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1.1 Introduction

Recent years have seen a huge increase in our needs for transmitting more data with

less latency. Wireless communications and internet services have in�ltrated the

society and changed our life exceeding all expectations. In addition, the demand of

reliable and e�cient array signal processing is still growing rapidly, especially with

new contexts of Massive M2M (Machine-to-Machine) and Internet of things (IoT).

By 2022, according to Cisco's annual Visual Networking Index, M2M connections

that support IoT applications will account for more than half of the world's 28.5

billion connected devices [1]. Fig. 1.1 shows the forecast of the number of connected

devices until 2022 by category based on 2017 numbers.

Despite electronic hardware and computer system advances, which allows most

of theoretical work on signal array processing and wireless communication systems to

be deployed, the requirement of more e�ective processing and transmitting systems

keeps draining resources such as the spectral e�ciency, the density of the components

of integrated circuits and their power consumption. Hence, there is a crucial need
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Figure 1.1: Global devices and connections growth from Cisco VNI Global IP Tra�c

Forecast, 2017-2022

to develop new accurate array signal processing techniques in response to these

challenges.

From the signal processing point of view, future algorithmic solutions must have

low computational complexity and adaptive schemes where the outputs can be up-

dated based on previous outputs without repeating all the processing. This is im-

portant to reduce the power consumption of the calculation hardware and to be able

to keep the processing accurate even in case of non-stationary environments.

In wireless communications, the most common problem faced by designers of

wireless communication systems is how to estimate Channel State Information

(CSI). Solutions based on pilot sequences are generally used, despite lost in band-

width e�ciency. Blind solutions are suitable because of their capacity to give the

transmitter more �exibility where it can reduce or totally get rid of the pilot se-

quences to have a better bandwidth e�ciently. Blind techniques are also recom-

mended in case of military communications to avoid sending pilot sequences. They

enable us also to treat problems where we cannot in�uence the input such as the

extracting of the foetal electrocardiogram (fECG).

In order those signal processing methods to be more accurate, all available infor-

mation should be used. In various applications, sparsity a priori has been success-

fully used to enhance algorithms performance. Sparse representation has attracted

much attention from researchers in �elds of signal processing, image processing,

computer vision and pattern recognition [2�6]. Despite the amount of work dedi-

cated to sparsity-based methods, the potential of the sparsity a priori is remaining

not fully exploitable and some problems are still widely open [7].

Motivated by the above ideas, this thesis combines the recent advances in sparse

representations/estimation and array signal processing methods, especially those
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based on subspace techniques to meet the challenge of developing more accurate

blind low-cost solutions. We have investigated three major topics: sparse principal

subspace tracking, blind sparse source separation and blind sparse channel iden-

ti�cation. Each time, we have targeted solutions that are adaptive and have low

computational cost.

In this chapter, we �rst present a brief introduction and a chronology of de-

velopment of the main subjects investigated in this thesis, in particular, subspace

methods and sparsity based methods. Then, a small scope of the thesis followed by

the organization of the manuscript is presented.

1.2 Multidimensional array signal processing and sub-

space methods

Beside the fact that array antenna design and array processing have experienced �ve

decades of intensive research, they are still an active and open topic. As a matter of

fact, the recent technological advances have made the realization of array systems

(ground/air/space borne) and real-time processing possible [8]. Riding on the wave

of electronic hardware and computer system advances, the scienti�c interest in the

realization of complex systems such as antenna array and real-time signal processing

has grown enormously in the recent years. So far, antenna array design as well as

array signal processing has obtained fruitful achievements in theory, algorithm and

hardware. However, the need for faster and more accurate signal processing routines

as well as the need for more e�cient and miniaturized antennas and sensors still

continues [8].

Most of the classical statistical estimation methods in array signal processing

can be divided into maximum likelihood (ML), least-squares and moment methods.

Maximum likelihood is based on statistical setting, least-squares is derived from ge-

ometrical considerations, whereas the method of moments exploits properties of the

moments of the observed data in an ad-hoc fashion. The subspace-based approach

to parameter estimation is more close to the moment method class compared to the

other classes. However, in the literature, subspace-based methods usually get their

own class. Their motivation is similar to the moment-based approach, though: a

geometrical relation involving the exact moments of the data is set up. Most com-

monly, the covariance matrix of the data is used, although to suppress the e�ects of

noise, one can also consider higher-order moments. The desired signal parameters

are then extracted by solving the geometrical relation in some approximate sense,

and using sample moments instead of the exact ones. The distinguishing feature

of subspace-based methods is that the underlying geometrical relation involves a
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low-rank 'moment matrix' of the data. However, when the moments are estimated

using a �nite number of noisy samples, the resulting matrix has full rank. Thus,

the low-rank structure is restored using the eigenvalue decomposition (EVD) of the

sample covariance matrix or the truncated singular value decomposition (SVD) of

the data matrix before any further processing. This non-parametric data reduction

is the �rst step of all subspace-based methods. The motivation is that by applying

a preliminary noise cleaning step using rank truncation, it becomes less critical how

the desired signal parameters are extracted later [9].

The introduction of MUSIC (MUltiple Slgnal Characterization algorithm) in [10]

marked the beginning of the 'subspace era' in signal processing. It was introduced in

order to solve the problem of direction of arrival DOA estimation. The goal of DOA

estimation is to use the data received at the d-array antenna to estimate the DOA's

θ1, ..., θp of the p emitting sources as showed in Fig. 1.2 for the case of a linear array.

A huge number of extensions and related algorithms have been proposed, and their

Figure 1.2: The DOA estimation problem for a linear array antenna

advantages in terms of performance (high resolution for DOA estimation) versus

complexity, as compared to traditional methods, have been documented both ana-

lytically and experimentally [11,12]. The ideas have been brought into diverse areas

as smart antennas for wireless communication, sensor arrays, multiuser detection,

time delay estimation, image segmentation, speech enhancement, learning systems,

magnetic resonance spectroscopy and radar systems [11,12].

Subspace methods remain interesting research area nowadays, especially with the

explosion of problem dimension which makes the low rank dimensionality reduction

feature of subspace methods more appreciated. For example, we can mention recent

work about: channel estimation of Large Millimeter-Wave MIMO Systems [13], wall

clutter mitigation in Through-the-Wall Radar Imaging (TWRI) [14] and Support
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Vector Machines (SVMs) for hyperspectral image classi�cation [15].

Most of subspace methods are based on EVD or SVD decompositions. Unfortu-

nately, such decompositions require a lot of calculation especially when the problem

has high dimension. In fact, if d is the dimension of the observed data vector (num-

ber of sensors), then, the EVD/SVD decomposition complexity1 is of order O(d3)

�ops. In case of time-varying system, we deal frequently with non-stationary signals

and we have to update the estimation of the subspace every time we receive new

observations. Hence, using repeated EVD or SVD based subspace methods is very

time consuming task. This is unsuitable because the processing time can exceed the

time where the system is considered unchanged (coherence time for communications

systems where the channel impulse response is essentially invariant). Many subspace

tracking algorithms were proposed to replace the EVD/SVD decomposition in the

adaptive case by updating the previous subspace estimation at every received data

sample without a huge computational cost.

The subspace tracking algorithms can be classi�ed according to the targeted

subspace to principal (signal or dominant) subspace trackers, minor (noise) sub-

space trackers and subspace trackers which can be used to estimate both minor and

principal subspaces. For example, we can mention the projection approximation

subspace tracking (PAST) algorithm [16], the orthogonal PAST (OPAST) [17], the

low rank adaptive �lter (LORAF2) [18], the natural power method (NP3) [19], the

approximated power iterations (API) algorithm [20] and its fast version (FAPI) [21]

as principal subspace trackers. Whereas the square-root inverse iteration algo-

rithm (QRI) [22], the fast generalized Rayleigh's quotient adaptive noise subspace

(FRANS) [23] and a Householder transformation-based implementation (HFRANS) [24]

algorithms belong to minor subspace trackers. Other algorithms such as OJA [25],

normalized orthogonal OJA (NOOJA) [26], fast data projection method (FDPM) [27]

and yet another subspace tracker (YAST) [28] can handle both principal and minor

subspace tracking.

The subspace tracking algorithms can also be classi�ed according to their com-

plexities to three classes. If p denotes the rank of the principal or minor subspace

that we would like to estimate, since usually p << d, then it is classic to refer

to the three classes by their computation complexity i.e. algorithms which have

a computational complexity of order O(d2) or O(pd2) per update such as Jacobi

SVD method [29], the transposed QR-iteration [30] and [31]. Algorithms which

have a computational complexity of order O(dp2) such as Karasalo's algorithm [32],

the operator restriction algorithm (OPERA) [33] and the natural power method

1Operations counts are expressed in terms of multiply-accumulate (MAC) operations. Only the

dominant cost is presented
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NP2 [19]. Finally the less time-consuming algorithms which have a linear compu-

tational complexity of order O(dp) such as PAST [16], OPAST [17], NP3 [19] and

FAPI [21].

Estimating the subspace adaptively requires the use of a certain processing win-

dow such as the exponential window or the truncated sliding window. The type of

the processing window can also be another criterion to classify the subspace track-

ing algorithms. The exponential window has a forgetting factor which is used to

control the impact of the previous estimation on the new one. Algorithms which

use the exponential window have smaller computational complexity and memory

needs compared to algorithms which use a truncated sliding window. However, the

truncated sliding window is more appreciated for fast tracking of signal parameter

changes. It is worth mentioning that some algorithms such as FAPI [21] are derived

for both the exponential window or the truncated sliding window.

1.3 Sparsity in signal processing

In its most general de�nition, the principle of sparsity, or parsimony, consists of

representing some phenomenon with as few variables as possible. Numerous tools

have been developed by statisticians to build models of physical phenomena with

good predictive power. Models are usually learned from observed data, and their

generalization performance is evaluated on test data. Among a collection of plausible

models, the simplest one is often preferred, and the number of underlying parameters

is used as a criterion to perform model selection as is the case with the Akaike

information criterion (AIC).

A discrete signal can be considered as sparse if only a small number its elements

are non-zero, compared to its dimension. Common situation in the case of real-

world signals is that the number of signi�cant coe�cients is small as compared to

the number of other components. These coe�cients could be neglected or set to

zero for the purpose of compression, denoising or to get a simpler representation

which is easier to manipulate. Otherwise, most of signals can be decomposed in a

certain representation domain in order to be sparse. For example, speech signals are

known to be sparse in the temporal domain. However, speech signals transformed

with the short-time Fourier transform (STFT), have a sparser representation as it

is shown in Fig. 1.3 where we present a speech signal and its STFT spectrogram.

Same remarks can be seen for natural images after the wavelet transform as we show

in Fig. 1.4. This sparsity resulted in a simple and an e�ective procedure for image

denoising where we use thresholding methods in order to set to zero the negligible

wavelet coe�cients.
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Figure 1.3: Speech signal and its STFT spectrogram

The obvious applications of the sparsity are modelling and compression. Nev-

ertheless, sparsity is often used to solve ill-conditioned (underdetermined) inverse

problems based on the regularization technique. The use of the sparsity principle

has also lead to state-of-the-art algorithms in denoising, inpainting, deconvolution,

sampling, etc. In this section, we will give some insight about the sparsity bene�ts

form the point of view of: regularization, sparse representation, sparse principal

component analysis and sparse channel estimation.

1.3.1 Sparsity and regularization

In signal and image processing, one can often encounter problems formulated as such

underdetermined linear systems of equations where one has fewer equations than

unknowns. Clearly, there are in�nitely many possible solutions that may 'explain'

the observations, among which there are some that may look better than others.

In order to narrow this choice to one well-de�ned solution, additional criteria are

needed. A familiar way to do this is regularization, where a penalty function that
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Original Transformed

Figure 1.4: Example of the "hibiscus" image and its 6-level wavelet decomposition

using 2-D Daubechies-4.

evaluates the desirability of a would-be solution is introduced, with smaller values

being preferred (minimization of the penalty function). Classical penalty function

would be the `2-norm of the solution vector which leads to the so called minimum-

norm solution [34]. This function was widely used due to its convexity and simplicity

leading to closed-form and unique solution. In many instances, it is known that the

solution is sparse or compressible. For example, in a biological experiment, one

could measure changes of expression in 30,000 genes and expect at most a couple

hundred genes with a di�erent expression level [35]. Attracted by the convexity of `p-

norms for p ≥ 1, such norms were also used as regularization penalty functions [34].

The special case of `1-norm, which in addition to guaranteeing the uniqueness of

the solution due to the convexity property, promotes sparse solutions. In order to

get sparser solutions than the `1-norm, we can use regularization penalty functions

based on `p-norms for 0 ≤ p < 1 (no longer formal norms as the triangle inequality

is no longer satis�ed). However, these functions are not convex which leads to more

complicated optimization problems. The extreme case of `0-norm is a very simple

and intuitive measure of sparsity counting the number of nonzero entries in a vector.

The term `0-norm is misleading, as this function does not satisfy all the axiomatic

requirements of a norm. In addition to optimization di�culty of the regularization

problem, the `0-norm is not necessarily the right notion for empirical work [34]. A

vector of real data would rarely be representable by a vector of coe�cients containing

many zeros. A more relaxed and forgiving notion of sparsity can and should be built

on the notion of approximately representing a vector using a small number of non-

zeros such as the `p-norms described above [34]. Other penalty functions where

also proposed in literature and showed their superiority compared to `1-norm in
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enhancing sparse solutions such as reweighed `1 [35] or smooth `0 [36]. Figure 1.5

illustrates the behaviour of di�erent enhancing sparsity penalty functions.
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Figure 1.5: Di�erent enhancing sparsity penalty functions

1.3.2 Sparse representations

In parallel with the regularization approach, another insight has been developed in

signal and image processing, where it has been found that many media types (im-

agery, video, acoustic) can be sparsely represented using transform-domain meth-

ods [34]. In fact many important tasks dealing with such media can fruitfully be

viewed as �nding sparse solutions to underdetermined systems of linear equations.

Each signal is approximated by a sparse linear combination of the transformation

matrix columns called dictionary elements or atoms, resulting in simple and compact

models or representations.

In various instances in signal processing, an important part of the processing

is achieved by an e�cient representation of the considered signal. Sparse represen-

tation has attracted much attention from researchers in �elds of signal processing,

image processing, computer vision and pattern recognition [34]. Sparse representa-

tion, from the viewpoint of its origin, is directly related to time-frequency analysis

where signals are studied in both the time and frequency domains simultaneously.

The time-frequency analysis is equivalent to projecting an observed signal on the

analysis chosen base. This idea was also extended later to time-scale analysis and

went from orthonormal analysis bases such as local Cosin and wavelet to overcom-

plete dictionaries such as Gabor atoms. In the overcomplete case, signals can have

more than one possible representation due to their redundancy. Hence, the sparsity

information is desired to force a unique representation with the lowest number of
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atoms. This problem has the same formulation as the regularization `0 problem

discussed above.

Research has focused on three aspects of the sparse representation: pursuit meth-

ods for solving the optimization problem, such as matching pursuit [37], orthogonal

matching pursuit [38], basis pursuit [39], LARS/homotopy methods [40]. Methods

for designing and learning the adequate dictionary from the observed data instead

of a prede�ned dictionary, such as the K-SVD method [2]. The applications of the

sparse representation for di�erent tasks, such as signal separation [3,6], denoising [5],

coding [41], etc. The well known media encoding standards JPEG and its successor,

JPEG2000 are based on the notion of transform encoding that leads to a sparse

representation.

Compressed Sensing (CS) is a recent branch that separated from sparse and

redundant representations, becoming a centre of interest of its own. It is one of

the most popular topics in recent years. In a recent work that emerged in 2006

by Emmanuel Candes, Justin Romberg, Terence Tao, David Donoho [42�44], and

others that followed, the theory and practice of this �eld were beautifully formed.

CS theory suggests that if a signal is sparse or compressive, the original signal can

be reconstructed by exploiting a few measured values. Exploiting sparse represen-

tation of signals, their sampling can be made far more e�ective compared to the

classical Nyquist-Shannon sampling. This main result explains the popularity of CS

researches in the recent years.

1.3.3 Sparse principal component analysis

Sparsity has been successfully applied to di�erent signal processing topics as we

mentioned above. In case of Principal Component Analysis (PCA), the sparsity was

also introduced to correct some weakness of the classical PCA. In fact, PCA is a

statistical procedure that uses an orthogonal transformation to convert a set of ob-

servations of possibly correlated variables into a set of values of linearly uncorrelated

variables called principal components. PCA is widely used for data processing and

dimensionality reduction. However, it su�ers from the fact that each principal com-

ponent is a linear combination of all the original variables, thus it is often di�cult

to interpret the results. In addition, datasets often have number of input variables

comparable with or even much larger than the number of samples. It has been shown

that if their ratio does not converge to zero, the classical PCA is not consistent i.e.

the PCA loadings does not match with the dominant eigenvectors of the covariance

matrix of the dataset. To address the drawbacks of classic PCA, various modi�ed

PCA methods have been proposed to form principal components where each one

is the linear combination of a small subset of the variables while still explain high
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percentage of data variance. Such methods are designed by Sparse PCA (SPCA).

Moreover, besides the interpretability and high-dimensional estimation consistency

would not be the only advantage of SPCA, we can discard the variables with zero

loadings in all of the PCs, so it will lead to an automatic feature selection. SCoT-

LASS proposed in [45], a quite natural extension to classic PCA, which maximizes

the explained variances with `1 constraints on the loadings, as well as orthogonal

conditions on subsequent loadings. D'Aspremont et al. [46] suggested a semide�nite

programming problem as a relaxation to the `0-penalty for sparse covariance ma-

trix. The SPCA developed by Zou et al. [47] formulates PCA as a regression-type

optimization problem, and then to obtain sparse loadings by imposing the Lasso or

Elastic-net penalty on the regression coe�cients. More algorithms for SPCA were

proposed later such as GPower [48] and IMRP [49]. The interest in SPCA solutions

has increased with the growth of the datasets size and the need to more e�cient

dimensionality reduction algorithms.

1.3.4 Sparsity for channel state information estimation

Wireless communication systems have to be designed in such way that the adverse

e�ect of multipath fading is minimized. Fortunately, multipath can be seen as a

blessing depending on the amount of Channel State Information (CSI) available to

the system. However, in practise CSI is seldom available a priori and needs to be

estimated. On the other hand, a wireless channel can often be modelled as a sparse

channel in which the delay spread could be very large, but the number of signi�cant

paths is normally very small. Such channels are encountered in many communication

applications. High De�nition television (HDTV) channels are hundreds of data

symbols long but there are only a few nonzero taps. Hilly terrain delay pro�le

has a small number of multipath in the broadband wireless communication and

underwater acoustic channels are also known to be sparse and long. The prior

knowledge of the channel sparseness can be e�ectively used to improve the channel

estimation using regularization techniques such in [50] or the Compressed Sensing

theory [51].

1.4 Scope of the thesis

In the course of last decade, mathematical and statistical study of sparse represen-

tations and their applications in audio, in image, in video, in sources separation

and in communication systems knew an intensive activity. However, the poten-

tial of the sparsity a priori is remaining not fully exploitable and some problems

are still widely open such as blind separation and identi�cation problems. In the
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other hand, the interest in low-cost and adaptive solutions to array signal processing

problems such as subspace-based estimation and dimensionality reduction methods

keeps growing, especially with the notable increase in problems dimensions. This

thesis is motivated by those new opportunities and the challenge to �nd low-cost

and blind solutions to array signal processing problems by combining the recent

advances in subspace-based estimation and dimensionality reduction methods with

the a priori sparsity information is order to enhance the processing performances.

We have undertaken three main studies:

The �rst challenge in this thesis aims to solve is sparse principal subspace track-

ing. After a deep state-of-the-art, we proposed low-cost solutions based on a two-step

approach where at every received data we update the principal subspace, then, the

sparse desired basis. The proposed algorithms have di�erent characteristics such as

the sparsity performance (speed and limit of convergence), the computational com-

plexity and the orthogonality of the solution. In addition, we show that under some

mild conditions, they are able to recover the sparse ground truth mixing matrix.

They outperform the state-of-the-art schemes in terms of low computational com-

plexity (suitable for the adaptive context) and they achieve both good convergence

and estimation performance.

The second line of research is adaptive blind sparse source separation. Our goal is

to use the information about the source signals sparsity in order to blindly separate

them adaptively. Contrary to most of the literature on the blind sparse source

separation, we are interested in the overdetermined case where subspace methods

can be used to estimate the principal subspace of the received data. We have followed

a similar two step-approach as for sparse principal subspace tracking where we start

by estimating the principal subspace then we calculate the separating matrix. We

have proposed two algorithms that have low computational complexity which make

them suitable for adaptive processing. Simulations are carried out to evaluate the

performance of the resulting algorithms compared to the state-of-the-art.

The third subject that we have treated is the blind identi�cation of Finite Im-

pulse Response (FIR) systems. We started by proposing a new solution to adaptively

estimate Single Input, Multiple Output (SIMO) channel impulse response using the

sparsity additional information. The proposed algorithm has low computational

complexity. In addition, it is robust to the overestimation of the channel order er-

rors. Later, we investigated the problem of blindly estimating both the Multiple

Input, Multiple Output (MIMO) channel impulse responses and the input data. We

have considered the Deterministic maximum likelihood (DML) formulation and add

some regularization penalty functions to exploit the a priori information such as

the �nite source alphabet simplicity property or/and the sparsity of the channel re-
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sponses. After an initialization done by some state-of-the-art method, the resulting

criterion is alternatively optimized over the channel and data due to the convexity

of the used formation in each parameter separately. Both proposed algorithms are

compared to state-of-the-art solutions.

1.5 Outline of the thesis

The document is organized as follows:

Chapter 2 is dedicated to introduce the investigated problems and to present

their state-of-the-art. We start by the problem of subspace tracking algorithms

under a sparsity constraint on the weight matrix. Then, the blind source separation

problem is considered with a sparsity a priori on the source signals. After that, the

blind FIR channel identi�cation problem is addressed with a focus on the sparse

channel case. We stress weak and strong points of some of the latest literature

solutions in each case.

In Chapter 3, we address the sparse principal subspace tracking problem. We

exploit the sparsity information to design multiple algorithms. First, the sparse

subspace is considered non-orthogonal which is most likely the case in blind source

separation with a sparse mixing matrix. Then, we consider the orthogonal case

which is much closer to SPCA case. A comparison in terms of complexity is done

and conditions of successfully recover the sparse ground truth mixing matrix are

investigated.

Chapter 4 is devoted to blind sparse source separation. The sparsity information

about the sources is used to allow the blind separation. In order to enable an

adaptive separation, we focus on low-cost solutions. Simulations are conducted to

compare the two proposed algorithms with state-of-the-art solutions.

In Chapter 5, we investigate the problem of blind identi�cation of FIR systems.

First, we consider the SIMO case, where the sparsity information is used to adap-

tively estimate the channel impulse response. For the MIMO case, we present a

bilinear approach based on a regularized DML formation of the problem. This for-

mulation allows us to alternatively estimate the channel impulse responses and the

input data using the a priori information about the problem as a regularization

penalty. Di�erent a priori are considered such as sparse channel and �nite alpha-

bet simplicity of the input data. The proposed solutions are compared to existing

methods in di�erent simulations scenarios.

Finally Chapter 6 concludes the document and gives some perspectives.
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2.1 Introduction

Blind system identi�cation is a fundamental signal processing technology and has

received an increasing research interest. Most of the work tends to explore to a

higher degree the diversities inherent in multiple-output systems. At the same time,
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making use of the sparsity information in some signal processing applications has

been very successful. Hence, the combination of these two ideas is really interesting,

especially, in response to the challenge of developing more accurate methods under

more 'real-time' constraints. The three main subjects in this thesis are: tracking

the sparse principal subspace, where we consider an instantaneous mixture with

a sparsity information of the system mixing matrix. The second subject is blind

sparse source separation which considers the same instantaneous mixture but with

a sparsity information on the input data. The third subject is blind sparse FIR

channel identi�cation which is a more complicated problem due to the considered

convolutive mixture model. In this case, the sparsity information is on the FIR

channel.

In this section, we will give some hints about each one of the three blind problems

in a classical way (without the sparsity information). We will present some of the

popular approaches to solve these problems, and which we may need later in the

next chapters to develop our proposed methods. After that, we will develop how the

sparsity has been brought to treat each type of these problems and how it impacts

the processing. Finally, we will present some state-of-the-art solutions that will be

used later as a benchmark for the proposed methods.

2.2 Subspace Tracking Algorithms

Subspace estimation plays an important role in a variety of modern signal process-

ing applications. It has been applied successfully in a variety of problems. Typical

examples are the MUSIC [10] and the ESPRIT [52] algorithms for estimating fre-

quencies of sinusoids or directions of arrival (DOA) of plane waves impinging an

antenna array. Both mentioned algorithms have as �rst step the estimation of a

correlation matrix, then calculating its eigen-decomposition. If we consider a track-

ing context where the sources are moving, we have to estimate the DOA's more

frequently. However, this could be complicated due to the computational complex-

ity of the decomposition needed. In fact, the implementations of these techniques

have been based on the batch EVD of the sample correlation matrix or on the batch

SVD of the data matrix. This is unsuitable for adaptive processing because it re-

quires repeated EVD/SVD, which is a task that is very time consuming. In order

to overcome this di�culty, a number of adaptive algorithms for subspace tracking

has been developed. In chapter 1, we have proposed a brief historical overview on

the subspace tracking algorithms. Now, we will present the data model, as well as

the used state-of-the-art algorithms for principal subspace tracking.
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2.2.1 Data model

Let x(t) be a d-random data vector observed at the tth snapshot. For example,

x(t) may represent the samples of an array of d sensors x(t) = [x1(t), ..., xd(t)]
T in

spatial domain. It can also be in time domain, a vector of d consecutive samples of

a time series x(t) = [x(t), x(t− 1), ..., x(t− d+ 1)]T . We assume x(t) satisfying the

following very common observation signal model:

x(t) = A(t)s(t) + n(t) (2.1)

where s(t) = [s1(t), ..., sp(t)]
T is the p-dimensional (p < d) zero-mean random signal

vector with its covariance matrix Cs(t) = E[s(t)s(t)H ] non singular. The vector n(t)

is zero-mean additive random white noise uncorrelated with the signal and A(t) is a

d× p full rank mixing matrix which describes the p signals. The covariance matrix

of the observation vector is given by :

Cx(t) = E[x(t)x(t)H ] = A(t)Cs(t)A
H(t) + σ2

nId (2.2)

with σ2
n is the power of the white additive noise. Applying EVD on Cx(t) yields to:

Cx(t) =
[
Us(t) Un(t)

] [∆s(t) + σ2
nIp 0

0 σ2
nId−p

][
UH
s (t)

UH
n (t)

]
(2.3)

where ∆s(t) + σ2
nIp is the diagonal matrix of the p dominant eigenvalues of Cx(t).

Us(t) is the d× p orthonormal basis for the signal subspace of Cx(t) and Un(t) is

the d× (d− p) orthonormal basis for the noise (minor) subspace of Cx(t). So far,

we have assumed:

� A1: Linear overdetermined data model with d > p.

� A2: Having the knowledge of the sources number p.

� A3: Non singularity of the covariance matrix Cs(t).

� A4: n(t) is an additive white noise.

The objective of principal subspace tracking algorithms is estimating the instan-

taneous full column rank weight d× p matrix W(t) which spans the same subspace

as A(t) and Us(t).

2.2.2 Projection Approximation Subspace Tracking and Orthogo-

nal PAST algorithms

In order to solve the principal subspace tracking problem, Yang has proposed in [16]

to minimize the weighted quadratic error of reconstruction given by:

JPS

(
W(t)

)
=

t∑
i=1

βt−i
∥∥∥x(i)−W(t)WH(t)x(i)

∥∥∥2

2
(2.4)
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where 0 < β < 1 is the forgetting factor used to a�ord the tracking capability

when the system operates in a non-stationary environment (the index `PS' stands

for Principal Subspace). Without loss of generality, we assume W(t) ∈ Cd×p to have
full rank p. Otherwise, if the rank of W(t) is p̃ < p, W(t) in Eq. (2.4) can always be

replaced by a full rank d × p̃ matrix W̃(t) satisfying W̃(t)W̃H(t) = W(t)WH(t).

It is shown in [16] that:

� W(t) is a stationary point of JPS
(
W(t)

)
if and only if W(t) = VpQ, where

Vp is a d× p matrix containing p distinct eigenvectors of Cx(t), and Q is any

p× p unitary matrix.

