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Summary

Résumé

Les dispersions de virus filamenteux présentent une succession d'états cristallins liquides
comprenant les phases nématique, smectique (ou lamellaire) et colonnaire. L’auto-organisation de
ces particules colloidales en forme de batonnet s’est révélée étre essentiellement pilotée par
I’entropie dont résulte un potentiel d’interaction entre particules purement répulsif. Dans cette thése,
les propriétés structurales et dynamiques de batonnets présentant une interaction attractive
directionnelle fortement localisée (interaction dite & « patch ») a lI'une des extrémités des particules
ont été étudiées. L’interaction attractive locale a été obtenue en fonctionnalisant les extrémités des
virus filamenteux par greffage régiosélectif de colorants fluorescents hydrophobes qui jouent le réle
de « patch » enthalpique. La force d'attraction peut étre modulée en faisant varier le nombre de
molécules de colorant liées. Nous avons montré que cette interaction a « patch » stabilise la phase
smectique au détriment de la phase nématique, laissant les autres phases cristallines liquides
essentiellement inchangées. En outre, la présence de molécules de colorant fluorescent sur les
extrémités des virus permet I'observation de structures lamellaires cristal-liquides avec un contraste
et une résolution exacerbés. La visualisation in situ de défauts topologiques en phase smectique, tels
que des dislocations de type coin et vis, a été réalisée a I'échelle de la périodicité du réseau. Le
champ de déplacement autour d’une dislocation coin a été établi expérimentalement et comparé au
profil prédit par les théories élastiques. Des dislocations de type vis ont également été mises en

évidence, pour lesquelles la taille du cceur et I'helicite ont été déterminées.

La dynamique des virus « patchy » et de ceux non fonctionnalisés a été étudiée par suivi
temporel du déplacement des particules individuelles en microscopie de fluorescence. Dans toutes
les phases cristallines liquides, la diffusion de particules « patchy » s'est avérée étre entravée. En
particulier dans la phase smectique, les batonnets « patchy » ont tendance a résider dans les couches
diffusant principalement dans la direction perpendiculaire a I'axe principal du virus, tandis que les
batonnets non fonctionnalisés présentent une diffusion entre couches beaucoup plus prononcée. Ce
comportement peut s’expliquer par la plus grande valeur du potentiel smectique associé et mesuré
expérimentalement dans les deux types de dispersion.

Nous avons combiné des effets de « patch » entropique et enthalpique en ajoutant des polymeres
non-absorbants a la dispersion virale fonctionnalisée. Dans ce cas, les batonnets s’auto-assemblent

latéralement par déplétion en des clusters de morphologie définie. La diffusion de rayons X et la
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microscopie optique ont été utilisées pour comparer les propriétés structurales et dynamiques des
dispersions virales fonctionnalisées - ou pas - mélangees a des polymeres non absorbants, et pour
établir les diagrammes de phases correspondants.

En résumé, nous avons démontré un nouveau moyen efficace de contréler la structure de fluides

complexes par la modifications régio-sélective des particules constituantes.

Mots-clés: Matiere molle, cristaux liquides colloidaux, virus filamenteux, auto-

assemblage, interaction « patchy », diffusion.
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Summary

Dispersions of filamentous viruses exhibit a plethora of liquid crystalline states including
nematic, smectic (or lamellar), and columnar phases. Self-organization of these rod-shaped colloidal
particles has been shown to map the hard-core behavior for which the interaction potential is purely
repulsive. In this thesis, the structural and dynamical properties of rods with highly localized
directional attractive interaction (or “patchiness”) between one of the ends of the particles have been
studied. Local attraction has been achieved by functionalizing the filamentous virus tips via
regioselective grafting hydrophobic fluorescent dyes which act as enthalpic patch. The single tip
attraction strength can be tuned by varying the number of bound dye molecules. We have shown that
increasing attraction interaction stabilizes the smectic phase at the cost of the nematic phase leaving
all other liquid crystalline transitions unchanged. Furthermore, the fluorescent dye molecules on the
viral tips enable the observation of liquid crystalline lamellar structures with improved contrast and
resolution. In situ visualization of topological defects in the smectic phase such as edge and screw
dislocations has been thus performed at the lattice periodicity level. The displacement field around
an edge dislocation has been experimentally established and compared to the profile predicted by
elastic theory. Screw dislocations have been also evidenced, for which the core size and handedness

have been determined.

Dynamics of patchy and pristine viruses has been investigated by tracking individual rod
displacements. In all liquid crystalline phases, the self-diffusion of patchy rods has been found to be
hindered compared to the self-diffusion of pristine rods. Particularly in the smectic phase, patchy
rods tend to reside within the layers mainly diffusing in the direction perpendicular to the main virus
axis, contrary to pristine rods whose self-diffusion between layers is far more pronounced. This
behavior is explained by the higher unidimensional smectic ordering potential experimentally
measured in the dispersions of patchy rods compared to that obtained for pristine rods.

We have combined both entropic and enthalpic patchinesses by adding non-adsorbing polymers
into tip-functionalized viral dispersions. In this case, rod sides act as entropic patches due to
attractive depletion interaction between them. Small angle X-ray scattering and optical microscopy
techniques have been used to compare the structural and dynamical properties of pristine and tip-

functionalized viral dispersions mixed with hydrophilic polymers acting as depletants agent. We
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have determined and compared the phase diagrams obtained for the two types of virus-polymer
systems.
In summary, we have demonstrated a new and efficient way to control the structure of complex

fluids by implementing site-specific modifications of building blocks.

Key words: Soft matter, colloidal liquid crystals, filamentous viruses, self-assembly,

patchy interaction, self-diffusion.
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Chapter 0: General Introduction

0.1 Colloids and a concept of « big atoms »

Colloids are insoluble particles dispersed in continuous media (liquid or gas) whose size is
in the range of ~10nm to ~1um. They are sensitive to the observable random motion, or so-called
Brownian motion, arising from the thermal energy of order of magnitude kzT for each particle,
where kg is the Boltzmann constant and T is the absolute temperature. Thanks to their
microscopic size, colloids can be easily observed with optical microscopy techniques.

Historically the basic understanding of colloidal science began in the early 20" century,
when the reality of atoms and molecules has been proven [2]. Albert Einstein provided the
theoretical explanation of Brownian motion by assuming that colloids dispersed in liquid
experience random collisions by the much smaller solvent molecules. This resulted in the
derivation of an expression for the mean square displacement of colloidal particles dispersed in
liquid, and of exponential expression for the number density of particles in dispersion that has
reached sedimentation equilibrium [1]. Jean Perrin proved these two theoretical predictions
experimentally by observation of resin spherical colloids with optical microscopy. He tracked the
trajectories of single diffusing particles, and counted the number of particles as a function of
height in colloidal suspension in sedimentation equilibrium. For both cases he calculated
Avogadro’s number, and the convergence of those two independent values undoubtedly
manifested the existence of atoms [2].

Einstein’s and Perrin’s pioneering discoveries have shown that relatively large particles
such as colloids can behave in the same way as their atomic and molecular counterparts whose
are roughly three orders of magnitude smaller. In other words, the structural and dynamical
properties of colloidal suspensions are governed by the same thermodynamics that determines
the behavior of atomic and molecular systems. For this reason colloids are often considered as
“big atoms”. Therefore, thanks to their ability of being observed by optical microscopy at the
level of single particle, colloids give insight into fundamental questions of condensed matter. For
example, spherical colloidal particles have been used to study such phenomena as growth and
nucleation in crystals [4], crystal melting [5], and phase transitions in fluids [6].

Colloidal particles can also serve as tools or building blocks for engineering the assembly
of various targeted structures [7], [8]. Conceptually, the simplest building blocks for self-
assembly are colloidal spheres with hard-core interaction [3]-[5]. “Hard-core” means that such

particles don’t interact if they don't interpenetrate, and repulsion between them is infinitely high
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0.2 Colloidal interactions

if they do. Hard colloidal spheres lack any directionality in their shape and interaction; therefore,
they can assemble only into crystalline structures with the simple symmetry, such as face-
centered cubic (FCC), hexagonal close-packed (HCP) and body-centered cubic (BCC). Contrary
to the isotropic particles, colloids with anisotropic shape and interaction extend the number of
possible ways of their assembly, and can potentially lead to as complex structures as can be seen
at atomic and molecular scale. For example, colloids with shape anisotropy, such as hard rods,
exhibit nematic, smectic and columnar phases, which are also found in molecular liquid crystals
[9], [10]. Interaction anisotropy can be induced by deposition of some attractive or “patchy” sites
on the surface of otherwise hard particles. An example of colloids with directional attractive
interaction or “patchiness” is the triblock Janus colloidal spheres (hydrophilic body and two
hydrophilic poles) dispersed in water, which self-organize into a colloidal kagome lattice
(centres of mass of spheres are organized into equilateral triangles and regular hexagons,
arranged so that each hexagon is surrounded by triangles and vice versa), due to electrostatic
repulsion of the bodies and attraction of the poles [11].

In this thesis, we will study the self-organization of anisotropic rod-like colloids with
different types of directional interactions. Firstly, we will explaine the concept the simplest
interaction — hard-core repulsion, and then we will show how to go beyond and to induce

attraction interaction between colloids.

0.2 Colloidal interactions

In the middle of the 20™ century the theory of colloidal interaction has been proposed by
Derjagiun, Landau [12], Verwey and Overbeek [13]. In their theory, known as DLVO, for a
dispersion of charged spherical particles it is claimed that there are two opposite contributions
which define the overall interaction potential (Fig.0.1). There are the short range (0-10 nm) Van
der Waals attraction and the repulsion originating from the electric double layer which encloses
charged colloid and is characterized by the Debye screening length [14]. However, the other
types of interactions such as hard-core repulsion [3], depletion [16] and directional attractive

interaction or patchiness [20] have gained experimental as well as theoretical interest later on.
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u(r) \ electrostatic
keT \.  repulsion
DLVO ™. __ ,
\______——e'r:":;:

Van der Waals
, attraction

Fig.0.1. Schematic plot of the DLVO interaction potential U(r)/kgT between charged
colloidal spheres which is the sum of double layer repulsion (top) and Van der Waals attraction

(bottom), where r is the center-to-center distance between the particles.

0.2.1 Hard-core interaction

The simplest model interaction between two colloids is the so-called hard-core interaction
based on excluded volume. In this case, as we already mentioned, there is no interaction when
the particles do not overlap and an infinite repulsion when they do overlap. Experimentally it can
be nearly achieved by adding a polymer brush on the particle surfaces [3]-[5]. The thickness of
this stabilized polymer layer d,,,s», must be much smaller than the radius of colloidal particle R
(dprusn <K R). This leads to the absence of short-range attraction and only to repulsion between

the particles. The pairwise interaction between two hard spheres can be then written as (Fig.0.2):

v ={5 130 1)

ui R

Fig.0.2. Hard-core interaction potential between two spherical particles; r is the center-
to-center distance between the particles.

16



0.2 Colloidal interactions

The phase behavior of the system which consists of hard particles is dictated only by
entropy. In entropy-driven systems, the phases that can be observed depend only on particle
shape and density, and do not depend on temperature. In the case of spherical colloidal
suspensions, it results in the athermal phase diagram reported in the experimental study of Pusey
and van Megen [3]. By increasing the concentration of hard spheres the fluid, crystal, and glass

phases have been achieved (Fig.0.3).

100 ‘
: T E
1 = [
; = = 2
= ' 2 " 5
-— ! w
2 |3 2 i3y 2
S 50F | | g 5 &
b i [0]
! I B gt =
| " E ‘Q
[P
0 - '
0.40 0.44 0.48 0.52

Core volume fraction ¢,

L L L Il L L L

048 052 0.54 0.56  0.58
Effective hard sphere volume fraction ¢g

T T T

hard-sphere: freezing  melting Bernal glass

Fig.0.3. (A) Hard sphere suspensions illuminated from behind by the white light. The
samples are contained in cells and are numbered 2-10 from the right in order of increasing
volume fraction. (B) Phase diagram is established according to the visual inspection of the
samples. The two horizontal axes indicate the experimentally measured sphere volume fraction
¢ and the effective hard sphere volume fraction ¢ defined as ¢ = (0.494/0.407) ¢, [3],
where 0.407 is the core volume fraction ¢, at which freezing start, and 0.494 is an effectine

volume ¢y of hard spheres freezing predicted by computer simulations [105].

0.2.2 Depletion interaction (attraction through repulsion)

Let us consider the mixture of colloidal hard spheres and non-adsorbing polymers. “Non-
adsorbing” means that the polymer chains have neither adhesive nor repulsive interaction with
the colloidal surface. In the 1950s Asakura and Oosawa [15] developed a theory for the effective

interaction between colloidal particles dispersed in a solution of ideal polymers. It has been
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Chapter 0: General Introduction

shown that there is an indirect effective attraction, called depletion interaction, between colloids
driven by entropy associated with the centers of mass of the polymers (or depletants). In such
mixture of spheres and polymers, each colloidal particle is enclosed by the depletion (or
excluded) layer with the thickness & given by the radius of a depletant. The center of mass of the
polymer cannot penetrate this layer, thus the local polymer concentration near the colloids
surface is lower than the one in the bulk. When two colloids approach closer than 26, their
depletion layers overlap, and the overall volume from which the polymers are excluded is
decreasing by the amount of overlapping volume AVy,,eriq, (Fig.0.4). One can also claim that the
depletants gain more translation entropy when the depletion layers surrounding colloids are
overlaid. Therefore the depletion attraction is a purely entropic effect driven by excluded volume
interaction [16]. The size of the depletant agents implies the range of attraction, while their
concentration determines the strength of attraction. The expression for the depletion interaction
between two spheres with radii R under the osmotic pressure IT1 = nykgT, where n;, is bulk

number density of depletant, is [14]:

0o r < 2R
U(r) = {_Hvoverlap(r) 2R<r <2R+26 (0.2)
0 r> 2R+ 26
N overlap

m %-“ > > -

F=2R+25 , .

r=2R
Fig.0.4. Sketch of depletion interaction potential with the schematic picture of colloidal
spheres with radii R in a mixture with non-adsorbing polymers with radii §; r is the center-to-

center distance between spheres and Vjyerqp is the overlap volume between depletion layers.
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0.2 Colloidal interactions

0.2.3 Patchy interaction

In section 0.1, we mentioned that colloids with isotropic shape and interaction can mimic
atomic structures with the simplest crystal structures such as FCC or HCP. Today’s research
demands to go beyond these simple symmetrical structures and to mimic more complex
assembly such as, for example, the diamond crystal, to be employed in photonic application [17],
or some protein aggregation [18]. To fabricate these new generations of materials, the local
directional attraction interaction, or so-called patchy interaction, has to be induced between
colloids. The term “patchy sites” is usually associated with chemical or physical surface
patterning. There is a trend to discriminate entropic patchiness (particle shape modification) and
enthalpic patchiness (modification of particle surface by chemical functions) in the literature
[19]. We will focus on these two mechanisms in section 0.3.

Patch position

Patch size

Patch number Interaction

Fig.0.5. Different parameters to introduce and vary the patchiness (blue and orange
colours) on the surface of colloid: size, position, number, shape of the patches and interpatch
interaction which depends on chemical functions deposited onto surface. Illustrastion here is for
the triblock Janus sphere [11] as a reference system in the center of a circle, but it can be also
generalized for other shapes such as rods, cubes etc [57].

In principle, there is an enormous amount of ways to modify the particle surface. One can
tune the size of the patches, their position, number, shape and interaction selectivity (Fig.0.5) [7],
[57]. In order to understand the concept of patchy interaction, let us consider the paradigmatic

example suggested by Kern and Frenkel [20], where a hard sphere of radius R possesses an

19
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attractive patch on its surface. The position of this patch is given by a unit vector n;, and its size
is given by a conical segment of half-opening angle « (Fig.0.6). The patches on the surface of
the different particles interact via a square-well potential with attraction range A. Such model can
serve as a reference system for the more detailed study of the effect of patch number, size,
position etc. The expression for the interaction potential between particles i and j can be read as:
U(ry) = US"(r) - f(Q)) (0.3)
USW(rl-j) is an isotropic square-well interaction term of depth & and range A [Fig.0.6]:

o r < 2R
USW(rj)={—-¢ 2R<Tr<2R+A (0.4)
0 r>2R+A

USW(r)
ksT
LA
£
r=2R

Fig.0.6. Square-well interaction potential and the sketch of two patchy particles; r is the
center-to-center distance between spheres. Attraction between hard particles is restricted to the
configuration at which two patchy segments (red areas) face each other.

The angular function f(Q;;) is defined as (r;; is a particle separation vector):

T - m; > cosa,

N_ J)1if and
f(Qy) = Tji - mj > cosa (0.5)

0 otherwise
Experimentally this model system has been realized by Granick et al. [21], [22]. In these

studies 50% of the particle surface has been covered by the patchy functions (Fig.0.7). In these
so-called Janus spheres attractive interaction appears due to hydrophobicity of chemically
modified hemispheres. Janus spheres are found to self-assemble into colloidal clusters of
changing coordination number or wormlike chains (Fig.0.7B,C). Experimental conditions of the

dispersion such as pH and ionic strength determine the morphology of formed colloidal clusters.
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Hydrophobic

Charged
A

Fig.0.7. (A) Hlustration of Janus colloidal spheres in water dispersion with hydrophobic

hemispheres. Comparison of epifluorescence images and Monte Carlo simulations of clusters
configurations with (B) four particles and (C) seven particles [21].

0.3 Colloidal rods

In the previous sections, some elements of spherical colloid phase behavior and different
types of colloidal interaction have been reviewed. Although sphere ability to form closed-packed
colloidal crystals has shed light into some fundamental soft matter problems [3]-[6], the more
complex symmetries of atomic systems have to be reproduced at the colloidal scale to resolve
new challenging questions of condensed matter and materials science. Recognition that
anisotropic particles possess richer phase behavior than their isotropic counterparts has
motivated new directions of colloidal research which investigate the chemical synthesis and
physical properties of the building blocks with novel shapes and interactions. In the following
section, we will overview one class of anisotropic particles — colloidal rods, and will give insight
into their phase behavior as well as discuss the key experiments which have been performed

involving different types of interactions between these particles.

0.3.1 Phase diagram of rod-like colloids with hard core interaction

Suspensions of hard rod-like particles exhibit a plethora of phases compared to hard
spheres. Additionally to the liquid and crystal states, rods can form liquid crystalline phases due
to their anisotropic shape. Those additional phases possess positional as well as orientational
orders in at least one direction of space. Liquid crystalline phase behavior has been studied by

using systems of organic rods such as tobacco mosaic viruses [23], or fd-viruses [9], [24]-[26] as
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Chapter 0: General Introduction

well as inorganic rods such as boehmite [28], vanadium pentoxide [29], B-ferric oxyhydroxine
[30] and silica rods [10], [27]. Probably, the most extensive study has been done on the
suspensions of fd-viruses, whose phase diagram is depicted in Fig.0.8. By increasing the volume
fraction of rods, they can form liquid crystalline nematic, smectic and columnar phases [9], [25].

Onsager was the first to theoretically describe the isotropic-nematic phase transition in
suspension of infinitely long hard rods [31]. He wanted to explain this phase transition in the
suspension of tobacco mosaic viruses [58]. Onsager theory describes the transition from
orientationally disordered isotropic liquid phase to orientationally ordered nematic phase
(Fig.0.9). His results show that such phase transition for infinitely long hard rods is associated
with an increase of entropy.

Onsager theory is based on the expression of the free energy of hard cylinders dispersed in
a fluid. The total free energy is the sum of three terms. The first one is the free energy of an ideal
solution; the second term describes the contribution of the orientation entropy to the free energy;
and the third term accounts for the interaction between particles.

F=Fyqq+For + Fint (0.6)

The system is assumed to be spatially uniform and thus the expression for particle density
can be read as p(r, Q) = (N/V)f(Q), where r and Q is a vector and a solid angle describing the
position and the orientation of rod respectively, N is the number of the rods, and V is the volume
of the system. The function f(€) indicates the probability that a rod is pointing at a solid angle
Q, it is normalized as [ f(Q)dQ = 1. Using this input, it is possible to rewrite the equation (0.6)
into Onsager free energy for a solution of rod-like particles at the level of second virial

approximation:

1N

F/kT = log 7+ [ f(@)log(4nf (©))dQ — =[] B(Q Q) (Q)f(Q) dOdQ 0.7)

Function B(Q,Q") is called Mayer overlap function, and for hard cylinders it is equal to

the excluded volume to one particle with orientation Q due to the presence of another particle
with orientation Q' (one can introduce the angle y as a relative angle between two cylinders):

BQ Q) = —Vex(Q, Q) = —2L?Dsin(y) (0.8)

The volume excluded to a given cylinder due to the presence of another cylinder is

sketched in Fig.0.9 and is dependent on the angle y.
The second term in the equation (0.7) is related to the orientational entropy, whereas the

third term is related to the packing entropy. The isotropic-nematic phase transition arises from a
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0.3 Colloidal rods

competition between these two types of entropy. At low rod concentration the orientational
entropy dominates and all cylinders are pointed in different directions giving rise to isotropic
phase, whereas at high concentration the packing entropy becomes more important which favors
the nematic phase. By performing a stability analysis of the Onsager equation (0.7), it has been

concluded that at certain volume fraction of hard rods ¢ = 4% where D and L are rod diameter

and length respectively, isotropic phase becomes unstable towards nematic fluctuations, and
isotropic-nematic phase transition occurs [59].

’\/ ‘ l"-l .
AN xR

Isotropic Nematic Smectic A Smectic B Columnar Crystal

Rod volume fraction

Y

Fig.0.8. Schematic representation of colloidal rod-like fd-virus self-organization.
Different phases can be formed by increasing the particle concentration. The isotropic liquid and
crystal phases appear at very low and at very high volume fraction respectively, while the liquid
crystalline nematic, smectic and columnar phases are arising between them due to anisotropic
particle shape .

The isotropic-nematic transition for long hard rods is an example of a very general class of
phase transitions which are purely entropy driven and does not depend on temperature. Another
example of the counterintuitive role of entropy, such as depletion interaction, has been discussed
in the section 0.2.2. As we already mentioned, in nematic phase all particles are aligned in
average along the same direction called director. There is long range orientational order and no
long range positional order in this phase. Upon increasing the particle density, the smectic phase
becomes stable, and rods self-organize into the stacks of liquid-like layers. Additionally to the
orientational order, there is a 1D positional order along the director (Fig.0.8). It has been shown
by Frenkel et al. [32] that there is no need to induce attractive interaction between rods, and
purely repulsive hard-core interaction is enough to stabilize the smectic ordering, meaning that

nematic-smectic is also entropy driven transition as the isotropic-nematic one.
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The nematic-smectic phase transition is predicted to be independent on the rod size above
the aspect ratio L/D > 10 [33], and it occurs at rod volume fraction @yem—sm ~ 0.5 as shown
by the computer simulations [32], [33], theory [34], and experiment [9].

Columnar phase possesses a 2D positional order meaning that the particles form liquid-
like columns that are arranged in a 2D lattice. Although it has been detected in fd-virus
suspension [26], the computer simulations and theory cannot evidence the columnar phase
stabilization for rods by entropy alone [35], [36]. We will not describe the details of these results,

because it goes out the scope of this thesis.

Fig.0.9. A rod with the length L and diameter D excludes the center of mass of the second
identical rod from occupying a certain volume (greyish shadow enclosing the rod). These
excluded volumes scales as LD for (A) perpendicular particle orientation, and LD? for (B)

aligned or paralle particle orientation.

0.3.2 Rod-like colloids under depletion or entropic patchiness

We have shown in section 0.2.2 that interaction between hard colloidal particles can be
tuned from repulsive to effective attractive by adding non-adsorbing polymers. Unlike spherical
particles, the depletion attraction between rods is highly dependent on both their mutual
orientation and their center of mass separation along the axial and radial directions. The overall
entropy of rod-polymer mixture increases if rods coalesce via side-to-side association. In this

case the maximized overlap volume between two excluded layers of thickness § which surrounds

rods with length L and diameter D is scaled as V¢4, ~LD*/?8%/2 (Fig.0.10) [19].
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“v

overlap

Fig.0.10. llustration of the excluded volume between rods, where L and D are rod length
and diameter respectively, mediated by depletants that induce a fixed depletion thickness &
(indicated by the dashed lines). The overlap volume Vo,eriqp between depletion layers is
maximized (blue shadow) for (A) the laterally associated rods rather than for rods with (B) some
random mutual orientation. The rod sides could be regarded as patchy sites on the particle
surfaces.

