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Abstract

Probabilistic Seismic Hazard Assessment (PSHA) relies on long-term earthquake
forecasts, and ground-motion models. Up to now, geodetic data has been rather un-
derused in PSHA, although it provides unique and unprecedented information on the
deformation rates of tectonic structures from local to regional scales. The aim of this
thesis is to improve earthquake recurrence models by quantitatively including the
information derived from geodetic measurements, with an application to Ecuador,
a country exposed both to shallow crustal earthquakes and megathrust subduction
events. After a first chapter of introduction, the second chapter presents a collective
effort of building a probabilistic seismic hazard model for Ecuador, using historical
and contemporary seismicity, recent knowledge about active tectonics, geodynamics,
and geodesy. I contributed in two ways: 1) the building of earthquake catalogs from
global seismic datasets; 2) the establishment of average slip rates on a set of simpli-
fied crustal faults, from GPS velocities. The hazard calculations led at the country
scale indicate that uncertainties are largest for sites on the northern coast and along
the faults in the Cordillera. The third chapter of this thesis focuses on the determi-
nation of the seismic potential of the Quito fault system. Quito lies on the hanging
wall of a ∼60-km-long reverse active fault, posing significant risks due to the high
population density. I constrain the present-day strain accumulation associated with
the fault system with GPS data and Persistent Scatterer Interferometric Synthetic
Aperture Radar (PS-InSAR) analysis. 3-D spatially variable locking models show
that a large part of the fault is presently experiencing shallow creep, hence reduc-
ing the energy available for future earthquakes, which has a significant impact for
hazard analysis. In the last chapter of this thesis, I evaluate the ability of geodetic
data to constrain earthquake recurrence models for the subduction zone in northern
Ecuador. I quantify the annual rate of moment deficit accumulation at the inter-
face using interseismic coupling models, and identify the uncertainties related to the
conversion in terms of total seismic moment release. Based on a newly developed
earthquake catalog, I propose recurrence models that match both the catalog-based
seismicity rates and the geodetic moment budget. I set up a logic tree for exploring
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the uncertainties on the seismic rates and on the geodetic moment budget to be
released in earthquakes. The exploration of the logic tree leads to a distribution of
possible maximal magnitudes Mmax bounding the earthquake recurrence model; I
extract only those models that lead to Mmax values compatible with the extent of the
interface segment according to earthquakes scaling laws. This new method allows
1) to identify which magnitude-frequency form is best adapted for the Ecuadorian
subduction; 2) to generate a distribution of moment-balanced recurrence models rep-
resentative of uncertainties and propagate this uncertainty up to the uniform hazard
spectra; and 3) to evaluate a range for the aseismic component of the slip on the
interface. Considering the recent availability of massive quantity of geodetic data,
this new approach could be used in other regions of the world to develop recurrence
models consistent both with past seismicity and measured tectonic deformations.
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Résumé

L’évaluation probabiliste de l’aléa sismique (PSHA) s’appuie sur des modèles
de prédictions sismiques long terme et des modèles de mouvements du sol. Jusqu’à
présent, les données géodésiques sont restées sous-utilisées dans le cadre du PSHA,
bien qu’elles fournissent des informations uniques et sans précédent sur les taux
de déformation des structures tectoniques, de l’échelle locale à l’échelle régionale.
L’objectif de cette thèse est d’améliorer les modèles de récurrence des séismes en
incluant quantitativement les informations dérivées des mesures géodésiques, avec
une application à l’Équateur, un pays exposé à la fois aux séismes de faible pro-
fondeur de la croûte terrestre et aux mégathrusts de la zone de subduction. Après
un premier chapitre d’introduction, le deuxième chapitre présente un effort collectif
de construction d’un modèle probabiliste d’aléa sismique pour l’Équateur, en util-
isant la sismicité historique et récente, les connaissances actuelles sur la tectonique
active, la géodynamique et la géodésie. J’ai contribué de deux manières : 1) la créa-
tion de catalogues sismiques à partir d’ensembles de données sismiques mondiales ;
2) l’établissement de taux de glissement moyens sur un ensemble de failles crustales
simplifiées, à partir des vitesses GPS. Les calculs d’aléas effectués à l’échelle du pays
indiquent que les incertitudes sont plus grandes pour les sites de la côte nord et le
long des failles de la Cordillère. Le troisième chapitre de cette thèse se concentre
sur la détermination du potentiel sismique du système de failles de Quito. La ville
de Quito est traversée par une faille inverse de ∼60 km de long, représentant un
risque important en raison de la forte densité de population. Nous contraignons
l’accumulation actuelle des contraintes associées au système de failles avec les don-
nées GPS et l’analyse du radar à ouverture synthétique (PS-InSAR). Les modèles de
blocage variables dans l’espace en 3D montrent qu’une grande partie de la faille subit
actuellement un glissement à faible profondeur, réduisant ainsi l’énergie disponible
pour les futurs séismes, ce qui a un impact significatif sur les calculs d’aléa. Dans le
dernier chapitre de cette thèse, nous évaluons la capacité des données géodésiques
à contraindre les modèles de récurrence des séismes pour la zone de subduction
dans le nord de l’Équateur. À l’aide de modèles de couplage intersismique, nous
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mesurons le taux annuel d’accumulation du déficit de moment sur l’interface et
identifions les incertitudes liées à la conversion en termes de relâchement du mo-
ment sismique total. Sur la base d’un catalogue de séismes nouvellement développé,
nous proposons d’établir des modèles de récurrence qui correspondent à la fois aux
taux de sismicité basés sur le catalogue et au budget du moment géodésique. Nous
établissons un arbre logique pour explorer les incertitudes sur les taux de sismicité
et sur le budget du moment géodésique à libérer lors des séismes. L’exploration de
l’arbre logique conduit à une distribution des magnitudes maximales Mmax possibles
délimitant le modèle de récurrence des séismes ; nous n’extrayons que les modèles
qui fournissent des Mmax compatibles avec la longueur du segment interface. Cette
nouvelle méthode permet 1) d’identifier quelle forme de modèle de récurrence est
la mieux adaptée à la subduction équatorienne ; 2) de générer une distribution de
modèles de récurrence équilibrés en termes de moments représentatifs des incerti-
tudes et de propager cette incertitude jusqu’aux spectres à risque uniforme (UHS)
; et 3) d’évaluer une gamme de valeurs pour la composante sismique du glissement
sur l’interface. Compte tenu de la disponibilité récente d’une quantité massive de
données géodésiques, cette nouvelle approche pourrait être utilisée dans d’autres ré-
gions du monde pour développer des modèles de récurrence cohérents à la fois avec
la sismicité passée et la déformation tectonique mesurée.
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Resumen

La Evaluación Probabilística de la Amenaza Sísmica (PSHA) se basa en la
predicción de terremotos a largo plazo y en modelos de movimiento del suelo. Hasta
ahora, la información geodésica ha sido subutilizados en el PSHA, a pesar de que es-
tos proporcionan información única y sin precedentes sobre las tasas de deformación
de las estructuras tectónicas a escalas locales y regionales. El objetivo de esta tesis
es mejorar los modelos de recurrencia sísmica incluyendo cuantitativamente infor-
mación derivada de observaciones geodésicas, con una aplicación en Ecuador, país
expuesto tanto a terremotos corticales en superficie como a eventos de la interface
de subducción. Después de un primer capítulo introductorio, el segundo capítulo
presenta un esfuerzo colectivo para construir un modelo probabilístico de amenaza
sísmica para Ecuador, considerando sismicidad histórica y contemporánea, así como
avances recientes en el estado del arte de la tectónica activa, la geodinámica y la
geodesia. He contribuido de dos maneras: 1) la generación de catálogos de ter-
remotos a partir de set de datos sísmicos globales; 2) la estimación de tasas de
deslizamiento promedio en un conjunto simplificado de fallas corticales, a partir de
las velocidades de GPS. Los cálculos de amenaza realizados a escala nacional mues-
tran mayor incertidumbre en los sitios de la costa norte y a lo largo de las fallas
de la Cordillera. El tercero capítulo de esta tesis se centra en la determinación del
potencial sísmico del sistema de fallas de Quito. La ciudad de Quito se encuentra
en el hanging wall de este sistema activo de falla inversa de ∼60-km de largo, lo que
representa un riesgo significativo debido a su alta densidad de población. Se estimó
la acumulación de deformación actual asociada al sistema de fallas usando datos de
GPS y análisis de Dispersión Persistente de Interferometría Radar de Apertura Sin-
tética (PS-InSAR). Los modelos de acoplamiento sísmico espacialmente variables en
3D muestran que una gran parte de la falla experimenta actualmente creep superfi-
cial, limitando la energía disponible en futuros terremotos, lo que tiene un impacto
significativo en el cálculo de amenaza. En la ultima parte de esta tesis, se evalúa la
capacidad de los datos geodésicos para limitar los modelos de recurrencia de sísmica
de la zona de subducción del norte de Ecuador. Utilizando mapas de acoplamiento
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inter-sísmico, se estimó la tasa anual de acumulación de déficit de momento sísmico
de la interface de subducción, y se identificó la incertidumbre asociada a la conver-
sión en términos de liberación total de momento sísmico. Basándose en un catálogo
de terremotos recientemente desarrollado, se propone el establecimiento de modelos
de recurrencia sísmica que coincidan tanto con las tasas de sismicidad basadas en
el catálogo como con la tasa de liberación de momento geodésico. Se creó un árbol
lógico para explorar las incertidumbres en las tasas de sismicidad y en las tasas de
liberación de momento geodésico de terremotos. La exploración del árbol lógico con-
duce a una distribución de magnitudes máximas posibles que delimitan el modelo
de recurrencia de terremotos; se extrajo sólo aquellos modelos que entregan Mmax

compatible con la extensión del segmento de interface de subducción. Este nuevo
método permite: 1) identificar qué relación de magnitud-frecuencia se adapta a la
subducción ecuatoriana; 2) generar una distribución de modelos de recurrencia de
momento-balanceado representativo de la incertidumbre y propagar esta incertidum-
bre a los espectros de peligro uniformados (Uniform Hazard Espectra); y 3) evaluar
un rango para la componente asísmica del deslizamiento en la interface de sub-
ducción. Considerando la reciente disponibilidad de una enorme cantidad de datos
geodésicos, este nuevo enfoque podría ser utilizado en otras regiones del mundo para
el desarrollo de modelos de recurrencia coherentes tanto con la sismicidad pasada
como con la deformación tectónica observada.
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Chapter 1. General introduction

This chapter is a general introduction on the context and the objectives
of the thesis. A part of this chapter is dedicated to explain the concepts
that will be used throughout the manuscript. We present the different steps
required to assess the probabilistic seismic hazard and introduce the notion of
geodetic moment, how it is calculated and used in recurrence models. Finally,
we present the geodynamic context of Ecuador, which is the study region that
was chosen for this thesis.

1.1 Context of the thesis

This thesis is part of the ANR REMAKE project, Seismic Risk in Ecuador:
Mitigation, Anticipation and Knowledge of Earthquakes funded from 2016 to 2020,
which is part of the SVAN (Séismes et Volcans dans les Andes du Nord - Earth-
quakes and Volcanoes in the Northern Andes) International Joint Laboratory (LMI)
created in 2012 and renewed in 2017. This LMI, which aims to better understand
the processes that control seismic and volcanic activity, gathers the Geophysical
Institute of the National Polytechnic School (IG-EPN) in Quito, Ecuador and in
France, Geoazur, in Nice, ISTerre in Grenoble and LMV in Clermont-Ferrand. A
10-year collaboration between the IG-EPN, ISTerre and Geoazur laboratories has
led to the creation of a best-estimate model of PSHA for the LMI (Beauval et al.
(2014); Yepes et al. (2016)), an access to seismological data (Mothes et al. (2013,
2018); Alvarado et al. (2018)), development of geodetic network (Nocquet et al.
(2014); Chlieh et al. (2014)), database on active fault systems (Baize et al. (2013);
Alvarado et al. (2014, 2016), and a solid scientific environment within the SVAN
International Joint Laboratory.

The ANR REMAKE aims to develop a new earthquake prediction model for the
Ecuador-Peru zone by integrating the complete knowledge on faults, including their
seismic potential evaluated from geodetic, seismological and geological approaches.
Several aspects are developed in this ANR in order to assess the capacity to produce
large earthquakes in the subduction zone: the construction of an active database on
crustal faults, seismic hazard models (for the whole of Ecuador and specifically in
Quito), the rapid determination of earthquake source parameters and the institu-
tionalization of scientific knowledge on seismic risk.

This IRD-funded thesis is part of Work Package WP3, entitled Building Seismic
Hazard Models. The objective of this WP3 is to update the PSHA by integrating
the latest data and methods from geodesy, seismology and tectonics in order to
identify and reduce the highest sources of uncertainties that will ultimately impact
hazard calculations. As a consequence, this thesis aims at connecting specialists in
seismology and in geodesy in order to build a new seismic prediction model that
accounts for all available geophysical and geological constraints.
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Chapter 1. General introduction

1.2.1 Source model definition

Seismotectonic zoning is the first step in the assessment of probabilistic seismic
hazard. The aim of this part is to define earthquake sources that are capable of
producing ground motions. Depending on the current seismotectonic understanding
of the zone, the earthquake source geometry can be a point, a fault or an entire area.
For a point source, earthquakes only occur at a single point. On the other hand, a
fault source encompasses an active fault where earthquakes can only occur at the
surface of the fault. When the fault system is unknown, it is common to define
an area source, where earthquakes can occur anywhere within this volume. These
sources are defined to be homogeneous in terms of seismicity, tectonics, etc. in order
to characterize the magnitude-frequency distribution within the zone. Earthquakes
are usually homogeneously distributed inside the zone. Source-to-site distances (the
closest distance to the finite rupture) are estimated for all ruptures.

1.2.2 Recurrence models

Statistical analysis of Californian seismicity has enabled Gutenberg and Richter
(1944) to observe an exponential decrease in earthquake frequencies as a function
of their magnitude. The authors determined a law (eq. 1.1), called Gutenberg-
Richter’s law (GR) describing this distribution:

log10(N(M ≥ m) = a− bm (1.1)

where N(M ≥ m) is the total number of earthquakes with magnitudes equal to and
above magnitude m and is determined from the parameter a (y-axis intercept and
can be thought of as the productivity) and b (slope of the rate of earthquakes with
respect to m). This law (Figure 1.2) describes the behaviour of the seismicity dis-
tributed in a source zone and model how often an earthquake greater than a specific
magnitude happens.

While the number of small earthquakes is usually high for a specific source, there
is a lack of observation for higher magnitudes. If the rates for low-to-moderate
magnitudes follow a straight line in semilog scales, they are multiple options to ex-
trapolate the recurrence models to higher magnitudes. For example, one can modify
the GR law to add a maximum magnitude bound (Youngs and Coppersmith (1985),
Anderson and Luco (1983), Molnar (1979)). The maximum bound (Mmax) is calcu-
lated through the historical seismicity or scaling laws of the zone. The GR model is
therefore truncated at this bound (Figure 1.2, dashed line). Another alternative is
the characteristic earthquake model (Schwartz and Coppersmith (1984), suggesting
that faults have repeated occurrences of characteristic earthquakes at a higher rate
than the GR model. The rate of characteristic earthquake is often defined from
geological studies (trenches, etc.). For example, Youngs and Coppersmith (1985)
proposes a recurrence model based on the characteristic earthquake for the Mmax
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In other regions where no ground motion models exist, it is common to use ground
motion models developed for similar tectonic regions.

1.2.4 Probability of exceedance of an acceleration level over

a given time window

In this last part, we combine all information from earthquake recurrence models
and ground motion models. We integrate the knowledge on the recurrence models,
the magnitudes and distances of earthquakes, and the distribution of ground mo-
tions to result in a hazard curve (Figure 1.3). The hazard curve is the annual rates
of exceedance of a series of target accelerations at a site.

The most frequently used probabilistic model for calculating the probability of oc-
currence in time of an earthquake and an acceleration is the Poissonian model. It
is based on the fact that earthquakes occur independently and randomly in time
and space. It doesn’t have the memory of time, size and location of past events.
Therefore, for these time-independent models, it does not consider the physics of the
seismic cycle, which states that the probability of occurrence of a major earthquake
on a fault that has already produced a major earthquake is very low as long as the
elapsed time has not made it possible to re-accumulate stresses on the fault.

For a poissonian phenomenon occurring at an average annual rate of occurrence
λ, the probability P that the phenomenon occurs at least once over the time period
t is (Ang and Tang (1975)):

P = 1− e−λt (1.2)

In PSHA computation, we will calculate the probability that a target acceleration
is exceeded over the future time window t. For example, the mean poissonian rate
λ corresponding to a probability P of 10% over t=50 years is 0.0021 per year and
correspond on average to 1 occurrence every 475 years (return period). We can
retrieve the target acceleration at this return period of 475 years from the hazard
curve by interpolation (Figure 1.3).
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known events in a given region usually show strong discrepancy in quality and com-
pleteness between historical and instrumental periods. Second, the model usually
mostly relies on the rates low-to-moderate magnitudes during the instrumental pe-
riod which is extrapolated up to a maximum magnitude. Including geodetic data
could help constrain those recurrence models.

Therefore, we estimate the geodetic moment deficit buildup rate Ṁ0 from the slip
rate Ṡ using the formula from Brune (1968):

Ṁ0 = µṠLW (1.4)

where µ is the shear modulus, Ṡ is the slip rate deficit on the fault, L and W length
and width of the fault.

During interseismic period, assuming there is aseismic creep occurring, the width of
the fault that is coupled represents only a fraction of the actual width. Therefore,
from interseismic models, we can re-calculate the geodetic moment deficit buildup
rate Ṁ0 through the following relation:

Ṁ0 =

∫

rupture

µV̇ χids (1.5)

where V̇ is the long-term slip rate deficit and χi the interseismic coupling integrated
over the rupture ds.

The advantage of using an interseismic coupling model is that we take into account
the space variability of slip deficit and therefore of the moment. On the contrary,
the moment derived from equation 1.4 is based on a single slip rate value for the
entire rupture and doesn’t take into account the creeping patches.

We integrate the number n and magnitude m of earthquakes, assuming a GR law
n(m), and the relation between the moment M0 and magnitude m, M0(m) = 10cm+d

(from Hanks and Kanamori (1979), where c=1.5 and d=9.1 for M0 in units of N.m),
to obtain the total moment release ṀT

0 (m):

ṀT
0 (m) =

∫ Mmax

−∞

M0(m)n(m)dm (1.6)

The result of the equation 1.6 can be converted into moment-based recurrence models
such as equation 1.7, for a recurrence model of a form N(m) = 10a−bm:

N(m) = ṀT
0

(c− b)

c
10(b−c)Mmax−bm−d (1.7)
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1.4 Geodynamics context in Ecuador

Ecuador is located south of Colombia and north of Peru (see Figure 1.6). The
country lies on the subduction zone where the Nazca oceanic plate slides under
the South American continental plate (SOAM). The subduction zone extends along
8000 km from Colombia to Chile. This subduction zone is the source of numerous
earthquakes, many of which that happened in Ecuador are among the largest ever
recorded, such as the Esmeraldas earthquake in 1906 (MW 8.6).

The shape of this margin is complex, shaped by numerous changes in the direc-
tion of the trench along the subduction, especially in its northern part where its
direction evolves successively (from north to south) from N40◦ to the Colombian
Andes, N10◦ to the Ecuadorian Andes, and finally N115◦ close to the Peruvian An-
des. Using geodetic data, Kendrick et al. (2003) and Nocquet et al. (2014) have
shown that the current convergence of the Nazca plate is oblique to the direction of
the Ecuadorian trench (direction N83◦E with a velocity of 56 mm/yr) inducing in
part, an EW shortening of the continental plate and the escape of the North Andean
Sliver (NAS) towards the NE (Trenkamp et al. (2002); White et al. (2003)) along
the crustal faults.

The structure of the Ecuadorian margin has been progressively shaped by con-
tinuous subduction since 25 Ma (Stauder (1975); Hey (1977)). During the last 5
Ma, part of the Ecuadorian margin (between 0.5◦N and 2◦S) has been under the
influence of the subduction from the Carnegie Ridge (Gutscher et al. (1999); Collot
et al. (2009)), an oceanic shelf about 2 km shallower and thicker than the rest of
the Nazca oceanic plate (Graindorge (2004); Sallares and Charvis (2003)).

Currently more than 50 % of Ecuadorians live on the coast, close to the subduction
zone, and ∼2 million lives on the capital of Quito, which is located on an active
reverse fault. As a consequence, the country is prone to important seismic risk,
with the majority of the population living in insecure housing directly on the most
exposed regions.

1.5 Content of the thesis

The central axis of this thesis aims at reducing the uncertainties in seismic
hazard assessment by integrating the information provided by new geodetic data.
To achieve this objective, this thesis is subdivided into four parts:

• In the beginning of my PhD, I contributed to the development of a new seismic
hazard model for Ecuador. This study is the result of a ten-year collaboration
between France and Ecuador on active tectonics, geodesy, seismology and seis-
mic hazard assessment. My main contribution focuses on the construction of
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C. Beauval, J. Marinière, H. Yepes, L. Audin, J.-M. Nocquet, A. Alvarado, S.
Baize, J. Aguilar, J.-C. Singaucho, H. Jomard; A New Seismic Hazard Model
for Ecuador. Bulletin of the Seismological Society of America ; 108 (3A):
1443–1464.

I also specifically examined the declustering methods used in the final step
of the building of the seismic catalog. Since probabilistic models suppose that
earthquakes occur independently in time, it is crucial to remove foreshocks
and aftershocks from earthquake catalogs. While the role of these decluster-
ing methods are fundamental, they are not extensively described and are often
used as black-box algorithm. As a consequence, I compare and analyze two
declustering methods and assess the related uncertainties in the specific case of
the Ecuadorian seismic catalog. These points are described in detail in section
2.2.

• The second part focuses on improving our current understanding of the geody-
namic processes in the Quito fault system. In this section, we worked on the
inversion of GPS and InSAR data in order to establish the first interseismic
coupling map of the Quito fault system. The results are used to interpret the
creep processes involved and establish first geodetic-based recurrence models
for Quito. This section was published in 2020 in Geophysical Journal Interna-
tional as:

J. Mariniere, J.-M. Nocquet, C. Beauval, J. Champenois, L. Audin, A. Al-
varado, S. Baize, A. Socquet, Geodetic evidence for shallow creep along the
Quito fault, Ecuador, Geophysical Journal International, Volume 220, Issue 3,
March 2020, Pages 2039–2055.

• Finally, the third part focuses on the integration of the geodetic data into
the recurrence models. We propose a methodology for generating a series of
moment-balanced Gutenberg-Richter recurrence models, that matches the past
seismicity rates and that is consistent with the moment rates inferred from
geodetic measurements. We quantify the uncertainties associated with the
Gutenberg-Richter a and b parameters, as well as on the slip budget available
for earthquakes as inferred from interseismic coupling models in order to better
constrain seismic hazard assessment in the subduction zone of Ecuador. This
work is submitted in Bulletin of the Seismological Society of America.
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A new seismic hazard for Ecuador from Beauval C., Mariniere J. et al.
published in 2018 in Bulletin of the Seismological Society of America was
the second paper that I co-authored. This work was the result of a 10 years
collective effort between French and Ecuadorian laboratories, involving a
multidisciplinary expertise gathering seismologists, geodesists and geologists.
I integrated the project in April 2016. I was hired at ISTerre on an engineer
position to provide technical support. In January 2017 I finally started a PhD
and benefitted in spring of a 2-month IRD “Mission Longue Durée” (Long
Duration Mission) to go to the IG-EPN lab (Geophysical Institute of the
National Polytechnic School) in Quito, Ecuador. It gave me the opportunity
to interact with both geodesists and geologists, hence work in synergy with a
full team of experts. Thus, I was part of the discussion and decision-making
process for each crucial step of the paper.

Within this project, I was in charge of: 1) the creation of homogeneous
seismic catalogs for Ecuador and bordering regions and 2) the calcula-
tion of slip rates on crustal faults. I also contributed as technical support
to other aspects (automatization of files and procedures, production of maps).

First, in order to assess the uncertainties related to the catalogs and
to provide alternative recurrence models, I was in charge of building two
homogeneous catalogs using only global datasets on the whole country.
The first one combined the ISC-GEM, ISC event and GCMT catalogs,
whereas the second one was based on the NEIC catalog. I developed an
automatic processing chain to integrate the most up-to-date global catalogs
and establish a priority scheme to select events. Magnitude conversion and
declustering process were also performed in order to obtain homogeneous
catalogs. This work is described in the section Earthquake Catalogs of the
paper, on Table 1, Table 2, Figure 3 and the declustering will be detailed on
the section 2.2 of this manuscript.

Second, I was in charge of the determination of active crustal faults
slip rates based on GPS measurements. For this part, I used the GPS
horizontal velocity field of 53 sites and the module pyacs developed by
J.-M. Nocquet. I tested two different methods, such as using faults as block
limits or calculating the relative horizontal velocity between pairs of GPS
located on either side of the fault. The method is detailed in section Geodetic
Slip Rates of the paper and the results are represented in Table 6 and Figure 9.

These hazard results were the starting point of my PhD work. I worked on
improving the estimation of the seismic potential of the Quito Fault, located
underneath Quito city, with the generation of an Interseismic Coupling (ISC)
map. Secondly, I studied the integration of interseismic coupling estimates
into recurrence models, to improve probabilistic seismic hazard assessment
for sites located on the Ecuadorian coast.
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A New Seismic Hazard Model for Ecuador

by C. Beauval, J. Marinière, H. Yepes, L. Audin, J.-M. Nocquet,* A. Alvarado,
S. Baize, J. Aguilar, J.-C. Singaucho, and H. Jomard

Abstract We present a comprehensive probabilistic seismic hazard study for

Ecuador, a country exposed to a high seismic hazard from megathrust subduction

earthquakes and moderate-to-large shallow crustal earthquakes. Building on knowl-

edge gained during the last decade about historical and contemporary seismicity,

active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence

models have been developed. We propose an areal seismic zonation for the seismo-

genic crustal, inslab, and interface sources, modified from Yepes et al. (2016), to

account for the information gained after the 2016Mw 7.8 Pedernales megathrust earth-

quake. Three different earthquake catalogs are used to account for uncertainties in

magnitude–frequency distribution modeling. This first approach results in low hazard

estimates for some areas near active crustal fault systems with low instrumental seis-

micity, but where geology and/or geodesy document rapid slip rates and high seismic

potential. Consequently, we develop an alternative fault and background model that

includes faults with earthquake recurrence models inferred from geologic and/or

geodetic slip-rate estimates. The geodetic slip rates for a set of simplified faults are

estimated from a Global Positioning System (GPS) horizontal velocity field from

Nocquet et al. (2014). Various scenarios are derived by varying the percentage of

motion that takes place aseismically. Combining these alternative earthquake recur-

rence models in a logic tree, and using a set of selected ground-motion models adapted

to Ecuador’s different tectonic settings, mean hazard maps are obtained with their

associated uncertainties. At the sites where uncertainties on hazard estimates are high-

est (difference between 84th and 16th percentiles > 0:4g), the overall uncertainty is

controlled by the epistemic uncertainty on the source model.

Introduction

During the last decade, the French–Ecuadorian scientific

collaboration has produced new results in most of the fields

required for a probabilistic seismic hazard assessment

(PSHA). Historical earthquakes were studied, providing new

locations and magnitudes (Beauval et al., 2010). A homo-

geneous earthquake catalog was compiled using historical

and instrumental earthquake catalogs (Beauval et al., 2013).

New insights into active tectonics significantly improved the

understanding of the active fault systems in the country (Alva-

rado et al., 2014, 2016; Baize et al., 2015). A new view of

Ecuador’s complex geodynamics has been developed, and

new seismic source zones for PSHA have been defined (Yepes

et al., 2016). Deformation observed through geodetic and seis-

mological measurements led to the development of better de-

tailed plate tectonic models for the region and a better

understanding of the Ecuadorian subduction interface’s ability

to produce large earthquakes (Chlieh et al., 2014; Nocquet

et al., 2014, 2016). The 2016 Mw 7.8 Pedernales earthquake,

responsible for more than 650 casualties and considerable de-

struction, was a terrible reminder that most of Ecuador faces a

high seismic risk. Aside from subduction zone earthquakes,

several strong earthquakes have occurred along the fault sys-

tem bordering the Interandean Valley during the last 500 years

(e.g., 1868 Mw 7.1–7.7 Ibarra earthquake; 1797 Mw 7.5–7.9

Riobamba earthquake; Beauval et al., 2010). Events that occur

along shallow crustal faults have the potential to be much

more destructive than megathrust events. To limit the number

of casualties, buildings should be built or reinforced to resist

strong ground motions. The goal of PSHA is to provide

authorities with a basis and reference from which ground mo-

tions should be considered for earthquake resistant design

(earthquake building code for design or retrofit).

PSHA methods were introduced in the late 1960s

(Cornell, 1968; Esteva, 1968) and are now considered state-

of-the-art methods to estimate seismic hazard in most

regional, national, and international seismic regulations (e.g.,
*Also at Institut de Physique du Globe de Paris, Sorbonne Paris Cité,

Université Paris Diderot, UMR 7154 CNRS, Paris, France.

Bulletin of the Seismological Society of America, Vol. 108, No. 3A, pp. 1443–1464, June 2018, doi: 10.1785/0120170259
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Eurocode 8, 2004; U.S. National Seismic Hazard Maps,

Petersen et al., 2014). PSHA aims to interpret knowledge

about the sources and the magnitudes that may occur in terms

of rates of occurrence (source model). Thanks to empirical

models, the ground motions produced by these future events

can be estimated (ground-motion model [GMM]). The

source model and the GMM are then combined to determine

the exceedance probabilities of ground-motion levels at sites

of interest over future windows of time.

The first Ecuadorian Building Code (EBC) was

launched in 1951 after the 1949 Mw 6.4 central Ecuador

crustal earthquake (∼6000 casualties). Although no seismic

hazard calculation was made, earthquake-resistant measures

were suggested for retrofitting damaged structures. Impor-

tant amendments based on the California Uniform Building

Code were made in 1976 after the small Mw 6.6 Esmeraldas

City interface earthquake, and a single seismic zone was

adopted for the country. Several PSHA academic studies

were performed in the 1990s (e.g., Bonilla et al., 1992)

but the results were not used for establishing zoning. In

2001, the EBC was updated (Código Ecuatoriano de la Con-

strucción [CEC], 2001), as a response to the 1998 Mw 7.1

Bahía de Caráquez interface earthquake. EBC relied on prob-

abilistic seismic hazard calculations (53 areal source zones

and two GMMs, one for subduction interface and one for

crustal earthquakes), and subdivided the country into four

seismic zones. The EBC was updated again in 2015 (Norma

Ecuatoriana de la Construcción [NEC], 2015), based on a

seismic zoning map outlined from an earlier version of

our seismic hazard model, calculated with a trial version

of the OpenQuake PSHA software. A new version is ex-

pected in light of recommendations still to be drawn from

the weak performance of structures during the 2016 Mw 7.8

interface earthquake. The new seismic hazard model pre-

sented here will be used to redefine the national seismic zon-

ing map and provide peak ground acceleration (PGA) and

associated uncertainty values for design response spectra.