� Every stationary point of JPS
(
W(t)

)
is a saddle point, except when Vp con-

tains the p dominant eigenvectors of Cx(t) (equal to Us(t) up to a matrix

rotation). In this case JPS
(
W(t)

)
attains the global minimum.

An iterative optimization of Eq. (2.4) leads to the solution

W(t) = Cx(t)W(t− 1)
(
WH(t− 1)Cx(t)W(t− 1)

)−1
(2.5)

The instantaneous covariance matrix Cx(t) is estimated in the PAST algorithm

according to the exponential window having β as forgetting factor, and it is updated

by:

Ĉx(t) =

t∑
i=1

βt−ix(i)x(i)T = β Ĉx(t− 1) + x(t)x(t)T (2.6)

PAST algorithm is based on Eq. (2.5), Eq. (2.6), the matrix inversion lemma and

the projection approximation

Ĉx(t)W(t) ≈ Ĉx(t)W(t− 1) (2.7)

The PAST algorithm is summarized in Algorithm 1 where the Tri(.) operator in-

dicates that only the upper (or lower) triangular part of ZPAST (t) = C−1
y (t) is

calculated and its Hermitian transposed version is copied to the another lower (or

upper) triangular part (Cy(t) = E[y(t)y(t)H ]). In almost all situations the PAST

method converges to an orthogonal matrix whose column vectors spans the principal

subspace. However, in some particular cases, it may have an oscillatory behavior

and not converge [17,19]. To solve this problem (i.e., ensure the overall convergence

of the method) and, more importantly, to ensure the orthogonality of the weight ma-

trix at each iteration, the authors in [17] proposed a new orthogonal PAST (OPAST)

method.

The OPAST method is based on the same cost function as the one in Eq. (2.4)

for PAST algorithm, but with the orthogonality constraint over the weight matrix
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Algorithm 1 Projection Approximation Subspace Tracking PAST algorithm

Require: x(t) data vector, β the forgetting factor, WPAST (t−1) and ZPAST (t−1)

previous outputs.

Ensure: WPAST (t) and ZPAST (t)

1: y(t) = WPAST (t− 1)Hx(t)

2: a(t) = ZPAST (t− 1)y(t)

3: g(t) = a(t)
β+y(t)T a(t)

4: ZPAST (t) = 1
βTri

{
ZPAST (t− 1)− g(t)aH(t)

}
5: e(t) = x(t)−WPAST (t− 1)y(t)

6: WPAST (t) = WPAST (t− 1) + e(t)gH(t)

Algorithm 2 Orthogonal Projection Approximation Subspace Tracking OPAST

algorithm

Require: x(t) data vector, β the forgetting factor, WOPAST (t−1) and ZOPAST (t−
1) previous outputs.

Ensure: WOPAST (t) and ZOPAST (t)

1: y(t) = WOPAST (t− 1)Hx(t)

2: g(t) = 1
βZOPAST (t− 1)y(t)

3: γ = 1
1+yH(t)g(t)

4: τ = 1
‖g(t)‖2

(
1√

1+‖g(t)‖2γ2(‖x(t)‖2−‖y(t)‖2)
− 1
)

5: e(t) = WOPAST (t− 1)
(
τg(t)− γ(1 + τ‖g(t)‖2)y(t)

)
+
(

1 + τ‖g(t)‖2
)
γx(t)

6: ZOPAST (t) = 1
βZOPAST (t− 1)− γg(t)gH(t)

7: WOPAST (t) = WOPAST (t− 1) + e(t)gH(t)

WH
OPAST (t)WOPAST (t) = Ip. Hence, The OPAST algorithm is a modi�ed ver-

sion of the PAST algorithm where the weight matrix WOPAST (t) is forced to be

orthonormal at each iteration by means of:

WOPAST (t) = WPAST

(
WH

PASTWPAST

)−1/2
(2.8)

In order to avoid the direct calculations of the matrix square root inverse
(
WH

PASTWPAST

)−1/2
,

further simpli�cations were introduced which leaded to the OPSAT algorithm as is

summarized in Algorithm 2. PAST [16] and OPSAT [17] algorithms have a linear

computational complexity equals to 3dp + O(p2) for PAST and 4dp + O(p2) for

OPAST.
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2.2.3 Fast Approximated Power Iterations algorithm

The FAPI [20] [21] algorithm is based on the power iteration and on a new pro-

jection approximation compared to the one used previously in PAST and OPAST

algorithms. FAPI algorithm has a low (linear) computational complexity but pro-

vides a better estimation of the principal subspace (compared to algorithms having

the same computational complexity order). The classical power iteration technique

converges globally and exponentially to the signal subspace and it alternates be-

tween two steps that update the estimation of the weight matrix W(t−1) to W(t).

In the �rst step corresponding to Eq. (2.9), Cxy(t) (data compression) is calculated,

then W(t) is estimated by a fast QR decomposition of Cxy(t) in the second one

corresponding to Eq. (2.10) (orthogonalization).

Cxy(t) = Cx(t)W(t− 1) (2.9)

W(t)R(t) = Cxy(t) (2.10)

where R(t) is a p× p upper triangular matrix and Cxy(t) is the d× p correlation

matrix between the data vectors x(i) and the projected data vectors y(i) = W(t−
1)Hx(i) for i = 1, . . . , t. Despite its interesting convergence properties, a direct

implementation of Eq. (2.9) and Eq. (2.10) would lead to a high computational

complexity of order O(d2 p) �ops per iteration. In [21], the authors proposed to

reduce the computation cost by using the recursive update of Ĉx(t), a new projection

approximation trick and the matrix inversion lemma. The instantaneous covariance

matrix Ĉx(t) is updated either by Eq. (2.6) corresponding to the exponential window

or by Eq. (2.12) corresponding to a truncated window (sliding window which have

an exponential decrease).

Ĉx(t) =
t∑

i=t−L+1

βt−i x(i)x(i)H (2.11)

=β Ĉx(t− 1) + x(t)x(t)H − βlx(t− L)xH(t− L) (2.12)

where L is the width of the window.

Remark: One should choose the exponential window in case of slowly changing

signal parameters since it tends to smooth the variations of the desired parameters.

The truncated (sliding) window is preferred for faster tracking of signal parameter

changes, but it leads to a higher computational complexity and needs more memory

than the exponential window.

Note that the projection approximation of Eq. (2.7) proposed in PAST [16] and

used later in OPAST [17] is more restrictive compared to the one used in FAPI [21]
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given by

W(t) ≈W(t− 1)Θ(t) (2.13)

RH(t) ≈ Cy(t)Θ(t) (2.14)

where the r × r matrix Θ(t) is de�ned by Θ(t)
∆
= W(t − 1)HW(t) and Cy(t) is

the correlation matrix of the projected data y(i) for i = 1, . . . , t. This explains the

better tracking capability of the FAPI algorithm compared to PAST and OPAST.

Using this projection approximation with the rank-one update of the covariance

matrix Ĉx(t), leads to a linear computational complexity equal to 3 d p + O(p2)

with the exponential window and to 6dp+ 4Lp+O(p2) with the truncated window.

The exponential window version of FAPI algorithm is summarized in Algorithm 3

(see [20,21] for more details).

Algorithm 3 Fast Approximated Power Iterations FAPI algorithm

Require: x(t) data vector, β the forgetting factor, WFAPI(t−1) and ZFAPI(t−1)

previous outputs.

Ensure: WFAPI(t) and ZFAPI(t)

1: y(t) = WFAPI(t− 1)Hx(t)

2: a(t) = ZFAPI(t− 1)y(t)

3: g(t) = a(t)
β+y(t)Ha(t)

4: ε2(t) = ‖x(t)‖2 − ‖y(t)‖2

5: τ(t) = ε2(t)

1+ε2(t)‖g(t)‖2+
√

1+ε2(t)‖g(t)‖2

6: η(t) = 1− τ(t)‖g(t)‖2

7: y′(t) = η(t)y(t) + τ(t)g(t)

8: a′(t) = ZFAPI(t− 1)Hy′(t)

9: f(t) = τ(t)
η(t)

(
ZFAPI(t− 1)g(t)−

(
a′(t)Hg(t)

)
g(t)

)
10: ZFAPI(t) = 1

β

(
ZFAPI(t− 1)− g(t)a′(t)H + f(t)g(t)H

)
11: e(t) = η(t)x(t)−WFAPI(t− 1)y′(t)

12: WFAPI(t) = WFAPI(t− 1) + e(t)g(t)H

2.2.4 Sparse Principal Component Analysis algorithms

The sparsity constraint over the weight matrix W(t) is considered for principal

subspace tracking. This was already discussed, but in the context of SPCA as it

was mentioned in Chapter 1. Most of the proposed solutions for SPCA are batch

algorithms which process all the received data as one block. However, in non-

stationary systems, the estimating parameters changes with time and the result of

such an approach is suboptimal. Hence, adaptive processing must be done after
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receiving each data sample. It is worth mentioning that the adaptive principal

component analysis problem is closely related to subspace tracking problem. In

fact, if we consider the orthogonality of the loadings constraint and we drop the

non-correlation of the projected data constraint, the two problems are equivalent

and their solutions are equal up to a unitary rotation matrix. In addition, it is

known that SPCA can not verify both the orthogonality and the non-correlation

constraints at the same time [53] as the classical PCA .

As SPCA batch algorithms, we will use later for comparison GPower [48] and

IMRP [49]. The authors of [48] proposed the so-called as Generalized Power Method

for SPCA (Gpower), where the single-component (component by component with

a de�ation scheme) and the block (multiple component at the same time which is

equivalent to sparse principal subspace) SPCA problems are formulated as an op-

timization program involving maximization of a convex function on a compact set

either for the `0-norm or the `1-norm. Then, a simple gradient method is proposed

for the optimization task. Convergence properties were provided in the case when

either the objective function or the feasible set are strongly convex, which is the

case with the single-component formulations and can be enforced in the block case.

Iterative Minimization of Rectangular Procrustes (IMRP) algorithm was proposed

in [49], where the authors considered the problem of SPCA with the orthogonal-

ity constraint. They apply the minimization-maximization (MM) framework where

they iteratively maximize a tight lower bound surrogate function (approximate the

`0-norm by a di�erentiable function) of the objective function over the Stiefel man-

ifold. The inner maximization problem has the form of the rectangular Procrustes

problem, which has a closed-form solution.

Among the existing adaptive solutions, one can mention the OIST [54] (Oja's al-

gorithm with Iterative Soft Thresholding) algorithm which considers only the single-

component (a rank one subspace) model and is based on Oja's algorithm [25] fol-

lowed by a soft thresholding step. To use such an algorithm for subspace tracking,

one needs to use an iterative de�ation method (every column is considered alone)

which generally leads to poor subspace tracking performance and to the lost of the

weight matrix orthogonality. Another algorithm called streaming SPCA via row

truncation, proposed in [55], focuses on row sparsity of the weight matrix by us-

ing a sliding rectangular window, a row truncation operator based on `0-norm and

a QR decomposition is realized at each iteration which increases considerably the

computational cost. Additionally, the proposed version for the global case in [55]

where the columns of the weight matrix are all sparse but their supports are nearly

disjoint, is also based on an iterative de�ation method.
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Algorithm 4 `1-norm Projection Approximation Subspace Tracking `1-PAST al-

gorithm

Require: x(t) data vector, β the forgetting factor, κ the sparsity parameter,

W`1-PAST(t− 1) and Z`1-PAST(t− 1) previous outputs.

Ensure: W`1-PAST(t) and Z`1-PAST(t)

1: y(t) = W`1-PAST(t− 1)Hx(t)

2: a(t) = Z`1-PAST(t− 1)y(t)

3: g(t) = a(t)
β+y(t)T a(t)

4: S = Z`1-PAST(t− 1)− g(t)aH(t)

5: Z`1-PAST(t) = 1
βTri

{
Z`1-PAST(t− 1)− g(t)aH(t)

}
6: e(t) = x(t)−W`1-PAST(t− 1)y(t)

7: W̃`1-PAST(t) = W`1-PAST(t− 1) + e(t)gH(t) + κ(1− 1
β )sign

(
W`1-PAST(t−

1)
)
S

8: W`1-PAST(t) = Orth
(
W̃`1-PAST(t)

)

2.2.5 `1-norm Projection Approximation Subspace Tracking algo-

rithm

The `1-PAST algorithm is proposed in [56] to solve the principal subspace tracking

problem under a sparsity constraint on the weight matrix. It was developed for

the STAP (space-time adaptive processing) application for Airborne Phased Array

Radar. A new objective function is proposed, consisting of the sum of the weighted

quadratic error of signal reconstruction, similar to the one proposed in PAST [16]

and the `1-norm of the weight matrix. It is given by:

J`1-PAST

(
W(t)

)
=

t∑
i=1

βt−i
∥∥∥x(i)−W(t)WH(t)x(i)

∥∥∥2

2
+ 2κ

∥∥∥W(t)
∥∥∥

1
(2.15)

= JPS

(
W(t)

)
+ 2κ

∥∥∥W(t)
∥∥∥

1
(2.16)

Based on the sub-gradient calculation and some simpli�cations under the assumption

of slowly changing system, the resulting algorithm is summarized in Algorithm 4.

The `1-PAST algorithm has a complexity equal to 2dp2 +O(p2) �ops per iteration

if the orthogonal processing by Gram-Schmidt method is considered.

2.3 Blind source separation

Blind source separation (BSS) is a signal processing technology which has been

intensively used recently in several areas [57], such as biomedical engineering [58],
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audio (music and speech) processing [59] and communication applications [60]. The

main objective of source separation is to recover unknown transmitted source signals

from the observations received at a set of sensors. In BSS neither the sources nor the

mixing matrix are known, i.e. it exploits only the information carried by the received

signals and a prior information about the statistics or the nature of transmitted

source signals (e.g. decorrelation, independence, sparsity, morphological diversity,

etc).

In this section, we present the data model considered in the blind source separa-

tion problem. After that, we give a quick review of independent component analysis

(ICA) and sparse component analysis (SCA) techniques.

2.3.1 Data model

Let x(t) = [x1(t), . . . , xd(t)]
T be a random data vector observed at the tth snapshot

over an array of d sensors. The measured array output is a mapped version of the

unobserved sources, s(t) = [s1(t), . . . , sp(t)]
T , assuming zero mean and stationarity.

x(t) = A(s(t)) (2.17)

where A is an unknown mapping form the p-space of s to the d-space of x. Various

mixture models have been considered, initially the linear instantaneous mixtures,

then the linear convolutive mixtures and more recently the nonlinear models [57]. It

is clear that without this a priori information, the BSS problem is ill-posed. Hence,

one needs to restore the well-posedness of the problem by imposing somehow a di-

versity between sources. For instantaneous (memoryless) linear mixtures corrupted

by n(t) which is a realization of a zero-mean additive random white noise, the model

is given by:

x(t) = As(t) + n(t) (2.18)

Depending on the number of sources p and sensors d, the model (2.18) is overde-

termined (d > p) or underdetermined (d < p). Solving the blind source separation

problem means to �nd a p × d separation matrix B (or equivalently, identifying A

and applying its pseudo-inverse A#) such that ŝ(t) = Bx(t) is an estimation of the

source signals.

Note that complete blind identi�cation of separating matrix is possible only up

to permutation and scaling ambiguity i.e. B is a solution if:

ŝ(t) = Bx(t) = PΛs(t) (2.19)

where P is a permutation matrix and Λ is a non-singular diagonal matrix.
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Figure 2.1: Blind source separation scheme

2.3.2 Independent Component Analysis ICA based blind source

separation

In the previous section, we discussed PCA as a dimensionality reduction technique

and we noticed that PCA does not look for (and usually does not �nd) components

with direct physical meaning contrary to ICA. In fact, the ICA technique tries

to recover the original sources by estimating a linear transformation assuming a

statistical independence among the unknown sources. The ICA framework is clearly

related to the BSS problem, where the sources are assumed to be temporally i.i.d

(identically independently distributed) and non-Gaussian1. If the sources admit

a probability density function (pdf), then the joint pdf can be factorized as the

product of the marginal pdf's:

fs(s1, s2, ..., sp) =

p∏
i=1

fsi(si) (2.20)

Actually the above independence criterion is not convenient, since it not only

requires equality of two multivariate functions, but also requires their perfect knowl-

edge to start with. Consequently, other independence measures based on the second

characteristic function or the Kullback-Leibler (KL) divergence, lead to more conve-

nient criteria and contrast functions, which always involve (explicitly or implicitly)

higher-order statistics. The KL divergence from the joint density fs(s1, s2, ..., sp) to

the product of its marginal density is a popular measure of statistical independence

and it is given by:

J(s) = K

[
fs(s1, s2, ..., sp),

p∏
i=1

fsi(si)

]
(2.21)

=

∫
s
fs(s1, s2, ..., sp)log

(
fs(s1, s2, ..., sp)∏p

i=1 fsi(si)

)
ds (2.22)

1Darmois [61] showed that the problem has no solution for Gaussian and temporally iid sources
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The KL can be decomposed into two terms [62] as follows:

J(s) = C(s)−
p∑
i=1

G(si) + c (2.23)

where c is a constant and C(s) = K [N (E(s),Σs),N (E(s), diag(Σs))] and G(si) =

K
[
fsi(si),N (E(si), σ

2
si)
]
where σ2

si is the variance of si and N (m,Σ) is the normal

probability density function with mean m and covariance Σ. The �rst term in

Eq. (2.23) vanishes when the sources are decorrelated. The second term measures

the marginal Gaussianity of the sources. This decomposition of the KL entails

that maximizing independence is equivalent to minimizing the correlation between

the sources and maximizing their non-Gaussianity. Note that, intuitively, mixing

independent signals should lead to a kind of Gaussianity with respect to the central

limit theorem. Hence, it is natural to think that source separation leads to deviation

from Gaussian processes.

In the ICA setting, the mixing matrix is generally square and invertible. Other-

wise, the overdetermined BSS problem can be reduced to a square problem by using

a PCA stage. Among most popular batch ICA methods:

� The �xed point algorithm FastICA [63] is often used in 'real time' applications

because of the possible parallel implementation. FastICA uses kurtosis for the

independent components estimation. A prewhitening step is usually performed

on data before the execution of the algorithm

� The Joint Approximation Diagonalization of Eigenmatrices algorithm (JADE) [64]

is based on joint diagonalization of eigenmatrices that are computed by the

fourth order cumulants of whitened signals.

We are more interested in the adaptive ICA algorithms. The main motivation

behind adaptive methods is their ability to track variations of the mixing system

in non-stationary environments, if the non-stationarity is mild enough. A variety

of adaptive ICA algorithms have been proposed. Update formulas of some popular

algorithms are presented below:

� The natural gradient learning algorithm proposed in [65]

B(t+ 1) = B(t) + µ
[
Ip − y(t)uH(t)

]
B(t)

� The Equivalent Adaptive Separation via Independence (EASI) algorithm pro-

posed in [66]

B(t+ 1) = B(t) + µ
[
Ip − u(t)uH(t) + u(t)yH(t)− y(t)uH(t)

]
B(t)
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� The Information maximization (Infomax) algorithm proposed in [67]

B(t+ 1) = B(t) + µ
[
B(t)−H − y(t)x(t)H

]
where u(t) = B(t)x(t), y(t) = g(u(t)) and g(.) is a nonlinear function known as the

score function, which depends on the pdf of the source signals.

Despite its theoretical strength and elegance, ICA su�ers from several limita-

tions:

� The sources to be processed in practice are perhaps actually not independent.

� Since ICA algorithms are based on statistical independence, they require to

take into account higher (than 2) order statistics.

� ICA algorithms cannot separate independent Gaussian sources.

2.3.3 Sparse/Morphological Component Analysis SCA/MCA based

blind source separation

Sparse decomposition techniques for signals and images underwent considerable de-

velopment during the �ourishing of wavelet-based compression and denoising meth-

ods in the early 1990s. Later, these techniques have been exploited for blind source

separation. Their main impact is that they provide a relatively simple framework

for separating a number of sources exceeding the number of observed mixtures. Also

they greatly improve quality of separation in the case of square (or overdetermined)

mixing matrix [57].

The sparsity has been �rst introduced as an alternative to standard contrast

functions of ICA in [68], where a fully Bayesian framework is used. Each source is

assumed to be sparsely represented in a basis (e.g. orthogonal wavelet basis) Φ:

∀i = 1, ..., p; si(t) =
K∑
k=1

cikΦk(t) (2.24)

where coe�cients cik are supposed to be sparse. This sparsity is modeled by the

prior distribution:

fi(cik) ∝ e−g(cik) with g(c) = |c|γ , γ ≤ 1 (2.25)

A Maximum A Posteriori (MAP) estimator is used to estimate the mixing matrix

and the coe�cients signals. Inspired by the idea of Basis Pursuit the problem is

written in its matrix form:

min
A,C

1

2σ2
‖ACΦ−X‖2F +

∑
i,k

g(cik) Subject to ‖A‖ ≤ 1 (2.26)
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where C is the matrix which has as entries the sparse coe�cients cik and the noise is

assumed zero-mean gaussian with a covariance equals to σ2Ip. Later, the so-called

the Relative Newton Algorithm [4] was proposed to optimize more e�ciently the

above objective function.

Many recent researches in SCA extended the basis Φ to an overcomplete dictio-

nary and use the redundancy to enhance the sparsity of the coe�cients. Combining

the ICA based BSS previous results and the recent advances in sparse representa-

tions area, helped a lot in developing new SCA techniques.

The perfect sparse case assumes that the sources have mutually disjoint sup-

ports (sets of nonzero samples) in the sparse or transformed domain. Nonetheless,

this simple case requires highly sparse signals. Unfortunately, this is not the case

for large classes of classes of highly structured data and especially in image pro-

cessing [6]. Furthermore, over the past ten years, new tools have emerged from

modern computational harmonic analysis : wavelets, ridgelets, curvelets, bandlets,

contourlets, to name a few. It was tempting to combine several representations to

build a larger dictionary of waveforms that will enable the sparse representation of

larger classes of signals.

In [69], the authors proposed a practical algorithm known as Morphological Com-

ponent Analysis (MCA) aiming at decomposing signals in overcomplete dictionaries

made of a union of bases. For instance, a piece-wise smooth source (cartoon picture)

is well sparsi�ed in a curvelet tight frame, while a warped globally oscillating source

(texture) is better represented using a discrete cosine transform (DCT). Morpho-

logical diversity then relies on the sparsity of those morphological components in

speci�c bases. Theoretical arguments as well as experiments were given in [6,69,70]

showing that MCA provides at least as good results as Basis Pursuit for sparse

overcomplete decompositions in a union of bases. Moreover, MCA turns out to be

clearly much faster than Basis Pursuit. Then, MCA is a practical alternative to

classical sparse overcomplete decomposition techniques.

2.4 Blind FIR channel identi�cation

Reliable communication often requires the identi�cation of the channel impulse re-

sponse. Such identi�cation can facilitate channel equalization as well as maximum

likelihood sequence detection. The so-called blind channel identi�cation means that

the channel is identi�ed without using a training signal; instead, the identi�cation

is achieved by using only the channel output along with certain a priori statis-

tical information on the input. Such methods have the potential to increase the

transmission capability due to the elimination of training signals. The need for
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blind channel identi�cation arises from a number of applications such as in data

communications [71], speech recognition [72], image restoration [73], seismic signal

processing [74], etc. The blind channel identi�cation problem has received a lot of at-

tention over the last two decades and many e�cient solutions exist for Single Input,

Multiple Output (SIMO) and Multiple Input, Multiple Output (MIMO) systems in

the literature. We can distinguish two main classes of Blind System Identi�cation

BSI methods: higher order statistics (HOS) and second order statistics (SOS) tech-

niques. In general, HOS-based methods require large sample sizes to achieve 'bet-

ter' estimation performances than the SOS-based methods [75]. Among the famous

SOS-based techniques, one can mention the cross-relation (CR) method [76], the

subspace method [77], and the two-step maximum likelihood (TSML) method [78].

Unfortunately, it seems likely that in case of very long impulse response and sparse

channel, these methods perform poorly. Such sparse channels can be encountered

in many communication applications including High-De�nition television (HDTV)

channels and underwater acoustic channels [79]. Recently, solutions have been pro-

posed to handle this case by adapting the 'classical' blind identi�cation methods to

the sparse case.

Next, we present the considered data model and some classical approaches

to solve the blind channel identi�cation problem such as the maximum liklihood

method TSML [78], the CR method [76], the subspace method [77]. Also, solutions

that consider the channel sparsity are discussed such as the sparse CR method [80],

The MAP method [81] and its adaptive version [82].

2.4.1 Data model

Our focus is on the SIMO/MIMO channels in a blind identi�cation context. We

present the global MIMO case which includes also the SIMO case by considering only

one transmitter. We consider a mathematical model where the input and the output

are both discrete but we have access only to the output. The system is driven by

Nt input sequences s1(t), ..., sNt(t), and yields Nr output sequences x1(t), ...,xNr(t)

at time t. We assume that the discrete channels between the Nt transmit antennas

and the Nr receive antennas are modeled as an Nr × Nt FIR �lter with L as the

upper bound on the orders of these channels i.e. H = [HT (0), ...,HT (L)]T with

H(l) =


h11(l) . . . h1Nt(l)

...
...

hNr1(l) . . . hNrNt(l)


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The system can be described by:

x(t) =

L∑
k=0

H(k)s(t− k) + n(t) = [H(z)]s(t) + n(t) (2.27)

where

[H(z)] =
L∑
k=0

H(k)z−k (2.28)

and n(t) is an additive Nr-dimensional white noise, independent from the symbol

sequences with E[w(t)wT (t)] = σ2INr , where σ
2 is the unknown power noise.

We denote stacked observations over a window of lengthN by the vector xN (t) =

[xT (t),xT (t− 1), ...,xT (t−N + 1)]T . The following linear model holds:

xN (t) = T (H)sN (t) + nN (t) (2.29)

with sN (t) = [sT (t), sT (t − 1), ..., sT (t − N − L)]T and nN (t) = [nT (t), ...,nT (t −
N + 1)]T . The (NNr)× (N(L+ 1)Nt) block-Toeplitz matrix T (H) associated with

the �lter H is given by:

T (H) =


H(0) . . . H(L) 0

. . . . . .

0 H(0) . . . H(L)

 (2.30)

From now on, we make the following important assumptions:

� H(z) is irreducible (Rank(H(z)) = Nt; ∀z) and H(L) is of full column rank

� The channels have a known maximum order L.

� Number of sensors is strictly greater than the number of sources Nr > Nt

� Large enough observation Window N > (L+ 1)Nt

Under these assumptions, T (H) is full column rank and the channel matrix H is

identi�able up to a Nt ×Nt constant full rank matrix [83].

For the SIMO case (Nt = 1), we introduce another notation corresponding to

stacking observations with respect to sensor number:

xNr(t) = HNrsN (t) + nNr(t) (2.31)

where xNr(t) = [xT1 (t), . . . ,xTNr
(t)]T with xi(t) = [xi(t), . . . , xi(t − N + 1)]T for

i = 1, . . . , Nr. The noise vector nNr(t) is constructed in the same way as the

observations by nNr(t) = [nT1 (t), . . . ,nTNr
(t)]T with ni(t) = [ni(t), . . . , ni(t − N +

1)]T for i = 1, . . . , Nr. The matrix HNr = [T (h1)T , . . . , T (hNr)T ]T is a block

Sylvester matrix, T (hi) being the Sylvester matrix of the i-th channel given by

hi = [hi(0), . . . , hi(L)]T for i = 1, . . . , Nr.
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2.4.2 Classical approaches

We now introduce some popular techniques for blindly identifying SIMO (Nt =

1) FIR channel, in particular the deterministic maximum-likelihood (ML) method

TSML [78] method and the noise subspace method [77,83] (we investigate the MIMO

case later).

SIMO system

The ML method is a classic approach applicable to any parameter estimation prob-

lem where the pdf of the available data is known. Assuming that the system output

vector is corrupted by additive circular white Gaussian noise vector n allows us to

write the log-likelihood:

f
(
xNr(t);HNr , sN (t)

)
=

1

2σ2

∥∥∥xNr(t)−HNrsN (t)
∥∥∥2

2
+ constant (2.32)

It then follows that the channel output vector xNr(t) is Gaussian distributed with

the mean vector HNrsN (t) and the covariance matrix σ2I. The ML criterion is

expressed as: (
HNr , sN (t)

)
= arg max

HNr ,sN (t)
f
(
xNr(t);HNr , sN (t)

)
(2.33)

= arg min
HNr ,sN (t)

{∥∥∥xNr(t)−HNrsN (t)
∥∥∥2

2

}
(2.34)

Let's de�ne GNr by

GH2 =
[
− T (h1), T (h2)

]
(2.35)

and

GHq =


GHq−1 0

−T (hq) 0 T (h1)
. . .