For depletion interaction, attraction range and strength can be tuned by varying the
polymer size and concentration respectively. The most extensive experimental studies on rods
under depletion interaction have been performed employing filamentous viruses fd (see details in
section 0.4) as a model system of rod-like colloids [37], [45]. Two different viral assemblies

have been observed in fd suspensions mixed with (i) Dextran 500k (radius of gyration R is
about 16 nm [60]) or with (ii) PEG 8k (radius of gyration R, is about 4 nm [61]) polymers,

which can be regarded as relatively big and relatively similar in size depletants, respectively,
compared to virus diameter of 3.5 nm [62]. (i) In case of mixture with relatively large polymers
Dextran 500k, highly anisotropic interaction between particles leads to the formation of circular
colloidal membranes consisting of a single monolayer of aligned rods (Fig.0.11A) [37] In fact,
membrane has hemi-toroidal curved edge because such shape decreases the area of rod-polymer
interface, therefore reducing line tension, at the cost of increasing the elastic energy due to twist
distortion [53]. Dynamical study of such structures performed at the single particle level by
fluorescence microscopy revealed the liquid-like internal structure of the membranes. (ii) When
relatively small polymers PEG 8k are used, it results in the growth of the platelets which are
monolayer with crystalline structures made of hexagonally assembled aligned rods (Fig.0.11B)
[38]. These platelets possess crystalline internal order which has been proved by small X-ray

scattering experiment (SAXS) and by the lack of significant particle motion within the structure.
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For some specific cases which depend on kinetics of platelets growth, a linear topological defect

such as a screw dislocation can be observed in the center of this assembly. Linear topological

defects in molecular and colloidal liquid crystals will be discussed in section 0.5 in more details.

Fig.0.11. Schemes and DIC (differential contrast microscopy) images of self-assembled
structures made of rod-like viral particles with length of about 1 um and diameter of 7 nm [62]
driven by depletion interaction. (A) Liquid-like colloidal membrane in the mixture with large
polymers Dextran 500k [37] (radius of gyration R, is 16 nm [60]) as a depletant agent. Scale
bar: 2um. (B) Hexagonal platelet induced by short range depletion attraction coming from the
polymers PEG 8k [38] (radius of gyration R, is about 4 nm [61]), whose size is similar to virus

diameter. Scale bar: 5um.

chirality

temperature

Fig.0.12. DIC images of (A) liquid-like colloidal membrane at high temperature, and (B)
starfish shaped membrane made of twisted ribbons which grew from the circular membrane
upon decreasing temperature. (C) DIC image of isolated twisted ribbon. Scale bar: 2um.
Schematic illustration of (D) circular membrane showing how its edge assumes interfacial
minimization curved profile, and (F) twisted ribbon structure [52].
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It is worth stressing, that under effective depletion attraction, colloidal rods tend to
approach each other strictly by their sides because any other mutual orientations decrease overall
entropy of the system. Therefore this anisotropic attraction between rods induced by the
excluded volume interactions can be regarded as patchiness with entropic origin, with the rod
side considered as a patch on the particle surface.

It has been shown that internal chirality of fd-virus [52] or DNA-origami filaments [63]
strongly affects the morphology of the structures formed under depletion. When two chiral rods
are in the close proximity of each other, the interaction energy between them is minimized if
they are twisted with respect to each other, meaning that particle main axises are not parallel to
each other [47], [52]. In the case of a circular liquid-like membrane (Fig.0.12A), where 2D
layered geometry cannot support twist, chirality is expelled to its edges. Hence, chirality of the
constituent rods controls the strength of line tension y,r which is the parameter governing the
shape of the edge of circular liquid-like membrane. There are two contributions to the effective
line tension: y,q-. (line tension which appears due to the reduction of rod-polymer interfacial
tension) and y.irq; (chiral contribution to the line tension):

Yerf = Ybare — Ychiral 0.9)

At high enough temperatures (of around 60°C) fd-wt virus loses its chiral properties and
become achiral [53], thus at high temperatures y.rr = ypare. Decreasing the temperature
enhances the magnitude of chiral interactions, resulting in smaller y, ¢, value. At sufficiently low
temperatures the chiral contribution to the line tension dominates the bare line tension,
decreasing the energetic penalty of creating edges resulting in their spontaneous formation. In
Fig.0.12A a membrane at high temperature is shown. With decreasing temperature, the chiral
fluctuations of membrane edge become more significant, indicating that y.r, is decreasing.
Eventually the edge becomes unstable, giving rise to a polymorphic transition in which twisted
ribbon-like structures grow from the edges of membranes (Fig.0.12B).

1D twisted ribbons (Fig.0.12C) are stable at low polymer concentration and low
temperatures (small ¥4 and large y.nirq1), Whereas the 2D membranes are stable for large
Ypare aNd small ¥ nirar [52], [63]. Fluorescence optical microscopy reveals liquid-like dynamics
within the twisted ribbon-like structures [52].

The suspension of colloidal rods is an example of a more general class of particles with

irregular shapes where directional entropic attractive forces are induced by adding non-
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adsorption polymers. Other illustrations of shape anisotropic colloids with entropic patchiness
promoted by depletion interaction are, for instance, lock and key particles [39] and colloidal
superballs [40] (Fig.0.13).

AVinax

Fig.0.13. (A) Illustration of the depletion interaction between a lock (green particle with a
spherical cavity) and a key (simple red spherical particle) induced by a depletant agent of radius
6. The maximum overlapping excluded volume, AV,,.., IS achieved when the key particles
precisely fits into the spherical cavity of the lock particle. (B) Depletion effect between

superballs (cubic particles with rounded edges) [19].

0.3.3 Rod-like colloids with enthalpic patchiness

Colloids with chemically inhomogeneous surfaces are another type of patchy particles
which are referred to colloids with enthalpic patch. In section 0.2.3, we mentioned the Janus
spheres with hydrophobic and hydrophilic parts, and the types of superstructures they can
generate [21], [22]. Preparation of Janus rods has extended the variety of complex architectures
which can be obtained via enthalpic patchiness. The simplest example of colloidal rods with
chemically modified surface is so-called Janus colloidal matchsticks which are monodisperse
silica rods coated with gold on one tip which acts as a enthalpic patch (Fig.0.14) [41]. The size of
these patchy inclusions is characterized by the patch angle a (Fig.0.14A), which is found to be
equal to 116°. According to the matchstick dimensions of L = 2.3 ym and D = 1.1 um, these

colloidal rods thanks to their chemical heterogeneity can be regarded as mesoscopic amphiphiles.
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Fig.0.14. Schematic (A) and scanning electron microscopy images (SEM) of (B) pristine

and (C) tip-functionalized silica rods with gold. These metal inclusions drive particles to self-
assemble into various clusters such as bipods and tripods (D) [41]. Scale bars: 2um.

When exposed to water, the gold tips of Janus matchsticks are brought together due to
their hydrophobicity forming multipod structures of different coordination number such as
bipods and tripods (Fig.0.14D). The resulted structures were observed by scanning electron
microscopy (SEM) and are the interplay of sedimentation (which gives rise to a planar
geometry), entropy (which drives rods to possess the highest orientation freedom within each
multipod), and enthalpy (which promotes the attraction between the matchstick cluster).

Nevertheless, the fixed patch size restricts the complexity of output self-assembled
structures using Janus matchsticks as the building blocks. Therefore to deeply explore the
potential morphologies of rod-like colloids with enthalpic patchiness, mesoscopic amphiphiles
with varied size of the chemical functions on the tip have been prepared by Mirkin group [42].
They synthetized rod-like particles consisting of gold (Au) hydrophilic domain and polymer
called oxidized polypyrrole (Ppy) hydrophobic domain (Fig.0.15A). The driving force to raise
the assembly in this rod system is the hydrophobic attraction between polymer ends (Fig.0.15A).
Three different types of particles have been produced as a function of Au-to-Ppy surface areas
ratio, and the rod length has been fixed at value of 4.5um. Rods with a 1:4 gold-to-polymer ratio
assembled into ~60um diameter tubes whose walls made of the single layer of particles
(Fig.0.15B). Rods with a 3:2 gold-to-polymer ratio give raise to ~29um tubular structures
(Fig.0.15C). And when rods with 4:1 are utilized the opened tubular structures are obtained
(Fig.0.15D). These assembled ways of gold/polymer patchy rods can be partially explained by
using theoretical models for cylindrical micelles made of amphiphilic molecules [43]. The
geometrical packing factor R = V /ayl., where V is a volume of individual rod, a;, is the average
rod head area, and [, is the rod length, can be used to understand the yielding structures based on
these patchy particles. It is worth stressing that factor R increases as gold-to-polymer ratio

become higher. Each patchy rod can be imaged as a truncated cone, because of strong attractive
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interaction between polymer ends and the diameter difference between gold and polymer particle
domains (Fig.0.15A).The average diameter of gold block is 400 nm and the polymer block
diameter is 360 nm. The rod head area a; can be estimated from a first order approximation of
the average area occupied by the gold end of each rod in the microtubular structure, which is
defined by the perimeter area of the tube divided by the total number of rods that make up the
assembly. For the fixed rod length, the contraction of gold domain contribution leads to decrease
of a,, and therefore results in decreasing of the overall superstructure curvature. This general
trend was observed for three tubular structures shown in Fig.0.15.

To summarize, it worth to emphasize that there are very few experimental results on
colloidal rods with enthalpic patchiness. Moreover, there are some drawbacks in the works
reviewed in this section. For examples, the colloidal matchsticks made of silica rods are not
Brownian particles, therefore their self-assembly is strongly affected by sedimentation
(Fig.0.14D). The vyield of superstructures with completely closed walls made of Au-Ppy patchy
rods (Fig.0.15B-D) is low (~10%). Probably, the drawback of Au-Ppy rods self-assembly is that
SEM sample preparation for structures characterization involves a drying process which can

easily alter the equilibrium configurations of yielding assemblies.
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Fig.0.15. (A) Sketch of the Au-Ppy patchy rod and its geometrical packing factor R. SEM
images of tubular superstructures formed by Au-Ppy patchy rods and their schematic

representation for (B) 1:4, (C) 3:2, and (D) 4:1 gold-to-polymer ratio [42].
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As a perspective, one can be also interested in how patchy rods behave as a function of
particle concentration. If aspect ratio of patchy rod is sufficiently high, what would the effect of
enthalpic patch on their predominantly entropy-driven liquid crystalline self-assembly? The
dynamical properties of patchy rod-like colloids have not been investigated yet in the
experimental studies either [41], [42]. Therefore the central goal of this thesis is to synthesize
suitable patchy colloidal system and to investigate its structural and dynamical properties in a
wide range of particle concentrations. Besides, following the idea of Hubert et al. [64], the
combination of entropic and enthalpic patchiness can be realized on colloidal rods adding

depletion agents into dispersions of particles with enthalpic patches.

0.4 Fd-virus as a model system of colloidal rods

In this section, we will review the experimental achievements which have been done so far
on the structural and dynamical properties of colloidal dispersions made of fd-viruses which are
the main experimental system in this study.

Fd-virus is a semiflexible rod-like polyelectrolyte formed by a cylindrical shell composed
of around 3000 copies of the major coat protein (p8) which wrap in a helical way a circular
single stranded DNA [44]. Thus fd is a chiral object displaying a helical charge distribution.
There are five copies each of four minor proteins capping the two ends of the virion: p7 and p9
on one end and p3 and p6 on another end as depicted in Fig.0.16.

The conventional representative of fd strain is fd-wt (wild type) with a contour length of
880 nm and a diameter of 7 nm [62]. The persistent length of fd-wt is three times higher than its
contour length Prgyi~3Lraw:. Thanks to the ability to genetically modify the structure of
filamentous viruses, the stiffer fd-Y21M mutant has been derived with single point mutation in
the amino-acid sequence of each p8 protein [45]. The 21st amino acid of the major coat protein is
changed from tyrosine to methionine. This mutation results in the increasing of the fd-Y21M

length  Legy,im = 920mm  [46] and, more importantly, of its persistent length
Pray21m~10Lsgy21 [45]. Therefore fd-Y21M mutant has stiffness which is about three times

higher than stiffness of fd-wt virus.
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Fig.0.16. (A) Schematic representation of fd-virus (its length is of about 1 um and its
diameter is of 7 nm). It consists of around 3000 copies of major p8 protein enclosing a single
strain DNA. There are also five copies of each minor coat proteins p7/p9 on one end, and
proteins p3/p6 on another end. (B) Transmission electron microscopy (TEM) image of fd-virus.
The two p7/p9 and p3/p6 ends cannot be discriminated in this TEM image.

There is a strain called M13 which is closely related to fd. M13 virus shares the same
length, diameter and flexibility as fd, but it differs by one amino acids per major coat protein.
There is negatively charged aspartate in 12th position in fd, and in M13 there is neutral
asparagine. Thus the linear charge density is different for the two viruses: it is 10 e~ /nm for fd
and 7 e~ /nm for M13 [65]. In this thesis we will use two longer mutants of M13 called M13KE
and M13C7C which have the same diameter, stiffness and charge as M13, but they differ by their
length which is of 1000 nm. M13KE and M13C7C themselves only differ by the number of
cysteines groups in minor p3 tip proteins. The details will be provided in Chapter 1.

The filamentous viruses fd and M13 have been used as model systems of rod-like particles
because of three important features. (i) They can be easily observed at the single particle level by
optical microscopy [9]. (ii) Regardless of fd/M13 charge, they can be approximated as hard rods
if the concept of effective diameter is introduced [9], [24]. (iii) The filamentous phages are
essentially identical to each other, meaning that they are highly monodisperse in shape and size.

In this section, we will discuss the main structural and dynamical properties of fd-virus
liquid crystalline suspensions, and will focus on the methods used for fd functionalization with

fluorescent dye molecules.

0.4.1 Self-assembled structures in fd suspensions
The monodisperse chiral fd-viruses in water dispersion self-organize into chiral nematic

(N*), smectic (Sm) and columnar (Col) liquid-crystalline phases (Fig.0.17). In chiral nematic or
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cholesteric phase, the director follows the helical path, as viruses prefer to twist with respect to
each other. The cholesteric pitch Pg is defined as the periodicity along the screw axis in which
the local director has rotated by 2w (Fig.0.17A). Since the typical fd cholesteric pitch (from
20pum to 200 pm [47]) is around three orders of magnitude larger than the interrod distance in
cholesteric phase [9], locally chiral and usual nematic have the same structure. There is no
difference in Onsager theory between isotropic-nematic and isotropic-cholesteric phase
transition, as the free energy difference between the nematic and cholesteric phase is negligible
compared to the one between the isotropic and nematic phase [69].

The location and coexistence concentrations of fd-wt isotropic-(chiral)nematic phase
transition have been found experimentally [24] in a good agreement with numerical calculation
of persistent polymers [66], [67], where Onsager theory [31] is generalized including rod
flexibility. There is a necessity to involve the effect of the virus charge to find matching with
Onsager theory, meaning that the bare fd diameter D must be rescaled by a charge-dependent
effective hard-rod diameter D¢ (D.sr > D) which is proportional to the Debye screening length
of the virus [65], [68].

1000+ ----SmA or N*

' —SmB or Col

virus volume fraction

Fig.0.17. (A) Polarizing microscopy image of the chiral nematic or cholesteric phase
formed by fd-viruses, where Py is cholesteric pitch; insert represent the twist of the director [47].
(B) Differential interference contrast microscopy (DIC) of the smectic phase formed by rod-like
viruses; inserts illustrate liquid-like and positional order within smectic A and smectic B phases,
respectively. (C) Optical texture of the columnar phase observed by polarizing microscopy. (D)
Typical scattered intensity obtained by SAXS measuring the average interrod side-to-side
distance.The dotted black line indicates the typical signature of liquid-like (smectic A and chiral
nematic) and the solid red line indicates hexagonal positional order (smectic B and columnar).

Bragg reflections (100) and (110) have been indexed according to the typical ratios of the
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scattering vector q:1:1/3:v/4:/7: ... of a 2D hexagonal lattice corresponding, respectively, to
the Miller indices (hkl) with the h, k, and | defined as the directions alocg the viruses [26].

The smectic phase includes the smectic A and the smectic B phases. In both cases viruses
are arranged into layers stacked on top of each other, but the order within layers are different for
two phases (Fig.0.17B insets). SAXS experiments reveal that smectic A possesses liquid-like
order within the layer, whereas smectic B has long range hexagonal positional order [9]. To find
a quantitative agreement between experimental [9], [25], computer simulations [32], [33] and
theoretical [34] results on the values of the nematic-smectic A phase transition the virus charge
also must be taken into account replacing a bare diameter D by an effective hard-rod diameter
Dgsr [9]. Deyy is determined via the Manning model of charge condensation which becomes
significant in concentrated dispersions and usually neglected for dilute cases [70], [71], [106].

Columnar-smectic B phase transition is failed to be described by purely excluded volume
interactions [36]. The existence of columnar phase in rod-like fd-virus suspension [26] may be
explained by rod flexibility [72]. The structural analysis by means of SAXS experiments reveals
that the short range positional ordering occurs suggesting a hexatic order. Such organization
could be originating from a geometrical frustration induced by the competition between long
range 2D translational order and helical twist due to the virus chirality [73]. This frustration is
resolved by the introduction of topological defects which exist to accommodate two competitive

orders as helical twist and positional order.

0.4.2 Dynamics in fd suspension

One of the fundamental dynamical characteristics of any colloidal suspension is the rate at
which constituent particles diffuse. In colloidal liquid crystals, the self-diffusion depends on the
degree of ordering of the system. For rod-like dispersions, in principle, three parameters of
interest can be measured to describe the dynamical properties of the system. They are the
translational diffusion coefficients D, and D, for motion parallel and perpendicular to the rod
long axis respectively, and the rotational diffusion D, with respect to the rod long axis.

At the infinite dilution of rods in solvent, the particle diffusion is caused by the Brownian
force and torque exerted on it by the thermal energy kzT coming from the surrounding solvent
molecules. When a particle moves through a solvent of viscosity n,, it experiences a friction

resulting in a hydrodynamic force for the translation and hydrodynamic torque for the rotation.
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For long and thin rods of length L and diameter D these frictions coefficients for parallel and

perpendicular motion are [77]:

V= 2p 00 (0.10)
o)
The friction coefficient for rotation is:
Yo = ol (0.12)
Hence, it is possible to express three corresponding diffusion coefficients:
p,=%"p, = @ and D, = &7 (0.13)

Yr

We see that y;, = 2y, meaning that the diffusion coefficient D, in the direction parallel to
the rod axis is about twice larger that the one for the perpendicular diffusion D, at the infinite
rod dilution.

However, in the concentrated regimes, especially if there is positional and orientational
order in the colloidal rod-like systems, the theoretical description of particle diffusion becomes
complex due to spatial interaction between rods which has to be taken into account.
Nevertheless, there are theoretical studies on the diffusion of rods in dense isotropic phase made
by Doi [74], and in nematic phase made by Tang and Evans [75].

Fig.0.18. Image of fluorescently labeled rods dispersed in nematic matrix of unlabeled
rods (1:10°) [48]. Due to limited spatial resolution of optical microscope, labeled fd appears as
a slightly anisotropic rod, even though its actual aspect ratio is of around 100. Scale bar: 5um.

Experimental studies on fd-virus translational diffusion in different liquid crystalline
phases have been fruitful in the recent years. Although several techniques can be applied, such as
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dynamic light scattering [76] or fast recovery after photobleaching [107], the most efficient and
convenient method is the imaging and tracking of individual viruses with video microscopy. The
motion of individual rods can be directly observed by fluorescence optical microscopy if they
received labeling with fluorescent dye molecules (Fig.0.18). The details of labeling will be
discussed in section 0.4.3. In order to characterize the dynamics of fd suspension, the mean
square displacements (MSD) are measured relying on the individual trajectories r; (i is id-
number of a given particle) of the labeled viruses traced down by video microscopy. If there are
N trajectories the expression for MSD in parallel and perpendicular directions in terms of the

distance from the initial position r;(0) of each particle reads as follow:
1 @ 2
MSDy(t) = N &i=1 (T”iu(t) — Ty (0)) (0.14)

MSDL(t) = =N, (1. (8) = 1. (0)) (0.15)

The parallel and perpendicular self-diffusion coefficients can be extracted from the
following expression [49]:

MSD,, = 2D, t" (0.16)

The time evolution of MSD given by (0.14) and (0.15) provides also the value of diffusion
exponent y [49]: (i) case withy = 1 represent unbiased random Brownial motion corresponding
to the standart self-diffusion coeffisients D, ,, (ii) y < 1 is a signature of a subdiffusive behavior
which appears in crowded systems [108], and finally (iii) y > 1 is a characteristic of
superdiffusion which can be observed for self-propelled or active particles [109]. It is worth
stressing that if y # 1, the parameters D, , should be regarded as the diffusion rates as they
correspond to the unusual or non-Brownian motion.

The typical collection of fd-wd traces in concentrated isotropic and nematic phases near
isotropic-nematic transition (nematic traces have been extracted from the movie represented in
Fig.0.18A) and correspondent MSD are shown in Fig.0.19C, while the trajectory of a single
particle in smectic A phase is depicted in Fig.0.20B. All traces in isotropic phase are spherically
symmetric, meaning there is no preferred direction of motion, whereas those in nematic phase
display a significant anisotropy. All nematic traces are aligned along nematic director showing
much lower displacement perpendicular to it. In smectic A phase rods prefer to diffuse faster
along the director as well. Furthermore, in nematic phase the parallel virus displacement is

36
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continuous whereas in smectic A it exhibits discontinuous hopping-like diffusion through
smectic layers [46], [49].
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Fig.0.19. Collection of traces of fluorescently labeled viral particles in (A) isotropic
phase, and (B) anisotropic traces in nematic phase; x’ and y' indicate a new lab-frame in which
the director is aligned along the y'-axis. (C) The mean square displacements of rods parallel to
the director (full squares) and perpendicular to the director (full triangles) obtained for nematic
phase. The isotropic mean square displacements are given by the open squares and triangles.
The diffusion along the director in nematic phase is significantly enhanced when compared to
the diffusion of isotropic phase, whereas the perpendicular diffusion is significantly suppressed
[48].

The diffusion of fd-viruses along the director in nematic and smectic phase is strongly
enhanced compared to isotropic phase, while the diffusion perpendicular to the director is
reduced. The anisotropy in diffusion increases from D;/D, =1 to = 10 after the isotropic-
nematic phase transition and growing up to D;/D, = 20 in smectic A phase. Moreover the total
diffusion D,,; = 1/3 (D; + 2D, ) increases abruptly, directly proving the increase of translation

entropy after isotropic-nematic phase transition predicted by Onsager [31].
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Fig.0.20. (A) Overlays of DIC and fluorescence optical microscopy images showing the

time consecutive frames of jumping labeled virus (elongated whitish signal) through the smectic
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A layers. (B) The displacement of chosen particle in the direction parallel (red) and
perpendicular (black) to the director [49].

In the fd liquid crystalline phases with positional translational order (smectic B and
columnar) no significant self-diffusion has been detected [50], [51], except rare (around one

event per 12 hours for one particle) half- and full-rod-length jumps were observed in columnar
phase (Fig.0.21).
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Fig.0.21. Half-jump motion of fd-virus in the columnar phase. Fluorescence images show
the raw data where the dashed red line is drawn perpendicular to the long axis of the labeled
particle and indicated its position at the initial time. The corresponding trajectory presents the
dimensionless displacement along (z, blue line) and perpendicular (x, red line) to the long axis
(director). Displacements are normalized by the particle length L. The green line indicate the
relative orientation change of the particles in radians (right vertical axes) [50].