In this study, we describe a comprehensive PSHA

calculation for Ecuador, relying on the most up-to-date

information available. This article is organized as follows.

First, the so-called area model is described, in which we

introduce the seismogenic sources, earthquake catalogs, and

magnitude–frequency distributions derived for all crustal,

interface, and intraslab sources. An alternative fault model

is developed, including the crustal faults for which relevant

data have been collected. Earthquake recurrence on these

fault sources is inferred from geodetic and/or geologic slip

rates. GMMs are selected from recently published models.

A logic tree is built exploring the uncertainty on the source

model and on the prediction of ground motions. Probabilistic

seismic hazard is calculated over a grid of rock sites (VS30

760 m=s) that cover the entire country to produce mean

probabilistic hazard maps and 16th and 84th percentile

hazard maps. Finally, a specific study is led in the cities

of Quito, Guayaquil, and Esmeraldas, in order to compare

the contributions of source model uncertainty and GMM un-

certainty to overall uncertainty.

Area Model

Seismogenic Sources

Yepes et al. (2016) proposed a set of seismogenic

sources to model earthquake occurrences along crustal shal-

low faults, at the subduction interface, and inside the slab at

depth (Figs. 1 and 2). The crustal area source model encloses

the main fault system that delineates the southern border of

the North Andean Sliver (NAS; Nocquet et al., 2014; Alva-

rado et al., 2016). This fault system includes four groups of

transpressive structures (namely the Puna, Pallatanga,

Cosanga, and Chingual fault systems, Fig. 1). In addition,

the Quito-Latacunga thrust fault system is enclosed in a

source zone connected in the north to the El Angel strike-slip

fault system; whereas the eastern sub-Andean thrust-and-

fold belt is split into the wide Cutucu source zone to the south

and the Napo source zone to the north (Fig. 1). In addition to

the Yepes et al. (2016) shallow crustal source zones, two

background sources are added to account for the diffuse

seismicity off the main fault systems (north and to south

of the Puna source, Fig. 1). The intraslab events are grouped

into volumes defined at increasing depths to model the dip-

ping slab (Fig. 2). The Grijalva rifted margin separates two

different subducting slabs with many more events in the

southern part (Farallon slab). The Farallon slab is modeled

by four dipping volumes; the Morona zone at 100–130 km

depth is the most seismically active. A precise description of

the crustal and intraslab sources can be found in Yepes

et al. (2016).

The subduction interface segmentation has been revised

with respect to the one described in the Yepes et al. (2016)

model after new interpretations emerged following the 16

April 2016 Mw 7.8 Pedernales megathrust earthquake. The

strongly coupled Esmeraldas segment, which hosted the

1906 Mw 8.4–8.8 earthquake (Kanamori and McNally,

1982; Di Giacomo et al., 2015; Ye et al., 2016), is now ex-

tended 50 km farther to the south (Fig. 1) with respect to the

model from Yepes et al. (2016). The 2016Mw 7.8 Pedernales

earthquake rupture stopped slightly south of the Esmeraldas

source zone southern boundary proposed in Yepes et al.

(2016) and Nocquet et al. (2016). The new Esmeraldas zone

includes the entire seismically highly coupled area modeled

by Chlieh et al. (2014) and Nocquet et al. (2016). The Bahia

source zone in Yepes et al. (2016), south of the Esmeraldas

source segment, is thus reduced with respect to the 2016

model and is now called La Plata. It includes a weakly locked

corridor as well as a highly locked shallow patch around La

Plata island imaged from Global Positioning System (GPS)

interseismic velocities (latitude −1:3°; Vallée et al., 2013;

Chlieh et al., 2014; Collot et al., 2017). This area appears

to release a significant fraction of strain by frequent slow-

slip events, possibly precluding the occurrence of large
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earthquakes (Collot et al., 2017). South of the Guayaquil Gulf,

the previous Talara source zone showing weak to negligible

interplate locking (Nocquet et al., 2014; Villegas-Lanza et al.,

2016) is now split into two smaller zones, Golfo de Guayaquil

(a transition zone) and Talara. Its southern limit corresponds to

the southwestern continuation of the Tumbes-Zorritos detach-

ment system and the Banco Peru fault (Witt et al., 2006) as the

possible southern boundary of the NAS in the Gulf of Guaya-

quil area. Overall, the proposed changes with respect to Yepes

et al. (2016) result in a zonation consistent with the interseis-

mic coupling information derived from GPS data and the his-

tory of large subduction earthquakes.

Earthquake Catalogs

Three Alternative Earthquake Catalogs. An earthquake

catalog is required to model magnitude–frequency distribu-

tions within each source zone. Building a unified and homo-

geneous earthquake catalog for seismic hazard assessment is a

difficult task that requires meticulous work. The resulting cata-

log inevitably suffers from significant uncertainties because

4.2  Mw < 5.0

5.0  Mw < 6.0

6.0  Mw < 7.0

7.0  Mw < 8.0

8.0  Mw < 9.0

Figure 1. Seismogenic sources: interface-dipping planes and crustal area sources, earthquakes with depth ≤ 35 km (Beauval et al., 2013;
BSSA2013 catalog, see the Earthquake Catalogs section). The color version of this figure is available only in the electronic edition.
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data that encompass different time periods, from historical and

early instrumental earthquakes to events recorded by advanced

instrumental networks, are gathered. Alternative reliable cata-

logs provide alternative recurrence models and a means to

quantify the uncertainty on the recurrence. To explore uncer-

tainty in the earthquake catalog, three alternative earthquake

catalogs are developed for the spatial window −7° to �4° in

latitude, and −82° to −74° in longitude.

• The Beauval et al. (2013; hereafter, BSSA2013) homo-

geneous and unified earthquake catalog, covering the time

window 1541–2009, was used in the PSHA for Quito

(Beauval et al., 2014). It includes historical and instrumen-

tal data from local and global earthquake catalogs. As

described in detail in Beauval et al. (2013), work has been

performed to merge the different reliable catalogs available

at the time, to identify the best solutions in magnitude and

location, and to homogenize earthquake magnitudes.

• The International Seismological Centre (ISC)-based earth-

quake catalog, covering the time window 1901–2014

(Table 1), is built from three global instrumental catalogs:

the new global ISC-Global Earthquake Model (GEM) cata-

log (Storchak et al., 2015), the ISC event catalog, and the

Global Centroid Moment Tensor (CMT) catalog. This

catalog is more homogeneous in terms of magnitude than

the BSSA2013 catalog. It is possible to ignore historical

earthquakes because recurrence models rely mostly on the

4.2  Mw < 5.0

5.0  Mw < 6.0

6.0  Mw < 7.0

7.0  Mw < 8.0

8.0  Mw < 9.0

Figure 2. Seismogenic sources: intraslab sources (volumes), earthquakes deeper than 35 km (BSSA2013 catalog, see the Earthquake
Catalogs section). The color version of this figure is available only in the electronic edition.
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most populated magnitude bins based on the instrumental

part of the catalog (however, historical earthquakes are

considered when proposing maximum magnitudes). For

earthquakes with mb and Ms teleseismic magnitudes, Mw

proxies are estimated by applying Lolli et al. (2014) global

conversion equations. Catalog details are provided in the

second part of this section.

• The National Earthquake Information Center (NEIC)-

based catalog is provided by the NEIC of the U.S.

Geological Survey (see Data and Resources). It includes

the NEIC solutions, as well as solutions from other global

and local catalogs. Since the 1970s, the NEIC delivers

solutions earlier and uses fewer stations than the ISC.

Although it is not as complete as the ISC Bulletin, it ad-

vantageously covers the time window 1900–2017, includ-

ing the 2016 megathrust event. For earthquakes with mb

and Ms teleseismic magnitudes, Mw proxies are estimated

applying Lolli et al. (2014) conversion equations.

In the final logic tree, a weight of 0.5 is attributed to the

BSSA2013 catalog branch because this catalog is considered

the most complete in terms of both instrumental and histori-

cal earthquakes. A weight of 0.4 is attributed to the ISC-

based catalog branch, as it contains improved locations

and magnitudes for instrumental events with Mw ≥ 5:5.

Lastly, a weight of 0.1 is attributed to the NEIC-based

catalog branch. When modeling earthquake recurrence in the

source zones, the NEIC-based catalog appeared to be the

least complete. The ISC-based catalog and the NEIC-based

catalog are declustered and completeness time periods are

identified using the same procedures as for the BSSA2013

catalog (see details in Beauval et al. 2013). Around 20%

of clustered events are discarded from the ISC-based and

NEIC-based catalogs. Table 2 summarizes the time period

of completeness obtained from graphics that represent the

cumulative number of events versus time.

Building the ISC-Based Catalog. The final homogenized

ISC-based catalog is displayed in Figure 3 (magnitudes of

events vs. time) and summarized in Table 1. It is built from

the ISC-GEM, ISC, and Global CMT catalogs. The ISC-GEM

instrumental catalog is updated regularly (1900–2013,

Storchak et al., 2015; v. 4.0 released in January 2017). This

catalog results from an extensive effort to collect and digitize a

new parametric earthquake bulletin. Hypocenters have been

computed from the original arrival-time data using the same

technique and velocity model (Di Giacomo et al., 2015). Uni-

form procedures have been applied to determine magnitude

throughout the entire catalog; surface wave Ms and short-

period body wave mb were recomputed; Mw magnitudes

are derived either from the Global CMT project (Dziewonski

et al., 1981; Ekström et al., 2012), or computed from pub-

lished estimates of seismic moment or from proxy values ob-

tained by converting theMs and mb magnitudes. Overall, 212

earthquakes (Mw 5.1–8.4) fall in our spatial window of inter-

est, including five events that belong to the ISC-GEM supple-

ment catalog (see Storchak et al., 2015).

Solutions for earthquakes with lower magnitudes or

earthquakes in the early instrumental period that were not

included in the ISC-GEM project are retrieved from the

ISC event catalog. The ISC Bulletin is the most complete

source of earthquake solutions on a global scale. It reports

both revised and preliminary locations using a merged data-

set of arrival times provided by global, regional, and local

Table 1
International Seismological Centre (ISC)-Based Earthquake Catalog, All Events with Proxy Mw ≥ 4:2

Catalog Author Type Magnitude

Minimum

Magnitude

Maximum

Magnitude

Minimum

Year

Maximum

Year

Total Number

of Events

GEM Various Mw 5.1 7.8 1920 2000 106

GEM Global CMT Mw 5.56 8.09 1965 2013 101

GEM supp Various Proxy Mw 6.12 8.35 1906 1928 5

Global CMT Global CMT Mw 4.8 5.8 1977 2013 169

ISC Global CMT Mw 4.9 6.3 2007 2014 7

ISC ISC Proxy Mw from MS 6.4 6.5 1952 1953 2

ISC ISC Proxy Mw from mb* 4.28 6.16 1964 2014 2022*

ISC NEIC Proxy Mw from Ms 4.2 4.2 1990 1990 1

ISC NEIC Proxy Mw from mb* 4.28 5.6 1985 2014 25*

ISC NEIS Proxy Mw from mb* 4.28 5.21 1971 1978 44*

ISC USCGS Proxy Mw from mb* 4.28 6.02 1965 1965 18*

ISC ABE1 mb surrogate for Mw 7.1 7.2 1917 1937 2

ISC AN2 Ms surrogate for Mw 7 7 1907 1912 2

ISC P&S Mw 7.2 7.2 1901 1901 1

ISC PAS Ms surrogate for Mw 6.5 6.8 1954 1958 4

ISC PAS Ms surrogate for Mw 5.5 6.8 1930 1950 21

GEM, Global Earthquake Model; CMT, Centroid Moment Tensor; NEIC/NEIS, National Earthquake Information Center; USCGS,

United States Coast and Geodetic Survey; ABE1, Abe (1981); AN2, Abe and Noguchi (1983); P&S, Pacheco and Sykes (1992);

PAS, Gutenberg and Richter (1965).

*Magnitude mb converted in Mw applying Mw � exp�0:741� 0:210mb� − 0:785 (Lolli et al., 2014, global equation).
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contributing institutions. Here, we use the ISC event catalog,

which provides a preferred (prime) location and the list of all

magnitudes available for an event. The reviewed period ex-

tends to 2014. When available, the location calculated by the

ISC is always selected as prime location. In the early instru-

mental period (1900–1963), there were 32 events in the ISC

catalog that were not included in the ISC-GEM catalog

(Fig. 3). Solutions for these events are more uncertain than

ISC-GEM solutions; nonetheless they are taken into account.

Of these events, 27 have a magnitude estimated by Pasadena

(PAS) (Gutenberg and Richter, 1965), 1 by P&S (Pacheco

and Sykes, 1992), 2 by AN2 (Abe and Noguchi, 1983),

and 2 by ISC. Magnitudes in the early instrumental period

are considered surrogates to the moment

magnitude. From 1964 on, the list of mag-

nitudes available can be long and a priority

scheme is required. For each event, the

preferred magnitude is selected from the

following magnitude authors list, applying

a ranking for authors and magnitude type:

Mw Global CMT/HRV > Mw NEIC > mb

ISC > mb NEIC or NEIS or United States

Coast and Geodetic Survey (decreasing or-

der of priority). Because many Global

CMT Mw magnitudes are lacking in the

ISC event catalog, we extracted them di-

rectly from the original Global CMT cata-

log (see Data and Resources). Body-wave

magnitudes mb and surface-wave magni-

tudes Ms are converted into Mw by

applying Lolli et al. (2014) global equa-

tions (Fig. 4).

The 2319 earthquakes from the ISC

event catalog (Mw proxy ≥ 4:2) are ap-

pended to the 212 events from the ISC-

GEM catalog (Mw ≥ 5:5, one exception

with Mw 5.1, Table 1). The final ISC-based catalog contains

2531 events with Mw ≥ 4:2 (Fig. 3). For the first half of the

century (1900–1963), only magnitudes down toMw 5.5 are re-

ported in the catalog. Original magnitude types and authors are

summarized in Table 1, showing that around 88% of all events

in the final catalog are described by a magnitude mb converted

into Mw with the Lolli et al. (2014) equation.

Magnitude–Frequency Distributions

The most widely used model to estimate frequencies of

earthquakes in seismogenic sources is the Gutenberg–

Richter model (Gutenberg and Richter, 1944). The loga-

rithm of the number of earthquakes decreases linearly with

magnitude in most source zones in Ecuador. However, de-

pending on the available data, the Gutenberg–Richter

parameters are sometimes poorly constrained and the un-

certainty on the recurrence model needs to be taken into

account. Even in sources with many events, the modeling

of the recurrence bears significant uncertainties: uncertain-

ties on earthquake hypocentral locations and magnitudes,

the scheme established to select the best solutions, the

choice of magnitude conversion equations, the identifica-

tion of clustered events, the determination of completeness

periods, the magnitude range and magnitude bin width

used to model the recurrence, and the method selected

to estimate recurrence parameters. Therefore, we decided

to use three alternative earthquake catalogs, each with their

own advantages and disadvantages, as a way to estimate

the uncertainty on the recurrence model within the source

zones. The three alternative recurrence models are included

in the logic tree.

Table 2
Completeness Periods per Magnitude Interval for the Three

Homogenized and Declustered Earthquake Catalogs

Magnitude of

Completeness

ISC-Based

Catalog

NEIC-Based

Catalog

BSSA2013

Catalog

4.2 1969 1973 1995

4.5 1964 1973 1963

4.8 1964 1973 1963

5.1 1964 1973 1963

5.4 1964 1971 1963

5.7 1957 1965 1963

6.0 1925 1930 1900

6.3 1925 1920 1900

6.6 1925 1920 1900

6.9 1900 1900 1900

7.2 1900 1900 1800

≥ 7:5 1900 1900 1750

BSSA2013, Beauval et al. (2013).

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Time (years)

4.5

5

5.5

6

6.5

7

7.5

8

8.5

M
w

Mw ISC-GEM catalog

Mw(GCMT) ISC-GEM catalog

Mw(GCMT) GCMT catalog

Mw(GCMT) ISC Bulletin

Figure 3. Final International Seismological Centre (ISC)-based earthquake catalog,
built from the ISC-Global Earthquake Model (GEM), ISC, and Global Centroid Moment
Tensor (GCMT) catalogs, homogenized in magnitude Mw. The color version of this
figure is available only in the electronic edition.
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In the Fault and Background Model section, we present

a set of the best-characterized crustal fault sources. For each

crustal source zone that encloses a fault, maximum magni-

tude bounding the recurrence model is inferred from the area

of the fault by applying the Leonard (2010) scaling relation-

ship (see Tables 5 and 6, and the Fault and background

Model section). In two sources, Pallatanga and El Angel,

the magnitude of the largest historical event estimated from

intensities (67th percentile, Beauval et al., 2010) is larger

than the magnitude obtained from the scaling relationship;

therefore, the maximum observed magnitude is used instead.

For intraslab sources, an arbitrary 0.5 degree is added to the

maximum observed magnitude. The interface source zones

are modeled as dipping planes. The maximum magnitudes

for the segments of the interface source zones are obtained

from the Strasser et al. (2010) scaling relationship for inter-

face events (Mw � a� b log10�L�, in which a � 4:868 and

b � 1:392), considering the maximum length of the segment

at 50 km depth for Esmeraldas (627 km) and at 40 km depth

for La Plata (181 km), Golfo de Guayaquil (134 km), and

Talara (246 km). Maximum magnitudes for all sources are

given in Table 3.

Figure 4. Magnitude conversion equations, mb into Mw. Lolli
et al. (2014) is used for the ISC-based and National Earthquake
Information Center (NEIC)-based catalogs (see the Earthquake Cat-
alogs section). Beauval et al. (2013) is used in the BSSA2013 cata-
log. The color version of this figure is available only in the
electronic edition.

Table 3
Area Model, Parameters of Magnitude–Frequency Distributions, and Supplementary Information for

Each Source Zone (relying on the BSSA2013 catalog)

Zone a b λMw≥4:5
M0 for GR

Number of

Events ≥ M0 Mmaxobs Mmax Depth Range

Cosanga 2.7701 0.71 0.3866 4.8 13 7.1 7.8 0–35*

Moyobamba 4.4484 0.98 1.082 4.8 28 6.9 7.7 0–35*

Cutucu 5.4443 1.17 1.436 4.5 69 7.0 7.8 0–35*

Chingual 3.0831 0.98† 0.046 4.2 3 7.4 7.6 0–35*

Napo 3.4369 0.98† 0.106 4.5 5 5.6 7.8 0–35*

Pallatanga 2.8012 0.73 0.341 4.5 18 7.6 7.9 0–35*

Quito Latacunga 2.6797 0.70 0.336 4.5 17 6.4 7.3 0–35*

Puna 3.5830 0.98† 0.149 4.5 7 5.2 7.5 0–35*

El Angel 3.4503 0.98† 0.127 4.5 9 7.2 7.7 0–35*

Yaquina Shallow 6.7516 1.39 3.012 4.8 55 6.1 6.6 0–50*

Esmeraldas 4.0002 0.81 2.341 4.8 74 8.8(8.4‡) 8.8 3–50§

La Plata 3.5598 0.80 0.915 4.5 46 6.7 8.0 3–40§

Golfo de Guaya 3.4765 0.84 0.492 4.5 25 7.5 7.8 3–40§

Talara 4.3639 0.91 1.916 4.8 53 7.1 8.2 3–40§

Loja 6.8273 1.33 6.718 4.8 130 7.2 7.7 35–100*

Morona 4.4742 0.89 2.958 4.8 84 7.3 7.8 100–130*

Puyo 5.3015 1.05 3.6 4.8 88 7.5 8.0 130–300*

Subvolcanic arc 5.0710 1.11 1.141 4.5 55 6.7 7.2 35–180*

Caldas cluster 4.7058 1.05 0.987 4.8 24 6.7 7.2 35–250*

Loreto 7.3757 1.62 1.279 4.8 20 7.5 8.0 130–180*

BGN∥ 4.5245 1.09 0.428 4.8 10 6.4 7.0 0–35*

BGS∥ 4.5428 1.04 0.697 4.5 36 7.2 7.5 0–35*

a- and b-values of the Gutenberg–Richter (GR) model using the BSSA2013 catalog, annual exceedance rate of

Mw 4.5, minimum magnitude used in the recurrence modeling, number of events to derive the model (inside

periods of completeness), maximum observed magnitude, and maximum magnitude bounding the recurrence model.

*A probability density function for the depth is built from the depths of earthquakes belonging to each source,

distributing earthquakes between the minimum and maximum depths.
†b-value estimated over the whole Cordillera and coastal plain.
‡Magnitude Mw of the 1906 event estimated 8.4 in the ISC-GEM catalog (Di Giacomo et al., 2015).
§The recurrence model is built from earthquakes falling inside the volume, then distributed over a dipping fault plane

extending from the minimum to the maximum depth.
∥Two background sources added with respect to Yepes et al. (2016) crustal model.
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A set of recurrence parameters (a- and b-values) is ob-

tained from each earthquake catalog, yielding three alternative

areal source models. Recurrence parameters are estimated using

the maximum-likelihood method of Weichert (1980), with a 0.3

magnitude interval and a minimum magnitude varying from

Mw 4.2 to 4.8, depending on the source. Table 3 summarizes

the values obtained from the BSSA2013 catalog. Figure 5 dis-

plays the recurrence curves modeled from the three alternative

earthquake catalogs for eight example sources that contributed

significantly to the hazard. For intraslab sources, all magnitude–

frequency distributions except one (Loreto) are well constrained

and rely on many events (55–130 events inside periods of com-

pleteness), and the three earthquake catalogs provide close

recurrence curves. Recurrences obtained for Loja (35–100 km

depth), Morona (100–130 km), and subvolcanic arc (35–

180 km) are displayed in Figure 5. The thickness of the

Morona source is only 30 km; this source presents the highest

earthquake density among intraslab sources.

Magnitude–frequency distributions are rather well

constrained in only five out of nine crustal sources (Cutucu,

Moyobamba, Pallatanga, Cosanga, and Quito-Latacunga).

Table 4
Parameters Used in the Probabilistic Seismic Hazard

Assessment (PSHA) Calculation

Parameter Value Used

Mmin Mw 5.0

Maximum distance 250 km

Truncation of σ �4

VS30 760 m=s

Minimum magnitude used for integrating the magnitude–

frequency distributions, maximum source–site distance taken

into account, truncation level of the Gaussian predicted by the

GMM, and VS30 of the generic sites.

Table 5
Fault Parameters—Geologic Model

Fault Mechanism L (km)*
Slip Rate
(mm=yr)

Maximum
Depth Dip (°) Width

Alpha
(10−4)†

Mmax

from
A‡ Mmax Final b-Value§

a-Value
Calculated

Chingual SS 136 9.8 18 90 18 0.2012 7.4 7.6 0.98 4.65

Cosanga R 189 9.0 25 40 36 0.2088 7.8 7.8 0.71 3.0

Quito R 80 1.0 25 55 28 0.2411 7.3 7.3 0.70 1.93

Latacunga R 48 2.1 25 45 32 0.2626 7.2 7.2 0.70 2.27

Pallatanga SS 180 3.1 18 75 19 0.1920 7.5 7.9 0.73 2.53

Puna SS 172 6.0 18 90 18 0.1935 7.5 7.5 0.98 4.42

SS, strike slip; R, reverse.

*Length of the fault estimated from the trace.
†Ratio of the average displacement (Dav) in the largest earthquake rupturing the fault to the fault length. Dav estimated from length L, applying

Leonard (2010) scaling relationship: Dav � 10
0:833×log10�L�−1:34 for strike-slip events, and Dav � 10

0:833×log10�L�−1:30 for reverse events.
‡Maximum magnitude estimated from the area A � LW, applying Leonard (2010) scaling relationship: Mw � log10�A� � 3:99 for strike-slip

events, and Mw � log10�A� � 4:00 for reverse events.
§b-values of area source zones enclosing the fault systems (in this case, based on the BSSA2013 catalog).

Table 6
Fault Parameters—Geodetic Model (No Aseismic Component)

Fault Mechanism L (km)*
Slip Rate
(mm=yr)

Maximum
Depth Dip (°) Width

Alpha
(10−4)†

Mmax

from A‡ Mmax Final b-Value§
a-Value

Calculated

Chingual SS 136 8.1 18 90 18 0.2012 7.4 7.6 0.98 4.57

Cosanga R 189 9.5 25 40 36 0.2088 7.8 7.8 0.71 3.02

El Angel SS 118 2.0 18 90 18 0.2061 7.3 7.7 0.98 3.98

Quito R 80 4.5 25 55 28 0.2411 7.3 7.3 0.70 2.59

Latacunga R 48 1.0 25 45 32 0.2626 7.2 7.2 0.70 1.95

Pallatanga SS 180 7.4 18 75 19 0.1920 7.5 7.9 0.73 2.91

Puna SS 172 7.1 18 90 18 0.1935 7.5 7.5 0.98 4.50

Napo R 151 2.5 25 30 46 0.2168 7.8 7.8 0.98 4.29

*Length of the fault estimated from the trace.
†Ratio of the average displacement (Dav) in the largest earthquake rupturing the fault to the fault length. Dav estimated from length L, applying

Leonard (2010) scaling relationship: Dav � 10
0:833×log10�L�−1:34 for strike-slip events, and Dav � 10

0:833×log10�L�−1:30 for reverse events.
‡Maximum magnitude estimated from the area A � LW, applying Leonard (2010) scaling relationship: Mw � log10�A� � 3:99 for strike-slip

events, and Mw � log10�A� � 4:00 for reverse events.
§b-values of area source zones enclosing the fault systems (in this case, based on the BSSA2013 catalog).
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Figure 5. Truncated exponential magnitude–frequency distributions for example source zones significantly contributing to the hazard in
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Crustal earthquakes were extracted from the earthquake

catalog using a cutoff value of 35 km (Yepes et al.,

2016). The models for the Cutucu (Fig. 5) and Moyobamba

sources are derived from 69 (Mw ≥ 4:5) and 28 (Mw ≥ 4:8)

events, respectively, inside completeness time periods

(numbers given for the BSSA2013 catalog). The Cutucu

zone is expected to significantly influence the hazard for

sites in Ecuador. The influence of Moyobamba will be

smaller because it is located in Peru at distances greater than

60 km from Ecuador’s southeastern border. There are fewer

events inside the Pallatanga, Cosanga, and Quito-Latacunga

source zones, but there are still enough to derive a recur-

rence model (Table 3 and Fig. 5). In the four remaining

source zones (Chingual, El Angel, Napo, and Puna), there

are too few events to derive reliable recurrence parameters,

and the model is built from the observed cumulated annual

rate at the minimum magnitude considered associated with

a regional b-value (calculated over the whole Cordillera and

coastal plain area).

Magnitude–frequency distributions are rather well

constrained for interface sources. In the Esmeraldas zone,

the model is built from 74 events with magnitude higher or

equal to Mw 4.8 inside the completeness periods (down to

50 km depth). The recurrence models inferred from the

BSSA2013 and NEIC-based catalogs are similar for mag-

nitudes larger than Mw 6.0, but the recurrence model in-

ferred from the ISC-based catalog predicts much higher

rates (Fig. 5). Recurrence parameters for La Plata are rather

well constrained, estimated from magnitudes Mw 4.5 to 6.7

(maximum observed magnitude in the BSSA2013 catalog).

The recurrence model is then extrapolated up to the maxi-

mum magnitude Mw 8.0 (Fig. 5). The Golfo de Guayaquil

source is the less active of the interface sources with a re-

currence curve established from 25 events with Mw ≥ 4:5

(Table 3). North of −2:5° latitude, sites on the Ecuadorian

coast located over the interface rupture plane are thus

at short distances from the rupture plane (shortest distances

20–30 km for the coastal region between Pedernales and

Esmeraldas, Fig. 1). South of −2:5° latitude, sites in

Ecuador are at greater distances from the interface rupture

plane.

We notice that for the crustal source Cutucu and the in-

terface source Esmeraldas, the rates based on the ISC-based

catalog are significantly larger than the rates determined

from the BSSA2013 catalog for magnitudes larger than

Mw ∼ 5:5 (the opposite occurs for magnitudes lower than

Mw ∼ 5:5). One explanation might be the use of the Lolli

et al. (2014) equation to convert mb magnitudes into Mw in

the ISC-based catalog, whereas an equation developed from

data in and around Ecuador, very similar to the global

Scordilis (2006) equation, was used in BSSA2013. Figure 4

displays these conversion equations. The Lolli et al. (2014)

equation has been carefully developed on a much larger

global dataset than previous equations, applying a chi-square

general orthogonal regression method that accounts for

measurement errors. Considering Lolli et al. (2014) the most

reliable conversion equation, the BSSA2013 equation might

overestimate Mw for magnitudes lower than mb ∼ 5:2 and

underestimate Mw for larger mb. As observed in these two

sources, the decisions taken to homogenize an earthquake

catalog can strongly impact the Gutenberg–Richter curve

modeling. However, this discrepancy is only observed in

some sources, thus the choice of the conversion equation

might not be an unique explanation.

For each source, the three earthquake catalogs yield

three recurrence models, which are considered representative

of the uncertainty on the recurrence modeling. These alter-

native models are included in the logic tree.

Selection of Ground-Motion Models

Several GMMs must be selected from published robust

models to represent the epistemic uncertainty in ground-

motion prediction (Stewart et al., 2015). Although the mod-

els developed for crustal events are numerous, there are fewer

models predicting ground motions for subduction interface

and intraslab events (Douglas and Edwards, 2016). When

strong-motion recordings are available, the models that best

fit the data should be selected. However, for the selection to

be reliable, the accelerometric data must be well distributed

over a large magnitude range (from moderate magnitudes to

magnitudes close to the maximum magnitude) and a large

distance range (including short distances that control the

hazard). Except for earthquakes at the Esmeraldas interface,

such a dataset does not yet exist for Ecuador. The strong-

motion network started in 2009 with nine stations installed

in the framework of the French–Ecuadorian research project

Andes du Nord (ADN). At present, the national strong-

motion network (Red Nacional de Acelerógrafos [RENAC])

includes more than 80 stations, progressively installed since

2011. The network is still in development, with ∼30% of the

stations telemetered and the characterization of the sites

undergoing.

Three robust GMMs are considered for subduction

earthquakes: the global model Abrahamson et al. (2016;

hereafter, Aetal2016), the Chilean model Montalva et al.