...

0 −T (hq) T (hq−1)

 (2.36)

for q = 3, . . . , Nr, where T (hq) is the top-left (N − L)×N sub-matrix of T (hq).

Under the necessary identi�ability conditions [83] and by using projection tech-

niques and commutativity property of linear convolution, Eq. (2.34) yields the equiv-

alent problem:

hML = arg min
‖h‖2=1

{
hHXHNr

(
GHNr
GNr

)#
XNrh

}
(2.37)

where h = [hT1 , ...,h
T
Nr

]T and (.)# refers to the pseudo inverse operator. The matrix

XNr is de�ned by

X2 =
[
X2,−X1

]
(2.38)
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and

Xq =


Xq−1 0

Xq 0 −X1

. . .
...

0 Xq −Xq−1

 (2.39)

for q = 3, . . . , Nr, where Xq is given by:

Xq =


xq(t) . . . xq(t− L)
...

...

xq(t−N + L+ 1) . . . xq(t−N + 1)

 . (2.40)

The cost function is optimized under the constraint ‖h‖2 = 1 to avoid the scalar

indeterminacy2. The TSML method [78] uses an two-step estimation procedure to

solve Eq. (2.37) e�ciently as shown below:

� Minimization: hCR = arg min
‖h‖2=1

{
hHXHNr

XNrh
}

� Minimization: hML = arg min
‖h‖2=1

{
hHXHNr

(
GHCRGCR

)#
XNrh

}
where GCR is GNr constructed from hCR according to Eq. (2.35) and Eq. (2.36).

The �rst step of the TSML method is known to coincide with a method based

on a 'cross-relation' (CR) property of the SIMO system. This cross relation is as

follows:

xi(t) ∗ hj = xj(t) ∗ hi 1 ≤ i 6= j ≤ Nr (2.41)

under the noise free model. By collecting all possible pairs of Nr channels, one can

easily establish a set of linear equations. In matrix form, this set of equations can

be expressed as:

XNrh = 0 (2.42)

where XNr turns out to be the same as de�ned by Eq. (2.38) and Eq. (2.39). In

presence of noise, the solution to the above equation can be naturally replaced by

the least-squares (LS) solution:

hCR = arg min
‖h‖2=1

{
hHXHNr

XNrh
}

(2.43)

The Channel Subspace (CS) Method was proposed in [77] and it is based on

estimating the observed signals covariance matrix Rx given by

Rx = E[xNr(t)xTNr
(t)] ≈ 1

T −N + 1

T−N∑
t=0

xNr(t)xTNr
(t) (2.44)

2The SIMO noise free model is identi�able up to a scalar indeterminacy i.e. ĥ = αh for a given

scalar coe�cient α.
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where T is the number of the observed samples (N is the length of the window).

Then, the eigen-decomposition of Rx allows us to identify the NNr × (NNr −N −
L) Vn noise subspace matrix which should be orthogonal to the signal subspace

spanned by HNr . Using this orthogonality and under the necessary identi�ability

conditions [83], the channel vector can be estimated by:

hCS = arg min
‖h‖2=1

‖VH
n HNr‖2F (2.45)

This is resolved by constructing the matrix Vn which veri�es ‖VH
n HNr‖2F = ‖VHn h‖22.

Hence, the solution hCS is the eigenvector corresponding to the smallest eigenvalue

of (VnVHn ).

MIMO system

The identi�cation conditions for the MIMO case was discussed for the subspace

method in [83]. The indeterminacy for the MIMO case is such that the solution is

found up to a Nt ×Nt full rank matrix Q i.e. ĤCS = HQ.

The subspace method stays valid for the MIMO case with some changes. The

signals covariance matrix is calculated in the same way but using xN (n) as de�ned

in Eq. (2.29). The NNr × ((NNr) − (N(L + 1)Nt)) noise subspace matrix Vn is

calculated by tanking the ((NNr) − (N(L + 1)Nt)) eigenvectors corresponding to

the smallest eigenvalues of Rx. The solution HCS is determined by calculating the

Nt eigenvectors of (VnVHn ) corresponding to the Nt smallest eigenvalues with Vn
constructed in the same way as in SIMO case.

The deterministic ML approach can also be used for MIMO channels. In such

case the ML criterion is given by:(
T (H), sN (t)

)
= arg max

T (H),sN (t)
f
(
xN (t); T (H), sN (t)

)
(2.46)

= arg min
T (H),sN (t)

{∥∥∥xN (t)− T (H)sN (t)
∥∥∥2

2

}
(2.47)

The joint optimization of the likelihood function in both the channel and the source

parameter spaces is di�cult. Fortunately, the observation is linear in both the

channel and the input parameters. In other words, we have a separable nonlinear

LS problem, which allows us to reduce the complexity considerably. The ML ap-

proaches can be made very e�ective by including the subspace and other suboptimal

approaches as initialization procedures.

2.4.3 Sparse approaches

In case of very long impulse response and sparse channel, classical methods perform

poorly. In addition, some methods (such as subspace method) need a correct estima-
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tion of channel order and su�er in case of order overestimation. Recently, solutions

have been proposed to handle this case by adapting classical blind identi�cation

methods to the sparse case by using a specular channel parametric model such as

in [84], or by constraining the desired solution through a `p-norm (with 0 < p ≤ 1)

such as in [80], where the CR cost function is considered:

hSCR = arg min
‖h‖2=1

{
hHXHNr

XNrh + λ‖h‖pp
}

(2.48)

where λ is a weighting parameter which controls the tradeo� between approximation

error and sparsity. Then, a stochastic gradient technique is proposed to solve this

minimization problem e�ciently.

Another solution was proposed in [81], where a channel sparsity measure is

used together with the ML criterion to improve the estimation quality. Based on

the Maximum a Posteriori (MAP) approach and using the generalized Laplacian

distribution model to approximate the sparse channel PDF, leads to the following

objective function:

hMAP = arg min
‖h‖2=1

{
hHXHNr

(GHCRGCR)#XNrh + λ‖h‖pp
}

(2.49)

Similarly to the ML method, the above cost function is optimized in two steps; the

�rst one is equivalent to Eq. (2.48) where
(
GHCRGCR

)#
is replaced by an iden-

tity matrix. Then, the estimated channel at the �rst step is used to construct(
GHCRGCR

)#
and to optimize Eq. (2.49) using a stochastic gradient minimization.

Furthermore, an extension was proposed in [50] to deal adaptively with such system

identi�cation based on the sparse CR method in the case of SIMO channel.

For the MIMO case, we can mention the solution proposed in [50] which is based

on the subspace method. The sparsity is induced by adding the `p-norm penalty

or the Reweighted `1 penalty [35] to the cost function in Eq. (2.45) for the MIMO

case. A gradient based solution is used for the optimization. A semi-blind solution

is introduced in the same paper to improve the performance and to resolve the

indeterminacy of the problem.

2.5 Conclusion

In this chapter, we have introduced the three main problems investigated in this

thesis. First, we discussed the principal subspace tracking problem and the data

model considered. Then, three solutions from the state-of-the-art are presented:

PAST, OPAST and FAPI algorithms. SPCA algorithms and the `1-PAST are intro-

duced as solutions to the problem of principal subspace tracking under the sparsity
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constraint of the system. The second discussed problem is blind source separation

where we introduced the classical ICA based separation solutions. Then, we showed

how sparse decomposition techniques a�ected this problem and leaded to SCA and

MCA based separation solutions. The third problem treated is blind FIR channel

identi�cation where we exposed the SIMO/MIMO model. We presented three clas-

sical approaches to this problem: TSML method, CR method and noise subspace

method. For the sparse channel problem, we have presented some methods from

the state-of-the-art, which are, in general, just an adaptation of the classical meth-

ods with additional constraints to induce the sparsity. In the next chapter, we will

present the di�erent methods proposed in order to solve the problem of tracking the

principal subspace under the sparsity constraint and the performance comparison

with the state-of-the-art algorithms.
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3.1 Introduction

In many recent applications, the data dimensions are becoming huge and that raises

some important questions about the estimation accuracy, the computational cost
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and the lack of interpretation of the signal processing techniques. This is the case,

for example, for principal component analysis (PCA) and its �nancial or biological

applications [85]. One of the ways to enhance the quality of processing and its in-

terpretability is to use all the known information about our system. In our work,

we have considered the sparsity information. More precisely, in this chapter, our

main objective is to solve the principal subspace tracking problem under a sparsity

constraint over the weight matrix. This will be crucial in two major cases: when

we deal with the lack of interpretability. For example, in high-dimensional genomic

research, the traditional PCA is often di�cult to interpret as principal components

loadings are linear combinations of all available variables (the number of genes is

generally very large for genomic data) [86]. Hence, we want to have principal com-

ponents that involve only a few genes, so researchers can focus on these speci�c

genes for further analysis [86]. In the second case, we want to recover the ground

truth mixing matrix as is the case in source separation when the mixing matrix is

sparse, in sparse channel identi�cation or generally in blind sparse system identi�ca-

tion [87]. Many solutions have been proposed for batch sparse subspace estimation

known generally as SPCA methods. Unlike the batch case, there is not a lot of

work that has been done for the adaptive scheme. After the state-of-the-art pre-

sented in the previous chapter, we present here the proposed methods to solve the

considered problem. We �rst start with the non-orthogonal case i.e. there is no

orthogonality constraint on the weight matrix which corresponds to the problem of

blind sparse system identi�cation. However, most applications of subspace tracking

methods require or prefer to use an orthogonal weight matrix, e.g. the MUSIC [10]

and the minimum-norm [88] algorithms in the context of DOA (directions of ar-

rival) or frequency estimation. Hence, we have proposed solutions to the problem

of tracking the sparse principal subspace under the orthogonality constraint of the

weight matrix.

Most of the methods proposed in the literature su�er from a trade-o� between

the subspace performance and the targeted level of sparsity. A two-step approach is

used to solve this problem, where the �rst one uses the Fast Approximated Power

Iteration subspace tracking algorithm FAPI [21] for an adaptive extraction of an or-

thonormal basis of the principal subspace. Then, under the sparsity constraint, an

estimation of the desired weight matrix is done in the second step using di�erent op-

timization techniques. The resulting algorithms have di�erent characteristics such

as the sparsity performance (speed and limit of convergence), the computational

complexity and the orthogonality of the solution. Therefore, they are able to treat

many applications depending on the imposed constraints. Under some mild condi-

tions, a theoretical convergence analysis shows that the proposed two step approach
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allows us to recover the sparse ground truth mixing matrix. Also, the proposed

algorithms have a low computational complexity (suitable for the adaptive context)

and they achieve both good convergence and estimation performance as compared

to the state-of-the-art solutions.

In this chapter, we start by deriving the proposed algorithms for both cases:

with or without the orthogonality constraint over the weight matrix. Afterwards,

we discuss the theoretical analysis of the proposed two-step approach and we show

the e�ciency of the proposed scheme compared to the state-of-the-art algorithms in

di�erent simulations scenarios.

From now on, we will suppose without any loss of generality only the real case of

the data model of Eq. (2.1) i.e. A(t), x(t), s(t) and n(t) have real entries. We can

easily extend the derived equation to the complex model at the cost of an increased

computational complexity.

3.2 Non-orthogonal sparse subspace tracking algorithms

The proposed solutions to the problem of tracking the signal subspace with a sparsity

constraint over the weight matrix are based on a two-step approach corresponding

to:

1. An adaptive extraction of an orthonormal basis of the principal subspace of

the instantaneous covariance matrix Cx(t).

2. Estimation of the sparse weight matrix that spans the same subspace.

In the �rst step, the objective function to minimize is equivalent to the one given

by Eq. (2.4) under the orthogonality constraint of the weight matrix W(t)TW(t) =

Ip in the exponential window case (equivalent formulation can also be expressed in

case of truncated window). The resulting weight matrix from this �rst step is de-

noted WPS(t). The �rst version of the proposed solutions was based on OPAST [17].

Later, we replaced OPAST by FAPI [21] which has better tracking capabilities with

the same computational complexity.

For the second step, we search for the desired sparse weight matrix in the form

W(t) = WPS(t)Q(t) where the non-singular matrix Q(t) ∈ Rp×p is introduced in

order to optimize the chosen sparsity criterion and it is computed in such a way we



44 Chapter 3. Low-cost sparse subspace tracking algorithms

minimize the cost function1

JSS

(
Q(t)

)
=
∥∥∥W(t)

∥∥∥
1

=
∥∥∥WPS(t)Q(t)

∥∥∥
1

s.t. Q(t) is non-singular with unit norm columns (3.1)

It is known that the `0 pseudo-norm is more appropriate to represent the sparsity

of W(t) but it will make the objective function non convex, non continuous and

hard to optimize. Therefore, we use the `1-norm relaxation which is the tightest

convex relaxation of the `0 pseudo-norm [89] and it makes the optimization of the

objective function easier as compared to the `0-based version. It is important also

to notice that the signal subspace spanned by WPS(t)Q(t) is the same one spanned

by WPS(t) when Q(t) in non-singular. In fact the orthogonal projection matrix of

the principal subspace estimate is given by

Πs(t) = W(t)W#(t) ≈WPS(t)Q(t)Q#(t)W#
PS(t) (3.2)

= WPS(t)WT
PS(t) (3.3)

because Q(t)Q#(t) = Ip when Q(t) is non-singular.

This is one of the reasons why we have chosen the two-step scheme. Indeed,

most of the proposed methods in the literature su�er from a trade-o� between the

subspace performance and the targeted level of sparsity. By choosing the two-

step approach, we seek the sparse basis matrix without disturbing the �rst step

responsible of the subspace tracking. Hence, the proposed method has the same

subspace performance (i.e. the linear complexity as well as the good estimation

accuracy) as the considered tracking method (FAPI).

Note that depending on the applications, the orthogonality is not necessarily

aligned with the sparsity constraint of the weight matrix. Indeed, in this work,

we con�rmed experimentally the hypothesis that looking for the best orthogonal

subspace in most of the considered situations is not the sparsest one, and trying to

reach both goals of sparsity and orthogonality at the same time generally leads to

sub-optimal solutions. For that reason, we have considered the two-step approach

with two di�erent weight matrices WPS(t) and W(t). The �rst one keeps tracking

the principal subspace and the second one estimates the sparse weight matrix. We

have proposed �ve di�erent techniques to minimize the cost function JSS

(
Q(t)

)
which leads to �ve algorithms described below: SS-FAPI, SS-FAPI2, SGSS-FAPI

for Shear-Givens rotations based SS-FAPI, OSS-FAPI for Orthogonal SS-FAPI and

GSS-FAPI for Givens rotations based SS-FAPI. The comparative behavior of these

algorithms will be illustrated and discussed in sections 3.5 and 3.6.
1SS stands for System matrix Sparsity. The unit-norm column constraint of Q(t) is necessary

here because we replaced the `0 pseudo-norm by the more tractable `1 norm.
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3.2.1 System matrix Sparsity algorithm based on FAPI SS-FAPI

The optimization of the `1 norm criterion JSS

(
Q(t)

)
is achieved here by using

a natural gradient approach [90] (see the Appendix A for more details about the

natural gradient and its relation with SS-FAPI). Hence, we search for the updated

matrix Q(t) in the form Q(t) = Q(t− 1)
(
Ip + ε

)
where ε ∈ Rp×p is a matrix which

has small valued entries (depending on the gradient step) that can be computed

using a �rst order approximation according to:

ε̂ = arg min
ε

∥∥∥WPS(t)Q(t− 1) + WPS(t)Q(t− 1) ε
∥∥∥

1
(3.4)

Letting M = WPS(t)Q(t− 1), then (3.4) yields

ε̂ = arg min
ε

∥∥∥M + M ε
∥∥∥

1
(3.5)

= arg min
ε

d∑
i=1

p∑
j=1

∣∣∣mij +

p∑
k=1

mikεkj

∣∣∣ (3.6)

If we assume that two scalars x and z have the same sign or |z| ≤ |x|, one can say

that |x + z| = |x| + sign(x)z. This remains approximately true when |z| is slightly
bigger than |x|. Using this approximation in (3.6) (mij as x and

∑p
k=1mikεkj as z)

leads to:

ε̂ ≈ arg min
ε

d∑
i=1

p∑
j=1

(
|mij |+ sign(mij)

p∑
k=1

mikεkj

)
(3.7)

The idea is to look for an expression of ε that ensures a decreasing direction of the

objective function. We can see that:

d∑
i=1

p∑
j=1

(
sign(mij)

p∑
k=1

mikεkj

)

=

p∑
j=1

p∑
k=1

(
εkj

d∑
i=1

sign(mij)mik

)
(3.8)

=

p∑
j=1

p∑
k=1

εkjbkj = Tr(εBT ) (3.9)

with B = MT sign(M). By applying a simple gradient on (3.9), we can take

ε̂ = −µ B
‖B‖2F

with µ > 0 to ensure a local decrease of the cost function. On the

other hand, the value of µ should be small enough for the linear approximation to

hold and to preserve the non-singularity of matrix Q. In fact, using a �rst order

approximation, one can write:

det
(
Q(t)

)
≈ det

(
Q(t− 1)

)(
1− µTr(B)

‖B‖2F

)
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Algorithm 5 System matrix Sparsity algorithm based on FAPI SS-FAPI

Require: x(t) data vector, β the forgetting factor, WPS(t − 1), ZPS(t − 1) and

Q(t− 1) from the previous iteration.

Ensure: WPS(t), ZPS(t), Q(t) and the sparse weight matrix W(t)

1: Find WPS(t) using FAPI

2: M = WPS(t)Q(t− 1)

3: B = MT sign(M) then B = B
‖B‖2F

4: Q(t) = Q(t− 1)
(
Ip − µB

)
5: Columns normalization of Q(t)

6: W(t) = WPS(t)Q(t).

Therefore, one can choose heuristically µ = c‖B‖2F /Tr(B) where c < 1 (typically

c = 0.1) is a given small coe�cient. The full SS-FAPI algorithm is summarized in

Algorithm 5.

Note that, after every iteration, it is important to normalize the columns of

Q(t) to better control the conditioning of matrix W(t) and to meet the constraint

condition of Eq. (3.1). This columns normalization can be see as a projection onto

the set {Q : ‖qi‖ = 1}, i.e., the set of matrices with unit norm columns, which

makes the followed scheme similar to the projected gradient scheme. However,

instead of the ordinary gradient (sub-gradient), we use the natural gradient (see the

Appendix A for the relation with the natural gradient).

Although the complexity2 of the �rst stage (FAPI algorithm) is only O(dp), the

global complexity of our algorithm is O(dp2) because the second stage dominates

the overall complexity. Thus, two improvement directions on SS-FAPI are possible

by:

• Replacing the FAPI algorithm used in the �rst stage's by a more e�cient subspace

tracker of complexity O(dp2) which leads to the same global complexity with better

subspace estimation. Thus, following this idea, we have proposed a variant called

SS-LORAF2 where we use the algorithm LORAF2 [18] to track the subspace in the

�rst stage while keeping the second stage unchanged.

• Or otherwise, reducing the computational complexity of the second stage respon-

sible of the `1 minimization to keep the linear global complexity, which we propose

here in the second algorithm SS-FAPI2.

2Operations counts are expressed in terms of multiply-accumulate (MAC) operations. Only the

dominant cost of the SS-FAPI second stage is presented under the assumption p << d.
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3.2.2 System matrix Sparsity algorithm based on FAPI SS-FAPI2

Based of SS-FAPI, the idea here is to avoid using all the matrix B = MT sign(M)

to update Q(t) but selecting only two entries which have (i, j) and (j, i) as indices

with i 6= j. This is equivalent to minimize only the `1-norm of the ith and the jth

columns of the matrix W(t) in Eq. (3.1). The choice of i and j is done according

to an automatic (incremental) selection throughout the iterations in such a way all

indices values are visited periodically with 1 ≤ i < j ≤ p. Hence, if (l,m) are the

indices at time instant (t− 1), then at the current time instant, we will have

(i, j) =


(l,m+ 1) if m < p

(l + 1, l + 2) if m = p and l < p− 1

(1, 2) if m = p and l = p− 1

(3.10)

Using this update in (3.4) and (3.7), we can see that only bij and bji need to be

calculated. For that, one needs only to evaluate the two columns mi and mj of the

matrix M.

mi = wi(t− 1) + g̃ie and mj = wj(t− 1) + g̃je (3.11)

bij = mT
i sign(mj) and bji = mT

j sign(mi) (3.12)

where wj(t−1) is the jth column of the sparse weight matrix of the previous iteration

and g̃j is the jth element of vector g̃ = Q(t − 1)Tg (g and e are rank-one update

vectors issued from the last step of FAPI). Then, we normalize by b2ji+b
2
ij = 1 (same

normalization as B
‖B‖2F

in SS-FAPI) and we update Q(t) by Q(t) = Q(t − 1) − µZ

with Z is given by Z = [0, ..., bjiqj(t − 1), 0, ..., bijqi(t − 1), ...0]. Finally, W(t) is

given by

W(t) =
(
WPS(t− 1) + egT

)(
Q(t− 1)− µZ

)
= W(t− 1) + eg̃T − µW̃ (3.13)

with W̃ = WPS(t)Z = [0, . . . , djimj , 0, . . . , dijmi, . . . , 0]. This version is called SS-

FAPI2 and it is summarized in Algorithm 6. The global complexity of SS-FAPI2 is

4dp+O(p2) which is linear and comparable to the complexity of simple FAPI (i.e.

3dp+O(p2)). However, it is clearly smaller than the complexity of SS-FAPI which

is O(dp2).

Note that other selection strategies for the rotation indices can be considered.

For example, at each iteration, one can select the indices (i, j) corresponding to the

columns mi and mj of matrix M having the maximum `1 norms (i.e. the ones that

deviate the most from the target sparsity objective).
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Algorithm 6 System matrix Sparsity algorithm based on FAPI SS-FAPI2

Require: x(t) data vector, β the forgetting factor, W(t−1), WPS(t−1), ZPS(t−1)

and Q(t− 1) from the previous iteration.

Ensure: WPS(t), ZPS(t), Q(t) and the sparse weight matrix W(t)

1: WPS(t) = WPS(t− 1) + egT last step of FAPI

2: g̃ = Q(t− 1)Tg

3: Update indices (i, j) using automatic selection strategy according to Eq. (3.10)

4: mi = wi(t− 1) + g̃ie and mj = wj(t− 1) + g̃je

5: bij = mT
i sign(mj) and bji = mT

j sign(mi)

6: bij =
bij√
b2ij+b2ji

and bji =
bji√
b2ij+b2ji

7: Z = [0, ..., bjiqj(t− 1), 0, ..., bijqi(t− 1), ...0]

8: Q(t) = Q(t− 1)− µZ

9: W̃ = [0, ..., bjimj , 0, ..., bijmi, ...0]

10: W(t) = W(t− 1) + eg̃T − µW̃

3.2.3 System matrix Sparsity algorithm based on FAPI and Shear-

Givens rotations SGSS-FAPI

The SGSS-FAPI (Shear-Givens rotations SS-FAPI) algorithm is based on the same

two-step approach as in the previous algorithms. However, in this work, the sparsity

criterion is optimized by means of Givens and Shear (hyperbolic givens) rotations.

The Jacobi-like techniques are attractive due to their numerical stability, their low

computational cost and their facility to be parallelized. Such techniques have been

already used in the context of blind source separation [91, 92] but with di�erent a

priori information on source signals.

In order to minimize JSS
(
Q(t)

)
, we propose to write the matrix Q(t) as a

product of elementary Givens and Shear matrices:

Q(t) =
∏

1≤i<j≤p
GijSij (3.14)

Indeed, any non singular matrix (up to a scalar constant) can be decomposed into

product of Shear Sij and Givens Gij rotation matrices for 1 ≤ i < j ≤ p which

are de�ned as an identity matrix except for their (i, i)th, (i, j)th, (j, i)th and (j, j)th

entries given by:[
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θ) −eiα sin(θ)

e−iα sin(θ) cos(θ)

]
(3.15)[

Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
=

[
cosh(φ) eiβ sinh(φ)

e−iβ sinh(φ) cosh(φ)

]
(3.16)
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where (θ, α) and (φ, β) are Givens and Shear parameters (α = β = 0 in the real

case). Next, we present the case of using just one Shear-Givens rotation every time

iteration for simplicity and then we generalize to the case where we consider more

than one rotation. Hence, we can write that

Q(t) = Q(t− 1)GijSij (3.17)

for the selected indices (i, j) at the tth time iteration.

In order to minimize the objective function JSS

(
Q(t)

)
, one needs to specify

how the rotation indices are chosen at each iteration as well as how the parameters

(θ, φ) are optimized. We can propose to use the automatic selection strategy for the

rotation indices already used for SS-FAPI2 and expressed in Eq. (3.10) which allows

us to scan all the p(p− 1)/2 possible values periodically.

Hence, after �xing the indices (i, j), �nding Q(t) resumes in estimating the

parameters (θ, φ) which minimize:

J(θ, φ) =
∥∥∥WPS(t)Q(t− 1)GijSij

∥∥∥
1

(3.18)

=

∥∥∥∥∥[mi mj

] [cos(θ) − sin(θ)

sin(θ) cos(θ)

][
cosh(φ) sinh(φ)

sinh(φ) cosh(φ)

]∥∥∥∥∥
1

(3.19)

where mi and mj are the ith and jth columns of the product WPS(t)Q(t − 1)

available from the previous iteration. We can expand the equation to:

J(θ, φ) =
∥∥∥( cos(θ) cosh(φ)− sin(θ) sinh(φ)

)
mi+(

cos(θ) sinh(φ) + sin(θ) cosh(φ)
)
mj

∥∥∥
1
+∥∥∥( cos(θ) sinh(φ)− sin(θ) cosh(φ)

)
mi+(

cos(θ) cosh(φ) + sin(θ) sinh(φ)
)
mj

∥∥∥
1

(3.20)

J(θ, φ) is a scalar function of two variables with no simple analytic solution for

its minimum point. In order to minimize J(θ, φ), we propose to use a numerical

optimization method for unconstrained multivariate cost functions.

Now, we will resume the scheme to follow in order to reach a linear compu-

tational complexity for both steps. The main idea is to run the FAPI algorithm

independently and to update the weight matrix by

W(t) =WPS(t)Q(t) (3.21)

=
(
WPS(t− 1) + egT

)
Q(t− 1)GijSij (3.22)

=W(t− 1)GijSij + egTQ(t) (3.23)
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Algorithm 7 System matrix Sparsity algorithm based on FAPI and Shear-Givens

rotations SGSS-FAPI
Require: x(t) data vector, forgetting factor β, WPS(t−1) and ZPS(t−1) previous

FAPI outputs. Previous indices (l,m) and outputs Q(t− 1), W(t− 1).

Ensure: WPS(t), ZPS(t), indices (i, j), Q(t) and W(t)

1: Run FAPI : WPS(t) = WPS(t− 1) + e′(t)g(t)H

2: Update indices (i, j) using automatic selection strategy according to Eq. (3.10)

3: Computing mi and mj

4: Find (θ̂, φ̂) = arg min J(θ, φ)

5: Q(t) = Q(t− 1)GijSij
6: W(t) = W(t− 1)GijSij + egTQ(t)

where e and g are the FAPI rank one update vectors. The matrix-matrix multipli-

cation in Eq. (3.23) involves only two columns of the matrix W(t−1) which gives us

a linear global computational complexity of order 4dp+O(p2) �ops per iteration or

7dp+ 4Lp+O(p2) if we use the truncated window version of FAPI. (L is the length

of the data window approximated by 1
1−β ). The proposed algorithm referred to as

SGSS-FAPI (Shear-Givens rotations based algorithm for System matrix Sparsity) is

summarized in Algorithm 7.

Remark 1: It is possible to optimize separately the Givens parameter θ then the

Shear parameter φ. This leads to a slight loss in terms of estimation quality but

helps reducing the computational cost since one replaces the 2D search by two 1D

parameter optimization. This version is referred to as SGSS-FAPI-iter.