Although, the general features of the diffusional behavior of fd suspensions in isotropic,
nematic, and smectic A phases, where self-assembly is driven by entropy, are studied, there is no
study on the dynamics in suspensions where entalpy contributes to the self-assembly. Thus, one
of the goals of this thesis is to investigate the self-diffusion of patchy rods and to perform

quatitative comparison with self-diffusion of pristine (purely repulsive) rods in all phases of fd
dispersions.
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0.4.3 Chemical functionalization of fd

Fd-viruses have proven their importance as a model system for investigation of colloidal
liquid crystals [9], [24] and as a building block for assembly of the various targeted structures
[37], [38], [53]. Another striking feature of fd-virus is the opportunity to perform chemical
modifications on its surface. In the framework of this thesis, we will perform the fd-virus
conjugation or labeling with fluorescent dye molecules. Here we distinguish two types of
labeling, which are the full body labeling and the tip labeling. These two ways are used to fulfill
distinct and independent purposes in our exploration by the fluorescence optical microscopy of

structural and dynamical properties of the fd liquid crystalline suspension.

A 0 Full body labeled
NH, NH; NHz NH; NH; 0 »
aNRuuLLLLLSseeseLeesd 4+ o~ -
N W N NH, 0
2 NH, NH; NH; NHS ester
with green dye
B Tip labeled

_— . S TCEP . ... SH Ly L e
e e L issassnnsed | ¢ . i, =

Maleimide
with red dye

Fig.0.22. Schemes of labeling reaction on virus full body and tip. (A) The full body conjugation
can be done by reaction between NH, group and NHS (N-hydroxysuccinimide) ester activated
green dye molecules. (B) Tip conjugation can be performed only on p3 minor protein, where
cysteine groups (S — S) reduced by TCEP (tris(2-carboxyethyl)phosphine) react with Maleimide
activated red dyes.

Full body labeling has been done thanks to the NH, amine group (N-terminus) at the
exposed to the solvent ends of each coat protein (p8, p3, p6, p7, p9) [54]. During the chemical
reaction of labeling, NH, group links with N-hydroxysuccinimide (NHS) ester whose in turn can
be bound to the dye molecule. In this thesis we chose green dyes for the virus body labeling
(Fig.0.22A). Full body labeling is employed in this thesis to study dynamical properties of
colloidal suspension via single particle tracking. We have been working within an assumption
that the green dye molecules which cover the surface of whole particle do not affect the virus
self-diffusion behavior in colloidal dispersions.

Tip labeling has been performed thanks to the exposed disulfide bridges (S — S groups)
formed by cysteines on p3 proteins at one of the tips of fd-virus [54], [55]. Disulfide bridge
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reduction to the thiols (SH groups) by tris(2-carboxyethyl)phosphine (TCEP) compound is
required to conduct further reaction with Maleimide activated red fluorescent dye molecules
[110] (Fig.0.22B). The same principle of regio-selective chemistry has been already successfully
realized for the construction of the virus based colloidal multiarm structured [56], where biotin
has been used instead of red dye molecules. In our study, the primary purpose of the virus tip
labeling is the creation of enthalpic patchiness. The fluorescent dye molecules are partially
hydrophobic [111] due to the presence of aromatic rings. This leads to the localized attractions or
“patchiness” between viral ends. The secondary purpose is the visualization by fluorescence
microscopy of the local structure of virus colloidal suspensions with improved optical resolution
and contrast. Fd-virus tip labeling reaction used in this thesis has been developed and optimized
by Cheng WU [110], a former PhD student in our group.

The combined labeling of virus surface is also performed to be able to observe the self-
diffusion of patchy viral particles. In this case we initially conduct tip labeling with red dyes, and

then full body labeling with green dyes.

0.5 Linear topological defects in lamellar liquid crystalline ordering

The large variety of different phases displayed by lyotropic (concentration dependent) and
thermotropic (temperature dependent) liquid crystals has led to investigate at least two major
fields of soft matter science: phase transition theory (global symmetry breakings) and defect
theory (local symmetry breaking) [82]. Topological defects are crucial to understand ordered and
disordered systems, frustrated media, and phase transitions [80-82].

In this section, we will specifically introduce the linear defects in liquid crystalline
structures with lamellar organization, and review the main experimental results on their

observation and structural analysis in smectic phase of molecular liquid crystals.

0.5.1 Elastic properties of nematic and smectic A liquid crystals

Because of quasi-liquid nature of nematic liquid crystals, they can be treated as media that
have continuum or elastic properties [84], [85]. For example, nematic phase, which is a one-
dimensional ordered fluid where the particles are orientationally ordered and are aligned in

average along common direction n, called director, but have no long range positional order, can

40



0.5 Elastic properties of liquid crystals. Topological defects in structures with lamellar ordering

be treated as an elastic fluid. There are three possible elastic deformations of its structure: splay,
twist, and bend deformations as shown schematically in Fig.0.23A-C. These deformations have
the following Frank elastic constants associated with them, respectively, K, K,, K5. The free
energy per unit volume f can be written as follow (q, = 2m/p is related to the pitch p in the

chiral nematic case if any) [80], [90]:

f=sK(V-m2+K,(n-Vx7n+qo)? +5Ks[nx (Vxn)]? (0.17)
splay K, twist K, bend K,
Q
T
£
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Fig.0.23. (A)-(C) Basic deformation modes of a nematic director field: (A) splay
deformation (V' -n # 0); (B) twist deformation (n-V xn # 0); and (C) bend deformation
(n x (Vxn) # 0). (D)-(F) The same deformations of the director field in a smectic phase. Only
splay deformation of the director field (D) is compatible with the constant layer spacing. A twist
deformation (E) [bend deformation (F)] is only possible if screw dislocations [edge dislocations]

are introduced [83].

In contrast to the (chiral) nematic phase, the smectic A phase shows a layered structure
which is incompatible with a director field n(r) which is twisted or bent. This consideration
means that terms containing V X n cannot occur in smectic liquid crystals [86], [87]. Indeed,
experiments on thermotropic liquid crystals have shown that the pitch p and the elastic

coefficients K, and K5 of the chiral nematic phase increase strongly in the vicinity of smectic A
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phase and diverge at the nematic-smectic A transition [88], [89]. The only way to twist or to
bend the director field of a lamellar structure is to insert so-called screw- or edge-dislocations,
respectively (Fig.0.23 E, F).

Dislocations are linear defect with broken translation symmetry. The screw dislocations
impose a change of orientation of the smectic layer through the axial direction of the sample, and
the rotation in the lateral packing of the rods becomes localized at defect core. The edge
dislocations are characterized by the breaking of continuity of a smectic layer, where a new layer
appears (Fig.0.24). The vector that represents the magnitude and direction of the lattice
distortion, called Burger vector b, is parallel to the dislocation line in the case of a screw

dislocation, whereas it is perpendicular to the dislocation line for an edge dislocation.

Edge dislocation Screw dislocation

Fig.0.24. Schemes of a screw and an edge dislocations. The Burger vector b is parallel to
the dislocation line along the z-axis for a screw dislocation and it is perpendicular to the

dislocation line along the y-axis for an edge dislocation.

In smectic phase density of elastic free energy (0.17) has to be supplemented by a term
which accounts for layer compresibility [80]:

a 2
fetastic = %B (ﬁ) (018)

In this expression, u is the displacement field, and B is the compressibility modulus.

Taking into account V x n = 0, and introducing the elastic length A = \/K;/B (typical length
scale over which an exerted distortion relaxes in lamellar systems), we can rewrite the free

energy density for smectic as [80], [92]:

fomectie = 2B [(22) + 27 - nY’] (0.19)
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By accounting only linear derivatives in the displacement field u, the solution of (0.19) for
screw dislocation with Burger vector b and defect core axis along z-axis (Fig.0.24) can be
exactly minimized as [82], [91], [93]:

b -
Uscrew = Etan ! (%) (0.20)

In the case of a single edge dislocation with Burger vector b along y-axis (Fig.0.24), the

solution of equation (0.19) is also known [82], [91]:

Upgge = 2|1+ erf (J%)] (0.21)

where erf(...) is the error function.

The expression (0.21) is valid only for the edge dislocations where Burger scalar b is
much lower than the elastic length (b <« 4). To describe the general case when b~A or b > 1
the higher-order derivatives terms must be added to the displacement field u in the expression for

the free energy density (0.19) which yields the nonlinear exact solution for u:

{1 +erf (v%z)}] (0.22)

nonlinear eb/4l—q
Uedge =211In [1 +—

0.5.2 Screw and edge dislocation in molecular liquid crystals

Although dislocations play an important role in liquid crystals determining many static
and dynamic properties of these materials [94]-[98], quantitative experimental analysis of
displacement field around dislocations and detailed structure of their cores remains scarce to the
date [99]. Recently observations of screw and edge dislocations have been reported in liquid
crystal material made of bent-shape molecules E9 [100] (Fig.0.25) by employing cryogenic
transmission electron microscopy (Cryo-TEM), and in ordered films of PS/PBMA diblock
copolymers by using atomic force microscopy (AFM) [112].

For a screw dislocation the width of defect core (blank region between red and green layer
on the bottom sketch for Fig.0.25A) is found to be less than 5nm, which is nearly equal to the
smectic interlayer spacing, and is in agreement with the “melted” ( nematic or isotropic) model
of the core proposed for thermotropic smectic A phase by Pleiner [101], [102]. Using equation

(0.21) the elastic length A of E9 liquid crystalline material has been estimated from the edge

43



Chapter 0: General Introduction

dislocation profile shown in Fig.0.25B. The experimental findings provided an approximate

value for A2 which has the same order of magnitude as the value of smectic interlayer spacing.

shift of layers

Fig.0.25. TEM-images of (A) a screw dislocation with 3D model of its core on the top and
cross section of the smectic layers on the bottom, and (B) an edge dislocation in bent-shape
liquid crystal material E9 [100].

From this demonstration, we can conclude that investigation of dislocations depends on
the quality of their visualization at length scale corresponding to smectic layer periodicity, which
is typically of several nanometers for molecular systems. This results in poorly resolved images
as we can see in Fig.0.25. Therefore it could be very useful to take advantage of the micrometer
range smectic periodicity of, for instance, lyotropic fd-virus liquid crystalline dispersion, and
perform observation of dislocation in this system gaining highly resolved optical images.
Specifically, one might expect to probe the detailed structure in dislocation core via, for
example, observation of particle self-diffusion within it. The local order within the dislocation
core is expected to be “melted” into a higher-symmetry phase; (nematic or isotropic), but it does

not receive yet an experimental confirmation [103], [104].
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0.6 Outline of the thesis

The recognition that entropic and enthalpic patchinesses can lead to diverse morphologies
assembled at the microscale has inspired the development of numerous chemical methods for
creating novel types of colloidal particles with selective and directional interactions [7], [8]. In
our group we exploit the fact that the functionalization by patchy inclusions can be locally
performed at one of the single tips of filamentous viruses [56], producing a new sort of shape-
anisotropic particles with enthalpic patchiness. As the experimental studies of phase behavior and
dynamics of patchy rods are scarce to the date [41], [42], it has motivated us to investigate the
effect of highly localized attractive interaction on the structural and dynamical properties of fd-
virus liquid crystalline colloidal dispersions. Therefore, the aim of this thesis is to study the phase
diagram and the dynamical features of fd-virus dispersions with tunable directional attraction and
to compare the obtained results to that of pristine i.e. purely repulsive particles.

In Chapter 1, the structural properties of viral particles with highly localized directional
attractive interaction are studied. Firstly, we employ the regiospecific surface functionalization to
achieve the local attraction between rod tips. Then we show that the strength of the resulting
attractive interaction can be tuned by using different fd-virus mutants and by varying the dye
molar excess during the chemical reaction. Computer simulations performed by the group from
Eindhoven University of Technology is used to get deeper insight into the effect of directional
attraction on self-assembly of rod-like colloids. Experimental phase diagram of patchy viruses as
a function of their volume fraction and the interaction strength is thus constructed and compared
to the simulation phase behavior of modeled patchy rods. As the liquid crystalline behavior of tip-
functionalized rods is highly sensitive to the mutual positions between patchy inclusions in
different phases, particular attention of our analysis is devoted to the smectic ordering due to the
high correlation of sticky particle ends in this organization.

In Chapter 2, we show how the dye molecules on the rod tips are used to observe the liquid
crystalline lamellar structure by fluorescence microscopy with improved resolution and contrast.
Thanks to this, the visualization of linear topological defects in the smectic phase, called edge and
screw dislocations, is performed at the lattice periodicity level. The detailed structure of defect
cores is evidenced, as well as displacement field around an edge dislocation is calculated and

compared to the theoretical predictions [78], [79]. “Melted” ordering within the screw
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dislocations is revealed thanks to the self-diffusion experiments performed at the individual
particle level.

In Chapter 3, we focus our attention on the dynamical features of tip-functionalized viral
suspensions. Dynamics in all liquid crystalline states of both patchy and pristine rods is
investigated by tracking individual particle displacements by fluorescence microscopy. To
characterize the differences between the two types of viruses, their mean square displacements,
and thus self-diffusion coefficients, are experimentally measured and compared. Local diffusion
of patchy rods assembled into layered reminiscent of smectic ordering in the nematic and
isotropic phases are also presented.

Finally in Chapter 4, we combine the effects of entropic and enthalpic patchinesses. Non-
absorbing polymers are added into pristine as well as tip-functionalized viral dispersions inducing
effective attraction between rod sides. Structural and dynamical properties of non-functionalized
and tip-grafted particles under depletion interaction are studied by optical microscopy and small
angle X-ray scattering techniques with the determination of the experimental phase diagrams.

In the general conclusion, we summarize all the results obtained for dispersions of
filamentous viruses with highly localized directional attractive interaction. Some perspectives of
this work are also discussed including further ideas for combination of entropic and enthalpic
patchiness, as well as varying the position of localized attraction on rod surface to achieve new

types of virus based superstructures.

0.7 References

[1] A. Einstein. Investigation on the theory of the Brownian movement. Dover, New YorKk,
1926.

[2] J. Perrin. Les atomes. Constable, London, 1923.

[3] P. N. Pusey and W. van Megen. Phase behaviour of concentrated suspensions of
nearly hard colloidal spheres. Nature, 1986, 320: 340-342.

[4] U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz. Real-space
imaging of nucleation and growth in colloidal crystallization. Science, 2001, 292: 258-
262.

46



0.7 References

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. Han. Imaging the homogeneous
nucleation during the melting of superheated colloidal crystals. Science, 2012, 338:
87-90.

D. G. A. L. Aarts, Matthias Schmidt, and H. N. W. Lekkerkerker. Direct visual
observation of thermal capillary waves. Science, 2004, 304: 847-850.

S. C. Glotzer and M. J. Solomon. Anisotropy of building blocks and their assembly
into complex structures. Nat. Mater., 2007, 6: 557-562.

N. D. Burrows, A. M. Vartanian, N. S. Abadeer, E. M. Grzincic, L. M. Jacob, W. Lin,
J. Li, J. M. Dennison, J. G. Hinman, and C. J. Murphy. Anisotropic nanoparticles and
anisotropic surface chemistry. J. Phys. Chem. Lett., 2016, 7: 632-641.

E. Grelet. Hard-rod behavior in dense mesophases of semiflexible and rigid charged
viruses. Phys. Rev. X, 2014, 4: 21053.

A. Kuijk, Dmytro V. Byelov, Andrei V. Petukhov, A. van Blaaderen, and A. Imhof.
Phase behavior of colloidal silica rods. Faraday Discuss., 2012, 159: 181-199.

Q. Chen, S. C. Bae, and S. Granick. Directed self-assembly of a colloidal kagome
lattice. Nature, 2011, 469: 381-384.

B.V. Derjaguin and L. Landau. Theory of the stability of strongly charged lyophobic
sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta
Physicochimica USSR, 1941, 14: 633.

E.JW. Verwey and J. Th. Overbeek. Theory of the stability of lyophobic colloids.
Elsevier, Amsterdam, 1948.

H. N. W. Lekkerkerker and R. Tuinier. Colloids and the Depletion Interaction.
Springer, 2011.

S. Asakura, and F. Oosawa. On interaction between two bodies immersed in a solution
of macromolecules. J. Chem. Phys., 1954. 22: 1255-1256

A. Vrij. Polymers at interfaces and the interactions in colloidal dispersions. Pure &
Appl. Chem., 1976, 48: 471-483.

M. Maldovan, and E. L. Thomas. Diamond-structured photonic crystals. Nat. Mater.,
2003, 3: 593-600.

A. Lomakin, N. Asherie, and G. B. Benedek. Aeolotopic interactions of globular
proteins. PNAS, 1999, 96: 9465-9468.

47



Chapter 0: General Introduction

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

48

A. V. Petukhov, R. Tuinier, G. J. Vroege. Entropic patchiness: effects of colloid shape
and depletion. Curr. Opin. in Coll. & Int. Sc, 2017, 30: 54-61.

N. Kern, and D. Frenkel. Fluid—fluid coexistence in colloidal systems with short-
ranged strongly directional attraction. J. Chem. Phys., 2003, 118: 9882-9889.

L. Hong, A. Cacciuto, E. Luijten, and S. Granick. Clusters of amphiphilic colloidal
spheres. Langmuir, 2008, 24; 621-625.

L. Hong, A. Cacciuto, E. Luijten,and S. Granick. Clusters of charged Janus spheres.
Nano Lett., 2006, 6: 2510-2514.

S. Fraden, G. Maret, D. L. D. Caspar, and R. B. Meyer. Isotropic-nematic phase
transition and angular correlations in isotropic suspensions of tobacco mosaic virus.
Phys. Rev. Lett., 1989, 63: 2068-2071.

J. Tang and S. Fraden. Isotropic-cholesteric phase transition in colloidal suspensions
of filamentous bacteriophaeg fd. Lig. Cryst., 1995, 19: 459-467.

Z. Dogic and S. Fraden. Smectic Phase in a Colloidal Suspension of Semi flexible
Virus Particles. Phys. Rev. Lett., 1997, 78: 2417-2420.

E. Grelet. Hexagonal order in crystalline and columnar phases of hard rods. Phys. Rev.
Lett., 2008, 100: 168301.

A. Kuijk, A. van Blaaderen, and A. Imhof. Synthesis of monodisperse, rodlike silica
colloids with tunable aspect ratio. JACS, 2011, 133: 2346-2349.

P. A. Buining, A. P. Philipse, and H. N. W. Lekkerkerker. Phase behavior of aqueous
dispersions of colloidal boehmite rods. Langmuir, 1994, 10: 2106-2114.

O. Pelletier, P. Davidson, C. Bourgaux and J. Livage. The effect of attractive
interactions on the nematic order of V,0s gels. Europhys. Lett., 1999, 48: 53-59.

H. Maeda. Atomic force microscopy studies for investigating the smectic structures of
colloidal crystals of B-FeEOOH. Langmuir, 1996, 12: 1446-1452.

L. Onsager. The effects of shape on the interaction of colloidal particles. Ann. N. Y.
Acad. Sci., 1949, 51: 627-659.

D. Frenkel., H. N. W. Lekkerkerker, and A Stroobants. Thermodynamic stability of a
smectic phase in system of hard rods. Nature, 1988, 332: 822-823.

P. Bolhuis, and D. Frenkel. Tracing the phase boundaries of hard spherocylinders. J.
Chem. Phys., 1997, 106: 666-687.



0.7 References

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

B. Mulder. Density-functional approach to smectic order in an aligned hard-rod fluid.
Phys. Rev. A, 1987, 35: 3095-3101.

B. de Braaf, M. O. Menegon, S. Paquay, and P. van der Schoot. Self-organisation of
semi-flexible rod-like particles. J. Chem. Phys., 2017, 147: 244901.

S. Dussi, M. Chiappini, and M. Dijkstra. On the stability and finite-size effects of a
columnar phase in single-component systems of hard-rod-like particles. Molecular
Physics, 2018.

E. Barry and Z. Dogic. Entropy driven self-assembly of nonamphiphilic colloidal
membranes. PNAS, 2010, 107: 10348-10353.

B. Sung, A. de la Cotte, and E. Grelet. Chirality-controlled crystallization via screw
dislocations. Nat. Commun., 2018, 9: 1405.

S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine. Lock and key colloids.
Nature, 2010, 464: 575-578.

L. Rossi, S. Sacanna, W. T. M. Irvine, P. M. Chaikin, D. J. Pine, and A. P. Philipse.
Cubic crystals from cubic colloids. Soft Matter, 2011, 7: 4139-4142.

K. Chaudhary, Q. Chen, J. J. Juarez, S. Granick, and J. A. Lewis. Janus colloidal
matchsticks. JACS, 2012, 134: 12901-12903.

S. Park, J-H. Lim, S.-W. Chung, and C. A. Mirkin. Self-Assembly of Mesoscopic
Metal-Polymer Amphiphiles. Science, 2004, 303: 348-351.

J. N. Israelachvili. Intermolecular and Surface Forces. Third Edition, Elsevier, 2011.
D. Marvin. Filamentous phage structure, infection and assembly. Curr. Opin. Struct.
Biol., 1998, 8: 150-158.

E. Barry, D. Beller, and Z. Dogic. A model liquid crystalline system based on rodlike
viruses with variable chirality and persistence length. Soft Matter, 2009, 5: 2563-2570.
E. Pouget, E. Grelet, and M. P. Lettinga. Dynamics in the smectic phase of stiff viral
rods. Phys. Rev. E, 2011, 84: 41704.

Z. Dogic and S. Fraden. Cholesteric phase in virus suspensions. Langmuir, 2000, 16:
7820-7824.

M. P. Lettinga, E. Barry, and Z. Dogic. Self-diffusion of rod-like viruses in the
nematic phase. Europhys. Lett., 2005, 71: 692—-698.

49



Chapter 0: General Introduction

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

50

M. P. Lettinga and E. Grelet. Self-diffusion of rodlike viruses through smectic layers.
Phys. Rev. Lett., 2007, 99: 197802.

S. Naderi, E. Pouget, P. Ballesta, P. van der Schoot, M. P. Lettinga, and E. Grelet.
Fractional hoppinglike motion in columnar mesophases of semiflexible rodlike
particles. Phys. Rev. Lett., 2013, 111: 37801.

L. Alvarez, M. P. Lettinga, and E. Grelet. Fast Diffusion of Long Guest Rods in a
Lamellar Phase of Short Host Particles. Phys. Rev. Lett., 2017, 118: 178002.

E. Grelet, and S. Fraden. What Is the Origin of Chirality in the Cholesteric Phase of
Virus Suspensions? 2003, 90: 198302.

T. Gibaud et al. Reconfigurable self-assembly through chiral control of interfacial
tension. Nature, 2012, 481: 348-351.

D. A. Marvin, M. F. Symmons, and S. K. Straus. Structure and assembly of
filamentous bacteriophages. Prog. Biophys. Mol. Biol., 2014, 114: 80-122.

A. Kremser and |. Rasched. The adsorption protein of filamentous phage fd:
assignment of its disulfide bridges and identification of the domain incorporated in the
coat. Biochemistry, 1994, 33: 13954—13958

A. de la Cotte, C. Wu, M. Trévisan, A. Repula, and E. Grelet. Rod-like virus based
multiarm colloidal molecules. ACS Nano, 2017, 11: 10616-10622.

Q. Chen, J. Yan, J. Zhang, S. C. Bae, and S. Granick. Janus and multiblock colloidal
particles. Langmuir, 2012, 28: 13555-13561.

F. C. Bawden, and N. W. Pirie. The isolation and some properties of liquid crystalline
substances from solanaceous plants infected with three strains of tobacco mosaic virus.
Proc. R. Soc. Lond. B, 1937, 123: 274-320.

R. F. Kayser, Jr. and H. J. Raveche. Bifurcation in Onsager's model of the isotropic-
nematic transition. Phys. Rev. A, 1978, 17: 2067-2072.

S. Spaltro, K.P. Ananthapadmanabhan, M. Frushour, and M. Aronson. Adsorption of
dextrans onto hydroxyapatite: presenceof maxima. Coll. and Surf., 1992, 68: 1-8.

K. Devanand, and J. C. Selser. Asymptotic behavior and long-range interactions in
aqueous solutions of poly(ethylene oxide). Macromolecules, 1991, 24: 5943-5947.

J. Sambrook and W. D. Rusell. Molecular cloning. A laboratory manual, 4th Ed. Cold
Spring Harbor Laboratory Press: New-York, 2012.



0.7 References

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

M. Siavashpouri et al. Molecular engineering of chiral colloidal liquid crystals using
DNA origami. Nat. Mater.,2017, 49.