(2017; hereafter, Metal2017), and the Japanese model Zhao

et al. (2006; hereafter, Zetal2006). The Aetal2016 model is

intended to replace older global GMMs. The Metal2017

median model is based on Chilean data, using the same

functional form as the Aetal2016 model. The Aetal2016

and Zetal2006 models were ranked among the best-fitting

models in several studies comparing predictions with re-

cordings from South America (e.g., Arango et al., 2012;

Beauval, Cotton, et al., 2012). Beauval et al. (2017) com-

pared the ground motions from the 2016Mw 7.8 Pedernales

megathrust earthquake and its two largest aftershocks

(Mw 6.7 and 6.9) to the predictions of these three GMMs.

The comparison between observed and predicted ground

motions showed that the three models properly predict

the amplitudes attenuation in the fore-arc domain. The

analysis also demonstrated that the high-frequency attenu-
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ation is stronger for sites located in the back-arc region with

respect to sites located in the fore-arc region, an effect

that only the Aetal2016 model takes into account. However,

the contribution of interface subduction sources is negli-

gible for rock sites in the arc and back-arc region in Ecuador

(for the PGA and return periods ≥ 475 yrs, as will be shown

in the Hazard Estimates for Area Source Models section),

so the three models are included in the ground-motion logic

tree (Fig. 6). The Pedernales earthquake produced a large

sequence of aftershocks, with eight events having magni-

tude equal to or higher than Mw 6.0. Candidate GMMs

should be tested against this dataset by applying quantita-

tive methods to potentially refine the selection (e.g., Scher-

baum et al., 2009; Beauval, Tasan, et al., 2012). Zhao et al.

(2016) published an update of the 2006 interface model (as

well as crustal and inslab models), but we need to test it

against observations before using it.

For intraslab sources, the same three models are selected.

Intraslab volumes are defined down to 300 km depth (Table 3).

Aetal2016 recommend a depth limit of 120 km for intraslab

events when applying the model. The Zetal2006 and

Metal2017 databases include intraslab events with focal

depths shallower than 125 and 180 km, respectively.

Aetal2016 and Zetal2006 must be extrapolated at depths

larger than 120–130 km—four sources include such large

depths, including the very active Puyo source (130–300 km,

Yepes et al., 2016). We calculated the hazard with and without

these sources, and we observed that their contribution is not

significant. Historical intraslab earthquakes in Ecuador have

shown that intensities up to VI–VII are observed at the coast

for large deep intraslab earthquakes (e.g., 1971 Mw 7.4,

120 km depth, located in the Morona source), whereas much

lower intensities are observed for sites above the hypocenter.

This effect, related to the lower attenuation of waves inside the

slab (high-Q zone, Fukushima, 1997), is not accounted for in

current GMMs.

Because the RENAC database does not include enough

crustal events of significant magnitude to perform a meaning-

ful test against GMM candidates, the selection of active crustal

GMMs take inspiration from the outputs of the South America

RiskAssessment (SARA)GMMworking group (Drouet et al.,

2017). GMMs were tested against a homogeneous strong-

motion database gathering data from Colombia, Chile,

Ecuador, and Venezuela. The dataset from Ecuador includes

only small events with magnitudes between Mw 4.0 and 5.0.

The log-likelihood method was applied to rank the models

according to their fit to the data (Scherbaum et al., 2009).

Obtained log-likelihood values (see Scherbaum et al., 2009)

are quite high for all models (2.8–3.7 for the PGA and 0.2 s,

table 2 in Drouet et al., 2017), indicating that none of the

models are able to satisfactorily predict the South American

dataset. Drouet et al. (2017) note that the observed variability

is greater than the GMMs prediction, suggesting that more

efforts are needed to improve the database, particularly the

estimation of VS30 values. According to Garcia et al. (2017),

the three models finally selected for SARA hazard calcula-

tions are Akkar et al. (2014), Bindi et al. (2014), and Boore

et al. (2014). For hazard calculations in Ecuador, we decided

to select Akkar et al. (2014), which was established from

Mediterranean and Middle East strong motions (Reference

Database for Seismic Ground-Motion in Europe [RESORCE]

data bank). From the Next Generation Attenuation-West2

models, developed from western United States and inter-

national data, the Chiou and Youngs (2014) model is preferred

over the Boore et al. (2014) model because it accounts for

some factors that affect earthquake ground motions (e.g.,

hanging wall and rupture directivity). Lastly, rather than se-

lecting a second model based on the RESORCE data bank

(Bindi et al., 2014), the Zhao et al. (2006) Japanese model is

selected. The equation is based on data recorded in a tectonic

environment close to the Ecuadorian Cordillera hosting many

volcanoes. Tested against diverse strong-motion datasets, this

equation proved to be robust and stable over the full frequency

range (e.g., Beauval, Tasan, et al., 2012; Delavaud et al.,

2012). The VS30 values must be mapped to site classes follow-

ing table 2 in Zhao et al. (2006). The final GMM logic tree is

described in Figure 6.

In this study, probabilistic seismic hazard calculations

are performed with the OpenQuake engine (Pagani, Monelli,

Weartherhill, Danciu, et al., 2014; GEM, 2017). OpenQuake

represents the seismogenic source as a finite rupture. For an

area source, a mesh is created over the area and virtual rup-

tures are generated at each node. The scaling of the rupture

depends on the scaling relation selected and the orientation

on a set of parameters (nodal plane distribution, hypocentral

depth distribution, and upper and lower seismogenic depths;

see Monelli et al., 2014). As for fault sources, using the sim-

ple fault typology (here for crustal faults) or the complex

fault typology (for interface segments), the ruptures are dis-

tributed along the fault surface. A mesh is created across the

Figure 6. Ground-motion logic tree.
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fault surface and individual ruptures are represented by a

subset of nodes within that mesh. Rupture distance is deter-

mined from the shortest distance between the target site and

the individual rupture. Joyner and Boore distance is deter-

mined from the shortest distance between the target site

and the surface projection of the fault. More details can

be found in the OpenQuake-engine Hazard Book (Pagani,

Monelli, Weatherill, and Garcia, 2014).

Hazard Estimates for Area Source Models

Three hazard maps corresponding to the three alterna-

tive area source models are calculated for the PGA and for

the return period 475 yrs. Results based on recurrence param-

eters obtained from the BSSA2013, ISC-based, and NEIC-

based catalogs are displayed respectively in Figure 7a–c.

Parameters used to perform PSHA calculations throughout

the article are indicated in Table 4. These maps are mean

hazard maps, because the full ground-motion prediction

logic tree is considered. South of latitude −2°, acceleration

values vary in a 0:1g interval from one model to the other,

with the highest hazard value 0:4–0:5g from the ISC-based

model (highest recurrence rates for the Cutucu source zone).

Inside the Quito source zone accelerations also differ within

a 0:1g interval, with the highest accelerations (0:5–0:6g)

obtained using the BSSA2013 model. The difference in ac-

celeration is larger for sites located inside the Cosanga source

zone; the highest accelerations are obtained using the

BSSA2013 model, in agreement with the recurrence models

obtained in this source zone (Fig. 5). The most striking

difference is obtained for sites at the coast north of latitude

−1°, located above the Esmeraldas source rupture plane.

The recurrence model determined from the ISC-based cata-

log leads to much higher PGA values (0:5–1:0g) than the

model that relies on the BSSA2013 catalog (0:3–0:5g) or

on the NEIC-based catalog (0:3–0:6g).

The mean hazard map that relies on the three alterna-

tive area models with associated weights, combined with

the full GMM logic tree, is displayed in Figure 8a. At

475 yrs, and PGA, accelerations are higher than 0:4g at sites

on the coast, with maximum values around 0:6–0:7g at lat-

itudes around�0:7°. In the Cordillera, values vary between

0:2g and 0:5g, with the highest hazard for sites inside the

Quito-Latacunga, Cosanga, Pallatanga, and Cutucu source

zones (see Fig. 1 for names of source zones). In addition,

to identify which sources control the hazard, accelerations

at 475-yr return period resulting from interface sources only,

crustal sources only, and intraslab sources only are determined

(Fig. 8b,d). Each mean hazard map is based on the three alter-

native source models (with associated weights) and the full

GMM logic tree. For sites located on the coast, the inter-

face-dipping planes fully control the hazard. For sites located

inside the Cordillera, located north of −2°, contributions come

mainly from shallow crustal sources, whereas for sites located

south of −2°, contributions come both from intraslab and

crustal sources.

The area model exhibits low hazard levels in three

crustal sources in which late Holocene active faulting has

been evidenced (sources El Angel, Chingual, and Puna).

The El Angel source is characterized by low seismicity levels

in the instrumental period, although a destructive earthquake

occurred in 1868 with a magnitude Mw 7.2 estimated from

intensity observations (7.1–7.7 within 67% confidence inter-

(a) (b) (c)

Figure 7. Mean hazard map at 475-yr return period, for peak ground acceleration (PGA) (VS30 760 m=s), using one area source model
and the full ground-motion model (GMM) logic tree. Area model based on (a) the BSSA2013 earthquake catalog (50% weight in the final
logic tree); (b) the ISC-based earthquake catalog (40% weight); and (c) the NEIC-based earthquake catalog (10% weight). The color version
of this figure is available only in the electronic edition.
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val, Beauval et al., 2010). The seismicity level is also low in

the Chingual source zone, although in 1834 a strong earth-

quake destroyed Sibundoy in the northern edge of the zone

(Mw 7.2–7.6, Beauval et al., 2013). Various tectonic and geo-

detic studies have demonstrated the activity of the El Angel

and Chingual fault systems (see Yepes et al., 2016). Because

these faults represent a significant threat to the dense popu-

lation living in the Andean Cordillera, they must be ac-

counted for in the seismic hazard assessment. In the Puna

source zone, there is no known historical earthquake, but

the activity of the Puna fault system has been demonstrated,

with geologic slip rates up to 5:5–6:6 mm=yr (Dumont et al.,

2005). A slightly higher value of 7 mm=yr was found by

deriving the relative motion between the North Andean

and Inca slivers (Nocquet et al., 2014). A fault model is

therefore developed to integrate the recent

geodetic and active tectonics results.

Fault and Background Model

Here, we describe how we developed

a fault model with earthquake recurrences

inferred from geologic and/or geodetic slip

rates. Because knowledge about these

crustal faults is still incomplete, strong hy-

potheses are necessary to propose fault-

plane geometries and evaluate the fault

capacity to produce earthquakes. How-

ever, the fault-source model offers the ad-

vantage of including existing information

about active faults, which is not integrated

in the area source model. Interface and in-

slab sources remain unchanged.

Defining the Set of Active Faults

Along the Ecuadorian margin, oblique

subduction induces lithospheric deforma-

tion of the overriding continental plate. Ac-

tive continental deformation is presently

localized along a major fault system, con-

necting several fault segments from the

Gulf of Guayaquil to the eastern Andean

Cordillera. The crustal deformation is

concentrated along the Chingual-Cosanga-

Pallatanga-Puna (CCPP) fault system, the

Quito-Latacunga fault system, the Eastern

Subandean belt, and the El Angel fault sys-

tem (figs. 1 and 7 in Yepes et al., 2016;

Alvarado et al., 2014, 2016; Baize et al.,

2015). The CCPP can be considered a

continental microplate boundary because

it accommodates around 8–10 mm=yr of

relative motion between the NAS (Fig. 9)

and South American plate (SOAM; Noc-

quet et al., 2014). Its segmentation com-

prises northeast-striking right-lateral transpressional faults

from the Gulf of Guayaquil into the Andean Cordillera (Puna

and Pallatanga), with continuation along the north–south-

striking transpressive faults in the eastern Andes (Cosanga)

and pure strike-slip right-lateral faults further north (Chin-

gual). In northern Ecuador, west of the CCPP boundary,

the north-northeast–south-southwest fault system of El Angel

comprises a series of right-lateral strike-slip faults and prob-

ably represents the southern prolongation of the major Rom-

eral-Cauca-Patia fault system described in Colombia (Ego

et al., 1996; Taboada et al., 2000; Yepes et al., 2016). Further-

more, east of the NAS, shortening across the active Andean

back-arc takes place along the eastern sub-Andean thrust-and-

fold belts (Ego et al., 1995; Bès de Berc et al., 2005; Alvarado

et al., 2016).

(a) (b)

(c) (d)

Figure 8. Hazard maps at 475-yr return period for PGA (VS30 760 m=s). (a) Mean
obtained from the three alternative area source models (and associated weights) and the
full GMM logic tree; (b) same calculation considering only interface source zones;
(c) considering only crustal sources; and (d) considering only intraslab sources. The
color version of this figure is available only in the electronic edition.
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A set of eight crustal fault sources is defined (Fig. 9, Ta-

bles 5 and 6). Many fault segments are left aside, with respect

to the active fault map (Neotec database, see Data and Resour-

ces; Audin et al., 2014), because only the best-characterized

segments can be included in the model. The eight fault sources

have been defined by analyzing geologic data, earthquake epi-

centers, focal mechanisms, and GPS results. Geologic slip

rates are available for six out of the eight fault sources. For

the Chingual fault, Tibaldi et al. (2007) estimated slip rates

from 7.7 to 11:9 mm=yr based on several late Pleistocene de-

posits displaced by various branches of the fault. They also

estimated Holocene slip rates of 4:3� 2:2 mm=yr for the

north–south reverse faults south of Chingual fault, which

we considered to be part of the Cosanga transpressive fault

system (northern section, Yepes et al., 2016). At the southern

end of the Cosanga system, Bès de Berc et al. (2005) report

uplifting velocities of up to 9–10 mm=yr during the Holocene

in the upper Pastaza valley by comparing the river incision

rates with the fold-and-thrust fault uplift rates located further

east. The Quito and Latacunga segments accommodate crustal

east–west shortening at rates ranging from 1 to 2:1 mm=yr,

respectively (Lavenu et al., 1995; Ego and Sebrier, 1996).

Based on paleoseismological trenching

along the southern section of the Pallatanga

fault, Baize et al. (2015) estimated an aver-

age slip rate of ∼2:5 mm=yr during the

Holocene. Winter et al. (1993), from de-

tailed topographic leveling, showed that

moraine displacements yield a mean Holo-

cene slip rate of 2:9–4:6 mm=yr in this

area. For the Puna segment, Dumont et al.

(2005) calculated a minimum mean slip

rate of 5–7 mm=yr from one particular

location on the Puna island during late

Pleistocene. Average values of the above-

mentioned studies are used in the hazard

calculations (Table 5).

In regard to the faults dip, Tibaldi et al.

(2007) extensively verified in the field the

vertical nature of the northeast–southwest

right-lateral strike-slip Chingual fault sys-

tem. The northern section of the Cosanga

fault system shows reverse faults dipping

∼70° to the east (Tibaldi et al., 2007), con-

sistent with the nodal planes derived from

the 1987Mw 6.4 (73°) and 7.1 (64°) earth-

quakes focal mechanisms (Global CMT

catalog). At the southern end of the

Cosanga system, Bès de Berc et al. (2005)

report that the sub-Andean uplift is likely

related to the presence of a regional scale

low-angle westerly dipping thrust ramp

underlying the sub-Andean folds belt.

Three focal mechanisms in 1987 associ-

ated with the Cosanga faults show nodal

plane dips around 40° to the west (Global CMT catalog).

It is conceivable that this transpressive section of the micro-

block boundary evolves from almost vertical at the transition

from the transcurrent Chingual system to the north to more

gently dipping as the fault strike becomes more orthogonal to

the regional compressive stresses to the south.

For the reverse Quito fault, microseismicity reveals a 55°

dipping plane to the west (Alvarado et al., 2014), which is

corroborated by nodal planes derived from the 1990 Mw 5.3

(55°) and 2014 Mw 5.1 focal mechanisms (44°, Global CMT

catalog). The Latacunga system shows divergently dipping

faults dipping 70°–80° to the west along the western side

of the Interandean Valley and to the east along the eastern

side (Fiorini and Tibaldi, 2012). Representative focal mech-

anisms for these faults are 1976 Mw 5.7 (71°, Ego et al.,

1996) and 1996 Mw 5.9 (69°, Global CMT catalog). Using

the 1996 NEIC focal mechanism solution to constrain the

initial parameters, Fiorini and Tibaldi (2012) modeled the

fold that results from this blind thrust. The preferred result

showed a gently dipping fault plane (28°) to the west. Blind

thrusts tend to align vertically as they get closer to the surface

because of development of folds or secondary shallower

faults. The right-lateral strike-slip Pallatanga faults strike
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Figure 9. Global Positioning System velocity field and main faults accounted for in
the probabilistic seismic hazard calculations. The slip rates estimated for each fault are
indicated. Area sources enclosing faults are used as background sources (off-fault seis-
micity). NAS, North Andean Sliver; SOAM, South American plate; INCA, Inca sliver.
The color version of this figure is available only in the electronic edition.
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N30°E and dip∼75° to the west, as Winter et al. (1993) found

by modeling the fault trace intersection with the topography.

The Puna segment also shows a right-lateral strike-slip

movement with a positive flower structure identified by Du-

mont et al. (2005) at the Puna and Santa Clara islands. This

suggests a near-vertical structure at depth. The average dip

values attributed to the set of simplified faults are reported in

Tables 5 and 6.

For the hazard calculations, we assume that an earthquake

can break over the entire area of the fault. Lengths are defined

from the segmentation based on the surface fault trace and we

use a maximum depth of 18 km for strike-slip faults and

25 km for thrusts. These depths are based on the analysis

of the hypocentral depth distribution of earthquakes in Ecua-

dor (Yepes et al., 2016), estimates of fault widths in existing

global databases (e.g., Leonard, 2010), and estimates of lock-

ing depths from geodesy and seismology along well-known

faults (e.g., Smith-Konter et al., 2011). Fault widths are in-

ferred from the maximum depth and dip values associated

with each fault (Tables 5 and 6). Maximum magnitudes are

then determined from the resulting area, applying the Leonard

(2010) scaling relationship. The depth and width assumption

has a major impact on the calculated hazard, because in

addition to the length, the width also contributes to define the

rupture area and hence the annual seismic moment rate to be

released at the fault.

Geodetic Slip Rates

The GPS horizontal velocity field of 53 sites presented

in Nocquet et al. (2014) is used to determine the slip rate

along the eight simplified faults. In a first approach, the Euler

poles for the NAS and Inca Sliver (Nocquet et al., 2014) are

used to calculate the relative velocity along the fault delim-

iting their boundaries. In this case, the fault portion is as-

sumed to accommodate all the relative motion between

the two adjacent blocks. Slip rates for the Puna and Palla-

tanga (Inca sliver/NAS boundary) and Cosanga and Chin-

gual segments (NAS/SOAM boundary) are determined

using this approach. As an alternative method, we also

use the relative horizontal velocities between pairs of GPS

located on either side of the fault, far enough (∼30 km) from

the fault trace so that the elastic contribution from the locked

portion of the faults remains small. Slip rates can thus be

estimated for inter-Andean and sub-Andean faults for which

no block model has been proposed yet. We also carefully

checked our selection of GPS stations so that the effects

of neighboring crustal faults and of subduction interface

are negligible. These slip rates potentially account for inter-

nal deformation within the North Andean and Inca blocks.

For the faults forming the CCPP corridor, a weighted mean

value from slip rates obtained using both approaches has

been used for the subsequent fault model.

Only the best-characterized fault sources are considered;

thus all motion is assumed to take place along these faults.

This is a strong assumption, because the deformation might

be distributed over a broader area and secondary faults (e.g.,

Aktug et al., 2009). A second issue is that, given the density

of available GPS sites for continental deformation monitoring,

no locking depth or coupling coefficient is available for crustal

faults in Ecuador, except for Quito (Alvarado et al., 2014). To

account for this lack of information in our PSHA calculation,

we considered two alternative cases: one calculation is made

assuming faults locked over the entire seismogenic thickness

and another is made with an aseismic deformation component

arbitrarily fixed to 50% of the total slip rate.

Obtained geodetic slip rates are close to geologically de-

termined slip rates for some faults (Chingual, Latacunga,

Puna, and Cosanga), while they significantly disagree at some

others (Pallatanga and Quito). Similar discrepancies have been

found worldwide (e.g., Polonia et al., 2004) and are most

likely due to local variations of coupling during the earthquake

cycles (e.g., Chuang and Johnson, 2011). Another simple ex-

planation relies on the fact that geodetic models assume all

relative motion to be accommodated by a single idealized

fault. We also recognize that our knowledge of active faults

in some areas is incomplete. Figuring out which value is most

relevant for PSHA is uncertain. Next, we show some sensitiv-

ity results using different slip-rate estimates.

Hazard Estimates Based on the Fault and Background

Source Model

Assuming deformation remains steady in time, the

earthquake recurrence model for a fault is inferred from the

average slip rate following the same methodology as Woess-

ner et al. (2015; European fault model) and Beauval et al.

(2014; Quito fault). Ignoring aseismic creep, the annual total

seismic moment rate on the fault is estimated as _M0 � μSA,

in which S is the slip rate per year, μ is the shear modulus

(taken as 3 × 1011 dyn=cm2), and A is the rupture area. As-

suming 50% of creep, only half of _M0 is then available to

generate earthquakes. A recurrence model is required to dis-

tribute the seismic moment rate that will be released on the

fault through earthquakes of various magnitudes. The Ander-

son and Luco (1983) exponential function is selected, con-

strained by the slip rate, a b-value, and the maximum

magnitude on the fault (for more details, see Beauval et al.,

2014). For each fault segment, the b-value has been esti-

mated from the earthquake catalog in the source zone enclos-

ing the fault. The a-values estimated for each fault are

reported in Tables 5 and 6. For each fault, a magnitude

–frequency distribution is established. Magnitudes larger

than or equal to Mw 6.0 are distributed on the fault, whereas

magnitudes lower than Mw 6.0 are distributed inside the

source zone enclosing the fault as background seismicity.

The fault is assumed to be the only structure in the area able

to host large magnitudes. To complete the model, areas with-

out faults remain unchanged with respect to the area model,

as well as interface and inslab sources.

The probabilistic seismic hazard calculation is per-

formed with the full ground-motion prediction logic tree.
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At 475-yr return period and for PGA, the source model based

on geodetic slip rates (no aseismic component) yield accel-

erations higher than or equal to 0:6g for sites located along

the CCPP fault sources (slip rates from 7.1 to 9:5 mm=yr,

Table 6), as well as along the Quito fault source

(4:5 mm=yr). The largest hazard values (≥ 0:8g) are ob-

tained for sites right above the Cosanga thrust fault plane,

as well as for those close to the Chingual strike-slip fault

source (Fig. 10a). Lower values (0:4–0:6g) are obtained

for sites above the Napo (2:5 mm=yr) and Latacunga

(1:0 mm=yr) fault planes and along the El Angel strike-slip

fault source (2:0 mm=yr). Arbitrarily considering 50% of

aseismic deformation, the hazard obtained is much lower

(Fig. 10b). For sites along the CCPP fault sources, and along

the Quito fault source, accelerations are between 0:5g and

0:6g; whereas for sites along the El Angel, Latacunga,

and Napo fault sources, accelerations are between 0:3g

and 0:4g. Moreover, hazard maps are calculated considering

geologic slip rates on the six faults where they are available

(Table 5 and Fig. 10c). For sites along fault sources where

geologic slip rates are close to estimated geodetic slip rates,

obtained hazard values are comparable: Chingual, Cosanga,

Puna (PGA > 0:6g). For the Quito fault source, the geologic

slip rate (1 mm=yr) is much lower than the geodetic slip rate

(4:5 mm=yr) and lower values are ob-

tained (0:4g–0:5g). The opposite is ob-

served for sites along the Latacunga

fault source with values between 0:4g

and 0:6g based on the geologic slip rate

(2:1 mm=yr).

Complete Logic Tree

An area source model was developed

in which magnitude–frequency distribu-

tions are based on three different earth-

quake catalogs. This area model is rather

well constrained in most sources, except

in four out of nine crustal sources in which

regional b-values must be applied. A fault

model is developed to take advantage

of available geologic and geodetic slip

rates estimated for the main crustal faults.
Figure 11. Source model logic tree; the combination of the branches leads to 12
alternative source models.

(a) (b) (c)

Figure 10. Mean hazard maps based on the fault and background source models, at the PGA, 475-yr return period (VS30 760 m=s).
Earthquake recurrence source model relying on (a) the geodetic slip rates without creep; (b) the geodetic slip rate with 50% creep; and (c) the
geologic slip rate. Parameters of faults are reported in Tables 5 and 6. Exploration of the three branches corresponding to three alternative
earthquake catalogs (b-values of the fault model; areas without faults), and full GMM logic tree (Fig. 6). The color version of this figure is
available only in the electronic edition.
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The area and fault models constitute two

alternative source models to populate the

logic tree. The fault model relies on several

strong hypotheses, such as the assumption

that the main structures accommodate

all the measured or modeled deformation,

or assumptions about the percentage of

aseismic slip. Therefore, in the final logic

tree more weight is given on the area model

(70%) than on the fault model (30%). The

scheme detailing the final source logic tree

is displayed in Figure 11. Combining the

source model (12 alternative models) and

the GMM (3 alternative models per source

type), the final logic tree is made of 324 dif-

ferent combinations (12 × 3 × 3 × 3).

For simplicity and to limit the num-

ber of figures, results are shown for PGA

and for the return period 475 yrs, consid-

ering a generic site with VS30 760 m=s.

The final mean hazard map is displayed

in Figure 12, together with the maps

corresponding to the 16th and 84th per-

centiles. Comparing the final mean values

with the mean area model (Fig. 8a), in-

cluding the crustal fault model in the

calculation has consequences for all sites

located along the CCPP corridor, as well

as for sites above the Quito thrust fault

plane (0:1–0:2g increase). The uncer-

tainty on the hazard estimates is signifi-

cant. Considering the hazard map

corresponding to the 16th percentile,

most of the country presents PGAs lower

than 0:4g. Considering the 84th percen-

tile, all sites on the coast and in the Cor-

dillera present PGAs higher than 0:4g,

reaching maximum values around 0:8g

on the coast and 0:7g in the Cordillera.

The uncertainty obtained is not a surprise,

keeping in mind the differences in hazard

obtained from different earthquake cata-

logs (Fig. 7), as well as the differences

obtained if choosing a fault model rather

than an area model (Fig. 10a–c with re-

spect to Fig. 8a). The difference between

the 16th and 84th percentile maps is dis-

played in Figure 13, showing that uncer-

tainty on hazard estimates is high for sites

along the northern coast (above −1°, up to

0:4–0:5g difference), and inside the Puna,

Cosanga, and Chingual source zones. The

largest uncertainty is found for sites in-

side the Chingual source zone (0:6g dif-

ference at maximum between the 16th

and 84th percentiles).

(a)

(b) (c)

Figure 12. (a) Mean hazard map at the PGA, 475-yr return period (VS30 760 m=s),
from the complete logic tree, combining the source model logic tree (Fig. 11) and the
ground-motion prediction logic tree (Fig. 6), as well as hazard maps corresponding to
(b) the 16th and (c) 84th percentiles. The color version of this figure is available only in
the electronic edition.
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The uncertainty on the source model is responsible for

a large part of the uncertainties on the final hazard estimate.

The ground-motion prediction component also carries sig-

nificant uncertainties. Figure 14 displayed the three hazard

maps obtained by exploring the full source logic tree

(Fig. 11) but fixing the GMM used for each source type.

From one map to another, the models for predicting the

ground motions produced by interface events and crustal

events are modified. For the PGA at 475-yr return period,

the Metal2017 model leads to higher hazard values for the

coast than the Aetal2016 and Zetal2006 models (around

0:2g difference). Applying the Akkar et al. (2014) model

rather than the Chiou and Youngs (2014) model leads to

increased hazard estimates for sites in the Cordillera

(around �0:1g).

To assess the respective contribution of the source

model uncertainty and GMM uncertainty on the overall un-

certainty, the hazard is calculated exploring only the source

model logic tree (fixing the GMMs used), then exploring

only the ground-motion logic tree (fixing the source model

used). Results are displayed for three important cities in

Ecuador (Fig. 15): the capital Quito, the largest city in

the country Guayaquil, and Esmeraldas city, which plays

a key role in the oil business. Results show that the com-

ponent controlling the overall uncertainty depends on the

site: in Quito and Esmeraldas, the uncertainty related to

the source model is higher (or much higher) than the uncer-

tainty related to the GMM, whereas in Guayaquil the op-

posite is observed.

Figure 13. Uncertainty on the PGA at 475-yr return period:
difference between accelerations corresponding to 84th and 16th
percentiles (Fig. 12b,c). Percentiles are obtained exploring the com-
plete logic tree (source model and ground-motion logic trees). The
color version of this figure is available only in the electronic edition.

(a) (b) (c)

Figure 14. Mean hazard maps, full source logic tree (Fig. 11), only 1 GMM per source type: (a) Abrahamson et al. (2016) for interface
subduction events, Chiou and Youngs (2014) for crustal events; (b) Montalva et al. (2017) for interface events, Akkar et al. (2014) for crustal
events; and (c) Zhao et al. (2006) for interface events and for crustal events. Abrahamson et al. (2016) is always used for inslab events.
Results for the PGA and for the 475-yr return period are shown. The color version of this figure is available only in the electronic edition.
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Conclusions

Based on the work done during the last decade in Ecua-

dor, a source model logic tree is proposed to estimate prob-

abilities of occurrence of subduction and crustal earthquakes

that represent a threat to sites in Ecuador. This source model

logic tree is made of alternative models: the area model as well

as fault and background seismicity models, relying on differ-

ent types of data and representing, as much as possible, actual

knowledge about earthquake occurrences in the country. A set

of GMMs is selected to capture the epistemic uncertainty on

the prediction of ground motions in Ecuador. Results for dif-

ferent combinations of the logic-tree branches are displayed to

understand how the decisions on the source model and the

GMM impact the hazard estimates.

Exploring the full logic tree, mean hazard maps show

that most of Ecuador is characterized by a high hazard level,

with PGA mean values at 475-yr return period higher than

0:3g almost everywhere except in some regions of the coastal

plain and Amazonia. Regions presenting mean values larger

than 0:4g are located along the coast and inside the Cordil-

lera. Moreover, the results show that the uncertainty on the

hazard estimates depends on the site and

can be considerable. The difference be-

tween accelerations corresponding to the

16th and 84th percentiles varies from 0g

to 0:6g depending on the location. The

uncertainties on the source model and

on the GMM both contribute to the overall

uncertainty. At the sites where uncertain-

ties on hazard estimates are highest (differ-

ence between 84th and 16th percentiles

> 0:4g), the overall uncertainty is con-

trolled by the epistemic uncertainty on

the source model.

Much remains to be done to improve

the models and hopefully reduce the uncer-

tainties. The variability of the hazard esti-

mates in the Esmeraldas interface source

zone shows that more complex models than

the Gutenberg–Richter recurrence model

need to be looked for to predict earthquake

occurrences in this zone. As for the crustal

fault model, it will be possible to define

more detailed fault segments only after

extensive fieldwork is done to characterize

the activity of crustal faults (segmentation,

extension in 3D, slip-rate estimates, andpast

earthquakes). Remoteness and dense jungle

coverage of principal segments of many

active faults make this task complicated.