Remark 2: In case where we consider more than one Shear-Givens rotation every

time iteration, two possible solutions can be adopted. First, we can consider a se-

quential solution by repeating steps 2-6 of Algorithm 7. Otherwise, we can use the

parallelization capability of the Jacobi-like techniques, which allows us run simulta-

neously steps 3-6 of Algorithm 7 for multiple pairs of indices selected according to

more sophisticated selection strategy (pairs should not share any column index).

Remark 3: In the complex case, the `1 cost function depends on four parameters

(θ, φ, α, β), which means that the joint optimization used in SGSS-FAPI is harder

and more time-consuming. In this case, the iterative optimization (parameter per

parameter) used in SGSS-FAPI-iter is more interesting, especially knowing that the

parameters (θ, α, β) are angles bounded by [−π2 ,
π
2 ].
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3.3 Orthogonal sparse subspace tracking algorithms

Until now, we have not put any orthogonality constraint on the output weight matrix

in order to reach the maximum of the weight matrix sparsity. However, most ap-

plications of subspace tracking require or prefer to use an orthogonal weight matrix

as is the case for most of SPCA applications and also DOA estimators MUSIC [10]

and minimum-norm [88]. Hence, we have modi�ed SS-FAPI to force the output

orthogonality in the next algorithm called OSS-FAPI.

3.3.1 Orthogonal System matrix Sparsity algorithm based on FAPI

OSS-FAPI

The goal is to keep the same scheme as SS-FAPI but ensure also the orthogonality of

the weight matrix. We already knew that the output of the FAPI algorithm WPS(t)

is orthogonal and the columns of Q(t) are normalized. Thus, the orthogonality

constraint of W(t) requires that Q(t) to be orthonormal. Under the assumption

that Q(t− 1)TQ(t− 1) = Ip, we want the update Q(t) = Q(t− 1)
(
Ip − µB

)
such

that it minimizes the sparsity criterion while preserving the orthogonality of Q(t).

For that we will exploit the fact that a square matrix R is a skew-symmetric matrix

(i.e. RT = −R) if and only if exp(R) is a unitary matrix. We use the same updating

trick considered in [93], to replace Q(t) = Q(t − 1)
(
Ip − µB

)
by the new update

form Q(t) = Q(t− 1)exp
(
− µB

)
. If we take a small enough gradient step µ, it is

simple to prove that the two forms are approximately equal:

Q(t) = Q(t− 1)exp(−µB) (3.24)

= Q(t− 1)
(
Ip − µB +

µ2

2!
B2 − µ3

3!
B3 + ...

)
(3.25)

≈ Q(t− 1)
(
Ip − µB

)
(3.26)

Hence, our new aim is to search for a skew-symmetric matrix B that minimizes (3.5).

It is known that a skew-symmetric matrix −µB can be decomposed into the sum

−µB = ε − εT where ε ∈ Rp×p. So, we simply change ε in (3.5) by ε − εT which

gives

ε̂ = arg min
ε

∥∥∥M + M(ε− εT )
∥∥∥

1
(3.27)

Using the same development as in (3.7), we get this time

ε̂ ≈ arg min
ε

d∑
i=1

p∑
j=1

|mij |+ sign(mij)

p∑
k=1

mikεkj − sign(mij)

p∑
k=1

mikεjk (3.28)
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Algorithm 8 Orthogonal System matrix Sparsity algorithm based on FAPI OSS-

FAPI
Require: x(t) data vector, β the forgetting factor, WPS(t − 1), ZPS(t − 1) and

Q(t− 1) from the previous iteration.

Ensure: WPS(t), ZPS(t), Q(t) and the sparse-orthogonal weight matrix W(t)

1: Find WPS(t) using FAPI

2: M = WPS(t)Q(t− 1)

3: B = MT sign(M)

4: F = B−BT then F = F
‖F‖2F

5: Q(t) = Q(t− 1)exp
(
− µF

)
6: W(t) = WPS(t)Q(t).

then the second term can be rewritten as

d∑
i=1

p∑
j=1

sign(mij)

p∑
k=1

mikεkj − sign(mij)

p∑
k=1

mikεjk

=

p∑
j=1

p∑
k=1

εkj

d∑
i=1

(
sign(mij)mik − sign(mik)mij

)
(3.29)

=

p∑
j=1

p∑
k=1

εkjfkj = Tr(εFT ) (3.30)

where F = MT sign(M)− sign(M)TM. Applying a simple gradient on (3.30) leads

to ε̂ = −µ F
‖F‖2F

which ensures a local decreasing of the objective function. The full

OSS-FAPI algorithm is summarized in Algorithm 8.

Initially Q(t) = Q(t − 1)exp
(
− µ(ε − εT )

)
with ε = −µ F

‖F‖2F
, but we have

remarked that ε − εT = 2 F
‖F‖2F

because F is already a skew-symmetric. Hence, we

are omitting the calculation of ε − εT and integrate the multiplication by 2 in the

normalization step before multiplying by µ.

Note that numerical complexity of OSS-FAPI is O(dp2) as in SS-FAPI, this can

be explained by the fact that the only di�erence between the two algorithms is

the matrix exponential calculation which costs O(p3) �ops (dp2 >> p3 under the

assumption d >> p).

3.3.2 System matrix Sparsity algorithm based on FAPI and Givens

rotations GSS-FAPI

Following the same spirit as for SS-FAPI2, we aim now to reduce the computa-

tional complexity of OSS-FAPI from O(dp2) to O(dp). To achieve this objective,
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we propose to update at each iteration only two entries of matrix ε − εT . Hence,

the latter matrix has zero-valued entries except for its (i, j)-th and (j, i)-th en-

tries that are equal to θ and −θ, respectively. In that case, the exponential matrix

exp
(
−µ(ε−εT )

)
coincides with a unitary Givens rotation according to the equality:

exp

(
−

[
0 θ

−θ 0

])
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
.

Based on this, the considered p × p unitary matrix will be decomposed into a

product of elementary Givens rotations

Q(t) =
∏

1≤i<j≤p
Gij (3.31)

where, Gij is de�ned as in Eq. (3.15), i.e. an identity matrix except for their (i, i)th,

(i, j)th, (j, i)th and (j, j)th entries given by:[
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
c −s
s c

]
where c = cos(θ) and s = sin(θ) for some angle θ and the coordinate pair (i, j)

takes all the p(p − 1)/2 possible values in the range 1 ≤ i < j ≤ p. It is clear

that those matrices are orthonormal and the product WPS(t)Gij will span the same

subspace as WPS(t). Givens-based (Jacobi-like) techniques are known also for their

numerical stability, their facility to be parallelized and their low operation count

when dealing with very sparse matrices.

Next, we present the case of using just one rotation every time iteration for

simplicity and then we generalize to the case where we consider more than one

rotation. In the �rst stage we keep using the FAPI [21] algorithm as a subspace

tracker, then in the second stage we seek the matrix Gij that minimizes the objective

function JSS
(
Gij
)

=
∥∥∥WPS(t)Gij

∥∥∥
1
.

We have used the same automatic (incremental) selection strategy throughout

the iterations for the rotation indices (i, j) as the one used in SS-FAPI2 (according

to (3.10)), which allows us to select all the p(p − 1)/2 possible values periodically.

Thus, �nding Gij resumes in �nding the angle θ which minimizes:

θ̂ = arg min
θ

∥∥∥WPS(t)Gij
∥∥∥

1
(3.32)

= arg min
θ

∥∥∥wPS1(t) . . . cwPSi(t) + swPSj(t) . . .

. . . cwPSj(t)− swPSi(t) . . .wPSp(t)
∥∥∥

1
(3.33)

= arg min
θ

∥∥∥ cos(θ)wPSi(t) + sin(θ)wPSj(t)

cos(θ)wPSj(t)− sin(θ)wPSi(t)
∥∥∥

1
(3.34)
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where wPSj(t) is the jth column of matrix WPS(t).

It is clear that JSS is a π/2 periodic scalar function of a single variable θ.

There is no simple analytical solution to this problem, so we have used a numerical

search solution which minimizes a scalar continuous function over a �xed interval

of a single variable. The cost of this minimization is relatively low because it is a

scalar function with only one bounded variable (θ ∈ [−π
4 ,

π
4 ]). Since we are using

a numerical solution, we can also change the `1 norm penalty by other functions

to enhance the sparsity as the one used in reweighed `1-norm minimization [35]

where they consider P (wj) =
∑d

i=1 log(1 +
|wij |
ν ) with 0 < ν << 1 or the one

proposed in [49] which is also based on a sum of logs but handle additionally its

non-smoothness (non-di�erentiable at 0) by using a quadratic approximation around

0.

After estimating Gij , the update form in GSS-FAPI is based on the implementa-

tion of the API [20] (Approximated Power Iteration) algorithm, the parent version of

FAPI [21] by adapting both outputs (W(t) and Z(t)). Indeed, the update equations

for W(t) and Z(t) in API are

ZPS(t) =
1

β
Θ(t)T

(
Ip − g yT

)
ZPS(t− 1)Θ(t)−T (3.35)

WPS(t) =
(
WPS(t− 1) + e gT

)
Θ(t) (3.36)

with y, g, e and Θ(t) are given by the �rst equations in the algorithm API [20].

In our case, we need to add the calculation of the product W(t) = WPS(t)Gij
to the update form. Hence, it is equivalent to use a new matrix Θ̂(t) = Θ(t)Gij in
the previous update equations which gives us:

Z(t) =
1

β
GTijΘ(t)T

(
Ip − g yT

)
ZPS(t− 1)Θ(t)−TGij (3.37)

W(t) =
(
WPS(t− 1) + e gT

)
Θ(t)Gij (3.38)

with G−Tij = Gij because it is an orthonormal matrix. This can be rewritten as:

Z(t) = GTijZPS(t)Gij (3.39)

W(t) = WPS(t)Gij (3.40)

This update applies also for the FAPI algorithm. We note also that the multi-

plication by Gij can be calculated simply by updating the i-th and j-th columns

or rows of the multiplied matrix depending of the direction of the multiplication

which will reduce considerably the computational cost. The GSS-FAPI algorithm is

summarized in Algorithm 9.
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Algorithm 9 System matrix Sparsity algorithm based on FAPI and Givens rota-

tions GSS-FAPI
1: Find [WPS(t),ZPS(t)] = FAPI(x(t),W(t),Z(t), β)

2: Update indices (i, j) using automatic selection strategy according to Eq. (3.10)

3: Find the angle θ according to (3.34)

4: wk(t) = wPSk(t) for k /∈ {i, j}
5: wi(t) = cos(θ)wPSi(t) + sin(θ)wPSj(t)

6: wj(t) = − sin(θ)wPSi(t) + cos(θ)wPSj(t)

7: sk = zPSk(t) for k /∈ {i, j}
8: si = cos(θ)zPSi(t) + sin(θ)zPSj(t)

9: sj = − sin(θ)zPSi(t) + cos(θ)zPSj(t)

10: Z(t) = S

11: Zi,:(t) = cos(θ)Si,: + sin(θ)Sj,: (Si,: being the i-th row of S)

12: Zj,:(t) = − sin(θ)Si,: + cos(θ)Sj,:

One can see that the computational complexity of GSS-FAPI is now linear of

order O(dp). Additionally, GSS-FAPI has less needs in memory storage because it

stores only W(t) and Z(t), contrary to the previous algorithms where we had to

keep also WPS(t) and Q(t). In case of using multiple (nbrot > 1) Givens rotation

matrices, we need only to repeat steps 2 until 12 nbrot times and use the output

indices, W(t) and Z(t) of the previous rotation as inputs for the next one.

3.4 Theoretical analysis

The algorithms proposed in the previous sections are all based on the same two-step

scheme, therefore, we will analyze the convergence behavior of each stage separately.

In the �rst part, we are interested in the convergence of the FAPI algorithm to the

principal subspace. In the second part, we will provide more details about the `1
minimization problem and its convergence.

3.4.1 Convergence analysis of FAPI algorithm

The FAPI algorithm is a simpli�ed version of the QR power iteration algorithm

which is related to the natural power method. In fact, the direct implementation of

the natural power method is equivalent (up to a unitary rotation) to the QR power

method. The global and exponential convergence property of the natural power

method was shown in [19]. It has been also analyzed in [16] where the convergence

analysis of PAST algorithm (that uses, like FAPI, a power iteration approach) is

provided.
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3.4.2 Convergence analysis of the `1 minimization

Let us assume that FAPI converged to Us, the orthogonal principal subspace which

spans the same subspace as A0 the mixing matrix. The `1 minimization tends to

recover the ground truth (original) mixing matrix A0 which is assumed to be sparse

by �nding the invertible matrix Q0 which rotates Us into A0 = UsQ0.

arg min
Q

∥∥∥UsQ
∥∥∥

1
s.t Q ∈ Q (3.41)

with Q =
{

Q invertible and ‖qi‖2 = 1 i = 1, . . . , p
}

and qi being the i-th

column vector of Q. It is important to study �rst the identi�ability of the objective

function, then the convergence property of the gradient scheme used in SS-FAPI.

Identi�ability

The main idea here is to transform our problem to match the shape of a sparse

dictionary learning problem or a matrix factorization problem in order to take ad-

vantage of their available theoretical identi�cation studies. First, let W = UsQ,

then we can write that Us = WQ−1 (Q is invertible). By taking the transpose we

found UT
s = Q−TWT and problem (3.41) can be seen as:

arg min
Q

∥∥∥W∥∥∥
1

s.t UT
s = Q−TWT , Q ∈ Q (3.42)

The previous problem has the same shape as the sparse dictionary learning

problem where we seek the sparse representation WT and the dictionary Q−T by

separating the observations Us
T into Us

T = Q−TWT . It can also be seen as a

simpli�ed matrix factorization problem given Us and the a priori sparsity infor-

mation of W. Recent works [94�101] have considered the characterization of A0

such that the local minima of (3.42) can only be found at around Q0, which would

guarantee that numerical optimization algorithms cannot be trapped in spurious

local minima, and would converge independently of their initialization. This raises

two new smaller issues: �rst, the uniqueness, i.e. which conditions guarantee that,

when Q is a local minimum of the cost function, it must match Q0 ? Second, the

local identi�ability, i.e. which conditions on A0 (and Q0) guarantee that Q0 is a

local minimum of the cost function ?

The uniqueness of such factorization has been studied for the �rst time in the

context of dictionary learning for the `0 problem in [94] [95] with a combinatorial

approach, then in [96] where they considered the case of complete dictionary. This

is equivalent to the `0 version of (3.42) where the complete dictionary corresponds

to the invertible matrix Q. The authors in [96] consider the noiseless case and use

the Bernoulli-Subgaussian model to characterize the sparsity de�ned by:
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De�nition 1 The matrix A0 satis�es the Bernoulli-Gaussian model with parameter

θ if A0 = Ω �R, where Ω is an iid Bernoulli matrix with parameter θ, and R is

an independent random matrix whose entries are i.i.d N (0, 1).

The authors in [96, Theorem 3] provide a tighter lower bound on the number of

samples required (dimension of the system in our case) compared to [94] [95] for a

certain sparsity level of A0 that guarantees the uniqueness of the solution for the `0
factorization problem. In the same spirit of [96, Theorem 3], one can �nd a lower

bound on the number of sensors d (dimension of the system) required to recover

'uniquely' the pair (Q0,A0) for a certain number p of signals and sparsity level

of A0. First, we need to de�ne the matrices Π and ∆, where Π is a permutation

matrix, with a single non-zero element (which equals 1) in each row and column.

The matrix ∆ is a diagonal sign matrix, with a diagonal entries equal to ±1.

Theorem 1 Suppose that A0 follows the Bernoulli-Gaussian model with parame-

ter θ . If 1
p ≤ θ ≤ 1

C and d > Cp log(p) for C large enough, then, with prob-

ability at least 1 − exp (−c′d), any alternative factorization UT
s = Q−TWT such

that maxi

(∥∥∥Wei

∥∥∥
0

)
≤ maxi

(∥∥∥A0ei

∥∥∥
0

)
can be decomposed as W = A0Π∆ and

Q = Q0Π∆ , for some permutation matrix Π and sign matrix ∆.

where ei is the standard basis vector that is non-zero in coordinate i (i = 1, . . . , p)

and C, c′ are positive constants which depend on the sparsity parameter θ and the

system dimensions (d, p). For C large enough, (d large) the probability 1−exp (−c′d)

tends to 1. The proof of theorem 1 is based on an obvious idea; since W spans the

same subspace as A0, it can be seen as a linear combination of its columns. Or a

linear combination of distinct sparse columns of A0 with disjoint sparsity patterns

(di�erent indices for the non-zero entries), can only deteriorate the sparsity of the

result (increase the number of non-zero entries). A formal proof is established in [96,

Appendix A] for the case of dictionary learning.

As a result for Theorem 1, while solving our problem, we focus on the local

identi�ability of the whole equivalence class de�ned by the transformations described

above in Theorem 1. Extending the previous result to the `1 objective function is

an open research problem and more results can be found in literature of dictionary

learning such as [97] [98]. Having established the basis for uniqueness of the solution,

we now turn to discuss the convergence.

Convergence

The local convergence was �rst discussed for the complete dictionary case in [99]

where they developed necessary and su�cient algebraic conditions on a dictionary
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coe�cient pair (A0 and Q0) to constitute a local minimum of the `1 dictionary learn-

ing criterion. After that, most of works focused on the extension to the over-complete

case [100] (which does not interest us because Q0 is square) and the robustness to

noise and outliers [101].

One of the most recent results was introduced in [101] where the authors for-

mulate the problem as LASSO minimization function to handle the noisy case in

addition to outliers. They provide an asymptotic as well as precise �nite-sample

analysis of the local minima under certain mild assumptions. It was found that the

resulting dictionary converges locally to the reference dictionary Q0 with a certain

resolution r, (i.e. ‖Q̂ − Q0‖F ≤ r) which depends on the limited coherence3 of

Q0, limited number of non-zeros in A0 and small enough LASSO regularization

parameter λ. More details can be found in [101, Theorem 1-2].

The gradient descent used in SS-FAPI is similar to the natural gradient step as

we explain in the Appendix. Using the results discussed above on the uniqueness and

the local convergence, we can conclude that under certain constraints the proposed

gradient descent method will converge asymptotically to the local minima which is

equivalent to Q0 up to a permutation and sign transformation. These constraints

are over the system size (d > Cp log p), the sparsity of the ground truth A0 and its

coherence (same as coherence of Q0).

3.5 Simulation results

We present in this section some numerical simulations to assess the performance

of the proposed algorithms. They are compared to FAPI [21] as subspace tracking

algorithm without sparsity constraint and `1-PAST as representative of the state-

of-art of low-complexity sparse subspace tracking algorithms. Also, we compare SS-

FAPI to the SPCA batch algorithms: GPower [48] and IMRP [49] and the adaptive

algorithm Streaming-SPCA [55].

3.5.1 Performance factors

In order to measure the estimation error of the principal subspace, we adopt the

following normalized quadratic error of reconstruction:

ρ(t) =
1

r

r∑
i=1

Tr
(
W#

i (t)
(
In −WexW

T
ex

)
Wi(t)

)
Tr
(
W#

i (t)WexWT
exWi(t)

) (3.43)

3The maximum absolute value of the cross-correlations between the normalized columns of Q

i.e. max
i 6=j

|qi
Tqj|.
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where r is the number of Monte Carlo runs, Wi(t) is the sparse weight matrix of

the estimated subspace at sample i and iteration t. Wex is the exact orthogonal

subspace computed from the exact mixing matrix A (in synthetic data simulation)

or extracted from the principal eigenvector subspace of the whole data set (in real

data application).

As we explained in the previous section, though `0 is the most appropriate

sparsity measure, all our algorithms are based on minimizing the `1 penalty function.

Hence, the resulting matrix has probably a lot of non-zero small values, therefore,

a thresholding step must be applied to present well the `0 sparsity of our solutions.

By choosing a well adjusted threshold α, one can use the following ratio to express

the `0 sparsity

S
(
W(t)

)
α

=
1

dp

∥∥∥(|wij(t)| < α)
∥∥∥

0
(3.44)

where ((wij(t) < α) is the (i, j)-th entry of a d × p binary matrix equal to zero

or otherwise one if the inequality is satis�ed. wij(t) refers here to the (i, j)-th

element of the matrix W(t). This metric depends of the parameter α and the time

iteration t which will yield 3-dimensional graphs to have a full vision of the function

evolution. To have simpler results presentation, most of the plots in this section are

in function of time iteration, so we choose as a sparsity measure the `1-norm of the

weight matrix with columns normalized to 1 which is a parameter free metric.

In order to measure the capability of the proposed methods to recover the ground

truth mixing matrix, we de�ne the recovery error Γ by:

Γ
(
A#W

)
=

1

p(p− 1)

p∑
i=1

( p∑
j=1

(
A#W

)2

ij

max
((

A#W
)2

ij

) − 1
)

(3.45)

which is similar to the global rejection level proposed in [102] in the context of blind

source separation.

3.5.2 Synthetic data

We consider tracking the principal subspace of rank p (number of sources) within

a d dimensional system (number of sensors) with d > p. We use the data model

x(t) = A(t)s(t) + n(t) with A ∈ Rd×p a random sparse mixing matrix generated

according to the Bernoulli-Gaussian model with parameter θ. The vector s(t) of

source signals is generated according to a Gaussian distribution, with zero mean

and unit variance, and n(t) is a white Gaussian noise with a variance σ2. We

generate T snapshots x(t) for every Monte Carlo run with r = 100. In the following,

the matrices W(0), Z(0), WPS(0), ZPS(0) and Q(0) are initialized by an identity
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matrix. The signal to noise ratio SNR for our data model is de�ned by

SNR(dB) = 10log10

E
[∥∥∥A(t)r(t)

∥∥∥2

2

]
E
[∥∥∥n(t)

∥∥∥2

2

] (3.46)

In the �rst simulation, we consider the parameters: d = 16, p = 9, θ = 0.3

i.e. 30% of the matrix A entries are non-zero, SNR=15dB, β = 0.99 as forgetting

factor, µSS−FAPI = 1, µSS−FAPI2 = 0.1, µOSS−FAPI = 1, κl1−PAST = 1 and one

rotation per iteration for SGSS-FAPI and GSS-FAPI. We study two cases: A is

non-orthogonal corresponding to the results shown in Fig. 3.1 and A is orthogonal

which the results are shown in Fig. 3.2. It is clear from the subspace performance

in Fig. 3.1 and Fig. 3.2, that all the proposed algorithms have the same subspace

error as FAPI [21] which is in agreement with our claim and they out-perform the

`1-PAST [56] algorithm. In terms of the `1 norm, in both cases, SS-FAPI, SS-FAPI2

and SGSS-FAPI reach lower error levels as compared to OSS-FAPI and GSS-fapi.

Furthermore, they can reach `1-norm limits smaller than the mean of `1-norms of

the matrices A used in the simulation. The identity initialization explains the low

sparsity level in the early iterations for all the algorithms. We provide also the `0
sparsity ratio S

(
W(t)

)
α
to con�rm that the `1-norm is su�cient to express the

sparsity behavior which is demonstrated in Fig. 3.1 and Fig. 3.2 by an arbitrarily

chosen threshold α = 0.05. We provide also the recovery error of the ground truth

matrix A for the orthogonal and the non-orthogonal cases. We can notice that the

proposed methods outperform the `1-PAST [56] algorithm.

In order to show the capability of the proposed methods to recover the ground

truth mixing matrix A, we calculate the recovery error de�ned in (3.45) and then we

decide with an ad-hoc threshold (−20dB) if A0 was well recovered or not. In each

simulation, we consider the noiseless case and we change the system size (d, p) by �x-

ing p ∈ {16, 20, 24, 28, 32} and changing d between 0.5p log(p) < d < 4p log(p). For

each pair (d, p), 200 iterations are carried out with a sparsity parameter (Bernoulli

parameter in the Bernoulli-Subgaussian model) θ = 0.3. Figure 3.3 shows the phase

diagram of SS-FAPI with A being non-orthogonal on the left and OSS-FAPI with A

being orthogonal on the right. The simulation results con�rm the theoretical study

presented above and we see that above a certain number of sensors d > Cp log(p),

the ground truth matrix A is correctly recovered up to a sign and a permutation

transformation.
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Figure 3.1: Subspace performance ρ(t), norm `1 of W(t), `0 sparsity ratio S
(
W(t)

)
α

with α = 0.05 and the recovery error Γ
(
A#W(t)

)
in terms of dB versus time with

A non-orthogonal and (d = 16, p = 9, SNR = 15dB)
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Figure 3.3: Phase diagram of: -left- SS-FAPI for non-orthogonal A0 -right- OSS-

FAPI for orthogonal A0, with sparsity parameter θ = 0.3 and p ∈ {16, 20, 24, 28, 32}

The performances of the proposed algorithms SS-FAPI, SS-FAPI2 and OSS-

FAPI depend heavily on the chosen optimization step µ. In Fig. 3.4, we investigate

the in�uence of taking di�erent step values µ ∈ {0.01, 0.1, 1, 5, 10, 20, 0.1
‖B‖2F
Tr(B)} on

SS-FAPI performance with d = 16, p = 9 and SNR = 15dB. Actually, small µ val-

ues yield to low convergence rates and large µ values would degrade the algorithm's

performance due to the non-validity of the considered �rst order approximation.

Also, increasing the value of µ can lead to losing the rank constraint of the solution,

e.g. for µ = 20 we obtained det(Q) ≈ 10−8 in the steady state regime. Thus,

the choice of µ needs to achieve a good compromise between convergence speed

and estimation accuracy while preserving the non-singularity of matrix Q. The

tuning parameter for SGSS-FAPI and GSS-FAPI is the number of rotations per it-

eration. In fact, the low complexity of searching the rotation optimal angle is what

allows us to consider the choice of several rotations instead of one. To analyze the

in�uence of taking multiple rotations, we run GSS-FAPI for the same simulation

settings (d = 16, p = 9 and SNR = 15dB) with di�erent numbers of rotations

{1, 2, 5, 10, 15, 25} knowing that a full search will require
p(p− 1)

2
= 36 rotations.

We notice in Fig.3.5 that changing the number of rotations per iteration does

not a�ect the limit of convergence, however, the convergence speed to that limit

increases with the number of rotations. Hence, one can achieve a good compromise

between the speed of convergence of GSS-FAPI and the computational cost thanks

to an appropriate choice of the number of rotations.

In the next simulation, we analyze the in�uence of the SNR on the convergence

limit of our algorithms by running the same simulation with d = 16, p = 9 for
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T = 3000 iterations. Fig.3.6 shows the subspace performance and the `1-norm of

W(t) after T iterations versus the SNR for the di�erent algorithms with the same

parameters as in the �rst simulation (β = 0.99 forgetting factor, µSS−FAPI = 1,

µSS−FAPI2 = 0.1, µOSS−FAPI = 1, κl1−PAST = 1 and one rotation per iteration

for SGSS-FAPI and GSS-FAPI). We notice that increasing the SNR will have bet-

ter impact on our algorithms than on the `1-PAST especially from the subspace

performance point of view.

In order to correctly compare the di�erent algorithms from the point of view

of convergence speed, we adjust the parameters of every algorithm to reach the
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Figure 3.6: Subspace performance ρ(t) and norm `1 of W(t) versus SNR for (d =

16, p = 9, T = 3000)

same limit of sparsity. Fig.3.7 presents the evolution of the norm `1 for the pro-

posed algorithms with µSS−FAPI = 1.5, µSS−FAPI2 = 0.08, µOSS−FAPI = 0.5,

κl1−PAST = 1.2 and one rotation then four per iteration for SGSS-FAPI and GSS-

FAPI. One can notice that depending on the selected algorithm, we reach approx-

imately the same convergence limit with di�erent speeds. We can observe that:

`1-PAST and SS-FAPI2 are the slowest ones, SS-FAPI, SGSS-FAPI and GSS-FAPI

with 4 rotations are the fastest ones and OSS-FAPI and GSS-FAPI with one rotation

have approximately the same speed.

As we mentioned in the introduction, our algorithms can be compared to those

proposed for SPCA problems. We use a system with d = 16, p = 4 and SNR =

15dB to compare SS-FAPI (µSS−FAPI = 1) with:

• The Gpower [48] algorithm by using as entry of every iteration all the data that

have been already received and a sparsity parameter γ = 0.15.

• The IMRP [49] algorithm by using as entry a covariance matrix calculated from
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Figure 3.7: Norm `1 of W(t) versus time for (d = 16, p = 9, SNR = 15dB) with

same convergence limit

all the data that have been received with algorithm parameters (ρ = 0.08, p = 0.5

and ε = 0.001).