C. Hubert et al. Synthesis of multivalent silica nanoparticles combining both enthalpic
and entropic patchiness. Faraday Discuss., 2015, 181: 139-146.

K. R. Purdy and S. Fraden. Isotropic-cholesteric phase transition of filamentous virus
suspensions as a function of rod length and charge. Phys. Rev. E, 2004, 70: 61703.

A. R. Khokhlov and A. N. Semenov. Liquid-crystalline ordering in the solution of
partially flexible macromolecules. Physica, 1982, 112A: 605-614.

Z. Y. Chen. Nematic ordering in semiflexible polymer chains. Macromolecules, 1993,
26: 3419-3423.

G. J. Vroege, and H. N. W. Lekkerkerker. Phase transitions in lyotropic colloidal and
polymer liquid crystals. Rep. Prog. Phys., 1992, 55: 1241-1309.

A. Saupe. Recent results in the field of liquid crystals. Angew. Chem. internat. Edit.
1,1968, 7: 97-112.

G. S. Manning. Counterion condensation on charged spheres, cylinders, and planes. J.
Phys. Chem. B, 2007, 111: 8554-8559.

E. Trizac, M. Aubouy, and L. Bocquet. Analytical estimation of effective charges at
saturation in Poisson-Boltzmann cell models. J. Phys.: Condens. Matter, 2003, 15:
291-296.

R. Hentschke et al., Phys. Rev. A, 1991, 44: 1148.

R. D. Kamien et al., Phys. Rev. Lett., 1995, 74: 2499.

M. Doi. Rotational relaxation time of rigid rod-likemacromolecule in concentrated
solution. Le Journal De Physique,1975, 36:607-611.

S. Tang, and G. T. Evans. Self-diffusion in isotropic and nematic phases of highly
elongated hard particles. J. Chem. Phys.,1993, 98: 7281.

J. Newman, and H. L. Swznney. Hydrodynamic Properties and Structure of fd Virus.
J. Mol. Bid., 1977, 116: 593-606.

J. M. Burgers. Second report on viscosity and plasticity. Amsterdam Academy of
Science Nordeman, Amsterdam, 1938, chap. 3.

E. A. Brener, and V. I. Marchenko. Nonlinear theory of dislocations in smectic
crystals: An exact solution. Phys. Rev. E, 1999, 59: R4752.

51



Chapter 0: General Introduction

[79]

[80]

[81]

[82]
[83]

[84]
[85]
[86]
[87]
[88]
[89]

[90]

[91]
[92]

[93]

[94]

[95]

[96]

52

T. Ishikawa, and O. D. Lavrentovich. Dislocation profile in cholesteric finger texture.
Phys. Rev. E, 1999, 60: R5037.

M. Kleman, and O. D. Lavrentovich. Soft Matter Physics: An Introduction. Springer-
Verlag, New York, 2002.

P. M. Chaikin, and T. C. Lubensky. Principles of Condensed Matter Physics.
Cambridge Univ. Press, Cambridge, 1995.

M. Kleman. Defects in liquid crystals. Rep. Prog. Phyc., 1989, 52: 555-654

H.-S. Kitzerow. Chirality in Liquid Crystals, Chapter: Twist Grain Boundary Phases.
Springer, New York, NY, 2001.

P. Collings, M. Hird. Introduction to Liquid crystals: Chemistry and Physics. Taylor
and Fransic, London, 1997.

F. Leslie in: G.W. Gray , D. Demus , H.W. Spiess , J.W. Goodby , V. Vill. Handbook
of Liquid Crystals, Vol I, Wiley-VCH, Weinhiem, 1998.

S. Chandrasekhar. Liquid Crystals, 2nd ed. Cambridge University Press, Cambridge,
1922.

P.G. de Gennes. Solid State Commun. 1973, 10: 753.

L. Cheung, R.B. Meyer, and H. Gruler. Phys. Rev. Lett., 1973, 31: 349.

R.S. Pindak, C.-C. Huang, and J.T.Ho. Phys. Rev. Lett.1974, 32: 43-46.

F. C. Frank. I. Liquid crystals. On the theory of liquid crystals. Disc. of the Far. Soc,
1958, 25: 19.

M. Kleman. Points, Lines and Walls. Wiley, New York, 1983.

C. D. Santangelo. Geometry and the nonlinear elasticity of defects in smectic liquid
crystals, Lig. Crys. T., 2006, 15: 11-18.

P. G. de Gennes, J. Prost. The Physics of Liquid Crystals(2nd edition). Oxford
University Press, New York, 1993.

M. Kleman and J. Friedel. Disclinations, dislocations, and continuous defects: A
reappraisal. Rev. Mod. Phys., 80, 61 2008.

R. B. Meyer, B. Stebler, and S. T. Lagerwall. Observation of edge dislocations in
smectic liquid crystals. Phys. Rev. Lett., 1978, 41:1393.

R. D. Kamien and T. C. Lubensky. Chiral lyotropic liquid crystals: TGB phases and
helicoidal structures. J. Phys Il France, 1997, 7: 157.



0.7 References

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

R. P. Trivedi, I. I. Klevets, B. Senyuk, T. Lee, and I. I. Smalyukh. Reconfigurable
interactions and three-dimensional patterning of colloidal particles and defects in
lamellar soft media. PNAS, 2012, 109: 4744.

H. Aharoni, T. Machon, and R. D. Kamien. Aspects of Defect Topology in Smectic
Liquid Crystals. Phys. Rev. Lett., 2017, 118: 257801.

P. Oswald and P. Pieranski. Smectic and Columnar Liquid Crystals: Concepts and
Physical Properties Illustrated by Experiments. Taylor and Francis/CRC Press,
London, 2005.

C. Zhang et al. Cryo-TEM studies of two smectic phases of an asymmetric bent-core
material. Lig. Cryst, 2013, 12: 1636-1645.

H. Pleiner. Structure of the core of screw dislocations in smectic-A liquid-crystals. Lig
Cryst., 1986, 1:197-201.

H. Pleiner. Energetics of screw dislocations in smectic-A liquid-crystals. Lig Cryst.,
1988, 3:249-258.

C. D. Muzny, and N. A. Clark. Direct observation of the brownian motion of a liquid-
crystal topological defect. Phys. Rev. Lett., 1992, 6:804-807.

R. L. Blumberg Selinger. Diffusion in a smectic liquid crystal with screw dislocations.
Phys. Rev. E, 2002, 5: 1-4.

W. G. Hoover and F. H. Ree. Melting Transition and Communal Entropy for Hard
Spheres. J. Chem. Phys., 1968, 49: 36009.

G. S. Manning. Counterion Condensation on Charged Spheres, Cylinders, and Planes.
J. Phys. Chem. B, 2007, 111, 8554.

A. van Blaaderen. Long-time self-diffusion of spherical colloidal particles measured
with fluorescence recovery after photobleaching. J. Chem. Phys., 1992, 96, 4591.

E. R. Weeks, D. A. Weitz. Subdiffusion and the cage effect studied near the colloidal
glass transition. Chem. Phys., 2002, 284: 361-367.

W. Wang, W. Duan, S. Ahmed, A. Sen, and T. E. Mallouk. From one to many:
Dynamic assembly and collective behavior of self-propelled colloidal motors. Acc.
Chem. Res., 2015, 48: 1938-1946.

C. Wu. Hybrid colloidal molecules from self-assembly of viral rod-like particles. PhD

thesis, University of Bordeaux, 2018.

53



Chapter 0: General Introduction

[111] Z. Zhang and E. Grelet. Tuning chirality in the self-assembly of rod-like viruses by
chemical surface modifications. Soft Matter, 2013, 9, 1015.

[112] M. Maaloum et al. Edge profile of relief 2D domains at the free surface of smectic
copolymer thin films. Phys. Rev. Lett., 1992, 68, 1575.

54



Chapter 1: Directing liquid crystalline self-organization of rod-like particles...

Chapter 1

Directing liquid crystalline self-organization of rod-like particles through

tunable attractive single tips

This part of thesis has been done in collaboration with Mariana Oshima Menegon and
Paul van der Schoot from Eindhoven University of Technology (TUE), as well as with Cheng
Wu, former PhD student in our group. The team from TUE has performed computer simulations
to deeper investigate the effect of local directional interaction on structural properties of rod-like
liquid crystalline colloidal dispersions. The results have been published in Physical Review
Letters in 2019. Thus, we present this published paper as Chapter 1.

Filamentous viruses self-organize into various phases by tuning rod concentration
including isotropic liquid, chiral nematic, smectic (or lamellar), and columnar states. This phase
behavior has been shown to be nearly mapped by hard-core interaction between colloidal
particles [18], [20]. In this Chapter, we go beyond purely repulsive interaction between rods, and
study the structural properties of viral particles with highly localized directional attractive
interaction (or “patchiness”). Local attraction is achieved by functionalizing the proximal ends of
filamentous viruses via regioselective grafting of hydrophobic fluorescent dyes. Interaction
strength between viral tips is shown to be tuned by employing different fd mutants and varying
dye molar excess during chemical reactions. In computer simulations, filamentous virus is
modeled as a chain of overlapping beads connected via springs. One of the end beads of each
chain represents the patch on the tip of rod-like colloid and interacts attractively with other end
beads, whereas it repels via hard-core interaction the rest of the beads forming chains.

We establish and compare experimental and simulations phase diagrams as a function of
rod concentration and attraction strength between their tips. Local ordering of patchy viruses in
different liquid crystalline mesophases is visualized by fluorescent optical microscopy and

compared to the assemblies of modeled rods with sticky end beads.
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Abstract

Compelling justification: Hard-core repulsion is the simplest interaction in Nature yet it
drives the self-organization of many complex fluids. To investigate how enthalpy impacts upon
entropy-dominated liquid crystalline states, we introduce a highly localized and tunable directional
attractive interaction (or “patch”) on one of the tips of rod-shaped colloids. Our experiments
and computer simulations show that increasing the patch attraction dramatically stabilizes the
lamellar phase, a structure desired in materials science due to its outstanding mechanical and
optical properties. Our work demonstrates that introducing patches in anisotropic nanoparticles
adds to the control of their self-assembly.

Abstract: Dispersions of rod-like colloidal particles exhibit a plethora of liquid crystalline
states, including nematic, smectic A, smectic B, and columnar phases. This phase behavior can
be explained by presuming the predominance of hard-core volume exclusion between the particles.
We show here how the self-organization of rod-like colloids can be controlled by introducing a weak
and highly localized directional attractive interaction between one of the ends of the particles. This
has been performed by functionalizing the tips of filamentous viruses by means of regioselectively
grafting fluorescent dyes onto them, resulting in a hydrophobic patch whose attraction can be
tuned by varying the number of bound dye molecules. We show, in agreement with our computer
simulations, that increasing the single tip attraction stabilizes the smectic phase at the expense
of the nematic phase, leaving all other liquid crystalline phases invariant. For sufficiently strong
tip attraction the nematic state may be suppressed completely to get a direct isotropic liquid-to-
smectic phase transition. Our findings provide insights into the rational design of building blocks

for functional structures formed at low densities.

* eric.grelet@crpp.cnrs.fr
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There is a considerable interest in the self-organization of fluid dispersions of nanoparti-
cles into hierarchical structures and morphologies. On the one hand, there is a fundamental
interest in elucidating the physical principles that govern the self-assembly of colloidal parti-
cles [1]. On the other hand, there is also a technological interest in the context of fabricating
novel functional materials bottom-up, that is, via self-assembly [2, 3]. For both reasons, ani-
sometric building blocks are seen as highly promising systems, because of their versatility
in surface functionalization and their ability to form complex architectures, as the liquid
crystalline phases [1-13].

Among the desired organizations relevant in the context of materials science and nan-
otechnology, layered structures stand out for their outstanding optical and mechanical prop-
erties [14-17]. Such lamellar or smectic phases usually appear at relatively high packing
fractions, which tend to render them difficult to handle experimentally. [17-19]. It would
therefore be appealing to develop methods and approaches to obtain the smectic ordering
at lower particle loadings. We have recently shown that the self-organization and phase sta-
bility of highly ordered liquid crystalline states of filamentous viruses, including the smectic
phases, is dominated by volume exclusion and hence by entropy [20], confirming the role of
model colloidal system of these biological rods.

Here, we go beyond relying on a purely hard-core interaction and homogeneous surface
functionalization (21, 22|, and introduce a tunable localized directional attraction between
the tips of the virus particles by specifically grafting hydrophobic fluorescent dyes to one of
the two ends of our virus-based colloidal rods, We investigate experimentally the impact
of this “enthalpic” patch on the self-assembly behavior of the particles and compare our
findings with computer simulations. The regioselective functionalization of the tips of the
rods into hydrophobic patches gives rise to highly localized attractive interactions, which
strongly influence the relative stability and structure of the various liquid crystalline phases.
In particular, we show how an increasing tip attraction stabilizes the smectic A phase at
the expense of the nematic and eventually also the isotropic phase, extending the stability
of the smectic A phase to relatively low concentrations. We demonstrate in this Letter the
efficiency of introducing a single attractive patch in the design of anisotropic building blocks
to sensitively control the balance between entropy and enthalpy, and thus to control the
self-organization of these particles into the desired architecture.

In our experiments, we made use of mutants of the filamentous bacteriophages M13KE
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FIG. 1. (A) Transmission electron microscopy of the filamentous virus used in this work (Scale bar:
200 nm), and (B) schematic representation of pristine (left) and single-tip functionalized viral rod
with red dyes (right), resulting in a localized directional attractive interaction. (C) Schematic of
the semi-flexible rod-like particles, modeled as a bead-spring chain, used in computer simulations.
The white beads from different particles interact via a repulsive soft-core potential, while the red

ones located at one end of the rods are attractive.

and M13C7C, which only differ by the number of cysteine groups available at their proximal
end on the P3 proteins (Fig. 1A-B). Both viruses are rod-shaped with a contour length of
L =1pm, and a diameter of 7nm. The particles are semi-flexible with a persistence length
of L, ~ 3L [23]. The presence of cysteine residues only at one of the ends allows, after
chemical reduction, for their selective bioconjugation with maleimide activated fluorescent
compounds (Dylight 550 and 594 Maleimide, ThermoFisher), as described elsewhere [24, 25].
This results in single-tip labeled viruses, whose degree of functionalization, i.e., the average
number of fluorescent dyes per virus can be controlled in our experiments from ngyes = 1,
3 to 10 by varying the molar excess during the labeling reaction (See the Supplemental
Material [26].)

The dye molecules are partially hydrophobic due to the presence of aromatic rings [21],
implying that the number of grafted dye molecules dictates the size of the hydrophobic
patch on the otherwise hydrophilic surface of the virus. It is reasonable to presume that the
strength of the attraction between the virus tips increases with the patch arca. Whether
there is a linear relationship between the number of dyes and the strength of the attraction
is contentious, as the cysteine reduction and dye labeling leads to partial unfolding of the
P3 tip proteins. This causes hydrophobic moieties of buried amino acids to become exposed
to the aqueous solution. Still, it seems reasonable to assume that the number and size of
these exposed hydrophobic groups increases with the degree of labeling, as confirmed by our

experiments (See the discussion below).
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Samples of single-tip functionalized virus suspensions have been prepared by dilution
with BisTris-HCI-NaCl buffer, setting the pH at 7 and the ionic strength at 20 mM. These
are then studied by optical microscopy [25] and small angle X-ray scattering (SAXS, [20])
(see the Supplemental Material [26]). In our molecular dynamics simulations, we model the
chiral filamentous virus particles as achiral overlapping bead-spring chains, where 21 beads
are connected via springs of rest length measuring half bead diameter and very large spring
constant (Fig. 1C). Therefore, the aspect ratio of the simulated particles is 11, which is
smaller by about one order of magnitude than the effective (i.e. accounting for the electro-
static repulsion between the charged viruses [20]) aspect ratio of the experimental particles.
The consequences for the comparison between results from experiments and simulations are
discussed below. The beads interact via a steeply repulsive potential. A bending potential
has been introduced to mimic the flexibility of the virus particles in order to reproduce
the ratio between the persistence and contour lengths of the virus, L,/L ~ 3. One of the
end beads (displayed in red in Fig. 1C) representing the labeled virus patch interacts at-
tractively through a Lennard-Jones potential with the other tip beads, and with a purely
repulsive interaction with the other beads forming the rod particles. The strength of the tip
attraction u is the depth of the Lennard-Jones potential. Approximately 4600 chains are
placed in size-adjustable simulation box initially organized in 8 AAA-stacked bilayers. We
performed NPT simulations at various pressures, using the simulation package LAMMPS
according to a method described in [27].

We construct the experimental phase diagram for patchy rods as a function of the con-
centration and the degree of functionalization (Fig. 2A), and compare this with the phase
behavior of the pristine viral particles. By comparing the stability limits of the various
mesophases, which includes nematic, smectic A, smectic B and columnar phases, we con-
clude that increasing the number of dye molecules grafted at the tips of the virus particles
strongly affects the nematic-smectic A (N-SmA) transition, yet has almost no effect over
the other phase transitions. Our main finding is the increased stabilization of the smectic
phase, at the expense of the nematic phase, with increasing number of grafted dyes, and
concomitant widening phase gap implying that the transition becomes more strongly first
order.

Figure 2B presents our simulation phase diagram as a function of the strength of the

tip attraction, u. The resulting phase behavior shows qualitative agreement with the ex-
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FIG. 2. (A) Phase diagram of tip-functionalized viruses as a function of the mean number of grafted
dyes per rod ngyes and the concentration cyirys. The system with 0 dyes corresponds to pristine
(“raw”) viruses and the systems with ngyes = 1, 3, and 10 dyes represent the tip-functionalized,
patchy particles. The isotropic liquid (Iso) and (chiral) nematic (N*)) phases (Images (a) and
(b)) have been identified by polarizing microscopy. The layered texture observed by differential
interference contrast (DIC) microscopy in the image (c) is characteristic of the smectic A (SmA) and
B (SmB) phases, and it lacks in the columnar (Col) phase (d). The color coding for the different
phases is given in the inset, and white regions indicate the phase gaps between the coexisting
phases. (B) Calculated phase diagram in terms of the attraction strength u between the end
groups of the semi-flexible rod-like particles as a function of their volume fraction ¢. The different
phases from isotropic liquid to the crystalline (Cr) state have been identified using global order

parameters, as described in [27].
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FIG. 3. (A) Optical textures of tip-labeled virus suspensions in the various liquid crystalline phases
obtained by fluorescence microscopy. The red signal corresponds to the position of the patchy virus
tips. The green signal represent body-functionalized viruses, which are added in a tracer amount to
the suspension. Scale bar: 2 um. (B) Corresponding simulation snapshots highlighting the local
ordering within the mesophases. White beads are purely repulsive and red ones are attractive. In
the isotropic phase (Iso), the viruses have random orientations. In the nematic phase (N), viral
particles have an average alignment along the director but no long-range positional order. There
are some clusters in both phases, which are interpreted as precursors of smectic layers. The first
order nematic-smectic A phase transition (N-SmA) is confirmed by the presence of sharp interface
between the coexisting phases. In the smectic phases (SmA and SmB), all patches are localized in
the interlayer spacing. Conversely, in the columnar phase (Col), the virus patches are uniformly
distributed. In this mesophase, body-functionalized viruses are not aligned due to small domain

size.

perimental data: increasing the stickiness of the tips affects mainly the nematic-smectic A
phase transition. The stability of the smectic A phase increases with increasing strength of
the tip attraction, as does the phase gap. For large enough attraction u 2 1.8kgT, we find
in our simulations a direct isotropic liquid-to-smectic A phase transition, exploring a range
of attraction that we cannot access experimentally due to the limited number of exposed
cysteine groups at the virus tip (see the Supplemental Material [26]). The isotropic liquid-
to-nematic phase (I-N) transition remains unchanged in both phase diagrams, except for
the highest tip attraction where the simulations point at a relatively weak widening of the

coexistence range. This suggests that our patchy interaction is rather weak and localized,
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as rods with stronger attractive interaction, driven by either depletion interaction [28, 29|
or by a residual van der Waals interactions between the bodies of the rods [30], exhibit a
significant widening of the I-N coexistence range.

The results from our experiments and the simulations diverge at very high packing frac-
tions. We do not find a stable columnar phase in our simulations of rod-like particles.
This could be due to the difficulty of stabilizing the columnar organization in numerical
simulations for entropy driven, single-component systems [31]. It is also possible that the
columnar phase does not form in suspensions of particles with aspect ratios below 30, as
suggested in [32]. Another obvious difference between experiments and simulations is the
strongly first order transition between the smectic A and smectic B phases in the latter.
Experimentally, it is second order or weakly first order [20]. An extension of the smectic-B
range by increasing the tip attraction that we find experimentally, is lacking in simulations
for which there is also an intrinsic difficulty to clearly distinguish between the smectic B
from the crystalline phase. The absence of one-to-one correspondence between the mass
concentration in the experiments and the volume fraction in the simulations is not really
surprising given the crude nature of the interaction potential, the modest aspect ratio of the
particles in the simulations, and the overestimation of the size of the attractive bead in the
simulations compared to the size of the attractive sites on the virus tip-proteins.

The overall qualitative agreement between experiments and simulations is however man-
ifest. This is true for the dependence on tip attraction of the transitions between isotropic,
nematic and smectic A phases (Fig. 2), but turns out to be true as well as for the local
ordering displayed in these phases (Fig. 3). For the purpose of direct comparison, we added
a tracer amount of body labeled viruses with green fluorescent dyes to our suspensions. The
striking feature of the optical texture as seen by fluorescence microscopy is the presence of
red colored clusters in the isotropic phase. By varying the depth of focus, we evidence the
clusters to have a two-dimensional structure, forming bilayer “lamellae” in which the viruses
assemble at their red tips and lie nearly perpendicular to them. We cannot exclude the pos-
sibility that some of these clusters are caused by chemical rather than physical cross-linking,
during the tip functionalization process.

Similar lamellar structures can be observed in the nematic phase, except that in this
case they are oriented perpendicular to the director (defined as the average rod orientation)

whereas in the isotropic phase they are randomly oriented (Fig. 3A). Furthermore, the
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disappearance of the chiral nematic or cholesteric phase in favor of the uniaxial nematic
phase upon grafting even a single dye molecule to the virus tip (Fig. 2A), we ascribe to the
presence of these lamellae. We argue that they must interfere with the chirality amplification
on the mesoscopic scale. In our simulations we observe bilayer clusters similar to those seen
experimentally with particles assembled by their attractive tips in both sides, as shown by
the snapshots in the isotropic and nematic phases displayed in Fig. 3B.

At increased particle concentration, the lamellar aggregates grow and condense into smec-
tic domains in a nematic background, corresponding to the N-SmA coexistence region (See
Fig. 3, central images). As expected, the particles are aligned along the director in the two
phases, in both experiments and simulations. An example of the single smectic domain is
given in Fig. 3A, where the alignment of the rod-like particles is perpendicular to the layer
allowing us to rule out any smectic C or other types of tilted smectic.

In contrast to the smectic A and B phases, which we are able to distinguish by means
of SAXS measurements (see the Supplemental Material [26])[20, 33|, and which do exhibit
large single domains, the columnar phase is characterized by finite domain sizes of only a few
micrometers width, as shown both in Figs. 2A and 3A. The absence of bright red localized
signals supports the lack of layered structure and is therefore consistent with the liquid-like
order along the columns. The variation of red fluorescence intensity arguably does not reflect
strong clustering, but may be interpreted as the result of the integration over the sample
thickness of the fluorescence signal coming from domains with different orientations.