More data are needed before more realistic

time-dependent models can be proposed to

predict earthquake occurrence on active

faults. The strong-motion dataset is growing

and efforts should be put into building a reliablewell-organized

database, to enable a thorough analysis of the attenuation of

ground motions in Ecuador, and comparison tests of recorded

ground motions with predictions from published GMMs.

The complete results will be available on the website of

the Geophysical Institute in Quito (hazard curves, uniform

hazard spectra, and maps for different return periods and dif-

ferent spectral periods).

Data and Resources

The data used in this article are from International Seis-

mological Centre (ISC) online bulletin (http://www.isc.ac.uk/

iscbulletin/search/bulletin/, last accessed December 2017);

ISC-Global Earthquake Model (GEM) Global Instrumental

Earthquake Catalogue v. 4.0 (1900–2013; http://www.isc.ac

.uk/iscgem/index.php, last accessed January 2017); National

Earthquake Information Center (NEIC) earthquake catalog

(https://earthquake.usgs.gov/earthquakes/search/, last ac-

cessed June 2017); Global Central Moment Tensor earthquake

catalog (http://www.globalcmt.org/CMTsearch.html, all events

1976–2013, catalog available in ASCII “ndk” format, last

accessed December 2017); OpenQuake Engine (https://www
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Figure 15. Hazard estimates for the PGA, at 475-yr return period, in three cities:
Guayaquil, Esmeraldas, and Quito (see locations in Fig. 13). Three calculations: solid
line, exploration of the complete logic tree (source model and GMM logic trees); dashed
line, the full GMM logic tree is explored keeping the source model fixed (first calcu-
lation with area model based on the BSSA2013 catalog, second calculation with area
and crustal faults model based on the ISC-based catalog); dotted line, the full source
model logic tree is explored, using a unique selection of GMMs (first calculation with
interface Aetal2016, inslab Aetal2016, crustal Akkar et al., 2014; and second calculation
with interface Zetal2006, inslab Aetal2016, crustal Chiou and Youngs, 2014). The color
version of this figure is available only in the electronic edition.
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.globalquakemodel.org/openquake, last accessed January 2018);

and Neotec database (http://neotec-opendata.com/, last accessed

December 2017).
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2.2 Declustering

2.2.1 Introduction

The probabilistic method from Cornell-McGuire used in seismic hazard assess-
ment assumes that a subset of independent earthquakes is expected to be homoge-
neous in time, hence following a stationary Poisson process. In reality, earthquakes
are not independent from each other, as we know that a major earthquake is pre-
ceded by foreshocks and followed by a sequence of aftershocks. When an earthquake
happens, it modifies the surrounding stress field and interfers on the capacity of the
faults to produce earthquakes. As Poissonian models do not consider the depen-
dency of earthquakes, it is required to decluster earthquake catalogs. Declustering
is defined as the removal of foreshocks and aftershocks related to an event with
respect the stationary Poisson process. To determine which event is an aftershock
or a foreshock, we focus on spatial and temporal parameters. An event B will be
considered the aftershock of an event A if it occurs within a given spatial and time
window directly related to the spatial and time window of the event A. The declus-
tering is essential for probabilistic seismic hazard studies, since it will have a direct
impact on the recurrence models. For example, non-declustered catalogs will con-
tain a higher proportion of lower magnitude earthquakes. As a consequence, the
Gutenberg-Richter recurrence models, built on the lower to moderate magnitude
range, may underestimate the rate of larger magnitudes, due to the increase of the
slope of the recurrence model.

Different outputs of declustered catalogs can be obtained depending on the method
used. Many declustering algorithms are developed (Van Stiphout et al. (2012)).
Among them, those developed using window-based methods, such as Gardner and
Knopoff (1974), and those using cluster-based methods, such as Reasenberg (1985),
are the most common, mainly because of the simplicity of their implementation.
As the declustered catalog is an input in source models’ construction, the different
algorithms should be tested by varying the spatio-temporal parameters.

During this chapter, we will test the two methods of Gardner and Knopoff (1974)
and Reasenberg (1985) on the homogeneous global catalog with a completeness
magnitude of 4.5 that we developed previously in this chapter 2, section Earthquake
Catalogs. We should keep in mind that a catalog incomplete or not homogeneous
can affect declustering by impacting triggering chains and result by identifying the
wrong number of clusters.

2.2.2 Declustering methods

Window-based method

The window-based method is one of the simplest forms of aftershocks identification
algorithms. A specified distance interval d, and time interval t are defined for each
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t = 100.032m+2.7389 for M ≥ 6.5

t = 100.5409m−0.547 for M < 6.5 (2.2)

For example, using Gardner and Knopoff (1974) (eqs. 2.1 and 2.2), for a mainshock
of magnitude 7.0, the distance-window gives 70.73 km long and the time-window,
918 days. Those values are rounded in the Table 2.1.

Table 2.1: Aftershock identification windows for M ≥ 4.5 (Gardner and Knopoff
(1974)).

MMM L (km) T (days)
4.5 35 83
5.0 40 155
5.5 47 290
6.0 54 510
6.5 61 790
7.0 70 915
7.5 81 960
8.0 94 985

Cluster-based method

Principle Reasenberg (1985)’s algorithm, unlike Gardner and Knopoff (1974)
method, allows to link foreshocks and aftershocks in the same cluster. The research
was done in central California between 1969 and 1982 for sequences of aftershocks
with magnitudes M ≥ 4.0. The theory developed is that A can be the mainshock
of B, who can be the mainshock of C. In this case, all A, B and C are considered
to belong to the same cluster. The largest event is considered to be the mainshock.
Reasenberg (1985)’s algorithm also includes Omori’s law (1894) for its temporal de-
pendency.

The spatial interaction between events is defined in the Reasenberg (1985)’s public
code, CLUSTER2000, available at https://www.usgs.gov/software/cluster2000 by
the following relationships:

r = rfact × a(m) (2.3)

a(m) = 0.011× 100.4×m (2.4)

where a(m) is the radius of a circular crack (Kanamori and Anderson (1975)) cor-
responding to an earthquake of magnitude m, assuming a constant stress drop of
dσ = 30 bars (Kanamori and Anderson (1975)). rfact is the amount of crack radii
surrounding each earthquake in order to consider its potential association with the
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cluster’s main event.

The time window τ of the Reasenberg (1985) algorithm is defined by the following
relationship (eq. 2.5), based on Omori’s law (1894) where the number of earthquake
decreases by 1/tα with α = 1 (representative value, Mogi (1962)). We define:

τ =
− ln(1− p1)t

102(∆M−1)/3
(2.5)

where τ is the required interval to wait in order to be p1 confident of observing the
next event in the sequence. The parameters τmin and τmax are the lower and upper
bound of τ . We express the variable ∆M from equation 2.5 as:

∆M = Mmainshock − xmeff (2.6)

where xmeff is the “effective” lower magnitude cut-off for the earthquake catalog.
To take into account uncertainties on the value of xmeff , it is raised above its base
value by the factor xk ×Mmainshock during clusters, which results in rewriting ∆M
as follows:

∆M = (1− xk)Mmainshock − xmeff (2.7)

Parametrization Most studies use the standard parameter values (Table 2.2) de-
fined by Reasenberg (1985), however, there are no detailed studies that validate the
choice of these variables. To avoid using arbitrary parameters, Schorlemmer and
Gerstenberger (2007) created more than 10,000 declustered catalogs by performing
a Monte Carlo search over a limited range of parameters to keep a reasonable declus-
tered catalog. The parameters derived from this study are summarized in Table 2.2.

Table 2.2: Tested parameters for the declustering algorithm of Reasenberg (1985).
Standard parameters of the declustering algorithm by Reasenberg (1985). Minimal to maximal
values from the test center RELM in California (Schorlemmer and Gerstenberger (2007)). Our
selection of values adapted to the Ecuadorian catalog.

Parameters Standard Min Max Our selection
τmin (days) 1 0.5 2.5 10
τmax (days) 10 3 15 30

p1 0.95 0.9 0.99 0.99
xk 0.5 0 1 0.2

xmeff 1.5 1.6 1.8 4.5
rfact 10 5 20 20

We test this set of parameters in our Ecuadorian catalog and particularly on three
large mainshocks, the 1970 MW 7.2, the 1979 MW 8.1 and the 2016 MW 7.8. We
calibrate the Reasenberg (1985) algorithm depending on the distribution of the af-
tershocks from these major earthquakes.
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We estimate the cut-off magnitude of our catalog, xmeff at 4.5, as our catalog
is complete above 4.5. This parameter has a certain influence on the declustering
process. Depending on its value, some independent cluster could connect to each
other or some major cluster could be separated in different smaller cluster.

xk is a factor in the ∆M equation 2.7. The aim is to increase the completeness mag-
nitude xmeff to take into account its uncertainties in the case of a larger event. To
keep ∆M a positive value (∆M = Mmainshock−xmeff ), the value of xk has to be small.
For example, if a mainshock is 7.8 and xk = 0.5, ∆M = (1−0.5)×7.8−4.5 = −0.6.
Therefore, we reduce the factor xk to 0.2 to have realistic ∆M values at lower main-
shocks.

For the parameters τmin, τmax, p1 and rfact, we successively test the standard, min-
imum and maximum values, from Table 2.2 and select the results that provide
the most realistic declustering. When we decluster our catalog with the standard
parameters of Reasenberg (1985), the percentage of aftershocks identified in the
Ecuadorian catalog is 16%. We take a closer look on the impact of declustering on
large megathrusts earthquakes and we note that the sequence of aftershocks is not
complete (Figure 2.2). Using the RELM maximum values (Table 2.2), we increase
the number of aftershocks identified in the sequence and remove to 20%, which im-
prove the results by completing the sequence of aftershocks. On the contrary, if
we use the RELM minimum values, it decreases the percentage to 12%. Hence, we
choose to keep the maximum value of the RELM for the p1 and rfact parameters,
respectively 0.99 and 20, and to increase even more the window size using τmin = 10
and τmax = 30.

In the example of the 2016 MW 7.8 Pedernales earthquake, τ (calculated with equa-
tion 2.5) reaches very fast, in 10 days after the mainshock, the value of τ=15 days
(maximal value from the test center RELM, Table 2.2) as seen in Figure 2.3. By
increasing τmax to 30 days, we extend the look-ahead time, and we allow τ to take
values based on the Omori law for more events. This selection allows to improve the
declustering on the catalog (Figure 2.2) and give a final percentage of aftershocks
of 23%.

Figure 2.2 illustrates the cumulated number of events inside a frame of ± 1◦ lati-
tude and longitude centered on the mainshock of the 1970 earthquake MW 7.2 (green
square on Figure 2.2c), located around latitude -4◦ on the coast, at the border with
Peru. We observe a step of cumulated events at the time of the mainshock, in De-
cember 1970, visible on the curve before declustering (black curve) and on the curve
representing the cluster (blue curve). The difference that we observe between the
blue curve and the black curve are other aftershocks within the same frame but not
related to this cluster, coming from another sequence of aftershock. For this area
and time, this sequence of aftershocks is causing the step in the catalog as the blue
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The earthquake of December 12, 1979, MW = 8.1 (Figure 2.9) happened on the
southern extent of its rupture plan. The rupture has spread north, but the algo-
rithm of Gardner and Knopoff (1974) cannot identify aftershocks propagating along
a rupture plane. On Figure 2.9a, the selection of the aftershocks corresponds spa-
tially to the earthquakes falling into the purple circle, selecting 52 earthquakes,
whereas for the Reasenberg (1985) algorithm, the aftershocks location is not limited
to a circle but allows aftershocks of aftershocks to happen, expanding the space
window to the north of the rupture. Therefore, for large megathrusts earthquake
propagating along a plane, the Reasenberg (1985) algorithm is more robust.

Gardner and Knopoff (1974) Reasenberg (1985)
b) a) 

12/12/1979

Cluster: 52 earthquakes

12/12/1979

Cluster: 96 earthquakes

c) 

Figure 2.9: Spatial distribution of clusters associated with the earthquake of December
12, 1979 of magnitude MW = 8.1MW = 8.1MW = 8.1 with a) the cluster defined by the method of Gardner and
Knopoff (1974), b) the method of Reasenberg (1985). The blue dots correspond to the aftershocks.
The purple circle is the Gardner and Knopoff (1974) spatial window. The dotted red rectangle
delimits the earthquake rupture zone.

A second example (Figure 2.10) show the difference in time. The earthquake of
December 10 1970, MW = 7.2 happened close to the trench in southern Ecuador.
Using Gardner and Knopoff (1974), we use a time-window of 816 days and remove
73 earthquakes. The Figure 2.10a attests of the excess of declustering with the flat
magenta curve during the time-window. In comparison, Reasenberg (1985) remove
57 earthquakes in a smaller temporal window of 63 days. The resulting declustering
curve (Figure 2.10b) has a constant increase, without any step or flat curve.
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3.1. Introduction

This chapter is the subject of an article co-signed by Judith Marinière,
Jean-Mathieu Nocquet, Céline Beauval, Johann Champenois, Laurence Au-
din, Alexandra Alvarado, Stéphane Baize, and Anne Socquet. It was pub-
lished in the Geophysical Journal International (doi: 10.1093/gji/ggz564) in
March 2020. This chapter analyses the GPS data and PS-InSAR around the
Quito reverse fault system, the capital of Ecuador. From these data, we de-
rived three-dimensional spatially variable locking models and observe spa-
tially heterogeneous strain accumulation. We observe that if the northern
and southern segments of the fault system host larger slip deficit accumu-
lation rates, the center segment of the fault shows aseismic slip at shallow
depth.

Summary

Quito, the capital city of Ecuador hosting ∼2 million inhabitants, lies on the
hanging wall of a ∼60 km long reverse fault offsetting the Inter-Andean Valley in
the northern Andes. Such an active fault poses a significant risk, enhanced by the
high density of population and overall poor building construction quality. Here, we
constrain the present-day strain accumulation associated with the Quito fault with
new Global Positioning System (GPS) data and Persistent Scatterer Interferometric
Synthetic Aperture Radar (PS-InSAR) analysis. Far field GPS data indicate 3 to
5 mm/yr of horizontal shortening accommodated across the fault system. In the
central segment of the fault, both GPS and PS-InSAR results highlight a sharp
velocity gradient, which attests for creep taking place along the shallowest portion
of the fault. Smoother velocity gradients observed along the other segments indicate
that the amount of shallow creep decreases north and south of the central segment.
Two-dimensional elastic models using GPS horizontal velocity indicate very shallow
(<1 km) locking depth for the central segment, increasing to a few km south and
north of it. Including InSAR results in the inversion requires locking to vary both
along dip and along strike. Three-dimensional spatially variable locking models
show that shallow creep occurs along the central 20 km long segment. North and
south of the central segment, the interseismic coupling is less resolved, and data
still allows significant slip deficit to accumulate. Using the interseismic moment
deficit buildup resulting from our inversions and the seismicity rate, we estimate
recurrence time for magnitude 6.5+ earthquake to be between 200 and 1200 years.
Finally, PS-InSAR time series identify a 2 cm transient deformation that occurred
on a secondary thrust, east of the main Quito fault between 1995 and 1997.

3.1 Introduction

Subduction zones not only produce the largest earthquakes on Earth through
seismic slip at the megathrust, but also induce long-term strain within the overrid-
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ing plate, accommodated by earthquakes occurring on crustal faults. Although of
lower magnitude than the largest subduction earthquakes, crustal earthquakes rup-
turing at shallow depths pose a significant hazard often directly threatening highly
populated areas.

Along the Nazca/South America subduction zone, the Ecuadorian Andes is among
the areas where crustal earthquakes have been particularly damaging. For instance,
in 1797, one of the largest crustal earthquakes ever documented in South America (M
7.6-7.9, Beauval et al. (2010)) led to a complete destruction of the city of Riobamba
in central Ecuador (Figure 3.1a). In 1949, a MW 6.8 earthquake occurred in the
Inter-Andean Valley near Ambato, generating numerous landslides and killing more
than 5000 people (e.g. https://earthquake.usgs.gov/learn/today/index.php?month=8day=5)
(Figure 3.1a).

Both the 1797 and 1949 earthquakes occurred along the Chingual - Cosanga - Palla-
tanga - Puna fault system (hereafter referred to as the CCPP) delimiting the eastern
boundary of the North Andean Sliver, a continental domain moving northeastward
at 8-10 mm/yr with respect to the stable part of the South America plate (Pen-
nington (1981); Nocquet et al. (2014); Alvarado et al. (2016); Yepes et al. (2016);
Mora-Paez et al. (2019)). Although crustal faults bounding the North Andean Sliver
show the fastest slip rates in Ecuador (Dumont et al. (2006); Tibaldi et al. (2007);
Nocquet et al. (2014); Baize et al. (2015); Alvarado et al. (2016)), large historical
earthquakes (Beauval et al. (2010, 2013)), seismologically recorded moderate size
earthquakes (Vaca et al. (2019)) and geomorphic markers of neotectonics faulting
(Alvarado et al. (2016)) witness active deformation distributed within the North
Andean Sliver. In central Ecuador, Alvarado et al. (2016) proposed the existence
of an additional Latacunga-Quito block encompassing the Inter-Andean valley and
the eastern cordillera from latitude 1.5◦S to the strike-slip Guayllabamba fault (lat.
0◦), connecting the Quito fault system north of Quito to the CCPP (Figure 3.1a).

Here, we focus on the 60 km long north-south striking Quito fault, that delimits
the western boundary of the Latacunga-Quito block, where ∼2 million people are
living in the capital city of Ecuador and its surroundings. In that area, the 20 km
wide Inter-Andean depression separating the western and eastern Andean cordillera
is offset by a series of en echelon thrusts separating the lower Los Chillos Valley from
the higher Quito Basin, with an average cumulated uplift of 400 m (Figure 3.1c).
Fault related folds in quaternary volcanoclastic deposits, hanging paleo-valleys and
records of disrupted drainage patterns confirm the recent activity of the Quito thrust
fault (Alvarado et al. (2014)).

Since the development of the Ecuadorian seismic network in the early 90s, 7 earth-
quakes of magnitude (mb) above 4.0 have been recorded in the Quito area. Among
them, the Pomasqui earthquake (MW 5.3, August 11, 1990) killed 3 people, damaged
about 900 buildings and houses and triggered many landslides along the panamerican
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road (https://www.igepn.edu.ec/servicios/noticias/466-sismo-de-pomasqu%C3%AD-
10-de-agosto-de-1990). More recently, the August 12, 2014 (MW 5.1) earthquake
killed 4 people, and triggered landslides north of Quito. The historical records
spanning almost five centuries, show that the city experienced MSK (Medvedev-
Sponheuer-Karnik) intensities in the ranges VII to VIII at least five times (Pino
and Yepes (1990); Egred (2009)). Using the historical intensity records, Beauval
et al. (2010) estimated a 6.3-6.5 magnitude for an event in 1587 at a location near
Guayllabamba in the northern part of the Quito fault system (Figure 3.1b). The
most damaging earthquake recorded for Quito occurred in 1859 (Intensity VII-VIII),
but whether it occurred on a crustal fault remains unclear (Beauval et al. (2010)).
Focal mechanisms show predominantly reverse mechanisms (Guillier et al. (2001);
Alvarado et al. (2014), Vaca et al. (2019)) in agreement with a dominant east-west
shortening across the Quito fault. Secondary thrusts and strike slip faults are doc-
umented east of the main fault in the Los Chillos Valley and regularly host small
earthquakes (Alvarado et al. (2014)).

Preliminary GPS results along a profile in central Quito showed 4 mm/yr of shorten-
ing across the fault. Using simple two-dimensional elastic screw dislocation models,
Alvarado et al. (2014) suggest a shallow locking depth of 3 km. In this study, we use
an augmented GPS velocity field and spatially dense InSAR data to precisely quan-
tify the kinematics in the Quito area and to evaluate the current rate of slip deficit
accumulation along the different segments of the fault. We first derived optimal
values for the fault geometry and its slip deficit using a two-dimensional Bayesian
inversion. Finally, the results of the two-dimensional modelling are used as input
parameters to constrain a spatially variable interseismic coupling model of the fault.

3.2 Dataset

3.2.1 GPS Data

We use a combination of 18 campaign mode GPS sites with 11 continuous GPS
in the area of Quito (Figure 3.1b, Table 3.1). Campaign sites have a minimum ob-
servation span of 8 years (except LACH, 3.5 years) and of 3.2 years for continuous
GPS. All data used in this study were collected before the 2016 MW 7.8 Peder-
nales earthquake that induced coseismic offsets of a few centimeters (Nocquet et al.
(2016); Mothes et al. (2018)) and centimeters level post-seismic deformation (Rolan-
done et al. (2018)) in the Quito area. The GPS dataset spatially samples the whole
Quito area with a higher density in its central part.

We process the 24-hour-long session data using the GAMIT/GLOBK 10.70 soft-
ware (Herring et al. (2018)) to obtain daily loosely constrained solutions. We derive
the time series by expressing the loosely constrained solutions in the ITRF2014 (Al-
tamimi et al. (2016)) with a 7-parameter transformation using regional IGS sites
(http://www.igs.org). For the continuous GPS data, we first evaluate the time
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Figure 3.1: Ecuador geodynamic and seismotectonic settings. The continuous red line
indicates the CCPP (Chingual-Cosanga-Pallatanga-Puna´) fault system (after Alvarado et al.
(2016)), delimiting the eastern boundary of the North Andean Sliver (NAS). LQ is the Latacunga-
Quito block proposed in Alvarado et al. (2014) with its western boundary indicated by the dashed
red line. Black squares and stars are historical and instrumental earthquakes respectively. The
black line with triangles indicates the location of the trench. The black rectangle indicates the
area shown in b). b) Seismotectonic map of the Quito region. Blue triangles are campaign GPS
stations and white triangles are continuous GPS stations. The simplified surface trace of the Quito
reverse Fault System is shown by the barbed red line. Focal mechanism solutions of earthquakes
above magnitude 4, during the 1990 – 2011 period, are from Alvarado et al. (2014). GPS PLHA is
located on the top of the Pululahua Volcano, GPS GGPA is on top of the Guagua Pichincha and
ILAL is on the top of the Ilalo. Square: 1587 M6.3 historical earthquake (location from Beauval
et al. (2010)), stars: 1990 MW equivalent 5.3 Pomasqui and 2014 MW 5.1 earthquakes. c) 3D view
of Quito in the Inter-Andean Depression. Los Chillos Valley is the Inter-Andean Valley represented
east of the QFS. In white letters are the volcanoes cited in the text. Vol G. P.: Volcano Guagua
Pichincha.

correlated noise for a model including white and flicker noise using the Maximum
Likelihood Estimation algorithm embedded in the CATS software (Williams (2005)).
We then convert the flicker noise parameters obtained from the CATS analysis to
equivalent random noise parameters that can then be used in the GLOBK Kalman
filter (Floyd et al. (2010)). For the campaign data, we apply noise parameters corre-
sponding to the median value obtained from the continuous GPS analysis. The final
velocity solution is obtained running the GLOBK Kalman filter. Such an approach
provides conservative estimates of velocity uncertainties. Campaign mode sites with
∼15 years of measurements and 3 campaign show velocity uncertainties between
0.15 and 0.35 mm/yr at the 1-σ confidence level and continuous GPS sites with 3
to 8 years of data have uncertainties between 0.2 and 0.6 mm/yr depending on the
length and noise properties of the time series. For subsequent modelling, we express
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our velocity field in a reference frame corresponding to the non-deforming part of the
fault footwall (Figure 3.4). This is achieved by estimating a rigid body motion using
the velocities from a subset of GPS sites (ANTN, ANTS, OYAM, PAM1, PAPA &
PINT) showing negligible internal deformation (weighted root-mean-square of 0.26
mm/yr). We also estimated the vertical rates for 3 continuous GPS stations close
to the Quito fault: QUEM (2007.9-2016.3), QUI1 (2000.0-2010.3), EPEC (2013.0-
2016.3). In the ITRF2014, their vertical velocity estimates are QUEM: -1.4 ± 0.8,
QUI1: -0.8 ± 0.8, EPEC: -0.6 ± 1.0, all values in mm/yr and positive upwards
with their associated uncertainty provided at the 95% confidence level. These val-
ues indicate a relative vertical subsidence of GPS sites located on the hanging wall
with respect to the footwall, but uncertainties leave also the possibility of opposite
motion. Alternatively, we estimate the relative velocity of QUEM with respect to
EPEC using the baseline time series (QUI1 and EPEC do not have a common ob-
servation period, see Figure 3.2). We now find an uplift rate of QUEM with respect
to EPEC of 0.4 ± 1.0 mm/yr. Because of these contradictory results, we chose not
to use the vertical rates in the subsequent modelling.

3.2.2 InSAR data

Additionally, we use InSAR results from 19 European Remote Sensing (ERS)
acquisitions collected in descending mode between May 1993 and September 2000
to determine mean line-of-sight (LOS) velocity in the Quito area (Champenois et al.
(2013, 2015)). Quito and its surroundings include vegetated, cultivated and rapidly
changing urban areas, involving a rapid loss of coherence of the radar phase with
time. We therefore use the Persistent Scatterer technique (PS-InSAR) implemented
in the Stanford Method for Persistent Scatterer version 4.0 (StaMPS) software pack-
age (Hooper (2008)). The StaMPS PS-InSAR approach identifies individual radar-
bright and phase-stable points and allows to follow their change of phase over long
periods without the assumption of linear displacement. The radar images are coreg-
istered to the same master image, here May 06, 1998, selected in the middle of
the observation period. As a result, the analysis provides 18 values of LOS change
for every PS pixel during the 1993-2000 period. Interferograms are corrected for
changes in atmospheric delay during the PS processing using space and time filters
described in Hooper et al. (2007). The resulting mean LOS rate map is shown in
Figure 3.3a. Aside the mean LOS rate, the StaMPS approach provides formal errors
of the mean velocity and the LOS displacement time series at each acquisition date
(Figure 3.3c). We carefully check the time series and find that for pixels located
southwest of the Ilalo Volcano, LOS displacements during the 1995-1996 period ex-
hibit significant departure from a constant velocity (Figures 3.3d-h). Additional
information about this transient motion is provided in the discussion paragraph. In
order to correct for this localized transient signal, we use the following approach:
for every pixel, we extract the full time series and solve for a trend plus an offset at
1995.5 using weighted least-squares. If the estimated offset is larger than two times
its formal uncertainty, the retained LOS velocity is the one obtained by simultane-
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Table 3.1: GPS velocities with respect to our stable fault foot wall block reference
frame (see section 3.2.1). Longitude, latitude in decimal degrees; Ve, Vn: east & north components
of velocity in mm/yr; SVe, SVn: formal error (1-σ confidence level) of Ve, Vn.

Sites Long. Lat. Ve Vn SVe SVn
01AQ -78.498 -0.147 3.49 1.16 0.35 0.43
ANTN -78.162 -0.463 0.27 0.57 0.23 0.25
ANTS -78.170 -0.497 -0.04 0.28 0.29 0.23
CASI -78.480 -0.037 2.50 0.24 0.52 0.66
CATE -78.428 0.000 1.72 -0.55 0.40 0.53
CORE -78.524 -0.328 2.06 -0.63 0.34 0.44
CULA -78.696 0.144 3.31 1.77 0.29 0.35
EPEC -78.446 -0.315 1.12 -0.95 0.25 0.49
GGPA -78.593 -0.180 4.74 0.38 0.32 0.19
HSPR -78.850 -0.352 2.57 0.68 0.24 0.21
IGNA -78.752 -0.451 2.60 -0.37 0.18 0.23
ILAL -78.419 -0.263 1.60 0.18 0.13 0.16
JERU -78.358 -0.006 0.70 0.56 0.24 0.31
LACH -78.420 0.161 1.19 0.38 1.33 1.64
MIRA -78.509 -0.270 3.24 -1.66 0.13 0.16
NAYO -78.436 -0.157 2.02 -0.05 0.15 0.21
NONO -78.599 -0.042 3.57 0.86 0.26 0.32
OYAM -78.329 -0.203 0.38 0.07 0.28 0.34
PAM1 -78.209 -0.080 0.62 0.66 0.23 0.38
PAPA -78.141 -0.381 0.03 0.78 0.10 0.52
PINT -78.356 -0.420 0.69 -0.74 0.18 0.17
PLHA -78.502 0.022 4.15 1.27 0.15 0.21
QUEM -78.497 -0.237 4.27 -0.50 0.21 0.11
QUI1 -78.494 -0.215 3.30 0.15 0.09 0.49
UNGU -78.557 -0.237 3.26 -1.24 0.18 0.23
LUMQ -78.471 -0.216 1.95 -0.16 0.16 0.21
PAL0 -78.649 -0.219 3.33 -0.97 0.28 0.36
18AQ -78.489 -0.185 4.22 0.91 0.23 0.41
SALF -78.155 -0.233 1.13 -0.23 0.23 0.18

ously estimating a slope and an offset using least-squares. If the offset is less than
twice its formal uncertainty, the retained LOS velocity is the one using all dates
of the time series without an offset correction (Figure 3.3f). Finally, we keep only
pixels with a formal error lower than 0.9 mm/yr for subsequent modelling. Such a
value is found to ensure kilometers’ scale consistency of LOS rates. Indeed, using
a larger threshold value provides highly spatially scattered LOS rates, especially in
the high relief of the western Cordillera (Figures 3.1c and 3.3b). With a total of
more than 68,000 PS, the final LOS rate map is almost continuous over a length of
30 km along the Quito Fault system. Although the inconsistency of GPS vertical
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a) b)

c) d)

Figure 3.2: East component times series of GPS sites used in this study. The raw time
series are expressed in the stable foot wall reference frame as described in section 3.4.2. The dotted
line shows the estimated velocity.

rates prevents a full comparison of InSAR and GPS results to be made, we compare
the relative 3D vector of GPS site QUEM with respect to EPEC projected along the
LOS and PS-InSAR results. We find a differential GPS LOS rate of 1.63 mm/yr to
be compared to 1.49 mm/yr for the PS-InSAR results, suggesting a good consistency
between the GPS and PS-InSAR results.
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Figure 3.3: a) Mean LOS rate map from 19 ERS acquisitions collected in descending mode
between 1993/05/23 and 2000/09/27. b) Topography elevation. c) LOS rate uncertainty map. d)
LOS displacement map between 1995/04/11and 1996/10/23. e) LOS rate map between 1996/10/23
and 2000/09/27. f) LOS rate map from 1993/05/23 and 2000/09/27 with the 1995-1996 transient
signal removed (see text) g-h) LOS time series for SAR pixels located at the areas 1 & 2 indicated
in a). Dark (blue and green) lines are the slope estimated for the time series for every pixel and
the thick light (blue and green) line indicates the median slope of all pixels’ time series. For g) the
thick light blue slope is estimated using all the data, while for h) the thick light green slope has
been estimated for three different periods: 1993/05/23- 1995/04/11; 1995/04/11- 1996/10/23 and
1996/10/23- 2000/09/27.