• The Streaming-SPCA algorithm by using a sliding rectangular data window of

length 500 and �xing the number of the truncated rows to 9 form d = 16.

In order to show the tracking capability of our adaptive approach over the SPCA

algorithms, we change the used mixing matrix A(t) after t = 800. Unlike the batch

algorithms (Gpower and IMRP), one can observe in Fig.3.8 that Streaming-SPCA

keeps tracking the principal subspace after changing the mixing matrix. However,

the row sparsity structure considered is not always satis�ed (not in our simulation

anyway), which explains the failure of reaching low `1 norm levels. Even if comparing

batch algorithms performances to those of SS-FAPI is not really proper due to their

high computational cost, this will help us to have an idea about the limits of our

method and how far our algorithms are from `optimality'. Fig.3.8 shows that SS-

FAPI needs only 100 iterations to outperform the subspace estimation and obviously

the tracking capability of Gpower and IMRP with the same sparsity levels.

Until now, we have used only FAPI [20] as subspace tracker for the proposed

algorithms. As we mentioned earlier, in SS-FAPI, the second step which consists in

minimizing the `1 norm, is the costliest in term of computational complexity and

costs O(dp2). As long as we keep the global complexity O(dp2), one can propose to

switch FAPI [20] which has complexity of order O(dp), by a more e�cient subspace

tracker of higher complexity of order O(dp2). By choosing LORAF2 [18] as new

subspace tracker, we get alternative solutions to SS-FAPI,SGSS-FAPI, OSS-FAPI

and GSS-FAPI called respectively SS-LORAF, SGSS-LORAF, OSS-LORAF and
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Figure 3.8: Subspace performance ρ(t) and norm `1 of W(t) versus time for (d =

16, p = 9, SNR = 15dB) of SS-FAPI compared to SPCA algorithms

GSS-LORAF. Indeed we can observe in Fig.3.9, that LORAF-like algorithms have

better subspace performances as we expected. However, the sparsity performance

of the LORAF-like algorithms is poor as compared to FAPI-based algorithms. In-

deed, the natural gradient approach used for enhancing the sparsity in the second

step, is poorly adapted to the rapid changes of WPS(t) noticed in the LORAF-like

algorithms.

3.5.3 Real data

In order to confront our algorithms with a real situation, we consider now an appli-

cation related to the text data. By doing sparse principal subspace tracking on these

text data, we aim to �nd a p interpretable principal components (classes) which will

be the words that best represent the text dataset and can be used to summarize,

classify and explore the large corpora. Also, the dataset we choose is large and

it will keep being enriched over time, which makes it a good application for our

adaptive algorithms. We use the NIPS conference papers 1987-2015 dataset [103]

publicly available from the UCI Machine Learning Repository. This large dataset

records word occurrences in the form of bags-of-words4. It contains the distribution

of words in the full text of the NIPS conference papers published from 1987 to 2015.

The dataset is in the form of a 11463 x 5812 matrix of word counts, containing 11463

words and 5811 NIPS conference papers (keeping only words occurring more than

50 times).The number of classes p depends on the targeted data, in our case it can

represent the number of most interesting research topics that the NIPS conference

papers discuss (we choose for the simulation p = 10). We compare the performance

4The bag-of-words model is a simplifying representation used in natural language processing.

In this model, a text (such as a sentence or a document) is described by the occurrence of words

within a document disregarding grammar and even word order but keeping only multiplicity.
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Figure 3.9: Subspace performance ρ(t) and norm `1 of W(t) versus time for (d =

16, p = 9, SNR = 15dB) of FAPI algorithms vs LORAF algorithms

of `1-PAST as state of art to SS-FAPI, OSS-FAPI and GSS-FAPI. Fig. 3.10 shows

us that even in that case where we have more variables d = 11463 (number of

words) than samples T = 5812 (number of articles) our algorithms keep tracking

the subspace and reach lower `1-norm than `1-PAST, resulting in a sparser and

more interpretable solution. We can also note that OSS-FAPI and GSS-FAPI have

approximately the same results while SS-FAPI has the best sparsity over all.

3.6 Discussion

In this section, we provide comments on the behavior of every proposed algorithm

and in which context should we use it. Let us start by evaluating the subspace

and the sparsity performances of the proposed algorithms compared to the existing

algorithms in the literature.

The proposed algorithms (SS-FAPI, SS-FAPI2, SGSS-FAPI, OSS-FAPI and GSS-
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Figure 3.10: Subspace performance ρ(t) and norm `1 of W(t) versus time for the

NIPS dataset

FAPI) have improved the subspace tracking capability and achieve better sparsity

performance than the algorithm `1-PAST. Also, the computational complexity of `1-

PAST [56] is comparable to the complexity of SS-FAPI and OSS-FAPI, however, it

is higher than that of SS-FAPI2, SGSS-FAPI and GSS-FAPI. Table A.1 summarizes

the computational complexity per iteration of each algorithm when considering the

exponential window. Finding the angles θ in GSS-FAPI and (θ, φ) (alternatively)

in SGSS-FAPI have a complexity of 4αd and 8αd respectively. The scalar α is the

number of the iterations needed to reach the targeted precision. For instance, using

the golden section method we need about α = 15 iterations to reach a precision

of 10−4. The joint optimization proposed in SGDS-FAPI is more complicated and

needs more function evaluations to converge compared to the iterative case.

Algorithm Computational complexity per iteration

FAPI 3dp+O(p2)

`1-PAST 3dp2 + 3dp+O(p2)

SS-FAPI 2dp2 + 4dp+O(p2)

SS-FAPI2 4dp+O(p2)

SGSS-FAPI 4dp+ 8αd+O(p2)

OSS-FAPI 2dp2 + 3dp+O(p3)

GSS-FAPI 4dp+ 4αd+O(p2)

Table 3.1: Summary of the computational complexity per iteration of sparse sub-

space tracking algorithms

In terms of ground truth recovery, above a certain number of sensors d >
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Cp log(p), our algorithms recover correctly the ground truth matrix up to a sign

and a permutation transformation. The constant C depends on the system dimen-

sions and the sparsity of the ground truth matrix [96].

The subspace performance of Streaming-SPCA depends essentially on the length

of the sliding window, so it can be better than the FAPI [21] algorithm if we take

a larger window. However, this will deteriorate the tracking capabilities to rapid

changes and increases signi�cantly the computational cost and the complexity will

be comparable to a batch algorithm. The poor sparsity performance of Streaming-

SPCA [55] can be explained by the row sparsity constraint which is a more restrictive

structural form of sparsity than the full sparsity that we are seeking by the proposed

algorithms.

Even with its high computational complexity, the batch algorithm Gpower [48]

does not achieve a subspace estimation comparable to the one we are getting with

the proposed algorithms (with the same sparsity limits). This can be explained by

the iterative de�ation method followed in Gpower [48] to extend the case of one

principal component to multiple components (principal subspace).

The IMRP [49] algorithm has the closest performance compared to the proposed

algorithms. Indeed, this batch algorithm, based on SVD decomposition (solution to

Rectangular Procrustes), has a subspace error close to the one given by an eigenvalue

decomposition solution without any sparsity which is the best estimation that we can

reach. Additionally, IMRP [49] is one of the most e�cient and latest proposed batch

algorithms for the sparse principal subspace problem. Nevertheless, our algorithms

have the advantages of the low computational cost and the tracking capability.

We have decided to omit the comparison with the OIST [54] algorithm which

was proposed to track only the �rst principal component and not all the subspace

which is our objective. We could use the iterative de�ation method to use OIST [54]

on all the subspace column by column, but this generally leads to poor subspace

estimation.

So far, we have positioned the performance of the proposed algorithms regarding

the state of the art methods. Now, we focus on our algorithms and the advantages of

using every one of them. Let us start by recalling that the subspace estimation error

of the proposed algorithms is the same as the error of the FAPI [21] algorithm which

is one of the best subspace trackers with a linear O(dp) computational complexity.

Hence, the comparison criteria are the sparsity performance (speed and limit of

convergence), the computational complexity and the orthogonality of the solution.

First, if we seek the sparsest solution in a fast time-varying context without

taking into account the orthogonality constraint, we should use SS-FAPI which

has a complexity of O(dp2). The SS-FAPI2 is a less computational greedy solu-
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tion O(dp) than SS-FAPI and can reach the same sparsity levels but with slower

convergence speed (it would be a more appropriate choice for slowly time-varying

subspace situations). The SGSS-FAPI has both a linear computational complexity

of order O(dp) and a faster tracking capability compared to SS-FAPI2 which can be

more enhanced by considering more than one Shear-Givens rotation per iteration

despite the increase of the computational cost. As we mentioned earlier, the speed

of convergence depends essentially on the system dimensions and the choice of the

optimization step that we consider. Note that if we take µ = 0, we get the same

result as FAPI [21] without sparsity, and if µ is too large we get a better sparsity

but we can either contradict the assumptions used for the �rst order expansion or

lose the constraint on the solution rank (i.e. rank(W) = p) since the weight matrix

becomes close to singular when we run the algorithm for a long period.

Secondly, if we are dealing with applications requiring an orthogonality con-

straint, we have the choice between the two proposed algorithms: OSS-FAPI or

GSS-FAPI. The �rst one is an extended version of SS-FAPI where we have a trade-

o� between the low `1 norm levels and the orthogonality of the solution. The

GSS-FAPI algorithm reaches the same levels of `1 norm as OSS-FAPI with linear

computational complexity of order O(dp). However, The OSS-FAPI algorithm has

a better convergence speed than GSS-FAPI especially when the dimension of the

system grows. A particularity of GSS-FAPI is the ability to enhance the rate of

convergence without changing the �nal limit by increasing the number of Givens ro-

tations used per iteration. We recall that this increment in the number of rotations

will negatively a�ect the computational cost. It is also worth mentioning that as

long as we are using a numerical solution in GSS-FAPI to solve (3.34), one can use

other sparsity penalty functions, such as the reweighed `1 minimization [35] or the

approximation of `0 used in [49].

The algorithms we presented here can be easily modi�ed to �t with other adap-

tive subspace algorithms such as PAST [16], OPAST [17] or LORAF2 [18]. As we

showed in Fig.3.9, the LORAF-like algorithms have better subspace performances as

compared to FAPI-based algorithms, however, their sparsity performance are poor.

The failure of SS-LORAF, SGSS-LORAF, OSS-LORAF and GSS-LORAF to reach

low sparsity levels can be explained by the rapid variation in the output of the LO-

RAF algorithm. Indeed, the choice of the FAPI [21] algorithm was not only based

on its good subspace performance, but also on the slow variation property of the

solution. This last one is fundamental to the proper functioning of our algorithms

because of the natural gradient used in the second stage (in general, the gradient

type algorithms are poorly adapted to rapid changes).

One of the important things to observe in the simulation results is the ability of
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reaching lower sparsity levels with the solutions which does not respect the orthogo-

nality constraint compared to the ones which respect it. Indeed, if the target matrix

is sparse but not orthogonal, the latter constraint would decrease the sparsity level

of the estimated weight matrix.

3.7 Conclusion

In this chapter, tracking principal subspace algorithms under sparsity constraint

of the weight matrix has been studied. Compared to other methods proposed in

the literature, our algorithms have the advantage of low computational cost and

improved performances in terms of subspace estimation accuracy and the sparsity

of the results. They allow us to recover the original sparse mixing matrix under

some mild constraints. Finally, the diversity of the proposed methods makes them

adaptable to many applications depending on the problem's imposed constraints

such as the computational complexity and the weight matrix orthogonality.

Aside from the sparsity constraint on the weight matrix, the sparsity constraint

can be also on the source signals in the same data model. In the next chapter, we

will consider the problem of blind source separation using the sparsity of the source

signals as a contrast function.



Chapter 4

Blind sparse source separation

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Data Sparsity algorithm based on OPAST for adaptive

blind source separation DS-OPAST . . . . . . . . . . . . . . 74

4.3 Data Sparsity algorithm based on FAPI and Shear-Givens

rotations for adaptive blind source separation SGDS-FAPI 77

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Introduction

Separation of sources consists of recovering a set of signals when only their mixture

is observed. Di�erent models can be considered for source separation depending

on the nature of the mixture which can be linear or non-linear. In the linear case,

we can distinguish the convolutive mixtures and the instantaneous mixtures which

will be considered in this chapter. In many situations, no a priori information on

the mixing matrix is available: the linear mixture should be 'blindly' processed.

In Blind Source Separation (BSS), we have to exploit only the information carried

by the received signals and prior information about the statistics or the nature of

transmitted source signals (e.g. decorrelation, independence, sparsity, morphologi-

cal diversity, etc.) [57]. Recently, sparsity has emerged as a novel and e�ective source

of diversity for BSS [68,70,79]. Although the sparse source separation can be partic-

ularly useful for separating under-determined mixtures (more sources than sensors),

it is also potentially interesting for the noisy over-determined mixture (more sensors

than sources) in which case sparsity is exploited to improve the source separation

quality [57].

In this chapter, we address the problem of adaptive blind sparse source sepa-

ration in the noisy over-determined case. We introduce two algorithms based on

the same two-step approach used for tracking sparse principal subspace previously.
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The �rst algorithm is DS-OPAST (DS stands for Data Sparsity) based on a natural

gradient scheme, whereas the second algorithm is SGDS-FAPI based on the Shear

and Givens rotations. Numerical simulations are presented where we show that the

proposed algorithms outperform existing solutions in both convergence speed and

estimation quality.

We recall that we are using the data model presented in section 2.3 and we

assume from now on that all the vectors and matrices have real values for the sim-

plicity of the equations. In case of complex values problem, we can either extend the

derived equation or simply transfer it to its real equivalent form using the following

equation: (
R(x(t))

I(x(t))

)
=

(
R(A) −I(A)

I(A) R(A)

)(
R(s(t))

I(s(t))

)
(4.1)

where R(.) and I(.) represent the real and the imaginary operators for complex

values. The latter can be combined with the structure preserving technique shown

in [104]. In order to consider the separation in an adaptive context, we assume also

a time-varying mixing matrix A (we omit the time index (t) to reduce the amount

of notation).

Solving the blind source separation problem adaptively means to update the

estimation of the p × d separation matrix B(t) (or equivalently, identifying A and

use its pseudo-inverse A#) after receiving each observation vector x(t) such that

ŝ(t) = Bx(t) is an estimation of the source signals.

4.2 Data Sparsity algorithm based on OPAST for adap-

tive blind source separation DS-OPAST

The First proposed algorithm to solve the adaptive blind source separation problem

is the DS-OPAST where we write the separation matrix B(t) on the form of B(t) =

QT (t)WT
PS(t). It is based on a two-step approach corresponding to:

1. An adaptive extraction of an orthonormal basis of the principal subspace

WPS(t) of the instantaneous covariance matrix Cx(t).

2. Estimation the non-singular matrix Q(t) and the separation matrix B(t) using

the sources sparsity information.

In the �rst step, the objective function to minimize is the one given by Eq. (2.4)

under the orthogonality constraint of the weight matrix W(t)TW(t) = Ip in the ex-

ponential window case (equivalent formulation can also be expressed in case of trun-

cated window). The resulting weight matrix from this �rst step is denoted WPS(t).
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The optimization task can be done with di�erent principal subspace trackers. The

�rst version of the proposed solution was based on OPAST [17]. Nevertheless, one

can replace OPAST by other subspace trackers that have better tracking capabili-

ties with the same computational complexity such as FAPI [21] but should have the

slow variation property of the solution because of the natural gradient used in the

second stage (in general, the gradient type algorithms are poorly adapted to rapid

changes).

In the second step, we search for B(t) = WT (t), the desired separation matrix

which extracts the sparse source signals in the form W(t) = WPS(t)Q(t) where

the non-singular matrix Q(t) ∈ Rp×p is introduced in order to optimize the sparsity

criterion of the source signals which is represented by the cost function:

JDS

(
Q(t)

)
=
∥∥∥(WPS(t)Q(t))TX(t)

∥∥∥
1

=
∥∥∥QT (t)WT

PS(t)X(t)
∥∥∥

1

s.t. Q(t) is non-singular with unit norm columns (4.2)

where X(t) = [βL−1x(t − L + 1), βL−2x(t − L + 2), . . . ,x(t)] is the windowed data

matrix (exponential when L = t and truncated when L < t).

The `1-norm is used instead of the pseudo `0-norm because of the convexity (`1 is

the tightest convex relaxation of the `0 pseudo-norm [89]) and the easier optimization

task compared to the `0-based version. The unit-norm column constraint of Q(t) is

necessary here for the uniqueness of the `1 minimization solution.

Using a natural gradient approach [90] similar to the one used in the previous

section, we search for the updated matrix Q(t) in the form Q(t) = Q(t−1)
(
Ip+ε

)
where ε ∈ Rp×p is a matrix which has small valued entries (depending on the

gradient step) that can be computed using a �rst order approximation according to:

ε̂ = arg min
ε

∥∥∥QT (t)WT
PS(t)X(t)

∥∥∥
1

(4.3)

= arg min
ε

∥∥∥(Ip + ε
)T

QT (t− 1)WT
PS(t)X(t)

∥∥∥
1

(4.4)

= arg min
ε

∥∥∥εTY(t) + Y(t)
∥∥∥

1
(4.5)

with Y(t) = QT (t−1)WT
PS(t)X(t). Using the same development and approximation

as in Eq. (3.6) and Eq. (3.7), we get:

ε̂ = arg min
ε

p∑
i=1

t∑
j=t−L+1

|Y(t)ij |+
p∑
i=1

p∑
k=1

εki

(
Y(t)sign(YT (t))

)
ki

(4.6)

= arg min
ε

∥∥∥Y(t)
∥∥∥

1
+ Tr

(
εRT (t)

)
(4.7)
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Algorithm 10 Data Sparsity algorithm based on OPAST for adaptive blind source

separation DS-OPAST

Require: x(t) data vector, β the forgetting factor, WPS(t−1), ZPS(t−1), Q(t−1)

and R(t− 1) from the previous iteration.

Ensure: WPS(t), ZPS(t), Q(t), R(t) and W(t)

1: Find WPS(t) using OPAST

2: y(t) = QT (t− 1)WT
PS(t)x(t)

3: R(t) = βR(t− 1) + y(t)sign
(
yT (t)

)
then R(t) = R(t)

‖R(t)‖F

4: Q(t) = Q(t− 1)
(
Ip − µR(t)

)
5: Columns normalization of Q(t)

6: W(t) = WPS(t)Q(t).

where R(t) = Y(t)sign
(
YT (t)

)
. By applying a simple gradient on Eq. (4.7), we can

take ε̂ = −µ R(t)
‖R(t)‖2F

with µ > 0 to ensure a local decrease of the cost function. On

the other hand, the value of µ should be small enough for the linear approximation

to hold and to preserve the non-singularity of matrix Q(t). However, since the

dimension of Y(t) grows linearly with time, a direct computation of matrix R(t)

would be prohibitive. To reduce the cost, we use the projection approximation as

shown below:

R(t) = QT (t− 1)WT
PS(t)

[
βX(t− 1),x(t)

]
× sign

([
βX(t− 1),x(t)

]T
WPS(t)Q(t− 1)

)
(4.8)

= βQT (t− 1)WT
PS(t)X(t− 1)sign

(
βXT (t− 1)WPS(t)Q(t− 1)

)
+ QT (t− 1)WT

PS(t)x(t)sign
(
xT (t)WPS(t)Q(t− 1)

)
(4.9)

Under the assumption

WPS(t)Q(t− 1) ≈WPS(t− 1)Q(t− 2) (4.10)

we can write that

R(t) ≈ βR(t− 1) + y(t)sign
(
yT (t)

)
(4.11)

with y(t) = QT (t − 1)WT
PS(t)x(t). The full algorithm is summarized in Algo-

rithm 10.

Note that the computational cost of DS-OPAST is of order O(dp) per iteration

without step 5. Now, if the update of the weight matrix W(t) = WPS(t)Q(t) is

needed, the latter cost would be of order O(dp2) due to the previous matrix product.

However, by using the updating equations in steps 3 and 4 of Algorithm 10 together
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with the projection approximation used earlier in Eq. (4.10) (which is valid with

small choice of gradient step µ), one can avoid the matrix - matrix product and

preserve the linear complexity O(dp). This is done by introducing a new matrix

F(t) = WPS(t)Q(t−1)R(t). Hence, step 5 of the previous algorithm can be written

as:

W(t) = WPS(t)Q(t− 1)− µWPS(t)Q(t− 1)R(t) (4.12)

= W(t− 1) + eg̃T − µF(t) (4.13)

The vector g̃ is given by g̃ = Q(t− 1)Tg with g and e are rank-one update vectors

issued from the last step of the OPAST algorithm 2. Then, the update of the matrix

F(t) is approximated by:

F(t) = WPS(t)Q(t− 1)R(t) (4.14)

=
1

α
WPS(t)Q(t− 1)

(
βR(t− 1) + y(t)sign

(
yT (t)

))
(4.15)

≈ β

α
F(t− 1) +

1

α
WPS(t)Q(t− 1)y(t)sign

(
yT (t)

)
(4.16)

with α =
∥∥∥βR(t−1)+y(t)sign(yT (t))

∥∥∥2

F
. Using Eq. (4.13) and Eq. (4.16) allows us

to avoid all matrix-matrix products and to have a global complexity of order O(dp).

This version is referred to as DS-OPAST2 and it is summarized in Algorithm 11.

Note that a columns normalization of the matrix W(t) is essential because of the

approximation errors.

4.3 Data Sparsity algorithm based on FAPI and Shear-

Givens rotations for adaptive blind source separation

SGDS-FAPI

The proposed algorithms DS-OPAST and DS-OPAST2 have low computational cost

but the use of the exponential window, the OPAST algorithm and the gradient

method result in slow convergence speed. This is can be problematic, especially if we

have quick changes in the system mixing matrix. In order to enhance the convergence

speed, we introduce our second proposed solution for the problem of adaptive blind

sparse source separation in the noisy over-determined case denoted SGDS-FAPI

(SGDS stands for Data Sparsity algorithm based on Shear-Givens rotations). This

algorithm is based on a two-step approach as the DS-OPAST algorithm which we

have proposed earlier in the previous section. However, in this work, the used

subspace tracker is more accurate and the sparsity criterion is optimized by means

of Givens and Shear (hyperbolic givens) rotations.
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Algorithm 11 Data Sparsity algorithm based on OPAST for adaptive blind source

separation DS-OPAST2

Require: x(t) data vector, β the forgetting factor, WPS(t−1), ZPS(t−1), Q(t−1),

R(t− 1), F(t− 1) and W(t− 1) from the previous iteration.

Ensure: WPS(t), ZPS(t), Q(t), R(t), F(t) and W(t)

1: Find WPS(t) = WPS(t− 1) + e(t)g(t)T using OPAST

2: y(t) = QT (t− 1)WT
PS(t)x(t)

3: R(t) = βR(t− 1) + y(t)sign
(
yT (t)

)
then R(t) = R(t)

α with α = ‖R(t)‖F

4: Q(t) = Q(t− 1)
(
Ip − µR(t)

)
5: v1 = Q(t− 1)y(t)

6: v2 = WPS(t)v1

7: F(t) = 1
α

(
βF(t− 1) + v2sign

(
yT (t)

))
8: g̃ = Q(t− 1)Tg

9: W(t) = W(t− 1) + eg̃T − µF(t)

10: Columns normalization of W(t) and Q(t).

In the �rst step, our aim is to track the principal subspace matrix W(t) which

should span the same subspace as the one spanned by the p dominant eigenvec-

tors i.e. which correspond to the p greater eigenvalues of the covariance matrix

Cx = E[x(t)xH(t)]. The later matrix is adaptively updated either by using the

exponential data window or the truncated (sliding) data window. Contrary to

DS-OPAST algorithm where we have used OPAST [17] as a subspace tracker, the

FAPI [20,21] algorithm is used for SGDS-FAPI. The FAPI algorithm [20,21] resolves

the problem of tracking the signal subspace of dimension p < d under the orthog-

onality constraint of the weighting matrix W(t) for both types of windows. The

choice of FAPI was encouraged by its linear complexity and capability to guarantee

the orthonormality of the subspace weighting matrix W(t) at each time step. In

fact, FAPI has one of the best trade-o� between quality of estimation and complexity

of calculation (for more details see subsection 2.2.3).

The FAPI output matrix WPS(t) should also span the same subspace as our

mixing matrix A and we can write that

A = WPS(t)Q(t) (4.17)

where Q(t) is a non singular square matrix. Note also that �nding the matrix A#

(with permutation and scaling ambiguity) is somehow equivalent to �nding B the

separation matrix. Therefore, in this second step the non singular matrix Q(t) is

introduced in order to optimize the criterion which describes the sparsity of the
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separated sources. Hence, the objective function considered to restore the sparsity

of the source signals (estimated as A#x(t)) is given by:

JDS2

(
Q(t)

)
=
∥∥∥(W(t)Q(t))#X(t)

∥∥∥
1

=
∥∥∥Q(t)−1W(t)TX(t)

∥∥∥
1

s.t. Q(t) is non-singular with unit norm columns (4.18)

where X(t) = [βL−1x(t − L + 1), βL−2x(t − L + 2), . . . ,x(t)] is the windowed data

matrix (exponentially when L = t and truncated when L < t). Note that the above

function is slightly di�erent from JDS used in DS-OPAST where QT is replaced by

Q−1(t).

In order to optimize the criterion of Eq. (4.18) with respect to Q(t), we propose

to write the matrix Q(t)−1 as a product of elementary Givens and Shear matrices:

Q(t)−1 =
∏

1≤i<j≤p
SijGij (4.19)

where the Shear Sij and the Givens Gij elementary matrices are described by

Eq. (3.15) and Eq. (3.16) respectively. Indeed, any non singular matrix can be

decomposed into product of Shear Sij and Givens Gij elementary matrices (up to a

constant factor) for 1 ≤ i < j ≤ p. The Givens-based (Jacobi-like) techniques are

attractive due to their numerical stability, their facility to be parallelized and their

low computational cost. Such techniques have been already used in the context of

BSS [91,92] but with other a prior information than sparsity.

Next, we present the case of using just one Shear-Givens rotation every time

iteration for simplicity and then we generalize to the case where we consider more

than one rotation. Hence, we can write that

Q−1(t) = H(t) = SijGijH(t− 1) (4.20)

for the selected indices (i, j) at the tth time iteration.

In order to minimize the objective function JDS2

(
Q(t)

)
, one needs to specify

how the rotation indices are chosen at each iteration as well as how the parameters

(θ, φ) are optimized. One can choose the same automatic selection strategy for the

rotation indices as the one used for in SS-FAPI2 expressed by Eq. (3.10). Hence, all

the p(p−1)/2 possible search indices values are visited periodically by an automatic

incrementation of indices throughout the iterations.

After �xing the indices (i, j), �nding H(t) resumes in estimating the parameters

(θ, φ) which minimize:

J(θ, φ) =
∥∥∥SijGijH(t− 1)WT

PS(t)X(t)
∥∥∥

1
(4.21)
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Algorithm 12 Data Sparsity algorithm based on FAPI and Shear-Givens rotations

for adaptive blind source separation SGDS-FAPI

Require: x(t) data vector, parameters β and L, WPS(t−1) and ZPS(t−1) previous

FAPI outputs. Previous indices (l,m) and outputs H(t− 1), B(t− 1).

Ensure: WPS(t), ZPS(t), indices (i, j), H(t) and B(t)

1: Run FAPI :WPS(t) = WPS(t− 1) + e(t)g(t)T

2: Update indices (i, j) using automatic selection strategy descibed in Eq. (3.10)

3: Computing yi and yj using (4.25)

4: Find (θ̂, φ̂) = arg min J(θ, φ)

5: H(t) = SijGijH(t− 1)

6: B(t) = SijGijB(t− 1) + H(t)g(t)e′(t)T

=

∥∥∥∥∥
[

cosh(φ) sinh(φ)

sinh(φ) cosh(φ)

][
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
yi

yj

]∥∥∥∥∥
1

(4.22)

where yi and yj are the ith and jth rows of the product H(t−1)WT
PS(t)X(t) available

from the previous iteration. We can expand the equation to:

J(θ, φ) =
∥∥∥( cos(θ) cosh(φ)− sin(θ) sinh(φ)

)
yi+(

cos(θ) sinh(φ) + sin(θ) cosh(φ)
)
yj

∥∥∥
1
+∥∥∥( cos(θ) sinh(φ)− sin(θ) cosh(φ)

)
yi+(

cos(θ) cosh(φ) + sin(θ) sinh(φ)
)
yj

∥∥∥
1

(4.23)

J(θ, φ) is a scalar function of two variables with no simple analytic solution for its

minimum point, so we have used a numerical search method to �nd the minimum

of this unconstrained optimization problem.