As the main effect of the tip patchiness is to widen the smectic stability range, we have
characterized this phase by determining the associated molecular field U,ye, [34]. This unidi-
mensional ordering potential can be obtained by measuring the distribution of longitudinal
rod fluctuations with respect to the middle of the layers, from which the probability (z) of
finding a particle at position z along the director. P(z) is related to the ordering potential
via the Boltzmann factor P(z) o< exp(—Ulayer(2)/ksT’). The free energy landscape of both
experimental and simulated particles is presented in Fig. 4 and shows the same trends: (i)
the magnitude of the ordering potential increases with increasing tip patchiness for a given
particle packing fraction (Fig. 4A-B), and (ii) Ujye increases with the particle concentra-
tion, for both repulsive and attractive tips (Fig. 4C-D). Note in addition that the smectic
potential also becomes narrower with increasing density and functionalizing the tips of the

viruses. This implies that the amplitude of the fluctuations of the particles around their
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FIG. 4. Smectic ordering potentials or molecular fields calculated from experimental (A) and
simulated (B) distribution of particles, as a function of the particle position, normalized by the
smectic layer spacing, for different particle concentrations and volume fractions. In gray we indicate
the experimentally measured potential of immobile particles, which is the equivalent for potentials
of the point spread function (PSF) of the optical setup. Smectic potential barriers as a function of
virus concentration for experiments (C) and as a function of volume fraction for simulations (D).
In all graphs, open black and full red symbols correspond to “raw” repulsive and tip-functionalized

rod-like particles, respectively.

equilibrium positions in the layers become weaker, and hence that the particle positions
become more localized. As the aspect ratio of the particles is smaller in our numerical simu-
lations, we expect lower smectic potentials compared to the experimental ones, as shown in
Fig. 4. The reason is that the stability of the smectic A phase of repulsive rod-like particles
reduces with decreasing length [35]. Notice that irrespective of the strength of tip attraction,
we find the same slope of the ordering potential as a function of the particle concentration,
both in the experiments and the simulations. This is to be expected because the molecular
field a test particle experiences in a lyotropic smectic must be proportional to the average

density [36]. Even though we have not been able to find a sensible mapping between our
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experimental and simulation results because of the large disparity between the respective
aspect ratios of the particles, our simulations do account for most of the features we observe
in our experimental system. This is true both for the phase behavior and ordering poten-
tials, suggesting that our prediction that a tip attraction strength as small as v = 1 —2 kgT
is sufficient to fully suppress the nematic phase and promote the smectic organization in
dispersions of otherwise mutually repelling rod-like particles is plausible. This small value
is actually not surprising, considering that free energy differences between particles in co-
existing liquid crystalline phases of rod-like particles are typically of the order of a thermal
energy and often much smaller than that.

In summary, we report on the achievement of tip-functionalized rod-like virus particles
exhibiting sticky patches with tunable interaction. We find that the range of stability of the
smectic phase of these particles can be enlarged continuously by increasing the strength of
the patch attraction. Extending the stability of the smectic phase to lower concentrations
happens at the expense of the nematic phase, in which bilayer lamellar aggregates form.
Other phase transitions are, by and large, not affected by the tip functionalization. Our
experiments and computer simulations suggest that the reason why only the smectic ordering
responds to the tip functionalization, is that it brings together the interacting ends that are
otherwise not highly correlated in the other phases. Our findings open up perspectives in
the rational design and site-specific post-modifications of particulate building blocks for soft
self-assembled materials, showing how the introduction of a single and tiny enthalpic patch

is able to steer the structuring of complex fluids.
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I. AVERAGE NUMBER OF FLUORESCENT DYES PER VIRUS
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FIG. S1: Schematic representation of the amino acid sequence corresponding to the N-terminal
part of the P3 protein exposed to the solvent and therefore accessible for chemical functionaliza-
tion. M13KE virus possesses two cysteine groups at position 7 and 36 forming a disulfide bridge
[37], while the genetically modified M13C7C virus has an additional fused polypeptidic sequence

(highlighted in red) with two other cysteine residues also linked via a disulfide bond.

As systems of rod-like particles, we used two different mutants of filamentous bacterio-
phages, called M13KE and M13C7C, which only differ by the structure of their five tip
proteins P3 located at the proximal end of the virus. M13KE possesses the wild-type P3
protein which has four disulfide bridges (otherwise absent from the other coat proteins of the
virus) [37]. Among these disulfide bridges, mostly the last one is assumed to be sterically
accessible for chemical bioconjugation (Fig. S1). In order to increase the number of cysteine
groups available for functionalization, M13C7C was also employed, and it displays two other
cysteine residues forming a disulfide bridge thanks to a fused peptide sequence on each of
its five P3 proteins, as shown in Fig. S1.

After a reduction step of the disulfide bridges available on the P3 proteins, the resulting
thiols have been chemically conjugated with different molar excess of maleimide activated
fluorescent molecules (Dylight 550 and 594 Maleimide, ThermoFisher), following recently
reported protocols [24-25]. In order to characterize the degree of lableling of the single-
tip functionalized viruses, the mean number of grafted dyes per viral rod ngyes has been
determined by optical absorbance. The UV-visible spectra of four independent dilutions
prepared from the different stock suspensions of tip-labeled viruses were recorded using a
Lambda 950 (PerkinElmer) spectrophotometer (Fig. S2A), from which, after subtracting
the background, ngyes has been deduced as indicated in Fig. S2B.
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FIG. S2: (A) Absorbance of aqueous suspensions of pure dyes (Dylight 594), pristine M13KE
viruses, and tip-functionalized ones with Dylight 594 fluorescent molecules measured with an optical
path of 10 mm. The concentration of pristine and tip-labeled virus suspensions is 0.43 mg/mL (2.3
x107® mol/L) and the dye concentration is 9 x 1073 mg/mL (8.5 x107% mol/L) (B) Mean number
of dyes per virus tip, ngyes, obtained from absorbance spectra and using the molar extinction

coefficients provided by the dye supplier and the virus extinction coefficient given in [38].

II. SAXS EXPERIMENTS

T T T | X {5
5 Col
— 107 —— SmB,| 3
= ——SmA
. —N
."‘%
C
2
C
= 2
ot 10-: E
e 4
Q
= ]
O 200)
2 ( )_
10’ T

02 04 06 08 10
wave vector g [nm™]

FIG. S3: X-ray scattering spectra of patchy virus suspensions (ngyes = 3) self-organized into the
different liquid crystalline phases reported in Fig. 2. The virus concentration of the nematic,
smectic-A, smectic-B and columnar phases is 70, 109, 125 and 148 mg/mL, respectively. The gray

dashed area indicates the unphysical region of the spectra near the beam stop.
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Investigations by Small angle X-ray scattering (SAXS) have provided the signature of
both the smectic-B phase and the columnar mesophase, with the presence of (110) Bragg
reflections (Fig. S3) characteristic of a hexagonal positional order in the direction normal
to the long rod axis. Such high order Bragg reflections lack in the Smectic-A and nematic
phases, which both exhibit liquid-like order as shown by their broad (100) reflection (Fig.
S3). SAXS experiments were performed using a NanoStar-Bruker AXS setup, working at a

wavelength of 1.54 A (Cu Ko emission) and with a sample-to-detector distance of 1.06 m.
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Chapter 2

Elementary edge and screw dislocations visualized at the lattice periodicity
level in smectic phase of colloidal rods

The results reported in this Chapter have been published in Physical Review Letters in
2018. In this study, thanks to the tip-labeling of colloidal rods, we are able to visualize the
lamellar liquid crystalline structure of viral suspensions including linear topological defects with
improved resolution and contrast. Highly resolved optical images of the edge and screw
dislocations are obtained in the smectic phase at the lattice periodicity level. The detailed
structure of defect cores is shown, as well displacement field around an edge dislocation is
established experimentally and compared to the theoretical predictions [30]. Single particle

tracking experiments evidence “melted” rod organization within the screw dislocation cores.
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Abstract

Compelling justification: Topological defects such as dislocations play a major role in
science, from condensed matter and geophysics to cosmology. Line defects in periodically ordered
structures, called dislocations, mediate phase transitions and determine many distinctive features
of materials, from crystal growth to mechanical properties. However, despite many theoretical
predictions, the detailed structure of dislocations remains largely unexplored. By using a model
system of tip-labeled colloidal rod-shaped particles enabling improved resolution and contrast
by optical microscopy, in situ visualization of dislocations has been performed at the lattice
periodicity level in a self-organized layered phase. The local morphology of dislocations has been

quantitatively determined, evidencing experimentally a “melted” defect core.

Abstract: We report on the identification and quantitative characterization of elementary edge
and screw dislocations in a colloidal smectic phase of tip-labeled rods. Thanks to the micrometer
layer spacing, direct visualization of dislocations has been performed at the smectic periodicity scale
by optical fluorescence microscopy. As a result, the displacement field around an edge dislocation
has been experimentally established and compared with the profile predicted by elastic theory.
Elementary screw dislocations have been also evidenced, for which the core size as well as the
in situ handedness have been determined. Self-diffusion experiments performed at the individual

particle level reveal for the first time nematic-like or “melted” ordering of the defect core.

* grelet@erpp-bordeaux.cnrs.fr
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Topological defects are ubiquitous in all ordered systems, and are generated either ex-
trinsically as in plastic deformation, or intrinsically in frustrated materials such as liquid
crystalline blue phases [1-4]. Recently, they have been widely used to manipulate micro- and
nanoparticles in different mesophases [5-8|]. Among topological singularities, dislocations are
linear defects with broken translational symmetry, and they determine many properties of
regular solids [9, 10|, including important mechanical ones in metals [11]. In systems with
reduced dimensionality, such as layered phases usually found in soft condensed matter, dis-
locations exhibit substantial differences compared with their 3D counterparts [4, 9, 12, 13].
Despite their major role in liquid crystals [14-17] and in recently evidenced colloidal self-
assembly where dislocations have been shown to mediate chirality transfer from constituent
particles to helical superstructures [18], quantitative experimental characterizations of the
dislocation displacement field as well as the core structure of elementary dislocations are
scarce to date [4]. Such investigations rely on the observation of dislocations at length
scales corresponding to the lamellar peridiocity, which is of a few nanometers for most ther-
motropic, amphiphilic and block copolymer based liquid crystals [12, 19, 20]. This therefore
usually requires electron microscopy techniques to gain access to nanometer resolved im-
ages, combined with a control of the sample alignment [21, 22]. If such difficulties have been
partially bypassed by studying by optical microscopy some cholesteric mesophase whose
fingerprint texture is reminiscent of a lamellar ordering [23-25], the detailed structure of el-
ementary dislocations in real smectics is not yet fully achieved [17, 22, 26]. Specifically, the
local order within the dislocation core is expected to be “melted” into a higher-symmetry
phase; however, the nature of this order, either liquid-like or nematic-like, did not receive yet
a full experimental confirmation. In this work, we have successfully produced tip function-
alized rod-like particles, namely fd viruses fluorescently labeled at one end, whose monodis-
perse micrometer length results in the formation of colloidal smectic phase at high enough
volume fractions. Taking advantage of its micrometer periodicity which enables its study by
optical microscopy, the tip-labeled virus based colloidal smectic phase with planar alignment
is found to exhibit elementary dislocations, namely edge and screw ones, as schematically

represented in Fig. 1.

Experimentally, we used M13KE filamentous viruses, as system of rod-like particles. Each
of the five P3 proteins localized at the virus proximal end displays pairs of cysteine residues

(otherwise absent from the other coat proteins of the virus), forming disulfide bridges. After
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Edge dislocation Screw dislocation

FIG. 1. Schematic representations of an edge and a screw dislocations in a lamellar system. The
Burgers vector b is perpendicular to the dislocation line along y for an edge dislocation and it is

parallel to the dislocation line along z in a screw dislocation.

FIG. 2. Imaging of smectic layers and an edge dislocation in suspensions of tip-functionalized
colloidal rods (M13,.47ip, schematically represented by blue dashes with red dots) observed re-
spectively by (a) differential interference contrast (DIC) and (b) fluorescence optical microscopy.
The length scale is provided by the micrometer layer spacing, Ljqyer. The origin for profile mea-
surement is located at the dislocation core. In the observation plane, the x and z axes are parallel

and perpendicular to the layers, while the focal depth is along the y axis.

reduction by Tris(2-carboxyethyl)phosphine hydrochloride (TCEP, Thermo Scientific), the
resulting thiol groups are available for conjugation with maleimide activated compounds. We
chose to specifically label these thiol groups present at the virus tip with red dyes (DyLight
550 Maleimide, ThermoFisher) according to a protocol reported elsewhere [27]. This results
in 1.0 pm long tip-labeled viral particles, called M13,.47i,, whose phase behavior in aque-
ous suspension presents liquid crystalline ordering, as the lamellar organization including

smectic-A and smectic-B phases in the dense regime [28, 29]. Part of these tip-functionalized
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FIG. 3. Edge dislocation observed by fluorescence microscopy and the corresponding displacement
field (white open circles) of the adjacent smectic layers around the defect core. The white solid
lines represent the global fitting of the dislocation profile according to the nonlinear elastic theory
(Eq. 3) from which the elastic length A (Eq. 2) can be deduced. The inflection points are marked
by blue open squares, and are all shifted toward the same direction (z < 0) as predicted by the

theory (Eq. 3).

viruses were body-labeled with green fluorescent dyes (Alexa488-NHS ester activated, Molec-
ular Probes) [27] and added in tracer amounts to a few M 13,47, samples for single particle
tracking experiments. A set of samples with concentrations in the smectic-A range were
prepared (in 17mM BisTris-HCI-NaCl buffer, pH 7, with 3 mM NaNj as bactericide, for a
total ionic strength of 20 mM) between cover slip and glass slides, and observations were
performed using an optical microscope (IX-71 Olympus), equipped with a high-numerical
aperture (NA) oil objective (100X PlanApo NA 1.40), a piezo device for objective vertical
positioning (P-721 PIFOC Piezo Flexure Objective Scanner, PI), a fluorescence excitation

light source (X-cite series 120 Q) and an ultra-fast electron-multiplying camera (NEO sC-
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MOS Andor) with a pixel size of 6.5 pm. An equilibrium time of typically a few days was
applied in order to get homogeneous and uniform smectic-A samples. This could result
sometimes in a partial drying of the samples, leading possibly to some smectic-B ordering,.

The resulting smectic phase formed by the tip-labeled rod-like viruses, is observed both
by differential interference contrast and fluorescence microscopy, as shown in Figure 2. Both
contrast modes reveal the lamellar periodicity of the smectic organization, with improved
resolution and contrast in case of fluorescence microscopy. As the tips of our colloidal rods
have been labeled with red dyes, the smectic layer positions as well as the layer spacing,
Ligyer, can be experimentally determined with a good level of precision. This allows for the
quantitative analysis of the displacement field around an elementary edge dislocation, as
reported in Fig. 3. The general expression of the nonlinear elastic free energy density of a

smectic phase is, by accounting for the higher order derivatives in the displacement field,

u(x, z) [3]: )
. B (ou 1 [0u 2 K, [0*u\?
f?(a—a(a)) *7(@) (1)

with B the compressibility modulus and K the bending elastic constant, analogous to

the nematic splay elastic constant. The elastic length A can then be defined as:

K,
A= 5 (2)

providing the intrinsic length scale over which an imposed distortion relaxes in a lamellar

system. Using Eq. 1, Brener and Marchenko found the analytical edge dislocation profile

- u(z,z) = 2\ In [1 + w (1 terf (zjﬁ))} ¥

where er f(...) is the error function. In the limit of small Burgers vector b < A, Eq. 3 reduces

to the classical result of the linear elastic theory [9, 31J:

u(z, 2) = Z {1+erf (2\;%)] (4)

Figure 3 shows the measured displacement field of the smectic layers around a dislocation

core. Note that it is difficult experimentally to have fully isolated edge dislocations: most
are disturbed by elastic distortion stemming either from the presence of other defects and
grain boundaries, or from heterogeneous anchoring at the cell walls, which can result in a

lack of mirror symmetry of the defect. As expected for an edge dislocation of Burgers vector
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b/ Ligyer = 1, the total displacement of a given layer is /2 regardless the layer distance from
the defect core. This has been experimentally checked within an accuracy greater than 95%
for the 6 considered layers (Fig. 3), proving a posteriori that the chosen edge dislocation
is nearly isolated. This is also confirmed from the quantitative analysis of the dislocation
profile, performed according to Eq. 3. The smectic layers of interest have been globally
fitted with a single value of the elastic length A to account for the overall displacement field.
With a resulting value of A = 0.02 £ 0.01pum, a very good agreement with the nonlinear
elastic theory is found far enough from the dislocation core (from layers #3 to #7, Fig. 3).
The first layers, which are too close to the defect core, have been either disregarded from the
quantitative analysis (layer #1), or are approximatively fitted by the model (layer #2). As
A < b, only the nonlinear elastic theory is expected to apply, with some intrinsic features
clearly evidenced in our experimental data. This includes a shift of the inflection points
towards the smectic region with the missing layer (z < 0, Fig. 3) and an asymmetry of the
dislocation profile with a sharp rise at z < 0 and a smooth saturation at x > 0 [23, 30]. Tt
is worth mentioning that if the nonlinear elastic theory (Eq. 3) is able to account for the
experimental displacement field, the quantitative comparison remains quite sensitive to any
extrinsic disturbance of the defect profile.

From the determination of the elastic length A, the compressibility modulus B can be
calculated knowing the bending modulus K; (Eq. 2). In fluid-like membranes composed of
one-rod length thick monolayer of aligned viruses, the bending modulus has been found to be
ke ~= 150 kT [32]. To extend this value found for a single membrane to a bulk smectic phase
composed of similar colloidal viral rods, we have to renormalize k. by the smectic layer spac-
ing Ligyer to give an estimation of the 3D bending modulus Ky = &,/ Ligye, /= 150 kgT/pm.
It is worth pointing out that this value is in good agreement with the value obtained from
the one-Frank constant approximation K, ~ K, = 0.5 pN = 100 kgT/um, where K is
the twist elastic constant measured by unwinding the cholesteric phase of virus suspensions
under magnetic field [33]. Knowing K| and A, we can therefore estimate, according to Eq.
2, the smectic compressibility modulus B ~ 4 x 10° kgT/um? for a smectic phase of col-
loidal rods. This value can be compared with the typical one found in thermotropic smectics
134], Bihermotropic ~ 10° dyn/em? ~ 2 x 10° kgT/pum?® = 2 kgT/nm?®. This means that if
the absolute value of the compressibility modulus is higher by a few orders of magnitude in

thermotropic liquid crystals, the same value rescaled by the molecular length (nanometers in
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FIG. 4. Screw dislocations with opposite handedness observed by fluorescence microscopy in smec-
tic phase of tip-labeled viruses. The handedness has been determined by capturing images at
different focal depths y, resulting in (a) left- and (b) right-handed screw dislocations, as indicated
by the rotation of the normal to the smectic layers shown by the white arrows. The length scale is

brovided by the 1 um long smectic layer spacing.
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size in thermotropics compared with the micrometer length for viral colloidal rods) indicates

a softer rescaled layer compressibility in molecular systems.

In our smectic samples of tip-labeled-viruses, only elementary dislocations have been
observed, with a Burgers vector magnitude b = 1 X Ljgye, = 1 pm (Fig. 1) whatever the
dislocation type (either edge type or screw type). Examples of screw dislocations are shown
in Fig. 4, where, remarkably, their core extension can be clearly distinguished. This allows
for the in situ handedness determination by varying the optical microscope focus through
the sample thickness, y, resulting in the presence of both left-handed and right-handed screw
dislocations (Fig. 4), as expected in an achiral smectic-A mesophase. Here, we benefit from
the micrometer length scale of our experimental system, enabling structural investigations
that are otherwise very tricky to achieve using usual molecular nanometric liquid crystals

[22]. Specifically, the screw dislocation core size 2r. can be measured, as indicated in Fig. 4.



Chapter 2: Elementary edge and screw dislocations visualized at the lattice periodicity level...

b T T T T C T T T
®) N Particle #1: smectic bulk (3 ] Particle #2: defect core |
s 5
= =
Q Q
g o TV SRR SR g o )
3 2
z - z
[ —Z A —Z
-1 X -1 X
0 I 2 3 ! 5 0 i 2 3 4 5
time, 7 (s) time, 7 (s)

FIG. 5. (a) Overlays at different times of fluorescence microscopy images showing red smectic
layers from M13,.qrip particles, in which tracer amounts of M13,.47i), particles body-labeled with
green fluorescent dyes have been added, enabling single particle tracking experiments. The vertical
dotted and horizontal dashed lines are visual guides to emphasize the displacements of green viral
particles #1 and #2, respectively. The length scale is provided by the 1 pm long smectic layer
spacing. (b) Example of a trajectory within the smectic-A bulk where the particle mainly displays
lateral motion within the layers. (c) Trajectory of a viral rod-like particle within the defect core

evidencing its rapid parallel (i.e. along the z axis) diffusion, characteristic of nematic-like behavior.

The distribution of core radii has been determined and is shown in the Supplemental Material
[35]: a mean value of 2r, = 0.98 pm ~ b is found. This value of the screw dislocation core
size is in good agreement with the one determined by Zhang et al. [26], but is larger than
the theoretical prediction 2r. ~ b/m performed by Pleiner [36, 37]. Theoretical models
should therefore be developed for a more detailed description of the microstructure of the
screw dislocation core [38] to account for the experimental observations. The introduction
of tracer amounts of additionally body-labeled viruses with green fluorescent dyes in the
smectic samples provides further information about the dislocation core. Figure 5 reveals
the dynamics at the single particle level, and a main difference distinguishes the self-diffusion

within the dislocation core, where a body-labeled rod has been trapped, from the smectic
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bulk: contrary to viral particles in the smectic bulk which diffuse slightly within the layers
with rare hopping type events [39] (See the Supplemental Material [35]), the diffusion of
the particles within the defect core is strongly enhanced, with a large displacement, for a
given observation time, along the director (or, equivalently, along the normal to the smectic
layers indicated by the z axis). This dynamics with a motion mainly along the long rod
axis and without significant rotational diffusion, is characteristic of nematic-like behavior
[39], and represents to the best of our knowledge, the first demonstration of the nematic
ordering associated with the higher-symmetry phase forming the dislocation core in smectic
defects. This nematic order is in qualitative agreement with phenomenological Landau-de
Gennes type modeling of screw dislocation core structures [36, 40|, and our experimental
results therefore rule out dislocation models based on either isotropic liquid core or strongly
distorted smectic layers at the vicinity of the defect core [36, 37, 40, 41]. Despite the larger
number of screw dislocations observed in our samples compared to edge ones, which is
consistent with their respective free energy [3, 9], it turns out that only a very few labeled
particles have been seen in the defect core (See the Supplemental Material [35]), making
further quantitative analysis of the dynamics of this system difficult.

To conclude, we have identified and quantitatively characterized the microscopic structure
of edge and screw dislocations in a smectic phase of functionalized colloidal rod-like particles.
Thanks to a regiosclective labeling of the filamentous virus tips by fluorescent dyes, high
resolution and contrast imaging of the topological defects has been achieved by fluorescence
microscopy, revealing the displacement field around elementary edge dislocation, as well
as some unprecedented detailed information of the screw dislocation core, such as its size,
helical handedness and local structure with a nematic-like ordering. A perspective of our
work is the use of topological defects formed by colloidal liquid crystals to organize nano-

and microparticle assemblies.
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I. SUPPLEMENTARY FIGURES
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FIG. 51: Width distribution of the screw dislocation cores, as typically observed in Figure 4. The
red solid line is a lognormal fit, from which the mean core width 2r. = 0.98 wm ~ b can be
extracted. The gray vertical dashed line indicates the optical resolution, corresponding to about

twice the & — z microscope one, above which the dislocation core size can be measured.
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FIG. S2: Example of hopping-type event observed by fluorescence microscopy ((a) and (b)) in
smectic-A phase of tip-labeled viral rods, and the corresponding trajectory (c¢). The white arrow
indicates the jumping particle. It has to be emphasized that such events are rare in this system
where most of the particles exhibit lateral (i.e. along the x axis) motion within the layers, as shown

in Fig. 5(b). The length scale is provided by the 1 pm length of labeled viruses.