3.2.3 Correction of the Elastic Contribution from the Sub-

duction Interseismic Loading

Locking along the subduction interface induces shortening in the East-West
direction, a signal that adds up to the signature of East-West shortening induced by
the Quito fault. We use the interseismic model from Nocquet et al. (2016) to predict
the contribution of elastic deformation induced by the subduction and remove it from
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our geodetic data in the Quito area. Expressed in an overriding plate reference frame
(here, the North Andean Sliver), the elastic contribution due to locking along the
megathrust is 2.5 mm/yr for the westernmost site of our networks and 1.3 mm/yr
for the easternmost one, for the horizontal components. With respect to our stable
hanging wall fault reference frame (see section 3.2.2), this translates into an almost
linear East-West shortening rate of 0.013 mm/yr per km. Although small compared
to the gradient observed across the Quito fault, applying this correction reduces
by 0.8 mm/yr the relative horizontal shortening over our GPS network. For the
vertical component, the maximum prediction reaches at most 0.2 mm/yr and is
therefore negligible. Both the GPS horizontal velocity and the InSAR LOS rates
were corrected prior modelling.

3.3 Results

The horizontal GPS velocity field shows a general pattern of 3 to 4.5 mm/yr
of EW shortening between sites located west of the Quito fault system and sites
located in the eastern part of the Inter-Andean valley (Figure 3.4). Unlike most
across fault profiles which show a gentle monotonic decrease of velocity magnitude,
here we notice that velocities on the hanging wall, in the Quito city area, show a
velocity equal to or larger than the far-field velocity (QUEM 4.3 mm/yr and 18AQ
4.3 mm/yr compared to PAL0 and UNGU 3.5 mm/yr). Such a pattern is a potential
indication of slip on the fault at shallow depth. Furthermore, the gradient across
the Quito fault appears to be sharp: the velocity magnitude decreases by 50% over
a distance of 2 km (e.g. QUI1-LUMQ) and becomes negligible 10 km away from the
fault (OYAM 0.4 mm/yr, Figure 3.4). This pattern is an additional direct evidence
of a very shallow locking depth.

PS-InSAR results also show a general LOS rate gradient of ∼2 mm/yr between
the hanging wall and the footwall of the Quito fault. Maximum LOS rates are
found in the central Quito area, with a sharp LOS rate decrease from 2 to 0 mm/yr
over a distance of 2 km (Figure 3.4). Such a gradient indicates either a decrease
of east velocity, a decreasing uplift rate, or a combination of both. The sharp LOS
gradient spatially correlates with the high-shortening rate seen in the GPS (e.g.
01AQ/18AQ to NAYO and QUI1 to LUMQ, Figure 3.4) and therefore also consti-
tutes an observation independently confirming the existence of shallow creep and an
overall very shallow locking depth. In the central western part of the Quito Basin,
close to the eastern flank of Guagua Pichincha volcano, the InSAR data show an
opposite gradient with LOS rates decreasing westward. We further notice that the
maximum LOS rate is offset by 3 km to the west of the fault trace, possibly indi-
cating creep rates changing with depth.

As secondary features, GPS velocities show some changes of shortening direction,
being N70◦ in the northern part of the fault, N90◦ in the central part and N110◦
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in its southern part. Roughly, this rotation of shortening direction corresponds to
the average rotation of the fault strike, thus implying purely reverse motion across
each individual segment. Both north and south of central Quito, the InSAR results
show smoother gradient of LOS rates possibly reflecting along strike variations of
the amount the shallow creep. Finally, we also notice that despite the removal of the
transient deformation seen in the PS-InSAR analysis for the 1995-1996 period south
west of the Ilalo Volcano, a small (1 mm/yr) signal persists in that area (location
of point 2 in Figure 3.3a or Figure 3.14c)

3.4 Modelling approach

3.4.1 Potential Pichincha Volcano contribution to the defor-

mation field

The change of shortening direction observed in the horizontal GPS velocity field
raises the question of whether the velocity field or a fraction of it could be related
to a volcanic deformation of the nearby Guagua Pichincha Volcano, located about
15 km west of the Quito fault. A magmatic eruption phase occurred between 1998
and 2001 overlapping the acquisition period for the SAR data used in our study.
Garcia-Aristizabal et al. (2007) estimated a magma storage between 4 km and 11-12
km beneath the Guagua Pichincha caldera. Increase or decrease in pressure at such
a depth would certainly not be able to explain the sharp gradient observed near the
Quito Fault trace, but could impact our InSAR results with an additional gradient
in the Quito area. We therefore carefully check any non-linear behaviour in the PS
time series corresponding to the eruptive period and did not find any significant
departure from a constant velocity aside the one already mentioned near the Ilalo
Volcano (Figure 3.3). More recently, Morales Rivera et al. (2016) identified 6.5 cm
of localized subsidence from mid-2007 to August 2009 from InSAR data. They mod-
elled the InSAR signal by a single shallow (3 km) pressure source inducing negligible
deformation a few kilometers away from the Guagua Pichincha caldera. The time
series of CGPS QUEM starting in December 2007 do not show any departure from
the average linear trend for this period (Figure 3.2d). Therefore, we believe that the
Pichincha volcanic activity has a minor impact on our velocity field and certainly
does not impact the main pattern of the velocity field such as the sharp gradient
observed across the Quito fault.

3.4.2 Possible Anelastic Contribution to Surface Deforma-

tion

Physical models of thrust and fold evolution show that the long-term displace-
ment at the surface results from the combination of slip along the fault at depth
and of distributed folding above the fault tip (e.g. Johnson (2018)). However,
the contribution of anelastic deformation over a few years during the interseismic
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Figure 3.4: Horizontal GPS velocity field (1994-2016) and PS-InSAR LOS velocity
map derived from 19 ERS acquisitions collected in descending mode between May
1993 and September 2000. Positive displacement corresponds to motion towards the satellite.
The values are in mm/yr and color-coded according to the scale shown on the top right. Arrows
are the GPS horizontal velocity field with respect to a reference frame defined by minimizing the
velocities of GPS sites ANTN, ANTS, OYAM, PAM1, PAPA & PINT. Error ellipses are 95%
confidence level. The barbed black line shows the simplified surface trace of the Quito thrust fault.
Dashed lines indicate the location of the four profiles used for the two-dimensional modelling.

period is less clear. Although observed high strain near the fault trace has been
proposed to include anelastic contribution for the Anza segment of the strike-slip
San Jacinto Fault in Southern California (Lindsey et al. (2014)), we are not aware
of similar conclusions for thrust faults. For instance, the narrow strip of high strain
rate observed along the Longitudinal Valley Fault in Taiwan, a pattern very like our
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results for the Quito Fault, is successfully explained using elastic models (Thomas
et al. (2014)). Nonetheless, in the Quito area, the upper stratigraphic layers (several
hundreds of meters and even possibly more) are made of intercalated poorly consol-
idated volcanic ashes and lahar deposits, that certainly reduce the elastic strength
and possibly undergo anelastic deformation. Furthermore, very steep slopes along
the eastern flanks of the Quito basin (Figure 3.1b) are unstable and experience reg-
ular landslides, adding to the crustal motion in the PS-InSAR data (GPS sites were
chosen away from unstable areas). In the subsequent modelling, we do not account
for these processes, but acknowledge that they add some uncertainties, for instance
on the amount and location of shallow creep estimates close to the surface.

3.4.3 Elastic Models

Despite the limitations described above, we attempt to quantify the rate of
slip deficit accumulation along the Quito fault, assuming that the observed surface
displacement can be explained by a set of dislocations at depth in a homogeneous
elastic half-space. Although some studies have shown that viscoelastic relaxation
plays a critical role for dip-slip faults when modelling the surface velocity during
the earthquake cycle (e.g. Segall (2010)), purely elastic models are therefore correct
to the first order when the observation is made at a date being several times the
relaxation time since the last large earthquake, as it is the case for the Quito fault.
For instance, Fukahata and Matsu’ura (2006) show that the elastic solution is equiv-
alent to the fully relaxed deformation of a stratified viscoelastic models with a null
rigidity of the underlying medium. Elastic models are further useful approximation
to estimate the rate of slip deficit accumulation along faults.

Under the elastic assumption, different approaches can be used. A first type of
model is to use a semi-infinite edge dislocation ending at a given depth from the
surface. Above this depth, the fault is locked. A second approach is to consider the
back-slip model (Savage (1983); McCaffrey (2005)), where the surface deformation is
the sum of the long-term deformation modelled by rigid block motion and a virtual
back-slip component aiming at reproducing the effect of a locked fault on the surface
velocity field. The back-slip approach (hereafter noted BS) is strictly equivalent to
the semi-infinite dislocation model, but offers the advantage of an easier modelling of
far-field data by including block rotation for large areas (McCaffrey (2005); Meade
(2005)). A third approach is to model the relative motion of tectonic blocks by a
flat décollement (hereafter noted FD). Such a flat décollement predicts block-like
motion in the far-field of the fault, a progressive decrease of the horizontal velocity
spread over distance, centred at the tip of the décollement. In a fourth approach,
the décollement merges a ramp slipping from the depth of the décollement to a
given depth (hereafter referred as FDR) (e.g. Daout et al. (2016a,b); Thompson
et al. (2015)). In some cases, the flat décollement and ramp corresponds to a real
discontinuity imaged from geophysics as it is for the sub-andean domain, east of the
Andean cordillera (e.g. Baby et al. (2013)). But, regardless its actual existence,
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the slip along a flat décollement offers a convenient way to mimic the block like
behaviour in the far field of the fault and the elastic strain perturbation close to the
fault. As Daout et al. (2016a) write, the FDR has to be considered as a conceptual
model simultaneously describing “both elastic and permanent parts of the surface
displacement field at the present time”.

For the BS models, under the assumption that the observed surface velocities do
not reflect transient slip, the kinematic consistency and the assumption of constant
horizontal slip vector require the long-term slip rate on the ramp to be equal to
Vh/cos(dip) where Vh is the horizontal shortening velocity between the two blocks
separated by the fault. For the FDR model, one view is that the long-term slip rate
on the ramp should also be equal to Vh/cos(dip) to ensure that the fault accom-
modates all the far field shortening rate. The alternative view is that the slip rate
along the flat décollement is transferred to the ramp. In that latter case, the long-
term slip rate on the ramp is equal to the shortening rate Vh. In the supplementary
material, we show that using one or the other assumption has a marginal impact on
our results and all models presented hereafter are for a long-term slip rate equal to
Vh/cos(dip).

In the following we present a step-by-step modelling approach and progressively
introduce more complexity as it is required by the data. We start with synthetic
two-dimensional models for the BS, FD and FDR models to discuss the main pat-
terns of the predicted surface velocity and the ability of each of these models to
explain our GPS and PS-InSAR observations. Then, we perform a Bayesian explo-
ration of the BS and FD model parameters using only the GPS observation. We
discuss the resolution of the searched parameters and show that fitting PS-InSAR
data requires introducing a ramp that connect to the flat décollement (FDR model).
We then consider a two-dimensional FDR model including both GPS and PS-InSAR
data, that indicates that variable slip along the ramp can simultaneously fit both
GPS and PS-InSAR data. Building upon this result, we present a spatially variable
slip three-dimensional interseismic model that allows us (1) to discuss the along
strike and along dip variations of aseismic slip and (2) to quantify the rate of slip
deficit accumulation along the whole fault system.

3.4.4 Two-dimensional synthetic elastic models

As a preliminary step before data inversion, we make simple forward models to
assess the ability of the different approaches to explain the main patterns present in
our GPS and InSAR observations. Figures 3.5a-d show the horizontal and vertical
velocity prediction for the BS, FD two-dimensional models for a horizontal shorten-
ing rate of 4 mm/yr for a 30◦ and 60◦ dipping fault locked down to 10 km depth.

Figures 3.5e-h compare the prediction of the BS and FDR models for a fault locked
to a depth of 5 km. Although both models predict a bell-like shape for the hori-
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zontal velocity profile close to the fault, the predicted magnitude for the maximum
velocity is different and this difference is larger for steeper fault.

Finally, Figures 3.5i-l show the effect of adding a slipping patch at the otherwise
locked fault. The slipping patch introduces a bell-like shape perturbation to the
surface velocity profile, now shifted from the fault trace at the surface. The width
of the velocity perturbation depends on the length and depth of the slipping patches.
Narrow bell-like shapes found in our PS-InSAR observation are likely to be fitted by
variable slip along the fault. We also see that allowing variable slip at the ramp will
result in little sensitivity of surface displacement on the dip of the fault. Indeed, the
same bell-like shape can be reproduced either by smaller or deeper slip on a steep
fault or by larger and shallower slip on a shallow fault.

To conclude, Figure 3.5 shows that the BS approach is not suitable for modelling
vertical rates away from the fault since it introduces a spurious step in the far-
field (Segall (2010)). Therefore, this type of modelling is not suitable for modelling
InSAR data, because the LOS might include a significant contribution from the
vertical component. Figure 3.5 also shows that the predicted horizontal profile dif-
fers between the BS and FD models. This difference increases with steeper dip.
Especially, the BS approach predicts that the surface displacement in the direction
perpendicular to the fault trace close to the fault can exceed the far-field value, a
pattern not predicted for the FD and FDR models.

3.4.5 Bayesian exploration of searched parameters

We use a Bayesian approach to rigorously evaluate the resolution of parameters
and sample different models allowed by the data. Our observations of fault perpen-
dicular velocities denoted d, are related to the vector of unknown m including slip
and fault geometrical parameters through the functional g by g(m) = d. Because the
vector m includes geometrical parameters, g(m) is a nonlinear function. In Bayesian
approaches, the a priori information about the searched parameters is combined with
the observations to derive posterior probabilities of the searched parameters. The
a posteriori probability density function (PDF) of the model m given the data d is
ρ(m|d) ∝ ρ(d|m)ρ(m), where ρ(m) is the a priori PDF on model parameters m and
ρ(d|m) the likelihood PDF of d given m given by e−1/2(d−g(m))TC−1

D
(d−g(m)) with CD

being the covariance matrix on the data d. Since the data covariance estimation was
conservative (under-estimation), the confidence intervals of the model parameters
are also under-estimated.

We use the PyMC library (Patil et al. (2010)) which implements a Metropolis algo-
rithm to explore the posterior PDF. For all models, we used 500,000 initial samples,
rejecting the first 100,000 samples to minimize the effect of the initial model, and
decimate the resulting samples by a factor of 10.
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Figure 3.5: Comparison between horizontal and vertical velocity predictions for two-
dimensional synthetic elastic models. All models are for a shortening rate of 4 mm/yr, and
a locking depth down to 10 km depth. Velocity predictions are shown for a dip of 30◦ or 60◦ as
indicated in the middle column subplots. The right column shows the model setting and parameters
for the back-slip (BS), flat décollement (FD) and flat décollement-ramp (FDR) models. The fault
is in solid line when slipping and dashed line when locked. xf corresponds to the location of the
fault at the surface, or in the case of the FD model, the surface location of the decollement tip.
xf=0 on the x-axis for model predictions.

3.4.6 Two-Dimensional Inversion from GPS Data

In a first approach, we test the BS and FD approaches using the GPS results
only. The searched parameters for the BS models are the horizontal shortening rate
Vh, the dip, the locking depth H and the location of the fault trace at the surface
xf. The applied back-slip equals to Vh/cos(dip) (Figure 3.6c). For the FD model,
the searched parameters are Vh, the depth of the décollement H and the horizontal
location of the décollement tip (Figure 3.7c). The input data are the horizontal
velocities projected along 4 profiles perpendicular to the fault segment (Figure 3.4)
where GPS data are dense enough. The fault strike is changing from north to south,
hence we choose to angle the profiles to cut perpendicularly the fault and follow the
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GPS pattern. For both BS and FD models, we use a uniform prior in the interval
of 0-10 mm/yr for the shortening rate, and 0-15 km for the locking depth and ∼10
km of possible offset with respect to the fault trace. For the BS model, we use an
interval of 5-85◦ for the dip. To increase the number of observations to resolve the
searched parameters, profiles are inverted simultaneously sharing the same value of
dip and shortening rate Vh. We assumed different values of locking depth or depth
of the decollement H (H1, H2, H3, H4) for the four profiles as it is obvious that the
velocity gradient across the fault is different among profiles. Similarly, the location
of the fault is solved independently for each profile, by taking different values of
xf (xf1, xf2, xf3, xf4) to reflect the variable location of the different segment with
respect to our reference point.

We find that GPS site PLHA located on the Pululahua Volcano (Figure 3.1b) and
used in the northernmost profile (profile 1) appears as being an outlier in many mod-
els. Therefore, PLHA has been removed from the inversions. Figures 3.6b and 3.7b
show some of the components of the posterior PDF together with the fit achieved
to the data for the mean model (Figures 3.6a and 3.7a). Both the BS and FD ap-
proaches provide good fit to the data (wrms = 0.51 and 0.44 mm/yr for the BS and
FD model respectively, Figures 3.6a and 3.7a). The shortening rate Vh is consis-
tently found to be in the range of 3.1 to 3.5 mm/yr at the 68% confidence level. We
find that the locking depth is less than 1.3 km for profiles 2 and 3 in central Quito.
Larger locking depths are found for the northern and southern segments (profiles 1
and 4). For the BS model, the preferred (Maximum A Posteriori, MAP) dip is very
steep (∼65◦) but both the mean and median models provide estimates around 45◦

with comparable misfit to the data.

Although both the BS and FD models could achieve a good fit of GPS observa-
tions and demonstrate a very small elastic strain accumulation at the Quito fault,
we suspect that these results are not physically realistic and could bare to unrealistic
slip deficit estimates. Indeed, for such models, the elastic strain would accumulate
only within the very shallowest part of the fault (∼1 km), which is mostly made of
unconsolidated material for which inelastic deformation is likely to occur.

3.4.7 Joint GPS-InSAR Based Models

In a second step, we include the InSAR data. One of the main patterns in the
InSAR map is the 5 km narrow bell-like shape of LOS rate found for the central
Quito basin along profile 2 and 3 (Figure 3.8a). None of the previous models ex-
plored can explain this pattern, but the synthetic tests described in paragraph 4.1
suggest that flat décollement-ramp models can reproduce this shape of signal. For
the FDR model, two parameters are added with respect to the FD model: the dip
of the ramp and top depth of the ramp. We find that if we leave all parameters free,
that is having a uniform prior, the FDR model tends to choose values for the décolle-
ment depth (H) of the order of ∼2 km, providing similar results to the FD models.
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BS models

a) 

c) b) 

topography

velocity

Figure 3.6: Results from the Bayesian inversion using GPS data only and the back-
slip (BS) model along profiles crossing the Quito fault. Location of the profile are shown
in Figure 3.4. a) Red curves are model prediction from the mean model for the along profile
horizontal velocity. Circles filled in red are survey mode GPS whereas circles filled in white are
continuous GPS. Black line shows the topography. b) One- and two-dimensional posterior PDF for
the following parameters: the shortening rate (Vh), the dip and the four locking depths associated
with each profile (H1, H2, H3, H4). c) Schematics Model of a BS with the parameters used for
the inversion: dip; xf, location of the fault on the surface; Vh, shortening rate; H, locking depth.
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FD models

a) 

b) c) 

topography

velocity

Figure 3.7: Same as Figure 3.6 but with a Flat Décollement (FD) model.

To force a more comprehensive exploration of the models allowed by the data, we
run several inversions fixing the décollement depth at 3, 5, 7 and 10 km. For InSAR
data, corrections for an offset and a tilt along the profile direction are estimated.
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The InSAR profiles are decimated using a median filter. We exclude profile 4 from
these inversions because the residual signal in the InSAR data southwest of the Ilalo
Volcano cannot be fitted by a simple geometry with one single fault (see discussion).

For these models, we find that a décollement depth of 7 or 10 km with shallow
(2-4 km) locking depth on the ramp can simultaneously fit the GPS and InSAR
data. We find that there is little sensitivity to the dip because similar good fit is
achieved for values of 10◦ to 50◦ (with slightly preferred values of 30◦-35◦) for profiles
1 and 3. For profile 3 in central Quito, the narrow bell-like LOS pattern is better
fitted with a single slipping patch at 2-4 km depth on a ramp with a dip in the
range of 20 to 35◦ (Figure 3.8). The FDR models reveal a wider range of horizontal
shortening rate from 3 to 5 mm/yr allowed by the data.

In summary, the results from the two-dimensional tests show that (1) the hori-
zontal shortening rate accommodated across the Quito fault is in the range of 3 to
5 mm/yr ; (2) fitting GPS data with a simple flat décollement or with back-slip
models provides a very shallow locking depth but cannot explain the bell-like shape
of InSAR LOS rate (Figs 4a and 4c) ; (3) simultaneously fitting the sharp gradient
seen in both the GPS velocities and InSAR LOS rates requires shallow creep to
occur along a ramp; (4) the amount of shallow creep along the ramp appears to be
variable along strike with maximum aseismic slip occurring along the central Quito
segment of the fault.

3.4.8 Three-dimensional spatial variable interseismic models

In the models of section 4.7, the shallow creep is modelled using a single creep-
ing patch along the ramp, with the model build-in condition that the slip rate is
constant along the patch. This is certainly a crude approximation since slip is likely
to vary both along dip and along strike at the fault plane. To obtain a more realistic
model of the shallow creep distribution, we design a three-dimensional inversion of
spatially variable slip at depth. Our model follows the approach by Daout et al.
(2016a). The block-like far-field velocity is modelled using a 110 x 110 km2 horizon-
tal dislocation at depth H slipping at velocity Vh. This length embeds the whole
Quito fault system along strike (60 km) and also enables modelling of the PS-InSAR
gradient seen north and south of the Quito fault. The width ensures a block-like
behaviour for the far-field GPS data. The horizontal dislocation connects to a ramp
reaching the surface along the fault trace in the central segment (Figures 3.9 and
3.10). We discretize the ramp into 2 x 2 km2 subfaults. The surface fault trace is
simplified by a single plane with a fixed strike of 200◦ that follows the foot of the
main escarpment in the central part of the fault where more data are available to
constrain the shallow behaviour of the fault.

Once Vh and the geometry are chosen, solving for spatially variable slip along the
ramp is a linear inverse problem. We use the stochastic inversion approach described
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a)

Model for Profile 1b) c) Model for Profiles 2 & 3

topography

Figure 3.8: Results of the Bayesian inversion using GPS and InSAR data and the Flat
Décollement Ramp (FDR) model with a décollement depth at 10 km. a) Red curves are
along profile horizontal velocity model prediction from the mean model. Orange curves are model
prediction from the mean model along the LOS. Light grey dots are LOS rates along a 400 m wide
swath around the profile location. Blue circled are the selected points from the LOS velocity data
used in the inversion a median filtered. Red filled circles indicate survey mode GPS whereas white
filled circles are continuous GPS. Black line shows the topography. b) & c) Schematic models of
a Flat Décollement Ramp (FDR) and a Flat Décollement (FD) with a slipping patch, with the
parameters used for the inversion: dip; xf, location of the fault on the surface; Vh, shortening rate;
D, locking depth (or D1 to D2: patch of the locking depth); H, décollement level; s, slip on the
ramp.

in Nocquet (2018) to solve for slip at each individual subfault under the condition
that the slip must be positive and lower or equal to Vh/cos(dip) in the shorten-
ing direction. This condition implicitly enforces that the observed deformation is
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not transient since it does not exceed the slip imposed by the far-field horizon-
tal shortening rate. We use a regularization condition in the form of a penalty
function (m −m0)

TC−1
m (m −m0), where Cm is a covariance matrix of the form of

Cm = 2σe−rij/rc with σ being the constraint to the a priori model m0, rij the dis-
tance between subfault i and j and rc a critical distance controlling the correlation
between subfault slips. Because our simple geometry does not account for slight
change in strike between different segments, we allow the rake to vary around 106◦

by setting a sigma value of 1 mm/yr on the conjugate component of slip at each
subfault. Because InSAR data might be subject to systematic long wavelength er-
rors, we also solve for an overall constant and a tilt of the LOS rates simultaneously
to the two components of slip at each subfault.

We perform a grid search for Vh in [3.0, 4.5, 6.0, 8.0] mm/yr, dip in [20, 30, 40, 50]
degrees, and depth in [7, 10, 13] km. For each Vh, dip and depth, we solve for both
m0 = 0 and m0 = Vh/cos(dip) with a constraint of 1 mm/yr and a critical distance
rc of 4 km. Solving with a prior of m0 = 0 provides a minimum slip rate solution,
that leads to a maximum moment deficit rate model, while using m0 = Vh/cos(dip)
provides a maximum slip rate solution, that is a minimum moment deficit rate model.

The 3D modelling confirms some of the results from the profile analysis. A hor-
izontal shortening Vh=8 mm/yr overestimates the few far-field GPS data (Figure
3.10) while Vh=3 mm/yr underestimate them. The best agreement for far-field data
is found for Vh=4.5 mm/yr but some models with Vh=6 mm/yr are also allowed by
the data.

As for the two-dimensional models, our parameter exploration shows little sensi-
tivity to the dip of the fault. For all models tested, a dip value of 50◦ provides
underestimated magnitude for GPS velocities in the central Quito area. Otherwise,
dip values from 20◦ to 40◦ are acceptable, with best fit achieved for dip values of
20◦ and 30◦. Similarly, the three depths tested [7, 10, 13] km provide comparable
fit to the data.

In terms of slip distribution, all models find shallow slip along the fault plane pos-
sibly reaching the surface in the central segment, decreasing north and south, as
the gradient of the InSAR LOS rate and GPS, when available, become smoother
(Figures 3.9 and 3.10). The length of the creeping segment is found to be ∼20 km.
Its downdip extent is at least 5 km and some models find that the whole ramp is
creeping along the central segment. Minimum slip models highlight two additional
areas of slip at the southern and northern tip of the fault plane, but their extents
are poorly constrained by spatially scarce data.

Overall, the size of the creeping areas, and notably their extension at depth, largely
depends on the chosen a priori model. In some models, almost the whole fault is
found to be creeping at a rate close to the one imposed by the far-field shortening.
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The areas of our idealized fault that are not creeping correspond to areas where
the fault trace is located a few kilometers west of the modelled fault trace (Figures
3.9 and 3.10). Therefore, those models indicate the possibility that the Quito fault
might be almost entirely creeping. Alternatively, models with minimum slip prior
show the possibility that shallow creep is restricted to the first shallowest kilome-
ters of the fault and that significant coupling occurs north and south of the central
segment.

)b)a

)d)c

wrms GPS = 0.62

wrms InSAR = 0.84
wrms GPS = 0.60

wrms InSAR = 0.85

wrms GPS = 0.62

wrms InSAR = 0.84
wrms GPS = 0.68

wrms InSAR = 0.83

0         1         2         3         4         5         6         7
(mm/yr)

Figure 3.9: Selection of four different fault slip models along the Quito Fault System.
Fault dipping at 20◦ with a shortening rate between 4.6 and 4.9 mm/yr and a flat décollement at
either at 7 km depth (a and b) and 13 km depth (c and d). a) and c) have a prior m0 = 0 (minimum
slip rate solution). b) and d) have a prior m0 = Vh/cos(dip) (maximum slip rate solution). The
values are in mm/yr and color-coded according to the scale shown at the bottom. The barbed
black line shows the simplified surface trace of the fault. Fit to the data are shown in Figures 3.10
and 3.11.
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Figure 3.10: Results for a selection of models and fit to GPS and InSAR data. Column
1: Slip distribution. Slip values are indicated by the colour scale on the right side of the subplots
on mm/yr. Horizontal shortening rate (mm/yr), depth (km) and dip (degrees) and indicated above
each subplot. Column 2: Arrows indicate observations (blue), models (red) and residuals (black)
respectively. The wrms of residuals is labelled on top of each subplot. Column 3: LOS rate model
predictions (mm/yr). Column 4: LOS rate observations (mm/yr). Column 5: LOS rate residuals
(mm/yr). All LOS rate maps use the same colour code indicated on the right of the figure. The
selected best models from Figure 3.9 are the last four, with a fault dipping at 20◦ west and with
a shortening rate between 4.6 and 4.9 mm/yr.
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Figure 3.11: Same as Figure 3.10 with slip= Vh= Vh= Vh. The long-term slip rate on the ramp is
equal to the shortening rate Vh.
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3.5 Discussion

3.5.1 Comparison with the Seismicity Depth Distribution

Our preferred models include a flat décollement at a 10 km depth that con-
nects to a ramp reaching the surface. Rather than a realistic description of the
fault geometry at depth, such a model provides a first order approximation of the
depth transition between ductile processes and elastic strain build-up. The depth
of such a transition can independently be assessed by looking at the distribution of
seismicity as a function of depth. Figure 3.12 shows the depth distribution of earth-
quakes in the Quito area, using the IG-EPN instrumental earthquake catalogue
(https://www.igepn.edu.ec/red-nacional-de-sismografos). The IG-EPN earthquake
catalogue covers the 2011-2018 period using the data from the national Ecuadorian
permanent network (Alvarado et al. (2018)). When considering earthquakes with
magnitude ML above 2, the depth distribution is confined within the first 10 km
(Figure 3.12). Although this distribution indicates that small earthquakes occur in
a volume rather than being located on a single fault plane, the seismogenic depth
derived from our inversion is consistent with the observed depth distribution of
earthquakes.

3.5.2 Comparison with Fault Morphology

Morphology of fault related anticlines is also an indicator of the fault geometry
at depth. Despite some variability among modelling approaches, models of fold evo-
lution usually predict that the width of the fold roughly scales with the depth of the
root of the underlying causative fault (e.g. Savage and Cooke (2003); Bernard et al.
(2007); Johnson (2018)). If true, for the Quito fault, the characteristic width of the
different segments is about 7 km, a value also consistent with our modelling results
and the seismicity distribution with depth. Such a relatively thin seismogenic layer
might be due to the thick (50-60 km, Reguzzoni et al. (2013), Araujo (2016)) crust
documented beneath the Andes, therefore inducing a larger radiogenic thickness,
relatively high heat flow and hence thin elastic thickness. The Inter-Andean valley
in Ecuador is the locus of significant quaternary volcanic activity, and small volca-
noes (Figure 3.1b) attest for magmatic intrusion reaching the surface. Therefore,
the crust in the Quito area might be locally hot, therefore reducing the thickness of
its elastic part.