Remark: It is possible to optimize separately the Givens parameter θ then the

Shear parameter φ. This leads to a slight loss in terms of estimation quality but

helps reducing the computational cost since one replaces the 2D search by two 1D

parameter optimization. In addition, the cost function is π/2-periodic in θ and we

knew also that φ is also bounded between −γ ≤ φ ≤ γ. One can include those

bounds to reduce the research set for each parameter. This version is referred to as

SGDS-FAPI2.

Combining both steps

Now, we will resume the scheme to follow in order to reach a linear compu-

tational complexity for both steps. The main idea is to run the FAPI algorithm
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independently and to update the separation matrix

B(t) = H(t)WT
PS(t) (4.24)

at every iteration. Note that Eq. (4.23) includes only the two rows yi and yj of the

product H(t− 1)WT
PS(t)X(t), which means that we need only the ith and jth rows

of H(t− 1)WT
PS(t). We can write:

H(t− 1)WT
PS(t) = B(t− 1) + H(t− 1)g(t)e(t)T (4.25)

with g(t) and e(t) are the FAPI rank one update vectors. Next, we calculate the

rows yi and yj which will have O(dL) complexity with L the size of the data window

(L = 1/(1− β) in the case of the exponential window or the width of the truncated

window). After that, one needs to optimize the function J(θ, φ) and to update

the outputs: i.e., H(t) by means of Eq. (4.20) and B(t) by combining Eq. (4.24)

and Eq. (4.25). Note that the left multiplication by SijGij can be summed up in

changing the ith and jth rows. The global complexity of the proposed algorithm is

5dp + 2dL + O(p2) if we use the exponentially window version of FAPI or 8dp +

6dL + O(p2) if we use the truncated window version. The proposed algorithm is

summarized in Algorithm 12.

Besides their low computational complexity, the Jacobi-like techniques are also

known for their ability to be easily parallelizable. This can be really useful in the

case where we consider more than one Shear-Givens rotation every time iteration.

In this case, one needs to be careful with the indices selection strategy used and

repeat the steps 3-6 of Algorithm 12. Otherwise, one can just do this sequentially

by repeating steps 2-6 of Algorithm 12. The latter has been tested in the sequel to

assess the algorithm's performance in that case.

Remark: Note that other selection strategies for the rotation indices can be con-

sidered but are omitted due to space limitation. For example, at each iteration, one

can select the indices (i, j) corresponding to row vectors yi and yj of maximum `1

norms (i.e. the ones that deviate the most from the target sparsity objective).

Table A.2 summarizes the computational complexity of the proposed algorithms

in this chapter. Finding the angles (θ, φ) iteratively in SGDS-FAPI2 has a com-

plexity of 8α2d with α2 being the number of the iterations to reach the targeted

precision. For instance, using the golden section method we need about α2 = 15

iterations to reach a precision of 10−4. The joint optimization proposed in SGDS-

FAPI is more complicated and needs more function evaluations to converge which

means that α1 >> α2.
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Algorithm Computational complexity per iteration

DS-OPAST dp2 + 4dp+O(p3)

DS-OPAST2 5dp+O(p3)

SGDS-FAPI 5dp+ 2dL+ 8α1d+O(p2)

SGDS-FAPI2 5dp+ 2dL+ 8α2d+O(p2)

Table 4.1: Summary of the computational complexity of the proposed algorithms

for adaptive blind sparse source separation

4.4 Simulation results

In order to assess the performance of the proposed algorithms, we present here

some numerical simulation results. The batch algorithm JADE [91] which was re-

applied at each time instant t to all samples from 1 to t, is used for comparison. We

consider the data model presented in section 2.3 with the sparse signals generated

according to the Bernoulli-Gaussian distribution (SPRANDNMatlab function). The

performance index used is the mean rejection level [57], which is de�ned by Iperf
def
=∑

p 6=q Ipq where Ipq measures the ratio of the power of the interference of the qth

source to the power of the pth source signal. In our case, since the sources are

generated with the same power, they are de�ned as Ipq = E|(Â#A)pq| (where
Â# = H(t)WT

PS(t) for the SGSS-FAPI algorithm and Â# = QT (t)WT
PS(t) for the

DS-OPAST algorithm). We simulated 100 times the data with p sparse sources, d

sensors in each experiment of the following results.

Figure 4.1 shows an example of source signals and their corresponding separated

signals by means of SGDS-FAPI for a SNR = 10dB (after adjusting the amplitude

and put every output signal with its correspondent source signal to remove the

inherent ambiguities of BSS). In order to show the adaptive separation capability

of our algorithms, we change randomly the mixing matrix A after 2000 iterations.

Figure 4.2 illustrates the improved performance of the SGDS-FAPI compared to DS-

OPAST and JADE algorithms. SGDS-FAPI2 corresponds to the truncated window

version of SGDS-FAPI with L = 50 (with truncated version of FAPI) which explains

its higher sensitivity to noise as compared to SGDS-FAPI. Fig. 4.3 shows the results

after 2000 iterations versus the SNR. It is clear that the SGDS-FAPI algorithm

reaches lower mean rejection levels than the other adaptive algorithms and even

outperforms, in that context, the batch algorithm JADE for SNR > 10dB.

Fig. 4.4 illustrates the in�uence of the choice of the gradient parameter µ on the

performance of DS-OPAST and DS-OPAST2. It is clear that there is a trade-o�

between the achievable limit of mean rejection level and the speed of convergence
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Figure 4.1: Example of source signals (solid blue lines) and their separated versions

(red points) for d = 16, p = 4 and SNR = 10dB.
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Figure 4.2: Mean rejection level Ipref versus time for d = 16, p = 4 and SNR =

20dB.

to that limit. In order to show the e�ect of using multiple rotations per iteration on

the speed of convergence of SGDS-FAPI, we change the mixing matrix (randomly)

two times: at time instants 200 and 400 with the parameters d = 20, p = 8 and

SNR = 10dB. Fig.4.5 shows that the more rotations per iteration we consider, the

faster the convergence rate is. The computational complexity should increase with

such a solution, unless we use a parallel scheme with an appropriate indices selection

strategy.

Until now, we have considered that source signals are sparse in the time domain.

However, this is not true in most cases, hence, generally source signals are assumed to

be sparsely represented in another basis. For example, the orthogonal wavelet basis

is a good choice when dealing with image processing, or the DCT when processing
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Figure 4.3: Mean rejection level Ipref versus SNR for d = 16, p = 4 after 2000

iterations.
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Figure 4.4: Mean rejection level Ipref versus time for d = 10, p = 4 and SNR =

10dB.

speech signals. The next experiment was performed with source signals from four

speakers p = 4, sampled at 20kHz, of 2.5s duration and presented in Fig. 4.6.

The mixing matrix A which is generated randomly with d = 10 sensors, changes

completely after receiving 1.5s of the signals. The received data are corrupted by a

white Gaussian noise with SNR = 10dB. We proposed an adaptive framework to

separate the sources, where the received signals are treated block per block every

time frame. The window duration of this frame is typically between 10 − 30ms

because of the quasi-stationary assumption on the speech signals. We consider

sliding rectangular windows of length 20ms which is equivalent to 400 samples and

with an overlapping of 50%. The received signals at every time frame are projected

using a 400×50 rectangular DCT matrix which is equivalent to low resolution DCT

transformation. In addition to enhancing the sparsity, this projection will allow us to
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Figure 4.5: Mean rejection level Ipref versus Time for d = 20, p = 8 and SNR =

10dB.

reduce the number of samples to process from 400 to 50 per time frame. In Fig. 4.7,

we can see an example of a received signal and its corresponding transformed version

which is clearly more sparse.
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Figure 4.6: Amplitude of the speech source signals versus time in seconds.
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Figure 4.7: Amplitude of a received signal (top) and its corresponding transformed

version (bottom) versus time in seconds.
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Figure 4.8: Amplitude of the separated signals versus time in seconds.

Next, we apply DS-OPAST and SGSS-FAPI on the transformed signals using as

an initialization the results from the previous time frame. Fig. 4.8 shows an example

of the separated signals with the DS-OPAST algorithm where we can distinguish
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the recovery of the source signals in a di�erent order. For a more quantitative

comparison, we have used the batch algorithm JADE [91] on all the received signals

from the �rst sample until time t (without the transformation).
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Figure 4.9: Mean rejection level Ipref versus Time for speech signals with d = 10,

p = 4 and SNR = 10dB.

Fig. 4.9 shows that both DS-OPAST and SGSS-FAPI separate successfully the

sources with a slight advantage to SGSS-FAPI in terms of the speed of tracking

changes over the separating matrix. Nevertheless, both proposed methods have

better performance compared to batch algorithm JADE, especially after the change

in the mixing matrix. It is worth mentioning that after separating the received

signals at the current time frame, one will have the task to correctly assign each

separated signal in the actual time frame with the previously separated signals. One

of the possible solutions to this problem is to check for higher correlation between

previous and current separated signals.

4.5 Conclusion

The problem of blind adaptive sparse source separation has been studied in this

chapter. The over-determined instantaneous noisy mixture has been considered.

Based on a two step approach, we have proposed the two main algorithms: DS-

OPAST and SGDS-FAPI. Di�erent extensions were also discussed to reduce the

complexity and enhance the tracking capabilities of these algorithms. The �rst step

of the proposed algorithms allows us to project the data on the signal subspace esti-

mated by means of FAPI algorithm. Then, the sparsity of the source signals which

is represented by an `1 criterion is optimized. A natural Gradient method is used in

DS-OPAST for the optimization of the `1 criterion. An adaptive method based on

Shear and Givens rotations is used in SGDS-FAPI algorithm. In addition to the low
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computational cost, the proposed algorithms have shown improved performance as

compared to existing solutions.

After considering the blind instantaneous mixture model in both chapter 3 and

chapter 4 with the sparsity a priori on the system matrix or on the sources, in the

next chapter, we will consider the blind convolutive mixture model where we will

be interested in the blind sparse channel identi�cation problem.
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5.1 Introduction

Blind system identi�cation (BSI) problems are receiving considerable interest from

both signal processing and communications communities since accurate channel es-

timation is likely to become more challenging in future generation wireless sys-

tems, which will likely have both increased spatial diversity and decreased coher-

ence times. Furthermore, in some communication systems, the synchronization

between the receiver and the transmitter is not possible; thus training sequences

are not exploitable. Blind techniques present reduced need for overhead informa-

tion which increases the bandwidth e�ciency. Development of blind receivers also
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has applications in military communication systems when the transmitted symbols

have to be estimated in a blind fashion. Blind techniques also enable us to treat

problems where we cannot in�uence the input such as the extracting of the foetal

electrocardiogram (fECG). Many methods have been proposed to solve blind chan-

nel estimation problems, and we can distinguish two main classes of BSI methods:

higher order statistics (HOS) and second order statistics (SOS) techniques. In gen-

eral, HOS-based methods require large sample sizes to achieve 'better' estimation

performances than the SOS-based methods [83]. Unfortunately, it seems likely that

in case of very long impulse response and sparse channel, most of the state-of-the-art

methods perform poorly. Such sparse channels can be encountered in many com-

munication applications including High-De�nition television (HDTV) channels and

underwater acoustic channels. In this chapter, we present our contributions to solve

the sparse channel identi�cation problem in both Single Input, Multiple Output

(SIMO) and Multiple Input, Multiple Output (MIMO) cases.

First, in the case of sparse SIMO channel, we extend the work in [81] by con-

sidering the SIMO case of a time varying sparse channel. A generalized Laplacian

distribution is considered to enhance the sparsity of the channel coe�cients with

a Maximum A Posteriori (MAP) approach. Then, an adaptive technique based on

the gradient descent method is proposed to estimate e�ciently the sparse chan-

nel coe�cients. The robustness against channel overestimation errors will also be

discussed.

However, even if some training sequence exists, combining it with blind tech-

niques often leads to improved performance which explains the increased interest

for joint estimation of channels and the data referred to as data-aided channel es-

timation [105�109]. Our second contribution aims to estimate jointly the channel

state information and the transmitted data in the case of MIMO channels using

a regularized Deterministic Maximum Likelihood (DML) formulation based on dif-

ferent prior types. This regularization can be on the transmitted signals and/or

on the channel impulse response. For instance, most of digital communications are

based on transmitted signals that belong to a �nite-alphabet set. Hence, the sim-

plicity property was considered for the recovery of �nite-alphabet signals as is the

case in [110] for large-scale MIMO systems. The sparsity property was also used

in [68] for blind source separation when the sources are known to be sparse or can

be sparsely represented. For the transmitted signals, we will consider either the

simplicity property in the case of �nite-alphabet signals or the sparsity property in

the case of sparse signals. For the channel impulse response, we will consider the

sparsity prior which was already used in the context of blind and semi-blind channel

identi�cation, for example, in [50] for MIMO channels with orthogonal frequency
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division multiplexing (OFDM).

5.2 Adaptive blind identi�cation of sparse SIMO chan-

nels using the maximum a posteriori approach

Our focus is on the SIMO sparse channel case in a blind identi�cation context. We

aim to estimate the channel state information using only the observation data and

the sparsity information of the channel coe�cients. Considering the mathematical

model presented in section 2.4 with Nt = 1 for the SIMO case,

xNr(t) = HNrsN (t) + nNr(t) (5.1)

where xNr(t) = [xT1 (t), . . . ,xTNr
(t)]T with xi(t) = [xi(t), . . . , xi(t − N + 1)]T for

i = 1, . . . , Nr. The noise vector nNr(t) is constructed in the same way as the

observations by nNr(t) = [nT1 (t), . . . ,nTNr
(t)]T with ni(t) = [ni(t), . . . , ni(t − N +

1)]T for i = 1, . . . , Nr. The matrix HNr = [T (h1)T , . . . , T (hNr)T ]T is a block

Sylvester matrix, T (hi) being the Sylvester matrix of the i-th channel given by

hi = [hi(0), . . . , hi(L)]T for i = 1, . . . , Nr.

The main idea of the Maximum a Posteriori (MAP) approach is to estimate the

channel vector h using its conditional probability distribution as follows:

ĥMAP =arg max
h

{
f
(
xNr |h

)
f
(
h
)

∫
f
(
xNr |h′

)
f
(
h′
)
dh′

}
(5.2)

=arg max
h

{
f
(
xNr |h

)
f
(
h
)}

(5.3)

Generally speaking, the MAP allows us to exploit prior information about the de-

sired parameter. Hence, one needs to a priori know the probability distribution

function f(h) of the channel vector. This a priori depends on the application con-

text and its physical environment. In our case, it is the channel vector sparsity that

we model by representing the channel pdf with the generalized Laplacian distribu-

tion given by:

f(h) =
[
2γΓ(1 +

1

p
)
]−Nr(L+1)

exp
(
− ‖h‖

p
p

γp

)
(5.4)

where γ > 0 is a scale parameter, 0 < p ≤ 1 and Γ(z) =
∫∞

0 tz−1e−tdt, z > 0

is the Gamma function. Using this pdf, one increases the chances to get channel

coe�cients close to zero. Combining equations (2.32), (5.3) and (5.4) leads to the

following objective function:

J (h) = arg min
‖h‖2=1

{
hHXHNr

(
GHNr
GNr

)#
XNrh + λ‖h‖pp

}
(5.5)
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where λ = σ2

γp is a good approximation to the 'optimal' weighting parameter which

controls the trade-o� between the ML term and the penalty term. The matrices

XNr and GNr were already introduced in section 2.4. The cost function is optimized

under the constraint ‖h‖2 = 1 to avoid the scalar indeterminacy. We can also use

other types of constraints such as �xing the �rst element of the vector h to one.

The minimization of such a problem is computationally expensive and may be even

intractable when the channel impulse responses are long and the number of channels

is large.

For a slowly varying channel, one can reduce the computational cost and track

the channel variations by using a stochastic adaptive gradient technique to solve the

previous minimization problem e�ciently.

Let h(t) be the solution after the t-th iteration, then the solution at the (t+1)-th

iteration is given by:

h(t+ 1) = h(t)− µ∇J
(
h(t)

)
(5.6)

where µ is a small positive optimization step and the gradient ∇J
(
h(t)

)
is given

by:

∇J
(
h(t)

)
= 2XHNr

(t+ 1)
(
GHNr

(t)GNr(t)
)#
XNr(t+ 1)h(t)

+λ p h̃(t) (5.7)

where h̃i = sign(hi) |hi|p−1 for i = 1, . . . , Nr(L+ 1).

We de�ne the matrix:

Qz(t+ 1) = XHNr
(t+ 1)Z(t)XNr(t+ 1) (5.8)

with Z(t) =
(
GHNr

(t)GNr(t)
)#

.

A more elegant way to update Qz(t + 1) is to use the adaptive exponential

window

XNr(t+ 1) =
[√

βXNr(t)T ,XNr(t+ 1)T
]T

(5.9)

with 0 < β < 1 a forgetting factor and XNr(t+ 1) is given by:

X 2(t+ 1) =
[
x2(t+ 1),−x1(t+ 1)

]
(5.10)

and

X q(t+ 1) =


X q−1(t+ 1) 0

xq(t+ 1) 0 −x1(t+ 1)
. . .

...

0 xq(t+ 1) −xq−1(t+ 1)

 (5.11)
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for q = 3, . . . , Nr with xq(t) = [xq(t), . . . , xq(t− L)].

Hence, combining equation (5.8) and (5.9) yields:

Qz(t+ 1) = βXHNr
(t)Z(t)XNr(t)

+ XHNr
(t+ 1)Z(t)XNr(t+ 1) (5.12)

Using the approximation Qz(t) ≈ XHNr
(t)Z(t)XNr(t), we can rewrite:

Qz(t+ 1) = βQz(t) + XHNr
(t+ 1)Z(t)XNr(t+ 1) (5.13)

The algorithm can be summarized as follows:

1. Update Z(t) =
(
GHNr

(t)GNr(t)
)#

2. Update Qz(t+ 1) using (5.13)

3. Update h(t+ 1) using (5.6) and (5.7)

4. Normalize h(t+ 1) such that ‖h(t+ 1)‖2 = 1

Note that the proposed algorithm can be modi�ed by using another optimization

descent method. We can also change the sparsity prior which would lead us to change

the �nal objective function. Next, we will provide two ideas that are used to extend

this work: derive an optimal gradient step and approximate the update of Z(t) in

order to further reduce the computational complexity.

5.2.1 Computational complexity reduction

The complexity of the proposed algorithm is dominated by the computation of the

pseudo inverse Z(t) =
(
GHNr

(t)GNr(t)
)#

. One way to reduce the cost of this step is to

use the previous gradient step and the fact that we are using a small optimization

step µ to approximate the pseudo inverse. Actually, one can use the �rst order

approximation of the pseudo inverse of the sum of two matrices A + µB of size

(n×m) which is given by :(
A+ µB

)#
≈ A# − µA#BA#

+ µA#A#TBT
(
In −AA#

)
+ µ

(
Im −A#A

)
BTA#TA# +O(µ2) (5.14)

In our case, we have

h(t) =
h(t− 1)− µ∇J

(
h(t− 1)

)
∥∥∥h(t− 1)− µ∇J

(
h(t− 1)

)∥∥∥
2

(5.15)
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The linear construction of GHNr
(t) from h(t) as entry allows us to write :

GHNr
(t) =

GHNr
(t− 1)− µ∇GHNr

(t− 1)∥∥∥h(t− 1)− µ∇J
(
h(t− 1)

)∥∥∥
2

(5.16)

with∇GHNr
(t−1) has the same construction as GHNr

(t−1) with the gradient∇J (h(t−
1)) as entry instead of h(t− 1). which leads to:

GHNr
(t)GNr(t) ≈ 1∥∥∥h(t− 1)− µ∇J

(
h(t− 1)

)∥∥∥2

2

{
GHNr

(t− 1)GNr(t− 1)

− µGHNr
(t− 1)∇GNr(t− 1)− µ∇GHNr

(t− 1)GNr(t− 1)

}
+O(µ2)

(5.17)

Separating terms with and without µ in (5.17) and using them as B and A respec-

tively in (5.14) enables us to approximate
(
GHNr

(t)GNr(t)
)#

without an expensive

complexity.

Remark: Another way to reduce the numerical cost would be to choose a noise

subspace generating matrix G̃Nr that is 'non redundant' so that matrix G̃HNr
G̃Nr is

invertible which allows us to replace the pseudo-inversion by the relatively simpler

matrix inversion. To build matrix G̃Nr , one can follow similar steps as for the mini-

mum CR method in [76].

5.2.2 Gradient step optimization

The choice of the optimization step µ is really important to achieve good convergence

performance. Choosing µ too large can cause the divergence of the algorithm and

at the same time, a too small µ will induce a poor convergence rate. To avoid these

problems, one can use the fact that we are using a gradient descent method which

allows us to derive an optimal step that minimizes:

µ̂ = arg min
µ

J
(
h(t+ 1)

)
(5.18)

Let's start by replacing h(t+ 1) by its formula from (5.6) in (5.5) which yields:

J
(
h(t+ 1)

)
=
(
h(t)− µ∇J

(
h(t)

))H
Qz(t+ 1)

(
h(t)− µ∇J

(
h(t)

))
+λ
∥∥∥h(t)− µ∇J

(
h(t)

)∥∥∥p
p

(5.19)
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hence, the derivative of the previous formula w.r.t. µ is:

∂J
(
h(t+ 1)

)
∂µ

= K(µ)

=
{

2
(
µ∇J

(
h(t)

)
− h(t)

)H
Qz(t+ 1)− µλr̃H

}
∇J

(
h(t)

)
(5.20)

where

r̃i = sign
(
hi(t)− µ∇J

(
h(t)

)
i

) ∣∣∣hi(t)− µ∇J (h(t)
)
i

∣∣∣p−1

for i = 1, . . . , Nr(L+ 1).

Finally, we can use a Newton method to approximate the optimal solution of

(5.18) at every iteration with

µt = µt−1 −K(µt−1)
µt−1 − µt−2

K(µt−1)−K(µt−2)
(5.21)

The resulting algorithm is summarized in the table below.

Algorithm 13 blind sparse channel identi�cation algorithm based on (approxi-

mated) adaptive maximum a posteriori approach MAP-adapt & AMAP-adapt

Require: x(t) data vector, β the forgetting factor, λ the sparsity parameter, h(t−
1), Qz(t− 1)and Z(t− 1) from the previous iteration.

Ensure: Qz(t), Z(t) and the sparse channel h(t)

1: Update Z(t) by


(
GHNr

(t)GNr(t)
)#

if MAP-adapt

use (5.14)and (5.17) if AMAP-adapt

2: Build XNr(t) as explained in (5.10) and (5.11)

3: Update Qz(t) using (5.13)

4: Calculate the gradient ∇J
(
h(t− 1)

)
given by (5.7)

5: Update h(t) with (5.6)

{
�xed µ

optimal µ using (5.21)

6: Normalize h(t+ 1) w.r.t.
∥∥∥h(t+ 1)

∥∥∥
2

= 1

5.3 Regularized deterministic maximum likelihood based

joint estimation of MIMO channels and input data

In this section, we consider the problem of blind estimating both multiple-input

multiple-output (MIMO) �nite impulse response (FIR) channels and the transmit-

ted data. Blind identi�cation of MIMO FIR channels has been deeply studied most
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of the times by generalization of the simple-input multiple-output (SIMO) solu-

tions. Some solutions considered the extensions of various 'higher-order' methods

such as [111, 112]. However, most of these methods have a lack of global conver-

gence or/and poor estimation accuracy. Under some mild conditions, solutions have

been proposed to identify MIMO-FIR systems up to a constant matrix within the

framework of second order statistics. The subspace-based methods such as [83] are

not robust in noisy scenarios that lack for a good disparity of channels. The linear

prediction methods such as [113] are less sensitive to the presence of noise, they

require large sample size even in the noiseless case.

Among the blind channel methods, we focus on deterministic maximum likeli-

hood (DML) methods since they have the additional advantage of being high signal-

to-noise ratio (SNR) e�cient [114]. In addition, the input signals are considered as

part of the unknown parameters with the channel coe�cients, which is equivalent

to the joint estimation. As major contributions to DML methods, we can cite the

two-step maximum likelihood (TSML) [78], the iterative quadratic maximum like-

lihood (IQML) [115] and its dual algorithm proposed in [116] which considered

simple-input multiple-output (SIMO) FIR channels. Another DML method, the

maximum likelihood block algorithm (MLBA), has been proposed in [117] where

for both the channels and in the symbols, least squares estimation is performed in

an alternating manner. Following the same formulation, the Maximum Likelihood

Adaptive Algorithm (MLAA) is derived in [118] which presents low-complexity in

computation. The ML methods usually cannot be obtained in closed form and re-

quire an optimization in presence of local minima. In addition, the dimension of the

problem increases with the sample size, which makes this approach not practical for

large data size applications. However, ML approaches can be made very e�ective by

including initialization procedure such as the subspace method or other sub-optimal

approaches. Another important feature of the alternative formulation of DML is the

facility to introduce any further information about the channel impulse response or

the input signal to the cost function. For example, the �nite alphabet properties was

�rst considered with DML in [119�121]. However, the convergence of such methods

is not guaranteed in general and the incorporation of the �nite alphabet property

often increases the number of local minima. Later, the authors in [122] proposed

to use the Bayesian maximum a posteriori approach with a continuous probability

distribution function that re�ects the prior knowledge on the input sequence. We

propose in this section to use the DML formulation for MIMO channels with di�er-

ent regularization such as the simplicity (instead of the �nite alphabet property) or

the sparsity of the transmitted the data and the sparsity of channels.
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5.3.1 Blind deterministic maximum likelihood DML estimation

approach

The DML approach assumes no statistical model for the input sequences. In other

words, both the channel matrix H and the input source vectors si(t) i = 1, ..., Nt

are parameters to be estimated. Considering the MIMO FIR model expressed in

Section 2.4, the DML problem can be stated as: given the observation xN (t), we

want to estimate: {
Ĥ, ŝN (t)

}
= arg max f

(
xN ; H, sN

)
(5.22)

where f
(
xN ; H, sN

)
is the probability density function of the observation vectors

parameterized by both the channel matrix H and the input sources vector sN . In

the case of zero-mean Gaussian noise with covariance σ2I, the above DML estimator

leads to the nonlinear least squares optimization:{
Ĥ, ŝN (t)

}
= arg min
T (H),sN (t)

{∥∥∥xN (t)− T (H)sN (t)
∥∥∥2

2

}
(5.23)

The above function can also be written as :{
Ĥ, ŝN (t)

}
= arg min
T (H),sN (t)

{∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2

2

}
(5.24)

where h = vec(H) is the vectorized version of the matrix H. The operator F
(
.
)

transforms a vector sN (t) into an NNr × (L + N)Nt matrix, in such a way that:

F
(
sN (t)

)
h = T (H)sN (t).

Under the assumptions expressed in Chapter 5, T (H) is full rank column and the

variables
(
H, sN (t)

)
are identi�able up to a Nt ×Nt constant full rank matrix [83]

which we denote Q. The identi�ability condition for the DML approach is the

same as that for the deterministic second-order subspace methods. The reason is

that, when the noise is Gaussian (assumed true in DML), all information about

the channel in the likelihood function resides in the second-order moments of the

observations. Readers are referred to [83] for more detailed discussion about the

identi�ability of the MIMO FIR channel with the noise subspace method.

Resolving the ambiguity caused by the matrix Q in second order based blind

channel estimation of MIMO-FIR is equivalent to the instantaneous Blind Source

Separation BSS problem [123]. Hence, the indeterminacy can be reduced to a

complex-valued diagonal matrix and a real-valued permutation matrix.

The blind DML criterion as stated in Eq. (5.23) and Eq. (5.24) is complicated

and non-convex for estimating jointly both parameters
(
H, sN (t)

)
. However, it is

convex for each unknown parameter alone by supposing the other one �xed. Hence,
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Eq. (5.23) and Eq. (5.24) can be resolved by alternatively optimizing over H and

sN (t). This idea was proposed in many previous papers [115, 117, 118, 122] but for

the SIMO case.