II. MOVIE

Real time dynamics of green labeled viral particles inserted in smectic phase of tip-
functionalized viruses, from which Figure 5 has been extracted. Note the presence of many
equidistant screw dislocations characteristic of twist grain bourdary. The two yellow arrows
indicate particles trapped in screw dislocation cores, which display enhanced self-diffusion

compared to the other labeled particles within the smectic bulk.
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3.1 Introduction

Dynamical properties of concentrated colloidal dispersions are of great importance in
modern soft matter science. Structure of complex fluids cannot be fully understood without deep
insight into transport processes occurring in media. Due to low Reynolds numbers, self-diffusion
is the main transport process in colloidal dispersions defining their dynamical properties [18].
Dynamics in colloidal dispersions where constituting particles interact via hard-core repulsion
has been fruitfully investigated experimentally in case of rod-like filamentous viruses [1]-[4],
PMMA (polymethyl methacrylate) ellipsoids [29], and silica spheres [30]. Dynamical properties
of some protein solutions have been also explained based on hard-core interaction between
particles [5]-[7], [19]-[21]. However, despite increased attention to colloidal systems with
directional attractive interaction or "patchiness”, experimental investigations of their dynamical
properties are presently lacking. Some studies based on neutron scattering have reported on the
self-diffusion of nearly spherical proteins with weak patchy interaction and the comparison with
the self-diffusion of their hard-core counterparts [8]. Nevertheless, a quantitative comparison of
these two systems cannot be carried out due to difference of particle hydrodynamic radii
(R, = 2.3nm and 9.6 nm for patchy and hard-core particles respectively) and their size
polydispersity. Thus, our system of patchy colloidal rods is more appealing from this
perspective, as the effect of local attraction on self-diffusion can be studied by direct comparison
of two viral systems which only differ by presence of highly localized sticky inclusions on the
particle tips in one of them, whereas other parameters characterizing size and shape of both
particle types remain unchanged (see Chapter 1). Besides, the colloid motion can be visualized
by fluorescence optical microscopy at the single particle level providing detailed understanding
of the dynamical features of patchy dispersions.

Therefore in this Chapter, we have performed an investigation of the translational self-
diffusion of tip-functionalized and pristine (purely repulsive) rod-like colloids covering a wide
range of particle concentration: from isotropic liquid states up to highly concentrated regimes

including different liquid crystalline phases.
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3.2 Results and Discussion

In order to study the effect of local directional interaction on the dynamical properties of
viral dispersions, we chose to work with filamentous virus mutants M13C7C and M13KE (see
Chapter 0.4), and with hydrophobic fluorescent dye molecules Dylight 550 and Dylight 594
(ThermoFisher) which has been shown to act as patchy inclusions. As we already mentioned in
Chapter 1, those two types of viruses only differ by the number of cysteine bonds at the viral
proximal tips. Using this fact and varying the dye molar excess during chemical reactions for the
tip functionalization, the number of dye molecules grafted on one of the viral ends can be
controlled fromng,.s = 1, 3 to 10 dyes per particle tip. In Chapter 1, we have shown that
number of grafted dyes defines the strength of local attraction between viral tips and thus affects
the phase behavior of patchy dispersions. However, exposed hydrophobic moieties of unfolded
p3 proteins which appeared after cysteine reduction and dye labeling can also contribute to the
patchy effect on rod tips. Still, it is reasonable to assume that the amount and size of these
exposed groups increases with the degree of labeling, as shown by our experiments in Chapter 1.

Self-diffusion was studied employing tracking of rod displacements by fluorescence
optical microscopy adding a tracer amount of viruses with full body labeling (green dyes cover
the whole viral surface) and combined labeling (red dyes on viral tip inducing patchiness, and
green dyes cover the rest of the rod surface), into dispersions of pristine and patchy particles

respectively (see section 0.4.3).

3.2.1 Mean square displacements in different phases

To characterize the differences in dynamical features between pristine and patchy viruses,
for these two types of dispersions with respect to the main rod axis we quantified and compared
parallel and perpendicular mean square displacements (MSD,and MSD,), and then we
determined the self-diffusion rates D, , and the diffusion exponents y,, via the expression
MSDy , = 2Dy, t"'+ (see Chapter 0.4.2). MSD calculations rely on the individual trajectories of
body-labeled viruses obtained via fluorescence optical microscopy. By performing the
observation of tip-functionalized rod motion in all phases of viral dispersions, we discriminated
two populations of patchy viruses. The first population is the fraction of patchy particles which
diffuse qualitatively similarly to pristine ones meaning that their translational displacement

parallel to the main rod axis direction is much more pronounced than in perpendicular direction
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in the nematic and smectic states [1]-[4], whereas they have no preferential direction of motion
in isotropic phase [1]. The second population is the fraction of patchy viruses which are bound at
one of their tips to the two-dimensional clusters (see Chapter 1, Fig. 3). Having such constraint
they perform "anchored" self-diffusion i.e. local rotational self-diffusion with one rod end being
immobile. To achieve an adequate comparison between dynamics in tip-functionalized and
pristine colloidal dispersions, we calculated MSD only of patchy particles from the first
population disregarding the second one, whose specific behavior will be discussed in section
3.2.3.

Local attraction between rods is expected to strongly affect the dynamical properties of
particles in crowded conditions [23] resulting in subdiffusive behavior of viral dispersions
characterized by diffusion exponent y < 1 (see Chapter 0.4.2). Subdiffusive behavior withy < 1
have been detected recently for the smectic phase of filamentous viruses [4], due to effect of
crowding when approaching the crystalline phase, where voids are created in the adjacent
smectic layers.

Below we reported the results on MSD of patchy rods and compared them to the MSD of
pristine rods in order of decreasing particle concentration in dispersions.

3.2.1.1 Columnar and Smectic B phases

The most concentrated states which have been achieved experimentally in patchy and
pristine rod dispersions are columnar and smectic B liquid crystalline phases. It has been shown
recently by means of SAXS experiments on raw fd suspensions that both phases possess
positional order in the directions perpendicular to the director [9]. Dynamical studies by
fluorescence microscopy revealed the lack of significant viral self-diffusion except very rare
half- and full-rod-length jumps in columnar phase (a particle jumps one time per around 12
hours) stemming from particle moving into defects and due to collective dynamics in which
particles move in and between columns, respectively [4], [10]. Our experimental study has
evidenced the existence of positional order in columnar and smectic B phases in dispersions of
patchy viruses (see Chapter 1, Fig. S3). Self-diffusion experiments have not revealed any
significant motion of tip-labeled viruses in these highly concentrated states. We have not

detected any half- and full-rod-length jumps in our patchy dispersions within time observation
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window of around 10 seconds, which was limited by the green dye photobleaching. The
examples of single patchy particle trajectories in columnar and in layered B phases are shown in
Fig. 3.1, indicating only signals which are less than microscope Xx-z resolution corresponding to

about 0.2 um. Slightly higher signal magnitude in parallel direction can be caused by asymmetry
of 2D Gaussian fit during particle detection [1].
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Fig. 3.1. Overlay of florescence microscopy images showing red signal coming from tip-
functionalized viruses (3 dyes per tip) in (A) columnar (c,;s = 151 mg/ml) and (B) layered
smectic B (cyirus = 124 mg/ml) phases. Tracer amount of particles with combined labeling
(red dyes on the tip, green fluorescent dyes on the body) has been added to enable single rod
tracking experiments. Scale bar: 2um. Examples of trajectories in (C) columnar and (D) smectic
B phases where particles do not show self-diffusion. Insets represent the signal magnitude in
parallel and perpendicular directions. White arrows indicate the particles whose trajectories are

plotted in (C) and (D).
MSD of both patchy and pristine dispersions in directions parallel and perpendicular to

the main rod axis have been calculated relying on single particle trajectories and revealed no
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time evolution confirming the lack of significant motion in columnar and smectic B phases. Each
MSD curve (Fig. 3.2) has different positive offset coming from localization uncertainty during
particle detections [11]. As there is no time evolution of MSD, we have not performed the

numerical analysis to determine self-diffusion rates in the columnar and smectic B phases.

10" ———rrrr

10

10

10" ———rrrrr

0 dye 3 dyes 0 dye 3 dyes
O ¢=150 O c¢c=151 ® =150 ® c=151
02 |~ c=126 c=124 02 | A c=126 c=124 _:

L]

L1k A AL A
2o o

10

] orn
or)3
o> )2

J

] )

time, {(s) time, t(s)

Fig. 3.2. Log-log representation of the parallel (left, open symbols) and perpendicular
(right, solid symbols) mean square displacements (MSD) for the columnar and smectic B phases
of pristine (0 dyes) and patchy (3 dyes) viral dispersions. The rod concentration in the columnar
phase is 150 mg/ml (pristine particles) and 151mg/ml (patchy particles), and in the smectic B

phase is 126 mg/ml (pristine) and 124 mg/ml (patchy).

3.2.1.2 Smectic A phase

Dilution of smectic B leads to one more lamellar phase which is smectic A . There is
liquid-like order within the smectic layers. Due to decreasing concentration, patchy and pristine
rods gain mobility in smectic A, thus tip-functionalized viruses can be discriminated in two
populations according to the their dynamical behavior. Dynamics of the first population of
patchy rods is qualitatively similar to the one found for pristine rods: discontinuous hopping-like
displacements between adjacent layers parallel to the viral rod axis and continuous motion
perpendicular to it within layers [2]-[4]. We evidenced that the tip-functionalized particles from
the first population usually belong to the cluster-free homogeneous smectic domain (Fig. 3.5).
Residence time of sticky rods within one smectic layer is longer meaning that their jumps
between layers take place much more rarely compared to raw particles. Examples of patchy rod
trajectories with lateral (motion within the layer) and hopping-like self-diffusion are shown in
Fig. 3.4. Due to local attraction between tips, rods prefer to stay close to each other performing

displacements within the layers rather than jump abruptly to a neighbor layer. This behavior
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results in higher smectic ordering potential of tip-functionalized particles measured in Chapter 1.
It has values within the range 5 — 9k T for tip-labeled rods compared to 3 — 5kgT for pristine
ones (Fig. 3.3).
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Fig. 3.3. (Left) Smectic ordering potentials calculated from experimental distribution of
particles, as a function of the particle position, normalized by the smectic layer spacing, for
different rod concentrations. In gray we indicate the experimentally measured potential of
immobile particles, which is equivalent for the potentials of point spread function (PSF) op the
optical setup. (Right) Smectic potential barriers as a function of virus concentration. In all
graphs, black symbols correspond to pristine i.e repulsive rods, while red ones correspond to
tip-labeled particles.

Typical trajectory of patchy rod from the second population (which corresponds to
viruses bound by one of their tips to the two-dimensional cluster) is shown in Fig. 3.5C. Two-
dimensional clusters have been defined as the regions with increased red signal compared to the
signal coming from homogeneous smectic domains (Fig. 3.5A). Patchy rods with “anchored”
self-diffusion do not show significant displacements compared to the “free” (from the first
population) particles (Fig. 3.5 B,C). We have also characterized two types of sticky viruses in
smectic A by plotting their angular distribution with respect to director (Z-axis). Gaussian fits of

a—aop

2
these distributionsy = Aexp [—%( ) ] where y is the probability, a, is the center of the

w
distribution « is angle value, give the same standard deviation values of around w = 3.5° for
both anchored and free particles (see details in Appendix, section A5). It means, that local
particle concentration within clusters and far from them within homogeneous smectic layers is

similar.
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Fig. 3.4. Optical fluorescence microscopy images at different times displaying lateral (A)
and hopping-like (B) motions in smectic A (cyiyrus = 101 mg/ml) bulk of patchy rods. The
vertical and horizontal dashed lines are plotted to point out the particle displacements within
and between smectic layers, respectively. Scale bars are provided by the 1um smectic layer
spacing periodicity. Examples of the trajectories which reveal the patchy rod motion within the
layer (C), and rare jump events between adjacent layers (D). White arrows indicate the particles

whose trajectories are plotted in (C) and (D).
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Fig. 3.5. (A) Optical fluorescence microscopy image of smectic A (cyiyus = 101 mg/ml)

phase showing patchy virus from cluster-free homogeneous smectic domain which perform
translational diffusion (first population); and tip-labeled virus which perform "anchored™ self-
diffusion as one of its ends is bound to a cluster (second population). Clusters have been
identified as the regions with increased red signal compared to the signal coming from
homogeneous smectic domains. Scale bars are provided by the 1um smectic layer spacing

periodicity. Examples of patchy rod trajectories which belong to homogeneous smectic domains
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(B), and of the particles which bound to the cluster at their tip (C). Insets in (B) and (C)
represent the angle time evolution of the patchy viruses with respect to the Z-axis.

MSD of the first population of patchy rods in smectic A phase are calculated and
compared to MSD of pristine viruses (Fig. 3.6). The log-log representations of data points
indicate two different slopes for parallel and perpendicular MSD values. At short times, we find
a subdiffusive behavior (y < 1) for both types of viruses, while at long times the diffusive
regime (y = 1) is recovered. The crossover between the two diffusion modes occurs at
approximately T = 0.4 = 0.5 s for both pristine and patchy viruses (see details in Appendix,
section Al). Both parallel and perpendicular diffusion exponents lie within the range of y,, =
0.4 — 0.8 for patchy viruses while they span the interval of y; , = 0.7 — 0.9 for pristine rods (see
details in Appendix, section A3). As y decreases when approaching crystalline states in
suspension of fd viruses, we can use this parameter to characterize the ordering of colloidal
dispersions. Therefore, due to lower values of y we can conclude that patchy viruses in smectic
A phase are more ordered compared to their pristine counterparts.

Dynamics in smectic A phase can be considered as the virus motion in periodic one
dimensional potential field induced by layers. Each smectic layer acts as a “cage” which
constrains rod motion in parallel direction. The cage effect is evident from the particle MSD [25]
(Fig. 3.6). When particle motion is compatible with the size of the cage, their diffusion is
impeded by other rods which results in subdiffusive behavior characterizing by y < 1 at short
times. When virus displacement is larger than the size of the cage, it corresponds to the diffusion
in the colloidal dispersion describing by diffusive behavior with y = 1. Therefore, crossover

time t between the two diffusion modes can be used to estimate the width of the cage in smectic
A phase of our colloidal rods by using expression l.,4. = V2D7, where D is the translational

diffusion rate. Taking typical values of D, for pristine viruses (see section 3.2.2) which are 0.1 +

2
0.23 = and value of 7 = 0.4 + 0.5 s, we can estimate the typical cage width as loqg, = 0.2 +

0.6 um. These values are compatible with the smectic layer spacing value which is of 1 pm.
Therefore for non-labeled rods, smectic layers can be considered as cages which confine their
motion. As parallel and perpendicular rod displacements are not independent due to particle
penetration into adjacent layers, cage effect and, thus, subdiffusive behavior should also emerge

in the direction normal to the main virus axis.
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Overall, from MSD curses in Fig 3.6, we conclude that self-diffusion of patchy rods is
more hindered compared to self-diffusion of pristine ones due to presence of local directional
interaction which induce higher smectic ordering potential in tip-labeled viral dispersions (see
section 3.2.2).
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Fig. 3.6. Log-log representations of parallel (top) and perpendicular (bottom) examples
of MSD at different rod concentrations of pristine and patchy viruses in and smectic A phase.
Virus concentrations for 0 and 3 dyes are indicated in units of mg/ml. Subdiffusive regime is
found at short times, whereas diffusive mode is recovered at long times. Green and blue lines
indicate the slopes corresponding to subdiffusive and diffusive regimes respectively. Dashed red

lines indicate the crossover time 7 = 0.4 + 0.5 s between two diffusion regimes.
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3.2.1.3 Nematic phase

Patchy rods from the first population in the nematic domains diffuse qualitatively in the
same way as pristine particles do: there is mainly continuous anisotropic diffusion along viral
main axis which corresponds to the nematic director. Detailed analysis of patchy rod self-
diffusion from the first population in nematic phase shows that their motion is more complex

compared to that of pristine rods.
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Fig. 3.7. (A) Optical fluorescence microscopy images at different times representing the
nematic phase (c,i-us = 79 mg/ml) of patchy rods where the director corresponds to Z-axis.
The crossed dashed lines are drawn for visual guide to bring attention to the particles which
exhibit relatively long (B) and short (C) parallel displacements. Scale bar: 2um. Yellow arrows
indicates the particle with longer displacement, whereas white ones indicate the particles with
short displacement.

We found that tip-labeled viruses reveal wide distributions of trace extension values in
both parallel and perpendicular directions to nematic director: from up to several micrometers
down to the fractions of micrometer (Fig. 3.7), whereas raw rods show in average uniform
distribution for a given time range. For a given rod concentration, it results in relatively wide
distribution of MSD curves calculated individually for each patchy particle, while the
distribution for pristine particles is much narrower (see details in Appendix, section A2). In Fig.
3.7 we presented the trajectory examples for two patchy rods demonstrating relatively long (Fig.
3.7B) and short (Fig. 3.7C) parallel viral displacements. We argue that these two viruses belong
to two clusters made of different amount of patchy rods. If cluster is relatively small (relatively
low number of constituent rods), the red signal coming from the viral tips is too low to be

measured and observed by optical microscopy, thus, we can observe only the biggest clusters. As
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we added only a tiny amount of viruses with combined labeling into patchy dispersions (roughly
one green virus per ten thousands of patchy viruses 1: 10%), not all rods which belong to the
cluster are expected to be body-labeled. It is reasonable to presume that the mobility of cluster
decreases with increasing its number of constituting particles. Therefore patchy viruses with
varied parallel displacements represent the displacements of two-dimensional clusters with
different number of constituting rods.

However, if the two-dimensional cluster is big enough to be detected by fluorescent
microscopy, we can observe binding (Fig. 3.8) and unbinding (Fig. 3.9) events for patchy rods.
Binding event is a rod transition from the nematic background to the state when rod is bound to
the cluster and exhibits anchored self-diffusion characterizing by only local rotation with one rod
end being immobile (anchored self-diffusion will be discussed in section 3.2.1.4, Fig.3.11A).
Unbinding event occurs in the opposite direction: from anchored self-diffusion to anisotropic
motion in the nematic domains.
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Fig. 3.8. (A) Optical fluorescence microscopy snapshots showing the binding of a patchy
rod to bilayer “lamellae” dispersed in a nematic background (cyis = 70 mg/ml).Yellow
arrows indicate the binding particle. Nematic director corresponds to Z-axis. Scale bar: 2um.
(B) Typical trajectory of a particle displaying binding event. Green horizontal line is plotted to
emphasize the time interval when patchy rod is bound to cluster and exhibits the anchored self-

diffusion.
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Fig. 3.9. (A) Optical fluorescence microscopy snapshots representing the unbinding
event of a patchy rod from the bilayer “lamellae” toward a nematic background (c,irus =
70 mg/ml). Scale bar: 2um. (B) Typical trajectory of the particle showing an unbinding event.
Green horizontal line is drawn to emphasize the time interval when patchy rod reveals the
anchored self-diffusion before being transferred from the cluster to the nematic bulk.

Parallel and perpendicular MSD of patchy viruses based on trajectories from the first
population (typical anisotropic self-diffusion in nematic phase with displacement mainly
occuring along the director) are calculated and compared to that of raw viruses. We found that
both pristine and patchy rods exhibit diffusive regime y;, ~ 1 in the direction parallel to the
director. In perpendicular direction, raw rods are found to reveal subdiffusive regimey,; <1 at
short time (t < 0.4 s), and diffusive regime at long time, while patchy rods reveal subdiffusive
behavior over all observation window (Fig. 3.10). The reason of subdiffusive behavior in
perpendicular direction (y, < 1) of our pristine dispersions in the nematic phase in not clear.
Previous study on fd evidenced diffusive regime in nematic state for perpendicular self-diffusion
in all time range [4]. One might expect the same behavior for our M13 viruses, thus, this
question remains open. In case of perpendicular self-diffusion of patchy rods, we argue that
diffusive regime is not recovered because rod motion is suppressed due to their involvement into

relatively small clusters.
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Overall in nematic phase, we have found decreasing of tip-labeled rod mobility compared
to raw rods, which can be explained by local attraction between viral ends as well as patchy rods

involvement into two-dimensional clusters of varied size.
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Fig. 3.10. Parallel (top) and perpendicular (bottom) MSD of patchy and raw viruses in
nematic phase. Virus concentrations for 0 and 3 dyes are indicated in units of mg/ml. Pristine
and patchy rods exhibit diffusive regime y,, =~ 1 in parallel direction. In perpendicular
direction there is subdiffusive regime at short times and diffusive regime at long times for
pristine rods; and only subdiffusive regime for patchy rods. Green and blue lines indicate the

slopes corresponding to subdiffusive and diffusive modes respectively.
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3.2.1.4 Isotropic liquid phase

The main feature of patchy dispersions in isotropic liquid phase is that the majority of
patchy rods are bound to the two-dimensional clusters by one of their ends revealing anchored
self-diffusion. Therefore, most of tip-labeled rods belong to the second population of patchy
viruses. In Fig. 3.11A we demonstrated the large field of view capturing tip-functionalized
viruses anchored to the lamellae. They perform local rotational self-diffusion with significant
angular displacement (Fig. 3.11B). Gaussian fit of distributions of angular displacements for
anchored rods in isotropic phase gives standard deviation value of around 10° (see details in
Appendix |, section A5). Angle distributions for patchy rods from the first population in the
isotropic phase are expected to be uniform as there is no orientational order, therefore the value
of angle standard deviations should be zero. Translational self-diffusion of patchy rod reveals no
significant displacement of a single anchored particle (Fig. 3.11C), but it demonstrates the global

motion performed by the whole cluster in colloidal suspensions.
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time, {(s) time, f(s)

Fig. 3.11. (A) Overlay of fluorescence microscopy images of patchy viruses in dense
isotropic phase (c,i-us = 15 mg/ml) showing anchored viruses to the clusters. Scale bar: 2um.
(B) Angle evolution of patchy rod anchored to lamellae with respect to Z-axis [dotted white box
in (A)]. The insets represent the two maximum virus deviations from its average orientation
shown by the vertical dashed line (horizontal dashed line indicated the “lamellae” orientation).
Scale bar: 2um. (C) Corresponding displacement of center of mass of the patchy virus involved
into bilayer cluster evidencing the anchored self-diffusion combined with collective motion of

whole cluster.

In order to evidence the motion of single patchy rods from the first population (not

involved into two-dimensional clusters), we have prepared isotropic suspension with viral
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concentration lower than overlap one (c°”¢™@? = 3/4mL3, . : et 1ac7¢ = 0.04 mg/ml) in
which all particles received combined labeling meaning all patchy rods are body-labeled by
green dye molecules. At these conditions all two-dimensional clusters are fully dissolved and
only single patchy particles are observed (Fig. 3.12A). To avoid overlap of particle traces, we
have prepared dispersion at very low particle concentration of about c,;;,s~10"* mg/ml. It is
worth stressing that the red signal coming from viral tips is too low to be measured and detected
for this range of rod dilution. Typical trajectory of single patchy rod with no preferential

direction of motion, contrary to smectic and nematic phases, is reported in Fig. 3.12B.

v o)

Displacement (um)

Fig. 3.12. (A) Optical fluorescence microscopy image showing patchy viruses at very low
virus concentration (c,;-s~10"*mg/ml) where all particles have received green dyes body-
labeling. Scale bar: 2um. (B) Typical trajectories of center of mass of a single virus. Yellow
arrow indicates the rod whose trajectory is plotted in (B).

In our experiments we detect 2D-projection of 3D isotropic rod motion, thus, we cannot
properly distinguish parallel and perpendicular components of viral displacements due to
difficulties of determining the angle between rod main axis and Z-axis for a given snapshot (Fig.
3.12.A). Thus, when quantifying MSD, we set Z-axis as a pseudo-parallel "(ll)" and X-axis as a
pseudo-perpendicular "(L)" component of particle displacements (Fig. 3.12A). Results reported
in Fig. 3.13 indicate diffusion regime (y = 1) for patchy and pristine rods at very low rod

concentration.
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Fig. 3.13. Pseudo-parallel (left) and pseudo-perpendicular (right) MSD of pristine and
patchy viruses at very low rod concentration (c,;s~10"*mg/ml). Blue sloped lines are for
eye guide to illustrate the diffusive regime y = 1.

