Robust Control, Adaptive Control, Model Predictive Control
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