3.5.3 Overall Slip Deficit Moment Rate and Implication for

Seismic Hazard

The existence of an active fault poses a serious hazard to the growing city of
Quito and its surroundings, especially considering that even moderate-size earth-
quakes have generated significant damages in the past. Within our present-day
understanding of the earthquake cycle, significant creep reduces the accumulation
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Figure 3.12: Distribution of the seismicity in the Quito area issued from the IG-EPN
Catalogue (2011 to 2016). Earthquakes are selected starting from MLv 2+ and until 40 km
deep, with an error in the depth location of less than 5 km. Top left is the histogram representing
the number of earthquakes versus depth, with more than 80% of the seismicity located above 10
km depth.

of slip deficit at faults, then reducing the amount of elastic energy available for
earthquakes. Although creeping faults recorded earthquakes up to magnitude 6.6
and possibly even larger events (Harris (2017)), earthquakes should, however, be less
frequent at creeping segments than at their locked counterparts for the same slip rate
and size. Under the assumption that the observed creep is steady through time and
that the slip deficit is a first order indicator of the moment available for earthquakes,
we can perform simple calculations. For all three-dimensional models explored, we
can estimate the slip deficit at each sub-fault as the difference of the maximum slip
rate provided by V h/cos(dip) and the inverted slip rate. We integrate it over the
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fault area and we calculate a rate of moment deficit accumulation over the whole
fault. For this calculation, we remove sub-faults found with no slip that are located
East of the known surface fault trace that would otherwise contribute to the slip
deficit estimates. Such procedure roughly reduces by 30% the maximum moment
rate deficit. Given the fact that we have inverted both for the maximum and min-
imum slips, the range of moment deficit rate is considered to reflect the amount of
moment deficit accumulation rate allowed by the data. Taking the results from the
most extreme models, our spatially variable slip inversions are equivalent to 20% to
80% of the average interseismic coupling along the fault. Under these assumptions,
we find a moment deficit accumulation rate along the Quito fault to have a lower
bound value of 0.3x1017 N.m.yr−1 and an upper bound value of 1.9x1017 N.m.yr−1.
These values are equivalent to a single MW 6.7-7.3 earthquake every 500 years, a
magnitude possible given the length of the fault (∼60 km).

In order to provide a more realistic description of earthquake recurrence, we use the
geodetic moment accumulation rates to derive a cumulative exponential-truncated
Gutenberg-Richter distribution (G-R, form 2 in Anderson and Luco (1983)). Both
a b-value and an estimate of the maximum magnitude that the fault can generate
must be assumed. Beauval et al. (2014) derived a magnitude-frequency distribu-
tion for the Quito fault system (Figure 3.13a), which is not well constrained due
to the low number of events above MW 4.5 in the area. Nonetheless, we compare
our results to this catalog-based recurrence model. Applying Leonard (2010) scaling
relationship for reverse events, a 90-100 km long and 20 km width fault corresponds
to a magnitude of MW 7.3. Assuming the same b-value and an Mmax value of 7.3,
we find that the geodetic-based G-R from the lower moment deficit accumulation re-
quires an a-value lower than the one from seismicity rates, while the geodetic-based
G-R from the larger moment deficit accumulation requires an a-value higher than
observed from seismicity rates (Figure 3.13a). For earthquakes of magnitude larger
or equal to 6.5, the geodetic-based models predict a mean interevent time between
200 and 1100 years, depending on the model chosen. We also determine the lowest
maximum magnitude required so that the yearly seismic moment calculated from
the integration of the G-R curve equates the yearly moment deficit accumulation.
To make the lower geodesy-based and seismicity-based rates consistent, a smaller
Mmax of 6.8 is required (Figure 3.13b), predicting a mean interevent time between
150 and 900 years for an event Mmax ≥ 6.5.

Our results further highlight a segmentation of the slip deficit accumulation along
the Quito fault, made of two segments accumulating strain separated by the 20 km
long creeping segment in central Quito. While our model exploration shows that
creep or locked behaviours are both possible at depth, our results highlight that
the central segment is creeping along its shallow part, at least down to 5 km. An
open question, as documented for subduction megathrusts, is to know whether this
creeping segment could act as a barrier to the seismic rupture propagation. In this
perspective, future earthquake scenarios for Quito could include the possibility of
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more frequent 30 km long ruptures occurring at the northern and southern segments
than in the central part.

a) b)

Figure 3.13: Quito Fault recurrence models based either on seismicity (red line) or on
total geodetic moment rates (black dashed lines), with a b-value=0.81 (Beauval et al. (2014)). a)
Maximum magnitude based on scaling laws (Leonard (2010)) with Mmax=7.3; b) Mmax=6.8 to
obtain the same annual exceedance rate for the G-R based on the minimal moment rate (0.3x1017

N.m.yr−1) and the G-R based on the seismicity.

3.5.4 The 1995-1996 Transient Motion – a Fold Growth Pulse?

Our PS-InSAR time series highlight a transient deformation, clearly seen for the
interferograms spanning the April 11, 1995 - October 24, 1996, period (Figures 3.3d
and 3.3h). It occurred southeast of the Ilalo Volcano, a few kilometers east of the
main surface trace of the Quito fault in a semi-urban area. This transient signal has
a LOS magnitude of ∼20 mm with a radial pattern over ∼4 km. The LOS rate map
for the 1996-2000 period further shows a similar pattern at a smaller amplitude (1
mm/yr) and smaller length-scale (1 km, Figure 3.3f), indicating that deformation in
this area persisted with a lower intensity during the 7 years of InSAR observation.
The location of this signal correlates with a previously identified active Conocoto fold
located east of the main Quito Escarpment at long. -78.47◦, lat. -0.29◦ (Figure 3.14).
The Conocoto fold is a 1.5 km long, 800 m wide and 100 m high structure. Its recent
activity is attested by the deflection of the river course and it has been interpreted as
a young growing fold induced by a secondary propagating west dipping thrust fault
(Figure 3.14c and Alvarado et al. (2014)). Because of the observed radial pattern of
deformation and the absence of negative LOS displacement, such a signal is unlikely
to be modelled using reverse slip along an elastic dislocation. We speculate that this
transient deformation signal arises from the ductile deformation of the top layers
induced by local aseismic slip along the underlying fault. If we interpret the LOS
displacement as being mainly vertical, this implies a steady uplift rate of ∼1 mm/yr
calculated for the 1993-1995 and 1996-2000 periods. The LOS displacement is ∼20
mm during the 1.5 years separating the two SAR acquisitions (from 1995/4/11 to
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sharp gradients across the Quito fault highlight a weak rate of elastic strain accumu-
lation and a shallow (<3 km) locking depth. The central segment shows the sharpest
velocity gradient, providing evidence of aseismic slip taking place at shallow depth
along the fault plane and possibly reaching the surface, while segments north and
south of it possibly hosts larger slip deficit accumulation rates. Aside these trends,
the details of interseismic coupling distribution appear to be model dependent. In
particular, some models including a flat décollement and a ramp allow for slip deficit
to accumulate at depth. Overall, our results demonstrate that strain accumulation
is spatially heterogeneous along the Quito fault. The observed shallow aseismic slip
concurs to confirm that a significant percentage of crustal faults on Earth may be
creeping at shallow depth (Harris (2017)). In terms of seismic hazards for the Quito
area, our results help to refine previous estimates of earthquake time recurrence
(Beauval et al. (2014, 2018)). Our estimates for the rate of moment deficit accu-
mulation derived from a 3D spatially variable interseismic coupling translate into
recurrence time for magnitude 6.5+ earthquake to be between 200 and 1100 years,
a value consistent or slightly lower than proposed in previous studies (Beauval et al.
(2014, 2018); Parra et al. (2016)).

Finally, we identify a transient deformation signal related to the development of
a secondary fold, a few kilometers east of the main fault trace. This observation
suggests that fold growth might result from pulses of accelerated deformation, pos-
sibly driven by slow slip events occurring along the fault plane underlying the soft
top layers experiencing anelastic deformation. On the overall, our results emphasize
a dominant contribution of aseismic processes for the Quito fault system.
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4.1. Introduction

This chapter is the subject of an article produced in collaboration with
Celine Beauval, Jean-Mathieu Nocquet, Mohamed Chlieh and Hugo Yepes
and that is submitted to Bulletin of the Seismological Society of America. It
focuses on the integration of the geodetic data into the recurrence models and
the quantification of the associated uncertainties in order to better constrain
seismic hazard assessment in the subduction zone of Ecuador.

Abstract

Probabilistic Seismic Hazard Assessment relies on long-term earthquake fore-
casts and ground-motion models. Our aim is to improve earthquake forecasts by
including information derived from geodetic measurements, with an application to
the Colombia-Ecuador megathrust. The annual rate of moment deficit accumu-
lation at the interface is quantified from geodetically-based interseismic coupling
models. We look for Gutenberg-Richter recurrence models that match both past
seismicity rates and the geodetic moment deficit rate, by adjusting the maximum
magnitude. We set up a logic tree for exploring the uncertainties on the seismic
rates (a and b-values, form close to Mmax) and on the geodetic moment deficit rate
to be released in earthquakes. A distribution of maximum magnitudes Mmax bound-
ing a series of earthquake recurrence models is obtained for the Colombia-Ecuador
megathrust. Models associated to Mmax values compatible with the extension of the
interface segment are selected. We show that the uncertainties influencing the most
the moment-balanced recurrence model are the fraction of geodetic moment released
through aseismic processes and the form of the Gutenberg-Richter model close to
Mmax. The distribution of moment-balanced recurrence models is combined with a
ground-motion model to obtain a series of uniform hazard spectra representative of
uncertainties at a site on the coast. Considering the recent availability of massive
quantity of geodetic data, our approach could be used in other well-instrumented
regions of the world.

4.1 Introduction

The Nazca/South American subduction zone is among the most seismically
active convergent margins in the world. Between latitudes -3◦ to 2◦ (Figure 4.1),
the oceanic Nazca plate subducts at a rate of ∼47 mm/yr below the North Andean
Sliver, a continental domain moving independently from South America (Pennington
(1981); Nocquet et al. (2014); Alvarado et al. (2016)). This subduction segment has
experienced six large megathrust earthquakes since the beginning of the 20th century:
in 1906 (MS ∼8.6, Ye et al. (2016)), 1942 (MW (ISC−GEM) 7.8), 1958 (MW (ISC−GEM)

7.6), 1979 (MW (gCMT ) 8.1), 1998 (MW (gCMT ) 7.1) and 2016 (MW (gCMT )7.8) (Figure
4.1). In this area, the coast lies ∼15 to ∼40 km directly above the rupture area of
megathrust earthquakes and is particularly exposed to strong shaking during large
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events. For instance, horizontal Peak Ground Accelerations (PGAs) recorded at
stations above the Pedernales 2016 MW 7.8 rupture plane exceeded 1.0 g (Beauval
et al. (2017)), along with significant damages to buildings and more than 670 deaths
(Secretaria de Gestion de Riesgos, Informe de Situacion N◦65, 2016).

The present study aims at improving Probabilistic Seismic Hazard Assessment (PSHA)
in Ecuador. It focuses on the hazard induced by earthquakes occurring at the sub-
duction interface, considering the Esmeraldas segment as defined from the seismo-
genic source zonation proposed in Yepes et al. (2016) and updated in Beauval et al.
(2018). The Esmeraldas segment is ∼600 km-long, it extends from north of the Gri-
jalva rifted margin to southern Colombia (Figure 4.1), and encompasses all rupture
areas of the 1906-2016 megathrust earthquake sequence (e.g. Chlieh et al. (2014)).
GPS data indicate that this segment is presently highly coupled (Nocquet et al.
(2014); Chlieh et al. (2014)). According to the recently published seismic hazard
model for Ecuador (Beauval et al. (2018)), the highest hazard levels are found for
sites located on the northern coast, with mean PGA values exceeding 0.6 g at 475
years return period for the sites closest to the subduction interface (generic rock site).

The earthquake recurrence model plays a key role in the determination of haz-
ard levels, as it defines the magnitude range to expect for future earthquakes, with
associated frequencies. Different models can be implemented to account for inter-
face events. Gutenberg-Richter models can be derived from the available earthquake
catalogs (e.g. Medina et al. (2017); Beauval et al. (2018); Petersen et al. (2018a));
characteristic models can also be developed with characteristic earthquake recur-
rence times inferred from the subduction slab convergence rates (e.g. Stirling et al.
(2012); Pagani et al. (2020b)). In the seismic hazard model published by Beauval
et al. (2018), the authors determined the Gutenberg-Richter recurrence parame-
ters from the well-constrained observed seismic rates in the moderate magnitude
range, and they extrapolated these rates up to maximum magnitudes. Unlike the
crustal fault model, Beauval et al. (2018) did not use geodetic information to derive
earthquake frequencies. The Esmeraldas segment is well instrumented with GPS
stations at distances less than 100 km from the trench axis and high-resolution
models of interseismic coupling are available (Nocquet et al. (2014); Chlieh et al.
(2014); Gombert et al. (2018)). Our aim here is to combine both available seismic
and geodetic data to constrain earthquake recurrence models for the ∼600 km-long
subduction interface that extends from northern Ecuador to Central Colombia. As
the quantification of uncertainties is a key aspect in PSHA studies, we identify un-
certainties related to both the seismic and the geodetic data and propagate these
uncertainties up to the hazard estimates.
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4.2 Modelling seismic and geodetic data

4.2.1 A seismic catalog extending over 117 years

In Ecuador, the earliest events reported in the historical intensity catalog date
back to the middle of the 16th century (Egred (2009)), a few years after the ar-
rival of the Spaniards. Until the end of the 19th century, the historical information
mostly describes effects of earthquakes inland, in the Cordillera (see e.g. Beauval
et al. (2013)). The first coastal earthquake for which several intensities are reported
is the 1896 event. However the dataset is too sparse to infer a reliable location
and magnitude for this event (Keller (2014)). Therefore, the earthquake catalog for
the subduction interface extends at maximum over 117 years and includes early-
instrumental and instrumental events. Nonetheless, marine paleoseismology studies
are undergoing at the Ecuadorian margin (Migeon et al. (2017); Proust et al. (2016)).
For now, they have identified turbidites dated approximately 600 years ago which
could have been triggered by an event equivalent to the great 1906 subduction earth-
quake (Migeon et al. (2017)).

We build an earthquake catalog for the area, making use of global catalogs (Figure
4.2). We decide not to include local catalogs to ensure a certain level of homo-
geneity in moment magnitude. As a consequence, the minimum magnitude of com-
pleteness is quite high (MW ∼4.8 since 1964). Solutions in the ISC-GEM catalog
(v. 7.0) are considered the most authoritative. All ISC-GEM hypocenter loca-
tions were computed with the same algorithm and velocity model (Storchak et al.
(2015)); events are described by either a published moment magnitude, MW from
the global Centroid Moment Tensor catalog (gCMT, Ekström et al. (2012)), or a
proxy MW value inferred from an MS or mb magnitude (Di Giacomo et al. (2015)).
For earthquakes which are not in the ISC-GEM catalog, we use solutions from
the ISC event catalog (International Seismological Centre (2020), On-line Bulletin,
https://doi.org/10.31905/D808B830, Storchak et al. (2017)) over its reviewed pe-
riod. In this case, MW is either retrieved from the gCMT catalog or obtained from
ISC mb and MS magnitudes using the global conversion equations from Lolli et al.
(2014) The exact selection scheme followed for building the catalog is detailed in the
Appendix 4.9.1, An earthquake catalog for seismic hazard assessment in Ecuador.

Earthquakes that may be associated with the Esmeraldas interface segment are dis-
played in Figure 4.3. All events falling inside the segment with hypocentral depths
between 0 and 50 km are considered (Yepes et al. (2016)). Since 1900, the area
has been very active, experiencing 6 earthquakes with magnitudes MW between 7.1
and ∼8.6 and 38 events with magnitudes between 6.0 and 7.0. To estimate seismic
rates representative of long-term seismicity, it is current practice in PSH studies to
decluster the earthquake catalog (e.g. Teng and Baker (2019)). The strong after-
shock sequences can bias the estimation of the rates and the b-value characterizing
the exponential decrease of the number of events with respect to magnitude. We
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apply the Reasenberg (1985) declustering algorithm, with parameters indicated in
Table 4.2 (Appendix 4.9.1, An earthquake catalog for seismic hazard assessment in
Ecuador). In the Esmeraldas source zone, 52% of all events MW ≥ 4.5 are identi-
fied as clustered events (155 out of 297 events). Two-third of these clustered events
belong to the aftershock sequences of the 1979 and 2016 megathrust earthquakes
(Figure 4.3). However, in terms of seismic moment rate, these clustered events rep-
resent only 0.8% of the moment rate calculated over the whole catalog.

In the depth range considered, not all events are related to the interface, some
might be related to crustal shallow faults. Given the large uncertainties on the
depth solutions, discriminating between interface and crustal events based on the
hypocentral locations is elusive. For most earthquakes with a magnitude MW ≥ 5.0-
5.2 after 1979 the gCMT catalog provides a solution (Figure 4.2), including the focal
mechanism. We apply some simple criteria, i.e. a rake within the range 30◦ to 150◦

and a dip lower than 45◦, to select earthquakes which might correspond to reverse or
reverse oblique faulting at the plate interface (see Fig. 4.18 in PEER Report 2020/0,
Data Resources for NGA-Subduction Project, that displays the distribution of rake
and dip angles for interface events in the Next Generation Attenuation Subduction
(NGA-Sub) database). We find that within the Esmeraldas source zone limits, 88%
of the earthquakes in the gCMT catalog fall in this category. Twelve percent of
events might be related to crustal shallow faults. Observed seismic rates estimated
from the newly built catalog will be corrected accordingly.

4.2.2 Modelling earthquake recurrence

The Weichert (1980) maximum likelihood method allows to determine the
Gutenberg-Richter recurrence parameters from magnitude intervals with varying
time-windows of completeness (productivity a and exponential coefficient b, Guten-
berg and Richter (1944)). The catalog is considered to be complete for MW ≥ 6.6 in
the early instrumental period from 1900 to 1920, for MW ≥ 6.0 in the period from
1920 to 1950, for MW ≥ 5.7 in the period from 1950 to 1964, and for MW ≥ 4.8 from
1964 on (Table 4.3, 0.3 magnitude bin width used). Applying the Weichert method
over the magnitude range with populated bins, i.e. between MW 4.5 and 7.2, we
obtain from the declustered earthquake catalog a b-value of 0.62 ± 0.05 (with an
a-value 3.06; Figure 4.4a). Seismic rates for larger magnitudes (MW > 7.2) are not
meaningful, as they are calculated from one or two occurrences. Although debated
(Ye et al. (2016); Gombert et al. (2018)), the occurrence rate of large subduction
earthquakes since 1906 has been proposed to be abnormally high and being part of
an earthquake super-cycle (Nocquet et al. (2016)). In any case, the observation time
window is too short to estimate the long-term average recurrence time of these large
events. As there is no trace in the historical archives of a large megathrust earth-
quake that would have hit the coast during the 17th, 18th and 19th century (Egred
(2009); Beauval et al. (2013)), the rates of events MW > 7.2 could also be calculated
extending the time window to 400 years (resulting in the orange dots in Figure 4.4b).
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o o

Mainshocks Aftershocks

Figure 4.3: Magnitude versus time, catalog homogenized in MWMWMW (this study, MW ≥MW ≥MW ≥
4.5) in the Esmeraldas interface source zone (shown in Figure 4.1). Black: mainshocks; red:
clustered events, as identified by the Reasenberg algorithm. Before 1964, the catalog only includes
earthquakes with MW > 5.5. The aftershock sequence following the 1979 MW (gCMT ) 8.1 event
and of the 2016 MW (gCMT ) 7.8 represents respectively 38% and 31% of all clustered events in the
zone.

N(m) = 10a−bm for m ≤ Mmax (4.1)

N(m) = 10a−bm − 10a−bMmax for m ≤ Mmax (4.2)

N(m) = 10a−bm − 10a−bMmax − bln(10)(Mmax −m)10a−bMmax for m ≤ Mmax (4.3)

Equation (4.1) corresponds to the Form 1, equation (4.2) corresponds to the Form
2 and the equation (4.3) corresponds to the Form 3.

The corresponding discrete non-cumulative rates can be found in the Appendix
4.9.3, Discrete non-cumulative rates for Gutenberg-Richter Forms 1, 2 and 3. Form
1 has similarities with the Youngs and Coppersmith (1985) characteristic earthquake
model, with rates for the last magnitude bin larger than predicted by the moderate-
to-large magnitude range (Figure 4.17). Form 2 and Form 3 predict fewer large
magnitude earthquakes than Form 1. Form 2 is the most prevalent in PSHA studies
(e.g. Beauval et al. (2014); Mihaljević et al. (2017); Grünthal et al. (2018)). It is
the form implemented in Openquake (Pagani et al. (2014), “Truncated Gutenberg-
Richter MFD”). Form 1 has been less used in PSHA, but it is quite common in the
literature comparing seismic moment accumulation from geodesy and moment re-
leased by earthquakes (e.g. D’Agostino (2014); Avouac (2015); Stevens and Avouac
(2016, 2017)).

As in every seismic hazard study, the earthquake catalog and the seismic rates
estimated bear significant uncertainties (see e.g. Beauval et al. (2013, 2018, 2020);
Brax et al. (2019)). There are uncertainties on the selection of best magnitudes
and locations from available solutions, on the choice of the magnitude conversion
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and the magnitude range considered (Figure 4.5). An increase of 0.2 in magnitude
degree corresponds to a two-fold increase in the corresponding seismic moment M0

(Hanks and Kanamori (1979)):

M0 = 10cMW+d (N.m) with c=1.5 and d=9.1 (4.4)

Figure 4.5 displays Gutenberg-Richter models with increasing maximum magnitudes
(Form 1 in Figure 4.5a, Form 2 in Figure 4.5c), together with the corresponding total
seismic moment rate (obtained by integrating the model over the whole magnitude
range). We calculate the contribution to the total seismic moment rate per mag-
nitude bin, using a bin width of 0.25 (Figures 4.5b and 4.5d). We show that the
exponential decrease of the seismic rates with increasing magnitude (Figures 4.5a
and 4.5c) is counterbalanced by the exponential increase of the seismic moment.
Considering Form 1 and a b-value of 0.67 (Figure 4.5b), the upper one-degree mag-
nitude interval, i.e. [Mmax-1 Mmax], contributes to 93% of the total seismic moment
rate. Considering Form 2 (Figures 4.5c and 4.5d), the upper one-degree magnitude
interval contributes to 85% of the total seismic moment rate. With an Mmax equal
to 9.0, the contribution of events with magnitudes lower than 7 is around 2%.

The 117 year long earthquake catalog helps to constrain the moderate magnitude
range but is useless to discriminate between forms close to Mmax. Geodetic mea-
surements provide an estimate of the rate of moment deficit accumulating on the
subduction interface. Such information can be used to define the overall budget ex-
pected to be released in earthquakes. By combining this geodetic information with
the information from the catalog in the moderate magnitude range, the rates in the
upper magnitude range can be fully constrained.

4.2.4 Interseismic models available for the Ecuadorian sub-

duction interface

Compared to other subduction segments, the Esmeraldas interface source zone
benefits from relatively well-constrained interseismic coupling models. Indeed, a
coastline-trench distance usually shorter than 80 km, with several peninsulas, com-
bined with a shallow dipping interface, allows a precise determination of the coupling
at depth greater than 10 km of the megathrust interface (Chlieh et al. (2014)). The
GPS network has an average density of measurement sites every 70 km or less. Long
time series dating back to the 1990’s for campaign sites and 2008 for continuous GPS
are available. Several interseismic coupling models have been proposed for Ecuador
and the southern Colombia subduction zone (Nocquet et al. (2014); Chlieh et al.
(2014); Gombert et al. (2018); Staller et al. (2018); Sagaiya and Mora-Paez (2020)).
Here, we extend the existing coupling models from Nocquet et al. (2014) and Chlieh
et al. (2014) up to latitude 4◦N in Central Colombia (Figure 4.6). Both approaches
use a back-slip approach (Savage (1983)) and invert the interseismic velocity field
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Figure 4.5: Implication of a Gutenberg-Richter earthquake recurrence model in terms
of seismic moment rate, exercise with a model based on the a- and b-values calculated for the
Esmeraldas source zone (a=3.35, b=0.67). a) and c) Impact of Mmax on the total seismic moment
rate (colorbar) with Mmax arbitrarily varying from 8.25 to 9.25 with a 0.25 step. b) and d)
Contribution of each magnitude bin to the total seismic moment rate, in percentage. The pie charts
display the contribution per one-degree magnitude interval for the recurrence model with Mmax

9.0 (indicated with a star). The total seismic moment rate is calculated with Form 1 according

to: ṀT
0 = c

c−b
10a+d+(c−b)Mmax , and with Form 2 according to: ṀT

0 = b
c−b

10a+d+(c−b)Mmax .
Contribution of each magnitude bin to the total seismic moment rate calculated according to:
1

ṀT

0

∫m+0.25

m
λ(m)10cm+ddm, with λ(m) the annual seismic rate, c=1.5 and d=9.1 the coefficient

to estimate seismic moment from the moment magnitude (cf. Appendix 4.9.2, Mmax ensuring a

moment-balanced earthquake recurrence model).

in a North Andean Sliver (NAS) reference frame. The uncertainties of their models
are principally due to the limited spatial resolution of GPS data at less than 50 km
of the trench axis (corresponding to the very 0 - 20 km shallowest portion of the
megathrust interface).

Nocquet et al. (2014) discretized the subduction interface fault into 1,024 quasi-
equilateral triangles each having an average edge length of 30 km, following the Slab
1.0 (Hayes et al. (2012)) geometry subduction interface. The inversion follows a lin-
ear Bayesian formulation (Tarantola (2005)) modified to account for Non-Negative
constraints (Nocquet (2018)). This technique enables to explore the range of possi-
ble models, by varying the a priori model (from null to fully-coupled plate interface)
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as well as the damping and the smoothing parameters (through a model covariance
matrix). From the range of acceptable interseismic models obtained (wrms ≤ 1.1
mm/yr), we select three models representatives of the uncertainties (Figures 4.6a-c):
a minimum, best-estimate and maximum model.

Chlieh et al. (2014) applied a non-linear inversion of the GPS data based on a
stochastic simulated annealing algorithm (Chlieh et al. (2011)). They divided the
megathrust interface into 20 km diameter point source elements following the slab
geometry. Local geologic and seismic data are used to establish the slab (Font
et al. (2013); Gailler et al. (2007); Graindorge (2004); Hayes et al. (2012)). They
used the local average slip vector direction from the gCMT catalog and the relative
Nazca/NAS long-term plate rate to constrain the back-slip direction to ± 10◦ with
respect to the Nazca/NAS predicted value. The acceptable range of models have a
smoothing factor between 0.1 and 1.0 and a wrms ≤ 1.1 mm/yr. From these ranges
of interseismic models, we select three models representatives of the uncertainties
(Figures 4.6d-f): a minimum, best-estimate and maximum model.

The comparison of the models obtained by Nocquet et al. (2014) and Chlieh et al.
(2014) indicates some differences in the spatial distribution of the highly-coupled
areas over the megathrust interface but the range of moment deficit rate estimated
is quite similar in both approaches. All models show that the coupling is principally
restricted above the 40 km depth of the slab interface with a highly heterogeneous
coupling distribution along the Esmeraldas segment, and a ∼200 km long locked
area at the center of the zone (at latitude of 2◦N), connecting to smaller locked
patches to the north and to the south. Three major asperities are distinguishable
in rougher models. The rupture areas of the megathrust events, 1906 (MS ∼8.6, Ye
et al. (2016)), 1942 (MW (ISC−GEM) 7.8), 1958 (MW (ISC−GEM) 7.6), 1979 (MW (gCMT )

8.1) and 2016 (MW (gCMT ) 7.8), correlate well with regions of high interseismic cou-
pling (Figure 4.1). The interseismic coupling for the whole Esmeraldas source zone
is around 40-42%, if taken as an average from the trench down to 50 km depth. For
the hazard study we keep three values to represent the uncertainty on the coupling:
the minimum value of all models, the average of the best-estimate models, and the
maximum value of all models. The rate of moment deficit derived from interseismic
geodetic measurements and accumulating on the plate interface can be written as:

Ṁ0G =

∫

megathrust

µSχids (4.5)

where µ is the shear modulus, S the long-term relative plate convergence rate and
χi the interseismic coupling. The interseismic coupling χi is the ratio of the deficit
of slip rate in the interseismic period to the long-term slip rate. It quantifies the
degree of locking of the slab; χi = 1 corresponds to a locked patch, χi = 0 to a patch
fully creeping at the plate convergence rate. The moment deficit rate obtained is
in N.m/yr. The relative Nazca-North Andean Sliver convergent rate S along the

95



Chapter 4. Earthquake recurrence models combining seismic and geodetic data in

the subduction zone of Ecuador, application for SHA

Esmeraldas subduction interface is around 47 mm.yr−1 (Nocquet et al. (2014).
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Figure 4.6: Interseismic coupling (ISC) maps. ISC quantifies the degree of locking of the
subduction interface zone. (a) to (c) ISC models from Nocquet et al. (2014) (minimum, best-
estimate and maximum ISC models), (d) to (f) ISC models from Chlieh et al. (2014) (minimum,
best-estimate and maximum ISC models). A coupling coefficient (χi) equal to 100% corresponds
to a fully locked fault patch, whereas a coupling coefficient equal to 0% corresponds to a patch
creeping at the long-term slip rate. χi is defined as the ratio between the slip deficit and the
long-term slip rate. Black stars: epicenters of megathrust events MW > 7.0 in the ISC-GEM
catalog (Di Giacomo et al. (2015)). The value of moment deficit rate (top left) is calculated over
the Esmeraldas interface with µ= 30 GPa.
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4.3 Combining seismic and geodetic information: moment-

balanced earthquake recurrence models

4.3.1 Moment conservation principle

The general idea of moment conservation was introduced more than 40 years
ago (Brune (1968); Anderson (1979); Molnar (1979)). Anderson (1979) suggested
to use geological slip rates on faults to estimate seismic moment release and de-
rive earthquake recurrence models. Anderson and Luco (1983) discussed how the
slip rate constraints can be used either to estimate Mmax from the occurrence rates
of small magnitude earthquakes; or to estimate occurrence rates when Mmax is
already known e.g. from scaling relationships. In a paper focused on Southern Cal-
ifornia, Ward (1994) showed how seismological, geodetic and geological data can
be combined to establish a recurrence model that forecasts earthquake frequencies
for seismic hazard assessment. For the same region, Field et al. (1999) developed
earthquake recurrence models matching the observed rates and consistent with the
conservation of seismic moment rate. They demonstrated that some parameters
such as the b-value, the choice of the magnitude-frequency distribution, or the exact
moment-magnitude definition used, can have a non-negligible impact on the seis-
mic rates and maximum magnitude. More recently, Kagan and Jackson (2013) and
Rong et al. (2014)) applied the moment conservation principle in subduction zones
to estimate maximum magnitudes, again by matching the geodetic deformation rate
to that predicted by earthquakes with a magnitude-frequency distribution. Finally,
in a review paper analyzing the partitioning between seismic and aseismic fault slip
in areas where interseismic coupling maps are available, Avouac (2015) revisited this
concept discussing the maximum magnitude earthquake required for the closure of
the slip budget over the long-term.