Our experimental finding show that both patchy and pristine self-diffusion values in
pseudo-parallel and pseudo-perpendicular (Z-axis and X-axis in Fig. 3.12.A) directions are

nearly equal: Dy = D¢y =~ 2.2 um?/s. It is reasonable to assume that from our experimental
output the total virus self-diffusion equals to D.F = %(D(") + D¢ l)). It gives experimental value

of total self-diffusion to be equal D;;P ~ 2.2 um?/s. According to the theoretical predictions

1 kgT-In(L/D)

, Where L and D is rod length and
3T TloL

[17], rod diffusion at infinite dilution is Dt"¢o" =

diameter respectively, and n, is solvent viscosity. Taking parameters of our viral rods L = 1 um,
D = 7 nm and viscosity of colloidal water dispersionn, = 10~3Pa - s, we have calculated the
theoretical value of virus self-diffusion D{R¢°" = 2 um?/s at very low particle concentration.
We found a quantitative agreement between theoretical and experimental self-diffusion values
for rods in the deep isotropic phase indicating that local attraction between viral tips (induced by
3 and 10 dyes per rod end) has no effect on particle mobility at rod concentration which is lower

than the overlap concentration.
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3.2.2 Self-diffusion coefficients of patchy and pristine rods

To characterize and compare dynamical behavior in liquid crystalline dispersion of tip-
functionalized and pristine viral rods, the translational self-diffusion coefficients D, and D, for
both systems are calculated via expression MSD, , = 2D, , t"IL.

In columnar and smectic B liquid crystalline states, due to lack of significant rod self-
diffusion, we did not calculate self-diffusion rates for these phases.

In smectic A phase of both patchy and raw viral dispersions, we detect two types of
behavior: subdiffusive regime at short times and diffusive regime at long times (Fig. 3.6). Self-

diffusion rates which correspond to two diffusion regimes are found to be nearly equal: fof’” =

lef’l"g . We find that both D, and D, for patchy rods are roughly one order of magnitude lower

than that for rods with purely repulsive interaction (Fig. 3.14). This slowing down of tip-labeled
rod self-diffusion can be explained mainly by higher smectic ordering potential in patchy
dispersions induced by local attraction between viral tips.

In nematic state of patchy and in chiral nematic state of pristine rods, we detected
diffusive behavior during the whole observation time in parallel direction. In perpendicular
direction, raw rods are shown to possess slight subdiffusive behavior at short times, and diffusive
one at long times, while patchy rods exhibit subdiffusive regime over all time observation range.
The origin of subdiffusive behavior in perpendicular direction (y, < 1) for pristine rods is
unknown and requires further studies. In case of patchy viruses, we interpret subdiffusive
behavior as rod involvement into two-dimensional clusters of varying size. Numerical fit yielded
self-diffusion values for tip-labeled viruses in both directions to be around five times lower than
the values for raw particles (Fig. 3.14). We argue that tip-labeled rod mobility in nematic phase
is hindered compared to pristine non-labeled rods due directional attraction between viruses and
their involvement into clusters.

Self-diffusion values of patchy and pristine rods converge at very high rod dilution below
viral overlap concentration. This can be caused by relatively short range of patchy attraction
between viral tips, which does not affect the viral mobility at highly diluted states.

In Fig. 3.14, we report the evolution of parallel and perpendicular diffusion rates ( D, and

D,) in nematic and smectic A ranges of viral dispersions. Anisotropy D,/D,of self-diffusion

106



Chapter 3: Effect of patchy interaction on dynamics of rod-like colloids

rates is also shown as a function of rod concentration. Anisotropy of raw rods is around twice as

high as one of patchy rods in smectic A phase, while it is about 50% higher in nematic state.
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Fig.3.14. Parallel D, and perpendicular D, self-diffusion rates as well as their ratio

D, /D, for raw and patchy viruses (for suspensions with both 1 and 3 dyes) in nematic (left) and

smectic (right) phases. D, and D, values are obtained via fit of MSD using expression MSD, , =

2D, , Y.
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3.2.3 Orientational order parameter in patchy and pristine suspensions
By using angular displacement distributions which reveal typical anisotropic self-
diffusion occurring mainly along the director in nematic and smectic A phases (see Appendix,

section A4) of raw and patchy rods (first population of patchy particle), we have calculated the
orientational order parameter P, = é cos?a — %), where « is local angle value characterizing rod

main axis deviation from the director. We found that the behavior of P, is nearly the same for
raw and patchy viruses in both nematic and smectic A phases (Fig. 3.15). It is consistent with the

fact, that local attraction between viruses does not affect the isotropic-nematic phase transition.

1.0 T T T T T 1.00
g ° e e—
Oq ® f », * | = Odye
° 1 o 1dye
. ] ¢ | = 3dyes |
054 o . ] 0.99 .
°
|
i u
o o 0981 l .
0.8 1 4
o . o
u
0.97 4
|
0.74 J
e e Odye .
o 1dye |
® 3dyes 0.96 4 7
0A6 T T T T T T T T
20 40 60 80 100 120 90 100 110 120 130
virus concentration, ¢,;,,s [mg/ml] virus concentration, ¢,;,,s [mg/ml]
nematic range smectic A range

Fig.3.15. Orientational order parameter P, = (%cosza—%), where « is local angle

value characterizing rod main axis deviation from the director, for 0, 1, and 3 dyes in nematic

(left) and smectic (right) phases.

We also compare angular displacement distributions for patchy rods with typical
anisotropic self-diffusion (first population) and anchored self-diffusion of rods involved into
two-dimensional clusters (second population) [see Appendix, section A5]. Orientational order
parameters P, are, thus, also calculated for two populations of rods showing nearly the same
values for both types of sticky particles in nematic and smectic A states (Fig. 3.16). Therefore,
the local concentration of rods which bound to clusters is the same to the rod concentration in the

bulk. Note that P, for the first population of particles is zero in the isotropic phase, whereas it
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has non-zero value for the anchored particles as their rotational self-diffusion is restricted due to

attachment to the two-dimensional clusters.
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Fig.3.16. Orientational order parameter P, for patchy particles (3 dyes system) from the
first population (typical anisotropic self-diffusion in nematic and smectic A) and the second
population (anchored self-diffusion). The red dashed lines at the bottom of the graph indicate the

phase diagram of patchy virus suspension.

3.3 Conclusions

Our findings show that dynamical behavior of patchy and pristine i.e. purely repulsive
rods is markedly different. We distinguish two populations of patchy viruses. The first
population behaves qualitatively similarly to the rods with purely repulsive interaction showing
anisotropic self-diffusion with main displacement along the director in nematic and smectic
phases. This fraction of viruses has been used to establish the concentration evolution of
translational self-diffusion coefficients. The second population is unique to patchy viral
dispersions, and contains sticky rods which are bound at one of their ends to the two-dimensional
clusters revealing “anchored” self-diffusion and lack of significant translational motion

The comparison of self-diffusion coefficients reveals stark contrast between the mobility
of patchy and raw viruses. Lower values for tip-functionalized rods suggest the existence of a
mean-field attraction in patchy dispersions induced by sticky inclusions on particle tips
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uniformly distributed throughout the suspensions volume. This mean-field promotes increasing
smectic ordering potential in lamellar state and appearance of two-dimensional clusters in all
phases of viral dispersion hindering the self-diffusion of patchy rods. Directional attraction is
shown not to affect the orientational order parameter of tip-labeled rod suspensions compared to
pristine ones.

Overall, our dynamical studies provided deeper understanding of colloidal suspension
structure with local directional interactions emphasizing the strong impact of weak patchy

inclusions on properties of complex fluids.
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Appendix

Effect of patchy interaction on dynamics of rod-like colloids

Al. Numerical fitting of MSD curves averaged over particles
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Fig. 1. Log-log representation of the parallel (top) and perpendicular (bottom) mean

square displacements (MSD) for pristine viral dispersions in the columnar/smectic (left) and

nematic (right) range. Black values indicate the rod concentrations in mg/ml; the red and green

values indicate anisotropic exponents y obtained from the numerical fit by a power law

MSD,, = 2D, t"+ at short (subdiffusive regime) and long time scale (diffusive regime)

respectively. Red dashed lines indicate the crossover time 7 =~ 0.4 + 0.5 s between the two

diffusion regimes.
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The mean square displacements (MSD) of the pristine (0 dye) and patchy (1 and 3 dyes)
systems are reported in Fig. 1, 2, and 3 respectively. The anisotropic diffusion rates D, , and
exponents y; ;, parallel (II) and perpendicular (L) to the director, are extracted from the
numerical fits of the MSD curves performed employing a power law MSD, , = 2D, ,t¥i+ for
the different virus concentrations. For consistency of the results, we adjusted the time range of

the fit to keep its high quality with a minimum value for the reduced chi-square.

Al.2 Patchy system with 1 dye per rod tip

10" 3 10° 5
. -
0] A
. 107, _ 1073
N -
('\IE E 1
E 3
= 10" |
() (] 2 ]
2 g "
1024 * .
107 3
o ]
107 AL T o T
0.01 0.1 1 10 0.01
time, t(s) time, t(s)

Fig. 2. Log-log representation of the parallel (left) and perpendicular (right) MSD curves
for patchy (1 dye per tip) viral dispersions. Black values indicate the rod concentrations in
mg/ml; green and red values indicate anisotropic exponents y obtained from the numerical fit by
a power law MSD,, = 2D,,t¥+ of parallel and perpendicular component of MSD
respectively. Relatively short (of around 8 s) time observation range recorded experimentally for
this set of data does not allow for discrimination between different diffusion regimes at short and

long time scales.
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Al.3 Patchy system with 3 dyes per rod tip
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Fig. 3. Log-log representation of the parallel (top) and perpendicular (bottom) MSD for

patchy (3 dyes per tip) viral dispersions in the columnar/smectic (left) and nematic (right) range.
Black values indicate the rod concentration in mg/ml; red and green values indicate anisotropic
exponents y obtained from the numerical fit by power law MSD,, = 2D, t"'L at short
(subdiffusive regime) and long time scale (diffusive regime) respectively. Red dashed lines

indicate the crossover time T =~ 0.4 <+ 0.5 s between the two diffusion regimes.

115



Appendix: Effect of patchy interaction on dynamics of rod-like colloids

A2. Individual MSD curves of single particles
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Fig. 4. Collection of parallel (top panel) and perpendicular (bottom panel) of about 50
MSD curves corresponding to each individual trajectories for (A) 0 dye (pristine viruses) system
at virus concentration ¢c=75.6 mg/ml, (B) 1 dye patchy system at c=79.0 mg/ml, and (C) 3 dyes
patchy system at ¢=79.4 mg/ml. Lowering and widening of "patchy” MSD curves compared to
"raw" ones indicates hindered viral self-diffusion due to attraction between rods and particle

involvement into the two-dimensional clusters of varying size.
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A3. Subdiffusive exponents evolution with virus concentration
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Fig. 5. Parallel (solid symbols) and perpendicular (open symbols) anisotropic exponents

y obtained from the numerical fit by a power law MSD,, = 2D, ,tYi+ at short time scale

indicating subdiffusive behavior of patchy (red symbols) and pristine (black symbols) rods. The

red dashed lines at the bottom of graphs indicate phase diagram of patchy suspension, while the

black dashed lines at the top indicate phase diagram of pristine viruses (I is isotropic, N (N*) is

nematic (cholesteric), SmA is smectic A, and SmB is smectic B).
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A4. Angle distributions of raw and patchy viruses from first population
(typical anisotropic self-diffusion in nematic and smectic A phases)
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Fig. 7. Examples of the angle distributions which characterize rod deviations from the
director for pristine (top) and patchy (middle and bottom) viruses from first population at three

different particle concentrations. Numerical fits are performed using Gaussian function y =

N2
Aexp [—%(u) ] where «, is the center of the distribution, and w is proportional to the full

width at half maximum (FWHM) and has been used to calculate orientational order parameter

w

(see main text, section 3.2.2)
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A5 Angle distributions of patchy viruses from second population (“anchored
self-diffusion™)
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Fig. 8. (A) Examples of the angle displacement distributions at three different
concentrations showing the anchored rod deviations (second population of patchy particles) with
respect to the direction perpendicular to the cluster whose they are bound to. Numerical fits are

a—Qao

2
performed using Gaussian function y = Aexp [—%( ) ] where a, is the center of the

w
distribution, and w is standard deviation of distribution. (B) Standard deviation comparison of
patchy rods from first and second particle populations indicating slightly weaker fluctuations of
anchored viruses. Angle distributions for patchy rods from the first population in the isotropic
phase are expected to be uniform as there is no orientational order, therefore the value of angle
standard deviations should be zero. The red dashed lines at the bottom of graph indicate phase

diagram of patchy suspension.
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Chapter 4

Self-organization of rod-like particles with combination of both entropic and

enthalpic patchinesses
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4.1 Introduction

Colloids anisotropic in shape and in surface chemical functionality have attracted recent
interest in soft matter science due to their promising role as constituent blocks for self-assembly
into novel functional materials [1]. One can distinguish two complementary concepts of
interaction directionality or patchiness between particles [5]: the first concept is related to
enthalpic patchiness characterized by sticky chemical functions covering some fraction of colloid
surface (discussed in Chapter 1); the second one is entropic patchiness characterized by
topological surface irregularities such as corners, dimples, edges etc. which are able to
mechanically induce directed interactions between building boxes under entropy driven depletion
attraction.

The examples of enthalpic patchiness have been reported for colloidal spheres [11] and
rods [12]. In case of entropic patchiness, there were also several studies by computer simulation
on self-assembly of non-spherical particles, which, in particular, have predicted the existence of
diamond lattice exhibiting a full photonic gap [2]-[4]. Several experimental studies demonstrated
the use of microparticles possessing dimples [6], and edges [7] to assemble them into colloidal
molecules, polymers, and crystals under attractive depletion interaction. Other type of
anisotropic particles such as rod-like colloidal fd-viruses has been shown to self-organize into
ribbon-like structures [8], membranes [9], and platelets [10] under depletion.

Fig. 4.1. Transmission electron microscopy (TEM) images at different magnification of
silica particles with (a) 1, (b) 2, (c) 3, (d) 4, (e) 6, and (f) 12 dimples. Scale bars: 100nm.

Finally, the concept of patchiness has been extended by obtaining silica particles

combining both entropic and enthalpic contributions that can be tuned in order to enhance a

particular desired particle alignment [13], [14]. It has been shown that preparation of colloids

122



Chapter 4: Self-organization under combination of both entropic and enthalpic patchinesses

with a controlled number of dimples from 1 to 12 can be performed adjusting the size of these
topological irregularities (Fig. 4.1). Functionalization by sticky propyl groups at the bottom of
the dimples and on the conventional particle surface has been reported providing the evidence of
getting the particles with two types of patchinesses.

Although, the synthesis of colloids with synergistic effect of combined patchinesses has
been reported, the structural and dynamical properties of dispersions containing such objects
have not been studied yet. Therefore in this Chapter, using fd-viruses as a model system of
colloidal rods, we aim to go beyond depletion studies which have been done on pristine particles
[8]-[10], and investigate how localized enthalpic patchiness on rod tips affect the self-
organization of viral particle mixture with non-adsorbing polymers. Interaction strength of both
entropic and enthalpic contributions can be tuned by varying polymer volume fraction in the
suspension and by varying the number of grafted dyes per virus tip respectively. Moreover, the
range of depletion interaction can be adjusted by employing polymers with different radius of
gyration R, [17]. Micrometer length scale of colloidal rods allows for studying viral self-
diffusion within the structures formed under action of entropic and enthalpic patchinesses at
single particle level. In this Chapter, we discuss the competition between two types of directional
attractive interaction, and present how it affects the structure morphology formed in virus-

polymer mixtures.

4.2 Material and Methods

In this section we introduce, that enthalpic patchiness can be locally achieved at one of

the rod tips, while entropic patchy sites can be located on the rod sides.

4.2.1 Enthalpic patchiness: virus tip-labeling with fluorescent dyes

In order to study the effect of combined patchiness, we chose to work with virus mutant
fd-Y21M (see section 0.4) as a system of rod-like particles. These viral rods possess two cysteine
groups bound by a disulfide bridge at the exposed to the solvent part of P3 protein. Thus,
enthalpic patchiness can be induced by performing chemical reaction of fd-Y21M tip-
functionalization as reported in Chapter 1. Fluorescent dyes Dylight 594 have been chosen for

rod tip-labeling. The average number of grafted dyes per virus tip ng,,.s has been quantified by

optical absorbance measurements. The UV spectra of four independent dilutions of tip-labeled
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fd-Y21M were recorded employing Lambda 950 (PerkinElmer) spectrophotometer (Fig. 4.2A),

from which, after background subtraction, n,,,.s has been found to be equal 1 (Fig. 4.2B).
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Fig. 4.2. (A) Absorbance of dispersions of pure dyes (Dylight 594) and tip-functionalized
fd Y21M viruses measured with the optical path of 10 mm. The concentration of tip-labeled virus
suspension is 0.39 mg/mL (2.4 X 10~8mol/L) and the dye concentration is 9 x 10~3mg/mL
(8.5 X 10~%mol/L). The numbers represent the wavelength of the maximum absorption. (B)

Average number of dyes per virus tip, ng,., obtained from the absorbance spectra of four

dilutions of tip-labeled virus suspension and using the molar extinction coefficient given in [19].

4.2.2 Entropic patchiness: choice of depleting agent

Entropic patchiness for the suspension of anisotropic colloidal particles can be induced
by adding non-adsorbing polymers [5]. As the diameter of fd-Y21M mutant is of around D =
7 nm, we chose to work with two types of non-adsorbing polymers PEG 20k and PEG 8k to
promote different types of morphologies formed under depletion interaction [9], [10]. To
facilitate the access of polymers to the viral surface in water dispersion, we use relatively high
ionic strength i.e. I = 260 mM to reduce the Debye screening length, which is equal to 0.6 nm
in this case [15]. The relationship between the radius of gyration R,(A) of PEG and its molar
mass M in units of g/mol is Ry(A) = 0.215M°8% [16]. Therefore, the radius of gyration of
PEG 20k is RZ°% = 7 nm (around twice as high as the radius of fd-Y21M) and of PEG 8k is

Rgf‘k = 4nm (approximately the same as the radius of fd-Y21M). To deduce the maximum depth
of depletion potential induced by polymers in viral suspension U732 (r = D) = —IV,y854p,

where I is osmotic pressure, ng,gflap is the maximized overlap volume between rods (when
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parallel rods are in contact with each other, see section 0.3.2), let us assume that our mixture is in
dilute polymer regime (below polymer overlap concentration nf=¢ = 3/(4nR3), which is
23 mg/ml and 50 mg/ml for PEG 20k and PEG 8k respectively). Thus, osmotic pressure

exerted on the colloidal particles is proportional the depletant number density nfE¢: I1 =

PEG Na

ny "¢ kpT. Using the expression ny®¢ = ;™ = PEG

(where ¢, “~ is polymer mass concentration in

units of mg/ml and N, is Avogadro’s number), and the maximum value of overlap volume for
both polymers (for PEG 20k: Ve, = 661-10° nm?, and for PEG 8k: Vji5%,, = 236
103 nm3, see Appendix, section 3) we can now write down an equation which describes the
dependence of the depletion potential depth between two parallel fd-Y21M on polymer volume

concentration:

N
UYSE(r = D) = —cfC N4 yMax kT (4.1)
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Fig.4.3 Evolution of depth of depletion potential between two parallel fd-Y21M viruses
with polymers PEG 20k (blue line) and PEG 8k (red line) volume concentration. Inset: sketch of
depletion potential between two parallel hard rods indicating depth of depletion potential UC’{{;;’C

(r is the center-to-center distance between two rods, D is rod diameter, R, is polymer radius of

gyration or half of the thickness of depletion layer surrounding rod). Dashed blue and red lines

correspond to PEG 20k and PEG 8k overlap concentrations.
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The evolutions of Ugé‘;," in the units of kgT with polymer mass concentration are plotted
in Fig. 4.3 for two types of polymers. It is worth mentioning that the values of UJ,%* given by
expression (4.1) are overestimated in our experiments as the rod diameter is compatible with the
size of polymers resulting in colloid penetration into open polymer structure [20] (see illustration
in Appendix, section 4). This leads to the weaker depth of depletion attraction than the one

predicted by expression (4.1).

4.3 Results and discussions

Strictly speaking, the range of enthalpic patchy attraction between functionalized viral
tips in our system is not known. Therefore, to probe the competition between entropic and
enthalpic patchinesses and its effect on viral self-assembly, we employ two types of polymers

with different sizes to induce attractive depletion interaction of varying range.
4.3.1 Effect of PEG 20k on tip-labeled suspension

4.3.1.1 Phase diagram of fd Y21M+PEG20k
All data on fd Y21M and PEG 20k mixtures reported below have been obtained by the

former postdoc in our group Baeckkyoung Sung.

At zero polymer concentration pristine fd-Y21M rods form stable isotropic, (chiral)
nematic, and smectic phase [22], [23] with increasing viral volume fraction in agreement with
theoretical and computer simulation predictions [24], [25]. The phase diagram of non-labeled
rod-like viruses with effective attraction interaction induced by non-adsorbing polymers has been
reported elsewhere [20], [21]. Our experimental phase diagrams of pristine fd-Y21M and tip-
labeled mixtures with PEG 20K are reported in Fig. 4.4 being qualitatively similar to the one
reported by Dogic [21]. Depletion interaction between rods has been shown to widen the
isotropic-nematic phase coexistence region with polymers mainly located into the isotropic
phase. In this case, nematic droplets (tactoids) are formed in the isotropic background (Fig.
4.4E). Unwound chiral nematic phase within individual tactoids has been observed because
cholesteric order cannot be developed due relatively high strength of planar anchoring of rods at

the isotropic-nematic interface.
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Fig. 4.4. Phase diagram of tip-labeled fd-Y21M (top panel) and pristine fd Y21M (bottom
panel) virus suspension under depletion interaction. Top panel: inserted images indicate DIC
(A) and fluorescents (B) microphotographs of twisted ribbons with membranes as well as DIC
(C) and fluorescents (D) pictures of smectic filaments formed in tip-labeled viral suspensions.
Bottom panel: DIC images of tactoids (E), twisted ribbons with membranes (F), and smectic
filaments (G) in pristine virus dispersions. Green signals represent the positions of tip-labeled
viruses which additionally received full body labeling and were added into suspension with ratio
of 1: 10*.Color coding for the different structures is given in the inset, and the white regions

indicate the phase gaps between coexisting states. Scale bars: 3um.
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At higher polymer concentrations, right after mixing both pristine and tip-labeled fd-
Y21M dispersions with PEG 20k, we observed a self-assembly of rods into ribbon-like and
membrane-like structures (Fig. 4.4 A, B, and F). These assemblies have the same morphology as
the ones recently reported for fd-wt mixture with Dextran polymers [8], [9]. Membranes are
composed of a monolayer of aligned rod in the smectic A configuration with twisted edges.
Twisted ribbons are identical to membranes except they possess inhomogeneous tilting of the
rods (see section 0.3.2, Fig. 0.12F). Increasing further the depletant concentration leads the
disappearance of twisted ribbons, and colloidal membranes are found to stack up on top of each
other and form filaments with smectic structure (Fig.4.4 C, D, and G).

Structure morphologies in virus-polymer mixture are determined by the depletant
concentration. One would presume that the phase diagram region of tip-labeled rods with smectic
A type of ordering (with twisted ribbons and membranes) should be extended into lower polymer
concentration, as it has been shown for bulk smectic A phase in Chapter 1. In our experiments,
the phase behavior of raw and patchy viruses under depletion interaction is the same (Fig. 4.4),
meaning that phase transition between nematic-like (tactoids) and smectic A-like structures is not
affected by hydrophobic patchy functions on the rod tips. It could be explained by the weak
strength of enthalpic patchiness, which, as deduced from computer simulations, not higher that 1-
2 kgT (see Chapter 1), compared to strength of depletion attraction equal to tens of kgT (Fig.
4.3). We can also speculate that the range of enthalpic patchiness is relatively short (fractions of
nanometer) compared to the maximum range of depletion which is of around 7 nm for PEG 20k.
Thus, entropic patchiness overcomes the local attraction between viral tips and fully determines
phase behavior of tip-functionalized rods mixture with PEG 20k. According to these results, we
can also conclude that the range of enthalpic patchiness between rod ends is significantly lower

than that of depletion attraction given by a size of polymer.