5.3.2 Regularized blind deterministic maximum likelihood DML

estimation approach

In the case where the system is not time-varying and if the data sequence is long

enough so that a reliable statistical model can be built, then, the SML method should

be used, since in that case the statistical method outperforms the deterministic one

in terms of estimation accuracy. However, in a fast fading environment, the data

related to a given channel are not numerous, which makes a reliable statistical

estimation less e�ective. In such a situation, the symbols are assumed arbitrary

and a DML method is used. The regularized DML approach is a trade-o� between

DML and SML approaches, where we take advantage of some prior information

about input data or/and transmission channel to enhance the DML results. Next

we present di�erent types of priors and how to include them to the DML criterion.

Simplicity and the �nite alphabet property

The �nite alphabet property in digital communication signals was considered in [119�

121] with the DML approach. In this case, an alternating optimization is used to

minimize the criterion given by:

ŝN (t) = arg min
sN (t)∈S

∥∥∥xN (t)− T (H)sN (t)
∥∥∥2

2
(5.25)

Ĥ = arg min
h

∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2

2
(5.26)

where S is the (discrete) domain of sN (t) of cardinal pNt(N+L) for a �nite alphabet

f = {α1, ..., αp} of cardinal p. The optimization in Eq. (5.26) is a linear least squares

problem whereas the optimization in Eq. (5.25) is computationally expensive and

can be achieved by using the Viterbi algorithm. The convergence of such approaches

are not guaranteed due to the numerous local minima induced by the discrete set

constraint. We propose to replace this constraint by the signal simplicity. The

simplicity property was �rst introduced in [124] where we say that a signal is simple

if most of its elements are equal to the extremes of the �nite alphabet. Recently,

the authors in [110] proposed a simplicity-based detector for �nite alphabet source

separation in both determined and underdetermined large-scale MIMO systems.

They relaxed the problem of the �nite alphabet constraint as stated in Eq. (5.25)
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to a convex box constraint depending only of the constellation extremes {α1, αp}.
The new optimization problem is given by:

r̂ = arg min
r

∥∥∥xN (t)− T (H)Bαr
∥∥∥2

2
subject to B1r = 12N , r ≥ 0 (5.27)

where sN (t) = Bαr. The Matrices Bα and B1 are de�ned by: Bα = I2Nt(N+L) ⊗
[α1, αp] and B1 = I2Nt(N+L) ⊗ [1, 1]. The underlined notation is reserved to the

complex-real transformation where T (H), xN (t) and sN (t) are given by

T (H) =

[
R(T (H)) −I(T (H))

I(T (H)) R(T (H))

]
xN (t) =

[
R(xN (t))

I(xN (t))

]
sN (t) =

[
R(sN (t))

I(sN (t))

]

In addition to the convexity of this formulation, the computation cost of the resulting

detector does not depend on the constellation size [110].

Sparsity of the input signals

The sparsity property of the input signals was introduced earlier as a contrast

function for blind source separation. Now, it is introduced as a regularization on

Eq. (5.23) which will enhance the estimation and improve the robustness to outliers.

If the sources are su�ciently sparse, the regularization can be carried out directly

in the time domain by considering the LASSO problem (or basis pursuit equivalent

problem). In this case, an alternating optimization is used to minimize the criterion

given by:

ŝN (t) = arg min
sN (t)

∥∥∥xN (t)− T (H)sN (t)
∥∥∥2

2
+ λs

∥∥∥sN (t)
∥∥∥

1
(5.28)

Ĥ = arg min
h

∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2

2
(5.29)

where λs is a weighting parameter which controls the trade-o� between approxi-

mation error and sparsity level of the input signals. This formulation can also be

interpreted as linear regression for which the coe�cients have Laplace prior distri-

butions (special case of GGD model introduced in Eq. (5.4) with p = 1 because

of the convexity of the `1-norm) that tends to set most of the coe�cients close or

equal to zero. The problem in Eq. (5.28) is convex but has no closed form solution.

The Least Angle Regression (LARS) is a less greedy version of traditional forward

selection methods for model selection problems and solves the LASSO problem ef-

�ciently.

In case where the input signals are not su�ciently sparse in the time domain,

we can use sparse representations methods in order to transform the signals into a

dictionary where they are more sparse. For instance, speech signals have more sparse

representations in the time-frequency domain than in the time domain, therefore,
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the STFT is used in this case. If we denote by Φ the considered transformation

(dictionary) matrix, then the problem in Eq. (5.28) can be rewritten as:

r̂ = arg min
r

∥∥∥xN (t)− T (H)Φr
∥∥∥2

2
+ λr

∥∥∥r∥∥∥
1

(5.30)

with sN (t) = Φr.

Representing the sparsity with the `1-norm minimization is suitable due to the

convexity property. However, other heuristic penalization functions (generally non-

convex) were used in the literature to enhance the sparsity such as the Reweighted-

`1 [43].

Sparsity of the channel impulse response

The sparsity of the channel impulse response was �rst studied in case of SIMO

systems, then extended to the MIMO case such as in [50]. In order to exploit

the sparsity a priori information of the channel impulse response, we introduce an

additional cost function based on the GGD model of channel coe�cients in the same

manner as we did previously in case of sparse input signals. Under the assumption

that all the components of H are i.i.d, the GGD model is expressed in the same

way as in Eq. (5.4). This model encourages the values that are close to zero and the

sparsity of the channel H. Taking the logarithm of the a posteriori estimator, leads

to the objective function:

Ĥ = arg min
∥∥∥xN (t)−F

(
sN (t)

)
h
∥∥∥2

2
+ λh

∥∥∥h∥∥∥q
q

(5.31)

where λh is a weighting parameter which controls the trade-o� between approxima-

tion error and sparsity represented by the `q-norm of the channel impulse response.

This function has LASSO-like formulation and it is convex only for the case q = 1.

Other heuristic penalization functions can be used to enhance the sparsity such as

the Reweighted `1 criterion [43], which generally outperforms the `1-based criterion.

The cost function in this case is given by:

Ĥ = arg min
∥∥∥xN (t)−F

(
sN (t)

)
h
∥∥∥2

2
+ λh

NrNt(L+1)∑
i=1

log
(
|h(i)|+ ε

)
(5.32)

where ε > 0 is a relatively small positive constant. Both cost functions in Eq. (5.31)

and Eq. (5.32) are optimized under the constraint ‖h‖22 = 1 to avoid the trivial null

solutions.
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5.3.3 Initialization and resolving ambiguities in subspace-based blind

identi�cation of MIMO channels

The ML method solutions usually cannot be obtained in closed form and require an

optimization in presence of local minima. In addition, the dimension of the problem

depends on the sample size, which makes this approach not practical for large data

size applications. However, ML approaches can be made very e�ective by including

some initialization procedure. In our case we have chosen the MIMO second-order

based subspace method [83] because of its nice convergence properties.

Another problem in our formulation is the ambiguity of the blind identi�cation

MIMO problem itself. In fact, as we stated before the channel matrix H is estimated

up to a Nt ×Nt full rank matrix Q i.e.

H = ĤCSQ (5.33)

Hence, we cannot introduce directly penalty functions such as simplicity without

resolving this ambiguity. The authors in [123] shows that resolving the ambiguity is

equivalent to instantaneous Blind Source Separation BSS problem and they solve it

using independent component analysis (ICA) under the assumption that transmitted

sequences are statistically independent and non-Gaussian (which is generally true

for communication sources). Hence, the indeterminacy can be reduced to a complex-

valued diagonal scaling matrix and a permutation matrix.

In case of sparse MIMO channel H, it is clear that this problem is similar to the

sparse principal subspace estimation problem discussed in Chapter 3. In this case

the subspace is represented by the estimation ĤCS and we search for the rotation

matrix Q that leads to the sparse channel H. If the recovery conditions (high level

of sparsity and (L + 1)Nr > CNt log(Nt)), as stated in the results of Chapter 3,

are satis�ed, then we can estimate the sparse channel H up to a complex diagonal

scaling matrix and a permutation matrix. We can use the second step of algorithms

SS-FAPI or SGSS-FAPI in order to accomplish this task.

Finally, the resulting scaling and permutation indeterminacy is more complicated

and requires additional information in order to be resolved. It is equivalent to the

instantaneous BSS indeterminacy problem. In our case, we generalize the same

assumptions used in the SIMO case such as having the �rst row of H equal to ones

and sort its columns depending on their `2-norm.
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5.4 Simulation results

Blind sparse SIMO channel identi�cation

To assess the performance of the proposed solutions, we consider �rst the SIMO

system with Nr outputs represented by a polynomial transfer function of degree L.

The channel impulse response is a sparse sequence of random variables generated

according to the Bernoulli-Gaussian distribution. In our simulation, we have used

a sparsity level of 30%, which means that 30% of the vector h entries are nonzeros

as illustrated in Figure 5.1.

Time

0 5 10 15 20 25

h
i(n

)
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1
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Channel vector h
1

Channel vector h
2

Channel vector h
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Figure 5.1: Example of sparse SIMO channel used in simulation with Nr = 3 and

L = 25.

The input signal is a random binary sequence and the additive white Gaussian

noise has a variance σ2 chosen according to the target signal to noise ratio SNR =

10 log(
‖h‖22
σ2 ). The used performance factor is the normalized mean-square error

criterion given by

NMSE =
1

K

K∑
k=1

1−

(
ĥHk h

‖ĥk‖2 ‖h‖2

)2

(5.34)

with K = 100 is the number of Monte-Carlo runs. For the comparison, we use the

CR-based algorithm [50] which we will refer to as SCR-adapt. MAP-adapt will refer

to the �rst proposed algorithm and AMAP-adapt will refer to the version that uses

the pseudo inverse approximation.

Figure 5.2 shows the NMSE evolution as function of time for the parameters

Nr = 3, L = 15, β = 0.98 and SNR = 20dB. The optimization step is chosen �xed

to µ = 0.0001, then we use the optimal one calculated according to Eq. (5.21). It is

clearly shown that the proposed algorithms outperform the SCR-adapt algorithm.

In addition, the following observations can be made out of this experiment: (i) the
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Figure 5.2: NMSE in dB versus time for (Nr = 3, L = 15) and SNR = 20dB.

AMAP method is better that the MAP one due to the fact that the considered

approximation allows us to control the slow variation of the update vector esti-

mate contrary to the adaptive MAP using exact (batch) pseudo-inversion. In other

words, the AMAP-adapt is better aligned with the spirit of the gradient method

than the MAP-adapt. (ii) As expected, the optimal step size allows increasing the

convergence rate of the considered algorithms. (iii) the best results are obtained by

the AMAP-adapt with optimal step size which has the joint advantages of reduced

complexity, faster convergence rate and lower steady state error as compared to the

other methods.

Although we have changed the parameters to Nr = 3, L = 30, γ = 0.95 and

SNR = 20, we can see in Figure 5.3 relatively the same NMSE evolution over time.

The AMAP-adapt algorithm with optimal µ remains the best among all considered

algorithms.

In Figure 5.4, the NMSE is plotted versus the SNR after T = 10000 snapshots

for a SIMO system with Nr = 3 and L = 15. Generally, our algorithms MAP-adapt

and AMAP-adapt keep having better performance than the SCR-adapt algorithm

for moderate and high SNRs.

In order to illustrate the behavior of the AMAP algorithm in case of overestima-

tion of the channel order, we consider a system with Nr = 3, L = 60 and SNR = 20.

Figure 5.5 shows the robustness of the AMAP-adapt algorithm for a channel order

overestimation by 15 and 30, respectively.
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Figure 5.3: NMSE in dB versus time for (Nr = 3, L = 30) and SNR = 20dB.

Blind joint estimation of MIMO channels and input data

We consider now the MIMO problem with Nt transmitters and Nr receivers and

the channels are represented by a polynomial transfer function of maximum degree

L. The channels impulse responses are generated randomly according to a Gaussian

distribution in the non-sparse case. Sparse channels impulse responses are generated

according to the Bernoulli-Gaussian distribution with 30% of non-zeros elements.

All the proposed criteria for the MIMO problem are convex with respect to the

channel or the input data separately. Hence, for the optimization, we have used the

Matlab CVX toolbox [125].

In the �rst simulation, we consider a real-valued case with a Gaussian noise, a real

non-sparse channel with Nt = 3, Nr = 8,L = 10. We consider a BPSK constellation

which will be used for the simplicity prior with T = 1000 received symbols. We

have used as performance factors the NMSE (generalized from the SIMO case to

the MIMO) of the estimated channels and the Bit Error Rate (BER) of the estimated

input signals. The proposed regularized DML method which in this case consider

the simplicity prior (BPSK constellation) is compared to the initialization subspace

method, the least squares LS solution and the oracle solution. We have considered

two iterations for the regularized DML and the LS solutions.

It is clear in Fig. 5.6 that using the simplicity prior in the DML formulation

enhances the performance in terms of NMSE and BER. Furthermore, we can reach

the oracle performance for a certain SNR level (above 13dB). Same observations

can be made in Fig. 5.7 where we have considered a 4-QAM modulation, circularly



5.4. Simulation results 105

SNR (dB)

0 5 10 15 20 25 30 35 40 45 50

N
M

S
E

 (
d
B

)

-70

-60

-50

-40

-30

-20

-10

0

SCR-adapt

MAP-adapt

AMAP-adapt

Figure 5.4: NMSE in dB versus SNR en dB for (Nr = 3, L = 15).
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Figure 5.5: NMSE in dB of AMAP-adapt algorithm versus time for (Nr = 3, L = 60)

and SNR = 20dB.

symmetric complex Gaussian noise and a complex non-sparse channel with (Nt =

3, Nr = 8, L = 10) and T = 1000. In this case, we need a much higher SNR level to

see the impact of the proposed approach.

In both previous simulations, we have considered only one iteration in our reg-

ularized DML approach. However, we can use multiple iterations to have a better

performance.
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Figure 5.6: NMSE in dB and BER performance of the regularized-DML proposed

approach versus SNR for BPSK modulation and (Nt = 3, Nr = 8, L = 10) and

T = 1000.

Fig. 5.8 shows the results of using 1, 2, 5 and 10 iterations of the simplicity prior

for the case of (Nt = 3, Nr = 8, L = 10) and T = 1000. It is clear how increasing

the number of iterations improves the performance especially for the �rst ones. In

terms of NMSE, we can observe that the amount of SNR needed to reach the oracle

performance is going lower with the increase of the iterations number. In terms of

BER, same can be made in addition to outperforming the LS oracle performance.

Now we consider, in addition to the simplicity prior, the sparsity of the chan-

nels impulse responses. We reuse the same parameters of the �rst simulation with

longer channels L = 20 which have 30% of their elements non-zeros. Fig. 5.9 shows
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Figure 5.7: NMSE in dB and BER performance of the regularized-DML proposed

approach versus SNR for 4-QAM modulation and (Nt = 3, Nr = 8, L = 10) and

T = 1000.

the in�uence of combining both simplicity and sparsity of channels (λh = 0.5) on

the NMSE and the BER. Adding the sparsity prior allows us to reach even better

performance in terms of NMSE and BER in both the oracle case and the full blind

case.

In the case of sparse signals, we will use the mean squared error (MSE) MSE =
1
T E
{
‖sN−ŝN‖22

}
between the original signal and the estimated one as a performance

factor. Fig. 5.10 shows the improved performance of the proposed approach in case

of sparse a priori on the input signals compared to the least-squares method with

(Nt = 3, Nr = 8, L = 10) and T = 1000.
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Figure 5.8: NMSE in dB and BER performance of the regularized-DML proposed

approach with di�erent number of iterations versus SNR for BPSK modulation and

(Nt = 3, Nr = 8, L = 10) and T = 1000.

In the next simulation, in addition to the sparsity of the input signals, we consider

longer L = 20 and sparse channels with 30% of non-zeros elements. Hence, we

will use the sparse regularization DML approach on both the channels and the

signals. Fig. 5.11 illustrates how introducing the double sparsity prior enhances the

performance.

In the previous simulations, we have chosen ad-hoc parameters λs and λh. This

choice has an important in�uence of the performance of the proposed formulation.

Some solutions can be adopted from the literature [7] for choosing the "best" LASSO

regularization parameter.
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Figure 5.9: NMSE in dB and BER performance of the regularized-DML proposed

approach versus SNR for BPSK modulation and sparse channel with (Nt = 3, Nr =

8, L = 20) and T = 1000.

5.5 Conclusion

In this chapter, we have considered the problem of blind identi�cation of FIR sys-

tems. First, we consider the SIMO case, where the sparsity a priori on the channel

coe�cients channel is used to adaptively estimate the channel impulse response.

A MAP approach combined with an adaptive gradient descent method is applied

to solve the problem. We have also proposed improvements to enhance the com-

putational complexity and the convergence speed of our solution. The proposed

algorithms MAP-adapt and AMAP-adapt have improved the estimation accuracy
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Figure 5.10: NMSE in dB and MSE in dB performance of the regularized-DML

proposed approach versus SNR for sparse signals with (Nt = 3, Nr = 8, L = 10) and

T = 1000.

as compared to the adaptive CR method. For the MIMO case, we have presented

a bilinear approach based on the regularized DML formation of the problem. This

formulation has the advantage of alternatively estimating the channel impulse re-

sponses and the transmitted data while adding the a priori information about the

problem as a regularization penalty. Di�erent a priori are considered: the �nite

alphabet simplicity or the sparsity of the transmitted data, the sparsity of the chan-

nels �nite responses. As an initialization of our blind framework, we have proposed

to use the subspace blind identi�cation channel method followed by a step to re-

solve its full rank matrix ambiguity. An iterative convex optimization is applied
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Figure 5.11: NMSE in dB and MSE in dB performance of the regularized-DML

proposed approach versus SNR for sparse signals and sparse channels with (Nt =

3, Nr = 8, L = 20) and T = 1000.

over the channel and the transmitted data. The proposed method has improved the

estimation accuracy in terms of both NMSE and BER.
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6.1 Conclusions

Blind methods are seen as the answer to many of modern signal and image pro-

cessing problems. This interest arises from a number of applications such as in

data communications, speech recognition, image restoration, seismic signal process-

ing, etc. At the same time, the new advances in sparse representations theory and

applications make them attractive to signal processing researchers. This thesis is

motivated by the new opportunities in sparse representations �eld applied to blind

system identi�cation problems and the di�erent challenges to be addressed to make

them operational. Also, as we are expecting more and more notable increase in

the dimensions of multidimensional signal processing problems, we have focused on

solutions that have low computational cost and can be used in an adaptive scheme.

Hence, the key objective of this thesis is to analyze the e�ect of sparsity prior

information on blind system identi�cation problems and to propose new low cost

solutions suitable for adaptive applications. The PhD report can be summarized as

follows:

In Chapter 1, we have �rst introduced the motivations and the objective of this

thesis in general. Then, we gave a scope of the problems that have been studied in

this thesis. We presented a brief development chronology of the multidimensional

and array signal processing, especially subspace methods which have been used in

many of the proposed solutions. We have also discussed how the sparsity was �rst

introduced to statistical and signal processing �elds and the most famous application

where the sparsity integration was impressive.

In Chapter 2, we have introduced the three main investigated problems in this

thesis and the corresponding state-of-the-art. First, the problem of subspace track-
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ing algorithms under a sparsity constraint on the weight matrix is discussed. We

introduced di�erent solutions from the state-of-the-art such as classical principal

subspace trackers (PAST, OPAST and FAPI), SPCA algorithms and the `1-PAST

method. The second discussed problem was blind source separation where we have

introduced the classical ICA based separation solutions. Then, we showed how

sparse decomposition techniques a�ected this problem and leaded to SCA and MCA

based separation solutions. The third problem treated is blind FIR channel iden-

ti�cation where we exposed the SIMO/MIMO model. We presented three classical

approaches to this problem: the TSML method, CR method and noise subspace

method. For the sparse channel problem, we have presented some methods from the

state-of-the-art, which are, in general, just an adaptation of the classical methods

with additional constraints to induce the sparsity. In each discussed problem, We

have stressed weak and strong points of the presented literature solutions form point

of performance and computational complexity.

Chapter 3 was dedicated to the principal subspace tracking problem under spar-

sity constraint of the weight matrix. We exploit the sparsity information to design

multiple algorithms. First, the sparse subspace is considered non-orthogonal which

is most likely the case in blind source separation with a sparse mixing matrix. We

have proposed three algorithms in this case: SS-FAPI, SS-FAPI2 and SGSS-FAPI.

Then, we consider the orthogonal case which is much closer to SPCA case and we

have proposed two algorithms: OSS-FAPI and GSS-FAPI. Compared to the liter-

ature, our algorithms have the advantage of low computational cost and improved

performances in terms of subspace estimation accuracy and the sparsity of the re-

sults. They allow us to recover the ground truth sparse mixing matrix under some

mild constraints which we have discussed. The diversity of the proposed methods

makes them adaptable to many applications depending on the problem's imposed

constraints.

In chapter 4, the problem of blind adaptive sparse source separation has been

studied. The sparsity prior information about the sources is used to allow an adap-

tive blind separation. Based on a two step approach, we project the data on the

signal subspace in the �rst step. In the second step, we enhance the sparsity of the

source signals which is represented by an `1 criterion. This criterion is optimized

by the Natural gradient method in DS-OPAST algorithm. An adaptive method

based on Shear and Givens rotations is used in SGDS-FAPI algorithm. Di�erent

extensions of these two algorithms were also presented to reduce the complexity and

enhance the tracking capabilities. In addition to the low computational cost, numer-

ical simulations have shown improved performance as compared to state-of-the-art

solutions.
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Chapter 5 is devoted to the problem of blind identi�cation of FIR systems. First,

we consider the SIMO case, where the sparsity a priori on the channel coe�cients

channel is used to adaptively estimate the channel impulse response. A MAP ap-

proach is applied to solve the problem based on an adaptive gradient decent method.

Improvements have been also proposed to enhance the computational complexity

and the convergence speed of our solution. The proposed algorithms MAP-adapt

and AMAP-adapt have improved the estimation accuracy as compared to the adap-

tive CR method.

For the MIMO case, we present a bilinear approach based on a regularized DML

formation of the problem. This formulation allows us to alternatively estimate the

channel impulse responses and the transmitted data using the a priori information

about the problem as a regularization penalty. Di�erent a priori are considered:

the �nite alphabet simplicity or the sparsity of the transmitted data, the sparsity

of the channels �nite responses. We proposed to use as an initialization a subspace

method followed by a step to resolve its full rank matrix ambiguity. Then, an

iterative convex optimization is done over the channel and the transmitted data.

The proposed method has improved the estimation accuracy in terms of both NMSE

and BER.

6.2 Perspectives

Short-term perspectives

Our short-term perspectives generally aim to improve the performance of the pro-

posed algorithms for each problem treated in terms of estimation e�ciency and

computational cost.

First, for the sparse subspace tracking problem, both algorithms GSS-FAPI and

SGSS-FAPI use prede�ned Matlab optimization functions. We can develop the cal-

culation even further and propose a less time consuming solution based on gradient

descent method or a Newton method if we replace the `1-norm with a more smooth

penalty function. This suggestion holds also for the other proposed algorithms such

as SGDS-FAPI. The proposed methods where based on a two step approach which

leads to similar subspace performance as the subspace tracker used in the �rst step.

We are interested to discuss the situations where solving the problem in a unique

step may be more e�cient than doing it in a two-step scheme as we suggested.

Second, for the blind source separation problem, we have some ideas about the

combination of priors information and their impact of the performance. For instance,

the sources can be sparse and independent at the same time. Would the combination

of the two priors enhance the separation performance ?. This can also include the
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simplicity prior and the sparsity of the mixing matrix.

Third, further investigation is necessary for the proposed regularized DML so-

lution to the blind joint data estimation and channel identi�cation problem. We

suggest to study the parameter's in�uence on the performance and to design more

adapted optimization methods (we have used the CVX Maltlab toolbox [125]).

Mid-term perspectives

Noise (minor) subspace tracking is directly related to adaptive blind MIMO channel

identi�cation problem. Unlike the principal subspace, the noise subspace is more

di�cult to track. Hence, it is challenging to develop sparse noise subspace tracking

methods and apply them in the context of blind channel identi�cation.

The exact recovery of the ground truth sparse mixing matrix discussed in Chap-

ter 3 is a powerful result which needs further investigations. We should be able to

give more tight necessary conditions and use this result in practical applications.

We are interested also in the underdetermined model for the blind source separa-

tion as an extension to our work. Until now, we have been using subspace methods

which force us to consider only overdetermined systems. However, sparsity has been

already successfully applied to such systems, and we should give this case more

thoughts.



Appendix A

Connexion with the Natural

Gradient

It was shown in [90] that natural gradient learning is stable, statistically e�cient

and works better than ordinary gradient learning, thus, it is widely used in the �eld

of blind source separation. Therefore, we want to show that the gradient step used

in SS-FAPI is similar to the natural gradient step introduced in [126] [90].

We now de�ne a Riemannian structure of the set of all d×d non-singular matrices,

which forms a Lie group denoted by Gl(d), for the purpose of introducing the natural

gradient learning rule. Let dQ be a small deviation of a matrix from Q to Q + dQ.

First, we need to introduce an inner product at Q which de�nes the squared norm

of dQ as < dQ,dQ >Q.

After multiplying by Q−1 from the left, Q is mapped to Q−1Q = Ip, and Q+dQ

is mapped to Q−1
(
Q+dQ

)
= Ip+Q−1dQ. The Lie group invariance requires that

the metric is kept invariant under this change and leads to the Riemannian metric

structure:

< dQ,dQ >Q =< Q−1dQ,Q−1dQ >I (A.1)

= Tr
(
dQTQ−TQ−1dQ

)
(A.2)

On the other hand, for the objective function JSS
(
Q
)

=
∥∥∥WPSQ

∥∥∥
1
, the gradient

∂JSS

(
Q
)
is de�ned by

JSS

(
Q + dQ

)
= JSS

(
Q
)

+ ∂JSS ◦ dQ (A.3)

with

∂JSS ◦ dQ = Tr
(
∂JTSSdQ

)
=< ∂JSS ,dQ >I (A.4)

Hence, the natural gradient ˜∂JSS should verify

< ∂JSS ,dQ >I =< ˜∂JSS ,dQ >Q (A.5)

= Tr
(

˜∂JSS
T
Q−TQ−1dQ

)
(A.6)
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which leads to
˜∂JSS = QQT∂JSS (A.7)

This result is inspired from [90, theorem 6], where the author gives the relation

between the natural gradient and the ordinary gradient for learning by means of

information geometry in the matrix space (also explained in [126, Appendix B]).

Finally, if we calculate ∂JSS
∂Q = WT

PSsign
(
WPSQ

)
, then the natural gradient is

given by
˜∂JSS
∂Q = QQTWT

PSsign
(
WPSQ

)
which is exactly the gradient update that

we have used in SS-FAPI :

Qt+1 = Qt − µQtQ
T
t WT

PSsign
(
WPSQt

)
(A.8)
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Résumé des Travaux de Thèse

Introduction

Au cours des dernières années, nos besoins en matière de transmission de données

avec moins de latence et d'une manière e�cace ne font qu'augmenter. Les com-

munications sans �l et les services Internet ont in�ltré la société et ont changé

notre vie en dépassant toutes les attentes. En outre, la demande de traitement

du signal de réseau �able et e�cace continue de croître rapidement, en particulier

avec les nouveaux contextes de communication entre machines M2M et internet des

objets (IoT). Selon les prévisions de Cisco, d'ici 2022, on déplacera les 28 milliards

d'appareils connectés dans le monde avec plus de la moitie consacré aux applications

des communications entre machines. Malheureusement, la nécessité de systèmes de

traitement et de transmission plus e�caces continue à drainer des ressources qui sont

limitées telles que la bande spectrale, la densité des composants des circuits intégrés

et leur consommation d'énergie. Il est donc impératif de développer de nouvelles

techniques de traitement du signal multidimensionnel pour relever ces dé�s.

Un problème majeur des communications sans �l est l'estimation de l'information

d'état du canal (CSI). Malgré la perte d'e�cacité de la bande passante, les solu-

tions basées sur des séquences pilotes sont généralement utilisées. Du point de vue de

l'e�cacité spectrale, les solutions basées sur des méthodes aveugles ou semi-aveugles

sont les plus appropriées, car elles donnent à l'émetteur plus de �exibilité en lui per-

mettant de réduire ou de supprimer totalement les séquences pilotes a�n d'avoir une

occupation optimale de la bande passante. Les techniques aveugles sont également

recommandées pour traiter des problèmes pour lesquels nous ne pouvons pas in�u-

encer les entrées, tels que l'extraction de l'électrocardiogramme f÷tal (FECG) ou

dans le cas des communications militaires.