In these publications, the Gutenberg-Richter model used varies, and usually only
one model is employed. A large part of the literature uses Form 2 in Anderson and
Luco (1983) (e.g. Ward (1994); Field et al. (1999); Hyndman et al. (2003); Mazzotti
et al. (2011)). Some authors use Form 1 (e.g. Avouac (2015); Stevens et al. (2018);
Michel et al. (2018)); while others (e.g. Kagan and Jackson (2013); Rong et al.
(2014)) employ the “tapered Gutenberg-Richter distribution” introduced by Kagan
(2002), a model that we do not consider here. We found only one study by Pancha
(2006) that tested several forms for extrapolating the recurrence model up to Mmax.

4.3.2 Determining Mmax so that the recurrence model is moment-

balanced

For subduction megathrust earthquakes in Ecuador and southern Colombia,
we propose to derive recurrence models by anchoring the recurrence curve to the
observed seismic rates in the moderate magnitude range (up to MW ∼ 7.0), then
extrapolating this model to the upper magnitude range, and bounding the model
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with an Mmax value ensuring that it is moment-balanced. Moment-balanced means
that the rate of seismic moment accumulation estimated from e.g. geodesy is ac-
commodated by the Gutenberg-Richter model (e.g. Petersen et al. (2008)). Our
strategy is to obtain a distribution for potential Mmax values, accounting for uncer-
tainties on the observed seismic rates and on the form of the curve close to Mmax,
as well as on the estimation of the seismic moment budget. By anchoring the model
to seismic rates estimated over the last 117 years, we assume that the Gutenberg-
Richter model is stable in time, and that past seismicity is representative of future
seismicity in this magnitude range.

From the moment deficit rate accumulating in the interseismic period, and assum-
ing that a fraction of it is released through aseismic transient slip, the moment rate
released in earthquakes can be estimated (Avouac (2015)). In this region, the inter-
seismic strain models are inferred from GPS measurements mostly collected over the
last 20 years. We need to assume that the loading rate estimated over that period
is representative of the long-term interseismic rate.

In the long-term, the moment deficit rate Ṁ0G (eq. (4.5)) is on average equal to the
moment rate released by earthquakes and aseismic transients (i.e. afterslip following
large earthquakes and episodic slow slip events). Following Avouac (2015), let α be
the fraction of slip deficit that will be released in earthquakes. The earthquake re-
currence model is moment-balanced if its corresponding cumulative annual seismic
moment rate equals the fraction of moment deficit that is released seismically αṀ0G.
The equation to solve, in the case of Form 2 (eq. (4.2)) is:

∫ Mmax

−∞

10cm+d × bln(10)× 10a−bmdm = αṀ0G (4.6)

with parameters c and d from the moment-magnitude definition (eq. (4.13) and Ap-
pendix 4.9.2, Mmax ensuring a moment-balanced earthquake recurrence model), and
Gutenberg-Richter a and b determined from observed rates on the moderate mag-
nitude range (Section 4.2.2, Modelling seismic and geodetic data). Hence, the max-
imum magnitude bounding the recurrence model can be determined as follows (see
Appendix 4.9.2, Mmax ensuring a moment-balanced earthquake recurrence model):

Mmax =
1

c− b

(

log10(αṀ0G)− log10

(

c

c− b

)

− a− d

)

(4.7)

Mmax =
1

c− b

(

log10(αṀ0G)− log10

(

b

c− b

)

− a− d

)

(4.8)

Mmax =
1

c− b

(

log10(αṀ0G)− log10

(

b2

c(c− b)

)

− a− d

)

(4.9)

Figure 4.7a displays different recurrence models having the same recurrence param-
eters a and b, and the same moment deficit rate Ṁ0G, considering Form 2. We
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4.4 Moment-balanced recurrence models for Esmer-

aldas interface and associated hazard levels

4.4.1 A set of moment-balanced recurrence models account-

ing for uncertainties

We apply the methodology to the Esmeraldas interface source zone, modeled as
a single plane dipping with 20◦ between the trench and 50 km depth. We use the
same interface segmentation as in Beauval et al. (2018). The Esmeraldas segment
corresponds approximately to the rupture area of the 1906 earthquake (MS ∼ 8.6,
Ye et al. (2016)). The southern limit has been defined as the southern end of the
2016 MW 7.8 rupture area and overlaps with the 1942 MW 7.8 rupture limit (Ye
et al. (2016)). The northern boundary was set at ∼4◦N at a kink in the Colombian
trench azimuth, passing from a NW-SE trend to the south to ∼N-S to the north;
it also corresponds to a difference in sea floor ages. The reader is referred to Yepes
et al. (2016) and Beauval et al. (2018) for detailed explanations on the segment
limits.

The candidate recurrence models are anchored to the instrumental seismic rates,
and their Mmax values are calculated so that the models are moment-balanced with
the moment deficit rate inferred from geodesy. We account for uncertainties on the
observed seismic rates, on the moment deficit rates and on the fraction of slip deficit
that is seismic. The logic tree (Figure 4.8) includes:

- three pairs of a and b recurrence parameters (Section 4.2.2, Modelling earth-
quake recurrence),

- three different forms to extrapolate the recurrence models up to Mmax (Section
4.2.2, Modelling earthquake recurrence),

- three moment deficit rate estimates based on the interseismic coupling models
available (Section 4.2.4, Interseismic models available for the Ecuadorian subduc-
tion interface), the best-estimate value is attributed a larger weight (50%) than the
minimum and maximum values (25% each),

- three values for the average rigidity modulus used to determine the moment
deficit rate: 30, 40 and 50 GPa (e.g. Bilek and Lay (1999); Scala et al. (2020)).

- For α, the fraction of the slip deficit that is released seismically, we include
four alternative values (0.3, 0.5, 0.7 and 0.9). This large range of values reflect
the important uncertainty on this parameter for the Esmeraldas zone, and is made
to encompass different possible behaviors. Recurrent Slow Slip Events (SSE) have
been commonly observed or inferred north of the 2016 Pedernales MW 7.8 earth-
quake rupture area (Mothes et al. (2013); Vaca et al. (2018)). However, the lack of
SSE moment estimates for events prior to 2013 prevents any moment budget to be
determined. For the Pedernales area, Rolandone et al. (2018) show that early after-
slip released as much as 30% of the co-seismic moment during one month following
the earthquake, suggesting that α could be lower than 0.7.
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4.5 Comparisons with previous studies

4.5.1 Comparison with hazard estimates relying on catalog-

based recurrence models

In the hazard model derived at the country scale published in Beauval et al.
(2018), the recurrence models for the interface subduction sources relied only on
earthquake catalogs. Gutenberg-Richter recurrence parameters were estimated from
past seismicity over the moderate magnitude range, then extrapolated up to an Mmax

inferred from a scaling relationship applied to the maximum length of the segment,
without additional constraints from geodesy. For Esmeraldas, a maximum magni-
tude of 8.8 was considered. In Figure 4.15, we superimpose the UHS distribution
obtained within the present study to the UHS relying on the recurrence model as-
sumed for Esmeraldas at that time (see Fig. 7b in Beauval et al. (2018), recurrence
parameters from a global earthquake catalog, Form 2). The UHS based on the 2018
assumptions leads to hazard values that correspond to the 98th percentile of the
obtained distribution. Our search for recurrence models matching the seismic mo-
ment budget inferred from geodetic measurements leads to lower hazard values (0.6
- 0.8 g at the PGA, corresponding to the 16th and 84th percentiles, rather than 0.9 g).

To better understand these differences in hazard levels, we perform another cal-
culation (Figure 4.15). A series of catalog-based recurrence models is generated,
where the recurrence models are extrapolated to the maximum magnitude ignoring
the constraints from geodesy. The models are obtained by exploring the uncertainty
on the a- and b-values (3 couples, Figure 4.4c), on the Gutenberg-Richter forms (3
forms), and on the maximum magnitude (5 values, ranging from 8.6 to 9.0). These
recurrence models are then combined with the Abrahamson et al. (2016) ground-
motion model to evaluate uniform hazard spectra at 475 years return period. The
amplitudes from these catalog-based recurrence models result much higher than
the amplitudes relying on moment-balanced recurrence models (Figure 4.15, 1.0 g
obtained for the percentile 84th, rather than 0.8 g, at the PGA).

4.5.2 Comparison with hazard estimates from independent

studies

To compare our results with independent studies, we looked for published PSHA
studies delivering hazard estimates on the coast. Petersen et al. (2018a,b) evaluate
seismic hazard at the scale of the South American continent. As the mean hazard
maps presented are at a large scale, and values displayed in 0.2 g bin, we can only
infer an approximate acceleration interval of 0.7 - 0.8 g for the PGA at 475 years
for Esmeraldas city (VS30=760 m/s). This interval falls within our estimation. The
subduction interface is modeled as fault segments dipping with 45◦; the segmenta-
tion considered is less detailed than in the present work. They use two alternative
recurrence models for interface events with MW ≥ 7.5, a Gutenberg-Richter distri-
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4.6 Conclusions

We propose a method for combining seismic and geodetic data to constrain
the recurrence models of earthquakes on the megathrust interface of Ecuador and
Colombia. We focus on the Esmeraldas ∼600 km-long segment, the approximate
rupture segment of the 1906 MW 8.6 earthquake. Available interseismic coupling
models for Ecuador (Nocquet et al. (2014); Chlieh et al. (2014)) have been extended
to Colombia up to latitude 4◦N to determine the moment deficit rate that accumu-
lates on the slab interface. We select the coastal city Esmeraldas, as an example site
located above the dipping segment where probabilistic seismic hazard is estimated.

In the Esmeraldas source zone, the observed instrumental rates show an exponential
decrease with increasing magnitude over the magnitude range 4.5-7. Our strategy
relies on anchoring a Gutenberg-Richter model to these moderate magnitude rates
and extrapolate the model up to the maximum magnitude. We look for moment-
balanced recurrence models, i.e. models that fit the seismic moment estimated from
geodesy, by adjusting the maximum magnitude bounding the Gutenberg-Richter
model.

We set up a logic tree to account for the uncertainties characterizing the recurrence
model (a- and b-values, extrapolation to Mmax), as well as uncertainties underlying
the estimation of the tectonic deformation to be released in earthquakes (coupling
model; shear modulus, seismic versus aseismic slip). We show that the uncertainties
influencing the most the recurrence model are:

- the fraction of the slip deficit that will be released in earthquakes (α value),
- the form of the Gutenberg-Richter model close to Mmax.

We keep only the models associated with a realistic Mmax, i.e. within the largest
observed event in the zone and an upper bound inferred from a scaling law. Lastly,
we obtain a distribution of uniform hazard spectra at Esmeraldas city by combining
this subset of recurrence models with the Abrahamson et al. (2016) ground-motion
model. We show that the moment-balanced models obtained lead on average to lower
hazard values than the earthquake recurrence models relying only on seismicity data.

The use of geodetic data to constrain a long-term earthquake recurrence mode for
PSHA implies strong assumptions, in particular that the deformation measured over
a short time windows is steady and representative of long-term processes. However,
given the uncertainty to forecast rates in the upper magnitude range (MW ≥ 7.0),
the geodetic deformation measurements provide key constraints on this part of the
recurrence model that controls the hazard at coastal sites.

Considering the recent availability of massive quantity of geodetic data, this new
approach could be applied in other regions of the world to develop earthquake re-
currence models consistent with geodetic measurements of tectonic deformation.
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4.7 Data and Resources

The global Centroid Moment Tensor (gCMT) database was last accessed in April
10, 2020 at https://www.ldeo.columbia.edu/~gcmt/projects/CMT/catalog/jan76_
dec17.ndk. The ISC-GEM Global Instrumental Earthquake Catalog (1904-2016)
v.7.0 was last accessed in April 10, 2020 at http://www.isc.ac.uk/iscgem/download.php.
The Bulletin of the International Seismological Centre was last accessed in April 10,
2020 at http://www.isc.ac.uk/iscbulletin/search/bulletin/ (corresponding
to a reviewed period until September 2017). The source model and the ground mo-
tion logic tree from Petersen et al. 2018b are accessible at https://www.sciencebase.
gov/catalog/item/58795a8ce4b04df303d97ed8. The source model from Pagani et
al. 2020b is accessible at https://hazard.openquake.org/gem/.
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4.9 Appendices

4.9.1 An earthquake catalog for seismic hazard assessment

in Ecuador

We develop an earthquake catalog for seismic hazard assessment in Ecuador,
using global catalogs, following the approach described in Beauval et al. (2018).
The spatial window extends from -82◦ to -74◦ in longitudes and from -7◦ to 4◦ in
latitudes. The catalog extends from 1906 to September 2017.

We select solutions from several published catalogs: the ISC-GEM (1904-2016) v7.0,
the global CMT catalog (1976-2017, Dziewonski et al. (1981); Ekström et al. (2012))
and the ISC event reviewed catalog (1906-2017, ?Storchak et al. (2017)). Besides we
have included the solutions from Vaca et al. (2019), moment magnitudes estimated
for earthquakes between 2009 and 2015, in the spatial window from -6◦ to 2◦ in
latitude and from -83◦ to -76◦ in longitude.

A “best” location and a “best” magnitude must be selected for each earthquake,
among available solutions. The priority scheme is the following for selecting the
magnitude: ISC-GEM MW > gCMT MW > Vaca et al. (2019) MW > ISC mb >
NEIC mb (or NEIS mb, or USCGS mb). Magnitudes ISC-GEM are always associ-
ated with the locations from the same catalog. Magnitudes from Vaca et al. (2019)
are also associated with the locations from the same author. The ISC locations
are used for the other events. In the early instrumental period (before 1964), there
are nine events which appear in the ISC event catalog that are not included in the
ISC-GEM. We keep them and make use of MS newly determined by the ISC, as well
as mb magnitudes by ABE1 (Abe (1981)) and magnitudes estimated by Gutenberg
and Richter (1954), ’PAS’.

We use the Lolli et al. (2014) global equation to convert mb magnitudes into proxy
MW . Lolli et al. (2014) equation is preferred over the Di Giacomo et al. (2015) con-
version equation (only valid for MW > 5.0). The final catalog includes 3868 events
above MW 3.6 (Table 4.1). The bulk of the data is made of ISC mb magnitudes
(71%).

Lastly, we apply the Reasenberg (1985) algorithm to identify clustered events (fore-
shocks, aftershocks, swarms). Twenty-three percent of events are removed. The
final declustered catalog includes 2978 earthquakes with MW ≥ 3.6.
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Table 4.1: Content of the final earthquake catalog homogenized in moment magnitude.
ISC-GEM, International Seismological Center - Global Earthquake Model; CMT, Centroid Moment
Tensor; ISC-REV, the manually reviewed bulletin from the ISC; NEIC/NEIS, National Earthquake
Information Center; USCGS, United States Coast and Geodetic Survey; ABE1,Abe (1981); PAS,
Gutenberg and Richter (1954). Magnitude mb converted in MW applying MW = e0.741+0.210mb −
0.785 (Lolli et al. (2014), global equation).

Catalog Author Type
Mag.

Min.
Mag.

Max.
Mag.

Min.
Year

Max.
Year

Total
Events

ISC-
GEM

Various MW 5.1 8.75§ 1906 2016 268

ISC-
GEM

global
CMT

MW 5.0 8.1 1965 2016 191

ISC-
GEM
supp∗

Various MW 5.6 6.5 1917 1966 5

global
CMT

global
CMT

MW 4.8 6.0 1980 2017 100

ISC-
REV

global
CMT

MW 4.7 5.6 1977 2017 62

ISC-
REV

ISC Proxy
MW

from
mb

3.7 6.0 1964 2017 2757

ISC-
REV

NEIC Proxy
MW

from
mb

3.7 5.6 1985 2017 217

ISC-
REV

NEIS Proxy
MW

from
mb

3.8 6.2 1971 1984 153

ISC-
REV

USCGS Proxy
MW

from
mb

3.8 4.8 1964 1970 32

ISC-
REV

ABE1 mb sur-
rogate
for MW

6.9 7.5 1906 1937 3

ISC-
REV

PAS MS sur-
rogate
for MW

6.8 6.8 1925 1950 3

ISC-
REV

PAS M sur-
rogate
for MW

6.5 6.6 1954 1958 3

Vaca
et al.
(2019)
#

Vaca
et al.
(2019)

MW 3.6 5.1 2009 2015 74
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∗ ISC-GEM supplement: the supplementary catalog contains those earthquakes that
are believed to be large enough yet either their location or magnitude or both are
highly uncertain due to lack or contradiction in available arrival time or amplitude
and period data (Di Giacomo et al. (2015)).
# Vaca et al. (2019) is the only regional catalog considered, earthquakes are located
from -6◦ to 2◦ in latitude and from -83◦ to -76◦ in longitude.
§ 8.75 is the magnitude of the 1906/01/31 megathrust earthquake, we substitute this
magnitude with 8.6 in our final catalog (MS magnitude proxy for MW , Gutenberg
and Richter (1954), Ye et al. (2016)).

Table 4.2: Input parameters for the Reasenberg (1985) algorithm. τmin/τmax: look-
ahead time window for building clusters. p1: probability of detecting the next clustered event. xk:
coefficient for mainshock magnitude. xmeff : minimum magnitude cut-off for the catalog. rfact:
number of crack radii surrounding each earthquake within which to consider linking a new event
into the cluster.

τmin (in days) 10
τmax (in days) 30

p1 0.99
xk 0.2

xmeff 4.5
rfact 20

Uncertainty∗ – after 1970 - horizontal 5 km
Uncertainty∗ – after 1970 - vertical 10 km

Uncertainty∗ – before 1970 - horizontal 15 km
Uncertainty∗ – before 1970 - vertical 20 km

∗ on event location
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Table 4.3: Time windows of completeness established for interface events in Ecuador,
and number of events falling within the time windows of completeness for Esmeraldas source zone.

Magnitude In-
terval

Time window of
completeness

Number of
events before
declustering

Number of
events after
declustering

[4.5-4.8[ 1967-2017 89 33
[4.8-5.1[ 1964-2017 90 41
[5.1-5.4[ 1964-2017 30 13
[5.4-5.7[ 1964-2017 24 14
[5.7-6.0[ 1950-2017 11 5
[6.0-6.3[ 1920-2017 18 7
[6.3-6.6[ 1920-2017 8 7
[6.6-6.9[ 1900-2017 10 6
[6.9-7.2[ 1900-2017 3 3
[7.2-7.5[ 1900-2017 0 0
[7.5-7.8[ 1900-2017 2 2
[7.8-8.1[ 1900-2017 2 2
[8.1-8.4[ 1900-2017 0 0
[8.4-8.7[ 1900-2017 1 1
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4.9.2 Mmax ensuring a moment-balanced earthquake recur-

rence model

We assume that the magnitude-frequency distribution follows the Anderson and
Luco (1983) Form 2. N is the annual rate of events with magnitude larger or equal
to m:

N(m) = 10a−bm − 10a−bMmax for m ≤ Mmax (4.10)

Its derivative provides the annual rate of events with magnitude equal to m:

n(m) = bln(10)10a−bm (4.11)

Hanks and Kanamori (1979) derived the relation:

log10(M0) = 1.5MW + 16.1 (dyn.cm) (4.12)

Equation (4.12) results in the following relation in N.m (1 dyn.cm = 10−7 N.m):

M0(m) = 10cm+d (4.13)

where c=1.5 and d=9.1 for M0 in units of N.m.

The total seismic moment rate corresponding to the magnitude-frequency distribu-
tion is:

ṀT
0 (m) =

∫ Mmax

−∞

M0(m)n(m)dm (4.14)

Integrating from −∞ up to Mmax or from MW 4.5 up to Mmax is equivalent, as
the magnitudes lower than 4.5 have a negligible contribution to the total seismic
moment rate (Mmax ≥8.6).

ṀT
0 (m) = 10a+dbln(10)

∫ Mmax

−∞

10(c−b)mdm (4.15)

ṀT
0 (m) =

b

c− b
10a+d+(c−b)Mmax (4.16)

Therefore, if there is an independent estimate for the seismic moment rate, e.g. from
geodesy, Ṁ0G, we can obtain the value of Mmax from the recurrence parameters a,
b and Ṁ0G:

Mmax =
1

c− b

(

log10(Ṁ0G)− log10

(

b

c− b

)

− a− d

)

(4.17)

Note that some authors use d=9.0 or d=9.05, depending on how the coefficients are
rounded in the equation relating moment and moment magnitude (see e.g. Pancha
(2006)). Using d=9.0 rather than d=9.1 leads to a 20% decrease in the value of the
moment rate, for a given magnitude.
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General conclusions

The aim of this PhD thesis was to improve earthquake recurrence models by
quantitatively including the information derived from geodetic measurements, with
a special application to Ecuador. In this conclusion, I first summarize the main
results obtained for every chapter. In a second step, I will discuss some of the issues
raised by my studies and will propose some perspectives.

Conclusions on the work done

The second chapter presents a collaborative effort to produce probabilistic seismic
hazard maps of Ecuador. The source model includes area source models, with
magnitude-frequency distributions based on an earthquake catalog, and fault source
with recurrence models based on geodetic and/or geologic slip rates. My main con-
tribution to this work lies in 1) the development of the earthquake catalog, built from
global datasets covering early instrumental and instrumental periods then homoge-
nized in moment magnitude and declustered with the Reasenberg (1985) algorithm,
in the 2) automatization of procedures for estimating earthquake recurrence param-
eters from the earthquake catalog for a set of source zones, and in 3) the building of
the fault model through the derivation of slip rates estimates for a set of simplified
faults using a GPS horizontal velocity field. These new hazard models show that
Ecuador is characterized by a high hazard level, with PGA mean values at 475-
years return period higher than 0.3 g almost everywhere except in some regions of
the coastal plain and Amazonia, and reaching maximum values around 0.5 - 0.6 g
on the coast and in the Cordillera. Our analysis shows that the uncertainty on the
hazard estimate (percentiles 16th and 84th) varies largely along the northern coast
and along some crustal faults in the Cordillera, including the Quito fault.

In the third chapter, we calculate the first interseismic coupling map of the Quito
fault system using a combination of GPS data and PS-InSAR analysis. We show
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evidence for shallow aseismic slip on the central segment of the fault, with possibly
larger slip deficit accumulation rate along the northern and southern sections. Ad-
ditionally, we identify a transient deformation signal related to the development of
a secondary fold, a few kilometers east of the main fault trace. Overall, our results
demonstrate that strain accumulation is spatially heterogeneous and that aseismic
processes dominate along the Quito fault system. In terms of seismic hazards for
the Quito area, the interseismic coupling map translates into recurrence models that
estimate a recurrence time between 200 and 1100 years for a magnitude MW 6.5.

In the fourth chapter, we focus on the subduction zone in Ecuador to improve
the earthquake recurrence models. We found that recurrence models matching both
the past seismic rates and the seismic moment budget inferred from geodetic mea-
surements leads to hazard values (0.6 - 0.8 g, PGA, 475-years return period) lower
than hazard value obtained in Beauval et al. (2018) from a purely catalog-based
recurrence model (0.9 g at the PGA, global catalog). Additionally, we show, using
a disaggregation study that the magnitudes contributing the most in terms of haz-
ards come from earthquakes with magnitudes larger than 7.0 - 7.5. Therefore, it is
essential to consider the uncertainties related to the form of recurrence model close
to the higher magnitudes. By considering geodetic moment conservation and having
some knowledge on the possible range of Mmax, we were able to identify the Forms
2 and 3 of the recurrence models (Anderson and Luco (1983)) as the most suitable
for the Ecuadorian subduction zone, and to estimate a range for the aseismic com-
ponent of deformation. The percentage of the deformation that will be released into
earthquakes is on average 67%.

Perspectives

Overall the interseismic coupling models that we present on the Quito fault system
would need to be improved on the northern and southern region of the fault where
the inversion is not well-constrained due to a limited number of GPS stations and a
poor InSAR coverage. As a consequence, the extension of the actual GPS network
to the north and to the south would be one of the next steps to improve the model;
as well as modeling the fault with a non-rectilinear geometry to reduce the poor con-
straints on the northern and southern edges of the fault. Additionally, the new era of
satellite mission with highly frequent repeat cycle such as Sentinel-1, would be key in
refining the spatial and temporal coverage of the InSAR time series. Similar studies
have used those data to calculate interseismic coupling models in other regions of
the world (Lasserre et al. (2019); Ji et al. (2020)). European initiatives have already
started to evolve in this direction, proposing operational services that produce con-
tinuous ground deformations using these new sensors (Doin et al. (2011); Kalia et al.
(2017); Raspini et al. (2018)). The use of similar methods applied to other regions in
the world, along with their analysis and inversion, would be one of the first steps to
extend the approach proposed in this study, to the rest of Ecuador. While our purely
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elastic model assumption is correct considering the elapsed time since the last larger
earthquake, some studies have shown that viscoelastic relaxation plays a critical role
for dip-slip faults (Segall (2010)). Hence, the implementation of such model could
be important to refine our understanding of the 3-D fault slip rate deficit. Finally,
the methodology develops in this chapter should be extended to other active crustal
faults region in Ecuador, such as the strike-slip Chingual-Cosanga-Pallatanga-Puna
Fault System (CCPP), where no interseismic coupling map has been produced yet.

Our new method that uses geodetic data helps to better constrain the seismic haz-
ard assessment, but several points could be further developed in the future. We
identify two sources of uncertainties that have a large impact on recurrence models
and hazard levels: (1) the form of the recurrence models close to Mmax, (2) the part
of the deformation that is aseismic. Recurrence models in this study are limited to
three forms. The implementation of a larger range of recurrence models such as a
characteristic model (Schwartz and Coppersmith (1984)) or the tapered Gutenberg-
Richter (Kagan (2002)), would enlarge the range of candidate models depending on
the study region. A better estimation of earthquake recurrence times in the up-
per magnitude range would also help considerably in constraining the recurrence
model close to Mmax, hence future paleoseismic studies are essential to extend our
knowledge on the earthquake potential of subduction interface zones. Second, the
quantification of an accurate moment budget related to aseismic processes such as
slow slip events and afterslip (Rolandone et al. (2018)), would be the key to bet-
ter quantify the aseismic deformation (α parameter). Finally, we have shown how
interseismic coupling map can help constrain earthquake recurrence models to be
used in seismic hazard assessment. The availability of such maps depends on the
instrumentation of the other active faults in the Ecuadorian Cordillera, as well as
the use of the new era of satellite SAR data. The method developed in this thesis
can be applied to the entire South American subduction zone, provided that de-
tailed interseismic coupling maps are produced (e.g. Villegas-Lanza et al. (2016) in
southern Ecuador and northern Peru).
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Appendix

In this appendix, I attached the article I contributed as a second author,
when I was an engineer at ISTerre for 8 months, before starting my thesis. This
article focuses on ground motion models. We compare the observed ground-
motion recordings of the megathrust earthquake of MW 7.8 that occurred
on April 16th 2016 with preexisting four ground-motion prediction equations
(GMPEs) developed for interface earthquakes, the global Abrahamson et al.
(2016) model, the Japanese equations by Zhao (2006) and Ghofrani and Atkin-
son (2014), and one Chilean equation (Montalva et al. (2017)). We also com-
pare the two largest aftershocks that occurred one month later, on May 18th,
of magnitude MW 6.7 and MW 6.9.
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Comparison of Observed Ground-Motion
Attenuation for the 16 April 2016M

w
7.8 Ecuador

Megathrust Earthquake and Its Two Largest
Aftershocks with Existing Ground-Motion
Prediction Equations

by Céline Beauval, J. Marinière, A. Laurendeau, J.-C. Singaucho,
C. Viracucha, M. Vallée, E. Maufroy, D. Mercerat, H. Yepes,
M. Ruiz, and A. Alvarado

ABSTRACT

Amegathrust subduction earthquake (Mw 7.8) struck the coast
of Ecuador on 16 April 2016 at 23:58 UTC. This earthquake
is one of the best-recorded megathrust events to date. Besides
the mainshock, two large aftershocks have been recorded on 18
May 2016 at 7:57 (Mw 6.7) and 16:46 (Mw 6.9). These data
make a significant contribution for understanding the attenu-
ation of ground motions in Ecuador. Peak ground accelerations
and spectral accelerations are compared with four ground-mo-
tion prediction equations (GMPEs) developed for interface
earthquakes, the global Abrahamson et al. (2016) model, the
Japanese equations by Zhao, Zhang, et al. (2006) and Ghofrani
and Atkinson (2014), and one Chilean equation (Montalva
et al., 2017). The four tested GMPEs are providing rather close
predictions for the mainshock at distances up to 200 km. How-
ever, our results show that high-frequency attenuation is
greater for back-arc sites, thus Zhao, Zhang, et al. (2006)
and Montalva et al. (2017), who are not taking into account
this difference, are not considered further. Residual analyses
show that Ghofrani and Atkinson (2014) and Abrahamson
et al. (2016) are well predicting the attenuation of ground mo-
tions for the mainshock. Comparisons of aftershock observa-
tions with the predictions from Abrahamson et al. (2016)
indicate that the GMPE provide reasonable fit to the attenu-
ation rates observed. The event terms of the Mw 6.7 and 6.9
events are positive but within the expected scatter from world-
wide similar earthquakes. The intraevent standard deviations
are higher than the intraevent variability of the model, which
is partly related to the poorly constrained V S30 proxies. The
Pedernales earthquake produced a large sequence of after-
shocks, with at least nine events with magnitude higher or

equal to 6.0. Important cities are located at short distances
(20–30 km), and magnitudes down to 6.0 must be included
in seismic-hazard studies. The next step will be to constitute a
strong-motion interface database and test the GMPEs with
more quantitative methods.

Electronic Supplement: Figures of V S30 values based on topogra-
phy versus rupture distance and difference between reference
V S30 and V S30 based on topography versus distance, residuals,
event terms, and intraevent standard deviations.

INTRODUCTION

The megathrust Pedernales earthquake (Mw 7.8) struck the
coast of Ecuador on 16 April 2016 at 23:58 UTC. Sixty-nine
accelerometric stations recorded the earthquake at fault distan-
ces ranging from 26 to 427 km (Fig. 1). One month after the
mainshock, two large aftershocks have been recorded on 18
May 2016 at 7:57 and 16:46 (Table 1;Mw 6.7 and 6.9, respec-
tively). The accelerometric network in Ecuador started in 2009
with nine stations installed in the framework of the French–
Ecuadorian research project Andes du Nord (ADN). In 2010,
the Ecuadorian research agency Secretaría Nacional de Educa-
ción Superior, Ciencia yTecnología (SENESCYT) granted the
Geophysical Institute in Quito with an ambitious project for
instrumenting the whole country with high-level instruments,
accelerometric, broadband, and Global Positioning System (GPS)
stations. The accelerometric network, now called Red Nacional
de Acelerógrafos (National Accelerometric Network, RENAC), is
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still in a developing phase, with ∼30% of the stations telemetered
and the characterization of the sites undergoing.