4.3.1.2 SAXS experiment on fd Y21 M suspension with combined patch

In order to probe the internal order of structures assembled in raw and tip-labeled viral
systems under depletion and, thus, measure the average inter-rod distances, we performed SAXS
experiments. Scattered profiles of tip-labeled viral dispersion at different polymer concentrations
are reported in Fig.4.5. From the width of (100) peaks which correspond to average inter-rod

distance, we can conclude, that spectra corresponding to polymer concentrations from ¢PE¢ =
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9.4 to 14 =< represent liquid-like order of twisted ribbons and membranes, while range of
polymer concentrations from ¢P£¢ = 15.4 7 to 25.2 7<% correspond to smectic B filaments with

positional order. Using expression d=41m/v/3q,00 [22], Where g4, is the position of (100), we
calculated the average inter-rod distance d within structures formed under depletion in case of
both pristine and tip-functionalized rods (Fig. 4.6A). We have not detected (110) Bragg
reflection, which is supposed to be located at around g;10 ~ 1.2 nm™" (as g100 = V3q110), and it
would be the signature of hexagonal long-ranged positional order especially at highest polymer
concentrations [10], [22]. Peak at g, IS not visible, probably, due to interference with the rod
form factor. Another parameter to characterize and compare raw and tip-labeled systems is the
average number of closest neighbors in radial direction for a given depletion strength which has

been estimated as the ratio of translational correlation length and inter-rod distance (Fig. 4.6B).
Correlation length has been calculated via expression & = F;}ﬁ where FWHM is the full width

at half maximum of (100) peak [22].
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Fig. 4.5. SAXS spectra of tip-labeled fd Y21M viruses self-organized into different
structures under depletion interaction shown in Fig.4.4. Numbers in the inset correspond to

polymer concentration in mg/ml. Spectra which correspond to twisted ribbons and membranes

span the range from ¢PE¢ = 9.4% to 14% revealing broad (100) Bragg reflection; smectic B

filaments are within the range from ¢?£¢ = 15.4% to 25.2 % showing the narrow (100) Bragg
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reflection. As wave vector of structure peak for cP£¢ = 6.3% is too low, it is out of accessible

range.

Fig.4.6 demonstrates the same evolution of inter-rod distances and number of closest
neighbors with concentration for both raw and tip-labeled viral assemblies formed under
depletion. From the discontinuity of neighbors number values, we can conclude that transition
from liquid-like order to positional order occurs at polymer concentration c¢PE¢ = 15% for
both types of system. Thus, sticky inclusions at viral tips have no effect on local ordering of tip-

functionalized rods and their structural properties are determined by effective depletion

attraction.
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Fig. 4.6. (A) Inter-rod distance d=4m/v/3q.0, and (B) average number of closest
neighbors for a given polymer concentration in pristine and tip-labeled fd Y21M virus
suspensions under depletion interaction. Number of closest neighbors in radial direction is
estimated as the ratio &/d, where ¢ is the translational correlation length measured via
expression 2n/FWHM (FWHM is a full width at half maximum of (100) peak extracted from
SAXS spectra in Fig.4.5). Grey dashed area in (B) indicates the instrumental resolution. Blue

dashed lines indicate the transition from liquid-like to positional order.
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4.3.1.3 Single rod dynamics within the assemblies

DIC microscopy reveals the overall structure of twisted ribbons, such as their pitch
(around 4 pm) and width (around 2 pm), as well as lamellar morphology of filaments at higher
depletant concentration (Fig.4.4A-C). By adding tracer amount of viruses with combined
labeling (green dyes on the body, red dyes on the tip), we can observe local ordering of the
assemblies and rod self-diffusion within them thanks to fluorescence microscopy. It shows the
liquid-like dynamics of single tip-labeled viruses within the twisted ribbon (Fig.4.7). The same
type of motion has been found by Gibaud et al. [8] in the ribbons consisting of pristine rods. In
case of smectic filaments, we have not detected significant viral motion within them. Tip-labeled
viruses have been found to be located perpendicular to the layers. Fluctuations of patchy rod
position shown in Fig. 4.8C representing the collective motion of the entire structure whose this
particle belongs to. For a given time window of about 10 seconds, we have not detected any
hopping-like diffusion of single viruses between filament layers, therefore we confirm positional

order within smectic filaments at high depletant concentration evidenced by SAXS.

O 2 4 6 8 10 12 14 0 5 10 15 20
X (um) time, t(s)

Fig. 4.7. Liquid-like order within twisted ribbons. Isolated twisted ribbon consisting of
tip-functionalized fd-Y21M visualized with (A) DIC and (B) at different times with fluorescence
optical microscopy. (C) Schematic structure of twisted ribbon [8]. Liquid-like order is deduced
from the time —sequence images representing the motion of virus with combined (green dyes on
viral body, red dyes on tip) labeling (B).Viral Z-X trajectory (D) and time evolution of Z-
component. White arrows indicate particle with combined (red dyes on the tip, green dyes on the
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body) labeling diffusing through twisted ribbon in combination with drift motion of entire

structure. Scale bars: 2 um.
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Fig. 4.8. Positional order within smectic filaments consisting of tip-labeled fd-Y21M
viruses. Smectic B filament visualized with (A) DIC and (B) fluorescence optical microscopy. (C)
Particle trajectory representing lack of significant motion within filaments. Inset: viral trajectory
in Z-X plane. White arrow indicates the virus whose trajectory is plotted in (C). Nearly
perpendicular virus position with respect to filaments layer confirms smectic B nature of the

assemblies. Scale bar: 2 um.

4.3.2 Effect of PEG 8k on tip-labeled viral suspension
Data on fd Y21M and PEG 8k mixture reported below have been obtained by a PhD

student in our group Arantza Zavala Martinez.

As there is no effect of enthalpic patchiness on virus self-assembly under depletion
attraction induced by PEG 20k, we have changed the depletant agent and chose to work with
smaller polymer PEG 8k decreasing the maximum range of depletion forces from 7 nm to 4 nm
to induce structures with positional order. Phase behavior of pristine rods and PEG 8k mixture is
depicted in Fig. 4.9 (bottom panel). At viral concentrations below 10 mg/ml, we have observed
tactoids (nematic droplets) formed in isotropic background (Fig. 4.9C). At higher rod
concentrations (up to 15 mg/ml), the same anisotropic structures are self-assembled, but each
assembly possesses a layered isotropic-nematic interface (Fig. 4.9D). The distance between
closest layers of such interface along the tactoid’s long axis is roughly one virus long. These

structures have been described by Dogic [21]. They have nematic interior with the surface frozen
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smectic phase. Increasing further PEG 8k concentration, we obtained elongated smectic
filaments consisting of small membranes stuck on top of each other (Fig. 4.9E).

For the tip-labeled rods mixture with PEG 8k as a depletant agent, we found the region of
twisted ribbons within the range of polymer concentrations 10-14 mg/ml (Fig. 4.9, top panel). At
higher PEG 8k concentration, smectic filaments been observed.

The appearance of structures with liquid-like order such as tactoids and twisted ribbons
under depletion interaction induced by PEG 8Kk is not expected. Relatively small size of depletant
agents should promote the assembly of structures with positional order in isotropic liquid
background [10]. This question remains unsolved and opens new perspectives on the
investigation of viral systems with entropic patchiness of relatively short ranges compared to
viral radius.
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Fig.4.9. Phase diagram of patchy (top panel) and pristine (bottom panel) fd-Y21M mixed
with PEG 8k polymer. DIC and fluorescence optical microscopy images of (A) twisted ribbons

and (B) smectic filaments. Pinkish shadow is drawn to emphasize the twisted ribbon range. DIC

133



Chapter 4: Self-organization under combination of both entropic and enthalpic patchinesses

microscopy images of (C) nematic tactoids in isotropic background, (D) tactoids with smectic

layers on its surface, and (E) smectic B filaments.

4.4 Conclusions

We combined the effect of entropic and enthalpic patchinesses by adding non-adsorbing
polymers into dispersion of tip-functionalizes fd-Y21M viruses. In order to vary the strength of
entropic patchiness i.e. depletion attraction strength [17], we used two types of depletant agents
PEG20k and PEG 8k which differ by their size [16]. The radius of gyration of former one is two
times higher than the viral radius, while the size the latter depletant is approximately the same as
the rod radius.

We found no difference in phase behavior of tip-labeled viruses with in average 1 dye per
rod end under depletion interaction induced by PEG 20k compared to phase diagram of pristine
rods mixture with these polymers. In our experiments, hydrophobic inclusions on viral tips do
not affect the structural properties of rods under depletion promoted by PEG 20k because the
strength of enthalpic tip-patchiness is estimated by computer simulations to be not higher than 1-
2 k, T which is significantly lower than the strength of entropic patchiness between parallel rods
estimated to be tens of ki, T. The range of enthalpic interaction in our system in principle is not
known, but we can speculate that is it equal to fraction of nanometer which is at least one order
of magnitude lower than that of depletion interaction given by a size of polymers. Knowing the
fact that number of grafted dye molecules defines the local attraction strength between rod tips
(Chapter 1), we can, therefore, expect that increasing the quantity of dyes per viral end one can
affect the phase behavior of tip-functionalized particles under depletion interaction. In order to
significantly enhance the strength and the range of enthalpic interaction, it is potentially possible
to graft other compounds on virus tip to induce attractive interaction such as PNIPAM polymers
[26].

Employing polymer PEG 8k as a depletant agent, we decreased the range of entropic
patchy interaction by a factor two. Unexpected structures with liquid-like order have been found
in both tip-labeled and pristine viral mixtures with relatively small polymers which are supposed
to promote positional order within structures. This open question should stimulate new studies of

rod self-assembly under depletion attraction with relatively short range of interaction.
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Appendix

Calculation of depletion attraction depth for rod-polymer mixture

1. Overlap volume between two cylinders

Let us begin with two overlaid cylinders which have the same height L and radius r
(Fig.1). From simple geometrical arguments, their overlap volume Vowerap IS given by the

expression (Severiap IS OVerlap area between cylinder bases):

Voverlap =L- Soverlap (1)

side view top view

N

overlap base, Syyeriap

overlap volume, Voyeriap

Fig. 1. Scheme representing overlap volume Voyeriap between two cylinders with heights L

and radii r, and overlap area Soveriap between their bases.

2. Overlap area between two circles: general case
To quantify the overlap volume between two cylinders, it is, thus, essential to calculate
the overlap area between their circular bases. Let us consider the general case, and give the
expression for the overlap area Soweriap between two circles with different radii r; and r, (d is the

center-to-center distance between two spheres, d, and d, distances between circle centers and
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line which connect two intersection points, A; and A, are the red and blue areas on the scheme
below) (Fig. 2) [1]:

Sovertap = A1 + Az = R - arccos( ) diR? —d? + R3 - arccos( ) d,\/RZ — dZ
()

Fig. 2. Overlaid spheres with different radii 7 and r,, where Syyer10p = A1 + A is the
overlap area, d is the center-to-center distance between two circles, and d, and d, distances

between circle centers and line which connect two intersection points [1].

When both radii are equal r; = r, = r, expression (2) can be written as:

Soverlap 24, = 2r aT'CCOS( ) - —dm 3)

3. Overlap volume for fd-Y21M viruses in mixture with PEG 20k and PEG 8k
polymers

Let us move to fd-Y21M virus (length of L,;,s = 920 nm, radius of R, = 3.5 nm)
[2] surrounded by the excluded volumes induced (i) by PEG 20k (radius of gyration of RZO" =

7 nm) and (ii) by PEG 8k (radius of gyration of RS" 4 nm) [3]. In order to calculate maximum
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overlap volume between two excluded layers induces by PEG 20k and PEG 8k polymers around
fd-Y21M viruses (Fig. 3), we need to calculate overlap volume between two cylinders with radii
(i) 7 = Ryirus + 2RZ%F for PEG 20k, and (i) r = Ryys + 2R5* for PEG 8k, when two viruses

are in contact with each other (meaning that d = 2R ;)

PEG 20k

N
h 4

R

virus

d=2R

virus

Fig. 3. Scheme representing the top view of maximum overlap volume between excluded
layers induced around fd-Y21M viruses by PEG 20k and PEG 8k polymers. Blue circles
correspond to viruses, and dashed lines correspond to excluded layers. R, ;s IS viral radius,
Rz%and RE* are the radii of PEG 20k and PEG 8k respectively, d is the center-to-center

distance between two viruses.

Let us firstly calculate the maximum overlap areas between two cylinder bases which
correspond to (i) fd-Y21M+PEG 20k and to (ii) fd-Y21M+PEG 8k. According to Fig. 3

expressions (3) for our case can be rewritten as (R, is the polymer radius of gyrations):
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2 Ryirus 2 2
Soverlap = Z(Rvirus + 2Rg ) arccos (M) - Rvirus 4‘(Rvirus + 2Rg ) - 4‘Rvirus
4)

Hence, the overlap bases are:
. fd-Y21M+PEG 20k: Syperiap = 719 nm?
. fd-Y21M+PEG 8K: Spyeriap ~ 257 nm?

Therefore, the maximum overlap volumes between two excluded layers for fd-Y21M
virus mixture with polymers are:
. fd-Y21IM+PEG 20K: Vyyeriap = Lvirus * Sovertap = 661 -10° nm? = 0.661 - 1072'm?
. fd-Y21M+PEG 8K: Vyyperiap ~ 236 - 10% nm® = 0.236 - 1021m?

4. Depth of depletion attraction
Finally, we can calculate the depth of depletion interaction potential between two fd-
Y21M viruses by using expression [4]:
Umax = =11 Voveriap ()
where II is the osmotic pressure exerted by the polymers on viruses, and in the dilute

polymer regime it is given by expression [4]:

M =nbEk,T (6)
Hence (nf%¢ is the polymer concentration),
Unax = _ngEG : Voverlap kT (7)

Let us calculate U,,,, at polymer overlap concentration which is given by expression [5]:
3
n = ®

The values for PEG 20k and PEG 8k overlap concentrations are:

. PEG 20k overlap concentration: n%* = 7 - 10%* m~% = 23 =&

. PEG 8k overlap concentration: n¥* = 38 - 102> m=3 = 50 %

Using expression (7), we can now calculate the depth of depletion attraction induced by

polymers between fd-Y21M viruses:
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o Depth of attraction in case of PEG 20k:
U2% = —7-102m3-0.661-10"2'm3 - k, T ~ 462 k, T

max —

o Depth in case of PEG 8k:
UBk . =—-38-1023m=3-0.236 - 1072'm3 - k, T ~ 897 k, T

It is worth stressing that these values for U,,,, are overestimated due to two points. The
first reason is that expression (6) for the osmotic pressure is valid only at dilute polymer regime
meaning that polymer concentration must be lower the overlap concentration. The second point
is that expression (7) is valid as long as diameter of rod is much larger than the diameter of
polymer. In our experiments the size of polymer is the same for PEG 8k and two times higher for
in case of PEG 20k than rod diameter. It leads to the virus penetration into the open polymer
structure without overlapping any of the polymer segments resulting in the weaker depth of the

attractive depletion potential predicted by expression (7) [5].
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Fig. 4. lllustration of rod penetration into open polymer structure when rod radius is

lower (or the same) as the radius of polymer.
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Conclusions and Perspectives

Conclusions and Perspectives

In this thesis, we aimed to investigate the structural and dynamical properties of colloidal
rod-like fd-viruses with localized directional attraction interaction. This heterogeneous
interaction between particles or so-called "patchiness” has been introduced by functionalizing the
proximal viral tips by grafting hydrophobic fluorescent dye molecules onto them. Phase behavior
and self-diffusion of patchy rods have been then studied revealing strikingly different features
compared to their pristine i.e. purely repulsive counterparts.

We began with studying the structural properties of fd-viruses with local directional
attraction in Chapter 1. It has been shown that the strength of patchy interaction between rod tips
depends on the number of bound dye molecules, which has been tuned by employing different
viral mutants and by varying the dye molar excess during the labeling reaction. In order to model
our experimental system of patchy colloids and get deeper insight into the effect of localized
interaction on their self-assembly, computer simulations have been conducted by the group from
Eindhoven University of Technology in which rods were represented by the chain of partially
overlapped hard spheres with an attractive bead at the end. We have shown, in agreement with
numerical simulations, that increasing the attraction strength between rod tips extends the
smectic phase range at the cost the of nematic phase leaving other phase transitions i.e. isotropic-
nematic and smectic-columnar nearly unchanged. It has been suggested that only the lamellar
ordering responds to the tip-labeling because in this organization all sticky viral tips are brought
together being not highly correlated in other states of virus dispersion.

In this work, fluorescent dyes at the tips of fd-viruses have been used also for the
observation of liquid crystalline structure in lamellar organization with improved resolution and
contrast. In Chapter 2, we visualized the linear topological defect in smectic phase, such as edge
and screw dislocations, at the lattice periodicity level. Edge dislocation profile has been extracted
as well as quantitative the analysis of displacement field has been performed and compared to
the theoretical predictions. The intrinsic length scale (elastic length) over which an imposed
distortion relaxes in a lamellar system has been experimentally determined for our viral
dispersions giving the value which is two order of magnitude lower than the smectic layer

periodicity. In case of screw dislocations, we visualized the structure of the defect core enabling
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its handedness determination. The distribution of core width has been also established showing
its mean value to be equal to the lamellar periodicity. Self-diffusion experiments performed at

the single rod level revealed the nematic-like organization within the screw dislocations.

Having clear insight about phase behavior of patchy viruses, our focus has shifted to the
investigation of their dynamical properties. Dynamics of both patchy and pristine rods have been
studied and compared by tracking individual particle displacements by fluorescence optical
microscopy. In order to characterize the differences between the two types of rods, their self-
diffusion coefficients have been experimentally measured. We evidenced that in all liquid
crystalline phases of virus dispersions patchy rod diffusion is hindered compared to the diffusion
of pristine ones. Particularly in smectic phase, tip-labeled rods have been found to mainly diffuse
within the smectic layers perpendicular to the rod main axis, contrary to the non-labeled particles
whose self-diffusion between layers is far more pronounced. This behavior has been explained
by the higher smectic ordering potential experimentally measured in the dispersions of patchy
rods compared to the potential obtained for raw particles. Angle fluctuations of individual rods
with respect to the director at different concentrations have provided gquantitative measurements
of the orientational order parameter, which has been found to show similar behavior for both
viral systems. This is consistent with the fact that isotropic-nematic phase transition is not
affected by rod tip-functionalization. We also discussed the anomalous diffusion in the lamellar
organization of viral dispersions estimating the typical “cage” size, which has been evidenced to
have the same order of magnitude as the smectic layer periodicity.

In the last Chapter of the thesis, we combined the effect of entropic and enthalpic
patchinesses. Non-adsorbing polymers have been added into dispersion of tip-labeled fd-viruses
inducing effective depletion attraction between rod sides. Experimental phase diagrams for two
viral systems under depletion interaction have been established by optical microscopy and SAXS
experiments revealing no effect of sticky rod ends on self-assembly of tip-labeled viruses. We
interpreted it by the both short range and weak strength of attraction induced by hydrophobic
dyes which are not sufficient to affect the viral interaction originating from depletion effect. As a
perspective of this work, in order to enhance both range and strength of attraction between rod
ends, we suggested to employ other compounds to induce attraction interaction such as thermo-

responsive PNIPAM (poly(N-isopropylacrylamide)) polymer [1]. By increasing the temperature
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to more that the lower critical solution temperature (LCST) this polymer becomes hydrophobic

which could lead to the reversible patchiness at the viral tip (Fig. 1A).

An idea of introducing patchy interaction between rod-like viral particles opens up a
several perspectives for further investigation of complex fluids with directional attractive
interactions. The directional attractive interaction induced by PNIPAM patch could be reversibly
controlled by heating up or cooling down the colloidal dispersion with respect to LCST. For
example, if we heated up the colloidal dispersion in the nematic phase consisting of PNIPAM-
functionalized viruses, the thermo-induced smectic phase at the same virus concentration would
be generated due to attraction between hydrophobic polymers at the rod ends (Fig.1B). Such
complex fluid could be an example of liquid crystal where phase transitions can be tuned by both

particle volume fraction and temperature at the same time.

B nematic thermo-induced

A patchy fd-virus with smectic

hydrophobic tip o . s & & B D
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foe— B
temperature < TLCS I

fd-virus

Fig. 1. (A) Scheme of thermo-responsive fd-virus with tip-patchiness induced by poly(N-
isopropylacrylamide) (PNIPAM) polymer on the one of the rod ends. The directional attractive
interaction could be achieved by heating up the colloidal dispersion above lower critical
solution temperature (LCST) [1]. (B) Reversible nematic-smectic phase transition could then

occur upon increasing the temperature of PNIPAM-functionalized viral dispersion.

In future, one can also use the mixture of tip-labeled rods with non-adsorbing polymers to
study the fluctuation spectra of colloidal membranes assembled under depletion interaction [2].
Improved contract and resolution of optical images obtained with fluorescence microscopy could
reveal detailed information on thermal undulations of top and bottom membrane surfaces (Fig.2),

which are otherwise not accessible with DIC microscopy.
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Fig. 2. (Left) Schematic side view of colloidal membrane constituting of tip-labeled rods.
Fluorescent signal comes from both top and bottom membrane surfaces. (Right) Spectra coming
from both membrane surfaces could be recorded with fluorescence optical microscopy.

Another short-term perspective could be, for example, to investigate the structural
properties of patchy viral dispersions varying the rod flexibility. Higher rod stiffness has been
shown to stabilize the smectic phase [4]. Thus, one could be interested what would be the phase
behavior of tip-labeled viruses which possess higher persistent length such as fd-Y21M. In terms
of dynamical study, we could compare the self-diffusion of pristine and tip-labeled particles in
the liquid crystalline matrix of patchy viruses. It would be interesting to investigate the effect of
attraction mean-field induced by sticky viral tips on the mobility of raw i.e. purely repulsive

rods.

As a long-term perspective, one could use fd dispersion in smectic phase as a
transmission diffraction grating for various photosensitive devices [3] thanks to its typical
lamellar periodicity of around 1 pm. Illumination of viral suspension in smectic phase by white
light results in the light diffraction. Thus according to the Bragg law A = d - sinf (where A is
wavelength, d is a periodicity of diffracting grating i.e. smectic layer spacing, and 6 is the
deviation of a given wave from the 0" diffraction order (Fig.3)), white light spreads out with
different colors depending on their wavelengths (Fig. 3A). Our experiments showed that typical
variation of smectic layer spacing values for patchy suspensions spans the range from d=1 pum to
d=1.04 um, which is twice higher than the values range for raw suspensions. If we placed a
screen in front of illuminated smectic dispersion with grating periodicity of 1 um, blue light

would deviate on angle of 8 =23.6° whereas red light would deviate on angle of 8 =44.4°. In

this case, according to the expression h = D - tan (sin‘lg), at screen-to-grating separation
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equal to, for example, D=10 cm, the distance between 0™ diffraction order and blue or red spot
will be h=4.4 cm or h=9.8 cm respectively (Fig. 3B). In case of diffraction grating periodicity of
d=1.04 um the positions of blue and red spots will be shifted down to the heights of h=4.2 cm
and h=9.1 cm respectively. If we were able to change the virus concentration by varying the
volume of smectic dispersions, we would be able to control the periodicity of diffraction grating
i.e. smectic layer spacing, and therefore tune the positions of colors on the screen. This technique

could be potentially applied in various photonic devices [3].

A B layer spacing d=1um d=1.04um
. h=9.8cm
P Eh=9 cm
’,/”’,:’__,’ h=4.4cm h=4.2cm
white light PEICEA
SOUI’CG’-. P 2% jg’ h=0cm | __h=0cm

smectic

diffraction grating \ /

screen

Fig. 3. (A) Glass cuvette which contains fd smectic dispersion illuminated from behind by
white light. Variation of colors represents the light diffraction. Blue, green, yellow, and red
arrows are drawn for eye guide to indicate the colors which appear thanks to wave deviation
according to the Bragg law. Scale bar is 5 mm. (B) Scheme of the setup with smectic viral
suspension as a diffraction grating with varying periodicity. Positions of colors are shown at the
two different periodicity values of d=1um and d=1.04um, which are the lowest and the highest

values respectively found in our experiments.

As another long-term perspective, we could also use the genetic modifications on p9 and
p7 proteins to display disulfide bridge (S-S bond) on the distal end of fd virus, in order to graft
patchy functions efficiently. With, for example, fluorescence dye molecules at both ends of the
rod (Fig. 4), we could expect to strengthen the effect of smectic phase extension at the cost of the

nematic or even the isotropic phase.
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Fig. 4. Scheme of bifunctionalized fd virus by fluorescent dye molecules.

Overall, localized directional interaction between rod-like building blocks can promote
the appearance of highly desirable for material science layered structures [5] at low particle

volume fraction.
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