A�n d'améliorer le traitement des signaux re çu par les capteurs, toute l'information

à priori disponible doit être utilisée. Dans diverses applications, l'à priori de parci-

monie a été utilisé avec succès et il a beaucoup attiré l'attention des chercheurs dans

les domaines du traitement du signal et des images, de la vision par ordinateur et

de la reconnaissance des formes. Malgré l'ampleur des recherches consacrées aux

méthodes basées sur la parcimonie, le potentiel de cet à priori n'est pas pleinement

exploité et certains problèmes restent largement ouverts.

Du point de vue du traitement du signal, les solutions algorithmiques futures

doivent présenter une complexité de calcul faible et suivre des approches adaptatives
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dans lesquels les sorties peuvent être mises à jour sur la base des sorties précédentes

sans répéter tous les traitements. Ceci est important a�n de réduire la consommation

énergétique des calculateurs et pour pouvoir garder un traitement e�cace même

dans des environnements non stationnaires.

Motivée par les idées ci-dessus, cette thèse combine les dernières avancées en

matière de représentation / estimation parcimonieuse et de méthodes de traitement

du signal multidimensionnel, en particulier celles basées sur des techniques sous-

espace, a�n de relever le dé� de développer de meilleur solutions aveugles à faible

coût calculatoire. Nous avons étudié trois axes principaux: la poursuite du sous-

espace principal parcimonieux, la séparation aveugle de sources parcimonieuses et

l'identi�cation aveugle de canaux parcimonieux. Nous avons à chaque fois visé des

solutions adaptatives à faible coût calculatoire.

La parcimonie et l'identi�cation aveugle de système : état

de l'art

L'identi�cation aveugle des systèmes est une technologie fondamentale du traite-

ment du signal et fait l'objet d'un intérêt croissant pour la recherche. Au même

temps, l'utilisation de l'information de parcimonie dans certaines applications de

traitement du signal a connu un grand succès. Par conséquent, la combinaison de

ces deux idées semble intéressante, en particulier pour répondre au dé� de développe-

ment d'algorithmes plus e�caces avec des contraintes de Â�temps réelÂ�. Les trois

sujets principaux de cette thèse sont: la poursuite du sous-espace principal parci-

monieux, où nous considérons un mélange instantané avec une information de parci-

monie sur la matrice de mélange du système. Le deuxième sujet est la séparation

aveugle de sources parcimonieuses où nous considérons le même mélange instantané,

mais avec une information de parcimonie sur les signaux sources. Le troisième sujet

est l'identi�cation aveugle du canal, où nous adoptons le modèle à réponse impul-

sionnelle �nie (RIF) et un mélange convolutif, ce qui rend le problème plus complexe

par rapport au deux problèmes précédents. Dans ce cas, l'information à priori utile

peu di�érée d'un cas à un autre. Nous avons considéré trois di�érent à priori: la

parcimonie du canal RIF, la parcimonie des signaux sources et la simplicité du signal

source.

La poursuite du sous-espace principal et la parcimonie

L'estimation de sous-espace joue un rôle important dans diverses applications mod-

ernes de traitement du signal. L'application la plus connue est l'estimation des

directions d'arrivée (DOA) d'ondes planes re çu par un réseau d'antennes avec les
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algorithmes MUSIC et ESPRIT. Lorsque nous considérons un contexte de suivi

dans lequel les sources se déplacent, nous devons estimer plus fréquemment les

DOA. Cependant, cela pourrait être compliqué en raison de la complexité de calcul

de la décomposition nécessaire. En e�et, l'implémentation de ces techniques est

basées soit sur la décomposition en valeurs propres EVD soit sur la décomposition

en valeurs singulières SVD. Dans un contexte de traitement adaptatif, l'utilisation

de ces techniques est déconseillée vu la nécessité d'exécuter plusieurs décomposi-

tions EVD ou SVD, ce qui est très complexe et coûteux en temps de calcul. A�n

de surmonter cette di�culté, un certain nombre d'algorithmes adaptatifs pour la

poursuite de sous-espaces ont été développés. Les algorithmes de poursuite de sous-

espace peuvent être classés en fonction du sous-espace recherché en algorithmes de

poursuite du: sous-espace principal (signal, dominant), sous-espace mineurs (bruit)

et les algorithmes qui peuvent être utilisés pour estimer les sous-espaces mineurs

et principaux. Ils peuvent également être classés en fonction de leur complexité

en trois classes. Si p indique le rang du sous-espace principal ou mineur que nous

aimerions estimer, étant généralement p << d, il est fréquent de se référer aux trois

classes par leur complexité de calcul, c'est-à-dire des algorithmes qui ont une com-

plexité de calcul d'ordre O(d2) ou O(pd2), les algorithmes ayant une complexité de

calcul d'ordre O(dp2) et les algorithmes moins gourmands en temps de calcul, qui

présentent une complexité de calcul linéaire d'ordre O(dp) tels que PAST, OPAST

et FAPI.

L'analyse en composantes principales (PCA) a aussi une relation direct avec

l'estimation du sous-espace principale. En e�et, la PCA est largement utilisée pour

le traitement des données et la réduction de dimension du problème étudié. Cepen-

dant, elle sou�re du fait que chaque composante principale est une combinaison

linéaire de toutes les variables d'origine. Il est donc souvent di�cile d'interpréter

les résultats du point de vue physique. De plus, les bases de données ont souvent un

nombre de variables d'entrée comparable, voire beaucoup plus grand, que le nom-

bre d'échantillons. Il a été démontré que si leur rapport ne converge pas à zéro, la

PCA classique n'est pas cohérente. Pour remédier à ces inconvénients, di�érentes

méthodes connus sous le nom de Sparse PCA (SPCA) ont été proposées pour former

des composantes principales, chacune étant la combinaison linéaire d'un petit sous-

ensemble de variables pouvant encore expliquer un pourcentage élevé de variance

des données. On peut mentionner par example les algorithm SCoTLASS, SPCA

développée par Zou, Elastic-net SPCA, GPower et IMRP. La plupart des solutions

proposées pour SPCA sont des algorithmes de traitement par bloc qui traitent toutes

les données re çues en un seul bloc. Cependant, dans les systèmes non stationnaires,

les paramètres à estimer changent avec le temps et le résultat d'une telle approche
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est sous-optimal. Par conséquent, le traitement adaptatif doit être e�ectué après ré-

ception de chaque échantillon de données. Il est à noter que le problème de l'analyse

adaptative en composantes principales est équivalent au problème de poursuite de

sous-espace a des contraintes prés. Parmi les solutions adaptatives existantes, on

peut citer l'algorithme d'Oja avec seuillage progressif itératif (OIST) et l'algorithm

streaming SPCA. L'algorithme `1-PAST est proposé pour résoudre le principal prob-

lème de poursuite du sous-espace principal sous une contrainte de parcimonie sur la

matrice des poids. Il a été développé pour l'application STAP (traitement adaptatif

spatio-temporel) du radar à dispersion de phase aéroporté.

La séparation aveugle de sources et la parcimonie

La séparation aveugle de sources (BSS) est une technologie de traitement du sig-

nal qui a été utilisée de manière intensive dans plusieurs domaines, tels que le

génie biomédical, le traitement audio (musique et parole) et les applications de

communications numériques. L'objectif principal de la séparation de source est de

récupérer des signaux inconnus à partir d'observations re çues sur un ensemble de

capteurs. Dans la BSS, ni les sources ni la matrice de mélange ne sont connues,

c'est-à-dire que nous exploitons uniquement les informations transportées par les

signaux re çus et une information préalable sur les statistiques ou la nature des

signaux sources transmis (par exemple, décorrélation, indépendance, parcimonie,

diversité morphologique, etc). Dans le cas où l'indépendance des signaux d'entrées

est considérée comme à priori, nous parlons alors de l'analyse en composante in-

dépendantes (ICA). Contrairement à la PCA où nous chercherons des composantes

ayant la plus grande variance mais qui n'ont aucune signi�cation physique directe,

la technique ICA tente de récupérer les sources d'origine en estimant une trans-

formation linéaire et en supposant une indépendance statistique entre les sources

inconnues. L'ICA est clairement liée au problème de séparation aveugle de sources,

où les signaux sources sont supposés être i.i.d (distribués de manière identique et

indépendante) et non Gaussiennes.

Les techniques de représentations parcimonieuses des signaux et des images ont

connu un développement considérable au cours de l'essor des méthodes de compres-

sion et de débruitage à base d'ondelettes au début des années 90. Plus tard, ces

techniques ont été exploitées pour la séparation aveugle de sources. Leur principal

impact est qu'elles fournissent un cadre relativement simple pour séparer un nombre

de sources supérieur au nombre de mélanges observés. En outre, elles améliorent

grandement la qualité de la séparation dans le cas d'une matrice de mélange carrée

(ou surdéterminée). La parcimonie a été introduite pour la première fois comme

alternative aux fonctions de contraste standard d'ICA en utilisant une approche en-



Résumé des Travaux de Thèse 137

tièrement Bayésienne. En parle alors d'analyse en composante parcimonieuse (SCA).

Chaque source est supposée être parcimonieusement représentée dans une base (par

exemple, une base d'ondelettes orthogonale) avec des coe�cients qui suivent une cer-

tain distribution qui force les éléments à être le plus proche de zéro. L'estimateur au

sens du Maximum A Posteriori (MAP) peut est utilisé pour estimer la matrice de

mélange et les signaux de coe�cients. De nombreuses recherches récentes en SCA

ont étendu la base à un dictionnaire sur-complet et utilisent la redondance pour

améliorer la parcimonie des coe�cients. La combinaison des résultats antérieurs de

la BSS basés sur l'ICA et des récents progrès dans le domaine des représentations

parcimonieuses a beaucoup aidé à développer de nouvelles techniques SCA. Le cas

parcimonieux parfait suppose que les sources ont des supports mutuellement dis-

joints (ensembles d'échantillons non nuls) dans le domaine temporel ou transformé.

Néanmoins, ce cas simple nécessite des signaux très parcimonieux. Malheureuse-

ment, ce n'est pas le cas pour une grande classe de donnée hautement structurée

et en particulier dans le traitement d'images. De plus, au cours des dix dernières

années, de nouveaux outils sont apparus à partir de l'analyse harmonique moderne::

wavelets, ridgelets, curvelets, bandlets, contourlets, etc. Il était tentant de combiner

plusieurs représentations pour créer un dictionnaire plus large de formes d'ondes qui

permettrait la représentation parcimonieuse d'une plus large classe de signaux. Un

algorithme pratique connu sous le nom d'Analyse en Composantes Morphologique

(MCA) visant à décomposer les signaux dans des dictionnaires sur-complets com-

posés d'une union de bases. Par exemple, une source lisse par morceaux (image de

bande dessinée) est bien éparse dans un cadre serré en courbes alors qu'une source

oscillante globalement déformée (texture) est mieux représentée à l'aide d'une trans-

formée en cosinus discrète (DCT). La diversité morphologique repose alors sur la

rareté de ces composants morphologiques dans des bases spéci�ques.

L'identi�cation aveugle de système et la parcimonie

Une communication �able nécessite souvent l'identi�cation de la réponse impulsion-

nelle du canal. Une telle identi�cation peut faciliter l'égalisation de canal ainsi que

la détection de séquence avec le maximum de vraisemblance. L'identi�cation dite de

canal aveugle signi�e que le canal est identi�é sans utiliser de signal d'apprentissage;

Au lieu de cela, l'identi�cation est réalisée en utilisant uniquement la sortie du canal

avec certaines informations statistiques a priori sur l'entrée. Ces méthodes peuvent

potentiellement augmenter la capacité de transmission du fait de l'élimination des

signaux d'apprentissage. Le problème d'identi�cation du canal aveugle a fait l'objet

de beaucoup d'attention au cours des deux dernières décennies et de nombreuses

solutions e�caces existent pour les systèmes à entrée unique, à sorties multiples
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(SIMO) et à entrées multiples, à sorties multiples (MIMO) dans la littérature. Nous

pouvons distinguer deux classes principales de méthodes d'identi�cation de système

aveugle BSI: les techniques de statistiques d'ordre supérieur (HOS) et de statistiques

de second ordre (SOS). En général, les méthodes basées sur HOS nécessitent des

échantillons de grande taille pour obtenir de meilleures performances d'estimation

que les méthodes basées sur SOS. Parmi les célèbres techniques basées sur SOS,

on peut citer la méthode des relations croisées (CR), la méthode des sous-espaces

et la méthode en deux étapes maximum de vraisemblance (TSML). Malheureuse-

ment, il semble probable qu'en cas de réponse impulsionnelle très longue et d'un

canal parcimonieux, ces méthodes fonctionnent mal. Ces canaux parcimonieux peu-

vent être rencontrés dans de nombreuses applications de communication, y compris

les canaux de télévision haute dé�nition (HDTV) et les canaux acoustiques sous-

marins. Récemment, des solutions ont été proposées pour traiter ce cas en adaptant

les méthodes d'identi�cation à l'aveugle Â�classiquesÂ� au cas parcimonieux. Parmi

les solutions qui tiennent compte de la parcimonie du canal, on cite la méthode CR

sparse, la méthode MAP et sa version adaptative pour le cas d'un canal SIMO. Pour

le cas d'un canal MIMO le problème est plus complexe et il existe peu de solution

qui considère la parcimonie du canal avec un modèle convolutif.

Algorithmes de poursuite du sous-espace principal parci-

monieux à faible coût calculatoire

Dans ce chapitre, notre objectif est de résoudre le problème de poursuite du sous-

espace principal sous une contrainte de parcimonie sur la matrice de pondéra-

tion. Cela sera crucial dans deux cas majeurs: lorsque nous traiterons le manque

d'interprétabilité physique des résultats de la PCA, par exemple, dans la recherche

génomique en haute dimension. Dans le second cas, où nous souhaiterions récupérer

la matrice de mélange originale comme c'est le cas dans la séparation de source

lorsque la matrice de mélange est parcimonieuse. De nombreuses solutions ont été

proposées pour l'estimation de sous-espaces parcimonieux par bloc, généralement

appelées méthodes SPCA. Contrairement au problème pas bloc, peu de solutions

ont été proposé pour le schéma adaptatif.

Nous présentons ici les méthodes proposées pour résoudre le problème considéré

dans les deux cas: orthogonal et non orthogonal, c'est-à-dire s'il existe des con-

traintes d'orthogonalité sur la matrice de pondération ou pas. Le cas non orthogonal

correspond au problème de l'identi�cation aveugle du système parcimonieux. Le cas

orthogonal est nécessaire pour traiter les applications qui nécessitent ou préfèrent

utiliser une matrice de pondération orthogonale, par ex. les algorithmes MUSIC et
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minimum-norm dans le contexte de l'estimation de la DOA. La plupart des méth-

odes proposées dans la littérature sou�rent d'un compromis entre la performance

du sous-espace et le niveau de parcimonie visée. Pour résoudre ce problème, nous

avons proposé une approche en deux étapes: dans la première on utilise l'algorithme

de poursuite de sous-espace de l'état de l'art FAPI pour une estimation adaptative

d'une base orthonormale du sous-espace principal. Ensuite, sous la contrainte de

parcimonie, une estimation de la matrice de pondération souhaitée est e�ectuée

dans la deuxième étape en utilisant di�érentes techniques d'optimisation tel que le

gradient naturel et les rotations de Shear et Givens.

Une étude de performance est e�ectué en utilisant des données synthétiques

(avec des matrices de mélange orthogonal et non orthogonal) et des données réels

a con�rmé la supériorité des algorithmes proposés par rapport à ceux de l'état

de l'art. Les algorithmes résultants ont di�érentes caractéristiques telles que la

performance de parcimonie (vitesse et limite de convergence), la complexité de calcul

et l'orthogonalité de la solution. Le tableau A.1 résume la complexité de calcul

par itération des algorithmes et s'il considère la contrainte d'orthogonalité avec

l'algorithme FAPI comme témoin des algorithmes de poursuite de sous-espace sans

parcimonie et l'algorithme `1-PAST pour représenter l'état de l'art.

Algorithme Complexité de calcul par itération Orthogonalité

FAPI 3dp+O(p2) Oui

`1-PAST 3dp2 + 3dp+O(p2) Oui

SS-FAPI 2dp2 + 4dp+O(p2) Non

OSS-FAPI 2dp2 + 3dp+O(p3) Oui

SS-FAPI2 4dp+O(p2) Non

SGSS-FAPI 4dp+ 8αd+O(p2) Non

GSS-FAPI 4dp+ 4αd+O(p2) Oui

Table A.1: Résumé des complexités de calcul par itération des algorithmes proposés

et s'il considère la contrainte d'orthogonalité

Une étude théorique est aussi proposée pour con�rmer l'unicité et la conver-

gence locale de la solution donnée par nos algorithmes. Nous avons pu conclure que,

sous certaines contraintes, la méthode de descente de gradient proposée converg-

era asymptotiquement vers les minima locaux équivalant à la matrice du mélange

originale à une matrice de permutation et signe prés. Ces contraintes concernent la

taille du système (d > Cp log(p)), la parcimonie de la vérité de terrain (la matrice

du mélange originale) et sa cohérence.

Comparés aux méthodes proposées dans la littérature, nos algorithmes présen-
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tent l'avantage d'un faible coût de calcul avec des performances améliorées en ter-

mes de précision de l'estimation de sous-espace et de parcimonie des résultats. Nous

avons aussi fait l'étude théorique qui montrent que nos algorithmes nous perme-

ttent de récupérer la matrice de mélange parcimonieuse originale sous certaines

contraintes légères. En�n, la diversité des méthodes proposées les rend adaptables à

de nombreuses applications en fonction des contraintes imposées au problème, telles

que la complexité de calcul et l'orthogonalité de la matrice de pondération.

Séparation aveugle de sources parcimonieuses

Bien que la séparation aveugle de sources parcimonieuses puisse être particulière-

ment utile pour séparer des mélanges sous-déterminés (plus de sources que de cap-

teurs), elle est également potentiellement intéressante pour le mélange bruité sur-

déterminé (plus de capteurs que de sources), auquel cas la parcimonie est exploitée

pour améliorer la qualité de séparation. Dans ce chapitre, nous abordons le problème

de la séparation aveugle adaptative de sources parcimonieuses dans le cas surdéter-

miné bruité. Nous avons proposé deux algorithmes basés sur la même approche

en deux étapes que nous utilisions précédemment pour la poursuite du sous-espace

principal parcimonieux. Dans la première étape on utilise l'algorithme OPAST ou

FAPI pour estimer adaptativement une base orthogonale du sous-espace principale.

Dans la deuxième étape, on estime la matrice du poids parcimonieuse recherchée

en utilisant di�érente méthodes d'optimisation pour minimiser une fonction de coût

qui représente la norme ell1 des signaux séparées.

Le premier algorithme proposé est DS-OPAST (DS signi�e Data Sparsity) basé

sur un schéma de gradient naturel et qui utilise aussi une technique de projection

approximée pour garder un coût calculatoire indépendant du temps et donc adéquat

pour un contexte adaptatif. Une autre version nommée DS-OPAST2 est aussi pro-

posé en utilisant plus d'approximation dans le but de réduire encore plus le temps de

calcul. Le deuxième algorithme SGDS-FAPI se base sur les rotations Shear et Givens

pour la minimisation de la norme ell1. Di�érente versions ont été proposées, toutes

dépendent de la stratégie de sélection des indices de rotations Shear and Givens

considérée ou en utilisant une optimisation jointe ou séparées des paramètres des

rotations.

Des simulations numériques sont présentées en utilisant des données synthétique

parcimonieuse dans le domaine temporel ou des signaux de paroles où la parcimonie

est obtenue après une l'application du transformation DCT. Nous avons montré que

les algorithmes proposés surpassent les solutions existantes à la fois en vitesse de

convergence et en qualité d'estimation.
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Algorithme étape 1 étape 2 Complexité de calcul par itération

DS-OPAST OPAST Gradient naturel dp2 + 4dp+O(p3)

DS-OPAST2 OPAST Gradient naturel 5dp+O(p3)

SGDS-FAPI FAPI Rotations de Shear 5dp+ 2dL+ 8α1d+O(p2)

et Givens

SGDS-FAPI2 FAPI Rotations de Shear 5dp+ 2dL+ 8α2d+O(p2)

et Givens

Table A.2: Résumé des Complexités de calcul par itération pour les algorithmes

proposés pour la séparation aveugle de sources parcimonieuses

Identi�cation aveugle des systèmes parcimonieux

Dans ce chapitre, nous présentons nos contributions à la résolution du problème

d'identi�cation de canal parcimonieux dans les cas d'entrée simple, de sorties mul-

tiples (SIMO) et d'entrées multiples, de sorties multiples (MIMO). Contrairement

aux deux problèmes précédents où nous avons considéré des mélanges instantanés,

cette fois nous considérons des mélanges convolutifs avec un modèle de réponses

impulsionnelles �nis pour les canaux.

Tout d'abord, dans le cas d'un canal SIMO parcimonieux, on considère un canal

variant dans le temps et on propose deux solutions adaptatives qui se basent sur

une approche de maximum a posteriori MAP. On considère que les coe�cients de la

réponse impulsionelle du canal suivent une distribution Laplacienne généralisée qui

donne plus de probabilité aux éléments proche du zéro pour améliorer la parcimonie.

Ensuite, une méthode de descente de gradient est utilisée pour proposer le premier

algorithme MAP-adapt en utilisant des approximations liées à la fenêtre exponen-

tielle considérée pour rendre la complexité de calcul indépendante du temps et donc

adéquate pour un schéma adaptative. Un deuxième algorithme AMAP-adapt est

proposé pour réduire encore la complexité du calcul en utilisant une approximation

pour le calcul de la pseudo-inverse d'une matrice de grande taille. Les simulations

ont montré que nos algorithmes améliorent clairement l'estimation du canal par rap-

port aux méthodes d'état de l'art en gardant un coût de calcul plus faible. On a

aussi testé nos algorithmes dans le cas d'une surestimation de l'ordre du canal, où

on a remarqué leur robustesse contre les erreurs due à ce problème.

Même si une séquence d'entraînement existe, leur combinaison avec des tech-

niques aveugles entraîne souvent une amélioration des performances, ce qui explique

l'intérêt croissant que suscitent l'estimation conjointe des canaux et des données,

également appelées estimation de canal assistée par données. Notre deuxième con-
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tribution vise à estimer conjointement les informations sur l'état du canal et les

données transmises dans le cas d'un canal MIMO à l'aide d'une approche de max-

imum de vraisemblance déterministe (DML) régularisée basée sur di�érents types

d'à priori. Dans le cas où le système ne varie pas dans le temps et si la séquence

de données est su�samment longue pour pouvoir construire un modèle statistique

�able, il convient d'utiliser une méthode SML, car dans ce cas, la méthode statis-

tique surpasse la méthode déterministe en qualité de l'estimation. Toutefois, dans

un environnement à évanouissements rapides, les données relatives à un canal donné

ne sont pas nombreuses, ce qui rend une estimation statistique �able moins e�cace.

Dans une telle situation, les symboles sont supposés arbitraires et une méthode DML

est utilisée. L'approche DML régularisée est un compromis entre les approches DML

et SML, où nous tirons parti de certaines informations préalables sur les données

d'entrée et / ou le canal de transmission pour améliorer les résultats de la DML.

Le premier à priori utilisé est la simplicité d'un signal à alphabet �nis. En

e�et, la plupart des communications numériques sont basées sur des signaux trans-

mis appartenant à un ensemble d'alphabets �nis. L'introduction de la contrainte

d'alphabet �nis aux détecteur est compliqué vu le nombre de minima locaux in-

troduits par l'ensemble discret des solutions. Nous avons considéré la propriété de

simplicité qui est une sorte de relaxation de la contrainte de l'alphabet �nis. Un

signal est dit simple si la majorité de ses éléments sont égales aux bornes de son

alphabet �nis. Le taux de simplicité est donc liée à la modulation considérée. Cette

relaxation à pour but de rendre le problème d'optimisation convexe et le coût calcu-

latoire ne dépend pas de la taille de la constatation. Le deuxième à priori considéré

est la parcimonie des signaux sources. Comme dans le chapitre précédent cette

parcimonie peut être dans le domaine temporel ou dans le domaine de la transfor-

mée. On utilise la norme `1 pour représenter la parcimonie des coe�cient du signal

et avoir un critère d'optimisation convexe de type LASSO avec un paramètre de

régularisation entre un terme des données et le terme de la parcimonie du signal.

Comme dans le cas SIMO, les canaux peuvent aussi être parcimonieux dans le cas

MIMO. C'est le troisième à priori considéré et de la même manière que pour sig-

naux on va utilisé une formulation de type LASSO pour avoir un critère convexe

avec un paramètre de régularisation entre un terme des données et un terme de la

parcimonie du canal.

Pour l'initialisation de notre solution aveugle, nous proposons d'utiliser la méth-

ode du sous-espace de bruit, suivie d'une étape de résolution d'ambiguÃ	té induite

par la méthode sous-espace. Cette ambiguÃ	té est résolue soit en utilisant la parci-

monie du canal, soit en utilisant une hypothèse d'indépendance des signaux sources

lorsque le canal est non-parcimonieux. Ensuite une optimisation itérative convexe
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est faite par rapport au canal et les signaux transmis. Les simulations numériques

ont montré que la solution proposée surpasse les méthodes existantes en termes de

NMSE et BER dans les di�érentes cas de �gure.

Conclusions

Cette thèse cherche à trouver des solutions aveugles et à faible coût pour résoudre

les problèmes de traitement du signal en combinant les progrès récents des méthodes

d'estimation et de réduction de la dimensionnalité basées sur les sous-espaces avec

l'information a priori de parcimonie. Ceci dans le but d'améliorer les performances

des méthodes classiques de traitement du signal. Notre travail s'articule autour

de trois axes principaux : - Le premier dé� concerne la poursuite du sous-espace

principal parcimonieux. Après une analyse approfondie de l'état de l'art, nous avons

proposé des solutions peu coûteuses en calcul basées sur une approche en deux

étapes dans lesquelles, à chaque donnée re çue, nous actualisons l'estimation du

sous-espace principal, puis de la base parcimonieuse recherchée. Les algorithmes

proposés ont di�érentes caractéristiques en termes de performance, la complexité de

calcul et l'orthogonalité de la solution. De plus, nous montrons que sous certaines

conditions modérées, ils sont capables de récupérer la matrice de mélange originale.

- Le deuxième axe de recherche est la séparation adaptative aveugle de sources

parcimonieuses. Notre objectif est d'utiliser l'information de parcimonie des signaux

source a�n de les séparer aveuglément de manière adaptative. Contrairement à

la plupart des travaux sur la séparation aveugle de sources parcimonieuse, nous

nous intéressons au cas surdéterminé où des méthodes de sous-espace peuvent être

utilisées pour estimer le sous-espace principal des données re çues. Nous avons suivi

une approche en deux étapes similaire à celle utilisée pour le suivi de sous-espace

principal parcimonieux: nous commen çons par estimer le sous-espace principal,

puis nous calculons la matrice de séparation recherchée. Nous avons proposé deux

algorithmes peu coûteux en calcul, ce qui les rend convenables pour des applications

nécessitant un traitement adaptatif. - Le troisième sujet que nous avons traité

est l'identi�cation aveugle des systèmes à réponse impulsionnelle �nie (FIR). Nous

avons commencé par proposer une nouvelle solution permettant d'estimer de manière

adaptative la réponse impulsionnelle d'un canal SIMO en utilisant la parcimonie du

canal. L'algorithme proposé a une faible complexité de calcul. De plus, il est

robuste aux erreurs dues à la surestimation de l'ordre du canal. Nous avons ensuite

étudié le problème dans le cas d'un canal MIMO. Nous nous sommes basés sur

une formulation régularisée du maximum de vraisemblance déterministe (DML) en

ajoutant di�érentes fonctions de pénalité pour exploiter les informations a priori
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disponibles, telles que la propriété de simplicité d'un source à alphabet �ni ou / et

la parcimonie du canal. Après une initialisation e�ectuée à l'aide d'une méthode

de l'état de l'art, le critère résultant est optimisé alternativement par rapport au

canal et les données en raison de la convexité de la formation utilisée pour chaque

paramètre séparément. Les deux algorithmes proposés sont comparés à des solutions

de l'état de l'art.
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