Ecuador is exposed to a high seismic risk, both from earth-
quakes on the subduction interface, such as the 2016 event, and
from earthquakes on shallow crustal faults in the Andean Cor-
dillera. Since 2007, a French–Ecuadorian cooperation aims at

leading research on all aspects related to probabilistic seismic-
hazard assessment (PSHA) to improve PSHA in Ecuador (e.g.,
Beauval et al., 2010, 2013, 2014; Alvarado et al., 2014; Yepes
et al., 2016). PSHA aims at providing ground motions with
probabilities of being exceeded in future time windows. The
results can be used to establish seismic zoning for national
building codes. Because the strong-motion database was still
in its development phase, no study has been published yet on
the testing of ground-motion prediction equations (GMPEs)
against accelerometric data. In the PSHA calculations,
GMPEs have been selected based on tectonic similarities cri-
teria (e.g., Beauval et al., 2014). The Mw 7.8 earthquake and
its largest aftershocks produced a unique dataset. These data
make a significant contribution for understanding the attenu-
ation of ground motions in Ecuador. In the present study,
peak ground accelerations (PGAs) and spectral accelerations
are compared with four GMPEs developed for interface earth-
quakes: the recent global Abrahamson et al. (2016) model as
well as two Japanese equations, Zhao, Zhang, et al. (2006) and
Ghofrani and Atkinson (2014), and a new Chilean model
(Montalva et al., 2017).

STRONG-MOTION DATA

Strong-motion data are obtained from the RENAC, which in-
cludes seven accelerometers from the Oleoducto de Crudos Pe-
sados network as well as nine ADN accelerometers. Figure 1
shows the distribution of the 69 stations triggered by the Ped-
ernales event relative to the earthquake fault-plane surface pro-
jection. There are 16 stations at rupture distances ranging from
26 to 100 km, distributed in the coastal plain. Thirty-three sta-
tions are located in the north–south Andean Cordillera hosting
many volcanoes, and 14 stations are installed in the Quito basin
(Laurendeau et al., 2017). Approximately half of the stations are
located in the fore-arc region, west of the volcanic front, and the
other half lie in the back-arc region. The records at six example
stations are displayed in Figure 2. The Mw 6.9 and 6.7 after-
shocks were recorded, respectively, by 61 and 64 stations; 5 of
these stations did not record the mainshock (Fig. 1).

▴ Figure 1. Location map with fault rupture and stations. The

white rectangle shows the surface projection of the Pedernales

mainshockM
w
7.8 (inferred from Nocquet et al., 2016). Epicenters

of the mainshock and its two largest aftershocks are indicated

(stars). Triangles show locations of strong-motion stations, which

recorded the mainshock and/or the aftershocks. Stations with ac-

celeration indicated (scale bar) recorded the mainshock. Back-

ground map produced with Google Maps. The color version of

this figure is available only in the electronic edition.

Table 1
Finite-Fault Parameters Used in the Present Study for the 2016M

w
7.8 Pedernales Earthquake and Its Two Largest Aftershocks,

M
w
6.9 and 6.7

Date

(yyyy/mm/dd)

Time

(UTC)

(hh:mm)

Hypocenter

Latitude (°)

Hypocenter

Longitude (°)

Hypocenter

Depth (km)

Fault

Strike

(°)

Dip

Angle (°)

Fault

Length (km)

Fault

Width

(km)

M
w

Global

CMT*

2016/04/16 23:58 0.35† 80.17† 17† 26.5† 23† 110† 60† 7.8

2016/05/18 07:57 0.43387‡ −80.00961‡ 17‡ 29‡ 26‡ 28§ 30§ 6.7

2016/05/18 16:46 0.47301‡ −79.81545‡ 21‡ 47‡ 25‡ 36§ 34§ 6.9

*Obtained from the Global Centroid Moment Tensor Project (Global CMT; see Data and Resources).
†Deduced from Nocquet et al. (2016).
‡Determined by Geophysical Institute in Quito (dip and strike obtained with Nakano et al., 2008 method).
§Determined with the scaling law for interface events in Strasser et al. (2010).
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All stations are installed on the ground surface and rec-
ord continuously. Different digital accelerometer devices are
used (Güralp, RefTek, and Kinemetrics; see Table 2). For this
study, a simple processing was applied. Acceleration time his-
tories were visually inspected and windows extracted. A first-
order baseline operator and a simple baseline correction are
applied on each window for each component. Signal-to-noise
Fourier spectral ratios have been carefully calculated with the
signal processing tools of Perron et al. (2016). Given the mag-
nitude of the three events, these ratios are, in most cases,
high for the frequencies of interest (PGA and 0.5–5 Hz). At
the stations located at distances between 300 and 500 km, the
signal-to-noise ratios are still higher or equal to 3 in this fre-
quency range. Response spectra were then calculated with
critical damping at 5%. For each record, the geometric-mean
horizontal component is calculated for PGA and spectral
periods up to 3 s.

The site conditions at a recording station have a strong
influence on ground motions. The most common proxy for
the simplified classification of a site in terms of its seismic

response is V S30, the time-average shear-wave velocity in the
upper 30 m. In Ecuador, few RENAC stations have been char-
acterized with geophysical methods, and significant efforts still
need to be made to evaluate the geotechnical information of the
sites. In Quito (14 sites), V S30 are inferred from geophysical in-
vestigations of the subway project (TRXConsulting C.A., 2011a,
b) and from a microzoning study (Evaluacion de Riesgos Natu-
rales [ERN], 2012). For each station, V S30 is inferred from the
shear-wave velocity profile closest to the site. In Guayaquil (three
sites), V S30 values come from the work of Vera-Grunauer
(2014). A new project was started after the mainshock by the
Geophysical Institute to investigate the site effects in the coastal
cities, which to this date yields V S30 values for three sites based on
multichannel analysis of surface waves techniques.

For the other sites, following Zhao, Irikura, et al. (2006),
horizontal-to-vertical (H/V) response spectral ratios are com-
puted to determine the natural period of the site (Tg) and to
classify the sites into four broad site classes (SC I, II, III, IV,
from rock to soft soil). The number of recordings available at
each station varies from 3 to 203 (15 on average, see Lauren-
deau et al., 2016). The entire signal windows are used. At 33
sites, the natural period can be estimated, and V S30 is deduced
as V S30 � 4H=Tg, withH � 30 m. At 16 sites with a natural
period estimated higher or equal to 0.6 s (soft soil, SC IV,
Zhao, Zhang, et al., 2006), V S30 is fixed to 200 m=s. At six
sites showing a flat H/V ratio with amplitudes lower than
2, the site is classified in the rock and stiff soil class with a
V S30 of 800 m=s. There are 14 sites for which there was no
clear peak but broadband frequency amplification. The
method cannot be applied, and an average V S30 of 400 m=s
is arbitrarily attributed. More work is required to understand
the limits of the method and how to adapt it to sites in Ecua-
dor. This set of estimated V S30 is considered as the reference
V S30 set (Fig. 3).

To take into account the huge uncertainty on the V S30

values, a second set of V S30 is used. It is based on the weight-
ing of the four closest points given in the database on the
Global U.S. Geological Survey V S30 Slope Topography
website (see Data and Resources). These V S30 are based on a
relationship between the topographic slope and V S30 (Wald
and Allen, 2007). The V S30 values based on topography are
compared with the reference V S30 values in Ⓔ Figure S1
(available in the electronic supplement to this article). At

▴ Figure 2. Pedernales earthquake on 16 April 2016 M
w
7.8. Ac-

celerograms recorded at six stations around the fault plane (see

Fig. 1, east component). Latitudes of stations, maximum ampli-

tude, and rupture distance to the fault plane are indicated.

Table 2
Description of Red Nacional de Acelerógrafos (National Accelerometric Network, RENAC) Accelerometer Devices

Sensor Digitizer

Full-Scale

Range (g) Dynamic Range

Frequency

Response (Hz)

Sample

Frequency (Hz)

1 Güralp CMG-5TD ±4 127 dB at 3–30 Hz DC–100 100

2 RefTek 130-SMA ±4 112 dB at 1 Hz DC–500 100

3 Kinemetrics EpiSensor
FBA ES-T

Kephren ±2 155 dB DC–200 125 or 250

DC, direct current.
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distances shorter than 100 km, in the fore-arc region, the dif-
ference does not exceed 200 m=s. At larger distances, up to
600 m=s, difference can be observed for stations in the Cordillera.
In the present work, the comparisons between observations
and predictions are systematically led for both V S30 sets, show-
ing that this uncertainty does not impact the results. All results
displayed in the article rely on the reference V S30 set, whereas
results based on the alternative V S30 set based on topography
are in the Ⓔ electronic supplement.

GMPES SELECTED

GMPEs describe the median and the variability of ground-mo-
tion amplitudes, depending on magnitude, site-source distance,
site conditions, and other parameters. Four equations are con-
sidered here, two Japanese models, one Chilean, and one global
model: Zhao, Zhang, et al. (2006), Ghofrani and Atkinson
(2014), Montalva et al. (2017), and Abrahamson et al.

(2016). The Zhao, Zhang, et al. (2006) model does not include
the recent interface events but proved to be quite stable and to
fit reasonably the data available in South America (e.g., Arango
et al., 2012; Beauval, Cotton, et al., 2012). The Abrahamson
et al. (2016) model is our favorite candidate for PSHA appli-
cations, because it includes the largest amount of global data,
and an earlier version of the model proved to be stable and to
fit well datasets from various subduction environments (Beau-
val, Cotton, et al., 2012). All four models use the geometric
mean of the two horizontal components, moment magnitude,
and rupture distance (closest distance to the fault plane). All
are providing the total sigma, as well as the intraevent (vari-
ability from the median-predicted value for a particular record-
ing station in a given earthquake) and interevent variabilities
(variability between earthquakes of the same magnitude).

The Abrahamson et al. (2016) model is based on the
combined datasets used in several of the past subduction
GMPEs (e.g., Youngs et al., 1997; Atkinson and Boore, 2003),
as well as additional ground-motion data obtained in Japan,
Taiwan, south and central America, and Mexico. This new
global GMPE is intended to replace the older global GMPEs.
The metadata were carefully checked and improved, and re-
cent events around the world were included. The final dataset
includes 43 interface earthquakes (6:0 ≤Mw ≤8:4) at distan-
ces up to 300 km. About 57% interface records are from Japan
and 29% from Taiwan. The model is predicting a stronger
attenuation for sites located in the back-arc region with re-
spect to sites located in the fore-arc region. The model is in-
cluding site nonlinearity.

Ghofrani and Atkinson (2014) developed a GMPE for
interface earthquakes of Mw 7.0–9.0, based on data from Ja-
pan. The >600 strong ground motion records from the 2011
Mw 9.0 Tohoku earthquake are used to derive an event-specific
GMPE, which is then extended to represent the shaking from
four otherMw >7:0 interface events in Japan, which occurred
in 2003, 2004, and 2005. Three GMPEs are finally available to
represent the epistemic uncertainty, an upper and lower model,
as well as a median model. The median central model is used

here. The equation accounts for the difference in the attenu-
ation between fore-arc and back-arc region using separate ane-
lastic attenuation factors. The soil response is treated as linear.
Ghofrani and Atkinson (2014), like Abrahamson et al. (2016),
explicitly use V S30.

Zhao, Zhang, et al. (2006) developed an attenuation
model for Japan based on events with Mw 5.0–8.3, at distan-
ces up to 300 km. Four site classes are used in the present
study, SC I, II, III and IV, approximately corresponding to
the four classes, rock, hard soil, medium soil, and soft soil
(site classification scheme used in Japanese engineering de-
sign; Zhao, Zhang, et al., 2006). The authors associated with
these site classes approximate National Earthquake Hazards
Reduction Program (NEHRP) site classes and V S30 intervals
(table 2 in Zhao, Zhang, et al., 2006). The near-source data
(<30 km) are mostly constrained by the records from crustal
events; however, this should not affect the predictions for sub-
duction events for distances >30 km.

Montalva et al. (2017) developed a GMPE relying on
Chilean subduction earthquakes that occurred between 1985
and 2015, including the three recent megathrust earthquakes
(2010Mw 8.8 Maule, 2014Mw 8.1 Iquique, and 2015Mw 8.3
Illapel). The median model is based on the same functional
form as the Abrahamson et al. (2016) model. The attenuation
is predicted only for fore-arc sites, because all recording stations
are located in the fore-arc region. Montalva et al. (2017) indicate
that the number of strong-motion stations with measured V S30

is limited and that V S30 proxies have been inferred both from
the topographic slope (Wald and Allen, 2007) and the site’s pre-
dominant period (Zhao, Irikura, et al., 2006). Montalva et al.
(2017), like Abrahamson et al. (2016) and Zhao, Zhang, et al.
(2006), do not include data beyond 300 km.

Abrahamson et al. (2016) and Ghofrani and Atkinson
(2014) predict different attenuation depending on the location
of the station with respect to the volcanic front. The fore-arc
region is between the subduction trench axis and the axis of
volcanic front. The back-arc region is behind the volcanic front.
The high-attenuation low-velocity region in the crust and upper
mantle related to the volcanic activity filters the high-frequency
content of ground motion, as shown by Ghofrani and Atkinson
(2011) on in-slab events and by Ghofrani and Atkinson (2014)
on interface events.

Most of the interface models published up to now have
been coded in the strong-motion toolkit used here for pre-
dicting accelerations (Weatherill, 2014). This toolkit relies
on the GMPE libraries of the OpenQuake PSHA software
(Pagani et al., 2014). The Lin and Lee (2008) GMPE estab-
lished on Taiwanese data was not selected because the equa-
tion is using the hypocentral distance, and given the short
distances involved in Ecuador this might not be adequate.
The Kanno et al. (2006) GMPE is not included because it
would be a third Japanese model, and it uses an unconven-
tional definition for the horizontal component of motion.
The Mexican equation by Arroyo et al. (2010) is not consid-
ered either because it predicts ground motions at rock sites
only (NEHRP B class).
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FAULT-PLANE SOLUTION AND DISTANCE
CALCULATION

The site-source distances are calculated using the closest dis-
tance to the fault rupture plane (rupture distance). The fault
must be approximated by a rectangular plane. There is no
unique solution for the finite-fault plane (e.g., Goda and At-
kinson, 2014). Different fault models can be derived using
various datasets and methods in source inversion analysis.
The inversion might include GPS data, Interferometric Syn-
thetic Aperture Radar, teleseismic body wave, surface-wave
data, and near-source strong-motion data. Goda and Atkin-
son (2014) explored the uncertainty related to the choice of
the rupture plane for three Japanese megathrust earthquakes
and showed that the impact on the comparison between ob-
servations and models can be significant. For now, for the
2016 Pedernales event, we are aware of only one elaborated
model by Nocquet et al. (2016). The maximum slip is about
6.2 m. From this slip model, we extracted the fault plane,
which includes approximately the 100-cm slip contour. The
resulting plane is a rectangular of 100 km in length and 50 km
in width, dipping to the east with a strike of 26.50° and a dip
of 23°, extending from 13 to 33 km (Table 1; Fig. 1). The
hypocenter solution is up-dip on the northern border of the
fault plane.

The Pedernales earthquake is one of the best-recorded
megathrust events to date, in terms of distribution of stations
around the fault plane and number of recording stations. Re-
cords are available above the fault plane (two stations, Fig. 1),
at short distances from the fault plane to the north and north-
east (10 stations between 45 and 100 km), east (2 stations at
73 and 103 km), and south and southeast (4 stations between
40 and 75 km).

The rupture distance measure, taking into account the
extension of the fault plane, only captures macroscopic
features of the source. The more detailed components of re-
corded strong motions in the near-source region are not taken
into account (e.g., short periods affected by local asperities).
Besides, the 2016 Pedernales event is presenting evidences of
directivity effects, with higher ground motions in the direc-
tion of the slip, south of the rupture plane, than in the north.
These observations cannot be modeled by current published
interface GMPEs.

Because no fault-plane solution has been inverted yet for
the aftershocks, the length and width of the faults are based on
a Strasser et al. (2010) relations (Table 1). The fault plane is
arbitrarily centered on the hypocenter.

COMPARING OBSERVATIONS AND PREDICTIONS

Mainshock M
w
7.8

At first, predictions and observations are compared based on
simple attenuation plots. As a second step, residual analyses
are performed in which the predictions include the V S30 for
each site.

Predictions from Abrahamson et al. (2016) are superim-
posed onto the observations, for the PGA (Fig. 4a). To begin
with, predictions are provided with the fore-arc/unknown
option (Abrahamson et al., 2016). Three V S30 are considered
(200, 400, and 760 m=s), producing slightly different ampli-
tudes. The attenuation rate predicted is consistent with the
observations for distances lower or equal to 130 km. For dis-
tances between 130 and 400 km, the observed attenuation
rate appears steeper than predicted. Stations within 130 km
from the rupture plane are all in the fore-arc region. At dis-
tances larger than 130 km, half of the stations are within or
behind the volcanic arc (Fig. 1). Taking into account the
back-arc option in the equation yields a steeper attenuation
with distance, in accordance with the observations at back-arc
stations (Fig. 4c). In Quito, located at around 150 km from
the earthquake in the Cordillera (Fig. 1), recorded PGA varies
between 0:017g and 0:081g .

The rupture propagated to the south, producing directiv-
ity effects on ground motions. At rupture distances 40–80 km,
stations located to the south of the rupture experienced larger
amplitudes than stations located to the north or to the east (Figs. 1
and 5). A specific study will need to be performed to investigate
the source contribution on the Pedernales ground motions. The
recorded data might need to be corrected for path and site effects
to explain the difference of amplitudes in terms of source direc-
tivity (see, e.g., Cultrera et al., 2008).

As expected, long-period ground motions decay less rap-
idly with distance than do short-period motions. Figure 4b dis-
plays predictions superimposed on observations at T � 1:0 s.
Amplitudes predicted are more V S30 dependent than for short
periods. Overall, the attenuation rate predicted is consistent
with observations. Considering predictions for V S30 from
200 to 760 m=s and considering the predicted variability (total
sigma), most of the observations are within the predicted range.

▴ Figure 3. V S30 reference set versus rupture distance (see the

Strong-Motion Data section). Alternative V S30 values based on

topography are inⒺ Figure S1, available in the electronic supple-

ment to this article.
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The model predicts similar decay with distance for fore-arc and
back-arc regions, and the observations indeed do not present
significant differences (Fig. 4d).

Predictions by Zhao, Zhang, et al. (2006), Ghofrani and
Atkinson (2014), and Montalva et al. (2017) are now super-
imposed onto the observed data, considering an average V S30

value (400 m=s, Fig. 6). For distances in the 30–150 km
range, PGA median predictions from the four GMPEs are
quite similar and consistent with the observed attenuation
rate, with around 0:3g predicted at 40 km and 0:1g–0:11g
at 100 km. The total sigma predicted are also close. For dis-
tances larger than 150 km, the two Japanese models predict
stronger distance decay. The Zhao, Zhang, et al. (2006)

model does not differentiate attenuation between fore-arc
and back-arc stations, but its generating dataset includes
many Japanese back-arc stations. Applying the fore-arc/back-
arc station classification, the Ghofrani and Atkinson (2014)
model predicts a stronger attenuation for back-arc stations at
distances larger than 100 km, with predictions very close to
the Abrahamson et al. (2016) model (Fig. 7a, PGA). At
T � 1:0 s, the Abrahamson et al. (2016) model predicts
larger accelerations at distances <200 km than the Japanese
and Chilean models (Fig. 6b). The generating datasets of Abra-
hamson et al. (2016), Zhao, Zhang, et al. (2006), and Montalva
et al. (2017) do not include records beyond 300 km, and the
models are therefore extrapolated at these distances.

▴ Figure 4. Observed spectral amplitudes of the mainshock Mw 7.8, overlaid by the Abrahamson et al. (2016) predicted amplitudes

(median �σ). Total sigma is indicated with dashed lines. (a) Peak ground acceleration (PGA) for three different V S30 values, fore-arc/

unknown coefficients used for all stations; (b) spectral acceleration T � 1:0 s for three different V S30 values, fore-arc/unknown co-

efficients used for all stations; (c) PGA predictions for fore-arc sites and for back-arc sites for a V S30 of 400 m=s; (d) spectral accel-

eration T � 1:0 s predictions for fore-arc sites and for back-arc sites for a V S30 of 400 m=s. The color version of this figure is available

only in the electronic edition.
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To more accurately evaluate the performance of the
GMPEs relative to the data, total residuals are calculated con-
sidering V S30 for each station (V S30 reference set, see the
Strong-Motion Data section). Residuals are calculated first
ignoring the fore-arc/back-arc distinction, and then including
this attenuation difference. At the PGA, a trend in the dis-
tance dependence of residuals is observed with back-arc sites
showing a negative slope (Fig. 8a). Applying back-arc coeffi-
cient to the sites in the back-arc region, the slope becomes
flatter, with mean residuals closer to zero (Fig. 8b). The same
observation can be made for the residuals relative to the equa-

tion of Ghofrani and Atkinson (2014) (Ⓔ Fig. S2). At 1 s, as
expected, no difference can be seen in the distance-decay rates
for the fore-arc and the back-arc stations (Fig. 8c,d). The
Ghofrani and Atkinson (2014) model is slightly underesti-
mating the observations, as shown by the mean residuals
higher or equal to zero.

At present, the uncertainty on V S30 estimate is huge for the
RENAC stations (see the Strong-Motion Data section). The
second set of V S30 values based on topographic slope is consid-
ered as an attempt to evaluate the impact of V S30 uncertainty on
the results. The residuals obtained with the Abrahamson et al.

▴ Figure 5. Evidence of directivity effects at (a) PGA and (b) 3 s. The stations located at rupture distances lower or equal to 100 km

are highlighted, and their location with respect to the fault plane is indicated. Abrahamson et al. (2016) predicted amplitudes with

V S30 � 400 m=s (see legend of Fig. 4a). The color version of this figure is available only in the electronic edition.

▴ Figure 6. Observed spectral amplitudes of the mainshock Mw 7.8 at (a) PGA and (b) spectral acceleration T � 1:0 s, overlaid by four

ground-motion prediction equation (GMPE) curves: Abrahamson et al. (2016), Ghofrani and Atkinson (2014), Zhao, Zhang, et al. (2006), and

Montalva et al. (2017). Total sigma is indicated with dashed lines. Predictions for an average V S30 of 400 m=s. The color version of this

figure is available only in the electronic edition.
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▴ Figure 7. Observed spectral amplitudes of the mainshock Mw 7.8 overlaid by the Ghofrani and Atkinson (2014) predicted amplitudes

(median �σ), for (a) PGA and (b) spectral acceleration T � 1:0 s, for an average V S30 of 400 m=s. The color version of this figure is

available only in the electronic edition.

▴ Figure 8. Total residuals, mainshock, the Abrahamson et al. (2016) model. The residuals are binned into intervals of 20 km width, and

the corresponding means (squares) and standard deviations (bars) are displayed when calculated on at least four values. Dashed lines

indicate ±total sigma (0.74). Event term is the mean of the residuals. V S30 reference set considered (see the Strong-Motion Data section).

Abrahamson et al. (2016) generating dataset does not include records beyond 300 km, and the model is therefore extrapolated at these

distances. The color version of this figure is available only in the electronic edition.
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(2016) model are presented inⒺ Figure S3. Residuals are quite
stable with respect to the previous ones. At the PGA, for dis-
tances lower than 100 km, residuals are identical to the ones
calculated with the reference V S30 set. This is expected; at these
distances the difference in the V S30 values is not exceeding
200 m=s (Ⓔ Fig. S1). At larger distances, only slight difference
in the mean residuals can be noticed. At spectral period
T � 1:0 s, the mean of residuals is slightly shifted to positive
values with respect to Figure 8, but still no major change is
observed. Throughout the study, all residuals have been derived
on both sets of V S30 values, showing that the results are stable.

Aftershocks M
w
6.9 and 6.7

Because the mainshock data show clearly an attenuation effect
due to wave passage through the volcanic front, the models
applied in Ecuador should take this difference into account.
The equation of Ghofrani and Atkinson (2014) is made for
events with magnitude higher than 7.0. Thus, only the Abra-
hamson et al. (2016) model is considered further for the after-
shocks.

Figure 9 shows geometric mean PGA and T � 1:0 s spec-
tral acceleration as a function of rupture distance for the
Mw 6.9 event. The median and sigma predicted by the Abra-
hamson et al. (2016) model are superimposed onto the data,
for an average V S30 value of 400 m=s. The residuals are also
calculated. Observations are more scattered than for the main-
shock; however, comparable observations can be made. The at-
tenuation rate predicted is roughly consistent with the obser-
vations, with a stronger attenuation at back-arc sites for PGA.
Mean of residuals are in general within one standard deviation.
At T � 1:0 s, mean residuals at distances larger than 150 km
are larger or equal to sigma, indicating that the model is pre-
dicting a stronger attenuation than observed.

Results for the Mw 6.7 aftershocks are displayed in Fig-
ure 10. At short period (PGA), the difference in attenuation
between fore-arc and back-arc stations is less clear (Fig. 10a).
The attenuation rate for back-arc sites appears to better fit the
observations for distances larger than 100 km for all stations
(fore-arc and back-arc). Residuals indeed show a negative slope
(Fig. 10c). The residuals at T � 1:0 s show a flatter slope, with

▴ Figure 9. Aftershock on 16 May 2016 Mw 6.9 at 16:46. (a) and (b) Attenuation of PGA and spectral accelerations at T � 1:0 s

with distance and comparison to Abrahamson et al. (2016) GMPE for an average V S30 of 400 m=s. (c) and (d) Total residuals of

data relative to Abrahamson et al. (2016) model; residuals binned in 20-km-width intervals and displayed if calculated over more

than four observations; dashed lines indicates ±total sigma. Abrahamson et al. (2016) generating dataset does not include records

beyond 300 km, and the model is therefore extrapolated at these distances. The color version of this figure is available only in the

electronic edition.
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positive mean residuals at distances larger than 100 km, indi-
cating that the model is predicting, on average, lower ground
motions than observed (Fig. 10d). Part of the data is indeed
above the predictions (Fig. 10b).

Event Terms and Intraevent Standard Deviations
For the three events, the event term and intraevent standard
deviations are calculated for a suite of six periods between
PGA and 2 s (Fig. 11). Residuals at distances larger than
300 km, the validity limit of the Abrahamson et al. (2016)
model, are not included. The event term is the mean of
the residuals in a single event over all stations. The intraevent
residual is the misfit between an individual observation at a
station from the earthquake-specific median prediction,
which is defined as the median prediction of the model plus
the event term for the earthquake (Al Atik et al., 2010). The
general trend of the event terms with spectral period is con-
sistent for the three earthquakes (Fig. 11a). Event terms are
mostly within the expected scatter for interface subduction
earthquakes worldwide (τ � 0:43). Event terms are both neg-

ative and positive for the mainshock but always positive for
the aftershocks (larger than expected ground motions). Intra-
event standard deviations for the mainshock are close to the
expected scatter (ϕ � 0:6) for spectral periods lower than 1 s
(Fig. 11b). At 1 and 2 s, the intraevent variability is higher
than expected. This might be partly due to the poorly con-
strained V S30 parameter and to the directivity effects on the
ground motions.

Residuals, event terms, and intraevent standard deviations
based on the second set of V S30 values, relying on topography,
are displayed in Ⓔ Figures S4 and S5. Results are quite stable
with respect to the calculations based on the reference V S30.
Intraevent standard deviations are again higher or equal to the
intraevent variability predicted by the model.

CONCLUSIONS

The Pedernales interface earthquake of 16 April 2016 produced
a unique dataset which enables us to analyze the attenuation of
ground motion with distance in Ecuador and to evaluate the per-

▴ Figure 10. Aftershock on 18 May 2016 Mw 6.7 at 7:57. (a) and (b) Attenuation of PGA and spectral accelerations at T � 1:0 s with

distance and comparison to Abrahamson et al. (2016) GMPE for an average V S30 of 400 m=s. (c) and (d) Total residuals of data relative to

Abrahamson et al. (2016) model; residuals binned in 20-km-width intervals and displayed if calculated over more than four observations;

dashed lines indicates ±total sigma. Abrahamson et al. (2016) generating dataset does not include records beyond 300 km, and the model

is therefore extrapolated at these distances. The color version of this figure is available only in the electronic edition.
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formance of interface models currently in use to predict strong
groundmotions in seismic-hazard studies. The national accelero-
metric network RENAC is young, and most stations still require
site characterization, limiting the precision in the comparison of
observations with existing ground-motion models.

The four considered GMPEs, Zhao, Zhang, et al. (2006),
Ghofrani and Atkinson (2014), Montalva et al. (2017), and
Abrahamson et al. (2016), are providing rather close predic-
tions for an Mw 7.8 earthquake at distances up to 200 km.
However, our results show that high-frequency attenuation is
greater in the back-arc region, thus Zhao, Zhang, et al. (2006)
and Montalva et al. (2017), which are not taking into account
this difference, are not considered further. Overall, residual
analyses show that the Ghofrani and Atkinson (2014) and
Abrahamson et al. (2016) models are rather well predicting
the attenuation of ground motions for the mainshock, both
for short and long periods. A specific study investigating the
signature of directivity effects in the recorded ground
motions remains to be done.

Comparisons of aftershock observations with the Abra-
hamson et al. (2016) predictions indicate that the GMPE
provides a reasonable fit to the attenuation rates observed.
The event terms of the Mw 6.7 and 6.9 events are positive but
within the expected scatter from worldwide similar earth-
quakes. The intraevent standard deviations are higher than the
intraevent variability of the model, which is partly related to
the poorly constrained V S30 proxies.

The Pedernales earthquake produced a large sequence of
aftershocks, with at least nine events with magnitude equal to
or higher than 6.0 recorded to date. Because the coast is close
to the trench and the slab dip is shallow, important cities are

located at short distances (20–30 km), and magnitudes down
to 6.0 must be included in seismic-hazard studies. The next
step will be to constitute a strong-motion interface database
and test the GMPEs with more quantitative methods (e.g.,
Scherbaum et al., 2009; Beauval, Tasan, et al., 2012). Onsite
measurements of velocity using geophysical techniques have
begun and are planned for all RENAC sites. In a year or two,
hopefully, the site conditions of the stations will be much
better known.

DATA AND RESOURCES

The accelerometric dataset was recorded by the National Ac-
celerometric Network of Ecuador (RENAC) maintained by
the Geophysical Institute, Escuela Politécnica Nacional, Quito,
and by the Oleoducto de Crudos Pesados (OCP) network.
The Global Centroid Moment Tensor Project database was
searched using www.globalcmt.org/CMTsearch.html (last accessed
August 2016). The OpenQuake Ground Motion Toolkit is
available online at https://github.com/GEMScienceTools/gmpe-

smtk (last accessed August 2016). The programs developed
by D. Boore to calculate fault-to-station distances are available
online at http://www.daveboore.com/software_online.html (last
accessed August 2016). The global V S30 Map Server was searched
using http://earthquake.usgs.gov/hazards/apps/vs30/ (last ac-
cessed August 2016).
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